

Manual

DA16200/DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 1
© 2025 Renesas Electronics

The DA16200/DA16600 is a highly integrated ultra-low power Wi-Fi system on a chip (SoC) that allows users to
develop a complete Wi-Fi solution on a single chip. This document is an SDK guide which describes the
examples that are included in the SDK and is intended for developers who want to develop applications using
the DA16200/DA16600 SDK.

Contents

Contents ... 1

Figures .. 13

Tables .. 16

1. Terms and Definitions .. 17

2. References .. 19

3. Introduction ... 20

3.1 Overview.. 20

3.2 Development Environment .. 20

3.3 System and Application Startup .. 21

3.4 System Applications .. 23

3.5 User Applications .. 25

3.6 Sample Applications .. 26

3.6.1 Wi-Fi Configuration for Sample Application ... 27

3.7 RED Security ... 28

3.7.1 RED Security Support .. 28

3.7.2 Secure AT Channel .. 28

3.8 Build SDK .. 29

3.8.1 Create RTOS Image for fcCSP .. 30

3.8.2 Build a Project Using Command Line .. 31

4. Wake-Up Source ... 32

5. NVRAM ... 34

5.1 API ... 34

6. TLS Certificate .. 35

6.1 Certificate for MQTT Client .. 35

6.2 Certificate for WPA Enterprise .. 35

6.3 Certificate for HTTPs Client/Server or OTA .. 35

6.4 Certificate for TLS Client/Server ... 35

6.5 APIs for Accessing Prefixed Area of SFlash ... 36

6.6 Store Certificates to Flash Using Console Command ... 38

6.6.1 Console Command for Certificate .. 38

6.6.2 Store Certificates ... 38

6.6.3 Root CA, Client Cert, and Private Key ... 39

6.6.3.1 Root CA ... 39

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 2

6.6.3.2 Client Cert .. 40

6.6.3.3 Private Key ... 40

7. Hardware Accelerators .. 41

7.1 Set SRAM to Zero ... 41

7.1.1 API ... 41

7.1.2 Sample Code ... 41

7.2 CRC Calculation .. 41

7.2.1 API ... 41

7.2.2 Sample Code ... 41

7.3 Pseudo Random Number Generator (PRNG) ... 42

7.3.1 API ... 42

7.3.2 Sample Code ... 42

7.4 Memory Copy Using DMA ... 42

7.4.1 API ... 42

7.4.2 Sample Code ... 42

8. Watchdog Service .. 43

8.1 Overview.. 43

8.2 Concept ... 43

8.3 API ... 44

8.4 Sample Code ... 45

9. Wi-Fi Interface Configuration .. 47

9.1 API ... 47

9.1.1 Integer Type Parameters ... 48

9.1.2 String Type Parameters ... 50

9.1.3 Sample Code ... 50

9.2 Soft AP Configuration by Factory Reset ... 52

9.2.1 S2 – FTR_RST Button Behavior .. 52

9.2.2 Factory Default AP SSID, AP Password, and AT_KEY ... 53

9.2.3 Configure Data Structure ... 55

9.2.4 Configure Soft AP Interface ... 56

9.3 Soft AP Provisioning Protocol ... 57

10. Wi-Fi Functionality ... 58

10.1 Simple Roaming .. 58

10.1.1 Using Simple Roaming .. 58

10.2 Scanning and Example ... 59

10.2.1 Active Scanning ... 59

10.2.2 Passive-Scanning .. 60

10.2.3 Get Scan Result Example .. 60

11. Network Examples: Socket Communication ... 62

11.1 Test Environment .. 62

11.1.1 DA16200 .. 62

11.1.2 Peer Application ... 62

11.1.2.1 Example of Peer Application .. 63

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 3

11.2 TCP Client ... 65

11.2.1 How to Run .. 66

11.2.2 How It Works .. 66

11.2.3 Sample Code ... 66

11.2.3.1 Registration .. 66

11.2.3.2 Data Transmission ... 67

11.2.3.3 Disconnection .. 67

11.3 TCP Client in DPM .. 68

11.3.1 How to Run .. 68

11.3.2 How It Works .. 68

11.3.3 Sample Code ... 69

11.3.3.1 Registration .. 69

11.3.3.2 Data Transmission ... 70

11.4 TCP Server .. 70

11.4.1 How to Run .. 70

11.4.2 How It Works .. 71

11.4.3 Sample Code ... 71

11.4.3.1 Connection ... 71

11.4.3.2 Data Transmission ... 72

11.4.3.3 Disconnection .. 72

11.5 TCP Server in DPM ... 73

11.5.1 How to Run .. 73

11.5.2 How It Works .. 73

11.5.3 Sample Code ... 74

11.5.3.1 Registration .. 74

11.5.3.2 Data Transmission ... 74

11.6 TCP Client with KeepAlive in DPM ... 75

11.6.1 How to Run .. 75

11.6.2 Sample Code ... 75

11.6.2.1 Registration .. 75

11.6.2.2 Data Transmission ... 76

11.6.3 How It Works .. 77

11.7 UDP Socket ... 77

11.7.1 How to Run .. 77

11.7.2 How It Works .. 78

11.7.3 Sample Code ... 78

11.7.3.1 Initialization .. 78

11.7.3.2 Data Transmission ... 78

11.8 UDP Server in DPM .. 79

11.8.1 How to Run .. 79

11.8.2 How It Works .. 79

11.8.3 Sample Code ... 80

11.8.3.1 Registration .. 80

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 4

11.8.3.2 Data Transmission ... 81

11.9 UDP Client in DPM .. 81

11.9.1 How to Run .. 81

11.9.2 How It Works .. 81

11.9.3 Sample Code ... 82

11.9.3.1 Registration .. 82

11.9.3.2 Data Transmission ... 83

12. Network Examples: Security ... 84

12.1 Peer Application .. 84

12.1.1 Peer Application Examples .. 84

12.1.1.1 TLS Server ... 84

12.1.1.2 TLS Client .. 84

12.1.1.3 DTLS Server .. 85

12.1.1.4 DTLS Client .. 85

12.2 TLS Server .. 85

12.2.1 How to Run .. 86

12.2.2 How It Works .. 86

12.2.3 Sample Code ... 86

12.2.3.1 Initialization .. 86

12.2.3.2 TLS Handshake ... 88

12.2.3.3 Data Transmission ... 88

12.3 TLS Server in DPM ... 89

12.3.1 How to Run .. 89

12.3.2 How It Works .. 90

12.3.3 Sample Code ... 90

12.3.3.1 Registration .. 90

12.3.3.2 TLS Setup .. 91

12.3.3.3 Data Transmission ... 92

12.4 TLS Client .. 92

12.4.1 How to Run .. 92

12.4.2 How It Works .. 92

12.4.3 Sample Code ... 93

12.4.3.1 Registration .. 93

12.4.3.2 TLS Handshake ... 94

12.4.3.3 Data Transmission ... 94

12.5 TLS Client in DPM ... 95

12.5.1 How to Run .. 96

12.5.2 How It Works .. 96

12.5.3 Sample Code ... 96

12.5.3.1 Registration .. 96

12.5.3.2 TLS Setup .. 97

12.5.3.3 Data Transmission ... 98

12.6 DTLS Server .. 98

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 5

12.6.1 How to Run .. 98

12.6.2 How It Works .. 99

12.6.3 Sample Code ... 99

12.6.3.1 Initialization .. 99

12.6.3.2 DTLS Handshake ... 101

12.6.3.3 Data Transmission ... 101

12.7 DTLS Server in DPM ... 102

12.7.1 How to Run .. 103

12.7.2 How It Works .. 103

12.7.3 Sample Code ... 103

12.7.3.1 Registration .. 103

12.7.3.2 DTLS Setup ... 104

12.7.3.3 Data Transmission ... 105

12.8 DTLS Client ... 106

12.8.1 How to Run .. 106

12.8.2 How It Works .. 106

12.8.3 Sample Code ... 106

12.8.3.1 Initialization .. 106

12.8.3.2 DTLS Handshake ... 107

12.8.3.3 Data Transmission ... 108

12.9 DTLS Client in DPM .. 109

12.9.1 How to Run .. 109

12.9.2 How It Works .. 110

12.9.3 Sample Code ... 110

12.9.3.1 Registration .. 110

12.9.3.2 DTLS Setup ... 111

12.9.3.3 Data Transmission ... 112

13. Network Examples: MQTT ... 113

13.1 Overview.. 113

13.1.1 SDK Build ... 113

13.2 API ... 113

13.2.1 APIs for Operating MQTT .. 113

13.2.2 APIs for Configure MQTT Messaging .. 115

13.3 MQTT Connection and Flow Chart ... 117

13.4 Test .. 119

13.4.1 Test Environment ... 119

13.4.2 Setup .. 119

13.4.3 Certificate ... 120

13.4.4 Publisher .. 120

13.4.4.1 QoS=0 Message .. 120

13.4.4.2 QoS=1/2 Message ... 121

13.4.4.3 MQTT over TLS ... 122

13.4.4.4 Username and Password .. 123

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 6

13.4.5 Subscriber .. 123

13.4.5.1 Setup .. 123

13.4.5.2 MQTT over TLS ... 124

13.4.5.3 Username and Password .. 124

13.4.5.4 WILL ... 125

13.4.6 MQTT Pub/Sub Test with DPM and TLS ... 125

13.4.6.1 MQTT Reconnection Scheme ... 126

13.4.6.2 DPM Power Profile ... 127

13.4.7 MQTT CleanSession=0 Test Guide ... 127

13.4.7.1 CleanSession=0 Mode ... 127

13.4.7.2 Test Steps .. 130

13.4.8 Reset .. 137

13.5 Sample Code ... 137

13.5.1 Test Environment ... 137

13.5.2 Setup .. 137

13.5.3 How to Test .. 138

13.5.3.1 Test with Non-DPM Mode .. 139

13.5.3.2 Test with DPM Mode .. 140

13.5.4 Code Walkthrough ... 142

14. Network Examples: Protocols/Applications .. 146

14.1 CoAP Client ... 146

14.1.1 Peer Application ... 146

14.1.2 How to Run .. 146

14.1.3 CoAP Client Initialization .. 146

14.1.4 CoAP Client Deinitialization ... 147

14.1.5 CoAP Client Request and Response ... 147

14.1.5.1 CoAP URI and Proxy URI .. 148

14.1.5.2 GET Method ... 148

14.1.5.3 POST Method .. 149

14.1.5.4 PUT Method ... 151

14.1.5.5 DELETE Method .. 152

14.1.5.6 CoAP Ping ... 154

14.1.5.7 CoAP Response .. 155

14.1.6 CoAP Observe ... 156

14.1.6.1 Registration .. 156

14.1.6.2 Deregistration ... 157

14.2 DNS Query .. 158

14.2.1 How to Run .. 158

14.2.2 DNS Query Initialization ... 158

14.2.3 Get Single IPv4 Address .. 159

14.3 SNTP and Get Current Time ... 159

14.3.1 How to Run .. 159

14.3.2 Sample Code ... 160

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 7

14.4 SNTP and Get Current Time in DPM .. 162

14.4.1 How to Run .. 162

14.4.2 Sample Code ... 163

14.5 HTTP Client ... 165

14.5.1 How to Run .. 166

14.5.2 Sample Code ... 166

14.6 HTTP Client in DPM .. 167

14.6.1 How to Run .. 168

14.6.2 Sample Code ... 168

14.7 HTTP Server ... 170

14.7.1 How to Run .. 170

14.7.2 Sample Code ... 170

14.8 WebSocket Client .. 172

14.8.1 How to Run .. 173

14.8.2 Sample Code ... 173

15. Network Examples: OTA .. 175

15.1 Overview.. 175

15.2 SFLASH Memory Area .. 175

15.3 HTTP Protocol ... 176

15.4 OTA Firmware Update .. 176

15.4.1 Header ... 177

15.4.2 Version ... 177

15.4.3 Result Code ... 177

15.4.4 DOWNLOAD .. 178

15.4.5 RENEW .. 179

15.4.5.1 Boot Index .. 180

15.5 API ... 180

15.5.1 Type ... 181

15.5.2 Structure... 181

15.5.3 APIs .. 181

15.5.4 Example ... 184

15.5.4.1 Test Command .. 184

15.5.4.2 Sample Code ... 185

15.6 OTA Firmware Update – Extensions ... 186

15.6.1 Certificates ... 186

15.6.2 MCU Firmware ... 186

15.6.2.1 CRC-32 Calculation ... 187

15.7 Bluetooth® LE Firmware Update OTA ... 188

15.8 OTA Test Server ... 188

16. Crypto Examples .. 191

16.1 Crypto API ... 191

16.1.1 How to Run .. 191

16.1.2 How to Enable Cryptographic Algorithm .. 191

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 8

16.1.3 Cryptographic Algorithms – AES ... 192

16.1.3.1 Application Initialization ... 192

16.1.3.2 AES-CBC-128, 192, and 256 ... 193

16.1.3.3 AES-CFB128-128, 192, and 256 ... 194

16.1.3.4 AES-ECB-128, 192, and 256 ... 194

16.1.3.5 AES-CTR-128 .. 195

16.1.3.6 AES-CCM-128, 192, and 256 .. 196

16.1.3.7 AES-GCM-128, 192, and 256 .. 197

16.1.3.8 AES-OFB-128, 192, and 256 ... 198

16.1.4 Cryptographic Algorithms – DES ... 199

16.1.4.1 Application Initialization ... 199

16.1.4.2 DES-CBC-56, DES3-CBC-112, and 168 ... 199

16.1.5 Cryptographic Algorithms – HASH and HMAC .. 201

16.1.5.1 Application Initialization ... 201

16.1.5.2 SHA-1 Hash ... 202

16.1.5.3 SHA-224 Hash ... 203

16.1.5.4 SHA-256 Hash ... 204

16.1.5.5 SHA-384 Hash ... 205

16.1.5.6 SHA-512 Hash ... 206

16.1.5.7 MD5 Hash .. 206

16.1.5.8 HASH and HMAC with Generic Message-Digest Wrapper 207

16.1.6 Cryptographic Algorithms – DRBG .. 214

16.1.6.1 Application Initialization ... 214

16.1.6.2 CTR_DRBG with Prediction Resistance .. 214

16.1.6.3 CTR_DRBG Without Prediction Resistance .. 216

16.1.6.4 HMAC_DRBG with Prediction Resistance ... 216

16.1.6.5 HMAC_DRBG Without Prediction Resistance ... 218

16.1.7 Cryptographic Algorithms – ECDSA .. 219

16.1.7.1 Application Initialization ... 219

16.1.7.2 Generate ECDSA Key Pair and Verifies ECDSA Signature 219

16.1.8 Cryptographic Algorithms – Diffie-Hellman Key Exchange ... 222

16.1.8.1 Application Initialization ... 222

16.1.8.2 How Diffie-Hellman Works ... 222

16.1.9 Cryptographic Algorithms – RSA PKCS#1 .. 226

16.1.9.1 Application Initialization ... 226

16.1.9.2 How RSA PKCS#1 Works ... 226

16.1.10 Cryptographic Algorithms – ECDH .. 230

16.1.10.1 Application Initialization ... 230

16.1.10.2 How ECDH Key Exchange Works ... 231

16.1.11 Cryptographic Algorithms – KDF ... 235

16.1.11.1 Application Initialization ... 235

16.1.11.2 How KDF Works .. 235

16.1.12 Cryptographic Algorithms – Public Key Abstraction Layer .. 236

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 9

16.1.12.1 Application Initialization ... 237

16.1.12.2 How to Use Public Key Abstraction Layer ... 238

16.1.13 Cryptographic Algorithms – Generic Cipher Wrapper ... 248

16.1.13.1 Application Initialization ... 248

16.1.13.2 How Generic Cipher Wrapper is Used ... 248

17. Peripheral and System Examples ... 255

17.1 UART ... 255

17.1.1 Introduction .. 255

17.1.2 API ... 256

17.1.3 How to Run .. 259

17.1.4 Sample Code ... 259

17.1.4.1 Application Initialization ... 259

17.1.4.2 Data Read/Write .. 261

17.2 GPIO .. 262

17.2.1 Introduction .. 262

17.2.2 API ... 263

17.2.3 How to Run .. 265

17.2.4 Sample Code ... 265

17.3 GPIO Retention ... 267

17.3.1 How to Run .. 267

17.3.2 Sample Code ... 268

17.4 I2C ... 268

17.4.1 Introduction .. 268

17.4.1.1 I2C Master ... 268

17.4.1.2 I2C Slave ... 269

17.4.2 API ... 269

17.4.3 How to Run .. 271

17.4.3.1 Test Procedure .. 271

17.4.3.2 Sample Code for Using I2C ... 271

17.5 I2S ... 273

17.5.1 How to Run .. 273

17.5.2 User Task ... 273

17.5.3 Sample Code ... 273

17.6 PWM .. 274

17.6.1 Introduction .. 274

17.6.2 API ... 275

17.6.3 How to Run .. 275

17.6.3.1 Test Procedure .. 276

17.6.3.2 Sample Code ... 276

17.7 ADC ... 277

17.7.1 Introduction .. 277

17.7.2 API ... 278

17.7.3 Interrupt Description ... 280

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 10

17.7.4 How to Run .. 280

17.7.5 Sample Code – SAMPLE_READ .. 281

17.7.5.1 Test Procedure .. 281

17.7.5.2 Sample Code for Reading ADC ... 281

17.7.6 Sample Code – ADC_SAMPLE_INTERRUPT .. 281

17.7.6.1 Test Procedure .. 281

17.7.6.2 Sample Code for ADC Interrupt ... 282

17.7.7 Sample Code – ADC_SAMPLE_DPM ... 283

17.7.7.1 Test Procedure .. 283

17.7.7.2 Sample Code for Wake Up DPM ... 283

17.8 SPI ... 285

17.8.1 Introduction .. 285

17.8.1.1 SPI Master ... 285

17.8.1.2 SPI Slave ... 286

17.8.2 API ... 286

17.8.3 How to Run .. 287

17.8.4 Sample Code ... 288

17.9 SDIO .. 289

17.9.1 Introduction .. 290

17.9.1.1 SDIO Master .. 290

17.9.1.2 SDIO Slave .. 290

17.9.2 API ... 290

17.9.3 How to Run .. 292

17.9.4 Sample Code ... 292

17.10 SD/eMMC .. 292

17.10.1 Introduction .. 293

17.10.2 API ... 293

17.10.3 How to Run .. 294

17.10.4 Sample Code ... 295

17.11 User SFLASH Read/Write Example .. 296

17.11.1 How to Run .. 296

17.11.2 User Task ... 296

17.11.3 Sample Code ... 296

17.11.3.1 Application Initialization ... 296

17.11.3.2 SFlash Read and Write .. 297

17.12 OTP .. 298

17.12.1 Introduction .. 298

17.12.2 API ... 299

17.13 Bluetooth LE Coexistence ... 300

17.13.1 Pin Configuration ... 300

17.13.2 Pin Multiplex ... 301

17.13.3 SDK Feature Definition .. 301

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 11

17.13.4 API ... 301

17.14 RTC Timer in DPM .. 302

17.14.1 How to Run .. 302

17.14.2 Timer Creation: Sleep Mode 2 ... 302

17.14.3 Timer Creation: Sleep Mode 3 ... 303

18. DA16600 Example Applications .. 305

18.1 Source Structure and Common APIs .. 305

18.1.1 DA16600 Bluetooth Source Structure .. 306

18.1.2 Application APIs and Console Commands .. 306

18.2 Environment Setup .. 307

18.2.1 SFlash Memory Map .. 308

18.2.2 Build the DA16600 SDK ... 308

18.2.2.1 Gas Leak Detection Sensor Example Feature .. 308

18.2.2.2 TCP Client in DPM Example Feature .. 309

18.2.2.3 Peripherals in DA14531 Driver Example Feature .. 309

18.2.2.4 IoT Sensor Gateway Example Feature .. 309

18.2.2.5 Build SDK in e2 studio IDE ... 310

18.2.3 Build DA14531 SDK ... 310

18.2.3.1 DA14531 Peripheral Role Project .. 310

18.2.3.2 DA14531 Central Role Project ... 310

18.2.3.3 Build the DA14531 projects with Keil ... 310

18.2.3.4 Build the DA14531 projects with e2 studio ... 312

18.2.4 Firmware Image Update .. 314

18.2.4.1 Firmware Update with *.ttl File ... 314

18.2.4.2 Firmware Update without .ttl File ... 315

18.2.5 Run DA16600 with JTAG ... 317

18.2.5.1 Run DA16200 with JTAG ... 317

18.2.5.2 Run DA14531 with JTAG ... 317

18.2.6 Test Environment Setup .. 320

18.2.6.1 Wi-Fi Access Point ... 320

18.2.6.2 Bluetooth LE Peers .. 320

18.2.6.3 Laptop to Control Bluetooth LE Peers and DA16600 Boards 321

18.3 Wi-Fi Provisioning Over Bluetooth LE ... 321

18.3.1 Description and Requirements .. 321

18.3.2 Test Procedure .. 321

18.3.3 GTL Workflow .. 323

18.3.4 Wi-Fi Service GATT Database Design .. 324

18.3.5 Wi-Fi Service Application Protocol ... 324

18.4 Bluetooth LE Firmware OTA Download Through Wi-Fi ... 326

18.4.1 Description and Requirements .. 326

18.4.2 Test Procedure .. 326

18.4.3 Working Flow ... 328

18.5 Gas Leak Detection Sensor Example (Bluetooth LE Peripheral).. 329

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 12

18.5.1 Description and Requirements .. 329

18.5.2 Test Procedure .. 329

18.5.3 Workflow .. 330

18.6 TCP Client in DPM Example (Bluetooth LE Peripheral) ... 331

18.6.1 Description and Requirements .. 332

18.6.2 Test Procedure .. 332

18.6.3 Workflow .. 333

18.7 DA14531 Peripheral Driver Example (Bluetooth LE Peripheral)... 334

18.7.1 Description and Requirements .. 334

18.7.2 Test Environment Setup .. 334

18.7.2.1 DA16600 EVB Setup ... 334

18.7.2.2 Tera Term Setup .. 335

18.7.2.3 DA14531 Peripheral Driver Samples ... 335

18.7.3 Test Procedure .. 335

18.7.3.1 peri blinky ... 335

18.7.3.2 peri systick ... 336

18.7.3.3 peri timer0_gen .. 337

18.7.3.4 peri timer0_buz .. 338

18.7.3.5 peri timer2_pwm .. 339

18.7.3.6 peri batt_lvl ... 339

18.7.3.7 peri i2c_eeprom ... 340

18.7.3.8 peri spi_flash .. 341

18.7.3.9 peri gpio ... 342

18.7.4 Workflow .. 343

18.7.5 GPIO PINs in DA14531 ... 344

18.8 IoT Sensor Gateway Example (Bluetooth LE Central) .. 344

18.8.1 Description and Requirements .. 345

18.8.2 Test Setup and Procedure ... 345

18.8.3 Workflow .. 347

18.8.4 GTL Message Flow .. 348

18.8.4.1 Initialization .. 348

18.8.4.2 Provisioning Mode ... 349

18.8.4.3 Scan and Connect to Sensor ... 350

18.8.4.4 Enable Sensor Posting .. 351

18.8.4.5 Disable Sensor Posting.. 351

Appendix A License Information.. 352

A.1 Mosquitto 1.4.14 License .. 352

A.2 MiniUPnPc License ... 352

Appendix B TX Power Table Edit ... 353

B.1 Tune TX Power ... 353

B.2 Apply Tuned TX Power to Main Image ... 353

Appendix C Tips .. 355

C.1 Find/Optimize Stack Size for Applications .. 355

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 13

C.2 How to Make/Write User Data to User Area of Flash Externally ... 355

Appendix D Country Code and TX Power ... 357

D.1 Country Code and Channels ... 357

D.2 Programming ... 361

Appendix E How to Use J-Link Debugger ... 363

Appendix F Create RTOS Image for fcCSP Using SDK v3.2.7.1 or Earlier .. 363

Appendix G Bluetooth LE Customization ... 364

G.1 How to Change Bluetooth LE Device Name ... 364

G.2 How to Change Bluetooth LE ADV Interval ... 364

G.3 How to Configure Bluetooth LE Hardware Reset .. 364

Appendix H QSPI Clock Selection ... 366

Appendix I Power Down Step ... 366

19. Revision History ... 367

Figures

Figure 1. e2 studio project configuration ... 20
Figure 2. Startup files on DA16200/DA16600 project .. 21
Figure 3. Applications on e2 studio project .. 23
Figure 4. Results of running hello world applications ... 26
Figure 5. DA16200 SDK example .. 27
Figure 6. Build SDK on e2 studio IDE ... 29
Figure 7. Build success on e2 studio IDE .. 30
Figure 8. Boot logo with fcCSP-LP RTOS image ... 31
Figure 9. Root CA example .. 39
Figure 10. Client certificate example .. 40
Figure 11. Private key example .. 40
Figure 12. Watchdog overview ... 43
Figure 13. .. 54
Figure 14. Write factory default values ... 54
Figure 15. Read factory values ... 54
Figure 16. Write ??? ... 54
Figure 17. Get_Scan_Result AP list ... 60
Figure 18. Overall test setup ... 62
Figure 19. DA16200 EVB – AP connection complete .. 62
Figure 20. Start IO Ninja utility .. 63
Figure 21. Select TCP server session .. 63
Figure 22. TCP server session windows .. 64
Figure 23. Start TCP server session .. 64
Figure 24. TCP connection with TCP client .. 65
Figure 25. TCP data communication with TCP client ... 65
Figure 26. Workflow of TCP client .. 66
Figure 27. Workflow of TCP client in DPM ... 68
Figure 28. Workflow of TCP server .. 71
Figure 29. Workflow of TCP server in DPM .. 73
Figure 30. Workflow of TCP client with KeepAlive in DPM .. 77
Figure 31. Workflow of UDP socket .. 78
Figure 32. Workflow of UDP server in DPM ... 80
Figure 33. Workflow of UDP client in DPM ... 82
Figure 34. Start TLS server .. 84
Figure 35. Start TLS client .. 84
Figure 36. TLS client timeout .. 85
Figure 37. Start DTLS server .. 85
Figure 38. Start DTLS client ... 85
Figure 39. Workflow of TLS server ... 86

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 14

Figure 40. Workflow of TLS server in DPM .. 90
Figure 41. Workflow of TLS client ... 93
Figure 42. Workflow of TLS client in DPM .. 96
Figure 43. Workflow of DTLS server .. 99
Figure 44. Workflow of DTLS server in DPM ..103
Figure 45. Workflow of DTLS client ..106
Figure 46. Workflow of DTLS client in DPM ...110
Figure 47. MQTT messaging concept ..113
Figure 48. MQTT client flow chart ..118
Figure 49. Publish QoS=0 message ...120
Figure 50. Publish QoS 1 message ..121
Figure 51. Publish QoS 2 message ..121
Figure 52. Configure parameters and publish message ..122
Figure 53. Publish secure message ...122
Figure 54. User login ..123
Figure 55. DPM sleep after MQTT connection ...126
Figure 56. MQTT UC wake-up..126
Figure 57. MQTT wake-up for sending message ...126
Figure 58. MQTT communication ...127
Figure 59. Broker console - CleanSession=1 connection ..128
Figure 60. Broker console - CleanSession=0 connection ..128
Figure 61. Mosquitto MQTT broker ..137
Figure 62. Mosquitto MQTT subscriber ..138
Figure 63. Mosquitto MQTT publisher ..138
Figure 64. MQTT client is ready ...139
Figure 65. MQTT publish ..139
Figure 66. Receive MQTT message ...139
Figure 67. Receive and reply MQTT message ...140
Figure 68. MQTT unsubscribe ..140
Figure 69. MQTT client sample start-up (in DPM mode) ..141
Figure 70. Periodic MQTT publish (in DPM mode)...141
Figure 71. Receive MQTT message (in DPM mode) ...141
Figure 72. MQTT message receive and reply (in DPM mode) ...142
Figure 73. MQTT unsubscribe action (in DPM mode) ..142
Figure 74. Start of CoAP server application ...146
Figure 75. GET method of CoAP client #1 ...149
Figure 76. GET method of CoAP client #2 ...149
Figure 77. GET method of CoAP client #3 ...149
Figure 78. POST method of CoAP client #1 ...151
Figure 79. POST method of CoAP client #2 ...151
Figure 80. POST method of CoAP client #3 ...151
Figure 81. PUT method of CoAP client #1 ...152
Figure 82. PUT method of CoAP client #2 ...152
Figure 83. PUT method of CoAP client #3 ...152
Figure 84. DELETE method of CoAP client #1 ...153
Figure 85. DELETE method of CoAP client #2 ...154
Figure 86. DELETE method of CoAP client #3 ...154
Figure 87. PING method of CoAP client #1 ..155
Figure 88. PING method of CoAP client #2 ..155
Figure 89. CoAP observe of CoAP client #1 ..157
Figure 90. CoAP observe of CoAP client #2 ..157
Figure 91. CoAP observe of CoAP client #3 ..157
Figure 92. DNS query result ...158
Figure 93. Result of DA16200 SNTP #1 ...160
Figure 94. Result of DA16200 SNTP #2 ...160
Figure 95. Result of DA16200 SNTP DPM #1 ..163
Figure 96. Result of DA16200 SNTP DPM #2 ..163
Figure 97. Result of DA16200 HTTP server ...172
Figure 98. OTA update layer ..175
Figure 99. Firmware header information ..177

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 15

Figure 100. Firmware DOWNLOAD ...179
Figure 101. Firmware RENEW ...180
Figure 102. Boot index operation ...180
Figure 103. MCU firmware ..187
Figure 104. Results of crypto AES ...192
Figure 105. Result of crypto DES ...199
Figure 106. Result of crypto hash #1 ..201
Figure 107. Result of crypto hash #2 ..201
Figure 108. Result of crypto DRBG ..214
Figure 109. Result of crypto ECDSA ..219
Figure 110. Result of crypto Diffie Hellman ..222
Figure 111. Result of crypto RSA ...226
Figure 112. Result of crypto ECDH ..230
Figure 113. Result of crypto KDF ...235
Figure 114. Result of crypto public key ..237
Figure 115. Result of generic cipher ...248
Figure 116. Result of UART #1...259
Figure 117. Result of UART #2...259
Figure 118. PWM block diagram ..274
Figure 119. ADC control block diagram ..277
Figure 120. SPI loopback communication ..288
Figure 121. SDIO and SD/eMMC connector ..295
Figure 122. SFlash example sample test ...296
Figure 123. DA16600 Bluetooth source structure ..306
Figure 124. Project view ...310
Figure 125. Keil – build ...311
Figure 126. Project selection ..313
Figure 127. Device selection ..313
Figure 128. e2 studio project build ...314
Figure 129. DA16600 images and .ttl files to program ...315
Figure 130. Steps to program by .ttl file ..315
Figure 131. Tera Term ..316
Figure 132. Keil – option ...318
Figure 133. Keil – debug ...318
Figure 134. Keil – JTAG device ..319
Figure 135. Tera Term – DA16200 waiting for DA14531 to connect ...319
Figure 136. Keil – start debugger ...319
Figure 137. Keil – evaluation mode dialog ...320
Figure 138. Keil – run ...320
Figure 139. Bluetooth LE assisted with Wi-Fi provisioning ...321
Figure 140. Renesas Wi-Fi provisioning app ..322
Figure 141. GTL message sequence chart – initialization ...323
Figure 142. GTL message sequence chart – connect and write ..324
Figure 143. GTL message sequence chart – read ...324
Figure 144. Provisioning application – custom command ..327
Figure 145. Standalone gas leak detection sensor ..329
Figure 146. DA16600 TCP client in DPM ...332
Figure 147. TCP client in DPM sleep ...333
Figure 148. TCP client – wake up from DPM sleep..333
Figure 149. DA14531 peripheral device control ...334
Figure 150. DA16600 EVB SW config. 1 ..334
Figure 151. DA16600 EVB SW config. 2 ..335
Figure 152. Peri blinky ..336
Figure 153. Peri systick ..337
Figure 154. Peri Timer0_gen ..338
Figure 155. Peri Timer0_buz ..338
Figure 156. Peri Timer0_buz (Continued) ..339
Figure 157. Peri Timer2_pwm ..339
Figure 158. Peri Batt_lvl ...340
Figure 159. Peri I2c_eeprom ..340

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 16

Figure 160. Peri I2c_eeprom read/write ...341
Figure 161. Peri Spi_flash – wrong image warning ..341
Figure 162. Correct image version for peri Spi_flash sample ..342
Figure 163. Peri Spi_flash ..342
Figure 164. Peri Spi_flash read/write ...342
Figure 165. Peri GPIO configuration ..343
Figure 166. IoT sensor gateway ...345
Figure 167. GTL message sequence chart – initialization ...348
Figure 168. GTL message sequence chart – provisioning mode ...349
Figure 169. GTL message sequence chart – scan and connect ..351
Figure 170. GTL message sequence chart – enable sensor posting ...351
Figure 171. GTL message sequence chart – disable sensor posting ..351
Figure 172. TX power table ..353
Figure 173. TX power table source code ..354
Figure 174. Check stack size ..355
Figure 175. Snapshot of hex editor ..356
Figure 176. Settings of multidownloader ..356
Figure 177. Read user data using command ...356

Tables

Table 1. Wake-up source .. 32
Table 2. APIs for NVRAM ... 34
Table 3. APIs for reading certificate from flash ... 36
Table 4. API to write certificate to flash .. 37
Table 5. APIs to delete certificate in flash .. 37
Table 6. Console command for Certificate ... 38
Table 7. Hardware accelerator API .. 41
Table 8. CRC API ... 41
Table 9. PRNG API ... 42
Table 10. Hardware DMA API .. 42
Table 11. APIs of watchdog service ... 44
Table 12. APIs for Wi-Fi configuration .. 47
Table 13. NVRAM integer type ... 48
Table 14. NVRAM string type ... 50
Table 15. S2 – Factory Reset button if RED enabled .. 52
Table 16. S2 – Factory Reset button if RED disabled .. 53
Table 15. APIs for operating MQTT ..114
Table 16. APIs for configuring MQTT message ...115
Table 17. MQTT messaging configuration (String type) ...116
Table 18. MQTT messaging configuration (Integer type) ...116
Table 19. MQTT client start conditions ...117
Table 20. CleanSession and QoS matrix in message Rx ..129
Table 21. CleanSession and QoS matrix in message TX ..129
Table 22. APIs for initializing CoAP client ..147
Table 23. API for deinitializing CoAP client ..147
Table 24. APIs for setting up CoAP URI and proxy URI ..148
Table 25. GET API for CoAP client ..149
Table 26. POST API for CoAP client ..150
Table 27. PUT API for CoAP client ...152
Table 28. DELETE API for CoAP client ..153
Table 29. PING API for CoAP client ...154
Table 30. Response APIs for CoAP client ..155
Table 31. Observe registration API for CoAP client ...157
Table 32. Observe deregistration API for CoAP client ...158
Table 33. 4 MB sflash memory map ...175
Table 34. Result code ...177
Table 35. OTA update type ...181
Table 36. OTA update configuration ...181

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 17

Table 37. APIs for OTA firmware ..182
Table 38. OTA test command ...185
Table 39. APIs for SHA-1 hash...202
Table 40. APIs for SHA-224 and SHA-256 hash ..203
Table 41. APIs for SHA-384 and SHA-512 hash ..205
Table 42. APIs for MD5 hash ..207
Table 43. APIs for generic message digest wrapper ..207
Table 44. APIs for CTR DRBG ...215
Table 45. APIs for HMAC DRBG ..217
Table 46. APIs for ECDSA ..220
Table 47. APIs for Diffie-Hellman-Merkle ...222
Table 48. APIs for PKCS#11 RSA ..227
Table 49. APIs for ECDH ..234
Table 50. APIs for PKCS#5 PBKDF2 ...236
Table 51. APIs for public key abstraction layer ..239
Table 52. APIs for generating key pair ...241
Table 53. APIs for verifing signature ..242
Table 54. APIs for making signature ..243
Table 55.APIs for PKCS#11 RSA ...244
Table 56. APIs for initializing RSA ..246
Table 57. APIs for parsing private and public key ..247
Table 58. APIs for generic cipher wrapper ...250
Table 59. UART pin configuration ..255
Table 60. APIs for UART interface ...256
Table 61. GPIO pin configuration ...262
Table 62. Status of GPIO pin ..263
Table 63. APIs for GPIO interface ..263
Table 64. I2C master pin configuration ...269
Table 65. I2C slave pin configuration ...269
Table 66. APIs for I2C interface..269
Table 67. PWM pin configuration ...275
Table 68. APIs for PWM interface ..275
Table 69. AUX ADC pin configuration ..277
Table 70. APIs for ADC interface ...278
Table 71. SPI master pin configuration ..285
Table 72. SPI slave pin configuration ...286
Table 73. APIs for SPI master interface ...286
Table 74. APIs for SPI slave interface ..287
Table 75. APIs for SDIO master interface ..290
Table 76. SDIO slave pin configuration ..291
Table 77. SD/eMMC master pin configuration ..293
Table 78. APIs for SD/eMMC interface ..293
Table 79. OTP map ..298
Table 80. OTP API list ..299
Table 81. 3-Pin Bluetooth LE coexistence pin configuration ..301
Table 82. 1-Pin Bluetooth LE coexistence pin configuration ..301
Table 83. APIs for Bluetooth LE coexistence ...301
Table 84. Application functions ...306
Table 85. Major console commands ...307
Table 86. TX power setting value range ...353
Table 87. Country code ..357
Table 88. Programming example for country code ..361

1. Terms and Definitions

AP Access Point

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 18

API Application Programming Interface

AT Attention

AWS Amazon Web Services

BSS Basic Service Set

CCM Counter with CBC-MAC

CLI Command Line Interface

CRC Cyclic Redundancy Check

CTR Counter

DAC Digital-To-Analog Converter

DER Distinguished Encoding Rules

DES Data Encryption Standard

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

DNS Domain Name Server

DPM Dynamic Power Management

DRBG Deterministic Random Bit Generator

DTLS Datagram Transport Layer Security

DUT Device Under Test

EAP Extensible Authentication Protocol

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EVB Evaluation Board

EVK Evaluation Kit

GCM Galois/Counter Mode

GPIO General-Purpose Input/Output

HMAC Hash(-based) Message Authentication Code

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

I2C Inter-Integrated Circuit

I2S Inter-IC Sound

KDF Key Derivation Function

LE Low Energy

MQTT Message Queuing Telemetry Transport

MD5 Message Digest 5

MCU Microcontroller Unit

NVRAM Non-volatile Random-Access Memory

OFB Output Feedback

OTA Over the Air

PEM Privacy-Enhanced Mail

POR Power-On Reset

PWM Pulse Width Modulation

QoS Quality of Service

RSA PKCS RSA Public Key Cryptography Standards

RTC Real-Time Clock

RTM Retention Memory

RTOS Real-Time Operating System

SD/eMMC Secure Digital/Embedded Multimedia Card

SDIO Secure Digital Input Output

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 19

SDK Software Development Kit

SNTP Simple Network Time Protocol

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

STA Station

TCP Transmission Control Protocol

TIM Traffic Indication Map

TLS Transport Layer Security

UART Universal Asynchronous Receiver-Transmitter

UDP User Datagram Protocol

WPA Wi-Fi Protected Access

WPA2 Wi-Fi Protected Access 2

WPA3 Wi-Fi Protected Access 3

2. References

[1] LwIP API. (n.d). Retrieved September 9, 2021. From Savannah:
https://www.nongnu.org/lwip/2_0_x/raw_api.html.

[2] DA16200, Datasheet, Renesas Electronics.

[3] UM-WI-056, DA16200 DA16600 FreeRTOS Getting Started Guide, Manual, Renesas Electronics.

[4] UM-WI-042, DA16200 DA16600 Provisioning Mobile App for Android/iOS, Manual, Renesas Electronics.

[5] UM-WI-011, DA16200 DA16600 Mass Production, Manual, Renesas Electronics.

[6] UM-WI-030, DA16200 DA16600 DPM, Manual, Renesas Electronics.

[7] UM-WI-003, DA16200 DA16600 Host Interface and AT Command, Manual, Renesas Electronics.

[8] UM-B-117, DA14531 Getting Started with the Pro Development Kit, Manual, Renesas Electronics.

[9] UM-B-143, DA1458x/DA1453x External Processor Interface, Manual, Renesas Electronics.

[10] UM-B-119, DA1453x/DA1458x SW Platform Reference, Manual, Renesas Electronics.

[11] UM-WI-039, DA16200 DA16600 MultiDownloader Tool, Manual, Renesas Electronics.

[12] UM-B-176, e2 Studio SDK 6 Getting Started Guide, Manual, Renesas Electronics.

Note 1 References are for the latest published version, unless otherwise indicated.

https://www.nongnu.org/lwip/2_0_x/raw_api.html
https://lpccs-docs.renesas.com/UM-B-117-DA14531-Getting-Started-With-The-Pro-Development-Kit/index.html
https://lpccs-docs.renesas.com/UM-B-119_DA14585-DA14531_SW_Platform_Reference/index.html

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 20

3. Introduction

This document provides an overview of the Software Development Kit (SDK) used for application development
based on Wi-Fi solution using the DA16200/DA16600 devices and boards. This SDK includes
DA16200/DA16600 generic projects, sample projects, a set of libraries, and drivers to facilitate the creation of
various applications by exploiting the provided hardware resources of a connected DA16200/DA16600 devices.

3.1 Overview

The DA16200/DA16600 FreeRTOS SDK has six folders:

▪ apps : project files and source codes for generic and sample applications

• apps/common/examples: sample applications and template

• apps/da16xxx/get_started: generic application

▪ core : source codes for core funnctions

▪ docs : doxgen document and lincens file

▪ library : pre-compiled lib (.a) files

▪ tools : build tools/scripts, temporary build artifacts, or environment files

• version : firmware version files

▪ utility : utilities for programming, debugging, DA14531 SDK, and network tools

The SDK can be used with different features according to the use case or applications, and the features can be
changed in the SDK.

General features are defined in ~/FreeRTOS_SDK/apps/da16200/<app

name>/include/user_main/config_generic_sdk.h where the features can be enabled or disabled. And other

system features are defined in ~/FreeRTOS_SDK/apps/da16200/<app
name>/include/user_main/sys_common_features.h.

NOTE

The main header files including configurable features are located in ./apps/da16xxx/<app name>/include/user_main for

generic projects or ./apps/common/examples/<sample group name>/<sample name>/include for sample projects. All

features in config_generic_sdk.h are configurable as required. Some features in the sys_common_feature.h can be

changed also but need the support from Renesas Support Team.

The typical e2 studio project for the DA16200/DA16600 SDK is shown in Figure 1.

Figure 1. e2 studio project configuration

3.2 Development Environment

The DA16200/DA16600 FreeRTOS SDK needs the Renesas e2 studio IDE. See Ref. [3] for e2 studio installation.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 21

3.3 System and Application Startup

The main()is first startup function. After hardware resources (PIN_MUX, RTC, Console, and so on) are

initialized, user_main() in each project is called.

Figure 2. Startup files on DA16200/DA16600 project

[~/FreeRTOS_SDK/core/main/src/main.c]

int main(char init_state)

{

 ...

 xTaskCreate(system_launcher,

 "system_launcher",

 256*3, // for SecureBoot

 (void *)NULL,

 (tskIDLE_PRIORITY+1),

 NULL);

 ...

 vTaskStartScheduler();

}

void system_launcher(void *pvParameters)

{

 ...

// Initialize and run system application

 // and run user application if needed.

 start_da16x();

 ...

}

static void start_da16x(void)

{

 ...

 /* Configure Pin-Mux of DA16200*/

 config_pin_mux();

 ...

 /* Start DA16200 IoT system layer*/

 user_main(ramlib_ptim_init_status); // USER main

}

system_start() in user_main()runs as follows:

▪ Configure hardware and software features

▪ Configure system resources for system clock and TX power

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 22

▪ Initialize Wi-Fi function in wlaninit()

▪ Start system applications in start_sys_apps()

▪ Start user applications in start_user_apps()

[~/FreeRTOS_SDK/apps/da16200/<app name>/src/user_main/user_main.c]

int user_main(char init_state)

{

 ...

 /* Entry point for customer main */

 if (init_state == pdTRUE) {

 system_start();

 } else {

 Printf("\nFailed to initialize the RamLib or pTIM !!!\n");

 }

 return status;

}

[~/FreeRTOS_SDK/apps/da16200/<app name>/src/user_main/system_start.c]

int system_start(void)

{

/* Config hardware wake-up resource */

 config_user_wu_hw_resource();

 /* Set configuration for hardware button */

 config_gpio_button();

 /* Set paramters for system running */

 set_sys_config();

 /* Initialize WLAN interface */

 wlaninit();

... ...

 /* Start system applications for DA16XXX */

 start_sys_apps();

 /*

 * Entry point of user's applications

 * : defined in user_apps_table.c

 */

 /* Start system applications for DA16XXX */

 start_user_apps();

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 23

3.4 System Applications

After the startup function is run, each system application such as MQTT, HTTP server, or AT command can be
started according to the user defined features.

Figure 3. Applications on e2 studio project

[~/FreeRTOS_SDK/core/system/src/common/main/sys_apps.c]

void start_sys_apps(void)

{

...

 /* Start user application functions */

 run_sys_apps();

}

The system applications can run in two cases below:

▪ Applications run immediately regardless of network connection

▪ Applications run only after the network connection is completed.

static void run_sys_apps(void)

{

... ...

/* Create network independent apps */

create_sys_apps(sysmode, FALSE);

/* Create user's network independent apps */

create_user_apps(sysmode, FALSE);

 ...

 /* wait for network initialization */

 while (1) {

 if (check_net_init(iface) == pdPASS) {

 i = 0;

 break;

 }

 i++;

 vTaskDelay(1);

 }

...

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 24

 /* Check IP address resolution status */

 while (check_net_ip_status(iface)) {

 vTaskDelay(1);

 }

/* Create network apps */

create_sys_apps(sysmode, TRUE);

}

All system applications are in the sys_apps_table[] as shown in the example code below.

[~/FreeRTOS_SDK/core/system/src/common/main/sys_apps.c]

static const app_task_info_t sys_apps_table[] =

{

/* name, entry_func, stack_size, priority, timeslice, net_chk_flag, dpm_flag, port_no,

run_sys_mode */

 /****** For function features ***********************************/

 … …

#if defined (__SUPPORT_MQTT__)

{ APP_MQTT_SUB, mqtt_auto_start, 320, (U_PRIO), TRUE, TRUE, UNDEF_PORT, RUN_STA_MODE},

#endif // __SUPPORT_MQTT__

 … …

/******* End of List **/

{ NULL, NULL, 0, 0, FALSE, FALSE, UNDEF_PORT, 0 }

};

The parameters of the sys_apps_table[] are as shown below.

[~/FreeRTOS_SDK/apps/da16200/get_started/include/apps/application.h]

typedef struct _app_task_info {

 /// Thread Name

 char *name;

 /// Funtion Entry_point

 VOID (*entry_func)(void *);

 /// Thread Stack Size

 USHORT stksize;

 /// Thread Priority

 USHORT priority;

 /// Flag to check network initializing

 UCHAR net_chk_flag;

 /// Usage flag for DPM running

 UCHAR dpm_flag;

 /// Port number for network communitation

 USHORT port_no;

 /// Running mode of DA16xxx

 int run_sys_mode;

} app_task_info_t;

▪ name Unique thread name

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 25

▪ entry_func Thread entry point

▪ stksize Stack size of thread

▪ priority Thread running priority

▪ net_chk_flag TRUE: run application only after network connection is completed

FALSE: run application immediately regardless of network connection

▪ dpm_flag TRUE: register an application to DPM service

FALSE: not register an application to DPM service

▪ port_no Port number of network session for DPM service

▪ run_sys_mode RUN_STA_MODE: run application only at Station mode

RUN_AP_MODE: run application only at AP mode

RUN_STA_SOFTAP_MODE: run application only at Concurrent (AP + Station) mode

RUN_ALL_MODE: run application at any mode

NOTE

▪ Do not use malloc() or free() function to allocate or free memory. Use pvPortMalloc() or vPortFree() function for

allocating or free memory

▪ There is no need to modify the system application tables in the DA16200/DA16600 SDK. However, if required, that can

be modified with the support of Renesas Electronics

▪ See Ref. [6] for details about DPM service.

If sample projects in the SDK are used, sample applications also can be run. The sample applications are
defined in sample_apps_table[] and the parameters are the same as the table of system applications.

[~/FreeRTOS_SDK/core/system/src/common/main/sys_apps.c]

static void create_sys_apps(int sysmode, UCHAR net_chk_flag)

{

 … …

 /* Create test samples apps */

 if (sample_app_start_cb != NULL) {

 sample_app_start_cb(net_chk_flag);

 }

}

3.5 User Applications

After running the system applications, user applications run in two cases:

▪ Applications run immediately regardless of network connection

[~/FreeRTOS_SDK/core/system/src/common/main/sys_apps.c]

static void run_sys_apps(void)

{

... ...

/* Start user's network independent applications */

create_user_apps(sysmode, FALSE);

... ...

▪ Applications run after network connection is complete

[~/FreeRTOS_SDK/core/system/src/common/main/sys_apps.c]

void start_user_apps(void)

{

int sysmode;

… …

/* Run user's network dependent apps */

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 26

create_user_apps(sysmode, TRUE);

}

All user applications are listed in the user_apps_table[] as shown in the example code below. There is a

"hello_world" application in the SDK and the feature __SUPPORT_HELLO_WORLD__ is defined in

~/FreeRTOS_SDK/apps/da16200/get_started/include/user_main/config_generic_sdk.h.

[~/FreeRTOS_SDK/apps/da16200/get_started/src/apps/user_apps.c]

const app_task_info_t user_apps_table[] = {

/* name, func, stack_size, pri, net_flag, dpm_flag, port_no, sys_mode */

#if defined (__SUPPORT_HELLO_WORLD__)

{ HELLO_WORLD_1, customer_hello_world_1, 64,(U_PRIO),FALSE,FALSE,UNDEF_PORT, ALL_MODE },

{ HELLO_WORLD_2, customer_hello_world_2, 64,(U_PRIO),TRUE, FALSE,UNDEF_PORT, ALL_MODE },

#endif // __SUPPORT_HELLO_WORLD__

{ NULL, NULL, 0, 0, FALSE, FALSE, UNDEF_PORT, 0 }

};

▪ HELLO_WORLD_1: This application runs immediately regardless of network connection as shown in Figure 4.

▪ HELLO_WORLD_2: This application runs after network connection is completed as shown in Figure 4.

Figure 4. Results of running hello world applications

The applications described above can be reused or new source code can be added for new applications.

3.6 Sample Applications

The SDK contains various examples which demonstrate how to use DA16200 features. The examples included
are:

▪ Crypto: Examples demonstrate how to use the cryptography and security capabilities

▪ DPM: Examples demonstrate how to use the various DPM low power mode

▪ ETC: Examples demonstrate how to get the current time, Access Point scan result

▪ Network: Examples demonstrate how to use various network protocols for either a client or server application

▪ Peripheral: Examples demonstrate how to use peripherals such as GPIO, I2C, and PWM

Before using the examples, set up the e2 studio development environment. See Ref. [3] for details on setting up
e2 studio and importing the DA16200 SDK into that environment.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 27

When the environment is set up, the examples can be found in the apps/common/examples directory. Each

example directory has a similar structure and contains its own projects, one for da16200 and one for da16600,
which can be imported into the e2 studio environment.

Figure 5. DA16200 SDK example

Select the desired example project folder and import it to e2 studio. See Ref. [3] for how to import projects.

For example, the Crypto_API example project is in the following path:

~/SDK/Apps/common/examples/Crypto/Crypto_API/projects/da16200

3.6.1 Wi-Fi Configuration for Sample Application

Each example using the Wi-Fi communication interface contains default configuration information. This
information can be modified in the example code in the following location:

 [~/SDK/apps/common/examples/common_config/sample_preconfig.c]

/* Sample for Customer's Wi-Fi configuration */

#define SAMPLE_AP_SSID "TEST_AP_SSID"

#define SAMPLE_AP_PSK "12345678"

// CC_VAL_AUTH_OPEN, CC_VAL_AUTH_WEP, CC_VAL_AUTH_WPA, CC_VAL_AUTH_WPA2, CC_VAL_AUTH_WPA_AUTO

#define SAMPLE_AP_AUTH_TYPE CC_VAL_AUTH_WPA_AUTO

/* Required when WEP security mode */

#define SAMPLE_AP_WEP_INDEX 0

// CC_VAL_ENC_TKIP, CC_VAL_ENC_CCMP, CC_VAL_ENC_AUTO

#define SAMPLE_AP_ENCRPT_INDEX CC_VAL_ENC_AUTO

void sample_preconfig(void)

{

 //

 // Need to change as Customer's profile information

NOTE

Each sample code runs with pre-configured Wi-Fi profile and environment variables in the NVRAM unless users want to

add their codes in this file.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 28

 //

#if 0 // Example ...(Customer’s code to config Wi-Fi profile for sample code)

 char reply[32];

 // Delete existed Wi-Fi profile

 da16x_cli_reply("remove_network 0", NULL, reply);

 // Set new Wi-Fi profile for sample test

 da16x_set_nvcache_int(DA16X_CONF_INT_MODE, 0);

 da16x_set_nvcache_str(DA16X_CONF_STR_SSID_0, SAMPLE_AP_SSID);

 da16x_set_nvcache_int(DA16X_CONF_INT_AUTH_MODE_0, SAMPLE_AP_AUTH_TYPE);

 if (SAMPLE_AP_AUTH_TYPE == CC_VAL_AUTH_WEP)

 {

 da16x_set_nvcache_str(DA16X_CONF_STR_WEP_KEY0 + SAMPLE_AP_WEP_INDEX, SAMPLE_AP_PSK);

 da16x_set_nvcache_int(DA16X_CONF_INT_WEP_KEY_INDEX, SAMPLE_AP_WEP_INDEX);

 }

 else if (SAMPLE_AP_AUTH_TYPE > CC_VAL_AUTH_WEP)

 {

 da16x_set_nvcache_str(DA16X_CONF_STR_PSK_0, SAMPLE_AP_PSK);

 da16x_set_nvcache_int(DA16X_CONF_INT_ENCRYPTION_0, SAMPLE_AP_ENCRPT_INDEX);

 }

 // Save new Wi-Fi profile to NVRAM area

 da16x_nvcache2flash();

 vTaskDelay(10);

 // Enable new sample Wi-Fi profile

 da16x_cli_reply("select_network 0", NULL, reply);

#endif // 0

}

3.7 RED Security

3.7.1 RED Security Support

Define __SUPPORT_RED_SECURITY__ in config_generic_sdk.h

#define __SUPPORT_RED_SECURITY__

3.7.2 Secure AT Channel

1. Define AT command and secure channel feature:

a. In config_generic_sdk.h:

#define __SUPPORT_ATCMD__

b. Define secure asset key or non-secure known key. ASSET KEY can be used after applying secure boot.
Known key is for testing when secure boot is not applied.

c. In atcmd_secure_channel.h:

#undef NON_SECURE_ASSET // Secure ASSET (Secure)

#define NON_SECURE_ASSET // Known key (Non-secure)

d. In DA_RED_secure_channel.py:

known_key = bytes.fromhex("11223344556677889900aabbccddeeff") // Known key (Non-secure)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 29

known_key = bytes.fromhex("31363230307365637572656173736574") // Secure ASSET (Secure)

2. Build SDK and download the firmware to EVB.

3. Run Python Secure Channel Host Program in Python IDLE shell.

~\utility\Secure_at_channel\DA_RED_secure_channel.py

4. Test procedures in DA_RED_secure_channel.py.

a. Enable secure channel.

b. Send AT command with arguments.

c. Check decrypted response.

3.8 Build SDK

After the application is written, right-click the project DA16200/DA16600, and then click Build Project. If building
an SDK for the first time, Renesas recommends running command Clean first. See Figure 6.

Figure 6. Build SDK on e2 studio IDE

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 30

Figure 7. Build success on e2 studio IDE

If the SDK is successfully built, two binary images are created in the~/FreeRTOS_SDK/

apps/da16200/get_started/img folder. The names of the image files are:

▪ RTOS: DA16200_FRTOS-GEN01-01-XXXXXXXXX-000000.img

▪ Second Bootloader: DA16200_FBOOT-GEN01-01-XXXXXXXXX-000000_W25Q32JW.img

(In case of Winbond W25Q32JW Sflash)

For more information about the firmware download, see the Programming Firmware Images section of Ref. [3].

3.8.1 Create RTOS Image for fcCSP

By default, the DA16200/DA16600 SDK provides a QFN-type RTOS Sflash image file. After building the
DA16200/DA16600 SDK, the QFN-type RTOS image with filename DA16200_FRTOS-GEN01-01-XXXXX-
000000.img is created in the ~/SDK/apps/da16200/get_started/img/ folder.

For fcCSP type package, to create an RTOS image with the DA16200/DA16600 SDK, change the build
configurations to fcCSP_LP or fcCSP_NP. See the Build Configurations section of Ref. [3], and then follow the
build SDK instructions described in Section 4.c. For SDK version 3.2.7.1 or earlier and sample projects, see
Appendix F.

When the programming is complete (see Ref. [3] for programming firmware), the SDK version shows "V3.2.x.0
CSP LP" for Low-Power or "V3.2.X.0 CSP NP" for Normal-Power. See Figure 8.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 31

Figure 8. Boot logo with fcCSP-LP RTOS image

3.8.2 Build a Project Using Command Line

The command line of e2 studio can be used to compile a project, see the following example command.

e2 studioc.exe -nosplash --launcher.suppressErrors -application

org.eclipse.cdt.managedbuilder.core.headlessbuild -data "c:\wksp" -cleanBuild MyProj (To

build the project in the workspace)

You can find the detailed information in the FAQ section: Command-line build of e² studio project.

https://en-support.renesas.com/knowledgeBase/16979374

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 32

4. Wake-Up Source

DA16200 DA16600 SDK supports various wake-up sources such as POR, system reset, external wake-up pin,
and RTC wake-up counter. The wake-up sources (see Table 1) can be checked by calling
dpm_mode_get_wakeup_source(),.and can be duplicated except power on reset, and each wake-up source can

be categorized based on a defined Sleep mode and DPM. When the device wakes up from DPM, check the
DPM wake-up types for further details (See Ref. [6]).

Table 1. Wake-up source

Wake-up source Value Wake-up from

sleep

Description

WAKEUP_RESET 0x00 System reset

WAKEUP_SOURCE_EXT

_SIGNAL

0x01 Sleep mode 2 External wake-up pin toggled

WAKEUP_SOURCE_WA

KEUP_COUNTER

0x02 Sleep mode 2 RTC wake-up counter expired.

(RTC wake-up counter sets the sleep period)

WAKEUP_EXT_SIG_WA

KEUP_COUNTER

0x03 Sleep mode 2 External wake-up pin toggled and RTC wake-up counter

expired.

WAKEUP_SOURCE_PO

R

0x04 Sleep mode 1 Power on reset

WAKEUP_WATCHDOG 0x08 Sleep mode 2 RTC watchdog expired.

(RTC watchdog is not a CPU WDOG, and it wakes up if a

device does not wake up when wake-up counter has

expired.) (Note 1)

WAKEUP_WATCHDOG_

EXT_SIGNAL

0x09 Sleep mode 2 RTC watchdog expired, and external wake-up pin toggled.

(Note 1)

WAKEUP_SENSOR 0x10 Sleep mode 2 Wake-up GPIO toggled, pulse counter expired, or ADC

sensor occurred.

Return which wake-up source occurred by calling

RTC_GET_AUX_WAKEUP_SOURCE() function.

The return values are:

 0x10: ADC sensor event

 0x20: WAKEUP_PULSE

 0x40: WAKEUP_GPIO

See wakeup_sample.c in the SDK for details

WAKEUP_PULSE 0x20 Sleep mode 2 Pulse counter expired.

The user can set the pulse count for wake-up, and when the

count expires, the system wakes up.

This wake-up source is subset of WAKEUP_SENSOR and

should be read by calling

RTC_GET_AUX_WAKEUP_SOURCE() when

WAKEUP_SENSOR occurs.

WAKEUP_GPIO 0x40 Sleep mode 2 Wake-up GPIO toggled.

This wake-up source is subset of WAKEUP_SENSOR and

should be read by calling

RTC_GET_AUX_WAKEUP_SOURCE() when

WAKEUP_SENSOR occurs.

WAKEUP_SENSOR_EXT

_SIGNAL

0x11 Sleep mode 2 External wake-up pin toggled and sensor (pulse or GPIO or

ADC sensor) wake-up occurred.

WAKEUP_SENSOR_WA

KEUP_COUNTER

0x12 Sleep mode 2 RTC wake-up counter expired and sensor (pulse or GPIO or

ADC sensor) wake-up occurred.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 33

Wake-up source Value Wake-up from

sleep

Description

WAKEUP_SENSOR_EXT

_WAKEUP_COUNTER

0x13 Sleep mode 2 RTC wake-up counter expired, external wake-up pin toggled,

and sensor (pulse or GPIO or ADC sensor) wake-up

occurred.

WAKEUP_SENSOR_WA

TCHDOG

0x18 Sleep mode 2 Sensor (pulse or GPIO or ADC sensor) wake-up occurred

and RTC watchdog expired.

WAKEUP_SENSOR_EXT

_WATCHDOG

0x19 Sleep mode 2 Sensor (pulse or GPIO or ADC sensor) wake-up occurred,

RTC watchdog expired, and external wake-up pin toggled.

WAKEUP_RESET_WITH

_RETENTION

0x80 N/A System reset and the retention memory have valid data.

WAKEUP_EXT_SIG_WIT

H_RETENTION

0x81 Sleep mode 3 or

DPM LPM

External wake-up pin toggled, and the retention memory has

valid data.

WAKEUP_COUNTER_WI

TH_RETENTION

0x82 Sleep mode 3 or

DPM LPM

RTC wake-up counter expired and the retention memory has

valid data. (Note 2)

WAKEUP_EXT_SIG_WA

KEUP_COUNTER_WITH

_RETENTION

0x83 Sleep mode 3 or

DPM LPM

External wake-up pin toggled, RTC wake-up counter expired,

and the retention memory has valid data. (Note 2)

WAKEUP_WATCHDOG_

WITH_RETENTION

0x88 Sleep mode 3 or

DPM LPM

RTC watchdog expired, and the retention memory has valid

data. (Note 1)

WAKEUP_SENSOR_WIT

H_RETENTION

0x90 Sleep mode 3 or

DPM LPM

Sensor (pulse or GPIO or ADC sensor) wake-up occurred

and the retention memory has valid data.

WAKEUP_SENSOR_EXT

_SIGNAL_WITH_RETEN

TION

0x91 Sleep mode 3 or

DPM LPM

Sensor (pulse or GPIO or ADC sensor) wake-up occurred,

external wake-up pin toggled, and the retention memory has

valid data.

WAKEUP_SENSOR_WA

KEUP_COUNTER_WITH

_RETENTION

0x92 Sleep mode 3 or

DPM LPM

Sensor (pulse or GPIO or ADC sensor) wake-up occurred,

RTC wake-up counter expired, and the retention memory has

valid data. (Note 2)

WAKEUP_SENSOR_EXT

_WAKEUP_COUNTER_

WITH_RETENTION

0x93 Sleep mode 3 or

DPM LPM

Sensor (pulse or GPIO or ADC sensor) wake-up occurred,

RTC wake-up counter expired, external wake-up pin toggled,

and the retention memory has valid data. (Note 2)

WAKEUP_SENSOR_WA

TCHDOG_WITH_RETEN

TION

0x98 Sleep mode 3 or

DPM LPM

Sensor (pulse or GPIO or ADC sensor) wake-up occurred,

RTC watch dog expired, and the retention memory has valid

data. (Note 1)

WAKEUP_SENSOR_EXT

_WATCHDOG_WITH_RE

TENTION

0x99 Sleep mode 3 or

DPM LPM

Sensor (pulse or GPIO or ADC sensor) wake-up occurred,

RTC watch dog expired, external wake-up pin toggled, and

the retention memory has valid data. (Note 1)

Note 1 The wake-up source is deprecated.

Note 2 PTIM works through this wake-up source, thus users need to see the DPM wake-up types in Ref. [6] after waking
up.

NOTE

There are exceptional cases for system faults and CPU watchdog which were set by SDK.

▪ 0x00: Bus fault or memory corruption.

▪ 0x04: CPU watchdog.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 34

5. NVRAM

The DA16200/DA16600 has an NVRAM area on the flash memory to store system data and user data. NVRAM
has various system configuration parameters to control the Wi-Fi function.

5.1 API

There are two types of NVRAM: integer and string. Use the following functions based on the datatype that is
currently used.

Table 2. APIs for NVRAM

Item Description

int write_nvram_int(const char *name, int val)

Parameter name NVRAM item name to write.

value Integer value to write.

Return If it succeeds, return 0. If it fails, return an error code.

Description Write a specific NVRAM item with an integer value.

int write_nvram_string(const char *name, const char *val)

Parameter name NVRAM item name to write.

value Pointer to the string buffer to write.

Return If it succeeds, return 0. If it fails, return an error code.

Description Write a specific NVRAM item with a string value.

int read_nvram_int(const char *name, int *_val)

Parameter name NVRAM item name to read.

value Pointer to the integer value to read the value.

Return If it succeeds, return 0. If it fails, return an error code.

Description Read an integer value of a specific NVRAM item.

char *read_nvram_string(const char *name)

Parameter name NVRAM item name to get.

value Pointer to the string buffer to read the value.

Return If it succeeds, return 0. If it fails, return an error code.

Description Read a string value of a specific NVRAM item.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 35

6. TLS Certificate

Certificates are required to make secure connections and can be used in MQTT client, HTTPs client/server,
WPA Enterprise, and TLS client/server. The secure applications except the TLS client/server are designed and
implemented to read certificates from prefixed areas of SFlash map in Ref. [3]. In the case of the TLS
client/server application, it can use the user area in serial flash as no prefixed area is allocated.

6.1 Certificate for MQTT Client

The DA16200/DA16600 has prefixed areas in flash for certificates of MQTT client. The address map of each
certificate is defined in da16200_map.h of SDK. See my_app_mqtt_user_config in mqtt_client_sample.c in

Section 13.5.

/* TLS Certificate Key #0 */

#define SFLASH_ROOT_CA_ADDR1 0x003A3000

#define SFLASH_CERTIFICATE_ADDR1 (SFLASH_ROOT_CA_ADDR1 + 0x1000)

#define SFLASH_PRIVATE_KEY_ADDR1 (SFLASH_ROOT_CA_ADDR1 + 0x2000)

#define SFLASH_DH_PARAMETER1 (SFLASH_ROOT_CA_ADDR1 + 0x3000)

6.2 Certificate for WPA Enterprise

The DA16200/DA16600 has prefixed areas in flash for certificates of WPA Enterprise. The address map of each
certificate is defined in da16200_map.h of SDK. The certificates can be stored using console commands in

Section 6.6.1.

/* TLS Certificate WPA Enterprise */

#define SFLASH_ENTERPRISE_ROOT_CA 0x003ED000

#define SFLASH_ENTERPRISE_CERTIFICATE (SFLASH_ENTERPRISE_ROOT_CA + 0x1000)

#define SFLASH_ENTERPRISE_PRIVATE_KEY (SFLASH_ENTERPRISE_ROOT_CA + 0x2000)

#define SFLASH_ENTERPRISE_DH_PARAMETER (SFLASH_ENTERPRISE_ROOT_CA + 0x3000)

6.3 Certificate for HTTPs Client/Server or OTA

The DA16200/DA16600 has prefixed areas in flash for certificates of HTTPs or OTA. The address map of each
certificate is defined in da16200_map.h of SDK. See http_client_read_certs in http_client_sample.c in

Section 14.5.

/* TLS Certificate Key #1 */

#define SFLASH_ROOT_CA_ADDR2 0x003A7000

#define SFLASH_CERTIFICATE_ADDR2 (SFLASH_ROOT_CA_ADDR2 + 0x1000)

#define SFLASH_PRIVATE_KEY_ADDR2 (SFLASH_ROOT_CA_ADDR2 + 0x2000)

#define SFLASH_DH_PARAMETER2 (SFLASH_ROOT_CA_ADDR2 + 0x3000)

6.4 Certificate for TLS Client/Server

The DA16200/DA16600 does not have prefixed areas for certificates of TLS client/server. User area of flash can
be used for certificates using flash APIs directly. See tls_sever_samples.c on how to use the certificate as

constant data in Section 12.2.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 36

6.5 APIs for Accessing Prefixed Area of SFlash

The prefixed area of flash for certificates can be accessed using APIs shown in Table 3, Table 4, and Table 5.

Table 3. APIs for reading certificate from flash

Item Description

int da16x_cert_read(int module, int type, int *format, unsigned char *out, size_t *outlen)

Parameter module Module ID:

0 – MQTT

1 – HTTPs client or OTA

2 – WPA Enterprise

type Certificate type:

0 – CA certificate

1 – Certificate

2 – Private key

3 – DH params

format Certificate format:

0 – DER

1 – PEM

out Pointer to read certificate.

outlen Length of certificate.

Return If it succeeds, return 0.

If it fails, return an error code.

Description Read certificate from specific SFlash memory by module and type.

int da16x_cert_read_no_fopen(HANDLE flash_handler, int module, int type, int *format, unsigned char *out, size_t

*outlen)

Parameter flash_handler Handler to read certificate. It must be open.

module Module ID:

0 – MQTT

1 – HTTPs client or OTA

2 – WPA Enterprise

type Certificate type:

0 – CA certificate

1 – Certificate

2 – Private key

3 – DH params

format Certificate format:

0 – DER

1 – PEM

out Pointer to read certificates.

outlen Length of certificate

Return If it succeeds, return 0.

If it fails, return an error code.

Description Read certificate from specific SFlash memory by module and type.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 37

Table 4. API to write certificate to flash

Item Description

int da16x_cert_write(int module, int type, int format, unsigned char *in, size_t inlen)

Parameter module Module ID:

0 – MQTT

1 – HTTPs client or OTA

2 – WPA Enterprise

type Certificate type:

0 – CA certificate

1 – Certificate

2 – Private key

3 – DH params

format Certificate format:

0 – DER

1 – PEM

in Pointer to write certificate.

inlen Length of certificate.

Return If it succeeds, return 0.

If it fails, return an error code.

Description Write certificate to specific SFlash memory address by module and type.

Table 5. APIs to delete certificate in flash

Item Description

int da16x_cert_delete(int module, int type)

Parameter module Module ID:

0 – MQTT

1 – HTTPs client or OTA

2 – WPA Enterprise

type Certificate type:

0 – CA certificate

1 – Certificate

2 – Private key

3 – DH params

Return If it succeeds, return 0.

If it fails, return an error code.

Description Delete certificate from specific SFlash memory by module and type.

int da16x_cert_delete_no_fopen(HANDLE flash_handler, int module, int type)

Parameter flash_handler Handler to read certificate.

It must be open.

module Module ID:

0 – MQTT

1 – HTTPs client or OTA

2 – WPA Enterprise

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 38

Item Description

int da16x_cert_delete(int module, int type)

type Certificate type:

0 – CA certificate

1 – Certificate

2 – Private key

3 – DH params

Return If it succeeds, return 0.

If it fails, return an error code.

Description Delete certificate from specific SFlash memory by module and type.

6.6 Store Certificates to Flash Using Console Command

The DA16200/DA16600 provides methods to store certificates in the serial flash with the use of console
command.

6.6.1 Console Command for Certificate

Table 6. Console command for certificate

Command Parameters Description

cert <action> <dest> Certificate console command.

▪ <action>: status | write | read | del

• status: Certificate status.

• write: write certificate in SFlash

• read: read certificate in SFlash

• del: del certificate in SFlash

▪ <dest>: Pre-fixed destination area in SFlash.

• ca#: root CA (#1~3)

• cert#: server/client certificate (#1~3)

• key#: private key (#1~3)

• dh#: DH parameter (#1~3)

• all: all certificates for del in <action>

#: 1:MQTT/CoAP, 2: HTTPs/OTA, 3: Enterprise

6.6.2 Store Certificates

1. Store a CA certificate.

[/DA16200/NET]# net

[/DA16200/NET]# cert write ca1 // ca1: MQTT/ CoAP , ca2: HTTPs/OTA, ca3: Enterprise

Typing data: (certificate value)

Cancel - CTRL+D, End of Input - CTRL+C or CTRL+Z

// Copy & paste certificate data in the terminal window and press “CTRL+C” or “CTRL+Z”

(see Section 6.6.3)

2. Store a client certificate.

[/DA16200/NET]# cert write cert1 // cert1: MQTT/CoAP, cert2: HTTPs/OTA, cert3: Enterprise

Typing data: (certificate value)

Cancel - CTRL+D, End of Input - CTRL+C or CTRL+Z

// Copy & paste certificate data in the terminal window and press “CTRL+C” or “CTRL+Z”

(see Section 6.6.3)

3. Store a client key.

[/DA16200/NET]# cert write key1 // key1: MQTT/CoAP, key2: HTTPs/OTA, key3: Enterprise

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 39

Typing data: (certificate value)

Cancel - CTRL+D, End of Input - CTRL+C or CTRL+Z

// Copy & paste certificate data in the terminal window and press “CTRL+C” or “CTRL+Z”

(see Section 6.6.3)

4. After adding cert/keys, check if they are successfully stored.

[/DA16200/NET]# cert status

#1:

 For MQTT, CoAPs Client

 - Root CA : Found

 - Certificate : Found

 - Private Key : Found

 - DH Parameter: Empty

#2:

 For HTTPs, OTA

 - Root CA : Empty

 - Certificate : Empty

 - Private Key : Empty

 - DH Parameter: Empty

#3:

 For Enterprise (802.1x)

 - Root CA : Empty

 - Certificate : Empty

 - Private Key : Empty

 - DH Parameter: Empty

5. In case remove all the credentials stored:

[/DA16200/NET] # cert del all

all Delete success.

6.6.3 Root CA, Client Cert, and Private Key

Certificate format follows X.509 standard and should input the new line character in BEGIN and END lines.

Figure 9, Figure 10 and Figure 11 show the example certificates.

6.6.3.1 Root CA

Figure 9. Root CA example

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 40

6.6.3.2 Client Cert

Figure 10. Client certificate example

6.6.3.3 Private Key

Figure 11. Private key example

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 41

7. Hardware Accelerators

7.1 Set SRAM to Zero

7.1.1 API

Table 7. Hardware accelerator API

Item Description

void da16x_memset32(UINT32 *data, UINT32 seed, UINT32 length)

Parameter data Buffer pointer to set

seed Value to fill

length Length

Return None

Description Fill up memory with a certain value through hardware acceleration

7.1.2 Sample Code

#include <hal.h>

/* fill up a 1024 bytes buffer memory with 0 */

UINT32 buffer[1024];

da16x_memset32(buffer, 0, 1024);

7.2 CRC Calculation

7.2.1 API

Table 8. CRC API

Item Description

UINT32 da16x_hwcrc32(UINT32 dwidth, UINT8 *data, UINT32 length, UINT32 seed)

Parameter dwidth Data width to calculate CRC

data Data pointer

length Length

seed CRC32 seed value (default value is 0xFFFFFFFF).

Return Calculated CRC32 value.

Description Calculate CRC through hardware accelerator

7.2.2 Sample Code

#include <hal.h>

/* calculate a CRC value of data buffer */

UINT8 data[64], i;

For (i=0; I < 64; i++)

 data[i] = I;

UINT32 crc_value = da16x_hwcrc32(sizeof(UINT32), (void *)data, sizeof(data), (~0));

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 42

7.3 Pseudo Random Number Generator (PRNG)

7.3.1 API

Table 9. PRNG API

Item Description

UINT32 da16x_random(void)

Parameter None

Return 32 bits random value

Description Generate 32 bits random value with hardware accelerator

7.3.2 Sample Code

#include <hal.h>

UINT32 random = da16x_random();

7.4 Memory Copy Using DMA

7.4.1 API

Table 10. Hardware DMA API

Item Description

int memcpy_dma (void *dest, void *src, unsigned int len, unsigned int wait_time)

Parameter dest A pointer to the location where the function copies the data (4 B aligned).

src A pointer to the buffer where to copy data from (4 B aligned).

len The number of bytes to copy.

wait_time 0: After starting DMA operation, return from function.

N: Wait until the memory copy is finished. If DMA operation time is greater than N

milliseconds, the function returns after N milliseconds. N must have a value of at least

10 ms.

Return Always 0.

Description Copy bytes from one buffer to another using DMA.

7.4.2 Sample Code

#include <sys_dma.h>

char dest[100], src[100]

memcpy_dma(dest, src, 100, 0);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 43

8. Watchdog Service

8.1 Overview

The system watchdog service (da16x_sys_watchdog) is designed to monitor system tasks and avoid system
freezes. Figure 12 shows how to interact with the system.

HW Watchdog
da16x_sys_watchd

og

TASK 1

TASK 2

TASK 3

da16x_sys_watchdog_register()

da16x_sys_watchdog_notify()

Figure 12. Watchdog overview

The da16x_sys_watchdog is a layer located on top of the watchdog low-level driver that allows multiple tasks to

share the underlying hardware watchdog timer. The watchdog service can be used to trigger a full system reset.
This allows the system to recover from a catastrophic failure in one or more tasks.

8.2 Concept

To monitor a task, register the task with da16x_sys_watchdog to receive a unique handle (id). Then, it

periodically notifies da16x_sys_watchdog using the id to signal that the task is working properly. When an error

occurs during the registration process, it returns -1.

The DA16200 Watchdog Timer is essentially a simple countdown timer (based on CMSDK Watchdog Timer) that
triggers a full system reset if it expires. The watchdog timer interrupt is Non-Maskable Interrupt (NMI). That is,
the interrupt cannot be disabled and should be controlled by Lock/Unlock process. To prevent this, the watchdog
timer must be reset to its starting value before it expires. This starting value can be configured through the
numerical macro DA16X_SYS_WDOG_DEF_RESCALE_TIME or da16x_sys_watchdog_set_rescale_time() in

da16x_sys_watchdog.h file. The default value is 5 seconds. DA16X_SYS_WDOG_MAX_TASKS_CNT defines the

maximum number of tasks that can be monitored.

If all monitored tasks during one watchdog period notify da16x_sys_watchdog, the hardware watchdog is

updated. In this case, no platform reset is triggered for this watchdog period. However, a platform reset is
triggered if at least one task does not notify da16x_sys_watchdog in time. There are two ways for a task to notify

da16x_sys_watchdog.

Each task is responsible for periodically notifying da16x_sys_watchdog that it is still running using

da16x_sys_watchdog_notify(). This must be done before the watchdog timer expires. Occasionally, a

registered task may want to temporarily exclude itself from being monitored if it expects to be blocked for a long
time waiting for an event. This is done using the da16x_sys_watchdog_suspend(). This function suspends

monitoring of specific tasks in da16x_sys_watchdog, as there is no need to monitor a task that is blocked waiting

for an event that might take too long to occur (for example, it leads to the task failed to notify the watchdog
service, thus resulting in a system reset). When the task is unblocked, the da16x_sys_watchdog_resume()

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 44

should be called to restore task monitoring by the watchdog service. From that moment, the task should notify
the watchdog service as usual.

Finally, the intension of da16x_sys_watchdog_set_latency() is to be used in cases where a task requires a

watchdog period greater than the configured watchdog timer reset value. Using this API allows a task to delay
notification of da16x_sys_watchdog for a given number of watchdog periods, without triggering a system reset.

The effect of calling the API is one-off and therefore, it must be set every time increased latency is required.

8.3 API

Table 11. APIs of watchdog service

Item Description

int da16x_sys_watchdog_init(void)

Return If it succeeds, return 0.

If it fails, return an error code.

Description Initialize da16x_sys_watchdog module.

int da16x_sys_watchdog_register(unsigned int notify_trigger)

Parameter notify_trigger True if task notification should be triggered periodically. It is not supported yet.

Return Identifier on success, -1 on failure.

Description Register current task in da16x_sys_watchdog module.

int da16x_sys_watchdog_unregister(int id)

Parameter id Identifier

Return If it succeeds, return 0.

If it fails, return an error code.

Description Unregister task from da16x_sys_watchdog module.

void da16x_sys_watchdog_configure_idle_id(int id)

Parameter id Identifier

Return None

Description Inform the da16x_sys_watchdog module of the watchdog ID for the IDLE task.

int da16x_sys_watchdog_suspend(int id)

Parameter id Identifier

Return 0 on success.

Description Suspend task monitoring in da16x_sys_watchdog module.

int da16x_sys_watchdog_resume(int id)

Parameter id Identifier

Return 0 on success.

Description Resume task monitoring in da16x_sys_watchdog module.

This function does not notify the watchdog service for the task. It is possible that

monitor resuming occurs too close to the time that the watchdog expires, before the

task has a chance to explicitly send a notification. This can lead to an unwanted

reset. Therefore, either call da16x_sys_watchdog_notify() before calling

da16x_sys_watchdog_resume() or use da16x_sys_watchdog_notify_and_resume()

instead.

int da16x_sys_watchdog_notify(int id)

Parameter id Identifier

Return 0 on success.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 45

Item Description

Description Notify da16x_sys_watchdog module for task. Registered task shall use this

periodically to notify sys_watchdog module that it is alive. This should be done

frequently enough to fit into hw_watchdog interval.

int da16x_sys_watchdog_notify_and_resume(int id)

Parameter id Identifier

Return 0 on success.

Description Notify da16x_sys_watchdog module for task with handle \p id and resume its

monitoring. This function combines the functionality of

da16x_sys_watchdog_notify() and da16x_sys_watchdog_resume().

int da16x_sys_watchdog_set_latency(int id, unsigned char latency)

Parameter id Identifier

latency Latency

Return 0 on success.

Description Set watchdog latency for task. This allows a task to miss given number of

notifications to da16x_sys_watchdog without triggering platform reset. When set, it is

allowed that task does not notify sys_watchdog for latency consecutive

hw_watchdog intervals which can be used to allow for parts of code which are known

to block for long period of time (for example, computation). This value is set once

and does not reload automatically, thus it shall be set every time increased latency

is required.

int da16x_sys_watchdog_set_rescale_time(unsigned int rescale_time)

Parameter rescale_time Rescale time (unit of times: 10 milliseconds).

Return 0 on success.

Description Set watchdog rescale time.

int da16x_sys_watchdog_get_rescale_time(unsigned int rescale_time)

Parameter None

Return Rescale time (unit of times: 10 milliseconds).

Description Get watchdog rescale time.

8.4 Sample Code

To register the task with da16x_sys_watchdog, use the following code snippet:

#include <da16x_sys_watchdog.h>

/* Registration a task to be monitored by watchdog */

wdog_id = sys_watchdog_register(false);

To notify da16x_sys_watchdog, use da16x_watchdog_notify(). If the task is going to suspend for an event, then

temporarily exclude the current task from being monitored using da16x_sys_watchdog_suspend(). When the

task has received an event, it can resume its watchdog operation with da16x_sys_watchdog_resume(). See the

following flow:

/* Notify watchdog on each loop since there is no other trigger for this -

 * monitoring will be suspended while blocking on xTaskNotifyWait()

 */

da16x_sys_watchdog_notify(wdog_id);

/*

 * Wait on any of the event group bits, then clear them all

 */

da16x_sys_watchdog_suspend(wdog_id);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 46

ret = xTaskNotifyWait(0, 0xFFFFFFFF, ¬if, portMAX_DELAY);

/* Blocks forever waiting for the task notification.

 * Therefore, the return value must always be pdPASS.

 */

da16x_sys_watchdog_resume(wdog_id);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 47

9. Wi-Fi Interface Configuration

The DA16200/DA16600 SDK defines various parameters for Wi-Fi interface configuration, and they are saved as
profiles in the NVRAM. After system reset, the DA16200/DA16600 reads an existing profile and sets the Wi-Fi
interface based on that profile. Wi-Fi interface can be configured through API, Soft AP configuration, and Soft AP
provisioning.

9.1 API

The DA16200/DA16600 SDK provides various functions to get or set system profiles:

▪ Simple functions to get or set a value (integer type or string type) of the name parameter (NVRAM item index).

▪ Error code to verify the result.

Table 12. APIs for Wi-Fi configuration

Item Description

int da16x_set_config_int (int name, int value)

Parameter name Parameter index to set.

value Integer value to set.

Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.

Description Set a specific parameter with an integer value.

For example: ret = da16x_set_config_int (Da16x_CONF_INT_CHANNEL, 11)

▪ Set the operating channel of the AP interface to 11.

int da16x_set_config_str (int name, char *value)

Parameter name Parameter index to set.

value Pointer to the string value to set.

Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.

Description Set a specific parameter with a string value.

For example: ret = da16x_set_config_str(Da16x_CONF_STR_IP_0, "10.0.0.1")

▪ Set the IP address of the STA interface to 10.0.0.1.

int da16x_get_config_int (int name, int *value)

Parameter name Parameter index to get.

value Pointer to the integer variable to get the parameter value.

Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.

Description Get an integer value of a specific parameter.

For example: ret = da16x_get_config_int(Da16x_CONF_INT_CHANNEL, &channel)

▪ Get the operating channel of the AP interface.

int da16x_get_config_str (int name, char *value)

Parameter name Parameter index to get.

value Pointer to the string buffer to get the parameter value.

Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.

Description Get a string value of a specific parameter.

For example: ret = da16x_get_config_str(Da16x_CONF_STR_IP_0, ip_addr)

▪ Get the IP address of the STA interface.

int da16x_set_nvcache_str(int name, char *value)

Parameter name Parameter name to set.

value Points to the value (str) to set.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 48

Item Description

Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.

Description Set name/value pair to NVRAM cache area (not in SFlash). To make it permanent, invoke

da16x_nvcache2flash().

For example: ret = da16x_set_nvcache_str(Da16x_CONF_STR_IP_0, ip_addr)

▪ Set IP address of the STA interface.

int da16x_set_nvcache_int(int name, int value)

Parameter name Parameter name to set.

value Points to the value (int) to set.

Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.

Description Set name/value pair to NVRAM cache area (not in SFlash). To make it permanent, invoke

da16x_nvcache2flash ().

For example: ret = da16x_set_nvcache_int(Da16x_CONF_INT_CHANNEL, 11)

Set the operating channel of the AP interface to 11.

void da16x_nvcache2flash(void)

Parameter None

Return None

Description Commit parameters (set by da16x_set_nvcache_int/str) in NVRAM cache to flash.

9.1.1 Integer Type Parameters

Table 13. NVRAM integer type

Name Description

DA16X_CONF_INT_MODE Wi-Fi operation mode:

0: STA

1: Soft AP

2. Soft AP + STA (Concurrent mode)

DA16X_CONF_INT_AUTH_MODE_0 Wi-Fi authentication mode for STA interface:

▪ CC_VAL_AUTH_OPEN

▪ CC_VAL_AUTH_WEP

▪ CC_VAL_AUTH_WPA

▪ CC_VAL_AUTH_WPA2

▪ CC_VAL_AUTH_WPA_AUTO (WPA & WPA2)

▪ CC_VAL_AUTH_WPA_EAP

▪ CC_VAL_AUTH_WPA2_EAP

▪ CC_VAL_AUTH_WPA_AUTO_EAP

DA16X_CONF_INT_AUTH_MODE_1 Wi-Fi authentication mode for Soft AP interface:

▪ CC_VAL_AUTH_OPEN

▪ CC_VAL_AUTH_WPA

▪ CC_VAL_AUTH_WPA2

▪ CC_VAL_AUTH_WPA_AUTO (WPA and WPA2)

(WEP is unsupported on the DA16200/DA16600 AP mode)

DA16X_CONF_INT_WEP_KEY_INDEX Wi-Fi WEP key index number (0~3)

DA16X_CONF_INT_ENCRYPTION_0 Wi-Fi data encryption mode for STA interface:

▪ CC_VAL_ENC_TKIP

▪ CC_VAL_ENC_CCMP

▪ CC_VAL_ENC_AUTO (TKIP and CCMP)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 49

Name Description

DA16X_CONF_INT_ENCRYPTION_1 Wi-Fi data encryption mode for Soft AP interface:

▪ CC_VAL_ENC_TKIP

▪ CC_VAL_ENC_CCMP

▪ CC_VAL_ENC_AUTO (TKIP and CCMP)

DA16X_CONF_INT_WIFI_MODE_0

Wi-Fi mode based on IEEE 802.11 standard for STA interface:

▪ CC_VAL_WFMODE_BGN

▪ CC_VAL_WFMODE_GN

▪ CC_VAL_WFMODE_BG

▪ CC_VAL_WFMODE_N

▪ CC_VAL_WFMODE_G

▪ CC_VAL_WFMODE_B

DA16X_CONF_INT_WIFI_MODE_1 Wi-Fi mode based on IEEE 802.11 standard for Soft AP interface:

▪ CC_VAL_WFMODE_BGN

▪ CC_VAL_WFMODE_GN

▪ CC_VAL_WFMODE_BG

▪ CC_VAL_WFMODE_N

▪ CC_VAL_WFMODE_G

▪ CC_VAL_WFMODE_B

DA16X_CONF_INT_CHANNEL Soft AP operation channel setting by channel number:

1~11: for US

0: Auto

DA16X_CONF_INT_FREQUENCY Soft AP operation channel setting by frequency value (MHz).

DA16X_CONF_INT_ROAM Operating roaming function for STA interface:

0: Stop

1: Run

DA16X_CONF_INT_ROAM_THRESHOLD Roaming threshold for STA interface (-95 ~ 0 dBm).

DA16X_CONF_INT_BEACON_INTERVAL IEEE 802.11 beacon interval (msec.).

DA16X_CONF_INT_INACTIVITY Inactive STA disconnecting time (sec.).

DA16X_CONF_INT_RTS_THRESHOLD IEEE 802.11 RTS threshold (byte).

DA16X_CONF_INT_WMM WMM On/Off setting:

0: Off

1: On

DA16X_CONF_INT_WMM_PS WMM-PS On/Off setting:

0: Off

1: On

DA16X_CONF_INT_DHCP_CLIENT DHCP client On/Off for STA interface:

0: Off

1: On

DA16X_CONF_INT_DHCP_SERVER DHCP server On/Off for Soft AP interface:

0: Off

1: On

DA16X_CONF_INT_DHCP_LEASE_TIME DHCP server lease time (sec.)

DA16X_CONF_INT_HIDDEN_0 Flag to connect AP Hidden SSID:

0: Off

1: On

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 50

Name Description

DA16X_CONF_INT_EAP_PHASE1_0 Phase#1 EAP type for WPA Enterprise:

▪ CC_VAL_EAP_DEFAULT

▪ CC_VAL_EAP_PEAP0

▪ CC_VAL_EAP_PEAP1

▪ CC_VAL_EAP_FAST

▪ CC_VAL_EAP_TTLS

▪ CC_VAL_EAP_TLS

DA16X_CONF_INT_EAP_PHASE2_0 Phase#2 EAP type for WPA Enterprise:

▪ CC_VAL_EAP_PHASE2_MIX

▪ CC_VAL_EAP_MSCHAPV2

▪ CC_VAL_EAP_GTC

9.1.2 String Type Parameters

Table 14. NVRAM string type

Name Description

DA16X_CONF_STR_SSID_0 AP SSID to connect (~ 32 letters).

DA16X_CONF_STR_SSID_1 Soft AP SSID to operate (~ 32 letters).

DA16X_CONF_STR_WEP_KEY0

DA16X_CONF_STR_WEP_KEY1

DA16X_CONF_STR_WEP_KEY2

DA16X_CONF_STR_WEP_KEY3

WEP keys of the AP to connect (5 or 13 letters with ASCII/10 or 26

letters with hexadecimal).

DA16X_CONF_STR_PSK_0 PSK of the AP to connect (~ 63 letters).

DA16X_CONF_STR_PSK_1 Soft AP PSK to operate (~ 63 letters).

DA16X_CONF_STR_COUNTRY Country code (2 or 3 letters, for example, KR, US, JP, CH) defined by

ISO 3166-1 alpha-2 standard.

DA16X_CONF_STR_DEVICE_NAME DA16200/DA16600 device name (for WPS or Wi-Fi Direct).

DA16X_CONF_STR_IP_0 STA interface IP address.

DA16X_CONF_STR_NETMASK_0 STA interface netmask.

DA16X_CONF_STR_GATEWAY_0 STA interface gateway address.

DA16X_CONF_STR_IP_1 Soft AP interface IP address.

DA16X_CONF_STR_NETMASK_1 Soft AP interface netmask.

DA16X_CONF_STR_GATEWAY_1 Soft AP interface gateway address.

DA16X_CONF_STR_DNS_0 STA interface DNS address.

DA16X_CONF_STR_DHCP_START_IP

DA16X_CONF_STR_DHCP_END_IP

DHCP server IP range assigned.

DA16X_CONF_STR_DHCP_DNS DHCP server DNS IP address assigned.

DA16X_CONF_STR_EAP_IDENTITY User-ID for WPA Enterprise (~ 64 letters).

DA16X_CONF_STR_EAP_PASSWORD Password for WPA Enterprise (~ 64 letters).

9.1.3 Sample Code

When setting multiple names at the same time, use da16x_set_nvcache_int/str() and

da16x_nvcache2flash(). Using da16x_set_config_str/int() is good for setting one or two values, but if it

needs to set multiple NVRAM parameters (that is, Soft AP/STA setup), then always use cache function
da16x_set_nvcache_int/str followed by da16x_nvcache2flash(), which gives much better performance to the

application.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 51

The following example explains how to set STA mode.

/* Wi-Fi Configuration */

clear_tmp_nvram_env(); // Clear Cache

// start setting names/values of NVRAM parameters to NVRAM Cache (no delay)

da16x_set_nvcache_int(DA16X_CONF_INT_MODE, 0);

da16x_set_nvcache_str(DA16X_CONF_STR_SSID_0, ssid);

da16x_set_nvcache_int(DA16X_CONF_INT_AUTH_MODE_0, auth_type);

if (auth_type == CC_VAL_AUTH_WEP) {

 da16x_set_nvcache_str(DA16X_CONF_STR_WEP_KEY0, wep_key[0]);

 da16x_set_nvcache_str(DA16X_CONF_STR_WEP_KEY1, wep_key[1]);

 da16x_set_nvcache_str(DA16X_CONF_STR_WEP_KEY2, wep_key[2]);

 da16x_set_nvcache_str(DA16X_CONF_STR_WEP_KEY3, wep_key[3]);

 da16x_set_nvcache_str(DA16X_CONF_INT_WEP_KEY_INDEX, wep_key_index);

} else if (auth_type > CC_VAL_AUTH_WEP) {

 da16x_set_nvcache_str(DA16X_CONF_STR_PSK_0, psk);

 da16x_set_nvcache_int(DA16X_CONF_INT_ENCRYPTION_0, encryption);

}

da16x_set_nvcache_int(DA16X_CONF_INT_WIFI_MODE_0, wifi_mode);

/* IP and DHCP Client Setting */

da16x_set_nvcache_int(DA16X_CONF_INT_DHCP_CLIENT, dhcp_client);

if (!dhcp_client) {

 da16x_set_nvcache_str(DA16X_CONF_STR_IP_0, ip);

 da16x_set_nvcache_str(DA16X_CONF_STR_NETMASK_0, subnet);

 da16x_set_nvcache_str(DA16X_CONF_STR_GATEWAY_0, gateway);

 da16x_set_nvcache_str(DA16X_CONF_STR_DNS_0, dns);

}

da16x_nvcache2flash(); // commit names/values parameters in Cache to flash memory

reboot_func(SYS_REBOOT);

The following example explains how to set STA mode for WPA Enterprise. Depending on the wireless
environment, the certificate may be required when connecting to WPA Enterprise network. In this case, the
Certificate API might be helpful to write to SFlash memory.

/* Certificate */

da16x_cert_write(DA16X_CERT_MODULE_WPA_ENTERPRISE, DA16X_CERT_TYPE_CA_CERT, ca_cert,

ca_cert_len); // Write CA Certificate

da16x_cert_write(DA16X_CERT_MODULE_WPA_ENTERPRISE, DA16X_CERT_TYPE_CERT, cert, cert_len); //

Write Certificate

da16x_cert_write(DA16X_CERT_MODULE_WPA_ENTERPRISE, DA16X_CERT_TYPE_PRIVATE_KEY, priv_key,

priv_key_len); // Write Private key

da16x_cert_write(DA16X_CERT_MODULE_WPA_ENTERPRISE, DA16X_CERT_TYPE_DH_PARAMS, dh_param,

dh_param_len); // Write Private key

/* Wi-Fi Configuration */

clear_tmp_nvram_env(); // Clear Cache

// start setting names/values of NVRAM parameters to NVRAM Cache (no delay)

da16x_set_nvcache_str(DA16X_CONF_STR_SSID_0, ssid); //Set SSID

da16x_set_nvcache_int(DA16X_CONF_INT_AUTH_MODE_0, auth_mode); // Set Auth mode

da16x_set_nvcache_int(DA16X_CONF_INT_ENCRYPTION_0, enc_type); // Set Encryption type

da16x_set_nvcache_int(DA16X_CONF_INT_EAP_PHASE1, eap_phase1); // Set EAP Phase#1 type

da16x_set_nvcache_int(DA16X_CONF_INT_EAP_PHASE2, eap_phase2); // Set EAP Phase#2 type

da16x_set_nvcache_str(DA16X_CONF_STR_EAP_IDENTITY, user_id); // Set User-ID

da16x_set_nvcache_str(DA16X_CONF_STR_EAP_PASSWORD, password); // Set Password

da16x_nvcache2flash(); // commit names/values parameters in Cache to flash memory

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 52

reboot_func(SYS_REBOOT);

The following example explains how to set Soft AP mode.

/* Soft AP Configuration */

clear_tmp_nvram_env(); // Clear Cache

...

// start setting name/value NVRAM parameters to NVRAM Cache (no delay)

da16x_set_nvcache_int(DA16X_CONF_INT_MODE, 1);

da16x_set_nvcache_str(DA16X_CONF_STR_SSID_1, ssid);

da16x_set_nvcache_int(DA16X_CONF_INT_AUTH_MODE_1, auth_type);

if (auth_type > CC_VAL_AUTH_WEP) {

 da16x_set_nvcache_str (DA16X_CONF_STR_PSK_1, psk);

 da16x_set_nvcache_int(DA16X_CONF_INT_ENCRYPTION_1, encryption);

}

da16x_set_nvcache_int(DA16X_CONF_INT_CHANNEL, channel);

da16x_set_nvcache_int(DA16X_CONF_STR_COUNTRY, country_code);

da16x_set_nvcache_int(DA16X_CONF_INT_WIFI_MODE_1, wifi_mode);

da16x_set_nvcache_int(DA16X_CONF_INT_WMM, wmm);

da16x_set_nvcache_int(DA16X_CONF_INT_WMM_PS, wmm_ps);

/* IP Setting */

da16x_set_nvcache_str(DA16X_CONF_STR_IP_1, ip);

da16x_set_nvcache_str(DA16X_CONF_STR_NETMASK_1, subnet);

da16x_set_nvcache_str(DA16X_CONF_STR_GATEWAY_1, gateway);

/* DHCP Server Setting */

if (dhcp_server) {

 da16x_set_nvcache_str(DA16X_CONF_STR_DHCP_START_IP, start_ip);

 da16x_set_nvcache_str(DA16X_CONF_STR_DHCP_END_IP, end_ip);

 da16x_set_nvcache_str(DA16X_CONF_STR_DHCP_DNS, dhcp_dns);

 da16x_set_nvcache_str(DA16X_CONF_INT_DHCP_LEASE_TIME, dhcp_lease_time);

}

da16x_set_nvcache_int(DA16X_CONF_INT_DHCP_SERVER, dhcp_server);

da16x_nvcache2flash(); // commit names/values parameters in Cache to flash memory

reboot_func(SYS_REBOOT);

9.2 Soft AP Configuration by Factory Reset

Many IoT devices start as Soft AP device to operate AP provisioning. The DA16200/DA16600 has a Factory
Reset function to start with Soft AP mode after pressing the Factory Reset button on the evaluation board. The
details of Factory Reset button can be found in DA16200 and DA16600 EVBs (S2 - Factory Reset Button) in
Ref. [3], and it is connected to GPIO 7 on the DA16200/DA16600 EVB.

The DA16200/DA16600 SDK offers a simple method for users to configure the Soft AP interface with their own
values. This section describes how to configure the default values in the DA16200/DA16600 SDK.

9.2.1 S2 – FTR_RST Button Behavior

Table 15. S2 – Factory Reset button if RED enabled

State Behavior

Any state ▪ If you press the button for more than 10 seconds, the system transitions to

DEFAULT_STATE.

▪ If you press for 1–5 seconds, the system reboots the device.

OPERATIONAL_STATE ▪ If you press for 5–10 seconds, the system transitions to CONFIG_STATE.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 53

Table 16. S2 – Factory Reset button if RED disabled

State Behavior

Any state ▪ If you press the button for more than 10 seconds, the system transitions to

DEFAULT_STATE.

▪ If you press for 1–5 seconds, the system reboots the device.

DEFAULT_STATE ▪ No secrets are stored, except for the default Soft-AP SSID and password

(Flash 0x3A1000).

▪ The Soft-AP SSID and password are restored to factory defaults.

▪ The modem enables Wi-Fi Soft-AP for provisioning app access.

▪ You can change the Soft-AP SSID and password.

▪ The device can be configured using the provisioning application.

▪ When you commit the configuration, the system transitions to

OPERATIONAL_STATE.

CONFIG_STATE ▪ The modem enables Wi-Fi Soft-AP for provisioning app access.

▪ You can change the Soft-AP SSID and password.

▪ The device can be configured using the provisioning application.

▪ When you commit the configuration, the system transitions to

OPERATIONAL_STATE.

OPERATIONAL_STATE ▪ Device operates in Station mode.

▪ Provisioning application is closed.

▪ Transitions to DEFAULT_STATE or CONFIG_STATE are allowed via the

FTR_RST button.

▪ Configuration and updates:

• When in OPERATIONAL_STATE, switching to CONFIG_STATE is

allowed for easy updates to customer secrets.

• You can change the default AP SSID and password.

▪ The new SSID and password should take effect immediately after clicking

the Apply button.

FTR_RST in DPM mode

When DPM (Deep Power Management) mode is active:

▪ Pressing the FTR_RST button (S2 on the DA16200 EVK) does not immediately reset or wake up the chip,
because in DPM the core is completely powered down except for the RTC domain.

▪ You have two ways to wake or reset the device while in DPM:

• Option 1: RTC Wake-up Trigger – Toggle the SW5 switch on the EVK to generate a one-time
RTC_WAKE_UP event.

• Option 2: Power Cycle (Reset) – Physically reset the device by power-cycling it while holding down the
button (S2).

9.2.2 Factory Default AP SSID, AP Password, and AT_KEY

To write/read the Factory Default asset, use special firmware build with UART1 CMD commands enabled.

Serial numbers should not be used. All values must be random (must not use MAC address because it is
published over the air and must not use die ID because it is sequential). You can change the NVRAM AP SSID
and password, but they are restored to factory defaults each time the "Restore Defaults" button is pressed.

Flash (fixed area) 0x3A1000 ~ 0x3A2000, Size: 4 kB (one sector).

The factory can use Crypto CC312 PRNG (Pseudo Random Number Generator) to generate random values.

Relevant CMD command group: SYS.HAL.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 54

Figure 13. Generating Random Number

Encryption notes:

▪ This Flash block is encrypted/ decrypted using Crypto CC312:

• APIs used

DA16X_Secure_Asset_RuntimePack()

DA16X_Secure_Asset_RuntimeUnpack()

• Data Structure:

typedef struct {

 char ssid[32];

 char pwd[64];

 char atkey[32];

} user_config_sensitive_t;

Writing to Flash:

▪ Use the following command to write new factory default values: net/def_factory: write

The device resets automatically after the write. For example: def_factory write ssid_test_123 pass_test_456
atcmd_test_789

Figure 14. Write factory default values

Reading from Flash:

▪ Use the following command to read the current factory values: net/def_factory: read

Figure 15. Read factory values

Figure 16. Writing default ssid and password

NOTE

All fields (ssid, pwd, and atkey) must follow size constraints:

▪ ssid: 1–31 ASCII characters

▪ pwd: 8–63 ASCII characters

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 55

NOTE

▪ atkey: 8–31 ASCII characters

9.2.3 Configure Data Structure

The DA16200/DA16600 SDK has the structure to configure Soft AP interface. The details can be found in the
following example:

[~/FreeRTOS_SDK/core/system/include/common/da16x_network_common.h]

/* For Customer's Soft AP configuration */

#define MAX_SSID_LEN 32

#define MAX_PASSKEY_LEN 64

#define MAX_IP_ADDR_LEN 16

#define AP_OPEN_MODE 0

#define AP_SECURITY_MODE 1

#define IPADDR_DEFAULT 0

#define IPADDR_CUSTOMER 1

#define DHCPD_DEFAULT 0

#define DHCPD_CUSTOMER 1

typedef struct _Soft AP_config {

 int customer_cfg_flag; // MODE_ENABLE, MODE_DISABLE

 char ssid_name[MAX_SSID_LEN+1];

 char psk[MAX_PASSKEY_LEN+1];

 char auth_type; // AP_OPEN_MODE, AP_SECURITY_MODE

 char country_code[4];

 int customer_ip_address; // IPADDR_DEFAULT, IPADDR_CUSTOMER

 char ip_addr[MAX_IP_ADDR_LEN];

 char subnet_mask[MAX_IP_ADDR_LEN];

 char default_gw[MAX_IP_ADDR_LEN];

 char dns_ip_addr[MAX_IP_ADDR_LEN];

 int customer_dhcpd_flag; // DHCPD_DEFAULT, DHCPD_CUSTOMER

 //int dhcpd_ip_cnt;

 int dhcpd_lease_time;

 char dhcpd_start_ip[MAX_IP_ADDR_LEN];

 char dhcpd_end_ip[MAX_IP_ADDR_LEN];

 char dhcpd_dns_ip_addr[MAX_IP_ADDR_LEN];

} Soft AP_config_t;

▪ int customer_cfg_flag: Flag for Soft AP configuration

• MODE_DISABLE (0): Do not use Soft AP configuration

• MODE_ENABLE (1): Use Soft AP configuration

▪ char ssid_name[MAX_SSID_LEN+1]: SSID of Soft AP. Max length is 32 bytes

▪ char psk[MAX_PASSKEY_LEN]: Pairwise key. Max length is 64 bytes

▪ char auth_type: Authentication type

• OPEN_MODE (0)

• AP_SECURITY_MODE (1)

▪ char country_code [4]: Country code

See Appendix D.

▪ int customer_ip_address: IP address type

• IPADDR_DEFAULT (0): IP class is 10.0.0.1

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 56

• IPADDR_CUSTOMER (1): User defined IP address

The following parameters should be defined:

char ip_addr[MAX_IP_ADDR_LEN]

char subnet_mask[MAX_IP_ADDR_LEN]

char default_gw[MAX_IP_ADDR_LEN]

char dns_ip_addr[MAX_IP_ADDR_LEN]

▪ int customer_dhcpd_flag: DHCP server IP address range

• DHCPD_DEFAULT (0): 10.0.0.2 ~ 10.0.0.11 (10 clients)

• DHCPD_CUSTOMER (1): User defined range

You need to define the following parameters:

int dhcpd_lease_time

char dhcpd_start_ip[MAX_IP_ADDR_LEN]

char dhcpd_end_ip[MAX_IP_ADDR_LEN]

char dhcpd_dns_ip_addr[MAX_IP_ADDR_LEN]

9.2.4 Configure Soft AP Interface

The DA16200/DA16600 SDK has the function of configuring the Soft AP interface. This function is invoked when
a factory reset is done. Users can write their own values, and the details can be found in the following example:

[~/FreeRTOS_SDK/customer/user_main/src/system_start.c]

void set_customer_Soft AP_config(void)

{

#ifdef __SUPPORT_FACTORY_RST_APMODE__

 /* Set to user costomer's configuration */

 ap_config_param->customer_cfg_flag = MODE_DISABLE;

// MODE_ENABLE, MODE_DISABLE

 /*

 * Wi-Fi configuration

 */

/* SSID prefix */

 sprintf(ap_config_param->ssid_name, "%s", "DA16200");

 /* Default open mode: AP_OPEN_MODE, AP_SECURITY_MODE */

 ap_config_param->auth_type = AP_OPEN_MODE;

 if (ap_config_param->auth_type == AP_SECURITY_MODE);

 sprintf(ap_config_param->psk, "%s", "12345678");

 /* Country Code: Default country US */

 sprintf(ap_config_param->country_code, "%s", DFLT_AP_COUNTRY_CODE);

 /*

 * Network IP address configuration

 */

 ap_config_param->customer_ip_address = IPADDR_DEFAULT;

 if (ap_config_param->customer_ip_address == IPADDR_CUSTOMER) {

 sprintf(ap_config_param->ip_addr, "%s", "192.168.1.1");

 sprintf(ap_config_param->subnet_mask, "%s", "255.255.255.0");

 sprintf(ap_config_param->default_gw, "%s", "192.168.1.1");

 sprintf(ap_config_param->dns_ip_addr, "%s", "8.8.8.8");

 }

 /*

 * DHCP Server configuration

 */

 ap_config_param->customer_dhcpd_flag = DHCPD_DEFAULT;

 if (ap_config_param->customer_dhcpd_flag == DHCPD_CUSTOMER) {

 ap_config_param->dhcpd_lease_time = 3600;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 57

 sprintf(ap_config_param->dhcpd_start_ip, "%s", "192.168.1.101");

 sprintf(ap_config_param->dhcpd_end_ip, "%s", "192.168.1.108");

 sprintf(ap_config_param->dhcpd_dns_ip_addr, "%s", "8.8.8.8");

 }

#endif /* __SUPPORT_FACTORY_RST_APMODE__ */

}

9.3 Soft AP Provisioning Protocol

The DA16200/DA16600 supports the Soft AP mode for a Wi-Fi interface setup. The provisioning thread
automatically runs when the DA16200/DA16600 starts in the Soft AP mode. For further details, see Ref. [4].

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 58

10. Wi-Fi Functionality

This section describes the Wi-Fi functionality that DA16200/DA16600 SDK provides.

10.1 Simple Roaming

Wi-Fi roaming allows the station (STA) automatically to change the connection to another AP within the
coverage areas of APs or routers belonging to the same extended service set (ESS) which has the same SSID
and credentials. DA16200/DA16600 SDK supports simplified and modified version of Wi-Fi roaming named
Simple Roaming. If RSSI is lower than a predefined threshold, DA16200/DA16600 automatically scans APs,
selects another AP with best RSSI, and connects the AP.

10.1.1 Using Simple Roaming

The feature is disabled in SDK by default. To configure threshold and enable the feature, use
da16x_set_config_int() APIs as shown in the following sample codes. In addition, DA16200/600 SDK offers

AT commands to enable and use the feature. See Ref. [6] for more about AT+WFROAP and AT+WFROTH
commands.

// To configure roaming threshold

int threshold = -55;

if (da16x_set_config_int(DA16X_CONF_INT_ROAM_THRESHOLD, threshold)) {

 PRINTF(“Failed to configure roaming threshold\n”);

}

// To run the simple roaming

if (da16x_set_config_int(DA16X_CONF_INT_ROAM, 1)) {

 PRINTF(“Failed to run simple roaming function\n”);

}

// To stop the simple roaming

if (da16x_set_config_int(DA16X_CONF_INT_ROAM, 0)) {

 PRINTF(“Failed to stop simple roaming function\n”);

}

In addition, WPA CLI commands are available for configuring roaming threshold and running/stopping simple
roaming.

// To configure roaming threshold

[/DA16200] # net.cli roam_threshold -35

// To run simple roaming

[/DA16200] # net.cli roam run

// To store configuration to NVRAM

[/DA16200] # net.cli save_config

// To stop simple roaming

/DA16200] # net.cli roam stop

When simple roaming operates, debug messages are displayed.

>>> [Roaming] Start - Current signal level is lower then the threshold.

>>> [Roaming] New - BSSID[88:36:6c:20:a0:76], Level[-26]

>>> Roam Scan[0/39] BSS 88:36:6c:20:a0:76 ssid='RENESAS_TESTAP' (-26)

NOTE

The simple roaming is switched off automatically when DPM mode is enabled.

Default threshold is -65 dBm and valid range is 0 ~ -95 dBm.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 59

>>> [Roaming] 2 - BSSID[88:36:6c:20:a0:76], Level[-26]

>>> Roam Scan[2/39] BSS 88:36:6c:20:a0:76 ssid='RENESAS_TESTAP' (-26)

>>> [Roaming] 1 - BSSID[88:36:6c:20:a0:76], Level[-26]

>>> Roam Scan[0/39] BSS 88:36:6c:20:a0:76 ssid='RENESAS_TESTAP' (-26)

>>> Network Interface (wlan0) : DOWN

-- DHCP Client WLAN0: STOP(0)

>>> Network Interface (wlan0) : UP

>>> Associated with 88:36:6c:20:a0:76

Connection COMPLETE to 88:36:6c:20:a0:76

-- DHCP Client WLAN0: SEL(6)

-- DHCP Client WLAN0: REQ(1)

User Call-back : Success to connect Wi-Fi ...

-- DHCP Client WLAN0: CHK(8)

-- DHCP Client WLAN0: BOUND(10)

 Assigned addr : 192.168.2.6

 netmask : 255.255.255.0

 gateway : 192.168.2.1

 DNS addr : 168.126.63.1

 DHCP Server IP : 192.168.2.1

 Lease Time : 02h 00m 00s

 Renewal Time : 01h 00m 00s

10.2 Scanning and Example

Scanning is the process of finding the desired AP through the station that the user wants to connect to. Two
types of scanning are available: active and passive scanning.

10.2.1 Active Scanning

In active scanning, the station device sends a frame which is called probe request frame to AP. Probe request
can be unicast or broadcast. In response to the probe request, the AP sends a probe response, which is used by
a station to take connection related decisions. For DA16200 DA16600 SDK, it broadcasts probe request frames
on each channel and waits for probe response frames for a certain amount of time. As scanning results, BSSID,
frequency, RSSI, security, and SSID information are included.

For active scanning in DA16200/DA16600 SDK, the get_scan_result() API is provided. Scanned APs are

listed and sorted by signal strength. Alternatively, the da16x_cli_reply() API can be used directly as the

get_scan_result() API is implemented in the API.

Here are overall descriptions of active scanning on DA16200/DA16600 SDK.

▪ The DA16200/DA16600 scans each channel based on a country code and cc_power_level[] and

cc_power_level_dsss[] tables.

▪ Channel 14 has additional restrictions or cannot be used in all regulatory areas.

▪ If the transmission power grade of a channel is set to 0xF in the tables, scanning this channel should be

skipped.

▪ The DA16200/DA16600 SDK allows to scan full channels, not single channels.

▪ Active scan time:

• Time to scan for 1 channel: about 30 ms.

○ Transmitting probe request frame and receiving probe response frame.

• Time to switch channel: about 29 ms.

○ It may vary depending on interference and circumstances.

• Total active scan time for full channels:

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 60

○ Time to scan for 1 channel x Numbers of channels + Channel switch time x (number of channels – 1).

Here is an example of using the da16x_cli_reply() API for active scan.

#define SCAN_RSP_BUF_SIZE (4 * 1024)

char scan_result[SCAN_RSP_BUF_SIZE] = { 0, };

memset(scan_result, 0, SCAN_RSP_BUF_SIZE);

da16x_cli_reply(“scan”, NULL, scan_result);

// Scan failed

if (strlen(scan_result) < 30) {

 PRINTF(“Scan: %s\n”, scan_result);

}

Also, the AT command (AT+WFSCAN) is available for active scanning (see Ref. [7] for details).

10.2.2 Passive-Scanning

In passive scanning, the station device waits for a special frame, beacon frames that AP broadcasts periodically,
and the beacon frames are buffered and used to decode and extract information about BSSs. As scanning
results, BSSID, frequency, RSSI, security, and SSID information are included.

The DA16200 DA16600 SDK only supports passive scanning using AT commands because scanning results are
transmitted over UART interface. See Ref. [7] about AT commands.

10.2.3 Get Scan Result Example

An example of active scan is available in SDK. To run the example, complete the following steps.

In the e2 studio, import a project for the Scan result example application.

~/SDK/apps/common/examples/ETC/Get_Scan_Result/projects/da16200

1. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

2. After the boot is complete, the get_scan_result sample starts automatically.

Figure 17. Get_Scan_Result AP list

This example shows how to use the void get_scan_result(void *user_buf_ptr) API and to get the Scan

result on STA mode and Soft AP mode.

The get_scan_result_sample function is executed after the basic FreeRTOS initialization is complete. This

example simply calls the user API void get_scan_result().

void get_scan_result_sample(void * param)

{

 char *user_buf = NULL;

 scan_result_t *scan_result;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 61

 int i;

 /* Allocate buffer to get scan result */

 user_buf = pvPortMalloc(SCAN_RSP_BUF_SIZE);

 /* Get scan result */

 get_scan_result((void *) user_buf);

 … …

}

After running the get_scan_result() API, the user can use the received data. This example code shows how to

display the scan list in the console.

/* Display result on console */

scan_result = (scan_result_t *)user_buf;

PRINTF("\n>>> Scanned AP List (Total : %d) \n", scan_result->ssid_cnt);

for (i = 0; i < scan_result->ssid_cnt; i++) {

 PRINTF(" %02d) SSID: %s, RSSI: %d, Security: %d\n",

 i + 1,

 scan_result->scanned_ap_info[i].ssid,

 scan_result->scanned_ap_info[i].rssi,

 scan_result->scanned_ap_info[i].auth_mode) ;

}

/* Buffer free */

vPortFree(user_buf);

The Scan results are stored in the following data structure format:

typedef struct scanned_ap_info {

 int auth_mode;

 int rssi;

 char ssid[128];

} scanned_ap_info_t;

typedef struct scan_result_to_app {

 int ssid_cnt;

 scanned_ap_info_t scanned_ap_info[MAX_SCAN_AP_CNT];

} scan_result_t;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 62

11. Network Examples: Socket Communication

This section describes how to develop Transmission Control Protocol (TCP) or User Datagram Protocol (UDP)
socket applications using the lwIP (Lightweight IP) APIs in the DA16200/DA1600 SDK. As a companion
document, see Ref. [1] for details on all functions. To understand and implement applications using the DPM
API, both non-DPM and DPM examples are provided. Before testing these examples, a test environment as
shown in Figure 18 is required.

11.1 Test Environment

Figure 18. Overall test setup

11.1.1 DA16200

The files of example sources are included in the DA16200 SDK. The examples in this section require the
DA16200 to be configured as a Wi-Fi station (STA Mode). See the Station Mode Setup section of Ref. [3] on
how to set up Wi-Fi station mode. Also, after completing the STA mode setup, copy the IP address of the
DA16200 EVB for later use. The IP address is printed after connecting to an Access Point (AP), and then
TCP/UDP example application runs. See Figure 19.

Figure 19. DA16200 EVB – AP connection complete

11.1.2 Peer Application

The examples in this section require a peer device (workstation or laptop) connected to the same AP running a
TCP/UDP test application such as IO Ninja.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 63

11.1.2.1 Example of Peer Application

This section describes how to run the peer application on the Windows operating system.

1. Start the IO Ninja utility on the test laptop or desktop computer.

If it is not installed, download it from http://ioninja.com.

2. Select File > New Session for the test.

Figure 20. Start IO Ninja utility

3. To test the TCP Client, start the TCP Server.

Figure 21. Select TCP server session

4. If TCP Listener Socket is selected, IO Ninja utility shows the TCP server test window.

NOTE

For the Windows OS system, the user needs to install a proper application such as Packet Sender, Hercules, and IO

Ninja. For a Linux system, proper test utilities or a test sample application are needed.

http://ioninja.com/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 64

Figure 22. TCP server session windows

5. Start the TCP Server session (for example, TCP Client test).

Figure 23. Start TCP server session

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 65

6. Connect to the TCP Client.

Figure 24. TCP connection with TCP client

7. Run data communication.

Figure 25. TCP data communication with TCP client

11.2 TCP Client

This section describes how the TCP client sample application is built and operated. The TCP client sample is an
example of the simplest TCP echo client application. TCP is one of the main protocols of the Internet protocol
suite. TCP provides a reliable, ordered, and error-checked delivery of a stream of octets (bytes) between
applications that run on hosts that communicate through an IP network. The DA16200 SDK provides a lwIP's
TCP protocol. lwIP is an open-source TCP/IP stack designed for embedded systems.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 66

11.2.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a TCP server socket with port
number 10192 (default TCP Client test port).

2. In the e2 studio, import a project for TCP Client sample application.

~/SDK/apps/common/examples/Network/TCP_Client/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the IP address and port for the peer application (TCP Server) in the TCP Client Sample, edit the
source code:

~/SDK/apps/common/examples/Network/TCP_Client/src/tcp_client_sample.c

#define TCP_CLIENT_SAMPLE_DEF_SERVER_IP_ADDR "192.168.0.11"

#define TCP_CLIENT_SAMPLE_DEF_SERVER_PORT TCP_CLI_TEST_PORT

The example connects to the peer application (TCP Server) after a connection is made to the Wi-Fi AP.

11.2.2 How It Works

The DA16200 TCP Client sample application is a simple echo message. When the TCP server sends a
message, the DA16200 TCP client echoes that message to the TCP server.

Figure 26. Workflow of TCP client

11.2.3 Sample Code

The DA16200 SDK provides the lwIP's TCP protocol. This sample application describes how a TCP socket is
created, deleted, and configured.

11.2.3.1 Registration

The client side of the TCP connection initiates a connection request to a TCP server. The client TCP socket
should be created with the socket() service and bound to a port via the bind() service. After the client socket is
bound, the connect() service is used to establish a connection with a TCP server.

void tcp_client_sample(void *param)

{

 int ret = 0;

 int socket_fd;

 struct sockaddr_in local_addr;

 struct sockaddr_in srv_addr;

 memset(&local_addr, 0x00, sizeof(struct sockaddr_in));

 memset(&srv_addr, 0x00, sizeof(struct sockaddr_in));

 // Create TCP socket

 socket_fd = socket(PF_INET, SOCK_STREAM, 0);

 local_addr.sin_family = AF_INET;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 67

 local_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 local_addr.sin_port = htons(TCP_CLIENT_SAMPLE_DEF_PORT);

 // Bind TCP socket

 ret = bind(socket_fd, (struct sockaddr *)&local_addr,

 sizeof(struct sockaddr_in));

 srv_addr.sin_family = AF_INET;

 srv_addr.sin_addr.s_addr = inet_addr(TCP_CLIENT_SAMPLE_DEF_SERVER_IP_ADDR);

 srv_addr.sin_port = htons(TCP_CLIENT_SAMPLE_DEF_SERVER_PORT);

 // Connect TCP socket

 ret = connect(socket_fd, (struct sockaddr_in *)&srv_addr,

 sizeof(struct sockaddr_in));

}

11.2.3.2 Data Transmission

TCP data is received when function recv() is called. TCP incoming packet handles various connections and

disconnections and is responsible for acknowledging transmissions.

TCP data is sent when function send() is called. This service first builds a TCP header in the front part of the
packet (including the checksum calculation). If the receiver's window size is larger than the data in this packet,
the packet is sent to the internet with the internal IP send routine. Otherwise, the caller may be suspended and
wait for the receiver’s window size to increase enough for this packet to be sent. At any given time, only one
sender may suspend while trying to send TCP data.

void tcp_client_sample()

{

 ...

 while (1) {

 memset(data_buffer, 0x00, sizeof(data_buffer));

 PRINTF("< Read from server: ");

 len = recv(socket_fd, data_buffer, sizeof(data_buffer), 0);

 data_buffer[len] = '\0';

 PRINTF("%d bytes read\r\n", len);

 PRINTF("> Write to server: ");

 len = send(socket_fd, data_buffer, len, 0);

 PRINTF("%d bytes written\r\n", len

 }

 ...

}

11.2.3.3 Disconnection

The connection is closed when function close() is called. This function handles sockets to be closed and deleted
internally. The socket must be in a CLOSED state or in the process of disconnecting before the port is released.
Otherwise, an error is returned. Finally, if the application no longer needs the client socket, the vTaskDelete()
function is called to delete the socket.

void tcp_client_sample()

{

 ...

 close(socket_fd);

end_of_task:

 PRINTF("[%s] End of TCP Client sample\r\n", __func__);

 vTaskDelete(NULL);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 68

 return ;

}

11.3 TCP Client in DPM

This section describes how the TCP client in the DPM sample application is built and works. The TCP client in
the Dynamic Power Management (DPM) sample application is an example of the simplest TCP echo client
application in DPM mode. The DA16200 SDK can work in DPM mode. The user application requires an
additional operation to work in DPM mode. The DA16200 SDK provides the DPM manager for the user network
application. The DPM manager supports users to develop and manage a network application in Non-DPM and
DPM modes.

11.3.1 How to Run

1. Run a socket application on the peer laptop (see Section 11.1.2) and open a TCP server socket with port
number 10192.

2. In the e2 studio, import a project for the TCP client in the DPM sample application.

~/SDK/apps/common/examples/Network/TCP_Client_DPM/projects/da16200

• Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. To set the IP address and the port for the peer application (TCP Server) in the TCP Client Sample, do one of
the following:

• Edit the source code:

~/SDK/apps/common/examples/Network/TCP_Client_DPM/src/tcp_client_dpm_sample.c

#define define TCP_CLIENT_DPM_SAMPLE_DEF_SERVER_IP "192.168.0.11"

#define TCP_CLIENT_DPM_SAMPLE_DEF_SERVER_PORT TCP_CLI_TEST_PORT

• Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCPC_SERVER_IP 192.168.0.11

[/DA16200] # nvram.setenv TCPC_SERVER_PORT 10192

[/DA16200] # reboot

After a connection is made to a Wi-Fi AP, the example of connecting to the peer application (TCP Server).

11.3.2 How It Works

The DA16200 TCP Client in the DPM sample application is a simple echo message. When the TCP server
sends a message, then the DA16200 TCP client echoes that message to the TCP server.

Figure 27. Workflow of TCP client in DPM

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 69

11.3.3 Sample Code

11.3.3.1 Registration

The TCP client in the DPM sample application works in DPM mode. The basic code is similar to the TCP client
sample application. There are two differences from the TCP client sample application:

▪ An initial callback function is added, named tc9p_client_dpm_sample_wakeup_callback() in the code. The
callback is called when the DPM state changes from sleep to wake-up

▪ Additional user configuration can be stored in RTM

In this sample, the TCP server information is stored.

void tcp_client_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = tcp_client_dpm_sample_init_callback;

 //Set DPM wake-up init callback

 user_config->wakeupInitCallback = tcp_client_dpm_sample_wakeup_callback;

 //Set External wake-up callback

 user_config->externWakeupCallback = tcp_client_dpm_sample_external_callback;

 //Set Error callback

 user_config->errorCallback = tcp_client_dpm_sample_error_callback;

 //Set session type(TCP Client)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_TCP_CLIENT;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 TCP_CLIENT_DPM_SAMPLE_DEF_CLIENT_PORT;

 //Set server IP address

 memcpy(user_config->sessionConfig[session_idx].sessionServerIp,

 srv_info.ip_addr, strlen(srv_info.ip_addr));

 //Set server port

 user_config->sessionConfig[session_idx].sessionServerPort = srv_info.port;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 tcp_client_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 tcp_client_dpm_sample_recv_callback;

 //Set connection retry count

 user_config->sessionConfig[session_idx].sessionConnRetryCnt =

 TCP_CLIENT_DPM_SAMPLE_DEF_MAX_CONNECTION_RETRY;

 //Set connection timeout

 user_config->sessionConfig[session_idx].sessionConnWaitTime =

 TCP_CLIENT_DPM_SAMPLE_DEF_MAX_CONNECTION_TIMEOUT;

 //Set auto reconnection flag

 user_config->sessionConfig[session_idx].sessionAutoReconn = TRUE;

 //Set user configuration

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 70

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory =

 sizeof(tcp_client_dpm_sample_svr_info_t);

 return ;

}

11.3.3.2 Data Transmission

The callback function is called when a TCP packet is received from a TCP server. In this sample, the received
data is printed out and an echo message is sent to the TCP server.

void tcp_client_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 unsigned char status = pdPASS;

 //Display received packet

 PRINTF(" ==> Received Packet(%ld) \n", rx_len);

 //Echo message

 status = dpm_mng_send_to_session(SESSION1, rx_ip, rx_port,

 (char *)rx_buf, rx_len);

 else

 {

 //Display sent packet

 PRINTF(" <== Sent Packet(%ld) \n", rx_len);

 }

 dpm_mng_job_done(); //Done opertaion

}

11.4 TCP Server

This section describes how the TCP server sample application is built and works. The TCP server sample
application is an example of the simplest TCP echo server application. TCP is one of the main protocols of the
Internet protocol suite. It provides a reliable, ordered, and error-checked delivery of a stream of octets (bytes)
between applications running on hosts that communicate through an IP network. The DA16200 SDK provides a
lwIP's TCP protocol. lwIP is an open-source TCP/IP stack designed for embedded systems.

11.4.1 How to Run

1. In the e2 studio, import a project for the TCP Server sample application.

~/SDK/apps/common/examples/Network/TCP_Server/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. To set the port of the TCP Server Sample, do one of the following:

• Edit the source code:

~/SDK/apps/common/examples/Network/TCP_Server/src/tcp_server_sample.c

#define TCP_SERVER_SAMPLE_DEF_SERVER_PORT TCP_SVR_TEST_PORT

• Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCP_SVR_PORT 10190

[/DA16200] # reboot

4. Set up the Wi-Fi station interface using console commands.

5. When connected to the AP, the sample application creates a TCP server socket with port number 10190 and
waits for a client connection.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 71

6. Run a socket application on the peer computer (See Section 11.1.2).

7. Open a TCP client socket.

11.4.2 How It Works

The DA16200 TCP server sample application is a simple echo server. When a TCP client sends a message, the
DA16200 TCP server echoes that message to the TCP client.

Figure 28. Workflow of TCP server

11.4.3 Sample Code

The DA16200 SDK provides the lwIP's TCP protocol. This sample application describes how a TCP socket is
created, deleted, and configured.

11.4.3.1 Connection

The server waits for a client connection request. Next, the application must create a TCP socket with the
socket() service. The server socket must also be set up to listen to connection requests with the listen() service.
This service puts the server socket in the LISTEN state and binds the specified server port to the server socket.
If the socket connection has already been established, the function simply returns a successful status.

void tcp_server_sample()

{

 int ret = 0;

 int listen_sock = -1;

 int client_sock = -1;

 struct sockaddr_in server_addr;

 struct sockaddr_in client_addr;

 memset(&server_addr, 0x00, sizeof(struct sockaddr_in));

 memset(&client_addr, 0x00, sizeof(struct sockaddr_in));

 // Create TCP socket

 listen_sock = socket(PF_INET, SOCK_STREAM, 0);

 if (listen_sock < 0) {

 PRINTF("[%s] Failed to create listen socket\r\n", __func__);

 goto end_of_task;

 }

 server_addr.sin_family = AF_INET;

 server_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 server_addr.sin_port = htons(TCP_SERVER_SAMPLE_DEF_PORT);

 // Bind TCP socket

 ret = bind(listen_sock, (struct sockaddr *)&server_addr,

 sizeof(struct sockaddr_in));

 // Listen TCP socket

 ret = listen(listen_sock, TCP_SERVER_SAMPLE_BACKLOG);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 72

 while (1) {

 client_sock = -1;

 memset(&client_addr, 0x00, sizeof(struct sockaddr_in));

 client_addrlen = sizeof(struct sockaddr_in);

 // Accept TCP socket

 client_sock = accept(listen_sock, (struct sockaddr *)&client_addr,

 (socklen_t *)&client_addrlen);

 While (1){

 ...

 }

 }

}

11.4.3.2 Data Transmission

TCP data is received when function recv() is called. The TCP receive packet process is responsible for

handling the various connections and disconnections as well as transmission acknowledgment process.

TCP data is sent when function send() is called. This service first builds a TCP header in the front part of the
packet (including the checksum calculation). If the receiver's window size is larger than the data in this packet,
the packet is sent on the Internet with the internal IP send routine. Otherwise, the caller may suspend and wait
for the receiver`s window size to increase enough for this packet to be sent. At any given time, only one sender
may suspend while trying to send TCP data.

void tcp_server_sample_run()

{

 ...

 while (NX_TRUE)

 {

 memset(data_buffer, 0x00, sizeof(data_buffer));

 PRINTF("< Read from client: ");

 len = recv(client_sock, data_buffer, sizeof(data_buffer), 0);

 data_buffer[len] = '\0';

 PRINTF("%d bytes read\r\n", len);

 PRINTF("> Write to client: ");

 len = send(client_sock, data_buffer, len, 0);

 PRINTF("%d bytes written\r\n", len);

 }

 ...

}

11.4.3.3 Disconnection

The connection is closed when function close() is called. This function handles sockets to be closed and deleted
internally.

void tcp_server_sample()

{

 ...

 While (1) {

 Close(client_socket)

 ...

 }

end_of_task:

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 73

 PRINTF("[%s] End of TCP Server sample\r\n", __func__);

 close(listen_sock);

 close(client_sock);

 vTaskDelete(NULL);

 return ;

}

11.5 TCP Server in DPM

This section describes how the TCP server is built and works in the DPM sample application. The TCP server in
the DPM sample application is an example of the simplest TCP echo server application. The DA16200 SDK can
work in DPM mode. The user application is required to work in DPM mode. The DA16200 SDK provides the
DPM manager for the user network application. The DPM manager supports the user to develop and manage a
network application in Non-DPM and DPM modes. The codes are almost the same as for the TCP server
example.

11.5.1 How to Run

1. Open the workspace for the TCP Server in DPM sample application.

~/SDK/apps/common/examples/Network/TCP_Server_DPM/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. To set the port of the TCP Server Sample, do one of the following:

• Edit the source code:

~/SDK/apps/common/examples/Network/TCP_Server_DPM/src/tcp_server_dpm_sample.c

#define TCP_SERVER_DPM_SAMPLE_DEF_SERVER_PORT TCP_SVR_TEST_PORT

• Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCP_SVR_PORT 10190

[/DA16200] # reboot

4. Use the console command to set up the Wi-Fi station interface.

5. When connected to the AP, the sample application creates a TCP server socket with port number 10190
(Default test port number) and waits for client connection.

6. Run a socket application on the peer computer (See Section 11.1.2).

7. Open a TCP client socket.

11.5.2 How It Works

The DA16200 TCP server in the DPM sample application is a simple echo server. When a TCP client sends a
message, then the DA16200 TCP server echoes that message to the TCP client.

Figure 29. Workflow of TCP server in DPM

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 74

11.5.3 Sample Code

11.5.3.1 Registration

The TCP server in the DPM sample application works in DPM mode. The basic code is similar to the TCP server
sample application. There are two differences from the TCP Server sample application:

▪ An initial callback function is added, named tcp_server_dpm_sample_wakeup_callback() in the code. The

callback is called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration can be stored in RTM.

In this sample, the TCP server information is stored.

void tcp_server_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = tcp_server_dpm_sample_init_callback;

 //Set DPM wakkup init callback

 user_config->wakeupInitCallback = tcp_server_dpm_sample_wakeup_callback;

 //Set Error callback

 user_config->errorCallback = tcp_server_dpm_sample_error_callback;

 //Set session type(TCP Server)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_TCP_SERVER;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 TCP_SERVER_DPM_SAMPLE_DEF_SERVER_PORT;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 tcp_server_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 tcp_server_dpm_sample_recv_callback;

 //Set user configuration

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory = sizeof(tcp_server_dpm_sample_svr_info_t);

 return ;

}

11.5.3.2 Data Transmission

The callback function is called when a TCP packet is received from a TCP client. In this sample, the received
data is printed out and an echo message is sent to the TCP client.

void tcp_server_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" ==> Received Packet(%ld) \n", rx_len);

 //Echo message

 status = dpm_mng_send_to_session(SESSION1, rx_ip, rx_port,

 (char *)rx_buf, rx_len);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 75

 //Display sent packet

 PRINTF(" <== Sent Packet(%ld) \n", rx_len);

 dpm_mng_job_done(); //Done opertaion

}

11.6 TCP Client with KeepAlive in DPM

This section describes how the TCP client with KeepAlive in the DPM sample application is built and works. The
TCP client with KeepAlive in the DPM sample application is an example of the simplest TCP echo client
application in DPM mode. The DA16200 SDK can work in DPM mode. The user application is required to work in
DPM mode. The DA16200 SDK provides the DPM manager for the user network application. The DPM manager
helps users to develop and manage a network application in both Non-DPM and DPM modes.

11.6.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a TCP server socket with port
number 10193 (Default TCP Client test port).

2. In the e2 studio, import a project for the TCP Client sample application.

~/SDK/apps/common/examples/Network/TCP_Client_KeepAlive_DPM/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the IP address and the port for the peer application (TCP Server) in the TCP Client KA DPM Sample,
do one of the following:

• Edit the source code:

~/SDK/apps/common/examples/Network/TCP_Client_KeepAlive_DPM/src/tcp_client_ka_dpm_sample.c

//Default TCP Server configuration

#define TCP_CLIENT_KA_DPM_SAMPLE_DEF_SERVER_IP "192.168.0.11"

#define TCP_CLIENT_KA_DPM_SAMPLE_DEF_SERVER_PORT TCP_CLI_KA_TEST_PORT

• Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCPC_SERVER_IP 192.168.0.11

[/DA16200] # nvram.setenv TCPC_SERVER_PORT 10192

[/DA16200] # reboot

After a connection is made to a Wi-Fi AP, the example connects to the peer application (TCP Server).

11.6.2 Sample Code

11.6.2.1 Registration

The TCP client with KeepAlive in the DPM sample application works in DPM mode. The basic code is similar to
the TCP client with the KeepAlive sample application. The time period is 55 seconds to send a TCP KeepAlive
message to the TCP server. Compared to the TCP client in the DPM sample application, there are two
differences from the TCP client sample application:

▪ An initial callback function is added, named tcp_client_ka_dpm_sample_wakeup_callback() in the code. The
callback function is called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration can be stored in RTM.

In this example, TCP server information is stored.

void tcp_client_ka_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = tcp_client_ka_dpm_sample_init_callback;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 76

 //Set DPM wake-up init callback

 user_config->wakeupInitCallback = tcp_client_ka_dpm_sample_wakeup_callback;

 //Set Error callback

 user_config->errorCallback = tcp_client_ka_dpm_sample_error_callback;

 //Set session type(TCP Client)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_TCP_CLIENT;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 TCP_CLIENT_KA_DPM_SAMPLE_DEF_CLIENT_PORT;

 //Set server IP address

 memcpy(user_config->sessionConfig[session_idx].sessionServerIp,

 srv_info.ip_addr, strlen(srv_info.ip_addr));

 //Set server port

 user_config->sessionConfig[session_idx].sessionServerPort = srv_info.port;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 tcp_client_ka_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 tcp_client_ka_dpm_sample_recv_callback;

 //Set connection retry count

 user_config->sessionConfig[session_idx].sessionConnRetryCnt =

 TCP_CLIENT_KA_DPM_SAMPLE_DEF_MAX_CONNECTION_RETRY;

 //Set connection timeout

 user_config->sessionConfig[session_idx].sessionConnWaitTime =

 TCP_CLIENT_KA_DPM_SAMPLE_DEF_MAX_CONNECTION_TIMEOUT;

 //Set auto reconnection flag

 user_config->sessionConfig[session_idx].sessionAutoReconn = pdTRUE;

 //Set KeepAlive timeout

 user_config->sessionConfig[session_idx].sessionKaInterval =

 TCP_CLIENT_KA_DPM_SAMPLE_DEF_KEEPALIVE_TIMEOUT;

 //Set user configuration

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory =

 sizeof(tcp_client_ka_dpm_sample_svr_info_t);

 return ;

}

11.6.2.2 Data Transmission

The callback function is called when a TCP packet is received from the TCP server. In this example, the
received data is printed out and an echo message is sent to the TCP server.

void tcp_client_ka_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" ==> Received Packet(%ld) \n", rx_len);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 77

 //Echo message

 status = dpm_mng_send_to_session(SESSION1, rx_ip, rx_port, (char *)rx_buf, rx_len);

 else

 {

 //Display sent packet

 PRINTF(" <== Sent Packet(%ld) \n", rx_len);

 }

 dpm_mng_job_done(); //Done opertaion}

}

11.6.3 How It Works

The DA16200 TCP Client with KeepAlive in the DPM sample application is a simple echo message. When the
TCP server sends a message, then the DA16200 TCP client echoes that message to the TCP server. A periodic
TCP KeepAlive message is sent to the TCP server every 55 seconds.

Figure 30. Workflow of TCP client with KeepAlive in DPM

11.7 UDP Socket

This section describes how the UDP socket sample application is built and works. The UDP socket sample
application is an example of the simplest UDP echo application. UDP is one of the core members of the Internet
protocol suite. It uses a simple connectionless communication model with minimum protocol mechanisms. UDP
provides checksums for data integrity and port numbers to address different functions at the source and
destination of the datagram. Since there is no handshaking, it exposes the user program to all the instability of
the underlying network; there is no guarantee of delivery, order, or duplicate protection. The DA16200 SDK
provides a lwIP's TCP protocol. lwIP is an open-source TCP/IP stack designed for embedded systems.

11.7.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a UDP socket with port
number 10195 (default UDP test port).

2. In the e2 studio, import a project for the UDP socket sample application.

~/SDK/apps/common/examples/Network/UDP_Socket/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the port number for the peer application (UDP Socket) of the UDP Socket Sample, edit the source
code:

~/SDK/apps/common/examples/Network/UDP_Socket/src/udp_socket_sample.c

#define UDP_SOCKET_SAMPLE_DEF_LOCAL_PORT UDP_CLI_TEST_PORT

After a connection is made to a Wi-Fi AP, the example connects to the peer application (UDP Socket).

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 78

11.7.2 How It Works

The DA16200 UDP socket sample application is a simple echo server. When a UDP peer sends a message, the
DA16200 UDP socket sample application echoes that message to the UDP peer.

Figure 31. Workflow of UDP socket

11.7.3 Sample Code

The DA16200 SDK provides the lwIP's UDP protocol. This sample application describes how the UDP socket is
created, deleted, and configured.

11.7.3.1 Initialization

A UDP port is a logical end point in the UDP protocol. There are 65,535 valid ports in the UDP component of
lwIP, ranging from 1 through 0xFFFF. To send or receive UDP data, the application should first create a UDP

socket with function socket(), then bind the UDP socket to the desired port. Next, the application may send and
receive data on that socket. The details are as follows:

void udp_socket_sample_run()

{

 int sock;

 struct sockaddr_in local_addr;

 struct sockaddr_in peer_addr;

 memset(&local_addr, 0x00, sizeof(local_addr));

 memset(&peer_addr, 0x00, sizeof(peer_addr));

 sock = socket(AF_INET, SOCK_DGRAM, 0);

 setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (const void *)&optval,sizeof(int));

 local_addr.sin_family = AF_INET;

 local_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 local_addr.sin_port = htons(UDP_SOCKET_SAMPLE_PEER_PORT);

 ret = bind(sock, (struct sockaddr *)&local_addr, sizeof(struct sockaddr_in));

 ...

}

11.7.3.2 Data Transmission

To receive a UDP packet, the function recvfrom() is called. The socket receive function delivers the oldest

packet on the socket's receive queue. To send UDP data, the function sendto() is called. This service puts a

UDP header in the front part of the packet and sends the packet on the Internet with the internal IP send routine.

void udp_socket_sample_run()

{

 ...

 while (1) {

 memset(&peer_addr, 0x00, sizeof(struct sockaddr_in));

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 79

 memset(data_buffer, 0x00, sizeof(data_buffer));

 PRINTF("< Read from peer: ");

 ret = recvfrom(sock, data_buffer, sizeof(data_buffer), 0,

 (struct sockaddr *)&peer_addr, (socklen_t *)&addr_len);

 if (ret > 0) {

 len = ret;

 PRINTF("%d bytes read(%d.%d.%d.%d:%d)\r\n", len,

 (ntohl(peer_addr.sin_addr.s_addr) >> 24) & 0xff,

 (ntohl(peer_addr.sin_addr.s_addr) >> 16) & 0xff,

 (ntohl(peer_addr.sin_addr.s_addr) >> 8) & 0xff,

 (ntohl(peer_addr.sin_addr.s_addr)) & 0xff,

 (ntohs(peer_addr.sin_port)));

 PRINTF("> Write to peer: ");

 ret = sendto(sock, data_buffer, len, 0,

 (struct sockaddr *)&peer_addr, addr_len);

 PRINTF("%d bytes written(%d.%d.%d.%d:%d)\r\n", len,

 (ntohl(peer_addr.sin_addr.s_addr) >> 24) & 0xff,

 (ntohl(peer_addr.sin_addr.s_addr) >> 16) & 0xff,

 (ntohl(peer_addr.sin_addr.s_addr) >> 8) & 0xff,

 (ntohl(peer_addr.sin_addr.s_addr)) & 0xff,

 (ntohs(peer_addr.sin_port)));

 }

 }

}

11.8 UDP Server in DPM

This section describes how the UDP server in the DPM sample application is built and works. The UDP server in
the DPM sample application is an example of the simplest UDP echo application in DPM mode. The DA16200
SDK can work in DPM mode. The DPM manager of the DA16200 SDK is helpful for the user to develop and
manage a UDP server socket application in Non-DPM and DPM modes.

11.8.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a UDP socket with port
number 10194 (Default UDP test port).

2. In the e2 studio, import a project for the UDP Server DPM sample application.

~/SDK/apps/common/examples/Network/UDP_Server_DPM/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the port number for the peer application (UDP Client) of the UDP Server DPM Sample, edit the source
code:

~/SDK/apps/common/examples/Network/UDP_Server_DPM/src/udp_server_dpm_sample.c

#define UDP_SERVER_DPM_SAMPLE_DEF_SERVER_PORT UDP_SVR_TEST_PORT

After a connection is made to a Wi-Fi AP, the example connects to the peer application (UDP Client).

11.8.2 How It Works

The DA16200 UDP Server in the DPM sample application is a simple echo server. When the peer’s UDP
application sends a message, the DA16200 UDP server echoes that message to the peer.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 80

Figure 32. Workflow of UDP server in DPM

11.8.3 Sample Code

11.8.3.1 Registration

The UDP server in the DPM sample application works in DPM mode. The basic code is similar to the UDP
server sample application. The only differences are as below:

▪ An initial callback function is added, named udp_server_dpm_sample_wakeup_callback() in the code. The
callback function is called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration can be stored in RTM.

In this sample, the peer's UDP socket port number is stored.

void udp_server_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = udp_server_dpm_sample_init_callback;

 //Set DPM wakkup init callback

 user_config->wakeupInitCallback = udp_server_dpm_sample_wakeup_callback;

 //Set Error callback

 user_config->errorCallback = udp_server_dpm_sample_error_callback;

 //Set session type(UDP Server)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_UDP_SERVER;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 UDP_SERVER_DPM_SAMPLE_DEF_SERVER_PORT;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 udp_server_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 udp_server_dpm_sample_recv_callback;

 //Set secure mode

 user_config->sessionConfig[session_idx].supportSecure = pdFALSE;

 //Set user configuration

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 81

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory = sizeof(udp_server_dpm_sample_svr_info_t);

 return ;

}

11.8.3.2 Data Transmission

The callback function is called when a UDP packet is received from the peer's UDP socket application. In this
example, the received data is printed out and an echo message is sent to the peer's UDP socket application.

void udp_server_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" =====> Received Packet(%ld) \n", rx_len);

 //Echo message

 status = dpm_mng_send_to_session(SESSION1, rx_ip, rx_port,

 (char *)rx_buf, rx_len);

 if (status) {

 PRINTF(RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR_COLOR,

 __func__, SESSION1, status);

 } else {

 //Display sent packet

 PRINTF(" <== Sent Packet(%ld) \n", rx_len);

 }

 dpm_mng_job_done(); //Done opertaion }

11.9 UDP Client in DPM

This section describes how the UDP client in the DPM sample application is built and works. The UDP client in
the DPM sample application is an example of the simplest UDP echo application in DPM mode. The DA16200
SDK can work in DPM mode. The user application requires an additional operation to work in DPM mode. The
DPM manager of the DA16200 SDK is helpful for the user to develop and manage a UDP client socket
application in both Non-DPM and DPM modes.

11.9.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a UDP socket with port
number 10195 (Default UDP test port).

2. In the e2 studio, import a project for the UDP Client DPM sample application.

~/SDK/apps/common/examples/Network/UDP_Client_DPM/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the port number for the peer application (UDP Server) of the UDP Client DPM Sample, edit the source
code:

~/SDK/apps/common/examples/Network/ UDP_Client_DPM/src/udp_client_dpm_sample.c

#define UDP_CLIENT_DPM_SAMPLE_DEF_SERVER_PORT UDP_CLI_TEST_PORT

After a connection is made to a Wi-Fi AP, the example connects to the peer application (UDP Server).

11.9.2 How It Works

The DA16200 UDP Client in the DPM sample application is a simple echo message. When a peer’s UDP
application sends a message, then the DA16200 UDP client echoes that message to the peer.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 82

Figure 33. Workflow of UDP client in DPM

11.9.3 Sample Code

11.9.3.1 Registration

The UDP client in the DPM sample application works in DPM mode. The basic code is similar to the UDP client
sample application. There are two differences from the UDP client sample application:

▪ An initial callback function is added, named udp_client_dpm_sample_wakeup_callback() in the code. The
function is called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration can be stored in RTM.

In this example, the peer's UDP IP address and port number are stored.

void udp_client_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = udp_client_dpm_sample_init_callback;

 //Set DPM wake up init callback

 user_config->wakeupInitCallback = udp_client_dpm_sample_wakeup_callback;

 //Set Error callback

 user_config->errorCallback = udp_client_dpm_sample_error_callback;

 //Set session type(UDP Client)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_UDP_CLIENT;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 UDP_CLIENT_DPM_SAMPLE_DEF_CLIENT_PORT;

 //Set server IP address

 memcpy(user_config->sessionConfig[session_idx].sessionServerIp,

 srv_info.ip_addr, strlen(srv_info.ip_addr));

 //Set server port

 user_config->sessionConfig[session_idx].sessionServerPort = srv_info.port;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 udp_client_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 83

 udp_client_dpm_sample_recv_callback;

 //Set user configuration

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory = sizeof(udp_client_dpm_sample_svr_info_t);

 return ;

}

11.9.3.2 Data Transmission

The callback function is called when a UDP packet is received from the peer's UDP socket application. In this
example, the received data is printed out and an echo message is sent to the peer's UDP socket application.

void udp_client_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" ==> Received Packet(%ld) \n", rx_len);

 status = dpm_mng_send_to_session(SESSION1, 0, 0, (char *)rx_buf, rx_len);

 if (status) {

 PRINTF(RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR_COLOR,

 __func__, SESSION1, status);

 } else {

 //Display sent packet

 PRINTF(" <== Sent Packet(%ld) \n", rx_len);

 }

 dpm_mng_job_done(); //Done opertaion

 }

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 84

12. Network Examples: Security

12.1 Peer Application

The examples in this section require a peer device (Laptop or desktop) connected to the same AP running a
(D)TLS test application.

12.1.1 Peer Application Examples

There are many (D)TLS counter applications available. In this section, we use a self-implemented (D)TLS
counter application to demonstrate these sample applications. It is based on the cryptography APIs of the
Bouncy Castle (https://www.bouncycastle.org/java.html). These examples were written and tested on Windows
and might be different than the local environment. Use them as references for testing TLS/DTLS servers or
clients.

12.1.1.1 TLS Server

The TLS server application is for the DA16200 TLS client sample application. It runs with a default port number
(10196) and waits for a TLS client to connect, as shown in Figure 34. One TLS client connection is allowed, and
no client certificate is required during the TLS handshake. If the TLS session is established successfully, the TLS
server application sends a message per five seconds periodically.

Figure 34. Start TLS server

12.1.1.2 TLS Client

The TLS client application is for the DA16200 TLS server sample application. It runs with default TLS server
information. The IP address is 192.168.0.2 and the port number is 10197. Figure 35 shows the TLS client tries to
connect to the DA16200 TLS server sample application. If a TLS session is established successfully, the TLS
client application sends a message per 5 seconds periodically.

Usage: tls_client.exe [TLS server IP address] [Port number]

Figure 35. Start TLS client

https://www.bouncycastle.org/java.html

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 85

If the TLS client application cannot find a DA16200 TLS server, an exception occurs with a timeout message as
shown in Figure 36.

Figure 36. TLS client timeout

12.1.1.3 DTLS Server

The DTLS server application is for the DA16200 DTLS client sample application. It runs with a default port
number (10199) and waits for the DTLS client to connect, as shown in Figure 37. A client certificate is not
required during the DTLS handshake. If a DTLS session is established successfully, the DTLS server application
sends a message per five seconds periodically.

Figure 37. Start DTLS server

12.1.1.4 DTLS Client

The Datagram Transport Layer Security (DTLS) client application is for the DA16200 DTLS server sample
application. It runs with default DTLS server information. The IP address is 192.168.0.2 and the port number is
10199. The DTLS client tries to connect to the DA16200 DTLS server sample application as shown in Figure 38.
If a DTLS session is established successfully, the DTLS client application sends a message per five seconds
periodically.

Usage: dtls_client.exe [DTLS server IP address] [Port number]

Figure 38. Start DTLS client

12.2 TLS Server

This section describes how the TLS server sample application is built and works. The TLS server sample
application is an example of the simplest TLS echo server application. Transport Layer Security (TLS) is a
cryptographic protocol designed to provide communication security over a computer network. The DA16200
SDK provides an SSL library, called mbedTLS, on the secure hardware engine to support the TLS protocol.

MbedTLS is one of the popular SSL libraries. It is helpful to easily develop a network application with a TLS

protocol.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 86

12.2.1 How to Run

1. In the e2 studio, import a project for the TLS Server sample application.

~/SDK/apps/common/examples/Network/TLS_Server/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the sample application creates a TLS server socket with port number
10197 and waits for a client connection.

5. Run a TLS client application on the peer computer.

12.2.2 How It Works

The DA16200 TLS Server sample is a simple echo server. When a TLS client sends a message, the DA16200
TLS server echoes that message to the TLS client.

Figure 39. Workflow of TLS server

12.2.3 Sample Code

The DA16200 SDK provides the mbedTLS library. This section describes how the TLS server is implemented with

an mbedTLS library and a socket library.

12.2.3.1 Initialization

The DA16200 secure hardware engine must be initialized with da16x_secure_module_init() before the TLS

context is initialized. To set up a TLS session, initialization functions are called as follows:

void tls_server_sample(void *param)

{

 ...

 //Init session

 mbedtls_net_init(&listen_ctx);

 mbedtls_net_init(&client_ctx);

 //Init SSL context

 mbedtls_ssl_init(&ssl_ctx);

 //Init SSL config

 mbedtls_ssl_config_init(&ssl_conf);

 //Init CTR-DRBG context

 mbedtls_ctr_drbg_init(&ctr_drbg);

 //Init Entropy context

 mbedtls_entropy_init(&entropy);

 //Init Certificate context

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 87

 mbedtls_x509_crt_init(&cert);

 //Init Private key context

 mbedtls_pk_init(&pkey);

 //Init Private key context for ALT

 mbedtls_pk_init(&pkey_alt);

 //Parse certificate

 ret = mbedtls_x509_crt_parse(&cert, tls_server_sample_cert,

 tls_server_sample_cert_len);

 //Parse private key

 ret = mbedtls_pk_parse_key(&pkey, tls_server_sample_key,

 tls_server_sample_key_len, NULL, 0);

 snprintf(str_port, sizeof(str_port), "%d", TLS_SERVER_SAMPLE_DEF_PORT);

 ret = mbedtls_net_bind(&listen_ctx, NULL, str_port, MBEDTLS_NET_PROTO_TCP);

 ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,

 (const unsigned char *)pers, strlen(pers));

 //Set default configuration

 ret = mbedtls_ssl_config_defaults(&ssl_conf, MBEDTLS_SSL_IS_SERVER,

 MBEDTLS_SSL_TRANSPORT_STREAM, MBEDTLS_SSL_PRESET_DEFAULT);

 mbedtls_ssl_conf_rng(&ssl_conf, mbedtls_ctr_drbg_random, &ctr_drbg);

 //Import certificate & private key

 if (mbedtls_pk_get_type(&pkey) == MBEDTLS_PK_RSA) {

 ret = mbedtls_pk_setup_rsa_alt(&pkey_alt,

 (void *)mbedtls_pk_rsa(pkey),

 tls_server_sample_rsa_decrypt_func,

 tls_server_sample_rsa_sign_func,

 tls_server_sample_rsa_key_len_func);

 ret = mbedtls_ssl_conf_own_cert(&ssl_conf, &cert, &pkey_alt);

 if (ret) {

 PRINTF("\r\n[%s] Failed to set certificate(0x%x)\r\n", __func__, -ret);

 goto end_of_task;

 }

 } else {

 ret = mbedtls_ssl_conf_own_cert(&ssl_conf, &cert, &pkey);

 if (ret) {

 PRINTF("\r\n[%s] Failed to set certificate(0x%x)\r\n", __func__, -ret);

 goto end_of_task;

 }

 }

 //Don't care verificate of peer certificate

 mbedtls_ssl_conf_authmode(&ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

 //Set up an SSL context for use.

 ret = mbedtls_ssl_setup(&ssl_ctx, &ssl_conf);

reset:

 ...

 mbedtls_ssl_set_bio(&ssl_ctx, &client_ctx, mbedtls_net_send, mbedtls_net_recv, NULL);

 ...

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 88

12.2.3.2 TLS Handshake

TLS is an encryption protocol designed to secure network communication. A TLS handshake is the process of
initiating a communication session that uses TLS encryption. To do a TLS handshake, the function
mbedtls_ssl_handshake() is called. If an error occurred during the TLS handshake, the API returns a specific

error code. If a TLS session is established successfully, the API returns 0. The details are as follows:

void tls_server_sample(void *param)

{

 ...

reset:

 ...

 while ((ret = mbedtls_ssl_handshake(&ssl_ctx)) != 0) {

 if ((ret != MBEDTLS_ERR_SSL_WANT_READ) && (ret != MBEDTLS_ERR_SSL_WANT_WRITE)){

 PRINTF("\r\n[%s] Failed to do handshake(0x%x)\r\n", __func__, -ret);

 goto reset;

 }

 }

 ...

 }

12.2.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a TLS session
is established, all application data must be encrypted to transfer application data. MbedTLS provides specific APIs

to help encrypt and decrypt data. To write application data, the function mbedtls_ssl_write() of the mbedTLS

library is called. The details are as follows:

void tls_server_sample(void *param)

{

 ...

reset:

 ...

 do {

 ...

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_write(0x%x)\r\n", -ret);

 continue;

 case MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY:

 PRINTF("\r\nConnection was closed gracefully\r\n");

 break;

 case MBEDTLS_ERR_NET_CONN_RESET:

 PRINTF("\r\nConnection was reset by peer\r\n");

 break;

 default:

 PRINTF("Failed to write data(0x%x)\r\n", -ret);

 break;

 }

 break;

 }

 }

 ...

}

To read application data, the function mbedtls_ssl_read() of the mbedTLS library is called. In this sample, this

function is called in tls_server_sample(). The details are as follows:

void tls_server_sample(void *param)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 89

{

 ...

reset:

 ...

 do {

 len = sizeof(data_buffer) - 1;

 memset(data_buffer, 0x00, sizeof(data_buffer));

 PRINTF("< Read from client: ");

 ret = mbedtls_ssl_read(&ssl_ctx, data_buffer, len);

 if (ret <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_write(0x%x)\r\n", -ret);

 continue;

 case MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY:

 PRINTF("\r\nConnection was closed gracefully\r\n");

 break;

 case MBEDTLS_ERR_NET_CONN_RESET:

 PRINTF("\r\nConnection was reset by peer\r\n");

 break;

 default:

 PRINTF("\r\nFailed to read data(0x%x)\r\n", -ret);

 break;

 }

 break;

 }

 len = ret;

 PRINTF("%d bytes read\r\n", len);

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) {

 ...

 }

 }

 ...

}

12.3 TLS Server in DPM

This section describes how the TLS server in the DPM sample application is built and works. The TLS server in
the DPM sample application is an example of the simplest TLS echo server application. TLS is a set of
cryptographic protocols designed to provide secure communication over a computer network. The DA16200
SDK can work in DPM mode. The user application requires an additional operation to work in DPM mode. The
DA16200 SDK provides a DPM manager for the user network application. The DPM manager supports users to
develop and manage a TLS network application in Non-DPM and DPM modes.

12.3.1 How to Run

1. In the e2 studio, import a project for the TLS Server in the DPM sample application.

~/SDK/apps/common/examples/Network/TLS_Server_DPM/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application creates a TLS server socket with port number
10197 and waits for a client connection.

5. Run a TLS client application on the peer computer.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 90

12.3.2 How It Works

The DA16200 TLS Server in the DPM sample is a simple echo server. When a TLS client sends a message,
then the DA16200 TLS server echoes that message to the TLS client. The DA16200 TLS server takes time to
wait to establish a TLS session.

Figure 40. Workflow of TLS server in DPM

12.3.3 Sample Code

12.3.3.1 Registration

The TLS server in the DPM sample application works in DPM mode. The basic code is similar to the TLS server
sample application. There are two differences with the TLS Server sample application:

▪ An initial callback function is added, named tls_server_dpm_sample_wakeup_callback() in the code. The

function is called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration can be stored in RTM.

In this sample, the TLS server information is stored.

void tls_server_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = tls_server_dpm_sample_init_callback;

 //Set DPM wakkup init callback

 user_config->wakeupInitCallback = tls_server_dpm_sample_wakeup_callback;

 //Set Error callback

 user_config->errorCallback = tls_server_dpm_sample_error_callback;

 //Set session type(TCP Server)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_TCP_SERVER;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 TLS_SERVER_DPM_SAMPLE_DEF_SERVER_PORT;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 tls_server_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 tls_server_dpm_sample_recv_callback;

 //Set secure mode

 user_config->sessionConfig[session_idx].supportSecure = pdTRUE;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 91

 //Set secure setup callback

 user_config->sessionConfig[session_idx].sessionSetupSecureCallback =

 tls_server_dpm_sample_secure_callback;

 //Set user configuration

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory = sizeof(tls_server_dpm_sample_svr_info_t);

 return ;

}

12.3.3.2 TLS Setup

To establish a TLS session, TLS should be set up. DA16200 includes the mbedTLS library to provide the TLS

protocol. Most APIs that are related to the TLS protocol are based on the mbedTLS library. TLS is set up by

sessionSetupSecureCallback function. The details are as follows.

void tls_server_dpm_sample_secure_callback(void *config)

{

 const char *pers = "tls_server_dpm_sample";

 SECURE_INFO_T *secure_config = (SECURE_INFO_T *)config;

 ret = mbedtls_ssl_config_defaults(secure_config->ssl_conf,

 MBEDTLS_SSL_IS_SERVER,

 MBEDTLS_SSL_TRANSPORT_STREAM,

 MBEDTLS_SSL_PRESET_DEFAULT);

 //import test certificate

 ret = mbedtls_x509_crt_parse(secure_config->cert_crt,

 tls_server_dpm_sample_cert,

 tls_server_dpm_sample_cert_len);

 ret = mbedtls_pk_parse_key(secure_config->pkey_ctx,

 tls_server_dpm_sample_key,

 tls_server_dpm_sample_key_len,

 NULL, 0);

 if (mbedtls_pk_get_type(secure_config->pkey_ctx) == MBEDTLS_PK_RSA) {

 ret = mbedtls_pk_setup_rsa_alt(secure_config->pkey_alt_ctx,

 (void *)mbedtls_pk_rsa(*secure_config->pkey_ctx),

 tls_server_dpm_sample_rsa_decrypt_func,

 tls_server_dpm_sample_rsa_sign_func,

 tls_server_dpm_sample_rsa_key_len_func);

 ret = mbedtls_ssl_conf_own_cert(secure_config->ssl_conf,

 secure_config->cert_crt,

 secure_config->pkey_alt_ctx);

 } else {

 ret = mbedtls_ssl_conf_own_cert(secure_config->ssl_conf,

 secure_config->cert_crt,

 secure_config->pkey_ctx);

 }

 ret = dpm_mng_setup_rng(secure_config->ssl_conf);

 //Don't care verification in this sample.

 mbedtls_ssl_conf_authmode(secure_config->ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

 ret = mbedtls_ssl_setup(secure_config->ssl_ctx, secure_config->ssl_conf);

 dpm_mng_job_done(); //Done opertaion

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 92

 return ;

}

12.3.3.3 Data Transmission

The callback function is called when a TLS packet is received from a TLS client. In this sample, the received
data is printed out and an echo message is sent to the TLS server. Data is encrypted and decrypted in the
callback function.

void tls_server_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" =====> Received Packet(%ld) \n", rx_len);

 //Echo message

 status = dpm_mng_send_to_session(SESSION1, rx_ip, rx_port, (char *)rx_buf,

 rx_len);

 if (status) {

 PRINTF(RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR_COLOR,

 __func__, SESSION1, status);

 } else {

 //Display sent packet

 PRINTF(" <===== Sent Packet(%ld) \n", rx_len);

 }

 dpm_mng_job_done(); //Done opertaion

}

12.4 TLS Client

This section describes how the TLS client sample application is built and works. The TLS client sample
application is an example of the simplest TLS echo client application. TLS is a cryptographic protocol designed
to provide secure communication over a computer network. The DA16200 SDK provides a DPM manager for the
user network application. The DA16200 SDK provides an SSL library called mbedTLS on a secure hardware

engine to support the TLS protocol. MbedTLS is one of the popular SSL libraries and helps to easily develop a

network application with a TLS protocol.

12.4.1 How to Run

1. Run a TLS server application on the peer computer and open a TLS server socket with port number 10196.

2. In the e2 studio, import a project for the TLS Client sample application.

 ~/SDK/apps/common/examples/Network/TLS_Client/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. After a connection is made to an AP, the example application connects to the peer.

12.4.2 How It Works

The DA16200 TLS Client sample is a simple echo message. When the TLS server sends a message, then the
DA16200 TLS client echoes that message to the TLS server.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 93

Figure 41. Workflow of TLS client

12.4.3 Sample Code

DA16200 SDK provides the mbedTLS library. This section describes how the TLS client is implemented with the

mbedTLS library and socket library.

12.4.3.1 Registration

The DA16200 secure hardware engine must be initialized with da16x_secure_module_init() before the TLS
context is initialized. To set up a TLS session, initialization functions are called as follows:

void tls_client_sample(void *param)

{

 ...

 //Init session

 mbedtls_net_init(&server_ctx);

 //Init SSL context

 mbedtls_ssl_init(&ssl_ctx);

 //Init SSL config

 mbedtls_ssl_config_init(&ssl_conf);

 //Init CTR-DRBG context

 mbedtls_ctr_drbg_init(&ctr_drbg);

 //Init Entropy context

 mbedtls_entropy_init(&entropy);

 snprintf(str_port, sizeof(str_port), "%d", TLS_CLIENT_SAMPLE_DEF_SERVER_PORT);

 ret = mbedtls_net_connect(&server_ctx,

 TLS_CLIENT_SAMPLE_DEF_SERVER_IP_ADDR, str_port,

 MBEDTLS_NET_PROTO_TCP);

 //Set default configuration

 ret = mbedtls_ssl_config_defaults(&ssl_conf,

 MBEDTLS_SSL_IS_CLIENT,

 MBEDTLS_SSL_TRANSPORT_STREAM,

 MBEDTLS_SSL_PRESET_DEFAULT);

 ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,

 (const unsigned char *)pers, strlen(pers));

 mbedtls_ssl_conf_rng(&ssl_conf, mbedtls_ctr_drbg_random, &ctr_drbg);

 //Don't care verification in this sample.

 mbedtls_ssl_conf_authmode(&ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 94

 //Setup an SSL context for use.

 ret = mbedtls_ssl_setup(&ssl_ctx, &ssl_conf);

 mbedtls_ssl_set_bio(&ssl_ctx, &server_ctx,

 mbedtls_net_send, mbedtls_net_recv, NULL);

 ...

}

12.4.3.2 TLS Handshake

TLS is an encryption protocol designed to secure network communication. A TLS handshake is the process that
starts a communication session that uses TLS encryption. To do a TLS handshake, the function
mbedtls_ssl_handshake() is called. If an error occurred during the TLS handshake, the API returns a specific

error code. If a TLS session is established successfully, the API returns 0. The details are as follows:

void tls_client_sample(void *param)

{

 ...

reset:

 ...

 while ((ret = mbedtls_ssl_handshake(&ssl_ctx)) != 0) {

 if (ret == MBEDTLS_ERR_NET_CONN_RESET) {

 PRINTF("\r\n[%s] Peer closed the connection(0x%x)\r\n", __func__, -ret);

 goto end_of_task;

 }

 if ((ret != MBEDTLS_ERR_SSL_WANT_READ) &&

 (ret != MBEDTLS_ERR_SSL_WANT_WRITE)) {

 PRINTF("\r\n[%s] Failed to do tls handshake(0x%x)\r\n", __func__, -ret);

 goto end_of_task;

 }

 }

 ...

 }

12.4.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a TLS session
is established, all data must be encrypted to transfer application data. MbedTLS provides specific APIs to help

encrypt and decrypt data. To write application data, the function mbedtls_ssl_write() of the mbedTLS library is

called. The details are as follows:

void tls_client_sample(void *param)

{

 ...

 do {

 ...

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_write(0x%x)\r\n", -ret);

 continue;

 case MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY:

 PRINTF("\r\nConnection was closed gracefully\r\n");

 break;

 case MBEDTLS_ERR_NET_CONN_RESET:

 PRINTF("\r\nConnection was reset by peer\r\n");

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 95

 break;

 default:

 PRINTF("\r\nFailed to write data(0x%x)\r\n", -ret);

 break;

 }

 goto end_of_task;

 }

 }

 ...

}

To read application data, the function mbedtls_ssl_read() of the mbedTLS library is called. In this sample, this

function is called in tls_client_sample(). The details are as follows:

void tls_client_sample(void *param)

{

 ...

 do {

 len = sizeof(data_buffer) - 1;

 memset(data_buffer, 0x00, sizeof(data_buffer));

 PRINTF("< Read from server: ");

 //Read at most 'len' application data bytes.

 ret = mbedtls_ssl_read(&ssl_ctx, data_buffer, len);

 if (ret <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_read(0x%x)\r\n", -ret);

 continue;

 case MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY:

 PRINTF("\r\nConnection was closed gracefully\r\n");

 goto end_of_task;

 case MBEDTLS_ERR_NET_CONN_RESET:

 PRINTF("\r\nConnection was reset by peer\r\n");

 goto end_of_task;

 default:

 PRINTF("\r\nFailed to read data(0x%x)\r\n", -ret);

 break;

 }

 goto end_of_task;

 }

 len = ret;

 PRINTF("%d bytes read\r\n", len);

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) {

 ...

 }

 }

 ...

}

12.5 TLS Client in DPM

This section describes how the TLS client in the DPM sample application is built and works. The TLS client in the
DPM sample application is an example of the simplest TLS echo client application in DPM mode. TLS is a set of
cryptographic protocols designed to provide secure communication over a computer network. The DA16200

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 96

SDK can work in DPM mode. The user application requires an additional operation to work in DPM mode. The
DA16200 SDK provides a DPM manager for the user network application. The DPM manager supports the user
to develop and manage the TLS network application in Non-DPM and DPM modes.

12.5.1 How to Run

1. Run a TLS server application on the peer computer and open a TLS server socket with port number 10196.

2. In the e2 studio, import a project for a TCP Client in the DPM sample application.

~/SDK/apps/common/examples/Network/TLS_Client_DPM/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. Set the TLS server IP address and the port number as created the socket on the peer computer with the
following console command and then reboot. These parameters can also be defined in the source code.

[/DA16200] # nvram.setenv TLSC_SERVER_IP 192.168.0.11

[/DA16200] # nvram.setenv TLSC_SERVER_PORT 10196

[/DA16200] # reboot

After connecting to the AP, the example application connects to the peer computer.

12.5.2 How It Works

The DA16200 TLS Client in the DPM sample is a simple echo message. When a TLS server sends a message,
then the DA16200 TLS client echoes that message to the TLS server.

Figure 42. Workflow of TLS client in DPM

12.5.3 Sample Code

12.5.3.1 Registration

The TLS client in the DPM sample application works in DPM mode. The basic code is similar to the TLS client
sample application. There are two differences with the TLS client sample application:

▪ An initial callback function is added, named tls_client_dpm_sample_wakeup_callback() in the code. It is

called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration that can be stored in RTM.

In this example, TLS server information is stored.

void tls_client_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = tls_client_dpm_sample_init_callback;

 //Set DPM wake-up init callback

 user_config->wakeupInitCallback = tls_client_dpm_sample_wakeup_callback;

 //Set External wake-up callback

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 97

 user_config->externWakeupCallback = tls_client_dpm_sample_external_callback;

 //Set Error callback

 user_config->errorCallback = tls_client_dpm_sample_error_callback;

 //Set session type(TLS Client)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_TCP_CLIENT;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 TLS_CLIENT_DPM_SAMPLE_DEF_CLIENT_PORT;

 //Set server IP address

 memcpy(user_config->sessionConfig[session_idx].sessionServerIp,

 srv_info.ip_addr, strlen(srv_info.ip_addr));

 //Set server port

 user_config->sessionConfig[session_idx].sessionServerPort = srv_info.port;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 tls_client_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 tls_client_dpm_sample_recv_callback;

 //Set connection retry count

 user_config->sessionConfig[session_idx].sessionConnRetryCnt =

 TLS_CLIENT_DPM_SAMPLE_DEF_MAX_CONNECTION_RETRY;

 //Set connection timeout

 user_config->sessionConfig[session_idx].sessionConnWaitTime =

 TLS_CLIENT_DPM_SAMPLE_DEF_MAX_CONNECTION_TIMEOUT;

 //Set auto reconnection flag

 user_config->sessionConfig[session_idx].sessionAutoReconn = pdTRUE;

 //Set secure mode

 user_config->sessionConfig[session_idx].supportSecure = pdTRUE;

 //Set secure setup callback

 user_config->sessionConfig[session_idx].sessionSetupSecureCallback =

 tls_client_dpm_sample_secure_callback;

 //Set user configuration

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory = sizeof(tls_client_dpm_sample_svr_info_t);

 return ;

}

12.5.3.2 TLS Setup

To establish a TLS session, TLS should be set up. DA16200 includes the mbedTLS library to provide the TLS

protocol. Most APIs that are related to the TLS protocol are based on an mbedTLS library. TLS is set up by

sessionSetupSecureCallback function. The details are as shown below. This sample application does not

include certificates.

void tls_client_dpm_sample_secure_callback(void *config)

{

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 98

 const char *pers = "tls_client_sample";

 SECURE_INFO_T *secure_config = (SECURE_INFO_T *)config;

 ret = mbedtls_ssl_config_defaults(secure_config->ssl_conf,

 MBEDTLS_SSL_IS_CLIENT,

 MBEDTLS_SSL_TRANSPORT_STREAM,

 MBEDTLS_SSL_PRESET_DEFAULT);

 ret = dpm_mng_setup_rng(secure_config->ssl_conf);

 //Don't care verification in this sample.

 mbedtls_ssl_conf_authmode(secure_config->ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

 ret = mbedtls_ssl_setup(secure_config->ssl_ctx, secure_config->ssl_conf);

 dpm_mng_job_done(); //Done opertaion

 return ;

}

12.5.3.3 Data Transmission

The callback function is called when the TLS packet is received from the TLS server. In this sample, the received
data is printed out and an echo message is sent to the TLS server. Data is encrypted and decrypted in the
callback function.

void tls_client_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" =====> Received Packet(%ld) \n", rx_len);

 status = dpm_mng_send_to_session(SESSION1, rx_ip, rx_port, (char *)rx_buf,

 rx_len);

 if (status)

 {

 PRINTF(RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR_COLOR,

 __func__, SESSION1, status);

 }

 else

 {

 //Display sent packet

 PRINTF(" <===== Sent Packet(%ld) \n", rx_len);

 }

 dpm_mng_job_done(); //Done opertaion}

12.6 DTLS Server

This section describes how the Datagram Transport Layer Security (DTLS) server sample application is built and
works. The DTLS server sample application is an example of the simplest DTLS echo server application. DTLS
is a cryptographic protocol that provides security for datagram-based applications by allowing them to
communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DA16200
SDK provides an SSL library called mbedTLS on a secure hardware engine to support the DTLS protocol.

mbedTLS is one of the popular SSL libraries. mbedTLS is helpful to develop a network application with a DTLS

protocol.

12.6.1 How to Run

1. In the e2 studio, import a project for the DTLS Server sample application.

~/SDK/apps/common/examples/Network/DTLS_Server/projects/da16200

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 99

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application creates a DTLS server socket with port number
10199 and waits for a client connection.

5. Run a DTLS client application on the peer computer.

12.6.2 How It Works

The DA16200 DTLS Server sample is a simple echo server. When the DTLS client sends a message, then the
DA16200 DTLS server echoes that message to the DTLS client.

Figure 43. Workflow of DTLS server

12.6.3 Sample Code

The DA16200 SDK provides the mbedTLS library. This sample application describes how the mbedTLS library is

called and applied for the socket library.

12.6.3.1 Initialization

The DA16200 secure hardware engine must be initialized with da16x_secure_module_init() before the TLS

context is initialized. To set up a DTLS session, initialization functions are called as shown in the example code
below. The DTLS session is established over a UDP protocol. In case a packet is lost, retransmission is
required. So, the timer is registered to retransmit packet by function mbedtls_ssl_set_timer_cb().

void dtls_server_sample(void *param)

{

 ...

 //Init session

 mbedtls_net_init(&listen_ctx);

 mbedtls_net_init(&client_ctx);

 //Init SSL context

 mbedtls_ssl_init(&ssl_ctx);

 //Init SSL config

 mbedtls_ssl_config_init(&ssl_conf);

 //Init CTR-DRBG context

 mbedtls_ctr_drbg_init(&ctr_drbg);

 //Init Entropy context

 mbedtls_entropy_init(&entropy);

 //Init Certificate context

 mbedtls_x509_crt_init(&cert);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 100

 //Init Private key context

 mbedtls_pk_init(&pkey);

 //Init Private key context for ALT

 mbedtls_pk_init(&pkey_alt);

 //Init Cookies

 mbedtls_ssl_cookie_init(&cookies);

 memset(&timer, 0x00, sizeof(dtls_server_sample_timer_t));

 //Parse certificate

 ret = mbedtls_x509_crt_parse(&cert, dtls_server_sample_cert,

 dtls_server_sample_cert_len);

 //Parse private key

 ret = mbedtls_pk_parse_key(&pkey, dtls_server_sample_key,

 dtls_server_sample_key_len, NULL, 0);

 snprintf(str_port, sizeof(str_port), "%d", DTLS_SERVER_SAMPLE_DEF_PORT);

 ret = mbedtls_net_bind(&listen_ctx, NULL, str_port, MBEDTLS_NET_PROTO_UDP);

 ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,

 (const unsigned char *)pers, strlen(pers));

 //Set default configuration

 ret = mbedtls_ssl_config_defaults(&ssl_conf,

 MBEDTLS_SSL_IS_SERVER,

 MBEDTLS_SSL_TRANSPORT_DATAGRAM,

 MBEDTLS_SSL_PRESET_DEFAULT);

 mbedtls_ssl_conf_rng(&ssl_conf, mbedtls_ctr_drbg_random, &ctr_drbg);

 //Import certificate & private key

 if (mbedtls_pk_get_type(&pkey) == MBEDTLS_PK_RSA) {

 ret = mbedtls_pk_setup_rsa_alt(&pkey_alt,

 (void *)mbedtls_pk_rsa(pkey),

 dtls_server_sample_rsa_decrypt_func,

 dtls_server_sample_rsa_sign_func,

 dtls_server_sample_rsa_key_len_func);

 ret = mbedtls_ssl_conf_own_cert(&ssl_conf, &cert, &pkey_alt);

 } else {

 ret = mbedtls_ssl_conf_own_cert(&ssl_conf, &cert, &pkey);

 }

 //Setup cookies

 ret = mbedtls_ssl_cookie_setup(&cookies, mbedtls_ctr_drbg_random, &ctr_drbg);

 //Register callbacks for DTLS cookies.

 mbedtls_ssl_conf_dtls_cookies(&ssl_conf,

 mbedtls_ssl_cookie_write,

 mbedtls_ssl_cookie_check,

 &cookies);

 //Don't care verificate of peer certificate

 mbedtls_ssl_conf_authmode(&ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

 //Enable or disable anti-replay protection for DTLS.

 mbedtls_ssl_conf_dtls_anti_replay(&ssl_conf, MBEDTLS_SSL_ANTI_REPLAY_ENABLED);

 mbedtls_ssl_conf_read_timeout(&ssl_conf, DTLS_SERVER_SAMPLE_DEF_TIMEOUT);

 //Set retransmit timeout values for the DTLS handshake.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 101

 mbedtls_ssl_conf_handshake_timeout(&ssl_conf,

 DTLS_SERVER_SAMPLE_DEF_HANDSHAKE_MIN_TIMEOUT,

 DTLS_SERVER_SAMPLE_DEF_HANDSHAKE_MAX_TIMEOUT);

 //Set up an SSL context for use.

 ret = mbedtls_ssl_setup(&ssl_ctx, &ssl_conf);

 mbedtls_ssl_set_timer_cb(&ssl_ctx, &timer, dtls_server_sample_timer_start,

 dtls_server_sample_timer_get_state);

reset:

 ...

 ret = mbedtls_ssl_set_client_transport_id(&ssl_ctx, client_ip, client_ip_len);

 mbedtls_ssl_set_bio(&ssl_ctx, &client_ctx, mbedtls_net_send, NULL,

 mbedtls_net_recv_timeout);

 ...

}

12.6.3.2 DTLS Handshake

DTLS is an encryption protocol designed to secure network communication. A DTLS handshake is the process
that starts a communication session with DTLS encryption. To make a DTLS handshake, the application calls
function mbedtls_ssl_handshake(). The DTLS server must verify cookies for the DTLS client. The DTLS client's

transport-level identification information must be set up (generally an IP Address). After a ClientHello message is
received, the DTLS server must set up its IP address. Then, a DTLS handshake should be retried as follows:

void dtls_server_sample(void *param)

{

 ...

reset:

 ...

 while ((ret = mbedtls_ssl_handshake(&ssl_ctx)) != 0) {

 if ((ret == MBEDTLS_ERR_SSL_WANT_READ) ||

 (ret == MBEDTLS_ERR_SSL_WANT_WRITE)) {

 continue;

 }

 if (ret == MBEDTLS_ERR_SSL_HELLO_VERIFY_REQUIRED) {

 PRINTF("hello verification requested\r\n");

 ret = 0;

 goto reset;

 } else {

 PRINTF("\r\n[%s] Failed to do handshake(0x%x)\r\n", __func__, -ret);

 goto reset;

 }

 }

 ...

 }

12.6.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a DTLS session
is established, all data must be encrypted for transfer. mbedTLS provides specific APIs to help encrypt and

decrypt data. To write application data, the function mbedtls_ssl_write() of the mbedTLS library is called. The

details are as follows:

void dtls_server_sample(void *param){

 ...

 do {

 ...

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 102

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_write(0x%x)\r\n", -ret);

 continue;

 }

 PRINTF("\r\n[%s] Failed to write data(0x%x)\r\n", __func__, -ret);

 goto end_of_task;

 }

 PRINTF("%d bytes written\r\n", len);

 }

 ...

}

To read application data, the function mbedtls_ssl_read() of the mbedTLS library is called. In this sample, this

function is called in dtls_server_sample(). The details are as follows:

void dtls_server_sample(void *param){

 ...

 do {

 len = sizeof(data_buffer) - 1;

 memset(data_buffer, 0x00, sizeof(data_buffer));

 PRINTF("< Read from server: ");

 //Read at most 'len' application data bytes.

 ret = mbedtls_ssl_read(&ssl_ctx, data_buffer, len);

 if (ret <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_write(0x%x)\r\n", -ret);

 continue;

 case MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY:

 PRINTF("\r\nConnection was closed gracefully\r\n");

 ret = 0;

 goto close_notify;

 case MBEDTLS_ERR_SSL_TIMEOUT:

 PRINTF("\r\nTimeout\r\n");

 goto reset;

 default:

 PRINTF("\r\nFailed to read data(0x%x)\r\n", -ret);

 break;

 }

 goto reset;

 }

 len = ret;

 PRINTF("%d bytes read\r\n", len);

 PRINTF("> Write to client: ");

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) { ...

 }

 }

 ...

}

12.7 DTLS Server in DPM

This section describes how the DTLS server in the DPM sample application is built and works. The DTLS server
in the DPM sample application is an example of the simplest DTLS echo server application. DTLS is a
cryptographic protocol that provides security for datagram-based applications by allowing them to communicate
in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DA16200 SDK can

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 103

work in DPM mode. The user application requires an additional operation to work in DPM mode. The DA16200
SDK provides a DPM manager for the user network application. The DPM manager supports the user to develop
and manage a DTLS network application in Non-DPM and DPM modes.

12.7.1 How to Run

1. In the e2 studio, import a project for the DTLS Server in the DPM sample application.

~/SDK/apps/common/examples/Network/DTLS_Server_DPM/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application creates a DTLS server socket with port number
10199 and waits for a client connection.

5. Run a DTLS client application on the peer computer.

12.7.2 How It Works

The DA16200 DTLS Server in the DPM sample is a simple echo server. When a DTLS client sends a message,
then the DA16200 DTLS server echoes that message to the DTLS client.

Figure 44. Workflow of DTLS server in DPM

12.7.3 Sample Code

12.7.3.1 Registration

The DTLS server in the DPM sample application works in DPM mode. The basic code is similar to the DTLS
server sample application. There are two differences with the DTLS server sample application:

▪ An initial callback function is added, named dtls_server_dpm_sample_wakeup_callback() in the code. It is
called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration can be stored in RTM.

In this sample, DTLS server information is stored.

void dtls_server_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = dtls_server_dpm_sample_init_callback;

 //Set DPM wakkup init callback

 user_config->wakeupInitCallback = dtls_server_dpm_sample_wakeup_callback;

 //Set Error callback

 user_config->errorCallback = dtls_server_dpm_sample_error_callback;

 //Set session type(UDP Server)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_UDP_SERVER;

 //Set local port

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 104

 user_config->sessionConfig[session_idx].sessionMyPort =

 DTLS_SERVER_DPM_SAMPLE_DEF_SERVER_PORT;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 dtls_server_dpm_sample_connect_callback;

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 dtls_server_dpm_sample_recv_callback;

 //Set secure mode

 user_config->sessionConfig[session_idx].supportSecure = pdTRUE;

 //Set secure setup callback

 user_config->sessionConfig[session_idx].sessionSetupSecureCallback =

 dtls_server_dpm_sample_secure_callback;

 //Set user configuration

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory =

 sizeof(dtls_server_dpm_sample_svr_info_t);

 return ; }

12.7.3.2 DTLS Setup

To establish a DTLS session, DTLS should be set up. The DA16200 includes an mbedTLS library to provide the

DTLS protocol. Most APIs that are related to the DTLS protocol are based on an mbedTLS library. DTLS is set up

by sessionSetupSecureCallback function. The details are as follows.

void dtls_server_dpm_sample_secure_callback(void *config)

{

 const char *pers = "dtls_server_dpm_sample";

 SECURE_INFO_T *secure_config = (SECURE_INFO_T *)config;

 ret = mbedtls_ssl_config_defaults(secure_config->ssl_conf,

 MBEDTLS_SSL_IS_SERVER,

 MBEDTLS_SSL_TRANSPORT_DATAGRAM,

 MBEDTLS_SSL_PRESET_DEFAULT);

 //import test certificate

 ret = mbedtls_x509_crt_parse(secure_config->cert_crt,

 dtls_server_dpm_sample_cert,

 dtls_server_dpm_sample_cert_len);

 ret = mbedtls_pk_parse_key(secure_config->pkey_ctx,

 dtls_server_dpm_sample_key,

 dtls_server_dpm_sample_key_len,

 NULL, 0);

 if (mbedtls_pk_get_type(secure_config->pkey_ctx) == MBEDTLS_PK_RSA) {

 ret = mbedtls_pk_setup_rsa_alt(secure_config->pkey_alt_ctx,

 (void *)mbedtls_pk_rsa(*secure_config->pkey_ctx),

 dtls_server_dpm_sample_rsa_decrypt_func,

 dtls_server_dpm_sample_rsa_sign_func,

 dtls_server_dpm_sample_rsa_key_len_func);

 ret = mbedtls_ssl_conf_own_cert(secure_config->ssl_conf,

 secure_config->cert_crt,

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 105

 secure_config->pkey_alt_ctx);

 } else {

 ret = mbedtls_ssl_conf_own_cert(secure_config->ssl_conf,

 secure_config->cert_crt,

 secure_config->pkey_ctx);

 }

 ret = dpm_mng_setup_rng(secure_config->ssl_conf);

 ret = dpm_mng_cookie_setup_rng(secure_config->cookie_ctx);

 mbedtls_ssl_conf_dtls_cookies(secure_config->ssl_conf,

 mbedtls_ssl_cookie_write,

 mbedtls_ssl_cookie_check,

 secure_config->cookie_ctx);

 //Don't care verification in this sample.

 mbedtls_ssl_conf_authmode(secure_config->ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

 //use default value

 mbedtls_ssl_conf_max_frag_len(secure_config->ssl_conf, 0);

 mbedtls_ssl_conf_dtls_anti_replay(secure_config->ssl_conf,

 MBEDTLS_SSL_ANTI_REPLAY_ENABLED);

 mbedtls_ssl_conf_read_timeout(secure_config->ssl_conf,

 DTLS_SERVER_DPM_SAMPLE_RECEIVE_TIMEOUT * 10);

 mbedtls_ssl_conf_handshake_timeout(secure_config->ssl_conf,

 DTLS_SERVER_DPM_SAMPLE_HANDSAHKE_MIN_TIMEOUT * 10,

 DTLS_SERVER_DPM_SAMPLE_HANDSAHKE_MAX_TIMEOUT * 10);

 ret = mbedtls_ssl_setup(secure_config->ssl_ctx, secure_config->ssl_conf);

 dpm_mng_job_done(); //Done opertaion

 return ;

}

12.7.3.3 Data Transmission

The callback function is called when a DTLS packet is received from the DTLS client. In this example, the
received data is printed out and an echo message is sent to the DTLS server. Data is encrypted and decrypted
in the callback function.

void dtls_server_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" ==> Received Packet(%ld) \n", rx_len);

 //Echo message

 status = dpm_mng_send_to_session(SESSION1,

 rx_ip,

 rx_port,

 (char *)rx_buf,

 rx_len);

 if (status) {

 PRINTF(RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR_COLOR,

 __func__, SESSION1, status);

 } else {

 //Display sent packet

 PRINTF(" <== Sent Packet(%ld) \n", rx_len);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 106

 }

 dpm_mng_job_done(); //Done opertaion}

12.8 DTLS Client

This section describes how the DTLS client sample application is built and works. The DTLS client sample
application is an example of the simplest DTLS echo client application. DTLS is a cryptographic protocol that
provides security for datagram-based applications by allowing them to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery. The DA16200 SDK provides an SSL library called
mbedTLS on a secure hardware engine to support the DTLS protocol. mbedTLS is one of the popular SSL libraries.

mbedTLS is helpful to easily develop a network application with the DTLS protocol.

12.8.1 How to Run

1. Run a DTLS server application on the peer computer and open a DTLS server socket with port number
10199.

2. In the e2 studio, import a project for the DTLS client sample application.

~/SDK/apps/common/examples/Network/DTLS_Client/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

After a connection is made to an AP, the sample application connects to the peer computer.

12.8.2 How It Works

The DA16200 DTLS Client sample is a simple echo message. When the DTLS server sends a message, then
the DA16200 DTLS client echoes that message to the DTLS server.

Figure 45. Workflow of DTLS client

12.8.3 Sample Code

The DA16200 SDK provides an mbedTLS library. This sample application describes how an mbedTLS library is

called and applied for the socket library.

12.8.3.1 Initialization

The DA16200 secure hardware engine must be initialized with da16x_secure_module_init() before the DTLS

context is initialized. To set up a DTLS session, initialization functions are called as shown in the example code
below. A DTLS session is established over the UDP protocol. If a packet is lost, then retransmission is required.
So, the timer is registered to retransmit the packet by function mbedtls_ssl_set_timer_cb().

void dtls_client_sample(void *param)

{

 ...

 //Init session

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 107

 mbedtls_net_init(&server_ctx);

 //Init SSL context

 mbedtls_ssl_init(&ssl_ctx);

 //Init SSL config

 mbedtls_ssl_config_init(&ssl_conf);

 //Init CTR-DRBG context

 mbedtls_ctr_drbg_init(&ctr_drbg);

 //Init Entropy context

 mbedtls_entropy_init(&entropy);

 memset(&timer, 0x00, sizeof(dtls_client_sample_timer_t));

 PRINTF("\r\nConnecting to udp/%s:%d...",

 DTLS_CLIENT_SAMPLE_DEF_SERVER_IP_ADDR,

 DTLS_CLIENT_SAMPLE_DEF_SERVER_PORT);

 snprintf(str_port, sizeof(str_port),"%d", DTLS_CLIENT_SAMPLE_DEF_SERVER_PORT);

 ret = mbedtls_net_connect(&server_ctx,

 DTLS_CLIENT_SAMPLE_DEF_SERVER_IP_ADDR, str_port,

 MBEDTLS_NET_PROTO_UDP);

 ret = mbedtls_ssl_config_defaults(&ssl_conf,

 MBEDTLS_SSL_IS_CLIENT,

 MBEDTLS_SSL_TRANSPORT_DATAGRAM,

 MBEDTLS_SSL_PRESET_DEFAULT);

 ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,

 (const unsigned char *)pers, strlen(pers));

 mbedtls_ssl_conf_rng(&ssl_conf, mbedtls_ctr_drbg_random, &ctr_drbg);

 mbedtls_ssl_conf_authmode(&ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

 mbedtls_ssl_conf_dtls_anti_replay(&ssl_conf, MBEDTLS_SSL_ANTI_REPLAY_ENABLED);

 mbedtls_ssl_conf_read_timeout(&ssl_conf, DTLS_CLIENT_SAMPLE_DEF_TIMEOUT);

 mbedtls_ssl_conf_handshake_timeout(&ssl_conf,

 DTLS_CLIENT_SAMPLE_DEF_HANDSHAKE_MIN_TIMEOUT,

 DTLS_CLIENT_SAMPLE_DEF_HANDSHAKE_MAX_TIMEOUT);

 ret = mbedtls_ssl_setup(&ssl_ctx, &ssl_conf);

 mbedtls_ssl_set_bio(&ssl_ctx, &server_ctx,

 mbedtls_net_send, NULL, mbedtls_net_recv_timeout);

 mbedtls_ssl_set_timer_cb(&ssl_ctx, &timer,

 dtls_client_sample_timer_start,

 dtls_client_sample_timer_get_state);

 ...

}

12.8.3.2 DTLS Handshake

DTLS is an encryption protocol designed to secure network communication. A DTLS handshake is the process
of initiating a communication session that uses DTLS encryption. To do a DTLS handshake, the function
mbedtls_ssl_handshake() is called. If an error occurs during a DTLS handshake, the API returns the specific

error code. If a DTLS session is established successfully, the API returns 0. The details are as follows:

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 108

void dtls_client_sample(void *param)

{

 ...

 while ((ret = mbedtls_ssl_handshake(&ssl_ctx)) != 0) {

 if (ret == MBEDTLS_ERR_NET_CONN_RESET) {

 PRINTF("\r\n[%s] Peer closed the connection(0x%x)\r\n", __func__, -ret);

 goto end_of_task;

 }

 if ((ret != MBEDTLS_ERR_SSL_WANT_READ) && (ret != MBEDTLS_ERR_SSL_WANT_WRITE))

 {

 PRINTF("\r\n[%s] Failed to do dtls handshake(0x%x)\r\n", __func__, -ret);

 goto end_of_task;

 }

 }

 ...

 }

12.8.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a DTLS session
is established, all data must be encrypted to transfer application data. mbedTLS provides specific APIs to help

encrypt and decrypt data. To write application data, call function mbedtls_ssl_write() of the mbedTLS library.

The details are as follows:

void dtls_client_sample(void *param)

{

 ...

 do {

 ...

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_write(0x%x)\r\n", -ret);

 continue;

 case MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY:

 PRINTF("\r\nConnection was closed gracefully\r\n");

 goto end_of_task;

 case MBEDTLS_ERR_NET_CONN_RESET:

 PRINTF("\r\nConnection was reset by peer\r\n");

 goto end_of_task;

 default:

 PRINTF("\r\nFailed to write data(0x%x)\r\n", -ret);

 break;

 }

 goto end_of_task;

 }

 PRINTF("%d bytes written\r\n", len);

 }

 ...

}

To read application data, the function mbedtls_ssl_read() of the mbedTLS library is called. In this sample, this

function is called in dtls_client_sample(). The details are as follows:

void dtls_server_sample(void *param)

{

 ...

 do {

 len = sizeof(data_buffer) - 1;

 memset(data_buffer, 0x00, sizeof(data_buffer));

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 109

 PRINTF("< Read from server: ");

 ret = mbedtls_ssl_read(&ssl_ctx, data_buffer, len);

 if (ret <= 0) {

 switch (ret) {

 case MBEDTLS_ERR_SSL_WANT_READ:

 case MBEDTLS_ERR_SSL_WANT_WRITE:

 PRINTF("\r\nNeed more data - mbedtls_ssl_read(0x%x)\r\n", -ret);

 continue;

 case MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY:

 PRINTF("\r\nConnection was closed gracefully\r\n");

 goto end_of_task;

 case MBEDTLS_ERR_NET_CONN_RESET:

 PRINTF("\r\nConnection was reset by peer\r\n");

 goto end_of_task;

 default:

 PRINTF("\r\nFailed to read data(0x%x)\r\n", -ret);

 break;

 }

 goto end_of_task;

 }

 len = ret;

 PRINTF("%d bytes read\r\n", len);

 PRINTF("> Write to server: ");

 while ((ret = mbedtls_ssl_write(&ssl_ctx, data_buffer, len)) <= 0) {

 ...

 }

 }

 ...

}

12.9 DTLS Client in DPM

This section describes how the DTLS client in the DPM sample application is built and works. The DTLS client in
the DPM sample application is an example of the simplest DTLS echo client application in DPM mode. DTLS is a
cryptographic protocol that provides security for datagram-based applications by allowing them to communicate
in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DA16200 SDK can
work in DPM mode. The user application requires an additional operation to work in DPM mode. The DA16200
SDK provides the DPM manager for the user network application. The DPM manager supports the user to
develop and manage a DTLS network application in Non-DPM and DPM modes.

12.9.1 How to Run

1. Run a DTLS server application on the peer computer and open a DTLS server socket with port number
10199.

2. In the e2 studio, import a project for the DTLS Client in the DPM sample application.

~/SDK/apps/common/examples/Network/DTLS_Client_DPM/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. Set the DTLS server IP address and the port number as created the socket on the peer computer with the
following console command and then reboot. These parameters can also be defined in the source code.

[/DA16200] # nvram.setenv DTLSC_SERVER_IP 192.168.0.11

[/DA16200] # nvram.setenv DTLSC_SERVER_PORT 10199

[/DA16200] # reboot

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 110

After a connection is made to an AP, the sample application connects to the peer computer.

12.9.2 How It Works

The DA16200 DTLS Client in the DPM sample is a simple echo message. When the DTLS server sends a
message, then the DA16200 DTLS client echoes that message to the DTLS server.

Figure 46. Workflow of DTLS client in DPM

12.9.3 Sample Code

12.9.3.1 Registration

The DTLS client in the DPM sample application works in DPM mode. The basic code is similar to the DTLS
client sample application. There are two differences with the DTLS client sample application:

▪ An initial callback function is added, named dtls_client_dpm_sample_wakeup_callback() in the code. It is
called when the DPM state changes from sleep to wake-up.

▪ Additional user configuration can be stored in RTM.

In this sample, DTLS server information is stored.

void dtls_client_dpm_sample_init_user_config(dpm_user_config_t *user_config)

{

 const int session_idx = 0;

 //Set Boot init callback

 user_config->bootInitCallback = dtls_client_dpm_sample_init_callback;

 //Set DPM wake up init callback

 user_config->wakeupInitCallback = dtls_client_dpm_sample_wakeup_callback;

 //Set Error callback

 user_config->errorCallback = dtls_client_dpm_sample_error_callback;

 //Set session type(UDP Client)

 user_config->sessionConfig[session_idx].sessionType = REG_TYPE_UDP_CLIENT;

 //Set local port

 user_config->sessionConfig[session_idx].sessionMyPort =

 DTLS_CLIENT_DPM_SAMPLE_DEF_CLIENT_PORT;

 //Set server IP address

 memcpy(user_config->sessionConfig[session_idx].sessionServerIp,

 srv_info.ip_addr, strlen(srv_info.ip_addr));

 //Set server port

 user_config->sessionConfig[session_idx].sessionServerPort = srv_info.port;

 //Set Connection callback

 user_config->sessionConfig[session_idx].sessionConnectCallback =

 dtls_client_dpm_sample_connect_callback;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 111

 //Set Recv callback

 user_config->sessionConfig[session_idx].sessionRecvCallback =

 dtls_client_dpm_sample_recv_callback;

 //Set secure mode

 user_config->sessionConfig[session_idx].supportSecure = pdTRUE;

 //Set secure setup callback

 user_config->sessionConfig[session_idx].sessionSetupSecureCallback =

 dtls_client_dpm_sample_secure_callback;

 //Set user configuration

 user_config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

 user_config->sizeOfRetentionMemory =

 sizeof(dtls_client_dpm_sample_svr_info_t);

 return ;

}

12.9.3.2 DTLS Setup

To establish a DTLS session, DTLS should be set up. The DA16200 includes an mbedTLS library to provide the

DTLS protocol. Most APIs that are related to the DTLS protocol are based on an mbedTLS library. DTLS is set up

by function session_setupSecureCallback(). The details are as shown below. This sample application does not

include certificates.

void dtls_client_dpm_sample_secure_callback(void *config)

{

 const char *pers = "dtls_client_dpm_sample";

 SECURE_INFO_T *secure_config = (SECURE_INFO_T *)config;

 ret = mbedtls_ssl_config_defaults(secure_config->ssl_conf,

 MBEDTLS_SSL_IS_CLIENT,

 MBEDTLS_SSL_TRANSPORT_DATAGRAM,

 MBEDTLS_SSL_PRESET_DEFAULT);

 ret = dpm_mng_setup_rng(secure_config->ssl_conf);

 //don't care verification in this sample.

 mbedtls_ssl_conf_authmode(secure_config->ssl_conf, MBEDTLS_SSL_VERIFY_NONE);

 //use default value

 mbedtls_ssl_conf_max_frag_len(secure_config->ssl_conf, 0);

 mbedtls_ssl_conf_dtls_anti_replay(secure_config->ssl_conf,

 MBEDTLS_SSL_ANTI_REPLAY_ENABLED);

 mbedtls_ssl_conf_read_timeout(secure_config->ssl_conf,

 DTLS_CLIENT_DPM_SAMPLE_RECEIVE_TIMEOUT * 10);

 mbedtls_ssl_conf_handshake_timeout(secure_config->ssl_conf,

 DTLS_CLIENT_DPM_SAMPLE_HANDSAHKE_MIN_TIMEOUT * 10,

 DTLS_CLIENT_DPM_SAMPLE_HANDSAHKE_MAX_TIMEOUT * 10);

 ret = mbedtls_ssl_setup(secure_config->ssl_ctx, secure_config->ssl_conf);

 dpm_mng_job_done(); //Done opertaion

 return ;

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 112

12.9.3.3 Data Transmission

The callback function is called when a DTLS packet is received from the DTLS server. In this sample, the
received data is printed out and an echo message is sent to the DTLS server. Data is encrypted and decrypted
in the callback function.

void dtls_client_dpm_sample_recv_callback(void *sock, UCHAR *rx_buf, UINT rx_len,

 ULONG rx_ip, ULONG rx_port)

{

 //Display received packet

 PRINTF(" ==> Received Packet(%ld) \n", rx_len);

 status = dpm_mng_send_to_session(SESSION1,

 rx_ip,

 rx_port,

 (char *)rx_buf,

 rx_len);

 if (status) {

 PRINTF(RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR_COLOR,

 __func__, SESSION1, status);

 } else {

 //Display sent packet

 PRINTF(" <== Sent Packet(%ld) \n", rx_len);

 }

 dpm_mng_job_done(); //Done opertaion

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 113

13. Network Examples: MQTT

13.1 Overview

MQTT (Message Queue Telemetry Transport) is an ISO standard (ISO/IEC PRF 20922) publish-subscribe
based messaging protocol. It works on top of the TCP/IP protocol. The publisher sends (PUBLISH) messages to
the subscriber through the broker. The subscriber needs to keep the connection with the broker by TCP session
while the publisher can disconnect the session with the broker after sending a message.

As shown in Figure 47, when the broker receives a message with a specific topic the message is sent to
subscribers that already registered with the topic. A subscriber can register with more than one topic. There can
be many or no subscribers which register with a specific topic.

Figure 47. MQTT messaging concept

The exchange of MQTT messages supports QoS (Quality of Service). QoS has three levels (0, 1, and 2) and the
process of each QoS level is described in the following sections.

The DA16200/DA16600 supports both publisher and subscriber functions and allows simultaneous use. The
subscriber function supports DPM mode. TLS is available for message encryption.

13.1.1 SDK Build

Source files should be modified in the DA16200/DA16600 SDK to use the MQTT function. To enable the MQTT,
modify it as shown in the following:

config_generic_sdk.h

...

#define __SUPPORT_MQTT__ // Support MQTT

13.2 API

13.2.1 APIs for Operating MQTT

The APIs listed in Table 17 are used to create or terminate the MQTT thread, to check the status, and to publish
a message. The configuration to execute MQTT protocols is explained in the next section.

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/TCP/IP

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 114

Table 17. APIs for operating MQTT

Item Description

int mqtt_client_start(void)

Return If it succeeds, return 0. If it fails, return an error code.

Description Create the MQTT client thread.

int mqtt_client_stop(void)

Return If it succeeds, return 0. If there is no thread to terminate, return -1.

Description Terminate the MQTT client thread.

int mqtt_client_check_conn(void)

Return 1 (true): Connected to a broker.

0 (false): Not connected.

Description Check whether the MQTT session is connected.

int mqtt_client_send_message(char *top, char *publish)

Return 0: Succeeded in publishing.

-1: Failed because MQTT is not connected.

-2: Failed because the previous message sent is in progress.

-3: Failed because MQTT topic is missing.

Other: Failed due to other causes. See enum "mqtt_client_error_code" to identify

the cause.

Parameter top Topic (if NULL, the MQTT publisher sends a PUBLISH message with the topic

stored in NVRAM.)

publish Message to be published.

Description Publisher sends an MQTT message (PUBLISH).

int mqtt_client_send_message_with_qos(char *top, char *publish, timeout)

Return 0: Succeeded in publishing.

-1: Failed to publish because Publisher is not ready to send.

-2: Failed to publish because the timeout expired.

Parameter top Topic (if NULL, the MQTT module sends a PUBLISH message with the topic

stored in NVRAM.)

publish Message to be published.

timeout Timeout to wait for a previous QoS=1/2 Message to process completely (unit:

10 ms).

Description Publisher sends an MQTT message (PUBLISH) with a timeout check.

int mqtt_client_unsub_topic(char *topic)

Parameter topic Topic to unsubscribe

Return 0: Succeeded in unsubscribing.

4: Failed because MQTT is not connected.

3: Failed because the topic is NULL

1: Failed because of memory allocation failure

Other: Failed due to other causes. See enum "mqtt_client_error_code" to identify

the cause.

Description Unsubscribe from the specified topic.

Invoke this function only when MQTT client is in a connected state with Broker.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 115

13.2.2 APIs for Configure MQTT Messaging

With NVRAM items, you can configure MQTT messaging. This allows configuring the publisher and the
subscriber.

Table 18. APIs for configuring MQTT message

Item Description

int mqtt_client_config_initialize(void)

Return If it succeeds, return 0 (MOSQ_ERR_SUCCESS). If it fails, return an error code.

Description Reset all MQTT configurations.

void mqtt_sub_callback_set(void (*user_cb)(void))

Parameter user_cb User callback function to set.

Return None

Description Register a callback function that is invoked when a MQTT Subscriber is connected with a

Broker.

void mqtt_pub_callback_set(void (*user_cb)(void))

Parameter user_cb User callback function to set.

Return None

Description Register a callback function that is invoked when publishing a message is done.

void mqtt_msg_callback_set(void (*user_cb)(const char *buf, int len, const char *topic))

Parameter user_cb User callback function to set.

buf: PUBLISH message received

len: PUBLISH message length

topic: the topic of the PUBLISH message received

Return None

Description Register a callback function that is invoked when a PUBLISH message arrives.

void mqtt_sub_disconn_cb_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.

Return None

Description Register a callback function that is invoked when the MQTT client is disconnected.

void mqtt_sub_disconn2_cb_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.

Return None

Description ▪ Register callback function called when MQTT Subscriber is disconnected by receiving a

message with invalid unsupported length if the connection is clean_session=0 and qos >

0.

▪ On receipt of this callback, the application needs to clear the message in Broker by

connecting with clean_sesion=1.

▪ To use this API, __MQTT_CLEAN_SESSION_MODE_SUPPORT__ should be enabled.

void mqtt_subscribe_callback_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.

Return None

Description Register a callback function that is invoked when a SUBSCRIBE request to a topic is

finished.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 116

Item Description

void mqtt_unsubscribe_callback_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.

Return None

Description Register a callback function that is invoked when an UNSUBSCRIBE request is finished.

Table 19. MQTT messaging configuration (String type)

Name Description Example

DA16X_CONF_STR_MQTT

_BROKER_IP

Broker IP address (or URI) da16x_set_config_str(DA16X_CONF_STR_MQTT_BR

OKER_IP, "192.168.0.1");

DA16X_CONF_STR_MQTT

_SUB_TOPIC

Subscriber topic (previous topics

are removed) (Note 1)

da16x_set_config_str(DA16X_CONF_STR_MQTT_SU

B_TOPIC, topic);

DA16X_CONF_STR_MQTT

_SUB_TOPIC_ADD

Subscriber topic to add (up to

four) (Note 1)

da16x_set_config_str(DA16X_CONF_STR_MQTT_SU

B_TOPIC_ADD, topic);

DA16X_CONF_STR_MQTT

_SUB_TOPIC_DEL

Subscriber topic to remove

(Note 1)

da16x_set_config_str(DA16X_CONF_STR_MQTT_SU

B_TOPIC_DEL, topic);

DA16X_CONF_STR_MQTT

_PUB_TOPIC

Topic to publish da16x_set_config_str(DA16X_CONF_STR_MQTT_PU

B_PUB_TOPIC, "pub_topic");

DA16X_CONF_STR_MQTT

_USERNAME

Username to log in to a broker da16x_set_config_str(DA16X_CONF_STR_MQTT_US

ERNAME, "mqtt_id");

DA16X_CONF_STR_MQTT

_PASSWORD

Password to login to a broker da16x_set_config_str(DA16X_CONF_STR_MQTT_PA

SSWORD, "mqtt_password");

DA16X_CONF_STR_MQTT

_WILL_TOPIC

Will Topic da16x_set_config_str(DA16X_CONF_STR_MQTT_WI

LL_TOPIC, "will_topic");

DA16X_CONF_STR_MQTT

_WILL_MSG

Will Message da16x_set_config_str(DA16X_CONF_STR_MQTT_WI

LL_MSG, "will_msg");

DA16X_CONF_STR_MQTT

_SUB_CLIENT_ID

MQTT client ID da16x_set_config_str(DA16X_CONF_STR_MQTT_SU

B_CLIENT_ID, "sub_id");

DA16X_CONF_STR_MQTT

_TLS_SNI

MQTT TLS SNI (Server Name

Indication)

da16x_set_config_str(DA16X_CONF_STR_MQTT_TL

S_SNI, "sni_str")

Note 1 Up to four subscriber topics can be registered, and only one publisher topic can be registered.

Table 20. MQTT messaging configuration (Integer type)

Name Description Example

DA16X_CONF_INT_MQTT_

SUB

MQTT operation (0: stop, 1: start) da16x_set_config_int(DA16X_CONF_INT_MQTT_SU

B, 1);

DA16X_CONF_INT_MQTT_

AUTO

MQTT Auto-start at booting

system (0: disable, 1: enable)

da16x_set_config_int(DA16X_CONF_INT_MQTT_AU

TO, 1);

DA16X_CONF_INT_MQTT_

PORT

Broker port number da16x_set_config_int(DA16X_CONF_INT_MQTT_PO

RT, 8883);

DA16X_CONF_INT_MQTT_

QOS

QoS level (0~2) da16x_set_config_int(DA16X_CONF_INT_MQTT_QO

S, 2);

DA16X_CONF_INT_MQTT_

TLS

TLS (0: disable, 1: enable) da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS

, 1);

DA16X_CONF_INT_MQTT_

WILL_QOS

QoS level of Will messages (0~2) da16x_set_config_int(DA16X_CONF_INT_MQTT_WIL

L_QOS, 1);

DA16X_CONF_INT_MQTT_

PING_PERIOD

MQTT ping period (secs) da16x_set_config_int(DA16X_CONF_INT_MQTT_PIN

G_PERIOD, 86400);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 117

Name Description Example

DA16X_CONF_INT_MQTT_

VER311

MQTT protocol:

1 (v3.1.1)/0 (v3.1)

da16x_set_config_int(DA16X_CONF_INT_MQTT_VE

R311, 1)

DA16X_CONF_INT_MQTT_

TLS_INCOMING

TLS incoming buffer size:

default (1024*4), min (1024*2),

max (1024*8)

da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS

_INCOMING, 1024*4)

DA16X_CONF_INT_MQTT_

TLS_OUTGOING

TLS outgoing buffer size:

default (1024*4), min (1024*2),

max (1024*8)

da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS

_OUTGOING, 1024*4)

DA16X_CONF_INT_MQTT_

TLS_AUTHMODE

TLS peer certificate verification

mode: 0 (not verify), 1 (optional),

2 (required), default is 1

da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS

_AUTHMODE, 1)

DA16X_CONF_INT_MQTT_

CLEAN_SESSION

MQTT Clean Session mode (1:

clean the previous session, 0: do

not clean the previous session)

da16x_set_config_int(DA16X_CONF_INT_MQTT_CL

EAN_SESSION, 1);

13.3 MQTT Connection and Flow Chart

Table 21 shows that MQTT client is started/not started depending on the configuration and use cases.

Table 21. MQTT client start conditions

Configuration Use case Result

Automatic connection enabled.

(DA16X_CONF_INT_MQTT_AUTO: 1)

The DA16200 boots from POR or

software reset (Non-wake-up case)

MQTT client is started.

MQTT connection is established, and

then the DA16200 wakes up from DPM

LPM.

MQTT client is started.

MQTT client is stopped, and then the

DA16200 wakes up from DPM LPM.

MQTT client is not started.

Automatic connection disabled.

(DA16X_CONF_INT_MQTT_AUTO: 0)

The DA16200 boots from POR or

software reset.

MQTT client is not started.

MQTT connection is established, and

then the DA16200 wakes up from DPM

LPM.

MQTT client is started.

MQTT client is stopped, and then the

DA16200 wakes up from DPM LPM.

MQTT client is not started.

Figure 48 describes how the MQTT client in the DA16200/DA16600 tries to make MQTT connection. For
example, MQTT client is started if DA16X_CONF_INT_MQTT_AUTO is enabled and the DA16200 boots from POR or

software reset. If connection is established, then the DA16200 enters DPM LPM or stay awake depending on
DPM configuration. If MQTT connection is failed, it retries the connection up to the values defined in the
MQTT_RESTART_MAX_RETRY and MQTT_CONN_MAX_RETRY.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 118

POR or S/W reset

Initialize WLAN

Wi-Fi connection
established?

Wake up by RTC timer or
external wake-up key

Keep
awake

MQTT get active
== HIGH

If Wi-Fi profile
exist?

Start MQTT client
MQTT active state = HIGH;

subRetryCount = 0;

Process MQTT client
configuration
(DPM / Non-DPM)

Try MQTT connection

MQTT connection
established ?

+NWMQCL:1 response sent;
sub_connect_try_count = 0;
Store connection session;

YES

NO

NO

If DPM enabled?

Is DPM enabled?

NO

++sub_count_try_count < 6

NO

YES

Keep
awake

+NWMQCL:0 response sent;
MQTT active state = LOW;

NO

sub_connect_try_count == 0
&& ++subRetryCount < 3

YES

Is Wake-up
from DPM LPM?

YES

DA16X_CONF_INT_MQTT_AUTO
== 1

NO

YES

NO

YES

YES

YES

++sub_count_try_count < 6

NO

Start RTC timer;
+NWMQCL:2 response sent;

+NWMQCL:0 response sent;
MQTT active state = LOW;
sub_connect_try_count = 0;
Clear up MQTT configuration;

YES

NO

DPM
LPM

NO

DPM
LPM

If AT+NWMQCL=1 or
 mqtt_client start
executed forcebily?

YES

NO

NO

If Wi-Fi
profile set?

NO

YES

dpm_mode_is_wakeup == TRUE &&
dpm_socket_is_established == TRUE

Load connection session

YES

NO

YES

YES

Figure 48. MQTT client flow chart

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 119

13.4 Test

This section explains how to test the MQTT function on the DA1620/DA16600 debug console window.

13.4.1 Test Environment

For this test the Mosquitto MQTT broker is used, which can be downloaded from the following URL:
https://mosquitto.org/download/. If the broker cannot be installed, use the one provided by Renesas Electronics.
Extract and run it on local Windows computer.

13.4.2 Setup

Open a command window and go to the Mosquitto folder.

1. Run a broker.

mosquitto -v -p <Port Number>

2. Open a new command window and run a subscriber.

mosquitto_sub -h <Broker IP> -p <Port Number> -t <Topic>

The following message is shown in the broker window.

3. Open a new command window and publish a message.

mosquitto_pub -h <Broker IP> -p <Port Number> -t <Topic> -m "<Message>"

The following message is shown in the broker window.

The subscriber receives the message as shown below.

https://mosquitto.org/download/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 120

13.4.3 Certificate

See Section 6 for MQTT client certificate.

13.4.4 Publisher

13.4.4.1 QoS=0 Message

This section gives an example of publishing a QoS=0 message.

Figure 49. Publish QoS=0 message

1. After the DA16200/DA16600 EVB is connected to an AP, configure the parameters, and publish a message.

[/DA16200]# net

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config pub_topic <Topic>

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

[/DA16200/NET]# mqtt_client -m <Message>

…

[/DA16200/NET]# mqtt_client stop

Optionally, "client_id" can also be set with the following command:

[/DA16200/NET]# mqtt_config client_id <client_id_string>

For example, mqtt_config client_id abcd1111

client_id should be unique per each device. By default, client_id is generated internally as "da16x_<the

last 2 bytes of mac address>". For example, da16x_FCFA.

2. When message transmission -m "Hello!" is successful, the following messages are displayed:

Hello! (Send, Len: 6, Topic: da16k, Message ID: 1)

The following syntax allows you to send a message with a new topic:

[/DA16200/NET] mqtt_client -m <Message> <NewTopic>

If the previous parameters for broker, port, and topics are not changed, then no action is required to set the
parameters for the publication of every message.

The max length of the console command is 158. To send a longer PUBLISH, write the following command:

[/DA16200/NET] mqtt_client -l

Typing data: (MQTT Publisher message)

 Cancel - CTRL+D, End of Input - CTRL+C or CTRL+Z

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012

345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234

5678901234567890123456789012345678901234567890 …

Use the keyboard combinations Ctrl+C or Ctrl+Z to send the message.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 121

Optionally, "retain" can also be set with the following command:

[/DA16200/NET]# mqtt_config pub_topic <Topic> -r

For example, mqtt_config pub_topic abdc111 -r

MQTT client is a feature used to ensure that the last published message on a specific topic is stored by the
broker. When a client subscribes to that topic, it immediately receives the retained message, without waiting
for a new one to be published.

13.4.4.2 QoS=1/2 Message

This section gives an example of publishing a QoS=1/2 Message.

Figure 50. Publish QoS 1 message

Figure 51. Publish QoS 2 message

▪ Configure the parameters and publish a message.

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config pub_topic <Topic>

[/DA16200/NET]# mqtt_config qos <QoS Level>

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

[/DA16200/NET]# mqtt_client -m <Message>

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 122

Figure 52. Configure parameters and publish message

13.4.4.3 MQTT over TLS

The DA16200/DA16600 SDK provides a TLS encrypted session for secure MQTT messages.

Figure 53. Publish secure message

NOTE

It is required to store certificates in the DA1620/DA16600 to use TLS encryption. This procedure is explained in Section

13.4.3.

1. Run a broker with a secure port.

mosquitto –c mosquitto.conf -p <Port Number> -v

2. Run a subscriber.

mosquitto_sub -h <Broker IP> -p <Port> --cafile <CA Certificate> --cert <Client Certificate> --key

<Client Private Key> --tls-version <TLS Protocol Version> --insecure -t <Topic>

3. Set the current time in the DA16200/DA16600 EVB to check if the certificate is valid.
(If SNTP for time sync is needed, input the command net.sntp enable to get the current time.)

[/DA16200]# time set <yyyy-mm-dd> <hh:mm:ss>

4. Store three Certificates (see Section 6.6) in the DUT and then complete the following steps.

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config pub_topic <Topic>

[/DA16200/NET]# mqtt_config tls 1

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

[/DA16200/NET]# mqtt_client -m <Message>

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 123

13.4.4.4 Username and Password

1. Set up a username and password to authenticate users.

Figure 54. User login

2. Run a broker with a secure port. It needs to be prepared for the configuration file.

mosquitto -c <Config File> -p <Port> -v

In the Mosquitto package provided by Renesas Electronics, file mosq_idpw.conf is used for the <Config File>

parameter, and user accounts are registered in file p1.txt.

3. Add a new account in this file with the following command:

mosquitto_passwd.exe -b p1.txt <username> <password>

4. At the Mosquitto command prompt, run the mosquito_sub command to log in successfully to the broker.

mosquitto_sub -h <broker_ip> -p <port> -t <topic> -u <id> -P <pass>

5. On mqtt_client (DUT), set the username and password, and start mqtt_client.

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config pub_topic <Topic>

[/DA16200/NET]# mqtt_config tls 0

[/DA16200/NET]# mqtt_config username <Username>

[/DA16200/NET]# mqtt_config password <Password>

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

[/DA16200/NET]# mqtt_client -m <Message>

NOTE

▪ The max length of the console command is 158 so to type in a password exceeding the limit of the console, use the

command mqtt_config long_password.

▪ The max length of the buffer is currently 160 for a password, 64 for a username. If it needs to change max length,

modify MQTT_USERNAME_MAX_LEN or MQTT_PASSWORD_MAX_LEN.

13.4.5 Subscriber

13.4.5.1 Setup

1. Configure the parameters and start the subscriber.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 124

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config sub_topic 1 <Topic>

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

…

[/DA16200/NET]# mqtt_client stop

2. Multiple topics can be registered. Add the parameter for the number of topics in the command (up to four).

[/DA16200/NET]# mqtt_client stop

[/DA16200/NET]# mqtt_config sub_topic <Topic count> <Topic#1> <Topic#2> …

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

…

[/DA16200/NET]# mqtt_config sub_topic_add <New topic>

[/DA16200/NET]# mqtt_config sub_topic_del <Topic to remove>

13.4.5.2 MQTT over TLS

Set the current time in the DA16200/DA16600 EVB to check if the certificate is valid. (If SNTP is auto-started
during boot, skip this step.)

[/DA16200]# time set <yyyy-mm-dd> <hh:mm:ss>

1. Run the broker as below.

mosquitto –c mosquitto.conf -p <Port Number> -v

2. Add three Certificates (see Section 6.6) for the DUT and then complete the following steps.

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config sub_topic 1 <Topic>

[/DA16200/NET]# mqtt_config tls 1

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

3. Run a publisher on your computer.

mosquitto_pub -h <Broker IP> -p <Port> --cafile <CA Certificate> --cert <Client Certificate> --key

<Client Private Key> --tls-version <TLS Protocol Version> -t <Topic> --insecure –m <message>

Example: mosquitto_pub -h 192.168.0.101 -p 1884 --cafile cas.pem --cert wifiuser.pem --key

wifiuser.key --tls-version tlsv1 -t da16k --insecure -m "hello"

13.4.5.3 Username and Password

1. DUT: Set username and password.

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config sub_topic 1 <Topic>

[/DA16200/NET]# mqtt_config tls 0

[/DA16200/NET]# mqtt_config username <Username>

[/DA16200/NET]# mqtt_config password <Password>

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

2. In the Mosquitto package provided by Renesas Electronics, file mosq_idpw.conf is used for the <Config

File> parameter and user accounts are registered in file p1.txt. Add a new account in this file with the
following command.

mosquitto_pub -h [Broker IP] -p [port] -t [topic] -m <message> -u [id] -P [password]

Example:

mosquitto_pub -h 192.168.0.101 -p 1884 -t da16k -u mike -P 1234 -m hello

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 125

13.4.5.4 WILL

1. Sub#1 (DUT): Set the Will message.

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config sub_topic 1 <Topic>

[/DA16200/NET]# mqtt_config will_topic <Topic>

[/DA16200/NET]# mqtt_config will_message <Message>

[/DA16200/NET]# mqtt_config will_qos <QoS Level>

[/DA16200/NET]# mqtt_client start

>>> MQTT Client connection OK (da16x_FFFE)

2. Broker: Write the following command.

>mosquitto -v -p 1884

3. Sub#2 (PC): Write the following command.

>mosquitto_sub -h 192.168.0.101 -t da16k -p 1884 -q 0

4. Sub#1 (DUT): Try an unexpected disconnection.

[/DA16200/NET]# reset

>>> Network Interface (wlan0): DOWN

 [mqtt_subscriber_main] Request mqtt_restart

[wpa_supplicant_event_disassoc] CTRL-EVENT-DISCONNECTED bssid=ec:08:6b:d6:53:62 reason=3

locally_generated=1

DA16200 ROM-Boot [ffffc000]

[MROM]

5. Sub#2 (PC): Wait until the following message is printed.

>mosquitto_sub -h 192.168.0.101 -t da16k -p 1884 -q 2

imwill

13.4.6 MQTT Pub/Sub Test with DPM and TLS

In this test, the Pub and Sub are run with the DPM mode enabled.

1. Broker: Run with TLS enabled.

>mosquitto -c mosquitto.conf -p 8883 -v

2. Sub#2 (PC): Write the following command.

>mosquitto_sub -h 192.168.0.101 -p 8883 --cafile cas.pem --cert wifiuser.pem --key wifiuser.key --tls-

version tlsv1 -t da16k --insecure

3. Sub-Pub#1 (DUT): Write the following command.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 126

[/DA16200/NET]# mqtt_config auto 1

[/DA16200/NET]# mqtt_config broker <Broker IP>

[/DA16200/NET]# mqtt_config port <Port Number>

[/DA16200/NET]# mqtt_config sub_topic 1 <Topic>

[/DA16200/NET]# mqtt_config pub_topic <Topic>

[/DA16200/NET]# mqtt_config tls 1

[/DA16200/NET]# sntp enable

[/DA16200/NET]# nvram.setenv dpm_mode 1

[/DA16200/NET]# reboot

Figure 55. DPM sleep after MQTT connection

#Pub (PC): Send the Pub message as below.

>mosquitto_pub -h 192.168.0.101 -p 1884 --cafile cas.pem --cert wifiuser.pem --key wifiuser.key --tls-

version tlsv1 -t da16k --insecure -m "Hello World!!"

When the message is received, DA16200/DA16600 wakes up from DPM Sleep and prints the message.

Figure 56. MQTT UC wake-up

If the code examples are applied, the MQTT publisher starts to post a periodic message every 30

seconds and the MQTT subscriber processes the received PUBLISH messages.

Figure 57. MQTT wake-up for sending message

13.4.6.1 MQTT Reconnection Scheme

When the broker is disconnected, MQTT Client tries to reconnect to the broker based on the following scheme.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 127

13.4.6.1.1 Non-DPM Mode

MQTT Client tries to reconnect six times (MQTT_CONN_MAX_RETRY) and the attempt to retry is terminated
after the max number of trials is reached.

13.4.6.1.2 DPM Mode

1. After the disconnection from the broker is recognized, the system wakes up from DPM Sleep, and MQTT
Client tries to reconnect three times (MQTT_RESTART_MAX_RETRY), and the system enters DPM Sleep
when the trials fail.

2. In five seconds, the system wakes up and MQTT Client tries reconnection with the broker. If it fails in
connecting to the broker, the system enters DPM Sleep.

3. Step 2 is repeated six times (MQTT_CONN_MAX_RETRY) and MQTT Client is terminated after the max
number of trials (MQTT_CONN_MAX_RETRY) is reached. The system then enters DPM Sleep.

4. In case other DPM wake-up (User Wake-up, user RTC Wake-up, UC...) happens after Step 3, Step 2 is
repeated six times.

13.4.6.2 DPM Power Profile

With Keysight, a current consumption measuring tester, check how DPM works in MQTT communication. DPM
allows the system to stay in Sleep mode most of the time and only wake up (and stay active for only a small
amount of time to get the job done) when needed.

In the Keysight snapshot below, the DA16200/DA16600 was in Sleep mode until it woke up to post a periodic
status message to the broker. When the DA16200/DA16600 receives the response, it enters and stays in Sleep
mode until the next Status Message TX time (the interval depends on application).

Figure 58. MQTT communication

13.4.7 MQTT CleanSession=0 Test Guide

13.4.7.1 CleanSession=0 Mode

When an MQTT Client (hereinafter referred to as MQTTC) establishes a connection with an MQTT Broker
(Broker onward), there are two types of session: CleanSession=1 and CleanSession=0.

CleanSession=1: default session type. When the Broker receives a connect request from an MQTTC that tries
to connect with an option "CleanSession=1" (which is default config on DA16x), Broker treats the connection as
a "new" session. If an existing session associated with the same client_id is found, the Broker clears that
previous session and creates a new one with the client_id.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 128

CleanSession=0: When the Broker receives a connect request from an MQTTC that tries to connect with an
option "CleanSession=0", the Broker first tries to find a session (session data) with the same client_id. If it finds
one, it keeps using that session for the new MQTTC.

While MQTTC is connected to the Broker, there may be times when the TCP connection becomes unstable and
disconnected (for example, mqtt ping failed). This may cause some messages that had been published to the
Broker during that time to not be delivered to a subscriber. If new messages (with QoS > 0) are published to the
Broker and for sessions that have been configured in "CleanSession=0", the Broker retains and re-sends them
when the MQTTC is re-connected. MQTTC (if CleanSession=0 is enabled) also should retain the state of the
unfinished/unacked messages until reconnection.

Figure 59. Broker console - CleanSession=1 connection

Figure 60. Broker console - CleanSession=0 connection

Even with CleanSession=0 connection, the Broker does not maintain session data if MQTTC is disconnected in
the following cases.

▪ If a new message is published with QoS 0 after MQTTC is disconnected.

▪ If MQTTC's connection QoS is 0.

The DA16200 and DA16600 support CleanSession=0 mode in the following method.

CleanSession=0 feature is enabled by default in SDK v3.2.3.0 or higher

(__MQTT_CLEAN_SESSION_MODE_SUPPORT__)

If an application uses QoS 1 or Qos 2 and CleanSession=0, the message (payload) size (both Tx and Rx) should be pre-

decided (because there is limitation in the dpm user pool size). By default, 100 bytes are defined.

#define MQTT_MSG_TBL_PRESVD_MAX_PLAYLOAD_LEN 100

▪ Depending on the application’s expected maximum payload size, a different value can be defined.

▪ The DPM User Pool has a limited size (approximately 8K in total) in the system.

▪ First check the available free DPM User Pool size using the console command dpm user_pool and then calculate the

max payload length and message number for the application if needed.

▪ The default configuration (payload_len: 100, max_count: 10) allocates approximately 1.9 kB of DPM user pool (Check

mq_msg_tbl_presvd_t for detail).

▪ Search for the following compiler options in config_generic_sdk.h.

//max payload length of a preserved message

#define MQTT_MSG_TBL_PRESVD_MAX_PLAYLOAD_LEN 100

// max number of preserved messages

#define MQTT_MSG_TBL_PRESVD_MAX_MSG_CNT 10

▪ The following console command is provided to configure CleanSession mode:

mqtt_client clean_session <1|0>

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 129

13.4.7.1.1 CleanSession and QoS Matrix Table for PUBLISH Rx

Table 22. CleanSession and QoS matrix in message Rx

Subscriber
Unacked message delivery

(After MQTT reconnection)

QoS

(Effective actual)

Publisher

Message's QoS Case
Clean

session
QoS

1 1 0 X 0 0

2 1 1 X 0 0

3 1 2 X 0 0

4 1 0 X 0 1

5 1 1 X 1 1

6 1 2 X 1 1

7 1 0 X 0 2

8 1 1 X 1 2

9 1 2 X 2 2

10 0 0 X 0 0

11 0 1 X 0 0

12 0 2 X 0 0

13 0 0 X 0 1

14 0 1 O 1 1

15 0 2 O 1 1

16 0 0 X 0 2

17 0 1 O 1 2

18 0 2 O 2 2

Basically, with CleanSession=1, no unacked message delivery happens when a MQTT reconnect happens
(marked as x).

With CleanSession=0, only case 14, 15, 17, and 18 makes message redelivery happen for messages that had
been delivered to the Broker while the MQTT was offline (marked as O).

13.4.7.1.2 CleanSession and QoS Matrix Table for PUBLISH Tx

Expectation 1 Application assumes "sending message" fails and waits until MQTT gets re-connected before

retrying.

Behavior 1 Application does message send retry.

Expectation 2 Application assumes "sending message" resumes when MQTT gets re-connected.

Behavior 2 Application waits until the message sent retry by MQTT is complete.

Table 23. CleanSession and QoS matrix in message TX

Publisher Expectation if MQTT gets

disconnected (while QoS 1/2 message

is not fully acked or QoS 0 send is

being sent)

Behavior expected when MQTT

client re-connected Case
Clean

session
QoS

1 1 0 Expectation 1 Behavior 1

2 1 1 Expectation 1 Behavior 1

3 1 2 Expectation 1 Behavior 1

4 0 0 Expectation 1 Behavior 1

5 0 1 Expectation 2 Behavior 2

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 130

Publisher Expectation if MQTT gets

disconnected (while QoS 1/2 message

is not fully acked or QoS 0 send is

being sent)

Behavior expected when MQTT

client re-connected Case
Clean

session
QoS

6 0 2 Expectation 2 Behavior 2

When publishing a message from DA16x, the application’s expectation and action/behavior may be different if
CleanSession=0 and QoS 1 or 2 are used in some specific cases.

In normal network conditions, there is no difference in message send behavior between CleanSession=0 and
CleanSession=1.

In some abnormal cases where QoS 1/2's ACK message (PUBACK, PUBREC, PUBREL, or PUBCOMP) gets
lost due to bad network conditions (which can cause a MQTTC re-connection), CleanSession=0 can recover the
previous message state and resume communication with the Broker.

However, if CleanSession=1 is used, when MQTTC is disconnected, it can safely re-transmit the message when
MQTTC is re-connected. Depending on the use case, either approach (CleanSession=0 or CleanSession=1) can
be utilized.

13.4.7.2 Test Steps

13.4.7.2.1 How to connect with CleanSession=0

[/DA16200/NET] # mqtt_client stop

[/DA16200/NET] # mqtt_config clean_session 0

[/DA16200/NET] # mqtt_config qos 2

[/DA16200/NET] # mqtt_config status

MQTT Client Information:

 - MQTT Status : Not Running

 - Broker IP : 192.168.0.230

 - Port : 8883

 - Pub. Topic : PUB_TOPIC

 - Sub. Topic : SUB_TOPIC

 - QoS Level : 2

 - TLS : Enable

 - Clean Session : No

 - TLS ALPN : (None)

 - TLS SNI : (None)

 - TLS CIPHER SUIT : (None)

 - Ping Period : 60

 - TLS Incoming buf : 4096(bytes)

 - TLS Outgoing buf : 4096(bytes)

 - TLS Auth mode : 1

 - User name : (None)

 - Password : (None)

 - Client ID : (default: da16x_D9CC)

 - MQTT VER : 3.1

[/DA16200/NET] # mqtt_client start

MQTT CleanSession=0 Support Mode enabled.

[/DA16200/NET] # >>> MQTT Client connection OK (da16x_D9CC)

To activate "CleanSession=0 support mode" in DA16x, QoS should be 1 or 2 and CleanSession option should
be set to 0.

If either option (CleanSession and QoS) is not set as above, CleanSession=0 support mode is disabled.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 131

13.4.7.2.2 How to restart CleanSession=0 test

If re-testing (fresh new test) with CleanSession=0 mode, the Broker may be needed to "clear the previous
session" depending on the previous session type.

The reason is that since an MQTTC connects with CleanSession=0, the Broker does not delete the session data
until the MQTTC re-connects with CleanSession=1.

Case 1: Previous session is CleanSession=1 and restart a new CleanSession=0 test.

[/DA16200/NET] # mqtt_client stop

 [mqtt_subscriber_main] mosquitto_loop_forever exited (rc=17, sock=0, errno=0,

runContinueSub=0)

[mqtt_client] terminated

[/DA16200/NET] # mqtt_config clean_session 0

[/DA16200/NET] # mqtt_client start

MQTT CleanSession=0 Support Mode enabled.

[/DA16200/NET] # >>> MQTT Client connection OK (da16x_D9CC)

Case 2: Previous session is CleanSession=0 and re-test of CleanSession=0.

[/DA16200/NET] # mqtt_client stop

 [mqtt_subscriber_main] mosquitto_loop_forever exited (rc=17, sock=0, errno=0,

runContinueSub=0)

[mqtt_client] terminated

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] # mqtt_config clean_session 1

[/DA16200/NET] # mqtt_client start

[/DA16200/NET] # >>> MQTT Client connection OK (da16x_D9CC)

[/DA16200/NET] #

[/DA16200/NET] # mqtt_client stop

 [mqtt_subscriber_main] mosquitto_loop_forever exited (rc=17, sock=0, errno=0,

runContinueSub=0)

[mqtt_client] terminated

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] # mqtt_config clean_session 0

[/DA16200/NET] # mqtt_client start

MQTT CleanSession=0 Support Mode enabled.

[/DA16200/NET] # >>> MQTT Client connection OK (da16x_D9CC)

13.4.7.2.3 PUBLISH RX Test

1) Test Steps

Test steps are as follows under non-DPM and DPM modes.

In non-DPM mode:

• DA16x: connect to Broker

• Publisher: send one or two messages

• DA16x: check if the messages are received.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 132

• DA16x: disconnect from Broker

• Publisher: send one or two messages (let say msg_A)

• DA16x: reconnect to Broker

• DA16x: check if msg_A (sent while DA16x is offline) is received.

DPM mode:

• DA16x: connect to Broker. Enter DPM sleep

• Publisher: send one or two messages

• DA16x: check if the messages are received

• DA16x: turn off AP. Wait for the MQTT keep alive period to finish (to make sure Broker recognizes the
MQTTC disconnection)

• Publisher: send one or two messages (let say msg_A)

• DA16x: turn on AP. Wait until DA16x is connected to AP

• DA16x: reconnected to AP and check if msg_A (sent while DA16x is offline) is received.

NOTE

▪ Mosquitto broker (Broker), Mosquitto publisher (Publisher), and DA16x (Subscriber) are used for the test.

▪ Message length from publisher should be less than or equal to 100. If longer messages are sent, they may not be

restored properly when MQTT is reconnected.

2) Test Steps - Example 1 (non-DPM)

The following are the test steps for case 15 (non-DPM mode).

[DA16x] Connect MQTTC with CleanSession=0 and QoS 2

[/DA16200/NET] # mqtt_client stop

 [mqtt_subscriber_main] mosquitto_loop_forever exited (rc=17, sock=0, errno=0,

runContinueSub=0)

[mqtt_client] terminated

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] # mqtt_config qos 2

[/DA16200/NET] # mqtt_config clean_session 0

[/DA16200/NET] # mqtt_client start

MQTT CleanSession=0 Support Mode enabled.

[/DA16200/NET] # >>> MQTT Client connection OK (da16x_D9CC)

[Other Publisher] Publish messages

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 1 -t SUB_TOPIC -m "hello_qos_0"

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 1 -t SUB_TOPIC -m "hello_qos_1"

[DA16x] Check the messages are successfully received

[/DA16200/NET] #

[/DA16200/NET] # (Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=1)

[PUBACK] (Tx: Msg_ID=1)

(Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=2)

[PUBACK] (Tx: Msg_ID=2)

[DA16x] Disconnect from Broker

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 133

[/DA16200/NET] #

[/DA16200/NET] # mqtt_client stop

 [mqtt_subscriber_main] mosquitto_loop_forever exited (rc=17, sock=0, errno=0,

runContinueSub=0)

[mqtt_client] terminated

[Other Publisher] Publish two messages (while DA16x is in disconnected state)

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 1 -t SUB_TOPIC -m "hello_qos_2"

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 1 -t SUB_TOPIC -m "hello_qos_3"

[DA16x] Re-connect to the Broker and check if the two messages that had been published while DA16x was in a
disconnected state are received successfully.

[/DA16200/NET] #

[/DA16200/NET] # mqtt_client start

MQTT CleanSession=0 Support Mode enabled.

[/DA16200/NET] # (Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=3)

[PUBACK] (Tx: Msg_ID=3)

(Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=4)

[PUBACK] (Tx: Msg_ID=4)

>>> MQTT Client connection OK (da16x_D9CC)

3) Test Steps - Example 2 (DPM)

The following are the test steps for case 18 (DPM mode). Mosquitto broker and Mosquitto publisher are used
for the test.

[DA16x] Connect with CleanSession=0 and QoS 2

[/DA16200/NET] # mqtt_config qos 2

[/DA16200/NET] # mqtt_config clean_session 0

[/DA16200/NET] # mqtt_config status

MQTT Client Information:

 - MQTT Status : Not Running

 - Broker IP : 192.168.0.230

 - Port : 8883

 - Pub. Topic : PUB_TOPIC

 - Sub. Topic : SUB_TOPIC

 - QoS Level : 2

 - TLS : Enable

 - Clean Session : No

 - TLS ALPN : (None)

 - TLS SNI : (None)

 - TLS CIPHER SUIT : (None)

 - Ping Period : 60

 - TLS Incoming buf : 4096(bytes)

 - TLS Outgoing buf : 4096(bytes)

 - TLS Auth mode : 1

 - User name : (None)

 - Password : (None)

 - Client ID : (default: da16x_D9CC)

 - MQTT VER : 3.1

[/DA16200/NET] #

[/DA16200/NET] #

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 134

[/DA16200/NET] # dpm on

[DP

Wake-up source is 0x0

[dpm_init_retmemory] DPM INIT CONFIGURATION(1)

...

System Mode : Station Only (0)

>>> Start DA16X Supplicant ...

>>> DA16x Supp Ver2.7 - 2020_07

>>> Wi-Fi mode : b/g/n -> b/g (for DPM)

>>> MAC address (sta0) : d4:3d:39:10:d9:cc

...

Connection COMPLETE to 00:11:32:ce:8e:6f

-- DHCP Client WLAN0: SEL(6)

-- DHCP Client WLAN0: REQ(1)

-- DHCP Client WLAN0: CHK(8)

-- DHCP Client WLAN0: BOUND(10)

 Assigned addr : 192.168.1.195

 netmask : 255.255.255.0

 gateway : 192.168.1.1

 DNS addr : 192.168.1.1

 DHCP Server IP : 192.168.1.1

 Lease Time : 24h 00m 00s

 Renewal Time : 20h 00m 00s

MQTT CleanSession=0 Support Mode enabled.

>>> Hello World #2 (network dependent application) !!!

>>> MQTT Client connection OK (da16x_D9CC)

>>> Start DPM Power-Down !!!

[Other Publisher] Publish messages

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 2 -t SUB_TOPIC -m "hello_qos_1"

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 2 -t SUB_TOPIC -m "hello_qos_2"

[DA16x] Check the messages are successfully received

Wake-up source is 0x82

>>> Start DA16X Supplicant ...

>>> TIM STATUS: 0x00000001

>>> TIM : UC

>>> Hello World #1 (Non network dependent application) !!!

 MQTT CleanSession=0 Support Mode enabled.

>>> Hello World #2 (network dependent application) !!!

(Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=1)

[PUBREC] (Tx: Msg_ID=1)

[PUBREL] (Rx: Msg_ID=1)

[PUBCOMP] (Tx: Msg_ID=1)

>>> Start DPM Power-Down !!!

[i3ed11_dpm_tcp_ack_proc] TCP Update SEQ Ný

Wake-up source is 0x82

>>> Start DA16X Supplicant ...

>>> TIM STATUS: 0x00000001

>>> TIM : UC

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 135

>>> Hello World #1 (Non network dependent application) !!!

 MQTT CleanSession=0 Support Mode enabled.

>>> Hello World #2 (network dependent application) !!!

(Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=2)

[PUBREC] (Tx: Msg_ID=2)

[PUBREL] (Rx: Msg_ID=2)

[PUBCOMP] (Tx: Msg_ID=2)

>>> Start DPM Power-Down !!!

[i3ed11_dpm_tcp_ack_proc] TCP Update SEQ Num(20d7)

PS TIME 130369 us

[DA16x] Turn off AP

Wake-up source is 0x82

>>> Start DA16X Supplicant ...

>>> TIM STATUS: 0x00000008

>>> TIM : No BCN

>>> Network Interface (wlan0) : DOWN

[wpa_supplicant_event_disassoc] CTRL-EVENT-DISCONNECTED bssid=00:11:32:ce:8e:6f reason=4

locally_generated=1

Fast scan, freq=2432, num_ssids=1

!!! No selected network !!!

Fast scan, freq=2432, num_ssids=1

>>> Hello World #1 (Non network dependent application) !!!

!!! No selected network !!!

User Call-back : Wi-Fi disconnected (reason_code = 4) ...

Fast scan, freq=2432, num_ssids=1

!!! No selected network !!!

!!! No selected network !!!

!!! No selected network !!!

!!! No selected network !!!

!!! No selected network !!!

rtc_timeout (tid:14)

!!! No selected network !!!

[dpm_timer_process] 'mqtt_sub' is not ready. Callback can't be called. (/14)

>> Abnormal DPM(1) operation after 1 second

...

[Broker] Make sure MQTTC is disconnected

...

1647318510: Socket error on client da16x_D9CC, disconnecting.

...

[Other Publisher] Publish two messages (while DA16x is in a disconnected state)

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 2 -t SUB_TOPIC -m "hello_qos_3"

C:\mosquitto>mosquitto_pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --

key wifiuser.key --tls-version tlsv1 --insecure -q 2 -t SUB_TOPIC -m "hello_qos_4"

[DA16x] Turn ON AP

[DA16x] Wait until AP is connected and see whether hello_qos_3 and hello_qos_4 are received

...

Wake-up source is 0x82

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 136

System Mode : Station Only (0)

>>> Start DA16X Supplicant ...

>>> DA16x Supp Ver2.7 - 2020_07

>>> Wi-Fi mode : b/g/n -> b/g (for DPM)

>>> MAC address (sta0) : d4:3d:39:10:d9:cc

>>> sta0 interface add OK

>>> Start STA mode...

>>> Hello World #1 (Non network dependent application) !!!

>>> Network Interface (wlan0) : UP

>>> Associated with 00:11:32:ce:8e:6f

Connection COMPLETE to 00:11:32:ce:8e:6f

-- DHCP Client WLAN0: SEL(6)

-- DHCP Client WLAN0: REQ(1)

-- DHCP Client WLAN0: CHK(8)

-- DHCP Client WLAN0: BOUND(10)

 Assigned addr : 192.168.1.195

 netmask : 255.255.255.0

 gateway : 192.168.1.1

 DNS addr : 192.168.1.1

 DHCP Server IP : 192.168.1.1

 Lease Time : 24h 00m 00s

 Renewal Time : 20h 00m 00s

 MQTT CleanSession=0 Support Mode enabled.

>>> Hello World #2 (network dependent application) !!!

(Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=3)

[PUBREC] (Tx: Msg_ID=3)

(Rx: Len=11,Topic=SUB_TOPIC,Msg_ID=4)

[PUBREC] (Tx: Msg_ID=4)

>>> MQTT Client connection OK (da16x_D9CC)

[PUBREL] (Rx: Msg_ID=3)

[PUBCOMP] (Tx: Msg_ID=3)

[PUBREL] (Rx: Msg_ID=4)

[PUBCOMP] (Tx: Msg_ID=4)

>>> Start DPM Power-Down !!!

13.4.7.2.4 PUBLISH Tx Test

1) Test Steps

Test steps are as follows.

• DA16x: connect to Broker

• DA16x: send messages

• DA16x: check if the message sent is successful.

NOTE

Message length from DA16x should be less than or equal to 100 for case 5 and 6 configuration. Sending longer messages

returns failure. For cases other than case 5 or 6, message length limit is 3K.

2) Test Steps – Example

The following are the test steps for case 5 (non-DPM mode).

[/DA16200/NET] # mqtt_config qos 1

[/DA16200/NET] # mqtt_config clean_session 0

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 137

[/DA16200/NET] # mqtt_client start

 MQTT CleanSession=0 Support Mode enabled.

[/DA16200/NET] # user cb: on_connect

user cb: on_subscribe

>>> MQTT Client connection OK (da16x_D9CC)

[/DA16200/NET] #

[/DA16200/NET] # mqtt_client -m hello_q1

[/DA16200/NET] # (Tx: Len=8,Topic=PUB_TOPIC,Msg_ID=2)

<< Mqtt Pub EnQ : SUCCESS >>

[PUBACK] (Rx, Msg_ID=2)

user cb: on_publish(mid=2)

13.4.8 Reset

The following command clears all MQTT configurations:

[/DA16200/NET]# mqtt_config reset

13.5 Sample Code

This section explains how to test the MQTT client sample application on the DA16200/DA16600 EVB. This
section describes how to configure and run MQTT client, and how to send or receive a message using DA16x
MQTT APIs.

NOTE

This sample version is available in DA16200/DA16600 SDK v3.2.5.0 or higher.

13.5.1 Test Environment

Users can use an MQTT broker that is compliant to MQTT Spec 3.1 or 3.1.1 but, for this test, Mosquitto broker,
Mosquitto subscriber, and Mosquitto publisher are used, which can be download from the following URL:
https://mosquitto.org/files.

The DA16200/DA16600 contains the MQTT client module (hereinafter referred to as mqtt_client) that can work
with an MQTT broker.

13.5.2 Setup

MQTT Broker (hereinafter referred to as mqtt_broker)

▪ Open a command prompt and go to the Mosquitto folder

▪ Run the Mosquitto broker (mqtt_broker) with TLS configured

▪ Any MQTT broker can be used but, the Mosquitto broker is used for this test

• The following config options are used in the .conf file for the sample (depending on the local environment,
other options can be modified. For detail explanation for each option, check default .conf file included in the
Mosquitto package:

>> bind_address, cafile <ca_file>, certfile <cert_file>, keyfile <key_file>, require_certificate yes

>> If TLS is not used, comment out the following options: cafile, certfile, keyfile, and require_certificate
as default

Figure 61. Mosquitto MQTT broker

https://mosquitto.org/files/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 138

MQTT subscriber (hereinafter referred to as mqtt_sub)

▪ Open a new command prompt and run the Mosquitto subscriber (mqtt_sub) with topic _da16k.

▪ mqtt_sub should be connected to mqtt_broker.

Figure 62. Mosquitto MQTT subscriber

MQTT publisher (hereinafter referred to as mqtt_pub)

▪ Open a new command prompt and run the Mosquitto publisher (mqtt_pub) with topic _da16k.

▪ Make sure that the mqtt_sub receives the published message sent by mqtt_pub.

Figure 63. Mosquitto MQTT publisher

MQTT Client sample application (mqtt_app).

The mqtt_app acts as MQTT publisher and MQTT subscriber.

13.5.3 How to Test

1. In the e2 studio environment, import a project for the MQTT client sample application as follows:

~/SDK/apps/common/examples/Network/MQTT_Client/projects/da16200

~/SDK/apps/common/examples/Network/MQTT_Client/projects/da16600

2. Modify the MQTT broker address, port number, TLS, and cert info for the local environment in the source.

#define MQTT_SAMPLE_BROKER_IP "192.168.0.230"

#define MQTT_SAMPLE_BROKER_PORT 8883

#define MQTT_SAMPLE_TLS 1

...

If TLS is enabled, generate certificate sets. Same certificate sets should be set on the broker side as well to
get TLS communication working.

static const char *cert_buffer0 = ...

static const char *cert_buffer1 = ...

static const char *cert_buffer2 = ...

...

3. (Optional) There are two APIs for sending a message; mqtt_client_send_message() and
mqtt_client_send_message_with_qos(). By default, mqtt_client_send_message() is used. If the other APIs
should be used, enable USE_MQTT_SEND_WITH_QOS_API in mqtt_client_sample.c.

4. Build the DA16200 SDK (do not download it to the DA16200 EVB yet).

5. DA16200 EVB:

a. At the [/DA16200] prompt, type factory to do a factory reset (see Ref. [3])

b. Reboot DA16200 EVB.

6. Download the build image to DA16200 EVB and reboot.

7. DA16200 EVB:

a. Run setup (to connect to a Wi-Fi router) : see the Station Mode Setup section of Ref. [3]

i. Setup as STA.

ii. SNTP Client enable?: select Yes using the default setting (the Internet should be accessible through
a Wi-Fi router).

iii. Dialog DPM (Dynamic Power Management)?: select No.

8. Reboot DA16200 EVB and connect to a Wi-Fi router, and the mqtt_app starts running.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 139

Figure 64. MQTT client is ready

13.5.3.1 Test with Non-DPM Mode

1. When the mqtt_app starts for the first time, it configures MQTT client. When it is configured, find MQTT
configuration parameters in NVRAM. See my_app_mqtt_user_config() for more information on configuration.

2. Next the mqtt_app waits for the system to sync the system time with SNTP server which is required for
successful TLS session.

3. Then, the mqtt_app starts the mqtt_client.

4. After checking the successful connection of mqtt_client with mqtt_broker, the mqtt_app initializes the app
resource within my_app_init() and enters the main loop to handle various events. See EVT_ANY.

13.5.3.1.1 MQTT Publish

1. The mqtt_app starts 30-second timer in my_app_init(). Every 30 seconds, the mqtt_app tries to send a
periodic message. _my_app_mqtt_pub_send_periodic() is the timer callback that triggers the MQTT publish.

2. The mqtt_sub displays the published message from the mqtt_app.

Figure 65. MQTT publish

13.5.3.1.2 Receive MQTT Message

1. mqtt_pub: publish a message "hello" to the topic da16k1 and try to publish it to other topics as well. The
mqtt_app has subscribed to 3 topics: da16k1, da16k2, and da16k3.

2. mqtt_app: receive the message "hello". See the message callback "my_app_mqtt_msg_cb()"

Figure 66. Receive MQTT message

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 140

13.5.3.1.3 Receive and Reply MQTT Message

1. mqtt_pub: publish a message reply_needed to the topic da16k1.

2. mqtt_app: receive the message and try to publish a message DA16K status: Not bad () to the topic
_da16k. The message callback "my_app_mqtt_msg_cb()" upon receipt of reply_needed, tries to publish a
message to the topic _da16k.

3. mqtt_sub (subscribed to _da16k): display the message received.

Figure 67. Receive and reply MQTT message

13.5.3.1.4 MQTT Unsubscribe

1. mqtt_pub: publish a message “unsub:da16k2” to the topic da16k1.

2. mqtt_app: receive the message and try to unsubscribe one of subscribed topics. The message callback
“my_app_mqtt_msg_cb()” upon receipt of “unsub:da16k2,” tries to unsubscribe da16k2.

3. Mqtt_pub: try publishing a message to the da16k2. Make sure that the mqtt_app does not receive the
message.

Figure 68. MQTT unsubscribe

13.5.3.2 Test with DPM Mode

1. DA16200 EVB: enter the command dpm on in the command prompt.

2. DA16200 EVB: reboot automatically with the DPM mode (by dpm on).

3. When the mqtt_app starts for the first time, it configures MQTT client. When it is configured, find MQTT

configuration parameters in NVRAM. See my_app_mqtt_user_config() for more information on

configuration.

4. Next the mqtt_app waits for the system to sync the system time with SNTP server which is required for

successful TLS session.

5. Then, the mqtt_app starts mqtt_client.

6. After checking the successful connection of mqtt_client with mqtt_broker, the mqtt_app initializes the app

resources in my_app_init(), and enter DPM sleep.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 141

Figure 69. MQTT client sample start-up (in DPM mode)

13.5.3.2.1 MQTT Publish

1. mqtt_app: register 30-second RTC timer in my_app_init() when the system is in the DPM mode. Every 30

seconds, the DA16200 EVB wakes up, and the mqtt_app tries to send a periodic message.

my_app_mqtt_pub_send_periodic() is the RTC timer callback that triggers MQTT publish.

2. mqtt_sub: display the published message from the mqtt_app.

3. mqtt_app: after publishing the periodic message, enter DPM sleep.

Figure 70. Periodic MQTT publish (in DPM mode)

13.5.3.2.2 Receive MQTT Message

1. mqtt_pub: publish a message "hello" to the topic da16k1 and try to publish it to other topics as well. The
mqtt_app has subscribed to 3 topics: da16k1, da16k2, and da16k3.

2. The DA16200 EVB wakes up from DPM Sleep and the mqtt_app receives and display the message "hello"

in the console. See the message callback my_app_mqtt_msg_cb().

3. After displaying the message, the DA16200 EVB enters DPM Sleep.

Figure 71. Receive MQTT message (in DPM mode)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 142

13.5.3.2.3 Receive and Reply MQTT Message

1. mqtt_pub: publish a message reply_needed to the topic da16k1.

2. The DA16200 EVB wakes up from DPM Sleep and the mqtt_app receives the message and try to publish a

message "DA16K status: Not bad ()" to topic _da16k. The message callback my_app_mqtt_msg_cb() upon

receipt of "reply_needed", tries to publish a message to topic _da16k.

3. mqtt_sub (subscribed to _da16k): display the message received.

4. After displaying the message, the DA16200 EVB enters DPM sleep.

Figure 72. MQTT message receive and reply (in DPM mode)

13.5.3.2.4 MQTT Unsubscribe

1. mqtt_pub: publish a message "unsub:da16k2" to the topic da16k1.

2. The DA16200 EVB wakes up from DPM Sleep and the mqtt_app receives the message and try to

unsubscribe one of subscribed topics. The message callback my_app_mqtt_msg_cb(), upon receipt of

"unsub:da16k2," tries to unsubscribe da16k2.

3. mqtt_pub: try publishing a message to da16k2. Make sure that the mqtt_app does not receive the message.

4. After displaying the message, the DA16200 EVB enters DPM sleep.

Figure 73. MQTT unsubscribe action (in DPM mode)

13.5.4 Code Walkthrough

The MQTT client sample consists of two threads. The main thread is mqtt_client_sample(). The job handling

thread is my_app_q_handler().

Each job for sample application is triggered by callbacks.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 143

void mqtt_client_sample(void * param)

{

…

 // Register callbacks to mqtt_client

 mqtt_client_set_msg_cb(my_app_mqtt_msg_cb);

 mqtt_client_set_pub_cb(my_app_mqtt_pub_cb);

 mqtt_client_set_conn_cb(my_app_mqtt_conn_cb);

 mqtt_client_set_subscribe_cb(my_app_mqtt_sub_cb);

…

 // mqtt user config in the 1st run

 my_app_mqtt_user_config();

…

 // Wait for SNTP sync

 ret = sntp_wait_sync(10);

…

 // Start mqtt_client

 mqtt_client_start();

…

 // Wait until mqtt_client is connected to mqtt_broker

 my_app_mqtt_chk_connection(10)

…

 // Application init

 ret = my_app_init();

…

 // Main event loop

 while (1) {

 …

 events = xEventGroupWaitBits(my_app_event_group,…

 …

 if (events & EVT_PUB_COMPLETE) {

 …

 PRINTF(CYAN_COLOR "[MQTT_SAMPLE] Sending a periodic message complete. \n" CLEAR_COLOR);

 …

 } else if (events & EVT_PUB_ERROR) {

 …

 } else if (events & EVT_UNSUB_DONE) {

 PRINTF(CYAN_COLOR "[MQTT_SAMPLE] Unsubscribe complete. \n" CLEAR_COLOR);

 …

 } else if (events & EVT_UNSUB_ERR) {

 …

 }

}

Periodic MQTT publish is triggered by my_app_mqtt_pub_send_periodic() or

_my_app_mqtt_pub_send_periodic() in the DPM mode.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 144

static void _my_app_mqtt_pub_send_periodic(TimerHandle_t xTimer)

{

 DA16X_UNUSED_ARG(xTimer);

 BaseType_t ret;

 if (!mqtt_client_is_running() && !is_mqtt_client_thd_alive()) {

 PRINTF(CYAN_COLOR "[MQTT_SAMPLE] Mqtt_client is in terminated state, terminating my app ... \n"

CLEAR_COLOR);

 if ((ret = my_app_send_to_q(NAME_JOB_MY_APP_TERM, NULL, APP_MSG_TERMINATE, NULL)) != pdPASS) {

 PRINTF(RED_COLOR "[%s] Failed to add a message to Q (%d)\r\n" CLEAR_COLOR, __func__, ret);

 }

 return;

 } else if (!mqtt_client_is_running() && is_mqtt_client_thd_alive()) {

 PRINTF(CYAN_COLOR "[MQTT_SAMPLE] Mqtt_client may be trying to reconnect ... canceling the job this

time \n" CLEAR_COLOR);

 return;

 }

 if ((ret = my_app_send_to_q(NAME_JOB_MQTT_TX_PERIODIC, &tx_periodic, APP_MSG_PUBLISH, NULL)) !=

pdPASS) {

 PRINTF(RED_COLOR "[%s] Failed to add a message to Q (%d)\r\n" CLEAR_COLOR, __func__, ret);

 }

 return;

}

The mqtt_app receives the message through the message callback my_app_mqtt_msg_cb(), which triggers the

MQTT publish or MQTT unsubscribe action depending on message contents or types.

void my_app_mqtt_msg_cb(const char *buf, int len, const char *topic)

{

 DA16X_UNUSED_ARG(len);

 BaseType_t ret;

 PRINTF(CYAN_COLOR "[MQTT_SAMPLE] Msg Recv: Topic=%s, Msg=%s \n" CLEAR_COLOR, topic, buf);

 if (strcmp(buf, "reply_needed") == 0) {

 if ((ret = my_app_send_to_q(NAME_JOB_MQTT_TX_REPLY, &tx_reply, APP_MSG_PUBLISH, NULL)) != pdPASS)

{

 PRINTF(RED_COLOR "[%s] Failed to add a message to Q (%d)\r\n" CLEAR_COLOR, __func__, ret);

 }

 } else if (strncmp(buf, APP_UNSUB_HDR, 6) == 0) {

 if ((ret = my_app_send_to_q(NAME_JOB_MQTT_UNSUB, NULL, APP_MSG_UNSUB, buf)) != pdPASS) {

 PRINTF(RED_COLOR "[%s] Failed to add a message to Q (%d)\r\n" CLEAR_COLOR, __func__, ret);

 }

 } else {

 return;

 }

}

For each action execution, the thread my_app_q_handler() handles the job when one is submitted to the

message queue my_app_q.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 145

void my_app_q_handler(void* arg)

{

…

 while (1) {

 …

 xStatus = xQueueReceive(my_app_q, &RecvVal, portMAX_DELAY);

 …

 if (RecvVal == APP_MSG_PUBLISH) {

 …

 my_app_mqtt_pub_msg() // invoke mqtt_client_send_message()

 } else if (RecvVal == APP_MSG_UNSUB) {

 mqtt_client_unsub_topic()

 …

 }

}

▪ Cert 2: Client Key

-----BEGIN RSA PRIVATE KEY-----

MIIEpQIBAAKCAQEA3KO5EOFtm/3wcNmYEgF1VgQpiVtMmsfCuvNpEYh5QdWieSJv

K0xJLWZTw0FYaDt1K/iI/WPLpA9x6gjGveU9Wty8vZYQyDBP1UakYGURmvxQv45I

ivbvUoCFz2aiZNbPyVRu2u3XgvAbyoqiBYV6B5dDeJyccFQPJGoOPHV2608azh9u

gvasFPOYkv3NaMxyTJqtOdlj0kGSCEqvPlZsZQm218UO5FNqGZMQ6lt4TCNzj0vN

LPKuLTM7orb8xTtCbwB4IeCBchO8oJyBO/pTPX9xMMxAsPZxAXS+wL352C4ZSBCP

EvMGU1KZ3fFwOULO0GuKyzbqiNu92SFiS4fb/wIDAQABAoIBAQDcnbCc2mt5AM98

Z3aQ+nhSy9Kkj2/njDqAKIc0ituEIpNUwEOcbaj2Bk1W/W3iuyEMGHURuMmUgAUN

WD0w/5j705+9ieG56eTJgts1r5mM+SHch+6tVQAz5GLn4N4cKlaWHyDBM/S77k47

lacwEijUkkFaxm3+O27woEMf3OxNl24KmRenMYBhqcsoT4BYBw3Bh8xe+XN95rXj

2BdIbr5+RWGc9Zsz4o5Wmd4mL/JvbKeohrsecien4TZRzWFku93XV5kie1c1aJy1

nJ85bGJk4focmP/2ToxQysTbPYCxHVTIHuADK/qf9SGHJ9F7EBHE7+0isuwBbqOD

OzS8rHdRAoGBAPCXlaHumEkLIRv3enhpHPBYxnDndNCtT1T6+Cuit/vfo6K6oA7p

iUaej/GPZsDKXhayeTiEaq7QMinUtGkiCgGlVtXghXuCZz6KrH19W6wzC6Pbokmq

BZak4LQcvGavt3VzjliAKLcdn6nQt/+bp/jKDJOKVbvb30sjS035Ah4zAoGBAOrF

BgE9UTEnfQHIh7pyiM1DAomBbdrlRos8maQl26cHqUHN3+wy1bGHLzOjYFFoAasx

eizw7Gudgbae28WIP1yLGrpt15cqVAvlCYmBtZ3C98FuT3FYgEEZpWNmE8Om+5UM

td+mtMjonWAPkCYC+alqUZzeIs+CZs5CHKYCDqcFAoGBAOfkQv38GV2102jARJPQ

RGtINaRXApmrod43s4Fjac/kAzVyiZk18PFXHUhnvlMt+jgIN5yIzMbHtsHo2SbH

/zsM4MBuklm0G80FHjIp5HT6EksSA77amF5VdptDYzfaP4p+IYIdrKCqddzYZrCA

mArMvAhs+iuCRhuG3is+SZNPAoGAHs6r8w2w0dp0tP8zkGvnN8hLVO//EnJzx2G0

Z63wHQMMWu5BLCWflSRANW6C/SvAzE450hvralPI6cX+4PT4G5TFdSFk4RlU3hq4

Has/wewLxv5Kvnz2l5Rd96U1gr8u1GhOlYKyxop/3FMuf050pJ6nBwa/WquqAfb6

+23ZrmECgYEA6l0GFHwMFBNnpPuxHgYgS5+4g3+8DhZZIDc7IflBCBWF/ZwbM+nH

+JSxiYYjvD7zIBhndqERcZ+fvbZTQ8oymr3j5AESM0ZfAHbft6IFQWjDUC3IDUF/

4F0cUidFC8smu6Wa2tjvSIz7DfvmDsn1l+7s9qQvDxdyPas0IkL/v8w=

-----END RSA PRIVATE KEY-----

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 146

14. Network Examples: Protocols/Applications

14.1 CoAP Client

14.1.1 Peer Application

The example in this section requires a peer device (Laptop or desktop) running a CoAP test server application to
demonstrate the DA16200 CoAP client sample application. The sample application is based on Eclipse
CaliforniumTM (https://www.eclipse.org/californium/) and runs on a Windows OS as shown in Figure 74.

Figure 74. Start of CoAP server application

The CoAP server application is a simple CoAP server. It has two resources, called \res and \obs_res. The res
resource allows GET, POST, PUT, DELETE, and PING methods. The obs_res resource allows OBSERVE
request to send an observe notification every ten seconds.

14.1.2 How to Run

1. Run a CoAP server application on the peer computer.

2. In the e2 studio, import a project for the CoAP Client application.

~/SDK/apps/common/examples/Network/CoAP_Client/projects/da16200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

After a connection is made to an AP, the example application initializes a CoAP client to start the service.

14.1.3 CoAP Client Initialization

This section explains how to initialize and construct a CoAP client.

int coap_client_sample_init_config(coap_client_sample_conf_t *config)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 config->state = COAP_CLIENT_SAMPLE_STATE_SUSPEND;

 //Init coap client

 ret = coap_client_init(coap_client_ptr, COAP_CLIENT_SAMPLE_DEF_NAME);

 if (ret != DA_APP_SUCCESS) {

 PRINTF("[%s]Failed to init coap client(0x%x)\r\n", __func__, -ret);

 goto end;

 }

 coaps_client_set_authmode(coap_client_ptr, 0);

 config->req_port = COAP_CLIENT_SAMPLE_REQUEST_PORT;

 config->obs_port = COAP_CLIENT_SAMPLE_OBSERVE_PORT;

end:

 return ret;

}

https://www.eclipse.org/californium/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 147

The coap_client_sample_init_config function guides how the CoAP client is initialized. The

coap_client_init function initializes the CoAP Client instance. If a CoAP observe relationship is already

established in DPM wake-up, it is recovered. The API’s details are as follows:

Table 24. APIs for initializing CoAP client

Item Description

int coap_client_init(coap_client_t *client_ptr, char *name_ptr)

Prototype int coap_client_init(coap_client_t *client_ptr, char *name_ptr)

Parameter client_ptr: CoAP Client instance pointer

name_ptr: Name of CoAP Client

Return 0 (DA_APP_SUCCESS) on success.

Description Initialize CoAP Client.

int coaps_client_set_authmode(coap_client_t *client_ptr, unsigned int mode)

Prototype int coaps_client_set_authmode(coap_client_t *client_ptr, unsigned int mode)

Parameter client_ptr: CoAP Client instance pointer

mode: DTLS's auth mode

Return 0 (DA_APP_SUCCESS) on success.

Description If true, DTLS server’s certificate validity is checked during DTLS handshake. Default is false.

14.1.4 CoAP Client Deinitialization

This section explains how to release the CoAP client.

int coap_client_sample_deinit_config(coap_client_sample_conf_t *config)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 //Deinit coap client

 ret = coap_client_deinit(coap_client_ptr);

 if (ret != DA_APP_SUCCESS) {

 PRINTF("[%s]Failed to deinit coap client(0x%x)\r\n", __func__, -ret);

 }

 return ret;

}

The coap_client_deinit function releases the CoAP client. The API details are as follows.

Table 25. API for deinitializing CoAP client

Item Description

int coap_client_deinit(coap_client_t *client_ptr)

Prototype int coap_client_deinit(coap_client_t *client_ptr)

Parameter client_ptr: CoAP Client instance pointer

Return 0 (DA_APP_SUCCESS) on success.

Description Deinitialize CoAP client.

14.1.5 CoAP Client Request and Response

The DA16200 provides a CoAP client request (GET/POST/PUT/DELETE/PING) and response. In this section,
we describe how the DA16200 sends the CoAP request to the CoAP server and receives the CoAP response.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 148

14.1.5.1 CoAP URI and Proxy URI

To transmit a CoAP request and response, a URI must be set up. DA16200 provides APIs as shown below.

Table 26. APIs for setting up CoAP URI and proxy URI

Item Description

int coap_client_set_uri(coap_client_t *client_ptr, unsigned char *uri,

size_t urilen)

Prototype int coap_client_set_uri(coap_client_t *client_ptr, unsigned char *uri,size_t urilen)

Parameter client_ptr: CoAP Client instance pointer

uri: URI of CoAP request

urilen: Length of URI

Return 0 (DA_APP_SUCCESS) on success.

Description Setup URI.

int coap_client_set_proxy_uri(coap_client_t *client_ptr, unsigned char *uri,

size_t urilen)

Prototype int coap_client_set_proxy_uri(coap_client_t *client_ptr, unsigned char *uri, size_t urilen)

Parameter client_ptr: CoAP Client instance pointer

uri: Proxy URI of CoAP request

urilen: Length of URI

Return 0 (DA_APP_SUCCESS) on success.

Description Setup Proxy URI. If URI is NULL, previous Proxy URI is removed.

14.1.5.2 GET Method

The DA16200 provides an API to send a GET request as shown in the example code.

int coap_client_sample_request_get(coap_client_sample_conf_t *config,

 coap_client_sample_request_t *request)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 coap_rw_packet_t resp_packet;

 memset(&resp_packet, 0x00, sizeof(coap_rw_packet_t));

 //set URI.

 ret = coap_client_set_uri(coap_client_ptr,

 (unsigned char *)request->uri,

 request->urilen);

 //set Proxy URI. If null, previous proxy uri will be removed.

 ret = coap_client_set_proxy_uri(coap_client_ptr,

 (unsigned char *)request->proxy_uri,

 request->proxy_urilen);

 //send coap request

 ret = coap_client_request_get_with_port(coap_client_ptr, config->req_port);

 //receive coap response

 ret = coap_client_recv_response(coap_client_ptr, &resp_packet);

 //display output

 if (resp_packet.payload.len) {

 coap_client_sample_hexdump("GET Request",

 resp_packet.payload.p,

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 149

 resp_packet.payload.len);

 }

end:

 //release coap response

 coap_clear_rw_packet(&resp_packet);

 return ret;

}

The CoAP GET request is generated and sent in function coap_client_request_get_with_port(). A CoAP

response is received in function coap_client_recv_response(). The API details are as follows:

Table 27. GET API for CoAP client

Item Description

int coap_client_request_get_with_port(coap_client_t *client_ptr, unsigned int port)

Prototype int coap_client_request_get_with_port(coap_client_t *client_ptr, unsigned int port)

Parameter client_ptr: CoAP Client instance pointer

port: UDP socket's local port number

Return 0 (DA_APP_SUCCESS) on success.

Description CoAP client sends GET request.

The DA16200 CoAP client sample application provides a command to send a GET request to the CoAP server.
Figure 75, Figure 76, and Figure 77 show the interaction of two DA16200 CoAP clients with the CoAP server for
a GET request.

Figure 75. GET method of CoAP client #1

Figure 76. GET method of CoAP client #2

Figure 77. GET method of CoAP client #3

14.1.5.3 POST Method

The DA16200 provides an API to send a POST request as shown in the example code.

int coap_client_sample_request_post(coap_client_sample_conf_t *config,

 coap_client_sample_request_t *request)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 coap_rw_packet_t resp_packet;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 150

 memset(&resp_packet, 0x00, sizeof(coap_rw_packet_t));

 //set URI

 ret = coap_client_set_uri(coap_client_ptr,

 (unsigned char *)request->uri,

 request->urilen);

 //set Proxy URI. If null, previous proxy uri will be removed.

 ret = coap_client_set_proxy_uri(coap_client_ptr,

 (unsigned char *)request->proxy_uri,

 request->proxy_urilen);

 //send coap request

 ret = coap_client_request_post_with_port(coap_client_ptr, config->req_port,

 request->data, request->datalen);

 //receive coap response

 ret = coap_client_recv_response(coap_client_ptr, &resp_packet);

 //display output

 if (resp_packet.payload.len) {

 coap_client_sample_hexdump("POST Request",

 resp_packet.payload.p,

 resp_packet.payload.len);

 }

end:

 //release coap response

 coap_clear_rw_packet(&resp_packet);

 return ret;

}

A CoAP POST request is generated and sent in function coap_client_request_post_with_port(). A CoAP

response is received in function coap_client_recv_response(). The API details are as follows.

Table 28. POST API for CoAP client

Item Description

UINT coap_client_request_post_with_port(coap_client_t *client_ptr, UINT port, unsigned char * payload, unsigned

int payload_len)

Prototype UINT coap_client_request_post_with_port(coap_client_t *client_ptr, UINT port, unsigned char

*payload, unsigned int payload_len)

Parameter client_ptr: CoAP Client instance pointer

port: UDP socket's local port number

payload: Payload pointer

payload_len: Length of payload

Return 0 (DA_APP_SUCCESS) on success.

Description CoAP client sends POST request.

The DA16200 CoAP client sample application has a command to send a POST request to a CoAP server.
Figure 78, Figure 79, and Figure 80 show the interaction of two DA16200 CoAP clients with the CoAP server for
a POST request.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 151

Figure 78. POST method of CoAP client #1

Figure 79. POST method of CoAP client #2

Figure 80. POST method of CoAP client #3

14.1.5.4 PUT Method

The DA16200 provides an API to send a PUT request as shown in the example code.

int coap_client_sample_request_put(coap_client_sample_conf_t *config,

 coap_client_sample_request_t *request)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 coap_rw_packet_t resp_packet;

 memset(&resp_packet, 0x00, sizeof(coap_rw_packet_t));

 //set URI

 ret = coap_client_set_uri(coap_client_ptr,

 (unsigned char *)request->uri,

 request->urilen);

 //set Proxy URI. If null, previous proxy uri will be removed.

 ret = coap_client_set_proxy_uri(coap_client_ptr,

 (unsigned char *)request->proxy_uri,

 request->proxy_urilen);

 //send coap request

 ret = coap_client_request_put_with_port(coap_client_ptr, config->req_port,

 request->data,

 request->datalen);

 //receive coap response

 ret = coap_client_recv_response(coap_client_ptr, &resp_packet);

 //display output

 if (resp_packet.payload.len) {

 coap_client_sample_hexdump("PUT Request",

 resp_packet.payload.p,

 resp_packet.payload.len);

 }

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 152

end:

 //release coap response

 coap_clear_rw_packet(&resp_packet);

 return ret;

}

The CoAP PUT request is generated and sent in function coap_client_request_put_with_port(). A CoAP

response is received in function coap_client_recv_response(). The API details are as follows.

Table 29. PUT API for CoAP client

Item Description

int coap_client_request_put_with_port(coap_client_t *client_ptr, unsigned int port, unsigned char *payload,

unsigned int payload_len)

Prototype int coap_client_request_put_with_port(coap_client_t *client_ptr, unsigned int port, unsigned

char *payload, unsigned int payload_len)

Parameter client_ptr: CoAP Client instance pointer

port: UDP socket's local port number

payload: Payload pointer

payload_len: Length of payload

Return 0 (DA_APP_SUCCESS) on success.

Description CoAP Client sends PUT request.

The DA16200 CoAP client sample application provides a command to send a PUT request to the CoAP server.
Figure 81, Figure 82, and Figure 83 show the interaction of two DA16200 CoAP clients and the CoAP server for
PUT requests.

Figure 81. PUT method of CoAP client #1

Figure 82. PUT method of CoAP client #2

Figure 83. PUT method of CoAP client #3

14.1.5.5 DELETE Method

The DA16200 provides an API to send a DELETE request as shown in the example code.

int coap_client_sample_request_delete(coap_client_sample_conf_t *config,

 coap_client_sample_request_t *request)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 coap_rw_packet_t resp_packet;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 153

 memset(&resp_packet, 0x00, sizeof(coap_rw_packet_t));

 //set URI

 ret = coap_client_set_uri(coap_client_ptr,

 (unsigned char *)request->uri,

 request->urilen);

 //set Proxy URI. If null, previous proxy uri will be removed.

 ret = coap_client_set_proxy_uri(coap_client_ptr,

 (unsigned char *)request->proxy_uri,

 request->proxy_urilen);

 //send coap request

 ret = coap_client_request_delete_with_port(coap_client_ptr, config->req_port);

 //receive coap response

 ret = coap_client_recv_response(coap_client_ptr, &resp_packet);

 //display output

 if (resp_packet.payload.len) {

 coap_client_sample_hexdump("DELETE Request",

 resp_packet.payload.p,

 resp_packet.payload.len);

 }

end:

 //release coap response

 coap_clear_rw_packet(&resp_packet);

 return ret;

}

A CoAP DELETE request is generated and sent in function coap_client_request_delete_with_port(). A

CoAP response is received in function coap_client_recv_response(). The API details are as follows.

Table 30. DELETE API for CoAP client

Item Description

int coap_client_request_delete_with_port(coap_client_t *client_ptr, unsigned int port)

Prototype int coap_client_request_delete_with_port(coap_client_t *client_ptr, unsigned int port)

Parameter client_ptr: CoAP Client instance pointer

port: UDP socket's local port number

Return 0(DA_APP_SUCCESS) on success

Description CoAP Client sends DELETE request to the URI

The DA16200 CoAP client sample application provides a command to send a DELETE request to the CoAP
server. Figure 84, Figure 85, and Figure 86 show the interaction of a DA16200 CoAP client and the CoAP server
for a DELETE request.

Figure 84. DELETE method of CoAP client #1

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 154

Figure 85. DELETE method of CoAP client #2

Figure 86. DELETE method of CoAP client #3

14.1.5.6 CoAP Ping

The DA16200 provides an API to send a PING request as shown in the example code.

int coap_client_sample_request_ping(coap_client_sample_conf_t *config,

 coap_client_sample_request_t *request)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 //set URI

 ret = coap_client_set_uri(coap_client_ptr,

 (unsigned char *)request->uri,

 request->urilen);

 //set Proxy URI. If null, previous proxy uri will be removed.

 ret = coap_client_set_proxy_uri(coap_client_ptr,

 (unsigned char *)request->proxy_uri,

 request->proxy_urilen);

 //progress ping request

 ret = coap_client_ping_with_port(coap_client_ptr, config->req_port);

end:

 return ret;

}

A CoAP PING request is processed in function coap_client_ping_with_port(). The API details are as follows.

Table 31. PING API for CoAP client

Item Description

int coap_client_ping_with_port(coap_client_t *client_ptr, unsigned int port)

Prototype int coap_client_ping_with_port(coap_client_t *client_ptr, unsigned int port)

Parameter client_ptr: CoAP Client instance pointer

port: UDP socket's local port number

Return 0 (DA_APP_SUCCESS) on success.

Description CoAP client sends PING request.

The DA16200 CoAP client sample application has a command to send a PING method to the CoAP server.
Figure 87 and Figure 88 show the interaction of the DA16200 CoAP client and the CoAP server for a PING
request.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 155

Figure 87. PING method of CoAP client #1

Figure 88. PING method of CoAP client #2

14.1.5.7 CoAP Response

The DA16200 constructs a CoAP response in coap_rw_packet_t structure. In this section, details are given of

how a CoAP response is constructed.

~/SDK/core/coap/coap_common.h

typedef struct {

 /// Version number

 uint8_t version;

 /// Message type

 uint8_t type;

 /// Token length

 uint8_t token_len;

 /// Status code

 uint8_t code;

 /// Message-ID

 uint8_t msg_id[2];

} coap_header_t;

typedef struct {

 /// Option number

 uint8_t num;

 /// Option value

 coap_rw_buffer_t buf;

} coap_rw_option_t;

typedef struct {

 /// Header of the packet

 coap_header_t header;

 /// Token value, size as specified by header.token_len

 coap_rw_buffer_t token;

 /// Number of options

 uint8_t numopts;

 /// Options of the packet

 coap_rw_option_t opts[MAXOPT];

 /// Payload carried by the packet

 coap_rw_buffer_t payload;

} coap_rw_packet_t;

The coap_rw_packet_t structure includes the CoAP response information. After CoAP response is received, the

DA16200 parses and constructs it. To receive a CoAP response, DA16200 provides an API. See Table 32. The
API must be called after a CoAP requests to send a response.

Table 32. Response APIs for CoAP client

Item Description

void coap_clear_rw_packet(coap_rw_packet_t *packet)

Prototype void coap_clear_rw_packet(coap_rw_packet_t *packet)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 156

Item Description

Parameter client_ptr: CoAP Client instance pointer

resp_ptr: CoAP response

Return 0 (DA_APP_SUCCESS) on success.

Description Release coap_rw_packet structure.

int coap_client_recv_response(coap_client_t *client_ptr, coap_rw_packet_t *resp_ptr)

Prototype int coap_client_recv_response(coap_client_t *client_ptr, coap_rw_packet_t *resp_ptr)

Parameter client_ptr: CoAP Client instance pointer

resp_ptr: CoAP response

Return 0 (DA_APP_SUCCESS) on success.

Description Receive CoAP response for specific CoAP request.

14.1.6 CoAP Observe

This section describes how CoAP observe is registered and deregistered from the CoAP server. DA16200
provides CoAP observe functionality. After registration at a CoAP server, DA16200 (CoAP client) is ready to
receive an observe notification.

14.1.6.1 Registration

The DA16200 provides an API to register a CoAP observe as shown in the example code.

int coap_client_sample_register_observe(coap_client_sample_conf_t *config,

 coap_client_sample_request_t *request)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 //set URI

 ret = coap_client_set_uri(coap_client_ptr,

 (unsigned char *)request->uri,

 request->urilen);

 //set Proxy URI. If null, previous proxy uri will be removed.

 ret = coap_client_set_proxy_uri(coap_client_ptr,

 (unsigned char *)request->proxy_uri,

 request->proxy_urilen);

 //register coap observe

 ret = coap_client_set_observe_notify_with_port(coap_client_ptr,

 config->obs_port,

 coap_client_sample_observe_notify,

 coap_client_sample_observe_close_notify);

end:

 return ret;

}

The DA16200 CoAP observe allows only one connection. After successful registration, the DA16200 CoAP client
allows receiving an observe notification. When the observe notification is received, the callback function
(observe_notify) is called. If there is no observe notification during the max-age, the close callback function
(observe_close_notify) is called. The API details are as follows.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 157

Table 33. Observe registration API for CoAP client

Item Description

int coap_client_set_observe_notify_with_port(coap_client_t *client_ptr, unsigned int port, int

(*observe_notify)(void *client_ptr, coap_rw_packet_t *resp_ptr), void (*observe_close_notify)(char

*timer_name))

Prototype int coap_client_set_observe_notify_with_port(coap_client_t *client_ptr, unsigned int
port, int (*observe_notify)(void *client_ptr, coap_rw_packet_t *resp_ptr), void
(*observe_close_notify)
(char *timer_name))

Parameter client_ptr: CoAP Client instance pointer

port: UDP socket’s local port number

observe_notify: Callback function for CoAP observe notification

observe_close_notify: Callback function for CoAP observe closing

Return 0 (DA_APP_SUCCESS) on success.

Description Register CoAP observe. The callback function, observe_notify, is called when CoAP observe

notification is received.

The DA16200 CoAP client sample application has a command for CoAP observe. Figure 89, Figure 90, and
Figure 91 show the interaction of the DA16200 CoAP client and the CoAP server for CoAP observe. The CoAP
server sends an observe notification every five seconds before deregistration.

Figure 89. CoAP observe of CoAP client #1

Figure 90. CoAP observe of CoAP client #2

Figure 91. CoAP observe of CoAP client #3

14.1.6.2 Deregistration

The DA16200 provides an API to deregister a CoAP observe as shown in the example code.

int coap_client_sample_unregister_observe(coap_client_sample_conf_t *config)

{

 int ret = DA_APP_SUCCESS;

 coap_client_t *coap_client_ptr = &config->coap_client;

 coap_client_clear_observe(coap_client_ptr);

 return ret;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 158

}

The API details are as follows.

Table 34. Observe deregistration API for CoAP client

Item Description

VOID coap_client_clear_observe(coap_client_t *coap_client)

Prototype VOID coap_client_clear_observe(coap_client_t *coap_client)

Parameter coap_client: CoAP Client instance pointer

Return

Description Deregister CoAP observe relation.

14.2 DNS Query

14.2.1 How to Run

This section shows how to get the IPv4 address from a domain name URL. Two types of API functions are
supported to get the IP address:

▪ Get a single IPv4 address:

• char *dns_A_Query(char *domain_name, unsigned long wait_option)

▪ Get multiple IPv4 addresses:

• unsigned int dns_ALL_Query(unsigned char *domain_name,
unsigned char *record_buffer,
unsigned int record_buffer_size,
unsigned int *record_count,
unsigned long wait_option)

1. In the e2 studio, import a project for the DNS Query sample application.

~/SDK/apps/common/examples/Network/DNS_Query/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application starts a DNS query operation with a test URL.

Figure 92. DNS query result

14.2.2 DNS Query Initialization

This example creates entry function which is dns_query_sample().

void dns_query_sample(void * param)

{

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 159

 char *test_url = NULL;

 if (netmode[WLAN0_IFACE] == DHCPCLIENT) {

 // wait until dhcp is done

 while (da16x_network_main_check_dhcp_state(WLAN0_IFACE) != DHCP_STATE_BOUND) {

 vTaskDelay(100);

 }

 }

 vTaskDelay(500);

 /* Check test url */

 test_url = read_nvram_string("TEST_DOMAIN_URL");

 if (test_url == NULL) {

 test_url = TEST_URL;

 }

 PRINTF("\n\n");

 dns_A_query_sample(test_url);

 vTaskDelete(NULL);

}

14.2.3 Get Single IPv4 Address

This example shows the use of the API function char *dns_A_Query(char *domain_name, unsigned long

wait_option) to get the IPv4 address string with a domain name URL.

void dns_A_query_sample(char *test_url_str)

{

 char *ipaddr_str = NULL;

 PRINTF(">>> IPv4 address DNS query test ...\n");

 /* DNS query with test url string */

 ipaddr_str = dns_A_Query(test_url_str, MAX_DNS_QUERY_TIMEOUT);

 /* Fail checking ... */

 if (ipaddr_str == NULL) {

 PRINTF("\nFailed to dns-query with %s\n", test_url_str);

 } else {

 PRINTF("- Name : %s\n", test_url_str);

 PRINTF("- Addresses : %s\n", ipaddr_str);

 }

}

14.3 SNTP and Get Current Time

Wi-Fi devices may need to synchronize the device clock on the internet with the use of TLS or communication
with the server. DA16200 provides SNTP for this operation and users can use this function to get the current
time.

14.3.1 How to Run

1. In the e2 studio, import a project for the SNTP and current time sample application.

~/SDK/apps/common/examples/ETC/Cur_Time/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application starts an SNTP client with test values.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 160

 ~/SDK/apps/common/examples/ETC/Cur_Time/src/cur_time_sample.c

#define TEST_SNTP_SERVER "time.windows.com"

#define TEST_SNTP_RENEW_PERIOD 600

#define TEST_TIME_ZONE (9 * 3600) // seconds

#define SNTP_ENABLE 1

#define ONE_SECONDS 100

#define CUR_TIME_LOOP_DELAY 10 // seconds

The legacy AP must be connected to the internet.

5. After a connection is made to the SNTP server, DA16200 shows the connection result on the debug console.

Figure 93. Result of DA16200 SNTP #1

The DA16200 periodically gets the current time (the test period: 10 seconds).

Figure 94. Result of DA16200 SNTP #2

14.3.2 Sample Code

1. Configure SNTP client information.

 ~/SDK/apps/common/examples/ETC/Cur_Time/src/cur_time_sample.c

void cur_time_sample(void * param)

{

 unsigned char status;

 __time64_t now;

 struct tm *ts;

 char time_buf[80];

 /* Config SNTP client */

 status = set_n_start_SNTP();

 if (status == pdFAIL) {

 PRINTF("[%s] Faile to start SNTP client ...\n", __func__);

 vTaskDelete(NULL);

 return;

 }

}

2. If the SNTP client has already been started with predefined values, then skip this configuration. Set the
SNTP server address, time update period, and time zone and finally enable the function.

 ~/SDK/apps/common/examples/ETC/Cur_Time/src/cur_time_sample.c

static UCHAR set_n_start_SNTP(void)

{

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 161

 unsigned int status = TX_SUCCESS;

 /* Check current SNTP running status */

 status = getSNTPuse();

 if (status == TX_TRUE) {

 /* Already SNTP module running ... */

 return TX_SUCCESS;

 }

 /* Config and save SNTP server domain */

 status = (unsigned int)setSNTPsrv(TEST_SNTP_SERVER, 0);

 if (status != TX_SUCCESS) {

 PRINTF("[%s] Failed to write nvram operation (SNTP server

 domain)...\n", __func__);

 status = TX_START_ERROR;

 goto _exit;

 }

 /* Config and save SNTP periodic renew time : seconds */

 status = (unsigned int)setSNTPperiod(TEST_SNTP_RENEW_PERIOD);

 if (status != TX_SUCCESS) {

 PRINTF("[%s] Failed to write nvram operation (SNTP renew

 period)...\n", __func__);

 status = TX_START_ERROR;

 goto _exit;

 }

 /* Config and save SNTP time zone */

 status = (unsigned int)setTimezone(TEST_TIME_ZONE);

 if (status != TX_SUCCESS) {

 PRINTF("[%s] Failed to write nvram operation (SNTP renew

 period)...\n", __func__);

 status = TX_START_ERROR;

 goto _exit;

 }

 da16x_SetTzoff(TEST_TIME_ZONE);

 /* Config and save SNTP client mode : enable */

 status = setSNTPuse(SNTP_ENABLE);

 if (status != TX_SUCCESS) {

 PRINTF("[%s] Failed to write nvram operation (SNTP mode)...\n",

 __func__);

 status = TX_START_ERROR;

 goto _exit;

 }

_exit :

 return status;

}

3. After a connection is made to the SNTP server, the DA16200 periodically gets the current time.

 ~/SDK/apps/common/examples/ETC/Cur_Time/src/cur_time_sample.c

void cur_time_sample(void * param)

{

 ...

 while (1) {

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 162

 /* delay */

 vTaskDelay(CUR_TIME_LOOP_DELAY * ONE_SECONDS);

 /* get current time */

 da16x_time64(NULL, &now);

 ts = (struct tm *)da16x_localtime64(&now);

 /* make time string */

 da16x_strftime(time_buf, sizeof(time_buf), "%Y.%m.%d %H:%M:%S", ts);

 /* display current time string */

 PRINTF("- Current Time : %s (GMT %+02ld:%02ld)\n",

 time_buf,

 da16x_Tzoff() / 3600,

 da16x_Tzoff() % 3600);

 }

}

14.4 SNTP and Get Current Time in DPM

This example application applies to the DPM function. Most parts of the example came from as Section 14.3 and
the only different part is to apply the example to the DPM mode.

14.4.1 How to Run

1. In the e2 studio, import a project for the SNTP and the current time in the DPM sample application.

~/SDK/apps/common/examples/ETC/Cur_Time_DPM/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application starts an SNTP client with test values.

~/SDK/apps/common/examples/ETC/Cur_Time_DPM/src/cur_time_dpm_sample.c

#define TEST_SNTP_SERVER "time.windows.com"

#define TEST_SNTP_RENEW_PERIOD 600

#define TEST_TIME_ZONE (9 * 3600) // seconds

#define SNTP_ENABLE 1

#define ONE_SECONDS 100

#define CUR_TIME_LOOP_DELAY 10 // seconds

5. After a connection is made to the SNTP server, DA16200 shows the connection result on the debug console
and goes to DPM Sleep mode.

NOTE

▪ If the SNTP client is started with pre-defined values, this configuration is ignored.

▪ The legacy AP must be connected to the internet.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 163

Figure 95. Result of DA16200 SNTP DPM #1

The DA16200 periodically gets the current time (the test period is 10 seconds).

Figure 96. Result of DA16200 SNTP DPM #2

14.4.2 Sample Code

The SNTP configuration interface is the same as the non-DPM SNTP example. When the DA16200 wakes up
from DPM Sleep mode, use the RTM API to get the current SNTP status, or save the SNTP status into the RTM.

~/SDK/apps/common/examples/ETC/Cur_Time_DPM/src/cur_time_dpm_sample.c

static unsigned char set_n_start_SNTP(void)

{

 unsigned char status = pdPASS;

 /* Check current SNTP running status */

 if (dpm_mode_is_wakeup() == DPM_WAKEUP) {

 status = get_sntp_use_from_rtm();

 } else {

 status = get_sntp_use();

 }

 if (status == pdPASS) {

 long time_zone;

 /* Already SNTP module running, set again time-zone ... */

 time_zone = get_timezone_from_rtm();

 da16x_SetTzoff(time_zone);

 return pdPASS;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 164

 }

 if (dpm_mode_is_wakeup() == NORMAL_BOOT) {

 /* Config and save SNTP server URI */

 status = set_sntp_server(TEST_SNTP_SERVER, 0);

 if (status != pdPASS) {

 PRINTF("Failed to write nvram operation (SNTP server domain)...\n");

 status = pdFAIL;

 goto _exit;

 }

 /* Config and save SNTP periodic renew time : seconds */

 status = set_sntp_period(TEST_SNTP_RENEW_PERIOD);

 if (status != pdPASS) {

 PRINTF("Failed to write nvram operation (SNTP renew period)...\n");

 status = pdFAIL;

 goto _exit;

 }

 /* Config and save SNTP time zone */

 set_time_zone(TEST_TIME_ZONE);

 set_timezone_to_rtm(TEST_TIME_ZONE);

 da16x_SetTzoff(TEST_TIME_ZONE);

 set_time_zone(TEST_TIME_ZONE);

 /* Config, save, and run SNTP client */

 if (set_sntp_use(SNTP_ENABLE) != 0) {

 PRINTF("[%s] Failed to run SNTP...\n", __func__);

 status = pdFAIL;

 goto _exit;

 }

 /* Save config and start SNTP client */

 set_sntp_use_to_rtm(status);

 }

_exit :

 return status;

}

When connected to the SNTP server, the DA16200 starts an RTC timer to periodically get the current time.

~/SDK/apps/common/examples/ETC/Cur_Time_DPM/src/cur_time_dpm_sample.c

void cur_time_dpm_sample(void * param)

{

 ...

 /* Register periodic RTC Timer : Get current time */

 if (dpm_mode_is_wakeup() == NORMAL_BOOT){

 /* Time delay for stable running SNTP client */

 vTaskDelay(10);

 status = dpm_timer_create(SAMPLE_CUR_TIME_DPM,

 "timer1",

 display_cur_time,

 CUR_TIME_LOOP_DELAY,

 CUR_TIME_LOOP_DELAY);

 switch ((int)status) {

 case DPM_MODE_NOT_ENABLED :

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 165

 case DPM_TIMER_SEC_OVERFLOW :

 case DPM_TIMER_ALREADY_EXIST:

 case DPM_TIMER_NAME_ERROR :

 case DPM_UNSUPPORTED_RTM :

 case DPM_TIMER_REGISTER_FAIL:

 case DPM_TIMER_MAX_ERR :

 PRINTF(">>> Fail to create %s timer (err=%d)\n",

 SAMPLE_CUR_TIME_DPM, (int)status);

 // Delay to display above message on console ...

 vTaskDelay(2);

 break;

 }

 /* Set flag to go to DPM Sleep mode 3 */

 dpm_app_sleep_ready_set(SAMPLE_CUR_TIME_DPM);

 } else {

 /* Notice initialize done to DPM module */

 dpm_app_wakeup_done(SAMPLE_CUR_TIME_DPM);

 }

 vTaskDelete(NULL);

}

The SNTP configuration interface is the same as for the non-DPM SNTP example.

~/SDK/apps/common/examples/ETC/Cur_Time_DPM/src/cur_time_dpm_sample.c

static void display_cur_time(char *timer_name)

{

 dpm_app_wakeup_done(SAMPLE_CUR_TIME_DPM);

 __time64_t now;

 struct tm *ts;

 char time_buf[80];

 /* get current time */

 da16x_time64(NULL, &now);

 ts = (struct tm *)da16x_localtime64(&now);

 /* make time string */

 da16x_strftime(time_buf, sizeof(time_buf), "%Y.%m.%d %H:%M:%S", ts);

 /* display current time string */

 PRINTF("- Current Time : %s (GMT %+02ld:%02ld)\n",

 time_buf,

 da16x_Tzoff() / 3600,

 da16x_Tzoff() % 3600);

 vTaskDelay(1);

 /* Set flag to go to DPM Sleep mode 3 */

 dpm_app_sleep_ready_set(SAMPLE_CUR_TIME_DPM);

}

14.5 HTTP Client

The DA16200 SDK has a ported lwIP 2.1.2 stack. With this product, an application programmer can develop an
HTTP client application that uses lwIP HTTP APIs.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 166

14.5.1 How to Run

1. In the e2 studio, import a project for the HTTP_Client sample application.

~/SDK/apps/common/examples/Network/Http_Client/projects/da16200

5. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

2. Use the console to set up the Wi-Fi station interface and connect to the AP that is connected to the Internet.

3. Complete the setup and (re)start the sample.

14.5.2 Sample Code

The sample code shows the -get and -post methods. When the sample starts by default, it is executed as a -get
method request. To request -post, define ENABLE_METHOD_POST_TEST at the top of the sample code.

To connect to HTTPS(TLS) server, enter "https://" instead of "http://" in the URL address. To set valid time
information in the certificate before the HTTPS request, the system's current time must be set (SNTP service
must be enabled). The URL and data of the sample code are examples, and it needs to modify them according
to the user environment.

The sample code is executed as follows:

1. Using the http_client_parse_uri() API, set the port number for HTTP or HTTPS and parse the path and

host_name.

unsigned char g_http_url[256] = {"http://httpbin.org/get"};

error = http_client_parse_uri(g_http_url, strlen((char *)g_http_url), &request);

if (error != ERR_OK) {

 PRINTF("Failed to set URI(error=%d) \r\n", error);

 goto finish;

}

2. Set a variable in the httpc_connection_t type and set the value to be passed to the API.

3. If the user registers the callback function in headers_done_fn and result_fn, the header response received
from the server and the result value of the HTTP Client can be returned.

static httpc_connection_t g_conn_settings;

g_conn_settings.use_proxy = 0;

g_conn_settings.altcp_allocator = NULL;

g_conn_settings.headers_done_fn = httpc_cb_headers_done_fn;

g_conn_settings.result_fn = httpc_cb_result_fn;

4. When ENABLE_METHOD_POST_TEST is defined, users can insert the data they want to send to the server using

the httpc_insert_send_data() API.

#if defined (ENABLE_METHOD_POST_TEST)

error = httpc_insert_send_data("POST", user_post_data, strlen(user_post_data));

if (error != ERR_OK) {

 PRINTF("Failed to insert data\n");

}

#endif

5. To perform TLS communication with the HTTP server that requires the HTTP client's certificate, define
ENABLE_HTTPS_SERVER_VERIFY_REQUIRED. The certificate must have been previously stored in the
TLS area of the DA16200 SFlash.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 167

if (g_conn_settings.insecure) {

 memset(&g_conn_settings.tls_settings, 0x00,sizeof(httpc_secure_connection_t));

 g_conn_settings.tls_settings.incoming_len = HTTPC_MAX_INCOMING_LEN;

 g_conn_settings.tls_settings.outgoing_len = HTTPC_DEF_OUTGOING_LEN;

#ifdef ENABLE_HTTPS_SERVER_VERIFY_REQUIRED

 http_client_read_certs(&g_conn_settings.tls_settings);

 g_conn_settings.tls_settings.auth_mode = MBEDTLS_SSL_VERIFY_NONE;

/* SNI */

 sni_str = read_nvram_string(HTTPC_NVRAM_CONFIG_TLS_SNI);

 …

/* ALPN */

 if (read_nvram_int(HTTPC_NVRAM_CONFIG_TLS_ALPN_NUM, &alpn_cnt) == 0) {

 …

#endif //ENABLE_HTTPS_SERVER_VERIFY_REQUIRED

}

6. Call API to get request. User calls httpc_get_file() or httpc_get_file_dns() depending on whether

hostname needs a DNS query. If the request is successful, the user can receive payload data through the
registered httpc_cb_recv_fn callback function.

if (isvalidip((char *)request.hostname)) {

 ip4addr_aton(g_request.hostname, &g_server_addr);

 error = httpc_get_file(&g_server_addr,

 g_request.port,

 (char *)&g_request.path[0],

 &g_conn_settings,

 (altcp_recv_fn)httpc_cb_recv_fn,

 NULL,

 &g_connection);

} else {

 error = httpc_get_file_dns((char *)&g_request.hostname[0],

 g_request.port,

 (char *)&g_request.path[0],

 &g_conn_settings,

 (altcp_recv_fn)httpc_cb_recv_fn,

 NULL,

 &g_connection);

}

7. The httpc_cb_recv_fn() callback function receives a pbuf pointer. p->payload is the data received from the

server.

static err_t httpc_cb_recv_fn(void *arg, struct tcp_pcb *tpcb,

 struct pbuf *p, err_t err)

{

 if (p == NULL) {

 PRINTF("\n[%s:%d] Receive data is NULL !! \r\n", __func__, __LINE__);

 return ERR_BUF;

 } else {

 PRINTF("\n[%s:%d] Received length = %d \r\n", __func__, __LINE__, p->len);

 hexa_dump_print("Received data \r\n", p->payload,

 p->len, 0, OUTPUT_HEXA_ASCII);

 }

 return ERR_OK;

}

14.6 HTTP Client in DPM

The DA16200 SDK has a ported lwIP 2.1.2 stack. With this product, an application programmer can develop an
HTTP client application that uses lwIP HTTP APIs.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 168

14.6.1 How to Run

1. In the e2 studio, import a project for the HTTP_Client sample application.

~/SDK/apps/common/examples/Network/Http_Client_DPM/projects/ da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console to set up the Wi-Fi station interface and connect to the AP that is connected to the Internet.

4. Complete the setup and (re)start the sample.

14.6.2 Sample Code

The sample code shows the -get and -post methods. When the sample starts by default, it is executed as a -get
method request. To request -post, define ENABLE_METHOD_POST_TEST at the top of the sample code.

To connect to HTTPS(TLS) server, enter "https://" instead of "http://" in the URL address. To set valid time
information in the certificate before the HTTPS request, the system's current time must be set (SNTP service
must be enabled). The URL and data of the sample code are examples, and it needs to modify them according
to the user environment.

The sample code is executed as follows:

1. If an application that uses the HTTP protocol is registered in DPM, a setting must be made not to enter
DPM_SLEEP while HTTP transmission (request/response) is in progress. Set DPM_SLEEP after all
transfers are complete.

void http_client_dpm_sample_entry(void * param)

{

 ...

 dpm_app_register(HTTP_CLIENT_SAMPLE_TASK_NAME, request.port);

 dpm_app_sleep_ready_clear(HTTP_CLIENT_SAMPLE_TASK_NAME);

 ...

}

static void httpc_cb_result_fn(void *arg, httpc_result_t httpc_result, u32_t

 rx_content_len, u32_t srv_res, err_t err)

{

 PRINTF("\n httpc_result: %d, received: %d byte\r\n",

 httpc_result, rx_content_len);

 dpm_app_sleep_ready_set(HTTP_CLIENT_SAMPLE_TASK_NAME);

 return;

}

2. Using the http_client_parse_uri() API, set the port number for HTTP or HTTPS and parse the path and

host_name.

unsigned char g_http_url[256] = {"http://httpbin.org/get"};

error = http_client_parse_uri(g_http_url, strlen((char *)g_http_url), &request);

if (error != ERR_OK) {

 PRINTF("Failed to set URI(error=%d) \r\n", error);

 goto finish;

}

3. Set a variable in the httpc_connection_t type and set the value to be passed to the API.

4. If the user registers the callback function in headers_done_fn and result_fn, the header response received
from the server and the result value of the HTTP Client can be returned.

static httpc_connection_t conn_settings;

g_conn_settings.use_proxy = 0;

g_conn_settings.altcp_allocator = NULL;

g_conn_settings.headers_done_fn = httpc_cb_headers_done_fn;

g_conn_settings.result_fn = httpc_cb_result_fn;

5. When ENABLE_METHOD_POST_TEST is defined, users can insert the data they want to send to the server using

the httpc_insert_send_data() API.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 169

#if defined (ENABLE_METHOD_POST_TEST)

 error = httpc_insert_send_data("POST", user_post_data, strlen(user_post_data));

 if (error != ERR_OK) {

 PRINTF("Failed to insert data\n");

 }

#endif

6. To perform TLS communication with the HTTP Server that requires the HTTP Client's certificate, define
ENABLE_HTTPS_SERVER_VERIFY_REQUIRED. The certificate must have been previously stored in the TLS area

of the DA16200 SFlash.

if (g_conn_settings.insecure) {

 memset(&g_conn_settings.tls_settings, 0x00,sizeof(httpc_secure_connection_t));

 g_conn_settings.tls_settings.incoming_len = HTTPC_MAX_INCOMING_LEN;

 g_conn_settings.tls_settings.outgoing_len = HTTPC_DEF_OUTGOING_LEN;

#ifdef ENABLE_HTTPS_SERVER_VERIFY_REQUIRED

 http_client_read_certs(&g_conn_settings.tls_settings);

 g_conn_settings.tls_settings.auth_mode = MBEDTLS_SSL_VERIFY_NONE;

/* SNI */

 sni_str = read_nvram_string(HTTPC_NVRAM_CONFIG_TLS_SNI);

 …

/* ALPN */

 if (read_nvram_int(HTTPC_NVRAM_CONFIG_TLS_ALPN_NUM, &alpn_cnt) == 0) {

 …

#endif //ENABLE_HTTPS_SERVER_VERIFY_REQUIRED

}

7. Call API to get request. User calls httpc_get_file() or httpc_get_file_dns() depending on whether

hostname needs a DNS query. If the request is successful, the user can receive payload data through the
registered httpc_cb_recv_fn callback function.

if (isvalidip((char *)g_request.hostname)) {

 ip4addr_aton(g_request.hostname, & g_server_addr);

 error = httpc_get_file(&g_server_addr,

 g_request.port,

 char *)&g_request.path[0],

 & g_conn_settings,

 (altcp_recv_fn)httpc_cb_recv_fn,

 NULL,

 &connection);

} else {

 error = httpc_get_file_dns((char *)&g_request.hostname[0],

 g_request.port,

 (char *)&g_request.path[0],

 &g_conn_settings,

 altcp_recv_fn)httpc_cb_recv_fn,

 NULL,

 &connection);

}

8. The httpc_cb_recv_fn() callback function receives a pbuf pointer. p->payload is the data received from the

server.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 170

static err_t httpc_cb_recv_fn(void *arg, struct tcp_pcb *tpcb,

 struct pbuf *p, err_t err)

{

 if (p == NULL) {

 PRINTF("\n[%s:%d] Receive data is NULL !! \r\n", __func__, __LINE__);

 return ERR_BUF;

 } else {

 PRINTF("\n[%s:%d] Received length = %d \r\n", __func__, __LINE__, p->len);

 hexa_dump_print("Received data \r\n", p->payload,

 p->len, 0, OUTPUT_HEXA_ASCII);

 }

 return ERR_OK;

 }

14.7 HTTP Server

The DA16200 SDK has a ported lwIP 2.1.2 stack. With this product, an application programmer can develop an
HTTP server application that uses lwIP HTTP APIs.

14.7.1 How to Run

1. In the e2 studio, import a project for the HTTP_Server sample application.

~/SDK/apps/common/examples/Network/Http_Server/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console to set up the Wi-Fi station interface and connect to the AP.

4. Complete the setup and (re)start the sample.

14.7.2 Sample Code

The sample code shows the -get methods.

1. The HTTP Server sample code supports both HTTP and HTTPS (Default is HTTP).

To operate with HTTPS, define ENABLE_HTTPS_SERVER as shown below. Also, update the certificate
embedded in the code (tls_srv_sample_cert, tls_srv_sample_key) as needed.

/// HTTPS server

#define ENABLE_HTTPS_SERVER

2. The HTTP server can be operated simply by calling the httpd_init() API.

Also, user callback function can be registered as argument value. The registered callback function is called
when data is received from the HTTP Client.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 171

 /* Callback function*/

 static err_t http_server_cb_recv_fn(struct pbuf *p, err_t err)

 {

 err_t error = ERR_OK;

 extern void hex_dump(UCHAR * data, UINT length);

 PRINTF("[%s] err = %d, p->tot_len = %d, p->len = %d\n", __func__, err, p->tot_len, p->len);

 hex_dump(p->payload, p->len);

 return error;

 }

 /* Server task */

 static void http_server_sample(void *params)

 {

 httpd_init((altcp_user_recv_fn)http_server_cb_recv_fn);

 PRINTF("[%s] HTTP-Server Start!! \r\n", __func__);

 while (1){

 vTaskDelay(100);

 }

 return ;

 }

3. The HTTPS server must set the key and certificate information required for TLS.

 struct altcp_tls_config *tls_srv_sample_config = NULL;

 ...

 tls_srv_sample_config =

 altcp_tls_create_config_server_privkey_cert(tls_srv_sample_key,

 tls_srv_sample_key_len,

 NULL,

 0,

 tls_srv_sample_cert,

 tls_srv_sample_cert_len);

 if (!tls_srv_sample_config) {

 PRINTF("[%s] Failed to create tls config\r\n", __func__);

 goto end_of_task;

 }

 httpd_inits(tls_srv_sample_config, (altcp_user_recv_fn)http_server_cb_recv_fn);

 PRINTF("[%s] HTTPS-Server Start!! \r\n", __func__);

end_of_task:

 while (1) {

 vTaskDelay(100);

 }

4. If the HTTP Server works successfully, test the -get method as follows.

Use the web browser of the test computer that is connected to the same network.

• Access from a Web browser

http://[Server IP]/index.html

• The page displayed is located below

[~/sdk/libraries/3rdloty/lwip/src/src/apps/http/fs/index.html]

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 172

Figure 97. Result of DA16200 HTTP server

For POST, write "/post" at the end of the URL (http://[Server IP]/post).

NOTE

To modify the html page, see the readme.txt file in .\core\libraries\3rdparty\lwip\src\apps\http\makefsdata.

Complete the following steps to create new fsdata.c code suitable for httpd for given html pages.

1. Make sure to install Perl or else install Perl.

2. Run the Git bash or Unix based terminal, or windows command prompt if Cygwin is installed.

3. Navigate to the directory in SDK: .\core\libraries\3rdparty\lwip\src\apps\http\makefsdata

4. Copy makefsdata and rename it (to makefsdata_run for example) and rename the current fs_data.c as well like

fs_data.c.ori for future reference/compare when needed.

5. Type this command "perl makefsdata_run", it overwrites the fsdata.c.

6. After the fsdata.c is created, go to the end of the file and add this code manually in all const struct fsdata_file file_***

variables.

",FS_FILE_FLAGS_HEADER_INCLUDED | FS_FILE_FLAGS_HEADER_PERSISTENT,"

7. The code before the update is as follows:

const struct fsdata_file file_404_html[] = {{NULL, data_404_html, data_404_html + 10, sizeof(data_404_html) - 10}};

const struct fsdata_file file_img_sics_gif[] = {{file_404_html, data_img_sics_gif, data_img_sics_gif + 14,

sizeof(data_img_sics_gif) - 14}};

const struct fsdata_file file_index_html[] = {{file_img_sics_gif, data_index_html, data_index_html + 12,

sizeof(data_index_html) - 12}};

8. It must be:

const struct fsdata_file file_404_html[] = {{NULL, data_404_html, data_404_html + 10, sizeof(data_404_html) - 10,

FS_FILE_FLAGS_HEADER_INCLUDED | FS_FILE_FLAGS_HEADER_PERSISTENT,}};

const struct fsdata_file file_img_sics_gif[] = {{file_404_html, data_img_sics_gif, data_img_sics_gif + 14,

sizeof(data_img_sics_gif) - 14, FS_FILE_FLAGS_HEADER_INCLUDED |

FS_FILE_FLAGS_HEADER_PERSISTENT,}};

const struct fsdata_file file_index_html[] = {{file_img_sics_gif, data_index_html, data_index_html + 12,

sizeof(data_index_html) - 12, FS_FILE_FLAGS_HEADER_INCLUDED | FS_FILE_FLAGS_HEADER_PERSISTENT,}};

9. Build the SDK and try again.

14.8 WebSocket Client

 This section describes the behavior of the example WebSocket Client application and how to build it.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 173

NOTE

WebSocket client does not support DPM mode.

14.8.1 How to Run

1. In the e2 studio, import a project for the Websocket_Client application.

~/SDK/apps/common/examples/Network/WebSocket_Client/projects/da16200

2. To set the WebSocket Server URI in the WebSocket Client Sample, edit the source code:

~/SDK/apps/common/examples/Network/WebSocket_Client/src/websocket_client_sample.c

#define WEBSOCKET_SERVER_URI "ws(wss)://xxxx.xxxx.xxxx"

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console to set up the Wi-Fi station interface and connect to the AP that is connected to the Internet.

5. Complete the setup and (re)start the sample.

14.8.2 Sample Code

When the WebSocket client application starts, it tries to connect to a WebSocket Server and sends a message
10 times. The URI and data of the example code are for demonstration purposes and can be modified as
required to create a custom application. To use the WebSocket Secure connection, enter "wss://" instead of
"ws://" in the URI.

The sample code is executed as follows:

1. Set websocket_cfg.uri for the WebSocket Server URI and WebSocket initializes with the WebSocket

configurations.

websocket_cfg.uri = WEBSOCKET_SERVER_URI;

WS_LOGI(TAG, "Connecting to %s...\n", websocket_cfg.uri);

websocket_client_handle_t client = websocket_client_init(&websocket_cfg);

2. To receive event data, register websocket_client_event_callback function before starting the WebSocket
Client.

static void ws_event_handler (websocket_client_event_id_t event_id,

websocket_client_event_data_t *event_data)

{

 websocket_client_event_data_t *data = (websocket_client_event_data_t *)event_data;

 switch (event_id) {

 case WEBSOCKET_CLIENT_EVENT_CONNECTED:

 WS_LOGW(TAG, "WEBSOCKET_CONNECTED\n");

 break;

 case WEBSOCKET_CLIENT_EVENT_DISCONNECTED:

 WS_LOGW(TAG, "WEBSOCKET_DISCONNECTED\n");

 break;

 case WEBSOCKET_CLIENT_EVENT_DATA:

 …

 …

 if(data->op_code == WS_TRANSPORT_OPCODES_CLOSE) {

 WS_LOGW(TAG, "Websocket Server Closed\n");

 websocket_client_abort_connection(data->client);

 }

 xTimerReset(shutdown_signal_timer, portMAX_DELAY);

 break;

 case WEBSOCKET_CLIENT_EVENT_ERROR:

 WS_LOGE(TAG, "WEBSOCKET_ERROR\n");

 break;

 }

}

websocket_client_start(client, ws_event_handler);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 174

3. When the WebSocket Client connects to the server, it sends a message 10 times using
websocket_client_send_text() API. If no event data is received for 5 seconds, shutdown_signal_timer

disconnects the WebSocket connection.

while (i < 10) {

 if (websocket_client_is_connected(client)) {

 int len = sprintf(data, "hello %04d", i++);

 WS_LOGI(TAG, "Sending %s\n", data);

 websocket_client_send_text(client, data, len, portMAX_DELAY);

 }

 vTaskDelay(1000 / portTICK_PERIOD_MS);

}

4. shutdown_signal_timer disconnects the WebSocket connection using the websocket_client_stop() API.

if(websocket_client_stop(client)== WS_OK){

 WS_LOGI(TAG, "Websocket Stopped\n");

 }

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 175

15. Network Examples: OTA

15.1 Overview

The DA16200/DA16600 provides support for over the air (OTA) firmware update using the HTTP protocol. The
chip operates as an HTTP client which can download and update new firmware from an HTTP server.

The DA16200 firmware image set consists of Bootloader (Second bootloader) and RTOS. The boot loader
cannot be updated through OTA, but only RTOS. This product allows application programmers to develop an
OTA firmware application that uses the OTA APIs. In addition, users can update certificates such as TLS
Certificate Key #1 and TLS Certificate Key #2 and support a firmware update of MCU. Users can easily develop
these functions using the API provided by the DA16200/DA16600 SDK.

NOTE

When DPM mode is enabled and an OTA (firmware) update is in progress, DPM Sleep mode is paused temporarily due to

SFlash write operations. When the firmware update is complete, DPM Sleep mode returns to normal operation.

Figure 98. OTA update layer

15.2 SFLASH Memory Area

The DA16200/DA16600 does not support file systems, so the firmware should be stored in SFlash memory. The
SFlash is divided into several areas as shown in the Table 35. Among them, the areas that users can directly
access are as follows:

▪ User accessible SFlash areas:

• RTOS #0

• RTOS #1

• TLS Certificate #1

• TLS Certificate #2

• User Area

NOTE

Incorrect access to other areas may cause serious failure in the system.

Table 35. 4 MB sflash memory map

Address Name Size (kB)

0x0000_0000 2nd Bootloader 136

0x0002_2000 Boot Index 4

0x0002_3000 RTOS #0 1788

0x001E_2000 RTOS #1 1788

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 176

Address Name Size (kB)

0x003A_1000 Reserved Area 4

0x003A_2000 Debug/RMA Certificate 4

0x003A_3000 TLS Certificate #1

(MQTT)

CA 4

0x003A_4000 Cert 4

0x003A_5000 Private key 4

0x003A_6000 Diffie-Hellmann key 4

0x003A_7000 TLS Certificate #2

(HTTPs/OTA)

CA 4

0x003A_8000 Cert 4

0x003A_9000 Private key 4

0x003A_A000 Diffie-Hellmann key 4

0x003A_B000 NVRAM #0 4

0x003A_C000 NVRAM #1 (Backup) 4

0x003A_D000 User Area (including DA14531 image) (Note 1) 256

0x003E_D000 TLS Certificate Key #3

(WPA Enterprise)

CA 4

0x003E_E000 Cert 4

0x003E_F000 Private 4

0x003F_0000 Diffie-Hellmann key 4

0x003F_1000 TLS Certificate Key #4

(Reserved)

CA 4

0x003F_2000 Certificate 4

0x003F_3000 Private Key 4

0x003F_4000 Diffie-Hellmann key 4

0x003F_5000 NVRAM FOOTPRINT 4

0x003F_6000 AT-CMD TLS Certificate Key #0 ~ #9 40

Note 1 For DA16600, the DA14531 image is stored in the User Area (0x003A_D000 ~ 0x003C_1FFF). See Ref. [3] for
further details.

15.3 HTTP Protocol

The DA16200/DA16600 supports HTTP/HTTPS 1.1 and requests firmware download to the HTTP server by
using the GET method of the HTTP client.

The OTA update application should know the URL of the HTTP server before requesting a download. How to
obtain the URL depends on the user's preference. When using HTTPS, the DA16200/DA16600 should have at
least 36 kB of heap memory for TLS encryption and decryption. The user can print the current memory usage
from the terminal.

▪ CLI commands

[/DA16200] # sys.os.heap

[/DA16200] # sys.os.pool

▪ API

extern void memoryPoolInfo(void);

extern void cmd_heapinfo_func(int argc, char *argv[]);

memoryPoolInfo();

cmd_heapinfo_func(0, NULL);

15.4 OTA Firmware Update

The OTA firmware update is divided into two stages: DOWNLOAD and RENEW.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 177

DOWNLOAD refers to the process of downloading the new firmware from the OTA server. In this case, the
firmware is not yet applied.

RENEW is the process of applying the downloaded firmware. When the firmware is successfully applied, the
new firmware is executed after reboot.

15.4.1 Header

Figure 99 shows DA16200/DA16600 header information as an example. Header information is 96 bytes and is
automatically inserted when the firmware is built. The red box in Figure 99 is the magic number and version
information. The yellow box is information for checking firmware Cyclic Redundancy Check (CRC). Users only
need to check the version information in the red box.

Figure 99. Firmware header information

15.4.2 Version

DA16200/DA16600's RTOS has unique version rules for system protection. The version name is inserted as a
string of up to 39 bytes including the separator "-" in the header part of the firmware image at build time.

There are five elements in the version string, separated by "-": Type, Vendor, Major, Minor, and Customer. For
example, FRTOS-GEN01-01-12345-000001.

The file name of the firmware does not have to be the same as the version. DA16200/DA16600 only refers to the
version inserted in the firmware header.

Version String

Type-Vendor-Major-Minor-Customer

▪ Type (6 bytes): Identify the type of firmware

▪ Vendor (6 bytes): Vendor classification

▪ Major (3 bytes): Major number to check compatibility

▪ Minor (10 bytes): SDK patch number

▪ Customer (10 bytes): User configurable version

Type-Vendor-Major determines whether DOWNLOAD or RENEW is compared to the version of firmware
currently in operation. Minor-Customer can be used by the user for firmware version management.

Users can change the customer version by editing ..\version\3rd_customer_build_num.h. If users change the
customer version and build the SDK, the customer version is applied to the image.

15.4.3 Result Code

All APIs provided by OTA update return the result codes as shown in the Table 36. It is delivered through the
callback function connected with DOWNLOAD and RENEW APIs.

Table 36. Result code

Result Code Value Description

OTA_SUCCESS 0x00 Return success

OTA_FAILED 0x01 Return failed

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 178

Result Code Value Description

OTA_ERROR_SFLASH_ADDR 0x02 SFlash address is wrong.

OTA_ERROR_TYPE 0x03 Firmware type is unknown.

OTA_ERROR_URL 0x04 Server URL is unknown.

OTA_ERROR_SIZE 0x05 The firmware size is too big.

OTA_ERROR_CRC 0x06 CRC is not correct.

OTA_VERSION_UNKNOWN 0x07 Firmware version is unknown.

OTA_VERSION_INCOMPATI 0x08 The firmware version is incompatible.

OTA_NOT_FOUND 0x09 Firmware was not found on the server.

OTA_NOT_CONNECTED 0x0A Failed to connect to the server.

OTA_NOT_ALL_DOWNLOAD 0x0B All new firmware has not been downloaded.

OTA_MEM_ALLOC_FAILED 0x0C Failed to allocate memory.

OTA_BLE_VERSION_UNKNOWN 0xA1 The Bluetooth® LE firmware version is

unknown.

15.4.4 DOWNLOAD

DOWNLOAD is the process of downloading firmware from the OTA server and saving it into the SFlash area.

The communication protocol with the OTA server uses HTTP and can be implemented using the HTTP API
supported by lwIP. Therefore, the process of communicating with HTTP-server works the same as lwIP's HTTP
Client.

NOTE

Firmware downloads may fail because of HTTP timeout caused by high network latency in low bandwidth environments.

To avoid firmware download failure, the HTTP timeout can be set to a higher value than the default. However, the HTTP

timeout affects power consumption as the device cannot enter Sleep mode while waiting for the HTTP response.

Therefore, using a high HTTP timeout value may increase power consumption.

For this reason, the minimum recommended bandwidth for firmware download should be higher than 1 Mbps, although

this may vary as the environment and conditions may not be the same.

Default HTTP timeout: 6 seconds (.\core\libraries\3rdparty\lwip\src\apps\http\http_client.c)

#define HTTPC_POLL_TIMEOUT 30 // 200 ms Interval x 30 times = 6 seconds timeout.

The download sequence proceeds as follows, and both success and failure results can be delivered through the
callback function (see Table 36 for results):

1. Request a query from the HTTP server.

2. Confirm that the response was successfully received from the HTTP server. If the server connection fails or
receives a failure response, the download is terminated, and the result is transferred to the callback function.
See Table 36 for result values.

3. Check the magic number and version name in the firmware header, and if they do not match, the download
is terminated, and the result is transferred to the callback function.

4. If the magic number and version name are normal, the downloaded data is written to SFlash. The SFlash
address where the data is written is automatically determined by the boot index (see Section 15.4.5.1).
When the download is completed successfully, the entire firmware stored in SFlash has a CRC check.

5. When the CRC check is successfully completed, the result value of 0x00 is transferred to the callback
function and the download is terminated.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 179

Start Download

2.http-server

response?

3.Firmware

version OK?

4.Write to SFLASH

Download Done

5.CRC OK?

Finish Download

(Result Callback)

1.http-client : get

No

Figure 100. Firmware DOWNLOAD

15.4.5 RENEW

RENEW only operates when the firmware download is successful. DA16200/DA16600 should have the
download history after power is on.

1. Check whether the download was successful. After turning on the power, check the download history.

2. Check the CRC of the firmware stored in SFlash. In case of failure, RENEW ends and the result is
transmitted to the callback function.

3. Check the firmware version stored in the flash. In case of failure, RENEW ends and the result is transmitted
to the callback function.

4. Determine if the new firmware is normal and change the boot index to the new firmware location.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 180

Start Renew

1.Download

Success?

2.CRC OK?

3.FW Version

OK?

Finish Renew

(Result Callback)

4. Boot Index Change

Yes

Yes

Yes

No

Figure 101. Firmware RENEW

15.4.5.1 Boot Index

The DA16200/DA16600 is divided into firmware download area and current area for OTA firmware update. The
two areas are toggled on each other by the boot index. For example, if the boot index value is 0, it operates as
the firmware stored in the SFlash RTOS #0 area upon booting, and the newly downloaded firmware is stored in
RTOS #1. After that, if RENEW is operated successfully, the boot index value is changed to 1, rebooted, and the
firmware stored in the SFlash RTOS#1 area is operated.

Figure 102. Boot index operation

15.5 API

This section describes the structures and application programming interface (API) required for the OTA firmware
update application.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 181

15.5.1 Type

OTA update task is operated based on the type defined in the OTA update type. The operation sequence is
tailored to the specified type.

Table 37. OTA update type

Name ota_update_type

Description Identify and specify targets for OTA updates.

 /// Operation step of process

typedef enum {

 OTA_TYPE_INIT, // Init value

 OTA_TYPE_RTOS, // RTOS

 OTA_TYPE_BLE_FW, // Bluetooth® firmware, for DA166x

 OTA_TYPE_BLE_COMBO, // RTOS and Bluetooth® firmware, for DA166x

 OTA_TYPE_MCU_FW, // MCU firmware, not DA16x

 OTA_TYPE_CERT_KEY, // Certificate or Key

 OTA_TYPE_UNKNOWN // Unknown value

} ota_update_type;

15.5.2 Structure

OTA UPDATE CONFIG sets the necessary parameters when calling OTA firmware update API.

Table 38. OTA update configuration

Name OTA_UPDATE_CONFIG

Description Contain information to be passed as argument values to OTA update APIs.

 /// OTA update configuration structure

typedef struct {

 /// Update type.

 ota_update_type update_type;

 /// Server address where firmware is located.

 char url[OTA_HTTP_URL_LEN];

 /// Callback function pointer to check the download status.

 void (*download_notify)(ota_update_type update_type, UINT ret_status, UINT progress);

 /// Callback function pointer to check the renew state. Only for RTOS.

 void (*renew_notify)(UINT ret_status);

 /// If the value is true, if the new firmware download is successful, it reboots with the new firmware.

Only for RTOS

 UINT auto_renew;

 /// Address of sflash where other_fw is stored. Only for MCU_FW and CERT_KEY

 UINT download_sflash_addr;

#if defined (__BLE_COMBO_REF__)

 /// Server address where Bluetooth firmware is located.

 Char url_ble_fw[OTA_HTTP_URL_LEN];

#endif /* __BLE_COMBO_REF__ */

} OTA_UPDATE_CONFIG;

15.5.3 APIs

This section describes the APIs required for the OTA firmware update application.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 182

Table 39. APIs for OTA firmware

Item Description

UINT ota_update_start_download(OTA_UPDATE_CONFIG *ota_update_conf)

Parameter [in] ota_update_conf The pointer of OTA_UPDATE_CONFIG structure.

update_type: Update type.

url: Server address where firmware is located.

 (*download_notify)(ota_update_type update_type, UINT ret_status,

UINT progress): Callback function pointer to check the download

status.

(*renew_notify)(UINT ret_status): Callback function pointer to check

the renew state. Only for RTOS.

auto_renew: If the value is true, if the new firmware download is

successful, it reboots with the new firmware. Only for RTOS.

download_sflash_addr: This can set the SFlash address to download

MCU_FW, BLE_FW and CERT_KEY excluding RTOS within the User

Area range. The default value is 0x003A_D000.

url_ble_fw: Server address where Bluetooth firmware is located when

(__BLE_COMBO_REF__) is defined.

Return Return 0x00 on success. See Table 36.

Description HTTP Client task is created and send a query to the HTTP server. It

checks the version compatibility of the firmware received from the

server and writes it to the download area of SFlash.

UINT ota_update_stop_download(void)

Parameter None

Return Return 0x00 on success. See Table 36.

Description A download can be stopped while downloading from the HTTP

server.

UINT ota_update_get_download_progress(ota_update_type update_type)

Parameter [in] update_type Specify the type to be updated.

Return Return a value between 0 and 100.

If the download was successful, it returns 100.

Description Check the progress while downloading or after completion.

UINT ota_update_start_renew(OTA_UPDATE_CONFIG *ota_update_conf)

Parameter [in] ota_update_conf The pointer of OTA_UPDATE_CONFIG structure.

Return Return 0x00 on success. See Table 36.

Description Check the version compatibility and CRC, changes the boot index to

the new firmware location, and then reboots automatically.

UINT ota_update_get_new_sflash_addr(UINT update_type)

Parameter [in] update_type Specify the type to be updated.

Return Return the SFlash address.

Description The user can know the address of SFlash where the new

firmware(data) downloaded from the server is stored.

UINT ota_update_read_flash(UINT addr, VOID *buf, UINT len)

Parameter [in] addr

[out] buf

[in] len

SFlash address (hex).

Buffer pointer to store read data.

Length to read.

Return Return 0x00 on success. See Table 36.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 183

Item Description

Description Reads SFlash as much as the input address and length.

UINT ota_update_erase_flash(UINT addr, UINT len)

Parameter [in] addr

[in] len

SFlash address (hex).

Length to erase.

Return Returns erased length.

Description Erases SFlash as much as the input address and length.

UINT ota_update_copy_flash(UINT dest_addr, UINT src_addr, UINT len)

Parameter [in] dest_addr

[in] src_addr

[in] len

dest_addr Destination Sflash address (hex).

src_addr Source Sflash address (hex).

Length to copy.

Return Return 0x00 on success. See Table 36.

Description Copy as much as the length from SFlash address src_addr to

dest_addr.

UINT ota_update_set_mcu_fw_name(char *name)

Parameter [in] name Input the firmware name (version). Maximum 8 bytes.

Return Return 0x00 on success. See Table 36.

Description Set the name (version) of MCU firmware to be downloaded to SFlash.

If not set, it is set as the default string.

/* ota_update.h */

#define OTA_MCU_FW_NAME "MCU_FW"

UINT ota_update_get_mcu_fw_name(char *name)

Parameter [out] name Pointer to get the name (version) of MCU firmware.

Return Return 0x00 on success. See Table 36.

Description Get name (version) of MCU firmware downloaded to SFlash.

UINT ota_update_get_mcu_fw_info(char *name, UINT *size, UINT *crc)

Parameter [out] name

[out] size

[out] crc

Pointer to get the name (version) of MCU firmware.

Pointer to get the size of MCU firmware.

Pointer to get the CRC32 value of MCU firmware.

Return Return 0x00 on success. See Table 36.

Description Get name (version), size, and CRC32 of MCU firmware downloaded

to SFlash.

UINT ota_update_read_mcu_fw(UINT sflash_addr, UINT size)

Parameter [in] sflash_addr

[int] size

sflash_addr Start address for reading.

Read size.

Return Return 0x00 on success. See Table 36.

Description Start transmission of MCU firmware stored in flash through interface

as much as the set size.

UINT ota_update_trans_mcu_fw(void)

Parameter void None

Return Return 0x00 on success. See Table 36.

Description Start transmission of MCU firmware stored in flash through interface.

UINT ota_update_erase_mcu_fw(void)

Parameter void None

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 184

Item Description

Return Return 0x00 on success. See Table 36.

Description Delete MCU firmware saved in SFlash.

UINT ota_update_calcu_mcu_fw_crc(int sflash_addr, int size)

Parameter [in] sflash_addr

[int] size

sflash_addr CRC calculation start address.

CRC calculation size.

Return Return 0x00 on success. See Table 36.

Description Calculate CRC32 of MCU firmware stored in SFlash.

UINT ota_update_set_tls_auth_mode_nvram(int tls_auth_mode);

Parameter [in] tls_auth_mode Set the certificate verification mode.

#define MBEDTLS_SSL_VERIFY_NONE 0

#define MBEDTLS_SSL_VERIFY_OPTIONAL 1

#define MBEDTLS_SSL_VERIFY_REQUIRED 2

Return Return 0x00 on success. See Table 36.

Description Initialize interface to transfer firmware between the

DA16200/DA16600 and MCU.

15.5.4 Example

This is an example of the DA16200 firmware update.

1. Make sure to set update type to OTA_TYPE_RTOS.

/* Setting the type to be updated */

g_ota_update_conf->update_type = OTA_TYPE_RTOS;

1. Set URL to suit the user environment.

/* URL setting example - Change it to suit your environment. */

memcpy(g_ota_update_conf->url, ota_server_url_rtos, strlen(ota_server_url_rtos));

2. If the download completes successfully, the user can set it to automatically activate RENEW.

g_ota_update_conf->auto_renew = 1;

2. By registering a callback function in download_notify, the user can be notified whether the download
succeeds or fails. Users can check whose notification is by update_type.

g_ota_update_conf->download_notify = user_sample_da16_fw_download_notify;

3. Receive notification about the RENEW status by registering a callback function. If the notification status is
successful, the DA16200 automatically reboots after 2-3 seconds.

g_ota_update_conf->renew_notify = user_sample_da16_fw_renew_notify;

4. Finally, call the OTA update start API. When ota_update_start_download() is called, an OTA update task is
created internally, and the creation status of the task is immediately returned. The process is not blocked.

status = ota_update_start_download(g_ota_update_conf);

3. Reboot the DA16200 when the firmware is updated.

15.5.4.1 Test Command

The DA16200/DA16600 SDK includes sample code and CLI commands to make it easier for users to use the
OTA update. It is possible to program directly by referring to the sample code, but the user can simply check the
network status with the OTA server by using the CLI command before that.

▪ Download Example Using CLI Command

[/DA16200/NET] # ota_update rtos https://ota-server/NEW_RTOS.img

 > Server FW version: RTOS-GEN01-01-12345-000000

 >> HTTP(s) Client Downloading... 100 % (800000/800000 bytes)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 185

- OTA Update: <RTOS> Download – Success

[/DA16200/NET] # ota_update renew

Table 40. OTA test command

Command Option Description

ota_update [update_type] [url] Start the firmware download.

* update_type

 rtos: update_type of RTOS

 cert_key: update_type of cert or key.

 mcu_fw: update_type of MCU firmware.

url: Server URL where firmware exists

ex) ota_update rtos http://192.168.0.1/rtos.img

stop - Stop the firmware download.

For example, ota_update stop

renew - Change the current firmware to new firmware.

For example, ota_update renew

info - Show the firmware information.

For example, ota_update info

crc [addr] Check CRC of firmware.

For example, ota_update crc 0x1e2000

read_sflash [addr] [size] Read SFlash data.

For example, ota_update read_sflash 0x1e2000 128

copy_sflash [dst_addr] [src_addr]

[size]

Copy from SFlash data src_add to dst_add.

For example, ota_update copy_sflash 0x3ad000

0x1e2000 4096

erase_sflash [addr] [size] Erase SFlash data.

For example, ota_update erase_sflash 0x3ad000 4096

set_name_mcu - Set the name (version) of MCU firmware to be

downloaded to SFlash.

For example, ota_update set_name_mcu MCU_FW

get_name_mcu - Get the name (version) of MCU firmware downloaded

to SFlash.

For example, ota_update get_name_mcu

read_mcu - Read the firmware as much as the size from the

read_addr and transmit it.

For example, ota_update read_sflash 0x3ad000 4096

trans_mcu - Transmit the firmware to MCU through interface.

For example, ota_update trans_mcu

erase_mcu - Erase the firmware stored in a serial flash of the

DA16200/DA16600.

For example, ota_update erase_mcu

get_boot_index - Get the current boot index information.

For example, ota_update get_boot_index

 toggle_boot_index - Toggle boot index.

For example, ota_update toggle_boot_index

15.5.4.2 Sample Code

The DA16200/DA16600 SDK provides sample code and user guide:

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 186

▪ Sample code

The sample code includes not only the DA16200/DA16600 firmware update, but also a sample of the MCU
firmware and certificate update.

.\sample\Network\OTA_Update\src\ota_update_sample.c

15.6 OTA Firmware Update – Extensions

The OTA firmware update supports updating not only the DA16200/DA16600 firmware but also the firmware of
the MCU chip or the certificate for TLS protocol.

15.6.1 Certificates

To update the SFlash TLS Certificate #1 and TLS Certificate #2 areas:

Download directly to SFlash TLS Certificate #1, TLS Certificate #2, or User Area and copy to SFlash TLS

Certificate #1 or TLS Certificate #2.

1. Set URL to suit the user environment.

/* URL setting example - Change it to suit your environment. */

memcpy(g_ota_update_conf->url, ota_server_url_cert, strlen(ota_server_url_cert));

2. Make sure to set update_type to OTA_TYPE_CERT_KEY.

g_ota_update_conf->update_type = OTA_TYPE_CERT_KEY;

3. Set the address of SFlash to be saved when downloading. If not set, the default is
SFLASH_USER_AREA_0_START (See Table 35).

g_ota_update_conf->download_sflash_addr = SFLASH_USER_AREA_0_START;

4. Register a callback to be notified of the download status.

g_ota_update_conf->download_notify = user_sample_cert_key_download_notify;

5. Finally, call the OTA update and start API. When ota_update_start_download() is called, an OTA update
task is created internally, and the creation status of the task is immediately returned. The process is not
blocked.

status = ota_update_start_download(g_ota_update_conf);

6. Copy them to the TLS Certificate Key #0 and TLS Certificate Key #1 areas when downloaded.

status = ota_update_copy_flash(SFLASH_ROOT_CA_ADDR1, g_ota_update_conf->download_sflash_addr,
4096);

15.6.2 MCU Firmware

To update the firmware of the MCU connected to the DA16200/DA16600 interface,

1. Set URL to suit the user environment.

/* URL setting example - Change it to suit your environment. */

memcpy(g_ota_update_conf->url, ota_server_url_mcu, strlen(ota_server_url_mcu));

2. Set update_type to OTA_TYPE_MCU_FW.

g_ota_update_conf->update_type = OTA_TYPE_MCU_FW;

3. Set the address of SFlash to save when downloading. If not set, the default is
SFLASH_USER_AREA_0_START. (See Table 35)

g_ota_update_conf->download_sflash_addr = SFLASH_USER_AREA_0_START;

4. Register a callback to notify the download status.

g_ota_update_conf->download_notify = user_sample_mcu_fw_download_notify;

5. Call the OTA update start API. When ota_update_start_download() is called, an OTA update task is created
internally, and the creation status of the task is immediately returned. The process is not blocked.

status = ota_update_start_download(g_ota_update_conf);

6. Transmit the firmware to the MCU when downloaded.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 187

When the transmission API is called, transmit <FW_NAME>, <FW_SIZE>, <FW_CRC> information to the
MCU first. Next, transmit the divided buffer size of the entire firmware to the MCU.

That is, transmit "MCU_FW,4096,5aa8b6c4" to the MCU first. Then, transmit 2048 bytes, the divided buffer
size of the firmware (4096 divided by 2), to the MCU in sequential order as shown in Figure 103.

NOTE

Buffer size is defined by OTA_MCU_BUF_SIZE.

ota_update_trans_mcu_fw();

Figure 103. MCU firmware

15.6.2.1 CRC-32 Calculation

This is an example for calculating the CRC value required in the Transfer protocol.

static const unsigned int ota_crc_table[] =

{

 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,

 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,

 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,

 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,

 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,

 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,

 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,

 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,

 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,

 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,

 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,

 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,

 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,

 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,

 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,

 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,

 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,

 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,

 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,

 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,

 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,

 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,

 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,

 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,

 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,

 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,

 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,

 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 188

 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,

 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,

 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,

 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,

 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,

 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,

 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,

 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,

 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,

 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,

 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,

 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,

 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,

 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,

 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,

 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,

 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,

 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,

 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,

 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,

 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,

 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,

 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,

 0x2d02ef8dL

};

/* update the CRC on the data block one byte at a time */

static unsigned int update_crc (unsigned int init, const unsigned char *buf, int len)

{

 unsigned int crc = init;

 while (len--)

 crc = ota_crc_table[(crc ^ *(buf++)) & 0xFF] ^ (crc >> 8);

 return ~crc;

}

15.7 Bluetooth® LE Firmware Update OTA

After building the code of the DA14531 SDK, the following images are available to update DA14531 firmware
through OTA.

The DA14531 SDK:

[DA16600 SDK ROOT]\utility\combo\da14531_sdk_v_6.0.14.1114.zip

▪ The Bluetooth OTA firmware images for the DA16600 examples (after code build):

• IoT Sensor gateway example (central example)

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_monitor_aux_ext_coex\Keil_5\out_img
\pxm_coex_ext_531_6_0_14_1_ota.img.

• Rest of the DA16600 examples (peripheral examples)

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\Keil_5\out_i
mg\pxr_sr_coex_ext_531_6_0_14_1114_1_ota.img.

15.8 OTA Test Server

OTA update complies with HTTP protocol to download firmware. Therefore, users can easily implement an OTA
server using HTTP-server. This manual does not provide a guide on configuring OTA servers. However, it
explains how to configure a simple test environment for functional testing in the application development stage
on the cloud environment.

Amazon Simple Storage Service (Amazon S3) is recommended for the OTA test server.

1. Sign up for an AWS account and log in to the console.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 189

Figure 104

2. In the AWS console, go to Storage and choose S3.

3. To create a bucket with default settings, click Create Bucket.

4. Upload the firmware to the created bucket.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 190

5. Check the URL (https://) of the uploaded firmware.

6. Set the URL as the OTA update API parameter value and proceed with the test.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 191

16. Crypto Examples

16.1 Crypto API

This section describes how it is built and works. The Crypto API sample application demonstrates common use
cases of cryptographic algorithms such as AES, DES, and Hash. The DA16200 SDK includes an mbedTLS
library which is an implementation of the TLS and SSL protocols and the respective cryptographic algorithms.

16.1.1 How to Run

1. In the e2 studio, import a project for the Crypto API sample application.

~/SDK/apps/common/examples/Crypto/Crypto_API/projects/da16200

2. Enable features of what cryptographic algorithms are required.

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

16.1.2 How to Enable Cryptographic Algorithm

The Crypto API sample application includes 11 types of cryptographic algorithms. Each type can be enabled by
feature definition in crypto_sample.h file as follows. By default, AES cryptographic algorithms are enabled.

▪ AES Algorithms

▪ Cipher API

▪ DES Algorithms

▪ Diffie-Hellman Key Exchange

▪ DRBG

▪ ECDH

▪ ECDSA

▪ HASH and HMAC Algorithms

▪ Key Derivation Function

▪ Public Key Abstraction Layer

▪ RSA PKCS#1.

// AES Algorithms

#define __CRYPTO_SAMPLE_AES__

// Cipher API

#undef __CRYPTO_SAMPLE_CIPHER__

// DES Algorithms

#undef __CRYPTO_SAMPLE_DES__

// Diffie–Hellman key exchange

#undef __CRYPTO_SAMPLE_DHM__

// DRBG

#undef __CRYPTO_SAMPLE_DRBG__

// ECDH

#undef __CRYPTO_SAMPLE_ECDH__

// ECDSA

#undef __CRYPTO_SAMPLE_ECDSA__

// Hash & HMAC Algorithms

#undef __CRYPTO_SAMPLE_HASH__

// Key Derivation Function

#undef __CRYPTO_SAMPLE_KDF__

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 192

// Public Key abstraction layer.

#undef __CRYPTO_SAMPLE_PK__

// RSA PKCS#1

#undef __CRYPTO_SAMPLE_RSA__

16.1.3 Cryptographic Algorithms – AES

The AES algorithm sample application demonstrates common use cases of AES ciphers such as CBC, CFB,
and ECB. The sample application runs five types of cryptographic algorithms:

▪ AES-CBC-128, 192, and 256

▪ AES-CFB128-128, 192, and 256

▪ AES-ECB-128, 192, and 256

▪ AES-ECB-128, 192, and 256

▪ AES-CTR-128

▪ AES-CCM

Figure 105. Results of crypto AES

16.1.3.1 Application Initialization

The following example describes how the user uses the AES algorithms of the mbedTLS library to encrypt and
decrypt data.

void crypto_sample_aes(void *param)

{

#if defined(MBEDTLS_CIPHER_MODE_CBC)

 crypto_sample_aes_cbc();

#endif // (MBEDTLS_CIPHER_MODE_CBC)

#if defined(MBEDTLS_CIPHER_MODE_CFB)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 193

 crypto_sample_aes_cfb();

#endif // (MBEDTLS_CIPHER_MODE_CFB)

 crypto_sample_aes_ecb();

#if defined(MBEDTLS_CIPHER_MODE_CTR)

 crypto_sample_aes_ctr();

#endif // (MBEDTLS_CIPHER_MODE_CTR)

 crypto_sample_aes_ccm();

 crypto_sample_aes_gcm();

#if defined(MBEDTLS_CIPHER_MODE_OFB)

 crypto_sample_aes_ofb();

#endif // (MBEDTLS_CIPHER_MODE_OFB)

 return ;

}

16.1.3.2 AES-CBC-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-CBC-128, 192, and 256. To explain how AES-CBC
works, see the test vector in http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip.

int crypto_sample_aes_cbc()

{

 mbedtls_aes_context *ctx = NULL;

 // Initialize the AES context.

 mbedtls_aes_init(ctx);

 for (i = 0; i < 6; i++) {

 u = i >> 1;

 v = i & 1;

 PRINTF("* AES-CBC-%3d (%s): ", 128 + u * 64,

 (v == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");

 if (v == MBEDTLS_AES_DECRYPT) {

 // Set the decryption key.

 mbedtls_aes_setkey_dec(ctx, key, 128 + u * 64);

 // Performs an AES-CBC decryption operation on full blocks.

 for (j = 0; j < CRYPTO_SAMPLE_AES_LOOP_COUNT ; j++) {

 mbedtls_aes_crypt_cbc(ctx, v, 16, iv, buf, buf);

 }

 } else {

 // Set the encryption key.

 mbedtls_aes_setkey_enc(ctx, key, 128 + u * 64);

 // Performs an AES-CBC encryption operation on full blocks.

 for (j = 0 ; j < CRYPTO_SAMPLE_AES_LOOP_COUNT ; j++) {

 unsigned char tmp[16] = {0x00,};

 mbedtls_aes_crypt_cbc(ctx, v, 16, iv, buf, buf);

 memcpy(tmp, prv, 16);

 memcpy(prv, buf, 16);

 memcpy(buf, tmp, 16);

 }

 }

 }

http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 194

 // Clear the AES context.

 mbedtls_aes_free(ctx);

}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypt_cbc does an AES-CBC encryption or decryption operation on full
blocks. And it does the operation defined in the mode parameter (encrypt/decrypt), on the input data buffer
defined in the input parameter. To do encryption or decryption, the function mbedtls_aes_setkey_enc or
mbedtls_aes_setkey_dec should be called first. After the operation is complete, the function mbedtls_aes_free
should be called to clear the AES context.

16.1.3.3 AES-CFB128-128, 192, and 256

The DA16200 supports a cryptographic algorithm for AES-CFB128-128, 192, and 256. To explain how AES-
CFB128 works, see the test vector in http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

int crypto_sample_aes_cfb()

{

 mbedtls_aes_context *ctx = NULL;

 // Initialize the AES context.

 mbedtls_aes_init(ctx);

 for (i = 0; i < 6; i++) {

 u = i >> 1;

 v = i & 1;

 PRINTF("* AES-CFB128-%3d (%s): ", 128 + u * 64,

 (v == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");

 // Set the key.

 mbedtls_aes_setkey_enc(ctx, key, 128 + u * 64);

 if (v == MBEDTLS_AES_DECRYPT) {

 // Perform an AES-CFB128 decryption operation.

 mbedtls_aes_crypt_cfb128(ctx, v, 64, &offset, iv, buf, buf);

 } else {

 // Perform an AES-CFB128 encryption operation.

 mbedtls_aes_crypt_cfb128(ctx, v, 64, &offset, iv, buf, buf);

 }

 }

 // Clear the AES context.

 mbedtls_aes_free(ctx);

}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypt_cfb128 does AES-CFB128 encryption or decryption. And it does
the operation defined in the mode parameter (encrypt or decrypt) on the input data buffer defined in the input
parameter. For CFB, the user should set up the context with function mbedtls_aes_setkey_enc, regardless of
whether to encrypt or decrypt operations, that is, regardless of the mode parameter. This is because CFB mode
uses the same key schedule for encryption and decryption. After the operation is complete, the function
mbedtls_aes_free should be called to clear the AES context.

16.1.3.4 AES-ECB-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-ECB-128, 192, and 256. To explain how AES-ECB
works, see the test vector in http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip.

int crypto_sample_aes_ecb()

{

 mbedtls_aes_context *ctx = NULL;

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 195

 // Initialize the AES context.

 mbedtls_aes_init(ctx);

 for (i = 0; i < 6; i++) {

 u = i >> 1;

 v = i & 1;

 PRINTF("* AES-ECB-%3d (%s): ", 128 + u * 64,

 (v == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");

 if (v == MBEDTLS_AES_DECRYPT) {

 // Set the decryption key.

 mbedtls_aes_setkey_dec(ctx, key, 128 + u * 64);

 // Perform an AES single-block decryption operation.

 for (j = 0 ; j < CRYPTO_SAMPLE_AES_LOOP_COUNT ; j++) {

 mbedtls_aes_crypt_ecb(ctx, v, buf, buf);

 }

 } else {

 // Set the encryption key.

 mbedtls_aes_setkey_enc(ctx, key, 128 + u * 64);

 // Perform an AES single-block encryption operation.

 for (j = 0 ; j < CRYPTO_SAMPLE_AES_LOOP_COUNT ; j++) {

 mbedtls_aes_crypt_ecb(ctx, v, buf, buf);

 }

 }

 }

 // Clear the AES context.

 mbedtls_aes_free(ctx);

}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypt_ecb does an AES single-block encryption or decryption
operation. And it does the operation defined in the mode parameter (encrypt or decrypt) on the input data buffer
defined in the input parameter. Function mbedtls_aes_init and either function mbedtls_aes_setkey_enc function
or function mbedtls_aes_setkey_dec should be called before the first call to this API with the same context. After
the operation is complete, the function mbedtls_aes_free should be called to clear the AES context.

16.1.3.5 AES-CTR-128

The DA16200 supports cryptographic algorithms for AES-CTR-128. To explain how AES-CTR works, see the
Test Vectors section in http://www.faqs.org/rfcs/rfc3686.html.

int crypto_sample_aes_ctr()

{

 mbedtls_aes_context *ctx = NULL;

 // Initialize the AES context.

 mbedtls_aes_init(ctx);

 for (i = 0; i < 2; i++) {

 v = i & 1;

 PRINTF("* AES-CTR-128 (%s): ",

 (v == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");

 // Set the key.

 mbedtls_aes_setkey_enc(ctx, key, 128);

http://www.faqs.org/rfcs/rfc3686.html

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 196

 if (v == MBEDTLS_AES_DECRYPT) {

 // Perform an AES-CTR decryption operation.

 mbedtls_aes_crypt_ctr(ctx, len, &offset,

 nonce_counter, stream_block, buf, buf);

 } else {

 // Perform an AES-CTR encryption operation.

 mbedtls_aes_crypt_ctr(ctx, len, &offset,

 nonce_counter, stream_block, buf, buf);

 }

 }

 // Clear the AES context.

 mbedtls_aes_free(ctx);

}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypto_ctr does an AES-CTR encryption or decryption operation. And it
does the operation defined in the mode parameter (encrypt/decrypt) on the input data buffer, defined in the input
parameter. Use the same key schedule for both encryption and decryption operations because of the nature of
CTR. Therefore, use the context initialized with function mbedtls_aes_setkey_enc for both
MBEDTLS_AES_ENCRYPT and MBEDTLS_AES_DECRYPT. After the operation is complete, call function
mbedtls_aes_free to clear the AES context.

16.1.3.6 AES-CCM-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-CCM-128, 192, and 256. To explain how AES-CCM
works, see the test vector in SP800-38C Appendix C #1.

int crypto_sample_aes_ccm()

{

 mbedtls_ccm_context *ctx = NULL;

 // Initialize the CCM context

 mbedtls_ccm_init(ctx);

 /* Initialize the CCM context set in the ctx parameter

 * and sets the encryption key.

 */

 ret = mbedtls_ccm_setkey(ctx, MBEDTLS_CIPHER_ID_AES,

 crypto_sample_ccm_key,

 8 * sizeof(crypto_sample_ccm_key));

 PRINTF("* CCM-AES (enc): ");

 // Encrypt a buffer using CCM.

 ret = mbedtls_ccm_encrypt_and_tag(ctx, crypto_sample_ccm_msg_len,

 crypto_sample_ccm_iv, crypto_sample_ccm_iv_len,

 crypto_sample_ccm_ad, crypto_sample_ccm_add_len,

 crypto_sample_ccm_msg, out,

 out + crypto_sample_ccm_msg_len,

 crypto_sample_ccm_tag_len);

 PRINTF("* CCM-AES (dec): ");

 // Perform a CCM* authenticated decryption of a buffer.

 ret = mbedtls_ccm_auth_decrypt(ctx, crypto_sample_ccm_msg_len,

 crypto_sample_ccm_iv, crypto_sample_ccm_iv_len,

 crypto_sample_ccm_ad, crypto_sample_ccm_add_len,

 crypto_sample_ccm_res, out,

 crypto_sample_ccm_res + crypto_sample_ccm_msg_len,

 crypto_sample_ccm_tag_len);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 197

 // Clear the CCM context.

 mbedtls_ccm_free(ctx);

}

The mbedtls_ccm_context is the CCM context-type definition for the CCM authenticated encryption mode for
block ciphers. It is initialized by function mbedtls_ccm_init. Function mbedtls_ccm_setkey initializes the CCM
context set in the ctx parameter and sets the encryption key. Function mbedtls_ccm_encrypt_and_tag encrypts a
buffer with CCM. And function mbedtls_ccm_auth_decrypt does CCM-authenticated decryption of a buffer. After
the operation is complete, call function mbed_ccm_free to release and clear the specified CCM context and
underlying cipher subcontext.

16.1.3.7 AES-GCM-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-GCM-128, 192, and 256. To explain how AES-GCM
works, see the test vector in the GCM test vectors of CSRC
(http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip).

int crypto_sample_aes_gcm()

{

 //The GCM context structure.

 mbedtls_gcm_context *ctx = NULL;

 mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;

 // Initialize the specified GCM context.

 mbedtls_gcm_init(ctx);

 // AES-GCM Encryption Test

 for (j = 0; j < 3; j++) {

 int key_len = 128 + 64 * j;

 PRINTF("* AES-GCM-%3d (%s): ", key_len, "enc");

 // Associate a GCM context with a cipher algorithm and a key.

 mbedtls_gcm_setkey(ctx, cipher, crypto_sample_gcm_key, key_len);

 // Perform GCM encryption of a buffer.

 ret = mbedtls_gcm_crypt_and_tag(ctx, MBEDTLS_GCM_ENCRYPT,

 sizeof(crypto_sample_gcm_pt),

 crypto_sample_gcm_iv, sizeof(crypto_sample_gcm_iv),

 crypto_sample_gcm_additional,

 sizeof(crypto_sample_gcm_additional),

 crypto_sample_gcm_pt, buf,

 16, tag_buf);

 // Clear a GCM context and the underlying cipher sub-context.

 mbedtls_gcm_free(ctx);

 }

 //AES-GCM Decryption Test

 for (j = 0; j < 3; j++) {

 int key_len = 128 + 64 * j;

 PRINTF("* AES-GCM-%3d (%s): ", key_len, "dec");

 // Associate a GCM context with a cipher algorithm and a key.

 mbedtls_gcm_setkey(ctx, cipher, crypto_sample_gcm_key, key_len);

 // Perform GCM decryption of a buffer.

 ret = mbedtls_gcm_crypt_and_tag(ctx, MBEDTLS_GCM_DECRYPT,

 sizeof(crypto_sample_gcm_pt),

 crypto_sample_gcm_iv, sizeof(crypto_sample_gcm_iv),

http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 198

 crypto_sample_gcm_additional,

 sizeof(crypto_sample_gcm_additional),

 crypto_sample_gcm_ct[j], buf,

 16, tag_buf);

 // Clear a GCM context and the underlying cipher sub-context.

 mbedtls_gcm_free(ctx);

 }

}

The mbedtls_gcm_context is the GCM context-type definition. It is initialized by function mbedtls_gcm_init.
Function mbedtls_gcm_setkey associates a GCM context with a cipher algorithm (AES) and a key. Function
mbedtls_gcm_crypt_and_tag does GCM encryption or decryption of a buffer by the second parameter. After the
operation is complete, the function mbed_gcm_free should be called to clear a GCM context and underlying
cipher sub-context.

16.1.3.8 AES-OFB-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-OFB-128, 192, and 256. To explain how AES-OFB
works, see the test vector in the OFB test vectors of CSRC (https://csrc.nist.gov/publications/detail/sp/800-
38a/final).

int crypto_sample_aes_ofb()

{

 mbedtls_aes_context *ctx = NULL;

 // Initialize the AES context.

 mbedtls_aes_init(ctx);

 // Test OFB mode

 for (i = 0; i < 6; i++) {

 PRINTF("* AES-OFB-%3d (%s): ", keybits,

 (v == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");

 memcpy(iv, crypto_sample_aes_ofb_iv, 16);

 memcpy(key, crypto_sample_aes_ofb_key[u], keybits / 8);

 // Set the encryption key.

 ret = mbedtls_aes_setkey_enc(ctx, key, keybits);

 if (v == MBEDTLS_AES_DECRYPT) {

 memcpy(buf, crypto_sample_aes_ofb_ct[u], 64);

 expected_out = crypto_sample_aes_ofb_pt;

 } else {

 memcpy(buf, crypto_sample_aes_ofb_pt, 64);

 expected_out = crypto_sample_aes_ofb_ct[u];

 }

 // Perform an AES-OFB (Output Feedback Mode) encryption or decryption

 // operation.

 ret = mbedtls_aes_crypt_ofb(ctx, 64, &offset, iv, stream_block, buf, buf);

 }

 // Clear the AES context.

 mbedtls_aes_free(ctx);

}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by
mbedtls_aes_init. Function mbedtls_aes_crypt_ofb does an AES-OFB (Output Feedback Mode) encryption or
decryption operation. For OFB, the user should set up the context with the function mbedtls_aes_setkey_enc,
regardless of whether the user does an encryption or decryption operation. This is because OFB mode uses the
same key schedule for encryption and decryption. The OFB operation is identical for encryption or decryption,

https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 199

therefore no operation mode needs to be specified. After the operation is complete, call function
mbedtls_aes_free to clear the AES context.

16.1.4 Cryptographic Algorithms – DES

The DES algorithm sample application demonstrates common use cases of DES and Triple-DES ciphers. The
sample application runs two types of cryptography algorithms:

▪ DES-CBC-56

▪ DES3-CBC-112 and 168.

Figure 106. Result of crypto DES

16.1.4.1 Application Initialization

The following example shows how to use DES algorithms of the mbedTLS library to encrypt and decrypt data.

void crypto_sample_des(void *param)

{

#if defined(MBEDTLS_CIPHER_MODE_CBC)

 crypto_sample_des_cbc();

#endif // (MBEDTLS_CIPHER_MODE_CBC)

 return ;

}

16.1.4.2 DES-CBC-56, DES3-CBC-112, and 168

The DA16200 supports cryptographic algorithms for DES-CBC-56, DES3-CBC-112, and 168.

int crypto_sample_des_cbc()

{

 mbedtls_des_context *ctx = NULL;

 mbedtls_des3_context *ctx3 = NULL;

 // Initialize the DES context.

 mbedtls_des_init(ctx);

 // Initialize the Triple-DES context.

 mbedtls_des3_init(ctx3);

 // Test CBC

 for (i = 0; i < 6; i++) {

 u = i >> 1;

 v = i & 1;

 PRINTF("* DES%c-CBC-%3d (%s): ",

 (u == 0) ? ' ' : '3', 56 + u * 56,

 (v == MBEDTLS_DES_DECRYPT) ? "dec" : "enc");

 switch (i) {

 case 0: {

 // DES key schedule (56-bit, decryption).

 mbedtls_des_setkey_dec(ctx, crypto_sample_des3_keys);

 }

 break;

 case 1: {

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 200

 // DES key schedule (56-bit, encryption).

 mbedtls_des_setkey_enc(ctx, crypto_sample_des3_keys);

 }

 break;

 case 2: {

 // Triple-DES key schedule (112-bit, decryption).

 mbedtls_des3_set2key_dec(ctx3, crypto_sample_des3_keys);

 }

 break;

 case 3: {

 // Triple-DES key schedule (112-bit, encryption).

 mbedtls_des3_set2key_enc(ctx3, crypto_sample_des3_keys);

 }

 break;

 case 4: {

 // Triple-DES key schedule (168-bit, decryption).

 mbedtls_des3_set3key_dec(ctx3, crypto_sample_des3_keys);

 }

 break;

 case 5: {

 // Triple-DES key schedule (168-bit, encryption).

 mbedtls_des3_set3key_enc(ctx3, crypto_sample_des3_keys);

 }

 break;

 }

 if (v == MBEDTLS_DES_DECRYPT) {

 for (j = 0 ; j < CRYPTO_SAMPLE_DES_LOOP_COUNT ; j++) {

 if (u == 0) {

 // DES-CBC buffer decryption.

 mbedtls_des_crypt_cbc(ctx, v, 8, iv, buf, buf);

 } else {

 // 3DES-CBC buffer decryption.

 mbedtls_des3_crypt_cbc(ctx3, v, 8, iv, buf, buf);

 }

 }

 } else {

 for (j = 0; j < CRYPTO_SAMPLE_DES_LOOP_COUNT; j++) {

 if (u == 0) {

 // DES-CBC buffer encryption.

 mbedtls_des_crypt_cbc(ctx, v, 8, iv, buf, buf);

 } else {

 // 3DES-CBC buffer encryption.

 mbedtls_des3_crypt_cbc(ctx3, v, 8, iv, buf, buf);

 }

 }

 }

 }

 // Clear the DES context.

 mbedtls_des_free(ctx);

 // Clear the Triple-DES context.

 mbedtls_des3_free(ctx3);

}

The mbedtls_des_context is the DES context structure. It is initialized by function mbedtls_des_init. Function
mbedtls_des_crypt_cbc does DES-CBC buffer encryption and decryption. Before that, the key should be set up
by function mbedtls_des_setkey_enc. After the operation is complete, call function mbed_des_free to clear the
DES context.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 201

The mbedtls_des3_context is the Triple-DES context structure. It is initialized by function mbedtls_des3_init.
There are two key-sizes supported: 112 bits and 168 bits. Based on the key-size, the key is set up through
mbedtls_des3_set2key_enc (or mbedtls_des3_set2key_dec) or mbedtls_des3_set3key_enc(or
mbedtls_des3_set3key_dec). After that, the function mbedtls_des3_crypt_cbc does Triple-DES CBC encryption
and decryption. After the operation is complete, call function mbedtls_des3_free to clear the DES3 context.

16.1.5 Cryptographic Algorithms – HASH and HMAC

The HASH and HMAC algorithms sample application demonstrates common use cases of HASH and HMAC
algorithms such as SHA-1, SHA-256, and SHA-512. The sample application runs six types of hash algorithms
and HMAC algorithms:

▪ SHA1, SHA-224, SHA-256, SHA-384, SHA-512, and MD5

▪ HMAC.

Figure 107. Result of crypto hash #1

Figure 108. Result of crypto hash #2

16.1.5.1 Application Initialization

This example describes how the user can use hash and HMAC algorithms of the mbedTLS library.

void crypto_sample_hash(void *param)

{

 crypto_sample_hash_sha1();

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 202

 crypto_sample_hash_sha224();

 crypto_sample_hash_sha256();

 crypto_sample_hash_sha384();

 crypto_sample_hash_sha512();

#if defined(MBEDTLS_MD5_C)

 crypto_sample_hash_md5();

#endif // (MBEDTLS_MD5_C)

 crypto_sample_hash_md_wrapper();

 return ;

}

16.1.5.2 SHA-1 Hash

The DA16200 supports cryptographic algorithms for the SHA-1 hash. To explain how the SHA-1 hash works,
see the test vector in FIPS-180-1.

int crypto_sample_hash_sha1()

{

 mbedtls_sha1_context *ctx = NULL;

 PRINTF("* SHA-1: ");

 // Initialize a SHA-1 context.

 mbedtls_sha1_init(ctx);

 // Start a SHA-1 checksum calculation.

 mbedtls_sha1_starts_ret(ctx);

 // Feed an input buffer into an ongoing SHA-1 checksum calculation.

 mbedtls_sha1_update_ret(ctx, crypto_sample_hash_sha1_buf,

 crypto_sample_hash_sha1_buflen);

 // Finish the SHA-1 operation, and writes the result to the output buffer.

 mbedtls_sha1_finish(ctx, sha1sum);

 // Clear a SHA-1 context.

 mbedtls_sha1_free(ctx);

}

The mbedtls_sha1_context is the SHA-1 context structure. Function mbedtls_sha1_init is called to initialize the
context. To calculate SHA-1 Hash, three functions should be called. The details can be found in Table 41.

Table 41. APIs for SHA-1 hash

Item Description

int mbedtls_sha1_starts_ret(mbedtls_sha1_context *ctx)

Prototype int mbedtls_sha1_starts_ret(mbedtls_sha1_context *ctx)

Parameter ctx: The SHA-1 context to initialize. This must be initialized.

Return 0 on success. A negative error code on failure.

Description This function starts a SHA-1 checksum calculation.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 203

Item Description

int mbedtls_sha1_update_ret(mbedtls_sha1_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_sha1_update_ret(mbedtls_sha1_context *ctx, const unsigned char *input, size_t

ilen)

Parameter ctx: The SHA-1 context. This must be initialized and have a hash operation started.

input: The buffer holding the input data. This must be a readable buffer of length ilen bytes.

ilen: The length of the input data input in bytes.

Return 0 on success. A negative error code on failure.

Description This function feeds an input buffer into an ongoing SHA-1 checksum calculation.

int mbedtls_sha1_finish_ret(mbedtls_sha1_context *ctx, unsigned char output[20])

Prototype int mbedtls_sha1_finish_ret(mbedtls_sha1_context *ctx, unsigned char output[20])

Parameter ctx: The SHA-1 context to use. This must be initialized and have a hash operation started.

output: The SHA-1 checksum result. This must be a writable buffer of length 20 bytes.

Return 0 on success. A negative error code on failure.

Description This function finishes the SHA-1 operation and writes the result to the output buffer.

16.1.5.3 SHA-224 Hash

The DA16200 supports cryptographic algorithms for the SHA-224 hash. To explain how SHA-224 hash works,
see the test vector in FIPS-180-2.

int crypto_sample_hash_sha224()

{

 mbedtls_sha256_context *ctx = NULL;

 PRINTF("* SHA-224: ");

 // Initialize the SHA-224 context.

 mbedtls_sha256_init(ctx);

 // Start a SHA-224 checksum calculation.

 mbedtls_sha256_starts_ret(ctx, 1);

 // Feeds an input buffer into an ongoing SHA-224 checksum calculation.

 mbedtls_sha256_update_ret(ctx, crypto_sample_hash_sha224_buf,

 crypto_sample_hash_sha224_buflen);

 // Finishes the SHA-224 operation, and writes the result to the output buffer.

 mbedtls_sha256_finish_ret(ctx, sha224sum);

 //Clear s SHA-224 context.

 mbedtls_sha256_free(ctx);

}

The mbedtls_sha256_context is the SHA-256 context structure. The mbedTLS library supports SHA-224 and

SHA-256 using the context. This sample describes SHA-224. Call function mbedtls_sha256_init to initialize the
context. To calculate SHA-224 Hash, three functions should be called. The details can be found in Table 42.

Table 42. APIs for SHA-224 and SHA-256 hash

Item Description

int mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int is224)

Prototype int mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int is224)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 204

Item Description

Parameter ctx: The context to use. This must be initialized.

is224: This determines which function to use. This must be either 0 for SHA-256, or 1 for SHA-

224.

Return 0 on success. A negative error code on failure.

Description This function starts a SHA-224 or SHA-256 checksum calculation.

int mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input,

size_t ilen)

Parameter ctx: The SHA-256 context. This must be initialized and have a hash operation started.

input: The buffer holding the input data. This must be a readable buffer of length ilen bytes.

ilen: The length of the input data input in bytes.

Return 0 on success. A negative error code on failure.

Description This function feeds an input buffer into an ongoing SHA-256 checksum calculation.

int mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, unsigned char output[32])

Prototype int mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, unsigned char output[32])

Parameter ctx: The SHA-256 context to use. This must be initialized and have a hash operation started.

output: The SHA-224 or SHA-256 checksum result. This must be a writable buffer of length 32

bytes.

Return 0 on success. A negative error code on failure.

Description This function finishes the SHA-256 operation and writes the result to the output buffer.

16.1.5.4 SHA-256 Hash

The DA16200 supports cryptographic algorithms for the SHA-256 hash. To explain how the SHA-256 hash
works, see the test vector in FIPS-180-2.

int crypto_sample_hash_sha256()

{

 mbedtls_sha256_context *ctx = NULL;

 PRINTF("* SHA-256: ");

 // Initialize the SHA-256 context.

 mbedtls_sha256_init(ctx);

 // Start a SHA-256 checksum calculation.

 mbedtls_sha256_starts_ret(ctx, 0);

 // Feeds an input buffer into an ongoing SHA-256 checksum calculation.

 mbedtls_sha256_update_ret(ctx, rypto_sample_hash_sha256_buf,

 crypto_sample_hash_sha256_buflen);

 // Finishe the SHA-256 operation, and writes the result to the output buffer.

 mbedtls_sha256_finish_ret(ctx, sha256sum);

 //Clear s SHA-256 context.

 mbedtls_sha256_free(ctx);

}

This example is the same as the Cryptographic Algorithm for the SHA-224 code (see Section 16.1.5.3). When
starting the SHA-256 checksum calculation, the second parameter should be set to 0 for SHA-256.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 205

16.1.5.5 SHA-384 Hash

The DA16200 supports cryptographic algorithms for the SHA-384 hash. To explain how the SHA-384 hash
works, see the test vector in FIPS-180-2.

int crypto_sample_hash_sha384()

{

 mbedtls_sha512_context *ctx = NULL;

 PRINTF("* SHA-384: ");

 // Initialize a SHA-384 context.

 mbedtls_sha512_init(ctx);

 // Start a SHA-384 checksum calculation.

 mbedtls_sha512_starts_ret(ctx, 1);

 // Feed an input buffer into an ongoing SHA-384 checksum calculation.

 mbedtls_sha512_update(ctx, crypto_sample_hash_sha384_buf,

 crypto_sample_hash_sha384_buflen);

 // Finishe the SHA-384 operation, and writes the result to the output buffer.

 mbedtls_sha512_finish(ctx, sha384sum);

 // Clear a SHA-384 context.

 mbedtls_sha512_free(ctx);

}

The mbedtls_sha512_context is the SHA-512 context structure. mbedTLS library supports SHA-384 and SHA-512

using the context. This example describes SHA-384. Function mbedtls_sha512_init is called to initialize the
context. To calculate SHA-384 Hash, three functions should be called. The details can be found in Table 43.

Table 43. APIs for SHA-384 and SHA-512 hash

Item Description

int mbedtls_sha512_starts_ret(mbedtls_sha512_context *ctx, int is384)

Prototype int mbedtls_sha512_starts_ret(mbedtls_sha512_context *ctx, int is384)

Parameter ctx: The context to use. This must be initialized.

is384: This determines which function to use. This must be either 0 for SHA-512, or 1 for SHA-

384.

Return 0 on success. A negative error code on failure.

Description This function starts a SHA-384 or SHA-512 checksum calculation.

int mbedtls_sha512_update_ret(mbedtls_sha512_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_sha512_update_ret(mbedtls_sha512_context *ctx, const unsigned char *input,

size_t ilen)

Parameter ctx: The SHA-512 context. This must be initialized and have a hash operation started.

input: The buffer holding the input data. This must be a readable buffer of length ilen bytes.

ilen: The length of the input data input in bytes.

Return 0 on success. A negative error code on failure.

Description This function feeds an input buffer into an ongoing SHA-512 checksum calculation.

int mbedtls_sha512_finish_ret(mbedtls_sha512_context *ctx, unsigned char output[64])

Prototype int mbedtls_sha512_finish_ret(mbedtls_sha512_context *ctx, unsigned char output[64])

Parameter ctx: The SHA-512 context to use. This must be initialized and start a hash operation.

output: The SHA-384 or SHA-512 checksum result. This must be a writable buffer of length 64

bytes.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 206

Item Description

Return 0 on success. A negative error code on failure.

Description This function finishes the SHA-512 operation and writes the result to the output buffer.

16.1.5.6 SHA-512 Hash

The DA16200 supports cryptographic algorithms for the SHA-512 hash. To explain how the SHA-512 hash
works, see the test vector in FIPS-180-2.

int crypto_sample_hash_sha512()

{

 mbedtls_sha512_context *ctx = NULL;

 PRINTF("* SHA-512: ");

 // Initialize a SHA-512 context.

 mbedtls_sha512_init(ctx);

 // Start a SHA-512 checksum calculation.

 mbedtls_sha512_starts_ret(ctx, 0);

 // Feed an input buffer into an ongoing SHA-512 checksum calculation.

 mbedtls_sha512_update_ret(ctx, crypto_sample_hash_sha512_buf,

 crypto_sample_hash_sha512_buflen);

 // Finishe the SHA-512 operation, and writes the result to the output buffer.

 mbedtls_sha512_finish(ctx, sha512sum);

 // Clear a SHA-512 context.

 mbedtls_sha512_free(ctx);

}

This sample is the same as Cryptographic Algorithm for the SHA-384 code (see Section 16.1.5.5). When the
SHA-512 checksum calculation is started, the second parameter should be set to 0 for SHA-512.

16.1.5.7 MD5 Hash

The DA16200 supports cryptographic algorithms for an MD5 hash. To explain how the MD5 hash works, see the
test vector in RFC1321.

int crypto_sample_hash_md5()

{

 PRINTF("* MD5: ");

 // Output = MD5(input buffer)

 mbedtls_md5_ret(crypto_sample_hash_md5_buf,

 crypto_sample_hash_md5_buflen, md5sum);

 return ret;

}

In this example, the MD5 hash function is calculated by function mbedtls_md5_ret. The details can be found in
Table 44.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 207

Table 44. APIs for MD5 hash

Item Description

int mbedtls_md5_ret(const unsigned char *input, size_t ilen, unsigned char output[16])

Prototype int mbedtls_md5_ret(const unsigned char *input, size_t ilen, unsigned char output[16])

Parameter Input: buffer holding the data

Ilen: length of the input data

Output: MD5 checksum result

Return 0 if successful.

Description Output = MD5 (input buffer)

16.1.5.8 HASH and HMAC with Generic Message-Digest Wrapper

The mbedTLS library provides the generic message-digest wrapper to calculate HASH and HMAC. The APIs and

sample codes show how HASH and HMAC are calculated with the generic message-digest wrapper functions.
The API details are as follows:

Table 45. APIs for generic message digest wrapper

Item Description

const mbedtls_md_info_t* mbedtls_md_info_from_type(mbedtls_md_type_t md_type)

Prototype const mbedtls_md_info_t* mbedtls_md_info_from_type(mbedtls_md_type_t md_type) c

Parameter md_type: The type of digest to search for.

Return The message-digest information associated with md_type.

NULL if the associated message-digest information is not found.

Description This function returns the message-digest information associated with the given digest type.

const mbedtls_md_info_t* mbedtls_md_info_from_string(const char* md_name)

Prototype const mbedtls_md_info_t* mbedtls_md_info_from_string(const char* md_name)

(See Section 16.1.5.8.1)

Parameter md_name: The name of the digest to search for.

Return The message-digest information is associated with md_name.

NULL if the associated message-digest information is not found.

Description This function returns the message-digest information associated with the given digest name

mbedtls_md_type_t mbedtls_md_get_type(const mbedtls_md_info_t* md_info)

Prototype const mbedtls_md_info_t* mbedtls_md_info_from_string(const char* md_name)

(See Section 16.1.5.8.1)

Parameter md_info: The information structure of the message-digest algorithm to use.

Return The type of the message digest.

Description This function extracts the message-digest type from the message-digest information structure.

unsigned char mbedtls_md_get_size(const mbedtls_md_info_t* md_info)

Prototype unsigned char mbedtls_md_get_size(const mbedtls_md_info_t* md_info)

(See Section 16.1.5.8.1)

Parameter md_info: The information structure of the message-digest algorithm to use.

Return The size of the message-digest output in bytes.

Description This function extracts the message-digest size from the message-digest information structure.

const char* mbedtls_md_get_name(const mbedtls_md_info_t* md_info)

Prototype const char* mbedtls_md_get_name(const mbedtls_md_info_t* md_info)

(See Section 16.1.5.8.1)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 208

Item Description

Parameter md_info: The information structure of the message-digest algorithm to use.

Return The name of the message digest.

Description This function extracts the message-digest name from the message-digest information structure.

const int* mbedtls_md_list(void)

Prototype const int* mbedtls_md_list(void) (See Section 16.1.5.8.1)

Parameter None

Return A statically allocated array of digests. Each element in the returned list is an integer belonging

to the message-digest enumeration mbedtls_md_type_t. The last entry is 0.

Description This function returns the list of digests supported by the generic digest module.

int mbedtls_md(const mbedtls_md_info_t* md_info, const unsigned char* input, size_t ilen, unsigned char*

output)

Prototype int mbedtls_md(const mbedtls_md_info_t* md_info, const unsigned char* input, size_t ilen,

unsigned char* output) (See Section 16.1.5.8.2)

Parameter md_info: The information structure of the message-digest algorithm to use.

input: The buffer holding the data.

ilen: The length of the input data.

output: The generic message-digest checksum result.

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

Description This function calculates the message-digest of a buffer, with respect to a configurable message-

digest algorithm in a single call. The result is calculated as Output = message_digest (input

buffer).

void mbedtls_md_init(mbedtls_md_context_t* ctx)

Prototype void mbedtls_md_init(mbedtls_md_context_t* ctx) (See Section 16.1.5.8.3)

Parameter ctx: The context to initialize.

Return None

Description This function initializes a message-digest context without binding to a particular message-digest

algorithm.

int mbedtls_md_setup(mbedtls_md_context_t* ctx, const mbedtls_md_info_t * md_info, int hmac)

Prototype int mbedtls_md_setup(mbedtls_md_context_t* ctx, const mbedtls_md_info_t * md_info, int

hmac) (See Section 16.1.5.8.3)

Parameter ctx: The context to set up.

md_info: The information structure of the message-digest algorithm to use.

hmac: Defines if HMAC is used. 0: HMAC is not used (saves some memory), or non-zero:

HMAC is used with this context.

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

MBEDTLS_ERR_MD_ALLOC_FAILED on memory-allocation failure.

Description This function selects the message digest algorithm to use and allocates internal structures.

int mbedtls_md_update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t ilen)

Prototype int mbedtls_md_update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t ilen)

(See Section 16.1.5.8.3)

Parameter ctx: The generic message-digest context.

input: The buffer holding the input data.

ilen: The length of the input data.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 209

Item Description

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

Description This function feeds an input buffer into an ongoing message-digest computation.

int mbedtls_md_finish(mbedtls_md_context_t* ctx, unsigned char* output)

Prototype int mbedtls_md_finish(mbedtls_md_context_t* ctx, unsigned char* output)

(See Section 16.1.5.8.3)

Parameter ctx: The generic message-digest context.

output: The buffer for the generic message-digest checksum result.

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

Description This function finishes the digest operation and writes the result to the output buffer.

void mbedtls_md_free(mbedtls_md_context_t* ctx)

Prototype void mbedtls_md_free(mbedtls_md_context_t* ctx) (See Section 16.1.5.8.3)

Parameter ctx: The generic message-digest context.

Return None

Description This function clears the internal structure of ctx and frees any embedded internal structure but

does not free ctx itself.

int mbedtls_md_hmac(const mbedtls_md_info_t* md_info, const unsigned char* key, size_t keylen, const

unsigned char* input, size_t ilen, unsigned char* output)

Prototype int mbedtls_md_hmac(const mbedtls_md_info_t* md_info, const unsigned char* key, size_t

keylen, const unsigned char* input, size_t ilen, unsigned char* output) (See Section 16.1.5.8.4)

Parameter md_info: The information structure of the message-digest algorithm to use.

key: The HMAC secret key.

keylen: The length of the HMAC secret key in bytes.

input: The buffer holding the input data.

ilen: The length of the input data.

output: The generic HMAC result.

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

Description This function calculates the full generic HMAC on the input buffer with the provided key. The

function allocates the context, does the calculation, and frees the context. The HMAC result is

calculated as output = generic HMAC (hmac key, input buffer).

int mbedtls_md_hmac_starts(mbedtls_md_context_t* ctx, const unsigned char* key, size_t keylen)

Prototype int mbedtls_md_hmac_starts(mbedtls_md_context_t* ctx, const unsigned char* key, size_t

keylen) (See Section 16.1.5.8.4)

Parameter ctx: The message digest context containing an embedded HMAC context.

key: The HMAC secret key.

keylen: The length of the HMAC key in bytes.

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

Description This function sets the HMAC key and prepares to authenticate a new message

int mbedtls_md_hmac_update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t ilen)

Prototype int mbedtls_md_hmac_update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t

ilen) (See Section 16.1.5.8.4)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 210

Item Description

Parameter ctx: The message digest context containing an embedded HMAC context.

input: The buffer holding the input data.

ilen: The length of the input data.

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

Description This function feeds an input buffer into an ongoing HMAC computation.

int mbedtls_md_hmac_finish(mbedtls_md_context_t* ctx, unsigned char* output)

Prototype int mbedtls_md_hmac_finish(mbedtls_md_context_t* ctx, unsigned char* output)

(See Section 16.1.5.8.4)

Parameter ctx: The message digest context containing an embedded HMAC context.

output: The generic HMAC checksum result.

Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.

Description This function finishes the HMAC operation and writes the result to the output buffer.

16.1.5.8.1 Supported Message-digest Functions

The user needs to check which message-digests are supported by the mbedTLS library. The sample code below

shows how to get and check message-digest information.

int crypto_sample_hash_md_wrapper_info(char *md_name, mbedtls_md_type_t md_type, int md_size)

{

 const mbedtls_md_info_t *md_info = NULL;

 const int *md_type_ptr = NULL;

 // Get the message-digest information associated with the given digest type.

 md_info = mbedtls_md_info_from_type(md_type);

 if (!md_info) {

 PRINTF("[%s] Unknown Hash Type(%d)\r\n", __func__, md_type);

 goto cleanup;

 }

 // Get the message-digest information associated with the given digest name.

 if (md_info != mbedtls_md_info_from_string(md_name)) {

 PRINTF("[%s] Unknown Hash Name(%s)\r\n", md_name);

 goto cleanup;

 }

 // Extract the message-digest type from the message-digest information

 // structure.

 if (mbedtls_md_get_type(md_info) != (mbedtls_md_type_t)md_type) {

 PRINTF("[%s] Not matched Hash Type\r\n", __func__);

 goto cleanup;

 }

 // Extract the message-digest size from the message-digest information

 // structure.

 if (mbedtls_md_get_size(md_info) != (unsigned char)md_size) {

 PRINTF("[%s] Not matched Hash Size\r\n", __func__);

 goto cleanup;

 }

 // Extract the message-digest name from the message-digest information

 // structure.

 if (strcmp(mbedtls_md_get_name(md_info), md_name) != 0) {

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 211

 PRINTF("[%s] Not matched Hash Name\r\n", __func__);

 goto cleanup;

 }

 // Find the list of digests supported by the generic digest module.

 for (md_type_ptr = mbedtls_md_list() ; *md_type_ptr != 0 ; md_type_ptr++) {

 if (*md_type_ptr == md_type) {

 found = 1;

 break;

 }

 }

 return ret;

}

16.1.5.8.2 How to Calculate HASH Using Single Text String

The following sample code describes how a HASH function is calculated using the generic message-digest. In
this sample, the text_src_string is used to calculate the message-digest algorithm, and the expected output is
hex_hash_string.

int crypto_sample_hash_md_wrapper_text(char *md_name, char *text_src_string, char

*hex_hash_string)

{

 const mbedtls_md_info_t *md_info = NULL;

 // Get the message-digest information associated with the given digest name.

 md_info = mbedtls_md_info_from_string(md_name);

 /* Calculates the message-digest of a buffer,

 * with respect to a configurable message-digest algorithm in a single call.

 */

 ret = mbedtls_md(md_info,

 (const unsigned char *)text_src_string,

 strlen(text_src_string),

 output);

}

16.1.5.8.3 How to Calculate HASH Using Multiple Text Strings

The sample code is similar to Section 16.1.5.8.2 and the only difference is that multiple text strings are used.

int crypto_sample_hash_md_wrapper_text_multi(char *md_name, char *text_src_string, char

*hex_hash_string)

{

 const mbedtls_md_info_t *md_info = NULL;

 mbedtls_md_context_t *ctx = NULL; //The generic message-digest context.

 /* Initialize a message-digest context without binding it

 * to a particular message-digest algorithm.

 */

 mbedtls_md_init(ctx);

 // Get the message-digest information associated with the given digest name.

 md_info = mbedtls_md_info_from_string(md_name);

 // Select the message digest algorithm to use, and allocates internal

 // structures.

 ret = mbedtls_md_setup(ctx, md_info, 0);

 // Start a message-digest computation.

 ret = mbedtls_md_starts(ctx);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 212

 // Feed an input buffer into an ongoing message-digest computation.

 ret = mbedtls_md_update(ctx, (const unsigned char *)text_src_string, halfway);

 // Feed an input buffer into an ongoing message-digest computation.

 ret = mbedtls_md_update(ctx,

 (const unsigned char *)(text_src_string + halfway),

 len - halfway);

 // Finish the digest operation, and writes the result to the output buffer.

 ret = mbedtls_md_finish(ctx, output);

 /* Clear the internal structure of ctx and free any embedded internal

 structure,

 * but does not free ctx itself.

 */

 mbedtls_md_free(ctx);

}

16.1.5.8.4 How to Calculate HMAC and HASH

▪ How to calculate HMAC using single hex data

The sample code below shows how the HMAC function is calculated using the generic message-digest wrapper.
The hex_key_string is the HMAC secret key, the hex_src_string is input data, and the hex_hash_string is
expected output. The mbedtls_md_hmac is for a single hex data.

int crypto_sample_hash_md_wrapper_hmac(char *md_name, int trunc_size, char *hex_key_string,

char *hex_src_string, char *hex_hash_string)

{

 const mbedtls_md_info_t *md_info = NULL;

 // Get the message-digest information associated with the given digest name.

 md_info = mbedtls_md_info_from_string(md_name);

 // Calculate the full generic HMAC on the input buffer with the provided key.

 ret = mbedtls_md_hmac(md_info, key_str, key_len, src_str, src_len, output);

}

▪ How to calculate HMAC using multiple hex data

The sample code is similar to How to calculate HMAC using single hex data and the only difference is that
multiple hex data are used for input value.

int crypto_sample_hash_md_wrapper_hmac_multi(char *md_name, int trunc_size, char

*hex_key_string, char *hex_src_string, char *hex_hash_string)

{

 const mbedtls_md_info_t *md_info = NULL;

 mbedtls_md_context_t *ctx = NULL;

 /* Initialize a message-digest context without binding it

 * to a particular message-digest algorithm.

 */

 mbedtls_md_init(ctx);

 md_info = mbedtls_md_info_from_string(md_name);

 // Select the message digest algorithm to use, and allocate internal

 // structures.

 ret = mbedtls_md_setup(ctx, md_info, 1);

 // Start a message-digest computation.

 ret = mbedtls_md_hmac_starts(ctx, key_str, key_len);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 213

 // Feed an input buffer into an ongoing message-digest computation.

 ret = mbedtls_md_hmac_update(ctx, src_str, halfway);

 // Feed an input buffer into an ongoing message-digest computation.

 ret = mbedtls_md_hmac_update(ctx, src_str + halfway, src_len - halfway);

 // Finish the digest operation, and writes the result to the output buffer.

 ret = mbedtls_md_hmac_finish(ctx, output);

 /* Clear the internal structure of ctx and free any embedded internal

 structure,

 * but does not free ctx itself.

 */

 mbedtls_md_free(ctx);

}

▪ How to calculate HASH using a single hex data

The sample code below describes how the HASH function is calculated with the generic message-digest
function. The code is similar to Section 16.1.5.8.2 and the only difference is that a single hex data is used for
input value.

int crypto_sample_hash_md_wrapper_hex(char *md_name, char *hex_src_string, char

*hex_hash_string)

{

 const mbedtls_md_info_t *md_info = NULL;

 // Get the message-digest information associated with the given digest name.

 md_info = mbedtls_md_info_from_string(md_name);

 /* Calculates the message-digest of a buffer,

 * with respect to a configurable message-digest algorithm in a single call.

 */

 ret = mbedtls_md(md_info, src_str, src_len, output);

}

▪ How to calculate HASH using multiple hex data

The sample code below describes how the HASH function is calculated with the generic message-digest
function. The code is similar to Section 16.1.5.8.3 and the only difference is that multiple hex data are used for
input value.

int crypto_sample_hash_md_wrapper_hex_multi(char *md_name, char *hex_src_string, char

*hex_hash_string)

{

 const mbedtls_md_info_t *md_info = NULL;

 mbedtls_md_context_t *ctx = NULL;

 /* Initialize a message-digest context without binding it

 * to a particular message-digest algorithm.

 */

 mbedtls_md_init(ctx);

 // Get the message-digest information associated with the given digest name.

 md_info = mbedtls_md_info_from_string(md_name);

 // Select the message digest algorithm to use, and allocate internal

 // structures.

 ret = mbedtls_md_setup(ctx, md_info, 0);

 // Start a message-digest computation.

 ret = mbedtls_md_starts(ctx);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 214

 // Feed an input buffer into an ongoing message-digest computation.

 ret = mbedtls_md_update(ctx, src_str, halfway);

 // Feed an input buffer into an ongoing message-digest computation.

 ret = mbedtls_md_update(ctx, src_str + halfway, src_len - halfway);

 // Finish the digest operation, and writes the result to the output buffer.

 ret = mbedtls_md_finish(ctx, output);

 /* Clear the internal structure of ctx and free any embedded internal

 structure,

 * but does not free ctx itself.

 */

 mbedtls_md_free(ctx);

}

16.1.6 Cryptographic Algorithms – DRBG

The random generator sample application demonstrates common use cases of CTR-DRBG (Counter mode
Deterministic Random Byte Generator) and HMAC-DRBG (HMAC Deterministic Random Byte Generator). The
sample application explains how to use the DRBG function with CTR and HMAC.

▪ CTR_DRBG

▪ HMAC_DRBG.

Figure 109. Result of crypto DRBG

16.1.6.1 Application Initialization

This example describes how the user uses CTR DRBG and HMAC DRBG of the mbedTLS library. CTR_DRBG is

a standardized way of building a PRNG from a block-cipher in counter mode operation, as defined in NIST SP
800-90A: Recommendation for Random Number Generation Using Deterministic Random Bit Generators. To
implement mbedTLS of CTR_DRBG, use AES-256 (default) or AES-128 as the underlying block cipher.

HMAC_DRBG is based on a Hash-based message authentication code.

void crypto_sample_drbg(void *param)

{

 crypto_sample_ctr_drbg_pr_on();

 crypto_sample_ctr_drbg_pr_off();

 crypto_sample_hmac_drbg_pr_on();

 crypto_sample_hmac_drbg_pr_off();

 return ;

}

16.1.6.2 CTR_DRBG with Prediction Resistance

This example describes how to use CTR_DRBG with prediction resistance.

int crypto_sample_ctr_drbg_pr_on()

{

 mbedtls_ctr_drbg_context *ctx = NULL; //The CTR_DRBG context structure.

 // Based on a NIST CTR_DRBG test vector (PR = True)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 215

 PRINTF("* CTR_DRBG (PR = TRUE): ");

 // Initialize the CTR_DRBG context.

 mbedtls_ctr_drbg_init(ctx);

 ret = mbedtls_ctr_drbg_seed_entropy_len(ctx, drbg_test_entropy,

 (void *)crypto_sample_ctr_drbg_entropy_src_pr,

 crypto_sample_ctr_brdg_nonce_pers_pr,

 16,

 32);

 // Turn prediction resistance on

 mbedtls_ctr_drbg_set_prediction_resistance(ctx, MBEDTLS_CTR_DRBG_PR_ON);

 // Generate random data using CTR_DRBG.

 ret = mbedtls_ctr_drbg_random(ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE);

 // Generate random data using CTR_DRBG.

 ret = mbedtls_ctr_drbg_random(ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE);

 // Clear CTR_CRBG context data.

 mbedtls_ctr_drbg_free(ctx);

}

The API details are as follows:

Table 46. APIs for CTR DRBG

Item Description

void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context* ctx)

Prototype int mbedtls_md_hmac_starts(mbedtls_md_context_t* ctx, const unsigned char* key, size_t

keylen)

Parameter ctx: The CTR_DRBG context to initialize.

Return None

Description This function initializes the CTR_DRBG context and prepares it for mbedtls_ctr_drbg_seed() or

mbedtls_ctr_drbg_free().

void mbedtls_ctr_drbg_set_prediction_resistance(mbedtls_ctr_drbg_context* ctx, int resistance)

Prototype void mbedtls_ctr_drbg_set_prediction_resistance(mbedtls_ctr_drbg_

context* ctx, int resistance)

Parameter resistance: MBEDTLS_CTR_DRBG_PR_ON or MBEDTLS_CTR_DRBG_PR_OFF

Return None

Description This function turns prediction resistance on or off.

The default value is off.

int mbedtls_ctr_drbg_random(void* p_rng, unsigned char *output, size_t output_len)

Prototype int mbedtls_ctr_drbg_random(void* p_rng, unsigned char *output, size_t output_len)

Parameter p_rng: The CTR_DRBG context. This must be a pointer to a mbedtls_ctr_drbg_context structure

output: The buffer to fill.

output_len: The length of the buffer.

Return 0 on success.

MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED or

MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG on failure.

Description This function uses CTR_DRBG to generate random data.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 216

Item Description

void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context* ctx)

Prototype void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context* ctx)

Parameter ctx: The CTR_DRBG context to clear.

Return None

Description This function clears CTR_CRBG context data.

16.1.6.3 CTR_DRBG Without Prediction Resistance

This example describes how to use CTR_DRBG without prediction resistance.

int crypto_sample_ctr_drbg_pr_off()

{

 mbedtls_ctr_drbg_context ctx; //The CTR_DRBG context structure.

 // Based on a NIST CTR_DRBG test vector (PR = FALSE)

 PRINTF("* CTR_DRBG (PR = FALSE): ");

 // Initialize the CTR_DRBG context.

 mbedtls_ctr_drbg_init(&ctx);

 ret = mbedtls_ctr_drbg_seed_entropy_len(&ctx, drbg_test_entropy,

 (void *) crypto_sample_ctr_drbg_entropy_src_nopr,

 crypto_sample_ctr_brdg_nonce_pers_nopr, 16, 32);

 // Generate random data using CTR_DRBG.

 ret = mbedtls_ctr_drbg_random(&ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE);

 // Reseed the CTR_DRBG context, that is extracts data from the entropy source.

 ret = mbedtls_ctr_drbg_reseed(&ctx, NULL, 0);

 // Generate random data using CTR_DRBG.

 ret = mbedtls_ctr_drbg_random(&ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE);

 // Clear CTR_CRBG context data.

 mbedtls_ctr_drbg_free(&ctx);

}

16.1.6.4 HMAC_DRBG with Prediction Resistance

This example describes how to use HMAC_DRBG with prediction resistance.

int crypto_sample_hmac_drbg_pr_on()

{

 mbedtls_hmac_drbg_context ctx;

 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);

 PRINTF("* HMAC_DRBG (PR = True) : ");

 // Initialize HMAC DRBG context.

 mbedtls_hmac_drbg_init(&ctx);

 // HMAC_DRBG initial seeding Seed and setup entropy source for future reseeds.

 ret = mbedtls_hmac_drbg_seed(&ctx, md_info,

 drbg_test_entropy,

 (void *)crypto_sample_hmac_drbg_entropy_src_pr,

 NULL, 0);

 // Enable prediction resistance.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 217

 mbedtls_hmac_drbg_set_prediction_resistance(&ctx, MBEDTLS_HMAC_DRBG_PR_ON);

 // Generate random.

 ret = mbedtls_hmac_drbg_random(&ctx, buf, CRYPTO_SAMPLE_HMAC_DRBG_OUTPUT_LEN);

 // Generate random.

 ret = mbedtls_hmac_drbg_random(&ctx, buf, CRYPTO_SAMPLE_HMAC_DRBG_OUTPUT_LEN);

 // Free an HMAC_DRBG context.

 mbedtls_hmac_drbg_free(&ctx);

}

The API details are as follows:

Table 47. APIs for HMAC DRBG

Item Description

void mbedtls_hmac_drbg_init (mbedtls_hmac_drbg_context* ctx)

Prototype void mbedtls_hmac_drbg_init(mbedtls_hmac_drbg_context *ctx)

Parameter ctx: HMAC_DRBG context to be initialized.

Return None

Description HMAC_DRBG context initialization makes the context ready for mbedtls_hmac_drbg_seed(),

mbedtls_hmac_drbg_seed_buf() or mbedtls_hmac_drbg_free().

int mbedtls_hmac_drbg_seed(mbedtls_hmac_drbg_context* ctx, const mbedtls_md_info_t * md_info, int

(*f_entropy)(void*, unsigned char*, size_t), void* p_entropy, const unsigned char* custom, size_t len)

Prototype int mbedtls_hmac_drbg_seed(mbedtls_hmac_drbg_context* ctx, const mbedtls_md_info_t *

md_info, int (*f_entropy)(void*, unsigned char*, size_t), void* p_entropy, const unsigned char*

custom, size_t len)

Parameter ctx: HMAC_DRBG context to be seeded.

md_info: MD algorithm to use for HMAC_DRBG.

f_entropy: Entropy callback (p_entropy, buffer to fill, buffer length).

p_entropy: Entropy context.

custom: Personalization data (Device specific identifiers) (Can be NULL).

len: Length of personalization data.

Return 0 if successful, or MBEDTLS_ERR_MD_BAD_INPUT_DATA, or

MBEDTLS_ERR_MD_ALLOC_FAILED, or

MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED

Description HMAC_DRBG initial seeding Seed and setup entropy source for future reseeds.

void mbedtls_hmac_drbg_set_prediction_resistance(mbedtls_hmac_drbg_context *ctx, int resistance)

Prototype void mbedtls_hmac_drbg_set_prediction_resistance(mbedtls_hmac_drbg_

context *ctx, int resistance)

Parameter ctx: HMAC_DRBG context.

resistance: MBEDTLS_HMAC_DRBG_PR_ON or MBEDTLS_HMAC_DRBG_PR_OFF.

Return None

Description Enable/disable prediction resistance (Default: Off).

int mbedtls_hmac_drbg_random(void *p_rng, unsigned char *output, size_t out_len)

Prototype int mbedtls_hmac_drbg_random(void *p_rng, unsigned char *output, size_t out_len)

Parameter p_rng: HMAC_DRBG context.

output: Buffer to fill.

out_len: Length of the buffer.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 218

Item Description

Return 0 if successful, or MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED, or

MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG.

Description HMAC_DRBG generates random.

void mbedtls_hmac_drbg_free(mbedtls_hmac_drbg_context *ctx)

Prototype void mbedtls_hmac_drbg_free(mbedtls_hmac_drbg_context *ctx)

Parameter ctx: HMAC_DRBG context to free.

Return None

Description Free an HMAC_DRBG context.

int mbedtls_hmac_drbg_reseed(mbedtls_hmac_drbg_context *ctx, const unsigned char *additional, size_t len)

Prototype int mbedtls_hmac_drbg_reseed(mbedtls_hmac_drbg_context *ctx, const unsigned char

*additional, size_t len)

Parameter ctx: HMAC_DRBG context.

additional: Additional data to add to state (can be NULL).

len: Length of additional data.

Return 0 if successful, or MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED.

Description HMAC_DRBG reseeding (extracts data from entropy source).

16.1.6.5 HMAC_DRBG Without Prediction Resistance

This example describes how to use HMAC_DRBG without prediction resistance.

int crypto_sample_hmac_drbg_pr_off()

{

 mbedtls_hmac_drbg_context ctx;

 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);

 PRINTF("* HMAC_DRBG (PR = False) : ");

 // Initialize HMAC DRBG context.

 mbedtls_hmac_drbg_init(&ctx);

 // HMAC_DRBG initial seeding Seed and setup entropy source for future reseeds.

 ret = mbedtls_hmac_drbg_seed(&ctx, md_info,

 drbg_test_entropy,

 (void *)crypto_sample_hmac_drbg_entropy_src_nopr,

 NULL, 0);

 // HMAC_DRBG reseeding (extracts data from entropy source)

 ret = mbedtls_hmac_drbg_reseed(&ctx, NULL, 0);

 // Generate random.

 ret = mbedtls_hmac_drbg_random(&ctx, buf, CRYPTO_SAMPLE_HMAC_DRBG_OUTPUT_LEN);

 // Generate random.

 ret = mbedtls_hmac_drbg_random(&ctx, buf, CRYPTO_SAMPLE_HMAC_DRBG_OUTPUT_LEN);

 // Free an HMAC_DRBG context.

 mbedtls_hmac_drbg_free(&ctx);

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 219

16.1.7 Cryptographic Algorithms – ECDSA

The Elliptic Curve Digital Signature Algorithm sample application demonstrates common use cases of the Elliptic
Curve Digital Signature Algorithm. In cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers
a variant of the Digital Signature Algorithm (DSA) which uses elliptic curve cryptography.

Figure 110. Result of crypto ECDSA

16.1.7.1 Application Initialization

In cryptography, the ECDSA offers a variant of the DSA, which uses elliptic curve cryptography. This sample
describes how the user uses the ECDSA of the mbedTLS library.

void crypto_sample_ecdsa(void *param)

{

 crypto_sample_ecdsa_test();

 return ;

}

16.1.7.2 Generate ECDSA Key Pair and Verifies ECDSA Signature

This example generates an ECDSA keypair and verifies the self-computed ECDSA signature.

int crypto_sample_ecdsa_test()

{

 int ret = -1;

 const char *pers = "crypto_sample_ecdsa";

 mbedtls_ecdsa_context ctx_sign;

 mbedtls_ecdsa_context ctx_verify;

 mbedtls_entropy_context entropy;

 mbedtls_ctr_drbg_context ctr_drbg;

 mbedtls_sha256_context sha256_ctx;

 // Initialize an ECDSA context.

 mbedtls_ecdsa_init(&ctx_sign);

 mbedtls_ecdsa_init(&ctx_verify);

 // Initialize the CTR_DRBG context.

 mbedtls_ctr_drbg_init(&ctr_drbg);

 // Initialize the SHA-256 context.

 mbedtls_sha256_init(&sha256_ctx);

 // Initialize the entropy context.

 mbedtls_entropy_init(&entropy);

 memset(sig, 0x00, MBEDTLS_ECDSA_MAX_LEN);

 memset(message, 0x25, 100);

 // Generate a key pair for signing

 PRINTF("* Seeding the random number generator: ");

 // Seed and sets up the CTR_DRBG entropy source for future reseeds.

 ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 220

 (const unsigned char *)pers, strlen(pers));

 PRINTF("* Generating key pair: ");

 // Generate an ECDSA keypair on the given curve.

 ret = mbedtls_ecdsa_genkey(&ctx_sign, MBEDTLS_ECP_DP_SECP192R1,

 mbedtls_ctr_drbg_random, &ctr_drbg);

 // Compute message hash

 PRINTF("* Computing message hash: ");

 // Start a SHA-256 checksum calculation.

 mbedtls_sha256_starts_ret(&sha256_ctx, 0);

 // Feeds an input buffer into an ongoing SHA-256 checksum calculation.

 mbedtls_sha256_update_ret(&sha256_ctx, message, 100);

 // Finishe the SHA-256 operation, and writes the result to the output buffer.

 mbedtls_sha256_finish(&sha256_ctx, hash);

 // Sign message hash

 PRINTF("* Signing message hash: ");

 // Compute the ECDSA signature and writes it to a buffer.

 ret = mbedtls_ecdsa_write_signature(&ctx_sign, MBEDTLS_MD_SHA256, hash, 32,

 sig, &sig_len, mbedtls_ctr_drbg_random, &ctr_drbg);

 // Verify signature

 PRINTF("* Verifying signature: ");

 // Read and verify an ECDSA signature.

 ret = mbedtls_ecdsa_read_signature(&ctx_verify, hash, 32, sig, sig_len);

 // Free an ECDSA context.

 mbedtls_ecdsa_free(&ctx_verify);

 mbedtls_ecdsa_free(&ctx_sign);

 // Clear CTR_CRBG context data.

 mbedtls_ctr_drbg_free(&ctr_drbg);

 // Free the data in the context.

 mbedtls_entropy_free(&entropy);

 // Clear s SHA-256 context.

 mbedtls_sha256_free(&sha256_ctx);

}

The API details are as follows:

Table 48. APIs for ECDSA

Item Description

void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx)

Prototype void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx)

Parameter ctx: The ECDSA context to initialize. This must not be NULL.

Return None

Description This function initializes an ECDSA context.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 221

Item Description

int mbedtls_ecdsa_genkey(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, int (*f_rng)(void *, unsigned

char *, size_t), void *p_rng)

Prototype int mbedtls_ecdsa_genkey(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, int

(*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Parameter ctx: The ECDSA context to store the keypair in. This must be initialized.

gid: The elliptic curve to use. One of the various MBEDTLS_ECP_DP_XXX macros depending

on configuration.

f_rng: The RNG function to use. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a

context argument.

Return 0 on success. An MBEDTLS_ERR_ECP_XXX code on failure.

Description This function generates an ECDSA keypair on the given curve.

int mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg, const unsigned

char *hash, size_t hlen, unsigned char *sig, size_t *slen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,

const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, int (*f_rng)(void *,

unsigned char *, size_t), void *p_rng)

Parameter ctx: The ECDSA context to use. This must be initialized and have a group and private key

bound to it, for example via mbedtls_ecdsa_genkey() or mbedtls_ecdsa_from_keypair().

md_alg: The message digest that was used to hash the message.

hash: The message hash to be signed. This must be a readable buffer of length hlen bytes.

hlen: The length of the hash in bytes.

sig: The buffer to which to write the signature. This must be a writable buffer of a length at least

twice as large as the size of the curve used, plus 9. For example, 73 bytes if a 256-bit curve is

used. The buffer length of MBEDTLS_ECDSA_MAX_LEN is always safe.

slen: The address at which to store the actual length of the signature written. Must not be NULL.

f_rng: The RNG function. This must not be NULL if MBEDTLS_ECDSA_DETERMINISTIC is

unset. Otherwise, it is unused and may be set to NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not

use a context.

Return 0 on success. An MBEDTLS_ERR_ECP_XXX, MBEDTLS_ERR_MPI_XXX or

MBEDTLS_ERR_ASN1_XXX error code on failure.

Description This function computes the ECDSA signature and writes it to a buffer, serialized as defined in

RFC-4492: Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS).

int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx, const unsigned char *hash, size_t hlen, const

unsigned char *sig, size_t slen)

Prototype int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx, const unsigned char *hash,

size_t hlen, const unsigned char *sig, size_t slen)

Parameter ctx: The ECDSA context to use. This must be initialized and have a group and public key bound

to it.

hash: The message hash that was signed. This must be a readable buffer of length size bytes

hlen: The size of the hash.

sig: The signature to read and verify. This must be a readable buffer of length slen bytes.

slen: The size of sig in bytes.

Return 0 on success. MBEDTLS_ERR_ECP_BAD_INPUT_DATA if signature is invalid.

MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH if there is a valid signature in sig, but its length is

less than siglen. An MBEDTLS_ERR_ECP_XXX or MBEDTLS_ERR_MPI_XXX error code on

failure for any other reason.

Description This function reads and verifies an ECDSA signature.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 222

16.1.8 Cryptographic Algorithms – Diffie-Hellman Key Exchange

The Diffie-Hellman-Merkle (DHM) key exchange sample application demonstrates common use cases of DHM
key exchange on the client and server sides.

Figure 111. Result of crypto Diffie Hellman

16.1.8.1 Application Initialization

This example includes two types. The first function crypto_sample_dhm_parse_dhm, shows how Diffie-Hellman
parameters can be loaded. The second function crypto_sample_dhm_do_dhm, shows how DA16200 works for
Diffie-Hellman key exchange.

void crypto_sample_dhm()

{

 ret = crypto_sample_dhm_parse_dhm();

 for (idx = 0 ; crypto_sample_dhm_do_dhm_list[idx].title != NULL ; idx++) {

 ret = crypto_sample_dhm_do_dhm(crypto_sample_dhm_do_dhm_list[idx].title,

 crypto_sample_dhm_do_dhm_list[idx].radix_P,

 crypto_sample_dhm_do_dhm_list[idx].input_P,

 crypto_sample_dhm_do_dhm_list[idx].radix_G,

 crypto_sample_dhm_do_dhm_list[idx].input_G);

 }

}

16.1.8.2 How Diffie-Hellman Works

Sample codes and APIs show how the Diffie-Hellman works and is loaded over the mbedTLS library's API. The

API details are as follows.

Table 49. APIs for Diffie-Hellman-Merkle

Item Description

void mbedtls_dhm_init(mbedtls_dhm_context *ctx)

Prototype void mbedtls_dhm_init(mbedtls_dhm_context *ctx) (See Section 16.1.8.2.1)

Parameter ctx: The DHM context to initialize.

Return None

Description This function initializes the DHM context.

int mbedtls_dhm_parse_dhm(mbedtls_dhm_context *dhm, const unsigned char *dhmin, size_t dhminlen)

Prototype int mbedtls_dhm_parse_dhm(mbedtls_dhm_context *dhm, const unsigned char *dhmin, size_t

dhminlen) (See Section 16.1.8.2.2)

Parameter dhm: The DHM context to import the DHM parameters into. This must be initialized.

dhmin: The input buffer. This must be a readable buffer of length dhminlen bytes.

dhminlen: The size of the input buffer dhmin, including the terminating NULL byte for PEM data.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX or MBEDTLS_ERR_PEM_XXX error code on

failure.

Description This function parses DHM parameters in PEM or DER format.

void mbedtls_dhm_free(mbedtls_dhm_context *ctx)

Prototype void mbedtls_dhm_free(mbedtls_dhm_context *ctx) See Section 16.1.8.2.1)

Parameter ctx: The DHM context to free and clear. This may be NULL, in which case this function is a no-

op. If it is not NULL, it must point to an initialized DHM context.

Return None

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 223

Item Description

Description This function frees and clears the components of a DHM context.

int mbedtls_dhm_make_params(mbedtls_dhm_context *ctx, int x_size, char *output, size_t *olen, int (*f_rng)(void

*, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_dhm_make_params(mbedtls_dhm_context *ctx, int x_size, char *output, size_t

*olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) (See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized and have the DHM parameters set. It may

or may not already have imported the peer's public key.

x_size: The private key size in bytes.

output: The destination buffer. This must be a writable buffer of sufficient size to hold the

reduced binary presentation of the modulus, the generator and the public key, each wrapped

with a 2-byte length field. It is the responsibility of the caller to ensure that enough space is

available. See the mbedtls_mpi_size() to compute the byte-size of an MPI.

olen: The address at which to store the number of bytes written on success. This must not be

NULL.

f_rng: The RNG function. Must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a

context parameter.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure

Description This function generates a DHM key pair and exports its public part together with the DHM

parameters in the format used in a TLS ServerKeyExchange handshake message.

int mbedtls_dhm_read_params(mbedtls_dhm_context *ctx, unsigned char **p, unsigned char *end)

Prototype int mbedtls_dhm_read_params(mbedtls_dhm_context *ctx, unsigned char **p, unsigned char

*end) (See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized.

p: On input, *p must be the start of the input buffer. On output, *p is updated to point to the end

of the data that has been read. On success, this is the first byte past the end of the

ServerKeyExchange parameters. On error, this is the point at which an error has been detected,

which is usually not useful except for debug failures.

end: The end of the input buffer.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description This function parses the DHM parameters in a TLS ServerKeyExchange handshake message

(DHM modulus, generator, and public key).

int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size, unsigned char *output, size_t olen, int

(*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_dhm_read_params(mbedtls_dhm_context *ctx, unsigned char **p, unsigned char

*end) (See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized.

p: On input, *p must be the start of the input buffer. On output, *p is updated to point to the end

of the data that has been read. On success, this is the first byte past the end of the

ServerKeyExchange parameters. On error, this is the point at which an error has been detected,

which is usually not useful except to debug failures.

end: The end of the input buffer.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description This function parses the DHM parameters in a TLS ServerKeyExchange handshake message

(DHM modulus, generator, and public key).

int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size, unsigned char *output, size_t olen, int

(*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size, unsigned char *output,

size_t olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) (See Section 16.1.8.2.2)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 224

Item Description

Parameter ctx: The DHM context to use. This must be initialized and have the DHM parameters set. It may

or may not already have imported the peer's public key.

x_size: The private key size in bytes.

output: The destination buffer. This must be a writable buffer of size olen bytes.

olen: The length of the destination buffer. This must be at least equal to ctx->len (the size of P).

f_rng: The RNG function. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a

context argument.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description This function creates a DHM key pair and exports the raw public key in big-endian format.

int mbedtls_dhm_read_public(mbedtls_dhm_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_dhm_read_public(mbedtls_dhm_context *ctx, const unsigned char *input, size_t

ilen) (See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized and have its DHM parameters set, for

instance via mbedtls_dhm_set_group(). It may or may not already have generated its own

private key.

input: The input buffer containing the G^Y value of the peer. This must be a readable buffer of

size ilen bytes.

ilen: The size of the input buffer input in bytes.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description This function imports the raw public value of the peer.

int mbedtls_dhm_calc_secret(mbedtls_dhm_context *ctx, unsigned char *output, size_t output_size, size_t *olen,

int (*f_rng)(void *, unsigned char *, size_t),

void *p_rng)

Prototype int mbedtls_dhm_calc_secret(mbedtls_dhm_context *ctx, unsigned char *output, size_t

output_size, size_t *olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

(See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized and have its own private key generated

and the peer's public key imported.

output: The buffer to write the generated shared key to. This must be a writable buffer of size

output_size bytes.

output_size: The size of the destination buffer. This must be at least the size of ctx->len (the

size of P).

olen: On exit, holds the actual number of bytes written.

f_rng: The RNG function, for blinding purposes. This may be NULL if blinding is not needed.

p_rng: The RNG context. This may be NULL if f_rng does not need a context argument.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description This function derives and exports the shared secret (G^Y)^X mod P.

16.1.8.2.1 How to Load Diffie-Hellman Parameters

The mbedtls_dhm_parse_dhm parses DHM parameters in PEM or DER format. The

crypto_sample_dhm_params is already defined in this sample.

int crypto_sample_dhm_parse_dhm()

{

 mbedtls_dhm_context *dhm = NULL; // The DHM context structure.

 // Initialize the DHM context.

 mbedtls_dhm_init(dhm);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 225

 // Parse DHM parameters in PEM or DER format.

 ret = mbedtls_dhm_parse_dhm(dhm,

 (const unsigned char *)crypto_sample_dhm_params,

 crypto_sample_dhm_params_len);

 // Free and clear the components of a DHM context.

 mbedtls_dhm_free(dhm);

}

16.1.8.2.2 How Diffie-Hellman Works

The sample code shows how Diffie-Hellman works over the API of the mbedTLS library. Diffie-Hellman operation

is normally used during TLS Handshake, ServerKeyExchange, and ClientKeyExchange messages. To verify it,
the code exchanges ServerKeyExchange and ClientKeyExchange messages.

int crypto_sample_dhm_do_dhm(char *title, int radix_P, char *input_P, int radix_G, char

*input_G)

{

 mbedtls_dhm_context ctx_srv;

 mbedtls_dhm_context ctx_cli;

 rnd_pseudo_info rnd_info;

 // Initialize the DHM context.

 mbedtls_dhm_init(&ctx_srv);

 mbedtls_dhm_init(&ctx_cli);

 // Set parameters

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&ctx_srv.P, radix_P, input_P));

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&ctx_srv.G, radix_G, input_G));

 x_size = mbedtls_mpi_size(&ctx_srv.P);

 pub_cli_len = x_size;

 /* Generate a DHM key pair and export its public part together

 * with the DHM parameters in the format.

 */

 ret = mbedtls_dhm_make_params(&ctx_srv, x_size, ske, &ske_len,

 &rnd_pseudo_rand, &rnd_info);

 // Parse the DHM parameters (DHM modulus, generator, and public key)

 ret = mbedtls_dhm_read_params(&ctx_cli, &p, ske + ske_len);

 // Create a DHM key pair and export the raw public key in big-endian format.

 ret = mbedtls_dhm_make_public(&ctx_cli, x_size, pub_cli, pub_cli_len,

 &rnd_pseudo_rand, &rnd_info);

 // Import the raw public value of the peer.

 ret = mbedtls_dhm_read_public(&ctx_srv, pub_cli, pub_cli_len);

 // Derive and export the shared secret (G^Y)^X mod P.

 ret = mbedtls_dhm_calc_secret(&ctx_srv, sec_srv, DHM_BUF_SIZE,

 &sec_srv_len, &rnd_pseudo_rand, &rnd_info);

 // Derive and export the shared secret (G^Y)^X mod P.

 ret = mbedtls_dhm_calc_secret(&ctx_cli, sec_cli, DHM_BUF_SIZE, &sec_cli_len,

 NULL, NULL);

 // Free and clear the components of a DHM context.

 mbedtls_dhm_free(&ctx_srv);

 mbedtls_dhm_free(&ctx_cli);

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 226

16.1.9 Cryptographic Algorithms – RSA PKCS#1

The RSA PKCS#1 sample application demonstrates common use cases of RSA PKCS#1 functions.

Figure 112. Result of crypto RSA

16.1.9.1 Application Initialization

This example shows RSA key validation, encryption, decryption, and verification of the signature. To verify the
signature, a SHA-1 Hash algorithm is used.

void crypto_sample_rsa(ULONG arg)

{

 crypto_sample_rsa_pkcs1();

 return ;

}

16.1.9.2 How RSA PKCS#1 Works

The example application below shows how RSA PKCS#1 works over the API of the mbedTLS library. To verify, an

RSA-1024 keypair and a SHA-1 Hash algorithm are used on RSA PKCS-1 v1.5.

int crypto_sample_rsa_pkcs1()

{

 mbedtls_rsa_context *rsa = NULL; // The RSA context structure.

 unsigned char *sha1sum = NULL;

 // Initializes an RSA context.

 mbedtls_rsa_init(rsa, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE);

 PRINTF("* RSA key validation: ");

 // Check if a context contains at least an RSA public key.

 ret = mbedtls_rsa_check_pubkey(rsa);

 ret = mbedtls_rsa_check_privkey(rsa);

 PRINTF("* PKCS#1 encryption : ");

 memcpy(rsa_plaintext, RSA_PT, PT_LEN);

 // Add the message padding, then performs an RSA operation.

 ret = mbedtls_rsa_pkcs1_encrypt(rsa, myrand,

 NULL, MBEDTLS_RSA_PUBLIC, PT_LEN,

 rsa_plaintext, rsa_ciphertext);

 PRINTF("* PKCS#1 decryption : ");

 // Perform an RSA operation, then removes the message padding.

 ret = mbedtls_rsa_pkcs1_decrypt(rsa, myrand,

 NULL, MBEDTLS_RSA_PRIVATE, &len,

 rsa_ciphertext, rsa_decrypted,

 (PT_LEN * sizeof(unsigned char)));

 PRINTF("* PKCS#1 data sign : ");

 mbedtls_sha1_ret(rsa_plaintext, PT_LEN, sha1sum);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 227

 // Perform a private RSA operation to sign a message digest using PKCS#1.

 ret = mbedtls_rsa_pkcs1_sign(rsa, myrand,

 NULL, MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1,

 0, sha1sum, rsa_ciphertext);

 PRINTF("* PKCS#1 sig. verify: ");

 // Perform a public RSA operation and checks the message digest.

 ret = mbedtls_rsa_pkcs1_verify(rsa, NULL,

 NULL, MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1,

 0, sha1sum, rsa_ciphertext);

 // Free the components of an RSA key.

 mbedtls_rsa_free(rsa);

}

The API details are as follows.

Table 50. APIs for PKCS#11 RSA

Item Description

void mbedtls_rsa_init(mbedtls_rsa_context *ctx, int padding, int hash_id)

Prototype void mbedtls_rsa_init(mbedtls_rsa_context *ctx, int padding, int hash_id)

Parameter ctx: The RSA context to initialize. This must not be NULL.

padding: The padding mode to use. This must be either MBEDTLS_RSA_PKCS_V15 or

MBEDTLS_RSA_PKCS_V21.

hash_id: The hash identifier of mbedtls_md_type_t type, if padding is

MBEDTLS_RSA_PKCS_V21. It is otherwise unused.

Return None

Description This function initializes an RSA context.

int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)

Prototype int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)

Parameter ctx: The initialized RSA context to check.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function checks if a context contains at least an RSA public key. If the function runs

successfully, it is guaranteed that enough information is present to do an RSA public key

operation with mbedtls_rsa_public().

int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)

Prototype int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)

Parameter ctx: The initialized RSA context to check.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function checks if a context contains an RSA private key and does basic consistency

checks.

int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,

int mode, size_t ilen, const unsigned char *input, unsigned char *output)

Prototype int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,

size_t), void *p_rng, int mode, size_t ilen, const unsigned char *input, unsigned char *output)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 228

Item Description

Parameter ctx: The initialized RSA context to use.

f_rng: The RNG to use. It is mandatory for PKCS#1 v2.1 padding encoding, and for PKCS#1

v1.5 padding encoding when used with mode set to MBEDTLS_RSA_PUBLIC. For PKCS#1

v1.5 padding encoding and mode set to MBEDTLS_RSA_PRIVATE, it is used for blinding and

should be provided in this case. See mbedtls_rsa_private() for more information.

p_rng: The RNG context to be passed to f_rng. May be NULL if f_rng is NULL or if f_rng does

not need a context argument.

mode: The mode of operation. This must be either MBEDTLS_RSA_PUBLIC or

MBEDTLS_RSA_PRIVATE (deprecated).

ilen: The length of the plaintext in bytes.

input: The input data to encrypt. This must be a readable buffer of size ilen bytes. This must not

be NULL.

output: The output buffer. This must be a writable buffer of length ctx->len bytes. For example,

256 bytes for a 2048-bit RSA modulus.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function adds the message padding, then does an RSA operation. It is the generic wrapper

to do a PKCS#1 encryption operation with the mode from the context.

int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,

int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len)

Prototype int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,

size_t), void *p_rng, int mode, size_t *olen, const unsigned char *input, unsigned char *output,

size_t output_max_len)

Parameter ctx: The initialized RSA context to use.

f_rng: The RNG function. If mode is MBEDTLS_RSA_PRIVATE, this is used for blinding and

should be provided; see mbedtls_rsa_private() for more. If mode is MBEDTLS_RSA_PUBLIC, it

is ignored.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not

need context.

mode: The mode of operation. This must be either MBEDTLS_RSA_PRIVATE or

MBEDTLS_RSA_PUBLIC (deprecated).

olen: The address at which to store the length of the plaintext. This must not be NULL

input: The ciphertext buffer. This must be a readable buffer of length ctx->len bytes. For

example, 256 bytes for a 2048-bit RSA modulus.

output: The buffer used to hold the plaintext. This must be a writable buffer of length

output_max_len bytes.

output_max_len: The length in bytes of the output buffer output.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function does an RSA operation, then removes the message padding. It is the generic

wrapper to do a PKCS#1 decryption operation with the mode from the context.

int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int

mode, mbedtls_md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig)

Prototype int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,

size_t), void *p_rng, int mode, mbedtls_md_type_t md_alg, unsigned int hashlen, const

unsigned char *hash, unsigned char *sig)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 229

Item Description

Parameter ctx: The initialized RSA context to use.

f_rng: The RNG function to use. If the padding mode is PKCS#1 v2.1, this must be provided. If

the padding mode is PKCS#1 v1.5 and the mode is MBEDTLS_RSA_PRIVATE, it is used for

blinding and should be provided. See mbedtls_rsa_private() for more information. It is otherwise

ignored.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not

need a context argument.

mode: The mode of operation. This must be either MBEDTLS_RSA_PRIVATE or

MBEDTLS_RSA_PUBLIC (deprecated).

md_alg: The message-digest algorithm used to hash the original data. Use

MBEDTLS_MD_NONE for signing raw data.

hashlen: The length of the message digest. This is only used if md_alg is

MBEDTLS_MD_NONE.

hash: The buffer holding the message digest or raw data. If md_alg is MBEDTLS_MD_NONE,

this must be a readable buffer of length hashlen bytes. If md_alg is not MBEDTLS_MD_NONE,

it must be a readable buffer of length the size of the hash corresponding to md_alg

sig: The buffer to hold the signature. This must be a writable buffer of length ctx->len bytes. For

example, 256 bytes for a 2048-bit RSA modulus.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function does a private RSA operation to sign a message digest with PKCS#1. It is the

generic wrapper to do a PKCS#1 signature with the mode from the context.

int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,

int mode, mbedtls_md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, const unsigned char

*sig)

Prototype int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,

size_t), void *p_rng, int mode, mbedtls_md_type_t md_alg, unsigned int hashlen, const

unsigned char *hash, const unsigned char *sig)

Parameter ctx: The initialized RSA public key context to use.

f_rng: The RNG function to use. If mode is MBEDTLS_RSA_PRIVATE, this is used for blinding

and should be provided; see mbedtls_rsa_private() for more. Otherwise, it is ignored.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not

need context.

mode: The mode of operation. This must be either MBEDTLS_RSA_PUBLIC or

MBEDTLS_RSA_PRIVATE (deprecated).

md_alg: The message-digest algorithm used to hash the original data. Use

MBEDTLS_MD_NONE for signing raw data.

hashlen: The length of the message digest. This is only used if md_alg is

MBEDTLS_MD_NONE.

hash: The buffer holding the message digest or raw data. If md_alg is MBEDTLS_MD_NONE,

this must be a readable buffer of length hashlen bytes. If md_alg is not MBEDTLS_MD_NONE,

it must be a readable buffer of length the size of the hash that corresponds to md_alg.

sig: The buffer holding the signature. This must be a readable buffer of length ctx->len bytes.

For example, 256 bytes for a 2048-bit RSA modulus.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function does a public RSA operation and checks the message digest. This is the generic

wrapper to do PKCS#1 verification with the mode from the context.

void mbedtls_rsa_free(mbedtls_rsa_context *ctx)

Prototype void mbedtls_rsa_free(mbedtls_rsa_context *ctx)

Parameter ctx: The RSA context to free. If it is NULL, in which case this function is a no-op. If it is not

NULL, it must point to an initialized RSA context.

Return None

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 230

Item Description

Description This function frees the components of an RSA key.

16.1.10 Cryptographic Algorithms – ECDH

The Elliptic-curve Diffie-Hellman (ECDH) sample application demonstrates common use cases of ECDH key
exchange. It is a variant of the Diffie-Hellman protocol that uses elliptic-curve cryptography.

Figure 113. Result of crypto ECDH

16.1.10.1 Application Initialization

This example describes how the ECDH key exchange works with the use of Elliptic Curve SECP224R1,
SECP256R1, SECP384R1, SECP521R1, and Curve25519.

void crypto_sample_ecdh(void *param)

{

 mbedtls_ecp_group_id ids[6] = {

 MBEDTLS_ECP_DP_SECP224R1, /*!< 224-bits NIST curve */

 MBEDTLS_ECP_DP_SECP256R1, /*!< 256-bits NIST curve */

 MBEDTLS_ECP_DP_SECP384R1, /*!< 384-bits NIST curve */

 MBEDTLS_ECP_DP_SECP521R1, /*!< 521-bits NIST curve */

 MBEDTLS_ECP_DP_CURVE25519, /*!< Curve25519 */

 MBEDTLS_ECP_DP_NONE

 };

 for (idx = 0, id = ids[idx] ; idx < 6 && id != MBEDTLS_ECP_DP_NONE ; idx++,

 id = ids[idx])

 {

 ret = crypto_sample_ecdh_key_exchange(id);

 if (ret) {

 break;

 }

 }

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 231

16.1.10.2 How ECDH Key Exchange Works

This sample application shows how ECDH works over the API of the "mbedTLS" library. In this example, the
ECDH key exchange is verified on the server and client sides.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 232

int crypto_sample_ecdh_key_exchange(mbedtls_ecp_group_id id)

{

 mbedtls_ecdh_context ctx_cli;

 mbedtls_ecdh_context ctx_srv;

 mbedtls_entropy_context entropy;

 mbedtls_ctr_drbg_context ctr_drbg;

 // Initialize an ECDH context.

 mbedtls_ecdh_init(&ctx_cli);

 mbedtls_ecdh_init(&ctx_srv);

 // Initialize the CTR_DRBG context.

 mbedtls_ctr_drbg_init(&ctr_drbg);

 // Initialize the entropy context.

 mbedtls_entropy_init(&entropy);

 PRINTF(">>> Using Elliptic Curve: ");

 switch (id) {

 case MBEDTLS_ECP_DP_SECP224R1: {

 PRINTF("SECP224R1\r\n");

 }

 break;

 case MBEDTLS_ECP_DP_SECP256R1: {

 PRINTF("SECP256R1\r\n");

 }

 break;

 case MBEDTLS_ECP_DP_SECP384R1: {

 PRINTF("SECP384R1\r\n");

 }

 break;

 case MBEDTLS_ECP_DP_SECP521R1: {

 PRINTF("SECP521R1\r\n");

 }

 break;

 case MBEDTLS_ECP_DP_CURVE25519: {

 PRINTF("Curve25519\r\n");

 }

 break;

 default: {

 PRINTF("failed - [%s] Invalid Curve selected!\r\n");

 }

 goto cleanup;

 }

 // Initialize random number generation

 PRINTF("* Seeding the random number generator: ");

 ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,

 (const unsigned char *)pers, sizeof(pers));

 // Client: inialize context and generate keypair

 PRINTF("* Setting up client context: ");

 // Sets up an ECP group context from a standardized set of domain parameters.

 ret = mbedtls_ecp_group_load(&(ctx_cli.grp), id);

 // Generate an ECDH keypair on an elliptic curve.

 ret = mbedtls_ecdh_gen_public(&(ctx_cli.grp), &(ctx_cli.d), &(ctx_cli.Q),

 mbedtls_ctr_drbg_random, &ctr_drbg);

 /* Export multi-precision integer (MPI) into unsigned binary data,

 * big endian (X coordinate of ECP point)

 */

 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&(ctx_cli.Q.X), cli_to_srv_x, buflen));

 /* Export multi-precision integer (MPI) into unsigned binary data,

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 233

 * big endian (Y coordinate of ECP point)

 */

 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&(ctx_cli.Q.Y), cli_to_srv_y, buflen));

 // Server: initialize context and generate keypair

 PRINTF("* Setting up server context: ");

 // Sets up an ECP group context from a standardized set of domain parameters.

 ret = mbedtls_ecp_group_load(&(ctx_srv.grp), id);

 // Generate a public key

 ret = mbedtls_ecdh_gen_public(&(ctx_srv.grp), &(ctx_srv.d), &(ctx_srv.Q),

 mbedtls_ctr_drbg_random, &ctr_drbg);

 /* Export multi-precision integer (MPI) into unsigned binary data,

 * big endian (X coordinate of ECP point).

 */

 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&(ctx_srv.Q.X), srv_to_cli_x, buflen));

 /* Export multi-precision integer (MPI) into unsigned binary data,

 * big endian (Y coordinate of ECP point).

 */

 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&(ctx_srv.Q.Y), srv_to_cli_y, buflen));

 /*

 * Server: read peer's key and generate shared secret

 */

 // Set the Z component of the peer's public value (public key) to 1

 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&(ctx_srv.Qp.Z), 1));

 /* Set the X component of the peer's public value based on

 * what was passed from client in the buffer.

 */

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&(ctx_srv.Qp.X), cli_to_srv_x, buflen));

 /* Set the Y component of the peer's public value based on

 * what was passed from client in the buffer.

 */

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&(ctx_srv.Qp.Y), cli_to_srv_y, buflen));

 // Compute the shared secret.

 ret = mbedtls_ecdh_compute_shared(&(ctx_srv.grp),

 &(ctx_srv.z), &(ctx_srv.Qp), &(ctx_srv.d),

 mbedtls_ctr_drbg_random, &ctr_drbg);

 // Client: read peer's key and generate shared secret

 PRINTF("* Client reading server key and computing secret: ");

 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&(ctx_cli.Qp.Z), 1));

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&(ctx_cli.Qp.X), srv_to_cli_x, buflen));

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&(ctx_cli.Qp.Y), srv_to_cli_y, buflen));

 // Compute the shared secret.

 ret = mbedtls_ecdh_compute_shared(&(ctx_cli.grp), &(ctx_cli.z),

 &(ctx_cli.Qp), &(ctx_cli.d),

 mbedtls_ctr_drbg_random, &ctr_drbg);

 // Verification: are the computed secrets equal?

 PRINTF("* Checking if both computed secrets are equal: ");

 MBEDTLS_MPI_CHK(mbedtls_mpi_cmp_mpi(&(ctx_cli.z), &(ctx_srv.z)));

 // Free ECDH context.

 mbedtls_ecdh_free(&ctx_cli);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 234

 mbedtls_ecdh_free(&ctx_srv);

 // Free the data in the context.

 mbedtls_entropy_free(&entropy);

 // Clear CTR_CRBG context data.

 mbedtls_ctr_drbg_free(&ctr_drbg);

}

The API details are as follows.

Table 51. APIs for ECDH

Item Description

void mbedtls_ecdh_init(mbedtls_ecdh_context *ctx)

Prototype void mbedtls_ecdh_init(mbedtls_ecdh_context *ctx)

Parameter ctx: The ECDH context to initialize. This must not be NULL.

Return None

Description This function initializes an ECDH context.

int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)

Prototype int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)

Parameter grp: The group context to set up. This must be initialized.

id: The identifier of the domain parameter set to load.

Return 0 on success. MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE if the id does not correspond

to a known group. Another negative error code on other kinds of failure.

Description This function sets up an ECP group context from a standardized set of domain parameters.

int mbedtls_ecdh_gen_public(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q, int (*f_rng)(void

*, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_ecdh_gen_public(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q,

int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Parameter grp: The ECP group to use. This must be initialized and have domain parameters loaded, for

example through mbedtls_ecp_load() or mbedtls_ecp_tls_read_group().

d: The destination MPI (private key). This must be initialized.

Q: The destination point (public key). This must be initialized.

f_rng: The RNG function to use. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL in case f_rng does not need

a context argument.

Return 0 on success. Another MBEDTLS_ERR_ECP_XXX or MBEDTLS_MPI_XXX error code on

failure.

Description This function generates an ECDH keypair on an elliptic curve.

This function is the first of two core computations implemented during the ECDH key exchange.

The second core computation is done by mbedtls_ecdh_compute_shared().

int mbedtls_ecdh_compute_shared(mbedtls_ecp_group *grp, mbedtls_mpi *z, const mbedtls_ecp_point *Q, const

mbedtls_mpi *d, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_ecdh_compute_shared(mbedtls_ecp_group *grp, mbedtls_mpi *z, const

mbedtls_ecp_point *Q, const mbedtls_mpi *d, int (*f_rng)(void *, unsigned char *, size_t), void

*p_rng)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 235

Item Description

Parameter grp: The ECP group to use. This must be initialized and have domain parameters loaded, for

example through mbedtls_ecp_load() or mbedtls_ecp_tls_read_group().

z: The destination MPI (shared secret). This must be initialized.

Q: The public key from another party. This must be initialized.

d: Our secret exponent (private key). This must be initialized.

f_rng: The RNG function. This may be NULL if randomization of intermediate results during the

ECP computations is not needed (discouraged). See the documentation of mbedtls_ecp_mul()

for more information.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not

need a context argument.

Return 0 on success. Another MBEDTLS_ERR_ECP_XXX or MBEDTLS_MPI_XXX error code on

failure.

Description This function computes the shared secret.

This function is the second of two core computations implemented during the ECDH key

exchange. The first core computation is done by mbedtls_ecdh_gen_public().

void mbedtls_ecdh_free(mbedtls_ecdh_context *ctx)

Prototype void mbedtls_ecdh_free(mbedtls_ecdh_context *ctx)

Parameter ctx: The context to free. This may be NULL, in which case this function does nothing. If it is not

NULL, it must point to an initialized ECDH context.

Return None

Description This function frees a context.

16.1.11 Cryptographic Algorithms – KDF

The Key Derivation Function (KDF) sample application demonstrates common use cases of PKCS#5 functions.

Figure 114. Result of crypto KDF

16.1.11.1 Application Initialization

This example uses a password-based Key Derivation Function specified in PKCS#5 PBKDF2 and implemented
in mbedTLS in function mbedtls_pkcs5_pdkdf2_hmac.

void crypto_sample_kdf(void *param)

{

 crypto_sample_pkcs5();

}

16.1.11.2 How KDF Works

This example application shows how KDF works over the API of the mbedTLS library. In this example, PKCS#5

PBKDF2 is used. To verify, a SHA-1 Hash algorithm is used.

int crypto_sample_pkcs5()

{

 mbedtls_md_context_t sha1_ctx;

 const mbedtls_md_info_t *info_sha1;

 // Initialize a SHA-1 context.

 mbedtls_md_init(&sha1_ctx);

 // Get the message-digest information associated with the given digest type.

 info_sha1 = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 236

 // Select the message digest algorithm to use, and allocate internal

 // structures.

 ret = mbedtls_md_setup(&sha1_ctx, info_sha1, 1);

 PRINTF("* PBKDF2 (SHA1): ");

 // Derive a key from a password using PBKDF2 function with HMAC

 ret = mbedtls_pkcs5_pbkdf2_hmac(&sha1_ctx,

 pkcs5_password, pkcs5_plen,

 pkcs5_salt, pkcs5_slen,

 pkcs5_it_cnt,

 pkcs5_key_len, key);

 /* Clear the internal structure of ctx and free any embedded internal

 structure,

 * but does not free ctx itself.

 */

 mbedtls_md_free(&sha1_ctx);

}

The API details are as follows.

Table 52. APIs for PKCS#5 PBKDF2

Item Description

int mbedtls_pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx, const unsigned char *password, size_t plen, const

unsigned char *salt, size_t slen, unsigned int iteration_count, uint32_t key_length, unsigned char *output)

Prototype int mbedtls_pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx, const unsigned char *password,

size_t plen, const unsigned char *salt, size_t slen, unsigned int iteration_count, uint32_t

key_length, unsigned char *output)

Parameter ctx: Generic HMAC context.

password: Password to use when generating a key.

plen: Length of password.

salt: Salt to use when generating a key.

slen: Length of salt.

iteration_count: Iteration count.

key_length: Length of generated key in bytes.

output: Generated key. Must be at least as big as key_length.

Return 0 on success, or a MBEDTLS_ERR_XXX code if verification fails.

Description PKCS#5 PBKDF2 using HMAC.

16.1.12 Cryptographic Algorithms – Public Key Abstraction Layer

The mbedTLS library provides the Public Key abstraction layer for confidentiality, integrity, authentication, and

non-repudiation based on asymmetric algorithms, using traditional RSA or Elliptic Curves. The Public Key
abstraction layer sample application demonstrates common use cases of the APIs.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 237

Figure 115. Result of crypto public key

16.1.12.1 Application Initialization

This example shows how to use the Public Key Abstraction Layer of the mbedTLS library.

void crypto_sample_pk(void *param)

{

 PRINTF("* PK Information\n");

 ret = crypto_sample_pk_utils(crypto_sample_pk_utils_list[i].type,

 crypto_sample_pk_utils_list[i].size,

 crypto_sample_pk_utils_list[i].len,

 crypto_sample_pk_utils_list[i].name);

 PRINTF("* RSA Verification Test\n");

 ret = crypto_sample_pk_rsa_verify_test_vec(

 crypto_sample_pk_rsa_verify_test_vec_list[i].title,

 crypto_sample_pk_rsa_verify_test_vec_list[i].message_hex_string,

 crypto_sample_pk_rsa_verify_test_vec_list[i].digest,

 crypto_sample_pk_rsa_verify_test_vec_list[i].mod,

 crypto_sample_pk_rsa_verify_test_vec_list[i].radix_N,

 crypto_sample_pk_rsa_verify_test_vec_list[i].input_N,

 crypto_sample_pk_rsa_verify_test_vec_list[i].radix_E,

 crypto_sample_pk_rsa_verify_test_vec_list[i].input_E,

 crypto_sample_pk_rsa_verify_test_vec_list[i].result_hex_str,

 crypto_sample_pk_rsa_verify_test_vec_list[i].result);

 PRINTF("* Signuature Verification Test\n");

 ret = crypto_sample_pk_sign_verify(

 crypto_sample_pk_sign_verify_list[i].title,

 crypto_sample_pk_sign_verify_list[i].type,

 crypto_sample_pk_sign_verify_list[i].sign_ret,

 crypto_sample_pk_sign_verify_list[i].verify_ret);

 PRINTF("* Decryption Test\n");

 ret = crypto_sample_pk_rsa_decrypt_test_vec(

 crypto_sample_pk_rsa_decrypt_list[i].title,

 crypto_sample_pk_rsa_decrypt_list[i].cipher_hex,

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 238

 crypto_sample_pk_rsa_decrypt_list[i].mod,

 crypto_sample_pk_rsa_decrypt_list[i].radix_P,

 crypto_sample_pk_rsa_decrypt_list[i].input_P,

 crypto_sample_pk_rsa_decrypt_list[i].radix_Q,

 crypto_sample_pk_rsa_decrypt_list[i].input_Q,

 crypto_sample_pk_rsa_decrypt_list[i].radix_N,

 crypto_sample_pk_rsa_decrypt_list[i].input_N,

 crypto_sample_pk_rsa_decrypt_list[i].radix_E,

 crypto_sample_pk_rsa_decrypt_list[i].input_E,

 crypto_sample_pk_rsa_decrypt_list[i].clear_hex,

 crypto_sample_pk_rsa_decrypt_list[i].result);

 ret = crypto_sample_pk_rsa_alt();

 PRINTF("* RSA Verification with option Test\n");

 ret = crypto_sample_pk_rsa_verify_ext_test_vec(

 crypto_sample_pk_rsa_verify_ext_list[i].title,

 crypto_sample_pk_rsa_verify_ext_list[i].message_hex_string,

 crypto_sample_pk_rsa_verify_ext_list[i].digest,

 crypto_sample_pk_rsa_verify_ext_list[i].mod,

 crypto_sample_pk_rsa_verify_ext_list[i].radix_N,

 crypto_sample_pk_rsa_verify_ext_list[i].input_N,

 crypto_sample_pk_rsa_verify_ext_list[i].radix_E,

 crypto_sample_pk_rsa_verify_ext_list[i].input_E,

 crypto_sample_pk_rsa_verify_ext_list[i].result_hex_str,

 crypto_sample_pk_rsa_verify_ext_list[i].pk_type,

 crypto_sample_pk_rsa_verify_ext_list[i].mgf1_hash_id,

 crypto_sample_pk_rsa_verify_ext_list[i].salt_len,

 crypto_sample_pk_rsa_verify_ext_list[i].result);

 PRINTF("* PK pair Test\n");

 ret = crypto_sample_pk_check_pair(

 crypto_sample_pk_check_pair_list[i].title,

 crypto_sample_pk_check_pair_list[i].pub_file,

 crypto_sample_pk_check_pair_list[i].prv_file,

 crypto_sample_pk_check_pair_list[i].result);

}

16.1.12.2 How to Use Public Key Abstraction Layer

The mbedTLS library provides the Public Key Abstraction Layer for confidentiality, integrity, authentication, and

non-repudiation based on asymmetric algorithms, using traditional RSA or Elliptic Curves. The user needs to
check which public key could be supported by the mbedTLS library. The example code below shows how to get

and check public key information.

int crypto_sample_pk_utils(mbedtls_pk_type_t type, int size, int len, char *name)

{

 mbedtls_pk_context pk;

 // Initialize a mbedtls_pk_context.

 mbedtls_pk_init(&pk);

 /* Initialize a PK context with the information given

 * and allocates the type-specific PK subcontext.

 */

 ret = mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(type));

 // Get the key type.

 if (mbedtls_pk_get_type(&pk) != type) {

 }

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 239

 // Tell if a context can do the operation given by type.

 if (!mbedtls_pk_can_do(&pk, type)) {

 }

 // Get the size in bits of the underlying key.

 if (mbedtls_pk_get_bitlen(&pk) != (unsigned)size) {

 }

 // Get the length in bytes of the underlying key.

 if (mbedtls_pk_get_len(&pk) != (unsigned)len) {

 }

 // Access the type name.

 if ((ret = strcmp(mbedtls_pk_get_name(&pk), name)) != 0) {

 }

 // Free the components of a mbedtls_pk_context.

 mbedtls_pk_free(&pk);

}

The API details are as follows.

Table 53. APIs for public key abstraction layer

Item Description

void mbedtls_pk_init(mbedtls_pk_context *ctx)

Prototype void mbedtls_pk_init(mbedtls_pk_context *ctx)

Parameter ctx: The context to initialize. This must not be NULL.

Return None

Description Initialize an mbedtls_pk_context (as NONE).

int mbedtls_pk_setup(mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info)

Prototype int mbedtls_pk_setup(mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info)

Parameter ctx: Context to initialize. It must not have been set up yet (type MBEDTLS_PK_NONE)

info: Information to use.

Return 0 on success, MBEDTLS_ERR_PK_BAD_INPUT_DATA on invalid input,

MBEDTLS_ERR_PK_ALLOC_FAILED on allocation failure.

Description Initialize a PK context with the information given and allocate the type-specific PK sub context.

mbedtls_pk_type_t mbedtls_pk_get_type(const mbedtls_pk_context *ctx)

Prototype mbedtls_pk_type_t mbedtls_pk_get_type(const mbedtls_pk_context *ctx)

Parameter ctx: The PK context to use. It must have been initialized.

Return MBEDTLS_PK_NONE for a context that has not been set up.

Description Get the key type.

int mbedtls_pk_can_do(const mbedtls_pk_context *ctx, mbedtls_pk_type_t type)

Prototype int mbedtls_pk_can_do(const mbedtls_pk_context *ctx, mbedtls_pk_type_t type)

Parameter ctx: The context to query. It must have been initialized.

type: The desired type.

Return 1 if the context can do operations on the given type.

0 if the context cannot do the operations on the given type. This is always the case for a context

that has been initialized but not set up, or that has been cleared with mbedtls_pk_free().

Description Tell if a context can do the operation given by the type.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 240

Item Description

size_t mbedtls_pk_get_bitlen(const mbedtls_pk_context *ctx)

Prototype size_t mbedtls_pk_get_bitlen(const mbedtls_pk_context *ctx)

Parameter ctx: The context to query. It must have been initialized.

Return Key size in bits, or 0 on error.

Description Get the size in bits of the underlying key.

static inline size_t mbedtls_pk_get_len(const mbedtls_pk_context *ctx)

Prototype static inline size_t mbedtls_pk_get_len(const mbedtls_pk_context *ctx)

Parameter ctx: The context to query. It must have been initialized.

Return Key size in bits, or 0 on error.

Description Get the length in bytes of the underlying key.

const char* mbedtls_pk_get_name(const mbedtls_pk_context *ctx)

Prototype const char* mbedtls_pk_get_name(const mbedtls_pk_context *ctx)

Parameter ctx: The PK context to use. It must have been initialized.

Return Type name on success, or "invalid PK."

Description Access the type name

void mbedtls_pk_free(mbedtls_pk_context *ctx)

Prototype void mbedtls_pk_free(mbedtls_pk_context *ctx)

Parameter ctx: The context to clear. It must have been initialized. If this is NULL, this function does nothing.

Return None

Description Free the components of a mbedtls_pk_context.

Function crypto_sample_pk_genkey describes how to generate a public key with the given algorithms (RSA or
Elliptic curves).

int crypto_sample_pk_genkey(mbedtls_pk_context *pk)

{

 mbedtls_entropy_context *entropy = NULL;

 mbedtls_ctr_drbg_context *ctr_drbg = NULL;

 // Initialize the entropy context.

 mbedtls_entropy_init(entropy);

 // Initialize the CTR_DRBG context.

 mbedtls_ctr_drbg_init(ctr_drbg);

 // Seed and sets up the CTR_DRBG entropy source for future reseeds.

 mbedtls_ctr_drbg_seed(ctr_drbg, mbedtls_entropy_func, entropy, NULL, 0);

#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME)

 if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_RSA) {

 // Generate the RSA key pair.

 ret = mbedtls_rsa_gen_key(mbedtls_pk_rsa(*pk),

 rnd_std_rand,

 ctr_drbg,

 RSA_KEY_SIZE, 3);

 }

#endif

#if defined(MBEDTLS_ECP_C)

 if ((mbedtls_pk_get_type(pk) == MBEDTLS_PK_ECKEY)

 || (mbedtls_pk_get_type(pk) == MBEDTLS_PK_ECKEY_DH)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 241

 || (mbedtls_pk_get_type(pk) == MBEDTLS_PK_ECDSA)) {

 // Set a group using well-known domain parameters.

 ret = mbedtls_ecp_group_load(&mbedtls_pk_ec(*pk)->grp,

 MBEDTLS_ECP_DP_SECP192R1);

 // Generate key pair, wrapper for conventional base point

 ret = mbedtls_ecp_gen_keypair(&mbedtls_pk_ec(*pk)->grp,

 &mbedtls_pk_ec(*pk)->d,

 &mbedtls_pk_ec(*pk)->Q,

 rnd_std_rand, ctr_drbg);

 }

#endif

 mbedtls_ctr_drbg_free(ctr_drbg);

 mbedtls_entropy_free(entropy);

}

The API details are as follows.

Table 54. APIs for generating key pair

Item Description

int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,

unsigned int nbits, int exponent)

Prototype int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t),

void *p_rng, unsigned int nbits, int exponent)

Parameter ctx: The initialized RSA context used to hold the key.

f_rng: The RNG function to be used for key generation. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a

context.

nbits: The size of the public key in bits.

exponent: The public exponent to use. For example, 65537. This must be odd and greater than

1.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function generates an RSA keypair.

int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q, int (*f_rng)(void *,

unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q,

int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Parameter grp: The ECP group to generate a key pair for. This must be initialized and have group

parameters set, for example through mbedtls_ecp_group_load().

d: The destination MPI (secret part). This must be initialized.

Q: The destination point (public part). This must be initialized.

f_rng: The RNG function. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a

context argument.

Return 0 on success. An MBEDTLS_ERR_ECP_XXX or MBEDTLS_MPI_XXX error code on failure.

Description This function generates an ECP keypair.

Function crypto_sample_pk_rsa_verify_test_vec describes how to verify RSA signatures with Public Key
abstraction Layer functions.

int crypto_sample_pk_rsa_verify_test_vec(char *title, char *message_hex_string,

mbedtls_md_type_t digest, int mod, int radix_N, char *input_N, int radix_E, char *input_E,

char *result_hex_str, int result)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 242

{

 mbedtls_rsa_context *rsa = NULL;

 mbedtls_pk_context pk;

 // Initialize a mbedtls_pk_context.

 mbedtls_pk_init(&pk);

 /* Initialize a PK context with the information given

 * and allocates the type-specific PK subcontext.

 */

 ret = mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA));

 // Quick access to an RSA context inside a PK context.

 rsa = mbedtls_pk_rsa(pk);

 rsa->len = mod / 8;

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&rsa->N, radix_N, input_N));

 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&rsa->E, radix_E, input_E));

 msg_len = unhexify(message_str, message_hex_string);

 unhexify(result_str, result_hex_str);

 // Get the message-digest information associated with the given digest type.

 if (mbedtls_md_info_from_type(digest) != NULL) {

 /* Calculates the message-digest of a buffer,

 * with respect to a configurable message-digest algorithm in a single call.

 */

 ret = mbedtls_md(mbedtls_md_info_from_type(digest),

 message_str, msg_len,

 hash_result);

 }

 // Verify signature (including padding if relevant) & Check result with

 // expected result.

 ret = mbedtls_pk_verify(&pk, digest, hash_result, 0, result_str,

 mbedtls_pk_get_len(&pk));

 // Free the components of a mbedtls_pk_context.

 mbedtls_pk_free(&pk);

}

The API details are as follows.

Table 55. APIs for verifing signature

Item Description

int mbedtls_pk_verify(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t

hash_len, const unsigned char *sig, size_t sig_len)

Prototype int mbedtls_pk_verify(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned

char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len)

Parameter ctx: The PK context to use. It must have been set up.

md_alg: Hash algorithm used.

hash: Hash of the message to sign.

hash_len: Hash length or 0.

sig: Signature to verify.

sig_len: Signature length.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 243

Item Description

Return 0 on success (signature is valid), MBEDTLS_ERR_PK_SIG_LEN_MISMATCH if there is a valid

signature in sig but its length is less than siglen, or a specific error code.

Description Verify signature (including padding if relevant).

Function crypto_sample_pk_sign_verify describes how to generate a key, make a signature, and verify this with
the given cryptographic algorithms.

int crypto_sample_pk_sign_verify(char *title, mbedtls_pk_type_t type, int sign_ret, int

verify_ret)

{

 mbedtls_pk_context pk;

 // Initialize a mbedtls_pk_context.

 mbedtls_pk_init(&pk);

 /* Initialize a PK context with the information given

 * and allocates the type-specific PK subcontext.

 */

 ret = mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(type));

 // Generate key pair by the type.

 ret = crypto_sample_pk_genkey(&pk);

 // Make signature, including padding if relevant and Check result with expected

 // result.

 ret = mbedtls_pk_sign(&pk, MBEDTLS_MD_SHA256,

 hash, 64, sig, &sig_len,

 rnd_std_rand, NULL);

 // Verify signature (including padding if relevant) and Check result with

 // expected result.

 ret = mbedtls_pk_verify(&pk, MBEDTLS_MD_SHA256, hash, 64, sig, sig_len);

 // Free the components of a mbedtls_pk_context.

 mbedtls_pk_free(&pk);

}

The API details are as follows.

Table 56. APIs for making signature

Item Description

int mbedtls_pk_sign(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t

hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_pk_sign(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char

*hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *,

size_t), void *p_rng)

Parameter ctx: The PK context to use. Must have been set up with a private key.

md_alg: Hash algorithm used.

hash: Hash of the message to sign.

hash_len: Hash length or 0.

sig: Place to write the signature.

sig_len: Number of bytes written.

f_rng: RNG function.

p_rng: RNG parameter.

Return 0 on success, or a specific error code.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 244

Item Description

Description Make a signature, including padding if relevant.

Function crypto_sample_pk_rsa_decrypt_test_vec describes how RSA is decrypted using Public Key
Abstraction Layer’s functions. Encryption could also be used. But this example only explains RSA decryption.

int crypto_sample_pk_rsa_decrypt_test_vec(char *title, char *cipher_hex, int mod, int

radix_P, char *input_P, int radix_Q, char *input_Q, int radix_N, char *input_N, int radix_E,

char *input_E, char *clear_hex, int result)

{

 rnd_pseudo_info *rnd_info = NULL;

 mbedtls_rsa_context *rsa = NULL;

 mbedtls_pk_context pk;

 // Initialize a mbedtls_pk_context.

 mbedtls_pk_init(&pk);

 /* Initialize a PK context with the information given

 * and allocates the type-specific PK subcontext.

 */

 ret = mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA));

 // Quick access to an RSA context inside a PK context.

 rsa = mbedtls_pk_rsa(pk);

 // Import a set of core parameters into an RSA context.

 ret = mbedtls_rsa_import(rsa, &N, &P, &Q, NULL, &E);

 // Retrieve the length of RSA modulus in bytes.

 if (mbedtls_rsa_get_len(rsa) != (size_t)(mod / 8)) {

 }

 // Complete an RSA context from a set of imported core parameters.

 ret = mbedtls_rsa_complete(rsa);

 // Decrypt message (including padding if relevant).

 ret = mbedtls_pk_decrypt(&pk, cipher, cipher_len,

 output, &olen, (1000 * sizeof(unsigned char)),

 rnd_pseudo_rand, rnd_info);

 // Free the components of a mbedtls_pk_context.

 mbedtls_pk_free(&pk);

}

The API details are as follows.

Table 57.APIs for PKCS#11 RSA

Item Description

int mbedtls_rsa_import(mbedtls_rsa_context *ctx, const mbedtls_mpi *N, const mbedtls_mpi *P, const

mbedtls_mpi *Q, const mbedtls_mpi *D, const mbedtls_mpi *E)

Prototype int mbedtls_rsa_import(mbedtls_rsa_context *ctx, const mbedtls_mpi *N, const mbedtls_mpi *P,

const mbedtls_mpi *Q, const mbedtls_mpi *D, const mbedtls_mpi *E)

Parameter ctx: The initialized RSA context to store the parameters in.

N: The RSA modulus. This may be NULL.

P: The first prime factor of N. This may be NULL.

Q: The second prime factor of N. This may be NULL.

D: The private exponent. This may be NULL.

E: The public exponent. This may be NULL.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 245

Item Description

Return 0 on success. A non-zero error code on failure.

Description This function imports a set of core parameters into an RSA context.

int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)

Prototype int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)

Parameter ctx: The initialized RSA context holding imported parameters.

Return 0 on success. MBEDTLS_ERR_RSA_BAD_INPUT_DATA if the attempted derivations failed.

Description This function completes an RSA context from a set of imported core parameters.

To set up an RSA public key, precisely N and E must have been imported.

To set up an RSA private key, sufficient information must be present for the other parameters to

be derivable.

The default implementation supports the following:

> Derive P, Q from N, D, E

> Derive N, D from P, Q, E

Alternative implementations need not support these.

If this function runs successfully, it guarantees that the RSA context can be used for RSA

operations without the risk of failure or crash.

int mbedtls_pk_decrypt(mbedtls_pk_context *ctx, const unsigned char *input, size_t ilen, unsigned char *output,

size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_pk_decrypt(mbedtls_pk_context *ctx, const unsigned char *input, size_t ilen,

unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t),

void *p_rng)

Parameter ctx: The PK context to use. It must have been set up with a private key.

input: Input to decrypt.

ilen: Input size.

output: Decrypted output.

olen: Decrypted message length.

osize: Size of the output buffer.

f_rng: RNG function.

p_rng: RNG parameter.

Return 0 on success, or a specific error code.

Description Decrypt message (including padding if relevant).

Function crypto_sample_pk_rsa_alt describes how RSA ALT context creates and decrypts a signature.

int crypto_sample_pk_rsa_alt()

{

 /*

 * An rsa_alt context can only do private operations (decrypt, sign).

 * Test it against the public operations (encrypt, verify) of a

 * corresponding rsa context.

 */

 mbedtls_rsa_context *raw = NULL;

 mbedtls_pk_context rsa, alt;

 mbedtls_pk_debug_item *dbg_items = NULL;

 // Initialize an RSA context.

 mbedtls_rsa_init(raw, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE);

 // Initialize a mbedtls_pk_context.

 mbedtls_pk_init(&rsa);

 mbedtls_pk_init(&alt);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 246

 /* Initialize a PK context with the information given

 * and allocates the type-specific PK subcontext.

 */

 ret = mbedtls_pk_setup(&rsa, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA));

 // Generate key pair by the type.

 ret = crypto_sample_pk_genkey(&rsa);

 // Copy the components of an RSA context.

 ret = mbedtls_rsa_copy(raw, mbedtls_pk_rsa(rsa));

 // Initialize PK RSA_ALT context

 ret = mbedtls_pk_setup_rsa_alt(&alt, (void *)raw,

 crypto_sample_rsa_decrypt_func,

 crypto_sample_rsa_sign_func,

 crypto_sample_rsa_key_len_func);

 // Encrypt message (including padding if relevant).

 ret = mbedtls_pk_encrypt(&rsa, msg, 50, cipher,

 &cipher_len, 1000, rnd_std_rand, NULL);

 // Decrypt message (including padding if relevant).

 ret = mbedtls_pk_decrypt(&alt, cipher, cipher_len,

 test, &test_len, 1000, rnd_std_rand, NULL);

 // Free the components of an RSA key.

 mbedtls_rsa_free(raw);

 // Free the components of a mbedtls_pk_context.

 mbedtls_pk_free(&rsa);

 mbedtls_pk_free(&alt);

}

The API details are as follows.

Table 58. APIs for initializing RSA

Item Description

int mbedtls_pk_setup_rsa_alt(mbedtls_pk_context *ctx, void * key, mbedtls_pk_rsa_alt_decrypt_func

decrypt_func, mbedtls_pk_rsa_alt_sign_func sign_func, mbedtls_pk_rsa_alt_key_len_func key_len_func)

Prototype int mbedtls_pk_setup_rsa_alt(mbedtls_pk_context *ctx, void * key,

mbedtls_pk_rsa_alt_decrypt_func decrypt_func, mbedtls_pk_rsa_alt_sign_func sign_func,

mbedtls_pk_rsa_alt_key_len_func key_len_func)

Parameter ctx: Context to initialize. It must not have been set up yet (type MBEDTLS_PK_NONE)

key: RSA key pointer.

decrypt_func: Decryption function.

sign_func: Signing function.

key_len_func: Function returning key length in bytes.

Return 0 on success, or MBEDTLS_ERR_PK_BAD_INPUT_DATA if the context was not already

initialized as RSA_ALT.

Description Initialize an RSA-alt context.

The code example shows how to check if a public and private pair of keys matches.

int crypto_sample_pk_check_pair(char *title, char *pub_file, char *prv_file, int result)

{

 mbedtls_pk_context pub, prv, alt;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 247

 // Initialize a mbedtls_pk_context.

 mbedtls_pk_init(&pub);

 mbedtls_pk_init(&prv);

 // Parse a public key in PEM or DER format.

 ret = mbedtls_pk_parse_public_key(&pub,

 (const unsigned char *)pub_file,

 (strlen(pub_file) + 1));

 // Parse a private key in PEM or DER format.

 ret = mbedtls_pk_parse_key(&prv,

 (const unsigned char *)prv_file,

 (strlen(prv_file) + 1), NULL, 0);

 // Check if a public-private pair of keys matches.

 ret = mbedtls_pk_check_pair(&pub, &prv);

 mbedtls_pk_free(&pub);

 mbedtls_pk_free(&prv);

}

The API details are as follows.

Table 59. APIs for parsing private and public key

Item Description

int mbedtls_pk_parse_public_key(mbedtls_pk_context *ctx, const unsigned char *key, size_t keylen)

Prototype int mbedtls_pk_parse_public_key(mbedtls_pk_context *ctx, const unsigned char *key, size_t

keylen)

Parameter ctx: The PK context to fill. It must have been initialized but not set up.

key: Input buffer to parse. The buffer must contain the input exactly, with no extra trailing

material. For PEM, the buffer must contain a null-terminated string.

keylen: Size of key in bytes. For PEM data, this includes the terminating null byte, so keylen

must be equal to strlen(key) + 1.

Return 0 if successful, or a specific PK or PEM error code.

Description Parse a public key in PEM or DER format.

int mbedtls_pk_parse_key(mbedtls_pk_context *pk, const unsigned char *key, size_t keylen, const unsigned char

*pwd, size_t pwdlen)

Prototype int mbedtls_pk_parse_key(mbedtls_pk_context *pk, const unsigned char *key, size_t keylen,

const unsigned char *pwd, size_t pwdlen)

Parameter pk: The PK context to fill. It must have been initialized but not set up.

key: Input buffer to parse. The buffer must contain the input exactly, with no extra trailing

material. For PEM, the buffer must contain a null-terminated string.

keylen: Size of key in bytes. For PEM data, this includes the terminating null byte, so keylen

must be equal to strlen(key) + 1.

pwd: Optional password for decryption. Pass NULL if expecting a non-encrypted key. Pass a

string of pwdlen bytes if expecting an encrypted key; a non-encrypted key is also accepted. The

empty password is not supported.

pwdlen: Size of the password in bytes. Ignored if pwd is NULL.

Return 0 if successful, or a specific PK or PEM error code.

Description Parse a private key in PEM or DER format.

int mbedtls_pk_check_pair(const mbedtls_pk_context *pub, const mbedtls_pk_context *prv)

Prototype int mbedtls_pk_check_pair(const mbedtls_pk_context *pub, const mbedtls_pk_context *prv)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 248

Item Description

Parameter pub: Context holding a public key.

prv: Context holding a private (and public) key.

Return 0 on success or MBEDTLS_ERR_PK_BAD_INPUT_DATA.

Description Check if a public-private pair of keys matches.

16.1.13 Cryptographic Algorithms – Generic Cipher Wrapper

The Generic cipher wrapper sample application demonstrates common use cases of a generic cipher wrapper
API of the mbedTLS library that is included in the DA16200 SDK.

Figure 116. Result of generic cipher

16.1.13.1 Application Initialization

The generic cipher wrapper contains an abstraction interface for use with the cipher primitives that the library
provides. It provides a common interface to all the available cipher operations.

void crypto_sample_cipher(void *param)

{

 crypto_sample_cipher_wrapper();

 vTaskDelete(NULL);

 return ;

}

16.1.13.2 How Generic Cipher Wrapper is Used

This example describes how to encrypt and decrypt with generic cipher wrapper functions.

int crypto_sample_cipher_wrapper()

{

 mbedtls_cipher_type_t cipher_type = MBEDTLS_CIPHER_NONE;

 mbedtls_cipher_context_t cipher_ctx;

 mbedtls_cipher_info_t *cipherinfo = NULL;

 mbedtls_cipher_mode_t cipher_mode = MBEDTLS_MODE_NONE;

 for (cipher_type = MBEDTLS_CIPHER_AES_128_ECB ;

 cipher_type <= MBEDTLS_CIPHER_CAMELLIA_256_CCM ;

 cipher_type++) {

 flag_pass = FALSE;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 249

 // Initialize a cipher_context as NONE.

 mbedtls_cipher_init(cipher_ctx);

 // Retrieve the cipher-information structure associated with the given

 // cipher type.

 cipherinfo = (mbedtls_cipher_info_t *)mbedtls_cipher_info_from_type

 (cipher_type);

 // Initialize and fill the cipher-context structure with the appropriate

 // values.

 mbedtls_cipher_setup(&cipher_ctx, cipherinfo);

 // Return the key length of the cipher.

 cipher_keylen = mbedtls_cipher_get_key_bitlen(&cipher_ctx);

 // Return the mode of operation for the cipher.

 cipher_mode = mbedtls_cipher_get_cipher_mode(&cipher_ctx);

 // Return the size of the IV or nonce of the cipher, in bytes.

 cipher_ivlen = mbedtls_cipher_get_iv_size(&cipher_ctx);

 // Return the block size of the given cipher.

 cipher_blksiz = mbedtls_cipher_get_block_size(&cipher_ctx);

 // Return the name of the given cipher as a string.

 cipher_name = (char *)mbedtls_cipher_get_name(&cipher_ctx);

 PRINTF("* %s", cipher_name);

 PRINTF("(enc, ");

 if (cipher_adlen == 0) { // No CCM or GCM

 // Set the key to use with the given context.

 cipher_status = mbedtls_cipher_setkey(&cipher_ctx,

 cipher_key, cipher_keylen,

 MBEDTLS_ENCRYPT);

 // Set the initialization vector (IV) or nonce.

 cipher_status = mbedtls_cipher_set_iv(&cipher_ctx,

 cipher_iv, cipher_ivlen);

 // Reset the cipher state.

 cipher_status = mbedtls_cipher_reset(&cipher_ctx);

 // Encrypt or decrypt using the given cipher context.

 cipher_status = mbedtls_cipher_update(&cipher_ctx,

 plain_in, plain_inlen,

 ciphertext, &ciphertext_len);

 // Finish the operation.

 cipher_status = mbedtls_cipher_finish(&cipher_ctx,

 &(ciphertext[ciphertext_len]),

 &ciphertext_finlen);

 } else {

 // Set the key to use with the given context.

 cipher_status = mbedtls_cipher_setkey(&cipher_ctx,

 cipher_key, cipher_keylen,

 MBEDTLS_ENCRYPT);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 250

 // Perform autenticated encryption (AEAD).

 cipher_status = mbedtls_cipher_auth_encrypt(&cipher_ctx,

 cipher_iv, cipher_ivlen,

 cipher_ad, cipher_adlen,

 plain_in, plain_inlen,

 ciphertext, &ciphertext_len,

 cipher_tag, cipher_taglen);

 }

 PRINTF("dec): ");

 if (cipher_adlen == 0) { // No CCM or GCM

 // Set the key to use with the given context.

 cipher_status = mbedtls_cipher_setkey(&cipher_ctx,

 cipher_key, cipher_keylen,

 MBEDTLS_DECRYPT);

 // Set the initialization vector (IV) or nonce.

 cipher_status = mbedtls_cipher_set_iv(&cipher_ctx,

 cipher_iv, cipher_ivlen);

 // Reset the cipher state.

 cipher_status = mbedtls_cipher_reset(&cipher_ctx);

 // Encrypt or decrypt using the given cipher context.

 cipher_status = mbedtls_cipher_update(&cipher_ctx,

 ciphertext, (ciphertext_len + ciphertext_finlen),

 plain_out, &plain_outlen);

 // Finish the operation.

 cipher_status = mbedtls_cipher_finish(&cipher_ctx,

 &(plain_out[plain_outlen]),

 &plain_finlen);

 } else {

 // Set the key to use with the given context.

 cipher_status = mbedtls_cipher_setkey(&cipher_ctx,

 cipher_key, cipher_keylen,

 MBEDTLS_DECRYPT);

 // Perform autenticated decryption (AEAD).

 cipher_status = mbedtls_cipher_auth_decrypt(&cipher_ctx,

 cipher_iv, cipher_ivlen,

 cipher_ad, cipher_adlen,

 ciphertext, ciphertext_len,

 plain_out, &plain_outlen,

 cipher_tag, cipher_taglen);

 }

 // Free and clear the cipher-specific context of ctx.

 mbedtls_cipher_free(&cipher_ctx);

 }

}

The API details are as follows.

Table 60. APIs for generic cipher wrapper

Item Description

void mbedtls_cipher_init(mbedtls_cipher_context_t *ctx)

Prototype void mbedtls_cipher_init(mbedtls_cipher_context_t *ctx)

Parameter ctx: The context to be initialized. This must not be NULL.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 251

Item Description

Return None

Description This function initializes a cipher_context as NONE.

void mbedtls_cipher_free(mbedtls_cipher_context_t *ctx)

Prototype void mbedtls_cipher_free(mbedtls_cipher_context_t *ctx)

Parameter ctx: The context to be freed. If this is NULL, the function has no effect, otherwise this must point

to an initialized context.

Return None

Description This function frees and clears the cipher-specific context of ctx.

Freeing ctx itself remains the responsibility of the caller.

const mbedtls_cipher_info_t* mbedtls_cipher_info_from_type(const mbedtls_cipher_type_t cipher_type)

Prototype Const mbedtls_cipher_info_t* mbedtls_cipher_info_from_type(const mbedtls_cipher_type_t

cipher_type)

Parameter cipher_type: Type of the cipher to search for.

Return The cipher information structure is associated with the given cipher_type.

NULL if the associated cipher information is not found.

Description This function retrieves the cipher-information structure associated with the given cipher type.

int mbedtls_cipher_setup(mbedtls_cipher_context_t *ctx, const mbedtls_cipher_info_t *cipher_info)

Prototype int mbedtls_cipher_setup(mbedtls_cipher_context_t *ctx, const mbedtls_cipher_info_t

*cipher_info)

Parameter ctx: The context to initialize. This must be initialized.

cipher_info: The cipher to use.

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

MBEDTLS_ERR_CIPHER_ALLOC_FAILED if allocation of the cipher-specific context fails.

Description This function initializes and fills the cipher-context structure with the appropriate values. It also

clears the structure.

static inline int mbedtls_cipher_get_key_bitlen(const mbedtls_cipher_context_t *ctx)

Prototype static inline int mbedtls_cipher_get_key_bitlen(const mbedtls_cipher_context_t *ctx)

Parameter ctx: The context of the cipher. This must be initialized.

Return The key length of the cipher in bits.

MBEDTLS_KEY_LENGTH_NONE if ctx has not been initialized.

Description This function returns the key length of the cipher.

static inline mbedtls_cipher_mode_t mbedtls_cipher_get_cipher_mode(const mbedtls_cipher_context_t *ctx)

Prototype static inline mbedtls_cipher_mode_t mbedtls_cipher_get_cipher_mode(const

mbedtls_cipher_context_t *ctx)

Parameter ctx: The context of the cipher. This must be initialized.

Return The mode of operation.

MBEDTLS_MODE_NONE if ctx has not been initialized.

Description This function returns the mode of operation for the cipher.

static inline int mbedtls_cipher_get_iv_size(const mbedtls_cipher_context_t *ctx)

Prototype static inline int mbedtls_cipher_get_iv_size(const mbedtls_cipher_context_t *ctx)

Parameter ctx: The context of the cipher. This must be initialized.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 252

Item Description

Return The recommended IV size if no IV has been set.

0 for ciphers not using an IV or nonce.

The actual size if an IV has been set.

Description This function returns the size of the IV or nonce of the cipher, in bytes.

static inline unsigned int mbedtls_cipher_get_block_size(const mbedtls_cipher_context_t *ctx)

Prototype static inline unsigned int mbedtls_cipher_get_block_size(const mbedtls_cipher_context_t *ctx)

Parameter ctx: The context of the cipher. This must be initialized.

Return The block size of the underlying cipher.

0 if ctx has not been initialized.

Description This function returns the block size of the given cipher.

static inline const char *mbedtls_cipher_get_name(const mbedtls_cipher_context_t *ctx)

Prototype static inline const char *mbedtls_cipher_get_name(const mbedtls_cipher_context_t *ctx)

Parameter ctx: The context of the cipher. This must be initialized.

Return The name of the cipher.

NULL if ctx is not initialized.

Description This function returns the name of the given cipher as a string.

int mbedtls_cipher_setkey(mbedtls_cipher_context_t *ctx, const unsigned char *key, int key_bitlen, const

mbedtls_operation_t operation)

Prototype int mbedtls_cipher_setkey(mbedtls_cipher_context_t *ctx, const unsigned char *key, int

key_bitlen, const mbedtls_operation_t operation)

Parameter ctx: The generic cipher context. This must be initialized and bound to a cipher information

structure.

key: The key to use. This must be a readable buffer of at least key_bitlen Bits.

key_bitlen: The key length to use, in Bits.

operation: The operation that the key is used for: MBEDTLS_ENCRYPT or

MBEDTLS_DECRYPT.

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

A cipher-specific error code on failure.

Description This function sets the key to use with the given context

int mbedtls_cipher_set_iv(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t iv_len)

Prototype int mbedtls_cipher_set_iv(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t iv_len)

Parameter ctx: The generic cipher context. This must be initialized and bound to a cipher information

structure.

iv: The IV to use, or NONCE_COUNTER for CTR-mode ciphers. This must be a readable buffer

of at least iv_len bytes.

iv_len: The IV length for ciphers with variable-size IV. This parameter is discarded by ciphers

with fixed-size IV.

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

Description This function sets the initialization vector (IV) or nonce.

int mbedtls_cipher_reset(mbedtls_cipher_context_t *ctx)

Prototype int mbedtls_cipher_reset(mbedtls_cipher_context_t *ctx)

Parameter ctx: The generic cipher context. This must be initialized.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 253

Item Description

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

Description This function resets the cipher state.

int mbedtls_cipher_update(mbedtls_cipher_context_t *ctx, const unsigned char *input, size_t ilen, unsigned char

*output, size_t *olen)

Prototype int mbedtls_cipher_update(mbedtls_cipher_context_t *ctx, const unsigned char *input, size_t

ilen, unsigned char *output, size_t *olen)

Parameter ctx: The generic cipher context. This must be initialized and bound to a key.

input: The buffer holding the input data. This must be a readable buffer of at least ilen bytes

ilen: The length of the input data.

output: The buffer for the output data. This must be able to hold at least ilen + block_size. This

must not be the same buffer as input.

olen: The length of the output data, to be updated with the actual number of bytes written. This

must not be NULL.

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE on an unsupported mode for a cipher.

A cipher-specific error code on failure.

Description The generic cipher update function. It encrypts or decrypts using the given cipher context.

Writes as many block-sized blocks of data as possible to output. Any data that cannot be written

immediately is either added to the next block or flushed when mbedtls_cipher_finish() is called.

Exception: For MBEDTLS_MODE_ECB, expects a single block in size. For example, 16 bytes

for AES.

int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx, unsigned char *output, size_t *olen)

Prototype int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx, unsigned char *output, size_t *olen)

Parameter ctx: The generic cipher context. This must be initialized and bound to a key.

output: The buffer to write data to. This needs to be a writable buffer of at least block_size bytes

olen: The length of the data written to the output buffer. This may not be NULL.

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED on decryption expecting a full block but

not receiving one.

MBEDTLS_ERR_CIPHER_INVALID_PADDING on invalid padding while decrypting.

A cipher-specific error code on failure.

Description The generic cipher finalization function.

If data still needs to be flushed from an incomplete block, the data contained in it is padded to

the size of the last block and written to the output buffer.

int mbedtls_cipher_auth_encrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t iv_len, const

unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen,

unsigned char *tag, size_t tag_len)

Prototype int mbedtls_cipher_auth_encrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t

iv_len, const unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned

char *output, size_t *olen, unsigned char *tag, size_t tag_len)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 254

Item Description

Parameter ctx: The generic cipher context. This must be initialized and bound to a key.

iv: The IV to use, or NONCE_COUNTER for CTR-mode ciphers. This must be a readable buffer

of at least iv_len bytes.

iv_len: The IV length for ciphers with variable-size IV. This parameter is discarded by ciphers

with fixed-size IV.

ad: The additional data to authenticate. This must be a readable buffer of at least ad_len bytes

ad_len: The length of ad.

input: The buffer holding the input data. This must be a readable buffer of at least ilen bytes

ilen: The length of the input data.

output: The buffer for the output data. This must be able to hold at least ilen bytes.

olen: The length of the output data, to be updated with the actual number of bytes written. This

must not be NULL.

tag: The buffer for the authentication tag. This must be a writable buffer of at least tag_len bytes

tag_len: The desired length of the authentication tag.

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

A cipher-specific error code on failure.

Description The generic authenticated encryption (AEAD) function.

int mbedtls_cipher_auth_decrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t iv_len, const

unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen,

const unsigned char *tag, size_t tag_len)

Prototype int mbedtls_cipher_auth_decrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t

iv_len, const unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned

char *output, size_t *olen, const unsigned char *tag, size_t tag_len)

Parameter ctx: The generic cipher context. This must be initialized and bound to a key.

iv: The IV to use, or NONCE_COUNTER for CTR-mode ciphers. This must be a readable buffer

of at least iv_len bytes.

iv_len: The IV length for ciphers with variable-size IV. This parameter is discarded by ciphers

with fixed-size IV.

ad: The additional data to be authenticated. This must be a readable buffer of at least ad_len

bytes.

ad_len: The length of ad.

input: The buffer holding the input data. This must be a readable buffer of at least ilen bytes

ilen: The length of the input data.

output: The buffer for the output data. This must be able to hold at least ilen bytes.

olen: The length of the output data, to be updated with the actual number of bytes written. This

must not be NULL.

tag: The buffer holding the authentication tag. This must be a readable buffer of at least tag_len

bytes.

tag_len: The length of the authentication tag.

Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

MBEDTLS_ERR_CIPHER_AUTH_FAILED if data is not authentic.

A cipher-specific error code on failure.

Description The generic authenticated decryption (AEAD) function.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 255

17. Peripheral and System Examples

17.1 UART

Along with a UART0 interface for the debug console, the DA16200 SDK has a UART1 or UART2 interface to
communicate with an external MCU. GPIOA[4] and GPIOA[5] can be used to this interface.

17.1.1 Introduction

The DA16200/DA16600 has two UARTs (Universal Asynchronous Receiver-Transmitter), which have the
following features:

▪ Programmable use of UART

▪ Compliance to the AMBA AHB bus specification for easy integration into SoC implementation

▪ Support both byte and word access for reduction of bus burden

▪ Support both RS-232 and RS-485

▪ Separate 32x8 bit transmit and 32x12 bit receive FIFO memory buffers to reduce CPU interrupts

▪ Programmable FIFO disabling for 1-byte depth

▪ Programmable baud rate generator

▪ Standard asynchronous communication bits (start, stop and parity). These are added before transmission and
removed upon reception

▪ Independent masking of transmit FIFO, receive FIFO, receive timeout

▪ Support for Direct Memory Access (DMA)

▪ False start bit detection

▪ Programmable flow control

▪ Fully programmable serial interface characteristics:

• Data can be 5, 6, 7 or 8 bits

• Even, odd, stick or no-parity bit generation and detection

• 1 or 2 stop bit generation

• Baud rate generation

Table 61. UART pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

UART0_RXD 12 M10 I UART0_RXD

UART0_TXD 11 L9 O UART0_TXD

GPIOA7 31 E1 I UART1_RXD

GPIOA5 33 D2 I -

GPIOA3 36 D4 I -

GPIOA1 38 C3 I -

GPIOA6 32 E3 O UART1_TXD

GPIOA4 34 F4 O -

GPIOA2 37 B2 O -

GPIOA0 39 A3 O -

GPIOA5 33 D2 I UART1_CTS

GPIOA4 34 F4 O UART1_RTS

GPIOA11 27 G1 I

UART2_RXD GPIOC7 9 K12 I

F_IO2 16 J7 I

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 256

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA10 28 F2 O

UART2_TXD GPIOC6 10 L11 O

F_IO3 17 K6 O

17.1.2 API

Table 62. APIs for UART interface

Item Description

HANDLE UART_CREATE(UART_UNIT_IDX dev_idx)

Parameter dev_idx Device index

Return If it succeeds, return handle for such device. If it fails, return NULL.

Description Function to create a handle with parameter dev_idx designated.

The DA16200/DA16600 has two UART ports.

typedef enum __uart_unit__ {

UART_UNIT_0 = 0,

UART_UNIT_1,

UART_UNIT_MAX

} UART_UNIT_IDX;

Normally, UART0 is used for debug console, and UART1 is used for data transfer.

int UART_INIT (HANDLE handler)

Parameter handler Device handle

Return TRUE if it succeeds, or FALSE if it fails.

Description The UART configuration should be set before this function is called.

After this function is called, UART operation starts.

int UART_CHANGE_BAUERATE (HANDLE handler, UINT32 baudrate)

Parameter handler Device handle

baudrate Baud rate to set.

Return TRUE if it succeeds, or FALSE if it fails.

Description This function changes the baud rate of UART during UART operation.

int UART_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler Device handle

cmd Commands are defined in <uart.h> in the DA16200/DA16600 SDK.

data Data pointer.

Return TRUE if it succeeds, or FALSE if it fails.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 257

Item Description

Description The user can set the configuration of UART with this function.

Configurations of UART should be called before the UART_INIT() function.

Commands are as below:

▪ UART_GET_DEVREG = 1, // get device physical address

▪ UART_SET_CLOCK, // set base clock

▪ UART_SET_BAUDRATE, // set baud rate

▪ UART_GET_BAUDRATE, // get baud rate

▪ UART_SET_LINECTRL, // set line control

▪ UART_GET_LINECTRL, // get line control

▪ UART_SET_CONTROL, // set UART control

▪ UART_GET_CONTROL, // get UART control

▪ UART_SET_SW_RX_QUESIZE, // set queue size

▪ UART_SET_INT, // set interrupt configuration

▪ UART_GET_INT, // get interrupt configuration

▪ UART_SET_FIFO_INT_LEVEL, // set FIFO level

▪ UART_GET_FIFO_INT_LEVEL, // get FIFO level

▪ UART_SET_USE_DMA, // set DMA use

▪ UART_GET_USE_DMA, // get DMA use

▪ UART_CHECK_RXEMPTY, // check RX FIFO empty

▪ UART_CHECK_RXFULL, // check RF FIFO full

▪ UART_CHECK_TXEMPTY, // check TX FIFO empty

▪ UART_CHECK_TXFULL, // check TX FIFO full

▪ UART_CHECK_BUSY, // check UART busy

▪ UART_SET_RX_SUSPEND, // set the RX function to suspend

▪ UART_GET_RX_SUSPEND, // get the RX function to suspend

▪ UART_SET_SW_FLOW_CONTROL, // set the flow control to enable

▪ UART_GET_SW_FLOW_CONTROL, // get the flow control to enable

▪ UART_SET_WORD_ACCESS, // set word-access-enable register

▪ UART_GET_WORD_ACCESS, //get word-access-enable register

▪ UART_SET_RW_WORD, // set whether write and read in word or byte

▪ UART_GET_RW_WORD, // get whether write and read in word or byte

▪ UART_SET_RS485, // set the RS485 function to enable

▪ UART_GET_RS485, // get the RS485 function to enable

▪ UART_CLEAR_ERR_INT_CNT, // clear error interrupt counter

▪ UART_GET_ERR_INT_CNT, // get error interrupt counter

▪ UART_SET_ERR_INT_CALLBACK, // set error interrupt callback function

▪ UART_CLEAR_FRAME_INT_CNT, //clear frame error interrupt counter

▪ UART_GET_FRAME_INT_CNT, // get frame error interrupt counter

▪ UART_SET_FRAME_INT_CALLBACK, // set frame error interrupt callback

▪ UART_CLEAR_PARITY_INT_CNT, // clear parity error interrupt counter

▪ UART_GET_PARITY_INT_CNT, // get frame error interrupt counter

▪ UART_SET_PARITY_INT_CALLBACK, // set frame error interrupt callback

▪ UART_CLEAR_BREAK_INT_CNT, // clear break error interrupt counter

▪ UART_GET_BREAK_INT_CNT, // get break error interrupt counter

▪ UART_SET_BREAK_INT_CALLBACK, // set break error interrupt callback

▪ UART_CLEAR_OVERRUN_INT_CNT, // clear overrun error interrupt counter

▪ UART_GET_OVERRUN_INT_CNT, // get overrun error interrupt counter

▪ UART_SET_OVERRUN_INT_CALLBACK, // set overrun interrupt callback

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 258

Item Description

int UART_READ (HANDLE handler, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle

p_data Data pointer

p_dlen Length to read.

Return If it succeeds, return number of received data, else negative number.

Description User can use the UART_SET_RX_SUSPEND ioctl command to set the UART READ operation

to suspend or not.

int UART_WRITE (HANDLE handler, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle

p_data Data pointer

p_dlen Length to write

Return Number of sent data

Description UART write command

int UART_DMA_READ_TIMEOUT (HANDLE handler, VOID *p_data, UINT32 p_dlen, UINT32 timeout)

Parameter handler Device handle

p_data Data pointer

p_dlen Length to read

timeout Wait option to receive data

Return Number of received data

Description The operation of this function is the same with UART_DMA_READ with waiting timeout.

int UART_DMA_READ (HANDLE handler, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle

p_data Data pointer

p_dlen Length to read

Return Number of received data

Description The operation of this function is the same with UART_READ, except DMA is used.

int UART_DMA_WRITE (HANDLE handler, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle

p_data Data pointer

p_dlen Length to write

Return Number of sent data

Description The operation of this function is the same with UART_WRITE, except DMA is used.

int UART_FLUSH(HANDLE handler)

Parameter handler Device handle

Return TRUE if it succeeds, or FALSE if it fails.

Description Flush the FIFO buffer of UART

int UART_CLOSE(HANDLE handler)

Parameter handler Device handle

Return TRUE if it succeeds, or FALSE if it fails.

Description UART driver close command.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 259

17.1.3 How to Run

1. In the e2 studio, import a project for the UART sample application as follows.

~/SDK/apps/common/examples/Peripheral/UART1/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. The start log message is shown in the console terminal and UART1 terminal.

4. To test with UART1, input test data (hexa or ascii) on the UART1 terminal and click the Enter key to send
data to DA16200. Then the console terminal shows the received data in hexadecimal and sends the
message "- Data receiving OK…" to UART1.

a. UART1 terminal

Figure 117. Result of UART #1

b. Console terminal

Figure 118. Result of UART #2

17.1.4 Sample Code

17.1.4.1 Application Initialization

This is an example of a user application to initialize and communicate between the DA16200 and an MCU that is
connected through the UART1 interface. Function user_uart1_init() initializes the UART1 hardware resource

and then uart1_monitor_sample() is run to communicate with the host through the UART1 interface.

~/SDK/apps/common/examples/Peripheral/UART1/src/uart_sample.c

/* Local static variables */

static int sample_uart_idx = UART_UNIT_1; // UART_UNIT_1, UART_UNIT_2

/*

 * For configuring UART devices,

 *

 * "user_UART_config_info" data should be located in /SDK/customer/src/user_uart.c.

 *

 * This data is temporary for sample application.

 */

static uart_info_t sample_UART_config_info =

{

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 260

 UART_BAUDRATE_115200, /* baud */

 UART_DATABITS_8, /* bits */

 UART_PARITY_NONE, /* parity */

 UART_STOPBITS_1, /* stopbit */

 UART_FLOWCTL_OFF /* flow control */

};

void run_uart1_sample(UINT32 arg)

{

 int status;

 *

 * int set_user_UART_conf(int uart_idx, uart_info_t *uart_conf_info, char

 atcmd_flag)

 */

 status = set_user_UART_conf(UART_UNIT_1, &sample_UART_config_info, FALSE);

 if (status != 0)

 {

 PRINTF("[%S] Error to configure for UART1 !!!\n", __func__);

 return;

 }

 *

 * int UART_init(int uart_idx);

 */

 status = UART_init(sample_uart_idx);

 if (status != 0)

 {

 PRINTF("[%S] Error to initialize UART1 with sample_UART_config !!!\n",

 __func__);

 return;

 }

 /* Start UART monitor */

 uart1_sample();

}

Function uart1_sample() invokes function get_data_from_uart1() repeatedly to read data from UART1. User

can enable/disable the UART echo function by setting echo_enable.

static void uart1_sample(void)

{

 int i;

 char *init_str = "- Start UART1 communicate module ...\r\n";

 char *rx_buf = NULL;

 char *tx_buf = "\r\n- Data receiving OK...\r\n";

 int tx_len;

 /* Print-out test string to console and to UART1 device */

 PRINTF((const char *)init_str); // For Console

 puts_UART(sample_uart_idx, init_str, strlen((const char *)init_str));

 echo_enable = TRUE;

 rx_buf = malloc(USER_UART1_BUF_SZ);

 while (1)

 {

 memset(rx_buf, 0, USER_UART1_BUF_SZ);

 /* Get on byte from uart1 comm port */

 get_data_from_uart1(rx_buf);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 261

 … …

 }

}

17.1.4.2 Data Read/Write

Use getchar_UART() to read a character from UART1 or UART2. This example shows how to read data from

UART device until it meets characters '\n' or '\r'. Users can modify this function for customized application
operation.

NOTE

After UART_INIT() is called, it tries to receive UART_RX data even if UART_READ() does not call. Flush the UART_RX

data if there is no need to use data before UART_READ().

#define USER_DELIMITER_0 '\0'

#define USER_DELIMITER_1 '\n'

#define USER_DELIMITER_2 '\r'

static void get_data_from_uart1(char *buf)

{

 char ch = 0;

 int i = 0;

 while (1) {

 /* Get on byte from uart1 comm port */

 ch = getchar_UART(sample_uart_idx, portMAX_DELAY);

 if (ch == 0) {

 vTaskDelay(1);

 continue;

 }

 if (echo_enable == TRUE) {

 puts_UART(sample_uart_idx, &ch, sizeof(char)); // echo

 }

 /* check data length */

 if (i >= (USER_UART1_BUF_SZ - 1)) {

 i = USER_UART1_BUF_SZ - 2;

 }

 if (ch == USER_DELIMITER_1 || ch == USER_DELIMITER_2) {

 buf[i++] = USER_DELIMITER_0;

 break;

 } else {

 buf[i++] = ch;

 }

 }

}

Also, this example shows how to send data to UART1 using puts_UART() API.

~/SDK/core/system//include/common/common_uart.h

/**

 **

 * @brief Put character string to UART device

 * @param[in] uart_idx Index value of UART interface (UART_UNIT_1, UART_UNIT_2)

 * @param[in] *data Text string to write

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 262

 * @param[in] len Write length

 * @return None

 **

 */

void puts_UART(int uart_idx, char *data, int data_len);

17.2 GPIO

This application shows how to read/write the GPIO port and use the GPIO interrupt.

17.2.1 Introduction

All digital pads can be used as GPIO. Each GPIO port is mixed with a multi-functional interface. The GPIO
features for this device are:

▪ Input or output lines in a programmable direction

▪ Word and half word read/write access

▪ Address-masked byte writes to facilitate quick bit set and clear operations

▪ Address-based byte reads to facilitate quick bit test operations

▪ Make a GPIO pin to an interrupt pin possible to be the output signal of PWM [3:0], external Interrupt, SPI_CSB
[3:1], RF_SW [1:0] and UART_TXDOE [1:0] on any GPIO pin

It provides special functions for GPIO pin use. PWM [3:0], external interrupt, SPI_CSB [3:1], RF_SW [1:0] and
UART_TXDOE [1:0] signals can be output if any of the unused pins among the GPIO pins are selected. It is
possible to select the function to be output from the GPIO register setting and select the remaining GPIO pin and
not output the specific function to any desired GPIO pin.

Table 63. GPIO pin configuration

Pin name Pin number I/O Pin selection Function name

GPIOA0 39 I/O Reg. GPIO_SEL.AMUX9 GPIOA[0]

GPIOA1 38 I/O Reg. GPIO_SEL.AMUX9 GPIOA[1]

GPIOA2 37 I/O Reg. GPIO_SEL.BMUX9 GPIOA[2]

GPIOA3 36 I/O Reg. GPIO_SEL.BMUX9 GPIOA[3]

GPIOA4 34 I/O Reg. GPIO_SEL.CMUX9 GPIOA[4]

GPIOA5 33 I/O Reg. GPIO_SEL.CMUX9 GPIOA[5]

GPIOA6 32 I/O Reg. GPIO_SEL.DMUX9 GPIOA[6]

GPIOA7 31 I/O Reg. GPIO_SEL.DMUX9 GPIOA[7]

GPIOA8 30 I/O Reg. GPIO_SEL.EMUX9 GPIOA[8]

GPIOA9 29 I/O Reg. GPIO_SEL.EMUX9 GPIOA[9]

GPIOA10 28 I/O Reg. GPIO_SEL.FMUX7 GPIOA[10]

GPIOA11 27 I/O Reg. GPIO_SEL.FMUX7 GPIOA[11]

GPIOC6 10 I/O Reg. GPIO_SEL.UMUX2 GPIOC[6]

GPIOC7 9 I/O Reg. GPIO_SEL.UMUX2 GPIOC[7]

GPIOC8 8 I/O Reg. GPIO_SEL.UMUX2 GPIOC[8]

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 263

When keeping GPIO PIN state high or low in sleep state, use one of the following API functions:

▪ _GPIO_RETAIN_HIGH()

▪ _GPIO_RETAIN_LOW().

GPIOA [11:4] and GPIOC [8:6] can only be set as GPIO retention high or low. When using GPIO and GPIO
Retention API, the status of GPIO PIN is shown in Table 64.

Table 64. Status of GPIO pin

 PIN

information

Before sleep

(RTOS booting)

Sleep

period

Sleep period (with

SAVE_PULLUP_PINS_INFO)

After sleep

(wake-up)

GPIO input

configured

GPIOA[3:0] High-Z High-Z High-Z I-PD

GPIOA[11:4],

GPIOC[8:6]

High-Z Low (PD) High-Z I-PD

GPIO output high

configured

GPIOA[3:0] High High-Z High-Z I-PD

GPIOA[11:4],

GPIOC[8:6]

High Low (PD) High-Z I-PD

GPIO output low

configured

GPIOA[3:0] Low High-Z High-Z I-PD

GPIOA[11:4],

GPIOC[8:6]

Low low (PD) High-Z I-PD

GPIO retention

high configured

GPIOA[11:4],

GPIOC[8:6]

High High High High

GPIO retention

low configured

GPIOA[11:4],

GPIOC[8:6]

Low Low Low Low

When keeping GPIO PIN in high-z state in sleep period, use the API described in the Section 17.2.2:

▪ SAVE_PULLUP_PINS_INFO()

This function should be used when an external pull-up register is connected to a GPIO PIN. If this function is not
used, leakage current may occur.

17.2.2 API

Table 65. APIs for GPIO interface

Item Description

HANDLE GPIO_CREATE(UINT32 dev_type)

Parameter dev_type Device index

Return If it succeeds, return the handle for the device. If it fails, return NULL.

Description The DA16200/DA16600 can set GPIO_UNIT_A and GPIO_UNIT_C.

int GPIO_INIT (HANDLE handler)

Parameter handler Device handle

Return TRUE if it succeeds, or FALSE if it fails.

Description Configure the GPIO setting.

int GPIO_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler Device handle

cmd Commands are defined <gpio.h> in our SDK.

data Data pointer.

Return TRUE if it succeeds, or FALSE if it fails.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 264

Item Description

Description The necessary configuration of GPIO can be set with this function. Commands are as

below:

▪ GPIO_GET_DEVREG = 1,

▪ GPIO_SET_OUTPUT, // set gpio as an output

▪ GPIO_SET_INPUT, // set gpio as an input

▪ GPIO_GET_DIRECTION, // get gpio direction

▪ GPIO_SET_INTR_MODE, // set gpio interrupt mode [edge/level]

▪ GPIO_GET_INTR_MODE, // get gpio interrupt mode

▪ GPIO_SET_INTR_ENABLE, // enable gpio interrupt

▪ GPIO_SET_INTR_DISABLE, // disable gpio interrupt

▪ GPIO_GET_INTR_ENABLE, // get gpio interrupt enable status

▪ GPIO_GET_INTR_STATUS, // get gpio interrupt pending status

▪ GPIO_SET_INTR_CLEAR, // clear gpio interrupt status

▪ GPIO_SET_MODE_ALT, // set alternate function

▪ GPIO_SET_MODE_NOALT, // clear alternate function

▪ GPIO_GET_MODE_ALT, // get alternate function

▪ GPIO_SET_CALLACK, // set a callback function for gpio interrupt

int GPIO_READ (HANDLE handler, UINT32 addr, UINT16 *pdata, UINT32 dlen)

Parameter handler Device handle

addr GPIO index

p_data Data buffer pointer

p_dlen Data buffer length

Return TRUE if it succeeds, or FALSE if it fails.

Description GPIO value contained in p_data.

int GPIO_WRITE (HANDLE handler, UINT32 addr, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle

addr GPIO index

p_data Data buffer pointer

p_dlen Data buffer length

Return TRUE if it succeeds, or FALSE if it fails.

Description GPIO value contained in p_data.

int GPIO_CLOSE(HANDLE handler)

Parameter handler Device handle

Return TRUE if it succeeds, or FALSE if it fails.

Description GPIO close command.

INT32 GPIO_GET_ALT_FUNC (HANDLE handler, GPIO_ALT_FUNC_TYPE altFuncType, UINT32 * regVal)

Parameter handler Device handle

altFuncType GPIO alternate function type

regVal GPIO alternate function setting value

Return If it succeeds, return 0.

Description Get GPIO alternate function setting value.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 265

Item Description

INT32 GPIO_SET_ALT_FUNC(HANDLE handler, GPIO_ALT_FUNC_TYPE altFuncType,

GPIO_ALT_GPIO_NUM_TYPE gpioType)

Parameter handler Device handle

altFuncType GPIO alternate function type

gpioType GPIO number

Return If it succeeds, return 0.

Description Set GPIO alternate function.

INT32 _GPIO_RETAIN_HIGH(UINT32 gpio_port, UINT32 gpio_num)

Parameter gpio_port GPIO port number

gpio_num GPIO pin number

Return TRUE if successfully configured, else FALSE.

Description GPIOA[11:4] and GPIOC[8:6] are only available to set GPIO retention high. And this API

function should not be called from the "config_pin_mux” function.

INT32 _GPIO_RETAIN_LOW(UINT32 gpio_port, UINT32 gpio_num)

Parameter gpio_port GPIO port number

gpio_num GPIO pin number

Return TRUE if successfully configured, else FALSE.

Description GPIOA[11:4] and GPIOC[8:6] are only available to set GPIO retention high. And this API

function should not be called from the "config_pin_mux" function.

void SAVE_PULLUP_PINS_INFO(UINT32 port_num, UINT32 pinnum)

Parameter port_num GPIO port number

pinnum GPIO pin number

Description It keeps GPIO PIN in High-Z state during sleep period.

This function should be used when an external pull-up register is connected to a GPIO

PIN. If this function is not used, leakage current may occur.

17.2.3 How to Run

1. In the e2 studio, import a project for the GPIO sample application as follows.

~/SDK/apps/common/examples/Peripheral/GPIO/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. The status of GPIOA[0] and GPIOA[1] is printed every 1 second.

▪ GPIOA[0] output low, GPIOA[4] output low, GPIOA[1] input low

▪ GPIOA[0] output high, GPIOA[4] output high, GPIOA[1] input low

▪ GPIOA[0] output low, GPIOA[4] output low, GPIOA[1] input low

17.2.4 Sample Code

1. Create and initialize a GPIO handle.

HANDLE gpio;

gpio = GPIO_CREATE(GPIO_UNIT_A);

GPIO_INIT(gpio);

2. Set pin multiplexing.

/* AMUX to GPIOA[1:0] */

_da16x_io_pinmux(PIN_AMUX, AMUX_GPIO);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 266

/* BMUX to GPIOA[3:2] */

_da16x_io_pinmux(PIN_BMUX, BMUX_GPIO);

/* CMUX to GPIOA[5:4] */

_da16x_io_pinmux(PIN_CMUX, CMUX_GPIO);

3. Set GPIOA[0] and GPIOA[4] as output mode and GPIOA[1] as input mode.

/* GPIOA[0],GPIOA[4] output high low toggle */

pin = GPIO_PIN0 | GPIO_PIN4;

GPIO_IOCTL(gpio, GPIO_SET_OUTPUT, &pin); /* GPIOA[1] input */

pin = GPIO_PIN1;

GPIO_IOCTL(gpio, GPIO_SET_INPUT, &pin);

4. Set GPIOA[2] as an interrupt source with active low and register a callback function.

static int set_gpio_interrupt(HANDLE handler, UINT8 pin_num, UINT8 int_type, UINT8 int_pol,

void *callback_func)

{

 UINT16 pin, int_en_status;

 UINT32 ioctldata[3];

 int ret;

 if (15 < pin_num)

 return FALSE;

 if(handler == NULL){

 return FALSE;

 }

 pin = 0x01<<pin_num;

 ret = GPIO_IOCTL(handler, GPIO_SET_INPUT, &pin);

 ret = GPIO_IOCTL(handler, GPIO_GET_INTR_MODE, &ioctldata[0]);

 /* interrupt type 1: edge, 0: level*/

 ioctldata[0] &= ~(1 << pin_num); // clear the bit first

 ioctldata[0] |= (int_type << pin_num);

 /* interrupt pol 1: high active, 0: low active */

 ioctldata[1] &= ~(1 << pin_num); // clear the bit first

 ioctldata[1] |= (int_pol << pin_num);

 ret = GPIO_IOCTL(handler, GPIO_SET_INTR_MODE, &ioctldata[0]);

 /* register callback function */

 ioctldata[0] = pin; /* interrupt pin */

 ioctldata[1] = (UINT32) callback_func; /* callback function */

 ioctldata[2] = (UINT32) pin_num; /* param data */

 ret = GPIO_IOCTL(handler, GPIO_SET_CALLACK, ioctldata);

 ret = GPIO_IOCTL(handler, GPIO_GET_INTR_ENABLE, &int_en_status);

 int_en_status |= pin;

 ret = GPIO_IOCTL(handler, GPIO_SET_INTR_ENABLE, &int_en_status);

 return ret;

}

/* GPIOA[2] interrupt active low , Edge trigger */

set_gpio_interrupt(gpio, 2, GPIO_INT_TYPE_EDGE, GPIO_INT_POL_LOW, (void*)gpio_callback);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 267

5. Set GPIOA[3] as an interrupt source with active high and register a callback function.

/*GPIOA[3] interrupt active high, Edge trigger */

set_gpio_interrupt(gpio, 3, GPIO_INT_TYPE_EDGE, GPIO_INT_POL_HIGH, (void*)gpio_callback);

6. Write GPIOA[0] and GPIOA[4] and read GPIOA[1].

if (toggle) {

 /* GPIOA[0],GPIOA[4] to high */

 write_data = GPIO_PIN0 | GPIO_PIN4;

 GPIO_WRITE(gpio, GPIO_PIN0 | GPIO_PIN4, &write_data, sizeof(UINT16));

 toggle = 0;

} else {

 /* GPIOA[0],GPIOA[4] to low*/

 write_data = 0;

 GPIO_WRITE(gpio, GPIO_PIN0 | GPIO_PIN4, &write_data, sizeof(UINT16));

 toggle = 1;

}

GPIO_READ(gpio, GPIO_PIN1, &read_data, sizeof(UINT16));

7. Set the PAD pull condition by using PAD_PULL_CONTROL.

#if PAD_PULL_CONTROL

 /*

 * GPIOA[1] input pull control it can make gpio pad pull up or pull down or HIZ

 */

 _da16x_gpio_set_pull(GPIO_UNIT_A, GPIO_PIN1, PULL_UP);

 /* or */

 _da16x_gpio_set_pull(GPIO_UNIT_A, GPIO_PIN1, PULL_DOWN);

 /* or */

 _da16x_gpio_set_pull(GPIO_UNIT_A, GPIO_PIN1, HIGH_Z);

#endif

8. Activate the RTC_GPO example by using RTC_GPO_CONTROL.

#ifdef RTC_GPO_CONTROL

 RTC_GPO_OUT_INIT(1); // 0: auto, 1: manual

RTC_GPO_OUT_CONTROL(1); // Set High

#endif

9. Both edges of interrupt are not supported by hardware but can be supported by software.

Activate the GPIO interrupt according to the GPIO read value.

GPIO_READ(gpioc, GPIO_PIN6, &read_data, sizeof(UINT16));

set_gpio_interrupt(gpioc, 6, GPIO_INT_TYPE_EDGE, !(GPIO_PIN6&read_data),

(void*)gpioc_callback);

And change the interrupt polarity at every GPIO callback function. See the
"GPIOC6_BOTH_EDGE_INTERRUPT" example for details.

17.3 GPIO Retention

This application shows how to use GPIO retention. If the GPIO pin is set to retention high, it is kept in the high
state during the sleep period. If the GPIO pin is set to retention low, it is kept in the low state during the sleep
period.

17.3.1 How to Run

1. In the e2 studio, import a project for the GPIO Retention sample application.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 268

~/SDK/apps/common/examples/Peripheral/GPIO_Retention/projects/da16200

a. Build the main project, download the image to the DA16200 EVB, and reboot.

b. Toggle switch 13 (SW13).

c. Use an oscilloscope to check that the GPIOA [10: 8] and GPIOC [7] keep their PIN states.

17.3.2 Sample Code

1. Set pin multiplexing.

/*

 * 1. Set to GPIOA[11:4], GPIOC[8:6]

 * 2. Need be written to "config_pin_mux" function.

 */

_da16x_io_pinmux(PIN_EMUX, EMUX_GPIO);

_da16x_io_pinmux(PIN_FMUX, FMUX_GPIO);

_da16x_io_pinmux(PIN_UMUX, UMUX_GPIO);

2. Set GPIO retention config.

/* Set GPIOA[9:8] to retention high */

ret = _GPIO_RETAIN_HIGH(GPIO_UNIT_A, GPIO_PIN8 | GPIO_PIN9);

if(ret == FALSE)

 PRINTF("GPIO_RETAIN_HIGH() return false.\n");

/* Set GPIOA[10] to retention low */

ret = _GPIO_RETAIN_LOW(GPIO_UNIT_A, GPIO_PIN10);

if (ret == FALSE)

 PRINTF("GPIO_RETAIN_LOW() return false.\n");

/* Set GPIOC[7] to retention high */

ret = _GPIO_RETAIN_HIGH(GPIO_UNIT_C, GPIO_PIN7);

if(ret == FALSE)

 PRINTF("GPIO_RETAIN_HIGH() return false.\n");

3. Power down.

char * _argv[4] = {"down", "sec", "10", "1"};

cmd_power_down_config(4, _argv);

/* Set GPIOC[7] to retention high */

ret = _GPIO_RETAIN_HIGH(GPIO_UNIT_C, GPIO_PIN7);

if(ret == FALSE)

 PRINTF("GPIO_RETAIN_HIGH() return false.\n");

17.4 I2C

This section shows how to use the I2C interface.

17.4.1 Introduction

17.4.1.1 I2C Master

The DA16200/DA16600 includes an I2C master module. There are two supportable clock speeds for I2C in the
DA16200/DA16600; the standard speed is 100 kbps, and fast mode is 400 kbps. Table 66 shows the pin
definition of the I2C master interface in GPIO Pin Configuration.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 269

Table 66. I2C master pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA1 38 C3 O I2C_CLK

GPIOA5 33 D2 O

GPIOA9 29 H2 O

GPIOA0 39 A3 I/O

I2C_SDA GPIOA4 34 F4 I/O

GPIOA8 32 G3 I/O

For more details, see Ref. [2].

17.4.1.2 I2C Slave

The DA16200/DA16600 supports the I2C slave interface controlled by an external host. The pin mux
configurations are defined in Table 67. The I2C slave interface also supports the standard (100 kbps) or fast
(400 kbps) transmission speeds.

Table 67. I2C slave pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA1 38 C3 I

I2C_CLK
GPIOA3 36 D4 I

GPIOA5 33 D2 I

GPIOA7 31 E1 I

GPIOA0 39 A3 I/O

I2C_SDA GPIOA2 37 B2 I/O

GPIOA4 34 F4 I/O

GPIOA6 32 E3 I/O

For more details, see Ref. [2].

17.4.2 API

Table 68. APIs for I2C interface

Item Description

HANDLE DRV_I2C_CREATE(UINT32 dev_id)

Parameter dev_id Device ID number to create a handle.

Return If it succeeds, return the handle for the device. If it fails, return NULL.

Description Create a handle with the parameter "dev_id" designated.

Int DRV_I2C_INIT(HANDLE handler)

Parameter handler Device handle to initialize.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description Initialize the I2C interface.

int DRV_I2C_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler Device handle to control.

cmd See sys_i2c.h in our SDK.

*data Data pointer when there are any. If not, NULL.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 270

Item Description

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description This function controls miscellaneous I2C controller.

int DRV_I2C_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

I2C_GET_CONFIG Get "i2c_cr0" Register Value. See Register Map Read

I2C_GET_STATUS Get "i2c_sr" Register Value. See Register Map Read

I2C_SET_DMA_WR I2C Write via uDMA TX Enable/Disable [TRUE/FALSE]

I2C_SET_DMA_RD I2C READ via uDMA RX Enable/Disable [TRUE/FALSE]

I2C_GET_DMA_WR Get uDMA TX Enabled [0x2/FALSE]

I2C_GET_DMA_RD Get uDMA RX Enabled [TRUE/FALSE]

I2C_SET_RESET Set I2C Device Reset/set [TRUE/FALSE]

I2C_SET_CHIPADDR Set I2C Slave Device Address (8 bits) Write

I2C_GET_CHIPADDR Get I2C Slave Device Address (8 bits) Read

I2C_SET_CLOCK Set I2C Clock [kHz] (Max = 1200) Write

int DRV_I2C_WRITE_DMA(HANDLE handler, VOID *p_data, UINT32 p_dlen, UINT32 dummy)

Parameter handler Device handle to write with DMA

*p_data Buffer pointer to write

p_dlen Length to write

dummy Reserved (set to ‘0’)

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description I2C write function through DMA.

int DRV_I2C_WRITE(HANDLE handler, VOID *p_data, UINT32 p_dlen, UINT32 stopen, UINT32 dummy)

Parameter handler Device handle to write

*p_data Buffer pointer to write

p_dlen Length to read

stopen Flag stop bit enables

dummy Reserved (set to ‘0’)

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description I2C write function

int DRV_I2C_READ(HANDLE handler, VOID *p_data, UINT32 p_dlen, UINT32 addr_len,UINT32 dummy)

Parameter handler Device handle to read

*p_data Buffer pointer to read

p_dlen Length to read

addr_len Length of register address inside of slave device. if 0, read only operation.

dummy Reserved (set to ‘0’)

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description I2C read function

Int DRV_I2C_CLOSE(HANDLE handler);

Parameter handler Device handle to close

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description I2C driver close

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 271

Item Description

void DRV_I2C_REGISTER_INTERRUPT (HANDLE handler);

Parameter handler Device handle to register Interrupt Handler

Return NULL

Description I2C Interrupt Registration

17.4.3 How to Run

1. In the e2 studio, import a project for the I2C sample application.

~/SDK/apps/common/examples/Peripheral/I2C/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/I2C/src/i2c_sample.c

17.4.3.1 Test Procedure

1. Remove resistors R6 and R7.

2. Connect the AT24C512 EEPROM with the EVB.

3. Connect each 1,2 kΩ Pull-Up resistor with GPIOA0 and GPIOA1.

GPIOA0= SDA, GPIOA1=SCL

4. Run I2C example code.

17.4.3.2 Sample Code for Using I2C

1. Initialize I2C.

// GPIO Select for I2C working. GPIO1 = SCL, GPIO0= SDA

Board_initialization();

DA16X_CLOCK_SCGATE->Off_DAPB_I2CM = 0;

DA16X_CLOCK_SCGATE->Off_DAPB_APBS = 0;

// Create Handle for I2C Device

I2C = DRV_I2C_CREATE(i2c_0);

// Initialization I2C Device

DRV_I2C_INIT(I2C);

2. I2C address.

// Device Address for AT24C512

UINT32 addr = 0xa0;

DRV_I2C_IOCTL(I2C, I2C_SET_CHIPADDR, &addr);

3. I2C clock.

// Set I2C Working Clock. Unit = kHz

DRV_I2C_IOCTL(I2C, I2C_SET_CLOCK, &i2c_clock);

4. Write I2C.

// Data Random Write to EEPROM

// Address = 0, Length = 32, Word Address Length = 2

// [Start] - [Device addr. W] - [1st word addr.] - [2nd word addr.] - [wdata0] ~

 [wdata31] - [Stop]

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 272

i2c_data[0] = AT_I2C_FIRST_WORD_ADDRESS; //Word Address to Write Data. 2 bytes.

 refer at24c512 DataSheet

i2c_data[1] = AT_I2C_SECOND_WORD_ADDRESS; //Word Address to Write Data. 2 bytes.

 refer at24c512 DataSheet

// Fill Ramp Data

for (int i = 0; i < AT_I2C_DATA_LENGTH; i++) {

 i2c_data[i+AT_I2C_LENGTH_FOR_WORD_ADDRESS] = i;

}

status = DRV_I2C_WRITE(I2C, i2c_data,

// Handle, buffer, length, stop enable, dummy

AT_I2C_DATA_LENGTH + AT_I2C_LENGTH_FOR_WORD_ADDRESS, 1, 0);

if (status != TRUE) {

 PRINTF("ret : 0x%08x\r\n", status);

}

5. Read I2C.

// Data Random Read from EEPROM

// Address = 0, Length = 32, Word Address Length = 2

// [Start] - [Device addr. W] - [1st word addr.] - [2nd word addr.] - [Start] -

 [Device addr. R] - [rdata0] ~ [rdata31] - [Stop]

// Word Address to Write Data. 2 bytes. refer at24c512 DataSheet

i2c_data_read[0] = AT_I2C_FIRST_WORD_ADDRESS;

//Word Address to Write Data. 2 bytes. refer at24c512 DataSheet

i2c_data_read[1] = AT_I2C_SECOND_WORD_ADDRESS;

// Handle, buffer, length, address length, dummy

status = DRV_I2C_READ(I2C, i2c_data_read, AT_I2C_DATA_LENGTH,

 AT_I2C_LENGTH_FOR_WORD_ADDRESS, 0);

if (status != TRUE) {

 PRINTF("ret : 0x%08x\r\n", status);

}

// Check Data

for (int i = 0; i < AT_I2C_DATA_LENGTH; i++) {

 if (i2c_data_read[i] != i2c_data[i + AT_I2C_LENGTH_FOR_WORD_ADDRESS]) {

 PRINTF("%dth data is different W:0x%02x, R:0x%02x\r\n", i,

 i2c_data[i + AT_I2C_LENGTH_FOR_WORD_ADDRESS],

 i2c_data_read[i]);

 status = AT_I2C_ERROR_DATA_CHECK;

 }

}

if (status != AT_I2C_ERROR_DATA_CHECK) {

 PRINTF("***** 32 bytes Data Write and Read Success *****\r\n");

}

6. I2C read_nostop.

// Data Current Address Read from EEPROM

// Length = 32, Word Address Length = 0

// [Start] -[Device addr. R] - [rdata0] ~ [rdata31] - [Stop]

// Handle, buffer, length, address length, dummy

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 273

status = DRV_I2C_READ(I2C, i2c_data_read, 4, 0, 0);

if (status != TRUE) {

 PRINTF("ret : 0x%08x\r\n", status);

}

17.5 I2S

This section shows how to use the I2S interface.

17.5.1 How to Run

1. In the e2 studio, import a project for the I2S sample application.

~/SDK/apps/common/examples/Peripheral/I2S/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/I2S/src/i2s_sample.c

17.5.2 User Task

The user task of the I2S application is added as shown in the example below and is executed by the system.
SAMPLE_I2S should be a unique name to create a task. The port number does not need to be set, because this
is a non-network task.

~/SDK/apps/common/examples/Peripheral/I2S/src/sample_apps.c

static const app_task_info_t sample_apps_table[] =

{ I2S_SAMPLE, i2s_sample, 512, (tskIDLE_PRIORITY + 7), FALSE, FALSE,

 UNDEF_PORT,RUN_ALL_MODE },

};

17.5.3 Sample Code

1. Create and initialize an I2S handle.

HANDLE gi2shandle = NULL;

I2S_HANDLER_TYPE *i2s;

unsigned int mode, data;

DA16X_CLOCK_SCGATE->Off_DAPB_I2S = 0;

DA16X_CLOCK_SCGATE->Off_DAPB_APBS = 0;

gi2shandle = DRV_I2S_CREATE(I2S_0);

i2s = (I2S_HANDLER_TYPE *) gi2shandle;

if (!gi2shandle) {

 vTaskDelete(NULL);

 return;

}

/* Set I2S Output Mode */

if (DRV_I2S_INIT(gi2shandle, mode) == FALSE) {

 vTaskDelete(NULL);

 return;

}

2. Set the internal DAC or the external DAC.

// GPIO[3] - I2S_LRCK, GPIO[2] - I2S_SDO

_da16x_io_pinmux(PIN_BMUX, BMUX_I2S);

// GPIO[1] - I2S_MCLK, GPIO[0] - I2S_BCLK

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 274

_da16x_io_pinmux(PIN_AMUX, AMUX_I2S);

DRV_I2S_SET_CLOCK(gi2shandle, I2S_CLK_SOURCE_INTERNAL, 0);

3. Set additional configuration.

data = TRUE;

DRV_I2S_IOCTL(i2s, I2S_SET_STEREO, &data); /* Set Stereo Output Mode */

#ifdef I2S_SAMPLE_SET_MODE_RX

data = I2S_RESOLUTION_RX_16B;

#else

data = I2S_RESOLUTION_TX_16B;

#endif

DRV_I2S_IOCTL(i2s, I2S_SET_PCM_RESOLUTION, &data); /* Set 16bit resolution Mode */

4. Write and read data.

for(int i=0;i<2;i++)

{

#ifdef I2S_SAMPLE_SET_MODE_RX

 rd_len = DRV_I2S_READ(i2s, (unsigned int *)rx_buf[i], 768, 0);

#else

 DRV_I2S_WRITE(i2s, (unsigned int *) sinewave_pattern, 768, 0);

#endif

 xEventGroupWaitBits(i2s_sample_event, 0x1, pdTRUE, pdFALSE, 20);

}

17.6 PWM

This section shows how to use the PWM interface.

17.6.1 Introduction

Pulse-Width Modulation (PWM) is a modulation technique used to encode a message into a pulse signal. The
blocks are designed to adjust the output pulse duration by means of the CPU bus clock (HCLK).

AHB
Bus

Matrix

PWM OUTPWM Block 0

Counter (Period)

Register

Counter (High Duty)

PWM Block 0

Counter (Period)

Register

Counter (High Duty)

PWM Block 0

Counter (Period)

Register

Counter (High Duty)

PWM Block 0

Counter (Period)

Register

Counter (High Duty)

PWM OUT

PWM OUT

PWM OUT

HCLK

Counter

Register

AHB Bus

Figure 119. PWM block diagram

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 275

Table 69. PWM pin configuration

Pin name Pin number I/O Pin selection Function name

GPIOx O Reg. GPIO_SEL.xMUXx PWM[3:0] output

For more details, see Ref. [2].

17.6.2 API

Table 70. APIs for PWM interface

Item Description

HANDLE DRV_PWM_CREATE(UINT32 dev_id)

Parameter dev_id Device number to create handle.

Return If it succeeds, return the handle for such device. If it fails, return NULL.

Description Function create handle with the parameter "dev_id" designated.

int DRV_PWM_INITf(HANDLE handler)

Parameter handler Device handle to initialize.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description Change GPIO multiplex to PWM mode.

int DRV_PWM_START(HANDLE handler, UINT32 period_us, UINT32 hduty_percent, UINT32 dummy)

Parameter handler Device handle to enable PWM device output.

Period_us 1 cycle period in microsecond.

Hduty_percent Output high time in percentage while every 1 cycle.

dummy TBD

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description Enable PWM block in the DA16200/DA16600 with specified parameters.

period = (((period_us * 10) * (clock / 1000000))/10)-1;

// minimum system clock 1 MHz

hduty = (((period + 1) * hduty_percent) / 100)-1;

int DRV_PWM_STOP(HANDLE handler, UINT32 dummy)

Parameter handler Device handle to stop PWM out.

cmd See pwm.h in our SDK

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description Disable PWM block in the DA16200/DA16600.

int DRV_PWM_CLOSE(HANDLE handler)

Parameter handler Device handle to close and de-initialize device.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description Destroy handle

17.6.3 How to Run

1. In the e2 studio, import a project for the PWM sample application.

~/SDK/apps/common/examples/Peripheral/PWM/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/PWM/src/pwm_sample.c

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 276

17.6.3.1 Test Procedure

1. Remove resistors R6~R9.

2. Run the PWM example command.

3. Get waveform from P7~P9 in connector J4.

4. Compare the waveform with the PWM setting inside the example code.

17.6.3.2 Sample Code

1. Set GPIO.

Board_Init();

DA16X_CLOCK_SCGATE->Off_CAPB_PWM = 0;

gpio = GPIO_CREATE(GPIO_UNIT_A);

GPIO_INIT(gpio);

GPIO_SET_ALT_FUNC(gpio, GPIO_ALT_FUNC_PWM_OUT0, GPIO_ALT_FUNC_GPIO0);

GPIO_SET_ALT_FUNC(gpio, GPIO_ALT_FUNC_PWM_OUT1, GPIO_ALT_FUNC_GPIO1);

GPIO_SET_ALT_FUNC(gpio, GPIO_ALT_FUNC_PWM_OUT2, GPIO_ALT_FUNC_GPIO2);

GPIO_SET_ALT_FUNC(gpio, GPIO_ALT_FUNC_PWM_OUT3, GPIO_ALT_FUNC_GPIO3);

2. Initialize PWM.

pwm[0] = DRV_PWM_CREATE(pwm_0);

pwm[1] = DRV_PWM_CREATE(pwm_1);

pwm[2] = DRV_PWM_CREATE(pwm_2);

pwm[3] = DRV_PWM_CREATE(pwm_3);

DRV_PWM_INIT(pwm[0]);

DRV_PWM_INIT(pwm[1]);

DRV_PWM_INIT(pwm[2]);

DRV_PWM_INIT(pwm[3]);

3. Set start_time.

period = 10; // 10 µs

duty_percent = 30; //30%, duration high 3 µs s per 10 µs

DRV_PWM_START(pwm[0], period, duty_percent, PWM_DRV_MODE_US); //PWM Start

period = 20; // 20 µs

duty_percent = 40; //40%, duration high 8 µs per 10 µs

DRV_PWM_START(pwm[1], period, duty_percent, PWM_DRV_MODE_US); //PWM Start

period = 40; // 40 µs

duty_percent = 50; //50%, duration high 20 µs per 10 µs

DRV_PWM_START(pwm[2], period, duty_percent, PWM_DRV_MODE_US); //PWM Start

period = 80; // 80 µs

duty_percent = 80; //80%, duration high 64 µs per 10 µs

DRV_PWM_START(pwm[3], period, duty_percent, PWM_DRV_MODE_US); //PWM Start

4. Set start_cycle.

// 2400 cycles(=30us @ 80 MHz), cycle = value + 1

cycle = 2400-1;

// 1680 cycles(=21us@80 MHz, 70% Duty High), duty_cycle = value + 1

duty_cycle = 1680-1;

DRV_PWM_START(pwm[0], cycle, duty_cycle, PWM_DRV_MODE_CYC); //PWM Start

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 277

// 2400 cycles(=30us @ 80 MHz), cycle = value + 1

cycle = 2400-1;

// 1680 cycles(=21us@ 80 MHz, 70% Duty High), 70% Duty High), duty_cycle = value + 1

duty_cycle = 1680-1;

DRV_PWM_START(pwm[1], cycle, duty_cycle, PWM_DRV_MODE_CYC); //PWM Start

// 2400 cycles(=30us @ 80 MHz), cycle = value + 1

cycle = 2400-1;

// 1680 cycles(=21us@ 80 MHz, 70% Duty High), 70% Duty High), duty_cycle = value + 1

duty_cycle = 1680-1;

DRV_PWM_START(pwm[2], cycle, duty_cycle, PWM_DRV_MODE_CYC); //PWM Start

// 2400 cycles(=30us @ 80 MHz), cycle = value + 1

cycle = 2400-1;

// 1680 cycles(=21us@ 80 MHz, 70% Duty High), 70% Duty High), duty_cycle = value + 1

duty_cycle = 1680-1;

DRV_PWM_START(pwm[3], cycle, duty_cycle, PWM_DRV_MODE_CYC); //PWM Start

5. Stop PWM.

DRV_PWM_STOP(pwm[0], 0);

DRV_PWM_STOP(pwm[1], 0);

DRV_PWM_STOP(pwm[2], 0);

DRV_PWM_STOP(pwm[3], 0);

17.7 ADC

This section shows how to use the ADC interface.

17.7.1 Introduction

The DA16200/DA16600 has Analog-to-Digital Converters (ADC): a four-channel single-end ADC of 12-bit
resolution. Analog input is measured by means of 4 pins from GPIO0 to GPIO3, and the pin selection is changed
through the register setting. See Figure 120 and Table 71.

ADC
12b

Max : 1Ms

Counter
16-bit

A
D
C
 C

o
n
tr
o
lle

r

Ready

CH_SEL

SW
ITC

H

VI_N[1]

VI_N[2]

VI_N[3]

VI_N[4]

S
w
it
ch

Figure 120. ADC control block diagram

Table 71. AUX ADC pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA3 36 D4 A Analog signal

GPIOA2 37 B2 A Analog signal

GPIOA1 38 C3 A Analog signal

GPIOA0 39 A3 A Analog signal

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 278

For more details, see Ref. [2].

17.7.2 API

Table 72. APIs for ADC interface

Item Description

HANDLE DRV_ADC_CREATE(UINT32 dev_id)

Parameter dev_id Device number to create a handle.

Return If it succeeds, return the handle for such device. If it fails, return NULL.

Description Function create handle with the parameter dev_id designated.

int DRV_ADC_INIT(HANDLE handler, unsigned int use_timestamp)

Parameter handler Device handle to initialize.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC Initialization command.

Int DRV_ADC_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler N/A

cmd N/A

data N/A

Return N/A

Description ADC IOCTL command

int DRV_ADC_START(HANDLE handler, UINT32 divider12, UINT32 dummy)

Parameter handler Device handle to start.

divider12 Fs = sys_clk/15/(div12 +1)

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC starts command.

int DRV_ADC_STOP(HANDLE handler, UINT32 dummy)

Parameter handler Device handle to stop.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC stop command.

Int DRV_ADC_CLOSE(HANDLE handler)

Parameter handler Device handle to close.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC driver close.

int DRV_ADC_READ(HANDLE handler, UINT32 channel, UINT32 *data, UINT32 dummy)

Parameter handler Device handle to read.

channel Channel number to read instant ADC value.

*data Buffer to read.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC read command.

int DRV_ADC_READ_DMA(HANDLE handler, UINT32 channel, UINT16 *p_data, UINT32 p_dlen, UINT32 dummy)

Parameter handler Device handle to read with specified length.

channel Channel number to read.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 279

Item Description

*p_data Buffer block to read.

p_dlen Number of samples to read with DMA, not buffer length.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC read commands through DMA.

int DRV_ADC_ENABLE_CHANNEL(HANDLE handler, UINT32 channel, unsigned int sel_adc, UINT32 dummy)

Parameter handler Device handle

channel Channel number to set ADC devices.

sel_adc 12: SMI 12B ADC, 0: disable

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC channel enables command.

int DRV_ADC_SET_INTERRUPT(HANDLE handler, UINT32 channel, UINT32 enable, UINT32 type, UINT32 dummy)

Parameter handler Device handle

channel Channel number to set interrupt.

enable 1: enable interrupt, 0: disable interrupt

type ADC_INTERRUPT_FIFO_HALF (0)

ADC_INTERRUPT_FIFO_FULL (1)

ADC_INTERRUPT_THD_OVER (2)

ADC_INTERRUPT_THD_UNDER (3)

ADC_INTERRUPT_THD_DIFF (4)

ADC_INTERRUPT_ALL (0xf)

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC interrupt set command.

int DRV_ADC_SET_THD_VALUE(HANDLE handler, UINT32 type, UINT32 enable, UINT32 thd, UINT32 dummy);

Parameter handler Device handle

type ADC_THRESHOLD_TYPE_12B_OVER (0)

ADC_THRESHOLD_TYPE_12B_UNDER (2)

ADC_THRESHOLD_TYPE_12B_DIFF (4)

thd Interrupt threshold. 0 ~ 65535 range. Upper 12 bits of 16-bit data are valid values.

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC interrupt threshold set command.

int DRV_ADC_WAIT_INTERRUPT(HANDLE handler, UNSIGNED *mask_evt);v

Parameter handler Device handle

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 280

Item Description

*mask_evt Mask for waiting interrupt

 bit[19] : Interrupt status for Threshold Difference of CHANNEL 3

 bit[18] : Interrupt status for Threshold Difference of CHANNEL 2

 bit[17] : Interrupt status for Threshold Difference of CHANNEL 1

 bit[16] : Interrupt status for Threshold Difference of CHANNEL 0

 bit[15] : Interrupt status for Threshold Under level of CHANNEL 3

 bit[14] : Interrupt status for Threshold Under level of CHANNEL 2

 bit[13] : Interrupt status for Threshold Under level of CHANNEL 1

 bit[12] : Interrupt status for Threshold Under level of CHANNEL 0

 bit[11] : Interrupt status for Threshold Over level of CHANNEL 3

 bit[10] : Interrupt status for Threshold Over level of CHANNEL 2

 bit[9] : Interrupt status for Threshold Over level of CHANNEL 1

 bit[8] : Interrupt status for Threshold Over level of CHANNEL 0

 bit[7] : Interrupt status for full level of CHANNEL 3

 bit[6] : Interrupt status for full level of CHANNEL 2

 bit[5] : Interrupt status for full level of CHANNEL 1

 bit[4] : Interrupt status for full level of CHANNEL 0

 bit[3] : Interrupt status for half level of CHANNEL 3

 bit[2] : Interrupt status for half level of CHANNEL 2

 bit[1] : Interrupt status for half level of CHANNEL 1

 bit[0] : Interrupt status for half level of CHANNEL 0

Return If it succeeds, return masked interrupt. If it fails, return FALSE.

Description Wait ADC interrupt

17.7.3 Interrupt Description

ADC_INTERRUPT_FIFO_HALF: this interrupt occurs when the FIFO Level is 4 or higher.

ADC_INTERRUPT_FIFO_FULL: this interrupt occurs when FIFO Level is 8.

ADC_INTERRUPT_THD_OVER: this interrupt occurs when the current input value to the ADC device is greater
than the value set in the "ADC_THRESHOLD_TYPE_12B_OVER" type.

ADC_INTERRUPT_THD_UNDER: this interrupt occurs when the current input value to the ADC device is
smaller than the value set in the " ADC_THRESHOLD_TYPE_12B_UNDER " type.

ADC_INTERRUPT_THD_DIFF: this interrupt occurs when the difference between the current input value to the
ADC device and the previous input value is greater than the value set in "ADC_INTERRUPT_THD_DIFF" type.

17.7.4 How to Run

1. In the e2 studio, import a project for the ADC sample application.

~/SDK/apps/common/examples/Peripheral/ADC/projects/da16200

2. There are three types of preprocessor statements defined in the ADC example code.

• ADC_SAMPLE_READ

○ Read and print ADC input values

• ADC_SAMPLE_INTERRUPT

○ Set the interrupt to occur at 0.7 V or less and verify that the setting works

• ADC_SAMPLE_DPM

○ Set the ADC value of 0.15 V or more before entering Sleep mode 2, and it wakes up from Sleep mode 2
when ADC input is 0.15 V or more.

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. The sample application code is written in the following source file:

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 281

~/SDK/apps/common/examples/Peripheral/ADC/src/adc_sample.c

17.7.5 Sample Code – SAMPLE_READ

17.7.5.1 Test Procedure

1. Provide 0~1.3 V to P7 ~ P9, in connector J4.

2. Run the ADC example and read the ADC value.

3. Compare the value with the voltage supplied.

17.7.5.2 Sample Code for Reading ADC

1. Initialize ADC.

PRINTF("ADC_SAMPLE\n");

DA16X_CLOCK_SCGATE->Off_DAPB_AuxA = 0;

DA16X_CLOCK_SCGATE->Off_DAPB_APBS = 0;

// Set PAD Mux. GPIO_0 (ADC_CH0), GPIO_1(ADC_CH1)

_da16x_io_pinmux(PIN_AMUX, AMUX_AD12);

// Create Handle

hadc = DRV_ADC_CREATE(DA16200_ADC_DEVICE_ID);

// Initialization

DRV_ADC_INIT(hadc, DA16x_ADC_NO_TIMESTAMP);

2. Start ADC.

// Start. Set Sampling Frequency. 12B ADC Set to 200 kHz

// Clock = 1 MHZ / (value + 1)

// Ex) If Value = 4, Clock = 1 MHz / (4+1) = 200 kHz

DRV_ADC_START(hadc, DA16x_ADC_DIVIDER_12, 0);

3. Enable ADC.

// Set ADC_0 to 12- Bit ADC, ADC_1 to 12-Bit ADC

DRV_ADC_ENABLE_CHANNEL(hadc, DA16200_ADC_CH_0, DA16x_ADC_SEL_ADC_12, 0);

DRV_ADC_ENABLE_CHANNEL(hadc, DA16200_ADC_CH_1, DA16x_ADC_SEL_ADC_12, 0);

4. Read ADC Using DMA.

// Read 16ea ADC_0 Value. 12B ADC, Bit [15:4] is valid adc_data, [3:0] is zero

DRV_ADC_READ_DMA(hadc, DA16200_ADC_CH_0, data0, DA16x_ADC_NUM_READ * 2,

 DA16x_ADC_TIMEOUT_DMA, 0);

// Read 16ea ADC_1 Value

DRV_ADC_READ_DMA(hadc, DA16200_ADC_CH_1, data1, DA16x_ADC_NUM_READ * 2,

 DA16x_ADC_TIMEOUT_DMA, 0);

5. Read ADC.

// Read Current ADC_0 Value. Caution!! When read current adc value consequently,

// need delay at each read function bigger than Sampling Frequency

DRV_ADC_READ(hadc, DA16200_ADC_CH_0, &data, 0);

6. Close ADC.

// Close ADC

DRV_ADC_CLOSE(hadc);

0.

17.7.6 Sample Code – ADC_SAMPLE_INTERRUPT

17.7.6.1 Test Procedure

1. Provide 1.3 voltage to P7 ~ P9, in connector J4.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 282

2. Run the ADC example.

3. Change the power supply to the ADC to 0.7 V or lower to see if an interrupt occurs.

17.7.6.2 Sample Code for ADC Interrupt

1. Initialize ADC.

HANDLE hadc;

int status, int_handling_mode;

unsigned int data, type, thd;

PRINTF("ADC_SAMPLE\n");

DA16X_CLOCK_SCGATE->Off_DAPB_AuxA = 0;

DA16X_CLOCK_SCGATE->Off_DAPB_APBS = 0;

// Set PAD Mux. GPIO_0 (ADC_CH0), GPIO_1(ADC_CH1)

_da16x_io_pinmux(PIN_AMUX, AMUX_AD12);

// Create Handle

hadc = DRV_ADC_CREATE(DA16200_ADC_DEVICE_ID);

// Initialization

status = DRV_ADC_INIT(hadc, DA16x_ADC_NO_TIMESTAMP);

PRINTF("ADC-INIT: %d\n", status);

2. Start ADC.

// Start. Set Sampling Frequency. 12B ADC Set to 200 kHz

// Clock = 1 MHZ / (value + 1)

// Ex) If Value = 4, Clock = 1 MHz / (4+1) = 200 kHz

status = DRV_ADC_START(hadc, DA16x_ADC_DIVIDER_12, 0);

RINTF("ADC start: %d\n", status);

// Set ADC_0 to 12-Bit ADC

status = DRV_ADC_ENABLE_CHANNEL(hadc, DA16200_ADC_CH_0, DA16x_ADC_SEL_ADC_12, 0);

PRINTF("ADC enable: %d\n", status);

//Set Data type offset binary, 0 : 2's complement , 1 : offset binary

type = 1;

DRV_ADC_IOCTL(hadc, ADC_SET_DATA_MODE, &type);

3. Read ADC.

// Read Current ADC_0 Value. Caution!! When read current adc value consequently, need delay at each

read function bigger than Sampling Frequency

DRV_ADC_READ(hadc, DA16200_ADC_CH_0, &data, 0);

PRINTF("Current ADC Value = 0x%x\r\n", GET_VALID_ADC_VALUE(data));

4. Set ADC Interrupt.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 283

//set threshold

//value 0x800(=0.7V/1.4V * 4095), max=4095(1.4V), min=0(0V), increase linearly) means about 0.7Volt in

EVK environment.

thd = 0x800;

//thd value must be shifted 4 bits right.

status = DRV_ADC_SET_THD_VALUE(hadc, ADC_THRESHOLD_TYPE_12B_UNDER, CONVERT_TO_THD_VALUE(thd), 0);

PRINTF("ADC-set threshold: %d\n", status);

// set Interrupt

status = DRV_ADC_SET_INTERRUPT(hadc, DA16200_ADC_CH_0, TRUE, ADC_INTERRUPT_THD_UNDER, 0);

PRINTF("ADC-set interrupt: %d\n", status);

//set Interrupt Handling Mode

//ADC_INTERRUPT_MODE_EVENT mode : in interrupt handler, call set_event function.

//ADC_INTERRUPT_MODE_MASK mode : in interrupt handler, disable interrupt.

int_handling_mode = ADC_INTERRUPT_MODE_EVENT | ADC_INTERRUPT_MODE_MASK;

DRV_ADC_IOCTL(hadc, ADC_SET_INTERRUPT_MODE, (void *)(&int_handling_mode));

5. Wait ADC Interrupt.

//Wait Interrupt

UNSIGNED interrupt_status ;

DRV_ADC_WAIT_INTERRUPT(hadc, &interrupt_status);

vTaskDelay(5);

6. Print and Disable Interrupt.

// disable Interrupt

status = DRV_ADC_SET_INTERRUPT(hadc, DA16200_ADC_CH_0, FALSE, ADC_INTERRUPT_THD_UNDER, 0);

PRINTF("ADC-reset interrupt: %d\n", status);

// Read Current ADC_0 Value. Caution!! When read current adc value consequently, need delay at each

read function bigger than Sampling Frequency

DRV_ADC_READ(hadc, DA16200_ADC_CH_0, &data, 0);

PRINTF("Interrupt Occured with Value = 0x%x\r\n", GET_VALID_ADC_VALUE(data));

vTaskDelete(NULL);

17.7.7 Sample Code – ADC_SAMPLE_DPM

17.7.7.1 Test Procedure

1. Provide 0 V to P7 ~ P9, in connector J4.

2. Run the ADC example.

3. After the DA16200 enters Sleep mode, verify that it wakes up by changing the voltage supplied to the ADC
to at least 0.15 V.

17.7.7.2 Sample Code for Wake Up DPM

1. Initialize ADC.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 284

HANDLE hadc;

int status, int_handling_mode;

unsigned int data, type, val;

unsigned long long wakeup_time;

UINT32 wakeup_src;

DA16X_CLOCK_SCGATE->Off_DAPB_AuxA = 0;

DA16X_CLOCK_SCGATE->Off_DAPB_APBS = 0;

// Set PAD Mux. GPIO_0 (ADC_CH0), GPIO_1(ADC_CH1)

_da16x_io_pinmux(PIN_AMUX, AMUX_AD12);

// Create Handle

hadc = DRV_ADC_CREATE(DA16200_ADC_DEVICE_ID);

// Initialization

status = DRV_ADC_INIT(hadc, DA16200_ADC_NO_TIMESTAMP);

//PRINTF("ADC-INIT: %d\n",status);

2. Start ADC.

// Start. Set Sampling Frequency. 12B ADC Set to 200 kHz

// Clock = 1 MHZ / (value + 1)

// Ex) If Value = 4, Clock = 1 MHz / (4+1) = 200 kHz

status = DRV_ADC_START(hadc, DA16200_ADC_DIVIDER_12, 0);

//PRINTF("ADC start: %d\n",status);

// Set ADC_0 to 12-Bit ADC

status = DRV_ADC_ENABLE_CHANNEL(hadc, DA16200_ADC_CH_0,

DA16200_ADC_SEL_ADC_12, 0);

//PRINTF("ADC enable: %d\n",status);

//Set Data type offset binary, 0 : 2's complement , 1 : offset binary

type = 1;

DRV_ADC_IOCTL(hadc, ADC_SET_DATA_MODE, &type);

3. Read ADC.

//Read Current ADC_0 Value.

DRV_ADC_READ(hadc, DA16200_ADC_CH_0, &data, 0);

PRINTF("Current ADC Value = 0x%x\r\n", data & 0xffff);

4. Set ADC Interrupt.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 285

//set threshold

//value 0x8000 means about 0.7Volt in EVK environment.

status = DRV_ADC_SET_THD_VALUE(hadc, ADC_THRESHOLD_TYPE_12B_OVER, 0x1B60,

 0);

PRINTF("ADC-set threshold: %d\n", status);

//set Interrupt

status = DRV_ADC_SET_INTERRUPT(hadc, DA16200_ADC_CH_0, TRUE,

ADC_INTERRUPT_THD_OVER, 0);

PRINTF("ADC-set interrupt: %d\n", status);

//set Interrupt Mode

int_handling_mode = ADC_INTERRUPT_MODE_EVENT | ADC_INTERRUPT_MODE_MASK;

DRV_ADC_IOCTL(hadc, ADC_SET_INTERRUPT_MODE, (void*) (&int_handling_mode));

//Set ADC for Sleep mode 2 //

DRV_ADC_SET_THRESHOLD(hadc, DA16200_ADC_CH_0, 0x1B6,

ADC_RTC_THRESHOLD_TYPE_OVER);

val = 1;

DRV_ADC_IOCTL(hadc, ADC_SET_RTC_CYCLE_BEFORE_ON, &val);

val = 1;

DRV_ADC_IOCTL(hadc, ADC_SET_RTC_CYCLE_BEFORE_CAPTURE, &val);

val = 0;

DRV_ADC_IOCTL(hadc, ADC_SET_CAPTURE_STEP, &val);

DRV_ADC_SET_SLEEP_MODE(hadc, 1, 0xf, 1);

DRV_ADC_SET_RTC_ENABLE_CHANNEL(hadc, DA16200_ADC_CH_0, 1);

drv_adc_sensor_out_enable(hadc);

vTaskDelay(50);

5. Enter Sleep mode 2.

wakeup_src = da16x_boot_get_wakeupmode();

PRINTF("\nWakeup source is 0x%x\n", wakeup_src);

wakeup_time = 10000000000 * 1000000;

start_dpm_sleep_mode_2(wakeup_time, TRUE);

PRINTF("Sample: Go to Sleep mode 2 ... \n");

17.8 SPI

This section shows how the SPI loopback operation works.

17.8.1 Introduction

17.8.1.1 SPI Master

The SPI master communicates in full duplex mode that uses master-slave architecture with a single master. The
master device originates the frame to be read or written. Multiple slave-devices are supported with the selection
of individual chip select (CS) lines.

Table 73 shows the pin definition of the SPI master interface. To use as an SPI master, the CSB signal can be
used with any of the GPIO pins. CSB [3:2] can be selected from the GPIO special function. This is done through
register settings in the GPIO.

Table 73. SPI master pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOx O E_SPI_CSB[3:1]

GPIOA6 32 E3 O E_SPI_CSB[0]

GPIOA7 31 E1 O E_SPI_CLK

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 286

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA8 30 G3 I/O E_SPI_MOSI or E_SPI_D[0]

GPIOA9 29 H2 I/O E_SPI_MISO or E_SPI_D[1]

GPIOA10 28 F2 I/O E_SPI_D[2]

GPIOA11 27 G1 I/O E_SPI_D[3]

17.8.1.2 SPI Slave

The SPI slave interface enables support to control the DA16200/DA16600 from an external host. The range of
the SPI clock speed is the same as that of the internal bus clock speed. The SPI slave supports both burst mode
and non-burst mode. In the burst mode, SPI_CSB remains active from the start to the end of communication. In
the non-burst mode, SPI_CLK remains active at every 8-bit.

The communication protocols of the SPI slave interface use either 4-byte or 8-byte control signals. Between the
two available communication protocols, the CPU chooses one before initiating the control.

Table 74. SPI slave pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA2 37 B2 I
SPI_CSB

GPIOA6 32 E3 I

GPIOA3 36 D4 I
SPI_CLK

GPIOA7 31 E1 I

GPIOA1 38 C3 I

SPI_MOSI GPIOA9 29 H2 I

GPIOA11 27 G1 I

GPIOA0 39 A3 O

SPI_MISO GPIOA8 30 G3 O

GPIOA10 28 F2 O

17.8.2 API

Table 75. APIs for SPI master interface

Item Description

HANDLE SPI_CREATE(UINT32 dev_id)

Parameter dev_id Instance Number of SPI (UINT32).

Return Handler of SPI Driver (HANDLE).

Description Returns the SPI Handler that is defined in "spi.h" file.

▪ create the GPIO handler for chip selection.

int SPI_INIT (HANDLE handler)

Parameter Handler SPI Driver (HANDLE)

Return TRUE/FALSE (int)

Description Initializes the SPI Handler to set up GPIO and activate the ISR.

▪ create the MUTEX for support to control multi-slaves.

int SPI_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter Handler SPI Driver (HANDLE)

Cmd IOCTL command

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 287

Item Description

data IOCTL parameters

Return TRUE/FALSE (int)

int SPI_WRITE(HANDLE handler, void *pdata, UINT32 dlen)

Parameter Handler SPI Driver (HANDLE)

Return zero – false, non-zero – data length (int)

Description SPI write operation.

▪ pdata: TX data buffer

▪ dlen: byte length

int SPI_WRITE_READ(HANDLE handler, void *snddata, UINT32 sndlen, void *rcvdata, UINT32 rcvlen)

Parameter Handler SPI Driver (HANDLE)

Return zero – false, non-zero – data length (int)

Description SPI write and read operation (write before read).

This function runs in concatenation mode internally.

▪ snddata: TX data buffer

▪ sndlen: byte length

▪ rcvdata: TX data buffer

rcvlen: byte length

Int SPI_TRANSMIT(HANDLE handler, VOID *snddata, UINT32 sndlen, VOID *rcvdata, UINT32 rcvlen)

Parameter Handler SPI Driver (HANDLE)

Return zero - false, non-zero - data length (int)

Description Basic operation running once in SPI burst mode (send before receiving).

This function does not support changing bus mode automatically.

▪ snddata: TX data buffer

▪ sndlen: byte length

▪ rcvdata: TX data buffer

rcvlen: byte length

Int SPI_CLOSE(HANDLE handler)

Parameter Handler SPI Driver (HANDLE)

Return TRUE/FALSE (int)

Description Release the SPI handler

Table 76. APIs for SPI slave interface

void host_spi_slave_init(void)

Change Slave I/F to SPI protocol. Enable clock to SPI slave device and GPIO Interrupt Set.

void host_i2c_slave_init(void)

Change Slave I/F to I2C protocol. Enable clock to I2C slave device and GPIO Interrupt Set.

17.8.3 How to Run

1. In the e2 studio, import a project for the SPI sample application.

~/SDK/apps/common/examples/Peripheral/SPI/projects/da16200

2. Connect the SPI master pins and SPI slave pins.

• GPIOA[0] (SPI_MISO) - GPIOA[9] (E_SPI_DIO1)

• GPIOA[1] (SPI_MOSI) - GPIOA[8] (E_SPI_DIO0)

• GPIOA[2] (SPI_CSB) - GPIOA[6] (E_SPI_CSB)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 288

• GPIOA[3] (SPI_CLK) - GPIOA[7] (E_SPI_CLK)

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. The SPI loopback communication works as shown in Figure 121.

Figure 121. SPI loopback communication

17.8.4 Sample Code

1. Create an SPI handle and configure the interface.

spi = SPI_CREATE(SPI_UNIT_0);

if(spi == NULL) {

 PRINTF("[%s]failed to create instance\n", __func__);

 return;

}

_sys_clock_read(ioctldata, sizeof(UINT32));

SPI_IOCTL(spi, SPI_SET_CORECLOCK, ioctldata);

/* set SPI speed */

ioctldata[0] = SMC_SPI_SPEED * MHz;

SPI_IOCTL(spi, SPI_SET_SPEED, ioctldata);

/* set SPI polarity */

ioctldata[0] = SMC_SPI_POLARITY;

SPI_IOCTL(spi, SPI_SET_FORMAT, ioctldata);

/* set SPI DMA config */

ioctldata[0] = SPI_DMA_MP0_BST(8)

 | SPI_DMA_MP0_IDLE(1)

 | SPI_DMA_MP0_HSIZE(XHSIZE_DWORD)

 | SPI_DMA_MP0_AI(SPI_ADDR_INCR);

SPI_IOCTL(spi, SPI_SET_DMA_CFG, ioctldata);

SPI_IOCTL(spi, SPI_SET_DMAMODE, NULL);

/* set SPI chip select, io operation type */

ioctldata[0] = SMC_SPI_CS;

ioctldata[1] = SMC_IO_OPERTATION_TYPE;

SPI_IOCTL(spi, SPI_SET_WIRE, (VOID *)ioctldata);

/* set SPI delay index */

ioctldata[0] = SPI_DELAY_INDEX_LOW;

SPI_IOCTL(spi, SPI_SET_DELAY_INDEX, ioctldata);

/* SPI initialization */

status = SPI_INIT(spi);

2. Set pin multiplexing as SPI master and SPI slave.

/* pinmux config for SPI Slave - GPIOA[3:0] */

_da16x_io_pinmux(PIN_AMUX, AMUX_SPIs);

_da16x_io_pinmux(PIN_BMUX, BMUX_SPIs);

/* pinmux config for SPI Host - GPIOA[9:6] */

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 289

_da16x_io_pinmux(PIN_DMUX, DMUX_SPIm);

_da16x_io_pinmux(PIN_EMUX, EMUX_SPIm);

3. Write data.

/* generate host interface protocol header */

_buf[0] = (addr >> 8) & 0xff;

_buf[1] = (addr >> 0) & 0xff;

_buf[2] = (HPC_WRITE_CMD & 0xff)

 | (HPC_COMMON_ADDR_MODE << 5)

 | (HPC_REF_LEN<<4)|((length>>8)&0xf);

_buf[3] = (length)&0xff;

/* copy data to buf */

memcpy(&(_buf[4]), data, length);

/* Bus Lock : CSEL0 */

ioctldata[0] = TRUE;

ioctldata[1] = portMAX_DELAY;

ioctldata[2] = SPI_CSEL_0;

SPI_IOCTL(spi, SPI_SET_LOCK, (VOID *)ioctldata);

status = SPI_WRITE(spi, _buf, (HPC_HEADER_LEN + length));

/* Bus Unlock */

ioctldata[0] = FALSE;

ioctldata[1] = portMAX_DELAY;

ioctldata[2] = SPI_CSEL_0;

SPI_IOCTL(spi, SPI_SET_LOCK, (VOID *)ioctldata);

4. Read data.

_buf[0] = (addr >> 8) & 0xff;

_buf[1] = (addr >> 0) & 0xff;

_buf[2] = HPC_READ_CMD

 | (HPC_COMMON_ADDR_MODE << 5)

 | (HPC_REF_LEN<<4)|((len>>8)&0xf);

_buf[3] = (len)&0xff;

/* Bus Lock : CSEL0 */

ioctldata[0] = TRUE;

ioctldata[1] = portMAX_DELAY;

ioctldata[2] = SPI_CSEL_0;

SPI_IOCTL(spi, SPI_SET_LOCK, (VOID *)ioctldata);

status = SPI_WRITE_READ(spi, _buf, 4, rx_data, len);

/* Bus Unlock */

ioctldata[0] = FALSE;

ioctldata[1] = portMAX_DELAY;

ioctldata[2] = SPI_CSEL_0;

SPI_IOCTL(spi, SPI_SET_LOCK, (VOID *)ioctldata);

17.9 SDIO

The DA16200 can be accessed with the SDIO interface. If the user wants to test it, then another host system is
needed.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 290

17.9.1 Introduction

17.9.1.1 SDIO Master

Secure Digital Input Output (SDIO) is a full/high speed card suitable for memory card and I/O card applications
with low power consumption. The full/high speed card supports SPI, 1-bit SD and 4-bit SD transfer modes at the
full clock range of 0~50 MHz. To be compatible with the serviceable SDIO clock, the internal BUS clock should
be set to a minimum of 50 MHz. The CIS and CSA areas are inside the internal memory, and the SDIO registers
(CCCR and FBR) are programmed by the SD host. For more details, see Ref. [2].

17.9.1.2 SDIO Slave

The GPIO4 and GPIO5 pins are set to SDIO CMD and CLK by default. If SDIO initialization is done and SDIO
communication is enabled, then the SDIO data pin setting is done automatically. In other words, when SDIO
communication is detected, the pin used as the SDIO data among the GPIO pins is automatically activated in the
SDIO use mode. However, the auto setting function is not supported for the F_xx pin used as the flash function.

17.9.2 API

Table 77. APIs for SDIO master interface

Item Description

HANDLE EMMC_CREATE(void);

Parameter None -

Return If it succeeds, return the handle for such device. If it fails, return NULL.

Description Create EMMC handle.

int EMMC_INIT(HANDLE handler)

Parameter handler Device handle

Return If it succeeds, return ERR_NONE. If it fails, return ERR_MMC_INIT.

Description Initialize the SD/eMMC or SDIO card.

int EMMC_CLOSE(HANDLE handler)

Parameter handler Device handle

Return If it succeeds, return ERR_NONE.

int SDIO_ENABLE_FUNC(HANDLE handler, UINT32 func_num)

Parameter handler Device handle

func_num Function number to enable.

Return If it succeeds, return ERR_NONE.

int SDIO_DISABLE_FUNC(HANDLE handler, UINT32 func_num)

Parameter handler Device handle

func_num Function number to disable.

Return If it succeeds, return ERR_NONE.

int SDIO_SET_BLOCK_SIZE(HANDLE handler, UINT32 func_num, UINT32 blk_size)

Parameter handler Device handle

func_num Function number

blk_size Block size

Return If it succeeds, return ERR_NONE.

int SDIO_READ_BYTE(HANDLE handler, UINT32 func_num, UINT32 addr, UINT8 *data)

Parameter handler Device handle

func_num Function number

https://en.wikipedia.org/wiki/Secure_Digital#SDIO_cards

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 291

Item Description

addr Address in the function

data Data pointer

Return If it succeeds, return ERR_NONE. And byte data is stored in data.

int SDIO_WRITE_BYTE(HANDLE handler, UINT32 func_num, UINT32 addr, UINT8 *data)

Parameter handler Device handle

func_num Function number

addr Address in the function

data Data pointer

Return If it succeeds, return ERR_NONE.

int SDIO_READ_BURST(HANDLE handler, UINT32 func_num, UINT32 addr, UINT32 incr_addr, UINT8 *data,

UINT32 count, UINT32 blksz)

Parameter handler Device handle

func_num Function number

addr Function address

Incr_addr Increase address option (1: address increase, 0: address fix)

data Data pointer

count Count of blocks

blksz Block size

Return If it succeeds, return ERR_NONE.

If it fails, Error Code return, see also EMMC.h.

int SDIO_WRITE_BURST(HANDLE handler, UINT32 func_num, UINT32 addr, UINT32 incr_addr, UINT8 *data,

UINT32 count, UINT32 blksz)

Parameter handler Device handle

func_num Function number

addr Function address

Incr_addr Increase address option (1: address increase, 0: address fix)

data Data pointer

count Count of blocks

blksz Block size

Return If it succeeds, return ERR_NONE.

Table 78. SDIO slave pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA4 34 F4 I/O
SDIO_CMD

F_CSN 18 J5 I/O

GPIOA5 33 D2 I
SDIO_CLK

F_CLK 19 K4 I

GPIOA9 29 H2 I/O
SDIO_D0

F_IO0 14 K8 I/O

GPIOA8 30 G3 I/O
SDIO_D1

F_IO1 15 L7 I/O

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 292

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA7 31 E1 I/O
SDIO_D2

F_IO2 16 J7 I/O

GPIOA6 32 E3 I/O
SDIO_D3

F_IO3 17 K6 I/O

For more details, see Ref. [2].

17.9.3 How to Run

1. In the e2 studio, import a project for the SDIO sample application.

~/SDK/apps/common/examples/Peripheral/SDIO/projects/da16200

2. The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/SDIO/src/sdio_sample.c

• GPIOA[9:4] needs to connect to the HOST system

• GPIOA[9] - SDIO_D0, GPIOA[8] - SDIO_D1

• GPIOA[7] - SDIO_D2, GPIOA[6] - SDIO_D3

• GPIOA[5] - SDIO_CLK, GPIOA[4] - SDIO_CMD

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. The sample runs as soon as the boot up is completed.

[/DA16200] # sdio_slave start

 Now the sdio host can access the DA16200

[/DA16200] #

Now the DA16200 is ready to receive an SDIO command.

17.9.4 Sample Code

In the DA16200, the loopback test between SD host and sdio_slave is not supported. Instead, in the sample
code provided, SDIO is just waiting for a request from the host after initialization.

/*

 * SDIO Slave

 */

// GPIO[9] - SDIO_D0, GPIO[8] - SDIO_D1

_da16x_io_pinmux(PIN_EMUX, EMUX_SDs);

// GPIO[5] - SDIO_CLK, GPIO[4] - SDIO_CMD

_da16x_io_pinmux(PIN_CMUX, CMUX_SDs);

// GPIO[7] - SDIO_D2, GPIO[6] - SDIO_D3

_da16x_io_pinmux(PIN_DMUX, DMUX_SDs);

// clock enable sdio_slave

DA16X_CLOCK_SCGATE->Off_SSI_M3X1 = 0;

DA16X_CLOCK_SCGATE->Off_SSI_SDIO = 0;

SDIO_SLAVE_INIT();

/* now the sdio host can access the DA16200 */

Printf("now the sdio host can access the DA16200\r\n");

17.10 SD/eMMC

This section shows how to use the SD/eMMC interface.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 293

17.10.1 Introduction

The SD/eMMC host interface of the DA16200/DA16600 provides access to SD or eMMC cards. The SD/eMMC
host interface supports a 4-bit data bus with a maximum clock rate of 48 MHz giving a maximum data rate of 24
MB/s (192 Mbps). The SD/eMMC pin mux condition is defined in Table 79.

Table 79. SD/eMMC master pin configuration

Pin name
Pin number

I/O Function name
QFN fcCSP

GPIOA4 34 F4 I/O SD/eMMC_CMD

GPIOA5 33 D2 O SD/eMMC_CLK

GPIOA9 29 H2 I/O SD/eMMC_D0

GPIOA8 30 G3 I/O SD/eMMC_D1

GPIOA7 31 E1 I/O SD/eMMC_D2

GPIOA6 32 E3 I/O SD/eMMC_D3

GPIOA10 28 F2 I
SD/eMMC_WRP

GPIOA1 38 C3 I

For more details, see Ref. [2].

17.10.2 API

Table 80. APIs for SD/eMMC interface

Item Description

HANDLE EMMC_CREATE(void)

Parameter None

Return If it succeeds, return the handle for such device. If it fails, return NULL.

Description Function create handle. If memory allocation fails, return NULL.

int EMMC_INIT(HANDLE handler)

Parameter handler Device handle

Return If it succeeds, return ERR_NONE. If it fails, return ERR_MMC_INIT.

Description Initialize the SD/eMMC or SDIO card. If the function returns ERR_NONE, the card

information is stored in the handle.

int EMMC_READ(HANDLE handler, UINT32 dev_addr, VOID *p_data, UINT32 block_count)

Parameter handler Device handle

dev_addr Address

p_data Data pointer

block_count Block counter for read

Return If it succeeds, return ERR_NONE.

Description EMMC read command

int EMMC_WRITE(HANDLE handler, UINT32 dev_addr, VOID *p_data, UINT32 block_count)

Parameter handler Device handle

dev_addr Address

p_data Data pointer

block_count Block counter for write

Return If it succeeds, return ERR_NONE.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 294

Item Description

Description EMMC write command

void EMMC_SEND_CMD(HANDLE handler, UINT32 cmd, UINT32 cmd_arg)

Parameter handler Device handle

cmd SDIO command without response. Defined in <SDIO.h>.

cmd_arg SDIO command argument

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description Send command to SDIO

void EMMC_SEND_CMD_RES(HANDLE handler, UINT32 cmd, UINT32 cmd_arg, UINT32 *rsp)

Parameter handler Device handle

cmd SDIO command with response

cmd_arg SDIO command argument

rsp Response pointer

Return None

Description After this function call, the response is stored in rsp.

int EMMC_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler Device handle

cmd The command that is defined in EMMC.h.

data Data pointer

Return If it succeeds, return ERR_NONE.

Description EMMC IOCTL command

int EMMC_CLOSE(HANDLE handler)

Parameter handler Device handle

Return If it succeeds, return ERR_NONE.

Description EMMC driver close command

17.10.3 How to Run

1. In the e2 studio, import a project for the SD_EMMC sample application.

~/SDK/apps/common/examples/Peripheral/SD_EMMC/projects/da16200

2. The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/SD_EMMC/src/sd_emmc_sample.c

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. The sample runs as soon as the boot is complete.

[/DA16200] # emmc sample start

fail / total 0 / 100

[/DA16200] #

5. If the SD card is not ready, then the message "emmc_init fail" is returned.

6. Connect GPIOA[9:4] to the SD card socket as shown below.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 295

Figure 122. SDIO and SD/eMMC connector

▪ GPIOA[9] - mSDeMMCIO_D0, GPIOA[8] - mSDeMMCIO_D1

▪ GPIOA[7] - mSDeMMCIO_D2, GPIOA[6] - mSDeMMCIO_D3

▪ GPIOA[5] - mSDeMMCIO_CLK, GPIOA[4] - mSDeMMCIO_CMD

▪ GPIOA[10] is not mandatory (for write protect function).

17.10.4 Sample Code

This sample code shows how the eMMC host writes random data to a slave memory card and reads back the
written data to check if that data matches.

Function Emmc_verify() compares the written data with the data read from the SD memory card. The sector size
of the SD memory card is 512 bytes. The "addr" variable value (210) in the code is just an example sector
number in the SD memory card.

void emmc_init() {

...

 DA16X_CLOCK_SCGATE->Off_SysC_HIF = 0;

 DA16X_SYSCLOCK->CLK_DIV_EMMC = EMMC_CLK_DIV_VAL;

 DA16X_SYSCLOCK->CLK_EN_SDeMMC = 0x01; // clock enable

...

▪ Set pin multiplexing

/*

 * SDIO Master

 */

// GPIO[9] - mSDeMMCIO_D0, GPIO[8] - mSDeMMCIO_D1

_da16x_io_pinmux(PIN_EMUX, EMUX_SDm);

// GPIO[5] - mSDeMMCIO_CLK, GPIO[4] - mSDeMMCIO_CMD

_da16x_io_pinmux(PIN_CMUX, CMUX_SDm);

// GPIO[7] - mSDeMMCIO_D2, GPIO[6] - mSDeMMCIO_D3

_da16x_io_pinmux(PIN_DMUX, DMUX_SDm);

▪ Create and initialize an SD/eMMC handle

NOTE

The CMD and DATA pins of the SD card connections are open-drain at initialization. When the SD card initialization is not

working normally, it needs to use smaller pull-up resisters for CMD and DATA pins or a shorter length jumper wire of the

SD card connections.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 296

if (_emmc == NULL) {

 _emmc = EMMC_CREATE();

}

err = EMMC_INIT(_emmc);

17.11 User SFLASH Read/Write Example

17.11.1 How to Run

1. In the e2 studio, import a project for the SD_EMMC sample application.

~/SDK/apps/common/examples/Peripheral/Sflash_API/projects/da16200

2. The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/Sflash_API/src/sflash_sample.c

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. After booting, the sample starts automatically.

Figure 123. SFlash example sample test

17.11.2 User Task

The user task of the sflash api sample application is defined as below and executed by the system.
SAMPLE_SFLASH should be a unique name to create a task. This test is not related to network initialization and
DPM mode.

~/SDK/apps/common/examples/Peripheral/Sflash_API/src/sample_apps.c

static const app_task_info_t sample_apps_table[] = {

 SAMPLE_SFLASH, user_sflash_test, 1024, USER_PRI_APP(1), FALSE, FALSE, UNDEF_PORT,

 RUN_ALL_MODE },

};

17.11.3 Sample Code

17.11.3.1 Application Initialization

The user_sflash_test function is run after the basic initialization is complete.

void SFLASH_API_sample(void *param)

{

 /* DO SOMETHING */

 PRINTF("SFLASH_API_SAMPLE\n");

 test_sflash_write();

 vTaskDelay(10); // Dealy 100 msec

 test_sflash_read();

 vTaskDelete(NULL);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 297

 return ;

}

17.11.3.2 SFlash Read and Write

// user sflash APIs

extern UINT user_sflash_read(UINT sflash_addr, VOID *rd_buf, UINT rd_size);

sflash_addr: see above user sflash area

rd_buf: buffer to which data is copied

rd_size: data size

extern UINT user_sflash_write(UINT sflash_addr, UCHAR *wr_buf, UINT wr_size);

sflash_addr: see above user sflash area

rd_buf: buffer from which data is copied to sflash_addr

rd_size: data size

...

void test_sflash_write(void)

{

 UCHAR *wr_buf = NULL;

 UINT wr_addr;

#define SFLASH_WR_TEST_ADDR SFLASH_USER_AREA_START

#define TEST_WR_SIZE SF_SECTOR_SZ

 wr_buf = (UCHAR *)malloc(TEST_WR_SIZE);

 if (wr_buf == NULL) {

 PRINTF("[%s] malloc fail ...\n", __func__);

 return;

 }

 memset(wr_buf, 0, TEST_WR_SIZE);

 for (int i = 0; i < TEST_WR_SIZE; i++) {

 wr_buf[i] = 0x41; // A

 }

 wr_addr = SFLASH_WR_TEST_ADDR;

 PRINTF("=== SFLASH Write Data ======================\n");

 user_sflash_write(wr_addr, wr_buf, TEST_WR_SIZE);

}

void test_sflash_read(void)

{

 UCHAR *rd_buf = NULL;

 UINT rd_addr;

 UINT status;

#define SFLASH_RD_TEST_ADDR SFLASH_USER_AREA_START

#define TEST_RD_SIZE (1 * 1024)

 rd_buf = (UCHAR *)malloc(TEST_RD_SIZE);

 if (rd_buf == NULL) {

 PRINTF("[%s] malloc fail ...\n", __func__);

 return;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 298

 }

 memset(rd_buf, 0, TEST_RD_SIZE);

 rd_addr = SFLASH_RD_TEST_ADDR;

 status = user_sflash_read(rd_addr, (VOID *)rd_buf, TEST_RD_SIZE);

 if (status == TRUE) {

 hex_dump(rd_buf, 128);

 }

 free(rd_buf);

}

NOTE

user_sflash_read/write is a blocking function.

Take special care when running this code under DPM mode enabled (sleep mode 2 or sleep mode 3 applications): when

invoking user_sflash_write(), make sure to get the result before the DPM sleeping API is invoked.

17.12 OTP

17.12.1 Introduction

The DA16200/DA16600 includes a one-time electrically field programmable non-volatile CMOS memory. This
memory is to protect and manage major information essential for mass production and management of products,
such as booting information, MAC address, serial number, and others.

OTP is also used for storing secret information which is used for the advanced security functions such as secure
booting, secure debugging, and secure asset storage. But this secret information cannot be accessed in a
normal way of CPU read or write access so that it is protected from external access.

Table 81. OTP map

Offset Field Size (Bytes)

0x000 Renesas Reserved 1024

0x100 MAC Address #0 Low 4

0x101 MAC Address #0 High 4

0x102 MAC Address #1 Low 4

0x103 MAC Address #1 High 4

0x104 MAC Address #2 Low 4

0x105 MAC Address #2 High 4

0x106 MAC Address #3 Low 4

0x107 MAC Address #3 High 4

0x10A XTAL Offset #0 4

0x10B XTAL Offset #1 4

0x10C to 0x1FE User Area 972

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 299

17.12.2 API

Table 82. OTP API list

Item Description

void otp_mem_create(void)

Parameter None

Return None

Description Initialize OTP hardware.

Before calling this function, it needs otp_clock_enable.

{

DA16200_SYSCLOCK ->PLL_CLK_EN_4_PHY = 1;

DA16200_SYSCLOCK ->CLK_EN_PHYBUS = 1;

extern void DA16X_SecureBoot_OTPLock(unsigned int mode);

DA16X_SecureBoot_OTPLock(1); // unlock

#define CLK_GATING_OTP 0x50006048

MEM_BYTE_WRITE(CLK_GATING_OTP, 0x00);

otp_mem_create();

}

void otp_mem_close(void)

Parameter None

Return None

Description Close the OTP hardware.

int otp_mem_read(UINT32 offset, UINT32 *data)

Parameter
offset OTP memory offset (0x00 ~ 0x1FE)

data [out] data pointer of buffer

Return OTP_OK if it succeeds.

Description Each offset stores 32-bit data.

Offset 0x00 to 0x2c used for security purposes. So, it may not be accessible.

See Table 81.

int otp_mem_write (UINT32 offset, UINT32 data)

Parameter
offset OTP memory offset (0x00 ~ 0x1FE)

data Data to write

Return OTP_OK if it succeeds.

Description Offset 0x00 to 0x2c used for security purposes. Do not write any data within.

See Table 81.

int otp_mem_lock_read (UINT32 offset, UINT32 *data)

Parameter
offset Lock status offset. Always (0xFFF).

data Data pointer of lock status

Return OTP_OK if it succeeds.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 300

Item Description

Description The OTP memory can be locked.

Each lock bit can lock range ~ 0x40.

For example:

lock status value 0x00000002, it means that offset 0x40~0x7F OTP memory locked.

lock bit 0 lock offset 0 ~ 0x3F

lock bit 1 lock offset 0x40 ~ 0x7F

lock bit 2 lock offset 0x80 ~ 0xBF

lock bit 3 lock offset 0xC0 ~ 0xFF

lock bit 4 lock offset 0x100 ~ 0x13F

lock bit 5 lock offset 0x140 ~ 0x17F

lock bit 6 lock offset 0x180 ~ 0x1BF

lock bit 7 lock offset 0x1C0 ~ 0x1FE

int otp_mem_lock_write (UINT32 offset, UINT32 *data)

Parameter
offset Lock status offset. Always (0xFFF).

data Lock status value.

Return OTP_OK if it succeeds.

Description Refer otp_mem_lock_read().

17.13 Bluetooth LE Coexistence

The Bluetooth Low Energy (LE) coexistence feature can be enabled and disabled through a configuration
register. The activation scenarios based on the status of each pin are as follows:

▪ BT_sig0 (oWlanAct)

• When asserted, the external Bluetooth/Bluetooth LE device is expected to stop occupying RF.

• This signal can be configured as always high by software to block the external Bluetooth/Bluetooth LE
device from occupying RF. See Section 17.13.4 for details

▪ BT_sig1 (iBtAct)

• When asserted, the DA16200/DA16600 stops occupying RF

▪ BT_sig2 (iBtPri)

• This is optional.

• When iBtPri is active, the DA16200/DA16600 stops occupying RF when iBtAct is active even if a Wi-Fi
transmission is in progress.

When both DA16200/DA16600 and Bluetooth/Bluetooth LE try to transmit a packet at the same time, there is a
configuration in the DA16200/DA16600 that determines which has the priority over the other.

When the priority of the DA16200/DA16600 is set to be higher than Bluetooth/Bluetooth LE, it ignores iBtAct
signal and transmits its packet anyway. When the priority of the DA16200/DA16600 is set to be lower than
Bluetooth/Bluetooth LE, it delays transmission of its packet until Bluetooth/Bluetooth LE de-asserts the iBtAct
signal.

Priority can be set through an API which is described in Section 17.13.4.

17.13.1 Pin Configuration

Table 83 shows the 3-pin configuration of Bluetooth LE coexistence interface. If the iBTPri pin is not controlled, it
must be configured as pull-up or pull-down and not high-z to avoid any leakage.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 301

Table 83. 3-Pin Bluetooth LE coexistence pin configuration

Signals Description I/O
DA16200
GPIO No.

Pin number

DA16200 DA16200MOD
DA16600MOD

DA16200 DA14531

oWlanAct Wi-Fi active signal O GPIOA8 30 25 35 48 (P0_5)

iBtAct
Bluetooth active

signal
I GPIOA9 29 24 34 3 (P0_6)

iBtPri Bluetooth priority I GPIOA10 28 23 33 47 (P0_7)

When GPIOA8 and GPIOA9 are assigned as either an SDIO or SPI interface, only the GPIOA10 pin should be
used for Bluetooth LE Coexistence. In this case, the GPIOA10 pin must be connected to the iBtAct pin of the
Bluetooth/Bluetooth LE chipset to coordinate the use of the RF signal between the DA16200/DA16600 and
Bluetooth/Bluetooth LE chipsets Table 84 shows 1-pin configuration of Bluetooth LE coexistence.

Table 84. 1-Pin Bluetooth LE coexistence pin configuration

Signals Description I/O
DA16200

GPIO No.

Pin number

DA16200 DA16200MOD
DA16600MOD

DA16200 DA14531

iBtAct
Bluetooth active

signal
I GPIOA10 28 23 33 3 (P0_6)

17.13.2 Pin Multiplex

Pin multiplexing for the Bluetooth LE coexistence feature can be configured by modifying the
initialize_bt_coex(void) function in the "rf_meas_api.c" file as follows:

// pin mux setup for Bluetooth LE coexistence

#ifndef __SUPPORT_BTCOEX_1PIN__

 _da16x_io_pinmux(PIN_EMUX, EMUX_BT);

#endif

 _da16x_io_pinmux(PIN_FMUX, FMUX_GPIOBT);

17.13.3 SDK Feature Definition

The Bluetooth LE coexistence feature can be enabled in the DA16200/DA16600 SDK in the
config_generic_sdk.h file as follows:

▪ 3-Pin Bluetooth LE Coexistence

#define __SUPPORT_BTCOEX__ // BT Coexistences

▪ 1-Pin Bluetooth LE Coexistence

 #define __SUPPORT_BTCOEX__ // BT Coexistences

 #define __SUPPORT_BTCOEX_1PIN__ // BT Coexistences with 1 pin

NOTE

When 1-pin Bluetooth LE Coexistence is defined in "config_generic_sdk.h," the GPIOA10 pin should be connected to the

iBtAct pin of the Bluetooth/Bluetooth LE chipset.

17.13.4 API

Table 85. APIs for Bluetooth LE coexistence

Item Description

void rf_meas_btcoex(uint8_t enable, uint8_t priority, uint8_t polarity);

enable 0 or 1 (1: enable, 0: disable)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 302

Item Description

priority Priority: 0, 1, 2, 3

0: BT > WLAN (BT priority is higher than WLAN)

1: BT = WLAN (BT and WLAN priorities are equal)

2: BT < WLAN (WLAN priority is higher than BT)

3: BT < WLAN, oWlanAct is forced to be always high

polarity Polarity: 0 and 1 for oWlanAct, iBtAct, and iBtPri PIN

0: Normal (Active-High)

1: Inverted (Active-low)

Return None

Example code for the Bluetooth LE coexistence API when using 3 pins:

// The 1st Element means BT coexistence is enabled

rf_meas_btcoex(1, 0, 0); // 0: Bluetooth® win in conflict

rf_meas_btcoex(1, 2, 0); // 2: WLAN win in conflict

rf_meas_btcoex(1, 3, 0); // 3: Set oWlanAct pin high always, available in SDK v3.2.6.0 or

later

Example code for the Bluetooth LE coexistence API when using 1 pin:

rf_meas_btcoex(1, 0, 0); // 1: BT coexistence is enabled, 0: Bluetooth® win in conflict

To change the default setting, after starting the system, rf_meas_btcoex(1, 0, 0) is called in user_main() to

set the default configuration of the Bluetooth LE coexistence interface.

The rf_meas_btcoex() function can be called at any time after system startup to reconfigure the priorities

without requiring a reboot.

17.14 RTC Timer in DPM

This sample code describes how to use the RTC timer for waking up from Sleep mode 2 or Sleep mode 3 and,
see Ref. [2] for further details.

17.14.1 How to Run

1. In the e2 studio, import a project for the RTC timer sample application.

~/SDK/apps/common/examples/Peripheral/RTC_Timer_DPM/projects/da16200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console terminal of DA16200 EVB to set up the Wi-Fi station interface and enable DPM mode.

4. After rebooting, the RTC timer sample application starts automatically.

The user can select Sleep modes in the sample code.

/* Defines for sample */

#undef SAMPLE_FOR_DPM_SLEEP_2 // Sleep mode 2

#define SAMPLE_FOR_DPM_SLEEP_3 // Sleep mode 3

17.14.2 Timer Creation: Sleep Mode 2

Sleep mode 2 powers off all components of DA16200 except RTC. However, for test purposes, retention
memory can be powered on. External wake-up or RTC timer can wake up a DUT (Device Under Test) in Sleep
mode 2. If the RTC timer is not set, the DUT in Sleep mode 2 is not woken up by the RTC timer. When the DUT
is woken up by wake-up sources, it works using the data of retention memory.

To go to Sleep mode 2, run API dpm_sleep_start_mode_2().

Void rtc_timer_sample(void * param)

{

 unsigned long long wakeup_time;

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 303

 /* Just work in case of RTC timer wakeup */

 if (dpm_mode_is_wakeup() == DPM_WAKEUP

 && dpm_get_wakeup_source() != WAKEUP_COUNTER_WITH_RETENTION) {

 dpm_app_sleep_ready_set(SAMPLE_RTC_TIMER);

 return;

 }

 /* TRUE : Maintain RTM area for DPM operation */

 wakeup_time = MICROSEC_FOR_ONE_SEC * RTC_TIMER_WAKEUP_ONCE;

 dpm_sleep_start_mode_2(wakeup_time, TRUE);

}

17.14.3 Timer Creation: Sleep Mode 3

Sleep mode 3 powers off all components except RTC, retention memory, and pTIM (should be in running state
to be connected to Wi-Fi). Sleep mode 3 is always connected to Wi-Fi, but Sleep mode 2 needs to connect to
the Wi-Fi network first and transmits or receives data. For more detailed information on Sleep mode 3, see
Ref. [3].

This sample code shows how to create the one-shot RTC timer and a periodic RTC timer.

void rtc_timer_sample(void * param)

{

 ULONG status;

 if (dpm_mode_is_wakeup() == NORMAL_BOOT) {

 /*

 * Create a timer only once during normal boot.

 */

 dpm_app_sleep_ready_clear(SAMPLE_RTC_TIMER);

 /* One-Shot timer */

 status = dpm_timer_create(SAMPLE_RTC_TIMER,

 "timer1",

 rtc_timer_dpm_once_cb,

 RTC_TIMER_WAKEUP_ONCE,

 0);

 switch ((int)status) {

 case DPM_MODE_NOT_ENABLED :

 case DPM_TIMER_SEC_OVERFLOW :

 case DPM_TIMER_ALREADY_EXIST:

 case DPM_TIMER_NAME_ERROR :

 case DPM_UNSUPPORTED_RTM :

 case DPM_TIMER_REGISTER_FAIL:

 case DPM_TIMER_MAX_ERR :

 PRINTF(">>> Fail to create %s timer (err=%d)\n",

 SAMPLE_CUR_TIME_DPM, (int)status);

 // Delay to display above message on console ...

 vTaskDelay(2);

 break;

 }

 /* Periodic timer */

 status = dpm_timer_create(SAMPLE_RTC_TIMER,

 "timer2",

 rtc_timer_dpm_periodic_cb,

 RTC_TIMER_WAKEUP_PERIOD,

 RTC_TIMER_WAKEUP_PERIOD);

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 304

 switch ((int)status) {

 case DPM_MODE_NOT_ENABLED :

 case DPM_TIMER_SEC_OVERFLOW :

 case DPM_TIMER_ALREADY_EXIST:

 case DPM_TIMER_NAME_ERROR :

 case DPM_UNSUPPORTED_RTM :

 case DPM_TIMER_REGISTER_FAIL:

 case DPM_TIMER_MAX_ERR :

 PRINTF(">> Fail to create %s timer (err=%d)\n",

 SAMPLE_CUR_TIME_DPM, (int)status);

 // Delay to display above message on console ...

 vTaskDelay(2);

 break;

 }

 dpm_app_sleep_ready_set(SAMPLE_RTC_TIMER);

 } else {

 /* Notice initialize done to DPM module */

 dpm_app_wakeup_done(SAMPLE_RTC_TIMER);

 }

 while (1) {

 /* Nothing to do... */

 vTaskDelay(100);

 }

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 305

18. DA16600 Example Applications

The DA16600 module is comprised of the DA16200 (Wi-Fi) and the DA14531 (Bluetooth LE) SoC. The two chips
exchange data with each other through the GTL interface. This document describes the test steps and code
walkthrough of four example applications with the DA16600.

The DA16600 SDK has four example applications as listed below and all of them support Wi-Fi provisioning and
OTA download.

▪ Gas leak detection sensor

▪ TCP client in DPM

▪ DA14531 peripheral driver

▪ IoT sensor gateway

The applications are based on the two basic external host examples included in the DA14531 SDK.

▪ [DA14531_SDK_ROOT]\projects\host_apps\windows\proximity\monitor

▪ [DA14531_SDK_ROOT]\projects\host_apps\windows\proximity\reporter

A DA16600 user application (that may desire to use both Wi-Fi and Bluetooth LE functions) needs the
development of functions that use both Wi-Fi APIs and Bluetooth LE APIs.

To develop a function that talks to a Bluetooth LE peer (for example, can talk to the Provisioning Mobile
Application), see Ref. [9] for details.

To develop a local function such as driver function in the DA14531 (for example, to handle a custom GTL
message that should be handled in the DA14531), the user also needs to understand the local APIs of the
DA14531. See Ref. [10] or the API documentation included in the DA14531 SDK.

For the hardware configuration of the DA16600 EVB, see Ref. [3].

18.1 Source Structure and Common APIs

The DA16600 example applications working with Bluetooth LE (DA14531) are added into the DA16200 SDK.
The Wi-Fi (DA16200) and Bluetooth LE (DA14531) chips are connected through a four-wire UART (TX, RX,
RTS, and CTS, the baud rate is 115200 by default) and communicating with each other over Renesas
Electronics’ proprietary GTL interface. In the GTL architecture, a Bluetooth LE application is running on the
external host (DA16200).

As the GTL architecture and the DA16200 based SDK are used in the DA16600, the application developer
should understand and know how to use the user APIs for both host platforms – the DA16200 SDK and
Bluetooth LE platform (DA14531).

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 306

18.1.1 DA16600 Bluetooth Source Structure

Figure 124 shows the folder structure for Wi-Fi and Bluetooth LE applications.

Figure 124. DA16600 Bluetooth source structure

▪ core/ble_interface/gtl folder contains Bluetooth LE image load, boot, and reset

▪ customer_app/src/ble_svc folder contains four example applications: The examples support the Wi-Fi
provisioning application – GATT Server implementation to communicate with Bluetooth LE peer applications
(Wi-Fi Provisioning Mobile APP) and OTA download as default

• sensor_gw: IoT Sensor Gateway

GAP Central example application based on a Bluetooth LE example; this is a GATT Client application
used in this application.

• wifi_svc: Gas leak detection sensor application

GAP Peripheral example application based on a Bluetooth LE example, works with a gas leak sensor
(virtual) that is locally connected to the DA14531 chip. When a gas leak event occurs, this application
posts a message to a network server in TCP/IP network.

• wifi_svc_tcp_client_dpm: TCP Client DPM application (default enabled)

GAP Peripheral example application based on a Bluetooth LE example, a pure TCP/IP network
application that communicates with a TCP Server in the connected network.

• wifi_svc_peri: DA14531 Peripheral driver sample application

GAP Peripheral example application based on a Bluetooth LE example, this configures and runs some
peripheral devices locally attached to DA14531.

18.1.2 Application APIs and Console Commands

Table 86 and Table 87 show the list of common APIs used in the example applications.

Table 86. Application functions

Item Description

system_start Entry point for customer main.

combo_init 4-wire UART initialization, the DA14531 firmware load.

wlaninit WLAN initialization

gtl_main Main GTL message handler

gtl_host_ifc_mon GTL/UART1 RX monitoring task

ble_app_usr_cmd_hdler Bluetooth LE Application User Command handler

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 307

Item Description

BleReceiveMsg Receive a message from the DA14531 through the GTL.

BleSendMsg Send a message to the DA14531 through the GTL.

start_user_apps Start system application, Entry point of user's applications defined in

user_apps_table[].

initialize_bt_coex Initialize the DA16600 Wi-Fi and Bluetooth LE Combo module.

Table 87. Major console commands

Root commands Description

help CMD-list display and help command.

top Go to the ROOT directory.

up Go to the upper directory.

dpm DPM enable/disable

factory Factory reset, if type ‘y’ after this command, factory reset is complete.

getwlanmac Show MAC_addr

ping Ping help

reboot Device reboot command

ver Version display

Sub-commands

ble Bluetooth LE application commands

net Network commands

nvram NVRAM commands

sys System commands

user User commands

18.2 Environment Setup

The DA16600 module consists of two SoC chips – DA16200 and DA14531. The firmware images of the two
chips are stored in the SPI flash memory of the DA16600 module. The flash memory is only accessible by
DA16200 and not accessible by DA14531 directly. That is, the DA16200 reads and transfers it to DA14531.

The list of firmware images required to run each SoC chip is as follows:

DA16200: Wi-Fi chip

▪ Two image files:

• FBOOT image: secondary bootloader

• FRTOS image: main operation software which user applications are built

▪ Code storage memory

• SFlash of DA16200

DA14531: Bluetooth LE chip

▪ Single image file:

• Main image: main operation software which user applications are built

▪ Code storage memory

• SFlash of DA16200 or DA14531 OTP memory (32 kB allocated for OTP image)

○ OTP memory can be used to burn a default image but since OTP can only be written once, the firmware
cannot be updated. If an OTA firmware update is required, then the SFlash of the DA16200 should be
used to store the DA14531 firmware.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 308

18.2.1 SFlash Memory Map

The following code shows the DA16200 source code which defines the address where the Bluetooth LE
firmware is stored in SFlash.

.\core\bsp\driver\include\DA16200\da16200_map.h

...

/*

 * 0x003A_D000 BLE Area 0x10000 ~ 0x15000 (64 KB MIN ~ 84 KB MAX)

 * Bluetooth Firmware Size Max 0x10000 ~ 0x14000 (64 KB MIN ~ 80 KB MAX)

 * BLE Security DB 0x00000 ~ 0x01000 (00 KB MIN ~ 04 KB MAX)

…

*/

…

#define SFLASH_14531_BLE_AREA_START

 (SFLASH_NVRAM_BACKUP + SFLASH_NVRAM_BACKUP - SFLASH_NVRAM_ADDR) // 0x003AD000

/* DA14531 Bluetooth LE Firmware start */

#define SFLASH_BLE_FW_BASE (SFLASH_14531_BLE_AREA_START)

Two image banks are defined in the SFlash memory map for storing firmware, one for the DA16200 image and
one for the DA14531 image.

The following sections describe how to build the firmware for the DA16200 and the DA14531 based on the
memory map above.

18.2.2 Build the DA16600 SDK

To build the FreeRTOS based version of the DA16600 SDK, install the e2 studio. See Ref. [3] for details on how
to install and set up the development environment.

This section describes four example applications and provides instructions on how to configure and build the
SDK. Each application supports provisioning of the Wi-Fi interface through the Bluetooth LE device and OTA
firmware download through the Wi-Fi interface. Before building one of the following four applications, the key
features for the selected application should be configured in the following main header file:

.\apps\da16600\get_started\include\apps\user_custom_config.h

18.2.2.1 Gas Leak Detection Sensor Example Feature

This application supports the example described in Section 18.5.

▪ Change the features as follows.

#define __BLE_PERI_WIFI_SVC__

#undef __BLE_PERI_WIFI_SVC_TCP_DPM__

#undef __BLE_PERI_WIFI_SVC_PERIPHERAL__

#undef __BLE_CENT_SENSOR_GW__

18.2.2.1.1 How to Add Security Feature

In addition to Gas Leak Detection Sensor Example Feature, if security needs to be enabled, then enable it in
ble_combo_features.h(.\apps\da16600\get_started\include\apps\) as follows:

▪ #define __WIFI_SVC_SECURITY__

NOTE

There are two pairing modes in Bluetooth pairing mechanism and they depend on the test mobile phone's Bluetooth

authentication capability configuration:

Legacy Pairing: the mobile application may show an input box and ask a user to enter a passkey that can be found on

the display of the DA16600 hardware, and then a user needs to enter the exact passkey on the test smartphone to

successfully connect to the DA16600.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 309

NOTE

Secure Connection Pairing (SC Pairing): the mobile application may show a PIN code on the test mobile and ask a user

to compare the PIN code with the one printed on the display of the DA16600 hardware. If the PIN code matches, click the

OK button to connect the DA16600 to test the mobile application.

The DA16600 example currently can save bond information for up to ten Bluetooth LE peers.

When the bond information is stored in the test mobile phone, the test mobile phone's Bluetooth LE peer application can

be connected to the DA16600 without the need to repeat the pairing process. If either party loses the pairing credentials,

the pairing process starts again when trying to reconnect.

18.2.2.2 TCP Client in DPM Example Feature

This application supports the examples described in Section 18.6.

▪ Change the features as follows:

#undef __BLE_PERI_WIFI_SVC__

#define __BLE_PERI_WIFI_SVC_TCP_DPM__

#undef __BLE_PERI_WIFI_SVC_PERIPHERAL__

#undef __BLE_CENT_SENSOR_GW__

18.2.2.3 Peripherals in DA14531 Driver Example Feature

This application supports the examples described in Section 18.7.

▪ Change the features as follows:

#undef __BLE_PERI_WIFI_SVC__

#undef __BLE_PERI_WIFI_SVC_TCP_DPM__

#define __BLE_PERI_WIFI_SVC_PERIPHERAL__

#undef __BLE_CENT_SENSOR_GW__

18.2.2.4 IoT Sensor Gateway Example Feature

This application supports the examples described in Section 18.8.

▪ Change the features as follows:

#undef __BLE_PERI_WIFI_SVC__

#undef __BLE_PERI_WIFI_SVC_TCP_DPM__

#undef __BLE_PERI_WIFI_SVC_PERIPHERAL__

#define __BLE_CENT_SENSOR_GW__

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 310

18.2.2.5 Build SDK in e2 studio IDE

Figure 125. Project view

To build the SDK based on FreeRTOS, right-click the da16600 folder in the project explorer panel, and then
select Build project in the list. After the build is complete, the following two DA16200 images can be found in
the [DA16600_SDK_ROOT]\apps\da16600\get_started\projects\da16600\img\ folder:

▪ DA16600_FRTOS-*.img

▪ DA16600_FBOOT-*.img

18.2.3 Build DA14531 SDK

The DA14531 software (Bluetooth LE Software) used in the DA16600 SDK is based on the DA14531 SDK
version 6.0.24. To build the DA14531 software, it needs a DA14531 SDK 6.0.24 that is specifically adapted for
DA16600. It is available in [DA16600_SDK_ROOT]\utility\combo\da14531_sdk_v_xxx.zip. The DA14531 SDK

project is determined by which DA16600 example application is required.

18.2.3.1 DA14531 Peripheral Role Project

The peripheral role project (used for 18.2.2.1, 18.2.2.2, and 18.2.2.3) is located in

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex.

18.2.3.2 DA14531 Central Role Project

The central role project (used for 18.2.2.4) is located in

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_monitor_aux_ext_coex.

18.2.3.3 Build the DA14531 projects with Keil

18.2.3.3.1 Install Keil

For information on the Keil installation, see Ref. [8].

NOTE

The Keil IDE download URL is https://www.keil.com/download/product/.

https://www.keil.com/download/product/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 311

18.2.3.3.2 Build Project

To build a project in Keil, go to Project > Open Project, and then select the .uvprojx file.

For peripheral role project example, open
[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\Keil_5\prox_

reporter_ext.uvprojx.

Or for central role project example, open
[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_monitor_aux_ext_coex\Keil_5\prox_moni

tor_ext.uvprojx.

On the project window, do the following:

1. Go to Project > Clean Targets.

2. Click Rebuild.

Figure 126. Keil – build

18.2.3.3.3 Peripheral Role Image

After Peripheral role projects are built with the Keil IDE, the pxr_coex_ext_*.bin file is generated in
[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\Keil_5\out_D

A14531\Objects\.

Based on the bin file, following *.img files are generated as well for Sflash image update in

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\Keil_5\out_i

mg\.

▪ da14531_multi_part_proxr.img: for Sflash image update

▪ pxr_sr_coex_ext_***_ota.img: for image update by OTA

18.2.3.3.4 Central Role Image

After Central role project are built with the Keil IDE, the pxm_coex_ext_*.bin file is generated in
[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prom_monitor_aux_ext_coex\Keil_5\out_DA145

31\Objects\.

Based on the bin file, following *.img files are generated as well for Sflash image update in

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\Keil_5\out_i

mg\.

▪ da14531_multi_part_proxm.img: for Sflash image update

▪ pxm_sr_coex_ext_***_ota.img: for image update by OTA

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 312

NOTE

To quickly test an example without building the DA14531 software, use the pre-built DA14531 image -

da14531_multi_part_prox*.img. See the folder

[DA16600_SDK_ROOT]\apps\da16600\get_started\projects\da16600\img\DA14531_x:

DA14531_P – Peripheral role

DA14531_C – Central role

If you want to run multiple DA16600 boards at the same time (with the same example project), this feature is available to

get random BD address - USE_BLE_RANDOM_STATIC_ADDRESS, otherwise you need to build the DA14531 projects

with different BD addresses and update the DA14531 firmware. Ensure that each DA16600 board's BD address is unique

to avoid an address conflict. You can change the BD address of DA14531 in the da1458x_config_advanced.h file

(search for CFG_NVDS_TAG_BD_ADDRESS at the bottom of the source).

18.2.3.4 Build the DA14531 projects with e2 studio

18.2.3.4.1 Install e2 studio

For information on the e2 studio installation, see Section 5.3 in Ref. [3].

18.2.3.4.2 Build Project

The projects are located in the following paths:

▪ [DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\e2studio

▪ [DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prom_monitor_aux_ext_coex\e2studio.

To build the projects in e2 studio, import the pxr_sr_coex_ext_531 project for peripheral role or
pxm_sr_coex_ext_531 for central role. How to import the projects, see Section 5.4 in Ref. [3], or Figure 127,
Figure 128, and Figure 129.

After code build, the image is generated in this folder:
\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\e2studio\out_img. To replace the DA14531
image with the DA16600 project, see the note at the end of Section 18.2.3.3.4.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 313

Figure 127. Project selection

Figure 128. Device selection

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 314

Figure 129. e2 studio project build

18.2.4 Firmware Image Update

After building DA16200 SDK, the relevant firmware images are located properly in

.\apps\da16600\get_started\projects\da16600\img\ folder.

But after building DA14531 SDK, the built image - da14531_multi_part_prox*.img should be copied to the above
folder manually. And some notes are similar to items listed below for the DA14531 images.

▪ da14531_multi_part_prox*.img: this is a multi-part format image and the file used for direct download to flash,
when new built image is required, copy this file to the folder where the DA16200 images are located
(.\apps\da16600\get_started\projects\da16600\img\, described in Section 18.2.2.5), then download into

the flash as described in the sections 18.2.4.1 or 18.2.4.2.

▪ px*_coex_ext_*_ota.img: this file is a single-part format image for the OTA update used in Section 18.4.

18.2.4.1 Firmware Update with *.ttl File

In the [DA16600_SDK_ROOT]\apps\da16600\get_started\projects\da16600\img\ folder, the following .ttl file

can be found in:

▪ da16600_da14531_P_download.ttl

This script file is used for peripheral example applications using in Sections 18.2.2.1, 18.2.2.2, and 18.2.2.3

▪ da16600_da14531_C_download.ttl

This script file is used for central example application using in Section 18.2.2.4

Make sure that all images are ready in the [DA16600_SDK_ROOT]

\apps\da16600\get_started\projects\da16600\img\ folder as follows:

▪ DA16600_FBOOT-*.img

▪ DA16600_FRTOS-*.img

▪ da14531_multi_part_proxr.img in DA14531_P

▪ da14531_multi_part_proxm.img in DA14531_C

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 315

Figure 130. DA16600 images and .ttl files to program

When the files are ready, complete the following steps:

1. Put a micro-USB cable in the CN1 USB port of the DA16600 board (see Ref. [3]).
The recommendation is to put the other end of this USB cable in a USB hub with a power switch attached
per port and connect that USB hub to your computer to make a "power cycle" of the board easy during the
test.

2. Run Tera Term.
Windows detects two USB ports (for example, COM34 and COM35).

3. Connect Tera Term to the lowest of the two COM port numbers that were detected (for example, COM34,
which is UART0 of DA16200).

4. Make sure that the baud rate is 230400.

5. Press Enter several times to check that it is online with the DA16600 EVB.

6. Type reset and then press Enter. Check the [MROM] prompt.

7. In the Tera term, go to Control > Macro, then browse and select the .ttl file in the img folder.

The three images are programed step by step and then rebooted. Now it is ready to test.

Figure 131. Steps to program by .ttl file

18.2.4.2 Firmware Update without .ttl File

To program SFlash without .ttl file, check the steps (until step 6) described in Section 18.2.4.1.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 316

1. Type reset and then click Enter. Check the [MROM] prompt).

2. Before entering a command, copy the location path to the folder where the three firmware images are stored
(FBOOT, RTOS, and DA14531 image) in advance for sure so that you do not get a timeout error while
running the loady command. If you select a file slowly, the Tera Term's ymodem transfer progress dialog is
stuck or not working. Then, you need to re-run the loady command.

3. Type loady 0 1000 and press Enter.

4. Go to File > Transfer > YMODEM > Send to quickly find file DA16600_FBOOT-*.img, see Figure 132.
These shortcut keys can be used: keep the Alt + F and T, Y, S.

Figure 132. Tera Term

It takes time to download (to serial flash) of the selected image file.

5. Similar to step 3, type loady 23000 1000 and press Enter. Then, select DA16600_FRTOS-*.img.

This ymodem transfer takes the longest time to complete.

6. Similar to step 3, type loady 3ad000 1000 bin and press Enter. Then, select

da14531_multi_part_proxr.img or da14531_multi_part_proxm.img.

NOTE

When downloading only one image file (RTOS or da14531), Renesas strongly recommends downloading the FBOOT

image first (loady 0 1000) and then either loady 23000 1000 for RTOS or loady 3ad000 1000 bin for da14531.

7. After all images are transferred to SFlash, type boot, and then press Enter.

Some debug messages are printed in Tera Term.

8. Press Enter several times until the prompt [/DA16600] # shows.

IMPORTANT

Switch off and on the USB port (if a user USB hub has a power switch per port, then toggle it) or remove the USB cable

completely and then put it back in. This is needed to change DA14531 to Bootloader mode and wait to get an image from

the DA16600.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 317

9. Wait until the Tera Term is connected to COMxx (for example, COM34). Or simply reconnect with serial.
This step is not needed if Tera Term is not used during the test.

NOTE

When Tera Term is connected, type reboot in the Tera Term console to check early boot messages.

18.2.5 Run DA16600 with JTAG

When the steps in Section 18.2.3.4 are complete, it is ready to run the example applications. Users can also use
JTAG to run DA16600 because the DA16600 has two chips – Wi-Fi (DA16200) and Bluetooth LE (DA14531) –
and each chip has its JTAG port.

18.2.5.1 Run DA16200 with JTAG

The JTAG cable should be connected to JTAG PIN (ID 5 or J7) of the DA16600 EVB. See Section of Debugging
with J-Link Debug Probe in Ref. [3] on how to run the JTAG debugging. If you want to boot the DA16600 EVB in
"non" JTAG mode again after JTAG is used, then SPI re-programming with two DA16200 images is required.
This is because the memory map is different for JTAG boot and normal boot – as DA16200 is using XIP: JTAG
writes code in SFlash by its memory map which is not the same as the DA16600's memory map.

18.2.5.2 Run DA14531 with JTAG

To load a DA14531 image (.bin) with the JTAG function in the Keil IDE:

NOTE

The default DA16200 software loads and transfers a DA14531 image to DA14531 at boot. Disable this Bluetooth LE image

transfer feature before starting the procedure.

1. Build the DA16600 SDK with __DA14531_BOOT_FROM_UART__ disabled (see

[DA16600_SDK_ROOT]\apps\da16600\get_started\include\apps\ble_combo_features.h), and program

SFlash with the three DA16200 images (FBOOT and FRTOS). The DA14531 image does not need to be
programmed.

2. Set DA16600 EVB's DIP switch configuration (SW4 - P0_2, P0_10 on DA16600 EVB figure in Ref. [3]) as
shown in Figure 151.

3. Connect a USB cable to the CN6 USB Port (DA14531 JTAG Port) of the DA16600 EVB. See the
Components on DA16600 EVB figure in Ref. [3].

4. Connect a USB cable to the CN1 USB Port (see Figure 2. DA16600 EVB hardware configuration of Ref. [3]
of the DA16600 EVB for a Tera Term connection.

5. Switch ON (in a USB hub) the two USB cable connections.

6. Run the Keil IDE and open a DA14531 project.

7. Click the icon as shown in Figure 133.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 318

Figure 133. Keil – option

8. Select the Debug tab and click Settings. See Figure 134.

Figure 134. Keil – debug

9. Set SN and SWD fields with valid values. See Figure 135.

NOTE

If there is invalid value for SN or SWD, the JTAG/J-Link firmware does not exist or is not enabled in the JTAG chip of the

DA16600, or the JTAG is not working for some reason. In this case, contact Renesas Electronics to update the JTAG

firmware on the DA16600 EVB.

10. If the DA14531 JTAG is successfully recognized, click OK.

11. Switch OFF the power to the two USB cables.

12. Switch ON the power to the two USB cables.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 319

Figure 135. Keil – JTAG device

13. In Tera Term (to which the lower number COM port is connected), make sure that the DA16200 boots
successfully. If it succeeds, the following messages are shown as in Figure 136.

Figure 136. Tera Term – DA16200 waiting for DA14531 to connect

Enable JTAG SWD pins by changing a compiler flag:

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\include\ext_host_ble_a

ux_task.h

…

#undef __DISABLE_JTAG_SWD_PINS_IN_BLE__

…

14. After the build is done, click the Start Debugger button. See Figure 137.

Figure 137. Keil – start debugger

15. Click OK.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 320

Figure 138. Keil – evaluation mode dialog

16. Click the Run button. See Figure 139.

Figure 139. Keil – run

If you see the message as shown in Tera Term, then the DA14531 is successfully started.

[combo] BLE FW transfer done

...

<<< GAPM_DEVICE_READY_IND

IoT dev_name="DA16600-327E", len=12

[combo] Advertising...

Now the DA16600 starts Bluetooth LE advertising and can allow a Bluetooth peer to connect to DA16600.

18.2.6 Test Environment Setup

The items in the following sections are used in the examples for the test.

18.2.6.1 Wi-Fi Access Point

Any Wi-Fi routers are acceptable. The Wi-Fi Access Point is called MyAP from here onwards.

18.2.6.2 Bluetooth LE Peers

Bluetooth LE peers are used for all the examples. Several types of Bluetooth peers are used, listed in the
following subsections.

18.2.6.2.1 Bluetooth LE Mobile App

Renesas provides a sample mobile application (Android/IOS App) called "Wi-Fi Provisioning" to test example
applications. This mobile application is used to give Wi-Fi provision information (Wi-Fi router connection
information plus any customer proprietary information to configure the DA16600) to the DA16600 board.

NOTE

You can also download (from the App Store) and use a general-purpose Bluetooth LE mobile application that supports a

GATT Client (that can read/write a GATT characteristic of a GATT Server). If you are familiar with the Wi-Fi SVC GATT

Server database structure and JSON application protocols (see Section 18.3.5), you can use a general Bluetooth LE

Mobile App as well to send a command.

18.2.6.2.2 Bluetooth LE Sensors

To test the IoT Sensor Gateway Example (Bluetooth LE Central) application, one or two (up to three) Bluetooth

LE peer devices are required. In these Bluetooth peer devices, it should be implemented for a simple GATT

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 321

server application, and this is implemented in the DA16600 SDK with the feature (__USER_SENSOR__) to be
referred.

For example, there are one or two DA16600 EVBs which run gas leeak detection sensor example (Bluetooth LE
peripheral) Gas Leak Detection Sensor Example (Bluetooth LE Peripheral)application, then they can be
connected to the IoT Sensor Gateway application.

18.2.6.3 Laptop to Control Bluetooth LE Peers and DA16600 Boards

1. Use a LAN cable to connect your computer to MyAP.

2. Use PuTTy to open two ssh windows (to RBP3_1) – login as root.

3. Enter cd /home/pi for two ssh windows (let us say ssh_win_1).

Mobile Application (UDP or TCP) can be used instead of the ssh_win_1 accordingly

4. Open one Tera Term window and connect to the COM port (the lower port number of the two, with baud rate
230400) of the DA16600. Let us call this Tera Term window "da16_tera_win" from here onwards.

5. Open another Tera Term window and connect to the other COM port (the higher port number of the two, with
Baud rate 115200) of the DA16600. Let us call this Tera Term window "da14_tera_win" from here onwards
(this Tera Term is connected to UART2 of DA14531 chip).

18.3 Wi-Fi Provisioning Over Bluetooth LE

Each application supports Wi-Fi provisioning and Wi-Fi plays the main role, and Bluetooth LE assists with "Wi-Fi
Provisioning" for the initial setup (Out-of-Box). It allows users to configure Wi-Fi (such as the SSID, password,
and server information for user's Wi-Fi router) into the DA16600 module. Figure 140 shows how the devices are
connected and worked.

Figure 140. Bluetooth LE assisted with Wi-Fi provisioning

18.3.1 Description and Requirements

A Bluetooth LE mobile application is used for the Wi-Fi provisioning. The host Bluetooth application in smart
phone can talk to the DA14531 of the DA16600 EVB to start Wi-Fi provisioning.

18.3.2 Test Procedure

After the DA16600 EVB boots up, it starts advertising. Then, the host Bluetooth LE application in smart phone
starts scanning, it is connected by selecting the DA16600 EVB on the Mobile application.

1. Power ON DA16600 EVB or else.

a. Do a Power On Reset (POR) boot: plug out and then plug in the USB cable.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 322

b. After boot-up, run the command - factory to clear any existing NVRAM content.

The command - factory also triggers a reboot after NVRAM is cleared.

c. Make sure that "Advertising …" is printed on da16_tera_win.

This should work as described for the Bluetooth peripheral-based examples but in case of the IoT
Sensor Gateway Example (Bluetooth Central), it needs to type below command to do the Bluetooth
based provisioning. After the command below, the DA14531 role is switched to the peripheral role to
start advertising, and it gets back to the central role mode after provisioning is done.

[/DA16600] # ble. monitor provision_mode

2. Run the Wi-Fi provisioning App shown in Figure 141, which is available in the Google Play Store or iOS App
Store.

3. Configure Wi-Fi environment as shown in Ref. [4].

4. Steps: Start DA16600-based > Start > Select 'DA16600-XXXX' > Wait for some seconds > Scan Wi-Fi
network > select [MyAP name] (input Password if need) > Connect to [MyAP name], then the provisioning
information is transferred to DA16600, which saves the information into NVRAM and rebooted. After
rebooting, Wi-Fi is connected to the selected AP.

Figure 141. Renesas Wi-Fi provisioning app

To remove the provisioning information,

1. Establish a Bluetooth LE connection again with DA16600 EVB.

2. Click the Reset the device button.

Now you can start provisioning again.

NOTE

As an alternative, you also can use command factory > y to clear any provisioning information.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 323

18.3.3 GTL Workflow

1. Initialization until advertising.

Figure 142. GTL message sequence chart – initialization

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 324

2. Connection Request and Characteristic "Write" Request.

Figure 143. GTL message sequence chart – connect and write

3. Characteristic "Read" request.

Figure 144. GTL message sequence chart – read

18.3.4 Wi-Fi Service GATT Database Design

The Wi-Fi Service sample – GATT Server database is added as a reference in the application source. It may
need to modify the database or create a different one. See the *_user_custom_profile.c/h (for example,

wifi_svc_user_custom_profile.c/h) file and gattm_svc_desc_wfsvc variable for more details.

18.3.5 Wi-Fi Service Application Protocol

The following protocols are used between the Wi-Fi SVC application and the Provisioning Mobile App
application.

▪ Characteristic: "Wi-Fi Cmd" (244 bytes), WRITE

• "scan" command: scan Wi-Fi routers, (Mobile host application -> DA16600)

{

 "dialog_cmd":"scan"

}

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 325

• "network_info” command: provide the network information necessary during the provisioning. (Mobile host
application -> DA16600)

{

"dialog_cmd":"network_info",

"ping_addr":"8.8.8.8",

"svr_addr":"172.16.0.100",

"svr_port":10195,

"svr_url":"www.google.com"

}

• "select_ap" command: select the AP in the AP list received by the scan command. (Mobile host application
 DA16600), The DA16600 device tries to connect to the selected AP with the information after the
command, upon receipt of this command, the DA16600 stores the credentials in permanent storage
(NVRAM) and reboots

{

 "dialog_cmd":"select_ap",

 "SSID":"linksys",

 "security_type":3,

 "password":"123456789",

"isHidden":0

}

• "fw_update" command: download new firmware from a specified OTA server, (Mobile host application ->
DA16600)

{

 "dialog_cmd":"fw_update"

}

• "factory_reset" command: remove the Wi-Fi network profile saved in the DA16600 EVB, the EVB reboots
after the reset. (Mobile host application -> DA16600)

{

 "dialog_cmd":"factory_reset"

}

• "reboot" command: reboot the DA16600 device. DA16600 tries to connect to the selected AP after rebooted
if the provisioning is completed before (Mobile host application -> DA16600)

{

 "dialog_cmd":"reboot"

}

• "wifi_status" command: check the Wi-Fi connection status (connected or disconnected). The Bluetooth LE
peer can be notified of or read, the status via the "Wi-Fi Action Result" characteristic (DA16600 -> Mobile
host application)

{

 "dialog_cmd":"wifi_status"

}

• "disconnect" command: disconnect a Wi-Fi connection from the connected AP. If the user sends the
command "reboot", then it can reconnect to the connected AP before. (Mobile host application -> DA16600)

{

 "dialog_cmd":"disconnect"

}

• If you want to add a new custom command, use the following:

enum WIFI_CMD > define a new custom command

> user_custom_profile_wfsvc_write_cmd_ind_xxx(): add the handler of the command

> wifi_conf_parse_json : add the parser of the command

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 326

▪ Characteristic: "Wi-Fi Action Result" (two bytes), READ, NOTIFY

• A Bluetooth LE Peer is supposed to enable notification on this characteristic on connection.

• Then the Bluetooth peer is notified of the result of a Wi-Fi command sent.

// Wi-Fi Action Result

enum WIFI_ACTION_RESULT {

 COMBO_WIFI_CMD_SCAN_AP_SUCCESS = 1,

 COMBO_WIFI_CMD_SCAN_AP_FAIL,

 COMBO_WIFI_CMD_FW_BLE_DOWNLOAD_SUCCESS,

 COMBO_WIFI_CMD_FW_BLE_DOWNLOAD_FAIL,

 COMBO_WIFI_CMD_INQ_WIFI_STATUS_CONNECTED,

 COMBO_WIFI_CMD_INQ_WIFI_STATUS_NOT_CONNECTED,

 COMBO_WIFI_PROV_DATA_VALIDITY_CHK_ERR,

 COMBO_WIFI_PROV_DATA_SAVE_SUCCESS,

 COMBO_WIFI_CMD_MEM_ALLOC_FAIL,

 COMBO_WIFI_CMD_UNKNOWN_RCV

};

• Especially on receipt of "COMBO_WIFI_CMD_SCAN_AP_SUCCESS", a Bluetooth LE Peer is supposed to
initiate a "READ" request on the characteristic "AP Scan Result". Usually, the total list of AP Scan results is
about 2 kB in size, therefore the Bluetooth peer should initiate a "READ" request on the characteristic
multiple times until all SSIDs are fully read

▪ Characteristic: "AP Scan Result" (244 bytes), READ

• When a Bluetooth LE Peer gets the first read response (with payload), the payload included in the "read"
response includes a 4-byte 'application-specific custom' header (that a user can modify freely to a user
application needs). See the following sample payload structure

• [H_1][H_2][JSON_STR]

○ H_1: first two bytes of the header includes the remaining length of the total JSON_STR

○ H_2: the second two bytes of the header includes the total length of JSON_STR. Normally the total size
is over 2 kB

○ JSON_STR: JSON encoded "AP Scan result"

• Upon receipt of a read response, a Bluetooth LE Peer is supposed to keep triggering "read" requests on this
characteristic until H_1 becomes 0. The read response message that contains 0 as H_1 contains the final
fragment of JSON_STR

• Next, a Bluetooth LE Peer needs to combine and parse the whole JSON_STR to get the necessary
information (in this case, the list of Wi-Fi routers).

Depending on how a Bluetooth LE Peer App is implemented, a Bluetooth LE Peer App may let the user select an
AP from the list and send a "write" request with {"dialog_cmd":"select_ap", ….} on the characteristic "Wi-Fi
Cmd".

18.4 Bluetooth LE Firmware OTA Download Through Wi-Fi

When the Wi-Fi has been successfully provisioned and the DA16600 device can receive notifications over Wi-Fi
from a remote service server indicating that there is new Wi-Fi or Bluetooth LE firmware available for the
DA16600. Upon receipt of the notification, the DA16600 can securely download the new firmware from an OTA
server through Wi-Fi, store the firmware in its flash memory and then trigger the firmware update. Figure 140
shows how the devices are connected and worked.

18.4.1 Description and Requirements

OTA firmware download service (Wi-Fi download of firmware) is supported and enabled in all examples, and AP
and HTTP(s) server are required to set up and the mobile APP is used to trigger the OTA download as well.

18.4.2 Test Procedure

For this test, make sure that an HTTP(s) server is running on the MyAP network and complete the following
steps.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 327

1. Install HTTP server on a personal computer with Apache as the web server that is connected to MyAP.
Go to apache.org to download Apache and for instructions.

2. Increase the version number (2 > 3) of .\binaries\da14531\mkimage\app_version.h as follows and build

the project. This is to get a different image version to compare the previous image.

- #define SDK_VERSION "6.0.14.1114.3"

3. Copy file px*_coex_ext_531_6_0_14_1_ota.img (described in Section 18.2.4.1) to the htdocs folder of the
Apache server (or any http server that you want to use).

4. Make sure that your computer is connected to MyAP and the px*_coex_ext_531_6_0_14_1_ota.img file is
available through a web browser with the link. The IP address is just an example:
http://192.168.0.230/pxr_sr_coex_ext_531_6_0_14_1114_1_ota.img.

5. See the following console commands.

[/DA16600] # nvram

[/DA16600/NVRAM] setenv URI_BLE

http://192.168.0.230/pxr_sr_coex_ext_531_6_0_14_1114_1_ota.img

[/DA16600/NVRAM] reboot

...

BLE FW VER to transfer

>>> v_6.0.14.1114.2 (id=1) at bank_1 // check current version and bank number.

[/DA16600] # nvram

[/DA16600/NVRAM] # getenv

...

URI_BLE (STR,53) http://192.168.0.230/pxr_sr_coex_ext_531_6_0_14_1114_1_ota.img

6. In the Bluetooth LE Mobile App (for example, mobile phone), send the firmware update command.

Figure 145. Provisioning application – custom command

a. Bluetooth LE Mobile Application > Start DA16600-based > Start > Connect to "DA16600-BLE" >
Custom command (see Figure 145), type the command {"dialog_cmd":"fw_update"} and click Send.

b. To enter the command easily, open a notepad on the smartphone to type the command, and then copy
and paste the command on the Bluetooth LE Mobile Application.

7. When the command "fw_update" is reached to the DA16600, it tries to connect to an OTA server
(192.168.0.230) to download a Bluetooth LE firmware file. This log shows some details of the steps.

https://apache.org/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 328

[/DA16600/NVRAM] #

<<< GAPC_CONNECTION_REQ_IND

...

<<< GATTC_WRITE_REQ_IND

Receive - FW_UPDATE

 COMBO_WIFI_CMD_FW_BLE_DOWNLOAD received

[ota_fw_update_combo] uri_rtos =

[ota_fw_update_combo] uri_ble = http://192.168.0.230/pxr_sr_coex_ext_531_6_0_14_1114_1_ota.img

[BLE_OTA] New FW: ver = v_6.0.14.1114.3, timestamp = 1587376260

[BLE_OTA] bank_1 (act): ver = v_6.0.14.1114.2, timestamp = 1588134660

[BLE_OTA] bank_2 : ver = v_6.0.14.1114.1, timestamp = 1588134660

...

 >> HTTP(s) Client Downloading... 100 %(17232/17232 bytes)

...

- OTA Update : <BLE_FW> Download - Success

[BLE_OTA] CASE_1: BLE FW Update Only ...

ble_reset cmd sent

- OTA Update (BLE FW) : 0 seconds left to REBOOT....

...

Wake-up source is 0x00 // rebooted ...

...

BLE FW VER to transfer

 >>> v_6.0.14.1114.3 (id=2) at bank_2 // new FW boots from bank_2 (< bank_1)

...

18.4.3 Working Flow

There are two ways to trigger an OTA firmware download service:

▪ Option 1: using a networked peer (a mobile application that is connected to the Internet or a customer cloud
server application on the Internet).

Option 1 can be used for unattended/automatic OTA operation. It works as follows:

• As a DA16600 device (DA16200 Wi-Fi chip included) is "always" in the connected state with a Wi-Fi router
connected to the Internet, a Service Server/Cloud Server can talk with this DA16600 device when there is
new firmware available on an OTA Server. A Service Server can contact a user through 4G/Wi-Fi (in the
form of a push message) for firmware update confirmation. Upon receipt of 'user confirmation', the Service
Server may ask the DA16600 device to download new firmware by giving an HTTP(s) URI to an OTA
Server. When the new firmware is received, that firmware is stored in SFlash connected to the DA16600
device, and the DA16600 device restarts to boot with the new software.

▪ Option 2: using a Bluetooth LE Peer.

For Option 2, a Bluetooth LE Peer App should "write" the following command on the characteristic "Wi-Fi
CMD" to trigger an OTA firmware update.

{

 "dialog_cmd":"fw_update"

}

Upon receipt of the command, GATTC_WRITE_REQ_IND is sent to DA14531 and DA16200, and then a handler is

invoked. See the following steps.

▪ Host Bluetooth LE application (Mobile phone) fw_update command

> DA16600 receives the command and calls the following functions

> HandleBleMsg (bType = GATTC_WRITE_REQ_IND)

> gattc_write_req_ind_hnd()

> user_custom_profile_wfsvc_write_cmd_ind_xxx()

> wifi_conf_parse_json()

> ota_fw_update_combo()

> ota_update_start_download()

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 329

> ota_update_http_client_update_proc(): handles http connection, http download, and firmware renewing

process

18.5 Gas Leak Detection Sensor Example (Bluetooth LE Peripheral)

This example demonstrates how the DA16600 can wirelessly interact with a standalone Gas Leak Detection
Sensor through Bluetooth LE and communicate events to a server over Wi-Fi.

A virtual gas density check sensor is attached to the Bluetooth wireless interface of the DA16600. The DA16600
operates in low-power mode and periodically checks the gas density level at a time interval defined by the user.
When a certain gas density level value is reached, the Wi-Fi device is activated, and a "gas leak" event is
created and sent to the Wi-Fi device. The Wi-Fi device then posts the "gas leak" event to a cloud server where a
user is notified, and action can be taken. Figure 146 show this example works.

Figure 146. Standalone gas leak detection sensor

18.5.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.1. The DA16200 sends the command to
DA14531 to get the gas leak sensor started in DA14531. When a Gas leak is detected, the DA16200 is woken
up by the DA14531 and receives the event and then sends the information to the UDP server. Sleep mode 2 is
used in this application.

NOTE

Connection with a Bluetooth LE Peer is not required in the Gas Leak Detection Sensor application.

18.5.2 Test Procedure

1. ssh_win_1: type the following command to start the UDP server (for example, Raspberry-pi or can be set up
on android/iOS phone).

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 330

root@raspberrypi:/home/pi# python udp_server.py

UDP Server: waiting for a messsage ... at 172.16.30.136:10954

On the console, the provisioning command JSON string "network_info" of the Provisioning App (see Section
18.3.5) should have the following data.

a. "svr_addr": "172.16.30.136"

b. "svr_port": 10954

2. Type dpm on command after provisioning, the device is rebooted. Then type the bold font (command) in the
log box below. The DA16600 (Wi-Fi) goes to sleep (while in sleep, keyboard input is not working, wait for
some minutes).

[/DA16600] # ble

[/DA16600/ble] # iot_sensor start

...

sleep (rtm ON) entered

...

3. After DA16600 wakes up and posts a message to a server, then it goes to sleep mode again.

...

>>> [msg_sent] : gas_leak occurred, plz fix it !!!

sleep (rtm ON) entered

4. On the server, the following message is shown (for example, ssh_win_1).

UDP Server: waiting for a messsage ... at 172.16.30.136:10954

 >>> sensor_connected

 >>> [Gas Leak Sensor]: gas_leak occurred, go home and fix it!!!

Then, the following occurs:

▪ If you run the command iot_sensor start, the command is sent over (through GTL) to DA14531 which starts

a timer task that is supposed to read a gas leak density sensor periodically.

▪ If DA14531 reads that the density is above the threshold "gas leak" level, then DA14531 wakes up the
DA16200 and sends the event ("gas leak occurred!") to DA16200. The DA16200, on receipt of the alert from
DA14531, sends an alert message to a UDP server where you can see the alert message printed.

18.5.3 Workflow

The gas leak detection example starts by typing the command – ble.iot_sensor start in the console. The
following function is invoked after the command.

▪ [/DA16600] # ble.iot_sensor start >

> ConsoleSendSensorStart()

> ConsoleEvent_handler(CONSOLE_IOT_SENSOR_START or STOP)

> app_sensor_start() or app_sensor_stop()

> BleMsgAlloc(APP_GAS_LEAK_SENSOR_START, TASK_ID_EXT_HOST_BLE_AUX, TASK_ID_GTL, 0);

▪ The message " APP_GAS_LEAK_SENSOR_START" is sent to Bluetooth LE (DA14531) which starts the sensor

reading task (periodically reads a gas-leak sensor)

In DA14531, to exchange messages or commands to an external host (DA16200), the following code should be
implemented on both Wi-Fi and Bluetooth LE SDKs.

▪ For both DA16200 SDK and DA14531 SDK, define custom messages:

• DA16600 SDK: send a custom user-defined message through the GTL interface with
TASK_ID_EXT_HOST_BLE_AUX as the destination task.

• DA14531 SDK: enable the DA14531 AUX task (TASK_ID_EXT_HOST_BLE_AUX) to receive user-defined

custom messages.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 331

• The same ext_host_ble_aux_task_msg_t should be defined on both the app.h (in DA16600 SDK) and the

ext_host_ble_aux_task.h (in DA14531 SDK).

typedef enum {

...

 APP_GAS_LEAK_SENSOR_START,

 APP_GAS_LEAK_SENSOR_START_CFM,

 APP_GAS_LEAK_SENSOR_STOP,

 APP_GAS_LEAK_SENSOR_STOP_CFM,

 APP_GAS_LEAK_EVT_IND,

 APP_GAS_LEAK_SENSOR_RD_TIMER_ID,

...

 APP_CUSTOM_COMMANDS_LAST,

} ext_host_ble_aux_task_msg_t;

▪ Regarding the message handlers in the DA14531 SDK/ext_host_ble_aux_task.c,

• DA16600/BleMsgAlloc(APP_GAS_LEAK_SENSOR_START)

> DA14531/ext_host_ble_aux_task_handler (APP_GAS_LEAK_SENSOR_START)

> DA14531/app_gas_leak_sensor_start_cfm_send with APP_GAS_LEAK_SENSOR_START_CFM

> DA16200

When the gas leak sensor starts, the DA16600 enters Sleep mode. Later, if a gas leak event occurs, the
DA14531 wakes up the DA16200, and then sends a message to a server and enters Sleep mode again.

▪ system_start() > sleep2_monitor_start()

▪ gtl_init() > sleep2_monitor_regi()

▪ app_sensor_event_ind_hnd()

> sleep2_monitor_set_state(SLEEP2_CLR)

> set iot_sensor_data_info.is_gas_leak_happened = TRUE

▪ udp_client(): send the warning message to server when gas leak occurred and tell sleep2_monitor to go into

sleep

18.6 TCP Client in DPM Example (Bluetooth LE Peripheral)

This example demonstrates how the DA16600 module runs a TCP client in a low-power mode where the
DA16200 stays in DPM mode and the DA14531 stays in Extended Sleep mode. The DA16600 module wakes up
from low-power or Sleep mode, then receives and processes a Wi-Fi packet from a network peer or Bluetooth LE
data from a Bluetooth peer. After either a Wi-Fi packet or Bluetooth data has been handled, DA16600 enters
Sleep mode again to save power.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 332

Figure 147. DA16600 TCP client in DPM

18.6.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.2. In this example, the DA16600 receives
TCP packets while in DPM mode, and AP and a TCP server utility are required as well. Sleep mode 3 is used in
this application.

18.6.2 Test Procedure

1. Wi-Fi Router: MyAP.

2. TCP Client: DA16600 EVB.

3. Two Tera Term windows: da16_tera_win, and da14_tera_win.

4. TCP Server: any TCP Server utilities are OK such as IONINJA, or Android/IOS TCP network tool.

5. TCP Server machine (Windows utility/mobile application).

a. Connect to MyAP (either through a wired port or Wi-Fi port – wired connection preferred).

b. Run TCP Server tool (with the port number set to 10194).

c. Take note of TCP Server information: IP = 192.168.0.230, Port = 10194.

6. TCP Client.

a. da16_tera_win

b. type factory > type y

c. Run Wi-Fi Provisioning to connect to MyAP. See Section 18.3.2.

d. Type this command to set the server information in NVRAM.

nvram.setenv TCPC_SERVER_IP 192.168.0.230

nvram.setenv TCPC_SERVER_PORT 10194

e. Type dpm on.

f. DA16600 EVB is rebooted and enters DPM Sleep as in Figure 148

7. TCP Server Tool: Send a text to TCP Client.

8. TCP Client – TCP Client wakes up, receives, processes data, and enters sleep as shown in Figure 149.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 333

Figure 148. TCP client in DPM sleep

Figure 149. TCP client – wake up from DPM sleep

18.6.3 Workflow

TCP Client thread which uses DPM manager – tcp_client_dpm_sample is run when network is alive. User
callbacks for TCP events are registered in tcp_client_dpm_sample_init_user_config() including

tcp_client_dpm_sample_recv_callback(). In the receive callback, when a user receives and processes data,

then calls the dpm_mng_job_done().

tcp_client_dpm_sample()

> tcp_client_dpm_sample_init_user_config(): callback functions are registered

> tcp_client_dpm_sample_recv_callback(): called when received the packet, process the data

> dpm_mng_job_done()

The TCP Client application is a network application, and the Provisioning application is a Bluetooth LE
application. Both applications should register to the DPM subsystem that coordinates how these two applications
enter DPM Sleep.

▪ gtl_init() > dpm_app_register(): register to DPM sub-system

▪ gapc_connection_req_ind_handler()

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 334

> dpm_app_sleep_ready_clear(): if a peer is connected (until disconnected), tell DPM sub-system to hold

going into sleep

> dpm_abnormal_chk_hold(): told DPM Abnormal Checker. DPM Abnormal Checker can force sleep if

network is disconnected, hold its operation until the job (Provisioning APP's job) is done

▪ gapc_disconnect_ind_handler()

> dpm_app_sleep_ready_set(): tell DPM sub-system to enter sleep as the peer is disconnected

> dpm_abnormal_chk_resume(): tell DPM Abnormal Checker to resume its work

18.7 DA14531 Peripheral Driver Example (Bluetooth LE Peripheral)

This example shows the way to control the peripherals in DA14531 devices by DA16200, the peripherals in
DA14531 can be configured and used as the GPIO, I2C, SPI, and PWM.

Figure 150. DA14531 peripheral device control

18.7.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.3. For this example, some proper
components or connections are required for each test, and the DA14531 GPIO pins can be controlled by the
DA16200 in the DA16600.

18.7.2 Test Environment Setup

18.7.2.1 DA16600 EVB Setup

See the EVB configuration of Ref. [3] for the components such as SW4, SW5, SW6, SW8, J2, J3, and GPIO
pins. To test this example, use the following configurations.

18.7.2.1.1 Configuration_1

Figure 151. DA16600 EVB SW config. 1

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 335

18.7.2.1.2 Configuration_2

Figure 152. DA16600 EVB SW config. 2

18.7.2.2 Tera Term Setup

Two Tera Term windows are required.

▪ Teraterm_1 (da16_tera_win): connect to COMxx (lower one) with 230400 as baud rate. This is the debug
console of the DA16200 where the user command is entered

▪ Teraterm_2 (da14_tera_win): connect to COMxx (higher one) with 115200 as baud rate. This is the debug
console of the DA14531. Test progress is printed

18.7.2.3 DA14531 Peripheral Driver Samples

Ten peripheral samples are described in this section. The list of the DA14531 Peripheral Driver samples follows
the commands bolded.

[/DA16600] # ble

[/DA16600/ble] # peri

--

peri : Run DA14531 Peripheral Driver Sample

 type a command below

--

[01] peri blinky : blinking LED sample

[02] peri systick : systick timer sample

[03] peri timer0_gen : timer0 general sample

[04] peri timer0_buz : timer0 PWM buzzer sample

[05] peri timer2_pwm : timer2 PWM LED array sample

[06] peri batt_lvl : battery level read sample

[07] peri i2c_eeprom : I2C EEPROM read/write sample

[08] peri spi_flash : SPI_flash read/write sample

[09] peri gpio : GPIO contorl(High/Low)

18.7.3 Test Procedure

18.7.3.1 peri blinky

One GPIO is used to blink the LED connected to the GPIO.

1. DA16600 EVB Configuration (See Figure 151).

By default, P0_8 is used to connect to LED. Connect J3:P0_8 to any pins in P10 or P11 (#17 or #18 of
DA16600 EVB Hardware Configuration figure in Ref. [3]).

2. Run command as in Figure 153. The LED that is connected to the GPIO specified blinks.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 336

Figure 153. Peri blinky

18.7.3.2 peri systick

The systick timer of DA14531 is used in this sample.

1. This sample uses 1 GPIO to change the state of the LED that is connected to the GPIO.

2. DA16600 EVB Configuration (See Figure 151).

By default, P0_8 is used to connect to LED. Connect J3:P0_8 to any pins in P10 or P11 (#17 or #18 of
DA16600 EVB Hardware Configuration figure in Ref. [3]).

3. Run command as in Figure 154. Whenever the systick timer expires, it toggles the LED state.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 337

Figure 154. Peri systick

18.7.3.3 peri timer0_gen

The TIMER0 general example demonstrates how to configure TIMER0 to count a specified amount of time and
generate an interrupt. A LED is changing state upon each timer interrupt.

1. Use one GPIO connected to an LED to show how TIMER0 can be used.

2. DA16600 EVB Configuration (See Figure 151).

By default, P0_8 is used to connect to LED. Connect J3:P0_8 to any pins in P10 or P11 (#17 or #18 of
DA16600 EVB Hardware Configuration figure in Ref. [3]).

3. Run command as in Figure 155 and check LED.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 338

Figure 155. Peri Timer0_gen

18.7.3.4 peri timer0_buz

This is TIMER0 (PWM0, PWM1) example that demonstrates how to configure TIMER0 to produce PWM signals.
A melody is produced on an externally connected buzzer if connected.

1. Use two GPIOs connected to an external buzzer.

DA16600 EVB Configuration: By default, P0_8 and P0_11 are used to connect to a buzzer. Connect
J3:P0_8 and J2:P0_11 to a buzzer. See Ref. [3] for J2 and J3.

2. Run commands as shown in Figure 156 and Figure 157.

Figure 156. Peri Timer0_buz

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 339

Figure 157. Peri Timer0_buz (Continued)

18.7.3.5 peri timer2_pwm

The TIMER2 (PWM2, PWM3, PWM4) example demonstrates how to configure TIMER2 to produce PWM
signals. The PWM outputs are used to change the brightness of the LEDs in this example.

1. Use three GPIOs connected to an LED to show how TIMER2 PWM can be used.

2. DA16600 EVB Configuration (See Figure 151).

By default, P0_8, P0_11, and P0_2 are used to connect to an LED.

Connect J3:P0_8 and J2:P0_11, and J3:P0_2 to an LED. For J2 and J3, see Ref. [3].

3. Run command as in Figure 158.

Figure 158. Peri Timer2_pwm

18.7.3.6 peri batt_lvl

The Battery example demonstrates how to read the level of the battery connected to DA14531.

1. DA16600 EVB Configuration (See Figure 151).

2. Run commands as in Figure 159.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 340

Figure 159. Peri Batt_lvl

18.7.3.7 peri i2c_eeprom

The I2C EEPROM example demonstrates how to initiate, read, write, and erase an I2C EEPROM memory. This
example works if the user connects an external memory.

1. DA16600 EVB Configuration (See Figure 151).

By default, P0_8 (SCL – Serial Clock) and P0_11 (SDA – Serial Data) are used. Connect J3:P0_8, J2:P0_11
to an external I2C_EEPROM. See Ref. [3] for J2 and J3.

2. Run command as in Figure 160 and Figure 161.

Figure 160. Peri I2c_eeprom

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 341

Figure 161. Peri I2c_eeprom read/write

18.7.3.8 peri spi_flash

The SPI Flash memory example demonstrates how to initiate, read, write, and erase an SPI Flash memory with
the SPI Flash driver.

1. The following are the pre-defined characteristics configured in the DA14531 image:

#define SPI_MS_MODE SPI_MS_MODE_MASTER

#define SPI_CP_MODE SPI_CP_MODE_0

#define SPI_WSZ SPI_MODE_8BIT

#define SPI_CS SPI_CS_0

#define SPI_FLASH_DEV_SIZE (256 * 1024)

2. DA16600 EVB Configuration (See Figure 152).

By default, 4 GPIO pins are used: SPI_EN (J3: P0_8), SPI_CLK (J2:P0_11), SPI_DO (J3:P0_2), SPI_DI
(J3:P0_10). For J2 and J3, see DA16600 EVB Hardware Configuration figure in Ref. [3].

3. Download the following DA14531 image for this test.

[DA16600_SDK_ROOT]\apps\da16600\get_started\projects\da16600\img\DA14531_P\peri_spi_flash\

da14531_multi_part_proxr_s.img.

If you do not use the image above, the message shown in Figure 162 appears.

Figure 162. Peri Spi_flash – wrong image warning

4. After booting with a correct Bluetooth LE test image, you can find the version string printed at boot as in
Figure 163.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 342

Figure 163. Correct image version for peri Spi_flash sample

5. Run command as shown in Figure 164 and Figure 165.

Figure 164. Peri Spi_flash

Figure 165. Peri Spi_flash read/write

18.7.3.9 peri gpio

The GPIO example demonstrates how to set/get the state of a GPIO of DA14531 and how to set as input or
output. If you set the state of a GPIO of DA14531 to either HIGH or LOW in output mode, the state is kept

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 343

although DA14531 is in sleep. If you do not want to control the GPIO state of DA14531 anymore, then you need
to set the GPIO to 0xFF.

1. DA16600 EVB Configuration (See Figure 151).

See Section 18.7.5 to check available GPIOs in DA14531.

2. The DA14531 image should be the same as the following image for this test.

[DA16600_SDK_ROOT]\apps\da16600\get_started\projects\da16600\img\DA14531_P\

da14531_multi_part_proxr.img

3. The DA14531 GPIO can be configured to output and input with some options.

• Syntax: peri gpio set port_no pin_no state [func]

○ port_no, pin_no: port/pin number.

○ state: 1 (high), 0 (low), FF (Not used)

○ func: 0 (INPUT), 1 (INPUT_PULLUP), 2 (INPUT_PULLDOWN), 3 (OUTPUT) - Default OUTPUT

a. Example: set the P0_8 to high in output mode.

peri gpio set 0 8 1 3

b. Example: set the P0_8 as INPUT.

peri gpio set 0 8 0 0

c. Example: get the P0_8 status.

peri gpio get 0 8

Figure 166. Peri GPIO configuration

18.7.4 Workflow

This example application is not required for Wi-Fi provisioning and controls the DA14531 peripherals (GPIOs) by
sending commands in the DA16200 and each example to the DA14531 through the GTL interface.

▪ Most types and definitions of GTL messages are defined in the app.h.

[DA16600_SDK_ROOT]\apps\da16600\get_started\src\ble_svc\include\app.h

▪ ext_host_ble_aux_task_msg_t must be exactly same as in both DA16600 and DA14531 SDK.

▪ Timer buz console command flow in the DA16600, all test cases should have similar workflow.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 344

ble.peri timer0_buz start

> cmd_peri_sample()

> app_peri_timer0_buz_start_send()

> BleSendMsg()

▪ Timer buz console command flow in the DA14531.

GTL > ext_host_ble_aux_task_handler (msgid = APP_PERI_TIMER0_BUZ_START)

> app_peri_timer0_buz_start_ind_send(): run a timer to start the sample action and send back the GTL

"APP_PERI_TIMER0_BUZ_START_IND" to DA16200 indicating timer0_buz sample soon starts. On receipt of this

message, DA16200 prints that TIMER0_BUZ started

> ext_host_ble_aux_task_handler(): handles for the other commands as well

> app_peri_timer0_buz_run()

> pwm0_user_callback_function()

18.7.5 GPIO PINs in DA14531

The DA14531 has 12 GPIOs. Among them, seven GPIOs are reserved and being used by GTL (four-wire UART,
thus four pins) and BT-Wi-Fi Coex (3-wire, thus 3 pins), therefore, there are five GPIOs free for peripheral
devices. Depending on the actual design, the default usage of pins may vary.

▪ P0_2: SWD. Free if __DISABLE_JTAG_SWD_PINS_IN_BLE__ is defined (by default, SWD disabled)

▪ P0_8/P0_9: used as UART2 for peripheral driver sample print-out

▪ P0_10: SWD. Free if __DISABLE_JTAG_SWD_PINS_IN_BLE__ is defined (by default, SWD disabled)

▪ P0_11: available as the RESET pin after booting up

▪ P0_5: used as Coex: wlanAct in default DA14531 image

NOTE

Some driver samples (systick, pwm) are using ISR callbacks in the DA14531 for implementing driver sample actions. If

customization is required, the ISR callback implementation needs to be modified (the DA14531 needs to be compiled).

For the sample implementation, GPIO pins are configured when a user command runs and are reverted to GPIO mode

after the user command finishes. In real application scenarios, if extended Sleep mode is used in the DA14531 with a

peripheral device attached for a certain purpose, every time the DA14531 wakes up, it should restore the GPIO pin

configuration for the peripheral device purpose. In this case, the pin configuring code should reside in periph_init() then

while waking up, the DA14531 can restore the needed pin configuration successfully.

If new/custom driver GTL messages are required to be defined based on the user application scenario, the new

messages/handlers should be defined in both DA16600 and DA14531 SDK.

18.8 IoT Sensor Gateway Example (Bluetooth LE Central)

In this example, the DA16600 plays the role of a gateway device for multiple Bluetooth LE temperature sensors.
A Bluetooth LE sensor posts the current temperature value periodically via the notify function of Bluetooth LE.
The Bluetooth LE chip of DA16600 gathers the information as a central (host) device and asks Wi-Fi to
(periodically) post notifications to a service server in the cloud. Figure 167 shows how the data is transferred to
the server.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 345

Figure 167. IoT sensor gateway

18.8.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.4. In this example, a few Bluetooth LE
peripheral devices are used (See Section 18.5). The DA16600 receives sensor data through DA14531 which
works as central mode, coming from peripheral devices and sends them to the server.

18.8.2 Test Setup and Procedure

Set up the DA16600 boards (up to three) as peripheral sensor devices.

NOTE

Gas Leak Detection Sensor application starts advertising after booting up. That is the application is waiting to be

connected by a GAP Central – this example application.

1. da16_tera_win:

a. Connect the USB cable to IoT Sensor Gateway Example.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 346

b. Connect Tera Term to the EVB.

By default, the sensor gateway application is running as "Bluetooth LE GAP Central" that scans neighbor
GAP Peripheral devices, the provisioning should be done before this test. See Section 18.3.2 and run the
provisioning procedure if it is not done yet.

2. The Gateway device in Bluetooth LE is in scanning mode, when the scan is finished, the list is as shown
below when there are two peripheral sensor boards.

 # DA14531 Proximity Monitor demo application #

No. bd_addr Name Rssi #

1 b8:00:00:00:00:01 DA16600-AAAA -48 dB #

2 b8:00:00:00:00:02 DA16600-BBBB -42 dB #

3 ec:00:00:00:00:00 Mi Smart Band 4 -62 dB #

4 80:ea:ca:80:00:01 Dialog SOC Demo -58 dB #

Scanning... Wait GAPM_ADV_REPORT_IND

>>> Connect or rescan. Type in "[/DA16200] # ble. monitor" for cmd options

3. By typing ble and monitor command below, the commands available in the example are displayed in the

following log box.

[/DA16600/] # ble

[/DA16600/ble] # monitor

...

 monitor [OPTION]

OPTION DESCRIPTION

 scan

 Scan BLE peers around

 show_conn_dev

 shows connected BLE peers with status

 rd_rssi_conn_dev

 read rssi for all connected devices

 read_temp

 read temperature sensor values from all connected devices

 conn [1~9]

 connect to a ble peer from the scan list

 choose index from the scan list

 peer [1~9] [A|B|...|Z]

 take an action on a connected BLE peer

 ------------proxm cmd ----------------

 A: Read Link Loss Alert Level

 B: Read Tx Power Level

 C: Start High Level Immediate Alert

 D: Start Mild Level Immediate Alert

 E: Stop Immediate Alert

 F: Set Link Loss Alert Level to None

 G: Set Link Loss Alert Level to Mild

 H: Set Link Loss Alert Level to High

 I: Show device info

 ------------custom cmd ----------------

 J: Enable iot sensor's temperature posting

 K: Disable iot sensor's temperature posting

 ------------common cmd ----------------

 Z: Disconnect from the device

 exit

 all peers are disconnected

4. To connect the devices (NO 1, NO 2) in the scan list, type the following commands:

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 347

[/DA16600/ble] # monitor conn 1

...

[/DA16600/ble] # monitor conn 2

...

No. Model No. BDA Bonded RSSI LLA TX_PL Temp

* 1 iot_sensor b8:00:00:00:00:01 NO

2 iot_sensor b8:00:00:00:00:02 NO

3 -- Empty Slot --

5. To enable the notification from the peer device - the IoT sensor device, type the command in the log box.
Then the temperatures should be posted from the peer device to the gateway device.

[/DA16600/ble] # monitor peer 1 J

...

[/DA16600/ble] # monitor peer 2 J

...

No. Model No. BDA Bonded RSSI LLA TX_PL Temp

* 1 iot_sensor b8:00:00:00:00:01 NO 35

2 iot_sensor b8:00:00:00:00:02 NO 13

3 -- Empty Slot --

NOTE

Depending on a user's RF signal environment, sensor_1 or sensor_2 may not easily get connected. In such a case, run

the scan again and try to connect.

6. Command "J" let sensor start temperature posting.

7. ssh_win_1 or mobile application: the temperature data are posted to the server as follows.

...

root@raspberrypi:/home/pi# python udp_server.py

UDP Server: waiting for a messsage ... at 172.16.30.136:10954

...

>>> iot_sensor[1], temperature value = 33

 >>> iot_sensor[2], temperature value = 11

 >>> iot_sensor[1], temperature value = 31

 >>> iot_sensor[2], temperature value = 8

...

18.8.3 Workflow

After provisioned and booted up, the DA16600 tries to scan and connect the peripheral devices. When the
connection between DA14531 and peripheral is established, the sensor data is transmitted to DA16600
(DA14531 - GTL - DA16200), and then DA16200 sends the data to the server.

NOTE

Details of sensor service are that implement the following GATT service on a user Bluetooth LE device:

▪ Temperature characteristic: UUID = '12345678-1234-5678-1234-56789abcdef1', Permission = READ | NOTIFY, Value

size = 1 byte

▪ If subscription (on CCCD) is requested by a peer, periodic notification starts every five sec (the temperature value is

notified every five seconds)

▪ If subscription (on CCCD) is requested by a peer, periodic notification starts every five sec (the temperature value is

notified every five seconds)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 348

▪ The DA16600 tries to scan automatically after booting up or by typing the following scan command to start

 [/DA16600] # ble. monitor scan

▪ ConsoleEvent(): UI handler for controlling sensor gateway, the console commands are sent to DA14531

through GTL.

▪ Connect the devices and enable the notification to the peripheral devices.

▪ The peripheral devices send the data to DA14531.

▪ Transfer the data to DA16200 and post it to the server.

18.8.4 GTL Message Flow

18.8.4.1 Initialization

Figure 168. GTL message sequence chart – initialization

NOTE

For DA14531/Bluetooth LE scan activity, if the DA16600 is connected to the network, the duration available for Wi-Fi

network should be more than 110ms, it can be calculated by scan interval and window duration as follows.

▪ Available duration for Wi-Fi = interval x 0.625(time slot) – window x 0.625(time slot)

▪ It can be tuned in the app_inq() function in sensor_gw_app.c (.\apps\da16600\get_started\src\ble_svc\sensor_gw\src)

▪ Renesas recommends that separate the Wi-Fi activities and Bluetooth LE activities if it takes long time

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 349

18.8.4.2 Provisioning Mode

Figure 169. GTL message sequence chart – provisioning mode

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 350

18.8.4.3 Scan and Connect to Sensor

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 351

Figure 170. GTL message sequence chart – scan and connect

18.8.4.4 Enable Sensor Posting

Figure 171. GTL message sequence chart – enable sensor posting

18.8.4.5 Disable Sensor Posting

Figure 172. GTL message sequence chart – disable sensor posting

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 352

Appendix A License Information

A.1 Mosquitto 1.4.14 License

Eclipse Distribution License 1.0

Copyright (c) 2007, Eclipse Foundation, Inc. and its licensors.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,

 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer

 in the documentation and/or other materials provided with the distribution.

 * Neither the name of the Eclipse Foundation, Inc.

 nor the names of its contributors may be used to endorse or

 promote products derived from this software without

 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.2 MiniUPnPc License

Copyright (c) 2005-2016, Thomas BERNARD

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,

 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

 * The name of the author may not be used to endorse or promote products

 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

UMAC GPL License

Linux kernel 3.9.0 rc3 version (backport 4.2.6-1)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 353

Appendix B TX Power Table Edit

The DA16200/DA16600 SDK allows users to tune and edit TX Power (per channel) for FCC or country-
dependent product customization/optimization. The country code and channels describe in Table 89.

Figure 173. TX power table

NOTE

The 2.4 GHz band is divided into 14 channels at 5 MHz intervals centered at 2.412 GHz, starting with channel 1. The last

channel (CH 14) has additional restrictions or cannot be used for all regulatory areas.

▪ TX power setting value range: 0x0 ~ 0xB

▪ Setting value for unsupported channel: 0xF

B.1 Tune TX Power

Users can tune and test TX power through CLI command and AT GUI tool. When the TX power value increases
by 1 step, the actual TX power decreases by 0.8 dB. Unsupported channels should be set to 0xF. See the
corresponding section of Ref. [5] on how to tune TX power using CLI or AT GUI tool.

This example shows the range of values for TX power.

Table 88. TX power setting value range

▪ TX power gap per value step: 0.8 dB

▪ TX power setting value range: 0x0 ~ 0xB

▪ Setting value for unsupported channel: 0xF

B.2 Apply Tuned TX Power to Main Image

The following procedure describes how to set the tuned TX power indices to the Main image.

1. In the DA16200/DA16600 SDK, open
~/FreeRTOS_SDK/core/system/src/common/main/sys_user_feature.c.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 354

Figure 174. TX power table source code

The array cc_power_level contains the default values customized for FCC. Edit the power values for a
specific country or the desired countries with tuned values. See Table 88 for more information.

2. Re-build the SDK.

When the rebuilt software is started and the country is selected, the corresponding TX power value set for
that channel takes effect.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 355

Appendix C Tips

C.1 Find/Optimize Stack Size for Applications

To check the stack size of the application, the DA16200/DA16600 has a tool (a console command) called ps that
shows the list of threads and the status of each application stack. Figure 175 is a snapshot of command ps when
tcp_client_sample.c is run.

Figure 175. Check stack size

TCPC is the name of the tread for this sample application, and the stack size is 1020 (which is defined in
sample_apps.c).

This is a sample code of TCP Client.

…

#if defined (__TCP_CLIENT_SAMPLE__)

 { SAMPLE_TCP_CLI, tcp_client_sample, 1024, (tskIDLE_PRIORITY + 7), TRUE, FALSE,

 TCP_CLI_TEST_PORT, RUN_ALL_MODE },

#endif // (__TCP_CLIENT_SAMPLE__)

…

Command ps shows the following information:

▪ Stack-B/E: the stack address

▪ S-Size: the stack size allocated

▪ Stack-L: peak usage size of the stack

To find and optimize the stack size for this application, for example if this application has four use cases, follow
the steps below:

1. First, over-allocate stack memory as a precaution, like 2K, "just to be safe".

2. Run each use case and examine the peak stack usage with command ps.

3. Allocate optimal memory based on peak usage information. If all the possible use case scenarios are
confirmed, allocate the stack size with extra memory as a precaution.

C.2 How to Make/Write User Data to User Area of Flash Externally

Many different methods are available to generate user data and program it into Flash, and here is a simple
method to get started. User data can be generated using any hex editor. Figure 176 shows a snapshot for
editing data in hex editor, Notepad++. The hex data (left side) or string (right side) can be added and updated.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 356

Figure 176. Snapshot of hex editor

User data can be programmed to the user area of flash in DA16200 using MultiDownloader. See Ref. [3] for
more details. Figure 177 shows the settings of MultiDownloader for programming data to a specific address.

Figure 177. Settings of multidownloader

User data can be confirmed using "sflash read address size" command in MROM. See Figure 178.

Figure 178. Read user data using command

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 357

Appendix D Country Code and TX Power

This section lists the country codes that the DA16200/DA16600 supports and the supported channels of 2.4 GHz
bandwidth in the STA and the Soft AP mode.

D.1 Country Code and Channels

Table 89. Country code

Country

code
Country STA channels Soft AP channels

"AD" Andorra 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AE” United Arab Emirates 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AF” Afghanistan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AI” Anguilla 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AL” Albania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AM” Netherlands Antilles 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AR” Argentina 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AS” American Samoa 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“AT” Austria 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AU” Australia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AW” Aruba 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“AZ” Azerbaijan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BA” Bosnia and Herzegovina 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BB” Barbados 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BD” Bangladesh 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BE” Belgium 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BF” Burkina Faso 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BG” Bulgaria 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BH” Bahrain 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BL” Saint-Barthelemy 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BM” Bermuda 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“BN” Brunei Darussalam 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BO” Bolivia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BR” Brazil 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BS” Bahamas 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BT” Bhutan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BY” Belarus 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“BZ” Belize 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CA” Canada 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“CF” Central African Republic 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CH” Switzerland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CI” Ivory Coast 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CL” Chile 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CN” China 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 358

Country

code
Country STA channels Soft AP channels

“CO” Colombia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CR” Costa Rica 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CU” Cuba 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CX” Christmas Island 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

"CY” Cyprus 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“CZ” Czech Republic 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“DE” Germany 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“DK” Denmark 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“DM” Dominica 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“DO” Dominican Republic 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“DZ” Algeria 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“EC” Ecuador 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“EE” Estonia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“EG” Egypt 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“ES” Spain 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“ET” Ethiopia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“EU” Europe 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“FI” Finland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“FM”
Micronesia, Federated

States of
1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“FR” France 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GA” Gabon 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GB” United Kingdom 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GD” Grenada 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“GE” Georgia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GF” French Guiana 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GH” Ghana 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GL” Greenland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GP” Guadeloupe 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GR” Greece 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“GT” Guatemala 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“GU” Guam 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“GY” Guyana 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“HK” Hong Kong 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“HN” Honduras 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“HT” Haiti 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“HU” Hungary 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“ID” Indonesia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“IE” Ireland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“IL” Israel 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 359

Country

code
Country STA channels Soft AP channels

“IN” India 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“IR” Iran, Islamic Republic of 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“IS” Iceland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“IT” Italy 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“JM” Jamaica 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“JO” Jordan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

"JP” Japan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KE” Kenya 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KH” Cambodia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KN” Saint Kitts and Nevis 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KP” North Korea 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KR” South Korea 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KW” Kuwait 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KY” Cayman Islands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“KZ” Kazakhstan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LB” Lebanon 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LC” Saint Lucia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LI” Liechtenstein 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LK” Sri Lanka 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LS” Sesotho 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LT” Lithuania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LU” Luxembourg 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“LV” Latvia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MA” Morocco 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MC” Monaco 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MD” Moldova 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“ME” Montenegro 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MF” Saint-Martin (French part) 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MH” Marshall Islands 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“MK” Macedonia, Republic of 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MN” Mongolia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MO” Macao 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MP” Northern Mariana Islands 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“MQ” Martinique 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MR” Mauritania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MT” Malta 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MU” Mauritius 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MV” Maldives 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MW” Malawi 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“MX” Mexico 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 360

Country

code
Country STA channels Soft AP channels

“MY” Malaysia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“NG” Nigeria 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“NI” Nicaragua 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“NL” Netherlands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“NO” Norway 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“NP” Nepal 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“NZ” New Zealand 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

"OM” Oman 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PA” Panama 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“PE” Peru 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PF” French Polynesia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PG” Papua New Guinea 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PH” Philippines 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PK” Pakistan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PL” Poland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PM” Saint Pierre and Miquelon 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PR” Puerto Rico 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“PT” Portugal 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“PW” Palau 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“PY” Paraguay 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“QA” Qatar 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“RE” Reunion 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“RO” Romania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“RS” Serbia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“RU” Russian Federation 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“RW” Rwanda 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SA” Saudi Arabia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SE” Sweden 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SG” Singapore 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SI” Slovenia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SK” Slovak Republic 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SN” Senegal 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SR” Suriname 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SV” El Salvador 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“SY” Syrian Arab Republic 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TC” Turks and Caicos Islands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TD” Chad 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TG” Togo 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TH” Thailand 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TN” Tunisia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 361

Country

code
Country STA channels Soft AP channels

“TR” Turkey 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TT” Trinidad and Tobago 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TW” Taiwan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“TZ” Tanzania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“UA” Ukraine 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

"UG” Uganda 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“US” United States of America 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“UY” Uruguay 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“UZ” Uzbekistan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“VC”
Saint Vincent and

Grenadines
1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“VE” Venezuela 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“VI” Virgin Islands 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“VN” Vietnam 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“VU” Vanuatu 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“WF” Walls and Futuna Islands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“WS” Samoa 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“YE” Yemen 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“YT” Mayotte 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“ZA” South Africa 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“ZW” Zimbabwe 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“ALL” Worldwide 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

“XX” 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

D.2 Programming

All of the power level settings are 0x0 as default setting, so it should be set as required for the customer’s
specifications and requirement. The power table consists of two types, one is for OFDM and the other is for
DSSS. DA16200/DA16600 refers to the levels either of the cc_power_level table for OFDM mode or the
cc_power_level_dsss for DSSS mode.

In the DA16200/DA16600 SDK, users can change the supporting "country code list" for their product. See Table
88 and Table 90.

NOTE

The 2.4 GHz band is divided into 14 channels at 5 MHz intervals centered at 2.412 GHz, starting with channel 1. The last

channel (CH 14) has additional restrictions or cannot be used in all regulatory areas.

▪ TX power setting value range: 0x0 ~ 0xB

▪ Setting value for unsupported channel: 0xF

▪ FreeRTOS_SDK/apps/da6200(da16600)/get_started/src/apps/main/user_system_feature.c

This is programming examples of country codes.

Table 90. Programming example for country code

const country_ch_power_level_t cc_power_level[MAX_COUNTRY_CNT] =

{

/* Country 1 2 3 4 5 6 7 8 9 10 11 12 13 14 */

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 362

/* --- */

/* Andorra */

 { "AD", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xF },

/* UAE */

 { "AE", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xF },

/* Afghanistan */

 { "AF", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xF },

const country_ch_power_level_t cc_power_level_dsss[MAX_COUNTRY_CNT] =

{

/* Country 1 2 3 4 5 6 7 8 9 10 11 12 13 14 */

/* --- */

/* Andorra */

 { "AD", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xF },

/* UAE */

 { "AE", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xF },

/* Afghanistan */

 { "AF", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xF },

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 363

Appendix E How to Use J-Link Debugger

To debug DA16200 and DA16600, J-Link debug probe and J-Link software are required. See the Debugging
with J-Link Debug Probe section of Ref. [3] on how to use J-Link debugger.

Appendix F Create RTOS Image for fcCSP Using SDK v3.2.7.1 or
Earlier

For fcCSP type package, to create a RTOS image with the DA16200/DA16600 SDK, change the files as shown
below, and then follow the Build SDK instructions described in Section 4.c.

▪ Library file for Low-Power:

• ~/FreeRTOS_SDK/library/liblmac.a.fcCSP_LP (or liblmac.fcCSP.LP.a) →
~/FreeRTOS_SDK/library/liblmac.a

▪ Library file for Normal-Power:

• ~/FreeRTOS_SDK/library/liblmac.a.fcCSP_NP (or liblmac.fcCSP.NP.a) →

~/FreeRTOS_SDK/library/liblmac.a

▪ Compile feature:

• ~/FreeRTOS_SDK/apps/da16200/get_started/include/user_main/sys_common_features.h

○ #undef __FOR_FCCSP_SDK__ → #define __FOR_FCCSP_SDK__

○ In case of Low-Power: #define __FCCSP_LOW_POWER__

○ In case of Normal-Power: #undef __FCCSP_LOW_POWER__

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 364

Appendix G Bluetooth LE Customization

G.1 How to Change Bluetooth LE Device Name

The Bluetooth LE device name can be changed by editing the definition - USER_DEVICE_NAME in the
\SDK_ROOT\apps\da16600\get_started\src\ble_svc\include\user_config.h file.

#define __APPEND_EXTRA_INFO_AT_DEVICE_NAME

#ifdef __APPEND_EXTRA_INFO_AT_DEVICE_NAME

#define USER_DEVICE_NAME ("DA16600-XXXX")

#else

#define USER_DEVICE_NAME ("DA16600")

#endif

If __APPEND_EXTRA_INFO_AT_DEVICE_NAME is defined, then the string("XXXX") is replaced by the last 4 digits of the

MAC address stored at the EVB or target board in the app_rst_gap() function. If it is not defined, then the fixed

device name is used. The change may not be immediately seen because of the phone or APP caching the
previous ADV device name, so the cache of the user's APP and BT system APP should be cleared before
testing with a new device name.

G.2 How to Change Bluetooth LE ADV Interval

The advertising interval can be changed by the define - USER_CFG_DEFAULT_ADV_INTERVAL_MS in

[SDK_ROOT]\apps\da16600\get_started\src\ble_svc\include\app.h file for Example applications (Bluetooth

LE peripheral) in [SDK_ROOT]\apps\da16600\get_started\src\ble_svc\sensor_gw\inc\app.h file for Example

application (Bluetooth LE central).

/* Advertising and Connection related parameters */

#define USER_CFG_DEFAULT_ADV_INTERVAL_MS (687.5)

/// Advertising minimum interval

#define APP_ADV_INT_MIN MS_TO_BLESLOTS(USER_CFG_DEFAULT_ADV_INTERVAL_MS)

/// Advertising maximum interval

#define APP_ADV_INT_MAX MS_TO_BLESLOTS(USER_CFG_DEFAULT_ADV_INTERVAL_MS)

The ADV interval should not be too long, Renesas recommends not to set it bigger than 1 or 2 seconds because
it may not be scanned well by the host due to its longer advertising. The shorter interval can be scanned faster
by the hosts of course, but to save the power consumption we have set it to the appropriate value – 687.5 ms.

G.3 How to Configure Bluetooth LE Hardware Reset

To configure Bluetooth LE hardware reset, the GPIOC_8/DA16200 must be connected to P0_11/DA14531 first,
then users should define the __CFG_ENABLE_BLE_HW_RESET__ as follows in the DA16600 SDK.

// [SDK_ROOT]\apps\da16600\get_started\include\apps\user_custom_config.h

#if defined(__BLE_PERI_WIFI_SVC__) ||

defined(__BLE_PERI_WIFI_SVC_TCP_DPM__) ||

defined(__BLE_CENT_SENSOR_GW__)

 #define __CFG_ENABLE_BLE_HW_RESET__ // Enable hardware reset of Bluetooth

#endif

And it needs to configure the POR register in DA14531 for P0_11 working as a reset pin, the
CFG_ENABLE_POR_PIN should be defined in the DA14531 SDK as well, build the SDK and replace the image file –

da14531_multi_part_proxr.img or da14531_multi_part_proxm.img.

//[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\src\conf

ig\da1458x_config_advanced.h (reporter project) or

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_monitor_aux_ext_coex\src\config\da1

458x_config_advanced.h (Monitor/Central project)

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 365

/***/

/* Enable HW RESET by P0_11 if need */

/***/

#define CFG_ENABLE_POR_PIN

The GPIOC_8/DA16200 and P0_11 should not be used in any other cases apart from this purpose to use the
Bluetooth LE hardware reset properly.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 366

Appendix H QSPI Clock Selection

The XFC driver in the ROM decides the QSPI clock based on the maximum frequency information in the SFDP
and core clock during boot. The clock is (core clock/N) which is less than or equal to the maximum frequency in
SFDP. N is larger than 1.

For example, if the maximum frequency in the SFDP is 100 MHz and the core clock is 120 MHz, then the QSPI
clock is configured as 60 MHz (120/2 <= max. frequency 100 MHz in SFDP). If the maximum frequency in SFDP
is 40 MHz and the core clock is 120 MHz, the QSPI clock is 120/3 = 40 MHz.

Appendix I Power Down Step

To power down, complete the following steps:

1. Put the DA16200/DA16600 into Sleep mode 2 or Sleep mode 3. See dpm_sleep_start_mode_2() or

dpm_sleep_start_mode_3() used in Section 17.14 APIs or sleep AT commands (AT+SETSLEEP2EXT=0,0

or AT+SETSLEEP3EXT=10000) in Ref. [7].

2. Put the DA16200 to Sleep mode 1 using RTC Power Key.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 367

19. Revision History

Revision Date Description

2.6 Oct 3, 2025 ▪ Added Section 3.7.

▪ Added Section 9.2.1 and 9.2.2.

▪ Added Section 18.2.3.4.

2.5 Apr 16, 2025 ▪ Updated TLS certificate in Selection 6.

▪ Added the note for network latency and HTTP timeout in Section 15.4.4

▪ Added Appendix C.2 and Appendix H.

▪ Updated loady command for FBOOT in Section 18.2.4.2

▪ Added Section 3.8.2.

▪ Added Section 13.3 and updated Section 13.4.4.

2.4 May 17, 2024 ▪ DA16600 - Change cli command name "proxm_sensor_gw" to "monitor"

▪ DA16600 - Change Bluetooth image folder name to DA14531_P (from

DA14531_1) and DA14531_C (from DA14531_2)

▪ Section 18.3 title updated

2.3 Mar. 21, 2024 ▪ Added Wi-Fi Functionality

▪ Added UM-WI-052 DA16600 FreeRTOS Example Application Manual

▪ Added Wake-up sources

2.2 Aug. 18, 2023 ▪ Updated MCU transmission protocol changes in Section 15.6.2

▪ Added Certificate API in Section 6

▪ Added parameters into Section 9.1.1

• DA16X_CONF_INT_HIDDEN_0

• DA16X_CONF_INT_AUTH_MODE_0

• DA16X_CONF_INT_EAP_PHASE1_0

• DA16X_CONF_INT_EAP_PHASE2_0

▪ Added parameters into Section 9.1.2

• DA16X_CONF_STR_EAP_IDENTITY

• DA16X_CONF_STR_EAP_PASSWORD

▪ Added WPA enterprise Sample code into Section 9.1.3

▪ Added Watchdog service in Section 8

▪ Changed IDE to e2 studio

▪ Changed description about fcCSP Low Power RTOS Image in Section 3.8.1

2.1 May. 31, 2023 Added missing section of the Introduction 3

2.0 May. 19, 2023 ▪ Merged MQTT Programmer Guide, FreeROTS OTA Update, and

FreeRTOS Example Application Manual

▪ Added the details for Bluetooth LE Coexistence part in Section 17.13

▪ Modified wake-up status in Table 64

1.9 Jan. 04 2023 ▪ Added Bluetooth LE Coexistence part in Section 17.13

▪ Memory map updated: adjustable Bluetooth LE firmware size and user area

in DA16600

▪ Updated Figures of Eclipse IDE screen capture

1.8 Oct. 24, 2022 Added TX power setting value range and step in Appendix B.1

1.7 Aug. 11, 2022 Changed TLS certificate area index number of SFlash area

 : #0, #1, #2, #3 → #1, #2, #3, #4 in Section 15.2

1.6 Jun. 14, 2022 ▪ Updated company name of Reference documents

▪ Updated Sflash memory map for the DA16200/DA16600in Section 15.2

▪ Updated TX power table programming in Appendix B.2

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 368

Revision Date Description

1.5 Mar 28, 2022 Updated logo, disclaimer, and copyright.

1.4 Dec 22, 2021 Added description about fcCSP Low Power RTOS Image.

1.3 Nov 26, 2021 The title was changed.

1.2 Nov 09, 2021 TW Editorial.

1.1 Oct 25, 2021 Added description about OTP.

1.0 Apr 13, 2021 First release.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 369

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

RoHS Compliance

Renesas Electronics’ suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of
the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
RoHS certificates from our suppliers are available on request.

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UM-WI-046 Rev.2.6
Oct 3, 2025

CFR0012

Page 370

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources
are subject to change without notice. Renesas grants you permission to use these resources only to develop an application
that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any
other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you
will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from
your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other
applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable
warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales

office, please visit www.renesas.com/contact-us/

Trademarks

Renesas and the Renesas logo are trademarks of
Renesas Electronics Corporation. All trademarks and
registered trademarks are the property of their

respective owners.

(Disclaimer Rev.1.1 Jan 2024)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
http://www.renesas.com/contact-us/

	Contents
	Figures
	Tables
	1. Terms and Definitions
	2. References
	3. Introduction
	3.1 Overview
	3.2 Development Environment
	3.3 System and Application Startup
	3.4 System Applications
	3.5 User Applications
	3.6 Sample Applications
	3.6.1 Wi-Fi Configuration for Sample Application

	3.7 RED Security
	3.7.1 RED Security Support
	3.7.2 Secure AT Channel

	3.8 Build SDK
	3.8.1 Create RTOS Image for fcCSP
	3.8.2 Build a Project Using Command Line

	4. Wake-Up Source
	5. NVRAM
	5.1 API

	6. TLS Certificate
	6.1 Certificate for MQTT Client
	6.2 Certificate for WPA Enterprise
	6.3 Certificate for HTTPs Client/Server or OTA
	6.4 Certificate for TLS Client/Server
	6.5 APIs for Accessing Prefixed Area of SFlash
	6.6 Store Certificates to Flash Using Console Command
	6.6.1 Console Command for Certificate
	6.6.2 Store Certificates
	6.6.3 Root CA, Client Cert, and Private Key
	6.6.3.1 Root CA
	6.6.3.2 Client Cert
	6.6.3.3 Private Key

	7. Hardware Accelerators
	7.1 Set SRAM to Zero
	7.1.1 API
	7.1.2 Sample Code

	7.2 CRC Calculation
	7.2.1 API
	7.2.2 Sample Code

	7.3 Pseudo Random Number Generator (PRNG)
	7.3.1 API
	7.3.2 Sample Code

	7.4 Memory Copy Using DMA
	7.4.1 API
	7.4.2 Sample Code

	8. Watchdog Service
	8.1 Overview
	8.2 Concept
	8.3 API
	8.4 Sample Code

	9. Wi-Fi Interface Configuration
	9.1 API
	9.1.1 Integer Type Parameters
	9.1.2 String Type Parameters
	9.1.3 Sample Code

	9.2 Soft AP Configuration by Factory Reset
	9.2.1 S2 – FTR_RST Button Behavior
	9.2.2 Factory Default AP SSID, AP Password, and AT_KEY
	9.2.3 Configure Data Structure
	9.2.4 Configure Soft AP Interface

	9.3 Soft AP Provisioning Protocol

	10. Wi-Fi Functionality
	10.1 Simple Roaming
	10.1.1 Using Simple Roaming

	10.2 Scanning and Example
	10.2.1 Active Scanning
	10.2.2 Passive-Scanning
	10.2.3 Get Scan Result Example

	11. Network Examples: Socket Communication
	11.1 Test Environment
	11.1.1 DA16200
	11.1.2 Peer Application
	11.1.2.1 Example of Peer Application

	11.2 TCP Client
	11.2.1 How to Run
	11.2.2 How It Works
	11.2.3 Sample Code
	11.2.3.1 Registration
	11.2.3.2 Data Transmission
	11.2.3.3 Disconnection

	11.3 TCP Client in DPM
	11.3.1 How to Run
	11.3.2 How It Works
	11.3.3 Sample Code
	11.3.3.1 Registration
	11.3.3.2 Data Transmission

	11.4 TCP Server
	11.4.1 How to Run
	11.4.2 How It Works
	11.4.3 Sample Code
	11.4.3.1 Connection
	11.4.3.2 Data Transmission
	11.4.3.3 Disconnection

	11.5 TCP Server in DPM
	11.5.1 How to Run
	11.5.2 How It Works
	11.5.3 Sample Code
	11.5.3.1 Registration
	11.5.3.2 Data Transmission

	11.6 TCP Client with KeepAlive in DPM
	11.6.1 How to Run
	11.6.2 Sample Code
	11.6.2.1 Registration
	11.6.2.2 Data Transmission

	11.6.3 How It Works

	11.7 UDP Socket
	11.7.1 How to Run
	11.7.2 How It Works
	11.7.3 Sample Code
	11.7.3.1 Initialization
	11.7.3.2 Data Transmission

	11.8 UDP Server in DPM
	11.8.1 How to Run
	11.8.2 How It Works
	11.8.3 Sample Code
	11.8.3.1 Registration
	11.8.3.2 Data Transmission

	11.9 UDP Client in DPM
	11.9.1 How to Run
	11.9.2 How It Works
	11.9.3 Sample Code
	11.9.3.1 Registration
	11.9.3.2 Data Transmission

	12. Network Examples: Security
	12.1 Peer Application
	12.1.1 Peer Application Examples
	12.1.1.1 TLS Server
	12.1.1.2 TLS Client
	12.1.1.3 DTLS Server
	12.1.1.4 DTLS Client

	12.2 TLS Server
	12.2.1 How to Run
	12.2.2 How It Works
	12.2.3 Sample Code
	12.2.3.1 Initialization
	12.2.3.2 TLS Handshake
	12.2.3.3 Data Transmission

	12.3 TLS Server in DPM
	12.3.1 How to Run
	12.3.2 How It Works
	12.3.3 Sample Code
	12.3.3.1 Registration
	12.3.3.2 TLS Setup
	12.3.3.3 Data Transmission

	12.4 TLS Client
	12.4.1 How to Run
	12.4.2 How It Works
	12.4.3 Sample Code
	12.4.3.1 Registration
	12.4.3.2 TLS Handshake
	12.4.3.3 Data Transmission

	12.5 TLS Client in DPM
	12.5.1 How to Run
	12.5.2 How It Works
	12.5.3 Sample Code
	12.5.3.1 Registration
	12.5.3.2 TLS Setup
	12.5.3.3 Data Transmission

	12.6 DTLS Server
	12.6.1 How to Run
	12.6.2 How It Works
	12.6.3 Sample Code
	12.6.3.1 Initialization
	12.6.3.2 DTLS Handshake
	12.6.3.3 Data Transmission

	12.7 DTLS Server in DPM
	12.7.1 How to Run
	12.7.2 How It Works
	12.7.3 Sample Code
	12.7.3.1 Registration
	12.7.3.2 DTLS Setup
	12.7.3.3 Data Transmission

	12.8 DTLS Client
	12.8.1 How to Run
	12.8.2 How It Works
	12.8.3 Sample Code
	12.8.3.1 Initialization
	12.8.3.2 DTLS Handshake
	12.8.3.3 Data Transmission

	12.9 DTLS Client in DPM
	12.9.1 How to Run
	12.9.2 How It Works
	12.9.3 Sample Code
	12.9.3.1 Registration
	12.9.3.2 DTLS Setup
	12.9.3.3 Data Transmission

	13. Network Examples: MQTT
	13.1 Overview
	13.1.1 SDK Build

	13.2 API
	13.2.1 APIs for Operating MQTT
	13.2.2 APIs for Configure MQTT Messaging

	13.3 MQTT Connection and Flow Chart
	13.4 Test
	13.4.1 Test Environment
	13.4.2 Setup
	13.4.3 Certificate
	13.4.4 Publisher
	13.4.4.1 QoS=0 Message
	13.4.4.2 QoS=1/2 Message
	13.4.4.3 MQTT over TLS
	13.4.4.4 Username and Password

	13.4.5 Subscriber
	13.4.5.1 Setup
	13.4.5.2 MQTT over TLS
	13.4.5.3 Username and Password
	13.4.5.4 WILL

	13.4.6 MQTT Pub/Sub Test with DPM and TLS
	13.4.6.1 MQTT Reconnection Scheme
	13.4.6.1.1 Non-DPM Mode
	13.4.6.1.2 DPM Mode

	13.4.6.2 DPM Power Profile

	13.4.7 MQTT CleanSession=0 Test Guide
	13.4.7.1 CleanSession=0 Mode
	13.4.7.1.1 CleanSession and QoS Matrix Table for PUBLISH Rx
	13.4.7.1.2 CleanSession and QoS Matrix Table for PUBLISH Tx

	13.4.7.2 Test Steps
	13.4.7.2.1 How to connect with CleanSession=0
	13.4.7.2.2 How to restart CleanSession=0 test
	13.4.7.2.3 PUBLISH RX Test
	13.4.7.2.4 PUBLISH Tx Test

	13.4.8 Reset

	13.5 Sample Code
	13.5.1 Test Environment
	13.5.2 Setup
	13.5.3 How to Test
	13.5.3.1 Test with Non-DPM Mode
	13.5.3.1.1 MQTT Publish
	13.5.3.1.2 Receive MQTT Message
	13.5.3.1.3 Receive and Reply MQTT Message
	13.5.3.1.4 MQTT Unsubscribe

	13.5.3.2 Test with DPM Mode
	13.5.3.2.1 MQTT Publish
	13.5.3.2.2 Receive MQTT Message
	13.5.3.2.3 Receive and Reply MQTT Message
	13.5.3.2.4 MQTT Unsubscribe

	13.5.4 Code Walkthrough

	14. Network Examples: Protocols/Applications
	14.1 CoAP Client
	14.1.1 Peer Application
	14.1.2 How to Run
	14.1.3 CoAP Client Initialization
	14.1.4 CoAP Client Deinitialization
	14.1.5 CoAP Client Request and Response
	14.1.5.1 CoAP URI and Proxy URI
	14.1.5.2 GET Method
	14.1.5.3 POST Method
	14.1.5.4 PUT Method
	14.1.5.5 DELETE Method
	14.1.5.6 CoAP Ping
	14.1.5.7 CoAP Response

	14.1.6 CoAP Observe
	14.1.6.1 Registration
	14.1.6.2 Deregistration

	14.2 DNS Query
	14.2.1 How to Run
	14.2.2 DNS Query Initialization
	14.2.3 Get Single IPv4 Address

	14.3 SNTP and Get Current Time
	14.3.1 How to Run
	14.3.2 Sample Code

	14.4 SNTP and Get Current Time in DPM
	14.4.1 How to Run
	14.4.2 Sample Code

	14.5 HTTP Client
	14.5.1 How to Run
	14.5.2 Sample Code

	14.6 HTTP Client in DPM
	14.6.1 How to Run
	14.6.2 Sample Code

	14.7 HTTP Server
	14.7.1 How to Run
	14.7.2 Sample Code

	14.8 WebSocket Client
	14.8.1 How to Run
	14.8.2 Sample Code

	15. Network Examples: OTA
	15.1 Overview
	15.2 SFLASH Memory Area
	15.3 HTTP Protocol
	15.4 OTA Firmware Update
	15.4.1 Header
	15.4.2 Version
	15.4.3 Result Code
	15.4.4 DOWNLOAD
	15.4.5 RENEW
	15.4.5.1 Boot Index

	15.5 API
	15.5.1 Type
	15.5.2 Structure
	15.5.3 APIs
	15.5.4 Example
	15.5.4.1 Test Command
	15.5.4.2 Sample Code

	15.6 OTA Firmware Update – Extensions
	15.6.1 Certificates
	15.6.2 MCU Firmware
	15.6.2.1 CRC-32 Calculation

	15.7 Bluetooth® LE Firmware Update OTA
	15.8 OTA Test Server

	16. Crypto Examples
	16.1 Crypto API
	16.1.1 How to Run
	16.1.2 How to Enable Cryptographic Algorithm
	16.1.3 Cryptographic Algorithms – AES
	16.1.3.1 Application Initialization
	16.1.3.2 AES-CBC-128, 192, and 256
	16.1.3.3 AES-CFB128-128, 192, and 256
	16.1.3.4 AES-ECB-128, 192, and 256
	16.1.3.5 AES-CTR-128
	16.1.3.6 AES-CCM-128, 192, and 256
	16.1.3.7 AES-GCM-128, 192, and 256
	16.1.3.8 AES-OFB-128, 192, and 256

	16.1.4 Cryptographic Algorithms – DES
	16.1.4.1 Application Initialization
	16.1.4.2 DES-CBC-56, DES3-CBC-112, and 168

	16.1.5 Cryptographic Algorithms – HASH and HMAC
	16.1.5.1 Application Initialization
	16.1.5.2 SHA-1 Hash
	16.1.5.3 SHA-224 Hash
	16.1.5.4 SHA-256 Hash
	16.1.5.5 SHA-384 Hash
	16.1.5.6 SHA-512 Hash
	16.1.5.7 MD5 Hash
	16.1.5.8 HASH and HMAC with Generic Message-Digest Wrapper
	16.1.5.8.1 Supported Message-digest Functions
	16.1.5.8.2 How to Calculate HASH Using Single Text String
	16.1.5.8.3 How to Calculate HASH Using Multiple Text Strings
	16.1.5.8.4 How to Calculate HMAC and HASH

	16.1.6 Cryptographic Algorithms – DRBG
	16.1.6.1 Application Initialization
	16.1.6.2 CTR_DRBG with Prediction Resistance
	16.1.6.3 CTR_DRBG Without Prediction Resistance
	16.1.6.4 HMAC_DRBG with Prediction Resistance
	16.1.6.5 HMAC_DRBG Without Prediction Resistance

	16.1.7 Cryptographic Algorithms – ECDSA
	16.1.7.1 Application Initialization
	16.1.7.2 Generate ECDSA Key Pair and Verifies ECDSA Signature

	16.1.8 Cryptographic Algorithms – Diffie-Hellman Key Exchange
	16.1.8.1 Application Initialization
	16.1.8.2 How Diffie-Hellman Works
	16.1.8.2.1 How to Load Diffie-Hellman Parameters
	16.1.8.2.2 How Diffie-Hellman Works

	16.1.9 Cryptographic Algorithms – RSA PKCS#1
	16.1.9.1 Application Initialization
	16.1.9.2 How RSA PKCS#1 Works

	16.1.10 Cryptographic Algorithms – ECDH
	16.1.10.1 Application Initialization
	16.1.10.2 How ECDH Key Exchange Works

	16.1.11 Cryptographic Algorithms – KDF
	16.1.11.1 Application Initialization
	16.1.11.2 How KDF Works

	16.1.12 Cryptographic Algorithms – Public Key Abstraction Layer
	16.1.12.1 Application Initialization
	16.1.12.2 How to Use Public Key Abstraction Layer

	16.1.13 Cryptographic Algorithms – Generic Cipher Wrapper
	16.1.13.1 Application Initialization
	16.1.13.2 How Generic Cipher Wrapper is Used

	17. Peripheral and System Examples
	17.1 UART
	17.1.1 Introduction
	17.1.2 API
	17.1.3 How to Run
	17.1.4 Sample Code
	17.1.4.1 Application Initialization
	17.1.4.2 Data Read/Write

	17.2 GPIO
	17.2.1 Introduction
	17.2.2 API
	17.2.3 How to Run
	17.2.4 Sample Code

	17.3 GPIO Retention
	17.3.1 How to Run
	17.3.2 Sample Code

	17.4 I2C
	17.4.1 Introduction
	17.4.1.1 I2C Master
	17.4.1.2 I2C Slave

	17.4.2 API
	17.4.3 How to Run
	17.4.3.1 Test Procedure
	17.4.3.2 Sample Code for Using I2C

	17.5 I2S
	17.5.1 How to Run
	17.5.2 User Task
	17.5.3 Sample Code

	17.6 PWM
	17.6.1 Introduction
	17.6.2 API
	17.6.3 How to Run
	17.6.3.1 Test Procedure
	17.6.3.2 Sample Code

	17.7 ADC
	17.7.1 Introduction
	17.7.2 API
	17.7.3 Interrupt Description
	17.7.4 How to Run
	17.7.5 Sample Code – SAMPLE_READ
	17.7.5.1 Test Procedure
	17.7.5.2 Sample Code for Reading ADC

	17.7.6 Sample Code – ADC_SAMPLE_INTERRUPT
	17.7.6.1 Test Procedure
	17.7.6.2 Sample Code for ADC Interrupt

	17.7.7 Sample Code – ADC_SAMPLE_DPM
	17.7.7.1 Test Procedure
	17.7.7.2 Sample Code for Wake Up DPM

	17.8 SPI
	17.8.1 Introduction
	17.8.1.1 SPI Master
	17.8.1.2 SPI Slave

	17.8.2 API
	17.8.3 How to Run
	17.8.4 Sample Code

	17.9 SDIO
	17.9.1 Introduction
	17.9.1.1 SDIO Master
	17.9.1.2 SDIO Slave

	17.9.2 API
	17.9.3 How to Run
	17.9.4 Sample Code

	17.10 SD/eMMC
	17.10.1 Introduction
	17.10.2 API
	17.10.3 How to Run
	17.10.4 Sample Code

	17.11 User SFLASH Read/Write Example
	17.11.1 How to Run
	17.11.2 User Task
	17.11.3 Sample Code
	17.11.3.1 Application Initialization
	17.11.3.2 SFlash Read and Write

	17.12 OTP
	17.12.1 Introduction
	17.12.2 API

	17.13 Bluetooth LE Coexistence
	17.13.1 Pin Configuration
	17.13.2 Pin Multiplex
	17.13.3 SDK Feature Definition
	17.13.4 API

	17.14 RTC Timer in DPM
	17.14.1 How to Run
	17.14.2 Timer Creation: Sleep Mode 2
	17.14.3 Timer Creation: Sleep Mode 3

	18. DA16600 Example Applications
	18.1 Source Structure and Common APIs
	18.1.1 DA16600 Bluetooth Source Structure
	18.1.2 Application APIs and Console Commands

	18.2 Environment Setup
	18.2.1 SFlash Memory Map
	18.2.2 Build the DA16600 SDK
	18.2.2.1 Gas Leak Detection Sensor Example Feature
	18.2.2.1.1 How to Add Security Feature

	18.2.2.2 TCP Client in DPM Example Feature
	18.2.2.3 Peripherals in DA14531 Driver Example Feature
	18.2.2.4 IoT Sensor Gateway Example Feature
	18.2.2.5 Build SDK in e2 studio IDE

	18.2.3 Build DA14531 SDK
	18.2.3.1 DA14531 Peripheral Role Project
	18.2.3.2 DA14531 Central Role Project
	18.2.3.3 Build the DA14531 projects with Keil
	18.2.3.3.1 Install Keil
	18.2.3.3.2 Build Project
	18.2.3.3.3 Peripheral Role Image
	18.2.3.3.4 Central Role Image

	18.2.3.4 Build the DA14531 projects with e2 studio
	18.2.3.4.1 Install e2 studio
	18.2.3.4.2 Build Project

	18.2.4 Firmware Image Update
	18.2.4.1 Firmware Update with *.ttl File
	18.2.4.2 Firmware Update without .ttl File

	18.2.5 Run DA16600 with JTAG
	18.2.5.1 Run DA16200 with JTAG
	18.2.5.2 Run DA14531 with JTAG

	18.2.6 Test Environment Setup
	18.2.6.1 Wi-Fi Access Point
	18.2.6.2 Bluetooth LE Peers
	18.2.6.2.1 Bluetooth LE Mobile App
	18.2.6.2.2 Bluetooth LE Sensors

	18.2.6.3 Laptop to Control Bluetooth LE Peers and DA16600 Boards

	18.3 Wi-Fi Provisioning Over Bluetooth LE
	18.3.1 Description and Requirements
	18.3.2 Test Procedure
	18.3.3 GTL Workflow
	18.3.4 Wi-Fi Service GATT Database Design
	18.3.5 Wi-Fi Service Application Protocol

	18.4 Bluetooth LE Firmware OTA Download Through Wi-Fi
	18.4.1 Description and Requirements
	18.4.2 Test Procedure
	18.4.3 Working Flow

	18.5 Gas Leak Detection Sensor Example (Bluetooth LE Peripheral)
	18.5.1 Description and Requirements
	18.5.2 Test Procedure
	18.5.3 Workflow

	18.6 TCP Client in DPM Example (Bluetooth LE Peripheral)
	18.6.1 Description and Requirements
	18.6.2 Test Procedure
	18.6.3 Workflow

	18.7 DA14531 Peripheral Driver Example (Bluetooth LE Peripheral)
	18.7.1 Description and Requirements
	18.7.2 Test Environment Setup
	18.7.2.1 DA16600 EVB Setup
	18.7.2.1.1 Configuration_1
	18.7.2.1.2 Configuration_2

	18.7.2.2 Tera Term Setup
	18.7.2.3 DA14531 Peripheral Driver Samples

	18.7.3 Test Procedure
	18.7.3.1 peri blinky
	18.7.3.2 peri systick
	18.7.3.3 peri timer0_gen
	18.7.3.4 peri timer0_buz
	18.7.3.5 peri timer2_pwm
	18.7.3.6 peri batt_lvl
	18.7.3.7 peri i2c_eeprom
	18.7.3.8 peri spi_flash
	18.7.3.9 peri gpio

	18.7.4 Workflow
	18.7.5 GPIO PINs in DA14531

	18.8 IoT Sensor Gateway Example (Bluetooth LE Central)
	18.8.1 Description and Requirements
	18.8.2 Test Setup and Procedure
	18.8.3 Workflow
	18.8.4 GTL Message Flow
	18.8.4.1 Initialization
	18.8.4.2 Provisioning Mode
	18.8.4.3 Scan and Connect to Sensor
	18.8.4.4 Enable Sensor Posting
	18.8.4.5 Disable Sensor Posting

	Appendix A License Information
	A.1 Mosquitto 1.4.14 License
	A.2 MiniUPnPc License

	Appendix B TX Power Table Edit
	B.1 Tune TX Power
	B.2 Apply Tuned TX Power to Main Image

	Appendix C Tips
	C.1 Find/Optimize Stack Size for Applications
	C.2 How to Make/Write User Data to User Area of Flash Externally

	Appendix D Country Code and TX Power
	D.1 Country Code and Channels
	D.2 Programming

	Appendix E How to Use J-Link Debugger
	Appendix F Create RTOS Image for fcCSP Using SDK v3.2.7.1 or Earlier
	Appendix G Bluetooth LE Customization
	G.1 How to Change Bluetooth LE Device Name
	G.2 How to Change Bluetooth LE ADV Interval
	G.3 How to Configure Bluetooth LE Hardware Reset

	Appendix H QSPI Clock Selection
	Appendix I Power Down Step
	19. Revision History

