LENESANS Manual

DA16200/DA16600 FreeRTOS SDK Programmer Guide

The DA16200/DA16600 is a highly integrated ultra-low power Wi-Fi system on a chip (SoC) that allows users to
develop a complete Wi-Fi solution on a single chip. This document is an SDK guide which describes the
examples that are included in the SDK and is intended for developers who want to develop applications using
the DA16200/DA16600 SDK.

Contents
L0 o o =T 3= 1
T LT = 13
LI = 16
1. Terms and DefinitioNS ... e e s nmnnes 17
N (= (=1 =] 4 Vo - 19
< TR 1411 o T [0 T 1 oY o S 20
R Tt N O =Y o T SRR 20
G T2 B =YY= o] o] o 0 1= 0 =1 0 VT o] T2 0= 0 | PSR 20
3.3 System and AppliCatioN STArUPoooiee e e e e e 21
3.4 SyStem APPICALIONSoeiiiiii e e e ar e e e e e e e nnreeeeenees 23
RS I U == g Y o] o] [o= (o] 1 PR TPRR 25
N TS 7= 0 0] o) [N o] o] o= 110] o - TSR UUP PR 26
3.6.1 Wi-Fi Configuration for Sample Applicationccooiciiiiiie e 27
T A =1 B ST o U 4 YT TPRR 28
3.71 L= STt 0 AV 01 o] o Yo RS RR 28
3.7.2 SECUIE AT CRANNEL..... ...t e e e e e e e e e s e e e e e e e e sannnneees 28
S = 101 o 5 SRR 29
3.8.1 Create RTOS IMage for fCCSP........uuiiiiiii e 30
3.8.2 Build a Project Using Command LiNEcooiiiiiiiiiiiieie e 31
L T 1T 1 (T o TR o U - SR 32
LT (VY ./ 1 SRR 34
L0t T L SRRSO 34
L I IS 0 =T o T 1 35
6.1 Certificate fOr MQTT ClENL.......c.veieiiiie e e et ae e e e ee e e e s nbeeaeeenbeeeeenees 35
6.2 Certificate fOr WPA ENTEIPIISEcooooiieeeeee et e e e e e e e e e e e e e e e eans 35
6.3 Certificate for HTTPsS Client/Server or OTA it eeeee e e e e e e e e sereraeeeaaeeeannes 35
6.4 Certificate fOr TLS ClENUSEIVETviiii ettt e et ee e e e entee e e e snbee e e e enreeeeenees 35
6.5 APIs for Accessing Prefixed Area of SFIash.............oooiiiiiiiii e 36
6.6 Store Certificates to Flash Using Console Command............oooiiiiiiiiiiiiiiiie e 38
6.6.1 Console Command for Certificate.o 38
6.6.2 StOre CertifiCatescooveiie e 38
6.6.3 Root CA, Client Cert, and Private Kycooiii e 39
6.6.3.1 o0 0 NSO 39
UM-WI-046 Rev.2.6 RENESAS Page 1

Oct 3, 2025 CFR0012 © 2025 Renesas Electronics

DA16200 DA16600 FreeRTOS SDK Programmer Guide

6.6.3.2 (O 11T o | Q0= o SRS 40

6.6.3.3 PrIVate KeY ..o e 40

N 5 =1 V- = e o= 1= = 1 o 41
A% B 1= L A N 1Y (o 7= o USRS 41
7.1.1 Y e PSR 41

7.1.2 RS T= T] o] 13K 07 0T [41

A O 5 O 02 o701 -1 i o] o SRR 41
7.2.1 Y PO S PP PRRRI 41

7.2.2 RS T= T] o] 13K 07 0T [41

7.3 Pseudo Random Number Generator (PRNG)...........oooiiiiiiiiiiiiiiic e e e 42
7.31 Y e RSP 42

7.3.2 SAMPIE COUE ...t e e e e e e et e e e e e e e e seebabaeeeaaeeeseasareens 42

7.4 Memory Copy USING DIMA ...ttt e ettt e e e n bt e e e e sn b e e e e enbe e e e e anbeeeeennees 42
7.4.1 Y e RSP 42

7.4.2 S F= 0] o1 (=3 07 oo [P PRRRR 42

8. WatChAOQg SEIVICEoiiciiiiiii it 43
Tt N O =Y o TSP EPTRR 43

S T O o 3 o= o | SO EPTPRR 43
TR T | OSSPSR 44
oI S - 10 0] o] =T O o o [USSP PPPRR 45

9. Wi-Fi Interface Configurationccccceiiiiiniii i ——_—— 47
1S TRt T L S ERTSRR 47
9.1.1 Integer TYPE Parametersooi it 48

9.1.2 StriNG TYPE Parametersooooi it e et e e e e sntae e e e enree e e e nees 50

9.1.3 SAMPIE COUE ..ot e e e e e e e e et e e e e e e se e ab e e e e e e e e e saarnraees 50

9.2 Soft AP Configuration by Factory RESet ... 52
9.21 S2 — FTR_RST BUtON BENAVIOToeeiiiiiiiieee e 52

9.2.2 Factory Default AP SSID, AP Password, and AT_KEYoooiiiiiiiie e 53

9.2.3 Configure Data SIrUCIUIEcooiiiie e e e e e sntee e e e enree e e nees 55

9.24 Configure SOft AP INTEITACE ... 56

9.3 Soft AP Provisioning ProtOCOLuuiii ittt 57

10. Wi-Fi FUNCHONAIILYooiiiee e s e e mn e e s e mmnnes 58
(O I S 110 o] L= T o =T g1 o T TP POURRSTRRR 58
10.1.1 UsiNg SIMPIE ROGMING ...uvviiiiiiiiie ittt ettt e e e et e e e e ntee e s enbeeeeenreeeeennees 58

10.2 Scanning and EXAMPIEooouiiiiiiiee ettt e e e e e e e e e e e aaaae s 59
T10.2.1 ACLVE SCANNING ...ttt e bttt e e e bt e e e e s e e e e e st e e e e e nbeeeeenees 59

E I e Ty AL Y= o o 1 oo SRR 60

10.2.3 Get Scan ResuUlt EXamPIE......ooeiiiii e 60

11. Network Examples: Socket COmMMUNICAtIONcoiiiiiiiiiiicriii e mne e e s e snmnnes 62
P O =T =1 1V] 0 1= o TR 62
T Pt O Ny 1 720 USRS 62

e 7 LYo 2 o] o1 T | o) o SO 62

11.1.21 Example of Peer Application.............ooocciiiiiiii i 63

UM-WI-046 Rev.2.6 RENESAS Page 2

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

1 I O 11T o | PSRRI 65
2 B o (o 1T o U o I SRRSO 66
2 o 1o 1T L Ao 2 SO 66
2 TS T T g L= o Yo [SO 66

11.2.3.1 ReEQISITAtioN ... ———— 66
11.2.3.2 Data TranSMISSIONooiiiiiiiiii e e e e e eeneeeeeeeeees 67
11.2.3.3 DYoo) o] g 1=Tex 1] o USSP 67

11.3 TCP CleNt iN DPIMottt et e et e e e et e e e e et e e e e st e e e e e sabaeeessbaeaessnbaeeessnreeeeeans 68
P T B o 1o 1Y (o N (1 o SO 68
T1.3.2 HOW T WVOTKS ..ottt e ettt e e e e e e s et e et e e e e e e e e annbeeeeeeeeas 68
G TR T T 3o L= 7 Yo [SO 69

11.3.31 ReGISIratioN ... 69
11.3.3.2 Data TranSMISSIONcuiiiiiiiieiiiir e e e e e e e e e e e eenraaeeeeee s 70

R O s T =Y o S 70
I T o o T (o 30 U0 o I PSP 70
R o 1o 1T L Ao 2 SO 71
T1.4.3 SAMPIE COUE ..ot e e e e e e et e e e e e e e e et e e e e e e e e e eeeasteneeeaaeas 71

11.4.3.1 (@70 o] 1= Tox 1 o] o S 71
11.4.3.2 Data TranSMISSIONcciii it e e e ee s 72
11.4.3.3 DISCONNECHION ... e e e s 72

R T O s 1= 7Y T I3 |V SR 73
R T B o (o 1Y o N 1 o SRS 73
R T2 o 1o 1T L Ao 2 OSSPSR 73
T1.5.3 SAMPIE COUE ...t e et e e e e e e e e e e e e e e e e eanbeaeeeaeeas 74

11.5.31 ReGISIratioN ..o 74
11.5.3.2 Data TranSMISSIONcoiiiiiiiiiii et e e e eeaeees 74

11.6 TCP Client with KeepAlive iN DPM ... 75
R T O o 1o 1T (o (1 o SRS 75
T1.6.2 SAMPIE COUE ..ot e e et e e e e e e e et e e e e e e e e e nnbenneaaeeas 75

11.6.21 ReGISIratioN ..o 75
11.6.2.2 Data TranSMISSIONcoiii it e e e eeneeeeeeeeeas 76
TR T o (o 1T L A Lo 2 RSSO 77

A U T T o3 (Y SRR 77
O O o (o 1T o N 1 o RSO 77
O A o o T A o] 4 R RPR 78
LA TS 7= 1 4 o] (=X @7 Lo = SO PPTRPP 78

11.7.31 INIGIANIZALION ..o 78
11.7.3.2 Data TranSMISSIONcoiiii i e e e e e ennreaeeeeee s 78

11.8 UDP SEIVEIN N DPM ...ttt e e et e e s sttt e e e st e e e sateeeeeantaeaeeantaeeeeanseeaeesnsaeeeeansseaenans 79
T1.8. 1 HOW 0 RUN ettt e e e e et e e e e e e e e et e e e e e e e e e e annbeeeeeaeeas 79
R T2 o 1o 1T L A o < RSO 79
R TR T T g o] L= 7 Yo [SO 80

11.8.3.1 ReGISITAtioN ... 80
UM-WI-046 Rev.2.6 RENESAS Page 3

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11.8.3.2 Data TranSMISSIONcoiii it e e e e eeeae s 81

11.9 UDP ClENEIN DPMttt et e e sttt e e e st e e e sata e e e e sateeeeesnteeaeeanbseeeeanbaeeeesnsanaeeanseeaeens 81
T1.9.1 HOW L0 RUN Lottt e e et e e e e et e e e e e ab e e e s enbeeeeenbeeeeenres 81

e T2 o (o 1T L Ao 2 SO 81
e TR TS T T a4 To] (=T @7 Yo [YRR 82
11.9.3.1 REGISTratioN ..o 82

11.9.3.2 Data TranSMISSIONccuii it e e e e e e e s 83

12. Network EXamples: SECUNILYccciiiiiiiiiiiciir i s s s 84
P2 B =YY N o o] = i o o SR 84
12.1.1 Peer Application EXamPIEScooooiiieie e 84
12.1.1.1 LIS TR T=Y Y SRR 84

12.1.1.2 LIS 3 1 11= o | S 84

12.1.1.3 DTLS SOIVEN ...ttt e et e e e e e et e e e et e e e e sabae e e e aees 85

12.1.14 D I I 1 1= 3 | SRS 85

L I S RS 1Y o= PSRRI 85
707 T o 1o 1T o T (1 o SO 86
T2.2.2 HOW T WVOIKS ..ttt ettt e e e e e ettt e e e e e e e e e st e e e e e e e e e e e annbeeneaaaens 86
LA TS T- 1 1 4] o] (=X @7 Lo = PO RPR 86
12.2.31 INIGIANIZATION ..o s 86

12.2.3.2 TLS HaNASNAKEcoooieiiiieiiiee et 88

12.2.3.3 Data TranSMISSIONcoiiiiiiiiiie et e e e e e eeneeeeeeeeees 88

12.3 TLS SEIVEIIN DPM ...ttt e st e e e et e e e st e e e sateee e e antaeaeesntaeeesanseeaeesnsseeeeanseeaeeans 89
12.3.1 HOW L0 RUN oot e et e e e et e e e e et e e e e e ab e e e e eabeeeeennres 89

2 T2 o (o 1T L A Lo 1 SRRSO 90
12.3.3 SAMPIE COUE ..ot e e e e e e st e e e e e e e e e et e e e e e e e e e eeaanbeaneeaaeas 90
12.3.3.1 REGISratioNo 90

12.3.3.2 LIS TR =Y (0 o RS 91

12.3.3.3 Data TranSMISSIONcoviiiii it e e e e e e rareeee s 92

2 I S 1Y o PSRRI 92
1241 HOW O RUN Lottt e ettt e e et e e e et e e e e e s bee e e enbeeeeenbeeeeennees 92
2 o 1o VT L Ao 2 SO 92
12.4.3 SAMPIE COUE ...t e e et e e e e e e e et e e e e e e e e eanbeneeeaeeas 93
12.4.3.1 ReGISTrationcoo i 93

12.4.3.2 TLS HaNASNAKEccooiiiiieeciiee ettt 94

12.4.3.3 Data TranSMISSIONccuiiiiiiiiiii e 94

12.5 TLS ClENtIN DPM ..ottt e e e e st e e e st e e e et eeeeesnbaeeeeantaeeeeansaeaessnsaneessnsneeanans 95
78 Tt B o (o 11T o U o SRS 96
T2.5.2 HOW I VVOTKS ..ceiieieee ittt ettt e e e e e sttt e e e e e e e e st a et e e eeeesessntsaneeaeeesennntenneeeanas 96
12.5.3 SAMPIE COUE ... et e et e e e e e e e e e e e e e e e e e anteneeeaaeas 96
12.5.31 ReGISIratioN ... 96

12.5.3.2 TLS SOIUP ..ttt e e e s 97

12.5.3.3 Data TranSMISSIONcoiii it e e e e eee s 98

L B RS = Y PSRRI 98
UM-WI-046 Rev.2.6 RENESAS Page 4

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

P72 T B o (o 1Y o 1 o SO 98

T2.6.2 HOW L WVOIKS ...ttt ettt e e e e e e sttt et e e e e e e e e st e e e e e e e e e eaannbeeeeeaeeas 99

12.6.3 SAMPIE COUE ...ttt et e e bt e e et e e e n e e e n e e e e nbe e e e e nees 99

12.6.3.1 INIIANIZALION ..ot 99

12.6.3.2 DTLS HandSaKe.......ccoiuiiieiiiiiie ettt ee e 101

12.6.3.3 Data TranSmMISSIONcooii i e e e e 101

12.7 DTLS SerVEI iN DPIM .. .ottt e sttt e st e e sttt e e st e e e s sse e e e ssseeeesansaeeesnnseeeesnnneens 102

1271 HOW O RUN oottt e e e s e e e e et e e e e ab e e e e e eabe e e e e anreeeeenres 103

L o 1o VT L A o 1 SR 103

12.7.3 SAMPIE COUE ...ttt e e e e et e e e e e s e e e e e e e s e st s ae e e e e e e e e snnreareeaaens 103

12.7.3.1 REGISTratioNeeiieee e 103

12.7.3.2 DTLS SEIUD ..uveiieiiiiiee ettt e et e e st e e e st e e e e sba e e e sbaeeeesbaeeeessaeaaeans 104

12.7.3.3 Data TranSMISSIONcoiieiiiiiiiii it e e e e e e enrreeeeeee s 105

L T I IS T O 1T o | OSSR 106

1281 HOW O RUN oottt ettt e e ettt e e e e s be e e e e snbe e e e ennreeeeenees 106

L2 T o (o 1T L A 0T 1 R 106

12.8.3 SAMPIE COUE ...ttt e e e e e et e e e e e e e et e e e e e e e e eeenabaaeeeaaens 106

12.8.3.1 INIGAlIZALION ..o 106

12.8.3.2 DTLS HanASaKE.......ccciuiiiiiiiiiee ettt e et e e e sraeeeen 107

12.8.3.3 Data TranSMISSIONcciiiiiiiiiiiie e 108

L I S R O 11T o o I Y OSSR 109

{2 T B o (o 1Y o N U o SRS 109

12.9.2 HOW IEWOIKSottt e e e et e e et e e e et e e e e enreeeeenres 110

12.9.3 SAMPIE COUE ...t e e e e e e et e e e e e e e e et e e aaaeas 110

12.9.31 ReGISIratioN ... e 110

12.9.3.2 DTLS SEIUP ...uteieeiiiiiee ettt ettt e e s et e e s st e e s sbb e e e e sbaeeeesbaeeaeans 111

12.9.3.3 Data TranSMISSIONcoiii it e e e eae s 112

13. Network EXamples: MQTTcccooocirieiriiirerssrsesmeessseessssesssssssssessssssssssesssmssssssesessssssnsesssnssssnsesssnesssnsesssnesas 113

L TR @ Y= oSSR 113

G Tt T TS 1 G = T 1] SRR 113

LR T OSSPSR 113

13.2.1 APIs for Operating MQTTooiiiieie ettt e et e e e be e smbe e e nneeeenee 113

13.2.2 APIs for Configure MQTT MeSSaQINGuutiiiiiiieeiiiiee ettt 115

13.3 MQTT Connection and FIOW Chartcocuiiiiiiiiii et e e ae e e s nnneee s 117

L T 1= SO S 119

13.4.1 TeStENVIFONMENTot e e e e e e e e e e s e e e e e e e e e nnreeeeeeaens 119

LT N T (U o F SO OR 119

13.4.3 ClrifiCAte ..uuiiiiiieie e e 120

R T 0 o)1 Y SRR 120

13.4.4.1 QOS=0 MESSAGEce ettt 120

13.4.4.2 QOS=1/2 MESSAGE ...ttt e 121

13.44.3 MQTT OVEN TLS ...ttt e e e st e e e st e e e sbeneeessaeaaeans 122

13.4.4.4 Username and PasSWOrdccoocuiiiiiiiiiieiiiiiee ettt e et e e sreeee e 123

UM-WI-046 Rev.2.6 RENESAS Page 5
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

G T 3 TS 10| o 1= o7 3 o =T SR 123
13.4.5.1 T (1] o J SR 123

13.4.5.2 MQTT OVEI TLS ..ottt s e e e sb e e e e e sbaeaaeans 124

13.4.5.3 Username and PasSSWOIdcooiii e e e e e eae s 124

13.4.54 VWL ettt e e e e ettt e e e et e e e e st e e e e nbe e e e e nbe e e e e nreeeeenees 125

13.4.6 MQTT Pub/Sub Test with DPM and TLS........ccoiiiiiiie et 125
13.4.6.1 MQTT Reconnection SChEMEcooiiiiiiiiiiee e 126

13.4.6.2 DPM POWET Profil€.....ccciie ittt e e e e e e s 127

13.4.7 MQTT CleanSession=0 Test GUIAE.........c...eiiiiiiiiiiiiee e e e 127
13.4.7.1 CleanSession=0 MOGE.........c.cccuiiiiiiiiiie i 127

13.4.7.2 LIS A0S =T o1 SRR 130

G T T =TT SRR 137

LR SIS 11 10T o] (=3 070 To [TSSO 137
1351 TeStENVIFONMENT......eeiiiiiiee ettt e et e e e e e e e e e e e e e e e e e annrneeeeeaens 137
G TR T s T (1] o SRR 137
(G TR TR T o (o 1Y o N =] SR 138
13.5.31 Test with NON-DPM MOGE.........cooiiieiieee e 139

13.5.3.2 Test With DPM MOGE........cccuviiiiiiiee ettt 140

13.5.4 Code WalKINrOUGNoooiiiiiee ettt e e et e e e et e e e e enreeeeenees 142

14. Network Examples: Protocols/Applicationsccccoeiiicccccciiniiin s sser e mn e e nmnnes 146
L T I O YN S 1 11= o OSSR 146
1411 Peer APPIICAtION 146
T4.1.2 HOW O RUN oottt e et e e e e et e e e et e e e e e e abe e e e e sabeeeeenres 146
14.1.3 COAP Client INitialiZation..........c.coeiiiiiiie e e enree e e 146
14.1.4 CoAP Client Deinitializationccueiiiiiiii e 147
14.1.5 CoAP Client Request and RESPONSE..........coiiiiiiiiiiiiieeeiee et 147
14.1.5.1 COAP URI @nd ProXy URIccuuiiiiiiiie ettt 148

14.1.5.2 GET MethOd.... ..ot 148

14.1.5.3 POST MELNOA ...ttt e e e et e e e st e e e e sraeaeeans 149

14.1.54 PUT METhOQ ...t e et e e e sraeeeens 151

14.1.5.5 DELETE MethOdcciiiiiiiie ettt e e srae e e 152

14.1.5.6 (070 YN S 1 o RS 154

14.1.5.7 COAP RESPONSE ...ttt ettt e st e e s e e st e e s nneeeas 155

1 R 070 YN e @ 1o T T =Y o PR SSS 156
14.1.6.1 ReGISTratioNooi e 156

14.1.6.2 Deregistration..........eeii e 157

L | IS G T 1= oSS 158
T4.2.1 HOW O RUN Lottt e e e e e e e e et e e e et e e e e e eabe e e e e sareeeeenres 158
14.2.2 DNS Query INtialiZation.........coooeiiiiie e 158
14.2.3 Get SiNGIE IPV4 AQArESS.....ccci ittt ete e e et e e e e sntee e e e snreeeeenees 159

14.3 SNTP and Get CUITENT TIMEueiiiiiie et e e r e e e e e s e e e e e e e e e s ntnteeeeeeesesannseeneeeeens 159
{7 30 T B o (o 1Y o N 1 o U 159
14.3.2 SAMPIE COUE ...ttt e e et e e e e e e s e e e e e e e e e se b e seeeeaeeeeanaraaeeeaaens 160
UM-WI-046 Rev.2.6 RENESAS Page 6

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

14.4 SNTP and Get Current Time in DPM e a e e e 162
T4.4.1 HOW O RUN .ttt e e e e et e e e e e e e e et e e e e e e e e e annreeeeeaaens 162
L S T 1 4] o] (=X o Lo = PSPPSR 163

LT o I 1 17= 0 SO 165
T4.5.1 HOW O RUN oottt e e et e e e et e e e e st e e e e snbe e e e e anbeeeeenees 166
L TS T T a0 L= @ Yo [SR 166

T4.6 HTTP CHENEIN DPM ...ttt s et e sttt e e e st e e e s st e e e e ssaaeeessseeeesnsaeeeessaeeesanneees 167
T4.6.1 HOW L0 RUN oo e et e e e st e e e et e e e et e e e e e eabe e e e e anreeeeenres 168
L TS T T a0 L= @ Yo [SR 168

L A o I I S T=Y o= OSSR 170
1 3 B o 1o 1Y o N 1 o SR 170
T4.7.2 SAMPIE COUE ..ttt e e e e et e e e e e e e et e a e e e e e e e eeenataaeeeaaens 170

L T VAT LY o S T Yo 1= A2 1= o | SR 172
{38 T N o [1Y o N 1 o R 173
T14.8.2 SAMPIE COUE ..ottt e e e e e e e e e e e s e e e e e e e s e st b reeeeaeeeeaaaraaeeeaaens 173

15. Network EXamples: OTA ... sme e ms e e s s ms e e s s e s s mmme e e e e s e e s e smnnn e e e e esnnnnnnnnes 175

LR @ Y= oSSR 175

15.2 SFLASH MEMOIY AFCA....ciiitiiiiiiieiee ettt ee ettt ettt ettt e e st e e s ae et e e saee e e e s sbe e e e s aneeeeesneteeesnneeeesanneeeas 175

(RS TRC T l d 0) o T | SRR 176

15.4 OTA FIrmMWAare UPAAtecoiiiiiiiiiie ettt et e e e e e e et e e e e e e e e st e re e e e e e e s e snnrraneeaaens 176
1 T S O o 1= o =T SR 177
LT 3V Y 1 o o SRS 177
15.4.3 RESUIL COUE .ooiiiiiiiicieieee ettt e e et e e e e e e st eeea e e e e s sstaseeeeaeeseanntaaneeeanns 177
15.4.4 DOWNLOADoooii ittt e e e e e ettt e e e et e e e stee e e e s baeaeeasteeeeeanbeeeeeantaeaeaansaeeeannses 178
T15.4.5 RENEWottt e e et e e e sttt e e e e st e e e e nbe e e e e e nbeeeeeanbeeeeeanreeeeenees 179

15.4.51 [To Yo} B o [= S 180

LT OSSR 180
LR T Y/ o 1= T OSSP PR ORPPTON 181
LRI S 1 ¥ T (0 = SRR 181
LT T Y o 1 SRS 181
T5.5.4 EXAMIPIE ..ot e e e e e e e e e e e e 184

15.5.4.1 TeSt COMMANGooiiiiiiie e e e e nree e e e nees 184
15.5.4.2 SAMPIE COUER ... e e 185

15.6 OTA Firmware Update — EXIENSIONS...........uuiiiiiiiiieieee e 186
LR I 0= 1o L SRR 186
15.6.2 MCU FirMWAIE ...ttt e e e e ettt e e e e e e et e e e e e e e e s nneeaeeeeaeeeeannnnneeeeeaens 186

15.6.2.1 CRC-32 CalCUIAtioNncocueiiieiiiiie e e e s 187

15.7 Bluetooth® LE Firmware Update OTAccooiiiiiieeieeeieeieeeeeee ettt 188

LR T O I) T Y SO S 188

T 03 Y o T = T 4 o (= 191

LT B @7 Y/ o (o T Y = I SOOI 191
20 P O o (o 1Y o N 1 o SR 191
16.1.2 How to Enable Cryptographic AlGQOrithmcooiiiiiiiiiie e 191

UM-WI-046 Rev.2.6 RENESAS Page 7

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16.1.3 Cryptographic Algorithms — AES ... 192
16.1.3.1 Application INitializationeueiiiiiiiiiii e ————————— 192

16.1.3.2 AES-CBC-128, 192, @nd 256........coeieieiiiieiee et 193

16.1.3.3 AES-CFB128-128, 192, and 256cccoiiiieiieeiie e 194

16.1.3.4 AES-ECB-128, 192, @Nnd 256cccoieiiiieiiee ittt 194

16.1.3.5 AES-CTR-128 ...ttt ettt et e e et e e ee e e smeeeenneeeenes 195

16.1.3.6 AES-CCM-128, 192, aNnd 256ccouiiiiiieiiieiiie ettt 196

16.1.3.7 AES-GCM-128, 192, @nd 256.......ccciceieiiereiieeeieieesieesee s seee e e neee e 197

16.1.3.8 AES-OFB-128, 192, @Nd 256ceiieieiiieeiee e 198

16.1.4 Cryptographic Algorithms — DES ... 199
16.1.41 Application Initialization ... 199

16.1.4.2 DES-CBC-56, DES3-CBC-112, and 168.........ccccceiiiiiiiee e 199

16.1.5 Cryptographic Algorithms — HASH and HMAC.............oooiiiii e 201
16.1.5.1 Application Initialization ... 201

16.1.5.2 SHA-T HASN s 202

16.1.5.3 SHA224 HAaSh ...ttt 203

16.1.5.4 SHA-256 HaShcoiiiieie e e 204

16.1.5.5 SHA-384 HASN ...ttt 205

16.1.5.6 SHA-512 HASh ... 206

16.1.5.7 MDS HASI ... e 206

16.1.5.8 HASH and HMAC with Generic Message-Digest Wrapperccccccvviieeens 207

16.1.6 Cryptographic Algorithms — DRBGcccoiiiiiiiee ettt 214
16.1.6.1 Application INitializationoociiiii 214

16.1.6.2 CTR_DRBG with Prediction Resistance.............ccoccovveiiiiiiiiiciiiieeeeeeeee 214

16.1.6.3 CTR_DRBG Without Prediction Resistance............cccoccceeveeiiiciiieeeec e, 216

16.1.6.4 HMAC_DRBG with Prediction Resistance.............ccccciiiiiiiiees 216

16.1.6.5 HMAC_DRBG Without Prediction Resistance..............cccoooiieeiiiiiiiiiiieee. 218

16.1.7 Cryptographic Algorithms — ECDSA ... 219
16.1.7.1 Application Initialization ... ——————— 219

16.1.7.2 Generate ECDSA Key Pair and Verifies ECDSA Signature................cocuuue.. 219

16.1.8 Cryptographic Algorithms — Diffie-Hellman Key Exchangeccoccooiiii 222
16.1.8.1 Application Initialization ... ——————— 222

16.1.8.2 How Diffie-Hellman WOrKSooiii i 222

16.1.9 Cryptographic Algorithms — RSA PKCSHTooiiiiiiie et 226
16.1.9.1 Application Initializationeueieiiiiiiiii e ——————— 226

16.1.9.2 HOW RSA PKCSHT WOTKS ...ceiiieiiieiie et 226

16.1.10 Cryptographic Algorithms — ECDHcccooiiiiiiieiie e e 230
16.1.10.1 Application Initializationccoviiiii i 230
16.1.10.2 How ECDH Key Exchange WOrKSccuiiiiiiiiieiiiiiie e 231

16.1.11 Cryptographic Algorithms — KDFcoiiiiiiiiiie e 235
16.1.11.1 Application Initialization ..o 235
16.1.11.2 HOW KDF WOTKS ...ttt e e smeeeeneeens 235

16.1.12 Cryptographic Algorithms — Public Key Abstraction Layerccccccooveiiiiieeieeiiecciieeeeen, 236
UM-WI-046 Rev.2.6 RENESAS Page 8

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16.1.12.1 Application Initialization ... 237

16.1.12.2 How to Use Public Key Abstraction Layercccccoiiiiiiiiiiiiiiiniiieeeee e 238

16.1.13 Cryptographic Algorithms — Generic Cipher Wrapper ... 248
16.1.13.1 Application Initialization ... 248

16.1.13.2 How Generic Cipher Wrapper is USed..........cccceeeieeiiiiiiiiiiiiee e 248

17. Peripheral and System EXampPles..... ... ssms s s mn e e s s e 255
200 T 7Y o SO S 255
%0 P O 1 011 o o U2 1T o PP 255

200 T Y | SRR 256
T7.1.3 HOW O RUN oottt e e et e e ettt e e e e s be e e e e snbee e e e nnreeeeenees 259

0 S T o L= o Yo [R 259
17.1.4.1 Application INitialization ... ——————— 259

17.1.4.2 Data REAAWVIILEovveieieee it e e e enrreeeeeee s 261

LA € 1 = [OSSR 262
L% B [011 oo [V o] o I OO PP ORPPPPRPN 262

L N o SRR 263
T17.2.3 HOW 0 RUN ettt e e ettt e e e e e e sttt e e e e e e e e e nnreeeaaaaens 265
L S Y- 11 4] o] (X O Lo = PRSI 265

LA T €1 o (@ = (=1 01 (o] o TSRS S 267
T7.3.1 HOW O RUN oottt e et e e e ettt e e e e st e e e e snbe e e e e anreeeeenees 267

LG T T 4o L= @ Yo [P 268

LA S V7 SO 268
L% S T 1 011 o o [U T2 1T o SRR 268
17.4.1.1 D O Y = 1] =Y USSP 268

17.4.1.2 [2C SIAVE .ttt e e sba e e e araeeaean 269

LA N o PRSPPSO 269
L 3G T o (o 1Y (o N U o SRS 271
17.4.3.1 TESEPrOCEAUIE ...cooiieiiiee et e e e e e e e e e e e e aans 271

17.4.3.2 Sample Code for UsiNg [2Cooiiiiiiie et 271

LA T V2 TSR 273
28 Tt B o 1o 1Y o N 1 o SR 273

LR T U LT I T SRS 273

LA T TS T- 1 4] o] (=X O Lo = PSPPSR 273

AL T L SO 274
T7.6.1 INIFOAUCTION ..t e e e e s et e e e e e e e e e eeeeae s 274
L0 Y o PSPPSR 275
LS TR T o (o 1Y o N U o RS 275
17.6.3.1 TESEPrOCEAUIE ...ooviieiiieie e e e e e et e e e e e e e e aaes 276

17.6.3.2 SAMPIE COAE ... 276

LA A 2 LSS 277
S0 % T 1 011 o o U2 1T o SRR 277

L £ S SRR 278
17.7.3 INTErruUPt DESCIIPON.eeeiiie e e e e e e e e e e e e e e aeeeaae s 280
UM-WI-046 Rev.2.6 RENESAS Page 9

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

A S o (o Y o N 1 o U 280
17.7.5 Sample Code — SAMPLE_READoooiiiiiie ettt e 281
17.7.51 TESE PrOCEAUIE ...coviieieieee e e e e e e e e e e e e e enes 281

17.7.5.2 Sample Code for Reading ADC..........ooiiiiiiiiiiiiii e 281

17.7.6 Sample Code — ADC_SAMPLE_INTERRUPTccoiiiiiiiie e 281
17.7.61 TESE PrOCEAUIE ...coiiiiiiiee e e e e e e e 281

17.7.6.2 Sample Code for ADC INterrupt.........ccoieiiiiiiiiiie e 282

17.7.7 Sample Code — ADC_SAMPLE DPM........oooiiiiii et 283
17.7.71 TESE PrOCEAUIE ...ooiiiiiieee e e e e e e e 283

17.7.7.2 Sample Code for Wake Up DPMcooiiiiiiiiiiiiiice e 283

LA 1 = SO 285
L T B [011 oo [UT o] o IR 285
17.8.1.1 ST 1Y =T (=) SRR 285

17.8.1.2 SPISIAVE ...ttt 286

A N PSPPSR 286
L8 TR T o T 1Y o N 1 o SR 287
T17.8.4 SAMPIE COUE ...t e e e e e e e e e e e e e e e et et e e e e e e e e e snntaaeeeaaens 288

LA = 10 1 [SO P USRS 289
S8 T B [011 oo [UT o o I USRI 290
17.9.1.1 ST [1V = = SRR 290

17.9.1.2 SDIO SIAVE ..eeeeeieiiiiee ettt ettt ae e e nres 290

LA N TSRS 290
17.9.3 HOW L0 RUN oottt et e e e et e e et e e e e e eabe e e e e sareeeeenres 292
17.9.4 SAMPIE COUE ...ttt e e e e e e e e e e e e e e et aeeaaaeas 292

T7.10 SDIEMMC ...ttt ettt e e sttt e e sttt e e e ae e e e e e sttt e e aase e e e e e seeee e s nseee e e nsee e e e neteeeennteeenannreeas 292
%0 0 T R 1 011 o o U2 1T o SR 293

200 O SRR 293
17.10.3 HOW L0 RUN oottt e e et e e e et e e e et e e e e e eabe e e e e aabeeeeenres 294
17.10.4 SAMPIE COUE ...t e e e e e e et e e e e e e e e e aabaaeeaaaens 295

17.11 User SFLASH Read/Write€ EXamPIE...........ovvieiiiiiiiiieiieee ettt e e e e e 296
00 P O o T V0 (o N 1 o SR 296

0 7 U LT I T SRR 296

L IR TS 7= 4 4][@ Lo = PSPPSR 296
17.11.3.1 Application INitializationeuimiiiiiiiiii e, 296

17.11.3.2 SFlash Read and WIite..........cocuiiiiiiiiiie e 297

L 1 I 1 OSSR 298
L 7 B [011 oo [U T o] o I PP 298

L 1 N PSPPSR 299

17.13 Bluetooth LE COEXISIENCEttt e ettt e e e e e et e e e e e e e e e e anneeeeeeeaens 300
17.13.1 Pin ConfigUrationoooiiiiiiiiiie et a e e e e st e e e e e e e e snaraaeeeaaens 300
T17.13.2 Pin MUIIPIEX. ... ettt ettt e e e st ee e e e et e e e e eatee e e e s nteeaeeanseeeeeanraeeeenees 301
17.13.3 SDK Feature Definitionoociiiiiiiiie et e 301
UM-WI-046 Rev.2.6 RENESAS Page 10

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

L0 TR S SRR 301

LA R O 00T T T I 1 OSSR 302
T7. 141 HOW L0 RUN Lottt e e e e et e e e e et e e e e st e e e e e sabe e e e eanreeaeenres 302
17.14.2 Timer Creation: SIEep MOde 2...... oot eee s 302
17.14.3 Timer Creation: SIEEP MOAE 3.......oooiiiiiee e e e e e 303

18. DA16600 Example APPliCatioNs ... s mn e e e e e e 305
18.1 Source Structure and ComMMON APISccuuiiiiiiiie ettt e e s e e st ae e e enssaeeesnnneees 305
18.1.1 DA16600 Bluetooth SOUrce STrUCIUIE..........ceviiii i 306
18.1.2 Application APls and Console COMMAaNAScoiiiuiiiiiieeiieiieeee e 306

18.2 ENVIFONMENT SEBIUPD .. .uuiiiiiiii e e e e e e e e e e e e e s et e e e e e e e e e se b e reeeeaeesesnanrraneeeaeas 307
18.2.1 SFIasSh MemOIY Mapcoo it e s e e e e 308
18.2.2 Build the DATBB00 SDK......cccoiciiiieiiiiieeeeiiee ettt e e see e e e stee e e e stee e e e sntee e e esnbeeaeasnreeeeennees 308
18.2.2.1 Gas Leak Detection Sensor Example Featurecccoooiiiiiiiicien, 308

18.2.2.2 TCP Client in DPM Example Feature ... 309

18.2.2.3 Peripherals in DA14531 Driver Example Feature.............cccooeeeeeiiiiiiieie e, 309

18.2.2.4 0T Sensor Gateway Example Feature.............cccooiiiiiiiiii e 309

18.2.2.5 Build SDK in €2 StUdio IDEc.coouiiuieieiecieeeee ettt 310

18.2.3 BUIld DATAS53T SDK ..ottt et e e e e e e et e e e et e e e e e st e e e e e anreeeeenres 310
18.2.31 DA14531 Peripheral Role Project. ... 310

18.2.3.2 DA14531 Central RoOI€ ProjecCt.........cccccuuiiiiiiiei i 310

18.2.3.3 Build the DA14531 projects With Keil..........coociiiiiiiiie e 310

18.2.34 Build the DA14531 projects with €2 Studiocceeuveveeeeiicieeeeeeeeceee e 312

18.2.4 Firmware IMage Update ..ot 314
18.2.4.1 Firmware Update with *ttl File ..o 314

18.2.4.2 Firmware Update without .ttl Filecccooeeiiiii e, 315

18.2.5 RUN DATB600 With JTAG e e e sbee e e e enre e e e e nees 317
18.2.5.1 Run DA16200 With JTAG ... et ee e 317

18.2.5.2 Run DA14531 With JTAG.......coeieieceee e 317

18.2.6 TeSt ENVIFONMENE SELUDooovnniiiieeieeeeeeee e e a e 320
18.2.6.1 WIi-Fi ACCESS POINT.....coiiiiiiee e 320

18.2.6.2 BIUEGLOOTh LE PEEISeoeiieeieeee e 320

18.2.6.3 Laptop to Control Bluetooth LE Peers and DA16600 Boards.......................... 321

18.3 Wi-Fi Provisioning Over BIUELOOTh LEooiiiiiiiiiiiie et 321
18.3.1 Description and ReqQUIrEMENLSccooiiiiiiii i 321
T18.3.2 TeSEPIrOCEAUIEt e e e et e e e e e e e e eeeee s 321
18.3.3 GTL WOIKFIOW ...eeiiiiiiiee ettt e e e e e et e e e e st e e e e s nbe e e e e snbeeeeeanraeeeenees 323
18.3.4 Wi-Fi Service GATT Database DeSIgNcoccuiiiiiiiiee i 324
18.3.5 Wi-Fi Service Application ProtoCol...........c.cooiiiiiiii i 324

18.4 Bluetooth LE Firmware OTA Download Through Wi-Fi...........cooiiiiiiiiiiiii e 326
18.4.1 Description and ReqQUIrEMENTScocoiiiiiiiii e 326
T18.4.2 TeSEPIOCEAUIE ...ttt e e e e e e s e e e e e e s e st e e e e e e e e annrneeeeeaens 326
18.4.3 WOIKING FIOW ... e e e e e 328

18.5 Gas Leak Detection Sensor Example (Bluetooth LE Peripheral)..........cccccveiviiiiiiiiiiiieeee e, 329
UM-WI-046 Rev.2.6 RENESAS Page 11

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.5.1 Description and ReqUIrEMENLSooi i e e 329
T18.5.2 TeSEPIrOCEAUIEttt e e e e e e et e e e e e e e e e eeeeaee s 329
T8.5.3 WOIKFIOW ...ttt e e e e e e et e e e e et e e e et e e e e e sabeeeeeanraeeeenres 330

18.6 TCP Client in DPM Example (Bluetooth LE Peripheral)coouiiiiiiiiiiiiee e 331
18.6.1 Description and ReqQUIrEMENTScooiiiiiiie e 332

(T I =1 B o o7 =T [R 332
T8.6.3 WOIKFIOW ...ttt e e e e e ettt e e e e st e e e e ente e e e e e nbeeeeesnteeeeeanreeeeenres 333

18.7 DA14531 Peripheral Driver Example (Bluetooth LE Peripheral)..........cccccoiiiiiiiiiiie e, 334
18.7.1 Description and ReQUIFEMENLSoooi i e e e e 334
18.7.2 Test ENVIrONMENT SEUUDccoiiieeie e e e e e e e e e eeeeeeas 334
18.7.21 DAT6600 EVB SEIUP ..ccuveieeeiiiiee et sttt ettt stte et e et e e s srae e e e sraeeaeens 334

18.7.2.2 Tera TerM SEIUP ..o e e e 335

18.7.2.3 DA14531 Peripheral Driver Samples.........cooiiiiiiiiiiie e 335

S T T =1 B o o7 =T [SR 335
18.7.3.1 LT o110 USSR 335

18.7.3.2 PEFT SYSTICK ettt 336

18.7.3.3 =T IR (T =Y O o =T o PR 337

18.7.3.4 PEri IMEr0_DUZ ..o e 338

18.7.3.5 PEri IMEI2_PWIM . 339

18.7.3.6 PEI DA_IVL..coiie s 339

18.7.3.7 L= V2o ==Y o] o] o I SR 340

18.7.3.8 PEri SPI_flash.......oooi e 341

18.7.3.9 T e o] o TO SR 342

R T A S VAT o 4 o SRR 343
18.7.5 GPIO PINS IN DATAS3T ...ttt et et e e et e e et e e et e e e e nnbeeeeenees 344

18.8 loT Sensor Gateway Example (Bluetooth LE Central)............cooiiiiiiiiiiiiiee e 344
18.8.1 Description and ReqQUIrEMENLSccooiiiiiiiiii i 345
18.8.2 Test Setup and ProCeUIE..........ooo it e 345

RS S VAT o 5 1o SRR 347
18.8.4 GTLIMESSAQE FIOW.....oieiiiiiiiieeee e e e e e e e e e e e e e abaeeeeaa s 348
18.8.4.1 INIGANIZALION .o 348

18.8.4.2 Provisioning MOGEcooiiieei e 349

18.8.4.3 Scan and CoNNECE 10 SENSOT.........c.uuuiiiiiee i e e 350

18.8.4.4 Enable Sensor POSTINGccoiciiiiiiiiiiee et sveee et ee e 351

18.8.4.5 Disable Sensor POStING........ccuvuiiiiiii i 351

Appendix A License INfOrmation.............iiii i nmnnes 352
Nt N \Y T Y=Y U 1 (o T R S I o =Y o == 352
A2 MINIUPNPC LICENSEttt e ettt e e e e e s ettt et e e e e e sastntaeeeeaeeesannsstaeeeeaeeesannnsnees 352
Appendix B TX Power Table Edit.............coooiiiiiiiiii e ese s s s s s st s s s s s s s s s e s s s e s e s e s e s e s e s e s e s e s e s s s e s e s e s e s esenenensnensnenenenns 353
= 0 I U o 1= 1D G 01 PR 353
B.2 Apply Tuned TX Power to Main IMagec..uiiiiiiiiiii e 353
N o 1= 0 o 1 G O T T 355
C.1 Find/Optimize Stack Size for APpliCatioNSoeiiiiiiii e 355
UM-WI-046 Rev.2.6 RENESAS Page 12

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

C.2 How to Make/Write User Data to User Area of Flash Externally...........ccccooiiiii 355
Appendix D Country Code and TX POWETccuciiriimeinieniniinies s ssssss s sssss s ssssssssss s ssssssssssssssssssns 357
D.1 Country Code and ChanNEISooiiiiiiiieiiii et s n e e e nbe e e e enees 357
D I e (oo r=T 1 410 11 o PP POTPPP 361
Appendix E How to Use J-Link DebuUgQger..........ooiiiiiiiiiiec s e e e s s s s s s s s e s s s sssss s s s e s s s es s s s s s s en s ne s s s ssensssnsssnsssssnsnenenns 363
Appendix F Create RTOS Image for fcCSP Using SDK v3.2.7.1 or Earliercccccvvvviiiiniiinnnnsieesnnnsineennns 363
Appendix G Bluetooth LE Customizationccccuiminiiiniimis s s s sssssans 364
G.1 How to Change Bluetooth LE DeviCe NaMEoccuiiiiiiiiiieeiie e 364
G.2 How to Change Bluetooth LE ADV INterval...........occueiiiiiiiiiiiie e 364
G.3 How to Configure Bluetooth LE Hardware RESEt............cccuuviiiiiieiiiiiiieeee ettt 364
Appendix H QSPI CIOCK SeleCtion insccsin s msne s s msn s s e s mme e e e e e s s s mmmnnes 366
ApPPENdiX | POWETr DOWN SEEPccciiiiiiiiiriinis s s s s s s e s s as s mn e ae e s a e s mn e nan e e ans 366
19. ReVISION HIStOrY ...t e 367
Figures
Figure 1. €2 studio project CONFIGUIALIONc.ccuerieieiiieciicte ettt ettt sttt ere et st e s s e eseeneereas 20
Figure 2. Startup files on DAT16200/DA16600 PrOJECTceiveieeiiiiieeiiteie ettt e st e e sb e e s sbeeeeeaaee 21
Figure 3. Applications 0N €2 StUAIO PrOJECT.........cc.eiueiee ettt ettt eeete e e te e e e eteeteeneeeaeeaeeaeas 23
Figure 4. Results of running hello world appliCationsoii i 26
Figure 5. DAT6200 SDK EXAMPIEcccuviiieeiiiiie et e e cteie e e sttt e e e steee e e steeeeessbeeeeestaeeeesntaeeeeaseeeeesnseeeeesnsaneessnsseeesanss 27
Figure 6. Build SDK 0N €2 StUAIO IDEccuiiiiieicieee ettt ettt et te ettt e te e e eesbeeaeeeeeeteeneesreeneenaens 29
Figure 7. Build SUCCESS 0N €2 SUAIO IDE........c..couiiuieeiecie ettt ettt et te et e et eeteeteeteeetesteeaeesteeaeesseeteeneesreeseennens 30
Figure 8. Boot 1ogo with fCCSP-LP RTOS IMAGEccccuiiieiii ettt e et e e e e e e s e e e e e e e s saarnaee s 31
Figure 9. ROOE CA €XAMPIEcooe ottt e e e e e e e e s e et e e e e e e e e sa st e taeeeeaeeesasbareeeeaesessannrsnneeas 39
Figure 10. Client Certificate @XAMPIEooo i e e e e e et e e e e e e e s seaareeeeeas 40
Figure 11. Private KEY @XamIPIEcooi ettt ettt e e e ettt e e e an bt e e e e snbe e e e e snbaeeeeanbeeeeeane 40
Figure 12, WatChdOg OVEIVIEWccoiiiiiieiiiiee ettt ettt e ettt e e e et e e e st e e e e sn bt eeeeambeeeeeanbeeeeesnbaeeeeanbeeeeeanes 43
1o U=t X POt 54
Figure 14. Write factory default ValUEScooo e 54
Figure 15. Read factOory VAIUES.........coo ittt e ettt e e e et e e e sttt e e e sabae e e e sbeeeeeane 54
1o U =T LG AT LY USRSt 54
Figure 17. Get_Scan_RESUIL AP IStoo it e et e e e st e e e st e e s sbee e e e sbaeeesssaeeeeanes 60
FIgure 18. OVETall tESt SEIUP......citiiie ittt e e e et e e e st e e e e ste e e e e snteeeeeantaeeesansaeeeeanbaeeesanssneenanes 62
Figure 19. DA16200 EVB — AP connNection COMPIELEouiiiiiiiiiiiieiiiiiiieieeeeeeeee e eeeeeeeeeeeseesssssssssssessssennne 62
Figure 20. Start 10 NInja ULITIEYcooieiee ettt 63
Figure 21. SeleCt TCP SEIVEI SESSIONccoiiiiiiiiii e e e ettt e e e ettt e e e e e e et e e e e e e e e e et a b e e eeeeeeesaabareeeeeeeessensrsreeeas 63
Figure 22. TCP Server SESSION WINAOWSccoiiiiiiiiiiiiieeiiiiee e aieee e e ateee e e abeeeeeaateeeeesbeeeeeabeeeesabeeeeesbaeeesabeeeesanes 64
Figure 23. Start TCP SEIVET SESSIONcoiiiiiiiiiiiiiie ittt ettt e ettt e e e e be e e e s be e e e e sbeeeeeanbeeeeesbeeeeesbaeeeeabeeeeeanes 64
Figure 24. TCP connection With TCP CHENT........uiiiii ettt e e e b e e e anes 65
Figure 25. TCP data communication With TCP CHENt ..o 65
Figure 26. WOrKfIow Of TCP CHENtottt et e e s st e e e st ee e e e abeeeeeaaes 66
Figure 27. Workflow of TCP Clent in DPM ...ttt ettt e et e e sbeeee e aaee 68
Figure 28. WOTKIIOW Of TCP SEIVETeiiiiiiiiie ettt e et e e e st e e e st e e e ste e e e sntaeeeesnbaeeeesnbaeeeeansaeeeeanes 71
Figure 29. Workflow of TCP SErVEr iN DPIM........uiiiiiiiiiee ettt e e st ee e e st e e e st e e e e sbaeeesssseeeeane 73
Figure 30. Workflow of TCP client with KEepAIive in DPIMc.ooiiiiiiiii ettt e e sraee e 77
Figure 31. WOrkflow Of UDP SOCKEL...........cciiiiiiiiiiiee ettt e e e e e e e e e e e e be e e e e e e e s seanrsnneeas 78
Figure 32. Workflow of UDP SErver in DPMooo ittt e e e e e e e e s s are e s 80
Figure 33. Workflow of UDP Clent in DPIMoouiiiiiiiiie ettt ettt e ettt e e e st e e e e sbaee e s sbeeeeeanes 82
FIGUIE 34. STAM TLS SEIVET ...coiii ittt e e e ettt e e e e e s e et a e e e e e e e sasbateeeeeaeeesassaseeeeaeeaesansrsnnneas 84
[T [0 R Fo TS = A I S R 1= o | PSR PP 84
Figure 36. TLS CENt IMEOUL....... ..ottt e e ettt e e e et et e e e sttt e e e sttt e e e sabaeeeeanbeeeeeane 85
FIGUIE 37. STArt DTS SEIVET ... ettt ettt e ettt e e e ettt e e e et et e e e aabe e e e e anbeeeeesnbeeeeesnbaeeeeanbeeeeeanes 85
Figure 38. Start DTLS ClENT ..ottt e ettt e e ettt e e e ettt e e e e be e e e e ambe e e e e anbaeeeeanbeeeeeane 85
Figure 39. WOrKFIOW Of TLS SEIVETuiiiiieiiee ettt ettt e e st e e s rb et e e e sabae e e e abeeeeeaae 86
UM-WI-046 Rev.2.6 RENESAS Page 13

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.

Workflow of TLS server iNn DPM ...
WOTKFIOW Of TLS CHENL.....eeiiieeeeeee e
Workflow of TLS client in DPM ... e
WOTKFIOW Of DTS SEIVEN ...t
Workflow of DTLS server iN DPM.... ..o
WOrkflow Of DTLS ClENt......ccoiiiieeeeeeeeee e
Workflow of DTLS client in DPM ...
MQTT MeSSAGING CONCEPLevvieeiiiiiieiiiiie ettt ettt et e et e e e nnneeees
MQTT client flow Chartoiiiii e
Publish QOS=0 MESSAGE.......uuetiiiiiiiee ittt
Publish QOS 1 MESSAGEcuuiiiiiiiiii e
Publish QOS 2 MESSAGE.......ueeiiiiiiiii e
Configure parameters and publish messagecccccoeveeeiiiiiieieie e,
PublisSh SECUIe MESSAQEeuviiiiiiiiieiiiiee e s
L6 ES=T (oTo 1o EO SO OTPRR
DPM sleep after MQTT CONNECHONeviviiiiiiie e
MQTT UC WaAKE-UP...ceeiuteiieeitiieeeiieieeesiteeeesiteeeesneeeeesnseeesssseeeesnsaeeesnneees
MQTT wake-up for sending MeSSAJEcccueriiieiiiiiiiiee e
MQTT COMMUNICALIONceeveiii e e e e e e e e e eees
Broker console - CleanSession=1 connNectioncceeeeveiiiiiiiiiiiiereeeneens
Broker console - CleanSession=0 connectionceeeeveiiiiiiiiiiiiieneeeneens
MosqQUItto MQTT DIOKETcoeeiiieiiiieie e
Mosquitto MQTT SUDSCIIDENccouiiiiiiiiiie e
Mosquitto MQTT pUbliShEr ..o
MQTT Client iS readycooiuiiiiiiiiiii e
MQTT PUDIISH ...
Receive MQTT MESSAGE......uuiiiiiiiiii ettt
Receive and reply MQTT MESSAGE.......ccueiiiuiiiiiieiiiee et
MQTT UNSUDSCIIDEot e e e
MQTT client sample start-up (in DPM mode).........ccccovueriiininiieniieeieeee,
Periodic MQTT publish (in DPM MOde).......cccoviiiiiiiiiiieiiiceiee e
Receive MQTT message (in DPM mode)cccovveiiiieiiiiciniee e
MQTT message receive and reply (in DPM mode).........cccooeeiiiiiieneiinnees.
MQTT unsubscribe action (in DPM mode)..........cccccviiiiiiiiiieieieee e,
Start of CoAP server application ...
GET method of COAP ClieNt #1 .. .ooeeeeeeeeee e
GET method of COAP ClIeNt #2ooeeeeee e,
GET method of COAP Client #3 ...
POST method of COAP client #1........eeeiiieeee e
POST method of COAP Client #2.........eeiiieeeeee e
POST method of COAP client #3........eeiiieeeeee e
PUT method of COAP Client #1oovveeiiiiieeeeeee e
PUT method of COAP ClieNt #2oveeiiiiieeeeeee e
PUT method of COAP Client #3ooveeiiiieeeeeeee e
DELETE method of COAP CHeNt #1......coenieeeeeeeeeeeeeeeeee e
DELETE method of COAP CHEeNt #2......cooniieeeeeeeeeeeeeeee e
DELETE method of COAP Cent #3.....ccoonieeeeeeeeeeeeeeee e
PING method of COAP Client #1.....ooeeieeeeeeeeeeeeee e,
PING method of COAP Client #2.........ooiieieeeeeeeeeee e,
CoAP observe of COAP clieNt #1 ...
CoAP observe of COAP ClIeNt #2 ..o
CoAP observe of COAP ClIent #3o
DNS QUETY FESUIL ..o e
Result of DAT6200 SNTP 1. ..
Result of DAT6200 SNTP H2.... oo
Result of DA16200 SNTP DPM #1....ouvniiiieieeee et
Result of DA16200 SNTP DPM #2.......uiiiiiieeeeee et
Result of DAT6200 HTTP SEIVEN.......uuuieiiieieeeeee et e e
OTA UPAALE IAYEX ... e
Firmware header informationcooooeniiiiee e

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 14

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Figure 100. Firmware DOWNLOADooo ettt ettt e s bt e e s ae et e e s aae et e e snseeeesnteeeesanneeaenn 179
Figure 101. Firmware RENEWttt e et e e e aneeee s 180
Figure 102. BOOt iINAEX OPEIAtIONouiiiiiiiiiiie ettt ae et e e bt e e s nbe e e e s nneeee s 180
Figure 103. MCU fIMMWAIE.coo ittt et e bt e e s b et e e s bttt e e s bb e et e s nbe e e e snbe e e e snnneee s 187
Figure 104. ReSUILS Of Crypto AESoeiiiiie ettt ettt e e sttt e e s ene e e e s nste e e snnsaeeesnnneeeean 192
Figure 105. RESUIL Of Crypto DESciiiiiiiiiiie ettt st e e sttt e e s ne e e e s asseeeesensaeeesanseeeesnnsseeesanneeeenn 199
Figure 106. ResUlt Of Crypto Nash #1.......ooo ittt e e s e e s ens e e e snnsaeeesnnneeeean 201
Figure 107. Result Of Crypto NASh #2........oooo e e et e e e e e e e s e st e e e e e e e saaannes 201
Figure 108. Result Of Crypto DRBGcoiiiiiiiiiiiieiee ettt e e e e e e e e e e e e s e et e s e e e e e e e sasanbaneeeaeeesaannnes 214
Figure 109. ResuUlt Of Crypto ECDSA ..ot e e e e e e e e e e e e s e st e e e e e e e e e sasanbaneeaaeeesannaes 219
Figure 110. Result of crypto Diffie HelIManoooiiiiii e 222
Figure 111. ResuUlt Of Crypto RSA ... ettt e e s ne e e e s nte e e e s nnneeee s 226
Figure 112. Result of Crypto ECDH ...ttt e e aneeee s 230
Figure 113. ReSUIt Of Crypto KD ...ttt e s bt s s et e e s nbe e e e s aneeee s 235
Figure 114. Result of Crypto PUDIIC KEYueiiiiieie et 237
Figure 115. ReSUIt Of GENETIC CIPNET........ii ittt e e s e e s ae e e s s e e e snntaeeesnnneeeean 248
Figure 116. RESUIL Of UART H1ottt e st e e sttt e e st e e e st e e e s st eeeesssaeeesansseeesnnsseeesnnneeeesn 259
Figure 117. RESUIL Of UART H2.... ..ottt ettt e sttt e e st e e sttt e e s se e e e ass e e e e sssaeeesnsaeeesnnsaeeesnnneeeenn 259
Figure 118. PWM DIOCK GIQQIAIMeeiiiiiiiiiiieieieieieieteeeeeeeeeeeeesseseeesssesasssassesssssssssssssssssssssssssssssssnsssssssssssssnsnsnnnsnnnns 274
Figure 119. ADC control bIOCK diagram...........cc.uuiiiiiiiiii et e e e e e e e e e e e e e e st eeeeaeeesaannnes 277
Figure 120. SPI loopback COMMUNICAtIONueiiiiiiiiie e e e e e e e e e e e s e eannes 288
Figure 121. SDIO and SD/EMMGC CONNECIONuueiiiiiiiiie ittt e e s e e e s ne e e e snbeeeesnnneeee s 295
Figure 122. SFlash example Sample teSt 296
Figure 123. DA16600 Bluetooth SOUrCe SrUCUIEeiiiiiiiiie e e 306
FIGUIE 124, PrOJECE VIEW ...ttt ettt e ottt e e skttt e s bbbt e e s bt et e e e bbbt e e snbb e e e s nnneee s 310
FIGUIE 125, KEII — DUIIA ...ttt e bt e e s a bt e e s bttt e s nb b e e e snbe e e e s nnneee s 311
Figure 126. ProjECt SEIECHONeiiiiiee et e et e e sttt e s nb e et e s abe e e e s nneeee s 313
FIgure 127. DEVICE SEIECHION ...coei ittt ettt ettt e e e e e e e s ettt e e e e e e e e e nnbeeeeeeaeesaannbeeeeaaeeesaannnes 313
Figure 128. €2 studio projeCt DUIIo e e e e e e e s e e e e e e e e nnnes 314
Figure 129. DA16600 images and .t files 10 Programc..oiiiiiiii it naeeee s 315
Figure 130. Steps to program by At file..........ccuiriiiiie e 315
Lo UL =T I B R 1= = T =Y o o P PPPPPPPPPPPPRPPRt 316
(o U= T I Y2 G- TI R oo (o] o OSSR 318
Figure 133, Keil — AEDUQG. ... ettt ettt e e s a et e e s ne e e e e ntteeesnnneeae s 318
Figure 134. Keil — JTAG AEVICEcoi ittt e sttt e e e be et e e s bt e e e s be et e e snsaeeesnseeeesanneeaean 319
Figure 135. Tera Term — DA16200 waiting for DA14531 0 CONNECEoocuiiiiiiiiiiii e 319
Figure 136. Keil — Start dEDUGGET ... ittt et et e e s nneeee s 319
Figure 137. Keil — evaluation Mmode di@logc..ooiiiiiiiiiii e ee e 320
T T 1S T T I 0 o S UPRERR 320
Figure 139. Bluetooth LE assisted with Wi-Fi proviSioning............oooueiiiiiaiiiieee e 321
Figure 140. Renesas Wi-Fi ProViSiONING @D« ceeiaaeiiiiiiiiiee e ettt e e e e e et ee e e e e e e s s e aneeeeeeaeeeeaannreeeeaaaaeaaannnes 322
Figure 141. GTL message sequence chart — initializationccoooiii i 323
Figure 142. GTL message sequence chart — connect and WIte...........ccccooiiiiiiiiiie e 324
Figure 143. GTL message SeqUENCE Chart — r€aUc.uuuiiiieiiiiiieee et e e e e e e e s eanes 324
Figure 144. Provisioning application — custom COMMaNdc.uoiiiiiiiiiiiiie e 327
Figure 145. Standalone gas leak deteCtion SENSOTcooiiiiiiiiiii e 329
Figure 146. DA16600 TCP ClIent in DPIMc.oiiiiieiie ettt et e et e et e st e e smteeenseeenneeeeneeeesnneens 332
Figure 147. TCP Client iN DPM SIEEPcoiiiiiiiieiiiie ettt sttt e e ae e e st e e e s anneeee s 333
Figure 148. TCP client — wake up from DPM SIEEP.........ooi it 333
Figure 149. DA14531 peripheral device CONTIOLoiiiiiiiii e 334
Figure 150. DA16600 EVB SW CONIG. Tuiiiiiiiiiiie ettt ettt ettt e st e e smt e e enteeenneeesmbeeesnneens 334
Figure 151. DA16600 EVB SW CONIG. 2......eiiiiiiiiiieiie ettt ettt et et e e st e e enbeeeebeeesmbeeesnneens 335
FIGUIE 152, Pri DINKY ...ttt ettt e bt e a e e st et e sab e e et e ebe e e nabe e e nnnee e 336
FIQUIE 153, PEIT SYSHCK ...eveiiiiiiiiiiiiiiiiiiiiieti ettt ee e e eeeeeeeeeeaeesaeeeeeeeseeeseeessseaseesesssssssssssssnssssansnnnsssnnnnnnnnnnnns 337
T [0 I oV S T I T g 1= O o = o U PRRRR 338
Figure 155. Peri TIMEIO _DUZ ...ttt e e e e e st e e e e e e s e s s teaeeeaaeeeesnnraneeaaeeesannnnes 338
Figure 156. Peri TimerQ0_buz (ContiNUEd)eiiiiiiiiiieiee et e e e e e e e e e s e e eeeaeeeseaannes 339
FIgure 157. Peri TIMEIZ2_PWIM ..ottt e e e ettt e e e e e e et e e e eee e s e s asbaaeeeaeeesasnsntaaeeeaaeesaasnranneaaesesaasne 339
FIgure 158. Peri Batt IVlottt ettt e st e e s ae e e s nt e e nneeae s 340
(o [N I KoY I =T P o =T=T o] o] o SO SI 340
UM-WI-046 Rev.2.6 RENESAS Page 15
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Figure 160. Peri 12C_eeprom read/WIIEooo it e e e e s enneeee s 341
Figure 161. Peri Spi_flash — wrong image WarNiNgccooiiiiiiiiii e 341
Figure 162. Correct image version for peri Spi_flash sample ... 342
Figure 163. Peri SPi_flash ...ttt e ettt e e e e e e e e et e e e e e e e e e e e e eeeaeeeaaannes 342
Figure 164. Peri Spi_flash read/WIILEc.uiiiiiiiie et e e e e s ntae e e s nnneeee s 342
Figure 165. Peri GPIO CONfIQUIALIONcoiiiiiii ittt et e e st e e s ee e e s ense e e e s nnseeeesnnneeeenn 343
Figure 166. 10T SENSOI QAEWAYeiiiiiiii ittt e e ettt et e e e e e e s e bttt e e ae e e e e e nnbeeeeaeeeeaaannbeneeeaeeeaaannnes 345
Figure 167. GTL message sequence chart — initialization ... 348
Figure 168. GTL message sequence chart — proviSioning MOAE...........ccoeeiiiiiiiiiiiee e e 349
Figure 169. GTL message sequence chart — scan and CONNECE............cooeeiiiiiiiiiieie e 351
Figure 170. GTL message sequence chart — enable sensor posting..........ccccuiiiiiiiiiiiii e 351
Figure 171. GTL message sequence chart — disable Sensor pOStiNgccueiiiiiiiiiiiiii e 351
FIgure 172, TX POWET TADIEoo ittt et e st e e s bttt e s bbbt e e snbe e e e s nneeee s 353
Figure 173. TX pOWET table SOUICE COUE........iiiiiiiiiiiiiiii ettt sttt e e aneeae s 354
Figure 174. ChecCK StACK SIZE.........uiiiiiii ettt e et e e s aneeee s 355
Figure 175. SNapshot Of NEX EAItOroii it ae e st e e s nnneeee s 356
Figure 176. Settings of MUIIAOWNIOAAEToooiiiiii e e e snnta e e e snnneeeean 356
Figure 177. Read user data uUSing COMMEANGooiiiiiiiiiiiiii et e e e e et e e e e e e e e anbe e e e e e e e e aaannnes 356
Tables

TaDIE 1. WEKE-UD SOUICE.....cciiiiiiieitiiie ettt ettt st e st s ket e s et e e e e e e s e b e e e e e s e e e e e nre e e e e nre e e e enreas 32
Table 2. APIS fOr NVRAM ...ttt ettt e et e stte e s et e e teeeemte e e aeeaaseeeamteeesseeeamseeensaeeanseeenneeeaneeesnseeesnsenns 34
Table 3. APIs for reading certificate from flash............coo i 36
Table 4. API to write certificate t0 flashcoor i 37
Table 5. APIs to delete certificate iN flash e e 37
Table 6. Console command fOr CertifiCateoo i e e e e 38
Table 7. Hardware acCelerator AP oottt e e e e e et e e e e e e e s et e e e e e e e e saannnaeeeeaeeeean 41
I Lo LIRS T O S (O Y] O UURURRRRTR 41
LI 1o (=T TR o o [USSR 42
Table 10. HardWare DIMA APttt et oo oottt e e e e e e e a ettt eeeaeeeaaannnbeeeeeaeeeaaansnnneeaaaaaaan 42
Table 11. APIS of WatChdOg SEIVICEuviiiiiieei e e e e e e e e e e e s et e e e e e e 44
Table 12. APIs for Wi-Fi CONfIQUIAtIONoiiiiiiiiiieec e e e e e e e e e e s et e e e e e e e e s 47
Table 13. NVRAM INEEGET TYPEee ittt e ettt e s et e e e e mb e e e s e st e e e e annbe e e e enbeeeeenbeeeeaneeas 48
Table 14. NVRAM SNG TYPE ...ttt e e sttt s ettt e e e mb e e s e bt e e e e annbe e e e enbeeeeenbeeeeaneeas 50
Table 15. S2 — Factory Reset button if RED enabled ... 52
Table 16. S2 — Factory Reset button if RED diSabled ... 53
Table 15. APIs for operating MQT T ... ettt e e e ra e e e e aab e e e e anbe e e e eneeas 114
Table 16. APIs for configuring MQTT MESSAGEuueiiiiiiiiee et e e e e e e e e e neeas 115
Table 17. MQTT messaging configuration (String tyPe)........eeieiriiiii e e 116
Table 18. MQTT messaging configuration (INtE€ger tyPe)couii i e 116
Table 19. MQTT client start CONAItIONSoocuiiiiiiie e e e e e e e snree e e e neeas 117
Table 20. CleanSession and Q0S MatriX in MESSAGE RXcocuiiiiiiiiiie it 129
Table 21. CleanSession and QoS matriX in MESSAGE TX ...cciiiiiiiiiiii e e e 129
Table 22. APIs for initializing COAP ClIENTcoieeeeee e e e e e e e e e s e e e e e e e e s 147
Table 23. API for deinitializing COAP ClIENTooi i et 147
Table 24. APIs for setting up CoAP URI and proxy URIooiiiiiiii e 148
Table 25. GET APIfOr COAP CHENT ...ttt e e e e e e e s e e e e e e e e e snnbeeeeeaeessesnsnaaneeaaeeesn 149
Table 26. POST APIfOr COAP CIIENLottt e e e e e e e et e e e e e e e e nnneeeeeaeeean 150
Table 27. PUT APIfOr COAP ClIENT..... ... ettt e e et e e e e e e e e et e e e e e e e e e annnneeeeeaeaean 152
Table 28. DELETE API fOr COAP ClENT ... ittt e ee e et e e emteeeeeeeeneeeemeeeenneeas 153
Table 29. PING API fOr COAP CHENT ... ittt ettt e e st e e e e ebee e e e st e e e e sntae e e eanteeeeeantaeeeenreas 154
Table 30. Response APIS fOr COAP ClIENT..........cooo e aa e 155
Table 31. Observe registration AP for COAP ClIENTc.uiiiiiiiie e 157
Table 32. Observe deregistration API for COAP CHENTcoiiiiiiiee e 158
Table 33. 4 MB Sflash MEMOIY MaAPccouiiiiiiiie et e e e stee e e e st e e e e snbae e e e anteeeeeanteeeeenreas 175
Table 34. RESUIE COUE ...ttt a et b e et e s bt e rab e st e e e b e e sareeenne s 177
Table 35. OT A UPAAte Iy P ..ttt ettt e e e e e et e e e e e e e e e saa b e aeeeeeeeeesssbaeeeaaeeesannssaaneeaaeanan 181
Table 36. OTA update CONFIGUIALION...........uueiiii et e e e e e e e e e s e e e e e e sersraeeeaaeaean 181
UM-WI-046 Rev.2.6 RENESAS Page 16

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 37. APIS fOr OTA fiMWAIE.........oo ittt e e e e et e e e an b e e e e anbe e e e e anbeeeeenreas 182
Table 38. OTA TEST COMMANG.....ccoiiiiiii et e e aa bt e e e h et e e e st e e e e e aabe e e e e aabee e e enreas 185
Table 39. APIS TOr SHA-T NASN..... .ottt ettt et e st e e smteeeeeeaneeeemeeeennneas 202
Table 40. APIs for SHA-224 and SHA-256 Nashcoiiiiiiiie e 203
Table 41. APIs for SHA-384 and SHA-512 NASHcoiuiiiiii et 205
Table 42. APIS fOr IMDS NASK......ccoi ettt e e e ettt e e e ea b e e e e st e e e e snteeeeeanteeeeeanteeeeenneeas 207
Table 43. APIs for generic message digest WIapPEr..........oiiiiiiie ittt e e e 207
Table 44. APIS fOr CTR DRBGcoiiiiiiiiie ettt b et sa e b ek et e st et e sa bt e st e e abe e e sareeenne s 215
Table 45. APIS fOr HMAC DRBGooiiiiiiiiieii ettt ettt b e s bt e s bt e sab e e st e e sbe e e sabeeennee s 217
Table 46. APIS FOr ECDSA. ... ittt ettt h et e e bt ea e e e b et e b et e s b et e ra b e e st e e sbe e e sare e e nee s 220
Table 47. APIs for Diffie-HellMan-IMErKIEcoo oo e 222
Table 48. APIS TOr PKCSHTT RSA ...ttt ettt ettt e et e e teeesmte e e aseeesnteesteeesnteesnseeanneeesnsenenneenn 227
Table 49. APIS TOr ECDH ...ttt ettt ettt et e et e e et et e amte e e aaeeeeneeeaeeeesmteeanseeanneeeanneeeannean 234
Table 50. APIS for PKCSHS PBIKDF2coo ittt et e e tee e et e e aaeeesmeeeateeesmeeeeeeeaaneeesnreeenneeas 236
Table 51. APIs for public key abstraction [ayer ..o 239
Table 52. APIs for generating KEY Pailcoccuuiii ittt et e e e s e e e e st e e e e ssteeeeesntaeaeeanteeeeeansaeeeennsens 241
Table 53. APIs for VErifing SIGNATUMEoiiiiiiiii et ee e e e st ee e e e snbee e e e snbaeeeennreas 242
Table 54. APIs for making SIGNATUMEooiiiiiii et e e e ee e e e st ee e e e enbee e e e anraeeeennreas 243
Table 55.APIS fOr PKCSHTT RSAttt ettt b e h e e s b rab e st e e ab e e sareeennne s 244
Table 56. APIs for initialiZING RSA ... e e e e e e e e e e e e s e st e e e e e e e e e sesnnbaeeeaaeaean 246
Table 57. APIs for parsing private and PUDIIC KEYccciiiiiiiiiiiiie e e e e 247
Table 58. APIs for generic CiPhEr WIaPPEoi oottt e e et e e e 250
Table 59. UART Pin CONFIQUIALIONooiiiiiiii ittt ettt e e e et e e e anb e e e e rnbee e e eneeas 255
Table 60. APIS fOr UART INTEITACEoooiiiiiiiiiiie et et e e et e e e et e e e neeas 256
Table 61. GPIO pin CONFIGUIALIONooiiiiii e e e e e e e e 262
Table 62. Status Of GPIO PIN ... et e e e et e e e e e e e e et e e e e e e e aaannteeeeeaeeeaaannnnneeeaaeaean 263
Table 63. APIS fOr GPIO INTEITACEcooiiiiei e e 263
Table 64. 12C master pin CONTIGUIAtION.........coiiuiiii e e e e e e e e s bae e e e snbee e e e snraeeeennreas 269
Table 65. 12C slave pin CONfIQUIALIONooiiiiiiii ettt ee e e et e e e et ee e e e sntee e e e anbeeeeennreas 269
Table 66. APIS fOr [2C INTEITACE.eii ittt e e e e e e e e st e e e e s e e e e snbae e e eanteeeeeanteeaeennseas 269
Table 67. PWM pPin CONFIQUIALIONoooiiiieiii ettt e e e e et e e e e e e e et b e e e e e e seabnbaeeeaaeean 275
Table 68. APIS FOr PWM INEITACEcooiiiiiiiii ittt b e s 275
Table 69. AUX ADC pPin CONFIGUIALIONeiiiiiiiiie ittt et e e et e e et e e e e snbee e e e neeas 277
Table 70. APIS fOr ADC INTEITACEooiiiiiiie ettt e e e et e e e e e n b e e e e st e e e e snbeeeeenreas 278
Table 71. SPI master pin CoONfiQUIationc..oiiiiiiii et 285
Table 72. SPI slave pin CONfIQUIatIoNoooiiiiii e et 286
Table 73. APIs for SPI Master iNterfaceooi oo 286
Table 74. APIs for SPI slave INTErfaCeooo i e 287
Table 75. APIs for SDIO Master iNTEITACEiiiiiiiie ettt e e e ee e e et e e e e enree e e e enreas 290
Table 76. SDIO slave pin CONfIQUIAtIoNccuiiiiiiiie e e e e e tae e e e sntee e e e snreeeeennreas 291
Table 77. SD/eMMC master pin CONfIQUratioN............ooiiiiiiie i e e e erae e e s 293
Table 78. APIs for SD/EMMOC INTEITACEcoiuuiiiiii it b e nee s 293
Lo LA B O I o 1 1= T U U SO PP 298
Table 80. OTP APT LIS ..ottt h et b et ra et e bt e s bt e e st et e sab e e et e e abee e sabeeenne s 299
Table 81. 3-Pin Bluetooth LE coexistence pin configurationcccooouiiiiiiiii e 301
Table 82. 1-Pin Bluetooth LE coexistence pin configurationcccooouiiiiiiiii e 301
Table 83. APIs for Bluetooth LE COEXISIENCEcocuuiiiiiiiiiie e 301
Table 84. ApPliCation fUNCHONSt e e e e et e e e e anb e e e e nneas 306
Table 85. Major CONSOIE COMMEANGS.........uiiii ittt ettt e et e e e e e bt e e e e s et e e e an b e e e e e anbe e e e e anbeeeeenreas 307
Table 86. TX power SEtting ValUE FANGEccoiuuiiiiiiiie ettt e e et e e et e e e anbe e e eneeas 353
Table 87. COUNTIY COUEeiiiiiiiiee ettt e e e e ettt e e e e st e e e e e s te e e e e asteeeeeasbaee e e s teeaeeansaeeeeanteeeeeansaneeennses 357
Table 88. Programming example fOr COUNIIY COUEcoiuiiiiiiiiiie et e e 361
1. Terms and Definitions

AP Access Point

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

UM-WI-046 Rev.2.6 RENESAS Page 17

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

API Application Programming Interface

AT Attention

AWS Amazon Web Services

BSS Basic Service Set

CCM Counter with CBC-MAC

CLI Command Line Interface

CRC Cyclic Redundancy Check

CTR Counter

DAC Digital-To-Analog Converter

DER Distinguished Encoding Rules

DES Data Encryption Standard

DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access

DNS Domain Name Server

DPM Dynamic Power Management

DRBG Deterministic Random Bit Generator
DTLS Datagram Transport Layer Security

DUT Device Under Test

EAP Extensible Authentication Protocol
ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm
EVB Evaluation Board

EVK Evaluation Kit

GCM Galois/Counter Mode

GPIO General-Purpose Input/Output

HMAC Hash(-based) Message Authentication Code
HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

12C Inter-Integrated Circuit

12S Inter-IC Sound

KDF Key Derivation Function

LE Low Energy

MQTT Message Queuing Telemetry Transport
MD5 Message Digest 5

MCU Microcontroller Unit

NVRAM Non-volatile Random-Access Memory
OFB Output Feedback

OTA Over the Air

PEM Privacy-Enhanced Mail

POR Power-On Reset

PWM Pulse Width Modulation

QoS Quality of Service

RSA PKCS RSA Public Key Cryptography Standards
RTC Real-Time Clock

RTM Retention Memory

RTOS Real-Time Operating System

SD/eMMC Secure Digital/Embedded Multimedia Card
SDIO Secure Digital Input Output

UM-WI-046 Rev.2.6 RENESAS Page 18
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

SDK Software Development Kit
SNTP Simple Network Time Protocol
SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
STA Station

TCP Transmission Control Protocol
TIM Traffic Indication Map

TLS Transport Layer Security

UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol

WPA Wi-Fi Protected Access

WPA2 Wi-Fi Protected Access 2
WPA3 Wi-Fi Protected Access 3

2. References

[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

LwlIP API. (n.d). Retrieved September 9, 2021. From Savannah:
https://www.nongnu.org/lwip/2_0_x/raw_api.html.

DA16200, Datasheet, Renesas Electronics.

UM-WI-056, DA16200 DA16600 FreeRTOS Getting Started Guide, Manual, Renesas Electronics.
UM-WI-042, DA16200 DA16600 Provisioning Mobile App for Android/iOS, Manual, Renesas Electronics.
UM-WI-011, DA16200 DA16600 Mass Production, Manual, Renesas Electronics.

UM-WI-030, DA16200 DA16600 DPM, Manual, Renesas Electronics.

UM-WI-003, DA16200 DA16600 Host Interface and AT Command, Manual, Renesas Electronics.
UM-B-117, DA14531 Getting Started with the Pro Development Kit, Manual, Renesas Electronics.
UM-B-143, DA1458x/DA1453x External Processor Interface, Manual, Renesas Electronics.

[10] UM-B-119, DA1453x/DA1458x SW Platform Reference, Manual, Renesas Electronics.
[11] UM-WI-039, DA16200 DA16600 MultiDownloader Tool, Manual, Renesas Electronics.
[12] UM-B-176, e2 Studio SDK 6 Getting Started Guide, Manual, Renesas Electronics.
Note 1 References are for the latest published version, unless otherwise indicated.

UM-WI-046 Rev.2.6 RENESAS Page 19
Oct 3, 2025 CFR0012

https://www.nongnu.org/lwip/2_0_x/raw_api.html
https://lpccs-docs.renesas.com/UM-B-117-DA14531-Getting-Started-With-The-Pro-Development-Kit/index.html
https://lpccs-docs.renesas.com/UM-B-119_DA14585-DA14531_SW_Platform_Reference/index.html

DA16200 DA16600 FreeRTOS SDK Programmer Guide

3. Introduction

This document provides an overview of the Software Development Kit (SDK) used for application development
based on Wi-Fi solution using the DA16200/DA16600 devices and boards. This SDK includes
DA16200/DA16600 generic projects, sample projects, a set of libraries, and drivers to facilitate the creation of
various applications by exploiting the provided hardware resources of a connected DA16200/DA16600 devices.

3.1 Overview
The DA16200/DA16600 FreeRTOS SDK has six folders:

= apps: project files and source codes for generic and sample applications
¢ apps/common/examples: sample applications and template
o apps/da16xxx/get_started: generic application
= core : source codes for core funnctions
= docs: doxgen document and lincens file
= Jibrary : pre-compiled lib (.a) files
= tools: build tools/scripts, temporary build artifacts, or environment files
e version :firmware version files
= utility : utilities for programming, debugging, DA14531 SDK, and network tools
The SDK can be used with different features according to the use case or applications, and the features can be
changed in the SDK.

General features are defined in ~/FreeRTOS SDK/apps/dal6200/<app

name>/include/user main/config generic sdk.h where the features can be enabled or disabled. And other
system features are defined in ~/FreeRTOS SDK/apps/dal6200/<app

name>/include/user main/sys common features.h.

NOTE

The main header files including configurable features are located in ./apps/da16xxx/<app name>/include/user_main for
generic projects or ./apps/common/examples/<sample group name>/<sample name>/include for sample projects. All
features in config_generic_sdk.h are configurable as required. Some features in the sys_common_feature.h can be
changed also but need the support from Renesas Support Team.

The typical e? studio project for the DA16200/DA16600 SDK is shown in Figure 1.

« dalGoo_workspace - da16200/customer_app/include/user_main/cenfig_generic_sdk.h - € studio

Eile Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
|® -/ Bieit-q-

5 Project Explorer X | 5%V i =0

|!-§ da16200 [Debug-da16200-mod-AAC] 1 e/*

| SDKJFlash (in project

config_generic_sdk.h

Configuration for Generic-SDK
* Copyright (c) 2016-2022 Rengsas Electronics. All rights reserved.
* This software ("Software”) is owned by Renesas Electronics.

= By using this Software you agree that Renesas Electronics retains all
= intellectual property and proprietary rights in and to this Software and any
* repreduction, disclosure or distribution of the Software without express
t rmission or a license agreement from Renesas Electronics is

ed. This Software is solely for use on or in conjunction
lectronics products.

[EpEpT
TR P RN T ST

W S N T
ERER RN DR R R RN)

31

Figure 1. e? studio project configuration

3.2 Development Environment
The DA16200/DA16600 FreeRTOS SDK needs the Renesas e? studio IDE. See Ref. [3] for e? studio installation.

UM-WI-046 Rev.2.6 RENESAS Page 20
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

3.3 System and Application Startup

The main ()is first startup function. After hardware resources (PIN_MUX, RTC, Console, and so on) are
initialized, user main () in each project is called.

v J=5 da16200 v =% dal6200 v 75 da16200
4 Binaries 4 Binaries #F Binaries
[l Includes [w Includes [Includes
[@pp_cemmon (% app_commaon (& app_common
[7g config (% config (g config
lify core fipy core iy core
[egy customer_app v [customer_app v [customer_app
(= Debug (7 include (g include
= img W [GR STC v [SIC
[7g include = apps = apps
[library v [user_main v [Z= user_main
v IR sTC [£] system_start.c [system_start.c _
[8 _write.c [€] user_main.c < [user_main.c
g main.c _ = Debug = Debug
(7R version = img & img
=| makefile.targets (& include (% include
(g library [library
(e srC (e 5T
% version [Fy version
=| makefiletargets =| makefiletargets

Figure 2. Startup files on DA16200/DA16600 project

[~/FreeRTOS SDK/core/main/src/main.c]
int main(char init state)

{

xTaskCreate (system launcher,
"system launcher",
256*3, // for SecureBoot
(void *)NULL,
(tskIDLE PRIORITY+1),
NULL) ;

vTaskStartScheduler () ;
}

void system launcher (void *pvParameters)

{

// Initialize and run system application
// and run user application if needed.
start daléx();

}

static void start daléx(void)

{

/* Configure Pin-Mux of DA16200%*/
config pin mux();

/* Start DA16200 IoT system layer*/
user main(ramlib ptim init status); // USER main

}

system start () in user main ()runs as follows:

= Configure hardware and software features
= Configure system resources for system clock and TX power

UM-WI-046 Rev.2.6 RENESAS Page 21
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

= |nitialize Wi-Fi function in wlaninit ()
= Start system applications in start sys apps ()
= Start user applications in start user apps ()

[~/FreeRTIOS SDK/apps/dal6200/<app name>/src/user main/user main.c]
int user main(char init state)

{

/* Entry point for customer main */
if (init state == pdIRUE) {
system start();
} else {
Printf ("\nFailed to initialize the RamLib or pTIM !!!\n");
}

return status;

}

[~/FreeRTOS SDK/apps/dal6200/<app name>/src/user main/system start.c]
int system start (void)
{
/* Config hardware wake-up resource */
config user wu hw resource();

/* Set configuration for hardware button */
config gpio button();

/* Set paramters for system running */
set sys config();

/* Initialize WLAN interface */
wlaninit () ;

/* Start system applications for DA16XXX */
start sys apps();

/*

* Entry point of user's applications
* : defined in user apps table.c
*/

/* Start system applications for DAIG6XXX */
start user apps();

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 22

DA16200 DA16600 FreeRTOS SDK Programmer Guide

3.4 System Applications

After the startup function is run, each system application such as MQTT, HTTP server, or AT command can be

started according to the user defined features.

y ommon/main/sys_apps.c - €° studio
File Edit Source Refactor Navigate Search Project RenesssViews Run Window Help
|®- &~ D - Q- d@ 0
25 Project Explorer X | B85 7 & = O @ sysmpsc X
~ |52 da16200 [Debug-da16200-mod-AAC] ~

By

& Includes
(5% app_commen
[config
~ iy core
(G bsp
(@ config
(2 freertos
& libraries
(& segger_tools
v g system
(= include
~ = src
= at_cmd
(= coap
v &= common
= command
(&= library
~ = main
[§] asd.c
€] cc3120_hw_eng_initialize.c
[€] dal6x_initialize.c
[2) datéx_timec
[2 gpic_handle.c

3
5
6
9

sys_apps.c
System applications table

Copyright (c) 2616-2022 Renesas Electronies. All rights reserved

This software ("Software”) is owned by Rengsas Electronics

By using this Software you agree that Rengsas Electronics retains all
intellectual property and proprietary rights in and to this Software and any

use, reproduction, disclosure or distribution of the Software without express
written permission or a license agreement from Renesss Electronics is
strictly prohibited. This Software is solely for use on or in conjunction
with Renesas, Electronics products.

NT BETWEEN THE PARTIES, THE
ANY KIND,

D
INCLUDING BUT
FOR A PA

E SOFTWARE.

[init_system.c

[£ init_umac.c

[€] schd_idle.c

[€] schd_system.c

[schd_trace.c

A&| sys_apps.c

[l sys_common_func.c

[&) sys_common_user.c

] sys_exception.c

[sys_feature.c

[util_api.c 42 #in
(= network a3 #in
& nvram 4 #in

Hin,

#include "sdk_type.h"”

#include “"daléx_system.h”
#include “monitor.h”

#include “daléx_network_commen.h”
#include “daléx_sntp_client.h”
#include “aspplication.h”
#include “nvedit.h”

clude “environ.h”
clude "iface_defs.h"
clude "user_dpm.h"

cluda "icac dnm ani h®

Figure 3. Applications on e? studio project

void start sys apps (void)

{
/* Start user application functions *
run sys apps();

[~/FreeRTOS SDK/core/system/src/common/main/sys apps.c]

/

The system applications can run in two cases below:

= Applications run immediately regardless of network connection

= Applications run only after the network connectio

n is completed.

static void run sys apps (void)

{

/* Create network independent apps */
create sys apps (sysmode, FALSE);

/* Create user's network independent apps
create user apps (sysmode, FALSE);

/* wait for network initialization */
while (1) {

if (check net init(iface) == pdPASS)
i=20;
break;
}
i++;
vTaskDelay (1) ;
}

*/

{

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS

CFR0012

Page 23

DA16200 DA16600 FreeRTOS SDK Programmer Guide

/* Check IP address resolution status */

while (check net ip status(iface)) {
vTaskDelay (1) ;

}

/* Create network apps */
create sys apps (sysmode, TRUE);
}

All system applications are in the sys_apps_table[] as shown in the example code below.

[~/FreeRTOS SDK/core/system/src/common/main/sys apps.c]
static const app task info t sys apps table[] =
{

/* name, entry func, stack size, priority, timeslice, net chk flag, dpem flag, port no,
run sys mode */

/****** For function features ***********************************/

#if defined (_ SUPPORT MQTT)
{ APP MQTT SUB, mgtt auto start, 320, (U PRIO), TRUE, TRUE, UNDEF PORT, RUN STA MODE},
#endif // __ SUPPORT MQTT

/******* End Of List **/

{ NULL, NULL, 0, 0, FALSE, FALSE, UNDEF PORT, 0 }

};

The parameters of the sys apps table[] are as shown below.

[~/FreeRTOS SDK/apps/dal6200/get started/include/apps/application.h]
typedef struct app task info {

/// Thread Name

char *name;

/// Funtion Entry point
VOID (*entry func) (void *);

/// Thread Stack Size
USHORT stksize;

/// Thread Priority
USHORT priority;

/// Flag to check network initializing
UCHAR net chk flag;

/// Usage flag for DPM running
UCHAR dpm flag;

/// Port number for network communitation
USHORT port no;

/// Running mode of DAIl6xxx
int run sys mode;
} app_task info t;

" name Unique thread name

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 24

DA16200 DA16600 FreeRTOS SDK Programmer Guide

" entry func Thread entry point

" stksize Stack size of thread

" priority Thread running priority

® net chk flag TRUE: run application only after network connection is completed

FALSE: run application immediately regardless of network connection
" dpm flag TRUE: register an application to DPM service
FALSE: not register an application to DPM service
® port no Port number of network session for DPM service
" run sys mode RUN_STA MODE: run application only at Station mode
RUN_AP MODE: run application only at AP mode
RUN_STA SOFTAP MODE: run application only at Concurrent (AP + Station) mode

RUN ALL MODE: run application at any mode

NOTE

= Do not use malloc() or free() function to allocate or free memory. Use pvPortMalloc() or vPortFree() function for
allocating or free memory

= There is no need to modify the system application tables in the DA16200/DA16600 SDK. However, if required, that can
be modified with the support of Renesas Electronics

= See Ref. [6] for details about DPM service.

If sample projects in the SDK are used, sample applications also can be run. The sample applications are
defined in sample apps table[] and the parameters are the same as the table of system applications.

[~/FreeRTOS SDK/core/system/src/common/main/sys _apps.c]
static void create sys apps (int sysmode, UCHAR net chk flag)
{

/* Create test samples apps */

if (sample app start cb != NULL) {
sample app start cb(net chk flag);

}

3.5 User Applications

After running the system applications, user applications run in two cases:

= Applications run immediately regardless of network connection

[~/FreeRTOS SDK/core/system/src/common/main/sys apps.c]
static void run sys apps (void)

{

/* Start user's network independent applications */
create user apps (sysmode, FALSE);

= Applications run after network connection is complete

[~/FreeRTOS SDK/core/system/src/common/main/sys apps.c]
void start user apps (void)
{

int sysmode;

/* Run user's network dependent apps */

UM-WI-046 Rev.2.6 RENESAS Page 25
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

create user apps (sysmode, TRUE);

}

All user applications are listed in the user apps table[] as shown in the example code below. There is a
"hello_world" application in the SDK and the feature = SUPPORT HELLO WORLD is defined in
~/FreeRTOS_SDK/apps/da16200/get_started/include/user_main/config_generic_sdk.h.

[~/FreeRTOS SDK/apps/dal6200/get started/src/apps/user apps.c]
const app task info t user apps table[] = {
/* name, func, stack size, pri, net flag, dpm flag, port no, sys mode */

#if defined (_ SUPPORT HELLO WORLD)

{ HELLO WORLD 1, customer hello world 1, 64, (U PRIO),FALSE,FALSE,UNDEF PORT, ALL MODE },
{ HELLO WORLD 2, customer hello world 2, 64, (U PRIO),TRUE, FALSE,UNDEF PORT, ALL MODE b,
#endif // _ SUPPORT HELLO WORLD

{ NULL, NULL, O, O, FALSE, FALSE, UNDEF PORT, 0 }
}i

* HELLO WORLD 1: This application runs immediately regardless of network connection as shown in Figure 4.
* HELLO WORLD 2: This application runs after network connection is completed as shown in Figure 4.

DA1628@ SDK Information

* — CPU Type = Cortex—M4 {128MHz>

* — 05 Type = FreeRTIOS 18.4.3

= — Serial Flash : 4 MB

= — SDK Uersion : U3.2.8.8 GEN

* — F/W Uersion = FRTOS-GEN@1-A1-e6h338ae4-0A2259
* — FsWl Build Time = Oct 21 2821 16:@85:8%

= — Boot Index = 8

=

DM IREDE DB DI B BEFEIERE BB IE BB B DB MBI DI N MR MR

ISystem Mode : Station Only (8>

>>> DAl6x Supp Ver2.? — 2020_87

>>> MAC address (staB@) : d4:3d:39:10:d4f:44
>>> staB@ interface add OK

>>> Start STA mode...

>>> Hello World #1 (MWon network dependent application » ttt

>>> Network Interface (wlanB> : UP
>>> Associated with ?8:3a:ch:25:F5:18

[Connection COMPLEIE to 78:3a-ch:25:f5:f8

—— DHCP Client WLAN@: SELCG6>
—— DHCP Client WLANG: REQ(1>
—— DHCP Client YWLANG: CHK(8>
—— DHCP Client YLANG@: BOUND<18>
Assigned addr 192.
netmask = 2556,
gateway : 192,
DNS adde = 192.

DHGP Server IP = 192.

Lease Time : 24h B8m B8s
Renewal Time : 12h 88n B8s

>>> Hello Yorld #2 { network dependent application > tt¢

Figure 4. Results of running hello world applications

The applications described above can be reused or new source code can be added for new applications.

3.6 Sample Applications

The SDK contains various examples which demonstrate how to use DA16200 features. The examples included
are:

= Crypto: Examples demonstrate how to use the cryptography and security capabilities

= DPM: Examples demonstrate how to use the various DPM low power mode

= ETC: Examples demonstrate how to get the current time, Access Point scan result

= Network: Examples demonstrate how to use various network protocols for either a client or server application
= Peripheral: Examples demonstrate how to use peripherals such as GPIO, 12C, and PWM

Before using the examples, set up the e? studio development environment. See Ref. [3] for details on setting up
e? studio and importing the DA16200 SDK into that environment.

UM-WI-046 Rev.2.6 RENESAS Page 26
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

When the environment is set up, the examples can be found in the apps/common/examples directory. Each
example directory has a similar structure and contains its own projects, one for da16200 and one for da16600,

which can be imported into the e? studio environment.

v apps
app_commen
v commaon
v examples
coemmuon_config
v Crypto
v Crypto_AP|
include
v projects
dal6200
dal6600

3rc

Figure 5. DA16200 SDK example

Select the desired example project folder and import it to e? studio. See Ref. [3] for how to import projects.

For example, the Crypto_API example project is in the following path:
~/SDK/Apps/common/examples/Crypto/Crypto API/projects/dal6200

3.6.1 Wi-Fi Configuration for Sample Application

Each example using the Wi-Fi communication interface contains default configuration information. This
information can be modified in the example code in the following location:

[~/SDK/apps/common/examples/common config/sample preconfig.c]

NOTE

add their codes in this file.

Each sample code runs with pre-configured Wi-Fi profile and environment variables in the NVRAM unless users want to

/* Sample for Customer's Wi-Fi configuration */

#define SAMPLE AP SSID "TEST AP SSID"
#define SAMPLE AP PSK "12345678"

// CC_VAL AUTH OPEN, CC VAL AUTH WEP, CC VAL AUTH WPA, CC VAL AUTH WPA2, CC VAL AUTH WPA AUTO

#define SAMPLE AP AUTH TYPE CC_VAL AUTH WPA AUTO

/* Required when WEP security mode */
#define SAMPLE AP WEP INDEX 0

// CC_VAL ENC TKIP, CC VAL ENC CCMP, CC VAL ENC AUTO
#define SAMPLE AP ENCRPT INDEX CC VAL ENC AUTO

void sample preconfig(void)
{
//

// Need to change as Customer's profile information

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 27

DA16200 DA16600 FreeRTOS SDK Programmer Guide

!/

#if O // Example ... (Customer’s code to config Wi-Fi profile for sample code)
char reply[32];

// Delete existed Wi-Fi profile
daléex cli reply("remove network 0", NULL, reply);

// Set new Wi-Fi profile for sample test

dalex set nvcache int (DA16X CONF INT MODE, O0);

daléx set nvcache str(DA16X CONF STR SSID 0, SAMPLE AP SSID);

daléx set nvcache int (DA16X CONF INT AUTH MODE 0, SAMPLE AP AUTH TYPE);

if (SAMPLE AP AUTH TYPE == CC VAL AUTH WEP)
{
dal6x set nvcache str(DA16X CONF STR WEP KEYO + SAMPLE AP WEP INDEX, SAMPLE AP PSK);
daléx set nvcache int (DA16X CONF INT WEP KEY INDEX, SAMPLE AP WEP INDEX);
}
else if (SAMPLE AP AUTH TYPE > CC VAL AUTH WEP)
{
daléx set nvcache str(DAl6X CONF STR PSK 0, SAMPLE AP PSK);
daléx set nvcache int (DA16X CONF INT ENCRYPTION 0, SAMPLE AP ENCRPT INDEX);

// Save new Wi-Fi profile to NVRAM area
daléx nvcache2flash () ;

vTaskDelay (10) ;

// Enable new sample Wi-Fi profile
daléex cli reply("select network 0", NULL, reply);

#endif // O
}

3.7 RED Security

3.71 RED Security Support
Define _ SUPPORT_RED_SECURITY__ in config_generic_sdk.h

#define _ SUPPORT_RED_SECURITY

3.7.2 Secure AT Channel
1. Define AT command and secure channel feature:
a. In config_generic_sdk.h:
#define _ SUPPORT_ATCMD___

b. Define secure asset key or non-secure known key. ASSET KEY can be used after applying secure boot.
Known key is for testing when secure boot is not applied.

c. Inatemd_secure_channel.h:
#undef NON_SECURE_ASSET // Secure ASSET (Secure)
#define NON_SECURE_ASSET // Known key (Non-secure)
d. In DA_RED_secure_channel.py:
known_key = bytes.fromhex("11223344556677889900aabbccddeeff") // Known key (Non-secure)

UM-WI-046 Rev.2.6 RENESAS Page 28
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

known_key = bytes.fromhex("31363230307365637572656173736574") // Secure ASSET (Secure)
2. Build SDK and download the firmware to EVB.
3. Run Python Secure Channel Host Program in Python IDLE shell.

~\utility\Secure_at_channe\DA_RED_secure_channel.py

4. Test procedures in DA_RED_secure_channel.py.

a. Enable secure channel.

b. Send AT command with arguments.

c. Check decrypted response.

3.8 Build SDK

After the application is written, right-click the project DA16200/DA16600, and then click Build Project. If building

an SDK for the first time, Renesas recommends running command Clean first. See Figure 6.

Z 8 =

[Project Explorer 53 0% v & g

% dal6200
MNew

Go Into

Open in New Window

Show In Alt+Shift+W >

Show in Local Terminal

[E Copy
Paste

2 Delete
Source
Move...

Rename...

Import...
Export...

Ctrl+C
Ctrl+V
Delete

F2

3

>

Build Project Ikl Incremental Build of Selected Projects

Clean Project
Refresh
Close Project

Close Unrelated Project

Figure 6. Build SDK on e? studio IDE

F5

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 29

DA16200 DA16600 FreeRTOS SDK Programmer Guide

DBG-CERT-INFO
CERT-Alignmen

1th CERT(848)
2th CERT{848)
3th CERT(

DbgCertC

ContentChain :

Fill up [@] :

Write

Procedure ha:
tool.py end :

Figure 7. Build success on e? studio IDE

If the SDK is successfully built, two binary images are created in the~/FreeRTOS SDK/
apps/dal6200/get started/img folder. The names of the image files are:

= RTOS: DA16200_FRTOS-GENO01-01-XXXXXXXXX-000000.img

= Second Bootloader: DA16200_FBOOT-GENO01-01-XXXXXXXXX-000000_W25Q32JW.img

(In case of Winbond W25Q32JW Sflash)

For more information about the firmware download, see the Programming Firmware Images section of Ref. [3].

3.8.1 Create RTOS Image for fcCSP

By default, the DA16200/DA16600 SDK provides a QFN-type RTOS Sflash image file. After building the
DA16200/DA16600 SDK, the QFN-type RTOS image with filename DA16200_FRTOS-GENO01-01-XXXXX-
000000.img is created in the ~/SDK/apps/da16200/get_started/img/ folder.

For fcCSP type package, to create an RTOS image with the DA16200/DA16600 SDK, change the build
configurations to fcCSP_LP or fcCSP_NP. See the Build Configurations section of Ref. [3], and then follow the
build SDK instructions described in Section 4.c. For SDK version 3.2.7.1 or earlier and sample projects, see
Appendix F.

When the programming is complete (see Ref. [3] for programming firmware), the SDK version shows "V3.2.x.0
CSP LP" for Low-Power or "V3.2.X.0 CSP NP" for Normal-Power. See Figure 8.

UM-WI-046 Rev.2.6 RENESAS Page 30
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

DA1628A SDK Information

CPU Type : Cortex—M4 (1Z8MH=z>

05 Type : FreeRTOS 18_.4.3

Serial Flash 4 MB

SDK Uersion : U3.2.2.8 CSP-LP

F/W Uersion : FRTOS-—GEMB1-A1-58c38acd6-AA2768
FrH Build Time : Dec 21 2821 15:13:36

Boot Index H |

-
*
*
-
*
-
*
*
-
*
-

Figure 8. Boot logo with fcCSP-LP RTOS image

3.8.2 Build a Project Using Command Line
The command line of e? studio can be used to compile a project, see the following example command.

e’ studioc.exe -nosplash —--launcher.suppressErrors —-application
org.eclipse.cdt.managedbuilder.core.headlessbuild -data "c:\wksp" -cleanBuild MyProj (To
build the project in the workspace)

You can find the detailed information in the FAQ section: Command-line build of e? studio project.

UM-WI-046 Rev.2.6 RENESAS Page 31
Oct 3, 2025 CFR0012

https://en-support.renesas.com/knowledgeBase/16979374

DA16200 DA16600 FreeRTOS SDK Programmer Guide

4. Wake-Up Source

DA16200 DA16600 SDK supports various wake-up sources such as POR, system reset, external wake-up pin,
and RTC wake-up counter. The wake-up sources (see Table 1) can be checked by calling

dem mode get wakeup source (),.and can be duplicated except power on reset, and each wake-up source can
be categorized based on a defined Sleep mode and DPM. When the device wakes up from DPM, check the

DPM wake-up types for further details (See Ref. [6]).

Table 1. Wake-up source

Wake-up source Value Wake-up from Description
sleep
WAKEUP_RESET 0x00 System reset
WAKEUP_SOURCE_EXT 0x01 Sleep mode 2 External wake-up pin toggled
_SIGNAL
WAKEUP_SOURCE_WA 0x02 Sleep mode 2 RTC wake-up counter expired.
KEUP_COUNTER (RTC wake-up counter sets the sleep period)
WAKEUP_EXT_SIG_WA 0x03 Sleep mode 2 External wake-up pin toggled and RTC wake-up counter
KEUP_COUNTER expired.
WAKEUP_SOURCE_PO 0x04 Sleep mode 1 Power on reset
R
WAKEUP_WATCHDOG 0x08 Sleep mode 2 RTC watchdog expired.
(RTC watchdog is not a CPU WDOG, and it wakes up if a
device does not wake up when wake-up counter has
expired.) (Note 1)
WAKEUP_WATCHDOG_ 0x09 Sleep mode 2 RTC watchdog expired, and external wake-up pin toggled.
EXT_SIGNAL (Note 1)
WAKEUP_SENSOR 0x10 Sleep mode 2 Wake-up GPIO toggled, pulse counter expired, or ADC
sensor occurred.
Return which wake-up source occurred by calling
RTC_GET_AUX_WAKEUP_SOURCE() function.
The return values are:
0x10: ADC sensor event
0x20: WAKEUP_PULSE
0x40: WAKEUP_GPIO
See wakeup_sample.c in the SDK for details
WAKEUP_PULSE 0x20 Sleep mode 2 Pulse counter expired.
The user can set the pulse count for wake-up, and when the
count expires, the system wakes up.
This wake-up source is subset of WAKEUP_SENSOR and
should be read by calling
RTC_GET_AUX_WAKEUP_SOURCE() when
WAKEUP_SENSOR occurs.
WAKEUP_GPIO 0x40 Sleep mode 2 Wake-up GPIO toggled.
This wake-up source is subset of WAKEUP_SENSOR and
should be read by calling
RTC_GET_AUX_WAKEUP_SOURCE() when
WAKEUP_SENSOR occurs.
WAKEUP_SENSOR_EXT 0x11 Sleep mode 2 External wake-up pin toggled and sensor (pulse or GPIO or
_SIGNAL ADC sensor) wake-up occurred.
WAKEUP_SENSOR_WA 0x12 Sleep mode 2 RTC wake-up counter expired and sensor (pulse or GPIO or
KEUP_COUNTER ADC sensor) wake-up occurred.
UM-WI-046 Rev.2.6 RENESAS Page 32

Oct 3, 2025

CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Wake-up source Value Wake-up from Description

sleep
WAKEUP_SENSOR_EXT 0x13 Sleep mode 2 RTC wake-up counter expired, external wake-up pin toggled,
_WAKEUP_COUNTER and sensor (pulse or GPIO or ADC sensor) wake-up

occurred.

WAKEUP_SENSOR_WA 0x18 Sleep mode 2 Sensor (pulse or GPIO or ADC sensor) wake-up occurred
TCHDOG and RTC watchdog expired.
WAKEUP_SENSOR_EXT 0x19 Sleep mode 2 Sensor (pulse or GPIO or ADC sensor) wake-up occurred,
_WATCHDOG RTC watchdog expired, and external wake-up pin toggled.
WAKEUP_RESET_WITH 0x80 N/A System reset and the retention memory have valid data.
_RETENTION
WAKEUP_EXT_SIG_WIT 0x81 Sleep mode 3 or | External wake-up pin toggled, and the retention memory has
H_RETENTION DPM LPM valid data.
WAKEUP_COUNTER_WI 0x82 Sleep mode 3 or | RTC wake-up counter expired and the retention memory has
TH_RETENTION DPM LPM valid data. (Note 2)
WAKEUP_EXT_SIG_WA 0x83 Sleep mode 3 or | External wake-up pin toggled, RTC wake-up counter expired,
KEUP_COUNTER_WITH DPM LPM and the retention memory has valid data. (Note 2)
_RETENTION
WAKEUP_WATCHDOG _ 0x88 Sleep mode 3 or | RTC watchdog expired, and the retention memory has valid
WITH_RETENTION DPM LPM data. (Note 1)
WAKEUP_SENSOR_WIT 0x90 Sleep mode 3 or | Sensor (pulse or GPIO or ADC sensor) wake-up occurred
H_RETENTION DPM LPM and the retention memory has valid data.
WAKEUP_SENSOR_EXT 0x91 Sleep mode 3 or | Sensor (pulse or GPIO or ADC sensor) wake-up occurred,
_SIGNAL_WITH_RETEN DPM LPM external wake-up pin toggled, and the retention memory has
TION valid data.
WAKEUP_SENSOR_WA 0x92 Sleep mode 3 or | Sensor (pulse or GPIO or ADC sensor) wake-up occurred,
KEUP_COUNTER_WITH DPM LPM RTC wake-up counter expired, and the retention memory has
_RETENTION valid data. (Note 2)
WAKEUP_SENSOR_EXT 0x93 Sleep mode 3 or | Sensor (pulse or GPIO or ADC sensor) wake-up occurred,
_WAKEUP_COUNTER _ DPM LPM RTC wake-up counter expired, external wake-up pin toggled,
WITH_RETENTION and the retention memory has valid data. (Note 2)
WAKEUP_SENSOR_WA 0x98 Sleep mode 3 or | Sensor (pulse or GPIO or ADC sensor) wake-up occurred,
TCHDOG_WITH_RETEN DPM LPM RTC watch dog expired, and the retention memory has valid
TION data. (Note 1)
WAKEUP_SENSOR_EXT 0x99 Sleep mode 3 or | Sensor (pulse or GPIO or ADC sensor) wake-up occurred,

_WATCHDOG_WITH_RE
TENTION

DPM LPM

RTC watch dog expired, external wake-up pin toggled, and
the retention memory has valid data. (Note 1)

Note 1

The wake-up source is deprecated.

Note 2 PTIM works through this wake-up source, thus users need to see the DPM wake-up types in Ref. [6] after waking

up.

NOTE

There are exceptional cases for system faults and CPU watchdog which were set by SDK.

= 0x00: Bus fault or memory corruption.

= 0x04: CPU watchdog.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS

Page 33

CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

5. NVRAM

The DA16200/DA16600 has an NVRAM area on the flash memory to store system data and user data. NVRAM
has various system configuration parameters to control the Wi-Fi function.

5.1 API

There are two types of NVRAM: integer and string. Use the following functions based on the datatype that is

currently used.

Table 2. APIs for NVRAM

Item

Description

int write_nvram_int(const char *name, int val)

Parameter name NVRAM item name to write.

value Integer value to write.
Return If it succeeds, return 0. If it fails, return an error code.
Description Write a specific NVRAM item with an integer value.
int write_nvram_string(const char *name, const char *val)
Parameter name NVRAM item name to write.

value Pointer to the string buffer to write.
Return If it succeeds, return 0. If it fails, return an error code.
Description Write a specific NVRAM item with a string value.

int read_nvram_int(const char *name, int *_val)

Parameter name NVRAM item name to read.

value Pointer to the integer value to read the value.
Return If it succeeds, return 0. If it fails, return an error code.
Description Read an integer value of a specific NVRAM item.
char *read_nvram_string(const char *name)
Parameter name NVRAM item name to get.

value Pointer to the string buffer to read the value.
Return If it succeeds, return 0. If it fails, return an error code.
Description Read a string value of a specific NVRAM item.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 34

DA16200 DA16600 FreeRTOS SDK Programmer Guide

6. TLS Certificate

Certificates are required to make secure connections and can be used in MQTT client, HTTPs client/server,
WPA Enterprise, and TLS client/server. The secure applications except the TLS client/server are designed and
implemented to read certificates from prefixed areas of SFlash map in Ref. [3]. In the case of the TLS
client/server application, it can use the user area in serial flash as no prefixed area is allocated.

6.1 Certificate for MQTT Client

The DA16200/DA16600 has prefixed areas in flash for certificates of MQTT client. The address map of each
certificate is defined in da16200 map.h of SDK. See my app mgtt user configin mgtt client sample.cin
Section 13.5.

/* TLS Certificate Key #0 */

#define SFLASH ROOT CA ADDRI 0x003A3000

#define SFLASH CERTTFICATE ADDR1 (SFLASH ROOT CA ADDR1 + 0x1000)
#define SFLASH PRIVATE KEY ADDRL (SFLASH ROOT CA ADDR1 + 0x2000)
#define SFLASH DH PARAMETERL (SFLASH ROOT CA ADDRL + 0x3000)

6.2 Certificate for WPA Enterprise

The DA16200/DA16600 has prefixed areas in flash for certificates of WPA Enterprise. The address map of each
certificate is defined in da16200 map.h of SDK. The certificates can be stored using console commands in
Section 6.6.1.

/* TLS Certificate WPA Enterprise */

#define SFLASH ENTERPRISE ROOT CA 0x003ED000

#define SFLASH ENTERPRISE CERTIFICATE (SFLASH ENTERPRISE ROOT CA + 0x1000)
#define SFLASH ENTERPRISE PRIVATE KEY (SFLASH ENTERPRISE ROOT CA + 0x2000)
#define SFLASH ENTERPRISE DH PARAMETER (SFLASH ENTERPRISE ROOT CA + 0x3000)

6.3 Certificate for HTTPs Client/Server or OTA

The DA16200/DA16600 has prefixed areas in flash for certificates of HTTPs or OTA. The address map of each
certificate is defined in da16200 map.h of SDK. See http client read certsin http client sample.cin
Section 14.5.

/* TLS Certificate Key #1 */

#define SFLASH ROOT CA ADDR2 0x003A7000

#define SFLASH CERTIFICATE ADDR2 (SFLASH ROOT CA ADDR2 + 0x1000)
#define SFLASH PRIVATE KEY ADDR2 (SFLASH ROOT CA ADDR2 + 0x2000)
#define SFLASH DH PARAMETER2 (SFLASH ROOT CA ADDR2 + 0x3000)

6.4 Certificate for TLS Client/Server

The DA16200/DA16600 does not have prefixed areas for certificates of TLS client/server. User area of flash can
be used for certificates using flash APIs directly. See tls sever samples.c on how to use the certificate as
constant data in Section 12.2.

UM-WI-046 Rev.2.6 RENESAS Page 35
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

6.5 APIs for Accessing Prefixed Area of SFlash

The prefixed area of flash for certificates can be accessed using APIs shown in Table 3, Table 4, and Table 5.

Table 3. APIs for reading certificate from flash

Item ‘ Description

int da16x_cert_read(int module, int type, int *format, unsigned char *out, size_t *outlen)

Parameter module Module ID:

0-MQTT

1 —HTTPs client or OTA
2 — WPA Enterprise

type Certificate type:
0 — CA certificate
1 — Certificate

2 — Private key

3 — DH params

format Certificate format:
0-DER
1-PEM

out Pointer to read certificate.

outlen Length of certificate.

Return If it succeeds, return 0.
If it fails, return an error code.

Description Read certificate from specific SFlash memory by module and type.

*outlen)

int da16x_cert_read_no_fopen(HANDLE flash_handler, int module, int type, int *format, unsigned char *out, size_t

Parameter flash_handler Handler to read certificate. It must be open.

module Module ID:

0-MQTT

1 —HTTPs client or OTA
2 — WPA Enterprise

type Certificate type:
0 — CA certificate
1 — Certificate

2 — Private key

3 — DH params

format Certificate format:
0-DER
1-PEM

out Pointer to read certificates.

outlen Length of certificate

Return If it succeeds, return 0.
If it fails, return an error code.

Description Read certificate from specific SFlash memory by module and type.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 36

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 4. API to write certificate to flash

Item

Description

int da16x_cert_write(int module, int type, int format, unsigned char *in, size_t inlen)

Parameter module

Module ID:

0-MQTT

1 —HTTPs client or OTA
2 — WPA Enterprise

type

Certificate type:
0 — CA certificate
1 — Certificate

2 — Private key

3 — DH params

format

Certificate format:
0-DER
1-PEM

Pointer to write certificate.

inlen

Length of certificate.

Return

If it succeeds, return 0.
If it fails, return an error code.

Description

Write certificate to specific SFlash memory address by module and type.

Table 5. APIs to delete certificate in flash

Item

Description

int da16x_cert_delete(int module, int type)

Parameter module

Module ID:

0-MQTT

1 —HTTPs client or OTA
2 — WPA Enterprise

type

Certificate type:
0 — CA certificate
1 — Certificate

2 — Private key

3 — DH params

Return

If it succeeds, return 0.
If it fails, return an error code.

Description

Delete certificate from specific SFlash memory by module and type.

int da16x_cert_delete_no_fopen(HANDLE flash_handler, int module, int type)

Parameter flash_handler

Handler to read certificate.
It must be open.

module

Module ID:

0-MQTT

1 —HTTPs client or OTA
2 — WPA Enterprise

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 37

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

int da16x_cert_delete(int module, int type)

type Certificate type:
0 — CA certificate
1 — Certificate

2 — Private key

3 — DH params

Return If it succeeds, return 0.
If it fails, return an error code.

Description Delete certificate from specific SFlash memory by module and type.

6.6 Store Certificates to Flash Using Console Command

The DA16200/DA16600 provides methods to store certificates in the serial flash with the use of console
command.

6.6.1 Console Command for Certificate

Table 6. Console command for certificate

Command Parameters Description

cert <action> <dest> Certificate console command.
= <action>: status | write | read | del
¢ status: Certificate status.
o write: write certificate in SFlash
¢ read: read certificate in SFlash
o del: del certificate in SFlash
= <dest>: Pre-fixed destination area in SFlash.
ca#: root CA (#1~3)
cert#: server/client certificate (#1~3)
key#: private key (#1~3)
dh#: DH parameter (#1~3)
all: all certificates for del in <action>
#: 1:MQTT/CoAP, 2: HTTPs/OTA, 3: Enterprise

6.6.2 Store Certificates
1. Store a CA certificate.

[/DA16200/NET]# net

[/DA16200/NET]# cert write cal // cal: MQTT/ CoAP , ca2: HTTPs/OTA, ca3: Enterprise
Typing data: (certificate value)

Cancel - CTIRLAD, End of Input - CTRL+C or CTRL+Z

// Copy & paste certificate data in the terminal window and press “CTRL4C” or “CTRL+Z”
(see Section 6.6.3)

2. Store a client certificate.

[/DA16200/NET]# cert write certl // certl: MQTT/CoAP, cert2: HTTPs/OTA, cert3: Enterprise
Typing data: (certificate value)

Cancel - CTRL4D, End of Input - CTRL+C or CTRL+Z

// Copy & paste certificate data in the terminal window and press “CTRL4C” or “CTRL+Z”

(see Section 6.6.3)

3. Store aclient key.

[/DA16200/NET]# cert write keyl // keyl: MQTT/CoAP, key2: HTTPs/OTA, key3: Enterprise

UM-WI-046 Rev.2.6 RENESAS Page 38
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Typing data: (certificate value)

Cancel - CTRL4D, End of Input - CTRL4+C or CTRL+Z
// Copy & paste certificate data in the terminal window and press “CTRL+C” or “CTRL+Z”
(see Section 6.6.3)

4. After adding cert/keys, check if they are successfully stored.

#1:

#2:

#3:

[/DA16200/NET]# cert status

For MQTT, CoAPs Client
- Root CA : Found
- Certificate : Found
- Private Key : Found
— DH Parameter: Empty

For HTTPs, OTA

- Root CA : Empty
- Certificate : Empty
- Private Key : Empty
— DH Parameter: Empty

For Enterprise (802.1x)
- Root CA : Empty
- Certificate : Empty
- Private Key : Empty
— DH Parameter: Empty

5. In case remove all the credentials stored:

[/DA16200/NET] # cert del all

all Delete success.

6.6.3 Root CA, Client Cert, and Private Key

Certificate format follows X.509 standard and should input the new line character in BEGIN and END lines.

Figure 9, Figure 10 and Figure 11 show the example certificates.

6.6.3.1 Root CA

MIIDLTCCApagAWIBAgIHFUYWCVQNWDANBgkghkiG9wOBAQSFADCBpzZELMAKGAIUENS
BhMCVFcxDzANBgNVBAgGMB1RhaXdhbjEPMAOGA 1UEBWWGVGFpCcGVPMRYWFAYDVQQKEE
DAlTeWSvbG9neSBIbmMuMR4wWHAYDVQQLDBVDZXJ0aWZpY2F0ZSBBdXRob3JpdHkx il
GTAXBgNVBAMMEFNSbm9sb2dSIEluYy4gQOExIzAhBgkghkiGSwOBCQEWFHBYD2R1 8
Y3RAC31ub2xvZ3kuY29tMB4XDTESMDEWMTAWMDI ZNFoXDTM4MDkxODAWMDI zNFowills
gZYxCzAJBgNVBAYTA1RXMQSWDQYDVQQIDAZUYW1 3YW4xDZANBgNVBACMB1RhaXB1 M8
aTEWMBQGA1UECgWNU31ub2xvZ3kgSW5iLiERMASGAIUECWWIRIRQIFR1IYWOXFTATIHG
BgNVBAMMDHNSbm9sb2dSLmNvbTE JMCEGCSQGSIb3DQEJARYUCHIVZHVidEBzeWSvll
bG9neS5ib20wgZ8wDQYJIJKoZIhveNAQEBBQADGYOAMIGJAOGBANG7EAQRG+801211i M8
RV0CddJdeUCAlIDcwggVPQZ90x7vXL6]TunfbbsNQOSKHuoKSCmUgcjvou7joNCylil
S2Rg4£fxzs2dwsK6SLNN] krwlCAKk0i0QAzenJvAHYkfp8ks+cHyWmevokGVL7y6olli@
Uux3sJpblmwcklNLeuO50dPIN3rVAgMBAAG] ciBwMBSGA1UdEQQYMBaBFHBYb2R1 8
Y3RAC31ub2xvZ3kuY29tMDoGCWCGSAGG+EIBDQQtFittb2RfCc3NSIGAlbmVyYXR1EE
ZCBjdXNOb20gc2VydmVyIGNlcnRpZmlj YXRIMBEGCWCGSAGG+EIBAQQEAWIGQDANIE
BgkghkiG9wOBAQSFAROBgQBkM40gcL/rD93dCDPIMTL090w7 FLvpWXrggYdHupNdilig
FDEcmggLnoley4seFs2pMnwOSLLFDecvIc+jeymIMt 9I3wWESeAQkKSX6k/eVn20l8
1WIaMw/R1CRCNAppzc2wIJy90+WI9PYu2FJY/nblSk/3Ygb6Z2u3FGuKELffgJ6/ kScil@
Aw==

Figure 9. Root CA example

UM-WI-046
Oct 3, 2025

Rev.2.6 RENESAS
CFR0012

Page 39

DA16200 DA16600 FreeRTOS SDK Programmer Guide

6.6.3.2 Client Cert

MIIDTTCCAragAwIBAgIJAOYDPXXUbKL7MAOGCSQGSIb3DQEBCWUAMIGNMQSWCQYDEE
VQQGEWJUVZEPMAOGA1UECAWGVGFpd2 FUuMQBwDQYDVQQHDAZUYWIWZWkXFJAUBgNVIER
BAOMDVNSbm9sb2dSIEluYy4xHjAcBgNVBASMFUN1cnRpZmljYXR1IEF1dGhveml Ol
eTEZMBCGA1UEAWWQU31ub2xvZ3kgSW5]LiBDQTEMCEGCSqGSIb3DQEJARYUcHIVIED
ZHVIdEBzeWSvbG9neS5ib20wHhcNMT kwMTAXMDAWM jMzWhcNMzgwOTE4MDAWM Mz
WjCBpzELMAKGA1UEBhMCVFcxDzANBgNVBAgGMB1RhaXdhbjEPMAOGA1UEBWWGVGFpll
cGVPMRYWFAYDVQQKDA1TeWSvbGIneSBIJbmMuMR4wHAYDVQQLDBVDZXJ0awZpY2FONS
ZSBBAXRob3JpdHkxGTAXBgNVBAMMEFNSbm9sb2d5IEluYy4gQ0ExIzAhBgkghkiGHll
9wOBCQEWFHBYD2R1Y3RAC31ub2xvZ3kuY29tMIGEMAOGCSQGSIb3DQEBAQUAR4AGNING
ADCBiQKBgQCSrEQPDlatQu4ppb7mbEJuSyglk0Y2/5WUa0SVmAiRgh4 7pDa3Dxcolli@
1VrUgxVScg3fcXigcaoV41TBi0dLnuw3YHPQHA6W7KGX1eSSXEDAEL jUna0SbREDEE
fBXAX+BHBx/avYpszZT3GLtLREc6GL62q+yS7/£5S0qA0h81R0OVPAQIDAQABO3SWIHE
fTAfBgNVHREEGDAWGRRWcmIkdWNOQHNSbm9sb2d S LmNvbTAPBgNVHRMECDAGAQH/ I
AQEAMDYGCWCGSAGG+EIBDQQPFidtb2Rfc3NsIGA1lbmVyYXR12CBjdXNOb20gQOEQHE
Y2VydGlmaWNhdGUWEQYJYIZIAYb4QgEBBAQDAgGIEMAOGCSQGSIb3DQEBCWUAA4GEBIE
AFpG2Du8sWPMcunulbuajwJ3WS5bNeJIS503TNVgOlKbhLMvwBdAymd3RJhouONuQt il
6NEDAZiSV2pomIy+04tMhT1c2HKktRMHKIT1g903biDQe/kEQIKQCdvEeQvi3WOVUCHB
KBBEJGDZGJIMZ3sUmiOL/YAN+M3J141999kt/4PvobunPli@

6.6.3.3 Private Key

MIICKAIBARKBgQCSTrEQPDlatQud4ppb TmbEJuSyglkoY2/SWUa0SVmAiRghd4 TpDall@
DxcElVrUgxVScg3fcXigoaoV41TRi0dLnuw3YHPQHAdEWTEGX 1eSSxEDREL JUna 0S5
bRBDEBXAX+BHBxX/avY¥psz2T3GLtLREc6GL62g+y37/£550gqA0h8 1R0OvPAQIDAQARIE
BoGRAXX1JEyQuSKEpFI+djKrahAl9gSooiPvz8gX3HLMEnZGOTBFUAGRVDkM+41i7/sI@
NcPQsyaMSM8+1i+NZHS/UL]kBRIMAZ 1 kFWxoHbe /uF0QNoYfBUgHaPTK/DWES1/Fell@
DGONWBCP/Karm9J91AgkOgHhECcvMY IM4 Z3bt N/ pr/X0GooECQQDYPPGMg2PLGla Yl
PTROQIIBrIycGiwoyU2sMEFmF4MsMv] SLETIMQzt4MDThETFXI fREZMQpGhSN4E+VIER
CiceSK4FAKERXDIimwYWAGDshgtbBEPhJWQQElc6c9L2FXWoHaoSGNWYnd PHvHov/ @
ZdEV+EyDkGmY7jyDb 9] yNsBeLaFzEUJWsQJACRavE/elwehmeBNKdagOms JsCN1HIE
ghEZNT+yGrJIlulUecImiAuf754e6TckBeGEetn8TElvbSggvymKL2Unu+4QJALu3FIE
pPBEKLVL/Ds¥XBdwcesTheQsHpc/cnwFLA/ FEOPELLELthvi 4S8 ImUWpgT LymwWEVNz IR
5/pU45dabttgl8eT4QIBAICYIQF3d2FoybrBggidhiF4DyQDKAWLsSnvQrFMEQ24 118
eNcPQkgdXW+4 lbfgkeMRDQSEOKPNPtmIh8yhS1DgtuM=[1

Figure 11. Private key example

UM-WI-046
Oct 3, 2025

Rev.2.6 RENESAS
CFR0012

Page 40

DA16200 DA16600 FreeRTOS SDK Programmer Guide

7. Hardware Accelerators

7.1 Set SRAM to Zero
711 API

Table 7. Hardware accelerator API

Item Description
void da16x_memset32(UINT32 *data, UINT32 seed, UINT32 length)
Parameter data Buffer pointer to set
seed Value to fill
length Length
Return None
Description Fill up memory with a certain value through hardware acceleration

7.1.2 Sample Code

#include <hal.h>

/* £ill up a 1024 bytes buffer memory with 0 */
UINT32 buffer[1024];
dalox memset32 (buffer, 0, 1024);

7.2 CRC Calculation

7.21 API
Table 8. CRC API

Item Description
UINT32 da16x_hwcrc32(UINT32 dwidth, UINT8 *data, UINT32 length, UINT32 seed)
Parameter dwidth Data width to calculate CRC

data Data pointer

length Length

seed CRC32 seed value (default value is OXFFFFFFFF).
Return Calculated CRC32 value.
Description Calculate CRC through hardware accelerator

7.2.2 Sample Code

#include <hal.h>

/* calculate a CRC value of data buffer */
UINT8 datal[o64], 1i;
For (i=0; I < 64; i++)

datali] = I;

UINT32 crc value = dal6x hwcrc32 (sizeof (UINT32), (void *)data, sizeof (data),

(~0))

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 41

DA16200 DA16600 FreeRTOS SDK Programmer Guide

7.3 Pseudo Random Number Generator (PRNG)

7.3.1 API
Table 9. PRNG API

Item Description

UINT32 da16x_random(void)

Parameter None
Return 32 bits random value
Description Generate 32 bits random value with hardware accelerator

7.3.2 Sample Code

#include <hal.h>

UINT32 random = dal6x random();

7.4 Memory Copy Using DMA

741 API
Table 10. Hardware DMA API

Item ‘Description

int memcpy_dma (void *dest, void *src, unsigned int len, unsigned int wait_time)

Parameter dest A pointer to the location where the function copies the data (4 B aligned).
src A pointer to the buffer where to copy data from (4 B aligned).
len The number of bytes to copy.

wait_time 0: After starting DMA operation, return from function.

N: Wait until the memory copy is finished. If DMA operation time is greater than N
milliseconds, the function returns after N milliseconds. N must have a value of at least

10 ms.
Return Always 0.
Description Copy bytes from one buffer to another using DMA.

7.4.2 Sample Code

#include <sys dma.h>

char dest[100], src[100]

memcpy dma (dest, src, 100, 0);

UM-WI-046 Rev.2.6 RENESAS Page 42
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

8. Watchdog Service

8.1 Overview

The system watchdog service (da16x_sys_watchdog) is designed to monitor system tasks and avoid system
freezes. Figure 12 shows how to interact with the system.

HW Watchdog H da16X_Sé/3_watchd

Figure 12. Watchdog overview

The daléx sys watchdog is a layer located on top of the watchdog low-level driver that allows multiple tasks to
share the underlying hardware watchdog timer. The watchdog service can be used to trigger a full system reset.
This allows the system to recover from a catastrophic failure in one or more tasks.

8.2 Concept

To monitor a task, register the task with dal6x sys watchdog to receive a unique handle (id). Then, it
periodically notifies dal6x sys watchdog using the id to signal that the task is working properly. When an error
occurs during the registration process, it returns -1.

The DA16200 Watchdog Timer is essentially a simple countdown timer (based on CMSDK Watchdog Timer) that
triggers a full system reset if it expires. The watchdog timer interrupt is Non-Maskable Interrupt (NMI). That is,
the interrupt cannot be disabled and should be controlled by Lock/Unlock process. To prevent this, the watchdog
timer must be reset to its starting value before it expires. This starting value can be configured through the
numerical macro DA16X SYS WDOG DEF RESCALE TIME Or dal6x sys watchdog set rescale time() in

daléx sys watchdog.h file. The default value is 5 seconds. DA16X SYS WDOG MAX TASKS CNT defines the
maximum number of tasks that can be monitored.

If all monitored tasks during one watchdog period notify dal6x sys watchdog, the hardware watchdog is
updated. In this case, no platform reset is triggered for this watchdog period. However, a platform reset is
triggered if at least one task does not notify dal6x sys watchdogin time. There are two ways for a task to notify
dal6x sys watchdog.

Each task is responsible for periodically notifying dalex sys watchdog that it is still running using

daléx sys watchdog notify (). This must be done before the watchdog timer expires. Occasionally, a
registered task may want to temporarily exclude itself from being monitored if it expects to be blocked for a long
time waiting for an event. This is done using the dalé6x sys watchdog suspend (). This function suspends
monitoring of specific tasks in daléx sys watchdog, as there is no need to monitor a task that is blocked waiting
for an event that might take too long to occur (for example, it leads to the task failed to notify the watchdog
service, thus resulting in a system reset). When the task is unblocked, the dal6x sys watchdog resume ()

UM-WI-046 Rev.2.6 RENESAS Page 43
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

should be called to restore task monitoring by the watchdog service. From that moment, the task should notify

the watchdog service as usual.

Finally, the intension of dal6x sys watchdog set latency() is to be used in cases where a task requires a
watchdog period greater than the configured watchdog timer reset value. Using this API allows a task to delay
notification of dalex sys watchdog for a given number of watchdog periods, without triggering a system reset.

The effect of calling the API is one-

8.3 API

Table 11. APIs of watchdog service

off and therefore, it must be set every time increased latency is required.

Item

Description

int da16x_sys_watchdog_init(void)

Return If it succeeds, return 0.
If it fails, return an error code.
Description Initialize da16x_sys_watchdog module.

int da16x_sys_watchdog_register(

unsigned int notify_trigger)

Parameter notify_trigger True if task notification should be triggered periodically. It is not supported yet.
Return Identifier on success, -1 on failure.
Description Register current task in da16x_sys_watchdog module.

int da16x_sys_watchdog_unregister(int id)

Parameter id Identifier
Return If it succeeds, return 0.
If it fails, return an error code.
Description Unregister task from da16x_sys_watchdog module.

void da16x_sys_watchdog_configure_idle_id(int id)

Parameter id Identifier
Return None
Description Inform the da16x_sys_watchdog module of the watchdog ID for the IDLE task.

int da16x_sys_watchdog_suspend(int id)

Parameter id Identifier
Return 0 on success.
Description Suspend task monitoring in da16x_sys_watchdog module.

int da16x_sys_watchdog_resume(int id)

Parameter id Identifier
Return 0 on success.
Description Resume task monitoring in da16x_sys_watchdog module.

This function does not notify the watchdog service for the task. It is possible that
monitor resuming occurs too close to the time that the watchdog expires, before the
task has a chance to explicitly send a notification. This can lead to an unwanted
reset. Therefore, either call dal6x sys watchdog notify() before calling

dal6x sys watchdog resume () or use daléx sys watchdog notify and resume ()
instead.

int da16x_sys_watchdog_notify(int id)

Parameter id

Identifier

Return

0 on success.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 44

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

Description

Notify dal6x sys watchdog module for task. Registered task shall use this
periodically to notify sys watchdog module that it is alive. This should be done
frequently enough to fit into hw_watchdog interval.

int da16x_sys_watchdog_notify_and_resume(int id)

Parameter id Identifier
Return 0 on success.
Description Notify dal6x sys watchdog module for task with handle \p id and resume its

monitoring. This function combines the functionality of
daléx_sys watchdog notify() and daléx sys_watchdog resume ().

int da16x_sys_watchdog_set_latency(int id, unsigned char latency)

Parameter id Identifier
latency Latency
Return 0 on success.
Description Set watchdog latency for task. This allows a task to miss given number of

notifications to daléx sys watchdog without triggering platform reset. When set, it is
allowed that task does not notify sys watchdog for latency consecutive
hw_watchdog intervals which can be used to allow for parts of code which are known
to block for long period of time (for example, computation). This value is set once
and does not reload automatically, thus it shall be set every time increased latency
is required.

int da16x_sys_watchdog_set_rescale_time(unsigned int rescale_time)

Parameter rescale_time Rescale time (unit of times: 10 milliseconds).
Return 0 on success.
Description Set watchdog rescale time.

int da16x_sys_watchdog_get_rescale_time(unsigned int rescale_time)

Parameter None
Return Rescale time (unit of times: 10 milliseconds).
Description Get watchdog rescale time.

8.4 Sample Code

To register the task with dal6x sys watchdog, use the following code snippet:

#include <daléx sys watchdog.h>

/* Registration a task to be monitored by watchdog */
wdog_id = sys watchdog register (false);

To notify daléx sys watchdog, use daléx watchdog notify (). If the task is going to suspend for an event, then
temporarily exclude the current task from being monitored using daléx sys watchdog suspend (). When the
task has received an event, it can resume its watchdog operation with dal6x sys watchdog resume (). See the
following flow:

/* Notify watchdog on each loop since there is no other trigger for this -
* monitoring will be suspended while blocking on xTaskNotifyWait ()

*/

daléx sys watchdog notify(wdog id);

/ *
* Wait on any of the event group bits, then clear them all
*/

daléx sys watchdog suspend(wdog id);

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 45

DA16200 DA16600 FreeRTOS SDK Programmer Guide

ret = xTaskNotifyWait (0, OxFFFFFFFF, ¬if, portMAX DELAY);
/* Blocks forever waiting for the task notification.

* Therefore, the return value must always be pdPASS.

*/

daléx sys watchdog resume (wdog id);

UM-WI-046 Rev.2.6 RENESAS Page 46
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

9. W.i-Fi Interface Configuration

The DA16200/DA16600 SDK defines various parameters for Wi-Fi interface configuration, and they are saved as
profiles in the NVRAM. After system reset, the DA16200/DA16600 reads an existing profile and sets the Wi-Fi
interface based on that profile. Wi-Fi interface can be configured through API, Soft AP configuration, and Soft AP
provisioning.

91 API
The DA16200/DA16600 SDK provides various functions to get or set system profiles:

= Simple functions to get or set a value (integer type or string type) of the name parameter (NVRAM item index).
= Error code to verify the result.
Table 12. APIs for Wi-Fi configuration

Item Description
int da16x_set_config_int (int name, int value)
Parameter name Parameter index to set.
value Integer value to set.
Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.
Description Set a specific parameter with an integer value.

For example: ret = da16x_set_config_int (Da16x_CONF_INT_CHANNEL, 11)
= Set the operating channel of the AP interface to 11.

int da16x_set_config_str (int name, char *value)

Parameter name Parameter index to set.

value Pointer to the string value to set.
Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.
Description Set a specific parameter with a string value.

For example: ret = da16x_set_config_str(Da16x_CONF_STR_IP_0, "10.0.0.1")
= Set the IP address of the STA interface to 10.0.0.1.

int da16x_get_config_int (int name, int *value)

Parameter name Parameter index to get.

value Pointer to the integer variable to get the parameter value.
Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.
Description Get an integer value of a specific parameter.

For example: ret = da16x_get_config_int(Da16x_CONF_INT_CHANNEL, &channel)
= Get the operating channel of the AP interface.

int da16x_get_config_str (int name, char *value)

Parameter name Parameter index to get.

value Pointer to the string buffer to get the parameter value.
Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.
Description Get a string value of a specific parameter.

For example: ret = da16x_get_config_str(Da16x_CONF_STR_IP_0, ip_addr)
= Get the IP address of the STA interface.

int da16x_set_nvcache_str(int name, char *value)

Parameter name Parameter name to set.
value Points to the value (str) to set.
UM-WI-046 Rev.2.6 RENESAS Page 47

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.
Description Set name/value pair to NVRAM cache area (not in SFlash). To make it permanent, invoke

da16x_nvcache2flash().
For example: ret = da16x_set_nvcache_str(Da16x_CONF_STR_IP_O0, ip_addr)
= Set IP address of the STA interface.

int da16x_set_nvcache_int(int name, int value)

Parameter name

Parameter name to set.

value Points to the value (int) to set.
Return If it succeeds, return 0 (CC_SUCCESS). If it fails, return an error code.
Description Set name/value pair to NVRAM cache area (not in SFlash). To make it permanent, invoke

da16x_nvcache2flash ().
For example: ret = da16x_set_nvcache_int(Da16x_CONF_INT_CHANNEL, 11)
Set the operating channel of the AP interface to 11.

void da16x_nvcache2flash(void)

Parameter None

Return

None

Description

Commit parameters (set by da16x_set_nvcache_int/str) in NVRAM cache to flash.

9.1.1 Integer Type Parameters
Table 13. NVRAM integer type

Name

Description

DA16X_CONF_INT_MODE

Wi-Fi operation mode:

0: STA

1: Soft AP

2. Soft AP + STA (Concurrent mode)

DA16X_CONF_INT_AUTH_MODE_O Wi-Fi authentication mode for STA interface:

* CC_VAL_AUTH_OPEN
* CC_VAL_AUTH_WEP

= CC_VAL_AUTH_WPA

» CC_VAL_AUTH_WPA2

= CC_VAL_AUTH_WPA_AUTO (WPA & WPA2)
» CC_VAL_AUTH_WPA_EAP

* CC_VAL_AUTH_WPA2_EAP

* CC_VAL_AUTH_WPA_AUTO_EAP

DA16X_CONF_INT_AUTH_MODE_1 Wi-Fi authentication mode for Soft AP interface:

* CC_VAL_AUTH_OPEN

= CC_VAL_AUTH_WPA

= CC_VAL_AUTH_WPA2

= CC_VAL_AUTH_WPA_AUTO (WPA and WPA2)

(WEP is unsupported on the DA16200/DA16600 AP mode)

DA16X_CONF_INT_WEP_KEY_INDEX Wi-Fi WEP key index number (0~3)

DA16X_CONF_INT_ENCRYPTION_O Wi-Fi data encryption mode for STA interface:

= CC_VAL_ENC_TKIP
» CC_VAL_ENC_CCMP
» CC_VAL_ENC_AUTO (TKIP and CCMP)

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS Page 48
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Name

Description

DA16X_CONF_INT_ENCRYPTION_1

Wi-Fi data encryption mode for Soft AP interface:
= CC_VAL_ENC_TKIP

= CC_VAL_ENC_CCMP

= CC_VAL_ENC_AUTO (TKIP and CCMP)

DA16X_CONF_INT_WIFI_MODE_0

Wi-Fi mode based on IEEE 802.11 standard for STA interface:
= CC_VAL_WFMODE_BGN

= CC_VAL_WFMODE_GN

= CC_VAL_WFMODE_BG

= CC_VAL_WFMODE_N

= CC_VAL_WFMODE_G

= CC_VAL_WFMODE_B

DA16X_CONF_INT_WIFI_MODE_1

Wi-Fi mode based on IEEE 802.11 standard for Soft AP interface:
= CC_VAL_WFMODE_BGN

= CC_VAL_WFMODE_GN

= CC_VAL_WFMODE_BG

= CC_VAL_WFMODE_N

= CC_VAL_WFMODE_G

= CC_VAL_WFMODE_B

DA16X_CONF_INT_CHANNEL

Soft AP operation channel setting by channel number:
1~11: for US
0: Auto

DA16X_CONF_INT_FREQUENCY

Soft AP operation channel setting by frequency value (MHz).

DA16X_CONF_INT_ROAM

Operating roaming function for STA interface:
0: Stop
1: Run

DA16X_CONF_INT_ROAM_THRESHOLD

Roaming threshold for STA interface (-95 ~ 0 dBm).

DA16X_CONF_INT_BEACON_INTERVAL

IEEE 802.11 beacon interval (msec.).

DA16X_CONF_INT_INACTIVITY

Inactive STA disconnecting time (sec.).

DA16X_CONF_INT_RTS_THRESHOLD

IEEE 802.11 RTS threshold (byte).

DA16X_CONF_INT_WMM

WMM On/Off setting:
0: Off
1: On

DA16X_CONF_INT_WMM_PS

WMM-PS On/Off setting:
0: Off
1: On

DA16X_CONF_INT_DHCP_CLIENT

DHCP client On/Off for STA interface:
0: Off
1: On

DA16X_CONF_INT_DHCP_SERVER

DHCP server On/Off for Soft AP interface:
0: Off
1: On

DA16X_CONF_INT_DHCP_LEASE_TIME

DHCP server lease time (sec.)

DA16X_CONF_INT_HIDDEN_0

Flag to connect AP Hidden SSID:
0: Off
1: On

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 49

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Name

Description

DA16X_CONF_INT_EAP_PHASE1_0

Phase#1 EAP type for WPA Enterprise:
= CC_VAL_EAP_DEFAULT

= CC_VAL_EAP_PEAPO

= CC_VAL_EAP_PEAP1

= CC_VAL_EAP_FAST

= CC_VAL_EAP_TTLS

= CC_VAL_EAP_TLS

DA16X_CONF_INT_EAP_PHASE2_0

Phase#2 EAP type for WPA Enterprise:
= CC_VAL_EAP_PHASE2_MIX

= CC_VAL_EAP_MSCHAPV2

= CC_VAL_EAP_GTC

9.1.2 String Type Parameters
Table 14. NVRAM string type

Name

Description

DA16X_CONF_STR_SSID_0

AP SSID to connect (~ 32 letters).

DA16X_CONF_STR_SSID_1

Soft AP SSID to operate (~ 32 letters).

DA16X_CONF_STR_WEP_KEY0
DA16X_CONF_STR_WEP_KEY1
DA16X_CONF_STR_WEP_KEY2
DA16X_CONF_STR_WEP_KEY3

WEP keys of the AP to connect (5 or 13 letters with ASCII/10 or 26
letters with hexadecimal).

DA16X_CONF_STR_PSK_0

PSK of the AP to connect (~ 63 letters).

DA16X_CONF_STR_PSK_1

Soft AP PSK to operate (~ 63 letters).

DA16X_CONF_STR_COUNTRY

Country code (2 or 3 letters, for example, KR, US, JP, CH) defined by
ISO 3166-1 alpha-2 standard.

DA16X_CONF_STR_DEVICE_NAME

DA16200/DA16600 device name (for WPS or Wi-Fi Direct).

DA16X_CONF_STR_IP_0

STA interface IP address.

DA16X_CONF_STR_NETMASK_0

STA interface netmask.

DA16X_CONF_STR_GATEWAY_0

STA interface gateway address.

DA16X_CONF_STR_IP_1

Soft AP interface IP address.

DA16X_CONF_STR_NETMASK_1

Soft AP interface netmask.

DA16X_CONF_STR_GATEWAY _1

Soft AP interface gateway address.

DA16X_CONF_STR_DNS 0

STA interface DNS address.

DA16X_CONF_STR_DHCP_START_IP
DA16X_CONF_STR_DHCP_END_IP

DHCP server IP range assigned.

DA16X_CONF_STR_DHCP_DNS

DHCP server DNS IP address assigned.

DA16X_CONF_STR_EAP_IDENTITY

User-ID for WPA Enterprise (~ 64 letters).

DA16X_CONF_STR_EAP_PASSWORD

Password for WPA Enterprise (~ 64 letters).

9.1.3 Sample Code

When setting multiple names at the same time, use dal6x set nvcache int/str() and

daléx nvcache2flash (). Using daléx set config str/int() is good for setting one or two values, but if it
needs to set multiple NVRAM parameters (that is, Soft AP/STA setup), then always use cache function

dalé6x set nvcache int/str followed by daléx nvcache2flash (), which gives much better performance to the

application.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 50

DA16200 DA16600 FreeRTOS SDK Programmer Guide

The following example explains how to set STA mode.

/* Wi-Fi Configuration */
clear tmp nvram env(); // Clear Cache

// start setting names/values of NVRAM parameters to NVRAM Cache (no delay)
daléx set nvcache int (DAl6X CONF INT MODE, O0);
da16x set | ~nvcache str(DAleX CONF _STR SSID O, ssid);
dal6x_set_nvcache_1nt(DAl6X_CONF_INT_AUTH_MODE_O, auth type);
if (auth type = CC VAL AUTH WEP) {
dalox set nvcache str(DA16X CONF STR WEP KEYO, wep key[0]);
daleox set nvcache str(DA16X CONF STR WEP KEY1, wep key[1]);
daleox set nvcache str(DA16X CONF STR WEP KEYZ2, wep key[2]);
da16x set " nvcache > str (DAl16X CONF STR WEP KEY3 wep key[3]);
da16x set " nvcache str(DAl16X CONF _INT WEP KEY INDEX, wep key index);
} else if (auth_type > CC_VAL_AUTH_WEP) {
daléx set nvcache str(DAl6X CONEF STR PSK 0, psk);
daléx set nvcache int (DAl16X CONF INT ENCRYPTION O, encryption);

’

}
daléx set nvcache int (DA16X CONF INT WIFI MODE 0, wifi mode) ;

/* IP and DHCP Client Setting */
daléx set nvcache int (DAl16X CONF INT DHCP CLIENT, dhcp client);
if (!dhcp client) {
dalex set nvcache str(DA16X CONF STR IP O, ip);
dal6x set nvcache str(DA16X CONEF STR NETMASK O, subnet);
daléx set nvcache str(DA16X CONF STR GATEWAY 0, gateway);
daléx set nvcache str(DAl6X CONEF STR DNS 0, dns);
}

daléx nvcache2flash(); // commit names/values parameters in Cache to flash memory

reboot func (SYS REBOOT) ;

The following example explains how to set STA mode for WPA Enterprise. Depending on the wireless
environment, the certificate may be required when connecting to WPA Enterprise network. In this case, the
Certificate APl might be helpful to write to SFlash memory.

/* Certificate */

dal6éx cert write (DA16X CERT MODULE WPA ENTERPRISE, DA16X CERT TYPE CA CERT, ca cert,

ca cert len); // Write CA Certificate

daléx cert write(DA16X CERT MODULE WPA ENTERPRISE, DA16X CERT TYPE CERT, cert, cert len); //
Write Certificate

daléx cert 1 wr1te(DAl6X CERT MODULE WPA ENTERPRISE, DAl6X CERT TYPE PRIVATE KEY, priv key,
priv _key len); // Write Private key

dal6X cert wrlte(DAl6X CERT MODULE WPA ENTERPRISE, DA16X7CERT7TYPE7DH7PARAMS , dhiparam,

dh param len); // Write Private key

/* Wi-Fi Configuration */
clear tmp nvram env(); // Clear Cache

// start setting names/values of NVRAM parameters to NVRAM Cache (no delay)
daléx_set nvcache str(DA16X CONF STR SSID 0, ssid); //Set SSID

dal6x_set nvcache int (DA16X CONF_INT AUTH MODE 0, auth mode); // Set Auth mode

daléx set nvcache int (DA16X CONF INT ENCRYPTION 0, enc type); // Set Encryption type
daléx set nvcache int (DA16X CONF INT EAP PHASEl, eap phasel); // Set EAP Phase#l type
daléx set nvcache int (DA16X CONF INT EAP PHASE2, eap phase2); // Set EAP Phase#2 type
dal6x set nvcache str(DA16X CONF STR FAP IDENTITY, user id); // Set User-ID

dal6x set nvcache str(DA16X CONF STR EAP PASSWORD, password); // Set Password

daléx nvcache2flash(); // commit names/values parameters in Cache to flash memory
UM-WI-046 Rev.2.6 RENESAS Page 51

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

reboot func (SYS REBOOT) ;

The following example explains how to set Soft AP mode.

/* Soft AP Configuration */
clear_tmp nvram env(); // Clear Cache

// start setting name/value NVRAM parameters to NVRAM Cache (no delay)
daléx set nvcache int (DAl16X CONF INT MODE, 1);
daléx set nvcache str(DA16X CONF STR SSID 1, ssid);
daléx set nvcache int (DA16X CONF INT AUTH MODE 1, auth type);
if (auth type > CC VAL AUTH WEP) {
daléx set nvcache str (DAl6X CONF STR PSK 1, psk);
daléx set nvcache int (DAl16X CONF INT ENCRYPTION 1, encryption);
}
daléx set nvcache int (DA16X CONF INT CHANNEL, channel);
dalé6x set nvcache int (DAl16X CONF STR COUNTRY, country code);
daléx set nvcache int (DA16X CONF INT WIFI MODE 1, wifi mode) ;
daléx set nvcache int (DA16X CONF INT WMM, wmm);
daléx set nvcache int (DA16X CONF INT WMM PS, wmm ps);

/* IP Setting */

daléx set nvcache str(DA16X CONF STR IP 1, ip);

daléx set nvcache str(DA16X CONF STR NETMASK 1, subnet);
daléx set nvcache str(DA16X CONF STR GATEWAY 1, gateway);

/* DHCP Server Setting */
if (dhcp server) {

daléx set nvcache str(DAl6X CONF STR DHCP START IP, start ip);

daléx set nvcache str(DA16X CONF STR DHCP END IP, end ip);

dalox set nvcache str(DA16X CONF STR DHCP DNS, dhcp dns);

daléx set nvcache str(DA16X CONF INT DHCP LEASE TIME, dhcp lease time);
}
daléx set nvcache int (DA16X CONF INT DHCP SERVER, dhcp server);

daléx nvcache2flash(); // commit names/values parameters in Cache to flash memory

reboot func (SYS REBOOT) ;

9.2 Soft AP Configuration by Factory Reset

Many loT devices start as Soft AP device to operate AP provisioning. The DA16200/DA16600 has a Factory
Reset function to start with Soft AP mode after pressing the Factory Reset button on the evaluation board. The
details of Factory Reset button can be found in DA16200 and DA16600 EVBs (S2 - Factory Reset Button) in
Ref. [3], and it is connected to GPIO 7 on the DA16200/DA16600 EVB.

The DA16200/DA16600 SDK offers a simple method for users to configure the Soft AP interface with their own
values. This section describes how to configure the default values in the DA16200/DA16600 SDK.

9.21 S2 - FTR_RST Button Behavior
Table 15. S2 — Factory Reset button if RED enabled

State Behavior

Any state = |f you press the button for more than 10 seconds, the system transitions to
DEFAULT_STATE.

= |f you press for 1-5 seconds, the system reboots the device.

OPERATIONAL_STATE = |f you press for 5-10 seconds, the system transitions to CONFIG_STATE.
UM-WI-046 Rev.2.6 RENESAS Page 52

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 16. S2 — Factory Reset button if RED disabled

State Behavior

Any state = |f you press the button for more than 10 seconds, the system transitions to
DEFAULT_STATE.

= If you press for 1-5 seconds, the system reboots the device.

DEFAULT_STATE = No secrets are stored, except for the default Soft-AP SSID and password
(Flash 0x3A1000).

= The Soft-AP SSID and password are restored to factory defaults.

= The modem enables Wi-Fi Soft-AP for provisioning app access.

= You can change the Soft-AP SSID and password.

= The device can be configured using the provisioning application.

= When you commit the configuration, the system transitions to
OPERATIONAL_STATE.

CONFIG_STATE = The modem enables Wi-Fi Soft-AP for provisioning app access.

= You can change the Soft-AP SSID and password.

= The device can be configured using the provisioning application.

= When you commit the configuration, the system transitions to
OPERATIONAL_STATE.

OPERATIONAL_STATE = Device operates in Station mode.

= Provisioning application is closed.

= Transitions to DEFAULT_STATE or CONFIG_STATE are allowed via the
FTR_RST button.

= Configuration and updates:

e When in OPERATIONAL_STATE, switching to CONFIG_STATE is
allowed for easy updates to customer secrets.

¢ You can change the default AP SSID and password.

= The new SSID and password should take effect immediately after clicking
the Apply button.

FTR_RST in DPM mode
When DPM (Deep Power Management) mode is active:

= Pressing the FTR_RST button (S2 on the DA16200 EVK) does not immediately reset or wake up the chip,
because in DPM the core is completely powered down except for the RTC domain.

= You have two ways to wake or reset the device while in DPM:

e Option 1: RTC Wake-up Trigger — Toggle the SW5 switch on the EVK to generate a one-time
RTC_WAKE_UP event.

e Option 2: Power Cycle (Reset) — Physically reset the device by power-cycling it while holding down the
button (S2).

9.2.2 Factory Default AP SSID, AP Password, and AT_KEY
To write/read the Factory Default asset, use special firmware build with UART1 CMD commands enabled.

Serial numbers should not be used. All values must be random (must not use MAC address because it is
published over the air and must not use die ID because it is sequential). You can change the NVRAM AP SSID
and password, but they are restored to factory defaults each time the "Restore Defaults" button is pressed.

Flash (fixed area) 0x3A1000 ~ 0x3A2000, Size: 4 kB (one sector).
The factory can use Crypto CC312 PRNG (Pseudo Random Number Generator) to generate random values.
Relevant CMD command group: SYS.HAL.

UM-WI-046 Rev.2.6 RENESAS Page 53
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

: HAL command

i test power down

: RE power down

: otp

: Pseudo Random Number Generator, 32 hex chars per line (prng [lines])

[/DA162080/SYS.HAL] #

3
7DC3AGE 127BD230@34A87AA3 2D75SF74
7ADBASAFS80209AB302489E5620118D9C
E41BC2F 7898BAA978BADFCS7ADB43DDS
[/DA16200,SYS. HAL] #

Figure 13. Generating Random Number
Encryption notes:

= This Flash block is encrypted/ decrypted using Crypto CC312:

e APls used

DAl6X Secure Asset RuntimePack ()
DAl6X Secure Asset RuntimeUnpack ()

e Data Structure:

typedef struct {
char ssid[32];
char pwd[64];
char atkey[32];
} user config sensitive t;

Writing to Flash:

= Use the following command to write new factory default values: net/def factory: write

The device resets automatically after the write. For example: def factory write ssid_test 123 pass_test_456
atcmd_test 789

[-DAL16Z200/NET] # def_factory help
85$ge : def_factory [optionl
ption
write {ssid> {pwd> {atkey> - Hrite defa ory config to flash

<551d> : 1— characters
I characters
(atkey) I characters
- Read defau ory config from flash

read
[L/DALGZ20Q/NET] # []
Figure 14. Write factory default values

Reading from Flash:
= Use the following command to read the current factory values: net/def factory: read

L/DAL1EZOD/NET] # def_factory read
CMD_SSID : ssid_test_123
CMD PHD : pass_test_456
CMD_ATKEY : atcma test_789
[/DAT6200/NET] #

Figure 15. Read factory values

L/DA1620B/NET] # def_factory write ssid_test_123 pass_test_456 atemd_test_789
Size of user_config_sensitive_t: 128

ssid _test_

pass_test_

atcmd_test_789
PASS to encrypt config
onfig written to flash

Figure 16. Writing default ssid and password

NOTE

All fields (ssid, pwd, and atkey) must follow size constraints:
= ssid: 1-31 ASCII characters
= pwd: 8-63 ASCII characters

UM-WI-046 Rev.2.6 RENESAS Page 54
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

NOTE

= atkey: 8—31 ASCII characters

9.2.3 Configure Data Structure

The DA16200/DA16600 SDK has the structure to configure Soft AP interface. The details can be found in the
following example:

#define
#define
#define

#define
#define

#define
#define

#define
#define

int

char
char
char
char

int

char
char
char
char

int
//int
int
char
char
char

[~/FreeRTOS SDK/core/system/include/common/daléx network common.h]

/* For Customer's Soft AP configuration */

MAX SSID LEN 32
MAX PASSKEY LEN 64
MAX TP ADDR LEN 16
AP _OPEN MODE 0
AP SECURITY MODE 1
IPADDR DEFAULT 0
TPADDR CUSTOMER 1
DHCPD DEFAULT 0
DHCPD_CUSTOMER 1

typedef struct Soft AP config {

customer cfg flag; // MODE ENABLE, MODE DISABLE

ssid name [MAX SSID LEN+1];

psk[MAX_PASSKEY_LEN+1};

auth type; // AP OPEN MODE, AP SECURITY MODE
country code[4];

customer ip address; // IPADDR DEFAULT, IPADDR CUSTOMER
ip addr[MAX IP ADDR LEN];

subnet mask[MAX TP ADDR IEN];

default gw[MAX TP ADDR LEN];

dns_ip addr[MAX IP ADDR LEN];

customer dhcpd flag; // DHCPD DEFAULT, DHCPD CUSTOMER
dhcpd ip cnt;

dhcpd lease time;

dhcpd start ip[MAX IP ADDR LEN];

dhcpd end ip[MAX IP ADDR LEN];

dhcpd dns ip addr[MAX IP ADDR LEN];

} Soft AP config t;

= int customer_cfg_flag: Flag for Soft AP configuration

¢ MODE_DISABLE (0): Do not use Soft AP configuration

e MODE_ENABLE (1): Use Soft AP configuration
= char ssid_name[MAX_SSID_LEN+1]: SSID of Soft AP. Max length is 32 bytes
= char pskilMAX_PASSKEY_LEN]: Pairwise key. Max length is 64 bytes
= char auth_type: Authentication type

¢ OPEN_MODE (0)

e AP_SECURITY_MODE (1)
= char country_code [4]: Country code

See Appendix D.

= int customer_ip_address: IP address type

¢ IPADDR_DEFAULT (0): IP class is 10.0.0.1

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 55

DA16200 DA16600 FreeRTOS SDK Programmer Guide

e IPADDR_CUSTOMER (1): User defined IP address
The following parameters should be defined:
char ip_addrfMAX_IP_ADDR_LEN]
char subnet_mask[MAX_IP_ADDR_LEN]
char default_gw[MAX_IP_ADDR_LEN]
char dns_ip_addr[MAX_IP_ADDR_LEN]
= int customer_dhcpd_flag: DHCP server IP address range
e DHCPD_DEFAULT (0): 10.0.0.2 ~ 10.0.0.11 (10 clients)
e DHCPD_CUSTOMER (1): User defined range
You need to define the following parameters:
int dhcpd lease time
char dhcpd start ip[MAX IP ADDR LEN]

char dhcpd end ip[MAX IP ADDR LEN]
char dhcpd dns ip addr[MAX IP ADDR LEN]

9.24 Configure Soft AP Interface

The DA16200/DA16600 SDK has the function of configuring the Soft AP interface. This function is invoked when
a factory reset is done. Users can write their own values, and the details can be found in the following example:

[~/FreeRTOS SDK/customer/user main/src/system start.c]
void set customer Soft AP config(void)
{
#ifdef SUPPORT FACTORY RST APMODE
/* Set to user costomer's configuration */
ap_config param->customer cfg flag = MODE DISABLE;
// MODE_ENABLE, MODE DISABLE
/*
* Wi-Fi configuration
*/
/* SSID prefix */
sprintf (ap config param->ssid name, "%s", "DA16200");

/* Default open mode: AP OPEN MODE, AP SECURITY MODE */

ap config param->auth type = AP OPEN MODE;

if (ap_config param->auth type == AP SECURITY MODE);
sprintf (ap config param->psk, "%s", "12345678");

/* Country Code: Default country US */
sprintf (ap config param->country code, "%s", DFLT AP COUNTRY CODE);

/*

* Network IP address configuration

*/

ap config param->customer ip address = IPADDR DEFAULT;

if (ap_config param->customer ip address == IPADDR CUSTOMER) {
sprintf (ap config param->ip addr, "%s", "192.168.1.1");

sprintf (ap config param->subnet mask, "ss", "255.255.255.0M);
sprintf (ap config param->default gw, "s", "192.168.1.1");
sprintf (ap config param->dns ip addr, "$s", "8.8.8.8");
}
/*

* DHCP Server configuration

*/

ap_config param->customer dhcpd flag = DHCPD DEFAULT;
if (ap_config param->customer dhcpd flag == DHCPD CUSTOMER) ({
ap config param->dhcpd lease time = 3600;

UM-WI-046 Rev.2.6 RENESAS Page 56
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

sprintf (ap config param->dhcpd start ip, "%s", "192.168.1.101");
sprintf (ap config param->dhcpd end ip, "%s", "192.168.1.108");
sprintf (ap config param->dhcpd dns ip addr, "%s", "8.8.8.8");
}
#endif /* SUPPORT FACTORY RST APMODE */
}

9.3 Soft AP Provisioning Protocol

The DA16200/DA16600 supports the Soft AP mode for a Wi-Fi interface setup. The provisioning thread
automatically runs when the DA16200/DA16600 starts in the Soft AP mode. For further details, see Ref. [4].

UM-WI-046 Rev.2.6 RENESAS Page 57
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

10. Wi-Fi Functionality

This section describes the Wi-Fi functionality that DA16200/DA16600 SDK provides.

10.1 Simple Roaming

Wi-Fi roaming allows the station (STA) automatically to change the connection to another AP within the

coverage areas of APs or routers belonging to the same extended service set (ESS) which has the same SSID
and credentials. DA16200/DA16600 SDK supports simplified and modified version of Wi-Fi roaming named
Simple Roaming. If RSSI is lower than a predefined threshold, DA16200/DA16600 automatically scans APs,

selects another AP with best RSSI, and connects the AP.

NOTE

The simple roaming is switched off automatically when DPM mode is enabled.
Default threshold is -65 dBm and valid range is 0 ~ -95 dBm.

10.1.1 Using Simple Roaming
The feature is disabled in SDK by default. To configure threshold and enable the feature, use

daléx set config int () APIs as shown in the following sample codes. In addition, DA16200/600 SDK offers
AT commands to enable and use the feature. See Ref. [6] for more about AT+WFROAP and AT+WFROTH

commands.

// To configure roaming threshold
int threshold = -55;

if (daléx set config int (DAl16X CONF INT ROAM THRESHOLD, threshold)) {
PRINTF (“Failed to configure roaming threshold\n”);
}

// To run the simple roaming

if (daléx set config int (DAl6X CONF INT ROAM, 1)) {
PRINTF (“Failed to run simple roaming function\n”);

}

// To stop the simple roaming

if (daléx set config int (DAl6X CONF INT ROAM, 0)) {
PRINTF (“Failed to stop simple roaming function\n”);

}

roaming.

In addition, WPA CLI commands are available for configuring roaming threshold and running/stopping simple

// To configure roaming threshold
[/DA16200] # net.cli roam threshold -35

// To run simple roaming
[/DA16200] # net.cli roam run

// To store configuration to NVRAM
[/DA16200] # net.cli save config

// To stop simple roaming
/DA16200] # net.cli roam stop

When simple roaming operates, debug messages are displayed.

>>> [Roaming] Start - Current signal level is lower then the threshold.

>>> [Roaming] New - BSSID[88:36:6c:20:a0:76], Level[-26]
>>> Roam Scan[0/39] BSS 88:36:6c:20:a0:76 ssid='RENESAS TESTAP' (-26)

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 58

DA16200 DA16600 FreeRTOS SDK Programmer Guide

>>> [Roaming] 2 - BSSID[88:36:6c:20:a0:76], Level[-26]
>>> Roam Scan[2/39] BSS 88:36:6c:20:a0:76 ssid='RENESAS TESTAP' (-26)
>>> [Roaming] 1 - BSSID[88:36:6c:20:a0:76], Level[-26]
>>> Roam Scan[0/39] BSS 88:36:6¢:20:a0:76 ssid='RENESAS TESTAP' (-26)

>>> Network Interface (wlan0O) : DOWN
—— DHCP Client WLANO: STOP(O)

>>> Network Interface (wlanO) : UP
>>> Associated with 88:36:6c:20:a0:76

Connection COMPLETE to 88:36:6c:20:a0:76

—-- DHCP Client WLANO: SEL(6)
—-- DHCP Client WLANO: REQ(1)

User Call-back : Success to connect Wi-Fi ...
—— DHCP Client WLANO: CHK(8)
—— DHCP Client WLANO: BOUND (10)

Assigned addr : 192.168.2.6
netmask ¢ 255.255.255.0
gateway : 192.168.2.1

DNS addr : 168.126.63.1

DHCP Server IP : 192.168.2.1
Lease Time : 02h 00m 00s
Renewal Time : 01h 00Om 00s

10.2 Scanning and Example

Scanning is the process of finding the desired AP through the station that the user wants to connect to. Two
types of scanning are available: active and passive scanning.

10.2.1 Active Scanning

In active scanning, the station device sends a frame which is called probe request frame to AP. Probe request
can be unicast or broadcast. In response to the probe request, the AP sends a probe response, which is used by
a station to take connection related decisions. For DA16200 DA16600 SDK, it broadcasts probe request frames
on each channel and waits for probe response frames for a certain amount of time. As scanning results, BSSID,
frequency, RSSI, security, and SSID information are included.

For active scanning in DA16200/DA16600 SDK, the get scan result() APIis provided. Scanned APs are
listed and sorted by signal strength. Alternatively, the dal6x cli reply() APl can be used directly as the
get scan result () APl is implemented in the API.

Here are overall descriptions of active scanning on DA16200/DA16600 SDK.

* The DA16200/DA16600 scans each channel based on a country code and cc_power level[] and
cc power level dsss|[] tables.

= Channel 14 has additional restrictions or cannot be used in all regulatory areas.

= |f the transmission power grade of a channel is set to 0xF in the tables, scanning this channel should be
skipped.

= The DA16200/DA16600 SDK allows to scan full channels, not single channels.
= Active scan time:
e Time to scan for 1 channel: about 30 ms.
o Transmitting probe request frame and receiving probe response frame.
¢ Time to switch channel: about 29 ms.
o It may vary depending on interference and circumstances.
e Total active scan time for full channels:

UM-WI-046 Rev.2.6 RENESAS Page 59
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

o Time to scan for 1 channel x Numbers of channels + Channel switch time x (number of channels — 1).
Here is an example of using the dal6x cli reply () API for active scan.

#define SCAN RSP BUF SIZE (4 * 1024)
char scan result[SCAN RSP BUF SIZE] = { 0, };

memset (scan result, 0, SCAN RSP BUF SIZE);
daléex cli reply(“scan”, NULL, scan result);
// Scan failed
if (strlen(scan result) < 30) {

PRINTF (“Scan: %s\n”, scan result);
}

Also, the AT command (AT+WFSCAN) is available for active scanning (see Ref. [7] for details).

10.2.2 Passive-Scanning

In passive scanning, the station device waits for a special frame, beacon frames that AP broadcasts periodically,
and the beacon frames are buffered and used to decode and extract information about BSSs. As scanning
results, BSSID, frequency, RSSI, security, and SSID information are included.

The DA16200 DA16600 SDK only supports passive scanning using AT commands because scanning results are
transmitted over UART interface. See Ref. [7] about AT commands.

10.2.3 Get Scan Result Example

An example of active scan is available in SDK. To run the example, complete the following steps.
In the e? studio, import a project for the Scan result example application.
~/SDK/apps/common/examples/ETC/Get Scan Result/projects/dal6200

1. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

2. After the boot is complete, the get scan result sample starts automatically.

>>> Scanned AP List (Total : 2%
§8ID: IPTIME_A3BB4NS-M_IOP_JK, R8E8I: -37, Security: 1
SS5ID: ASUS_ACABU, RSSI: -38, Security: A
S8ID: iptime_N?B4BCH_Jake, RSSI: -39, Security: 1
S85ID: Google_MLS51384A_MNPG. RS5S5I: —-42. Security: 1
Julian_only, RSS5I: —43, Security: 1
: DAl6203A_1AF831,. RSSI: —45, Security: 1
JHC_SYR-1188,. RESI: —45. Security: 1
ZI0-25@9N,. RS88I: —-46, Security: 1
JHC_EWR-1188_0OPEN. RSS5I: —-46,. Security: @
HNK_RAX1881, RESI: —-47, Security: 1
n_test_ap,. RSEI: —-47. Security: 1
DA1G2AA_1ADD23, RSSI: —48, Security: 1
: ACST_AC_TEST2, RSSI: -5A, Security: 1
S85ID: N_Synology MR2ZBBAC_WPAZWPAI_2G,. RSSI: 52, Security: 1
S85ID: JHMC_DIR-615_WPAL_TKIP, RS51: -54, Security: 1
SSID JHC_DIR- 615 _OPEN, RSSI: -54, Security: 8
RESI:= —-55%,. Security: 1
SSID N_niAg4 OPEN R8EI: -55, Becurity: @
E5ID: N_A18684 WPA_Enterprise,. RSEI: -56. Security: 1
E5ID: jh—tap-hrbuf3d, REEI: 57, Becurity: 1
E8ID: N_AiBB4_WPA2Z_AES, R8SI: -57. Security: 1
88ID: JHC_DIR-615,. RESI: -58, Security: 1
S8ID: DIRECT-2P,. R8SI: -59,. Security: 1
S85ID: SUR-1188_OPEM, RSSI: 59, Security: A
S5ID: n_test_ap?, RESI: —60, Security: 1

Figure 17. Get_Scan_Result AP list

This example shows how to use the void get scan result (void *user buf ptr) APl and to get the Scan
result on STA mode and Soft AP mode.

The get scan result sample function is executed after the basic FreeRTOS initialization is complete. This
example simply calls the user API void get scan result().

void get scan result sample (void * param)
{

char *user buf = NULL;

scan result t *scan result;

UM-WI-046 Rev.2.6 RENESAS Page 60
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

int i,

/* Allocate buffer to get scan result */
user buf = pvPortMalloc (SCAN RSP BUF SIZE);

/* Get scan result */
get scan result ((void *) user buf);

After running the get scan result () API, the user can use the received data. This example code shows how to
display the scan list in the console.

/* Display result on console */
scan _result = (scan result t *)user buf;

PRINTF ("\n>>> Scanned AP List (Total : %d) \n", scan result->ssid cnt);

for (i = 0; 1 < scan result->ssid cnt; i++) {
PRINTF (" %02d) SSID: %s, RSSI: %d, Security: %d\n",
i+1,
scan result->scanned ap info[i].ssid,
scan result->scanned ap info[i].rssi,
scan result->scanned ap infol[i].auth mode) ;

}

/* Buffer free */
vPortFree (user buf);

The Scan results are stored in the following data structure format:

typedef struct scanned ap info {

int auth mode;
int rssi;
char ssid[128];

} scanned ap info t;

typedef struct scan result to app {

int ssid cnt;

scanned ap info t scanned ap info[MAX SCAN AP CNT];
} scan result t;

UM-WI-046 Rev.2.6 RENESAS Page 61
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11. Network Examples: Socket Communication

This section describes how to develop Transmission Control Protocol (TCP) or User Datagram Protocol (UDP)
socket applications using the IwIP (Lightweight IP) APIs in the DA16200/DA1600 SDK. As a companion
document, see Ref. [1] for details on all functions. To understand and implement applications using the DPM
API, both non-DPM and DPM examples are provided. Before testing these examples, a test environment as

shown in Figure 18 is required.

11.1 Test Environment

Legacy AP

5 Test PC

0 N ‘ OPM TCP RecoNel
IRCP Receive: - oommm [EERRETCP sende:

o m) OPM UDP RS
OOP Receiver € mm [EEBNAOP Sendec

Figure 18. Overall test setup

11.1.1 DA16200

The files of example sources are included in the DA16200 SDK. The examples in this section require the
DA16200 to be configured as a Wi-Fi station (STA Mode). See the Station Mode Setup section of Ref. [3] on
how to set up Wi-Fi station mode. Also, after completing the STA mode setup, copy the IP address of the
DA16200 EVB for later use. The IP address is printed after connecting to an Access Point (AP), and then

TCP/UDP example application runs. See Figure 19.

Connection COMPLEIE to 78:3a:cchb:25:-f5:f8

—— DHCP Client : SEL<(6>

—— DHCP Client = REQ<1>

—— DHCP Client = CHK<(8)>

—— DHCP Client : BOUND<18>
Assigned addr 192,

netmask = 255,
gateway = 192.
DNS addr» = 192.

DHCP Server IP = 192.
Lease Time : 24h
Renewal Time : 12h

Figure 19. DA16200 EVB — AP connection complete

11.1.2 Peer Application
The examples in this section require a peer device (workstation or laptop) connected to the same AP running a
TCP/UDP test application such as IO Ninja.

UM-WI-046 Rev.2.6 RENESAS Page 62
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

NOTE

For the Windows OS system, the user needs to install a proper application such as Packet Sender, Hercules, and 10
Ninja. For a Linux system, proper test utilities or a test sample application are needed.

11.1.2.1 Example of Peer Application

This section describes how to run the peer application on the Windows operating system.

1. Start the IO Ninja utility on the test laptop or desktop computer.
If it is not installed, download it from http://ioninja.com.
2. Select File > New Session for the test.

L

=]

3 10 Ninja
File Edit View Help

Layer Pipeline...
Open... Ctrl+0
Open Recent [

Close
Close All

Save Session... Ctrl+S

Save Log As... Cirl+l
Settings

Exit

Figure 20. Start 10 Ninja utility

3. To test the TCP Client, start the TCP Server.

QG R -

10 Ninja (EVALUATION)

File Edit View Help

Dh-s-a-8-

Mew Session

Available session plugins:

Network Ce

TCP Connection
[TCP Server

P TCP Proxy

B TCP Flow Monitor
UDP Socket

[B] UDP Flow Menitor
S5H Channel

SSL Connection
SSL Server
WebSocket Client

T webSocket Server

M Coiffor v

O 9 fur s Adinstatr
Temporary Files Location
Session directory: C:\Users\tokim\AppData\Local/IO Ninja/tmp.
Log file name: tcp-server-01d7ca1010923913.mjog

()

Figure 21. Select TCP server session
4. If TCP Listener Socket is selected, 10 Ninja utility shows the TCP server test window.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 63

http://ioninja.com/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

10 Ninja (EVALUATION)

O-«-2-8-
Filter: | Enter dient address t... v | & | Client:

B-Q 3 #-H g8 BB &

i ﬁ’; ,g§§ Adapter: | All IPv4 adapters

= ports 8

TCP @080 % Information 8 x
Property Value &
~ TCP listener

Session time
TX total bytes 0
TX throughput 0
RX total bytes o
RX throughput 0
v Throughput calculator
Time span no selection
TX total bytes no selection
TX throughput no selection
DY ol b 1 e
Transmit g X
Enter packet contents here...
Text Binary File
Not listening 0 dient(s) Ln0 Col 0 Ofs 0000
Figure 22. TCP server session windows
5. Start the TCP Server session (for example, TCP Client test).
10 Ninja (EVALUATION) - o >4

File Edit View Session Help

Transmit

Enter packet contents here...

Text Binary File

b-€«-2-B-B- Q% 3 &-0 g6 &R &

|
| v Throughput calculator

; t.v| ¢ Clent: o ol B0 adepter: [MIPviadsptes v port
TCP @ 10192 X Information

11:25:59 +00:00.000 () Session started] | Property

11:25:59 +00:00.001 §& Listening on 10192 |v TCP listener
| Session time 00:00:05
; TX total bytes 0
[TX throughput 0

RX total bytes 0

[RX throughput 0

no selection
no selection
no selection

Listening 0 dient(s) n0 Col0

Figure 23. Start TCP server session

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 64

DA16200 DA16600 FreeRTOS SDK Programmer Guide

6. Connect to the TCP Client.

B3 10 Ninjs (EVALUATION - O *

O-%-2-H-B-Qd5 % H-H [&
Fiter: o dent: |192.168.86.9959615 v | G5 G50 Adapter: Al 1pva adapters v port (082 -] &

M rcrewse x Information & x

[l1:25:59 +@@:@0.080 |/ Session started Property Value ~
l1:25:59 +@0:00.801 & Listening on 18192

l1:27:28 +01:29.654 (& Client connected from 192.168.86.94154619 7 TCP listener
Session time 00:01:33
TX total bytes o
TX throughput 0
RX total bytes o
RX throughput 0
~ Throughput calculator
Time span no selection
TX total bytes no selection
TX throughput no selection
DV ikl bder L Y
Transmit F x
Enter packet contents here...
(
Text Binary File
Listening 1 client(s) Lno Col0 Ofs 0000
Figure 24. TCP connection with TCP client
7. Run data communication.
10 Ninja (EVALUATIOM) - O X

File Edit View Session Help
O-$-2-H-B-QH 3 =-m ® &
Fiter: o dent: [192.168.85.94:55703 | g5 @8] Adapter: Al Pv4 adapters ~|port: 10102 | (&

TCP @ 10192 % Information & x

11:14:29 180:08.880 |/ Session started Property Value A
11:14:29 +80:00.801 &) Listening on 18192 v TCP listener
11:18:33 +94:04.082 5 Client connected from 192.168.86.94:55783
11:15:37 +e4:05.013 -+ @eee 74 65 73 14 Sessnntime ENESE

TX total bytes 0

TX throughput 0

RX total bytes 4

RX throughput 0

~ Throughput calculator

Time span no selection

TX total bytes no selection
(> % I\t'hl’c‘ufl'lr?t ncze!ecticn .
Transmit & X

Enter packet contents here...

Text Binary File

Listening 1 dient{s) Ln 4 Col 61 Ofs 0003

Figure 25. TCP data communication with TCP client

11.2 TCP Client

This section describes how the TCP client sample application is built and operated. The TCP client sample is an
example of the simplest TCP echo client application. TCP is one of the main protocols of the Internet protocol
suite. TCP provides a reliable, ordered, and error-checked delivery of a stream of octets (bytes) between
applications that run on hosts that communicate through an IP network. The DA16200 SDK provides a IwlP's
TCP protocol. IwIP is an open-source TCP/IP stack designed for embedded systems.

UM-WI-046 Rev.2.6 RENESAS Page 65
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11.2.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a TCP server socket with port
number 10192 (default TCP Client test port).

2. In the e?studio, import a project for TCP Client sample application.
~/SDK/apps/common/examples/Network/TCP_Client/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
4. Use the console command to set up the Wi-Fi station interface.

5. To set the IP address and port for the peer application (TCP Server) in the TCP Client Sample, edit the
source code:

~/SDK/apps/common/examples/Network/TCP_Client/src/tcp client sample.c

#define TCP CLIENT SAMPLE DEF SERVER IP ADDR "192.168.0.11"
#define TCP CLIENT SAMPLE DEF SERVER PORT TCP CLI TEST PORT

The example connects to the peer application (TCP Server) after a connection is made to the Wi-Fi AP.

11.2.2 How It Works

The DA16200 TCP Client sample application is a simple echo message. When the TCP server sends a
message, the DA16200 TCP client echoes that message to the TCP server.

DA16200 TCP Client TCP Server

1. TCP Connection

h 4

2. Send Message

3. Echo Message

Y

Figure 26. Workflow of TCP client

11.2.3 Sample Code

The DA16200 SDK provides the IwlP's TCP protocol. This sample application describes how a TCP socket is
created, deleted, and configured.

11.2.3.1 Registration

The client side of the TCP connection initiates a connection request to a TCP server. The client TCP socket
should be created with the socket() service and bound to a port via the bind() service. After the client socket is
bound, the connect() service is used to establish a connection with a TCP server.

void tcp client sample (void *param)
{
int ret = 0;
int socket fd;
struct sockaddr in local addr;
struct sockaddr in srv_addr;

memset (&local addr, 0x00, sizeof (struct sockaddr in));
memset (&srv_addr, 0x00, sizeof (struct sockaddr in));
// Create TCP socket

socket fd = socket (PF_INET, SOCK STREAM, O0);

local addr.sin family = AF INET;

UM-WI-046 Rev.2.6 RENESAS Page 66
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

local addr.sin addr.s addr = htonl (INADDR ANY);
local addr.sin port = htons(TCP CLIENT SAMPILE DEF PORT);

// Bind TCP socket
ret = bind(socket fd, (struct sockaddr *)é&local addr,
sizeof (struct sockaddr in));

srv_addr.sin family = AF INET;
srv_addr.sin addr.s addr = inet addr (TCP_CLIENT SAMPLE DEF SERVER IP ADDR);
srv_addr.sin port = htons(TCP_CLIENT SAMPLE DEF SERVER PORT);

// Connect TCP socket
ret = connect (socket fd, (struct sockaddr in *)é&srv_addr,
sizeof (struct sockaddr in));

11.2.3.2 Data Transmission

TCP data is received when function recv () is called. TCP incoming packet handles various connections and
disconnections and is responsible for acknowledging transmissions.

TCP data is sent when function send() is called. This service first builds a TCP header in the front part of the
packet (including the checksum calculation). If the receiver's window size is larger than the data in this packet,
the packet is sent to the internet with the internal IP send routine. Otherwise, the caller may be suspended and
wait for the receiver’s window size to increase enough for this packet to be sent. At any given time, only one
sender may suspend while trying to send TCP data.

void tcp client sample ()
{
while (1) {
memset (data buffer, 0x00, sizeof (data buffer));

PRINTF ("< Read from server: ");
len = recv(socket fd, data buffer, sizeof (data buffer), 0);
data buffer[len] = '\0';

PRINTF ("%d bytes read\r\n", len);

PRINTF ("> Write to server: ");
len = send(socket fd, data buffer, len, 0);
PRINTF ("%d bytes written\r\n", len

11.2.3.3 Disconnection

The connection is closed when function close() is called. This function handles sockets to be closed and deleted
internally. The socket must be in a CLOSED state or in the process of disconnecting before the port is released.
Otherwise, an error is returned. Finally, if the application no longer needs the client socket, the vTaskDelete()
function is called to delete the socket.

void tcp client sample ()

{
close (socket fd);
end of task:

PRINTF (" [%s] End of TCP Client sample\r\n", func);
vTaskDelete (NULL) ;

UM-WI-046 Rev.2.6 RENESAS Page 67
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

return ;

11.3 TCP Client in DPM

This section describes how the TCP client in the DPM sample application is built and works. The TCP client in
the Dynamic Power Management (DPM) sample application is an example of the simplest TCP echo client
application in DPM mode. The DA16200 SDK can work in DPM mode. The user application requires an
additional operation to work in DPM mode. The DA16200 SDK provides the DPM manager for the user network
application. The DPM manager supports users to develop and manage a network application in Non-DPM and
DPM modes.

11.3.1 How to Run

1. Run a socket application on the peer laptop (see Section 11.1.2) and open a TCP server socket with port
number 10192.

2. In the e?studio, import a project for the TCP client in the DPM sample application.
~/SDK/apps/common/examples/Network/TCP_Client DPM/projects/dal6200

¢ Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. To set the IP address and the port for the peer application (TCP Server) in the TCP Client Sample, do one of
the following:

o Edit the source code:

~/SDK/apps/common/examples/Network/TCP_Client DPM/src/tcp client dpm sample.c

#define define TCP CLIENT DPM SAMPLE DEF SERVER IP "192.168.0.11"
#define TCP CLIENT DPM SAMPLE DEF SERVER PORT TCP CLI TEST PORT

e Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCPC SERVER IP 192.168.0.11
[/DA16200] # nvram.setenv TCPC SERVER PORT 10192
[/DA16200] # reboot

After a connection is made to a Wi-Fi AP, the example of connecting to the peer application (TCP Server).

11.3.2 How It Works

The DA16200 TCP Client in the DPM sample application is a simple echo message. When the TCP server
sends a message, then the DA16200 TCP client echoes that message to the TCP server.

DA16200 TCP Server TCP Client

1. TCP Connection

DPM Sleep & VWA K@U === === =77 === oo m o oo oo oo oososososoooofoosooosoo-

2. Send Message

3. Echo Message

Y

Figure 27. Workflow of TCP client in DPM

UM-WI-046 Rev.2.6 RENESAS Page 68
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11.3.3 Sample Code

11.3.3.1 Registration

The TCP client in the DPM sample application works in DPM mode. The basic code is similar to the TCP client

sample application. There are two differences from the TCP client sample application:

= An initial callback function is added, named tc9p_client_dpm_sample_wakeup_callback() in the code. The
callback is called when the DPM state changes from sleep to wake-up

= Additional user configuration can be stored in RTM

In this sample, the TCP server information is stored.

void tcp client dpm sample init user config(dpm user config t *user config)
{

const int session idx = 0;

//Set Boot init callback
user config—>bootInitCallback = tcp client dpm sample init callback;

//Set DPM wake-up init callback
user config->wakeupInitCallback = tcp client dpm sample wakeup callback;

//Set External wake-up callback
user config->externWakeupCallback = tcp client dpm sample external callback;

//Set Error callback
user config->errorCallback = tcp client dpm sample error callback;

//Set session type (TCP Client)
user config->sessionConfig[session idx].sessionType = REG TYPE TCP CLIENT;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
TCP_CLIENT DPM SAMPLE DEF CLIENT PORT;

//Set server IP address
memcpy (user config->sessionConfig[session idx].sessionServerIp,
srv_info.ip addr, strlen(srv_info.ip addr));

//Set server port
user config->sessionConfig[session idx].sessionServerPort = srv_info.port;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
tcp client dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback
tcp client dpm sample recv callback;

//Set connection retry count
user config->sessionConfig[session idx].sessionConnRetryCnt
TCP_CLIENT DPM SAMPLE DEF MAX CONNECTION RETRY;

//Set connection timeout
user config->sessionConfig[session idx].sessionConnWaitTime
TCP CLIENT DPM SAMPLE DEF MAX CONNECTION TIMEOUT;

//Set auto reconnection flag
user config->sessionConfig[session idx].sessionAutoReconn = TRUE;

//Set user configuration

UM-WI-046 Rev.2.6 RENESAS Page 69
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

user config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;
user config->sizeOfRetentionMemory =
sizeof (tcp client dpm sample svr info t);

return ;

11.3.3.2 Data Transmission

The callback function is called when a TCP packet is received from a TCP server. In this sample, the received
data is printed out and an echo message is sent to the TCP server.

void tcp client dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)

{
unsigned char status = pdPASS;

//Display received packet
PRINTF (" ==> Received Packet (%1d) \n", rx len);

//Echo message
status = dpm mng send to session(SESSION1, rx ip, rx port,
(char *)rx buf, rx len);
else
{
//Display sent packet
PRINTF (" <== Sent Packet (%1d) \n", rx len);
}

dpm mng_job done(); //Done opertaion

11.4 TCP Server

This section describes how the TCP server sample application is built and works. The TCP server sample
application is an example of the simplest TCP echo server application. TCP is one of the main protocols of the
Internet protocol suite. It provides a reliable, ordered, and error-checked delivery of a stream of octets (bytes)
between applications running on hosts that communicate through an IP network. The DA16200 SDK provides a
IwlP's TCP protocol. IwIP is an open-source TCP/IP stack designed for embedded systems.

11.4.1 How to Run
1. In the e? studio, import a project for the TCP Server sample application.
~/SDK/apps/common/examples/Network/TCP_Server/projects/dal6200
2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. To set the port of the TCP Server Sample, do one of the following:
o Edit the source code:

~/SDK/apps/cormon/exarmples/Network/TCP_Server/src/tcp server sample.c

#define TCP SERVER SAMPLE DEF SERVER PORT TCP_SVR TEST PORT

e Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCP_SVR PORT 10190
[/DA16200] # reboot

4. Set up the Wi-Fi station interface using console commands.

5. When connected to the AP, the sample application creates a TCP server socket with port number 10190 and
waits for a client connection.

UM-WI-046 Rev.2.6 RENESAS Page 70
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

6. Run a socket application on the peer computer (See Section 11.1.2).
7. Open a TCP client socket.

11.4.2 How It Works

The DA16200 TCP server sample application is a simple echo server. When a TCP client sends a message, the
DA16200 TCP server echoes that message to the TCP client.

DA16200 TCP Server TCP Client

1. TCP Connection

4

2. Send Message

3. Echo Message

Y

Figure 28. Workflow of TCP server

11.4.3 Sample Code

The DA16200 SDK provides the IwlP's TCP protocol. This sample application describes how a TCP socket is
created, deleted, and configured.

11.4.3.1 Connection

The server waits for a client connection request. Next, the application must create a TCP socket with the
socket() service. The server socket must also be set up to listen to connection requests with the listen() service.
This service puts the server socket in the LISTEN state and binds the specified server port to the server socket.
If the socket connection has already been established, the function simply returns a successful status.

void tcp server sample ()
{
int ret = 0;
int listen sock = -1;
int client sock = -1;

struct sockaddr in server addr;
struct sockaddr in client addr;

memset (&server addr, 0x00, sizeof (struct sockaddr in));
memset (&client addr, 0x00, sizeof (struct sockaddr in));

// Create TCP socket

listen sock = socket (PF INET, SOCK STREAM, 0);

if (listen sock < 0) {
PRINTF (" [%s] Failed to create listen socket\r\n", func);
goto end of task;

}

server addr.sin family = AF INET;
server addr.sin addr.s addr = htonl (INADDR ANY) ;
server addr.sin port = htons (TCP_SERVER SAMPLE DEF PCRT) ;

// Bind TCP socket
ret = bind(listen sock, (struct sockaddr *)&server addr,
sizeof (struct sockaddr in));

// Listen TCP socket
ret = listen(listenisock, TCPﬁSER\ERﬁSAMPLEﬁBACKLOG);

UM-WI-046 Rev.2.6 RENESAS Page 71
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

while (1) {
client sock = -1;

memset (&client addr, 0x00, sizeof (struct sockaddr in));
client addrlen = sizeof (struct sockaddr in);

// Bccept TCP socket
client sock = accept (listen sock, (struct sockaddr *)é&client addr,
(socklen t *)é&client addrlen);

While (1) {

}

11.4.3.2 Data Transmission

TCP data is received when function recv () is called. The TCP receive packet process is responsible for
handling the various connections and disconnections as well as transmission acknowledgment process.

TCP data is sent when function send() is called. This service first builds a TCP header in the front part of the
packet (including the checksum calculation). If the receiver's window size is larger than the data in this packet,
the packet is sent on the Internet with the internal IP send routine. Otherwise, the caller may suspend and wait
for the receiver’'s window size to increase enough for this packet to be sent. At any given time, only one sender
may suspend while trying to send TCP data.

void tcp server sample run()

{

while (NX TRUE)
{

memset (data buffer, 0x00, sizeof (data buffer));

PRINTF ("< Read from client: ");

len = recv(client sock, data buffer, sizeof (data buffer), 0);
data buffer[len] = '\0';

PRINTF ("%d bytes read\r\n", len);

PRINTFE ("> Write to client: ");
len = send(client sock, data buffer, len, 0);
PRINTF ("%d bytes written\r\n", len);

11.4.3.3 Disconnection

The connection is closed when function close() is called. This function handles sockets to be closed and deleted
internally.

void tcp server sample()

{

While (1) {
Close (client socket)

}

end of task:

UM-WI-046 Rev.2.6 RENESAS Page 72
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

PRINTF (" [%s] End of TCP Server sample\r\n", func);
close (listen sock);

close(client sock);

vTaskDelete (NULL) ;

return ;

11.5 TCP Server in DPM

This section describes how the TCP server is built and works in the DPM sample application. The TCP server in
the DPM sample application is an example of the simplest TCP echo server application. The DA16200 SDK can
work in DPM mode. The user application is required to work in DPM mode. The DA16200 SDK provides the
DPM manager for the user network application. The DPM manager supports the user to develop and manage a
network application in Non-DPM and DPM modes. The codes are almost the same as for the TCP server
example.

11.5.1 How to Run
1. Open the workspace for the TCP Server in DPM sample application.
~/SDK/apps/common/examples/Network/TCP_Server DPM/projects/dal6200
2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. To set the port of the TCP Server Sample, do one of the following:
o Edit the source code:
~/SDK/apps/common/examples/Network/TCP_Server DPM/src/tcp server dpm sample.c
#define TCP_SERVER_DPM_SAMPLE_DEF_SERVER_PORT TCP_SVR_TEST_PORT
¢ Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCP_SVR PORT 10190
[/DA16200] # reboot

4. Use the console command to set up the Wi-Fi station interface.

5. When connected to the AP, the sample application creates a TCP server socket with port number 10190
(Default test port number) and waits for client connection.

6. Run a socket application on the peer computer (See Section 11.1.2).
7. Open a TCP client socket.

11.5.2 How It Works

The DA16200 TCP server in the DPM sample application is a simple echo server. When a TCP client sends a
message, then the DA16200 TCP server echoes that message to the TCP client.

DA16200 TCP Server TCP Client

1. TCP Connection

DPM Sleep & Wakeup

2. Send Message

3. Echo Message

A4

Figure 29. Workflow of TCP server in DPM

UM-WI-046 Rev.2.6 RENESAS Page 73
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11.5.3 Sample Code

11.5.3.1 Registration

The TCP server in the DPM sample application works in DPM mode. The basic code is similar to the TCP server

sample application. There are two differences from the TCP Server sample application:

* An initial callback function is added, named tcp server dpm sample wakeup callback() in the code. The

callback is called when the DPM state changes from sleep to wake-up.
= Additional user configuration can be stored in RTM.
In this sample, the TCP server information is stored.

void tcp server dpm sample init user config(dpm user config t *user config)
{

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = tcp server dpm sample init callback;

//Set DPM wakkup init callback
user config->wakeupInitCallback = tcp server dpm sample wakeup callback;

//Set Error callback
user config—>errorCallback = tcp server dpm sample error callback;

//Set session type (TCP Server)
user config->sessionConfig[session idx].sessionType = REG TYPE TCP SERVER;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
TCP_SERVER DPM SAMPLE DEF SERVER PORT;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
tcp server dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback =
tcp server dpm sample recv callback;

//Set user configuration
user config->ptrDataFromRetentionMemory = (UCHAR *)é&srv_info;

user config->sizeOfRetentionMemory = sizeof (tcp server dpm sample svr info t);

return ;

11.5.3.2 Data Transmission

The callback function is called when a TCP packet is received from a TCP client. In this sample, the received

data is printed out and an echo message is sent to the TCP client.

void tcp server dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)
{
//Display received packet
PRINTF (" ==> Received Packet ($1d) \n", rx len);

//Echo message
status = dpm mng send to session(SESSION1, rx ip, rx port,
(char *)rx buf, rx len);

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 74

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//Display sent packet
PRINTF (" <== Sent Packet (%1ld) \n", rx len);

dpm mng_ job done(); //Done opertaion

11.6 TCP Client with KeepAlive in DPM

This section describes how the TCP client with KeepAlive in the DPM sample application is built and works. The
TCP client with KeepAlive in the DPM sample application is an example of the simplest TCP echo client
application in DPM mode. The DA16200 SDK can work in DPM mode. The user application is required to work in
DPM mode. The DA16200 SDK provides the DPM manager for the user network application. The DPM manager
helps users to develop and manage a network application in both Non-DPM and DPM modes.

11.6.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a TCP server socket with port
number 10193 (Default TCP Client test port).

2. In the e?studio, import a project for the TCP Client sample application.
~/SDK/apps/common/examples/Network/TCP_Client KeepAlive DPM/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the IP address and the port for the peer application (TCP Server) in the TCP Client KA DPM Sample,
do one of the following:

o Edit the source code:

~/SDK/apps/common/examples/Network/TCP_Client KeepAlive DPM/src/tcp client ka dpm sample.c
//Default TCP Server configuration

#define TCP CLIENT KA DPM SAMPLE DEF SERVER IP "192.168.0.11"

#define TCP CLIENT KA DPM SAMPLE DEF SERVER PORT TCP_CLI KA TEST PORT

¢ Use the DA16200 console to save the values in NVRAM:

[/DA16200] # nvram.setenv TCPC SERVER IP 192.168.0.11
[/DA16200] # nvram.setenv TCPC SERVER PORT 10192
[/DA16200] # reboot

After a connection is made to a Wi-Fi AP, the example connects to the peer application (TCP Server).
11.6.2 Sample Code

11.6.2.1 Registration

The TCP client with KeepAlive in the DPM sample application works in DPM mode. The basic code is similar to
the TCP client with the KeepAlive sample application. The time period is 55 seconds to send a TCP KeepAlive
message to the TCP server. Compared to the TCP client in the DPM sample application, there are two
differences from the TCP client sample application:

= An initial callback function is added, named tcp_client_ka_dpm_sample_wakeup_callback() in the code. The
callback function is called when the DPM state changes from sleep to wake-up.

= Additional user configuration can be stored in RTM.

In this example, TCP server information is stored.

void tcp client ka dpm sample init user config(dpm user config t *user config)
{

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = tcp client ka dpm sample init callback;

UM-WI-046 Rev.2.6 RENESAS Page 75
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//Set DPM wake-up init callback
user config->wakeupInitCallback = tcp client ka dpm sample wakeup callback;

//Set Error callback
user config->errorCallback = tcp client ka dpm sample error callback;

//Set session type (TCP Client)
user config->sessionConfig[session idx].sessionType = REG TYPE TCP CLIENT;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
TCP_CLIENT KA DPM SAMPLE DEF CLIENT PORT;

//Set server IP address
memcpy (user config->sessionConfig[session idx].sessionServerIp,
srv_info.ip addr, strlen(srv_info.ip addr));

//Set server port
user config->sessionConfig[session idx].sessionServerPort = srv_info.port;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
tcp client ka dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx] .sessionRecvCallback
tcp client ka dpm sample recv callback;

//Set connection retry count
user config->sessionConfig[session idx].sessionConnRetryCnt =
TCP CLIENT KA DPM SAMPLE DEF MAX CONNECTION RETRY;

//Set connection timeout
user config->sessionConfig[session idx].sessionConnWaitTime =
TCP_CLIENT KA DPM SAMPLE DEF MAX CONNECTION TIMEOUT;

//Set auto reconnection flag
user config->sessionConfig[session idx].sessionAutoReconn = pdTRUE;

//Set KeepAlive timeout
user config->sessionConfig[session idx].sessionKalnterval
TCP_CLIENT KA DPM SAMPLE DEF KEEPALIVE TIMEOUT;

//Set user configuration
user config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;
user config->sizeOfRetentionMemory =

sizeof (tcp client ka dpm sample svr info t);

return ;

11.6.2.2 Data Transmission

The callback function is called when a TCP packet is received from the TCP server. In this example, the
received data is printed out and an echo message is sent to the TCP server.

void tcp client ka dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)
{
//Display received packet
PRINTF (" ==> Received Packet (%1d) \n", rx len);

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 76

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//Echo message
status = dpm mng send to session(SESSION1, rx ip, rx port, (char *)rx buf, rx len);
else
{
//Display sent packet
PRINTF (" <== Sent Packet (%1d) \n", rx len);

}

dpm mng job done(); //Done opertaion}

11.6.3 How It Works

The DA16200 TCP Client with KeepAlive in the DPM sample application is a simple echo message. When the
TCP server sends a message, then the DA16200 TCP client echoes that message to the TCP server. A periodic
TCP KeepAlive message is sent to the TCP server every 55 seconds.

DA16200 TCP Client TCP Server

1. TCP Connection

DPM Sleep & Wakeup - oo o b
2. Send Message

3. Echo Message

DPM Wakeup oo

4. 55 sec

DPM Sleep

Figure 30. Workflow of TCP client with KeepAlive in DPM

11.7 UDP Socket

This section describes how the UDP socket sample application is built and works. The UDP socket sample
application is an example of the simplest UDP echo application. UDP is one of the core members of the Internet
protocol suite. It uses a simple connectionless communication model with minimum protocol mechanisms. UDP
provides checksums for data integrity and port numbers to address different functions at the source and
destination of the datagram. Since there is no handshaking, it exposes the user program to all the instability of
the underlying network; there is no guarantee of delivery, order, or duplicate protection. The DA16200 SDK
provides a IwlP's TCP protocol. IwIP is an open-source TCP/IP stack designed for embedded systems.

11.7.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a UDP socket with port
number 10195 (default UDP test port).

2. In the e?studio, import a project for the UDP socket sample application.
~/SDK/apps/common/examples/Network/UDP_Socket/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the port number for the peer application (UDP Socket) of the UDP Socket Sample, edit the source

code:
~/SDK/apps/common/examples/Network/UDP_Socket/src/udp socket sample.c
#define UDP_SOCKET_SAMPLE_DEF_LOCAL_PORT UDP_CLI_TEST_PORT

After a connection is made to a Wi-Fi AP, the example connects to the peer application (UDP Socket).

UM-WI-046 Rev.2.6 RENESAS Page 77
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11.7.2 How It Works

The DA16200 UDP socket sample application is a simple echo server. When a UDP peer sends a message, the
DA16200 UDP socket sample application echoes that message to the UDP peer.

DA16200 UDP Socket UDP Socket

1. Send Message

A

2. Echo Message

Y

Figure 31. Workflow of UDP socket

11.7.3 Sample Code

The DA16200 SDK provides the IwlP's UDP protocol. This sample application describes how the UDP socket is
created, deleted, and configured.

11.7.3.1 Initialization

A UDP port is a logical end point in the UDP protocol. There are 65,535 valid ports in the UDP component of
IwlP, ranging from 1 through OxFFEF. To send or receive UDP data, the application should first create a UDP

socket with function socket(), then bind the UDP socket to the desired port. Next, the application may send and
receive data on that socket. The details are as follows:

void udp socket sample run()

{

int sock;

struct sockaddr in local addr;
struct sockaddr in peer addr;

memset (&local addr, 0x00, sizeof (local addr));
memset (&peer addr, 0x00, sizeof (peer addr));

sock = socket (AF INET, SOCK DGRAM, 0);
setsockopt (sock, SOL SOCKET, SO REUSEADDR, (const void *)&optval,sizeof (int));

local addr.sin family = AF INET;
local addr.sin addr.s addr = htonl (INADDR ANY);
local addr.sin port = htons (UDP_SOCKET SAMPLE PEER PORT);

ret = bind(sock, (struct sockaddr *)&local addr, sizeof (struct sockaddr in));

11.7.3.2 Data Transmission

To receive a UDP packet, the function recvfrom() is called. The socket receive function delivers the oldest
packet on the socket's receive queue. To send UDP data, the function sendto () is called. This service puts a
UDP header in the front part of the packet and sends the packet on the Internet with the internal IP send routine.

void udp socket sample run()

{

while (1) {
memset (§peer addr, 0x00, sizeof (struct sockaddr in));

UM-WI-046 Rev.2.6 RENESAS Page 78
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

memset (data buffer, 0x00, sizeof (data buffer));
PRINTF ("< Read from peer: ");

ret = recvfrom(sock, data buffer, sizeof (data buffer), O,
(struct sockaddr *)é&peer addr, (socklen t *)&addr len);
if (ret > 0) {
len = ret;
PRINTF ("%d bytes read(%d.%d.%d.%d:%d) \r\n", len,

(ntohl (peer addr.sin addr.s addr) >> 24) & Oxff,
(ntohl (peer addr.sin addr.s addr) >> 16) & Oxff,
(ntohl (peer addr.sin addr.s addr) >> 8) & Oxff,
(ntohl (peer addr.sin addr.s addr)) & Oxff,
((

peer addr.sin port)));

PRINTF ("> Write to peer: ");
ret = sendto (sock, data buffer, len, O,

(struct sockaddr *)é&peer addr, addr len);
PRINTF ("%d bytes written (%$d.%d.%d.%d:%d)\r\n", len,

(ntohl (peer addr.sin addr.s addr) >> 24) & Oxff,
(ntohl (peer addr.sin addr.s addr) >> 16) & Oxff,
(ntohl (peer addr.sin addr.s addr) >> 8) & Oxff,
(ntohl (peer addr.sin addr.s addr)) & Oxff,
((

peer addr.sin port)));

11.8 UDP Server in DPM

This section describes how the UDP server in the DPM sample application is built and works. The UDP server in
the DPM sample application is an example of the simplest UDP echo application in DPM mode. The DA16200
SDK can work in DPM mode. The DPM manager of the DA16200 SDK is helpful for the user to develop and
manage a UDP server socket application in Non-DPM and DPM modes.

11.8.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a UDP socket with port
number 10194 (Default UDP test port).

2. In the e? studio, import a project for the UDP Server DPM sample application.
~/SDK/apps/common/examples/Network/UDP_Server DPM/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the port number for the peer application (UDP Client) of the UDP Server DPM Sample, edit the source
code:

~/SDK/apps/common/examples/Network/UDP_Server DPM/src/udp server dpm sample.c
#define UDP_SERVER_DPM_SAMPLE_DEF_SERVER_PORT UDP_SVR_TEST_PORT
After a connection is made to a Wi-Fi AP, the example connects to the peer application (UDP Client).

11.8.2 How It Works

The DA16200 UDP Server in the DPM sample application is a simple echo server. When the peer's UDP
application sends a message, the DA16200 UDP server echoes that message to the peer.

UM-WI-046 Rev.2.6 RENESAS Page 79
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11.8.3

11.8.3.1

DA16200 UDP Server UDP Client
DPM Sleep S DS
1. Send Message
DPM Wakeup ======f= e
2. Echo Message
Figure 32. Workflow of UDP server in DPM
Sample Code

Registration

The UDP server in the DPM sample application works in DPM mode. The basic code is similar to the UDP
server sample application. The only differences are as below:

= An initial callback function is added, named udp_server_dpm_sample_wakeup_callback() in the code. The
callback function is called when the DPM state changes from sleep to wake-up.

= Addit
In this s

ional user configuration can be stored in RTM.
ample, the peer's UDP socket port number is stored.

{

void udp server dpm sample init user config(dpem user config t *user config)

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = udp server dpm sample init callback;

//Set DPM wakkup init callback
user config->wakeupInitCallback = udp server dpm sample wakeup callback;

//Set Error callback
user config->errorCallback = udp server dpm sample error callback;

//Set session type (UDP Server)
user config->sessionConfig[session idx].sessionType = REG TYPE UDP SERVER;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
UDP_SERVER DPM SAMPLE DEF SERVER PORT;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
udp server dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback =

udp server dpm sample recv callback;

//Set secure mode
user config->sessionConfig[session idx].supportSecure = pdFALSE;

//Set user configuration

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 80

DA16200 DA16600 FreeRTOS SDK Programmer Guide

user config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;
user config->sizeOfRetentionMemory = sizeof (udp server dpm sample svr info t);

return ;

11.8.3.2 Data Transmission

The callback function is called when a UDP packet is received from the peer's UDP socket application. In this
example, the received data is printed out and an echo message is sent to the peer's UDP socket application.

void udp server dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)
{
//Display received packet
PRINTEF (" =====> Received Packet (31d) \n", rx len);

//Echo message
status = dpm mng send to session(SESSION1, rx ip, rx port,
(char *)rx buf, rx len);

if (status) {

PRINTF (RED COLOR " [%s] Fail send data(session%d, 0x%x) \n" CLEAR COLCR,

__func , SESSIONI, status);

} else {

//Display sent packet

PRINTF (" <== Sent Packet (%1d) \n", rx len);
}

dpm mng job done(); //Done opertaion }

11.9 UDP Client in DPM

This section describes how the UDP client in the DPM sample application is built and works. The UDP client in
the DPM sample application is an example of the simplest UDP echo application in DPM mode. The DA16200
SDK can work in DPM mode. The user application requires an additional operation to work in DPM mode. The
DPM manager of the DA16200 SDK is helpful for the user to develop and manage a UDP client socket
application in both Non-DPM and DPM modes.

11.9.1 How to Run

1. Run a socket application on the peer computer (see Section 11.1.2) and open a UDP socket with port
number 10195 (Default UDP test port).

2. In the e?studio, import a project for the UDP Client DPM sample application.
~/SDK/apps/common/examples/Network/UDP_Client DPM/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. To set the port number for the peer application (UDP Server) of the UDP Client DPM Sample, edit the source
code:

~/SDK/apps/common/examples/Network/ UDP_Client DPM/src/udp client dpm sample.c
#define UDP_CLIENT_DPM_SAMPLE_DEF_SERVER_PORT UDP_CLI_TEST_PORT
After a connection is made to a Wi-Fi AP, the example connects to the peer application (UDP Server).

11.9.2 How It Works

The DA16200 UDP Client in the DPM sample application is a simple echo message. When a peer’s UDP
application sends a message, then the DA16200 UDP client echoes that message to the peer.

UM-WI-046 Rev.2.6 RENESAS Page 81
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

11.9.3

11.9.3.1

DA16200 UDP Client UDP Server
DPM Sleep S o
1. Send Message
DPM Wakeup ======f======— oo e
2. Echo Message
Figure 33. Workflow of UDP client in DPM
Sample Code

Registration

The UDP client in the DPM sample application works in DPM mode. The basic code is similar to the UDP client

sample

application. There are two differences from the UDP client sample application:

= An initial callback function is added, named udp_client_dpm_sample_wakeup_callback() in the code. The

functi
= Addit

on is called when the DPM state changes from sleep to wake-up.
ional user configuration can be stored in RTM.

In this example, the peer's UDP IP address and port number are stored.

{

void udp client dpm sample init user config(dpm user config t *user config)

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = udp client dpm sample init callback;

//Set DPM wake up init callback
user config->wakeupInitCallback = udp client dpm sample wakeup callback;

//Set Error callback
user config->errorCallback = udp client dpm sample error callback;

//Set session type (UDP Client)
user config->sessionConfig[session idx].sessionType = REG TYPE UDP CLIENT;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
UDP_CLIENT DPM SAMPLE DEF CLIENT PORT;

//Set server IP address
memcpy (user config->sessionConfig[session idx].sessionServerIp,
srv_info.ip addr, strlen(srv_info.ip addr));

//Set server port
user config->sessionConfig[session idx].sessionServerPort = srv info.port;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
udp client dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback =

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 82

DA16200 DA16600 FreeRTOS SDK Programmer Guide

udp client dpm sample recv callback;

//Set user configuration
user config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

user config->sizeOfRetentionMemory = sizeof (udp client dpm sample svr info t);

return ;

11.9.3.2 Data Transmission

The callback function is called when a UDP packet is received from the peer's UDP socket application. In this
example, the received data is printed out and an echo message is sent to the peer's UDP socket application.

{

void udp client dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,

ULONG rx ip, ULONG rx port)

//Display received packet
PRINTF (" ==> Received Packet ($1d) \n", rx len);

status = dpm mng send to session(SESSION1, 0, 0, (char *)rx buf, rx len);
if (status) {
PRINTF (RED COLOR " [%s] Fail send data (session%d,0x%x) \n" CLEAR COLCR,
__func , SESSIONI, status);
} else {
//Display sent packet
PRINTF (" <== Sent Packet (%1d) \n", rx len);
}

dpm mng job done(); //Done opertaion

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 83

DA16200 DA16600 FreeRTOS SDK Programmer Guide

12. Network Examples: Security

12.1 Peer Application

The examples in this section require a peer device (Laptop or desktop) connected to the same AP running a
(D)TLS test application.

12.1.1 Peer Application Examples

There are many (D)TLS counter applications available. In this section, we use a self-implemented (D)TLS
counter application to demonstrate these sample applications. It is based on the cryptography APIs of the
Bouncy Castle (https://www.bouncycastle.org/java.html). These examples were written and tested on Windows
and might be different than the local environment. Use them as references for testing TLS/DTLS servers or
clients.

12.1.1.1 TLS Server

The TLS server application is for the DA16200 TLS client sample application. It runs with a default port number
(10196) and waits for a TLS client to connect, as shown in Figure 34. One TLS client connection is allowed, and
no client certificate is required during the TLS handshake. If the TLS session is established successfully, the TLS
server application sends a message per five seconds periodically.

Bind on tcp/

Figure 34. Start TLS server

12.1.1.2 TLS Client

The TLS client application is for the DA16200 TLS server sample application. It runs with default TLS server
information. The IP address is 192.168.0.2 and the port number is 10197. Figure 35 shows the TLS client tries to
connect to the DA16200 TLS server sample application. If a TLS session is established successfully, the TLS
client application sends a message per 5 seconds periodically.

Usage: tls_client.exe [TLS server IP address] [Port number]

Figure 35. Start TLS client

UM-WI-046 Rev.2.6 RENESAS Page 84
Oct 3, 2025 CFR0012

https://www.bouncycastle.org/java.html

DA16200 DA16600 FreeRTOS SDK Programmer Guide

If the TLS client application cannot find a DA16200 TLS server, an exception occurs with a timeout message as
shown in Figure 36.

Figure 36. TLS client timeout

12.1.1.3 DTLS Server

The DTLS server application is for the DA16200 DTLS client sample application. It runs with a default port
number (10199) and waits for the DTLS client to connect, as shown in Figure 37. A client certificate is not
required during the DTLS handshake. If a DTLS session is established successfully, the DTLS server application
sends a message per five seconds periodically.

Bind on udp/192.:
Figure 37. Start DTLS server

12.1.1.4 DTLS Client

The Datagram Transport Layer Security (DTLS) client application is for the DA16200 DTLS server sample
application. It runs with default DTLS server information. The IP address is 192.168.0.2 and the port number is
10199. The DTLS client tries to connect to the DA16200 DTLS server sample application as shown in Figure 38.
If a DTLS session is established successfully, the DTLS client application sends a message per five seconds
periodically.

Usage: dtls_client.exe [DTLS server IP address] [Port number]

Figure 38. Start DTLS client

12.2 TLS Server

This section describes how the TLS server sample application is built and works. The TLS server sample
application is an example of the simplest TLS echo server application. Transport Layer Security (TLS) is a
cryptographic protocol designed to provide communication security over a computer network. The DA16200
SDK provides an SSL library, called rbedTLS, on the secure hardware engine to support the TLS protocol.
MoedTLsS is one of the popular SSL libraries. It is helpful to easily develop a network application with a TLS

protocol.

UM-WI-046 Rev.2.6 RENESAS Page 85
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

12.2.1 How to Run

1. In the e?studio, import a project for the TLS Server sample application.

~/SDK/apps/common/examples/Network/TLS Server/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the sample application creates a TLS server socket with port number

10197 and waits for a client connection.
5. Run a TLS client application on the peer computer.

12.2.2 How It Works

The DA16200 TLS Server sample is a simple echo server. When a TLS client sends a message, the DA16200

TLS server echoes that message to the TLS client.

DA16200 TLS Server

1. TLS Handshake

TLS Client

2. Send Message

Y

3. Echo Message

Figure 39. Workflow of TLS server

12.2.3 Sample Code

4.5 sec

The DA16200 SDK provides the mbedTLs library. This section describes how the TLS server is implemented with

an mbedTLsS library and a socket library.

12.2.3.1 Initialization

The DA16200 secure hardware engine must be initialized with dal6x secure module init () before the TLS

context is initialized. To set up a TLS session, initialization functions are called as follows:

void tls server sample (void *param)

{

//Init session
mbedtls net init (&listen ctx);
mbedtls net init (&client ctx);

//Init SSL context
mbedtls ssl init(&ssl ctx);

//Init SSL config
mbedtls ssl config init (&ssl conf);

//Init CTR-DRBG context
mbedtls ctr drbg init(&ctr drbg);

//Init Entropy context
mbedtls entropy init (&entropy);

//Init Certificate context

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 86

DA16200 DA16600 FreeRTOS SDK Programmer Guide

mbedtls x509 crt init(&cert);

//Init Private key context
mbedtls pk init (&pkey);

//Init Private key context for ALT
mbedtls pk init (&pkey alt);

//Parse certificate
ret = mbedtls x509 crt parse(&cert, tls server sample cert,
tls server sample cert len);
//Parse private key
ret = mbedtls pk parse key(&pkey, tls server sample key,
tls server sample key len, NULL, 0);

snprintf (str port, sizeof (str port), "%d", TLS SERVER SAMPLE DEF PORT);
ret = mbedtls net bind(&listen ctx, NULL, str port, MBEDTLS NET PROTO TCP);

ret = mbedtls ctr drbg seed(&ctr drbg, mbedtls entropy func, &entropy,
(const unsigned char *)pers, strlen(pers));

//Set default configuration
ret = mbedtls ssl config defaults(&ssl conf, MBEDILS SSL IS SERVER,
MBEDTLS SSL_TRANSPORT STREAM, MBEDTLS SSL PRESET DEFAULT) ;

mbedtls ssl conf rng(&ssl conf, mbedtls ctr drbg random, &ctr drbg);

//Import certificate & private key
if (mbedtls pk get type (&pkey) == MBEDTLS PK RSA) {
ret = mbedtls pk setup rsa alt (&pkey alt,
(void *)mbedtls pk rsa(pkey),
tls server sample rsa decrypt func,
tls server sample rsa sign func,
tls server sample rsa key len func);

ret = mbedtls ssl conf own cert(&ssl conf, &cert, é&pkey alt);

if (ret) {
PRINTF ("\r\n[%s] Failed to set certificate (0x%x)\r\n", func , -ret);
goto end of task;

}

} else {
ret = mbedtls ssl conf own cert (&ssl conf, &cert, é&pkey);
if (ret) {
PRINTF ("\r\n[%s] Failed to set certificate(0x%x)\r\n", func , -ret);

goto end of task;
}
}

//Don't care verificate of peer certificate
mbedtls ssl conf authmode (&ssl conf, MBEDTLS SSL VERIFY NONE) ;

//Set up an SSL context for use.
ret = mbedtls ssl setup(&ssl ctx, &ssl conf);

reset:

mbedtls ssl set bio(&ssl ctx, &client ctx, mbedtls net send, mbedtls net recv, NULL);

UM-WI-046 Rev.2.6 RENESAS Page 87
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

12.2.3.2 TLS Handshake

TLS is an encryption protocol designed to secure network communication. A TLS handshake is the process of
initiating a communication session that uses TLS encryption. To do a TLS handshake, the function
mbedtls ssl handshake () is called. If an error occurred during the TLS handshake, the API returns a specific
error code. If a TLS session is established successfully, the API returns 0. The details are as follows:

void tls server sample (void *param)

{

reset:

while ((ret = mbedtls ssl handshake (&ssl ctx)) != 0) {
if ((ret != MBEDTLS ERR SSL WANT READ) && (ret != MBEDTLS ERR SSL WANT WRITE)) {
PRINTF ("\r\n[%s] Failed to do handshake (0x%x)\r\n", func , -ret);
goto reset;

12.2.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a TLS session
is established, all application data must be encrypted to transfer application data. MoedTLsS provides specific APIs
to help encrypt and decrypt data. To write application data, the function mbedtls ssl write() of the mbedTLS

library is called. The details are as follows:

void tls server sample (void *param)

{

reset:
do {
while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {
switch (ret) {

case MBEDTLS ERR SSL WANT READ:

case MBEDTLS ERR SSL WANT WRITE:
PRINTF ("\r\nNeed more data - mbedtls ssl write(0x%x)\r\n", -ret);
continue;

case MBEDTLS ERR SSL PEER CLOSE NOTIFY:
PRINTF ("\r\nConnection was closed gracefully\r\n");
break;

case MBEDTLS ERR NET CONN RESET:
PRINTF ("\r\nConnection was reset by peer\r\n");
break;

default:
PRINTF ("Failed to write data (0x%x)\r\n", -ret);
break;

}

break;

To read application data, the function mbedtls ssl read() of the mbedTLS library is called. In this sample, this
function is called in t1s server sample (). The details are as follows:

void tls server sample (void *param)

UM-WI-046 Rev.2.6 RENESAS Page 88
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

{
reset:
do {
len = sizeof (data buffer) - 1;
memset (data buffer, 0x00, sizeof (data buffer));

PRINTF ("< Read from client: ");

ret = mbedtls ssl read(&ssl ctx, data buffer, len);
if (ret <= 0) {
switch (ret) {
case MBEDTLS ERR SSL WANT READ:
case MBEDTLS ERR SSL WANT WRITE:
PRINTF ("\r\nNeed more data - mbedtls ssl write (0x%x)\r\n", -ret);
continue;
case MBEDTLS ERR SSI. PEER CLOSE NOTIFY:
PRINTF ("\r\nConnection was closed gracefully\r\n");
break;
case MBEDTLS ERR NET CONN RESET:
PRINTF ("\r\nConnection was reset by peer\r\n");
break;
default:
PRINTF ("\r\nFailed to read data (0x%x)\r\n", -ret);
break;
}
break;

}

len = ret;
PRINTF ("%d bytes read\r\n", len);

while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {

}

12.3 TLS Server in DPM

This section describes how the TLS server in the DPM sample application is built and works. The TLS server in
the DPM sample application is an example of the simplest TLS echo server application. TLS is a set of
cryptographic protocols designed to provide secure communication over a computer network. The DA16200
SDK can work in DPM mode. The user application requires an additional operation to work in DPM mode. The
DA16200 SDK provides a DPM manager for the user network application. The DPM manager supports users to
develop and manage a TLS network application in Non-DPM and DPM modes.

12.3.1 How to Run

1. In the e? studio, import a project for the TLS Server in the DPM sample application.
~/SDK/apps/common/examples/Network/TLS Server DPM/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application creates a TLS server socket with port number
10197 and waits for a client connection.

5. Run a TLS client application on the peer computer.

UM-WI-046 Rev.2.6 RENESAS Page 89
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

12.3.2

How It Works

The DA16200 TLS Server in the DPM sample is a simple echo server. When a TLS client sends a message,
then the DA16200 TLS server echoes that message to the TLS client. The DA16200 TLS server takes time to
wait to establish a TLS session.

12.3.3

12.3.3.1

DA16200 TLS Server TLS Client

1. TLS Handshake

DPM SIEEP & WAKEUP ~---====m==mmm=m === s mm oo s s oo

2. Send Message

3. Echo Message

Figure 40. Workflow of TLS server in DPM

Sample Code

Registration

4.5 sec

The TLS server in the DPM sample application works in DPM mode. The basic code is similar to the TLS server

sample

application. There are two differences with the TLS Server sample application:

* An initial callback function is added, named t1s server dpm sample wakeup callback() in the code. The

functi
= Addit
In this s

on is called when the DPM state changes from sleep to wake-up.
ional user configuration can be stored in RTM.
ample, the TLS server information is stored.

{

void tls server dpm sample init user config(dpm user config t *user config)

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = tls server dpm sample init callback;

//Set DPM wakkup init callback
user config->wakeupInitCallback = tls server dpm sample wakeup callback;

//Set Error callback
user config->errorCallback = tls server dpm sample error callback;

//Set session type (TCP Server)

user config->sessionConfig[session idx].sessionType = REG TYPE TCP SERVER;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
TLS SERVER DPM SAMPLE DEF SERVER PORT;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
tls server dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback =
tls server dpm sample recv callback;

//Set secure mode
user config->sessionConfig[session idx].supportSecure = pdIRUE;

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 90

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//Set secure setup callback
user config->sessionConfig[session idx].sessionSetupSecureCallback =
tls server dpm sample secure callback;

//Set user configuration
user config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

user config->sizeOfRetentionMemory = sizeof (tls server dpm sample svr info t);

return ;

12.3.3.2 TLS Setup

To establish a TLS session, TLS should be set up. DA16200 includes the mbedTLs library to provide the TLS
protocol. Most APIs that are related to the TLS protocol are based on the mbedTLs library. TLS is set up by
sessionSetupSecureCallback function. The details are as follows.

void tls_server dpm sample secure callback(void *config)

{
const char *pers = "tls server dpm sample";
SECURE_INFO T *secure config = (SECURE INFO T *)config;

ret = mbedtls ssl config defaults(secure config->ssl conf,
MBEDTLS SSL IS SERVER,
MBEDTLS SSL TRANSPORT STREAM,
MBEDTLS SSL PRESET DEFAULT) ;

//import test certificate
ret = mbedtls x509 crt parse(secure config->cert crt,
tls server dpm sample cert,
tls server dpm sample cert len);

ret = mbedtls pk parse key(secure config->pkey ctx,
tls server dpm sample key,
tls server dpm sample key len,
NULL, O);

if (mbedtls pk get type (secure config->pkey ctx) == MBEDTLS PK RSA) ({
ret = mbedtls pk setup rsa alt(secure config->pkey alt ctx,
(void *)mbedtls pk rsa(*secure config->pkey ctx),
tls server dpm sample rsa decrypt func,
tls server dpm sample rsa sign func,
tls server dpm sample rsa key len func);

ret = mbedtls ssl conf own cert (secure config->ssl conf,
secure config->cert crt,
secure config—>pkey alt ctx);
} else {
ret = mbedtls ssl conf own cert (secure config->ssl conf,
secure config->cert crt,
secure config->pkey ctx);

}
ret = dpm mng setup rng(secure config->ssl conf);

//Don't care verification in this sample.
mbedtls ssl conf authmode (secure config->ssl conf, MBEDTLS SSL VERIFY NONE);

ret = mbedtls ssl setup(secure config->ssl ctx, secure config->ssl conf);

dpm mng job done(); //Done opertaion

UM-WI-046 Rev.2.6 RENESAS Page 91
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

return ;

12.3.3.3 Data Transmission

The callback function is called when a TLS packet is received from a TLS client. In this sample, the received
data is printed out and an echo message is sent to the TLS server. Data is encrypted and decrypted in the
callback function.

void tls server dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)
{
//Display received packet
PRINTF (" =====> Received Packet (%1d) \n", rx len);

//Echo message
status = dpm mng send to session(SESSION1, rx ip, rx port, (char *)rx buf,
rx len);

if (status) {
PRINTF (RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR COLOR,
__func , SESSION1, status);

} else {
//Display sent packet
PRINTF (" <===== Sent Packet (%1d) \n", rx len);

}

dpm mng job done(); //Done opertaion

12.4 TLS Client

This section describes how the TLS client sample application is built and works. The TLS client sample
application is an example of the simplest TLS echo client application. TLS is a cryptographic protocol designed
to provide secure communication over a computer network. The DA16200 SDK provides a DPM manager for the
user network application. The DA16200 SDK provides an SSL library called mbedTT.S on a secure hardware
engine to support the TLS protocol. MoedTLsS is one of the popular SSL libraries and helps to easily develop a
network application with a TLS protocol.

12.4.1 How to Run

1. Run a TLS server application on the peer computer and open a TLS server socket with port number 10196.

2. Inthe e?studio, import a project for the TLS Client sample application.
~/SDK/apps/common/examples/Network/TLS Client/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. After a connection is made to an AP, the example application connects to the peer.

12.4.2 How It Works

The DA16200 TLS Client sample is a simple echo message. When the TLS server sends a message, then the
DA16200 TLS client echoes that message to the TLS server.

UM-WI-046 Rev.2.6 RENESAS Page 92
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

DA16200 TLS Client TLS Server

1. TLS Handshake

Y

2. Send Message

3. Echo Message

v

Figure 41. Workflow of TLS client

12.4.3 Sample Code

4.5 sec

DA16200 SDK provides the mbedTLs library. This section describes how the TLS client is implemented with the

mbedTLs library and socket library.

12.4.3.1 Registration

The DA16200 secure hardware engine must be initialized with da16x_secure_module _init() before the TLS

context is initialized. To set up a TLS session, initialization functions are called as follows:

void tls_client sample (void *param)

{

//Init session
mbedtls net init (&server ctx);

//Init SSL context
mbedtls ssl init(&ssl ctx);

//Init SSL config
mbedtls ssl config init (&ssl conf);

//Init CTR-DRBG context
mbedtls ctr drbg init(&ctr drbg);

//Init Entropy context
mbedtls entropy init (&entropy);

snprintf (str port, sizeof (str port), "%d", TLS CLIENT SAMPLE DEF SERVER PORT);
ret = mbedtls net connect (&server ctx,
TLS CLIENT SAMPLE DEF SERVER IP ADDR, str port,
MBEDTLS NET PROTO TCP);

//Set default configuration

ret = mbedtls ssl config defaults(&ssl conf,
MBEDTLS SSL IS CLIENT,
MBEDTLS SSL TRANSPORT STREAM,
MBEDTLS SSL PRESET DEFAULT) ;

ret = mbedtls ctr drbg seed(&ctr drbg, mbedtls entropy func, &entropy,
(const unsigned char *)pers, strlen(pers));

mbedtls ssl conf rng(&ssl conf, mbedtls ctr drbg random, &ctr drbg);

//Don't care verification in this sample.
mbedtls ssl conf authmode (&ssl conf, MBEDTLS SSL VERIFY NONE) ;

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 93

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//Setup an SSL context for use.
ret = mbedtls ssl setup(&ssl ctx, &ssl conf);

mbedtls ssl set bio(&ssl ctx, &server ctx,
mbedtls net send, mbedtls net recv, NULL);

12.4.3.2 TLS Handshake

TLS is an encryption protocol designed to secure network communication. A TLS handshake is the process that
starts a communication session that uses TLS encryption. To do a TLS handshake, the function
mbedtls ssl handshake () is called. If an error occurred during the TLS handshake, the API returns a specific
error code. If a TLS session is established successfully, the API returns 0. The details are as follows:

void tls client sample (void *param)

{
reset:

while ((ret = mbedtls ssl handshake (&ssl ctx)) != 0) {
if (ret == MBEDTLS ERR NET CONN RESET) {
PRINTF ("\r\n[%s] Peer closed the connection (0x%x)\r\n", func , -ret);

goto end of task;
}

if ((ret != MBEDTLS ERR SSL WANT READ) &&
(ret != MBEDTLS ERR SSL WANT WRITE)) {

PRINTFE ("\r\n[%s] Failed to do tls handshake (0x%x)\r\n", func , -ret);
goto end of task;

12.4.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a TLS session
is established, all data must be encrypted to transfer application data. MoedTLS provides specific APIs to help
encrypt and decrypt data. To write application data, the function mbedtls ssl write() of the moedTLS library is

called. The details are as follows:

void tls client sample (void *param)
{
do {
while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {
switch (ret) {
case MBEDTLS ERR SSI, WANT READ:
case MBEDTLS ERR SSL WANT WRITE:
PRINTF ("\r\nNeed more data - mbedtls ssl write (0x%x)\r\n", -ret);
continue;
case MBEDTLS ERR SSL PEER CLOSE NOTIFY:
PRINTF ("\r\nConnection was closed gracefully\r\n");
break;

case MBEDTLS ERR NET CONN RESET:
PRINTF ("\r\nConnection was reset by peer\r\n");

UM-WI-046 Rev.2.6 RENESAS Page 94
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

break;
default:
PRINTF ("\r\nFailed to write data (0x%x)\r\n", -ret);
break;
}
goto end of task;

To read application data, the function mbedtls ssl read() of the mbedTLS library is called. In this sample, this
function is called in tls client sample (). The details are as follows:

void tls client sample (void *param)
{
do {
len = sizeof (data buffer) - 1;
memset (data buffer, 0x00, sizeof (data buffer));

PRINTF ("< Read from server: ");

//Read at most 'len' application data bytes.
ret = mbedtls ssl read(&ssl ctx, data buffer, len);
if (ret <= 0) {
switch (ret) {
case MBEDTLS ERR SSI, WANT READ:
case MBEDTLS ERR SSL 1 WANT WRITE:
PRINTF ("\r\nNeed more data - mbedtls ssl read(0x%x)\r\n", -ret);
continue;
case MBEDTLS ERR SSL PEER CLOSE NOTIFY:
PRINTF ("\r\nConnection was closed gracefully\r\n");
goto end of task;
case MBEDTLS ERR NET CONN RESET:
PRINTF ("\r\nConnection was reset by peer\r\n");
goto end of task;
default:
PRINTF ("\r\nFailed to read data (0x%x)\r\n", -ret);
break;
}
goto end of task;
}

len = ret;
PRINTF ("%d bytes read\r\n", len);

while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {

12.5 TLS Client in DPM

This section describes how the TLS client in the DPM sample application is built and works. The TLS client in the
DPM sample application is an example of the simplest TLS echo client application in DPM mode. TLS is a set of
cryptographic protocols designed to provide secure communication over a computer network. The DA16200

UM-WI-046 Rev.2.6 RENESAS Page 95
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

SDK can work in DPM mode. The user application requires an additional operation to work in DPM mode. The
DA16200 SDK provides a DPM manager for the user network application. The DPM manager supports the user
to develop and manage the TLS network application in Non-DPM and DPM modes.

12.5.1 How to Run

1. Run a TLS server application on the peer computer and open a TLS server socket with port number 10196.

2. In the e?studio, import a project for a TCP Client in the DPM sample application.
~/SDK/apps/common/examples/Network/TLS Client DPM/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

5. Setthe TLS server IP address and the port number as created the socket on the peer computer with the
following console command and then reboot. These parameters can also be defined in the source code.

[/DA16200] # nvram.setenv TLSC SERVER IP 192.168.0.11
[/DA16200] # nvram.setenv TLSC SERVER PCRT 10196
[/DA16200] # reboot

After connecting to the AP, the example application connects to the peer computer.

12.5.2 How It Works

The DA16200 TLS Client in the DPM sample is a simple echo message. When a TLS server sends a message,
then the DA16200 TLS client echoes that message to the TLS server.

DA16200 TLS Client TLS Server

1. TLS Handshake

DPM Sleep & WaeUp - fr oo

2. Send Message 4.5 sec

3. Echo Message

Figure 42. Workflow of TLS client in DPM

12.5.3 Sample Code

12.5.3.1 Registration

The TLS client in the DPM sample application works in DPM mode. The basic code is similar to the TLS client

sample application. There are two differences with the TLS client sample application:

* An initial callback function is added, named t1ls client dpm sample wakeup callback() in the code. Itis
called when the DPM state changes from sleep to wake-up.

= Additional user configuration that can be stored in RTM.

In this example, TLS server information is stored.

void tls_client dpm sample init user config(dpm user config t *user config)
{

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = tls client dpm sample init callback;

//Set DPM wake-up init callback
user config->wakeupInitCallback = tls client dpm sample wakeup callback;

//Set External wake-up callback

UM-WI-046 Rev.2.6 RENESAS Page 96
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

user config->externWakeupCallback = tls client dpm sample external callback;

//Set Error callback
user config->errorCallback = tls client dpm sample error callback;

//Set session type(TLS Client)
user config->sessionConfig[session idx].sessionType = REG TYPE TCP CLIENT;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
TLS CLIENT DPM SAMPLE DEF CLIENT PORT;

//Set server IP address
memcpy (user config->sessionConfig[session idx].sessionServerlIp,
srv_info.ip addr, strlen(srv_info.ip addr));

//Set server port
user config->sessionConfig[session idx].sessionServerPort = srv_info.port;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
tls client dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback
tls client dpm sample recv callback;

//Set connection retry count
user config->sessionConfig[session idx].sessionConnRetryCnt
TLS CLIENT DPM SAMPLE DEF MAX CONNECTION RETRY;

//Set connection timeout
user config->sessionConfig[session idx].sessionConnWaitTime =
TLS CLIENT DPM SAMPLE DEF MAX CONNECTION TIMEOUT;

//Set auto reconnection flag
user config->sessionConfig[session idx].sessionAutoReconn = pdTRUE;

//Set secure mode
user config->sessionConfig[session idx].supportSecure = pdIRUE;

//Set secure setup callback
user config->sessionConfig[session idx].sessionSetupSecureCallback =
tls client dpm sample secure callback;

//Set user configuration
user config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;

user config->sizeOfRetentionMemory = sizeof (tls client dpm sample svr info t);

return ;

12.5.3.2 TLS Setup

To establish a TLS session, TLS should be set up. DA16200 includes the mbedTLs library to provide the TLS
protocol. Most APlIs that are related to the TLS protocol are based on an mbedTLs library. TLS is set up by
sessionSetupSecureCallback function. The details are as shown below. This sample application does not
include certificates.

void tls client dpm sample secure callback (void *config)

{

UM-WI-046 Rev.2.6 RENESAS Page 97
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

const char *pers = "tls client sample";
SECURE INFO T *secure config = (SECURE INFO T *)config;

ret = mbedtls ssl config defaults(secure config->ssl conf,
MBEDTLS_SSL IS CLIENT,
MBEDTLS SSL TRANSPORT STREAM,
MBEDTLS SSIL PRESET DEFAULT) ;

ret = dpm mng setup rng(secure config->ssl conf);

//Don't care verification in this sample.
mbedtls ssl conf authmode (secure config->ssl conf, MBEDTLS SSL VERIFY NONE);

ret = mbedtls ssl setup(secure config->ssl ctx, secure config->ssl conf);

dpm mng job done(); //Done opertaion
return ;

12.5.3.3 Data Transmission

The callback function is called when the TLS packet is received from the TLS server. In this sample, the received
data is printed out and an echo message is sent to the TLS server. Data is encrypted and decrypted in the
callback function.

void tls client dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)
{
//Display received packet
PRINTF (" =====> Received Packet (%1d) \n", rx len);

status = dpm mng send to session(SESSION1, rx ip, rx port, (char *)rx buf,
rx len);
if (status)
{
PRINTF (RED_COLOR " [%s] Fail send data(session%d,0x%x) \n" CLEAR COLOR,
__func , SESSION1, status);

//Display sent packet
PRINTF (" <===== Sent Packet (%1d) \n", rx len);
}

dpm mng job done(); //Done opertaion}

12.6 DTLS Server

This section describes how the Datagram Transport Layer Security (DTLS) server sample application is built and
works. The DTLS server sample application is an example of the simplest DTLS echo server application. DTLS
is a cryptographic protocol that provides security for datagram-based applications by allowing them to
communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DA16200
SDK provides an SSL library called mbedTLS on a secure hardware engine to support the DTLS protocol.
mbedTLS is one of the popular SSL libraries. mbedTLs is helpful to develop a network application with a DTLS
protocol.

12.6.1 How to Run

1. In the e? studio, import a project for the DTLS Server sample application.
~/SDK/apps/common/examples/Network/DILS Server/projects/dal6200

UM-WI-046 Rev.2.6 RENESAS Page 98
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application creates a DTLS server socket with port number
10199 and waits for a client connection.

5. Run a DTLS client application on the peer computer.

12.6.2 How It Works

The DA16200 DTLS Server sample is a simple echo server. When the DTLS client sends a message, then the
DA16200 DTLS server echoes that message to the DTLS client.

DA16200 DTLS Server DTLS Client

1. DTLS Handshake

2. Send Message

3. Echo Message 4.5 sec

Figure 43. Workflow of DTLS server

12.6.3 Sample Code

The DA16200 SDK provides the mbedTLs library. This sample application describes how the mbedTLs library is
called and applied for the socket library.

12.6.3.1 Initialization

The DA16200 secure hardware engine must be initialized with dal6x_secure module init () before the TLS
context is initialized. To set up a DTLS session, initialization functions are called as shown in the example code
below. The DTLS session is established over a UDP protocol. In case a packet is lost, retransmission is
required. So, the timer is registered to retransmit packet by function mbedtls ssl set timer cb().

void dtls server sample (void *param)

{

//Init session
mbedtls net init (&listen ctx);
mbedtls net init (&client ctx);

//Init SSL context
mbedtls ssl init(&ssl ctx);

//Init SSL config
mbedtls ssl config init (&ssl conf);

//Init CTR-DRBG context
mbedtls ctr drbg init(&ctr drbg);

//Init Entropy context
mbedtls entropy init (&entropy);

//Init Certificate context
mbedtls x509 crt init(&cert);

UM-WI-046 Rev.2.6 RENESAS Page 99
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//Init Private key context
mbedtls pk init (&pkey);

//Init Private key context for ALT
mbedtls pk init (&pkey alt);

//Init Cookies
mbedtls ssl cookie init (&cookies);
memset (&timer, 0x00, sizeof (dtls server sample timer t));

//Parse certificate
ret = mbedtls x509 crt parse(&cert, dtls server sample cert,
dtls server sample cert len);
//Parse private key
ret = mbedtls pk parse key(&pkey, dtls server sample key,
dtls server sample key len, NULL, 0);

snprintf (str port, sizeof (str port), "%d", DTLS SERVER SAMPLE DEF PORT);
ret = mbedtls net bind(&listen ctx, NULL, str port, MBEDTLS NET PROTO UDP);

ret = mbedtls ctr drbg seed(&ctr drbg, mbedtls entropy func, &entropy,
(const unsigned char *)pers, strlen(pers));

//Set default configuration

ret = mbedtls ssl config defaults(&ssl conf,
MBEDTLS SSL IS SERVER,
MBEDTLS SSL TRANSPORT DATAGRAM,
MBEDTLS SSL PRESET DEFAULT);

mbedtls ssl conf rng(&ssl conf, mbedtls ctr drbg random, &ctr drbg);

//Import certificate & private key
if (mbedtls pk get type (&pkey) == MBEDTLS PK RSA) {
ret = mbedtls pk setup rsa alt (&pkey alt,
(void *)mbedtls pk rsa (pkey),
dtls server sample rsa decrypt func,
dtls server sample rsa sign func,
dtls server sample rsa key len func);

ret = mbedtls ssl conf own cert(&ssl conf, &cert, é&pkey alt);
} else {
ret = mbedtls ssl conf own cert (&ssl conf, &cert, é&pkey);

}

//Setup cookies
ret = mbedtls ssl cookie setup (&cookies, mbedtls ctr drbg random, &ctr drbg);

//Register callbacks for DTLS cookies.

mbedtls ssl conf dtls cookies (&ssl conf,
mbedtls ssl cookie write,
mbedtls ssl cookie check,
&cookies) ;

//Don't care verificate of peer certificate
mbedtls ssl conf authmode (&ssl conf, MBEDTLS SSL VERIFY NONE) ;

//Enable or disable anti-replay protection for DTLS.
mbedtls ssl conf dtls anti replay(&ssl conf, MBEDTLS SSL ANTI REPLAY ENABLED);
mbedtls ssl conf read timeout (&ssl conf, DTLS SERVER SAMPLE DEF TIMEOUT) ;

//Set retransmit timeout values for the DTLS handshake.

UM-WI-046 Rev.2.6 RENESAS Page 100
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

mbedtls ssl conf handshake timeout (&ssl conf,
DTLS SERVER SAMPLE DEF HANDSHAKE MIN TIMEOUT,

DTLS SERVER SAMPLE DEF HANDSHAKE MAX TIMEOUT) ;

//Set up an SSL context for use.

ret = mbedtls ssl setup(&ssl ctx, &ssl conf);

mbedtls ssl set timer cb(&ssl ctx, &timer, dtls server sample timer start,
dtls server sample timer get state);

reset:

ret = mbedtls ssl set client transport id(&ssl ctx, client ip, client ip len);
mbedtls ssl set bio(&ssl ctx, &client ctx, mbedtls net send, NULL,
mbedtls net recv timeout);

12.6.3.2 DTLS Handshake

DTLS is an encryption protocol designed to secure network communication. A DTLS handshake is the process
that starts a communication session with DTLS encryption. To make a DTLS handshake, the application calls
function mbedtls ssl handshake (). The DTLS server must verify cookies for the DTLS client. The DTLS client's
transport-level identification information must be set up (generally an IP Address). After a ClientHello message is
received, the DTLS server must set up its IP address. Then, a DTLS handshake should be retried as follows:

void dtls_server sample (void *param)

{
reset:

while ((ret = mbedtls ssl handshake (&ssl ctx)) != 0) {
if ((ret = MBEDTLS ERR SSL WANT READ) ||
(ret = MBEDTLS ERR SSL WANT WRITE)) {
continue;

}
if (ret = MBEDTLS ERR SSL HELLO VERIFY REQUIRED) {

PRINTFE ("hello verification_fequesEéd\r\n");

ret = 0;
goto reset;
} else {

PRINTF ("\r\n[%s] Failed to do handshake (0x%x)\r\n", _ func , -ret);
goto reset;

12.6.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a DTLS session
is established, all data must be encrypted for transfer. mbedTLS provides specific APIs to help encrypt and
decrypt data. To write application data, the function mbedtls ssl write() of the mbedTLs library is called. The

details are as follows:

void dtls server sample (void *param) {
do {
while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {

switch (ret) {
case MBEDTLS ERR SSL WANT READ:

UM-WI-046 Rev.2.6 RENESAS Page 101
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

case MBEDTLS ERR SSL WANT WRITE:
PRINTF "\r\nNeed more data - mbedtls ssl write(x)\r\n", -ret);
continue;

}
PRINTF ("\r\n[%s] Failed to write data(0x%x)\r\n", func , -ret);
goto end of task;

}
PRINTF ("%d bytes written\r\n", len);

}

To read application data, the function mbedtls ssl read() of the mbedTLS library is called. In this sample, this
function is called in dt1ls server sample (). The details are as follows:

void dtls_server sample (void *param) {
do {
len = sizeof (data buffer) - 1;
memset (data buffer, 0x00, sizeof (data buffer));

PRINTF ("< Read from server: ");

//Read at most 'len' application data bytes.
ret = mbedtls ssl read(&ssl ctx, data buffer, len);
if (ret <= 0) {
switch (ret) {
case MBEDTLS ERR SSL WANT READ:
case MBEDTLS ERR SSI, WANT WRITE:
PRINTF ("\r\nNeed more data - mbedtls ssl write (0x%x)\r\n", -ret);
continue;
case MBEDTLS ERR SSL PEER CLOSE NOTIFY:
PRINTF ("\r\nConnection was closed gracefully\r\n");
ret = 0;
goto close notify;
case MBEDTLS ERR SSI, TIMEOUT:
PRINTF("\r\nTlmeout\r\n")-
goto reset;
default:
PRINTF ("\r\nFailed to read data (0x%x)\r\n", -ret);
break;
}
goto reset;

}

len = ret;
PRINTF ("%d bytes read\r\n", len);

PRINTE ("> Write to client: ");
while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {
}

12.7 DTLS Server in DPM

This section describes how the DTLS server in the DPM sample application is built and works. The DTLS server
in the DPM sample application is an example of the simplest DTLS echo server application. DTLS is a
cryptographic protocol that provides security for datagram-based applications by allowing them to communicate
in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DA16200 SDK can

UM-WI-046 Rev.2.6 RENESAS Page 102
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

work in DPM mode. The user application requires an additional operation to work in DPM mode. The DA16200
SDK provides a DPM manager for the user network application. The DPM manager supports the user to develop
and manage a DTLS network application in Non-DPM and DPM modes.

12.7.1 How to Run

1. In the e?studio, import a project for the DTLS Server in the DPM sample application.
~/SDK/apps/common/examples/Network/DILS Server DPM/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console command to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application creates a DTLS server socket with port number
10199 and waits for a client connection.

5. Run a DTLS client application on the peer computer.

12.7.2 How It Works

The DA16200 DTLS Server in the DPM sample is a simple echo server. When a DTLS client sends a message,
then the DA16200 DTLS server echoes that message to the DTLS client.

DA16200 DTLS Server DTLS Client

1. DTLS Handshake

v

DPM Sleep & WaKEUP -----rmmm o m oo e oo oo oo oo

2. Send Message 4.5 sec

3. Echo Message

Figure 44. Workflow of DTLS server in DPM
12.7.3 Sample Code

12.7.3.1 Registration

The DTLS server in the DPM sample application works in DPM mode. The basic code is similar to the DTLS
server sample application. There are two differences with the DTLS server sample application:

= An initial callback function is added, named dtls_server_dpm_sample_wakeup_callback() in the code. It is
called when the DPM state changes from sleep to wake-up.

= Additional user configuration can be stored in RTM.

In this sample, DTLS server information is stored.

void dtls server dpm sample init user config(dpm user config t *user config)
{

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = dtls server dpm sample init callback;

//Set DPM wakkup init callback
user config—->wakeupInitCallback = dtls server dpm sample wakeup callback;

//Set Error callback
user config->errorCallback = dtls server dpm sample error callback;

//Set session type (UDP Server)
user config->sessionConfig[session idx].sessionType = REG TYPE UDP SERVER;

//Set local port

UM-WI-046 Rev.2.6 RENESAS Page 103
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

user config->sessionConfig[session idx].sessionMyPort =
DTLS SERVER DPM SAMPLE DEF SERVER PORT;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
dtls server dpm sample connect callback;

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback =
dtls server dpm sample recv callback;

//Set secure mode
user config->sessionConfig[session idx].supportSecure = pdIRUE;

//Set secure setup callback
user config->sessionConfig[session idx] .sessionSetupSecureCallback =
dtls server dpm sample secure callback;

//Set user configuration
user config->ptrDataFromRetentionMemory = (UCHAR *)&srv_info;
user config->sizeOfRetentionMemory =

sizeof (dtls server dpm sample svr info t);

return ; }

12.7.3.2 DTLS Setup

To establish a DTLS session, DTLS should be set up. The DA16200 includes an mbedTLs library to provide the
DTLS protocol. Most APIs that are related to the DTLS protocol are based on an mbedTLs library. DTLS is set up

by sessionSetupSecureCallback function. The details are as follows.

void dtls server dpm sample secure callback(void *config)

{
const char *pers = "dtls server dpm sample";
SECURE_INFO T *secure config = (SECURE INFO T *)config;

ret = mbedtls ssl config defaults(secure config->ssl conf,
MBEDTLS_ SSL IS SERVER,
MBEDTLS SSL TRANSPORT DATAGRAM,
MBEDTLS SSL PRESET DEFAULT) ;

//import test certificate
ret = mbedtls x509 crt parse (secure config->cert crt,
dtls server dpm sample cert,
dtls server dpm sample cert len);

ret = mbedtls pk parse key(secure config->pkey ctx,
dtls server dpm sample key,
dtls server dpm sample key len,
NULL, O);

if (mbedtls pk get type (secure config->pkey ctx) == MBEDTLS PK RSA) ({
ret = mbedtls pk setup rsa alt(secure config->pkey alt ctx,
(void *)mbedtls pk rsa(*secure config->pkey ctx),
dtls server dpm sample rsa decrypt func,
dtls server dpm sample rsa sign func,
dtls server dpm sample rsa key len func);

ret = mbedtls ssl conf own cert (secure config->ssl conf,
secure config->cert crt,

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 104

DA16200 DA16600 FreeRTOS SDK Programmer Guide

secure config->pkey alt ctx);
} else {
ret = mbedtls ssl conf own cert (secure config->ssl conf,
secure config->cert crt,
secure config->pkey ctx);

ret = dpm mng setup rng(secure config->ssl conf);

ret = dpm mng cookie setup rng(secure config->cookie ctx);

mbedtls ssl conf dtls cookies (secure config->ssl conf,
mbedtls ssl cookie write,
mbedtls ssl cookie check,
secure config->cookie ctx);

//Don't care verification in this sample.
mbedtls ssl conf authmode (secure config->ssl conf, MBEDTLS SSL VERIFY NONE);

//use default value
mbedtls ssl conf max frag len(secure config->ssl conf, 0);
mbedtls ssl conf dtls anti replay(secure config->ssl conf,
MBEDTLS SSL ANTI REPIAY ENABLED);

mbedtls ssl conf read timeout (secure config->ssl conf,
DTLS SERVER DPM SAMPLE RECEIVE TIMEOUT * 10);

mbedtls ssl conf handshake timeout (secure config->ssl conf,
DTLS SERVER DPM SAMPLE HANDSAHKE MIN TIMEOUT * 10,
DTLS SERVER DPM SAMPLE HANDSAHKE MAX TIMEOUT * 10);

ret = mbedtls ssl setup(secure config->ssl ctx, secure config->ssl conf);

dpm mng job done(); //Done opertaion
return ;

12.7.3.3 Data Transmission

The callback function is called when a DTLS packet is received from the DTLS client. In this example, the
received data is printed out and an echo message is sent to the DTLS server. Data is encrypted and decrypted
in the callback function.

void dtls server dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)

{
//Display received packet
PRINTF (" ==> Received Packet ($1d) \n", rx len);

//Echo message

status = dpm mng send to session(SESSIONI,
rx_ip,
rx _port,
(char *)rx buf,
rx len);

if (status) {
PRINTF (RED COLOR " [%s] Fail send data(session%d, 0x%x) \n" CLEAR COLCR,
__func , SESSIONI, status);
} else {
//Display sent packet
PRINTF (" <== Sent Packet (%1d) \n", rx len);

UM-WI-046 Rev.2.6 RENESAS Page 105
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

}

dpm mng job done(); //Done opertaion}

12.8 DTLS Client

This section describes how the DTLS client sample application is built and works. The DTLS client sample
application is an example of the simplest DTLS echo client application. DTLS is a cryptographic protocol that
provides security for datagram-based applications by allowing them to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery. The DA16200 SDK provides an SSL library called
mbedTLS on a secure hardware engine to support the DTLS protocol. mbedTLs is one of the popular SSL libraries.
mbedTLS is helpful to easily develop a network application with the DTLS protocol.

12.8.1 How to Run

1. Run a DTLS server application on the peer computer and open a DTLS server socket with port number
10199.

2. In the e?studio, import a project for the DTLS client sample application.
~/SDK/apps/common/examples/Network/DILS Client/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

After a connection is made to an AP, the sample application connects to the peer computer.

12.8.2 How It Works

The DA16200 DTLS Client sample is a simple echo message. When the DTLS server sends a message, then
the DA16200 DTLS client echoes that message to the DTLS server.

DA16200 DTLS Client DTLS Server

1. DTLS Handshake

2. Send Message

3. Echo Message 4.5 sec

Figure 45. Workflow of DTLS client

12.8.3 Sample Code

The DA16200 SDK provides an mbedTLsS library. This sample application describes how an mbedTLs library is
called and applied for the socket library.

12.8.3.1 Initialization

The DA16200 secure hardware engine must be initialized with dal6x secure module init () before the DTLS

context is initialized. To set up a DTLS session, initialization functions are called as shown in the example code
below. A DTLS session is established over the UDP protocol. If a packet is lost, then retransmission is required.
So, the timer is registered to retransmit the packet by function mbedtls ssl set timer cb().

void dtls client sample (void *param)

{

//Init session

UM-WI-046 Rev.2.6 RENESAS Page 106
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

mbedtls net init (&server ctx);

//Init SSL context
mbedtls ssl init(&ssl ctx);

//Init SSL config
mbedtls ssl config init (&ssl conf);

//Init CTR-DRBG context
mbedtls ctr drbg init(&ctr drbg);

//Init Entropy context
mbedtls entropy init (&entropy);

memset (&timer, 0x00, sizeof (dtls client sample timer t));

PRINTF ("\r\nConnecting to udp/%s:%d...",
DTLS CLIENT SAMPLE DEF SERVER IP ADDR,
DTLS CLIENT SAMPLE DEF SERVER PORT) ;

snprintf (str port, sizeof (str port),"%d", DTLS CLIENT SAMPLE DEF SERVER PORT);

ret = mbedtls net connect (&server ctx,
DTLS CLIENT SAMPLE DEF SERVER IP ADDR, str port,
MBEDTLS NET PROTO UDP);

ret = mbedtls ssl config defaults(&ssl conf,
MBEDTLS SSL IS CLIENT,
MBEDTLS SSL TRANSPORT DATAGRAM,
MBEDTLS SSL PRESET DEFAULT) ;

ret = mbedtls ctr drbg seed(&ctr drbg, mbedtls entropy func, &entropy,

(const unsigned char *)pers, strlen(pers));

mbedtls ssl conf rng(&ssl conf, mbedtls ctr drbg random, &ctr drbg);
mbedtls ssl conf authmode (&ssl conf, MBEDTLS SSL VERIFY NONE);
mbedtls ssl conf dtls anti replay(&ssl conf, MBEDTLS SSL ANTI REPLAY ENABLED) ;
mbedtls ssl conf read timeout (&ssl conf, DTLS CLIENT SAMPLE DEF TIMEOUT) ;
mbedtls ssl conf handshake timeout (&ssl conf,
DTLS CLIENT SAMPLE DEF HANDSHAKE MIN TIMEOUT,
DTLS_CLIENT SAMPLE DEF HANDSHAKE MAX TIMEOUT);

ret = mbedtls ssl setup (&ssl ctx, &ssl conf);

mbedtls ssl set bio(&ssl ctx, &server ctx,
mbedtls net send, NULL, mbedtls net recv timeout);

mbedtls ssl set timer cb(&ssl ctx, &timer,
dtls client sample timer start,
dtls client sample timer get state);

12.8.3.2 DTLS Handshake

DTLS is an encryption protocol designed to secure network communication. A DTLS handshake is the process
of initiating a communication session that uses DTLS encryption. To do a DTLS handshake, the function
mbedtls ssl handshake () is called. If an error occurs during a DTLS handshake, the API returns the specific
error code. If a DTLS session is established successfully, the API returns 0. The details are as follows:

UM-WI-046 Rev.2.6 RENESAS Page 107
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

void dtls client sample (void *param)
{

while ((ret = mbedtls ssl handshake (&ssl ctx)) != 0) {
if (ret — MBEDITLS ERR NET CONN RESET) ({
PRINTF ("\r\n[%s] Peer closed the connection (0x%x)\r\n", func , -ret);

goto end of task;
}

if ((ret != MBEDTLS ERR SSL WANT READ) && (ret != MBEDTLS ERR SSL WANT WRITE))

{
PRINTF ("\r\n[%s] Failed to do dtls handshake (0x%x)\r\n", func , -ret);

goto end of task;

12.8.3.3 Data Transmission

Encryption scrambles data so that only authorized parties can understand the information. While a DTLS session
is established, all data must be encrypted to transfer application data. mbedTLS provides specific APIs to help
encrypt and decrypt data. To write application data, call function mbedtls ssl write() of the moedTLS library.

The details are as follows:

void dtls client sample (void *param)
{
do {
while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {
switch (ret) {
case MBEDTLS ERR SSL WANT READ:
case MBEDTLS ERR SSL WANT WRITE:
PRINTF ("\r\nNeed more data - mbedtls ssl write (0x%x)\r\n", -ret);
continue;
case MBEDTLS ERR SSL PEER CLOSE NOTIFY:
PRINTF ("\r\nConnection was closed gracefully\r\n");
goto end of task;
case MBEDTLS ERR NET CONN RESET:
PRINTF ("\r\nConnection was reset by peer\r\n");
goto end of task;
default:
PRINTF ("\r\nFailed to write data (0x%x)\r\n", -ret);
break;
}
goto end of task;

}
PRINTF ("%d bytes written\r\n", len);

}

To read application data, the function mbedtls ssl read() of the mbedTLS library is called. In this sample, this
function is called in dt1s client sample (). The details are as follows:

void dtls server sample (void *param)
{
do {
len = sizeof (data buffer) - 1;
memset (data buffer, 0x00, sizeof (data buffer));

UM-WI-046 Rev.2.6 RENESAS Page 108
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

PRINTF ("< Read from server: ");

ret = mbedtls ssl read(&ssl ctx, data buffer, len);
if (ret <= 0) {
switch (ret) {
case MBEDTLS ERR SSL WANT READ:
case MBEDTLS ERR SSL WANT WRITE:
PRINTF ("\r\nNeed more data - mbedtls ssl read(0x%x)\r\n", -ret);
continue;
case MBEDTLS ERR SSL PEER CLOSE NOTIFY:
PRINTF ("\r\nConnection was closed gracefully\r\n");
goto end of task;
case MBEDTLS ERR NET CONN RESET:
PRINTF ("\r\nConnection was reset by peer\r\n");
goto end of task;
default:
PRINTF ("\r\nFailed to read data (0x%x)\r\n", -ret);
break;
}
goto end of task;
}

len = ret;
PRINTF ("%d bytes read\r\n", len);

PRINTF ("> Write to server: ");
while ((ret = mbedtls ssl write(&ssl ctx, data buffer, len)) <= 0) {

}

12.9 DTLS Client in DPM

This section describes how the DTLS client in the DPM sample application is built and works. The DTLS client in
the DPM sample application is an example of the simplest DTLS echo client application in DPM mode. DTLS is a
cryptographic protocol that provides security for datagram-based applications by allowing them to communicate
in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DA16200 SDK can
work in DPM mode. The user application requires an additional operation to work in DPM mode. The DA16200
SDK provides the DPM manager for the user network application. The DPM manager supports the user to
develop and manage a DTLS network application in Non-DPM and DPM modes.

12.9.1 How to Run

1. Run a DTLS server application on the peer computer and open a DTLS server socket with port number
10199.

2. In the e? studio, import a project for the DTLS Client in the DPM sample application.
~/SDK/apps/common/examples/Network/DTLS Client DPM/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
Use the console command to set up the Wi-Fi station interface.

5. Setthe DTLS server IP address and the port number as created the socket on the peer computer with the
following console command and then reboot. These parameters can also be defined in the source code.

[/DA16200] # nvram.setenv DTLSC SERVER IP 192.168.0.11
[/DA16200] # nvram.setenv DTLSC SERVER PORT 10199
[/DA16200] # reboot

UM-WI-046 Rev.2.6 RENESAS Page 109
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

After a connection is made to an AP, the sample application connects to the peer computer.

12.9.2 How It Works

The DA16200 DTLS Client in the DPM sample is a simple echo message. When the DTLS server sends a
message, then the DA16200 DTLS client echoes that message to the DTLS server.

DA16200 DTLS Client DTLS Server

1. DTLS Handshake

DPM Sleep & WaKEUP ----nmm e m s o e oo oo oo e oo

2. Send Message 4.5 sec

3. Echo Message

v

Figure 46. Workflow of DTLS client in DPM

12.9.3 Sample Code

12.9.3.1 Registration

The DTLS client in the DPM sample application works in DPM mode. The basic code is similar to the DTLS

client sample application. There are two differences with the DTLS client sample application:

= An initial callback function is added, named dtls_client_dpm_sample_wakeup_callback() in the code. It is
called when the DPM state changes from sleep to wake-up.

= Additional user configuration can be stored in RTM.

In this sample, DTLS server information is stored.

void dtls client dpm sample init user config(dpm user config t *user config)
{

const int session idx = 0;

//Set Boot init callback
user config->bootInitCallback = dtls client dpm sample init callback;

//Set DPM wake up init callback
user config->wakeupInitCallback = dtls client dpm sample wakeup callback;

//Set Error callback
user config->errorCallback = dtls client dpm sample error callback;

//Set session type (UDP Client)
user config->sessionConfig[session idx].sessionType = REG TYPE UDP CLIENT;

//Set local port
user config->sessionConfig[session idx].sessionMyPort =
DTLS CLIENT DPM SAMPLE DEF CLIENT PORT;

//Set server IP address
memcpy (user config->sessionConfig[session idx].sessionServerIp,
srv_info.ip addr, strlen(srv_info.ip addr));

//Set server port
user config->sessionConfig[session idx].sessionServerPort = srv_info.port;

//Set Connection callback
user config->sessionConfig[session idx].sessionConnectCallback =
dtls client dpm sample connect callback;

UM-WI-046 Rev.2.6 RENESAS Page 110
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//Set Recv callback
user config->sessionConfig[session idx].sessionRecvCallback =
dtls client dpm sample recv callback;

//Set secure mode
user config->sessionConfig[session idx].supportSecure = pdIRUE;

//Set secure setup callback
user config->sessionConfig[session idx].sessionSetupSecureCallback =
dtls client dpm sample secure callback;

//Set user configuration
user config->ptrDataFromRetentionMemory = (UCHAR *)é&srv_info;
user config->sizeOfRetentionMemory =

sizeof (dtls client dpm sample svr info t);

return ;

12.9.3.2 DTLS Setup

To establish a DTLS session, DTLS should be set up. The DA16200 includes an mbedTLs library to provide the
DTLS protocol. Most APIs that are related to the DTLS protocol are based on an mbedTLs library. DTLS is set up
by function session setupSecureCallback (). The details are as shown below. This sample application does not

include certificates.

void dtls_client dpm sample secure callback(void *config)

{
const char *pers = "dtls client dpm sample";
SECURE_INFO T *secure config = (SECURE INFO T *)config;

ret = mbedtls ssl config defaults(secure config->ssl conf,
MBEDTLS_SSL IS CLIENT,
MBEDTLS SSL TRANSPORT DATAGRAM,

MBEDTLS SSL PRESET DEFAULT) ;
ret = dpm mng setup rng(secure config->ssl conf);

//don't care verification in this sample.
mbedtls ssl conf authmode (secure config->ssl conf, MBEDTLS SSL VERIFY NONE);

//use default value
mbedtls ssl conf max frag len(secure config->ssl conf, 0);
mbedtls ssl conf dtls anti replay(secure config->ssl conf,
MBEDTLS SSL ANTI REPLAY ENABLED);
mbedtls ssl conf read timeout (secure config->ssl conf,
DTLS CLIENT DPM SAMPLE RECEIVE TIMEOUT * 10);

mbedtls ssl conf handshake timeout (secure config->ssl conf,
DTLS CLIENT DPM SAMPLE HANDSAHKE MIN TIMEOUT * 10,
DTLS CLIENT DPM SAMPLE HANDSAHKE MAX TIMEOUT * 10);

ret = mbedtls ssl setup(secure config->ssl ctx, secure config->ssl conf);

dpm mng_ job done(); //Done opertaion
return ;
}
UM-WI-046 Rev.2.6 RENESAS Page 111

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

12.9.3.3 Data Transmission

The callback function is called when a DTLS packet is received from the DTLS server. In this sample, the

received data is printed out and an echo message is sent to the DTLS server. Data is encrypted and decrypted
in the callback function.

void dtls client dpm sample recv callback(void *sock, UCHAR *rx buf, UINT rx len,
ULONG rx ip, ULONG rx port)
{
//Display received packet
PRINTF (" => Received Packet ($1d) \n", rx len);

status = dpm mng send to session (SESSIONI,
rx ip,
rx port,
(char *)rx buf,
rx len);
if (status) {
PRINTF (RED COLOR " [%s] Fail send data(session%d, 0x%x) \n" CLEAR COLCR,
__func , SESSIONI, status);
} else {
//Display sent packet
PRINTF (" <== Sent Packet (%1d) \n", rx len);
}

dpm mng job done(); //Done opertaion

UM-WI-046 Rev.2.6 RENESAS Page 112
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13. Network Examples: MQTT

13.1 Overview

MQTT (Message Queue Telemetry Transport) is an ISO standard (ISO/IEC PRF 20922) publish-subscribe
based messaging protocol. It works on top of the TCP/IP protocol. The publisher sends (PUBLISH) messages to
the subscriber through the broker. The subscriber needs to keep the connection with the broker by TCP session
while the publisher can disconnect the session with the broker after sending a message.

As shown in Figure 47, when the broker receives a message with a specific topic the message is sent to
subscribers that already registered with the topic. A subscriber can register with more than one topic. There can
be many or no subscribers which register with a specific topic.

.’,J
. _ Hellol Hellol_—~"
H‘.\.\‘ - -
Hi. Hello! _
Bye. .
'/,f
7 .
Bye yd Broker Hi.
e
s T,
X P X
Topic: C Topic: B
Publisher Subscriber

Figure 47. MQTT messaging concept

The exchange of MQTT messages supports QoS (Quality of Service). QoS has three levels (0, 1, and 2) and the
process of each QoS level is described in the following sections.

The DA16200/DA16600 supports both publisher and subscriber functions and allows simultaneous use. The
subscriber function supports DPM mode. TLS is available for message encryption.

13.1.1 SDK Build

Source files should be modified in the DA16200/DA16600 SDK to use the MQTT function. To enable the MQTT,
modify it as shown in the following:

config generic sdk.h

#define __ SUPPORT MQTT // Support MOTT

13.2 API

13.2.1 APIs for Operating MQTT

The APIs listed in Table 17 are used to create or terminate the MQTT thread, to check the status, and to publish
a message. The configuration to execute MQTT protocols is explained in the next section.

UM-WI-046 Rev.2.6 RENESAS Page 113
Oct 3, 2025 CFR0012

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/TCP/IP

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 17. APIs for operating MQTT

Item

Description

int mqtt_client_start(void)

Return

If it succeeds, return 0. If it fails, return an error code.

Description

Create the MQTT client thread.

int mqtt_client_stop(void)

Return

If it succeeds, return 0. If there is no thread to terminate, return -1.

Description

Terminate the MQTT client thread.

int mqtt_client_check_conn(void)

Return 1 (true): Connected to a broker.
0 (false): Not connected.
Description Check whether the MQTT session is connected.

int mqtt_client_send_message(char *top, char *publish)

Return

0: Succeeded in publishing.

-1: Failed because MQTT is not connected.

-2: Failed because the previous message sent is in progress.
-3: Failed because MQTT topic is missing.

Other: Failed due to other causes. See enum "maqtt_client_error_code" to identify
the cause.

Parameter top

Topic (if NULL, the MQTT publisher sends a PUBLISH message with the topic
stored in NVRAM.)

publish

Message to be published.

Description

Publisher sends an MQTT message (PUBLISH).

int mqtt_client_send_message_with_qgos(char *top, char *publish, timeout)

Return 0: Succeeded in publishing.
-1: Failed to publish because Publisher is not ready to send.
-2: Failed to publish because the timeout expired.
Parameter top Topic (if NULL, the MQTT module sends a PUBLISH message with the topic
stored in NVRAM.)
publish Message to be published.
timeout | Timeout to wait for a previous QoS=1/2 Message to process completely (unit:
10 ms).
Description Publisher sends an MQTT message (PUBLISH) with a timeout check.

int mqtt_client_unsub_topic(char *topic)

Parameter topic

Topic to unsubscribe

Return

0: Succeeded in unsubscribing.

4: Failed because MQTT is not connected.

3: Failed because the topic is NULL

1: Failed because of memory allocation failure

Other: Failed due to other causes. See enum "matt_client_error_code" to identify
the cause.

Description

Unsubscribe from the specified topic.

Invoke this function only when MQTT client is in a connected state with Broker.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 114

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.2.2 APIs for Confi

gure MQTT Messaging

With NVRAM items, you can configure MQTT messaging. This allows configuring the publisher and the

subscriber.

Table 18. APIs for configuring MQTT message

Item

Description

int mqtt_client_config_initia

lize(void)

Return

If it succeeds, return 0 (MOSQ_ERR_SUCCESS). If it fails, return an error code.

Description

Reset all MQTT configurations.

void mqtt_sub_callback_set(void (*user_cb)(void))

Parameter user_cb User callback function to set.
Return None
Description Register a callback function that is invoked when a MQTT Subscriber is connected with a

Broker.

void mqtt_pub_callback_set(void (*user_cb)(void))

Parameter user_cb User callback function to set.
Return None
Description Register a callback function that is invoked when publishing a message is done.

void mqtt_msg_callback_se

t(void (*user_cb)(const char *buf, int len, const char *topic))

Parameter user_cb User callback function to set.
buf: PUBLISH message received
len: PUBLISH message length
topic: the topic of the PUBLISH message received
Return None
Description Register a callback function that is invoked when a PUBLISH message arrives.

void mqtt_sub_disconn_cb_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.
Return None
Description Register a callback function that is invoked when the MQTT client is disconnected.

void mqtt_sub_disconn2_cb_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.
Return None
Description = Register callback function called when MQTT Subscriber is disconnected by receiving a

message with invalid unsupported length if the connection is clean_session=0 and qos >
0.

= On receipt of this callback, the application needs to clear the message in Broker by
connecting with clean_sesion=1.

= To use this APl, __ MQTT_CLEAN_SESSION_MODE_SUPPORT___ should be enabled.

void mqtt_subscribe_callback_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.
Return None
Description Register a callback function that is invoked when a SUBSCRIBE request to a topic is

finished.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 115

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

void mqtt_unsubscribe_call

back_set(void (*user_cb)(void));

Parameter user_cb User callback function to set.
Return None
Description Register a callback function that is invoked when an UNSUBSCRIBE request is finished.

Table 19. MQTT messaging configuration (String type)

Name

Description

Example

DA16X_CONF_STR_MQTT
_BROKER_IP

Broker IP address (or URI)

da16x_set_config_str(DA16X_CONF_STR_MQTT_BR
OKER_IP, "192.168.0.1");

DA16X_CONF_STR_MQTT
_SUB_TOPIC

Subscriber topic (previous topics
are removed) (Note 1)

da16x_set_config_str(DA16X_CONF_STR_MQTT_SU
B_TOPIC, topic);

DA16X_CONF_STR_MQTT
_SUB_TOPIC_ADD

Subscriber topic to add (up to
four) (Note 1)

da16x_set_config_str(DA16X_CONF_STR_MQTT_SU
B_TOPIC_ADD, topic);

DA16X_CONF_STR_MQTT
_SUB_TOPIC_DEL

Subscriber topic to remove
(Note 1)

da16x_set_config_str(DA16X_CONF_STR_MQTT_SU
B_TOPIC_DEL, topic);

DA16X_CONF_STR_MQTT
_PUB_TOPIC

Topic to publish

da16x_set_config_str(DA16X_CONF_STR_MQTT_PU
B_PUB_TOPIC, "pub_topic");

DA16X_CONF_STR_MQTT
_USERNAME

Username to log in to a broker

da16x_set_config_str(DA16X_CONF_STR_MQTT_US
ERNAME, "mqtt_id");

DA16X_CONF_STR_MQTT
_PASSWORD

Password to login to a broker

da16x_set_config_str(DA16X_CONF_STR_MQTT_PA
SSWORD, "mqtt_password");

_SUB_CLIENT_ID

DA16X_CONF_STR_MQTT | Will Topic da16x_set_config_str(DA16X_CONF_STR_MQTT_WI
_WILL_TOPIC LL_TOPIC, "will_topic");

DA16X_CONF_STR_MQTT | Will Message da16x_set_config_str(DA16X_CONF_STR_MQTT_WI
_WILL_MSG LL_MSG, "will_msg");

DA16X_CONF_STR_MQTT | MQTT client ID da16x_set_config_str(DA16X_CONF_STR_MQTT_SU

B_CLIENT_ID, "sub_id");

DA16X_CONF_STR_MQTT
_TLS_SNI

MQTT TLS SNI (Server Name
Indication)

da16x_set_config_str(DA16X_CONF_STR_MQTT_TL
S_SNI, "sni_str")

Note 1

Table 20. MQTT messaging configuration (Integer type)

Up to four subscriber topics can be registered, and only one publisher topic can be registered.

Name

Description

Example

DA16X_CONF_INT_MQTT_
SUB

MQTT operation (O: stop, 1: start)

da16x_set_config_int(DA16X_CONF_INT_MQTT_SU
B, 1);

DA16X_CONF_INT_MQTT_
AUTO

MQTT Auto-start at booting
system (0: disable, 1: enable)

da16x_set_config_int(DA16X_CONF_INT_MQTT_AU
TO, 1);

DA16X_CONF_INT_MQTT_
PORT

Broker port number

da16x_set_config_int(DA16X_CONF_INT_MQTT_PO
RT, 8883);

DA16X_CONF_INT_MQTT_
QOSs

QoS level (0~2)

da16x_set_config_int(DA16X_CONF_INT_MQTT_QO
S, 2);

DA16X_CONF_INT_MQTT_
TLS

TLS (0: disable, 1: enable)

da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS
1)

DA16X_CONF_INT_MQTT_
WILL_QOS

QoS level of Will messages (0~2)

da16x_set_config_int(DA16X_CONF_INT_MQTT_WIL
L_QOS, 1);

DA16X_CONF_INT_MQTT_
PING_PERIOD

MQTT ping period (secs)

da16x_set_config_int(DA16X_CONF_INT_MQTT_PIN
G_PERIOD, 86400);

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS

CFR0012

Page 116

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Name

Description

Example

DA16X_CONF_INT_MQTT_
VER311

MQTT protocol:
1(v3.1.1)/0 (v3.1)

da16x_set_config_int(DA16X_CONF_INT_MQTT_VE
R311, 1)

DA16X_CONF_INT_MQTT_
TLS_INCOMING

TLS incoming buffer size:
default (1024*4), min (1024*2),
max (1024*8)

da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS
_INCOMING, 1024*4)

DA16X_CONF_INT_MQTT_
TLS_OUTGOING

TLS outgoing buffer size:
default (1024*4), min (1024*2),
max (1024*8)

da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS
_OUTGOING, 1024*4)

DA16X_CONF_INT_MQTT_
TLS_AUTHMODE

TLS peer certificate verification
mode: 0 (not verify), 1 (optional),
2 (required), default is 1

da16x_set_config_int(DA16X_CONF_INT_MQTT_TLS
_AUTHMODE, 1)

DA16X_CONF_INT_MQTT_
CLEAN_SESSION

MQTT Clean Session mode (1:
clean the previous session, 0: do
not clean the previous session)

da16x_set_config_int(DA16X_CONF_INT_MQTT_CL
EAN_SESSION, 1);

13.3 MQTT Connection and Flow Chart

Table 21 shows that MQTT client is started/not started depending on the configuration and use cases.

Table 21. MQTT client start conditions

Configuration

Use case

Result

Automatic connection enabled.
(DA16X CONF _INT MQTT AUTO: 1)

The DA16200 boots from POR or
software reset (Non-wake-up case)

MQTT client is started.

MQTT connection is established, and
then the DA16200 wakes up from DPM
LPM.

MQTT client is started.

MQTT client is stopped, and then the
DA16200 wakes up from DPM LPM.

MQTT client is not started.

Automatic connection disabled.
(DA16X CONF_INT MQOTT AUTO: 0)

The DA16200 boots from POR or
software reset.

MQTT client is not started.

MQTT connection is established, and
then the DA16200 wakes up from DPM
LPM.

MQTT client is started.

MQTT client is stopped, and then the
DA16200 wakes up from DPM LPM.

MQTT client is not started.

Figure 48 describes how the MQTT client in the DA16200/DA16600 tries to make MQTT connection. For
example, MQTT client is started if DA16X CONF_INT MQOTT AUTO is enabled and the DA16200 boots from POR or
software reset. If connection is established, then the DA16200 enters DPM LPM or stay awake depending on
DPM configuration. If MQTT connection is failed, it retries the connection up to the values defined in the

MOTT RESTART MAX RETRY and MOTT CONN MAX RETRY.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 117

DA16200 DA16600 FreeRTOS SDK Programmer Guide

POR or S/W reset
Wake up by RTC timer or
external wake-up key

A 4

Initialize WLAN

<

If Wi-Fi

If Wi-Fi profile
profile set?

Wi-Fi connection
established?

Is Wake-up
from DPM LPM?

MQTT get active
== HIGH

If AT+NWMQCL=1 or
“mgtt_client start”
executed forcebily?

NO

YES

YES Start MQTT client
MQTT active state = HIGH;
subRetryCount = 0;

|

Process MQTT client
configuration
(DPM / Non-DPM)
YES

A4

If DPM enabled?

DPM
LPM dpm_mode_is_wakeup == TRUE &&
dpm_socket_is_established == TRUE
i YES
—‘—' Load connection session NO
v
Try MQTT connection “

+NWMQCL:1 response sent;
— sub_connect_try_count = 0; YE
Store connection session;

MQTT connection
established ?

YES Is DPM enabled?

sub_connect_try_count ==
&& ++subRetryCount < 3

++sub_count_try_count <
NO

NO

v

Start RTC timer;
[4—VYE!
—~ +NWMQCL:2 response sent; s

++sub_count_try_count < 6

+NWMQCL:@ response sent;
MQTT active state = LOW;
NO

v

+NWMQCL:@ response sent;

MQTT active state = LOW;
sub_connect_try_count = 0;
Clear up MQTT configuration;

y| Keep
awake

Figure 48. MQTT client flow chart

UM-WI-046 Rev.2.6

RENESAS
Oct 3, 2025

Page 118
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.4 Test
This section explains how to test the MQTT function on the DA1620/DA16600 debug console window.

13.4.1 Test Environment

For this test the Mosquitto MQTT broker is used, which can be downloaded from the following URL:
https://mosquitto.org/download/. If the broker cannot be installed, use the one provided by Renesas Electronics.

Extract and run it on local Windows computer.

13.4.2 Setup

Open a command window and go to the Mosquitto folder.

1. Run a broker.

mosquitto —-v —-p <Port Number>

2. Open a new command window and run a subscriber.

mosquitto sub -h <Broker IP> -p <Port Number> -t <Topic>

1 1.4.14 (huild date 11/ 7 0:03:18.53) starting
it

O

O0-KR-EMG-LT (cl, kBO)

1O

1L

3. Open a new command window and publish a message.

mosquitto pub -h <Broker IP> -p <Port Number> -t <Topic> -m "<Message>"

The subscriber receives the message as shown below.

UM-WI-046 Rev.2.6 RENESAS Page 119
Oct 3, 2025 CFR0012

https://mosquitto.org/download/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

squitto_sub -k 172.16.30.163 — 1

13.4.3 Certificate
See Section 6 for MQTT client certificate.

13.4.4 Publisher

13.441 QoS=0 Message
This section gives an example of publishing a QoS=0 message.

Publisher (DA16K) Broker Subscriber

‘ PUBLISH (Hello!)

‘ Topic: dal6k ‘ ‘

Figure 49. Publish QoS=0 message
1. After the DA16200/DA16600 EVB is connected to an AP, configure the parameters, and publish a message.

[/DA16200]# net

[/DA16200/NET]# mgtt config broker <Broker IP>
[/DA16200/NET] # mgtt config port <Port Number>
[/DR16200/NET] # mgtt config pub topic <Topic>

[/DR16200/NET] # mgtt client start

>>> MQTT Client connection OK (dal6x FFFE)

[/DA16200/NET] # mgtt client -m <Message>

[/DA16200/NET] # mgtt client stop

Optionally, "client_id" can also be set with the following command:
[/DA16200/NET]# mgtt config client id <client id string>
For example, mqtt_config client_id abcd1111

client idshould be unique per each device. By default, client id is generated internally as "da16x_<the
last 2 bytes of mac address>". For example, da16x_FCFA.

2. When message transmission -m "Hello!" is successful, the following messages are displayed:
Hello! (Send, Len: 6, Topic: dalék, Message ID: 1)
The following syntax allows you to send a message with a new topic:

[/DA16200/NET] mgtt client -m <Message> <NewTopic>

If the previous parameters for broker, port, and topics are not changed, then no action is required to set the
parameters for the publication of every message.

The max length of the console command is 158. To send a longer PUBLISH, write the following command:

[/DA16200/NET] mgtt client -1
Typing data: (MQTT Publisher message)

Cancel - CTRL4D, End of Input - CTRL+C or CTRL+Z
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012
345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234
5678901234567890123456789012345678901234567890 ...

Use the keyboard combinations Ctrl+C or Ctrl+Z to send the message.

UM-WI-046 Rev.2.6 RENESAS Page 120
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Optionally, "retain" can also be set with the following command:

[/DR16200/NET] # mgtt config pub topic <Topic> -r

For example, mgtt config pub topic abdclll -r

MQTT client is a feature used to ensure that the last published message on a specific topic is stored by the
broker. When a client subscribes to that topic, it immediately receives the retained message, without waiting
for a new one to be published.

13.4.4.2 Qo0S=1/2 Message

This section gives an example of publishing a QoS=1/2 Message.

Publisher (DA16K) Broker Subscriber

PUBLISH (Hello!)

Topic: dalBk

PUBACK

Figure 50. Publish QoS 1 message

Publisher (DA16K) Broker Subscriber

PUBLISH (Hello!)

Topic: dal6k

PUBREC

PUBREL

PUBCOMP

Figure 51. Publish QoS 2 message
= Configure the parameters and publish a message.

[/DA16200/NET]# mgtt config broker <Broker IP>
[/DA16200/NET] # mgtt config port <Port Number>
[/DA16200/NET] # mgtt config pub topic <Topic>
[/DA16200/NET]# mgtt config gos <QoS Level>
[/DA16200/NET]# mgtt client start

>>> MQTT Client connection OK (daléx FFFE)

[/DA16200/NET]# mgtt client -m <Message>

UM-WI-046 Rev.2.6 RENESAS Page 121
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Figure 52. Configure parameters and publish message

13.4.43 MQTT over TLS
The DA16200/DA16600 SDK provides a TLS encrypted session for secure MQTT messages.

Publisher (DA16K) Broker Subscriber

‘ PUBLISH (Hello!)

‘ Topic: da16k / TLS encrypted ‘ ‘

Figure 53. Publish secure message

NOTE

It is required to store certificates in the DA1620/DA16600 to use TLS encryption. This procedure is explained in Section
13.4.3.

1. Run a broker with a secure port.

mosquitto —c mosquitto.conf -p <Port Number> —v

2. Run a subscriber.

mosquitto sub -h <Broker IP> —-p <Port> --cafile <CA Certificate> --cert <Client Certificate> —-key
<Client Private Key> —--tls-version <TLS Protocol Version> --insecure -t <Topic>

—-h 172.16.30.163 —p 8BB3 ——cafile cas.pem ——cert wifiuser.pem —key wifiuser key ——tls—ver

3. Set the current time in the DA16200/DA16600 EVB to check if the certificate is valid.
(If SNTP for time sync is needed, input the command net.sntp enable to get the current time.)

[/DA16200]# time set <yyyy-mm-dd> <hh:mm:ss>

4. Store three Certificates (see Section 6.6) in the DUT and then complete the following steps.

[/DA16200/NET]# mgtt config broker <Broker IP>
[/DA16200/NET]# mgtt config port <Port Number>
[/DR16200/NET] # mgtt config pub topic <Topic>
[/DA16200/NET]# mgtt config tls 1
[/DA16200/NET] # mgtt client start

>>> MQOTIT Client connection OK (daléx FFFE)

[/DA16200/NET]# mgtt client -m <Message>

UM-WI-046 Rev.2.6 RENESAS Page 122
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.4.4.4 Username and Password
1. Set up a username and password to authenticate users.

| Login :::) ||||||||

Publisher (DA16K) Broker Subscriber

PUBLISH (Hello!)

‘ Topic: dat16k ‘

Figure 54. User login
2. Run a broker with a secure port. It needs to be prepared for the configuration file.

mosquitto -c¢ <Config File> —p <Port> —v

3) starting

In the Mosquitto package provided by Renesas Electronics, file mosq_idpw.conf is used for the <Config File>
parameter, and user accounts are registered in file p1.txt.

3. Add a new account in this file with the following command:

mosquitto passwd.exe -b pl.txt <username> <password>

4. At the Mosquitto command prompt, run the mosquito sub command to log in successfully to the broker.

mosquitto sub -h <broker ip> -p <port> -t <topic> -u <id> -P <pass>

5. Onmgtt client (DUT), set the username and password, and start mgtt client.

[/DA16200/NET] # mgtt config broker <Broker IP>
[/DR16200/NET] # mgtt config port <Port Number>
[/DA16200/NET] # mgtt config pub topic <Topic>
[/DA16200/NET] # mgtt config tls 0
[/DA16200/NET] # mgtt config username <Username>
[/DR16200/NET] # mgtt config password <Password>
[/DR16200/NET] # mgtt client start

>>> MQTT Client connection OK (dal6x FFFE)

[/DA16200/NET]# mgtt client -m <Message>

NOTE
= The max length of the console command is 158 so to type in a password exceeding the limit of the console, use the
command mqtt config long password

= The max length of the buffer is currently 160 for a password, 64 for a username. If it needs to change max length,
modify MOTT USERNAME MAX LEN or MOTT PASSWORD MAX LEN.

13.4.5 Subscriber

13.4.5.1 Setup
1. Configure the parameters and start the subscriber.

UM-WI-046 Rev.2.6 RENESAS Page 123
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

/DA16200/NET]# mgtt config broker <Broker IP>
/DA16200/NET]# mgtt config port <Port Number>
/DA16200/NET]# mgtt config sub topic 1 <Topic>
/DA16200/NET]# mgtt client start

>>> MQIT Client connection OK (daléx FFEFE)

[/DA16200/NET]# mgtt client stop

Multiple topics can be registered. Add the parameter for the number of topics in the command (up to four).

[/DA16200/NET]# mgtt client stop

[/DA16200/NET] # mgtt config sub topic <Topic count> <Topic#l> <Topic#2> ..
[/DR16200/NET] # mgtt client start

>>> MQTT Client connection OK (dal6x FFFE)

[/DR16200/NET] # mgtt config sub topic add <New topic>
[/DR16200/NET] # mgtt config sub topic del <Topic to remove>

13.4.5.2 MQTT over TLS

Set the current time in the DA16200/DA16600 EVB to check if the certificate is valid. (If SNTP is auto-started
during boot, skip this step.)

[/DA16200]# time set <yyyy-mm—-dd> <hh:mm:ss>

1.

Run the broker as below.

mosquitto —c mosquitto.conf -p <Port Number> —v

Add three Certificates (see Section 6.6) for the DUT and then complete the following steps.

[/DR16200/NET] # mgtt config broker <Broker IP>
[/DA16200/NET] # mgtt config port <Port Number>
[/DA16200/NET]# mgtt config sub topic 1 <Topic>
[/DA16200/NET] # mgtt config tls 1
[/DR16200/NET] # mgtt client start

>>> MQTT Client connection OK (dal6x FFFE)

Run a publisher on your computer.

mosquitto pub -h <Broker IP> -p <Port> --cafile <CA Certificate> --cert <Client Certificate> —--key
<Client Private Key> —-tls-version <TLS Protocol Version> -t <Topic> --insecure -m <message>

Example: mosquitto pub -h 192.168.0.101 -p 1884 --cafile cas.pem --cert wifiuser.pem —-key
wifiuser.key ——tls-version tlsvl -t dalék —-insecure -m "hello"

13.4.5.3 Username and Password

1.

DUT: Set username and password.

[/DA16200/NET] # mgtt config broker <Broker IP>
[/DA16200/NET] # mgtt config port <Port Number>
[/DA16200/NET] # mgtt config sub topic 1 <Topic>
[/DA16200/NET] # mgtt config tls 0
[/DA16200/NET] # mgtt config username <Username>
[/DA16200/NET] # mgtt config password <Password>
[/DA16200/NET]# mgtt client start

>>> MQIT Client connection OK (daléx FFEE)

2. Inthe Mosquitto package provided by Renesas Electronics, file mosq idpw.conf is used for the <Config
File> parameter and user accounts are registered in file p1.txt. Add a new account in this file with the
following command.

mosquitto pub -h [Broker IP] -p [port] -t [topic] -m <message> -u [id] -P [password]
Example:
mosquitto pub -h 192.168.0.101 -p 1884 -t dal6k -u mike -P 1234 -m hello
UM-WI-046 Rev.2.6 RENESAS Page 124

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.4.54 WILL

1.

Sub#1 (DUT): Set the Will message.

[/DA16200/NET] # mgtt config broker <Broker IP>
[/DA16200/NET]# mgtt config port <Port Number>
[/DA16200/NET] # mgtt config sub topic 1 <Topic>
[/DA16200/NET] # mgtt config will topic <Topic>
[/DA16200/NET] # mgtt config will message <Message>
[/DA16200/NET]# mgtt config will gos <QoS Level>
[/DA16200/NET] # mgtt client start

>>> MQIT Client connection OK (daléx FFFE)

Broker: Write the following command.

>mosquitto -v -p 1884

Sub#2 (PC): Write the following command.

>mosquitto sub -h 192.168.0.101 -t dalék -p 1884 -q O

Sub#1 (DUT): Try an unexpected disconnection.

[/DA16200/NET] # reset

>>> Network Interface (wlanO): DOWN

[mgtt subscriber main] Request mgtt restart

[wpa supplicant event disassoc] CTRL-EVENT-DISCONNECTED bssid=ec:08:6b:d6:53:62 reason=3
locally generated=1

DA16200 ROM-Boot [f££ffc000]
[MROM]

Sub#2 (PC): Wait until the following message is printed.

>mosquitto sub -h 192.168.0.101 -t dalek -p 1884 —-q 2
mwill

13.4.6 MQTT Pub/Sub Test with DPM and TLS
In this test, the Pub and Sub are run with the DPM mode enabled.

1.

Broker: Run with TLS enabled.

>mosquitto -c mosquitto.conf -p 8883 —v

2. Sub#2 (PC): Write the following command.
>mosquitto sub -h 192.168.0.101 -p 8883 --cafile cas.pem --cert wifiuser.pem —-key wifiuser.key ——tls-
version tlsvl -t dal6ék —-insecure

3. Sub-Pub#1 (DUT): Write the following command.

UM-WI-046 Rev.2.6 RENESAS Page 125

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DA16200/NET]# mgtt config auto 1
[/DR16200/NET] # mgtt config broker <Broker IP>
[/DR16200/NET] # mgtt config port <Port Number>
[/DA16200/NET] # mgtt config sub topic 1 <Topic>
[/DA16200/NET]# mgtt config pub topic <Topic>
[/DR16200/NET] # mgtt config tls 1
[/DA16200/NET]# sntp enable

[/DR16200/NET] # nvram.setenv dom mode 1
[/DA16200/NET] # reboot

onnection COMPLETE to 90:9f:33:06:

—— DHCP Client WLANO: SEL(3)
-— DHCP Client WLANO: REQ(4)
-— DHCP Client WLANO: BOUND(5)
Assigned addr - 192.168.
netmask = 255.255.
gateway : 192.168.
DNS addr : 210.220.

DHCP Server IP : 192.168.
Lease Time : 18h 00m
Renewal Time : 15h 00m

: SNTP Server: pool.ntp.org (106.247.248.106)
>> SNTP Time sync - 2021.03.11 - 01:29:17
>>> MQTT Client connection OK (dalbox DD12)

>>> Start DPM Power-Down !1!
Figure 55. DPM sleep after MQTT connection

#Pub (PC): Send the Pub message as below.

>mosquitto pub -h 192.168.0.101 -p 1884 --cafile cas.pem --cert wifiuser.pem -—key wifiuser.key —--tls-
version tlsvl -t daléek ——insecure -m "Hello World!!"

When the message is received, DA16200/DA16600 wakes up from DPM Sleep and prints the message.

akeup source is 0x82

TIM STATUS: 0x00000001
TIM : UC
aking up MCU ..
(Rx: Len=8,Topic=SUB_TOPIC,Msg_ID=0)

>>> Start DPM Power-Down 11!
rwnx_send_set_ps_mod
Figure 56. MQTT UC wake-up

If the code examples are applied, the MQOTT publisher starts to post a periodic message every 30
seconds and the MQOTT subscriber processes the received PUBLISH messages.

akeup source is 0x82

Jrtc_timeout
TIM STATUS: 0x00000010
TIM : FAST
x: Len=26,Topic=PUB_TOPIC,Msg_ID=6)

<< Mqtt Pub EnQ : SUCCESS
[PUBREC] (Rx: Msg_ID=6)
[PUBREL] (Tx: Msg_ID=6)
[PUBCOMP] (Rx, Msg_ID=6)

>>> Start DPM Power-Down !1!

Figure 57. MQTT wake-up for sending message

13.4.6.1 MQTT Reconnection Scheme
When the broker is disconnected, MQTT Client tries to reconnect to the broker based on the following scheme.

UM-WI-046 Rev.2.6 RENESAS Page 126
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.4.6.1.1 Non-DPM Mode

MQTT Client tries to reconnect six times (MQTT_CONN_MAX_RETRY) and the attempt to retry is terminated
after the max number of trials is reached.

13.4.6.1.2 DPM Mode

1. After the disconnection from the broker is recognized, the system wakes up from DPM Sleep, and MQTT
Client tries to reconnect three times (MQTT_RESTART_MAX_RETRY), and the system enters DPM Sleep
when the ftrials fail.

2. Infive seconds, the system wakes up and MQTT Client tries reconnection with the broker. If it fails in
connecting to the broker, the system enters DPM Sleep.

3. Step 2 is repeated six times (MQTT_CONN_MAX_RETRY) and MQTT Client is terminated after the max
number of trials (MQTT_CONN_MAX_RETRY) is reached. The system then enters DPM Sleep.

4. In case other DPM wake-up (User Wake-up, user RTC Wake-up, UC...) happens after Step 3, Step 2 is
repeated six times.
13.4.6.2 DPM Power Profile

With Keysight, a current consumption measuring tester, check how DPM works in MQTT communication. DPM
allows the system to stay in Sleep mode most of the time and only wake up (and stay active for only a small
amount of time to get the job done) when needed.

In the Keysight snapshot below, the DA16200/DA16600 was in Sleep mode until it woke up to post a periodic
status message to the broker. When the DA16200/DA16600 receives the response, it enters and stays in Sleep
mode until the next Status Message TX time (the interval depends on application).

1

“Active” Duration :

about 170msec

Figure 58. MQTT communication

13.4.7 MQTT CleanSession=0 Test Guide

13.4.7.1 CleanSession=0 Mode

When an MQTT Client (hereinafter referred to as MQTTC) establishes a connection with an MQTT Broker
(Broker onward), there are two types of session: CleanSession=1 and CleanSession=0.

CleanSession=1: default session type. When the Broker receives a connect request from an MQTTC that tries
to connect with an option "CleanSession=1" (which is default config on DA16x), Broker treats the connection as
a "new" session. If an existing session associated with the same client_id is found, the Broker clears that
previous session and creates a new one with the client_id.

UM-WI-046 Rev.2.6 RENESAS Page 127
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

CleanSession=0: When the Broker receives a connect request from an MQTTC that tries to connect with an
option "CleanSession=0", the Broker first tries to find a session (session data) with the same client_id. If it finds
one, it keeps using that session for the new MQTTC.

While MQTTC is connected to the Broker, there may be times when the TCP connection becomes unstable and
disconnected (for example, mqtt ping failed). This may cause some messages that had been published to the
Broker during that time to not be delivered to a subscriber. If new messages (with QoS > 0) are published to the
Broker and for sessions that have been configured in "CleanSession=0", the Broker retains and re-sends them
when the MQTTC is re-connected. MQTTC (if CleanSession=0 is enabled) also should retain the state of the
unfinished/unacked messages until reconnection.

Mew connection from 192. .2 on port 3.
Mew client connected from 1 : as dalbx_D9CC

IBE from dal
SUB_TOPIC (QoS 2)

DICC 2 SUB_TOPIC

SUB_TOPIC (Qo5 2)
da D9CC 2 SUB_TOPIC
Sending SUBACK to daléx DICC

Figure 60. Broker console - CleanSession=0 connection
Even with CleanSession=0 connection, the Broker does not maintain session data if MQTTC is disconnected in
the following cases.
= |f a new message is published with QoS 0 after MQTTC is disconnected.
= |f MQTTC's connection QoS is 0.
The DA16200 and DA16600 support CleanSession=0 mode in the following method.

CleanSession=0 feature is enabled by default in SDK v3.2.3.0 or higher
(__MQTT_CLEAN_SESSION_MODE_SUPPORT_)

If an application uses QoS 1 or Qos 2 and CleanSession=0, the message (payload) size (both Tx and Rx) should be pre-
decided (because there is limitation in the dpm user pool size). By default, 100 bytes are defined.

#define MOTT MSG TBL PRESVD MAX PLAYIOAD LEN 100
= Depending on the application’s expected maximum payload size, a different value can be defined.
= The DPM User Pool has a limited size (approximately 8K in total) in the system.

= First check the available free DPM User Pool size using the console command dpm user pool and then calculate the
max payload length and message number for the application if needed.

= The default configuration (payload_len: 100, max_count: 10) allocates approximately 1.9 kB of DPM user pool (Check
mq_msg_tbl_presvd_t for detail).

= Search for the following compiler options in config_generic_sdk.h.
//Imax payload length of a preserved message
#define MQTT_MSG_TBL_PRESVD_MAX_PLAYLOAD_LEN 100
/I max number of preserved messages
#define MQTT_MSG_TBL_PRESVD_MAX_MSG_CNT 10
= The following console command is provided to configure CleanSession mode:
mqtt_client clean_session <1|0>

UM-WI-046 Rev.2.6 RENESAS Page 128
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.4.711 CleanSession and QoS Matrix Table for PUBLISH Rx
Table 22. CleanSession and QoS matrix in message Rx
Subscriber
- Unacked message delivery QoS Publisher
Case . QoS (After MQTT reconnection) (Effective actual) Message's QoS
session
1 1 0 X 0 0
2 1 1 X 0 0
3 1 2 X 0 0
4 1 0 X 0 1
5 1 1 X 1 1
6 1 2 X 1 1
7 1 0 X 0 2
8 1 1 X 1 2
9 1 2 X 2 2
10 0 0 X 0 0
11 0 1 X 0 0
12 0 2 X 0 0
13 0 0 X 0 1
14 0 1 o] 1 1
15 0 2 o] 1 1
16 0 0 X 0 2
17 0 1 o] 1 2
18 0 2 o] 2 2

Basically, with CleanSession=1, no unacked message delivery happens when a MQTT reconnect happens
(marked as x).

With CleanSession=0, only case 14, 15, 17, and 18 makes message redelivery happen for messages that had
been delivered to the Broker while the MQTT was offline (marked as O).

13.4.71.2

CleanSession and QoS Matrix Table for PUBLISH Tx

Expectation 1

Application assumes "sending message" fails and waits until MQTT gets re-connected before

retrying.

Behavior 1

Application does message send retry.

Expectation 2

Application assumes "sending message" resumes when MQTT gets re-connected.

Behavior 2

Application waits until the message sent retry by MQTT is complete.

Table 23. CleanSession and QoS matrix in message TX

Publisher Expectation if MQTT gets
c disconnected (while QoS 1/2 message Behavior expected when MQTT
Case B QoS is not fully acked or QoS 0 send is client re-connected
session being sent)
1 1 0 Expectation 1 Behavior 1
2 1 1 Expectation 1 Behavior 1
3 1 2 Expectation 1 Behavior 1
4 0 0 Expectation 1 Behavior 1
5 0 1 Expectation 2 Behavior 2

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS

CFR0012

Page 129

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Publisher Expectation if MQTT gets
disconnected (while QoS 1/2 message Behavior expected when MQTT
Case e QoS is not fully acked or QoS 0 send is client re-connected
session being sent)
6 0 2 Expectation 2 Behavior 2

When publishing a message from DA16x, the application’s expectation and action/behavior may be different if
CleanSession=0 and QoS 1 or 2 are used in some specific cases.

In normal network conditions, there is no difference in message send behavior between CleanSession=0 and
CleanSession=1.

In some abnormal cases where QoS 1/2's ACK message (PUBACK, PUBREC, PUBREL, or PUBCOMP) gets
lost due to bad network conditions (which can cause a MQTTC re-connection), CleanSession=0 can recover the
previous message state and resume communication with the Broker.

However, if CleanSession=1 is used, when MQTTC is disconnected, it can safely re-transmit the message when
MQTTC is re-connected. Depending on the use case, either approach (CleanSession=0 or CleanSession=1) can
be utilized.

13.4.7.2 Test Steps

13.4.7.21
[/DA16200/NET] # mgtt client stop

How to connect with CleanSession=0

[/DA16200/NET] # mgtt config clean session 0
[/DA16200/NET] # mgtt config qos 2
[/DA16200/NET] # mgtt config status

MQTT Client Information:
- MQTT Status : Not Running

- Broker IP : 192.168.0.230

- Port : 8883

- Pub. Topic : PUB TOPIC

- Sub. Topic : SUB_TOPIC

- QoS Level I

- TLS : Enable

- Clean Session : No

- TLS ALPN (None)

- TLS SNI (None)

- TLS CIPHER SUIT : (None)

- Ping Period : 60

- TLS Incoming buf : 4096 (bytes)

- TLS Outgoing buf : 4096 (bytes)

- TLS Auth mode HE

- User name (None)

- Password (None)

- Client ID : (default: daléx D9CC)
MQOTT VER 3.1

[/DA16200/NET] # mgtt client start

MOTT CleanSession=0 Support Mode enabled.
[/DA16200/NET] # >>> MQTT Client connection OK (daléx DICC)

To activate "CleanSession=0 support mode" in DA16x, QoS should be 1 or 2 and CleanSession option should
be set to 0.

If either option (CleanSession and QoS) is not set as above, CleanSession=0 support mode is disabled.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 130

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.4.7.2.2 How to restart CleanSession=0 test

If re-testing (fresh new test) with CleanSession=0 mode, the Broker may be needed to "clear the previous

session" depending on the previous session type.

The reason is that since an MQTTC connects with CleanSession=0, the Broker does not delete the session data

until the MQTTC re-connects with CleanSession=1.

Case 1: Previous session is CleanSession=1 and restart a new CleanSession=0 test.

[/DA16200/NET] # mgtt client stop

runContinueSub=0)
[mgtt client] terminated
[/DA16200/NET] # mgtt config clean session 0

[/DA16200/NET] # mgtt client start

MOTT CleanSession=0 Support Mode enabled.
[/DA16200/NET] # >>> MQTT Client connection OK (daléx D9ICC)

[mgtt subscriber main] mosquitto loop forever exited (rc=17, sock=0, errno=0,

Case 2: Previous session is CleanSession=0 and re-test of CleanSession=0.

[/DA16200/NET] # mgtt client stop

runContinueSub=0)

[mgtt client] terminated

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] # mgtt config clean session 1

[/DA16200/NET] # mgtt client start
[/DA16200/NET] # >>> MQTT Client connection OK (daléx DICC)
[/DA16200/NET] #

[/DA16200/NET] # mgtt client stop

runContinueSub=0)

[mgtt client] terminated

[/DA16200/NET] #

[/DA16200/NET] #

[/DA16200/NET] # mgtt config clean session 0

[/DA16200/NET] # mgtt client start

MOTT CleanSession=0 Support Mode enabled.
[/DA16200/NET] # >>> MQTT Client connection OK (daléx DICC)

[mgtt subscriber main] mosquitto loop forever exited (rc=17, sock=0, errno=0,

[mgtt subscriber main] mosquitto loop forever exited (rc=17, sock=0, errno=0,

13.4.7.23 PUBLISH RX Test
1) Test Steps
Test steps are as follows under non-DPM and DPM modes.
In non-DPM mode:
¢ DA16x: connect to Broker
e Publisher: send one or two messages
o DA16x: check if the messages are received.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 131

DA16200 DA16600 FreeRTOS SDK Programmer Guide

¢ DA16x: disconnect from Broker

¢ Publisher: send one or two messages (let say msg_A)

e DA16x: reconnect to Broker

¢ DA16x: check if msg_A (sent while DA16x is offline) is received.
DPM mode:

¢ DA16x: connect to Broker. Enter DPM sleep
e Publisher: send one or two messages
o DA16x: check if the messages are received

e DA16x: turn off AP. Wait for the MQTT keep alive period to finish (to make sure Broker recognizes the
MQTTC disconnection)

e Publisher: send one or two messages (let say msg_A)
e DA16x: turn on AP. Wait until DA16x is connected to AP
¢ DA16x: reconnected to AP and check if msg_A (sent while DA16x is offline) is received.

NOTE

= Mosquitto broker (Broker), Mosquitto publisher (Publisher), and DA16x (Subscriber) are used for the test.

= Message length from publisher should be less than or equal to 100. If longer messages are sent, they may not be
restored properly when MQTT is reconnected.

2) Test Steps - Example 1 (non-DPM)
The following are the test steps for case 15 (non-DPM mode).

[DA16x] Connect MQTTC with CleanSession=0 and QoS 2

[/DA16200/NET] # mgtt client stop

[mgtt subscriber main] mosquitto loop forever exited (rc=17, sock=0, errno=0,
runContinueSub=0)
mgtt client] terminated
/DA16200/NET] #
/DA16200/NET] #
/DA16200/NET] #
/DA16200/NET] #
/DA16200/NET] #

— —

mgtt config qos 2
[/DA16200/NET] # mgtt config clean session 0
[/DA16200/NET] # mgtt client start

MQTT CleanSession=0 Support Mode enabled.
[/DA16200/NET] # >>> MQIT Client connection OK (dal6x D9CC)

[Other Publisher] Publish messages

C:\mosquitto>mosquitto pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --
key wifiuser.key --tls-version tlsvl --insecure -q 1 -t SUB TOPIC -m "hello gos 0"

C:\mosquitto>mosquitto pub -h 192.168.0.230 —p 8883 --cafile cas.pem --cert wifiuser.pem —-
key wifiuser.key --tls-version tlsvl --insecure -g 1 -t SUB TOPIC -m "hello gos 1"

[DA16x] Check the messages are successfully received

[/DA16200/NET] #

[/DA16200/NET] # (Rx: Len=11,Topic=SUB TOPIC,Msg ID=1)
[PUBACK] (Tx: MSg_ID=1)

(Rx: Len=11, Topic=SUB TOPIC,Msg ID=2)

[PUBACK] (Tx: Msg ID=2)

[DA16x] Disconnect from Broker

UM-WI-046 Rev.2.6 RENESAS Page 132
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DA16200/NET] #
[/DA16200/NET] # mgtt client stop

runContinueSub=0)
[mgtt client] terminated

[mgtt subscriber main] mosquitto loop forever exited (rc=17, sock=0,

errno=0,

[Other Publisher] Publish two messages (while DA16x is in disconnected state)

C:\mosquitto>mosquitto pub -h 192.168.0.230 -p 8883 --cafile cas.pem
key wifiuser.key --tls-version tlsvl --insecure -g 1 -t SUB TOPIC -m

C:\mosquitto>mosquitto pub -h 192.168.0.230 -p 8883 --cafile cas.pem
key wifiuser.key --tls-version tlsvl --insecure -q 1 -t SUB TOPIC -m

—-—cert wifiuser.pem --
"hello qos 2"

——cert wifiuser.pem —-
"hello gos 3"

[DA16x] Re-connect to the Broker and check if the two messages that had been published while DA16x was in a

disconnected state are received successfully.

[/DA16200/NET] #

[PUBACK] (Tx: Msg ID=3)

[PUBACK] (Tx: Msg ID=4)

[/DA16200/NET] # mgtt client start

MOTT CleanSession=0 Support Mode enabled.
[/DA16200/NET] # (Rx: Len=11,Topic=SUB TOPIC,Msg ID=3)

(Rx: Len=11, Topic=SUB TOPIC,Msg ID=4)

>>> MQTT Client connection OK (daltx D9CC)

3) Test Steps - Example 2 (DPM)
The following are the test steps for case 18 (DPM mode). Mosquitto broker and Mosquitto publisher are used

for the test.

[DA16x] Connect with CleanSession=0 and QoS 2

MQTT Client Information:
- MQTT Status

[/DA16200/NET] # mgtt config gos 2
[/DA16200/NET] # mgtt config clean session 0

[/DA16200/NET] # mgtt config status

: Not Running

- Broker IP : 192.168.0.230

- Port : 8883

- Pub. Topic : PUB_TOPIC

- Sub. Topic : SUB _TOPIC

- QoS Level 2

- TLS : Enable

- Clean Session : No

- TLS ALPN (None)

- TLS SNI (None)

- TLS CIPHER SUIT : (None)

- Ping Period : 60

- TLS Incoming buf : 4096 (bytes)

- TLS Outgoing buf : 4096 (bytes)

- TLS Auth mode HE

- User name (None)

- Password : (None)

- Client ID : (default: daléx D9CC)

- MQTT VER 3.1
[/DA16200/NET] #
[/DA16200/NET] #

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 133

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DA16200/NET] # dpm on

[DP

Wake-up source is 0x0

[dpom init retmemory] DPM INIT CONFIGURATION (1)

System Mode : Station Only (0)

>>> Start DAl6X Supplicant ...

>>> DAl6x Supp Ver2.7 — 2020 07

>>> Wi-Fi mode : b/g/n -> b/g (for DPM)
>>> MAC address (staO) : d4:3d:39:10:d9:cc

Connection COMPLETE to 00:11:32:ce:8e:6f

—— DHCP Client WLANO: SEL(6)
—— DHCP Client WLANO: REQ (1)
—— DHCP Client WLANO: CHK(8)
—— DHCP Client WLANO: BOUND (10)

Assigned addr : 192.168.1.195
netmask ¢ 255.255.255.0
gateway : 192.168.1.1

DNS addr : 192.168.1.1

DHCP Server IP : 192.168.1.1
Lease Time : 24h 00m 00s
Renewal Time : 20h 00m 00s

MQTT CleanSession=0 Support Mode enabled.

>>> Hello World #2 (network dependent application) !!!
>>> MQTT Client connection OK (daléx D9CC)

>>> Start DPM Power-Down !!!

[Other Publisher] Publish messages

C:\mosquitto>mosquitto pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --
key wifiuser.key --tls-version tlsvl --insecure -q 2 -t SUB TOPIC -m "hello gos 1"

C:\mosquitto>mosquitto pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --
key wifiuser.key --tls-version tlsvl --insecure -q 2 -t SUB TOPIC -m "hello gos 2"

[DA16x] Check the messages are successfully received

Wake-up source is 0x82

>>> Start DAl6X Supplicant ...

>>> TIM STATUS: 0x00000001

>>> TIM : UC

>>> Hello World #1 (Non network dependent application) !!!
MOTT CleanSession=0 Support Mode enabled.

>>> Hello World #2 (network dependent application) !!!

(Rx: Len=11, Topic=SUB TOPIC,Msg ID=1)

[PUBREC] (Tx: Msg ID=1)

[PUBREL] (Rx: Msg ID=1)

[PUBCOMP] (Tx: Msg ID=1)

>>> Start DPM Power-Down !!!

[13edll dpm tcp ack proc] TCP Update SEQ Ny

Wake-up source is 0x82

>>> Start DAl6X Supplicant ...
>>> TIM STATUS: 0x00000001
>>> TIM : UC

UM-WI-046 Rev.2.6 RENESAS Page 134
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

>>> Hello World #1 (Non network dependent application) !!!
MQOTT CleanSession=0 Support Mode enabled.

>>> Hello World #2 (network dependent application) !!!

(Rx: Len=11, Topic=SUB TOPIC,Msg ID=2)

[PUBREC] (Tx: MSg_IDZZ)

[PUBREL] (Rx: Msg ID=2)

[PUBCOMP] (Tx: Msg ID=2)

>>> Start DPM Power-Down !!!

[i3edll dpm tcp ack proc] TCP Update SEQ Num(20d7)

PS TIME 130369 us

[DA16x] Turn off AP

Wake-up source is 0x82

>>> Start DAl6X Supplicant ...
>>> TIM STATUS: 0x00000008
>>> TIM : No BCN

>>> Network Interface (wlan0O) : DOWN

[wpa supplicant event disassoc] CTRL-EVENT-DISCONNECTED bssid=00:11:32:ce:8e:6f reason=4
locally generated=1

Fast scan, freg=2432, num ssids=1

'l No selected network !!!

Fast scan, freg=2432, num ssids=1

>>> Hello World #1 (Non network dependent application) !!!

'l No selected network !!!

User Call-back : Wi-Fi disconnected (reason code = 4)
Fast scan, freg=2432, num ssids=1

'l No selected network !!!

! No selected network !
! No selected network !
! No selected network !
| |

n
|
|
!

No selected network !!

M !
iy !
' !
' !

rtc timeout (tid:14)

'l No selected network !!!

[dpm timer process] 'mgtt sub' is not ready. Callback can't be called. (/14)
>> Abnormal DPM(1l) operation after 1 second

[Broker] Make sure MQTTC is disconnected

1647318510: Socket error on client daléx DI9CC, disconnecting.

[Other Publisher] Publish two messages (while DA16x is in a disconnected state)

C:\mosquitto>mosquitto pub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiuser.pem --
key wifiuser.key --tls-version tlsvl --insecure -q 2 -t SUB TOPIC -m "hello gos 3"

C:\mosquitto>mosquitto pub -h 192.168.0.230 —-p 8883 --cafile cas.pem --cert wifiuser.pem —-
key wifiuser.key --tls-version tlsvl --insecure -q 2 -t SUB TOPIC -m "hello gos 4"

[DA16x] Turn ON AP

[DA16x] Wait until AP is connected and see whether hello qos 3and hello gos 4 are received

Wake-up source is 0x82

UM-WI-046 Rev.2.6 RENESAS Page 135
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

System Mode : Station Only (0)

>>> Start DAl6X Supplicant ...

>>> DAl6x Supp Verz2.7 — 2020 07

>>> Wi-Fi mode : b/g/n -> b/g (for DPM)

>>> MAC address (stalO) : d4:3d:39:10:d9:cc

>>> stal interface add OK

>>> Start STA mode...

>>> Hello World #1 (Non network dependent application) !!!

>>> Network Interface (wlan(O) : UP
>>> Associated with 00:11:32:ce:8e:6f

Connection COMPLETE to 00:11:32:ce:8e:6f

—— DHCP Client WLANO: SEL(6)
—— DHCP Client WLANO: REQ (1)
—— DHCP Client WLANO: CHK(8)
—— DHCP Client WLANO: BOUND (10)

Assigned addr : 192.168.1.195
netmask ¢ 255.255.255.0
gateway : 192.168.1.1

DNS addr : 192.168.1.1

DHCP Server IP : 192.168.1.1
Lease Time : 24h 00m 00s
Renewal Time : 20h 00m 00s

MOTT CleanSession=0 Support Mode enabled.
>>> Hello World #2 (network dependent application) !!!
(Rx: Len=11, Topic=SUB TOPIC,Msg ID=3)
[PUBREC] (Tx: Msg ID=3)

(Rx: Len=11, Topic=SUB TOPIC,Msg ID=4)
[PUBREC] (Tx: Msg ID=4)

>>> MQTT Client connection OK (daléx D9CC)
[PUBREL] (Rx: Msg ID=3)

[PUBCOMP] (Tx: Msg ID=3)

[PUBREL] (Rx: Msg ID=4)

[PUBCOMP] (Tx: Msg ID=4)

>>> Start DPM Power—-Down !!!

13.4.7.2.4 PUBLISH Tx Test
1) Test Steps
Test steps are as follows.
e DA16x: connect to Broker
o DA16x: send messages
o DA16x: check if the message sent is successful.
NOTE

Message length from DA16x should be less than or equal to 100 for case 5 and 6 configuration. Sending longer messages
returns failure. For cases other than case 5 or 6, message length limit is 3K.

2) Test Steps — Example
The following are the test steps for case 5 (non-DPM mode).

[/DA16200/NET] # mgtt config qos 1

[/DA16200/NET] # mgtt config clean session 0

UM-WI-046 Rev.2.6 RENESAS Page 136
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DA16200/NET] # mgtt client start

MQOTT CleanSession=0 Support Mode enabled.
[/DA16200/NET] # user cb: on connect
user cb: on subscribe
>>> MQTT Client connection OK (daléx D9CC)

[/DA16200/NET] #
[/DA16200/NET] # mgtt client -m hello gl

[/DA16200/NET] # (Tx: Len=8, Topic=PUB TOPIC,Msg ID=2)
<< Mgtt Pub EnQ : SUCCESS >>

[PUBACK] (Rx, Msg ID=2)

user cb: on publish (mid=2)

13.4.8 Reset
The following command clears all MQTT configurations:

[/DA16200/NET]# mgtt config reset

13.5 Sample Code

This section explains how to test the MQTT client sample application on the DA16200/DA16600 EVB. This
section describes how to configure and run MQTT client, and how to send or receive a message using DA16x
MQTT APlIs.

NOTE
This sample version is available in DA16200/DA16600 SDK v3.2.5.0 or higher.

13.5.1 Test Environment

Users can use an MQTT broker that is compliant to MQTT Spec 3.1 or 3.1.1 but, for this test, Mosquitto broker,
Mosquitto subscriber, and Mosquitto publisher are used, which can be download from the following URL:
https://mosquitto.org/files.

The DA16200/DA16600 contains the MQTT client module (hereinafter referred to as mqtt_client) that can work
with an MQTT broker.

13.5.2 Setup
MQTT Broker (hereinafter referred to as mqtt_broker)

= Open a command prompt and go to the Mosquitto folder
* Run the Mosquitto broker (mqtt_broker) with TLS configured

= Any MQTT broker can be used but, the Mosquitto broker is used for this test

¢ The following config options are used in the .conf file for the sample (depending on the local environment,
other options can be modified. For detail explanation for each option, check default .conf file included in the
Mosquitto package:
>> bind_address, cafile <ca_file>, certfile <cert_file>, keyfile <key _file>, require_certificate yes
>> [f TLS is not used, comment out the following options: cafile, certfile, keyfile, and require_certificate
as default

: Opening ipvd listen socket on port 8883.

Figure 61. Mosquitto MQTT broker

UM-WI-046 Rev.2.6 RENESAS Page 137
Oct 3, 2025 CFR0012

https://mosquitto.org/files/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

MQTT subscriber (hereinafter referred to as mqtt_sub)

= Open a new command prompt and run the Mosquitto subscriber (mqtt_sub) with topic _da16k.
= mqtt_sub should be connected to mqtt_broker.

C:\mosquitto2>mosquitto sub -h 192.168.0.230 -p 8883 --cafile cas.pem --cert wifiu

er.pem --key wifiuser.key --tls-version tlsvl --insecure -t dal6k -gq ©

Figure 62. Mosquitto MQTT subscriber
MQTT publisher (hereinafter referred to as mqtt_pub)

= Open a new command prompt and run the Mosquitto publisher (mgtt_pub) with topic _da16k.
= Make sure that the mqtt_sub receives the published message sent by mqtt_pub.

C:\mosquitto2>

Figure 63. Mosquitto MQTT publisher
MQTT Client sample application (mqtt_app).
The mqtt_app acts as MQTT publisher and MQTT subscriber.

13.5.3 How to Test

1. In the e?studio environment, import a project for the MQTT client sample application as follows:

~/SDK/apps/common/examples/Network/MQTT Client/projects/dal6200
~/SDK/apps/common/examples/Network/MQIT Client/projects/dal6600

2. Modify the MQTT broker address, port number, TLS, and cert info for the local environment in the source.

#define MOTT SAMPLE BROKER IP "192.168.0.230"
#define MOTT SAMPLE BROKER PORT 8883
#define MOTT SAMPLE TLS 1

If TLS is enabled, generate certificate sets. Same certificate sets should be set on the broker side as well to

get TLS communication working.

static const char *cert buffer(O =
static const char *cert bufferl = ...
static const char *cert buffer2 = ...

3. (Optional) There are two APIs for sending a message; mqtt_client_send_message() and
mqtt_client_send_message with_qos(). By default, mqtt_client_send_message() is used. If the other APIs
should be used, enable USE_MQTT_SEND_WITH_QOS_API in mqtt_client_sample.c.

4. Build the DA16200 SDK (do not download it to the DA16200 EVB yet).
5. DA16200 EVB:
a. Atthe [/[DA16200] prompt, type factory to do a factory reset (see Ref. [3])
b. Reboot DA16200 EVB.
6. Download the build image to DA16200 EVB and reboot.
7. DA16200 EVB:
a. Run setup (to connect to a Wi-Fi router) : see the Station Mode Setup section of Ref. [3]
i. Setupas STA.

ii. SNTP Client enable?: select Yes using the default setting (the Internet should be accessible through
a Wi-Fi router).

iii. Dialog DPM (Dynamic Power Management)?: select No.
8. Reboot DA16200 EVB and connect to a Wi-Fi router, and the mqtt_app starts running.

UM-WI-046 Rev.2.6 RENESAS Page 138

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

aystem Mode : Station Only (0)
Start DAl6X aupp11cant .
DAl6x Supp verZ.7 - 2022_03
MAC address (staﬂj : d4:3d:39:10:d9:cc
stal interface add OK
Sstart STA mode. ..

Network Interface (wlan0) : upP
Associated with 58:ef:68:63:13:9

Comnection COMPLETE to 58:ef:68:63:

DHCP Client WLANO: SEL(6)
DHCP Client WLANO: REQ(1)
DHCP Client WLANO: CHK(8)

DHCP Client WLANO: BOUND(10)
Assigned addr : 192.168.
netmask : 255.255.
gateway : 192.168.
DNS addr : 192.168.

DHCP Server IP : 192.168.1.
Lease Time : 24h 00m 00
Renewal Time : 12h 00m 00s

II‘I’ SAMPLE] MQTT Configuration is done.
> SNTP Server: pool.ntp.org (121.174.142_.81)

>>> SNTP Time sync = 2022.10.05 - 06:34:05
>>> MQTT Client connection OK (dalbx D9CC)
[MQTT_SAMPLE] Periodic Publish scheduled.

Figure 64. MQTT client is ready

13.5.3.1 Test with Non-DPM Mode

1. When the mqtt_app starts for the first time, it configures MQTT client. When it is configured, find MQTT
configuration parameters in NVRAM. See my_app_mqtt_user_config() for more information on configuration.

2. Next the mqtt_app waits for the system to sync the system time with SNTP server which is required for
successful TLS session.

3. Then, the mqtt_app starts the mqtt_client.

4. After checking the successful connection of mqtt_client with mqtt_broker, the mqtt_app initializes the app
resource within my_app_init() and enters the main loop to handle various events. See EVT_ANY.

13.5.3.1.1 MQTT Publish

1. The mqtt_app starts 30-second timer in my_app_init(). Every 30 seconds, the mqtt_app tries to send a
periodic message. _my_app_mqtt_pub_send_periodic() is the timer callback that triggers the MQTT publish.

2. The mqtt_sub displays the published message from the mqtt_app.

(Tx: Len=26,Topic=_dalbk,Msg_ID=4)

<< Mgtt Pub EnQ : SUCCESS >>

[PUBREC] (Rx: Msg_ID=4)

[PUBREL] (Tx: Msg_ID=4)

[PUBCOMP] (Rx, Msg_ID=4)

[MQTT_SAMPLE] Sending a periodic message complete.

Figure 65. MQTT publish

13.5.3.1.2 Receive MQTT Message

1. matt_pub: publish a message "hello" to the topic da16k1 and try to publish it to other topics as well. The
mqtt_app has subscribed to 3 topics: da16k1, da16k2, and da16k3.

2. maqtt_app: receive the message "hello". See the message callback "my_app_mqtt_msg_cb()"

,Topic=dalbkl ,Msg_ID=0)

[M;II‘I' SAMPLE] Msg Recv: Topi c_dalﬁkl Msg=hello
Figure 66. Receive MQTT message

UM-WI-046 Rev.2.6 RENESAS Page 139
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.5.3.1.3 Receive and Reply MQTT Message
1. maqtt_pub: publish a message reply_needed to the topic da16k1.

2. mgqtt_app: receive the message and try to publish a message DA16K status: Not bad () to the topic
_da16k. The message callback "my_app_mqtt_msg_cb()" upon receipt of reply_needed, tries to publish a
message to the topic _da16k.

3. maqtt_sub (subscribed to _da16k): display the message received.

(Rx: Len=12,Topic=dalbkl ,Msg_ID=0)

[MQTT_SAMPLE] Msg Recv: Topic=daltkl, Msg=reply_needed
(Tx: Len=26,Topic=_dalbk,Msg_ID=10)

<< Mqtt Pub EnQ : SUCCESS >>

[PUBREC] (Rx: Msg_ID=10)
[PUBREL] (Tx: Msg_ID=10)
[PUBCOMP] (Rx, Msg_ID=10)
[MOQTT_SAMPLE] Sending a reply message complete.

Figure 67. Receive and reply MQTT message

13.5.3.1.4 MQTT Unsubscribe
1. maqtt_pub: publish a message “unsub:da16k2” to the topic da16k1.

2. mgqtt_app: receive the message and try to unsubscribe one of subscribed topics. The message callback
“my_app_maqtt_msg_cb()” upon receipt of “unsub:da16k2,” tries to unsubscribe da16k2.

3. Maqtt_pub: try publishing a message to the da16k2. Make sure that the mqtt_app does not receive the
message.

(Rx: Len=1/,Topic=dalbkl,Msg_ID=U)
[MQTT_SAMPLE] Msg Recv: Topic=dalbkl, Msg=unsub:dal6tk?

[MQTT_SAMPLE] Topic to unsub = dal6k?
[MQTT_SAMPLE] Unsubscribe complete.

Figure 68. MQTT unsubscribe

13.5.3.2 Test with DPM Mode
1. DA16200 EVB: enter the command dpm on in the command prompt.
2. DA16200 EVB: reboot automatically with the DPM mode (by dpm on).

3. When the mgtt app starts for the first time, it configures MQTT client. When it is configured, find MQTT
configuration parameters in NVRAM. See my app mgtt user config() for more information on
configuration.

4. Nextthe mgtt app waits for the system to sync the system time with SNTP server which is required for
successful TLS session.

5. Then, the mgtt app starts mqtt client.

After checking the successful connection of mgtt client with mgtt broker, the mgtt app initializes the app
resources inmy app init (), and enter DPM sleep.

UM-WI-046 Rev.2.6 RENESAS Page 140
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Connection COMPLETE to 58:ef:68:0

DHCP Client WLANO: SEL(6)
DHCP Client WLANO: REQ(1)
DHCP Client WLANO: CHK(8)
DHCP Client WLANO: BOUND(10)
Assigned addr : 192.168.
netmask : 255.255.
gateway : 192.168.
DNS addr : 192.168.

DHCP Server IP : 192.168.
Lease Time : 24h 00m
Renewal Time : 20h 00m

[MOQTT_SAMPLE] MQTT Configuration exists.
> SNTP Server: pool.ntp.org (121.174.142_81)

>>> SNTP Time sync - 2022.10.05 - 06:39:54
>>> MQTT Client connection 0K (dal6x_D9CC)
UMQTT_SAMPLE] Periodic Publish scheduled (RTC).

Figure 69. MQTT client sample start-up (in DPM mode)

13.5.3.21 MQTT Publish

1. maqtt_app: register 30-second RTC timer in my app init () when the system is in the DPM mode. Every 30
seconds, the DA16200 EVB wakes up, and the mgtt _app tries to send a periodic message.
my app mgtt pub send periodic () is the RTC timer callback that triggers MQTT publish.

mqtt_sub: display the published message from the mgtt app.
3. mqtt_app: after publishing the periodic message, enter DPM sleep.

Wakeup source is 0Ox82

Start DAl6X Supplicant ...
TIM STATUS: 0x00002000
TIM : FULL
Tx: Len=26,Topic=_dalbk,Msg_ID=5)
<< Mgtt Pub EnQ : SUCCESS >>
[PUBREC] (Rx: Msg_ID=5)
[PUBREL] (Tx: Msg_ID=5)
[PUBCOMP] (Rx, Msg_ID=5)
[MQTT_SAMPLE] Sending a periodic message complete.
>>> Start DPM Power—-Down 111

Figure 70. Periodic MQTT publish (in DPM mode)

13.5.3.2.2 Receive MQTT Message

1. maqtt_pub: publish a message "hello" to the topic da16k1 and try to publish it to other topics as well. The
mgtt app has subscribed to 3 topics: da16k1, da16k2, and da16k3.

2. The DA16200 EVB wakes up from DPM Sleep and the mgtt app receives and display the message "hello"
in the console. See the message callback my app mgtt msg cb().

3. After displaying the message, the DA16200 EVB enters DPM Sleep.

akeup source is 0Ox82

Start DA16X Supplicant ...
TIM STATUS: 0x00000001

TIM : UC

: Len=5,Topic=dalbkl,Msg_ID=0)
[MQTT_: SAMPLE] Msg Recv: Topic=dalbkl, Msg=hello
>>> Start DPM Power-Down 11!

Figure 71. Receive MQTT message (in DPM mode)

UM-WI-046 Rev.2.6 RENESAS Page 141
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

13.5.3.2.3 Receive and Reply MQTT Message
1. maqtt_pub: publish a message reply needed to the topic da16k1.

2. The DA16200 EVB wakes up from DPM Sleep and the mgtt app receives the message and try to publish a
message "DA16K status: Not bad ()" to topic _da16k. The message callback my app mgtt msg cb() upon
receipt of "reply_needed", tries to publish a message to topic _da16k.

3. maqtt_sub (subscribed to _da16k): display the message received.
4. After displaying the message, the DA16200 EVB enters DPM sleep.

akeup source is 0x82

Start DAl16X Supplicant ...
TIM STATUS: 0Ox00000001
TIM :© UC
Rx: Len=12,Topic=dalbkl,Msg_1D=0)
[MQTT_SAMPLE] Msg Recv: Topic=dalbkl, Msg=reply_needed

(Tx: Len=26,Topic=_dalbk,Msg_ID=7)

<< Mqtt Pub EnQ : SUCCESS >>

[PUBREC] (Rx: Msg_ID=7/)

[PUBREL] (Tx: Msg_I

[PUBCOMP] (Rx, Msg_ID=/

[MQTT_SAMPLE] Sending a reply message complete.
>>> Start DPM Power-Down !!!

Figure 72. MQTT message receive and reply (in DPM mode)

13.5.3.2.4 MQTT Unsubscribe
1. maqtt_pub: publish a message "unsub:da16k2" to the topic da16k1.

2. The DA16200 EVB wakes up from DPM Sleep and the mgtt app receives the message and try to
unsubscribe one of subscribed topics. The message callback my app mgtt msg cb (), upon receipt of
"unsub:da16k2," tries to unsubscribe da16k2.

3. maqtt_pub: try publishing a message to da16k2. Make sure that the mqtt_app does not receive the message.
4. After displaying the message, the DA16200 EVB enters DPM sleep.

akeup source is 0x82
Start DAl6X Supplicant ...

TIM STATUS: 0x00000001
TIM : UC

(Rx: Len=12,Topic=dalbkl,msg_ID=0)

[MOTT_SAMPLE] Msg Recv: Topic=dalbkl, Msg=unsub:dalbk?
[MQTT_SAMPLE] Topic to unsub = dalbk?

[MQTT_SAMPLE] Unsubscribe complete.

>>> Start DPM Power-Down 111

Figure 73. MQTT unsubscribe action (in DPM mode)

13.5.4 Code Walkthrough

The MQTT client sample consists of two threads. The main thread is mgtt client sample (). The job handling
thread is my app g handler().

Each job for sample application is triggered by callbacks.

UM-WI-046 Rev.2.6 RENESAS Page 142
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

void mgtt client sample(void * param)
{

// Register callbacks to mgtt client

mgtt client set msg cb(my app mgtt msg cb);

mgtt client set pub cb(my app mgtt pub cb);

mgtt client set conn cb(my app mgtt conn cb);
mgtt client set subscribe cb(my app mgtt sub cb);

// mgtt user config in the 1st run
my app mgtt user config();

// Wait for SNTP sync
ret = sntp wait sync(10);

// Start mgtt client
mgtt client start();

// Wait until mgtt client is connected to mgtt broker
my app mgtt chk connection (10)

// Bpplication init
ret = my app init();

// Main event loop
while (1) {

gvents = xEventGroupWaitBits (my app event group,..
If (events & EVT_PUB_COMPLETE) {

PRINTF (CYAN COLOR " [MQOTT SAMPLE] Sending a periodic message complete. \n" CLEAR COLCR);
} else if (events & EVI PUB ERROR) {

} else if (events & EVT UNSUB DONE) ({
PRINTF (CYAN COLOR " [MQTT SAMPLE] Unsubscribe complete. \a® CLEAR COLCR) ;

} else if (events & EVT UNSUB ERR) {
}
}

Periodic MQTT publish is triggered by my app mgtt pub send periodic () or
_my app mgtt pub send periodic() in the DPM mode.

UM-WI-046 Rev.2.6 RENESAS Page 143
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

static void my app mgtt pub send periodic (TimerHandle t xTimer)

{
DA16X UNUSED ARG (xTimer) ;

BaseType t ret;

if (!mgtt client is running() && !is mgtt client thd alive()) {
PRINTF (CYAN COLOR " [MQTT SAMPLE] Mgtt client is in terminated state, terminating my app ... \n"
CLEAR COLCR) ;
if ((ret = my app send to g(NAME JOB MY APP TERM, NULL, APP MSG TERMINATE, NULL)) != pdPASS) {

PRINTF (RED_COLOR "[%s] Failed to add a message to Q (3d)\r\n" CLEAR COLOR, __func , ret);
}

return;
} else if (!mgtt client is running() && is mgtt client thd alive()) {
PRINTF (CYAN COLOR " [MQTT SAMPLE] Mgtt client may be trying to reconnect ... canceling the job this
time \n" CLEAR COLOCR) ;
return;

}

if ((ret = my app send to g(NAME JOB MQTT TX PERIODIC, &tx periodic, APP MSG PUBLISH, NULL)) !=
pdPASS) {
PRINTF (RED COLOR "[%s] Failed to add a message to Q (%d)\r\n" CLEAR COLOR, func , ret);
}

return;

}

The mgtt app receives the message through the message callback my app mgtt msg cb (), which triggers the
MQTT publish or MQTT unsubscribe action depending on message contents or types.

void my app mgtt msg cb(const char *buf, int len, const char *topic)

{
DA16X UNUSED ARG (len) ;

BaseType t ret;
PRINTF (CYAN COLOR " [MQOTT SAMPLE] Msg Recv: Topic=%s, Msg=%s \n" CLEAR COLOR, topic, buf);

if (stramp (buf, "reply needed") = 0) {
if ((ret = my app send to gq(NAME JOB MOTT TX REPLY, &tx reply, APP MSG PUBLISH, NULL)) != pdPASS)

PRINTF (RED COLOR "[%s] Failed to add a message to Q (%d) \r\n" CLEAR COLOR, _ func , ret);
}
} else if (strncmp(buf, APP UNSUB HDR, 6) = 0) {
if ((ret = my app send to gq(NAME JOB MQTT UNSUB, NULL, APP MSG UNSUB, buf)) != pdPASS) {
PRINTF (RED COLOR "[%s] Failed to add a message to Q (%d) \r\n" CLEAR COLOR, _ func , ret);
}
} else {
return;
}
}

For each action execution, the thread my app g handler () handles the job when one is submitted to the
message queue my app d.

UM-WI-046 Rev.2.6 RENESAS Page 144
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

void my app g handler (void* arg)
{

while (1) {
;Status = xQueueReceive (my app g, &RecvVal, portMAX DELAY) ;
If (RecvVal = APP MSG PUBLISH) {
;ﬁchxQanttipubngg() // invoke mgtt client send message()

} else if (Recvval = APP MSG UNSUB) {
mgtt client unsub topic()

}

= Cert 2: Client Key

MI IEpQIBARAKCAQEA3KOSEQFtm/ 3wcNmYEgE1VgQpi VEtMms fFCuvNpEYh5QdWieSJv
KOxJLWZTwOFYaDt1K/1I/WPLpA9x6q]GveUIWt y8vZYQyDBP1UakYGURMV=QV45T
1vbvUoCFz2ai ZNbPyVRu2u3XgvAbyodqi BYV6B5dDeJyccFOPIGoOPHV2 608azh%u
gvasFPOYkv3NaMxyTJqtOdlj 0kGSCEqvP1ZsZQm218UOSFNGGZMQ61t 4TCNZj OvN
LPKULTM70rb8xTtChwB4TIeCBchO80JyBO/pTPXIXMMXASPZXAXS+WL352C4ZSBCP
EvMGU1KZ3fFwOULOOGUKyzbgiNu92SFiS4 fib/wIDAQABAOIBAQDcnbCc2mt SAMI8
Z3aQ+nhSy9Kkj2/njDgAKIcOituEIpNUwWEOcha) 2Bk 1W/W31uyEMGHURUMMUGAUN
WDOw/57705+91eG56eTJgts]romM+SHch+6tVQAZ5GLN4ANACK1aWHyDRM/ S77k47
lacwEijUkkFaxm3+02 7woEMf 30xN124KmRenMYBhgcsoT4BYBw3Bh8xe+XN95rXs
2BdIbr5+RWGC9Zsz405Wmd4mL/ JvbKeohrseciend TZRzWFku93XV5okielcladyl
nJ85bGJIk4 focmP/2ToxQysTobPYCxHVT IHUADK/ qf 9SGHJI9F 7EBHE 7+01i suwBbgOD
0zS8rHARAOGBAPCX1aHumEkLIRv3enhpHPBYxnDndNCtT1T6+Cuit/vEo6K60A TP
iUae]j/GPZsDKXhayeTiEaq7/OMinUtGkiCgGlVtXghXuCZz 6KrH1 9WowzC6Pookmg
BZak4LQcvGavt3VzjliAKLedn6enQt/+op/JKDIOKVLv30s7S035Ah4zA0GBAOYF
BgEOUTENnfQHTh7pyiM1 DAcmBbdr1Ros8maQl26cHqUHN3+wylbGHLZzO] YFFoAasx
eizw7Gudgbae28WIPlyLGrptl5cqVAVICYmBtZ3CO8FuT3FYgEEZPWNME8Om+5UM
td+mtMjonWAPkCYC+alqUZzeIs+CZs5CHKYCDcFAOGBAOfkQv38GV2102jARIPQ
RGtINaRXApmrod43sdFjac/kAzVyizZk18PFXHUhnv1Mt+jgINSyIzMoHt sHO2 SbH
/zsMAMBUk1mOG80FH] IpbHT6EkSSAT 7amF5VdptDY zfaP4p+IYIdrKCqddzYZrCA
mArMvAhs+iuCRhuG31s+SZNPAOGAHS 6r8w2w0dp0t P8zkGvnN8hIVO/ /Endzx2G0
Z63wHOMMWuSBLCWE 1 SRANW6C/ SvAzE450hvral PT6cX+4PT4G5TFASFk4R1U3hgd
Has/wewLxv5Kvnz215Rd96Ulgr8ulGhOl YKyxop/3FMuf050pJenBwa/WqugAfbe
+23ZrmECGYEA61 0GFHWMFBNNpPuxHgYgS5+4g3+8DhZ%IDc 71 £ 1BCBWE/ ZwbM+nH
+JSx1YYjvD7zIBhndgERcZ+{fvbZTQ8oymr3] SAESMOZ fAHb £+ 6 ITFQWjDUC3IDUF/
4F0cUidFC8smu6oWa2tjvSIz7DfvmDsnl1+7s9gQvDxdyPas0IkL/v8w=

UM-WI-046 Rev.2.6 RENESAS Page 145
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

14. Network Examples: Protocols/Applications

14.1 CoAP Client

14.1.1 Peer Application

The example in this section requires a peer device (Laptop or desktop) running a CoAP test server application to
demonstrate the DA16200 CoAP client sample application. The sample application is based on Eclipse
Californium™ (https://www.eclipse.org/californium/) and runs on a Windows OS as shown in Figure 74.

Figure 74. Start of CoAP server application

The CoAP server application is a simple CoAP server. It has two resources, called \res and \obs_res. The res
resource allows GET, POST, PUT, DELETE, and PING methods. The obs_res resource allows OBSERVE
request to send an observe notification every ten seconds.

14.1.2 How to Run

1. Run a CoAP server application on the peer computer.

2. In the e?studio, import a project for the CoAP Client application.
~/SDK/apps/common/examples/Network/CoAP Client/projects/dal6200

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. Use the console command to set up the Wi-Fi station interface.

After a connection is made to an AP, the example application initializes a CoAP client to start the service.

14.1.3 CoAP Client Initialization
This section explains how to initialize and construct a CoAP client.

int coap client sample init config(coap client sample conf t *config)
{
int ret = DA APP SUCCESS;

coap client t *coap client ptr = &config->coap client;
config->state = COAP_CLIENT SAMPLE STATE SUSPEND;

//Init coap client
ret = coap client init(coap client ptr, COAP CLIENT SAMPLE DEF NAME) ;
if (ret != DA APP SUCCESS) f{
PRINTF (" [$s]Failed to init coap client (0x%x)\r\n", func , -ret);
goto end;

}
coaps client set authmode(coap client ptr, 0);

config->req port = COAP CLIENT SAMPLE REQUEST PORT;
config->obs port = COAP CLIENT SAMPLE OBSERVE PCRT;

end:

return ret;

UM-WI-046 Rev.2.6 RENESAS Page 146
Oct 3, 2025 CFR0012

https://www.eclipse.org/californium/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

The coap client sample init config function guides how the CoAP client is initialized. The
coap client init function initializes the CoAP Client instance. If a CoAP observe relationship is already

established in DPM wake-up, it is recovered. The API’s details are as follows:

Table 24. APIs for initializing CoAP client

Item

Description

int coap_client_init(coap_client_t *client_ptr, char *name_ptr)

Prototype int coap_client_init(coap_client_t *client_ptr, char *name_ptr)
Parameter client_ptr: CoAP Client instance pointer
name_ptr: Name of CoAP Client
Return 0 (DA_APP_SUCCESS) on success.
Description Initialize CoAP Client.

int coaps_client_set_authmode(coap_client_t *client_ptr, unsigned int mode)

Prototype int coaps_client_set_authmode(coap_client_t *client_ptr, unsigned int mode)
Parameter client_ptr: CoAP Client instance pointer
mode: DTLS's auth mode
Return 0 (DA_APP_SUCCESS) on success.
Description If true, DTLS server’s certificate validity is checked during DTLS handshake. Default is false.

14.1.4 CoAP Client Deinitialization

This section explains how to release the CoAP client.

{

}

return ret;

}

int coap client sample deinit config(coap client sample conf t *config)

int ret = DA APP SUCCESS;
coap client t *coap client ptr = &config->coap client;

//Deinit coap client
ret = coap client deinit (coap client ptr);
if (ret != DA APP SUCCESS) f{
PRINTF (" [$s]Failed to deinit coap client (0x%x)\r\n", func , -ret);

The coap_client_deinit function releases the CoAP client. The API details are as follows.

Table 25. API for deinitializing CoAP client

Item

Description

int coap_client_deinit(coap_client_t *client_ptr)

Prototype int coap_client_deinit(coap_client_t *client_ptr)
Parameter client_ptr: CoAP Client instance pointer
Return 0 (DA_APP_SUCCESS) on success.
Description Deinitialize CoAP client.

14.1.5 CoAP Client Request and Response

The DA16200 provides a CoAP client request (GET/POST/PUT/DELETE/PING) and response. In this section,
we describe how the DA16200 sends the CoAP request to the CoAP server and receives the CoAP response.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 147

DA16200 DA16600 FreeRTOS SDK Programmer Guide

14.1.5.1 CoAP URI and Proxy URI

To transmit a CoAP request and response, a URI must be set up. DA16200 provides APIs as shown below.

Table 26. APIs for setting up CoAP URI and proxy URI

Item Description

int coap_client_set_uri(coap_client_t *client_ptr, unsigned char *uri,
size_t urilen)

Prototype int coap_client_set_uri(coap_client_t *client_ptr, unsigned char *uri,size_t urilen)

Parameter client_ptr: CoAP Client instance pointer
uri: URI of CoAP request
urilen: Length of URI

Return 0 (DA_APP_SUCCESS) on success.

Description Setup URI.

int coap_client_set_proxy_uri(coap_client_t *client_ptr, unsigned char *uri,
size_t urilen)

Prototype int coap_client_set_proxy_uri(coap_client_t *client_ptr, unsigned char *uri, size_t urilen)

Parameter client_ptr: CoAP Client instance pointer
uri: Proxy URI of CoAP request
urilen: Length of URI

Return 0 (DA_APP_SUCCESS) on success.

Description Setup Proxy URI. If URI is NULL, previous Proxy URI is removed.

14.1.5.2 GET Method
The DA16200 provides an API to send a GET request as shown in the example code.

int coap client sample request get (coap client sample conf t *config,
coap client sample request t *request)

int ret = DA APP SUCCESS;

coap client t *coap client ptr = &config->coap client;
coap rw packet t resp packet;

memset (&resp packet, 0x00, sizeof (coap rw packet t));

//set URI.

ret = coap client set uri(coap client ptr,
(unsigned char *)request->uri,
request->urilen) ;

//set Proxy URI. If null, previous proxy uri will be removed.

ret = coap client set proxy uri(coap client ptr,
(unsigned char *)request->proxy uri,
request->proxy urilen);

//send coap request
ret = coap client request get with port(coap client ptr, config->req port);

//receive coap response
ret = coap client recv response(coap client ptr, &resp packet);

//display output
if (resp packet.payload.len) {
coap client sample hexdump ("GET Request",
resp packet.payload.p,

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 148

DA16200 DA16600 FreeRTOS SDK Programmer Guide

resp packet.payload.len);

end:
//release coap response
coap clear rw packet (&resp packet);

return ret;

}

The CoAP GET request is generated and sent in function coap client request get with port (). A CoAP
response is received in function coap client recv response (). The API details are as follows:

Table 27. GET API for CoAP client

Item Description

int coap_client_request_get_with_port(coap_client_t *client_ptr, unsigned int port)

Prototype int coap_client_request_get_with_port(coap_client_t *client_ptr, unsigned int port)

Parameter client_ptr: CoAP Client instance pointer
port: UDP socket's local port number

Return 0 (DA_APP_SUCCESS) on success.

Description CoAP client sends GET request.

The DA16200 CoAP client sample application provides a command to send a GET request to the CoAP server.
Figure 75, Figure 76, and Figure 77 show the interaction of two DA16200 CoAP clients with the CoAP server for
a GET request.

Sample CoAP Serv

er

port _Information
192.168.0.2 192.168.0.11 CoAP 61 10200 5683 CON, MID:1, GET, TKN:69 al d9 of @4 d6 3d 52, End of Block #0, /res]
) 192.168.0.11 192.168.0.2 CoAP 74 5683 10200 ACK, MID:1, 2.05 Content, TKN:69 al d9 ©f @4 d6 3d 52, /res (text/plain)

Figure 77. GET method of CoAP client #3

14.1.5.3 POST Method
The DA16200 provides an API to send a POST request as shown in the example code.

int coap client sample request post (coap client sample conf t *config,
coap client sample request t *request)
{
int ret = DA APP SUCCESS;
coap client t *coap client ptr = &config->coap client;
coap rw packet t resp packet;

UM-WI-046 Rev.2.6 RENESAS Page 149
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

end:

}

memset (&resp packet, 0x00, sizeof(coap rw packet t));

//set URI

ret = coap client set uri(coap client ptr,
(unsigned char *)request->uri,
request->urilen) ;

//set Proxy URI. If null, previous proxy uri will be removed.

ret = coap client set proxy uri(coap client ptr,
(unsigned char *)request->proxy uri,
request->proxy urilen);

//send coap request
ret = coap client request post with port(coap client ptr, config->req port,
request->data, request->datalen);

//receive coap response
ret = coap client recv response(coap client ptr, &resp packet);

//display output
if (resp packet.payload.len) {
coap client sample hexdump ("POST Request",
resp packet.payload.p,
resp packet.payload.len);

//release coap response
coap clear rw packet (&resp packet) ;
return ret;

A CoAP POST request is generated and sent in function coap client request post with port(). A CoAP
response is received in function coap client recv response (). The API details are as follows.

Table 28. POST API for CoAP client

Item Description
UINT coap_client_request_post_with_port(coap_client_t *client_ptr, UINT port, unsigned char * payload, unsigned
int payload_len)
Prototype UINT coap_client_request_post_with_port(coap_client_t *client_ptr, UINT port, unsigned char
*payload, unsigned int payload_len)
Parameter client_ptr: CoAP Client instance pointer
port: UDP socket's local port number
payload: Payload pointer
payload_len: Length of payload
Return 0 (DA_APP_SUCCESS) on success.
Description CoAP client sends POST request.

The DA16200 CoAP client sample application has a command to send a POST request to a CoAP server.
Figure 78, Figure 79, and Figure 80 show the interaction of two DA16200 CoAP clients with the CoAP server for
a POST request.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 150

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DAl6208] # user.coap_client -post 123 coap://192.168.8.11/res
Operation code : POST (3)
: coap://192.168.0.11/res(24)
: 123(4)
POST Request(le

Figure 79. POST method of CoAP client #2

Source Destination Protocol length srcport dstport Information

[192.168.0.2 192.168.0.11 CoAP 64 10200 5683 CON, MID:1, POST, TKN:e9 e5 f@ 26 4d f6 95 25, /res (text/plain)]
192.168.0.11 192.168.0.2 COAP B8 5683 10200 ACK, MID:I, 2.04 Changed, TRN:eJ €5 10 26 4d 16 95 25, /res (text/plain)

Figure 80. POST method of CoAP client #3

14.1.5.4 PUT Method
The DA16200 provides an API to send a PUT request as shown in the example code.

int coap client sample request put (coap client sample conf t *config,
coap client sample request t *request)
{
int ret = DA APP SUCCESS;
coap client t *coap client ptr = &config->coap client;
coap rw packet t resp packet;

memset (&resp packet, 0x00, sizeof (coap rw packet t));

//set URI

ret = coap client set uri(coap client ptr,
(unsigned char *)request->uri,
request->urilen) ;

//set Proxy URI. If null, previous proxy uri will be removed.

ret = coap client set proxy uri(coap client ptr,
(unsigned char *)request->proxy uri,
request->proxy urilen);

//send coap request

ret = coap client request put with port (coap client ptr, config->req port,
request->data,
request->datalen) ;

//receive coap response
ret = coap client recv response(coap client ptr, &resp packet);

//display output
if (resp packet.payload.len) {
coap client sample hexdump ("PUT Request",
resp packet.payload.p,
resp packet.payload.len);

UM-WI-046 Rev.2.6 RENESAS Page 151
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

end:
//release coap response
coap clear rw packet (&resp packet) ;

return ret;

}

The CoAP PUT request is generated and sent in function coap client request put with port(). A CoAP
response is received in function coap client recv response (). The API details are as follows.

Table 29. PUT API for CoAP client

Item Description

int coap_client_request_put_with_port(coap_client_t *client_ptr, unsigned int port, unsigned char *payload,
unsigned int payload_len)

Prototype int coap_client_request_put_with_port(coap_client_t *client_ptr, unsigned int port, unsigned
char *payload, unsigned int payload_len)

Parameter client_ptr: CoAP Client instance pointer
port: UDP socket's local port number
payload: Payload pointer

payload_len: Length of payload

Return 0 (DA_APP_SUCCESS) on success.

Description CoAP Client sends PUT request.

The DA16200 CoAP client sample application provides a command to send a PUT request to the CoAP server.
Figure 81, Figure 82, and Figure 83 show the interaction of two DA16200 CoAP clients and the CoAP server for
PUT requests.

[/DA1620@] # user.coap_client -put 123 coap://192.168.68.11/res
Operation code : PUT (2)

URT : coap://192.168.0.11/res(24)
. 123(4)

Figure 81. PUT method of CoAP client #1

Received PUT request

Figure 82. PUT method of CoAP client #2

Source Destination Protocol length srcport dstport Information
[192.168.0.2 192.168.0.11 CoAP 64 102ee 5683 CON, MID:1, POST, TKN:7e 7a e6 c2 ae aa 16 93, /res (text/plain)
192.165.0.11 192.165.9.2 C(OAP [B683 10200 ACK, MID:1, 2.03 Changed, TKN:/e /a eb c2Z2 ae aa 16 93, /res (text/plain)

Figure 83. PUT method of CoAP client #3

14.1.5.5 DELETE Method
The DA16200 provides an API to send a DELETE request as shown in the example code.

int coap client sample request delete(coap client sample conf t *config,
coap client sample request t *request)
{
int ret = DA APP SUCCESS;
coap client t *coap client ptr = &config->coap client;
coap rw packet t resp packet;

UM-WI-046 Rev.2.6 RENESAS Page 152
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

memset (&resp packet, 0x00, sizeof(coap rw packet t));

//set URI

ret = coap client set uri(coap client ptr,
(unsigned char *)request->uri,
request->urilen) ;

//set Proxy URI. If null, previous proxy uri will be removed.

ret = coap client set proxy uri(coap client ptr,
(unsigned char *)request->proxy uri,
request->proxy urilen);

//send coap request
ret = coap client request delete with port (coap client ptr, config->req port);

//receive coap response
ret = coap client recv response (coap client ptr, &resp packet);

//display output
if (resp packet.payload.len) {
coap client sample hexdump ("DELETE Request",
resp packet.payload.p,
resp_packet.payload.len) ;

end:
//release coap response
coap _clear rw packet (&resp packet);

return ret;

}

A CoAP DELETE request is generated and sent in function coap client request delete with port().A

CoAP response is received in function coap client recv response (). The API details are as follows.

Table 30. DELETE API for CoAP client

Item Description

int coap_client_request_delete_with_port(coap_client_t *client_ptr, unsigned int port)

Prototype int coap_client_request_delete_with_port(coap_client_t *client_ptr, unsigned int port)

Parameter client_ptr: CoAP Client instance pointer
port: UDP socket's local port number

Return 0(DA_APP_SUCCESS) on success

Description CoAP Client sends DELETE request to the URI

The DA16200 CoAP client sample application provides a command to send a DELETE request to the CoAP
server. Figure 84, Figure 85, and Figure 86 show the interaction of a DA16200 CoAP client and the CoAP server

for a DELETE request.

[/DA16208] # user.coap_client -« te coap://192.168.08.11/res

: DELETE
: coap://192.168.0.11/res(24)

Figure 84. DELETE method of CoAP client #1

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 153

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Figure 85. DELETE method of CoAP client #2

Source Destination Protocol length _srcport dstport Information

[192.168.0.2 192.168.0.11 CoAP 60 10200 5683 CON, MID:1, DELETE, TKN:51 6¢c db 10 c9 @8 c5 93, /res]
192.168.0.11 192.168.0.2 CoAP 54 5683 10200 ACK, MID:1, 2.02 Deleted, TKN:63 28 6b c4 4b dc 67 e3

Figure 86. DELETE method of CoAP client #3

14.1.5.6 CoAP Ping
The DA16200 provides an API to send a PING request as shown in the example code.

int coap client sample request ping(coap client sample conf t *config,
coap client sample request t *request)
{
int ret = DA APP SUCCESS;
coap client t *coap client ptr = &config->coap client;

//set URI

ret = coap client set uri(coap client ptr,
(unsigned char *)request->uri,
request->urilen) ;

//set Proxy URI. If null, previous proxy uri will be removed.

ret = coap client set proxy uri(coap client ptr,
(unsigned char *)request->proxy uri,
request->proxy urilen);

//progress ping request
ret = coap client ping with port (cocap client ptr, config->req port);

end:

return ret;

}

A CoAP PING request is processed in function coap client ping with port (). The API details are as follows.

Table 31. PING API for CoAP client

Item Description

int coap_client_ping_with_port(coap_client_t *client_ptr, unsigned int port)

Prototype int coap_client_ping_with_port(coap_client_t *client_ptr, unsigned int port)
Parameter client_ptr: CoAP Client instance pointer
port: UDP socket's local port number
Return 0 (DA_APP_SUCCESS) on success.
Description CoAP client sends PING request.

The DA16200 CoAP client sample application has a command to send a PING method to the CoAP server.
Figure 87 and Figure 88 show the interaction of the DA16200 CoAP client and the CoAP server for a PING
request.

UM-WI-046 Rev.2.6 RENESAS Page 154
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DA16206] # user.coap_client -ping coap://192.168.8.11/res
Operation code : PING (7)

URI : coap://192.168.8.11/res(24)
Figure 87. PING method of CoAP client #1

Source Destination Protocol length srcport dstport Information
[192.168.9.2 192.168.0.11 CoAP 6@ 10200 5683 CON, MID:3, Empty Message, TKN:7e 7a e6 c2 ae aa 16 95, /res]
192.168.0.11 192.168.8.2 CoAP 46 5683 102@@ RST, MID:3, Empty Message

Figure 88. PING method of CoAP client #2

14.1.5.7 CoAP Response

The DA16200 constructs a CoAP response in coap rw_packet t structure. In this section, details are given of
how a CoAP response is constructed.

~/SDK/core/coap/coap common.h

typedef struct {
/// Version number
uint8 t version;
/// Message type
uint8 t type;
/// Token length
uint8 t token len;
/// Status code
uint8 t code;
/// Message-ID
uint8 t msg id[2];
} coap header t;

typedef struct {
/// Option number
uint8 t num;
/// Option value
coap_rw buffer t buf;
} coap rw option t;

typedef struct {
/// Header of the packet
coap header t header;
/// Token value, size as specified by header.token len
coap _rw buffer t token;
/// Number of options
uint8 t numopts;
/// Options of the packet
coap rw option t opts[MAXOPT];
/// Payload carried by the packet
coap_rw buffer t payload;

} coap rw packet t;

The coap rw packet t structure includes the CoAP response information. After CoAP response is received, the
DA16200 parses and constructs it. To receive a CoAP response, DA16200 provides an API. See Table 32. The
API must be called after a CoAP requests to send a response.

Table 32. Response APIs for CoAP client

Item ‘ Description

void coap_clear_rw_packet(coap_rw_packet_t *packet)

Prototype ‘ void coap_clear_rw_packet(coap_rw_packet_t *packet)
UM-WI-046 Rev.2.6 RENESAS Page 155

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter client_ptr: CoAP Client instance pointer
resp_ptr: CoAP response

Return 0 (DA_APP_SUCCESS) on success.

Description Release coap_rw_packet structure.

int coap_client_recv_response(coap_client_t *client_ptr, coap_rw_packet_t *resp_ptr)

Prototype int coap_client_recv_response(coap_client_t *client_ptr, coap_rw_packet_t *resp_ptr)
Parameter client_ptr: CoAP Client instance pointer
resp_ptr: CoAP response
Return 0 (DA_APP_SUCCESS) on success.
Description Receive CoAP response for specific COAP request.

14.1.6 CoAP Observe

This section describes how CoAP observe is registered and deregistered from the CoAP server. DA16200
provides CoAP observe functionality. After registration at a CoAP server, DA16200 (CoAP client) is ready to
receive an observe notification.

14.1.6.1 Registration

The DA16200 provides an API to register a CoAP observe as shown in the example code.

{

//set URI

end:

return ret;

}

int coap client sample register cbserve (coap client sample conf t *config,

int ret = DA APP SUCCESS;
coap client t *coap client ptr = &config->coap client;

ret = coap client set uri(coap client ptr,

//set Proxy URI. If null, previous proxy uri will be removed.
ret = coap client set proxy uri(coap client ptr,

//register coap observe
ret = coap client set observe notify with port (coap client ptr,

coap client sample request t *request)

(unsigned char *)request->uri,
request->urilen) ;

(unsigned char *)request->proxy uri,
request->proxy urilen);

config->obs port,
coap client sample observe notify,
coap client sample observe close notify);

The DA16200 CoAP observe allows only one connection. After successful registration, the DA16200 CoAP client
allows receiving an observe notification. When the observe notification is received, the callback function
(observe_notify) is called. If there is no observe notification during the max-age, the close callback function
(observe_close_notify) is called. The API details are as follows.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS Page 156
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 33. Observe registration API for CoAP client

Item Description

int coap_client_set_observe_notify_with_port(coap_client_t *client_ptr, unsigned int port, int
(*observe_notify)(void *client_ptr, coap_rw_packet_t *resp_ptr), void (*observe_close_notify)(char
*timer_name))

Prototype int coap_client_set_observe notify_with_port(coap_client t *client_ptr, unsigned int
port, int (*observe_notify)(void *client_ptr, coap_rw_packet_t *resp_ptr), void
(*observe_close notify)

(char *timer_name))

Parameter client_ptr: CoAP Client instance pointer

port: UDP socket’s local port number

observe_notify: Callback function for CoAP observe notification
observe_close_notify: Callback function for CoAP observe closing

Return 0 (DA_APP_SUCCESS) on success.

Description Register CoAP observe. The callback function, observe_notify, is called when CoAP observe
notification is received.

The DA16200 CoAP client sample application has a command for CoAP observe. Figure 89, Figure 90, and
Figure 91 show the interaction of the DA16200 CoAP client and the CoAP server for COAP observe. The CoAP
server sends an observe notification every five seconds before deregistration.

Operation code : REG_OBSERVE(
URT : coap://192.168.0.11/0obs_res(28)
416288 user] # [coap_clie observe_notify]Received Observe notification(25)

Observe Notification(len =
43 6F 41 50 20 4AF 62 73 65 65 20 4E 6F 74 CoAP Observe Not
69 66 69 63 61 74 69 6F 6E ification

notifi
notif
Figure 90. CoAP observe of CoAP client #2

Source Destination Protocol _length srcport dstport Information

[192.168.0.2 192.168.0.11 CoAP 67 10201 5683 CON, MID:1, GET, TKN:fc 48 1b @b 13 e7 bl @2, End of Block #8, /obs_res

1 192,168,011 197 108.0.2 COAP 34 5683 10201 ACK, MID:1. 2.05 Content, TKN:Tc 48 1b Ob 13 €7 bl 02, Jobs res (text/plain)
192.168.0.11 192.168.0.2 CoAP 85 5683 10201 CON, MID:46584, 2.05 Content, TKN:fc 48 1b @b 13 e7 bl @2, /obs_res (text/plaini Observe nofitication
102.168.0.2 192.168.0.11 COAP B0 10201 5683 ACK, MID:46583, Empty Message

Figure 91. CoAP observe of CoAP client #3

14.1.6.2 Deregistration
The DA16200 provides an API to deregister a CoAP observe as shown in the example code.

int coap client sample unregister observe (coap client sample conf t *config)
{
int ret = DA APP SUCCESS;
coap client t *coap client ptr = &config->coap client;
coap_client clear observe (coap client ptr);

return ret;

UM-WI-046 Rev.2.6 RENESAS Page 157
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

}

The API details are as follows.

Table 34. Observe deregistration API for CoAP client

Item Description

VOID coap_client_clear_observe(coap_client_t *coap_client)

Prototype VOID coap_client_clear_observe(coap_client_t *coap_client)
Parameter coap_client: CoAP Client instance pointer

Return

Description Deregister COAP observe relation.

14.2 DNS Query

14.2.1 How to Run

This section shows how to get the IPv4 address from a domain name URL. Two types of API functions are
supported to get the IP address:

= Get a single IPv4 address:
. char *dns_A_Query(char *domain_name, unsigned long wait_option)
= Get multiple IPv4 addresses:

. unsigned int dns_ALL_Query(unsigned char *domain_name,
unsigned char *record_buffer,
unsigned int record_buffer_size,
unsigned int *record_count,
unsigned long wait_option)
1. In the e?studio, import a project for the DNS Query sample application.
~/SDK/apps/common/examples/Network/DNS_Query/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. Use the console to set up the Wi-Fi station interface.
4. After a connection is made to an AP, the example application starts a DNS query operation with a test URL.

Connection COMPLETE to M:-3a:-ch:-25:-f5:-f8

DHCP Client SEL{G)

DHCP Client REQ{1>

DHCP Client CHEK(8>

DHCP Client = BOUNDC18>

Assigned adde : 192168 _.86.68

netmask - 255_255_.255.8
gateway : 192 _.168.86.1
DNS addr = 192_168.86.1

DHCP Server IP : 192_168B.86.1
Leaze Time : 24h 88m B8
Renewal Time : 12h 88m B8s

>»» IPv4 address DME guery test ...
— Mame : wuw.daum.net
— Addresses = 211.231.99.17

Figure 92. DNS query result

14.2.2 DNS Query Initialization

This example creates entry function which is dns query sample().

void dns_query sample(void * param)

{

UM-WI-046 Rev.2.6 RENESAS Page 158
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

char *test url = NULL;
if (netmode[WLANO IFACE] == DHCPCLIENT) {
// wait until dhcp is done
while (daléx network main check dhcp state (WLANO IFACE) != DHCP STATE BOUND) {

vTaskDelay (100) ;
}
}

vTaskDelay (500) ;

/* Check test url */
test url = read nvram string("TEST DOMAIN URL");
if (test url == NULL) {
test url = TEST URL;
}

PRINTF ("\n\n") ;
dns A query sample (test url);
vTaskDelete (NULL) ;

14.2.3 Get Single IPv4 Address

This example shows the use of the API function char *dns A Query(char *domain name, unsigned long
wait option) to get the IPv4 address string with a domain name URL.

void dns A query sample(char *test url str)

{
char *ipaddr str = NULL;

PRINTF (">>> IPv4 address DNS query test ...\n");

/* DNS query with test url string */
ipaddr str = dns A Query(test url str, MAX DNS QUERY TIMEOUT);

/* Fail checking ... */
if (ipaddr str == NULL) {

PRINTF ("\nFailed to dns-query with %s\n", test url str);
} else {

PRINTF ("- Name : %s\n", test url str);

PRINTF ("~ Addresses : %$s\n", ipaddr str);

14.3 SNTP and Get Current Time

Wi-Fi devices may need to synchronize the device clock on the internet with the use of TLS or communication
with the server. DA16200 provides SNTP for this operation and users can use this function to get the current
time.

14.3.1 How to Run

1. In the e?studio, import a project for the SNTP and current time sample application.
~/SDK/apps/common/examples/ETC/Cur Time/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application starts an SNTP client with test values.

UM-WI-046 Rev.2.6 RENESAS Page 159
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

~/SDK/apps/common/examples/ETC/Cur Time/src/cur time sample.c
#define TEST SNTP_ SERVER "time.windows.com"
#define TEST SNTP_RENEW PERIOD 600

#define TEST TIME ZONE (9 * 3600) // seconds
#define SNTP_ ENABLE 1

#define ONE_SECONDS 100

#define CUR TIME LOOP DELAY 10 // seconds

The legacy AP must be connected to the internet.

5. After a connection is made to the SNTP server, DA16200 shows the connection result on the debug console.

pnnection CONPLETE to MA-Jazch=25%:=Ff5:F8

DHCP Client WLANA: SELCG>
DHCP Client WLANA: REQ<1>
DHCP Client WLANBA: CHH(B>
DHCP Client WLANA: BOUNDC18>
Assigned addr : 192.168_.86.68
netmask 255.255.255.8

gateway 192 _168_.86.1
DNS addr 192.168.86.1

DHCFPF Server IP 122.168.86.1
Lease Time 24h #@8m AAs
Renewal Time 12h 88m BAAs

ENTP Server: time.windows.com
#»¥ SNTP Server: time.windows.com (28.18%7.79.72>

Figure 93. Result of DA16200 SNTP #1
The DA16200 periodically gets the current time (the test period: 10 seconds).

>2> SNIP Time =ync - 2021 18007 — 13:=37:=29
Current Time 2821 _18.@7 13:37:38 (GMT +9:84>)

Current Time : 2021.10.87 13:37:48 (GMT +9:88)

Current Time 2821 .18.87 12:37:58 (GMT +9:84)
Figure 94. Result of DA16200 SNTP #2

14.3.2 Sample Code

1. Configure SNTP client information.

~/SDK/apps/common/examples/ETC/Cur Time/src/cur time sample.c
void cur time sample(void * param)
{

unsigned char status;

__timeb4 t now;

struct tm *ts;

char time buf[80];

/* Config SNTP client */
status = set n start SNTP();
if (status == pdFAIL) {
PRINTF (" [%s] Faile to start SNTP client ...\n", func);
vTaskDelete (NULL) ;
return;

}

2. Ifthe SNTP client has already been started with predefined values, then skip this configuration. Set the
SNTP server address, time update period, and time zone and finally enable the function.

~/SDK/apps/common/examples/ETC/Cur Time/src/cur time sample.c
static UCHAR set n start SNTP (void)
{

UM-WI-046 Rev.2.6 RENESAS Page 160
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

unsigned int status = TX SUCCESS;

/* Check current SNTP running status */
status = getSNTPuse() ;
if (status == TX TRUE) {
/* Already SNTP module running ... */
return TX SUCCESS;
}

/* Config and save SNTP server domain */
status = (unsigned int)setSNTPsrv(TEST SNTP SERVER, O0);

if (status != TX SUCCESS) {

PRINTFE (" [$s] Failed to write nvram operation (SNTP server

domain)...\n", func);
status = TX START ERROR;
goto exit;

}

/* Config and save SNTP periodic renew time : seconds */

status = (unsigned int)setSNTPperiod(TEST SNTP RENEW PERIOD);

if (status != TX SUCCESS) {
PRINTFE (" [$s] Failed to write nvram operation (SNTP renew
period)...\n", func);
status = TX START ERROR;
goto exit;

}

/* Config and save SNTP time zone */
status = (unsigned int)setTimezone (TEST TIME ZONE) ;

if (status != TX SUCCESS) {
PRINTFE (" [$s] Failed to write nvram operation (SNTP renew
period)...\n", func);
status = TX START ERROR;
goto exit;

}

daléx_SetTzoff (TEST TIME ZONE) ;

/* Config and save SNTP client mode : enable */
status = setSNTPuse (SNTP_ENABLE) ;

if (status != TX SUCCESS) {

PRINTFE (" [$s] Failed to write nvram operation (SNTP mode) ..

__func)7
status = TX START ERROR;
goto _exit;

}

_exit :
return status;

}

. \nll’

3. After a connection is made to the SNTP server, the DA16200 periodically gets the current time.

~/SDK/apps/common/examples/ETC/Cur Time/src/cur time sample.c
void cur time sample (void * param)

{

&ﬁile (1) {

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 161

DA16200 DA16600 FreeRTOS SDK Programmer Guide

/* delay */
vTaskDelay (CUR TIME LOOP DELAY * ONE SECONDS) ;

/* get current time */
dalox time64 (NULL, &now);

ts = (struct tm *)dal6x localtime64 (&now) ;

/* make time string */
dalex strftime(time buf, sizeof (time buf), "%Y.%m.%d $H:$M:%S", ts);

/* display current time string */

PRINTF ("- Current Time : %s (GMT %+021d:%021d) \n",
time buf,
dal6x Tzoff () /
dalex Tzoff() %

600,

3
3600) ;

14.4 SNTP and Get Current Time in DPM

This example application applies to the DPM function. Most parts of the example came from as Section 14.3 and

the only different part is to apply the example to the DPM mode.
14.41 How to Run

1. In the e? studio, import a project for the SNTP and the current time in the DPM sample application.

~/SDK/apps/common/examples/ETC/Cur Time DPM/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. Use the console to set up the Wi-Fi station interface.

4. After a connection is made to an AP, the example application starts an SNTP client with test values.

~/SDK/apps/common/examples/ETC/Cur Time DPM/src/cur time dpm sample.c
#define TEST SNTP SERVER "time.windows.com"

#define TEST SNTP RENEW PERTOD 600

#define TEST TIME ZONE (9 * 3600) // seconds
#define SNTP_ENABLE 1

#define ONE SECONDS 100

#define CUR TIME LOOP DELAY 10 // seconds
NOTE

= |f the SNTP client is started with pre-defined values, this configuration is ignored.
®* The legacy AP must be connected to the internet.

5. After a connection is made to the SNTP server, DA16200 shows the connection result on the debug console

and goes to DPM Sleep mode.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 162

DA16200 DA16600 FreeRTOS SDK Programmer Guide

pnnection CONPLETE to PH:-Jazch=25%:=f5:-Ff8

DHCP Client WLANA: SEL{G>

DHCP Client WLANB: REQ<1>

DHCP Client WLANA: CHHK{8)>

DHCP Client WLANB: BOUNDC18>

Asszsigned addr : 192168 .86 .68

netmask 255.255.255.8
gateway 192 168 .86.1
DNS addr 172 168 _.86.1

DHCFP Server IP 122.168.86.1
Lease Time 24h B8@m BAs
Renewal Time 28h B8m B8s

»»» SENTP Server: time.windows.com <(28.187.79.72>

»»» SHIF Time sync - 20211887 — 13-48:-85
»»>» Start DPH PowerDown 0%

Figure 95. Result of DA16200 SNTP DPM #1

The DA16200 periodically gets the current time (the test period is 10 seconds).

rte_timeout (tid:5>
Wakeup source is BAx82

»»>» TIM STATUS: AxAAAAAA1A

»»» TIM = PFAST

— Current Time : 26821.168.87 13:51:55 (GHMT +9:88>
»»» Start DPH PowerDown %%

PS TIME 189826 us

rtc_timeout <tid:5>

Wakeup source is BAx82

»»>» TIM STATUS: AxAAAAAA1A

»»» TIM = PFAST

— Current Time : 26021.168.87 13:52:85% (GHMT +9:08>
»»» Start DPH PowerDown %%

PS TIME 189892 us

Figure 96. Result of DA16200 SNTP DPM #2

14.4.2 Sample Code

The SNTP configuration interface is the same as the non-DPM SNTP example. When the DA16200 wakes up
from DPM Sleep mode, use the RTM API to get the current SNTP status, or save the SNTP status into the RTM.

{

~/SDK/apps/common/examples/ETC/Cur Time DPM/src/cur time dpm sample.c
static unsigned char set n start SNTP(void)

unsigned char status = pdPASS;

/* Check current SNTP running status */

if (dpm mode is wakeup() == DPM WAKEUP) {
status = get sntp use from rtm();
} else {

status = get sntp use();

}

if (status == pdPASS) {
long time zone;

/* Already SNTP module running, set again time-zone ...

time zone = get timezone from rtm();
daléx SetTzoff (time zone);

return pdPASS;

*/

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 163

DA16200 DA16600 FreeRTOS SDK Programmer Guide

}

if (dpom mode is wakeup() == NORMAL BOOT) {
/* Config and save SNTP server URI */
status = set sntp server (TEST SNTP SERVER, 0);

if (status != pdPASS) {
PRINTF ("Failed to write nvram operation (SNTP server domain)...\n");

status = pdFAIL;
goto _exit;

}

/* Config and save SNTP periodic renew time : seconds */

status = set sntp period(TEST SNTP RENEW PERIOD) ;

if (status != pdPASS) {
PRINTF ("Failed to write nvram operation (SNTP renew period)...\n");
status = pdFAIL;
goto _exit;

}

/* Config and save SNTP time zone */
set time zone (TEST TIME ZONE);
set timezone to rtm(TEST TIME ZONE);
daléx SetTzoff (TEST TIME ZONE);
set time zone (TEST TIME ZONE);

/* Config, save, and run SNTP client */

if (set sntp use(SNTP ENABLE) != 0) {
PRINTF (" [$s] Failed to run SNTP...\n", func);
status = pdFAIL;
goto exit;

}

/* Save config and start SNTP client */
set sntp use to rtm(status);

_exit :
return status;

}

When connected to the SNTP server, the DA16200 starts an RTC timer to periodically get the current time.

~/SDK/apps/common/examples/ETC/Cur Time DPM/src/cur time dpm sample.c
void cur time dpm sample (void * param)

{

/* Register periodic RTIC Timer : Get current time */
if (dpom mode is wakeup () == NORMAL BOOT) {
/* Time delay for stable running SNTP client */
vTaskDelay (10) ;

status = dpm timer create(SAMPLE CUR TIME DPEM,
"timerl",
display cur time,
CUR TIME LOOP DELAY,
CUR TIME LOOP DELAY);

switch ((int)status) {
case DPM MODE NOT ENABLED

UM-WI-046 Rev.2.6 RENESAS Page 164
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

case DPM TIMER SEC OVERFLOW :

case DPM TIMER ALREADY EXIST:

case DPM_TIDER_NADE_ERROR

case DPM_UNSUPPORTED_RTM

case DPM TIMER REGISTER FAIL:

case DPM TIMER MAX ERR

PRINTF (">>> Fail to create %s timer (err=%d)\n",
SAMPLE CUR TIME DPM, (int)status);

// Delay to display above message on console ...
vTaskDelay (2) ;

break;

/* Set flag to go to DPM Sleep mode 3 */
dpm app sleep ready set (SAMPLE CUR TIME DEM) ;
} else {
/* Notice initialize done to DPM module */
dpm app wakeup done (SAMPLE CUR TIME DPM) ;
}

vTaskDelete (NULL) ;
}

The SNTP configuration interface is the same as for the non-DPM SNTP example.

~/SDK/apps/common/examples/ETC/Cur Time DPM/src/cur time dpm sample.c
static void display cur time(char *timer name)
{

dpm app wakeup done (SAMPLE CUR TIME DPM) ;

_ time6d t now;
struct tm *ts;
char time buf[80];

/* get current time */
daléx timeo64 (NULL, &now);

ts = (struct tm *)daléx localtime64 (&now) ;

/* make time string */
dalex strftime (time buf, sizeof (time buf), "%Y.%m.%d $H:3M:%S", ts);

/* display current time string */

PRINTF ("- Current Time : %s (GMT %+021d:%021d)\n",
time buf,
daléx Tzoff() /
daleox Tzoff () %

3600,
3600) ;
vTaskDelay (1) ;

/* Set flag to go to DPM Sleep mode 3 */
dpm app sleep ready set (SAMPLE CUR TIME DPM) ;

14.5 HTTP Client

The DA16200 SDK has a ported IwlP 2.1.2 stack. With this product, an application programmer can develop an
HTTP client application that uses IwIP HTTP APIs.

UM-WI-046 Rev.2.6 RENESAS Page 165
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

14.5.1 How to Run

1. In the e?studio, import a project for the HTTP_Client sample application.
~/SDK/apps/common/examples/Network/Http Client/projects/dal6200

5. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

2. Use the console to set up the Wi-Fi station interface and connect to the AP that is connected to the Internet.

3. Complete the setup and (re)start the sample.

14.5.2 Sample Code

The sample code shows the -get and -post methods. When the sample starts by default, it is executed as a -get
method request. To request -post, define ENABLE_ METHOD_ POST_ TEST at the top of the sample code.

To connect to HTTPS(TLS) server, enter "https://" instead of "http://" in the URL address. To set valid time
information in the certificate before the HTTPS request, the system's current time must be set (SNTP service
must be enabled). The URL and data of the sample code are examples, and it needs to modify them according
to the user environment.

The sample code is executed as follows:

1. Using the http client parse uri() API, set the port number for HTTP or HTTPS and parse the path and
host name.

unsigned char g http url[256] = {"http://httpbin.org/get"};
error = http client parse uri(g http url, strlen((char *)g http url), &request);
if (error != ERR OK) {

PRINTF ("Failed to set URI (error=%d) \r\n", error);

goto finish;

}

2. Set a variable in the httpc_connection_t type and set the value to be passed to the API.

3. If the user registers the callback function in headers_done_fn and result_fn, the header response received
from the server and the result value of the HTTP Client can be returned.

static httpc connection t g conn settings;

g _conn settings.use proxy = 0;

g _conn settings.altcp allocator = NULL;

g conn settings.headers done fn = httpc cb headers done fn;
g conn settings.result fn = httpc cb result fn;

4. When ENABLE METHOD POST TEST is defined, users can insert the data they want to send to the server using
the httpc insert send data() APL.

#if defined (ENABLE METHOD POST TEST)
error = httpc insert send data("POST", user post data, strlen(user post data));
if (error != ERR OK) {
PRINTF ("Failed to insert data\n");
}
#endif

5. To perform TLS communication with the HTTP server that requires the HTTP client's certificate, define
ENABLE_HTTPS_SERVER_VERIFY_REQUIRED. The certificate must have been previously stored in the
TLS area of the DA16200 SFlash.

UM-WI-046 Rev.2.6 RENESAS Page 166
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

if (g_conn settings.insecure) {
memset (&g conn settings.tls settings, 0x00,sizeof (httpc secure connection t));
g _conn settings.tls settings.incoming len = HTTPC MAX INCOMING LEN;
g conn settings.tls settings.outgoing len = HTTPC DEF OUTGOING LEN;

#ifdef ENABLE HTTPS SERVER VERIFY REQUIRED
http client read certs(&g conn settings.tls settings);
g conn settings.tls settings.auth mode = MBEDTLS SSL VERIFY NONE;

/* SNI */
sni str = read nvram string (HTTPC NVRAM CONFIG TLS SNI);

VA ALPN =/

if (read nvram int (HTTPC NVRAM CONFIG TLS ALPN NUM, &alpn cnt) = 0) {

#endif //ENABLE HTTPS SERVER VERIFY REQUIRED
}

6. Call API to get request. User calls httpc get file() or httpc get file dns() depending on whether

hostname needs a DNS query. If the request is successful, the user can receive payload data through the
registered httpc cb recv fn callback function.

if (isvalidip((char *)request.hostname)) {
ip4addr aton(g request.hostname, &g server addr);
error = httpc get file(&g server addr,
g_request.port,
(char *)é&g request.path[0],
&g _conn_settings,
(altcp recv fn)httpc cb recv fn,
NULL,
&g_connection) ;
} else {
error = httpc get file dns((char *)&g request.hostname([0],
g_request.port,
(char *)&g request.path[0],
&g_conn_settings,
(altcp recv fn)httpc cb recv fn,
NULL,
&g_connection) ;

}

7. The httpc cb recv fn() callback function receives a pbuf pointer. p->payload is the data received from the
server.

static err t httpc cb recv fn(void *arg, struct tcp pcb *tpcb,
struct pbuf *p, err t err)
{
if (p == NULL) {
PRINTF ("\n[%s:%d] Receive data is NULL !! \r\n", func , LINE);
return ERR_BUF;
} else {
PRINTF ("\n[%s:%d] Received length = %d \r\n", func , LINE , p->len);
hexa dump print ("Received data \r\n", p->payload,
p—>len, 0, OUTPUT HEXA ASCIT);
}

return ERR OK;

14.6 HTTP Client in DPM

The DA16200 SDK has a ported IwlP 2.1.2 stack. With this product, an application programmer can develop an
HTTP client application that uses IwIP HTTP APIs.

UM-WI-046 Rev.2.6 RENESAS Page 167
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

14.6.1 How to Run

1.

2.
3.
4.

In the e? studio, import a project for the HTTP_Client sample application.
~/SDK/apps/common/examples/Network/Http Client DPM/projects/ dal6200

Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

Use the console to set up the Wi-Fi station interface and connect to the AP that is connected to the Internet.
Complete the setup and (re)start the sample.

14.6.2 Sample Code

The sample code shows the -get and -post methods. When the sample starts by default, it is executed as a -get
method request. To request -post, define ENABLE_ METHOD_ POST_ TEST at the top of the sample code.

To connect to HTTPS(TLS) server, enter "https://" instead of "http://" in the URL address. To set valid time
information in the certificate before the HTTPS request, the system's current time must be set (SNTP service
must be enabled). The URL and data of the sample code are examples, and it needs to modify them according
to the user environment.

The sample code is executed as follows:

1.

If an application that uses the HTTP protocol is registered in DPM, a setting must be made not to enter
DPM_SLEEP while HTTP transmission (request/response) is in progress. Set DPM_SLEEP after all
transfers are complete.

void http client dpm sample entry(void * param)

{

dpm app register (HITP CLIENT SAMPLE TASK NAME, request.port);
dpm app sleep ready clear (HTTP CLIENT SAMPLE TASK NAME) ;

}

static void httpc cb result fn(void *arg, httpc result t httpc result, u32 t
rx content len, u32 t srv res, err t err)
{
PRINTF ("\n httpc result: %d, received: %d byte\r\n",
httpc result, rx content len);
dpm app sleep ready set (HTTP CLIENT SAMPLE TASK NAME) ;
return;

}

Using the http client parse uri() API, set the port number for HTTP or HTTPS and parse the path and
host name.

unsigned char g http url[256] = {"http://httpbin.org/get"};

error = http client parse uri(g http url, strlen((char *)g http url), &request);
if (error != ERR OK) ({

PRINTF ("Failed to set URI (error=%d) \r\n", error);

goto finish;

}

Set a variable in the httpc_connection_t type and set the value to be passed to the API.

If the user registers the callback function in headers_done_fn and result_fn, the header response received
from the server and the result value of the HTTP Client can be returned.

static httpc connection t conn settings;

g conn settings.use proxy = 0;

g _conn settings.altcp allocator = NULL;

g _conn_settings.headers done fn = httpc cb headers done fn;
g conn settings.result fn = httpc cb result fn;

When ENABLE METHOD POST TEST is defined, users can insert the data they want to send to the server using
the httpc insert send data() APL

UM-WI-046 Rev.2.6 RENESAS Page 168
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

#if defined (ENABLE METHOD POST TEST)
error = httpc insert send data("POST", user post data, strlen(user post data));
if (error != ERR OK) {
PRINTF ("Failed to insert data\n");
}
#endif

6. To perform TLS communication with the HTTP Server that requires the HTTP Client's certificate, define
ENABLE HTTPS SERVER VERIFY REQUIRED. The certificate must have been previously stored in the TLS area
of the DA16200 SFlash.

if (g _conn settings.insecure) {
memset (&g conn settings.tls settings, 0x00,sizeof (httpc secure connection t));
g _conn settings.tls settings.incoming len = HTTPC MAX INCOMING LEN;
g_conn _settings.tls settings.outgoing len = HTTPC DEF OUTGOING LEN;
#ifdef ENABLE HTTPS SERVER VERIFY REQUIRED
http client read certs(&g conn settings.tls settings);
g _conn settings.tls settings.auth mode = MBEDTLS SSL VERIFY NONE;

/* SNI */
sni str = read nvram string (HTTPC NVRAM CONFIG TLS SNI);

VA ALPN =/

if (read nvram int (HTTPC NVRAM CONFIG TLS ALPN NUM, &alpn cnt) = 0) {

#endif //ENABLE HTTPS SERVER VERIFY REQUIRED
}

7. Call API to get request. User calls httpc get file() or httpc get file dns() depending on whether

hostname needs a DNS query. If the request is successful, the user can receive payload data through the
registered httpc cb recv fn callback function.

if (isvalidip((char *)g request.hostname)) {
ip4addr aton(g request.hostname, & g server addr);
error = httpc get file(&g server addr,
g_request.port,
char *)&g request.path[0],
& g conn settings,
(altcp recv fn)httpc cb recv fn,
NULL,
gconnection) ;
} else {
error = httpc get file dns((char *)&g request.hostname([0],
g_request.port,
(char *)&g request.path[0],
&g_conn_settings,
altcp recv fn)httpc cb recv fn,
NULL,
&connection) ;

}

8. The httpc cb recv fn() callback function receives a pbuf pointer. p->payload is the data received from the
server.

UM-WI-046 Rev.2.6 RENESAS Page 169
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

static err t httpc cb recv fn(void *arg, struct tcp pcb *tpcb,
struct pbuf *p, err t err)

{
if (p =— NULL) {

PRINTF ("\n[%s:%d] Receive data is NULL !! \r\n", func , LINE);
return ERR BUF;

} else {
PRINTF ("\n[%s:%d] Received length = %d \r\n", func , LINE , p—>len);

hexa dump print ("Received data \r\n", p->payload,
p->len, 0, OUTPUT HEXA ASCIT);
}

return ERR OK;
}

14.7 HTTP Server

The DA16200 SDK has a ported IwlIP 2.1.2 stack. With this product, an application programmer can develop an
HTTP server application that uses IwIP HTTP APls.

14.7.1 How to Run

1. In the e?studio, import a project for the HTTP_Server sample application.
~/SDK/apps/common/examples/Network/Http Server/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. Use the console to set up the Wi-Fi station interface and connect to the AP.

4. Complete the setup and (re)start the sample.

14.7.2 Sample Code
The sample code shows the -get methods.

1. The HTTP Server sample code supports both HTTP and HTTPS (Default is HTTP).

To operate with HTTPS, define ENABLE_HTTPS_SERVER as shown below. Also, update the certificate
embedded in the code (tls_srv_sample_cert, tls_srv_sample_key) as needed.

/// HITPS server
#define ENABLE HTTPS SERVER
2. The HTTP server can be operated simply by calling the httpd_init() API.

Also, user callback function can be registered as argument value. The registered callback function is called
when data is received from the HTTP Client.

UM-WI-046 Rev.2.6 RENESAS Page 170
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

/* Callback function*/
static err t http server cb recv fn(struct pbuf *p, err t err)

{
err t error = ERR OK;
extern void hex dump (UCHAR * data, UINT length);

PRINTF (" [%¥s] err = %d, p—>tot len = %d, p—>len = %d\n", func , err, p—>tot len, p—>len);
hex dump (p—>payload, p->len);

return error;

}

/* Server task */
static void http server sample (void *params)

{

httpd init((altcp user recv fn)http server cb recv fn);
PRINTF (" [%s] HITP-Server Start!! \r\n", func);

while (1) {
vTaskDelay (100) ;

}

return ;

}

3. The HTTPS server must set the key and certificate information required for TLS.

struct altcp tls config *tls srv sample config = NULL;

tls srv sample config =
altcp tls create config server privkey cert (tls srv sample key,
tls srv sample key len,
NULL,
0,
tls srv sample cert,
tls srv sample cert len);
if (!tls srv sample config) {
PRINTFE (" [%s] Failed to create tls config\r\n", func);
goto end of task;
}

httpd inits(tls srv sample config, (altcp user recv fn)http server cb recv fn);
PRINTF (" [%s] HTTPS-Server Start!! \r\n", func);

end of task:
while (1) {

vTaskDelay (100) ;
}

4. |Ifthe HTTP Server works successfully, test the -get method as follows.
Use the web browser of the test computer that is connected to the same network.
e Access from a Web browser
http://[Server IP]/index.html

e The page displayed is located below
[~/sdk/libraries/3rdloty/lwip/src/src/apps/http/fs/index.html]

UM-WI-046 Rev.2.6 RENESAS Page 171
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

- O s
@ IwlP - A Lightweight TCP/IP Stack X + Q

& C A Notsecure | 192.168.86.68/index.html h*d @ :

SIES IwIP - A Lightweight TCP/IP Stack

The web page vou are watching was served by a simple web server running
on top of the lightweight TCP/IP stack lwIP.

IwIP is an open source implementation of the TCP/IP protocol suite that was
onginally written by Adam Dunkels of the Swedish Institute of Computer
Science but now 1s being actrvely developed by a team of developers
distributed world-wide. Since it's release, IwIP has spurred a lot of mnterest
and has been ported to several platforms and operating systems. lwIP can be
used erther with or without an underlying OS.

The focus of the IwIP TCP/IP implementation 1s to reduce the RAM usage
while still having a full scale TCP. This makes IwIP suitable for use in
embedded systems with tens of kilobytes of free RAM and room for around
40 kilobytes of code ROM.

More information about lwIP can be found at the IwIP homepage at
http://savannah nongnu.org/projects/lwip/ or at the IwIP wiki at

http:/Iwip wikia.cotm/.

Figure 97. Result of DA16200 HTTP server
For POST, write "/post" at the end of the URL (http:/[Server IP]/post).

NOTE
To modify the html page, see the readme.txt file in .\core\libraries\3rdparty\lwip\src\apps\http\makefsdata.

Complete the following steps to create new fsdata.c code suitable for httpd for given html pages.
1. Make sure to install Perl or else install Perl.

2. Run the Git bash or Unix based terminal, or windows command prompt if Cygwin is installed.
3. Navigate to the directory in SDK: .\core\libraries\3rdparty\lwip\src\apps\http\makefsdata

4. Copy makefsdata and rename it (to makefsdata_run for example) and rename the current fs_data.c as well like
fs_data.c.ori for future reference/compare when needed.

5. Type this command "perl makefsdata_run", it overwrites the fsdata.c.

6. After the fsdata.c is created, go to the end of the file and add this code manually in all const struct fsdata_file file_***
variables.

".FS_FILE_FLAGS_HEADER_INCLUDED | FS_FILE_FLAGS_HEADER_PERSISTENT,"

7. The code before the update is as follows:
const struct fsdata_file file_404_html[] = {{NULL, data_404_html, data_404_html + 10, sizeof(data_404_html) - 10}};
const struct fsdata_file file_img_sics_giff] = {{file_404_html, data_img_sics_gif, data_img_sics_gif + 14,
sizeof(data_img_sics_gif) - 14}};
const struct fsdata_file file_index_html[] = {{file_img_sics_gif, data_index_html, data_index_html + 12,
sizeof(data_index_html) - 12}};

8. It must be:

const struct fsdata_file file_404_html[] = {{NULL, data_404_html, data_404_html + 10, sizeof(data_404_html) - 10,
FS_FILE_FLAGS_HEADER_INCLUDED | FS_FILE_FLAGS_HEADER_PERSISTENT,}};

const struct fsdata_file file_img_sics_gif[] = {{file_404_html, data_img_sics_qgif, data_img_sics_gif + 14,
sizeof(data_img_sics_gif) - 14, FS_FILE_FLAGS_HEADER_INCLUDED |
FS_FILE_FLAGS_HEADER_PERSISTENT.}};

const struct fsdata_file file_index_html[] = {{file_img_sics_gif, data_index_html, data_index_html + 12,
sizeof(data_index_html) - 12, FS_FILE_FLAGS_HEADER_INCLUDED | FS_FILE_FLAGS_HEADER_PERSISTENT,}};

9. Build the SDK and try again.

14.8 WebSocket Client

This section describes the behavior of the example WebSocket Client application and how to build it.

UM-WI-046 Rev.2.6 RENESAS Page 172
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

NOTE
WebSocket client does not support DPM mode.

14.8.1 How to Run
1. In the e?studio, import a project for the Websocket_Client application.
~/SDK/apps/common/examples/Network/WebSocket Client/projects/dal6200

2. To set the WebSocket Server URI in the WebSocket Client Sample, edit the source code:
~/SDK/apps/common/examples/Network/WebSocket Client/src/websocket client sample.c
#define WEBSOCKET_SERVER_URI "ws(WsSS)://XXXX.XXXX.XXXX"
3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
4. Use the console to set up the Wi-Fi station interface and connect to the AP that is connected to the Internet.
5. Complete the setup and (re)start the sample.

14.8.2 Sample Code

When the WebSocket client application starts, it tries to connect to a WebSocket Server and sends a message
10 times. The URI and data of the example code are for demonstration purposes and can be modified as
required to create a custom application. To use the WebSocket Secure connection, enter "wss://" instead of
"ws:/[" in the URI.

The sample code is executed as follows:

1. Setwebsocket cfg.uri for the WebSocket Server URI and WebSocket initializes with the WebSocket
configurations.

websocket cfg.uri = WEBSOCKET SERVER URI;
WS _LOGI (TAG, "Connecting to %s...\n", websocket cfg.uri);
websocket client handle t client = websocket client init (&websocket cfq);

2. Toreceive event data, register websocket client_event_callback function before starting the WebSocket
Client.

static void ws event handler (websocket client event id t event id,
websocket client event data t *event data)

{

websocket client event data t *data = (websocket client event data t *)event data;

switch (event id) {

case WEBSOCKET_CLIENT_EVENT_CONNECTED:
WS_LOGW(TAG, "WEBSOCKET_CONNECTED\H");
break;

case WEBSOCKET CLIENT EVENT DISCONNECTED:
WS_LOGW(TAG, "WEBSOCKET_DISCONNECTED\n");
break;

case WEBSOCKET CLIENT EVENT DATA:

if (data->op code == WS TRANSPORT OPCODES CLOSE) {
WS _LOGW(TAG, "Websocket Server Closed\n");
websocket client abort connection(data->client);

}

xTimerReset (shutdown signal timer, portMAX DELAY);

break;

case WEBSOCKET CLIENT EVENT ERROR:
WS LOGE (TAG, "WEBSOCKET_ERROR\H");
break;

}

websocket client start(client, ws event handler);

UM-WI-046 Rev.2.6 RENESAS Page 173
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

3. When the WebSocket Client connects to the server, it sends a message 10 times using
websocket client send text () APL If no event data is received for 5 seconds, shutdown signal timer
disconnects the WebSocket connection.

while (i < 10) {
if (websocket client is connected(client)) {
int len = sprintf(data, "hello %04d", i++);
WS _LOGI (TAG, "Sending %$s\n", data);
websocket client send text(client, data, len, portMAX DELAY);
}
vTaskDelay (1000 / portTICK PERIOD MS);
}

4. shutdown signal timer disconnects the WebSocket connection using the websocket client stop() API.

if (websocket client stop(client)== WS OK) {
WS_LOGI (TAG, "Websocket Stopped\n");
}

UM-WI-046 Rev.2.6 RENESAS Page 174
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

15. Network Examples: OTA

15.1 Overview

The DA16200/DA16600 provides support for over the air (OTA) firmware update using the HTTP protocol. The
chip operates as an HTTP client which can download and update new firmware from an HTTP server.

The DA16200 firmware image set consists of Bootloader (Second bootloader) and RTOS. The boot loader
cannot be updated through OTA, but only RTOS. This product allows application programmers to develop an
OTA firmware application that uses the OTA APIs. In addition, users can update certificates such as TLS
Certificate Key #1 and TLS Certificate Key #2 and support a firmware update of MCU. Users can easily develop
these functions using the API provided by the DA16200/DA16600 SDK.

NOTE

When DPM mode is enabled and an OTA (firmware) update is in progress, DPM Sleep mode is paused temporarily due to
SFlash write operations. When the firmware update is complete, DPM Sleep mode returns to normal operation.

User Application

OTA update APIs > HTTP-Server

HTTP-Client |,
(IwlP IP stack)

Figure 98. OTA update layer

15.2 SFLASH Memory Area

The DA16200/DA16600 does not support file systems, so the firmware should be stored in SFlash memory. The
SFlash is divided into several areas as shown in the Table 35. Among them, the areas that users can directly
access are as follows:
= User accessible SFlash areas:

e RTOS #0

e RTOS #1

e TLS Certificate #1

e TLS Certificate #2

e User Area

NOTE

Incorrect access to other areas may cause serious failure in the system.

Table 35. 4 MB sflash memory map

Address Name Size (kB)
0x0000_0000 24 Bootloader 136
0x0002_2000 Boot Index 4
0x0002_3000 RTOS #0 1788
0x001E_2000 RTOS #1 1788
UM-WI-046 Rev.2.6 RENESAS Page 175

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Address Name Size (kB)
0x003A_1000 Reserved Area 4
0x003A_2000 Debug/RMA Certificate 4
0x003A_3000 TLS Certificate #1 CA 4
0x003A_4000 (MQTT) Cert 4
0x003A_5000 Private key 4
0x003A_6000 Diffie-Hellmann key 4
0x003A_7000 TLS Certificate #2 CA 4
0x003A_8000 (HTTPs/OTA) Cert 4
0x003A_9000 Private key 4
0x003A_A000 Diffie-Hellmann key 4
0x003A_B000 NVRAM #0 4
0x003A_C000 NVRAM #1 (Backup) 4
0x003A_D000 User Area (including DA14531 image) (Note 1) 256
0x003E_DO000 TLS Certificate Key #3 CA 4
0x003E_E000 (WPA Enterprise) Cert 4
0x003E_F000 Private 4
0x003F_0000 Diffie-Hellmann key 4
0x003F_1000 TLS Certificate Key #4 CA 4
0x003F_2000 (Reserved) Certificate 4
0x003F_3000 Private Key 4
0x003F_4000 Diffie-Hellmann key 4
0x003F_5000 NVRAM FOOTPRINT 4
0x003F_6000 AT-CMD TLS Certificate Key #0 ~ #9 40

Note 1 For DA16600, the DA14531 image is stored in the User Area (0x003A_DO000 ~ 0x003C_1FFF). See Ref. [3] for

further details.

15.3 HTTP Protocol

The DA16200/DA16600 supports HTTP/HTTPS 1.1 and requests firmware download to the HTTP server by
using the GET method of the HTTP client.

The OTA update application should know the URL of the HTTP server before requesting a download. How to
obtain the URL depends on the user's preference. When using HTTPS, the DA16200/DA16600 should have at
least 36 kB of heap memory for TLS encryption and decryption. The user can print the current memory usage

from the terminal.

= CLI commands

[/DA16200] # sys.os.heap
[/DA16200] # sys.os.pool

= API

extern void memoryPoollnfo(void);
extern void cmd_heapinfo_func(int argc, char *argv[]);

memoryPoollnfo();

cmd_heapinfo_func(0, NULL);

15.4 OTA Firmware Update

The OTA firmware update is divided into two stages: DOWNLOAD and RENEW.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS

CFR0012

Page 176

DA16200 DA16600 FreeRTOS SDK Programmer Guide

DOWNLOAD refers to the process of downloading the new firmware from the OTA server. In this case, the
firmware is not yet applied.

RENEW is the process of applying the downloaded firmware. When the firmware is successfully applied, the
new firmware is executed after reboot.

15.4.1 Header

Figure 99 shows DA16200/DA16600 header information as an example. Header information is 96 bytes and is
automatically inserted when the firmware is built. The red box in Figure 99 is the magic number and version
information. The yellow box is information for checking firmware Cyclic Redundancy Check (CRC). Users only
need to check the version information in the red box.

Offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00000000 00 00 00
00000010 4E 30 31 2D 30 31 2D
00000020 30 30 30 00 00 00 00
00000030
00000040

00000050
00000060 64 03 00 00 8A 6F 96 4D 00 00 00 00 00 00 0O 00
00000070 63 6B 42 53 00 00 01 00 72 00 00 00 01 00 00 00
00000080 CO 31 92 46 80 OA D7 85 66 SE F2 EC 3D 3B 2D B2 Al’FE€.x._fZoi=;-*
00000090 7E BD D7 B2 8A B9 9C 96 DD CB 86 10 6E 71 FC 00 ~¥sx=52e-YEt.nqi.
000000A0 13 1D 97 FF FC 1F 12 31 A5 05 Cl1 BA C2 04 E6 OA ..—yi..l¥.A°A.=.

Figure 99. Firmware header information

15.4.2 Version

DA16200/DA16600's RTOS has unique version rules for system protection. The version name is inserted as a
string of up to 39 bytes including the separator "-" in the header part of the firmware image at build time.

There are five elements in the version string, separated by "-": Type, Vendor, Major, Minor, and Customer. For
example, FRTOS-GEN01-01-12345-000001.

The file name of the firmware does not have to be the same as the version. DA16200/DA16600 only refers to the
version inserted in the firmware header.

Version String

Type-Vendor-Major-Minor-Customer

= Type (6 bytes): Identify the type of firmware

= Vendor (6 bytes): Vendor classification

= Major (3 bytes): Major number to check compatibility
= Minor (10 bytes): SDK patch number

= Customer (10 bytes): User configurable version

Type-Vendor-Major determines whether DOWNLOAD or RENEW is compared to the version of firmware
currently in operation. Minor-Customer can be used by the user for firmware version management.

Users can change the customer version by editing ..\version\3rd_customer_build_num.h. If users change the
customer version and build the SDK, the customer version is applied to the image.

15.4.3 Result Code

All APIs provided by OTA update return the result codes as shown in the Table 36. It is delivered through the
callback function connected with DOWNLOAD and RENEW APIs.

Table 36. Result code

Result Code Value Description
OTA_SUCCESS 0x00 Return success
OTA_FAILED 0x01 Return failed
UM-WI-046 Rev.2.6 RENESAS Page 177

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Result Code Value Description
OTA_ERROR_SFLASH_ADDR 0x02 SFlash address is wrong.
OTA_ERROR_TYPE 0x03 Firmware type is unknown.
OTA_ERROR_URL 0x04 Server URL is unknown.
OTA_ERROR_SIZE 0x05 The firmware size is too big.
OTA_ERROR_CRC 0x06 CRC is not correct.
OTA_VERSION_UNKNOWN 0x07 Firmware version is unknown.
OTA_VERSION_INCOMPATI 0x08 The firmware version is incompatible.
OTA_NOT_FOUND 0x09 Firmware was not found on the server.
OTA_NOT_CONNECTED 0x0A Failed to connect to the server.
OTA_NOT_ALL DOWNLOAD 0x0B All new firmware has not been downloaded.
OTA_MEM_ALLOC_FAILED 0x0C Failed to allocate memory.
OTA_BLE_VERSION_UNKNOWN 0xA1 The Bluetooth® LE firmware version is
unknown.

15.4.4 DOWNLOAD

DOWNLOAD is the process of downloading firmware from the OTA server and saving it into the SFlash area.

The communication protocol with the OTA server uses HTTP and can be implemented using the HTTP API
supported by IwlP. Therefore, the process of communicating with HTTP-server works the same as IwIP's HTTP
Client.

NOTE

Firmware downloads may fail because of HTTP timeout caused by high network latency in low bandwidth environments.
To avoid firmware download failure, the HTTP timeout can be set to a higher value than the default. However, the HTTP
timeout affects power consumption as the device cannot enter Sleep mode while waiting for the HTTP response.
Therefore, using a high HTTP timeout value may increase power consumption.

For this reason, the minimum recommended bandwidth for firmware download should be higher than 1 Mbps, although
this may vary as the environment and conditions may not be the same.

Default HTTP timeout: 6 seconds (. \core\libraries\3rdparty\lwip\src\apps\http\http client.c)
#define HTTPC POLL TIMEOUT 30 // 200 ms Interval x 30 times = 6 seconds timeout.

The download sequence proceeds as follows, and both success and failure results can be delivered through the
callback function (see Table 36 for results):

1. Request a query from the HTTP server.

2. Confirm that the response was successfully received from the HTTP server. If the server connection fails or
receives a failure response, the download is terminated, and the result is transferred to the callback function.
See Table 36 for result values.

3. Check the magic number and version name in the firmware header, and if they do not match, the download
is terminated, and the result is transferred to the callback function.

4. If the magic number and version name are normal, the downloaded data is written to SFlash. The SFlash
address where the data is written is automatically determined by the boot index (see Section 15.4.5.1).
When the download is completed successfully, the entire firmware stored in SFlash has a CRC check.

5. When the CRC check is successfully completed, the result value of 0x00 is transferred to the callback
function and the download is terminated.

UM-WI-046 Rev.2.6 RENESAS Page 178
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

<:Start Downloadi)

l.http-client : get

2.http-server
response?

Yes

3.Firmware
version OK?

Yes

v

4 . Write to SFLASH
Download Done

Finish Download
(Result Callback)

Figure 100. Firmware DOWNLOAD

15.4.5 RENEW

RENEW only operates when the firmware download is successful. DA16200/DA16600 should have the
download history after power is on.

1. Check whether the download was successful. After turning on the power, check the download history.

2. Check the CRC of the firmware stored in SFlash. In case of failure, RENEW ends and the result is
transmitted to the callback function.

3. Check the firmware version stored in the flash. In case of failure, RENEW ends and the result is transmitted
to the callback function.

4. Determine if the new firmware is normal and change the boot index to the new firmware location.

UM-WI-046 Rev.2.6 RENESAS Page 179
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

<: Start Renew :>

1.Download
Success?

Yes

Yes

3.FW Version
OK?

Yes

\ 4

4. Boot Index Change

d

A 4

Finish Renew
(Result Callback)

Figure 101. Firmware RENEW

15.4.5.1 BootIndex

The DA16200/DA16600 is divided into firmware download area and current area for OTA firmware update. The
two areas are toggled on each other by the boot index. For example, if the boot index value is 0, it operates as
the firmware stored in the SFlash RTOS #0 area upon booting, and the newly downloaded firmware is stored in
RTOS #1. After that, if RENEW is operated successfully, the boot index value is changed to 1, rebooted, and the
firmware stored in the SFlash RTOS#1 area is operated.

|
|
Boot index 0 : Boot index 1

|
|
|
|

RTOS #0 [&—— Current operating firmware | RTOS #0 l&—— Downloaded firmware
|
|
|

RTOS #1 l&—— Downloaded firmware : RTOS #1 [&=—— Current operating firmware
|

Figure 102. Boot index operation
15.5 API

This section describes the structures and application programming interface (API) required for the OTA firmware
update application.

UM-WI-046 Rev.2.6 RENESAS Page 180
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

15.5.1 Type

OTA update task is operated based on the type defined in the OTA update type. The operation sequence is
tailored to the specified type.

Table 37. OTA update type

Name ota_update_type

Description Identify and specify targets for OTA updates.

/Il Operation step of process

typedef enum {
OTA_TYPE_INIT, // Init value
OTA_TYPE_RTOS, //RTOS
OTA_TYPE_BLE_FW, // Bluetooth® firmware, for DA166x
OTA_TYPE_BLE_COMBO, // RTOS and Bluetooth® firmware, for DA166x
OTA_TYPE_MCU_FW, // MCU firmware, not DA16x
OTA_TYPE_CERT_KEY, // Certificate or Key
OTA_TYPE_UNKNOWN // Unknown value

} ota_update_type;

15.5.2 Structure
OTA UPDATE CONFIG sets the necessary parameters when calling OTA firmware update API.

Table 38. OTA update configuration

Name OTA_UPDATE_CONFIG

Description Contain information to be passed as argument values to OTA update APlIs.

/Il OTA update configuration structure
typedef struct {
/Il Update type.
ota_update_type update_type;
/Il Server address where firmware is located.
char url[OTA_HTTP_URL_LENJ;
/Il Callback function pointer to check the download status.
void (*download_notify)(ota_update_type update_type, UINT ret_status, UINT progress);
/Il Callback function pointer to check the renew state. Only for RTOS.
void (*renew_notify)(UINT ret_status);

/11 If the value is true, if the new firmware download is successful, it reboots with the new firmware.
Only for RTOS

UINT auto_renew;
/Il Address of sflash where other_fw is stored. Only for MCU_FW and CERT_KEY
UINT download_sflash_addr;
#if defined (_ BLE_COMBO_REF_)
/Il Server address where Bluetooth firmware is located.
Char url_ble fw[OTA_HTTP_URL_LEN];
#endif /¥ __ BLE_COMBO_REF__ */
} OTA_UPDATE_CONFIG;

15.5.3 APIs

This section describes the APIs required for the OTA firmware update application.

UM-WI-046 Rev.2.6 RENESAS Page 181
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 39. APIs for OTA firmware

Item

Description

UINT ota_update_start_download(OTA_UPDATE_CONFIG *ota_update_conf)

Parameter [in] ota_update_conf | The pointer of OTA_UPDATE_CONFIG structure.
update_type: Update type.
url: Server address where firmware is located.
(*download_notify)(ota_update_type update_type, UINT ret_status,
UINT progress): Callback function pointer to check the download
status.
(*renew_notify)(UINT ret_status): Callback function pointer to check
the renew state. Only for RTOS.
auto_renew: If the value is true, if the new firmware download is
successful, it reboots with the new firmware. Only for RTOS.
download_sflash_addr: This can set the SFlash address to download
MCU_FW, BLE_FW and CERT_KEY excluding RTOS within the User
Area range. The default value is 0x003A_DO00O.
url_ble_fw: Server address where Bluetooth firmware is located when
(__BLE_COMBO_REF__) is defined.

Return Return 0x00 on success. See Table 36.

Description HTTP Client task is created and send a query to the HTTP server. It

checks the version compatibility of the firmware received from the
server and writes it to the download area of SFlash.

UINT ota_update_stop_download(void)

Parameter None
Return Return 0x00 on success. See Table 36.
Description A download can be stopped while downloading from the HTTP

server.

UINT ota_update_get_download_progress(ota_update_type update_type)

Parameter [in] update_type Specify the type to be updated.
Return Return a value between 0 and 100.
If the download was successful, it returns 100.
Description Check the progress while downloading or after completion.

UINT ota_update_start_renew(OTA_UPDATE_CONFIG *ota_update_conf)

Parameter [in] ota_update _conf | The pointer of OTA_UPDATE_CONFIG structure.
Return Return 0x00 on success. See Table 36.
Description Check the version compatibility and CRC, changes the boot index to

the new firmware location, and then reboots automatically.

UINT ota_update_get_new_sflash_addr(UINT update_type)

Parameter [in] update_type Specify the type to be updated.
Return Return the SFlash address.
Description The user can know the address of SFlash where the new

firmware(data) downloaded from the server is stored.

UINT ota_update_read_flash(UINT addr, VOID *buf, UINT len)

Parameter [in] addr SFlash address (hex).
[out] buf Buffer pointer to store read data.
[in] len Length to read.
Return Return 0x00 on success. See Table 36.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 182

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Description Reads SFlash as much as the input address and length.
UINT ota_update_erase_flash(UINT addr, UINT len)
Parameter [in] addr SFlash address (hex).
[in] len Length to erase.
Return Returns erased length.
Description Erases SFlash as much as the input address and length.
UINT ota_update_copy_flash(UINT dest_addr, UINT src_addr, UINT len)
Parameter [in] dest_addr dest_addr Destination Sflash address (hex).
[in] src_addr src_addr Source Sflash address (hex).
[in] len Length to copy.
Return Return 0x00 on success. See Table 36.
Description Copy as much as the length from SFlash address src_addr to
dest_addr.

UINT ota_update_set_mcu_fw_name(char *name)

Parameter [in] name Input the firmware name (version). Maximum 8 bytes.
Return Return 0x00 on success. See Table 36.
Description Set the name (version) of MCU firmware to be downloaded to SFlash.

If not set, it is set as the default string.
[* ota_update.h */
#define OTA_MCU_FW_NAME "MCU_FW"

UINT ota_update_get_mcu_fw_name(char *name)

Parameter [out] name Pointer to get the name (version) of MCU firmware.
Return Return 0x00 on success. See Table 36.
Description Get name (version) of MCU firmware downloaded to SFlash.
UINT ota_update_get_mcu_fw_info(char *name, UINT *size, UINT *crc)
Parameter [out] name Pointer to get the name (version) of MCU firmware.
[out] size Pointer to get the size of MCU firmware.
[out] crc Pointer to get the CRC32 value of MCU firmware.
Return Return 0x00 on success. See Table 36.
Description Get name (version), size, and CRC32 of MCU firmware downloaded
to SFlash.

UINT ota_update_read_mcu_fw(UINT sflash_addr, UINT size)

Parameter [in] sflash_addr sflash_addr Start address for reading.
[int] size Read size.
Return Return 0x00 on success. See Table 36.
Description Start transmission of MCU firmware stored in flash through interface

as much as the set size.

UINT ota_update_trans_mcu_fw(void)

Parameter void None
Return Return 0x00 on success. See Table 36.
Description Start transmission of MCU firmware stored in flash through interface.

UINT ota_update_erase_mcu_fw(void)

Parameter void None
UM-WI-046 Rev.2.6 RENESAS Page 183

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return Return 0x00 on success. See Table 36.
Description Delete MCU firmware saved in SFlash.
UINT ota_update_calcu_mcu_fw_crc(int sflash_addr, int size)
Parameter [in] sflash_addr sflash_addr CRC calculation start address.
[int] size CRC calculation size.

Return Return 0x00 on success. See Table 36.
Description Calculate CRC32 of MCU firmware stored in SFlash.
UINT ota_update_set_tls_auth_mode_nvram(int tls_auth_mode);
Parameter [in] tIs_auth_mode Set the certificate verification mode.

#define MBEDTLS_SSL_VERIFY_NONE 0

#define MBEDTLS_SSL_VERIFY_OPTIONAL 1
#define MBEDTLS_SSL_VERIFY_REQUIRED 2

Return Return 0x00 on success. See Table 36.

Description Initialize interface to transfer firmware between the
DA16200/DA16600 and MCU.

15.5.4 Example

This is an example of the DA16200 firmware update.

1. Make sure to set update type to OTA_TYPE_RTOS.
/* Setting the type to be updated */
g_ota_update_conf->update_type = OTA_TYPE_RTOS;

1. Set URL to suit the user environment.
/* URL setting example - Change it to suit your environment. */
memcpy(g_ota_update_conf->url, ota_server_url_rtos, strlen(ota_server_url_rtos));

2. If the download completes successfully, the user can set it to automatically activate RENEW.
g_ota_update_conf->auto_renew = 1;

2. By registering a callback function in download_notify, the user can be notified whether the download
succeeds or fails. Users can check whose noatification is by update_type.

g_ota_update_conf->download_notify = user_sample_da16_fw_download_notify;

3. Receive notification about the RENEW status by registering a callback function. If the notification status is
successful, the DA16200 automatically reboots after 2-3 seconds.

g_ota_update_conf->renew_notify = user_sample_da16_fw_renew_notify;

4. Finally, call the OTA update start APl. When ota_update_start_download() is called, an OTA update task is
created internally, and the creation status of the task is immediately returned. The process is not blocked.

status = ota_update_start_download(g_ota_update_conf);
3. Reboot the DA16200 when the firmware is updated.

15.5.41 Test Command

The DA16200/DA16600 SDK includes sample code and CLI commands to make it easier for users to use the
OTA update. It is possible to program directly by referring to the sample code, but the user can simply check the
network status with the OTA server by using the CLI command before that.

= Download Example Using CLI Command

[/DA16200/NET] # ota update rtos https://ota-server/NEW RTOS.img
> Server EW version: RTOS-GEN01-01-12345-000000
>> HTTP(s) Client Downloading... 100 % (800000/800000 bytes)

UM-WI-046 Rev.2.6 RENESAS Page 184
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

- OTA Update: <RTOS> Download — Success
[/DA16200/NET] # ota update renew

Table 40. OTA test command

Command

Option

Description

ota_update

[update_type] [url]

Start the firmware download.

* update_type
rtos: update_type of RTOS
cert_key: update_type of cert or key.
mcu_fw: update_type of MCU firmware.

url: Server URL where firmware exists

ex) ota_update rtos http://192.168.0.1/rtos.img

stop

Stop the firmware download.
For example, ota_update stop

renew

Change the current firmware to new firmware.
For example, ota_update renew

info

Show the firmware information.
For example, ota_update info

crc

[addr]

Check CRC of firmware.
For example, ota_update crc 0x1e2000

read_sflash

[addr] [size]

Read SFlash data.
For example, ota_update read_sflash 0x1e2000 128

copy_sflash

[dst_addr] [src_addr]
[size]

Copy from SFlash data src_add to dst_add.

For example, ota_update copy_sflash 0x3ad000
0x1e2000 4096

erase_sflash

[addr] [size]

Erase SFlash data.
For example, ota_update erase_sflash 0x3ad000 4096

set name_mcu

Set the name (version) of MCU firmware to be
downloaded to SFlash.

For example, ota_update set_name_mcu MCU_FW

get_name_mcu

Get the name (version) of MCU firmware downloaded
to SFlash.

For example, ota_update get_name_mcu

read_mcu - Read the firmware as much as the size from the
read_addr and transmit it.
For example, ota_update read_sflash 0x3ad000 4096
trans_mcu - Transmit the firmware to MCU through interface.
For example, ota_update trans_mcu
erase_mcu - Erase the firmware stored in a serial flash of the

DA16200/DA16600.
For example, ota_update erase_mcu

get_boot_index

Get the current boot index information.
For example, ota_update get_boot_index

toggle_boot_index

Toggle boot index.
For example, ota_update toggle_boot_index

15.5.4.2 Sample Code
The DA16200/DA16600 SDK provides sample code and user guide:

UM-WI-046
Oct 3, 2025

Rev.2.6

RENESAS
CFR0012

Page 185

DA16200 DA16600 FreeRTOS SDK Programmer Guide

= Sample code

The sample code includes not only the DA16200/DA16600 firmware update, but also a sample of the MCU
firmware and certificate update.

Asample\Network\OTA Update\src\ota_update sample.c

15.6 OTA Firmware Update — Extensions

The OTA firmware update supports updating not only the DA16200/DA16600 firmware but also the firmware of
the MCU chip or the certificate for TLS protocol.

15.6.1 Certificates
To update the SFlash TL.S Certificate #1 and TLS Certificate #2 areas

Download directly to SFlash TLS Certificate #1, TLS Certificate #2, or User Area and copy to SFlash TLS
Certificate #1 or TLS Certificate #2.

1. Set URL to suit the user environment.
/* URL setting example - Change it to suit your environment. */
memcpy(g_ota_update_conf->url, ota_server_url_cert, strlen(ota_server_url_cert));
2. Make sure to set update_type to OTA_TYPE_CERT_KEY.
g_ota_update conf->update_type = OTA_TYPE_CERT_KEY;

3. Set the address of SFlash to be saved when downloading. If not set, the default is
SFLASH_USER_AREA_0_START (See Table 35).

g_ota_update_conf->download_sflash_addr = SFLASH_USER_AREA 0 START;
4. Register a callback to be notified of the download status.
g_ota_update_conf->download_notify = user_sample_cert_key download_notify;

5. Finally, call the OTA update and start APl. When ota_update_start_download() is called, an OTA update
task is created internally, and the creation status of the task is immediately returned. The process is not
blocked.

status = ota_update_start_download(g_ota_update_conf);
6. Copy them to the TLS Certificate Key #0 and TLS Certificate Key #1 areas when downloaded.

status = ota_update_copy_flash(SFLASH_ROOT_CA_ADDRH1, g_ota_update_conf->download_sflash_addr,
4096);

15.6.2 MCU Firmware
To update the firmware of the MCU connected to the DA16200/DA16600 interface,

1. Set URL to suit the user environment.
/* URL setting example - Change it to suit your environment. */
memcpy(g_ota_update_conf->url, ota_server_url_mcu, strlen(ota_server_url_mcu));
2. Setupdate_type to OTA_TYPE_MCU_FW.
g_ota_update_conf->update_type = OTA_TYPE_MCU_FW,;

3. Set the address of SFlash to save when downloading. If not set, the default is
SFLASH_USER_AREA_0_START. (See Table 35)

g_ota_update_conf->download_sflash_addr = SFLASH_USER_AREA 0 START;
4. Register a callback to notify the download status.
g_ota_update_conf->download_notify = user_sample_mcu_fw_download_notify;

5. Call the OTA update start APl. When ota_update_start_download() is called, an OTA update task is created
internally, and the creation status of the task is immediately returned. The process is not blocked.

status = ota_update_start_download(g_ota_update_conf);
6. Transmit the firmware to the MCU when downloaded.

UM-WI-046 Rev.2.6 RENESAS Page 186
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

When the transmission APl is called, transmit <FW_NAME>, <FW_SIZE>, <FW_CRC> information to the

MCU first. Next, transmit the divided buffer size of the entire firmware to the MCU.

That is, transmit "MCU_FW,4096,5aa8b6c4" to the MCU first. Then, transmit 2048 bytes, the divided buffer

size of the firmware (4096 divided by 2), to the MCU in sequential order as shown in Figure 103.

NOTE

Buffer size is defined by OTA_MCU_BUF_SIZE.

ota update trans mcu fw();

DA16200 MCU
"MCU_FW,4056,5aa8b6c4”
2048 bytes
2048 bytes

15.6.2.1 CRC-32 Calculation

This is an example for calculating the CRC value required in the Transfer protocol.

Figure 103. MCU firmware

{
0x000000001L,
0x706af48fL,
Oxe0d5e9lel,
0x90bf1do1L,
Oxladad47dL,
0x646ba8c0L,
0xfa0f3d63L,
0xa2677172L,
0x35bb5a8fal,
0x45df5c75L,
0xc8d75180L,
0xb8bda50fL,
0x2f6£7c87L,
0x01db7106L,
0x9fbfedabL,
0xel10e9818L,
0x6b6b51 4L,
0x1b01a57bL,
0x8bbeb8eal,,
Oxfbd44c65L,
Ox4adfab41L,
0x346ed9fcL,
Oxaala4c5fL,
0xc90c2086L,
0x5edef90elL,
0x2eb40d81L,
0x03b6e20cL,
0x73dc1683L,

0x77073096L,
0xe963a535L,
0x97d2d988L,
0x1db71064L,
Ox6dddedebl,
Oxfdo2f97aL,
0x8d080df5L,
0x3c03e4dlL,
0x42b2986cL,
Oxdcde0dcflL,
Oxbfd06116L,
0x2802b8%eL,
0x58684cl11L,
0x98d220bcL,
0xe8b8d433L,
0x7f6a0dbbl,
Ox1lcbc6l62L,
0x8208f4clL,
Oxfcb9887cL,
0x4db26158L,
0x3dd895d7L,
0xad678846L,
0xdd0d7¢cc9L,
0x5768b525L,
0x29d9c998L,
0xb7bd5c3bL,
0x74bld29%al,
0xe3630b12L,

Oxeele6l2cL,
0x9e6495a3L,
0x09b64c2bl,,
0x6ab020£2L,
0xf4d4b5511L,
0x8a65c9ecL,
0x3b6e20c8L,
0x4b04d447L,
0xdbbbc9d6L,
Oxalbd13d591,
0x21b4f4b5L,
0x5£058808L,
Oxclé6lldabL,
Oxefd5102al,
0x7807c9%a2L,
0x086d3d2dL,
0x856530d8L,
0xf50fc457L,
0x62dd1ddfL,
0x3ab551cel,
OxaddlcdoedLl,
0xda60b8d0L,
0x5005713cL,
0x206£85b3L,
0xb0d09822L,
OxcObabcadL,
Oxead54739L,
0x94643b84L,

static const unsigned int ota crc table[] =

0x990951bal,
0x0edb8832L,
0x7ebl7cbdL,
0xf3b97148L,
0x83d385c7L,
0x14015c4fL,
0x4c69105eL,
0xd20d85fdL,,
Oxacbcf940L,
0x26d930acL,
0x56b3c423L,
0xc60cd9b2L,
0xb6662d3dL,
0x71b185891,
0x0£00£9341,
0x91646¢c97L,
0x£262004eL,
0x65b0d9c6L,
0x15da2d491,
0xa3bc0074L,
Oxd3dof4fbL,
0x44042d73L,
0x270241aal,
0xb966d409L,
Oxc7d7a8b4L,
0xedb88320L,
0x9dd277aflL,
0x0deod6a3el,

0x076dc419L,
0x79dcb8a4l,
0xe7b82d07L,
0x84bedldel,
0x136c9856L,
0x63066cd9L,
0xd56041e4L,
0xab0ab56blL,,
0x32d86ce3L,
0x51de003aL,
Oxcfba%9599L,
0xb10be9241L,
0x76dc4190L,
0x06beb51fL,
0x9609a88elL,
0xe6635c01L,
Ox6c0695edL,
0x12b7e950L,
0x8cd37c£f3L,
0xd4bb30e2L,
0x4369e96al,
0x33031de5L,
0xbelb1010L,
Oxce6led9fL,
0x5933d17L,
0x9abfb3b6L,
0x04db2615L,
Ox7a6a5aa8L,

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 187

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Oxed0ecfObL, 0x9309ff9dl, 0x0a00ae27L, 0x7d079%bll, 0xf00£9344L,
0x8708a3d2L, 0x1le01f268L, 0x6906c2fel, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6ebb06e7L, Oxfed41b76L, 0x89d32belL, 0x10da7abal,
0x67dd4accl, 0xf99df6fl, O0x8ebeeff9l, 0x17b7bed3L, 0x60008ed5L,
Oxdo6d6a3e8L, 0xaldl937el, 0x38d8c2cdl, 0x4fdff2521, 0xdlbb67flL,
Oxabbc5767L, 0x3fb506ddl, 0x48b2364bL, 0xd80d2bdali, Oxaflalb4cL,
0x36034af6L, 0x41047a60L, Oxdf60efc3L, 0xa867df55L, 0x316e8eefl,
0x46690e79L, 0xcb61b38cl, 0xbc6683lal, 0x256fd2alL, 0x5268e236L,
Oxcc0c7795L, Oxbb0b4703L, 0x22021609L, 0x5505262f1, 0xcb5ba3bbel,
0xb2bd0b28L, 0x2bb45a921, 0x5cb36a04L, 0Oxc2d7ffa7l, 0xb5d0cf31L,
0x2cd9%e8bl, 0x5bdeaeldl, 0x9%64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, Oxeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87al4l, O0x7bbl2bael, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5beldl, 0x7cdcefb7l, 0xObdbdf21L, 0x86d3d2d4l, 0xfld4e242L,
0x68ddb3f8L, 0x1fda836el, 0x8lbel6cdl, 0xf6b9265bl, 0x6fb077ell,
0x18b74777L, 0x88085ae6l, 0xff0f6a70L, 0x66063bcali, 0x11010b5cL,
0x8£659%effl, 0xf862ae69L, 0x61l6bffd3L, 0xl66ccf4dbL, 0xal00ae278L,
0xd70dd2eel,, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77doL, Oxaedlocadal., 0xd9de5adcL, 0x40df0b66L,
0x37d83bf0L, 0xa%bcae53L, Oxdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9l,
Oxbdbdf21cL, Oxcabac28al, 0x53b39330L, 0x24b4a3a6l, 0xbad03605L,
Oxcdd70693L, 0x54deb5729L, 0x23d967bflL, 0xb3667a2el, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b941, 0xb40bbe37L, 0xc30c8eall,, 0x5a05dflbL,
0x2d02ef8dL
i

/* update the CRC on the data block one byte at a time */
static unsigned int update crc (unsigned int init, const unsigned char *buf, int len)
{
unsigned int crc = init;
while (len—-)
crc = ota crc table[(crc ~ *(buf++)) & OxFF] ~ (crc >> 8);
return ~crc;

15.7 Bluetooth® LE Firmware Update OTA

After building the code of the DA14531 SDK, the following images are available to update DA14531 firmware
through OTA.

The DA14531 SDK:

[DA16600 SDK ROOT]\utility\combo\da14531_sdk_v_6.0.14.1114.zip
= The Bluetooth OTA firmware images for the DA16600 examples (after code build):
¢ |oT Sensor gateway example (central example)

[DA14531_SDK_ROOT]\projects\target_apps\ble_examples\prox_monitor_aux_ext_coex\Keil_5\out_img
\pxm_coex_ext 531 6 _0_14_1_ota.img.

¢ Rest of the DA16600 examples (peripheral examples)

[DA14531_SDK _ROOT]\projects\target_apps\ble _examples\prox_reporter_sensor_ext_coex\Keil_5\out_i
mg\pxr_sr_coex_ext_531_6_0_14_1114_1_ota.img.

15.8 OTA Test Server

OTA update complies with HTTP protocol to download firmware. Therefore, users can easily implement an OTA
server using HTTP-server. This manual does not provide a guide on configuring OTA servers. However, it
explains how to configure a simple test environment for functional testing in the application development stage
on the cloud environment.

Amazon Simple Storage Service (Amazon S3) is recommended for the OTA test server.

1. Sign up for an AWS account and log in to the console.

UM-WI-046 Rev.2.6 RENESAS Page 188
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

aws

rednvent

Products Solutions Pricing Documentation Leam Partner Network AWS Marketplace ~Customer Enablement Explore More

Amazon S3 Overview Features » Storageclasses Pricing Security Resources v FAQs

reInvent Nov. 30 - Dec. 18, 2020 | Access hundreds of sessions, hear from cloud leaders, and be the first to learn what's new with AWS Register for free >

Amazon S3

Object storage built to store and retrieve any amount of data from anywhere

Request more information

Get started with Amazon 53

Amazon S3 Intelligent-Tiering Adds Archive Access Tiers
Automatic data archival further optimizes storage costs with two new archive access tiers.

S3 |s exal sand
the #1 plc.’ror
Data Lakes

Introduction to Amazon $3 (4:31)

2.

Figure 104

In the AWS console, go to Storage and choose S3.

B

Containers @ Customer Enablement Amazon Polly
ECR AWSI1Q [4 Amazon Rekognition
Elastic Container Service Support Amazon Textract

Elastic Kubernetes Service Managed Services Amazon Transcribe

Activate for Startups Amazon Translate

2 Storage AWS DeepComposer
&y Robotics AWS DeepLens
EFS AWS RoboMaker AWS DeepRacer
FSx
S3 Glacier === Blockchain =] Analytics

Storage Gateway Amazon Managed Blockchain Athena
AWS Backup Amazon Redshift
< Satellite EMR

Step Functions

Amazon AppFlow

Amazon EventBridge
Amazon MQ

Simple Notification Service
Simple Queue Service
SWF

Managed Apache Airflow

Customer Engagement
Amazon Connect
Pinpoint

Simple Email Service

3.

Amazon S3

To create a bucket with default settings, click Create Bucket.

NEll © We're continuing to improve the 53 console to make it faster and easier to use. If you have feedback on the updated experience, choose Provide feedback.

® Manage tens to billions of objects in a few clicks with S3 Batch Operations.

Provide feedback X
_Le.mu more X

Buckets (81) [c

Buck

4. Upload the firmware to the created bucket.

UM-WI-046
Oct 3, 2025

Rev.2.6 RENESAS

CFR0012

Page 189

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Bl ©® Wwe're continuing to improve the S3 console to make it faster and easier to use. If you have feedback on the updated experlence, choose Provide feedback.
AmazonS3 > ota-buckat-doorlock
ota-bucket-doorlock

Bucket overview

Objects (7)

Obe

Q

Region azon resource name (ARN) Creation date
Asia Pacific (Seoul) ap-northeast-2 5 am:aws:s3:ota-bucket-doorlock December 6, 2018, 16:49 (UTC+09:00)
Object Properties Permissions Metrics Management Access points

Drag and drop files and folders you want to upload here, or choose Upload.

Actions

v

e I

EET [v ||

1

@

5. Check the URL (https://) of the uploaded firmware.

Amazon S5 > ota-bucket-doorlock) DA16200_FRTOS-GENDT-01 img

DA16200_FRTOS-GENO1-01- .img

Details Versions

Object overview

Owner S3URI

AWS Region

Asia Pacific (Seoul) ap-northeast-2

Last modified

53/ fota-bucket-doorlock/DA16200_FRTOS-GENO1-01- img

Amazon resource name (ARN)

am:awss3:zota-bucket-doorlock/DA16200_FRTOS-GENO1-01- img

November 30, 2020, 16:32 (UTC+09:00)

Entity tag (Etag)
size
8626 KB

6b0f472856927b35d6dacbe835f3eSe

Object actions ¥

Object URL
Type

img

https://ota-bucket-doorlock.s3.ap-northeast-2.amazonaws.com/DA16200_FRTOS-GENO1-01

Key

(3 DA16200_FRTOS-GEND1-01 img

6. Setthe URL as the OTA update API parameter value and proceed with the test.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 190

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16. Crypto Examples

16.1 Crypto API

This section describes how it is built and works. The Crypto API sample application demonstrates common use
cases of cryptographic algorithms such as AES, DES, and Hash. The DA16200 SDK includes an mbedTLS
library which is an implementation of the TLS and SSL protocols and the respective cryptographic algorithms.

1

1.

2.
3.

1

6.1.1 How to Run

6.1.2 How to Enable Cryptographic Algorithm

In the e? studio, import a project for the Crypto API sample application.
~/SDK/apps/common/examples/Crypto/Crypto API/projects/dal6200

Enable features of what cryptographic algorithms are required.

Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

The Crypto APl sample application includes 11 types of cryptographic algorithms. Each type can be enabled by
feature definition in crypto_sample.h file as follows. By default, AES cryptographic algorithms are enabled.

AES Algorithms

Cipher API

DES Algorithms
Diffie-Hellman Key Exchange
DRBG

ECDH

ECDSA

HASH and HMAC Algorithms
Key Derivation Function
Public Key Abstraction Layer
RSA PKCS#1.

// RES Algorithms
fdefine CRYPTO SAMPLE AES

// Cipher API
#undef _ CRYPTO SAMPLE CIPHER

// DES Algorithms
#undef CRYPTO SAMPLE DES

// Diffie-Hellman key exchange
#undef CRYPTO SAMPLE DHM

// DRBG
#undef CRYPTO SAMPLE DRBG

// ECDH
#undef CRYPTO SAMPLE ECDH

// ECDSA
#undef CRYPTO SAMPLE ECDSA

// Hash & HMAC Algorithms
#undef CRYPTO SAMPLE HASH

// Key Derivation Function
#undef CRYPTO SAMPLE KDF

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 191

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Public Key abstraction layer.
#undef = CRYPTO SAMPLE PK

// RSA PKCS#1
#undef CRYPTO SAMPLE RSA

16.1.3 Cryptographic Algorithms — AES

The AES algorithm sample application demonstrates common use cases of AES ciphers such as CBC, CFB,
and ECB. The sample application runs five types of cryptographic algorithms:

= AES-CBC-128, 192, and 256

= AES-CFB128-128, 192, and 256
= AES-ECB-128, 192, and 256

= AES-ECB-128, 192, and 256

= AES-CTR-128

= AES-CCM

AES—CBC—128 <dec>»: passed
AES—CBC-128 <enc>: passed
AES—CBC—192 <dec>: passed
AES—CBC-192 <enc>: passed
AES—CBC—-256 <dec>»: passed
AES—CBC-256 <enc>»: passed
AES—CFB128-128 (dec>»: passed
AES—CFB128-128 <enc>: passed
AES—CFB128-192 {(dec>»: passed
AES—CFB128-192 <{enc>»>: passed
AES—CFB128-256 <dec>»: passed
AES—CFB128—-256 {enc>»>: passed
AES-ECB-128 <{dec>: passed
AES—-ECB—-128 <enc»: passed
AES—-ECB-192 <dec>: passed
AES—-ECB-172 <enc»: passed
AES-ECB-256 <dec>: passed
AES—-ECB-256 <enc»: passed
AES—CTR-128 <dec>: passed
AES—CTR-128 <enc>»: passed
CCHMH-AES <enc>»>: passed
CCHM-AES (dec»: passed
AES—GCHM-128 <enc>»: passed
AES—GCM-192 <enc>: passed
AES—GCHM-256 <enc?»: passed
AES—GCM-128 <{dec>: passed
AES—GCHM-1792 <dec>: passed
AES—GCH-256 <dec>: passed
AES—0FB-128 <dec»: passed
AES—OFB-128 <enc>»: passed
AES—0FB-1792 <dec>»: passed
AES—OFB-192 <enc>»: passed
AES—0FB-256 <dec>»: passed
AES—0FB-256 <enc?»: passed

Figure 105. Results of crypto AES

16.1.3.1 Application Initialization

The following example describes how the user uses the AES algorithms of the mbedTLS library to encrypt and
decrypt data.

void crypto sample aes(void *param)

{

#if defined (MBEDTLS CIPHER MODE CBC)
crypto sample aes cbc();

#endif // (MBEDILS CIPHER MODE CBC)

#if defined (MBEDTLS CIPHER MODE CFB)

UM-WI-046 Rev.2.6 RENESAS Page 192
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

crypto sample aes cfb();
#endif // (MBEDTLS CIPHER MODE CFB)

crypto sample aes ecb();
#if defined (MBEDTLS CIPHER MODE CTR)
crypto sample aes ctr();

#endif // (MBEDTLS CIPHER MODE CTR)

crypto sample aes ccm();
crypto sample aes gcm() ;

#if defined (MBEDTLS_CIPHER_MODE_OFB)
crypto sample aes ofb();

#endif // (MBEDTLS CIPHER MODE OFB)

return ;

16.1.3.2 AES-CBC-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-CBC-128, 192, and 256. To explain how AES-CBC
works, see the test vector in http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip.

int crypto sample aes cbc()
{
mbedtls aes context *ctx = NULL;

// Initialize the AES context.
mbedtls aes init(ctx);

for (1 =0; 1 < 6; i++) {

u i > 1;
v i & 1;
PRINTF ("* AES-CBC-%3d (%s): ", 128 + u * 64,
(v == MBEDTLS AES DECRYPT) ? "dec" : "enc");

if (v == MBEDTLS AES DECRYPT) ({
// Set the decryption key.
mbedtls aes setkey dec(ctx, key, 128 + u * 64);

// Performs an AES-CBC decryption operation on full blocks.
for (j = 0; j < CRYPTO SAMPLE AES LOOP COUNT ; j++) {
mbedtls aes crypt cbc(ctx, v, 16, iv, buf, buf);
}
} else {
// Set the encryption key.
mbedtls aes setkey enc(ctx, key, 128 + u * 64);

// Performs an AES-CBC encryption operation on full blocks.

for (3 = 0 ; j < CRYPTO SAMPLE AES LOOP COUNT ; j++) {
unsigned char tmp[16] = {0x00,};
mbedtls aes crypt cbc(ctx, v, 16, iv, buf, buf);

memcpy (tmp, prv, 16);
memcpy (prv, buf, 16);
memcpy (buf, tmp, 16);

UM-WI-046 Rev.2.6 RENESAS Page 193
Oct 3, 2025 CFR0012

http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Clear the AES context.
mbedtls aes free(ctx);
}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypt _cbc does an AES-CBC encryption or decryption operation on full
blocks. And it does the operation defined in the mode parameter (encrypt/decrypt), on the input data buffer
defined in the input parameter. To do encryption or decryption, the function mbedtls_aes_setkey enc or
mbedtls_aes_setkey_dec should be called first. After the operation is complete, the function mbedtls_aes_free
should be called to clear the AES context.

16.1.3.3 AES-CFB128-128, 192, and 256

The DA16200 supports a cryptographic algorithm for AES-CFB128-128, 192, and 256. To explain how AES-
CFB128 works, see the test vector in http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

int crypto sample aes cfb()
{
mbedtls aes context *ctx = NULL;

// Initialize the AES context.
mbedtls aes init(ctx);

for (1 =0; 1 < 6; i++) {
u=1i>1;
v=1 &1;
PRINTF ("* AES-CFB128-%3d (%s): ", 128 + u * 64,
(v == MBEDTLS AES DECRYPT) ? "dec" : "enc");

// Set the key.
mbedtls aes setkey enc(ctx, key, 128 + u * 64);

if (v = MBEDTLS AES DECRYPT) {

// Perform an AES-CFB128 decryption operation.

mbedtls aes crypt cfbl28(ctx, v, 64, &offset, iv, buf, buf);
} else {

// Perform an AES-CFB128 encryption operation.

mbedtls aes crypt cfbl28(ctx, v, 64, &offset, iv, buf, buf);

}

// Clear the AES context.
mbedtls aes free(ctx);
}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypt cfb128 does AES-CFB128 encryption or decryption. And it does
the operation defined in the mode parameter (encrypt or decrypt) on the input data buffer defined in the input
parameter. For CFB, the user should set up the context with function mbedtls_aes_setkey_enc, regardless of
whether to encrypt or decrypt operations, that is, regardless of the mode parameter. This is because CFB mode
uses the same key schedule for encryption and decryption. After the operation is complete, the function
mbedtls_aes_free should be called to clear the AES context.

16.1.3.4 AES-ECB-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-ECB-128, 192, and 256. To explain how AES-ECB
works, see the test vector in http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip.

int crypto sample aes ecb()

{

mbedtls aes context *ctx = NULL;

UM-WI-046 Rev.2.6 RENESAS Page 194
Oct 3, 2025 CFR0012

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Initialize the AES context.
mbedtls aes init(ctx);

for (1 = 0; i < 6; i++) {
u=1i>>1;
v=1 &1;

PRINTF ("* AES-ECB-%3d (%s): ", 128 + u * 64,
(v == MBEDTLS AES DECRYPT) ? "dec" : "enc");

if (v == MBEDTLS AES DECRYPT) ({
// Set the decryption key.
mbedtls aes setkey dec(ctx, key, 128 + u * 64);

// Perform an AES single-block decryption operation.
for (3 = 0 ; j < CRYPTO SAMPLE AES LOOP COUNT ; j++) {
mbedtls aes crypt ecb(ctx, v, buf, buf);
}
} else {
// Set the encryption key.
mbedtls aes setkey enc(ctx, key, 128 + u * 64);

// Perform an AES single-block encryption operation.

for (3 = 0 ; j < CRYPTO SAMPLE AES LOOP COUNT ; j++) {
mbedtls aes crypt ecb(ctx, v, buf, buf);

}

}
// Clear the AES context.

mbedtls aes free(ctx);
}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypt_ecb does an AES single-block encryption or decryption
operation. And it does the operation defined in the mode parameter (encrypt or decrypt) on the input data buffer
defined in the input parameter. Function mbedtls_aes_init and either function mbedtls_aes_setkey_enc function
or function mbedtls_aes_setkey dec should be called before the first call to this API with the same context. After
the operation is complete, the function mbedtls_aes_free should be called to clear the AES context.

16.1.3.5 AES-CTR-128

The DA16200 supports cryptographic algorithms for AES-CTR-128. To explain how AES-CTR works, see the
Test Vectors section in http://www.fags.org/rfcs/rfc3686.html.

int crypto sample aes ctr()
{
mbedtls aes context *ctx = NULL;

// Initialize the AES context.
mbedtls aes init(ctx);

for (1 =0; 1 < 2; i++) {
v=1 &1;

PRINTF ("* AES-CTR-128 (%s): ",
(v == MBEDTLS AES DECRYPT) ? "dec" : "enc");

// Set the key.
mbedtls aes setkey enc(ctx, key, 128);

UM-WI-046 Rev.2.6 RENESAS Page 195
Oct 3, 2025 CFR0012

http://www.faqs.org/rfcs/rfc3686.html

DA16200 DA16600 FreeRTOS SDK Programmer Guide

if (v = MBEDTLS AES DECRYPT) ({
// Perform an AES-CTR decryption operation.
mbedtls aes crypt ctr(ctx, len, &offset,
nonce counter, stream block, buf, buf);

} else {
// Perform an AES-CTR encryption operation.
mbedtls aes crypt ctr(ctx, len, &offset,
nonce counter, stream block, buf, buf);

}

// Clear the AES context.
mbedtls aes free(ctx);
}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by function
mbedtls_aes_init. Function mbedtls_aes_crypto_ctr does an AES-CTR encryption or decryption operation. And it
does the operation defined in the mode parameter (encrypt/decrypt) on the input data buffer, defined in the input
parameter. Use the same key schedule for both encryption and decryption operations because of the nature of
CTR. Therefore, use the context initialized with function mbedtls_aes_setkey enc for both

MBEDTLS_AES ENCRYPT and MBEDTLS_AES DECRYPT. After the operation is complete, call function
mbedtls_aes_free to clear the AES context.

16.1.3.6 AES-CCM-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-CCM-128, 192, and 256. To explain how AES-CCM
works, see the test vector in SP800-38C Appendix C #1.

int crypto sample aes ccm()
{
mbedtls ccm context *ctx = NULL;

// Initialize the CCM context
mbedtls ccm init (ctx);

/* Initialize the CCM context set in the ctx parameter
* and sets the encryption key.

*/

ret = mbedtls ccm setkey(ctx, MBEDTLS CIPHER ID AES,

crypto sample ccm key,

8 * sizeof (crypto sample ccm key));
PRINTF ("* CCM-AES (enc): ");

// Encrypt a buffer using CCM.

ret = mbedtls ccm encrypt and tag(ctx, crypto sample ccm msg len,
crypto sample ccm iv, crypto sample ccm iv len,
crypto sample ccm ad, crypto sample ccm add len,
crypto sample ccm msg, out,
out + crypto sample ccm msg len,
crypto sample ccm tag len);

PRINTF ("* CCM-AES (dec): ");

// Perform a CCM* authenticated decryption of a buffer.

ret = mbedtls ccm auth decrypt (ctx, crypto sample ccm msg len,
crypto sample ccm iv, crypto sample ccm iv len,
crypto sample ccm ad, crypto sample ccm add len,
crypto sample ccm res, out,
crypto sample ccm res + crypto sample ccm msg len,
crypto sample ccm tag len);

UM-WI-046 Rev.2.6 RENESAS Page 196
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Clear the CCM context.
mbedtls ccm free (ctx);
}

The mbedtls_ccm_context is the CCM context-type definition for the CCM authenticated encryption mode for
block ciphers. It is initialized by function mbedtls_ccm_init. Function mbedtls_ccm_setkey initializes the CCM
context set in the ctx parameter and sets the encryption key. Function mbedtls_ccm_encrypt_and_tag encrypts a
buffer with CCM. And function mbedtls_ccm_auth_decrypt does CCM-authenticated decryption of a buffer. After
the operation is complete, call function mbed_ccm_free to release and clear the specified CCM context and

underlying cipher subcontext.

16.1.3.7 AES-GCM-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-GCM-128, 192, and 256. To explain how AES-GCM

works, see the test vector in the GCM test vectors of CSRC
(http://csre.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip).

int crypto sample aes gcm()
{
//The GCM context structure.
mbedtls gcm context *ctx = NULL;
mbedtls cipher id t cipher = MBEDTLS CIPHER ID AES;

// Initialize the specified GCM context.
mbedtls gcm init (ctx);

// RAES-GCM Encryption Test
for (J = 0; J < 3; j++) {
int key len = 128 + 64 * j;

PRINTF ("* AES-GCM-%3d (%s): ", key len, "enc");

// Associate a GCM context with a cipher algorithm and a key.
mbedtls gcm setkey(ctx, cipher, crypto sample gcm key, key len);

// Perform GCM encryption of a buffer.
ret = mbedtls gcm crypt and tag(ctx, MBEDTLS GCM ENCRYPT,
sizeof (crypto sample gcm pt),
crypto sample gcm iv, sizeof (crypto sample gcm iv),
crypto sample gcm additional,
sizeof (crypto sample gcm additional),
crypto sample gcm pt, buf,
16, tag buf);

// Clear a GCM context and the underlying cipher sub-context.
mbedtls gcm free(ctx);
}

//RES-GCM Decryption Test
for (3 = 0; J < 3; j++) {
int key len = 128 + 64 * 3j;

PRINTF ("* AES-GCM-%3d (%s): ", key len, "dec");

// Associate a GCM context with a cipher algorithm and a key.
mbedtls gcm setkey(ctx, cipher, crypto sample gcm key, key len);

// Perform GCM decryption of a buffer.
ret = mbedtls gcm crypt and tag(ctx, MBEDTLS GCM DECRYPT,
sizeof (crypto sample gcm pt),
crypto sample gcm iv, sizeof (crypto sample gcm iv),

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 197

http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip

DA16200 DA16600 FreeRTOS SDK Programmer Guide

crypto sample gcm additional,

sizeof (crypto sample gcm additional),
crypto sample gcm ct([j], buf,

16, tag buf);

// Clear a GCM context and the underlying cipher sub-context.
mbedtls gcm free (ctx);

}

The mbedtls_gcm_context is the GCM context-type definition. It is initialized by function mbedtls_gcm_init.
Function mbedtls_gcm_setkey associates a GCM context with a cipher algorithm (AES) and a key. Function
mbedtls_gcm_crypt_and_tag does GCM encryption or decryption of a buffer by the second parameter. After the
operation is complete, the function mbed_gcm_free should be called to clear a GCM context and underlying
cipher sub-context.

16.1.3.8 AES-OFB-128, 192, and 256

The DA16200 supports cryptographic algorithms for AES-OFB-128, 192, and 256. To explain how AES-OFB
works, see the test vector in the OFB test vectors of CSRC (https://csrc.nist.gov/publications/detail/sp/800-
38alfinal).

int crypto sample aes ofb()
{
mbedtls aes context *ctx = NULL;

// Initialize the AES context.
mbedtls aes init(ctx);

// Test OFB mode
for (1 =0; 1 < 6; i++) {
PRINTF ("* AES-OFB-%3d (%s): ", keybits,
(v == MBEDTLS AES DECRYPT) ? "dec" : "enc");

memcpy (1v, crypto sample aes ofb iv, 16);
memcpy (key, crypto sample aes ofb key[u], keybits / 8);

// Set the encryption key.
ret = mbedtls aes setkey enc(ctx, key, keybits);

if (v == MBEDTLS AES DECRYPT) ({
memcpy (buf, crypto sample aes ofb ctlu], 64);
expected out = crypto sample aes ofb pt;

} else {
memcpy (buf, crypto sample aes ofb pt, 64);
expected out = crypto sample aes ofb ct[u];

}

// Perform an AES-OFB (Output Feedback Mode) encryption or decryption

// operation.

ret = mbedtls aes crypt ofb(ctx, 64, &offset, iv, stream block, buf, buf);
}

// Clear the AES context.
mbedtls aes free(ctx);
}

The mbedtls_aes_context is the AES context-type definition to use the AES algorithm. It is initialized by
mbedtls_aes_init. Function mbedtls_aes_crypt_ofb does an AES-OFB (Output Feedback Mode) encryption or
decryption operation. For OFB, the user should set up the context with the function mbedtls_aes_setkey_enc,
regardless of whether the user does an encryption or decryption operation. This is because OFB mode uses the
same key schedule for encryption and decryption. The OFB operation is identical for encryption or decryption,

UM-WI-046 Rev.2.6 RENESAS Page 198
Oct 3, 2025 CFR0012

https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final

DA16200 DA16600 FreeRTOS SDK Programmer Guide

therefore no operation mode needs to be specified. After the operation is complete, call function
mbedtls_aes_free to clear the AES context.

16.1.4 Cryptographic Algorithms — DES

The DES algorithm sample application demonstrates common use cases of DES and Triple-DES ciphers. The
sample application runs two types of cryptography algorithms:

= DES-CBC-56
= DES3-CBC-112 and 168.

»»» Start STA mode...
DES —CBC— 56 <dec>:
DES —CBC— 56 <enc):
DES3-CBC—112 <dec>:

DES3-CBC-112 <encl:
DES3-CBC-168 (dec):
DES3—CBC-168 <encl:

Figure 106. Result of crypto DES

16.1.4.1 Application Initialization
The following example shows how to use DES algorithms of the mbedTLS library to encrypt and decrypt data.

void crypto sample des(void *param)

{

#if defined (MBEDTLS CIPHER MODE CBC)
crypto sample des cbc();

#endif // (MBEDTLS CIPHER MODE CBC)
return ;

}

16.1.4.2 DES-CBC-56, DES3-CBC-112, and 168
The DA16200 supports cryptographic algorithms for DES-CBC-56, DES3-CBC-112, and 168.

int crypto sample des cbc()

{
mbedtls des context *ctx = NULL;
mbedtls des3 context *ctx3 = NULL;

// Initialize the DES context.
mbedtls des init (ctx);

// Initialize the Triple-DES context.
mbedtls des3 init (ctx3);

// Test CBC

for (i1 =0; 1 < 6; i++) {
u=1i>1;
v=1 &1;

PRINTF ("* DES%c-CBC-%3d (%s): ",
(u=0)72"":'3", 56 +u * 56,
(v == MBEDTLS DES DECRYPT) ? "dec" : "enc");

switch (1) {
case 0: {
// DES key schedule (56-bit, decryption).
mbedtls des setkey dec(ctx, crypto sample des3 keys);
}

break;
case 1: {
UM-WI-046 Rev.2.6 RENESAS Page 199

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// DES key schedule (56-bit, encryption).
mbedtls des setkey enc(ctx, crypto sample des3 keys);
1
break;
case 2: {
// Triple-DES key schedule (112-bit, decryption).
mbedtls des3 setZkey dec(ctx3, crypto sample des3 keys);
}
break;
case 3: {
// Triple-DES key schedule (112-bit, encryption).
mbedtls des3 setZkey enc(ctx3, crypto sample des3 keys);
}
break;
case 4: {
// Triple-DES key schedule (168-bit, decryption).
mbedtls des3 set3key dec(ctx3, crypto sample des3 keys);
}
break;
case 5: {
// Triple-DES key schedule (168-bit, encryption).
mbedtls des3 set3key enc(ctx3, crypto sample des3 keys);
}
break;

}

if (v == MBEDTLS DES DECRYPT) ({
for (3 =0 ; j < CRYPTO SAMPLE DES LOOP COUNT ; j++) {

if (u == 0) {
// DES-CBC buffer decryption.
mbedtls des crypt cbc(ctx, v, 8, iv, buf, buf);

} else {
// 3DES-CBC buffer decryption.
mbedtls des3 crypt cbc(ctx3, v, 8, iv, buf, buf);

}
} else {
for (j = 0; j < CRYPTO SAMPLE DES LOOP COUNT; j++) {
if (u==0) {
// DES-CBC buffer encryption.
mbedtls des crypt cbc(ctx, v, 8, iv, buf, buf);
} else {
// 3DES-CBC buffer encryption.
mbedtls des3 crypt cbc(ctx3, v, 8, iv, buf, buf);

}

// Clear the DES context.
mbedtls des free(ctx);

// Clear the Triple-DES context.
mbedtls des3 free(ctx3);
}

The mbedtls_des_context is the DES context structure. It is initialized by function mbedtls_des_init. Function
mbedtls_des_crypt_cbc does DES-CBC buffer encryption and decryption. Before that, the key should be set up
by function mbedtls_des_setkey enc. After the operation is complete, call function mbed_des_free to clear the
DES context.

UM-WI-046 Rev.2.6 RENESAS Page 200
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

The mbedtls_des3_context is the Triple-DES context structure. It is initialized by function mbedtls_des3_init.
There are two key-sizes supported: 112 bits and 168 bits. Based on the key-size, the key is set up through
mbedtls_des3_set2key_enc (or mbedtls_des3_set?key dec) or mbedtls_des3_set3key_enc(or
mbedtls_des3_set3key_dec). After that, the function mbedtls_des3_crypt _cbc does Triple-DES CBC encryption
and decryption. After the operation is complete, call function mbedtls_des3_free to clear the DES3 context.

16.1.5 Cryptographic Algorithms - HASH and HMAC

The HASH and HMAC algorithms sample application demonstrates common use cases of HASH and HMAC
algorithms such as SHA-1, SHA-256, and SHA-512. The sample application runs six types of hash algorithms
and HMAC algorithms:

= SHA1, SHA-224, SHA-256, SHA-384, SHA-512, and MD5
= HMAC.

»>>» Start 5TA mode...
SHA-1: passed
SHA-224: passzed
SHA-256: passed
SHA-384: passzed
SHA-512: passzed
MD5: passed
Message—digest Information
MD5: passed
SHAl1: passed
SHAZ2Z24: passed
SHA256: passed
SHAZ84: passed
SHAS1Z: passed

Hazh with text string

*»>> MD5: passzed
Hazh with multiple text string

»>>>» MDS: passzed
HMAC with hex data

»>>> MDS: passzed

»>»» SHAL: passed

>>> SHAZ224: passed

>»» SHA256: passed

>>> SHAJE4: passed

>>» SHAS12: passed

Figure 107. Result of crypto hash #1

= HMAC with multiple hex data
>>> MD5: passed

*>> SHAl1: passed

>>> SHA224: passed

»>> SHA256: passed

>>> SHAJB4: passed

»>> SHAS12: passed

¢ Hazsh with hex data

*>> SHAl1: passed

>>> SHA224: passed

»>> SHA256: passed

>>> SHAJB4: passed

»>> SHAS12: passed

¢ Hazh with multiple hex data

*>> SHAl1: passed

>>> SHA224: passed
»>> SHA256: passed
>>> SHAJB4: passed
»>> SHAS12: passed

Figure 108. Result of crypto hash #2

16.1.5.1 Application Initialization
This example describes how the user can use hash and HMAC algorithms of the mbedTLs library.

void crypto sample hash (void *param)

{

crypto sample hash shal();

UM-WI-046 Rev.2.6 RENESAS Page 201
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

crypto sample hash sha224();

crypto sample hash sha256();

crypto sample hash sha384();

crypto sample hash sha512();
#if defined (MBEDTLS MD5 C)

crypto sample hash md5();
#endif // (MBEDTLS MD5 C)

crypto sample hash md wrapper () ;

return ;

16.1.5.2 SHA-1 Hash

The DA16200 supports cryptographic algorithms for the SHA-1 hash. To explain how the SHA-1 hash works,
see the test vector in FIPS-180-1.

int crypto sample hash shal ()
{
mbedtls shal context *ctx = NULL;

PRINTF ("* SHA-1: ");

// Initialize a SHA-1 context.
mbedtls shal init(ctx);

// Start a SHA-1 checksum calculation.
mbedtls shal starts ret (ctx);

// Feed an input buffer into an ongoing SHA-1 checksum calculation.
mbedtls shal update ret (ctx, crypto sample hash shal buf,
crypto sample hash shal buflen);

// Finish the SHA-1 operation, and writes the result to the output buffer.
mbedtls shal finish(ctx, shalsum);

// Clear a SHA-1 context.
mbedtls shal free(ctx);

The mbedtls_sha1_context is the SHA-1 context structure. Function mbedtls _sha1_init is called to initialize the
context. To calculate SHA-1 Hash, three functions should be called. The details can be found in Table 41.

Table 41. APIs for SHA-1 hash

Item Description
int mbedtls_sha1l_starts_ret(mbedtls_sha1_context *ctx)
Prototype int mbedtls_sha1_starts_ret(mbedtls_sha1_context *ctx)
Parameter ctx: The SHA-1 context to initialize. This must be initialized.
Return 0 on success. A negative error code on failure.
Description This function starts a SHA-1 checksum calculation.
UM-WI-046 Rev.2.6 RENESAS Page 202

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

int mbedtls_sha1_update_ret(mbedtls_sha1_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_sha1_update_ret(mbedtls_sha1_context *ctx, const unsigned char *input, size_t
ilen)
Parameter ctx: The SHA-1 context. This must be initialized and have a hash operation started.

input: The buffer holding the input data. This must be a readable buffer of length ilen bytes.
ilen: The length of the input data input in bytes.

Return 0 on success. A negative error code on failure.

Description This function feeds an input buffer into an ongoing SHA-1 checksum calculation.

int mbedtls_sha1_finish_ret(mbedtls_sha1_context *ctx, unsigned char output[20])

Prototype int mbedtls_sha1_finish_ret(mbedtls_sha1_context *ctx, unsigned char output[20])

Parameter ctx: The SHA-1 context to use. This must be initialized and have a hash operation started.
output: The SHA-1 checksum result. This must be a writable buffer of length 20 bytes.

Return 0 on success. A negative error code on failure.

Description This function finishes the SHA-1 operation and writes the result to the output buffer.

16.1.5.3 SHA-224 Hash

The DA16200 supports cryptographic algorithms for the SHA-224 hash. To explain how SHA-224 hash works,
see the test vector in FIPS-180-2.

int crypto sample hash sha224 ()

{
mbedtls sha256 context *ctx = NULL;

PRINTF ("* SHA-224: ");

// Initialize the SHA-224 context.
mbedtls sha256 init (ctx);

// Start a SHA-224 checksum calculation.
mbedtls sha256 starts ret(ctx, 1);

// Feeds an input buffer into an ongoing SHA-224 checksum calculation.
mbedtls sha256 update ret(ctx, crypto sample hash sha224 buf,
crypto sample hash sha224 buflen);

// Finishes the SHA-224 operation, and writes the result to the output buffer.
mbedtls sha256 finish ret(ctx, sha224sum);

//Clear s SHA-224 context.
mbedtls sha256 free(ctx);
}

The mbedtls_sha256_context is the SHA-256 context structure. The mbedTLs library supports SHA-224 and
SHA-256 using the context. This sample describes SHA-224. Call function mbedtls_sha256 _init to initialize the
context. To calculate SHA-224 Hash, three functions should be called. The details can be found in Table 42.

Table 42. APIs for SHA-224 and SHA-256 hash

Item Description
int mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int is224)
Prototype int mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int is224)
UM-WI-046 Rev.2.6 RENESAS Page 203

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter ctx: The context to use. This must be initialized.
is224: This determines which function to use. This must be either 0 for SHA-256, or 1 for SHA-
224,

Return 0 on success. A negative error code on failure.

Description This function starts a SHA-224 or SHA-256 checksum calculation.

int mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const unsigned char *input,
size_tilen)

Parameter ctx: The SHA-256 context. This must be initialized and have a hash operation started.

input: The buffer holding the input data. This must be a readable buffer of length ilen bytes.
ilen: The length of the input data input in bytes.

Return 0 on success. A negative error code on failure.

Description This function feeds an input buffer into an ongoing SHA-256 checksum calculation.

int mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, unsigned char output[32])

Prototype int mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, unsigned char output[32])

Parameter ctx: The SHA-256 context to use. This must be initialized and have a hash operation started.
output: The SHA-224 or SHA-256 checksum result. This must be a writable buffer of length 32
bytes.

Return 0 on success. A negative error code on failure.

Description This function finishes the SHA-256 operation and writes the result to the output buffer.

16.1.5.4 SHA-256 Hash

The DA16200 supports cryptographic algorithms for the SHA-256 hash. To explain how the SHA-256 hash
works, see the test vector in FIPS-180-2.

int crypto sample hash sha256 ()

{
mbedtls sha256 context *ctx = NULL;

PRINTF ("* SHA-256: ");

// Initialize the SHA-256 context.
mbedtls sha256 init(ctx);

// Start a SHA-256 checksum calculation.
mbedtls sha256 starts ret(ctx, 0);

// Feeds an input buffer into an ongoing SHA-256 checksum calculation.
mbedtls sha256 update ret(ctx, rypto sample hash sha256 buf,
crypto sample hash sha256 buflen);

// Finishe the SHA-256 operation, and writes the result to the output buffer.
mbedtls sha256 finish ret(ctx, sha256sum);

//Clear s SHA-256 context.
mbedtls sha256 free(ctx);
}

This example is the same as the Cryptographic Algorithm for the SHA-224 code (see Section 16.1.5.3). When
starting the SHA-256 checksum calculation, the second parameter should be set to 0 for SHA-256.

UM-WI-046 Rev.2.6 RENESAS Page 204
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16.1.5.5 SHA-384 Ha
The DA16200 supports

sh
cryptographic algorithms for the SHA-384 hash. To explain how the SHA-384 hash

works, see the test vector in FIPS-180-2.

{

PRINTF ("* SHA-3

// Start a SHA-

// Finishe the

// Clear a SHA-

}

mbedtls sha512

mbedtls sha512 .

mbedtls sha512

mbedtls sha512

int crypto sample hash sha384 ()

context *ctx = NULL;

84:

")

// Initialize a SHA-384 context.
mbedtls sha512

init (ctx);

384 checksum calculation.
starts ret(ctx, 1);

// Feed an input buffer into an ongoing SHA-384 checksum calculation.
mbedtls sha512 update(ctx, crypto sample hash sha384 buf,

crypto sample hash sha384 buflen);

SHA-384 operation, and writes the result to the output buffer.
finish(ctx, sha384sum);

384 context.
free (ctx) ;

The mbedtls_sha512 co

ntext is the SHA-512 context structure. mbedTLs library supports SHA-384 and SHA-512

using the context. This example describes SHA-384. Function mbedtls_sha512_init is called to initialize the
context. To calculate SHA-384 Hash, three functions should be called. The details can be found in Table 43.

Table 43. APIs for SHA-3

84 and SHA-512 hash

Item

Description

int mbedtls_sha512_starts_ret(mbedtls_sha512_context *ctx, int is384)

Prototype int mbedtls_sha512_starts_ret(mbedtls_sha512_context *ctx, int is384)

Parameter ctx: The context to use. This must be initialized.
is384: This determines which function to use. This must be either 0 for SHA-512, or 1 for SHA-
384.

Return 0 on success. A negative error code on failure.

Description This function starts a SHA-384 or SHA-512 checksum calculation.

int mbedtls_sha512_up

date_ret(mbedtls_sha512_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_sha512_update_ret(mbedtls_sha512_context *ctx, const unsigned char *input,
size_tilen)

Parameter ctx: The SHA-512 context. This must be initialized and have a hash operation started.
input: The buffer holding the input data. This must be a readable buffer of length ilen bytes.
ilen: The length of the input data input in bytes.

Return 0 on success. A negative error code on failure.

Description This function feeds an input buffer into an ongoing SHA-512 checksum calculation.

int mbedtls_sha512_fin

ish_ret(mbedtls_sha512_context *ctx, unsigned char output[64])

Prototype

int mbedtls_sha512_finish_ret(mbedtls_sha512_context *ctx, unsigned char output[64])

Parameter

ctx: The SHA-512 context to use. This must be initialized and start a hash operation.

output: The SHA-384 or SHA-512 checksum result. This must be a writable buffer of length 64
bytes.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 205

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return 0 on success. A negative error code on failure.
Description This function finishes the SHA-512 operation and writes the result to the output buffer.

16.1.5.6 SHA-512 Hash

The DA16200 supports cryptographic algorithms for the SHA-512 hash. To explain how the SHA-512 hash
works, see the test vector in FIPS-180-2.

int crypto_sample_hash_sha512()
{
mbedtls_sha512_context *ctx = NULL;
PRINTF("™ SHA-512: ");
I/ Initialize a SHA-512 context.
mbedtls_sha512_init(ctx);
// Start a SHA-512 checksum calculation.
mbedtls_sha512_starts_ret(ctx, 0);
// Feed an input buffer into an ongoing SHA-512 checksum calculation.
mbedtls_sha512_update_ret(ctx, crypto_sample _hash_sha512_buf,
crypto_sample_hash_sha512_buflen);
// Finishe the SHA-512 operation, and writes the result to the output buffer.
mbedtls_sha512_finish(ctx, sha512sum);
// Clear a SHA-512 context.
mbedtls_sha512_free(ctx);
}

This sample is the same as Cryptographic Algorithm for the SHA-384 code (see Section 16.1.5.5). When the
SHA-512 checksum calculation is started, the second parameter should be set to 0 for SHA-512.
16.1.5.7 MD5 Hash

The DA16200 supports cryptographic algorithms for an MD5 hash. To explain how the MD5 hash works, see the
test vector in RFC1321.

int crypto sample hash md5 ()
{
PRINTE ("* MD5: ");

// Output = MD5 (input buffer)
mbedtls md5 ret (crypto sample hash md5 buf,

crypto sample hash md5 buflen, mdSsum);
return ret;

}

In this example, the MD5 hash function is calculated by function mbedtls_md5_ret. The details can be found in
Table 44.

UM-WI-046 Rev.2.6 RENESAS Page 206
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 44. APIs for MD5 hash

Item

Description

int mbedtls_md5_ret(const unsigned char *input, size_t ilen, unsigned char output[16])

Prototype int mbedtls_md5_ret(const unsigned char *input, size_t ilen, unsigned char output[16])
Parameter Input: buffer holding the data
llen: length of the input data
Output: MD5 checksum result
Return 0 if successful.
Description Output = MD5 (input buffer)

16.1.5.8 HASH and HMAC with Generic Message-Digest Wrapper

The mbedTLs library provides the generic message-digest wrapper to calculate HASH and HMAC. The APIs and
sample codes show how HASH and HMAC are calculated with the generic message-digest wrapper functions.
The API details are as follows:

Table 45. APIs for generic message digest wrapper

Item

Description

const mbedtls_md_info_t* mbedtls_md_info_from_type(mbedtls_md_type_t md_type)

Prototype const mbedtls_md_info_t* mbedtls_md_info_from_type(mbedtls_md_type_t md_type) c
Parameter md_type: The type of digest to search for.
Return The message-digest information associated with md_type.
NULL if the associated message-digest information is not found.
Description This function returns the message-digest information associated with the given digest type.

const mbedtls_md_info_!

t* mbedtls_md_info_from_string(const char* md_name)

Prototype const mbedtls_md_info_t* mbedtls_md_info_from_string(const char* md_name)
(See Section 16.1.5.8.1)
Parameter md_name: The name of the digest to search for.
Return The message-digest information is associated with md_name.
NULL if the associated message-digest information is not found.
Description This function returns the message-digest information associated with the given digest name

mbedtls_md_type_t mbedtls_md_get_type(const mbedtls_md_info_t* md_info)

Prototype const mbedtls_md_info_t* mbedtls_md_info_from_string(const char* md_name)
(See Section 16.1.5.8.1)
Parameter md_info: The information structure of the message-digest algorithm to use.
Return The type of the message digest.
Description This function extracts the message-digest type from the message-digest information structure.

unsigned char mbedtls_|

md_get_size(const mbedtls_md_info_t* md_info)

Prototype unsigned char mbedtls_md_get_size(const mbedtls_md_info_t* md_info)
(See Section 16.1.5.8.1)
Parameter md_info: The information structure of the message-digest algorithm to use.
Return The size of the message-digest output in bytes.
Description This function extracts the message-digest size from the message-digest information structure.

const char* mbedtls_m

d_get_name(const mbedtls_md_info_t* md_info)

Prototype

const char* mbedtls_md_get_name(const mbedtls_md_info_t* md_info)
(See Section 16.1.5.8.1)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 207

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter md_info: The information structure of the message-digest algorithm to use.

Return The name of the message digest.

Description This function extracts the message-digest name from the message-digest information structure.

const int* mbedtls_md

list(void)

Prototype const int* mbedtls_md_list(void) (See Section 16.1.5.8.1)
Parameter None
Return A statically allocated array of digests. Each element in the returned list is an integer belonging
to the message-digest enumeration mbedtls_md_type_t. The last entry is 0.
Description This function returns the list of digests supported by the generic digest module.
int mbedtls_md(const mbedtls_md_info_t* md_info, const unsigned char* input, size_t ilen, unsigned char*
output)
Prototype int mbedtls_md(const mbedtls_md_info_t* md_info, const unsigned char* input, size_t ilen,
unsigned char* output) (See Section 16.1.5.8.2)
Parameter md_info: The information structure of the message-digest algorithm to use.
input: The buffer holding the data.
ilen: The length of the input data.
output: The generic message-digest checksum result.
Return 0 on success.
MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.
Description This function calculates the message-digest of a buffer, with respect to a configurable message-

digest algorithm in a single call. The result is calculated as Output = message_digest (input
buffer).

void mbedtls_md_init(mbedtls_md_context_t* ctx)

Prototype void mbedtls_md_init(mbedtls_md_context_t* ctx) (See Section 16.1.5.8.3)

Parameter ctx: The context to initialize.

Return None

Description This function initializes a message-digest context without binding to a particular message-digest

algorithm.

int mbedtls_md_setup(mbedtls_md_context_t* ctx, const mbedtls_md_info_t * md_info, int hmac)

Prototype int mbedtls_md_setup(mbedtls_md_context_t* ctx, const mbedtls_md_info_t * md_info, int
hmac) (See Section 16.1.5.8.3)

Parameter ctx: The context to set up.
md_info: The information structure of the message-digest algorithm to use.
hmac: Defines if HMAC is used. 0: HMAC is not used (saves some memory), or non-zero:
HMAC is used with this context.

Return 0 on success.
MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.
MBEDTLS_ERR_MD_ALLOC_FAILED on memory-allocation failure.

Description This function selects the message digest algorithm to use and allocates internal structures.

int mbedtls_md_update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t ilen)

Prototype int mbedtls_md_update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t ilen)
(See Section 16.1.5.8.3)
Parameter ctx: The generic message-digest context.

input: The buffer holding the input data.
ilen: The length of the input data.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 208

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return 0 on success.

MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.
Description This function feeds an input buffer into an ongoing message-digest computation.

int mbedtls_md_finish(mbedtls_md_context_t* ctx, unsigned char* output)

Prototype int mbedtls_md_finish(mbedtls_md_context_t* ctx, unsigned char* output)
(See Section 16.1.5.8.3)
Parameter ctx: The generic message-digest context.
output: The buffer for the generic message-digest checksum result.
Return 0 on success.
MBEDTLS_ERR_MD_BAD_INPUT_DATA on parameter-verification failure.
Description This function finishes the digest operation and writes the result to the output buffer.

void mbedtls_md_free(mbedtls_md_context_t* ctx)

Prototype void mbedtls_md_free(mbedtls_md_context_t* ctx) (See Section 16.1.5.8.3)

Parameter ctx: The generic message-digest context.

Return None

Description This function clears the internal structure of ctx and frees any embedded internal structure but

does not free ctx itself.

int mbedtls_md_hmac(const mbedtls_md_info_t* md_info, const unsigned char* key, size_t keylen, const

unsigned char* input, s

ize_t ilen, unsigned char* output)

Prototype int mbedtls_md_hmac(const mbedtls_md_info_t* md_info, const unsigned char* key, size_t
keylen, const unsigned char* input, size_t ilen, unsigned char* output) (See Section 16.1.5.8.4)
Parameter md_info: The information structure of the message-digest algorithm to use.
key: The HMAC secret key.
keylen: The length of the HMAC secret key in bytes.
input: The buffer holding the input data.
ilen: The length of the input data.
output: The generic HMAC result.
Return 0 on success.
MBEDTLS _ERR_MD_BAD_INPUT_DATA on parameter-verification failure.
Description This function calculates the full generic HMAC on the input buffer with the provided key. The

function allocates the context, does the calculation, and frees the context. The HMAC result is
calculated as output = generic HMAC (hmac key, input buffer).

int mbedtls_md_hmac_

starts(mbedtls_md_context_t* ctx, const unsigned char* key, size_t keylen)

Prototype int mbedtls_md_hmac_starts(mbedtls_md_context_t* ctx, const unsigned char* key, size_t
keylen) (See Section 16.1.5.8.4)
Parameter ctx: The message digest context containing an embedded HMAC context.
key: The HMAC secret key.
keylen: The length of the HMAC key in bytes.
Return 0 on success.
MBEDTLS _ERR_MD_BAD_INPUT_DATA on parameter-verification failure.
Description This function sets the HMAC key and prepares to authenticate a new message

int mbedtls_md_hmac

update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t ilen)

Prototype

int mbedtls_md_hmac_update(mbedtls_md_context_t* ctx, const unsigned char* input, size_t

ilen) (See Section 16.1.5.8.4)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 209

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Parameter ctx: The message digest context containing an embedded HMAC context.
input: The buffer holding the input data.
ilen: The length of the input data.
Return 0 on success.
MBEDTLS ERR_MD BAD_INPUT_DATA on parameter-verification failure.
Description This function feeds an input buffer into an ongoing HMAC computation.

int mbedtls_md_hmac_finish(mbedtls_md_context_t* ctx, unsigned char* output)

Prototype int mbedtls_md_hmac_finish(mbedtls_md_context_t* ctx, unsigned char* output)
(See Section 16.1.5.8.4)
Parameter ctx: The message digest context containing an embedded HMAC context.
output: The generic HMAC checksum result.
Return 0 on success.
MBEDTLS ERR_MD BAD_INPUT_DATA on parameter-verification failure.
Description This function finishes the HMAC operation and writes the result to the output buffer.

16.1.5.8.1 Supported Message-digest Functions

The user needs to check which message-digests are supported by the mbedTLs library. The sample code below
shows how to get and check message-digest information.

{

const mbedtls md info t *md info = NULL;
const int *md type ptr = NULL;

// Get the message-digest information associated with the given digest type.

md info = mbedtls md info from type (md type);

if (!md info) {
PRINTF (" [%$s] Unknown Hash Type (%d)\r\n", func , md type);
goto cleanup;

// Get the message-digest information associated with the given digest name.
if (md info != mbedtls md info from string(md name)) {

PRINTF (" [%$s] Unknown Hash Name (%s)\r\n", md name);

goto cleanup;

// Extract the message-digest type from the message-digest information
// structure.
if (mbedtls md get type(md info) != (mbedtls md type t)md type) {
PRINTF (" [$s] Not matched Hash Type\r\n", func);
goto cleanup;

// Extract the message-digest size from the message-digest information
// structure.
if (mbedtls md get size(md info) != (unsigned char)md size) {
PRINTF (" [%$s] Not matched Hash Size\r\n", func);
goto cleanup;

// Extract the message-digest name from the message-digest information
// structure.

int crypto sample hash md wrapper info(char *md name, mbedtls md type t md type, int md size)

if (strcmp (mbedtls md get name (md info), md name) != 0) {
UM-WI-046 Rev.2.6 RENESAS Page 210
Oct 3, 2025 CFRO0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

PRINTF (" [%$s] Not matched Hash Name\r\n", func);
goto cleanup;

}

// Find the list of digests supported by the generic digest module.

for (md type ptr = mbedtls md list() ; *md type ptr != 0 ; md type ptr++) {
if (*md type ptr == md type) {
found = 1;
break;

}

return ret;

16.1.5.8.2 How to Calculate HASH Using Single Text String

The following sample code describes how a HASH function is calculated using the generic message-digest. In
this sample, the text_src_string is used to calculate the message-digest algorithm, and the expected output is
hex_hash_string.

int crypto sample hash md wrapper text(char *md name, char *text src string, char
*hex hash string)
{

const mbedtls md info t *md info = NULL;

// Get the message-digest information associated with the given digest name.
md info = mbedtls md info from string(md name);

/* Calculates the message-digest of a buffer,
* with respect to a configurable message-digest algorithm in a single call.
*/
ret = mbedtls md(md info,
(const unsigned char *)text src string,
strlen (text src string),
output) ;

16.1.5.8.3 How to Calculate HASH Using Multiple Text Strings
The sample code is similar to Section 16.1.5.8.2 and the only difference is that multiple text strings are used.

int crypto sample hash md wrapper text multi(char *md name, char *text src string, char
*hex hash string)
{

const mbedtls md info t *md info = NULL;

mbedtls md context t *ctx = NULL; //The generic message-digest context.

/* Initialize a message-digest context without binding it
* to a particular message-digest algorithm.
*/

mbedtls md init (ctx);

// Get the message-digest information associated with the given digest name.
md info = mbedtls md info from string(md name);

// Select the message digest algorithm to use, and allocates internal
// structures.
ret = mbedtls md setup(ctx, md info, 0);

// Start a message-digest computation.
ret = mbedtls md starts(ctx);

UM-WI-046 Rev.2.6 RENESAS Page 211
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Feed an input buffer into an ongoing message-digest computation.
ret = mbedtls md update (ctx, (const unsigned char *)text src string, halfway);

// Feed an input buffer into an ongoing message-digest computation.
ret = mbedtls md update (ctx,
(const unsigned char *) (text src string + halfway),
len - halfway);
// Finish the digest operation, and writes the result to the output buffer.
ret = mbedtls md finish(ctx, output);

/* Clear the internal structure of ctx and free any embedded internal
structure,
* but does not free ctx itself.
*/
mbedtls md free (ctx);

16.1.5.8.4 How to Calculate HMAC and HASH

= How to calculate HMAC using single hex data

The sample code below shows how the HMAC function is calculated using the generic message-digest wrapper.
The hex_key_string is the HMAC secret key, the hex_src_string is input data, and the hex_hash_string is
expected output. The mbedtls_md_hmac is for a single hex data.

{

}

int crypto sample hash md wrapper hmac(char *md name, int trunc size, char *hex key string,
char *hex src string, char *hex hash string)

const mbedtls md info t *md info = NULL;

// Get the message-digest information associated with the given digest name.
md info = mbedtls md info from string(md name);

// Calculate the full generic HMAC on the input buffer with the provided key.
ret = mbedtls md hmac (md info, key str, key len, src str, src len, output);

= How to calculate HMAC using multiple hex data

The sample code is similar to How to calculate HMAC using single hex data and the only difference is that
multiple hex data are used for input value.

{

int crypto sample hash md wrapper hmac multi(char *md name, int trunc size, char
*hex key string, char *hex src string, char *hex hash string)

const mbedtls md info t *md info = NULL;
mbedtls md context t *ctx = NULL;

/* Initialize a message-digest context without binding it
* to a particular message-digest algorithm.
*/

mbedtls md init(ctx);

md info = mbedtls md info from string(md name);
// Select the message digest algorithm to use, and allocate internal
// structures.

ret = mbedtls md setup(ctx, md info, 1);

// Start a message-digest computation.
ret = mbedtls md hmac starts(ctx, key str, key len);

UM-WI-046 Rev.2.6 RENESAS Page 212
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Feed an input buffer into an ongoing message-digest computation.
ret = mbedtls md hmac update (ctx, src str, halfway);

// Feed an input buffer into an ongoing message-digest computation.
ret = mbedtls md hmac update (ctx, src str + halfway, src len - halfway);

// Finish the digest operation, and writes the result to the output buffer.
ret = mbedtls md hmac finish(ctx, output);

/* Clear the internal structure of ctx and free any embedded internal
structure,
* but does not free ctx itself.
*/
mbedtls md free (ctx);
}

= How to calculate HASH using a single hex data

The sample code below describes how the HASH function is calculated with the generic message-digest
function. The code is similar to Section 16.1.5.8.2 and the only difference is that a single hex data is used for
input value.

int crypto sample hash md wrapper hex(char *md name, char *hex src string, char
*hex hash string)
{

const mbedtls md info t *md info = NULL;

// Get the message-digest information associated with the given digest name.
md info = mbedtls md info from string(md name);

/* Calculates the message-digest of a buffer,

* with respect to a configurable message-digest algorithm in a single call.
*/

ret = mbedtls md(md info, src str, src len, output);

}

= How to calculate HASH using multiple hex data

The sample code below describes how the HASH function is calculated with the generic message-digest
function. The code is similar to Section 16.1.5.8.3 and the only difference is that multiple hex data are used for
input value.

int crypto sample hash md wrapper hex multi(char *md name, char *hex src string, char
*hex hash string)
{

const mbedtls md info t *md info = NULL;

mbedtls md context t *ctx = NULL;

/* Initialize a message-digest context without binding it
* to a particular message-digest algorithm.
*/

mbedtls md init(ctx);

// Get the message-digest information associated with the given digest name.
md info = mbedtls md info from string(md name);

// Select the message digest algorithm to use, and allocate internal
// structures.
ret = mbedtls md setup(ctx, md info, 0);

// Start a message-digest computation.
ret = mbedtls md starts(ctx);

UM-WI-046 Rev.2.6 RENESAS Page 213
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Feed an input buffer into an ongoing message-digest computation.
ret = mbedtls md update (ctx, src str, halfway);

// Feed an input buffer into an ongoing message-digest computation.
ret = mbedtls md update (ctx, src str + halfway, src len - halfway);

// Finish the digest operation, and writes the result to the output buffer.
ret = mbedtls md finish(ctx, output);

/* Clear the internal structure of ctx and free any embedded internal
structure,
* but does not free ctx itself.

*/

mbedtls md free (ctx);

16.1.6 Cryptographic Algorithms — DRBG

The random generator sample application demonstrates common use cases of CTR-DRBG (Counter mode
Deterministic Random Byte Generator) and HMAC-DRBG (HMAC Deterministic Random Byte Generator). The
sample application explains how to use the DRBG function with CTR and HMAC.

= CTR_DRBG

= HMAC_DRBG.

CTR_DRBG ¢PR = TRUE}»: passzed
CTR_DRBG <PR = FALSE}: passed

HMAC_DRBG <FR True> :© passed
HMAC_DRBG <FPR Falze> :© passed

Figure 109. Result of crypto DRBG

16.1.6.1 Application Initialization

This example describes how the user uses CTR DRBG and HMAC DRBG of the mbedTLs library. CTR_DRBG is
a standardized way of building a PRNG from a block-cipher in counter mode operation, as defined in NIST SP
800-90A: Recommendation for Random Number Generation Using Deterministic Random Bit Generators. To
implement mbedTLS of CTR_DRBG, use AES-256 (default) or AES-128 as the underlying block cipher.
HMAC_DRBG is based on a Hash-based message authentication code.

void crypto sample drbg(void *param)
{ crypto sample ctr drbg pr onf();
crypto sample ctr drbg pr off();
crypto sample hmac drbg pr on();

crypto sample hmac drbg pr off();

return ;

16.1.6.2 CTR_DRBG with Prediction Resistance
This example describes how to use CTR_DRBG with prediction resistance.

int crypto sample ctr drbg pr on()
{
moedtls ctr drbg context *ctx = NULL; //The CTR DRBG context structure.

// Based on a NIST CTR DRBG test vector (PR = True)

UM-WI-046 Rev.2.6 RENESAS Page 214
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

PRINTF ("* CTR DRBG (PR = TRUE): ");

// Initialize the CTR DRBG context.
mbedtls ctr drbg init(ctx);

ret = mbedtls ctr drbg seed entropy len(ctx, drbg test entropy,

(void *)crypto sample ctr drbg entropy src pr,
crypto sample ctr brdg nonce pers pr,
le,
32);

// Turn prediction resistance on
mbedtls ctr drbg set prediction resistance (ctx, MBEDTLS CTR DRBG PR ON);

// Generate random data using CTR DRBG.
ret = mbedtls ctr drbg random(ctx, buf, MBEDTLS CTR DRBG BLOCKSIZE) ;

// Generate random data using CTR DRBG.
ret = mbedtls ctr drbg random(ctx, buf, MBEDTLS CTR DRBG BLOCKSIZE) ;

// Clear CTR CRBG context data.
mbedtls ctr drbg free(ctx);

The API details are as follows:

Table 46. APIs for CTR DRBG

Item

Description

void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context* ctx)

Prototype int mbedtls_md_hmac_starts(mbedtls_md_context_t* ctx, const unsigned char* key, size_t
keylen)

Parameter ctx: The CTR_DRBG context to initialize.

Return None

Description This function initializes the CTR_DRBG context and prepares it for mbedtls_ctr_drbg_seed() or

mbedtls_ctr_drbg_free().

void mbedtls_ctr_drbg

_set_prediction_resistance(mbedtls_ctr_drbg_context* ctx, int resistance)

Prototype void mbedtls_ctr_drbg_set prediction_resistance(mbedtls_ctr_drbg_
context* ctx, int resistance)
Parameter resistance: MBEDTLS CTR_DRBG_PR_ON or MBEDTLS CTR_DRBG_PR_OFF
Return None
Description This function turns prediction resistance on or off.

The default value is off.

int mbedtls_ctr_drbg_random(void* p_rng, unsigned char *output, size_t output_len)

Prototype int mbedtls_ctr_drbg_random(void* p_rng, unsigned char *output, size_t output_len)

Parameter p_rng: The CTR_DRBG context. This must be a pointer to a mbedtls_ctr_drbg_context structure
output: The buffer to fill.
output_len: The length of the buffer.

Return 0 on success.
MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED or
MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG on failure.

Description This function uses CTR_DRBG to generate random data.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 215

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context* ctx)

Prototype void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context* ctx)
Parameter ctx: The CTR_DRBG context to clear.

Return None

Description This function clears CTR_CRBG context data.

16.1.6.3 CTR_DRBG Without Prediction Resistance
This example describes how to use CTR_DRBG without prediction resistance.

{

int crypto sample ctr drbg pr off()

mbedtls ctr drbg context ctx; //The CTR DRBG context structure.

// Based on a NIST CIR DRBG test vector (PR = FALSE)
PRINTF ("* CTR DRBG (PR = FALSE): ");

// Initialize the CTR DRBG context.
mbedtls ctr drbg init (&ctx);

ret = mbedtls ctr drbg seed entropy len(&ctx, drbg test entropy,
(void *) crypto sample ctr drbg entropy src nopr,
crypto sample ctr brdg nonce pers nopr, 16, 32);

// Generate random data using CTR DRBG.
ret = mbedtls ctr drbg random(&ctx, buf, MBEDTLS CTR DRBG BLOCKSIZE) ;

// Reseed the CTR DRBG context, that is extracts data from the entropy source.
ret = mbedtls ctr drbg reseed(&ctx, NULL, O);

// Generate random data using CTR DRBG.
ret = mbedtls ctr drbg random(&ctx, buf, MBEDTLS CTR DRBG BLOCKSIZE) ;

// Clear CTR CRBG context data.
mbedtls ctr drbg free (&ctx);

16.1.6.4 HMAC_DRBG with Prediction Resistance
This example describes how to use HMAC_DRBG with prediction resistance.

{

int crypto sample hmac drbg pr on()

mbedtls hmac drbg context ctx;
const mbedtls md info t *md info = mbedtls md info from type (MBEDTLS MD SHAL);

PRINTF ("* HMAC DRBG (PR = True) : ");

// Initialize HMAC DRBG context.
mbedtls hmac drbg init (&ctx);

// HMAC DRBG initial seeding Seed and setup entropy source for future reseeds.
ret = mbedtls hmac drbg seed(&ctx, md info,
drbg test entropy,
(void *)crypto sample hmac drbg entropy src pr,
NULL, 0);

// Enable prediction resistance.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 216

DA16200 DA16600 FreeRTOS SDK Programmer Guide

mbedtls hmac drbg set prediction resistance (&ctx, MBEDILS HMAC DRBG PR ON);

// Generate random.
ret = mbedtls hmac drbg random(&ctx, buf, CRYPTO SAMPLE HMAC DRBG OUTPUT IEN);

// Generate random.
ret = mbedtls hmac drbg random(&ctx, buf, CRYPTO SAMPLE HMAC DRBG OUTPUT LEN);

// Free an HMAC DRBG context.
mbedtls hmac drbg free (&ctx);
}

The API details are as follows:

Table 47. APIs for HMAC DRBG

Item Description

void mbedtls_hmac_drbg_init (mbedtls_hmac_drbg_context* ctx)

Prototype void mbedtls_hmac_drbg_init(mbedtls_hmac_drbg_context *ctx)

Parameter ctx: HMAC_DRBG context to be initialized.

Return None

Description HMAC_DRBG context initialization makes the context ready for mbedtls_hmac_drbg_seed(),
mbedtls_hmac_drbg_seed_buf() or mbedtls_hmac_drbg_free().

int mbedtls_hmac_drbg_seed(mbedtls_hmac_drbg_context* ctx, const mbedtls_md_info_t * md_info, int
(*f_entropy)(void*, unsigned char*, size_t), void* p_entropy, const unsigned char* custom, size_t len)

Prototype int mbedtls_hmac_drbg_seed(mbedtls_hmac_drbg_context* ctx, const mbedtls_md_info_t *
md_info, int (*f_entropy)(void*, unsigned char*, size_t), void* p_entropy, const unsigned char*
custom, size_t len)

Parameter ctx: HMAC_DRBG context to be seeded.

md_info: MD algorithm to use for HMAC_DRBG.

f_entropy: Entropy callback (p_entropy, buffer to fill, buffer length).

p_entropy: Entropy context.

custom: Personalization data (Device specific identifiers) (Can be NULL).
len: Length of personalization data.

Return 0 if successful, or MBEDTLS_ERR_MD_BAD_INPUT_DATA, or

MBEDTLS_ERR_MD_ALLOC_FAILED, or
MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED

Description HMAC_DRBG initial seeding Seed and setup entropy source for future reseeds.

void mbedtls_hmac_drbg_set_prediction_resistance(mbedtls_hmac_drbg_context *ctx, int resistance)

Prototype void mbedtls_hmac_drbg_set_prediction_resistance(mbedtls_hmac_drbg_

context *ctx, int resistance)

Parameter ctx: HMAC_DRBG context.

resistance: MBEDTLS_HMAC_DRBG_PR_ON or MBEDTLS_HMAC_DRBG_PR_OFF.

Return None

Description Enable/disable prediction resistance (Default: Off).

int mbedtls_hmac_drbg_random(void *p_rng, unsigned char *output, size_t out_len)

Prototype int mbedtls_hmac_drbg_random(void *p_rng, unsigned char *output, size_t out_len)

Parameter p_rng: HMAC_DRBG context.
output: Buffer to fill.

out_len: Length of the buffer.

UM-WI-046 Rev.2.6 RENESAS Page 217
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Return 0 if successful, or MBEDTLS _ERR_HMAC DRBG_ENTROPY_SOURCE_FAILED, or
MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG.

Description HMAC_DRBG generates random.

void mbedtls_hmac_drbg_free(mbedtls_hmac_drbg_context *ctx)

Prototype void mbedtls_hmac_drbg_free(mbedtls_hmac_drbg_context *ctx)
Parameter ctx: HMAC_DRBG context to free.

Return None

Description Free an HMAC_DRBG context.

int mbedtls_hmac_drbg_reseed(mbedtls_hmac_drbg_context *ctx, const unsigned char *additional, size_t len)

Prototype int mbedtls_hmac_drbg_reseed(mbedtls_hmac_drbg_context *ctx, const unsigned char
*additional, size_t len)
Parameter ctx: HMAC_DRBG context.
additional: Additional data to add to state (can be NULL).
len: Length of additional data.
Return 0 if successful, or MBEDTLS_ERR_HMAC DRBG_ENTROPY_SOURCE_FAILED.
Description HMAC_DRBG reseeding (extracts data from entropy source).

16.1.6.5 HMAC_DRBG Without Prediction Resistance
This example describes how to use HMAC_DRBG without prediction resistance.

{

int crypto sample hmac drbg pr off ()

mbedtls hmac drbg context ctx;
const mbedtls md info t *md info = mbedtls md info from type (MBEDTLS MD SHAL);

PRINTF ("* HMAC DRBG (PR = False) : ");

// Initialize HMAC DRBG context.
mbedtls hmac drbg init (&ctx);

// HMAC DRBG initial seeding Seed and setup entropy source for future reseeds.
ret = mbedtls hmac drbg seed(&ctx, md info,

// HMAC DRBG reseeding (extracts data from entropy source)
ret = mbedtls hmac drbg reseed(&ctx, NULL, 0);

// Generate random.
ret = mbedtls hmac drbg random(&ctx, buf, CRYPTO SAMPLE HMAC DRBG OUTPUT IEN);

// Generate random.
ret = mbedtls hmac drbg random(&ctx, buf, CRYPTO SAMPLE HMAC DRBG OUTPUT IEN);

// Free an HMAC DRBG context.
mbedtls hmac drbg free (&ctx);

drbg test entropy,
(void *)crypto sample hmac drbg entropy src nopr,
NULL, 0);

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS Page 218
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16.1.7 Cryptographic Algorithms — ECDSA

The Elliptic Curve Digital Signature Algorithm sample application demonstrates common use cases of the Elliptic
Curve Digital Signature Algorithm. In cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers

a variant of the Digital Signature Algorithm (DSA) which uses elliptic curve cryptography.

eeding the random number generator: passe
Generating key pair: passed — (key size: 192 hits?
Computing message hash: passed

Signing message hash: passed — {(signature length = 56>
Preparing verification context: passed
Verifuying signature: passed

Figure 110. Result of crypto ECDSA

16.1.7.1 Application Initialization

In cryptography, the ECDSA offers a variant of the DSA, which uses elliptic curve cryptography. This sample
describes how the user uses the ECDSA of the mbedTLs library.

{

void crypto sample ecdsa(void *param)

crypto sample ecdsa test();

return ;

16.1.7.2 Generate ECDSA Key Pair and Verifies ECDSA Signature

This example generates an ECDSA keypair and verifies the self-computed ECDSA signature.

{

int crypto sample ecdsa test()

int ret = -1;

const char *pers = "crypto sample ecdsa";

mbedtls ecdsa context ctx sign;
mbedtls ecdsa context ctx verify;
mbedtls entropy context entropy;
mbedtls ctr drbg context ctr drbg;
mbedtls sha256 context sha256 ctx;

// Initialize an ECDSA context.
mbedtls ecdsa init (&ctx sign);
mbedtls ecdsa init(&ctx verify);

// Initialize the CTR DRBG context.

mbedtls ctr drbg init(&ctr drbg);

// Initialize the SHA-256 context.
mbedtls sha256 init (&sha256 ctx);

// Initialize the entropy context.
mbedtls entropy init (&entropy);

memset (sig, 0x00, MBEDTLS ECDSA MAX LEN);

memset (message, 0x25, 100);

// Generate a key pair for signing

PRINTF ("* Seeding the random number generator: ");

// Seed and sets up the CTR DRBG entropy source for future reseeds.

ret = mbedtls ctr drbg seed(&ctr drbg, mbedtls entropy func, &entropy,

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 219

DA16200 DA16600 FreeRTOS SDK Programmer Guide

(const unsigned char *)pers, strlen(pers));

PRINTF ("* Generating key pair: ");

// Generate an ECDSA keypair on the given curve.

ret = mbedtls ecdsa genkey (&ctx sign, MBEDTLS ECP DP SECP192R1,
mbedtls ctr drbg random, &ctr drbg);

// Compute message hash
PRINTFE ("* Computing message hash: ");

// Start a SHA-256 checksum calculation.
mbedtls sha256 starts ret (&sha256 ctx, 0);

// Feeds an input buffer into an ongoing SHA-256 checksum calculation.
mbedtls sha256 update ret (&sha256 ctx, message, 100);

// Finishe the SHA-256 operation, and writes the result to the output buffer.
mbedtls sha256 finish (&sha256 ctx, hash);

// Sign message hash
PRINTF ("* Signing message hash: ");

// Compute the ECDSA signature and writes it to a buffer.
ret = mbedtls ecdsa write signature (&ctx sign, MBEDTLS MD SHA256, hash, 32,
sig, &sig len, mbedtls ctr drbg random, &ctr drbg);

// Verify signature
PRINTFE ("* Verifying signature: ");

// Read and verify an ECDSA signature.
ret = mbedtls ecdsa read signature (&ctx verify, hash, 32, sig, sig len);

// Free an ECDSA context.
mbedtls ecdsa free (&ctx verify);
mbedtls ecdsa free(&ctx sign);

// Clear CTR CRBG context data.
mbedtls ctr drbg free (&ctr drbg);

// Free the data in the context.
mbedtls entropy free (&entropy) ;

// Clear s SHA-256 context.
mbedtls sha256 free (&sha256 ctx);

The API details are as follows:

Table 48. APIs for ECDSA

Item Description
void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx)
Prototype void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx)
Parameter ctx: The ECDSA context to initialize. This must not be NULL.
Return None
Description This function initializes an ECDSA context.
UM-WI-046 Rev.2.6 RENESAS Page 220

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

int mbedtls_ecdsa_gen

key(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, int (*f_rng)(void *, unsigned

char *, size_t), void *p_rng)

Prototype

int mbedtls_ecdsa_genkey(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, int
(*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Parameter

ctx: The ECDSA context to store the keypair in. This must be initialized.

gid: The elliptic curve to use. One of the various MBEDTLS_ECP_DP_XXX macros depending
on configuration.

f_rng: The RNG function to use. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a
context argument.

Return

0 on success. An MBEDTLS_ERR_ECP_XXX code on failure.

Description

This function generates an ECDSA keypair on the given curve.

int mbedtls_ecdsa_writ
char *hash, size_t hlen,

e_signature(mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg, const unsigned
unsigned char *sig, size_t *slen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype

int mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, int (*f_rng)(void *,
unsigned char *, size_t), void *p_rng)

Parameter

ctx: The ECDSA context to use. This must be initialized and have a group and private key
bound to it, for example via mbedtls_ecdsa_genkey() or mbedtls_ecdsa_from_keypair().

md_alg: The message digest that was used to hash the message.
hash: The message hash to be signed. This must be a readable buffer of length hlen bytes.
hlen: The length of the hash in bytes.

sig: The buffer to which to write the signature. This must be a writable buffer of a length at least
twice as large as the size of the curve used, plus 9. For example, 73 bytes if a 256-bit curve is
used. The buffer length of MBEDTLS_ECDSA_MAX_LEN is always safe.

slen: The address at which to store the actual length of the signature written. Must not be NULL.
f_rng: The RNG function. This must not be NULL if MBEDTLS_ECDSA_DETERMINISTIC is
unset. Otherwise, it is unused and may be set to NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not
use a context.

Return

0 on success. An MBEDTLS_ERR_ECP_XXX, MBEDTLS_ERR_MPI_XXX or
MBEDTLS _ERR_ASN1_XXX error code on failure.

Description

This function computes the ECDSA signature and writes it to a buffer, serialized as defined in
RFC-4492: Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS).

int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx, const unsigned char *hash, size_t hlen, const
unsigned char *sig, size_t slen)

Prototype

int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx, const unsigned char *hash,
size_t hlen, const unsigned char *sig, size_t slen)

Parameter

ctx: The ECDSA context to use. This must be initialized and have a group and public key bound
toit.

hash: The message hash that was signed. This must be a readable buffer of length size bytes
hlen: The size of the hash.

sig: The signature to read and verify. This must be a readable buffer of length slen bytes.
slen: The size of sig in bytes.

Return

0 on success. MBEDTLS_ERR_ECP_BAD_INPUT_DATA if signature is invalid.
MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH if there is a valid signature in sig, but its length is
less than siglen. An MBEDTLS_ERR_ECP_XXX or MBEDTLS_ERR_MPI_XXX error code on
failure for any other reason.

Description

This function reads and verifies an ECDSA signature.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 221

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16.1.8 Cryptographic Algorithms — Diffie-Hellman Key Exchange

The Diffie-Hellman-Merkle (DHM) key exchange sample application demonstrates common use cases of DHM
key exchange on the client and server sides.

DHM parameter load: passed
Diffie-Hellman full exchange: passed

Figure 111. Result of crypto Diffie Hellman

16.1.8.1 Application Initialization

This example includes two types. The first function crypto_sample_dhm_parse_dhm, shows how Diffie-Hellman
parameters can be loaded. The second function crypto_sample_dhm_do_dhm, shows how DA16200 works for
Diffie-Hellman key exchange.

void crypto sample dhm()
{
ret = crypto sample dhm parse dhm();

for (idx = 0 ; crypto sample dhm do dhm list[idx].title != NULL ; idx++) {
ret = crypto sample dhm do dhm(crypto sample dhm do dhm list[idx].title,
crypto sample dhm do dhm list[idx].radix P,
crypto sample dhm do dhm list[idx].input P,
crypto sample dhm do dhm list[idx].radix G,
crypto sample dhm do dhm list[idx].input G);

16.1.8.2 How Diffie-Hellman Works

Sample codes and APIls show how the Diffie-Hellman works and is loaded over the mbedTLs library's API. The
API details are as follows.

Table 49. APIs for Diffie-Hellman-Merkle

Item Description

void mbedtls_dhm_init(mbedtls_dhm_context *ctx)

Prototype void mbedtls_dhm_init(mbedtls_dhm_context *ctx) (See Section 16.1.8.2.1)
Parameter ctx: The DHM context to initialize.

Return None

Description This function initializes the DHM context.

int mbedtls_dhm_parse

dhm(mbedtls_dhm_context *dhm, const unsigned char *dhmin, size_t dhminlen)

Prototype int mbedtls_dhm_parse_dhm(mbedtls_dhm_context *dhm, const unsigned char *dhmin, size_t
dhminlen) (See Section 16.1.8.2.2)

Parameter dhm: The DHM context to import the DHM parameters into. This must be initialized.
dhmin: The input buffer. This must be a readable buffer of length dhminlen bytes.
dhminlen: The size of the input buffer dhmin, including the terminating NULL byte for PEM data.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX or MBEDTLS_ERR_PEM_XXX error code on
failure.
Description This function parses DHM parameters in PEM or DER format.

void mbedtls_dhm_free(mbedtls_dhm_context *ctx)

Prototype void mbedtls_dhm_free(mbedtls_dhm_context *ctx) See Section 16.1.8.2.1)
Parameter ctx: The DHM context to free and clear. This may be NULL, in which case this function is a no-
op. If it is not NULL, it must point to an initialized DHM context.
Return None
UM-WI-046 Rev.2.6 RENESAS Page 222

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

Description

This function frees and clears the components of a DHM context.

int mbedtls_dhm_make_params(mbedtls_dhm_context *ctx, int x_size, char *output, size_t *olen, int (*f_rng)(void
*, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_dhm_make_params(mbedtls_dhm_context *ctx, int x_size, char *output, size_t
*olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) (See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized and have the DHM parameters set. It may
or may not already have imported the peer's public key.
x_size: The private key size in bytes.
output: The destination buffer. This must be a writable buffer of sufficient size to hold the
reduced binary presentation of the modulus, the generator and the public key, each wrapped
with a 2-byte length field. It is the responsibility of the caller to ensure that enough space is
available. See the mbedtls_mpi_size() to compute the byte-size of an MPI.
olen: The address at which to store the number of bytes written on success. This must not be
NULL.
f_rng: The RNG function. Must not be NULL.
p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a
context parameter.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure

Description This function generates a DHM key pair and exports its public part together with the DHM

parameters in the format used in a TLS ServerKeyExchange handshake message.

int mbedtls_dhm_read

params(mbedtls_dhm_context *ctx, unsigned char **p, unsigned char *end)

Prototype

int mbedtls_dhm_read_params(mbedtls_dhm_context *ctx, unsigned char **p, unsigned char
*end) (See Section 16.1.8.2.2)

Parameter

ctx: The DHM context to use. This must be initialized.

p: On input, *p must be the start of the input buffer. On output, *p is updated to point to the end
of the data that has been read. On success, this is the first byte past the end of the
ServerKeyExchange parameters. On error, this is the point at which an error has been detected,
which is usually not useful except for debug failures.

end: The end of the input buffer.

Return

0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description

This function parses the DHM parameters in a TLS ServerKeyExchange handshake message

(DHM modulus, generator, and public key).

int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size, unsigned char *output, size_t olen, int

(*f_rng)(void *, unsigne

d char *, size_t), void *p_rng)

Prototype

int mbedtls_dhm_read_params(mbedtls_dhm_context *ctx, unsigned char **p, unsigned char
*end) (See Section 16.1.8.2.2)

Parameter

ctx: The DHM context to use. This must be initialized.

p: On input, *p must be the start of the input buffer. On output, *p is updated to point to the end
of the data that has been read. On success, this is the first byte past the end of the
ServerKeyExchange parameters. On error, this is the point at which an error has been detected,
which is usually not useful except to debug failures.

end: The end of the input buffer.

Return

0 on success. An MBEDTLS _ERR_DHM_XXX error code on failure.

Description

This function parses the DHM parameters in a TLS ServerKeyExchange handshake message
(DHM modulus, generator, and public key).

int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size, unsigned char *output, size_t olen, int

(*f_rng)(void *, unsigne

d char *, size_t), void *p_rng)

Prototype

int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size, unsigned char *output,

size_t olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) (See Section 16.1.8.2.2)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 223

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter ctx: The DHM context to use. This must be initialized and have the DHM parameters set. It may
or may not already have imported the peer's public key.

x_size: The private key size in bytes.

output: The destination buffer. This must be a writable buffer of size olen bytes.

olen: The length of the destination buffer. This must be at least equal to ctx->len (the size of P).
f_rng: The RNG function. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a
context argument.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description This function creates a DHM key pair and exports the raw public key in big-endian format.

int mbedtls_dhm_read_public(mbedtls_dhm_context *ctx, const unsigned char *input, size_t ilen)

Prototype int mbedtls_dhm_read_public(mbedtls_dhm_context *ctx, const unsigned char *input, size_t
ilen) (See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized and have its DHM parameters set, for
instance via mbedtls_dhm_set_group(). It may or may not already have generated its own
private key.

input: The input buffer containing the G*Y value of the peer. This must be a readable buffer of
size ilen bytes.

ilen: The size of the input buffer input in bytes.

Return 0 on success. An MBEDTLS_ERR_DHM_XXX error code on failure.

Description This function imports the raw public value of the peer.

int mbedtls_dhm_calc_secret(mbedtls_dhm_context *ctx, unsigned char *output, size_t output_size, size_t *olen,
int (*f_rng)(void *, unsigned char *, size_t),

void *p_rng)

Prototype int mbedtls_dhm_calc_secret(mbedtls_dhm_context *ctx, unsigned char *output, size_t
output_size, size_t *olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
(See Section 16.1.8.2.2)

Parameter ctx: The DHM context to use. This must be initialized and have its own private key generated
and the peer's public key imported.

output: The buffer to write the generated shared key to. This must be a writable buffer of size
output_size bytes.

output_size: The size of the destination buffer. This must be at least the size of ctx->len (the
size of P).

olen: On exit, holds the actual number of bytes written.
f_rng: The RNG function, for blinding purposes. This may be NULL if blinding is not needed.
p_rng: The RNG context. This may be NULL if f_rng does not need a context argument.

Return 0 on success. An MBEDTLS _ERR_DHM_XXX error code on failure.

Description This function derives and exports the shared secret (G"Y)*X mod P.

16.1.8.2.1 How to Load Diffie-Hellman Parameters

The mbedtls dhm parse dhm parses DHM parameters in PEM or DER format. The
crypto sample dhm params is already defined in this sample.

int crypto sample dhm parse dhm()
{
mbedtls dhm context *dhm = NULL; // The DHM context structure.

// Initialize the DHM context.
mbedtls dhm init (dhm);

UM-WI-046 Rev.2.6 RENESAS Page 224
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Parse DHM parameters in PEM or DER format.

ret = mbedtls dhm parse dhm(dhm,
(const unsigned char *)crypto sample dhm params,
crypto sample dhm params len);

// Free and clear the components of a DHM context.
mbedtls dhm free (dhm) ;

16.1.8.2.2 How Diffie-Hellman Works

The sample code shows how Diffie-Hellman works over the API of the mbedTLs library. Diffie-Hellman operation
is normally used during TLS Handshake, ServerKeyExchange, and ClientKeyExchange messages. To verify it,
the code exchanges ServerKeyExchange and ClientKeyExchange messages.

int crypto sample dhm do dhm(char *title, int radix P, char *input P, int radix G, char
*input G)
{

mbedtls dhm context ctx srv;

mbedtls dhm context ctx cli;

rnd pseudo info rnd info;

// Initialize the DHM context.
mbedtls dhm init (&ctx srv);
mbedtls dhm init (&ctx cli);

// Set parameters
MBEDTLS MPI CHK (mbedtls mpi read string(&ctx srv.P, radix P, input P));
MBEDTLS MPI CHK (mbedtls mpi read string(&ctx srv.G, radix G, input G));

X size = mbedtls mpi size(&ctx srv.P);
pub cli len = x size;

/* Generate a DHM key pair and export its public part together
* with the DHM parameters in the format.
*/
ret = mbedtls dhm make params (&ctx srv, x size, ske, &ske len,
&rnd pseudo rand, &rnd info);

// Parse the DHM parameters (DHM modulus, generator, and public key)
ret = mbedtls dhm read params (&ctx cli, &p, ske + ske len);

// Create a DHM key pair and export the raw public key in big-endian format.
ret = mbedtls dhm make public(&ctx cli, x size, pub cli, pub cli len,
&rnd pseudo rand, &rnd info);

// Import the raw public value of the peer.
ret = mbedtls dhm read public(&ctx srv, pub cli, pub cli len);

// Derive and export the shared secret (G"Y)”X mod P.
ret = mbedtls dhm calc secret (&ctx srv, sec srv, DHM BUF SIZE,
&sec_srv_len, é&rnd pseudo rand, &rnd info);

// Derive and export the shared secret (G"Y)” X mod P.
ret = mbedtls dhm calc secret (&ctx cli, sec cli, DHM BUF SIZE, &sec cli len,
NULL, NULL);

// Free and clear the components of a DHM context.
mbedtls dhm free (&ctx srv);
mbedtls dhm free (&ctx cli);

UM-WI-046 Rev.2.6 RENESAS Page 225
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16.1.9 Cryptographic Algorithms — RSA PKCS#1

The RSA PKCS#1 sample application demonstrates common use cases of RSA PKCS#1 functions.

REA key validation:
PECS#1 encryption
PHCS#1 decryption

PECSH#1 data =sign

PHCS#1 sig. verify
Figure 112. Result of crypto RSA

16.1.9.1 Application Initialization

This example shows RSA key validation, encryption, decryption, and verification of the signature. To verify the

signature, a SHA-1 Hash algorithm is used.

void crypto sample rsa(ULONG arg)
{

crypto sample rsa pkcsl();

return ;

16.1.9.2 How RSA PKCS#1 Works

The example application below shows how RSA PKCS#1 works over the API of the mbedTLs library. To verify, an

RSA-1024 keypair and a SHA-1 Hash algorithm are used on RSA PKCS-1 v1.5.

int crypto sample rsa pkcsl()

{
moedtls rsa context *rsa = NULL; // The RSA context structure.
unsigned char *shalsum = NULL;

// Initializes an RSA context.
mbedtls rsa init(rsa, MBEDTLS RSA PKCS V15, MBEDTLS MD NONE);

PRINTFE ("* RSA key validation: ");

// Check if a context contains at least an RSA public key.
ret = mbedtls rsa check pubkey(rsa);

ret = mbedtls rsa check privkey(rsa);
PRINTF ("* PKCS#1 encryption : ");
memcpy (rsa_plaintext, RSA PT, PT LEN);

// Add the message padding, then performs an RSA operation.

ret = mbedtls rsa pkcsl encrypt(rsa, myrand,
NULL, MBEDTLS RSA PUBLIC, PT LEN,
rsa plaintext, rsa ciphertext);

PRINTEF ("* PKCS#1 decryption : ");

// Perform an RSA operation, then removes the message padding.

ret = mbedtls rsa pkcsl decrypt(rsa, myrand,
NULL, MBEDTLS RSA PRIVATE, &len,
rsa ciphertext, rsa decrypted,
(PT_LEN * sizeof (unsigned char)));

PRINTF ("* PKCS#1 data sign : ");

mbedtls shal ret(rsa plaintext, PT LEN, shalsum);

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 226

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Perform a private RSA operation to sign a message digest using PKCS#1.
ret = mbedtls rsa pkcsl sign(rsa, myrand,

NULL, MBEDTLS RSA PRIVATE, MBEDTLS MD SHAL,
0, shalsum, rsa ciphertext);

PRINTF ("* PKCS#1 sig. verify: ");

// Perform a public RSA operation and checks the message digest.
ret = mbedtls rsa pkcsl verify(rsa, NULL,

NULL, MBEDTLS RSA PUBLIC, MBEDTLS MD SHAIL,
0, shalsum, rsa ciphertext);

// Free the components of an RSA key.
mbedtls rsa free(rsa);

The API details are as follows.

Table 50. APIs for PKCS#11 RSA

Item

Description

void mbedtls_rsa_init(mbedtls_rsa_context *ctx, int padding, int hash_id)

Prototype void mbedtls_rsa_init(mbedtls_rsa_context *ctx, int padding, int hash_id)

Parameter ctx: The RSA context to initialize. This must not be NULL.
padding: The padding mode to use. This must be either MBEDTLS_RSA_PKCS_V15 or
MBEDTLS_RSA_PKCS_V21.
hash_id: The hash identifier of mbedtls_md_type_t type, if padding is
MBEDTLS RSA PKCS V21. Itis otherwise unused.

Return None

Description This function initializes an RSA context.

int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)

Prototype int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)

Parameter ctx: The initialized RSA context to check.

Return 0 on success. An MBEDTLS _ERR_RSA XXX error code on failure.

Description This function checks if a context contains at least an RSA public key. If the function runs

successfully, it is guaranteed that enough information is present to do an RSA public key
operation with mbedtls_rsa_public().

int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)

Prototype int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)

Parameter ctx: The initialized RSA context to check.

Return 0 on success. An MBEDTLS _ERR_RSA_XXX error code on failure.

Description This function checks if a context contains an RSA private key and does basic consistency

checks.

int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
int mode, size_t ilen, const unsigned char *input, unsigned char *output)

Prototype

int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,
size_t), void *p_rng, int mode, size_t ilen, const unsigned char *input, unsigned char *output)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 227

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter ctx: The initialized RSA context to use.
f_rng: The RNG to use. It is mandatory for PKCS#1 v2.1 padding encoding, and for PKCS#1
v1.5 padding encoding when used with mode set to MBEDTLS_RSA_PUBLIC. For PKCS#1
v1.5 padding encoding and mode set to MBEDTLS_RSA_PRIVATE, it is used for blinding and
should be provided in this case. See mbedtls_rsa_private() for more information.
p_rng: The RNG context to be passed to f_rng. May be NULL if f_rng is NULL or if f_rng does
not need a context argument.
mode: The mode of operation. This must be either MBEDTLS_RSA_PUBLIC or
MBEDTLS_RSA_PRIVATE (deprecated).
ilen: The length of the plaintext in bytes.
input: The input data to encrypt. This must be a readable buffer of size ilen bytes. This must not
be NULL.
output: The output buffer. This must be a writable buffer of length ctx->len bytes. For example,
256 bytes for a 2048-bit RSA modulus.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function adds the message padding, then does an RSA operation. It is the generic wrapper

to do a PKCS#1 encryption operation with the mode from the context.

int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len)

Prototype int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,
size_t), void *p_rng, int mode, size_t *olen, const unsigned char *input, unsigned char *output,
size_t output_max_len)

Parameter ctx: The initialized RSA context to use.
f_rng: The RNG function. If mode is MBEDTLS_RSA_PRIVATE, this is used for blinding and
should be provided; see mbedtls_rsa_private() for more. If mode is MBEDTLS_RSA_PUBLIC, it
is ignored.
p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not
need context.
mode: The mode of operation. This must be either MBEDTLS_RSA_PRIVATE or
MBEDTLS_RSA_PUBLIC (deprecated).
olen: The address at which to store the length of the plaintext. This must not be NULL
input: The ciphertext buffer. This must be a readable buffer of length ctx->len bytes. For
example, 256 bytes for a 2048-bit RSA modulus.
output: The buffer used to hold the plaintext. This must be a writable buffer of length
output_max_len bytes.
output_max_len: The length in bytes of the output buffer output.

Return 0 on success. An MBEDTLS _ERR_RSA XXX error code on failure.

Description This function does an RSA operation, then removes the message padding. It is the generic

wrapper to do a PKCS#1 decryption operation with the mode from the context.

int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int
mode, mbedtls_md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig)

Prototype

int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,
size_t), void *p_rng, int mode, mbedtls_md_type t md_alg, unsigned int hashlen, const
unsigned char *hash, unsigned char *sig)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS Page 228
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter ctx: The initialized RSA context to use.
f_rng: The RNG function to use. If the padding mode is PKCS#1 v2.1, this must be provided. If
the padding mode is PKCS#1 v1.5 and the mode is MBEDTLS_RSA_PRIVATE, it is used for
blinding and should be provided. See mbedtls_rsa_private() for more information. It is otherwise
ignored.
p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not
need a context argument.
mode: The mode of operation. This must be either MBEDTLS_RSA_PRIVATE or
MBEDTLS_RSA_PUBLIC (deprecated).
md_alg: The message-digest algorithm used to hash the original data. Use
MBEDTLS_MD_NONE for signing raw data.
hashlen: The length of the message digest. This is only used if md_alg is
MBEDTLS_MD_NONE.
hash: The buffer holding the message digest or raw data. If md_alg is MBEDTLS_MD_NONE,
this must be a readable buffer of length hashlen bytes. If md_alg is not MBEDTLS_MD_NONE,
it must be a readable buffer of length the size of the hash corresponding to md_alg
sig: The buffer to hold the signature. This must be a writable buffer of length ctx->len bytes. For
example, 256 bytes for a 2048-bit RSA modulus.

Return 0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description This function does a private RSA operation to sign a message digest with PKCS#1. It is the

generic wrapper to do a PKCS#1 signature with the mode from the context.

*sig)

int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
int mode, mbedtls_md_type_t md_alg,

unsigned int hashlen, const unsigned char *hash, const unsigned char

Prototype

int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *,
size_t), void *p_rng, int mode, mbedtls_md_type t md_alg, unsigned int hashlen, const
unsigned char *hash, const unsigned char *sig)

Parameter

ctx: The initialized RSA public key context to use.

f_rng: The RNG function to use. If mode is MBEDTLS_RSA_PRIVATE, this is used for blinding
and should be provided; see mbedtls_rsa_private() for more. Otherwise, it is ignored.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not
need context.

mode: The mode of operation. This must be either MBEDTLS RSA PUBLIC or
MBEDTLS_RSA_PRIVATE (deprecated).

md_alg: The message-digest algorithm used to hash the original data. Use
MBEDTLS_MD_NONE for signing raw data.

hashlen: The length of the message digest. This is only used if md_alg is
MBEDTLS_MD_NONE.

hash: The buffer holding the message digest or raw data. If md_alg is MBEDTLS_MD_NONE,
this must be a readable buffer of length hashlen bytes. If md_alg is not MBEDTLS_MD_NONE,
it must be a readable buffer of length the size of the hash that corresponds to md_alg.

sig: The buffer holding the signature. This must be a readable buffer of length ctx->len bytes.
For example, 256 bytes for a 2048-bit RSA modulus.

Return

0 on success. An MBEDTLS_ERR_RSA_XXX error code on failure.

Description

This function does a public RSA operation and checks the message digest. This is the generic
wrapper to do PKCS#1 verification with the mode from the context.

void mbedtls_rsa_free(mbedtls_rsa_context *ctx)

Prototype void mbedtls_rsa_free(mbedtls_rsa_context *ctx)

Parameter ctx: The RSA context to free. If it is NULL, in which case this function is a no-op. If it is not
NULL, it must point to an initialized RSA context.

Return None

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 229

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Description This function frees the components of an RSA key.

16.1.10 Cryptographic Algorithms — ECDH

The Elliptic-curve Diffie-Hellman (ECDH) sample application demonstrates common use cases of ECDH key

exchange. It is a variant of the Diffie-Hellman protocol that uses elliptic-curve cryptography.

»>»» Using Elliptic Curve: SECPZ224R1

* Seeding the random number generator: passed

#* Setting up client context: passed

* Setting up server context: passed

* Server reading client key and computing secret: passed
* Client reading server key and computing secret: passed
#* Checking if bhoth computed secrets are egqual: passed

>» Using Elliptic Curve: SECPZ256R1

Seeding the random number generator: passed

Setting up client context: passed

Setting up server context: passed

Server reading client key and computing secret: passed
Client reading server key and computing secret: passed
Checking if both computed secrets are equal: passed

>»» Using Elliptic Curve: SECPJ84R1

* Seeding the random number generator: passed

* Setting up client context: passed

* Setting up server context: passed

* Server reading client key and computing secret: passed
#* Glient reading server key and computing secret: passed
* Checking if both computed secrets are equal: passed

»>»» Using Elliptic Curve: SECPS5Z21R1

* Seeding the random number generator: passed

#* Setting up client context: passed

* Setting up server context: passed

* Server reading client key and computing secret: passed
* Client reading server key and computing secret: passed
* Checking if bhoth computed secrets are equal: passed

Figure 113. Result of crypto ECDH

16.1.10.1 Application Initialization

This example describes how the ECDH key exchange works with the use of Elliptic Curve SECP224R1,

SECP256R1, SECP384R1, SECP521R1, and Curve25519.

void crypto sample ecdh(void *param)
{
mbedtls ecp group id ids[6] = {
MBEDTLS ECP DP SECP224R1, /*!< 224-bits NIST curve */
MBEDTLS ECP DP SECP256R1, /*!< 256-bits NIST curve */
MBEDTLS_ECP_DP_SECP384R1, /*1< 384-bits NIST curve */
MBEDTLS ECP DP SECP521R1, /*!< 521-bits NIST curve */
MBEDTLS ECP DP CURVE25519, /*!< Curve25519 */
MBEDTLS ECP DP NONE
};

for (idx = 0, id = ids[idx] ; idx < 6 && id != MBEDTLS ECP DP NONE ; idx++,
id = ids[idx])

ret = crypto sample ecdh key exchange (id);

if (ret) {
break;
}
}
}
UM-WI-046 Rev.2.6 RENESAS Page 230

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

16.1.10.2 How ECDH Key Exchange Works

This sample application shows how ECDH works over the API of the "mbedTLS" library. In this example, the
ECDH key exchange is verified on the server and client sides.

UM-WI-046 Rev.2.6 RENESAS Page 231
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

{

int crypto sample ecdh key exchange (mbedtls ecp group id id)

mbedtls ecdh context ctx cli;
mbedtls ecdh context ctx srv;
mbedtls entropy context entropy;
mbedtls ctr drbg context ctr drbg;

// Initialize an ECDH context.
mbedtls ecdh init (&ctx cli);
mbedtls ecdh init (&ctx srv);

// Initialize the CTR DRBG context.

mbedtls ctr drbg init (&ctr drbg);

// Initialize the entropy context.
mbedtls entropy init (&entropy) ;

PRINTF (">>> Using Elliptic Curve: ");

switch (id) {
case MBEDTLS ECP DP SECP224R1: {
PRINTF ("SECP224R1\r\n") ;
}
break;
case MBEDTLS ECP DP SECP256RL: {
PRINTF ("SECP256R1\r\n") ;
}
break;
case MBEDTLS ECP DP SECP384R1: {
PRINTF ("SECP384R1\r\n") ;
}
break;
case MBEDTLS ECP DP SECP521R1: {
PRINTEF ("SECP521R1\r\n") ;
}
break;
case MBEDTLS ECP DP CURVE25519: ({
PRINTEF ("Curve25519\r\n") ;
}
break;
default: {
PRINTF ("failed - [%s] Invalid Curve selected!\r\n");
}
goto cleanup;
}
// Initialize random nurber generation
PRINTF ("* Seeding the random number generator: ");

ret = mbedtls ctr drbg seed(&ctr drbg, mbedtls entropy func, &entropy,
(const unsigned char *)pers, sizeof (pers));

// Client: inialize context and generate keypair
PRINTF ("* Setting up client context: ");

// Sets up an ECP group context from a standardized set of domain parameters.
ret = mbedtls ecp group load(&(ctx cli.grp), id);

// Generate an ECDH keypair on an elliptic curve.
ret = mbedtls ecdh gen public(&(ctx cli.grp), &(ctx cli.d), &(ctx cli.Q),
mbedtls ctr drbg random, &ctr drbg);
/* Export multi-precision integer (MPI) into unsigned binary data,
* big endian (X coordinate of ECP point)
*/
MBEDTLS MPI CHK (mbedtls mpi write binary(&(ctx cli.Q.X), cli to srv x, buflen));

/* Export multi-precision integer (MPI) into unsigned binary data,

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 232

DA16200 DA16600 FreeRTOS SDK Programmer Guide

* big endian (Y coordinate of ECP point)
=Y
MBEDTLS MPI CHK (mbedtls mpi write binary(&(ctx cli.Q.Y), cli to srv y, buflen));

// Server: initialize context and generate keypair
PRINTF ("* Setting up server context: ");

// Sets up an ECP group context from a standardized set of domain parameters.
ret = mbedtls ecp group load(&(ctx srv.grp), id) ;

// Generate a public key
ret = mbedtls ecdh gen public(&(ctx srv.grp), &(ctx srv.d), &(ctx srv.Q),
mbedtls ctr drbg random, &ctr drbg);

/* Export multi-precision integer (MPI) into unsigned binary data,
* big endian (X coordinate of ECP point) .
*/
MBEDTLS MPI CHK (mbedtls mpi write binary(&(ctx srv.Q.X), srv to cli x, buflen));

/* Export multi-precision integer (MPI) into unsigned binary data,
* big endian (Y coordinate of ECP point) .

)
MBEDTLS MPI CHK (mbedtls mpi write binary(&(ctx srv.Q.Y), srv to cli y, buflen));
/*

* Server: read peer's key and generate shared secret

=y

// Set the Z component of the peer's public value (public key) to 1
MBEDTLS_MPI_CHK(mbedtls_mpi_;set(&(ctx_srv.Qp.Z), 1)),

/* Set the X component of the peer's public value based on
* what was passed from client in the buffer.
*/
MBEDTLS MPTI CHK (mbedtls mpi read binary(&(ctx srv.Qp.X), cli to srv x, buflen));

/* Set the Y component of the peer's public value based on
* what was passed from client in the buffer.
*/
MBEDTLS MPI CHK (mbedtls mpi read binary(&(ctx srv.Qp.Y), cli to srv y, buflen));
// Compute the shared secret.
ret = mbedtls ecdh compute shared(&(ctx srv.grp),
&(ctx srv.z), &(ctx srv.Qp), &(ctx srv.d),

mbedtls ctr drbg random, &ctr drbg);

// Client: read peer's key and generate shared secret
PRINTF ("* Client reading server key and computing secret: ");

MBEDTLS MPI CHK (mbedtls mpi lset (&(ctx cli.Qp.z), 1));
MBEDTLS MPI CHK (mbedtls mpi read binary(&(ctx cli.Qp.X), srv to cli x, buflen));
MBEDTLS MPI CHK (mbedtls mpi read binary(&(ctx cli.Qp.Y), srv to cli y, buflen));
// Compute the shared secret.
ret = mbedtls ecdh compute shared(&(ctx cli.grp), &(ctx cli.z),

&(ctx cli.Qp), &(ctx cli.d),

mbedtls ctr drbg random, &ctr drbg);

// Verification: are the computed secrets equal?
PRINTF ("* Checking if both computed secrets are equal: ");

MBEDTLS MPI CHK (mbedtls mpi cmp mpi (&(ctx cli.z), &(ctx srv.z)));

// Free ECDH context.
mbedtls ecdh free (&ctx cli);

UM-WI-046 Rev.2.6 RENESAS Page 233
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

mbedtls ecdh free (&ctx srv);

// Free the data in the context.
mbedtls entropy free (&entropy) ;

// Clear CTR CRBG context data.
mbedtls ctr drbg free (&ctr drbg) ;
}

The API details are as follows.

Table 51. APIs for ECDH

Item Description

void mbedtls_ecdh_init(mbedtls_ecdh_context *ctx)

Prototype void mbedtls_ecdh_init(mbedtls_ecdh_context *ctx)
Parameter ctx: The ECDH context to initialize. This must not be NULL.
Return None

Description This function initializes an ECDH context.

int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)

Prototype int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)

Parameter grp: The group context to set up. This must be initialized.
id: The identifier of the domain parameter set to load.

Return 0 on success. MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE if the id does not correspond
to a known group. Another negative error code on other kinds of failure.

Description This function sets up an ECP group context from a standardized set of domain parameters.

int mbedtls_ecdh_gen_public(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q, int (*f_rng)(void
*, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_ecdh_gen_public(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Parameter grp: The ECP group to use. This must be initialized and have domain parameters loaded, for
example through mbedtls_ecp_load() or mbedtls_ecp_tls_read_group().

d: The destination MPI (private key). This must be initialized.
Q: The destination point (public key). This must be initialized.
f_rng: The RNG function to use. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL in case f_rng does not need
a context argument.

Return 0 on success. Another MBEDTLS_ERR_ECP_XXX or MBEDTLS_MPI_XXX error code on
failure.
Description This function generates an ECDH keypair on an elliptic curve.

This function is the first of two core computations implemented during the ECDH key exchange.
The second core computation is done by mbedtls_ecdh_compute_shared().

int mbedtls_ecdh_compute_shared(mbedtls_ecp_group *grp, mbedtls_mpi *z, const mbedtls_ecp_point *Q, const
mbedtls_mpi *d, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_ecdh_compute_shared(mbedtls_ecp_group *grp, mbedtls_mpi *z, const
mbedtls_ecp_point *Q, const mbedtls_mpi *d, int (*f_rng)(void *, unsigned char *, size_t), void
*p_rng)
UM-WI-046 Rev.2.6 RENESAS Page 234

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter grp: The ECP group to use. This must be initialized and have domain parameters loaded, for
example through mbedtls_ecp_load() or mbedtls_ecp_tls_read_group().

z: The destination MPI (shared secret). This must be initialized.
Q: The public key from another party. This must be initialized.
d: Our secret exponent (private key). This must be initialized.

f_rng: The RNG function. This may be NULL if randomization of intermediate results during the
ECP computations is not needed (discouraged). See the documentation of mbedtls_ecp_mul()
for more information.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng is NULL or does not
need a context argument.

Return 0 on success. Another MBEDTLS_ERR_ECP_XXX or MBEDTLS_MPI_XXX error code on
failure.
Description This function computes the shared secret.

This function is the second of two core computations implemented during the ECDH key
exchange. The first core computation is done by mbedtls_ecdh_gen_public().

void mbedtls_ecdh_free(mbedtls_ecdh_context *ctx)

Prototype void mbedtls_ecdh_free(mbedtls_ecdh_context *ctx)

Parameter ctx: The context to free. This may be NULL, in which case this function does nothing. If it is not
NULL, it must point to an initialized ECDH context.

Return None

Description This function frees a context.

16.1.11 Cryptographic Algorithms — KDF
The Key Derivation Function (KDF) sample application demonstrates common use cases of PKCS#5 functions.

PBKDF2 {(SHA1}»: passed

Figure 114. Result of crypto KDF

16.1.11.1 Application Initialization

This example uses a password-based Key Derivation Function specified in PKCS#5 PBKDF2 and implemented
in mbedTLsS in function mbedtls_pkcs5_pdkdf2_hmac.

void crypto sample kdf (void *param)
{

crypto sample pkcs5();
}

16.1.11.2 How KDF Works

This example application shows how KDF works over the API of the mbedTLs library. In this example, PKCS#5
PBKDF2 is used. To verify, a SHA-1 Hash algorithm is used.

int crypto sample pkcs5 ()

{
mbedtls md context t shal ctx;
const mbedtls md info t *info shal;

// Initialize a SHA-1 context.
mbedtls md init(&shal ctx);

// Get the message-digest information associated with the given digest type.
info shal = mbedtls md info from type (MBEDTLS MD SHAL);

UM-WI-046 Rev.2.6 RENESAS Page 235
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Select the message digest algorithm to use, and allocate internal
// structures.
ret = mbedtls md setup(&shal ctx, info shal, 1);

PRINTF ("* PBKDF2 (SHAl): ");

// Derive a key from a password using PBKDF2 function with HMAC
ret = mbedtls pkcs5 pbkdf2 hmac (&shal ctx,
pkcs5 password, pkcs5 plen,
pkcs5 salt, pkcs5 slen,
pkcs5 it cnt,
pkcs5 key len, key);

/* Clear the internal structure of ctx and free any embedded internal
structure,
* but does not free ctx itself.
*/
mbedtls md free (&shal ctx);
}

The API details are as follows.

Table 52. APIs for PKCS#5 PBKDF2

Item Description

int mbedtls_pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx, const unsigned char *password, size_t plen, const
unsigned char *salt, size_t slen, unsigned int iteration_count, uint32_t key_length, unsigned char *output)

Prototype int mbedtls_pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx, const unsigned char *password,
size_t plen, const unsigned char *salt, size_t slen, unsigned int iteration_count, uint32_t
key_length, unsigned char *output)

Parameter ctx: Generic HMAC context.

password: Password to use when generating a key.

plen: Length of password.

salt: Salt to use when generating a key.

slen: Length of salt.

iteration_count: Iteration count.

key_length: Length of generated key in bytes.

output: Generated key. Must be at least as big as key_length.

Return 0 on success, or a MBEDTLS_ERR_XXX code if verification fails.
Description PKCS#5 PBKDF2 using HMAC.

16.1.12 Cryptographic Algorithms — Public Key Abstraction Layer

The mbedTLs library provides the Public Key abstraction layer for confidentiality, integrity, authentication, and
non-repudiation based on asymmetric algorithms, using traditional RSA or Elliptic Curves. The Public Key
abstraction layer sample application demonstrates common use cases of the APls.

UM-WI-046 Rev.2.6 RENESAS Page 236
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

nformation

»>»¥» RSA:- passed

»2» EC: passed
»>»>» EC_DH: passed
»»» ECDSA: passed
= RSEA Uerification Test

*>»% RS5A verify test vector #1 C(good>: passed
*2>>» RSA verify test vector #2 (badl: passed
=* Signuature Uerification Test

passed

»>» ECDSA:

»>2»» EC{DSA>: passed

»2»» EC_DH <no>: passed

*>» RSA: passed

= Decryption Test
>»» RS5A decrypt test wvector H1: passed
»2>» RS5A decrypt test vector H2: passed

= HSA Alt Test: passed

= RSA Uerification

Verify
Uerify
Uerify
Verify
Uerify
Verify
Uerify
Uerifuy
Verify
Uerify
Verify

ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext

= PK pair Test
*>»¥ Check pair
»2» Check pair

REA
RSA
REA
RSA
R:A
REA
RSA
REA
RSA
RSA
REA

with option Test

CPKECS1 v2.1,. salt_len AMY . wrong message?: passed

CPKCS51 vw2.1,. =salt_len A, 0K»: passed
CPKCS1 v2_ 1, salt_len max, OK): passed
CPKCS1 v2._1, wrong salt_len): passed

(PKCS51 w2.1,. MGF1 alg *= M3G hash alg): passed
CPKECS1 v2.1, wrong MGF1l alg *= MS5G hash alg): passed
CPKCS1 v2._1,. REASSA-PES without options?: passed

CPKCS1 v1.5, RSA with options): passed
#18 <PKCS1 vi1.5%, RS5A without options>: passed
#11 <PHCS1 wv2.1,. asking for ECDSA>: passed
#12 <PKCS51 vl1.5, good>: passed

##1 <EC. OK»>: passed
##12 {EC,. bhad}: passed

Figure 115. Result of crypto public key

16.1.12.1 Application Initialization

This example shows how to use the Public Key Abstraction Layer of the mbedTLs library.

{

crypto sample pk rsa verify test vec list[i

crypto sample pk sign verify list[i

void crypto sample pk(void *param)

PRINTF ("* PK Information\n");
ret = crypto sample pk utils(crypto sample pk utils list[i].type,

crypto sample pk utils list[i].size,

crypto_sample_pk_utils_list[iT.len,
crypto sample pk utils list[i].name);

PRINTF ("* RSA Verification Test\n");

ret = crypto sample pk rsa verify test vec(
crypto sample pk rsa verify test vec list[i
crypto sample pk rsa verify test vec list[i

.title,

crypto sample pk rsa verify test vec list[i].digest,
crypto sample pk rsa verify test vec list[i].mod,

crypto sample pk rsa verify test vec list[i].radix N,
crypto sample pk rsa verify test vec list[i].input N,
crypto sample pk rsa verify test vec list[i].radix E,
crypto sample pk rsa verify test vec list[i].input E,

(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]

crypto sample pk rsa verify test vec list[i].result);
PRINTF ("* Signuature Verification Test\n");
ret = crypto sample pk sign verify(
crypto sample pk sign verify list[i].title,
crypto sample pk sign verify list[i].type,
crypto sample pk sign verify list[i].sign ret,
[i].

verify ret);

PRINTF ("* Decryption Test\n");

ret = crypto sample pk rsa decrypt test vec(
crypto sample pk rsa decrypt list[i].title,
crypto sample pk rsa decrypt list[i].cipher hex,

.message_hex string,

.result hex str,

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 237

DA16200 DA16600 FreeRTOS SDK Programmer Guide

crypto sample pk rsa decrypt list[i].mod,

crypto sample pk rsa decrypt list[i].radix P,
crypto sample pk rsa decrypt list[i].input P,
crypto sample pk rsa decrypt list[i].radix Q,
crypto sample pk rsa decrypt list[i].input Q,

crypto sample pk rsa decrypt list[i].input N,
crypto sample pk rsa decrypt list[i].radix E,
crypto sample pk rsa decrypt list[i].input E,

crypto sample pk rsa decrypt list[i

.clear hex,

(1]
(1]
(1]
[i]
(1]
crypto sample pk rsa decrypt list[i].radix N,
(1]
(1]
[i]
(1]
(1]

crypto sample pk rsa decrypt list[i

ret = crypto sample pk rsa alt();

PRINTF ("* RSA Verification with option Test\n");
ret = crypto sample pk rsa verify ext test vec(

.result);

crypto sample pk rsa verify ext list[i].title,
crypto sample pk rsa verify ext list[i].message hex string,
crypto sample pk rsa verify ext list[i].digest,
crypto sample pk rsa verify ext list[i].mod,
crypto sample pk rsa verify ext list[i].radix N,
crypto sample pk rsa verify ext list[i].input N,
crypto sample pk rsa verify ext list[i].radix E,
crypto sample pk rsa verify ext list[i].input E,
crypto sample pk rsa verify ext list[i].result hex str,
crypto sample pk rsa verify ext list[i].pk type,
crypto sample pk rsa verify ext list[i].mgfl hash id,
crypto sample pk rsa verify ext list[i].salt len,
crypto sample pk rsa verify ext list[i].result);
PRINTF ("* PK pair Test\n");
ret = crypto sample pk check pair
crypto sample pk check pair list[i].title,
crypto sample pk check pair list[i].pub file,
crypto sample pk check pair list[i].prv file,
crypto sample pk check pair list[i].result);

16.1.12.2 How to Use Public Key Abstraction Layer
The mbedTLs library provides the Public Key Abstraction Layer for confidentiality, integrity, authentication, and

non-repudiation based on asymmetric algorithms, using traditional RSA or Elliptic Curves. The user needs to
check which public key could be supported by the mbedT1s library. The example code below shows how to get
and check public key information.

int crypto sample pk utils (mbedtls pk type t type, int size, int len, char *name)
{
mbedtls pk context pk;

// Initialize a mbedtls pk context.
mbedtls pk init (&pk);

/* Initialize a PK context with the information given

* and allocates the type-specific PK subcontext.

*/

ret = mbedtls pk setup (&pk, mbedtls pk info from type (type));

// Get the key type.
if (mbedtls pk get type (&pk) != type) {
}

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 238

DA16200 DA16600 FreeRTOS SDK Programmer Guide

}

}

}

}

}

// Tell if a context can do the operation given by type.
if (!mbedtls pk can do(&pk, type)) {

// Get the size in bits of the underlying key.
if (mbedtls pk get bitlen (&pk)

!= (unsigned)size) {

// Get the length in bytes of the underlying key.
if (mbedtls pk get len (&pk)

!= (unsigned) len) {

// Access the type name.
if ((ret = strcmp (mbedtls pk get name (&pk), name))

= 0) {

// Free the components of a mbedtls pk context.
mbedtls pk free (&pk);

The API details are as follows.

Table 53. APIs for public key abstraction layer

Item

Description

void mbedtls_pk_init(mbedtls_pk_context *ctx)

Prototype void mbedtls_pk_init(mbedtls_pk_context *ctx)
Parameter ctx: The context to initialize. This must not be NULL.
Return None

Description Initialize an mbedtls_pk_context (as NONE).

int mbedtls_pk_setup(mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info)

Prototype int mbedtls_pk_setup(mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info)
Parameter ctx: Context to initialize. It must not have been set up yet (type MBEDTLS_PK_NONE)
info: Information to use.
Return 0 on success, MBEDTLS_ERR_PK_BAD_INPUT_DATA on invalid input,
MBEDTLS _ERR_PK_ALLOC_FAILED on allocation failure.
Description Initialize a PK context with the information given and allocate the type-specific PK sub context.

mbedtls_pk_type_t mbedtls_pk_get_type(const mbedtls_pk_context *ctx)

Prototype mbedtls_pk_type t mbedtls_pk_get_type(const mbedtls_pk_context *ctx)
Parameter ctx: The PK context to use. It must have been initialized.

Return MBEDTLS_PK_NONE for a context that has not been set up.
Description Get the key type.

int mbedtls_pk_can_do(const mbedtls_pk_context *ctx, mbedtls_pk_type_t type)

Prototype int mbedtls_pk_can_do(const mbedtls_pk_context *ctx, mbedtls_pk_type_t type)
Parameter ctx: The context to query. It must have been initialized.
type: The desired type.
Return 1 if the context can do operations on the given type.
0 if the context cannot do the operations on the given type. This is always the case for a context
that has been initialized but not set up, or that has been cleared with mbedtls_pk_free().
Description Tell if a context can do the operation given by the type.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 239

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

size_t mbedtls_pk_get_bitlen(const mbedtls_pk_context *ctx)

Prototype size_t mbedtls_pk_get bitlen(const mbedtls_pk_context *ctx)
Parameter ctx: The context to query. It must have been initialized.
Return Key size in bits, or 0 on error.

Description Get the size in bits of the underlying key.

static inline size_t mbedtls_pk_get_len(const mbedtls_pk_context *ctx)

Prototype static inline size_t mbedtls_pk_get_len(const mbedtls_pk_context *ctx)
Parameter ctx: The context to query. It must have been initialized.

Return Key size in bits, or 0 on error.

Description Get the length in bytes of the underlying key.

const char* mbedtls_pk_get_name(const mbedtls_pk_context *ctx)

Prototype const char* mbedtls_pk_get_name(const mbedtls_pk_context *ctx)
Parameter ctx: The PK context to use. It must have been initialized.

Return Type name on success, or "invalid PK."

Description Access the type name

void mbedtls_pk_free(mbedtls_pk_context *ctx)

Prototype void mbedtls_pk_free(mbedtls_pk_context *ctx)

Parameter ctx: The context to clear. It must have been initialized. If this is NULL, this function does nothing.
Return None

Description Free the components of a mbedtls_pk_context.

Function crypto_sample_pk_genkey describes how to generate a public key with the given algorithms (RSA or

Elliptic curves).

{

}
#endif

int crypto sample pk genkey (mbedtls pk context *pk)

mbedtls entropy context *entropy = NULL;
mbedtls ctr drbg context *ctr drbg = NULL;

// Initialize the entropy context.
mbedtls entropy init (entropy);

// Initialize the CTR DRBG context.
mbedtls ctr drbg init(ctr drbg);

// Seed and sets up the CTR DRBG entropy source for future reseeds.
mbedtls ctr drbg seed(ctr drbg, mbedtls entropy func, entropy, NULL, 0);

#if defined (MBEDTLS RSA C) && defined (MBEDTLS GENPRIME)
if (mbedtls pk get type (pk) == MBEDTLS PK RSA) {
// Generate the RSA key pair.
ret = mbedtls rsa gen key(mbedtls pk rsa(*pk),

rnd std rand,
ctr drbg,
RSA KEY SIZE, 3);

#if defined (MBEDTLS ECP C)
if ((mbedtls pk get type(pk) == MBEDTLS PK ECKEY)
|| (mbedtls pk get type (pk) == MBEDTLS PK ECKEY DH)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 240

DA16200 DA16600 FreeRTOS SDK Programmer Guide

|| (mbedtls pk get type(pk) == MBEDTLS PK ECDSA)) {

// Set a group using well-known domain parameters.
ret = mbedtls ecp group load (&mbedtls pk ec(*pk)->grp,
MBEDTLS ECP DP SECP192R1) ;

// Generate key pair, wrapper for conventional base point
ret = mbedtls ecp gen keypair (émbedtls pk ec (*pk)->grp,
&mbedtls pk ec(*pk)->d,
&mbedtls pk ec(*pk)—>Q,
rnd std rand, ctr drbg);
}
fendif
mbedtls ctr drbg free(ctr drbg);
mbedtls entropy free (entropy);

The API details are as follows.

Table 54. APIs for generating key pair

Item Description

int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
unsigned int nbits, int exponent)

Prototype int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng, unsigned int nbits, int exponent)

Parameter ctx: The initialized RSA context used to hold the key.
f_rng: The RNG function to be used for key generation. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a
context.

nbits: The size of the public key in bits.
exponent: The public exponent to use. For example, 65537. This must be odd and greater than
1.

Return 0 on success. An MBEDTLS _ERR_RSA XXX error code on failure.

Description This function generates an RSA keypair.

int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q, int (*f_rng)(void *,
unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Parameter grp: The ECP group to generate a key pair for. This must be initialized and have group
parameters set, for example through mbedtls_ecp_group_load().

d: The destination MPI (secret part). This must be initialized.
Q: The destination point (public part). This must be initialized.
f_rng: The RNG function. This must not be NULL.

p_rng: The RNG context to be passed to f_rng. This may be NULL if f_rng does not need a
context argument.

Return 0 on success. An MBEDTLS _ERR_ECP_XXX or MBEDTLS_MPI_XXX error code on failure.

Description This function generates an ECP keypair.

Function crypto_sample_pk_rsa_verify test vec describes how to verify RSA signatures with Public Key
abstraction Layer functions.

int crypto sample pk rsa verify test vec(char *title, char *message hex string,
mbedtls md type t digest, int mod, int radix N, char *input N, int radix E, char *input E,
char *result hex str, int result)

UM-WI-046 Rev.2.6 RENESAS Page 241
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

mbedtls rsa context *rsa = NULL;
mbedtls pk context pk;

// Initialize a mbedtls pk context.
mbedtls pk init (&pk);

/* Initialize a PK context with the information given

* and allocates the type-specific PK subcontext.

*/

ret = mbedtls pk setup (&pk, mbedtls pk info from type (MBEDTLS PK RSA));

// Quick access to an RSA context inside a PK context.
rsa = mbedtls pk rsa(pk);

rsa->len = mod / 8;

MBEDTLS MPI CHK (mbedtls mpi read string(&rsa->N, radix N, input N));
MBEDTLS MPI CHK (mbedtls mpi read string(&rsa—->E, radix E, input E));

msg len = unhexify(message str, message hex string);
unhexify (result str, result hex str);

// Get the message-digest information associated with the given digest type.
if (mbedtls md info from type(digest) != NULL) {

/* Calculates the message-digest of a buffer,
* with respect to a configurable message-digest algorithm in a single call.
*/
ret = mbedtls md(mbedtls md info from type (digest),
message str, msg len,
hash result);

}

// Verify signature (including padding if relevant) & Check result with

// expected result.

ret = mbedtls pk verify(&pk, digest, hash result, 0, result str,
mbedtls pk get len (&pk));

// Free the components of a mbedtls pk context.
mbedtls pk free (&pk) ;
}

The API details are as follows.

Table 55. APIs for verifing signature

Item Description

int mbedtls_pk_verify(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t
hash_len, const unsigned char *sig, size_t sig_len)

Prototype int mbedtls_pk_verify(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned
char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len)

Parameter ctx: The PK context to use. It must have been set up.
md_alg: Hash algorithm used.

hash: Hash of the message to sign.

hash_len: Hash length or 0.

sig: Signature to verify.

sig_len: Signature length.

UM-WI-046 Rev.2.6 RENESAS Page 242
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Return 0 on success (signature is valid), MBEDTLS_ERR_PK_SIG_LEN_MISMATCH if there is a valid
signature in sig but its length is less than siglen, or a specific error code.

Description Verify signature (including padding if relevant).

Function crypto_sample_pk_sign_verify describes how to generate a key, make a signature, and verify this with
the given cryptographic algorithms.

int crypto sample pk sign verify(char *title, mbedtls pk type t type, int sign ret, int
verify ret)
{

mbedtls pk context pk;

// Initialize a mbedtls pk context.
mbedtls pk init (&pk);

/* Initialize a PK context with the information given

* and allocates the type-specific PK subcontext.

*/
ret = mbedtls pk setup (&pk, mbedtls pk info from type (type));

// Generate key pair by the type.
ret = crypto sample pk genkey (&pk) ;

// Make signature, including padding if relevant and Check result with expected
// result.
ret = mbedtls pk sign(&pk, MBEDTLS MD SHA256,

hash, 64, sig, &sig len,

rnd std rand, NULL);

// Verify signature (including padding if relevant) and Check result with
// expected result.
ret = mbedtls pk verify(&pk, MBEDTLS MD SHA256, hash, 64, sig, sig len);

// Free the components of a mbedtls pk context.
mbedtls pk free (&pk) ;
}

The API details are as follows.

Table 56. APIs for making signature

Item Description

int mbedtls_pk_sign(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t
hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_pk_sign(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char
*hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *,
size_t), void *p_rng)

Parameter ctx: The PK context to use. Must have been set up with a private key.
md_alg: Hash algorithm used.

hash: Hash of the message to sign.

hash_len: Hash length or 0.

sig: Place to write the signature.

sig_len: Number of bytes written.

f_rng: RNG function.

p_rng: RNG parameter.

Return 0 on success, or a specific error code.
UM-WI-046 Rev.2.6 RENESAS Page 243

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Description Make a signature, including padding if relevant.

Function crypto_sample_pk_rsa_decrypt_test vec describes how RSA is decrypted using Public Key

Abstraction Layer’s functions. Encryption could also be used. But this example only explains RSA decryption.

int crypto sample pk rsa decrypt test vec(char *title, char *cipher hex, int mod, int

char *input E, char *clear hex, int result)
{
rnd pseudo info *rnd info = NULL;
mbedtls rsa context *rsa = NULL;
mbedtls pk context pk;

// Initialize a mbedtls pk context.
mbedtls pk init (&pk);

/* Initialize a PK context with the information given

* and allocates the type-specific PK subcontext.

*/
ret = mbedtls pk setup (&pk, mbedtls pk info from type (MBEDTLS PK RSA));

// Quick access to an RSA context inside a PK context.
rsa = mbedtls pk rsa(pk);

// Import a set of core parameters into an RSA context.
ret = mbedtls rsa import(rsa, &N, &P, &, NULL, &E);

// Retrieve the length of RSA modulus in bytes.
if (mbedtls rsa get len(rsa) != (size t) (mod / 8)) {
}

// Complete an RSA context from a set of imported core parameters.
ret = mbedtls rsa complete(rsa);

// Decrypt message (including padding if relevant).

ret = mbedtls pk decrypt (&pk, cipher, cipher len,
output, &olen, (1000 * sizeof (unsigned char)),
rnd pseudo rand, rnd info);

// Free the components of a mbedtls pk context.
mbedtls pk free (&pk);
}

radix P, char *input P, int radix Q, char *input Q, int radix N, char *input N, int radix E,

The API details are as follows.

Table 57.APIs for PKCS#11 RSA

Item Description

int mbedtls_rsa_import(mbedtls_rsa_context *ctx, const mbedtls_mpi *N, const mbedtls_mpi *P, const
mbedtls_mpi *Q, const mbedtls_mpi *D, const mbedtls_mpi *E)

const mbedtls_mpi *Q, const mbedtls_mpi *D, const mbedtls_mpi *E)

Prototype int mbedtls_rsa_import(mbedtls_rsa_context *ctx, const mbedtls_mpi *N, const mbedtls_mpi *P,

Parameter ctx: The initialized RSA context to store the parameters in.
N: The RSA modulus. This may be NULL.

P: The first prime factor of N. This may be NULL.

Q: The second prime factor of N. This may be NULL.

D: The private exponent. This may be NULL.

E: The public exponent. This may be NULL.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return 0 on success. A non-zero error code on failure.
Description This function imports a set of core parameters into an RSA context.

int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)

Prototype int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)

Parameter ctx: The initialized RSA context holding imported parameters.

Return 0 on success. MBEDTLS_ERR_RSA_BAD_INPUT_DATA if the attempted derivations failed.
Description This function completes an RSA context from a set of imported core parameters.

To set up an RSA public key, precisely N and E must have been imported.

be derivable.

The default implementation supports the following:
> Derive P, Q from N, D, E

> Derive N, D from P, Q, E

Alternative implementations need not support these.

If this function runs successfully, it guarantees that the RSA context can be used for RSA
operations without the risk of failure or crash.

To set up an RSA private key, sufficient information must be present for the other parameters to

int mbedtls_pk_decrypt(mbedtls_pk_context *ctx, const unsigned char *input, size_t ilen, unsigned char *output,
size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)

Prototype int mbedtls_pk_decrypt(mbedtls_pk_context *ctx, const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)

Parameter ctx: The PK context to use. It must have been set up with a private key.

input: Input to decrypt.

ilen: Input size.

output: Decrypted output.

olen: Decrypted message length.
osize: Size of the output buffer.
f_rng: RNG function.

p_rng: RNG parameter.

Return 0 on success, or a specific error code.

Description Decrypt message (including padding if relevant).

Function crypto_sample_pk_rsa_alt describes how RSA ALT context creates and decrypts a signature.

int crypto sample pk rsa alt()
{

* An rsa alt context can only do private operations (decrypt, sign).
* Test it against the public operations (encrypt, verify) of a
* corresponding rsa context.

*/

mbedtls rsa context *raw = NULL;
mbedtls pk context rsa, alt;
mbedtls pk debug item *dbg items = NULL;

// Initialize an RSA context.
mpbedtls rsa init(raw, MBEDTLS RSA PKCS V15, MBEDTLS MD NONE);

// Initialize a mbedtls pk context.
mbedtls pk init (&rsa);
mbedtls pk init(&alt);

UM-WI-046 Rev.2.6 RENESAS Page 245

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

*/

}

/* Initialize a PK context with the information given
* and allocates the type-specific PK subcontext.

ret = mbedtls pk setup(&rsa, mbedtls pk info from type (MBEDTLS PK RSA));

// Generate key pair by the type.
ret = crypto sample pk genkey(&rsa);

// Copy the components of an RSA context.
ret = mbedtls rsa copy(raw, mbedtls pk rsa(rsa));

// Initialize PK RSA ALT context
ret = mbedtls pk setup rsa alt(&alt, (void *)raw,

// Encrypt message (including padding if relevant).
ret = mbedtls pk encrypt (&rsa, msg, 50, cipher,

// Decrypt message (including padding if relevant).
ret = mbedtls pk decrypt(&alt, cipher, cipher len,

// Free the components of an RSA key.
mbedtls rsa free(raw);

// Free the components of a mbedtls pk context.
mbedtls pk free(&rsa);
mbedtls pk free (&alt);

crypto sample rsa decrypt func,
crypto_sample rsa sign func,
crypto sample rsa key len func);

&cipher len, 1000, rnd std rand, NULL);

test, &test len, 1060, rnd std rand, NULL);

The API details are as follows.

Table 58. APIs for initializing RSA

Item Description
int mbedtls_pk_setup_rsa_alt(mbedtls_pk_context *ctx, void * key, mbedtls_pk_rsa_alt_decrypt_func
decrypt_func, mbedtls_pk_rsa_alt_sign_func sign_func, mbedtls_pk_rsa_alt_key_len_func key_len_func)
Prototype int mbedtls_pk_setup_rsa_alt(mbedtls_pk_context *ctx, void * key,
mbedtls_pk_rsa_alt_decrypt_func decrypt_func, mbedtls_pk_rsa_alt_sign_func sign_func,
mbedtls_pk_rsa_alt_key_len_func key_len_func)
Parameter ctx: Context to initialize. It must not have been set up yet (type MBEDTLS_PK_NONE)
key: RSA key pointer.
decrypt_func: Decryption function.
sign_func: Signing function.
key_len_func: Function returning key length in bytes.
Return 0 on success, or MBEDTLS_ERR_PK_BAD_INPUT_DATA if the context was not already
initialized as RSA_ALT.
Description Initialize an RSA-alt context.

The code example shows how to check if a public and private pair of keys matches.

{

int crypto sample pk check pair(char *title, char *pub file, char *prv file, int result)

mbedtls pk context pub, prv, alt;

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS Page 246
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Initialize a mbedtls pk context.
mbedtls pk init (&pub);
mbedtls pk init (&prv);

// Parse a public key in PEM or DER format.

ret = mbedtls pk parse public key (&pub,
(const unsigned char *)pub file,
(strlen(pub file) + 1));

// Parse a private key in PEM or DER format.

ret = mbedtls pk parse key (&prv,
(const unsigned char *)prv file,
(strlen(prv _file) + 1), NULL, 0);

// Check if a public-private pair of keys matches.
ret = mbedtls pk check pair (&pub, &prv);

mbedtls pk free (&pub) ;
mbedtls pk free (&prv);
}

The API details are as follows.

Table 59. APIs for parsing private and public key

Item Description

int mbedtls_pk_parse_public_key(mbedtls_pk_context *ctx, const unsigned char *key, size_t keylen)

Prototype int mbedtls_pk_parse_public_key(mbedtls_pk_context *ctx, const unsigned char *key, size t
keylen)
Parameter ctx: The PK context to fill. It must have been initialized but not set up.

key: Input buffer to parse. The buffer must contain the input exactly, with no extra trailing
material. For PEM, the buffer must contain a null-terminated string.

keylen: Size of key in bytes. For PEM data, this includes the terminating null byte, so keylen
must be equal to strlen(key) + 1.

Return 0 if successful, or a specific PK or PEM error code.

Description Parse a public key in PEM or DER format.

int mbedtls_pk_parse_key(mbedtls_pk_context *pk, const unsigned char *key, size_t keylen, const unsigned char
*pwd, size_t pwdlen)

Prototype int mbedtls_pk_parse_key(mbedtls_pk_context *pk, const unsigned char *key, size_t keylen,
const unsigned char *pwd, size_t pwdlen)

Parameter pk: The PK context to fill. It must have been initialized but not set up.

key: Input buffer to parse. The buffer must contain the input exactly, with no extra trailing
material. For PEM, the buffer must contain a null-terminated string.

keylen: Size of key in bytes. For PEM data, this includes the terminating null byte, so keylen
must be equal to strlen(key) + 1.

pwd: Optional password for decryption. Pass NULL if expecting a non-encrypted key. Pass a
string of pwdlen bytes if expecting an encrypted key; a non-encrypted key is also accepted. The
empty password is not supported.

pwdlen: Size of the password in bytes. Ignored if pwd is NULL.

Return 0 if successful, or a specific PK or PEM error code.

Description Parse a private key in PEM or DER format.

int mbedtls_pk_check_pair(const mbedtls_pk_context *pub, const mbedtls_pk_context *prv)

Prototype int mbedtls_pk_check_pair(const mbedtls_pk_context *pub, const mbedtls_pk_context *prv)
UM-WI-046 Rev.2.6 RENESAS Page 247

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter pub: Context holding a public key.
prv: Context holding a private (and public) key.

Return 0 on success or MBEDTLS_ERR_PK_BAD_INPUT_DATA.

Description Check if a public-private pair of keys matches.

16.1.13 Cryptographic Algorithms — Generic Cipher Wrapper

The Generic cipher wrapper sample application demonstrates common use cases of a generic cipher wrapper

API of the mbedTLs library that is included in the DA16200 SDK.

AES—128-ECB{enc,. dec): passed
AES—192-ECB<enc, dec?»: passed
AES—256-ECB{enc,. dec): passed
AES—128-CBGC<enc, dec?»: passed
AES—192-CBC{enc, dec): passed
AES—-256—CBGC{enc, dec?»: passed
AES—128-CFB1Z28<{enc, dec): passed
AES—192-CFB1Z28<enc, dec?>: passed
AES—256—-CFB1Z28<{enc, dec): passed
AES—128-CTR<enc, dec)»>: passed
AES—192-CTR{enc,. dec): passed
AES—-256—CTR<enc, dec)»: passed
AES—128-GCM{enc,. dec): passed
AES—192-GCH<enc, dec?»: passed
AES—-256-GCM{enc, dec): passed
DES—CBC{enc, dec?»: passed
DES-EDE-CBC{enc,. dec): passed
DES—EDE3—-CBGC<{enc, dec»: passed
AES—128-CCM{enc,. dec): passed
AES—192-CCH<enc, dec?»: passed
AES—-256-CCM{enc,. dec): passed

Figure 116. Result of generic cipher

16.1.13.1 Application Initialization

The generic cipher wrapper contains an abstraction interface for use with the cipher primitives that the library

provides. It provides a common interface to all the available cipher operations.

void crypto sample cipher (void *param)
{
crypto sample cipher wrapper();

vTaskDelete (NULL) ;

return ;

16.1.13.2 How Generic Cipher Wrapper is Used
This example describes how to encrypt and decrypt with generic cipher wrapper functions.

int crypto sample cipher wrapper ()
{
mbedtls cipher type t cipher type = MBEDTLS CIPHER NONE;
mbedtls cipher context t cipher ctx;
mbedtls cipher info t *cipherinfo = NULL;
mbedtls cipher mode t cipher mode = MBEDTLS MODE NONE;

for (cipher type = MBEDTLS CIPHER AES 128 FECB ;
cipher type <= MBEDTLS CIPHER CAMELLIA 256 CCM ;
cipher typet++) {

flag pass = FALSE;

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 248

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Initialize a cipher context as NONE.
mbedtls cipher init (cipher ctx);

// Retrieve the cipher-information structure associated with the given

// cipher type.

cipherinfo = (mbedtls cipher info t *)mbedtls cipher info from type
(cipher type);

// Initialize and fill the cipher-context structure with the appropriate
// values.
mbedtls cipher setup (&cipher ctx, cipherinfo);

// Return the key length of the cipher.
cipher keylen = mbedtls cipher get key bitlen(&cipher ctx);

// Return the mode of operation for the cipher.
cipher mode = mbedtls cipher get cipher mode (&cipher ctx);

// Return the size of the IV or nonce of the cipher, in bytes.
cipher ivlen = mbedtls cipher get iv size(&cipher ctx);

// Return the block size of the given cipher.
cipher blksiz = mbedtls cipher get block size (&cipher ctx);

// Return the name of the given cipher as a string.
cipher name = (char *)mbedtls cipher get name (&cipher ctx);

PRINTF ("* %s", cipher name);
PRINTF (" (enc, ");

if (cipher adlen == 0) { // No CCM or GCM
// Set the key to use with the given context.
cipher status = mbedtls cipher setkey (&cipher ctx,
cipher key, cipher keylen,
MBEDTLS ENCRYPT) ;

// Set the initialization vector (IV) or nonce.
cipher status = mbedtls cipher set iv(&cipher ctx,
cipher iv, cipher ivlen);

// Reset the cipher state.
cipher status = mbedtls cipher reset (&cipher ctx);

// Encrypt or decrypt using the given cipher context.

cipher status = mbedtls cipher update (&cipher ctx,
plain in, plain inlen,
ciphertext, &ciphertext len);

// Finish the operation.

cipher status = mbedtls cipher finish (&cipher ctx,
& (ciphertext [ciphertext len]),
&ciphertext finlen);

} else {
// Set the key to use with the given context.
cipher status = mbedtls cipher setkey (&cipher ctx,
cipher key, cipher keylen,
MBEDTLS ENCRYPT) ;

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 249

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// Perform autenticated encryption (AEAD) .

cipher status = mbedtls cipher auth encrypt (&cipher ctx,
cipher iv, cipher ivlen,
cipher ad, cipher adlen,
plain in, plain inlen,
ciphertext, &ciphertext len,
cipher tag, cipher taglen);

}

PRINTF ("dec): ");

if (cipher adlen == 0) { // No CCM or GCM
// Set the key to use with the given context.
cipher status = mbedtls cipher setkey (&cipher ctx,
cipher key, cipher keylen,
MBEDTLS DECRYPT) ;

// Set the initialization vector (IV) or nonce.
cipher status = mbedtls cipher set iv(&cipher ctx,
cipher iv, cipher ivlen);
// Reset the cipher state.
cipher status = mbedtls cipher reset (&cipher ctx);

// Encrypt or decrypt using the given cipher context.

cipher status = mbedtls cipher update (&cipher ctx,
ciphertext, (ciphertext len + ciphertext finlen),
plain out, &plain outlen);

// Finish the operation.

cipher status = mbedtls cipher finish (&cipher ctx,
& (plain out[plain outlen]),
&plain finlen);

} else {

// Set the key to use with the given context.

cipher status = mbedtls cipher setkey (&cipher ctx,
cipher key, cipher keylen,
MBEDTLS DECRYPT) ;

// Perform autenticated decryption (AEAD) .

cipher status = mbedtls cipher auth decrypt (&cipher ctx,
cipher iv, cipher ivlen,
cipher ad, cipher adlen,
ciphertext, ciphertext len,
plain out, é&plain outlen,
cipher tag, cipher taglen);

}

// Free and clear the cipher-specific context of ctx.
mbedtls cipher free (&cipher ctx);

}

The API details are as follows.

Table 60. APIs for generic cipher wrapper

Item Description

void mbedtls_cipher_init(mbedtls_cipher_context_t *ctx)

Prototype void mbedtls_cipher_init(mbedtls_cipher_context_t *ctx)
Parameter ctx: The context to be initialized. This must not be NULL.
UM-WI-046 Rev.2.6 RENESAS Page 250

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return None
Description This function initializes a cipher_context as NONE.

void mbedtls_cipher_fr

ee(mbedtls_cipher_context_t *ctx)

Prototype void mbedtls_cipher_free(mbedtls_cipher_context_t *ctx)

Parameter ctx: The context to be freed. If this is NULL, the function has no effect, otherwise this must point
to an initialized context.

Return None

Description This function frees and clears the cipher-specific context of ctx.

Freeing ctx itself remains the responsibility of the caller.

const mbedtls_cipher_info_t* mbedtls_cipher_info_from_type(const mbedtls_cipher_type_t cipher_type)

Prototype Const mbedtls_cipher_info_t* mbedtls_cipher_info_from_type(const mbedtls_cipher_type_t
cipher_type)

Parameter cipher_type: Type of the cipher to search for.

Return The cipher information structure is associated with the given cipher_type.
NULL if the associated cipher information is not found.

Description This function retrieves the cipher-information structure associated with the given cipher type.

int mbedtls_cipher_setup(mbedtls_cipher_context_t *ctx, const mbedtls_cipher_info_t *cipher_info)

Prototype int mbedtls_cipher_setup(mbedtls_cipher_context_t *ctx, const mbedtls_cipher_info_t
*cipher_info)
Parameter ctx: The context to initialize. This must be initialized.
cipher_info: The cipher to use.
Return 0 on success.
MBEDTLS ERR_CIPHER BAD_INPUT_DATA on parameter-verification failure.
MBEDTLS_ERR_CIPHER_ALLOC_FAILED if allocation of the cipher-specific context fails.
Description This function initializes and fills the cipher-context structure with the appropriate values. It also

clears the structure.

static inline int mbedtls_cipher_get_key_bitlen(const mbedtls_cipher_context_t *ctx)

Prototype static inline int mbedtls_cipher_get_key_bitlen(const mbedtls_cipher_context_t *ctx)
Parameter ctx: The context of the cipher. This must be initialized.
Return The key length of the cipher in bits.
MBEDTLS_KEY_LENGTH_NONE if ctx has not been initialized.
Description This function returns the key length of the cipher.

static inline mbedtls_ci

pher_mode_t mbedtls_cipher_get_cipher_mode(const mbedtls_cipher_context_t *ctx)

Prototype static inline mbedtls_cipher_mode_t mbedtls_cipher_get_cipher_mode(const
mbedtls_cipher_context_t *ctx)

Parameter ctx: The context of the cipher. This must be initialized.

Return The mode of operation.
MBEDTLS_MODE_NONE if ctx has not been initialized.

Description This function returns the mode of operation for the cipher.

static inline int mbedtls_

cipher_get_iv_size(const mbedtls_cipher_context_t *ctx)

Prototype

static inline int mbedtls_cipher_get_iv_size(const mbedtls_cipher_context_t *ctx)

Parameter

ctx: The context of the cipher. This must be initialized.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 251

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return The recommended |V size if no IV has been set.
0 for ciphers not using an IV or nonce.
The actual size if an IV has been set.
Description This function returns the size of the IV or nonce of the cipher, in bytes.

static inline unsigned int mbedtls_cipher_get_block_size(const mbedtls_cipher_context_t *ctx)

Prototype static inline unsigned int mbedtls_cipher_get_block_size(const mbedtls_cipher_context_t *ctx)
Parameter ctx: The context of the cipher. This must be initialized.
Return The block size of the underlying cipher.
0 if ctx has not been initialized.
Description This function returns the block size of the given cipher.

static inline const char

*mbedtls_cipher_get_name(const mbedtls_cipher_context_t *ctx)

Prototype static inline const char *mbedtls_cipher_get_name(const mbedtls_cipher_context_t *ctx)
Parameter ctx: The context of the cipher. This must be initialized.
Return The name of the cipher.
NULL if ctx is not initialized.
Description This function returns the name of the given cipher as a string.

int mbedtls_cipher_setkey(mbedtls_cipher_context_t *ctx, const unsigned char *key, int key_bitlen, const
mbedtls_operation_t operation)

Prototype

int mbedtls_cipher_setkey(mbedtls_cipher_context_t *ctx, const unsigned char *key, int
key_bitlen, const mbedtls_operation_t operation)

Parameter

ctx: The generic cipher context. This must be initialized and bound to a cipher information
structure.

key: The key to use. This must be a readable buffer of at least key_bitlen Bits.
key_bitlen: The key length to use, in Bits.

operation: The operation that the key is used for: MBEDTLS_ENCRYPT or
MBEDTLS_DECRYPT.

Return

0 on success.
MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.
A cipher-specific error code on failure.

Description

This function sets the key to use with the given context

int mbedtls_cipher_set_iv(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t iv_len)

Prototype int mbedtls_cipher_set_iv(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_tiv_len)
Parameter ctx: The generic cipher context. This must be initialized and bound to a cipher information
structure.
iv: The IV to use, or NONCE_COUNTER for CTR-mode ciphers. This must be a readable buffer
of at least iv_len bytes.
iv_len: The IV length for ciphers with variable-size 1V. This parameter is discarded by ciphers
with fixed-size IV.
Return 0 on success.
MBEDTLS _ERR_CIPHER BAD_INPUT_DATA on parameter-verification failure.
Description This function sets the initialization vector (IV) or nonce.

int mbedtls_cipher_reset(mbedtls_cipher_context_t *ctx)

Prototype

int mbedtls_cipher_reset(mbedtls_cipher_context_t *ctx)

Parameter

ctx: The generic cipher context. This must be initialized.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 252

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return 0 on success.

MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.
Description This function resets the cipher state.

int mbedtls_cipher_update(mbedtls_cipher_context_t *ctx, const unsigned char *input, size_t ilen, unsigned char

*output, size_t *olen)

Prototype int mbedtls_cipher_update(mbedtls_cipher_context_t *ctx, const unsigned char *input, size_t
ilen, unsigned char *output, size_t *olen)

Parameter ctx: The generic cipher context. This must be initialized and bound to a key.
input: The buffer holding the input data. This must be a readable buffer of at least ilen bytes
ilen: The length of the input data.
output: The buffer for the output data. This must be able to hold at least ilen + block_size. This
must not be the same buffer as input.
olen: The length of the output data, to be updated with the actual number of bytes written. This
must not be NULL.

Return 0 on success.
MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.
MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE on an unsupported mode for a cipher.
A cipher-specific error code on failure.

Description The generic cipher update function. It encrypts or decrypts using the given cipher context.

Writes as many block-sized blocks of data as possible to output. Any data that cannot be written
immediately is either added to the next block or flushed when mbedtls_cipher_finish() is called.
Exception: For MBEDTLS_MODE_ECB, expects a single block in size. For example, 16 bytes
for AES.

int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx, unsigned char *output, size_t *olen)

Prototype

int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx, unsigned char *output, size_t *olen)

Parameter

ctx: The generic cipher context. This must be initialized and bound to a key.
output: The buffer to write data to. This needs to be a writable buffer of at least block_size bytes
olen: The length of the data written to the output buffer. This may not be NULL.

Return

0 on success.
MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.

MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED on decryption expecting a full block but
not receiving one.

MBEDTLS_ERR_CIPHER_INVALID_PADDING on invalid padding while decrypting.
A cipher-specific error code on failure.

Description

The generic cipher finalization function.

If data still needs to be flushed from an incomplete block, the data contained in it is padded to
the size of the last block and written to the output buffer.

int mbedtls_cipher_auth_encrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t iv_len, const
unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen,
unsigned char *tag, size_t tag_len)

Prototype

int mbedtls_cipher_auth_encrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t
iv_len, const unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned
char *output, size_t *olen, unsigned char *tag, size_t tag_len)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 253

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Parameter ctx: The generic cipher context. This must be initialized and bound to a key.
iv: The IV to use, or NONCE_COUNTER for CTR-mode ciphers. This must be a readable buffer
of at least iv_len bytes.
iv_len: The IV length for ciphers with variable-size IV. This parameter is discarded by ciphers
with fixed-size IV.
ad: The additional data to authenticate. This must be a readable buffer of at least ad_len bytes
ad_len: The length of ad.
input: The buffer holding the input data. This must be a readable buffer of at least ilen bytes
ilen: The length of the input data.
output: The buffer for the output data. This must be able to hold at least ilen bytes.
olen: The length of the output data, to be updated with the actual number of bytes written. This
must not be NULL.
tag: The buffer for the authentication tag. This must be a writable buffer of at least tag_len bytes
tag_len: The desired length of the authentication tag.

Return 0 on success.
MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.
A cipher-specific error code on failure.

Description The generic authenticated encryption (AEAD) function.

int mbedtls_cipher_auth_decrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t iv_len, const
unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen,
const unsigned char *tag, size_t tag_len)

Prototype int mbedtls_cipher_auth_decrypt(mbedtls_cipher_context_t *ctx, const unsigned char *iv, size_t
iv_len, const unsigned char *ad, size_t ad_len, const unsigned char *input, size_t ilen, unsigned
char *output, size_t *olen, const unsigned char *tag, size_t tag_len)

Parameter ctx: The generic cipher context. This must be initialized and bound to a key.

iv: The IV to use, or NONCE_COUNTER for CTR-mode ciphers. This must be a readable buffer
of at least iv_len bytes.

iv_len: The IV length for ciphers with variable-size IV. This parameter is discarded by ciphers
with fixed-size V.

ad: The additional data to be authenticated. This must be a readable buffer of at least ad_len
bytes.

ad_len: The length of ad.

input: The buffer holding the input data. This must be a readable buffer of at least ilen bytes
ilen: The length of the input data.

output: The buffer for the output data. This must be able to hold at least ilen bytes.

olen: The length of the output data, to be updated with the actual number of bytes written. This
must not be NULL.

tag: The buffer holding the authentication tag. This must be a readable buffer of at least tag_len
bytes.

tag_len: The length of the authentication tag.

Return 0 on success.
MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA on parameter-verification failure.
MBEDTLS_ERR_CIPHER_AUTH_FAILED if data is not authentic.
A cipher-specific error code on failure.

Description The generic authenticated decryption (AEAD) function.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS Page 254
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

17. Peripheral and System Examples

171 UART

Along with a UARTO interface for the debug console, the DA16200 SDK has a UART1 or UART2 interface to
communicate with an external MCU. GPIOA[4] and GPIOA[5] can be used to this interface.

1711

Introduction

The DA16200/DA16600 has two UARTSs (Universal Asynchronous Receiver-Transmitter), which have the

following features:

Table 61. UART pin configuration

Programmable use of UART

Compliance to the AMBA AHB bus specification for easy integration into SoC implementation
Support both byte and word access for reduction of bus burden
Support both RS-232 and RS-485

Separate 32x8 bit transmit and 32x12 bit receive FIFO memory buffers to reduce CPU interrupts

Programmable FIFO disabling for 1-byte depth
Programmable baud rate generator
Standard asynchronous communication bits (start, stop and parity). These are added before transmission and

removed upon reception

Independent masking of transmit FIFO, receive FIFO, receive timeout
Support for Direct Memory Access (DMA)

False start bit detection
Programmable flow control

Fully programmable serial interface characteristics:

e Data can be 5, 6, 7 or 8 bits

e Even, odd, stick or no-parity bit generation and detection

1 or 2 stop bit generation
Baud rate generation

Pin number

Pin name — T— /10 Function name
UARTO_RXD 12 M10 I UARTO_RXD
UARTO_TXD 11 L9 (0] UARTO_TXD
GPIOA7 31 E1 | UART1_RXD
GPIOA5 33 D2 I -
GPIOA3 36 D4 I -
GPIOA1 38 C3 I -
GPIOAG 32 E3 O UART1_TXD
GPIOA4 34 F4 o] -
GPIOA2 37 B2 o] -
GPIOAO 39 A3 o] -
GPIOA5 33 D2 | UART1_CTS
GPIOA4 34 F4 o] UART1_RTS
GPIOA11 27 G1 I
GPIOC7 9 K12 I UART2_RXD
F_l02 16 J7 |

UM-WI-046 Rev.2.6 RENESAS Page 255

Oct 3, 2025

CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Pin number
Pin name BEn p— /10 Function name
GPIOA10 28 F2 (0]
GPIOC6 10 L11 (0] UART2_TXD
F_103 17 K6 o]
171.2 API
Table 62. APIs for UART interface
Item Description

HANDLE UART_CREATE(UART_UNIT_IDX dev_idx)

Parameter dev_idx Device index
Return If it succeeds, return handle for such device. If it fails, return NULL.
Description Function to create a handle with parameter dev_idx designated.

The DA16200/DA16600 has two UART ports.

typedef enum uart unit {
UART UNIT O = O,
UART UNIT 1,
UART UNIT MAX

} UART UNIT IDX;

Normally, UARTO is used for debug console, and UART1 is used for data transfer.

int UART_INIT (HANDLE handler)

Parameter handler Device handle
Return TRUE if it succeeds, or FALSE if it fails.
Description The UART configuration should be set before this function is called.

After this function is called, UART operation starts.

int UART_CHANGE_BAUERATE (HANDLE handler, UINT32 baudrate)

Parameter handler Device handle
baudrate Baud rate to set.
Return TRUE if it succeeds, or FALSE if it fails.
Description This function changes the baud rate of UART during UART operation.

int UART_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler Device handle
cmd Commands are defined in <uart.h> in the DA16200/DA16600 SDK.
data Data pointer.

Return TRUE if it succeeds, or FALSE if it fails.

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 256

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

Description

The user can set the configuration of UART with this function.
Configurations of UART should be called before the UART_INIT() function.
Commands are as below:

UART_GET_DEVREG = 1, // get device physical address
UART_SET_CLOCK, // set base clock

UART_SET BAUDRATE, // set baud rate

UART_GET_BAUDRATE, // get baud rate

UART_SET_LINECTRL, // set line control

UART_GET_LINECTRL, // get line control

UART_SET_CONTROL, // set UART control

UART_GET_CONTROL, // get UART control
UART_SET_SW_RX_QUESIZE, // set queue size

UART_SET_INT, // set interrupt configuration

UART_GET_INT, // get interrupt configuration
UART_SET_FIFO_INT_LEVEL, // set FIFO level
UART_GET_FIFO_INT_LEVEL, // get FIFO level

UART_SET_USE_DMA, // set DMA use

UART_GET_USE_DMA, // get DMA use

UART_CHECK_RXEMPTY, // check RX FIFO empty
UART_CHECK_RXFULL, // check RF FIFO full
UART_CHECK_TXEMPTY, // check TX FIFO empty
UART_CHECK_TXFULL, // check TX FIFO full

UART_CHECK_BUSY, // check UART busy

UART_SET_RX_SUSPEND, // set the RX function to suspend
UART_GET_RX_SUSPEND, // get the RX function to suspend
UART_SET_SW_FLOW_CONTROL, // set the flow control to enable
UART_GET_SW_FLOW_CONTROL, // get the flow control to enable
UART_SET_WORD_ACCESS, // set word-access-enable register
UART_GET_WORD_ACCESS, //get word-access-enable register
UART_SET_RW_WORD, // set whether write and read in word or byte
UART_GET_RW_WORD, // get whether write and read in word or byte
UART_SET_RSA485, // set the RS485 function to enable
UART_GET_RS485, // get the RS485 function to enable
UART_CLEAR_ERR_INT_CNT, // clear error interrupt counter
UART_GET_ERR_INT_CNT, // get error interrupt counter
UART_SET_ERR_INT_CALLBACK, // set error interrupt callback function
UART_CLEAR_FRAME_INT_CNT, //clear frame error interrupt counter
UART_GET_FRAME_INT_CNT, // get frame error interrupt counter
UART_SET_FRAME_INT_CALLBACK, // set frame error interrupt callback
UART_CLEAR_PARITY_INT_CNT, // clear parity error interrupt counter
UART_GET_PARITY_INT_CNT, // get frame error interrupt counter
UART_SET_PARITY_INT_CALLBACK, // set frame error interrupt callback
UART_CLEAR_BREAK_INT_CNT, // clear break error interrupt counter
UART_GET_BREAK_INT_CNT, // get break error interrupt counter
UART_SET_BREAK_INT_CALLBACK, // set break error interrupt callback
UART_CLEAR_OVERRUN_INT_CNT, // clear overrun error interrupt counter
UART_GET_OVERRUN_INT_CNT, // get overrun error interrupt counter
UART_SET_OVERRUN_INT_CALLBACK, // set overrun interrupt callback

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 257

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

int UART_READ (HANDLE handler, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle
p_data Data pointer
p_dlen Length to read.
Return If it succeeds, return number of received data, else negative number.
Description User can use the UART_SET_RX_SUSPEND ioctl command to set the UART READ operation

to suspend or not.

int UART_WRITE (HANDL

E handler, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle
p_data Data pointer
p_dlen Length to write
Return Number of sent data
Description UART write command
int UART_DMA_READ_TIMEOUT (HANDLE handler, VOID *p_data, UINT32 p_dlen, UINT32 timeout)
Parameter handler Device handle
p_data Data pointer
p_dlen Length to read
timeout Wait option to receive data
Return Number of received data
Description The operation of this function is the same with UART_DMA_READ with waiting timeout.
int UART_DMA_READ (HANDLE handler, VOID *p_data, UINT32 p_dlen)
Parameter handler Device handle
p_data Data pointer
p_dlen Length to read
Return Number of received data
Description The operation of this function is the same with UART_READ, except DMA is used.

int UART_DMA_WRITE (H

ANDLE handler, VOID *p_data, UINT32 p_dlen)

Parameter handler Device handle
p_data Data pointer
p_dlen Length to write
Return Number of sent data
Description The operation of this function is the same with UART_WRITE, except DMA is used.

int UART_FLUSH(HANDLE handler)

Parameter handler Device handle
Return TRUE if it succeeds, or FALSE if it fails.
Description Flush the FIFO buffer of UART

int UART_CLOSE(HANDL

E handler)

Parameter handler Device handle
Return TRUE if it succeeds, or FALSE if it fails.
Description UART driver close command.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 258

DA16200 DA16600 FreeRTOS SDK Programmer Guide

17.1.3 How to Run

1. In the e?studio, import a project for the UART sample application as follows.
~/SDK/apps/common/examples/Peripheral /UART1 /projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. The start log message is shown in the console terminal and UART1 terminal.

4. To test with UART1, input test data (hexa or ascii) on the UART1 terminal and click the Enter key to send
data to DA16200. Then the console terminal shows the received data in hexadecimal and sends the
message "- Data receiving OK..." to UART1.

a. UART1 terminal

Start UART1 communicate module ...

Data receiving O0K__.
Figure 117. Result of UART #1

b. Console terminal
— Start UART1 communicate module ...
ttt Mo selected network t1%

2> Metwork Interface (wlanB> : UFP
»>»? Associated with Y8:-3a:-ch:-25:f5:f8

Connection COHPLETE to T8:-3Ja-ch:-25:-f5:-f8

—— DHCP Client WLAMA: SEL<62
—— DHCP Client WLAMA: REQ<1>

— DHCP Client WLANA: CHE({8>

— DHCP Client YLANA: BOUNDC1@3

Assigned addr : 172.168.86.68

netmask : 255.255.255 @
gateway : 172.168.86.1
DNS addr - 192.168.86.1

DHCF Server IP 192 _168_86.1
Leazse Time 24h Bdm B8=s
Renewal Time 12h B8m B8s

=ha:
[ABAABABBA] 68 65 6c 6c 6F hello

Figure 118. Result of UART #2

17.1.4 Sample Code

17.1.41 Application Initialization

This is an example of a user application to initialize and communicate between the DA16200 and an MCU that is
connected through the UART1 interface. Function user uartl init() initializes the UART1 hardware resource
and then vartl monitor sample () is run to communicate with the host through the UART1 interface.

~/SDK/apps/common/examples/Peripheral /UART1/src/uart sample.c

/* Local static variables */
static int sample uart idx = UART UNIT 1; // UART UNIT 1, UART UNIT 2

/*

* For configuring UART devices,

*

* "user UART config info" data should be located in /SDK/customer/src/user uart.c.
*

*

This data is temporary for sample application.
*/
static uart info t sample UART config info =

{

UM-WI-046 Rev.2.6 RENESAS Page 259
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

UART BAUDRATE 115200, /* baud */

UART DATABITS 8, /* bits */

UART PARITY NONE, /* parity */

UART STOPBITS 1, /* stopbit */
UART FLOWCTL OFF /* flow control */

};

void run uartl sample (UINT32 arg)
{

int status;

*
* int set user UART conf (int uart idx, uart info t *uart conf info, char
atcmd flag)
*/
status = set user UART conf (UART UNIT 1, &sample UART config info, FALSE);
if (status != 0)
{
PRINTF (" [%$S] Error to configure for UART1 !!!\n", func);
return;

*

* int UART init(int uart idx);

*/

status = UART init (sample uart idx);

if (status != 0)

{
PRINTF (" [%S] Error to initialize UART1 with sample UART config !!!\n",
__func);

return;

}

/* Start UART monitor */
uartl sample();

}

can enable/disable the UART echo function by setting echo enable.

Function uvartl sample () invokes function get data from uartl () repeatedly to read data from UART1. User

static void uartl sample (void)

{

int i;

char *init str = "- Start UART1 communicate module ...\r\n";
char *rx buf = NULL;

char *tx buf = "\r\n- Data receiving OK...\r\n";

int tx len;

/* Print-out test string to console and to UART1 device */
PRINTF ((const char *)init str); // For Console
puts UART (sample uart idx, init str, strlen((const char *)init str));

echo enable = TRUE;
rx buf = malloc (USER UART1 BUF SZ);

while (1)
{
memset (rx buf, 0, USER UART1 BUF SZ);

/* Get on byte from uartl comm port */
get data from uartl (rx buf);

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 260

DA16200 DA16600 FreeRTOS SDK Programmer Guide

17.1.4.2 Data Read/Write

Use getchar UART () to read a character from UART1 or UART2. This example shows how to read data from
UART device until it meets characters "\n' or \r'. Users can modify this function for customized application
operation.

NOTE

After UART_INIT() is called, it tries to receive UART_RX data even if UART_READ() does not call. Flush the UART_RX
data if there is no need to use data before UART_READ().

#define USER DELIMITER 0 "\O'
#define USER DELIMITER 1 "\n'
#define USER DELIMITER 2 "\r'

static void get data from uartl (char *buf)

{

char ch = 0;
int i=0;
while (1) {

/* Get on byte from uartl comm port */
ch = getchar UART (sample uart idx, portMAX DELAY);

if (ch == 0) {
vTaskDelay (1) ;
continue;

if (echo enable == TRUE) {
puts UART (sample uart idx, &ch, sizeof (char)); // echo

/* check data length */
if (i >= (USER UART1 BUF SZ - 1)) {
i = USER UART1 BUF SZ - 2;

if (ch == USER DELIMITER 1 || ch == USER DELIMITER 2) ({
buf [i++] = USER DELIMITER 0;
break;

} else {
buf[i++] = ch;

}

Also, this example shows how to send data to UART1 using puts UART () API.

~/SDK/core/system//include/common/common uart.h

/**

KA AR A A A AR A A kA Ak A A kA kA Ak A Ak A kA Ak Ak Ak kA kA A kA Ak Ak Ak Ak kA Ak Ak kA kA A Ak h kA hkhkhkhhkhkhkhkhhkhkhkhhhkkhkhkrxhkhrkhkx*k
* @brief Put character string to UART device

* @param[in] uart idx Index value of UART interface (UART UNIT 1, UART UNIT 2)

* @param[in] *data Text string to write
UM-WI-046 Rev.2.6 RENESAS Page 261

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

* @param[in] len Write length

* (@return None

KR A A A A A A A A A R Ak kA kA Ak kA Ak hkk Ak kkhhk*k
*/

void puts UART (int uart idx, char *data, int data len);

17.2 GPIO
This application shows how to read/write the GPIO port and use the GPIO interrupt.

17.2.1 Introduction

All digital pads can be used as GPIO. Each GPIO port is mixed with a multi-functional interface. The GPIO
features for this device are:

= |nput or output lines in a programmable direction

= Word and half word read/write access

= Address-masked byte writes to facilitate quick bit set and clear operations

= Address-based byte reads to facilitate quick bit test operations

= Make a GPIO pin to an interrupt pin possible to be the output signal of PWM [3:0], external Interrupt, SPI_CSB
[3:1], RF_SW [1:0] and UART_TXDOE [1:0] on any GPIO pin

It provides special functions for GPIO pin use. PWM [3:0], external interrupt, SPI_CSB [3:1], RF_SW [1:0] and

UART_TXDOE [1:0] signals can be output if any of the unused pins among the GPIO pins are selected. It is

possible to select the function to be output from the GPIO register setting and select the remaining GPIO pin and

not output the specific function to any desired GPIO pin.

Table 63. GPIO pin configuration

Pin name Pin number /10 Pin selection Function name
GPIOAO 39 1/0 Reg. GPIO_SEL.AMUX9 GPIOA[0]
GPIOA1 38 1/0 Reg. GPIO_SEL.AMUX9 GPIOA[1]
GPIOA2 37 1/0 Reg. GPIO_SEL.BMUX9 GPIOA[2]
GPIOA3 36 I/0 Reg. GPIO_SEL.BMUX9 GPIOA[3]
GPIOA4 34 I/0 Reg. GPIO_SEL.CMUX9 GPIOA[4]
GPIOA5 33 I/0 Reg. GPIO_SEL.CMUX9 GPIOA[5]
GPIOA6 32 I/0 Reg. GPIO_SEL.DMUX9 GPIOA[6]
GPIOAT7 31 1/0 Reg. GPIO_SEL.DMUX9 GPIOA[7]
GPIOA8 30 I/0 Reg. GPIO_SEL.EMUX9 GPIOA[8]
GPIOA9 29 I/0 Reg. GPIO_SEL.EMUX9 GPIOA[9]
GPIOA10 28 1/0 Reg. GPIO_SEL.FMUX7 GPIOA[10]
GPIOA11 27 I/0 Reg. GPIO_SEL.FMUX7 GPIOA[11]
GPIOC6 10 I/0 Reg. GPIO_SEL.UMUX2 GPIOCI6]
GPIOC7 9 I/0 Reg. GPIO_SEL.UMUX2 GPIOC[7]
GPIOCS8 8 I/0 Reg. GPIO_SEL.UMUX2 GPIOCI8]
UM-WI-046 Rev.2.6 RENESAS Page 262

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

When keeping GPIO PIN state high or low in sleep state, use one of the following API functions:

= _GPIO_RETAIN_HIGH()
= _GPIO_RETAIN_LOW().

GPIOA [11:4] and GPIOC [8:6] can only be set as GPIO retention high or low. When using GPIO and GPIO
Retention API, the status of GPIO PIN is shown in Table 64.

Table 64. Status of GPIO pin

PIN Before sleep Sleep Sleep period (with After sleep
information (RTOS booting) period SAVE_PULLUP_PINS_INFO) (wake-up)

GPIO input GPIOA[3:0] High-Z High-Z High-Z I-PD

configured GPIOA[11:4], | High-Z Low (PD) | High-Z I-PD
GPIOC[8:6]

GPIO output high | GPIOA[3:0] High High-Z High-Z I-PD

configured GPIOA[11:4], | High Low (PD) | High-Z I-PD
GPIOCI[8:6]

GPIO output low GPIOA[3:0] Low High-Z High-Z I-PD

configured GPIOA[11:4], | Low low (PD) | High-Z I-PD
GPIOCI[8:6]

GPIO retention GPIOA[11:4], High High High High

high configured GPIOC[8:6]

GPIO retention GPIOA[11:4], Low Low Low Low

low configured GPIOC[8:6]

When keeping GPIO PIN in high-z state in sleep period, use the API described in the Section 17.2.2:

= SAVE_PULLUP_PINS_INFO()

This function should be used when an external pull-up register is connected to a GPIO PIN. If this function is not
used, leakage current may occur.

17.2.2 API

Table 65. APIs for GPIO interface

Item

Description

HANDLE GPIO_CREATE(UINT32 dev_type)

Parameter dev_type Device index
Return If it succeeds, return the handle for the device. If it fails, return NULL.
Description The DA16200/DA16600 can set GPIO_UNIT_A and GPIO_UNIT_C.

int GPIO_INIT (HANDLE handler)

Parameter handler Device handle

Return TRUE if it succeeds, or FALSE if it fails.

Description Configure the GPIO setting.

int GPIO_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler Device handle
cmd Commands are defined <gpio.h> in our SDK.
data Data pointer.

Return TRUE if it succeeds, or FALSE if it fails.

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 263

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

Description

The necessary configuration of GPIO can be set with this function. Commands are as

below:

= GPIO_GET_DEVREG =1,

= GPIO_SET_OUTPUT, // set gpio as an output

= GPIO_SET_INPUT, // set gpio as an input

= GPIO_GET_DIRECTION, // get gpio direction

= GPIO_SET_INTR_MODE, // set gpio interrupt mode [edge/level]
= GPIO_GET_INTR_MODE, // get gpio interrupt mode

= GPIO_SET_INTR_ENABLE, // enable gpio interrupt

= GPIO_SET_INTR_DISABLE, // disable gpio interrupt

= GPIO_GET_INTR_ENABLE, // get gpio interrupt enable status

= GPIO_GET_INTR_STATUS, // get gpio interrupt pending status
= GPIO_SET_INTR_CLEAR, // clear gpio interrupt status

= GPIO_SET_MODE_ALT, // set alternate function

= GPIO_SET_MODE_NOALT, // clear alternate function

= GPIO_GET_MODE_ALT, // get alternate function

= GPIO_SET_CALLACK, // set a callback function for gpio interrupt

int GPIO_READ (HANDLE handler, UINT32 addr, UINT16 *pdata, UINT32 dlen)

Parameter handler Device handle

addr GPIO index

p_data Data buffer pointer

p_dlen Data buffer length
Return TRUE if it succeeds, or FALSE if it fails.
Description GPIO value contained in p_data.
int GPIO_WRITE (HANDLE handler, UINT32 addr, VOID *p_data, UINT32 p_dlen)
Parameter handler Device handle

addr GPIO index

p_data Data buffer pointer

p_dlen Data buffer length
Return TRUE if it succeeds, or FALSE if it fails.
Description GPIO value contained in p_data.

int GPIO_CLOSE(HANDLE handler)

Parameter handler Device handle
Return TRUE if it succeeds, or FALSE if it fails.
Description GPIO close command.

INT32 GPIO_GET_ALT_FUNC (HANDLE handler, GPIO_ALT_FUNC_TYPE altFuncType, UINT32 * regVal)

Parameter handler Device handle

altFuncType | GPIO alternate function type

regVal GPIO alternate function setting value
Return If it succeeds, return O.
Description Get GPIO alternate function setting value.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 264

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

INT32 GPIO_SET_ALT_FUNC(HANDLE handler, GPIO_ALT_FUNC_TYPE altFuncType,
GPIO_ALT_GPIO_NUM_TYPE gpioType)

Parameter handler Device handle
altFuncType | GPIO alternate function type
gpioType GPIO number
Return If it succeeds, return 0.
Description Set GPIO alternate function.
INT32 _GPIO_RETAIN_HIGH(UINT32 gpio_port, UINT32 gpio_num)
Parameter gpio_port GPIO port number
gpio_num GPIO pin number
Return TRUE if successfully configured, else FALSE.
Description GPIOA[11:4] and GPIOC[8:6] are only available to set GPIO retention high. And this API

function should not be called from the "config_pin_mux” function.

INT32 _GPIO_RETAIN_LOW(

UINT32 gpio_port, UINT32 gpio_num)

Parameter gpio_port GPIO port number
gpio_num GPIO pin number
Return TRUE if successfully configured, else FALSE.
Description GPIOA[11:4] and GPIOC[8:6] are only available to set GPIO retention high. And this API

function should not be called from the "config_pin_mux" function.

void SAVE_PULLUP_PINS_INFO(UINT32 port_num, UINT32 pinnum)

Parameter port_num GPIO port number
pinnum GPIO pin number
Description It keeps GPIO PIN in High-Z state during sleep period.

This function should be used when an external pull-up register is connected to a GPIO

PIN. If this function is not used, leakage current may occur.

17.2.3 How to Run
1. In the e?studio, import a project for the GPIO sample application as follows.

~/SDK/apps/common/examples/Peripheral /GPIO/projects/dal6200
2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

3. The status of GPIOA[0] and GPIOA[1] is printed every 1 second.

= GPIOAJ0] output low, GPIOA[4] output low, GPIOA[1] input low
= GPIOAJ[0] output high, GPIOA[4] output high, GPIOA[1] input low
= GPIOAJO0] output low, GPIOA[4] output low, GPIOA[1] input low

17.2.4 Sample Code
1. Create and initialize a GPIO handle.

HANDLE gpio;
gpio = GPIO CREATE (GPIO UNIT A);
GPIO INIT(gpio);

2. Set pin multiplexing.

/* BMUX to GPIOA[1:0] */
~dal6x io pinmux (PIN AMUX, AMUX GPIO);

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 265

DA16200 DA16600 FreeRTOS SDK Programmer Guide

/* BMUX to GPIOA[3:2] */
_daléx io pinmux (PIN BMUX, BMUX GPIO);

/* CMUX to GPIOA[5:4] */
_dal6x io pinmux (PIN CMUX, CMUX GPIO);

3. Set GPIOA[0] and GPIOA[4] as output mode and GPIOA[1] as input mode.

/* GPIOA[0],GPIOA[4] output high low toggle */

pin = GPIO PINO | GPIO PIN4;

GPIO_IOCTL(gpio, GPIO_SET OUTPUT, &pin); /* GPIOA[1l] input */
pin = GPIO PIN1;

GPIO IOCTL(gpio, GPIO SET INPUT, &pin);

4. Set GPIOAJ2] as an interrupt source with active low and register a callback function.

static int set gpio interrupt (HANDLE handler, UINT8 pin num, UINT8 int type, UINT8 int pol,
void *callback func)
{

UINT16 pin, int en status;

UINT32 ioctldatal3];

int ret;

if (15 < pin num)
return FALSE;

if (handler == NULL) {
return FALSE;
}

pin = 0x01<<pin num;
ret GPIO IOCTL (handler, GPIO SET INPUT, &pin) ;

ret = GPIO ICCTL (handler, GPIO GET INTR MODE, &ioctldatalO]);
/* interrupt type 1: edge, 0: level*/
ioctldata[0] &= ~(1 << pin num); // clear the bit first

ioctldata[0] |= (int type << pin num);

/* interrupt pol 1: high active, 0: low active */
ioctldata[l] &= ~(1 << pin num); // clear the bit first
ioctldata[l] |= (int pol << pin num);

ret = GPIO IOCTL (handler, GPIO SET INTR MODE, &ioctldatal[0]);

/* register callback function */

ioctldata[0] = pin; /* interrupt pin */
ioctldata[l] = (UINT32) callback func; /* callback function */
ioctldata[2] = (UINT32) pin num; /* param data */

ret = GPIO ICCTL (handler, GPIO SET CALIACK, ioctldata);

ret = GPIO IOCTL (handler, GPIO GET INTR ENABLE, &int_en_status);
int en status |= pin;
ret = GPIO IOCTL (handler, GPIO SET INTR ENABLE, &int en status);

return ret;

}

/* GPIOA[2] interrupt active low , Edge trigger */
set gpio interrupt(gpio, 2, GPIO INT TYPE EDGE, GPIO INT POL IOW, (void*)gpio callback);

UM-WI-046 Rev.2.6 RENESAS Page 266
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

5. Set GPIOA[3] as an interrupt source with active high and register a callback function.

/*GPIOA[3] interrupt active high, Edge trigger */
set gpio interrupt(gpio, 3, GPIO INT TYPE EDGE, GPIO INT POL HIGH, (void*)gpio callback);

6. Write GPIOA[O] and GPIOA[4] and read GPIOA[1].

if (toggle) {
/* GPIOA[0],GPIOA[4] to high */
write data = GPIO PINO | GPIO PIN4;
GPIO WRITE (gpio, GPIO PINO | GPIO PIN4, &write data, sizeof (UINT16));
toggle = 0;
} else {
/* GPIOA[QO],GPIOA[4] to low*/
write data = 0;
GPIO WRITE (gpio, GPIO PINO | GPIO PIN4, &write data, sizeof (UINT16));
toggle = 1;
}

GPIO READ (gpio, GPIO PIN1, &read data, sizeof (UINT16));

7. Set the PAD pull condition by using PAD_PULL_CONTROL.

#if PAD PULL CONTROL

/*
* GPIOA[1l] input pull control it can make gpio pad pull up or pull down or HIZ
*/
_dal6x gpio set pull (GPIO UNIT A, GPIO PIN1, PULL UP);
/* or */
_daléx gpio set pull (GPIO UNIT A, GPIO PIN1, PULL DOWN);
/* or */
_dal6x gpio set pull (GPIO UNIT A, GPIO PIN1, HIGH Z7);
#endif

8. Activate the RTC_GPO example by using RTC_GPO_CONTROL.

#ifdef RTC_GPO _CONTROL

RTC GPO OUT INIT(1); // 0: auto, 1: manual
RTC_GPO OUT CONTROL (1) ; // Set High
#fendif

9. Both edges of interrupt are not supported by hardware but can be supported by software.
Activate the GPIO interrupt according to the GPIO read value.

GPIO READ (gpioc, GPIO PIN6, &read data, sizeof (UINT16));
set gpio interrupt(gpioc, 6, GPIO INT TYPE EDGE, ! (GPIO PIN6&read data),

(void*)gpioc_callback);

And change the interrupt polarity at every GPIO callback function. See the
"GPIOC6_BOTH_EDGE_INTERRUPT" example for details.

17.3 GPIO Retention

This application shows how to use GPIO retention. If the GPIO pin is set to retention high, it is kept in the high
state during the sleep period. If the GPIO pin is set to retention low, it is kept in the low state during the sleep

period.

17.3.1 How to Run
1. In the e? studio, import a project for the GPIO Retention sample application.

UM-WI-046 Rev.2.6 RENESAS Page 267
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

~/SDK/apps/common/examples/Peripheral/GPIO_Retention/projects/da16200

a. Build the main project, download the image to the DA16200 EVB, and reboot.

b. Toggle switch 13 (SW13).

c. Use an oscilloscope to check that the GPIOA [10: 8] and GPIOC [7] keep their PIN states.

17.3.2 Sample Code
1. Set pin multiplexing.

/*
* 1. Set to GPIOA[11:4], GPIOC[8:6]
* 2. Need be written to "config pin mux" function.
*/

_dal6x io pinmux (PIN EMUX, EMUX GPIO);

_dal6x io pinmux (PIN FMUX, FMUX GPIO);

_daléx io pinmux (PIN UMUX, UMUX GPIO);

2. Set GPIO retention config.

/* Set GPIOA[9:8] to retention high */
ret = GPIO RETAIN HIGH(GPIO UNIT A, GPIO PIN8 | GPIO PIN9);
if (ret == FALSE)

PRINTF ("GPIO RETAIN HIGH() return false.\n");

/* Set GPIOA[10] to retention low */
ret = GPIO RETAIN LOW(GPIO UNIT A, GPIO PIN10);
if (ret == FALSE)

PRINTF ("GPIO RETAIN IOW() return false.\n");

/* Set GPIOC[7] to retention high */
ret = GPIO RETAIN HIGH(GPIO UNIT C, GPIO PIN7);
if (ret == FALSE)

PRINTF ("GPIO RETAIN HIGH() return false.\n");

3. Power down.

Cha]f * _arg\7[4] = {"down", "SeC", "10", "1"};
cmd power down config(4, argv);

/* Set GPIOC[7] to retention high */
ret = _GPIO_RETAIN_HIGH(GPIO_UNIT_C, GPIO_PIN7);
if (ret == FALSE)

PRINTF ("GPIO_RETAIN_HIGH () return false.\n");

17.4 12C

This section shows how to use the 12C interface.
17.4.1 Introduction

17.4.1.1 12C Master

The DA16200/DA16600 includes an 12C master module. There are two supportable clock speeds for 12C in the
DA16200/DA16600; the standard speed is 100 kbps, and fast mode is 400 kbps. Table 66 shows the pin
definition of the 12C master interface in GPIO Pin Configuration.

UM-WI-046 Rev.2.6 RENESAS Page 268
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 66. 12C master pin configuration

Pin number
Pin name /10 Function name
QFN fcCSP
GPIOA1 38 C3 6] I2C_CLK
GPIOA5 33 D2 @)
GPIOA9 29 H2 o
GPIOAO 39 A3 11O
GPIOA4 34 F4 I/O I2C_SDA
GPIOA8 32 G3 110

For more details, see Ref. [2].

17.41.2 12C Slave

The DA16200/DA16600 supports the 12C slave interface controlled by an external host. The pin mux
configurations are defined in Table 67. The I12C slave interface also supports the standard (100 kbps) or fast
(400 kbps) transmission speeds.

Table 67. 12C slave pin configuration

Pin number
Pin name 110 Function name
QFN fcCSP
GPIOA1 38 C3 I
GPIOA3 36 D4 I
I2C_CLK
GPIOA5 33 D2 |
GPIOA7 31 E1 I
GPIOAO 39 A3 I/0
GPIOA2 37 B2 I/0 12C_SDA
GPIOA4 34 F4 /10
GPIOA6 32 E3 I/0

For more details, see Ref. [2].

17.4.2 API

Table 68. APIs for I12C interface

Item

Description

HANDLE DRV_I2C_CREATE(UINT32 dev_id)

Parameter dev_id Device ID number to create a handle.
Return If it succeeds, return the handle for the device. If it fails, return NULL.
Description Create a handle with the parameter "dev_id" designated.

Int DRV_I2C_INIT(HANDLE handler)

Parameter handler Device handle to initialize.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description Initialize the 12C interface.

int DRV_I2C_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter

handler Device handle to control.
cmd See sys_i2c.h in our SDK.
*data Data pointer when there are any. If not, NULL.

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 269

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description This function controls miscellaneous 12C controller.

int DRV_I2C_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

12C_GET_CONFIG Get "i2c_cr0" Register Value. See Register Map Read
12C_GET_STATUS Get "i2c_sr" Register Value. See Register Map Read
I2C_SET_DMA_WR I2C Write via uDMA TX Enable/Disable [TRUE/FALSE]
I2C_SET_DMA_RD I12C READ via uDMA RX Enable/Disable [TRUE/FALSE]
I2C_GET_DMA_WR Get uDMA TX Enabled [Ox2/FALSE]
I2C_GET_DMA_RD Get uDMA RX Enabled [TRUE/FALSE]
I2C_SET_RESET Set 12C Device Reset/set [TRUE/FALSE]
I2C_SET_CHIPADDR Set 12C Slave Device Address (8 bits) Write
I2C_GET_CHIPADDR Get 12C Slave Device Address (8 bits) Read
I2C_SET_CLOCK Set 12C Clock [kHz] (Max = 1200) Write

int DRV_|2C_WRITE_DMA(HANDLE handler, VOID *p_data, UINT32 p_dlen, UINT32 dummy)

Parameter handler Device handle to write with DMA

*p_data Buffer pointer to write

p_dlen Length to write

dummy Reserved (set to ‘0)
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description I12C write function through DMA.
int DRV_I2C_WRITE(HANDLE handler, VOID *p_data, UINT32 p_dlen, UINT32 stopen, UINT32 dummy)
Parameter handler Device handle to write

*p_data Buffer pointer to write

p_dlen Length to read

stopen Flag stop bit enables

dummy Reserved (set to ‘0)
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description I2C write function

int DRV_I2C_READ(HANDLE

handler, VOID *p_data, UINT32 p_dlen, UINT32 addr_len,UINT32 dummy)

Parameter handler Device handle to read
*p_data Buffer pointer to read
p_dlen Length to read
addr_len Length of register address inside of slave device. if 0, read only operation.
dummy Reserved (set to ‘0’)
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description 12C read function

Int DRV_|2C_CLOSE(HANDLE handler);

Parameter handler Device handle to close
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description I12C driver close

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 270

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

void DRV_I2C_REGISTER_INTERRUPT (HANDLE handler);

Parameter handler Device handle to register Interrupt Handler
Return NULL

Description I12C Interrupt Registration

17.4.3 How to Run

1. In the e? studio, import a project for the 12C sample application.
~/SDK/apps/common/examples/Peripheral /I2C/projects/dal6200

2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

The sample application code is written in the following source file:
~/SDK/apps/common/examples/Peripheral /I2C/src/i2¢c sample.c

17.4.3.1 Test Procedure

1. Remove resistors R6 and R7.

2. Connect the AT24C512 EEPROM with the EVB.

3. Connect each 1,2 kQ Pull-Up resistor with GPIOAO and GPIOA1.
GPIOAO= SDA, GPIOA1=SCL

4. Run I12C example code.

17.4.3.2 Sample Code for Using 12C
1. Initialize 12C.

// GPIO Select for I2C working. GPIOl = SCL, GPIOO= SDA
Board initialization();

DAl 6X_CLOCK_SCGATE—>Of f_DAPB_I 2CM = 0;

DA16X CLOCK SCGATE->Off DAPB APBS = 0;

// Create Handle for I2C Device
12C = DRV_I2C CREATE (i2c 0);

// Initialization I2C Device
DRV_I2C INIT(I2C);

2. 12C address.

// Device Address for AT24C512
UINT32 addr = 0xal;
DRV_IZC_IOCTL(IZC, IZC_SET_CHIPADDR, &addr) ;

3. 12C clock.

// Set I2C Working Clock. Unit = kHz
DRV_I2C IOCTL(I2C, I2C SET CLOCK, &i2c clock);

4. Write 12C.

// Data Random Write to EEPROM
// Address = 0, Length = 32, Word Address Length = 2

// [Start] - [Device addr. W] - [1lst word addr.] - [2nd word addr.] - [wdatalO] ~
[wdata31l] - [Stop]
UM-WI-046 Rev.2.6 RENESAS Page 271

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

i2c data[0] = AT I2C FIRST WORD ADDRESS; //Word Address to Write Data. 2 bytes.
refer at24c512 DataSheet

AT I2C SECOND WORD ADDRESS; //Word Address to Write Data. 2 bytes.
refer at24c512 DataSheet

i2c datall]

// Fill Ramp Data
for (int i = 0; i < AT I2C DATA LENGTH; i++) {

i2c data[i+AT T2C TENGTH FOR WORD ADDRESS] = i;
}

status = DRV_I2C WRITE(I2C, i2c data,
// Handle, buffer, length, stop enable, dummy
AT I2C DATA LENGTH + AT I2C LENGTH FOR WORD ADDRESS, 1, 0);

if (status != TRUE) {
PRINTF ("ret : 0x%08x\r\n", status);

5. Read I12C.

// Data Random Read from EEPROM

// BAddress = 0, Length = 32, Word Address Length = 2

// [Start] - [Device addr. W] - [lst word addr.] - [
[Device addr. R] - [rdataO] ~ [rdata31l] - [Stop]

2nd word addr.] - [Start] -

// Word Address to Write Data. 2 bytes. refer at24c512 DataSheet
i2c data read[0] = AT I2C FIRST WORD ADDRESS;

//Word Address to Write Data. 2 bytes. refer at24c512 DataSheet
i2c data read[l] = AT I2C SECOND WORD ADDRESS;

// Handle, buffer, length, address length, dummy
status = DRV_I2C READ(I2C, i2c data read, AT I2C DATA LENGTH,
AT I2C LENGTH FOR WORD ADDRESS, 0);

if (status != TRUE) {
PRINTF ("ret : 0x%08x\r\n", status);
}

// Check Data
for (int i = 0; i < AT I2C DATA LENGTH; i++) {
if (i2c data read[i] != i2c data[i + AT I2C LENGTH FOR WORD ADDRESS]) {
PRINTF ("$dth data is different W:0x%02x, R:0x%02x\r\n", i,
i2c data[i + AT I2C LENGTH FOR WORD ADDRESS],
i2c data read[i]);
status = AT I2C ERROR DATA CHECK;

}

if (status != AT I2C ERROR DATA CHECK) {
PRINTEF ("***** 32 bytes Data Write and Read Success *****\r\n");
}

6. 12C read_nostop.

// Data Current Address Read from EEPRCM
// Length = 32, Word Address Length = 0
// [Start] -[Device addr. R] - [rdataO] ~ [rdata31l] - [Stop]

// Handle, buffer, length, address length, dummy

UM-WI-046 Rev.2.6 RENESAS Page 272
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

status = DRV_I2C READ(I2C, i2c data read, 4, 0, 0);

if (status != TRUE) {
PRINTF ("ret : 0x%08x\r\n", status);
}

17.5 12S

This section shows how to use the 12S interface.

17.5.1 How to Run

1. In the e?studio, import a project for the 12S sample application.
~/SDK/apps/common/examples/Peripheral /I2S/projects/dal 6200
2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

The sample application code is written in the following source file:
~/SDK/apps/common/examples/Peripheral/I2S/src/1i2s sample.c

17.5.2 User Task

The user task of the 12S application is added as shown in the example below and is executed by the system.
SAMPLE_12S should be a unique name to create a task. The port number does not need to be set, because this

is a non-network task.

static const app task info t sample apps table[]

UNDEF PORT,RUN ALL MODE },
}i

~/SDK/apps/common/examples/Peripheral/I2S/src/sample apps.c

{ I2s SAMPLE, i2s_ sample, 512, (tskIDLE PRIORITY + 7), FALSE, FALSE,

17.5.3 Sample Code

1. Create and initialize an 12S handle.

HANDLE giZ2shandle = NULL;
I2S HANDLER TYPE *i2s;
unsigned int mode, data;

DA16X CLOCK SCGATE->Off DAPB I2S = 0;
DA16X_CLOCK SCGATE->Off DAPB APBS = 0;

giZshandle = DRV _I12S CREATE (I2S 0);
i2s = (I2S HANDLER TYPE *) giZshandle;

if (!'gi2shandle) {
vTaskDelete (NULL) ;
return;

}

/* Set I2S Output Mode */

if (DRV_I2S INIT(giZshandle, mode) == FALSE) {
vTaskDelete (NULL) ;
return;

2. Set the internal DAC or the external DAC.

// GPIO[3] - I2S IRCK, GPIO[2] - I2S SDO

_dal6x io pinmux (PIN BMUX, BMUX I2S);
// GPIO[1l] - IZS_MCLK, GPIO[0] - IZS_BCLK

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 273

DA16200 DA16600 FreeRTOS SDK Programmer Guide

_dal6x io pinmux (PIN AMUX, AMUX I2S);

DRV _I2S SET CLOCK(giZshandle, I2S CLK SOURCE INTERNAL, O0);

3. Set additional configuration.

data = TRUE;
DRV _I2S IOCTL(i2s, I2S SET STEREO, &data); /* Set Stereo Output Mode */

#ifdef I25 SAMPLE SET MODE RX
data = I2S RESOLUTION RX 16B;
#else
data = I2S RESOLUTION TX 16B;
#endif

DRV _I2S IOCTL(i2s, I2S SET PCM RESOLUTION, &data); /* Set 1l6bit resolution Mode */

4. Write and read data.

for (int 1=0;1<2;i++)
{
#ifdef I2S SAMPLE SET MODE RX
rd len = DRV I2S READ(iZs, (unsigned int *)rx buf[i], 768, 0);
#else
DRV _I2S WRITE (i2s,
fendif
xEventGroupWaitBits (12s sample event, 0xl, pdTRUE, pdFALSE, 20);

(unsigned int *) sinewave pattern, 768, 0);

}

17.6 PWM

This section shows how to use the PWM interface.

17.6.1 Introduction

Pulse-Width Modulation (PWM) is a modulation technique used to encode a message into a pulse signal. The
blocks are designed to adjust the output pulse duration by means of the CPU bus clock (HCLK).

Counter

Register

Figure 119. PWM block diagram

)
(]
(]
—> PWM Block 0 PIIOuT
[]
(] +
HCLK ; PWM Block 0 i PWMOUT
[] (1
; PWM Block 0 i PWMoOUT
5))
. Regiter 4 PWM Block0 [+ Pwmour
[] .
Bus H Counter (Period) H
Matrix ChtE »E E
g Counter (High Duty) s
b :
[] .
[] []
[] — []
[]]
[] []
(] (]
(] (]
. []
. []
(] (]
(] (]
[] .
(9

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 274

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 69. PWM pin configuration

Pin name

Pin number /0 Pin selection Function name

GPIOx

o Reg. GPIO_SEL.xMUXx PWM[3:0] output

For more details, see Ref. [2].

17.6.2 API
Table 70. APIs for PWM interface

Item

Description

HANDLE DRV_PWM_CREATE(UINT32 dev_id)

Parameter dev_id Device number to create handle.
Return If it succeeds, return the handle for such device. If it fails, return NULL.
Description Function create handle with the parameter "dev_id" designated.

int DRV_PWM_INITf(HANDLE handler)

Parameter handler Device handle to initialize.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description Change GPIO multiplex to PWM mode.

int DRV_PWM_START(HANDLE handler, UINT32 period_us, UINT32 hduty_percent, UINT32 dummy)

Parameter handler Device handle to enable PWM device output.
Period_us 1 cycle period in microsecond.
Hduty percent Output high time in percentage while every 1 cycle.
dummy TBD
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description Enable PWM block in the DA16200/DA16600 with specified parameters.

period = (((period us * 10) * (clock / 1000000))/10)-1;
// minimum system clock 1 MHz
hduty = (((period + 1) * hduty percent) / 100)-1;

int DRV_PWM_STOP(HANDLE handler, UINT32 dummy)

Parameter handler Device handle to stop PWM out.

cmd See pwm.h in our SDK
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description Disable PWM block in the DA16200/DA16600.

int DRV_PWM_CLOSE(HANDLE

handler)

Parameter handler Device handle to close and de-initialize device.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description Destroy handle

17.6.3 How to Run
1. In the e?studio, import a project for the PWM sample application.

~/SDK/apps/common/examples/Peripheral /PWM/projects/dal 6200
2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

The sample application code is written in the following source file:
~/SDK/apps/common/examples/Peripheral /PWM/src/pwm_sample.c

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 275

DA16200 DA16600 FreeRTOS SDK Programmer Guide

17.6.3.1 Test Procedure
1. Remove resistors R6~R9.
2. Run the PWM example command.

3. Get waveform from P7~P9 in connector J4.

4. Compare the waveform with the PWM setting inside the example code.

17.6.3.2 Sample Code
1. Set GPIO.

Board Init();
DA16X CLOCK SCGATE->Off CAPB PWM = 0;

gpio = GPIO CREATE (GPIO UNIT A);
GPIO INIT(gpio);

GPIO SET ALT FUNC

GPIO SET ALT FUNC (gpio, GPIO ALT FUNC PWM OUTO, GPIO ALT FUNC GPIOO
GPIO SET ALT FUNC(gpio, GPIO ALT FUNC PWM OUT1, GPIO ALT FUNC GPIOl

(gpio, GPIO ALT FUNC PWM OUT2, GPIO ALT FUNC GPIO2
GPIO SET ALT FUNC (gpio, GPIO ALT FUNC PWM OUT3, GPIO ALT FUNC GPIO3

’

’

’

T — — =

’

2. |Initialize PWM.

() 4
DRV_PWM_CREATE (pwm 1) ;
DRV_PWM_CREATE (pwm 2)
= DRV_PWM CREATE (pwm_3)

= DRV_PWM CREATE (pwm 0

’

g
w NP O
Il

’

DRV_PWM INIT (pwrn[0])
DRV _PWM_INTT (pwra[1])
DRV _PWM_INIT (pwm([2]) ;
DRV_PWM_INIT (pwm[3])

3. Setstart_time.

period = 10; // 10 ps

period = 20; // 20 us

period = 40; // 40 us

period = 80; // 80 us

duty percent = 30; //30%, duration high 3 ps s per 10 ps
DRV _PWM START (pwm[0], period, duty percent, PWM DRV MODE US); //PWM Start

duty percent = 40; //40%, duration high 8 ps per 10 ps
DRV _PWM START (pwm[1], period, duty percent, PWM DRV MODE US); //PWM Start

duty percent = 50; //50%, duration high 20 ps per 10 ps
DRV _PWM START (pwm([2], period, duty percent, PWM DRV MODE US); //PWM Start

duty percent = 80; //80%, duration high 64 ps per 10 ps
DRV _PWM START (pwm[3], period, duty percent, PWM DRV MODE US); //PWM Start

4. Setstart_cycle.

cycle = 2400-1;

duty cycle = 1680-1;

// 2400 cycles(=30us @ 80 MHz), cycle

value + 1
// 1680 cycles (=21us@80 MHz, 70% Duty High), duty cycle = value + 1

DRV _PWM START (pwm[0], cycle, duty cycle, PWM DRV MODE CYC); //PWM Start

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 276

DA16200 DA16600 FreeRTOS SDK Programmer Guide

// 2400 cycles(=30us @ 80 MHz), cycle = value + 1

cycle = 2400-1;

// 1680 cycles(=21us@ 80 MHz, 70% Duty High), 70% Duty High), duty cycle = value + 1
duty cycle = 1680-1;

DRV _PWM START (pwm[1], cycle, duty cycle, PWM DRV MODE CYC); //PWM Start

// 2400 cycles (=30us @ 80 MHz), cycle = value + 1

cycle = 2400-1;

// 1680 cycles(=21us@ 80 MHz, 70% Duty High), 70% Duty High), duty cycle = value + 1
duty cycle = 1680-1;

DRV PWM START (pwm[2], cycle, duty cycle, PWM DRV MODE CYC); //PWM Start

// 2400 cycles (=30us @ 80 MHz), cycle = value + 1

cycle = 2400-1;

// 1680 cycles(=21us@ 80 MHz, 70% Duty High), 70% Duty High), duty cycle = value + 1
duty cycle = 1680-1;

DRV _PWM START (pwm[3], cycle, duty cycle, PWM DRV MODE CYC); //PWM Start

5. Stop PWM.

DRV_PWM STOP (
DRV_PWM STOP (
DRV_PWM STOP (
DRV_PWM STOP (pwm

’

pwm)
pwm)7
pwm);
)

’

’

I
I
1y
1y

O O O O

[0
(1
(2
[3

17.7 ADC

This section shows how to use the ADC interface.

17.7.1 Introduction

The DA16200/DA16600 has Analog-to-Digital Converters (ADC): a four-channel single-end ADC of 12-bit
resolution. Analog input is measured by means of 4 pins from GPIOO0 to GPIO3, and the pin selection is changed
through the register setting. See Figure 120 and Table 71.

7)
VILN[1]

VIN[2] 5 ADC K CH_SEL
b= 12b N
S R

VI_N[4] ‘

ADC Controller

Counter
16-bit

Figure 120. ADC control block diagram

Table 71. AUX ADC pin configuration

Pin number
Pin name /10 Function name
QFN fcCSP
GPIOA3 36 D4 A Analog signal
GPIOA2 37 B2 A Analog signal
GPIOA1 38 C3 A Analog signal
GPIOAO 39 A3 A Analog signal
UM-WI-046 Rev.2.6 RENESAS Page 277

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

For more details, see Ref. [2].

17.7.2 API
Table 72. APIs for ADC interface

Item Description

HANDLE DRV_ADC_CREATE(UINT32 dev_id)

Parameter dev_id Device number to create a handle.

Return If it succeeds, return the handle for such device. If it fails, return NULL.
Description Function create handle with the parameter dev_id designated.

int DRV_ADC_INIT(HANDLE handler, unsigned int use_timestamp)

Parameter handler Device handle to initialize.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC Initialization command.

Int DRV_ADC_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler N/A
cmd N/A
data N/A
Return N/A
Description ADC IOCTL command

int DRV_ADC_START(HANDLE handler, UINT32 divider12, UINT32 dummy)

Parameter handler Device handle to start.

divider12 Fs = sys_clk/15/(div12 +1)

Return If it succeeds, return TRUE. If it fails, return FALSE.

Description ADC starts command.

int DRV_ADC_STOP(HANDLE handler, UINT32 dummy)

Parameter handler Device handle to stop.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC stop command.

Int DRV_ADC_CLOSE(HANDLE handler)

Parameter handler Device handle to close.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC driver close.

int DRV_ADC_READ(HANDLE handler, UINT32 channel, UINT32 *data, UINT32 dummy)

Parameter handler Device handle to read.
channel Channel number to read instant ADC value.
*data Buffer to read.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC read command.
int DRV_ADC_READ_DMA(HANDLE handler, UINT32 channel, UINT16 *p_data, UINT32 p_dlen, UINT32 dummy)
Parameter handler Device handle to read with specified length.
channel Channel number to read.
UM-WI-046 Rev.2.6 RENESAS Page 278

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

*p_data Buffer block to read.

p_dlen Number of samples to read with DMA, not buffer length.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC read commands through DMA.

int DRV_ADC_ENABLE_CHANNEL(HANDLE handler, UINT32 channel, unsigned int sel_adc, UINT32 dummy)

Parameter handler Device handle

channel Channel number to set ADC devices.

sel_adc 12: SMI 12B ADC, 0: disable
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC channel enables command.

int DRV_ADC_SET_INTERRUPT(HANDLE handler, UINT32 channel, UINT32 enable, UINT32 type, UINT32 dummy)

Parameter handler Device handle
channel Channel number to set interrupt.
enable 1: enable interrupt, 0: disable interrupt
type ADC_INTERRUPT_FIFO_HALF (0)
ADC_INTERRUPT_FIFO_FULL (1)
ADC_INTERRUPT_THD_OVER (2)
ADC_INTERRUPT_THD_UNDER (3)
ADC_INTERRUPT_THD_DIFF 4)
ADC_INTERRUPT_ALL (0xf)
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC interrupt set command.

int DRV_ADC_SET_THD_VAL

UE(HANDLE handler, UINT32 type, UINT32 enable, UINT32 thd, UINT32 dummy);

Parameter handler Device handle
type ADC_THRESHOLD_TYPE_12B_OVER (0)
ADC_THRESHOLD_TYPE_12B_UNDER (2)
ADC_THRESHOLD_TYPE_12B_DIFF 4)
thd Interrupt threshold. 0 ~ 65535 range. Upper 12 bits of 16-bit data are valid values.
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description ADC interrupt threshold set command.

int DRV_ADC_WAIT_INTERRUPT(HANDLE handler, UNSIGNED *mask_evt);v

Parameter

handler

Device handle

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS Page 279
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

*mask_evt Mask for waiting interrupt

bit[19] : Interrupt status for Threshold Difference of CHANNEL 3
bit[18] : Interrupt status for Threshold Difference of CHANNEL 2
bit[17] : Interrupt status for Threshold Difference of CHANNEL 1
bit[16] : Interrupt status for Threshold Difference of CHANNEL 0
bit[15] : Interrupt status for Threshold Under level of CHANNEL 3
bit[14] : Interrupt status for Threshold Under level of CHANNEL 2
bit[13] : Interrupt status for Threshold Under level of CHANNEL 1
bit[12] : Interrupt status for Threshold Under level of CHANNEL 0
bit[11] : Interrupt status for Threshold Over level of CHANNEL 3
bit[10] : Interrupt status for Threshold Over level of CHANNEL 2
bit[9] : Interrupt status for Threshold Over level of CHANNEL 1
bit[8] : Interrupt status for Threshold Over level of CHANNEL 0
bit[7] : Interrupt status for full level of CHANNEL 3

bit[6] : Interrupt status for full level of CHANNEL 2

bit[5] : Interrupt status for full level of CHANNEL 1

bit[4] : Interrupt status for full level of CHANNEL 0

bit[3] : Interrupt status for half level of CHANNEL 3

bit[2] : Interrupt status for half level of CHANNEL 2

bit[1] : Interrupt status for half level of CHANNEL 1

bit[0] : Interrupt status for half level of CHANNEL 0

Return If it succeeds, return masked interrupt. If it fails, return FALSE.

Description Wait ADC interrupt

17.7.3 Interrupt Description
ADC_INTERRUPT_FIFO_HALF: this interrupt occurs when the FIFO Level is 4 or higher.

ADC_INTERRUPT_FIFO_FULL.: this interrupt occurs when FIFO Level is 8.

ADC_INTERRUPT_THD_OVER: this interrupt occurs when the current input value to the ADC device is greater
than the value set in the "ADC_THRESHOLD_TYPE_12B_OVER" type.

ADC_INTERRUPT_THD_UNDER: this interrupt occurs when the current input value to the ADC device is
smaller than the value set in the " ADC_THRESHOLD_TYPE_12B_UNDER " type.

ADC_INTERRUPT_THD_DIFF: this interrupt occurs when the difference between the current input value to the
ADC device and the previous input value is greater than the value set in "ADC_INTERRUPT_THD_DIFF" type.

17.7.4 How to Run

1. In the e? studio, import a project for the ADC sample application.
~/SDK/apps/common/examples/Peripheral /ADC/projects/dal 6200

2. There are three types of preprocessor statements defined in the ADC example code.
e ADC_SAMPLE_READ
o Read and print ADC input values
e ADC_SAMPLE_INTERRUPT
o Set the interrupt to occur at 0.7 V or less and verify that the setting works
e ADC_SAMPLE_DPM

o Setthe ADC value of 0.15 V or more before entering Sleep mode 2, and it wakes up from Sleep mode 2
when ADC inputis 0.15 V or more.

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
4. The sample application code is written in the following source file:

UM-WI-046 Rev.2.6 RENESAS Page 280
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

~/SDK/apps/common/examples/Peripheral /ADC/src/adc_sample.c

17.7.5 Sample Code — SAMPLE_READ

17.7.5.1 Test Procedure

1. Provide 0~1.3 V to P7 ~ P9, in connector J4.

2. Run the ADC example and read the ADC value.
3. Compare the value with the voltage supplied.

17.7.5.2 Sample Code for Reading ADC
1. Initialize ADC.

PRINTF ("ADC SAMPLE\n") ;
DA16X CLOCK SCGATE->Off DAPB AuxA = 0;
DA16X CLOCK SCGATE->Off DAPB APBS = 0;

// Set PAD Mux. GPIO 0 (ADC CHO), GPIO 1 (ADC CHI)
_dalé6x io pinmux (PIN AMUX, AMUX AD12);

// Create Handle
hadc = DRV_ADC CREATE (DA16200 ADC DEVICE ID);

// Initialization
DRV _ADC INIT (hadc, DA16x ADC NO TIMESTAMP) ;

2. Start ADC.

// Start. Set Sampling Frequency. 12B ADC Set to 200 kHz
// Clock = 1 MHZ / (value + 1)

// Ex) If Value = 4, Clock = 1 MHz / (4+1) = 200 kHz
DRV _ADC START (hadc, DAl6x ADC DIVIDER 12, 0);

3. Enable ADC.

// Set ADC 0 to 12- Bit ADC, ADC 1 to 12-Bit ADC
DRV _ADC ENABLE CHANNEL (hadc, DA16200 ADC CH 0, DAléx ADC SEL ADC 12, 0);
DRV _ADC ENABLE CHANNEL (hadc, DA16200 ADC CH 1, DAléx ADC SEL ADC 12, 0);

4. Read ADC Using DMA.

// Read 1l6ea ADC 0 Value. 12B ADC, Bit [15:4] is valid adc data, [3:0] is zero

DRV_ADC READ DMA (hadc, DA16200 ADC CH 0, data0, DAl6x ADC NUM READ * 2,
DA16x ADC TIMEOUT DMA, 0);

// Read 1l6ea ADC 1 Value
DRV_ADC_READ DMA (hadc, DA16200 ADC CH 1, datal, DAl6x ADC NUM READ * 2,
DA16x ADC_TIMEOUT DMA, 0);

5. Read ADC.

// Read Current ADC 0 Value. Caution!! When read current adc value consequently,
// need delay at each read function bigger than Sampling Frequency
DRV_ADC READ (hadc, DA16200 ADC CH 0, &data, 0);

6. Close ADC.

// Close ADC
DRV_ADC_CLOSE (hadc) ;
0.

17.7.6 Sample Code — ADC_SAMPLE_INTERRUPT

17.7.6.1 Test Procedure
1. Provide 1.3 voltage to P7 ~ P9, in connector J4.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 281

DA16200 DA16600 FreeRTOS SDK Programmer Guide

2. Run the ADC example.
3. Change the power supply to the ADC to 0.7 V or lower to see if an interrupt occurs.

17.7.6.2 Sample Code for ADC Interrupt
1. Initialize ADC.

HANDLE hadc;
int status, int handling mode;
unsigned int data, type, thd;

PRINTF ("ADC SAMPLE\n") ;
DA16X CLOCK SCGATE->Off DAPB AuxA = 0;
DA16X CLOCK SCGATE->Off DAPB APBS = 0;

// Set PAD Mux. GPIO O (ADC CHO), GPIO 1 (ADC CHI)
_dalé6x io pinmux (PIN AMUX, AMUX AD12);

// Create Handle
hadc = DRV_ADC CREATE (DA16200 ADC DEVICE ID);

// Initialization
status = DRV ADC INIT (hadc, DAl6x ADC NO TIMESTAMP) ;
PRINTF ("ADC-INIT: %d\n", status);

2. Start ADC.

// Start. Set Sampling Frequency. 12B ADC Set to 200 kHz
// Clock = 1 MHZ / (value + 1)

// Ex) If Value = 4, Clock = 1 MHz / (4+1) = 200 kHz
status = DRV ADC START (hadc, DA16x ADC DIVIDER 12, 0);
RINTF ("ADC start: %d\n", status);

// Set ADC 0 to 12-Bit ADC
status = DRV_ADC ENABLE CHANNEL (hadc, DA16200 ADC CH 0, DA16x ADC SEL ADC 12, 0);
PRINTF ("ADC enable: %d\n", status);

//Set Data type offset binary, 0 : 2's complement , 1 : offset binary
type = 1;
DRV _ADC IOCTL(hadc, ADC SET DATA MODE, &type);

3. Read ADC.

// Read Current ADC 0 Value. Caution!! When read current adc value consequently, need delay at each
read function bigger than Sampling Fredquency

DRV _ADC READ (hadc, DA16200 ADC CH 0, &data, 0);

PRINTF ("Current ADC Value = Ox%x\r\n", GET VALID ADC VALUE (data));

4. Set ADC Interrupt.

UM-WI-046 Rev.2.6 RENESAS Page 282
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//set threshold

//value 0x800(=0.7V/1.4V * 4095), max=4095(1.4V), min=0(0V), increase linearly) means about 0.7Volt in
EVK environment.

thd = 0x800;

//thd value must be shifted 4 bits right.

status = DRV ADC SET THD VALUE (hadc, ADC THRESHOLD TYPE 12B UNDER, CONVERT TO THD VALUE (thd), 0);

PRINTF ("ADC-set threshold: %d\n", status);

// set Interrupt
status = DRV ADC SET INTERRUPT (hadc, DA16200 ADC CH 0, TRUE, ADC INTERRUPT THD UNDER, 0);
PRINTF ("ADC-set interrupt: %d\n", status);

//set Interrupt Handling Mode

//RADC_INTERRUPT MODE EVENT mode : in interrupt handler, call set event function.
//RADC_INTERRUPT MODE MASK mode : in interrupt handler, disable interrupt.

int handling mode = ADC INTERRUPT MODE EVENT | ADC INTERRUPT MODE MASK;

DRV _ADC IOCTL(hadc, ADC SET INTERRUPT MODE, (void *) (&int handling mode));

5. Wait ADC Interrupt.

//Wait Interrupt
UNSIGNED interrupt status ;
DRV ADC WAIT INTERRUPT (hadc, &interrupt status);

vTaskDelay (5) ;

6. Print and Disable Interrupt.

// disable Interrupt
status = DRV _ADC SET INTERRUPT (hadc, DA16200 ADC CH 0, FALSE, ADC INTERRUPT THD UNDER, O0);
PRINTF ("ADC-reset interrupt: %d\n", status);

// Read Current ADC 0 Value. Caution!! When read current adc value consequently, need delay at each
read function bigger than Sampling Frequency

DRV_ADC READ (hadc, DA16200 ADC CH 0, &data, 0);

PRINTF ("Interrupt Occured with Value = Ox%x\r\n", GET VALID ADC VALUE (data));

vTaskDelete (NULL) ;

17.7.7 Sample Code - ADC_SAMPLE_DPM

17.7.71 Test Procedure
1. Provide 0 V to P7 ~ P9, in connector J4.
2. Run the ADC example.

3. After the DA16200 enters Sleep mode, verify that it wakes up by changing the voltage supplied to the ADC
to atleast 0.15 V.

17.7.7.2 Sample Code for Wake Up DPM
1. Initialize ADC.

UM-WI-046 Rev.2.6 RENESAS Page 283
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

HANDLE hadc;

int status, int handling mode;
unsigned int data, type, val;
unsigned long long wakeup time;
UINT32 wakeup src;

DA16X CLOCK SCGATE->Off DAPB AuxA = 0;
DA16X CLOCK SCGATE->Off DAPB APBS = 0;

// Set PAD Mux. GPIO 0 (ADC CHO), GPIO 1(ADC CH1)
_daléx io pinmux (PIN AMUX, AMUX AD12);

// Create Handle
hadc = DRV ADC CREATE (DA16200 ADC DEVICE ID);

// Initialization
status = DRV ADC INIT (hadc, DA16200 ADC NO TIMESTAMP) ;
//PRINTF ("ADC-INIT: %d\n",status);

2. Start ADC.

// Start. Set Sampling Frequency. 12B ADC Set to 200 kHz
// Clock = 1 MHZ / (value + 1)

// Ex) If Value = 4, Clock = 1 MHz / (4+1) = 200 kHz
status = DRV ADC START (hadc, DA16200 ADC DIVIDER 12, 0);

//PRINTF ("ADC start: %d\n",status);

// Set ADC 0 to 12-Bit ADC

status = DRV ADC ENABLE CHANNEL (hadc, DA16200 ADC CH 0,
DA16200 ADC SEL ADC 12, 0);

//PRINTF ("ADC enable: %d\n",status);

//Set Data type offset binary, 0 : 2's complement , 1 :
type = 1;
DRV _ADC IOCTL(hadc, ADC SET DATA MODE, &type);

offset binary

3. Read ADC.

//Read Current ADC 0 Value.
DRV_ADC READ (hadc, DA16200 ADC CH 0, &data, 0);
PRINTF ("Current ADC Value = 0x%x\r\n", data & Oxffff);

4. Set ADC Interrupt.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 284

DA16200 DA16600 FreeRTOS SDK Programmer Guide

//set threshold

//value 0x8000 means about 0.7Volt in EVK environment.

status = DRV ADC SET THD VALUE (hadc, ADC THRESHOLD TYPE 12B OVER, 0x1B60,
0);

PRINTF ("ADC-set threshold: %d\n", status);

//set Interrupt

status = DRV ADC SET INTERRUPT (hadc, DA16200 ADC CH 0, TRUE,
MCﬁINTERRUPTﬁTHDﬁOVER , 0);

PRINTF ("ADC-set interrupt: %d\n", status);

//set Interrupt Mode
int handling mode = ADC INTERRUPT MODE EVENT | ADC INTERRUPT MODE MASK;
DRV_ADC IOCTL(hadc, ADC SET INTERRUPT MODE, (void*) (&int handling mode));

//Set ADC for Sleep mode 2 //

DRV_ADC SET THRESHOLD (hadc, DA16200 ADC CH 0, 0x1B6,

ADC RTC THRESHOLD TYPE OVER) ;

val = 1;

DRV_ADC_TOCTL (hadc, ADC SET RTC CYCLE BEFORE ON, &val);
val = 1;

DRV ADC IOCTL (hadc, ADC SET RTC CYCLE BEFORE CAPTURE, &val);
val = 0;

DRV ADC IOCTL(hadc, ADC SET CAPTURE STEP, &val);

DRV ADC SET SLEEP MODE (hadc, 1, Oxf, 1);

DRV ADC SET RTC ENABLE CHANNEL (hadc, DA16200 ADC CH 0, 1);

drv_adc sensor out enable (hadc);
vTaskDelay (50) ;

5. Enter Sleep mode 2.

wakeup src = daléx boot get wakeupmode () ;
PRINTF ("\nWakeup source is 0x%x\n", wakeup src);

wakeup time = 10000000000 * 1000000;
start dpm sleep mode 2 (wakeup time, TRUE);
PRINTF ("Sample: Go to Sleep mode 2 ... \n");

17.8 SPI

This section shows how the SPI loopback operation works.
17.8.1 Introduction

17.8.1.1 SPI Master

The SPI master communicates in full duplex mode that uses master-slave architecture with a single master. The
master device originates the frame to be read or written. Multiple slave-devices are supported with the selection

of individual chip select (CS) lines.

Table 73 shows the pin definition of the SPI master interface. To use as an SPI master, the CSB signal can be
used with any of the GPIO pins. CSB [3:2] can be selected from the GPIO special function. This is done through

register settings in the GPIO.

Table 73. SPI master pin configuration

Pin number
Pin name /0 Function name
QFN fcCSP
GPIOx (0] E_SPI_CSBJ[3:1]
GPIOAG6 32 E3 (0] E_SPI_CSBJ0]
GPIOA7 31 E1 (0] E_SPI_CLK
UM-WI-046 Rev.2.6 RENESAS Page 285

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Pin number
Pin name 1/0 Function name
QFN fcCSP
GPIOAS8 30 G3 110 E_SPI_MOSI or E_SPI_D[0]
GPIOA9 29 H2 110 E_SPI_MISO or E_SPI_D[1]
GPIOA10 28 F2 110 E_SPI_D[2]
GPIOA11 27 G1 110 E_SPI_D[3]

17.8.1.2 SPI Slave

The SPI slave interface enables support to control the DA16200/DA16600 from an external host. The range of
the SPI clock speed is the same as that of the internal bus clock speed. The SPI slave supports both burst mode
and non-burst mode. In the burst mode, SPI_CSB remains active from the start to the end of communication. In

the non-burst mode, SPI_CLK remains active at every 8-bit.

The communication protocols of the SPI slave interface use either 4-byte or 8-byte control signals. Between the

two available communication protocols, the CPU chooses one before initiating the control.

Table 74. SPI slave pin configuration

Pin name Pin number 110 Function name
QFN fcCSP
GPIOA2 37 B2 I
GPIOA6 32 E3 I SPICSB
GPIOA3 36 D4 I
GPIOA7 31 E1 I SPLCLK
GPIOA1 38 C3 I
GPIOA9 29 H2 I SPI_MOSI
GPIOA11 27 G1 I
GPIOAO 39 A3 o
GPIOAS8 30 G3 o] SPI_MISO
GPIOA10 28 F2 o]
17.8.2 API
Table 75. APIs for SPI master interface
Item Description
HANDLE SPI_CREATE(UINT32 dev_id)
Parameter dev_id Instance Number of SPI (UINT32).
Return Handler of SPI Driver (HANDLE).
Description Returns the SPI Handler that is defined in "spi.h" file.
= create the GPIO handler for chip selection.
int SPL_INIT (HANDLE handler)
Parameter Handler SPI Driver (HANDLE)
Return TRUE/FALSE (int)
Description Initializes the SPI Handler to set up GPIO and activate the ISR.
= create the MUTEX for support to control multi-slaves.
int SPI_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)
Parameter Handler SPI Driver (HANDLE)
Cmd IOCTL command
UM-WI-046 Rev.2.6 RENESAS Page 286

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
‘ data IOCTL parameters
Return TRUE/FALSE (int)

int SPI_WRITE(HANDLE handler, void *pdata, UINT32 dlen)

Parameter ‘ Handler SPI Driver (HANDLE)
Return zero — false, non-zero — data length (int)
Description SPI write operation.

= pdata: TX data buffer
= dlen: byte length

int SPI_WRITE_READ(HANDLE handler, void *snddata, UINT32 sndlen, void *rcvdata, UINT32 rcvlen)

Parameter Handler SPI Driver (HANDLE)
Return zero — false, non-zero — data length (int)
Description SPI write and read operation (write before read).

This function runs in concatenation mode internally.
= snddata: TX data buffer

= sndlen: byte length

= rcvdata: TX data buffer

rcvlen: byte length

Int SPI_TRANSMIT(HANDLE handler, VOID *snddata, UINT32 sndlen, VOID *rcvdata, UINT32 rcvilen)

Parameter Handler SPI Driver (HANDLE)
Return zero - false, non-zero - data length (int)
Description Basic operation running once in SPI burst mode (send before receiving).

This function does not support changing bus mode automatically.
= snddata: TX data buffer

= sndlen: byte length

= rcvdata: TX data buffer

rcvlen: byte length

Int SPI_CLOSE(HANDLE handler)

Parameter Handler SPI Driver (HANDLE)
Return TRUE/FALSE (int)
Description Release the SPI handler

Table 76. APIs for SPI slave interface

void host_spi_slave_init(void)

Change Slave I/F to SPI protocol. Enable clock to SPI slave device and GPIO Interrupt Set.

void host_i2c_slave_init(void)

Change Slave I/F to 12C protocol. Enable clock to 12C slave device and GPIO Interrupt Set.

17.8.3 How to Run

1. In the e?studio, import a project for the SPI sample application.

~/SDK/apps/common/examples/Peripheral /SPI/projects/dal6200

2. Connect the SPI master pins and SPI slave pins.
e GPIOA[0] (SPI_MISO) - GPIOA[9] (E_SPI_DIO1)
o GPIOA[1] (SPI_MOSI) - GPIOA[8] (E_SPI_DIO0)
e GPIOA[2] (SPI_CSB) - GPIOA[6] (E_SPI_CSB)

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 287

DA16200 DA16600 FreeRTOS SDK Programmer Guide

e GPIOA[3] (SPI_CLK) - GPIOA[7] (E_SPI_CLK)

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
4. The SPI loopback communication works as shown in Figure 121.

System Mode : Station Only (0)
>>> DA16x Supp Ver2.7 2020 07

>>> MAC address (sta®) d4:3d:39:10:d1:20

>>> stad inter add OK

PI initializa succeeded.

uccess

Figure 121. SPI loopback communication

17.8.4 Sample Code
1. Create an SPI handle and configure the interface.

spi = SPI CREATE (SPI_UNIT 0);
if (spi == NULL) {

return;

_sys _clock read(ioctldata, sizeof (UINT32));
SPI IOCTL(spi, SPI SET CORECLOCK, ioctldata);

/* set SPI speed */
ioctldata[0] = SMC SPI SPEED * MHz;
SPI_IOCTL(spi, SPI_SET SPEED, ioctldata);

/* set SPI polarity */
ioctldata[0] = SMC SPI POLARITY;
SPI TOCTL(spi, SPI_SET FORMAT, ioctldata);

/* set SPI DMA config */
ioctldata[0] = SPI DMA MPO BST(8)
| SPI DMA MPO IDLE (1)
| SPI DMA MPO HSIZE (XHSIZE DWORD)
| SPT DMA MPO AT (SPI ADDR INCR);
SPI IOCTL(spi, SPI SET DMA CEFG, ioctldata);
SPI_IOCTL(spi, SPI_SET DMAMODE, NULL);

/* set SPI chip select, io operation type */
ioctldata[0] = SMC SPI CS;

ioctldata[l] = SMC IO OPERTATION TYPE;

SPI_IOCTL(spi, SPI SET WIRE, (VOID *)ioctldata);

/* set SPI delay index */
ioctldata[0] = SPI DELAY INDEX LOW;
SPI_IOCTL(spi, SPI_SET DEIAY INDEX, ioctldata);

/* SPI initialization */
status = SPI_INIT (spi);

PRINTF (" [$s]failed to create instance\n", func);

2. Set pin multiplexing as SPI master and SPI slave.

/* pinmux config for SPI Slave - GPIOA[3:0] */
_dal6x io pinmux (PIN AMUX, AMUX SPIs);
_dal6x io pinmux (PIN BMUX, BMUX SPIs);

/* pinmux config for SPI Host - GPIOA[9:6] */

UM-WI-046 Rev.2.6 RENESAS

Oct 3, 2025 CFR0012

Page 288

DA16200 DA16600 FreeRTOS SDK Programmer Guide

_dal6x io pinmux (PIN DMUX, DMUX SPIm);
_dal6x io pinmux (PIN EMUX, EMUX SPIm);

3. Write data.

/* generate host interface protocol header */
_buf[0] = (addr >> 8) & Oxff;
_buf[1] (addr >> 0) & Oxff;
“buf[2] = (HPC WRITE CMD & Oxff)

| (HPC_COMMON ADDR MODE << 5)

| (HPC REF LEN<<4) | ((length>>8) &0xf) ;
_buf[3] = (length)&0xff;

/* copy data to buf */
memcpy (& (_buf[4]), data, length);

/* Bus Lock : CSELO */

ioctldata[0] = TRUE;

ioctldata[l] = portMAX DELAY;

ioctldata[2] = SPI CSEL 0;

SPI_IOCTL(spi, SPI _SET LOCK, (VOID *)ioctldata);

status = SPI WRITE(spi, buf, (HPC HEADER LEN + length));

/* Bus Unlock */

ioctldata[0] FALSE;

ioctldata[l] = portMAX DELAY;

ioctldata[2] = SPI _CSEL 0;

SPI IOCTL(spi, SPI SET LOCK, (VOID *)ioctldata);

4. Read data.
_buf[0] = (addr >> 8) & Oxff;
_buf[1l] = (addr >> 0) & Oxff;

_buf[2] = HPC READ CMD

| (HPC COMMON ADDR MODE << 5)

| (HPC REF LEN<<4) | ((len>>8) &0xf) ;
_buf[3] = (len)&Oxff;

/* Bus Lock : CSELO */

ioctldata[0] = TRUE;

ioctldata[l] = portMAX DELAY;

ioctldata[2] = SPI CSEL 0;

SPI IOCTL(spi, SPI SET LOCK, (VOID *)ioctldata);

status = SPI WRITE RFAD(spi, buf, 4, rx data, len);

/* Bus Unlock */

ioctldata[0] FALSE;

ioctldata[l] = portMAX DELAY;

ioctldata([2] = SPI CSEL 0;

SPI IOCTL(spi, SPI SET LOCK, (VOID *)ioctldata);

17.9 SDIO

The DA16200 can be accessed with the SDIO interface. If the user wants to test it, then another host system is
needed.

UM-WI-046 Rev.2.6 RENESAS Page 289
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

17.9.1 Introduction

17.9.1.1 SDIO Master

Secure Digital Input Output (SDIO) is a full/lhigh speed card suitable for memory card and I/O card applications
with low power consumption. The full/high speed card supports SPI, 1-bit SD and 4-bit SD transfer modes at the
full clock range of 0~50 MHz. To be compatible with the serviceable SDIO clock, the internal BUS clock should
be set to a minimum of 50 MHz. The CIS and CSA areas are inside the internal memory, and the SDIO registers
(CCCR and FBR) are programmed by the SD host. For more details, see Ref. [2].

17.9.1.2 SDIO Slave

The GP104 and GPIOS5 pins are set to SDIO CMD and CLK by default. If SDIO initialization is done and SDIO
communication is enabled, then the SDIO data pin setting is done automatically. In other words, when SDIO
communication is detected, the pin used as the SDIO data among the GPIO pins is automatically activated in the
SDIO use mode. However, the auto setting function is not supported for the F_xx pin used as the flash function.

17.9.2 API
Table 77. APIs for SDIO master interface

Item Description

HANDLE EMMC_CREATE(void);

Parameter None -
Return If it succeeds, return the handle for such device. If it fails, return NULL.
Description Create EMMC handle.
int EMMC_INIT(HANDLE handler)
Parameter handler Device handle
Return If it succeeds, return ERR_NONE. If it fails, return ERR_MMC_INIT.
Description Initialize the SD/eMMC or SDIO card.
int EMMC_CLOSE(HANDLE handler)
Parameter handler Device handle
Return If it succeeds, return ERR_NONE.
int SDIO_ENABLE_FUNC(HANDLE handler, UINT32 func_num)
Parameter handler Device handle
func_num Function number to enable.
Return If it succeeds, return ERR_NONE.
int SDIO_DISABLE_FUNC(HANDLE handler, UINT32 func_num)
Parameter handler Device handle
func_num Function number to disable.
Return If it succeeds, return ERR_NONE.

int SDIO_SET_BLOCK_SIZE(HANDLE handler, UINT32 func_num, UINT32 blk_size)

Parameter handler Device handle
func_num Function number
blk_size Block size
Return If it succeeds, return ERR_NONE.

int SDIO_READ_BYTE(HANDLE handler, UINT32 func_num, UINT32 addr, UINT8 *data)

Parameter handler Device handle
func_num Function number
UM-WI-046 Rev.2.6 RENESAS Page 290

Oct 3, 2025 CFR0012

https://en.wikipedia.org/wiki/Secure_Digital#SDIO_cards

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description
addr Address in the function
data Data pointer
Return If it succeeds, return ERR_NONE. And byte data is stored in data.

int SDIO_WRITE_BYTE(HANDLE handler, UINT32 func_num, UINT32 addr, UINT8 *data)

Parameter handler Device handle
func_num Function number
addr Address in the function
data Data pointer
Return If it succeeds, return ERR_NONE.

int SDIO_READ_BURST(HANDLE handler, UINT32 func_num, UINT32 addr, UINT32 incr_addr, UINT8 *data,
UINT32 count, UINT32 blksz)

Parameter handler Device handle
func_num Function number
addr Function address
Incr_addr Increase address option (1: address increase, 0: address fix)
data Data pointer
count Count of blocks
blksz Block size
Return If it succeeds, return ERR_NONE.

If it fails, Error Code return, see also EMMC.h.

int SDIO_WRITE_BURST(HANDLE handler, UINT32 func_num, UINT32 addr, UINT32 incr_addr, UINT8 *data,
UINT32 count, UINT32 blksz)

Parameter handler Device handle
func_num Function number
addr Function address
Incr_addr Increase address option (1: address increase, 0: address fix)
data Data pointer
count Count of blocks
blksz Block size
Return If it succeeds, return ERR_NONE.

Table 78. SDIO slave pin configuration

Pin number
Pin name 110 Function name
QFN fcCSP

GPIOA4 34 F4 I/0

SDIO_CMD
F_CSN 18 J5 I/0
GPIOA5 33 D2 |

SDIO_CLK
F CLK 19 K4 I
GPIOA9 29 H2 I/0

SDIO_DO
F_100 14 K8 I/0
GPIOA8 30 G3 I/0

SDIO_D1
F_101 15 L7 /0

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 291

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Pin number
Pin name 110 Function name
QFN fcCSP
GPIOA7 31 E1 I/0
SDIO_D2
F_102 16 J7 I/0
GPIOA6 32 E3 I/0
SDIO_D3
F_103 17 K6 I/0

For more details, see Ref. [2].

17.9.3 How to Run

1. In the e? studio, import a project for the SDIO sample application.

~/SDK/apps/common/examples/Peripheral /SDIO/projects/dal6200

2. The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/SDIO/src/sdio sample.c

o GPIOA[9:4] needs to connect to the HOST system
e GPIOA[9] - SDIO_DO0, GPIOA[8] - SDIO_D1

e GPIOA[7] - SDIO_D2, GPIOA[6] - SDIO_D3

o GPIOA[5] - SDIO_CLK, GPIOA[4] - SDIO_CMD

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. The sample runs as soon as the boot up is completed.

[/DA16200] # sdio slave start
Now the sdio host can access the DA16200
[/DA16200] #

Now the DA16200 is ready to receive an SDIO command.

17.9.4 Sample Code

In the DA16200, the loopback test between SD host and sdio_slave is not supported. Instead, in the sample

code provided, SDIO is just waiting for a request from the host after initialization.

/*
* SDIO Slave
*/
// GPIO[9] - SDIO DO, GPIO[8] - SDIO D1
_dal6x io pinmux (PIN EMUX, EMUX SDs) ;
// GPIO[5] - SDIO CLK, GPIO[4] - SDIO CMD
_dal6x io pinmux (PIN CMUX, CMUX SDs);
// GPIO[7] - SDIO D2, GPIO[6] - SDIO D3
_dal6x io pinmux (PIN DMUX, DMUX SDs);

// clock enable sdio slave
DA16X_CLOCK SCGATE->Off SST M3X1 = 0;
DA16X CLOCK SCGATE->Off SSI SDIO = 0;

SDIO SIAVE INIT();
/* now the sdio host can access the DA16200 */

Printf ("now the sdio host can access the DA16200\r\n");

17.10 SD/eMMC

This section shows how to use the SD/eMMC interface.

UM-WI-046 Rev.2.6 RENESAS

Oct 3, 2025 CFR0012

Page 292

DA16200 DA16600 FreeRTOS SDK Programmer Guide

17.10.1 Introduction

The SD/eMMC host interface of the DA16200/DA16600 provides access to SD or eMMC cards. The SD/eMMC
host interface supports a 4-bit data bus with a maximum clock rate of 48 MHz giving a maximum data rate of 24

MB/s (192 Mbps). The SD/eMMC pin mux condition is defined in Table 79.
Table 79. SD/eMMC master pin configuration

Pin number
Pin name 110 Function name
QFN fcCSP
GPIOA4 34 F4 I/0 SD/eMMC_CMD
GPIOA5 33 D2 (0] SD/eMMC_CLK
GPIOA9 29 H2 I/0 SD/eMMC_DO0
GPIOA8 30 G3 I/0 SD/eMMC_D1
GPIOA7 31 E1 I/0 SD/eMMC_D2
GPIOAG 32 E3 I/0 SD/eMMC_D3
GPIOA10 28 F2 |
SD/eMMC_WRP

GPIOA1 38 C3 |

For more details, see Ref. [2].

17.10.2 API

Table 80. APIs for SD/eMMC interface

Item Description

HANDLE EMMC_CREATE(void)

Parameter None

Return If it succeeds, return the handle for such device. If it fails, return NULL.

Description Function create handle. If memory allocation fails, return NULL.

int EMMC_INIT(HANDLE handler)

information is stored in the handle.

Parameter handler Device handle
Return If it succeeds, return ERR_NONE. If it fails, return ERR_MMC_INIT.
Description Initialize the SD/eMMC or SDIO card. If the function returns ERR_NONE, the card

int EMMC_READ(HANDLE handler, UINT32 dev_addr, VOID *p_data, UINT32 block_count)

Parameter handler Device handle
dev_addr Address
p_data Data pointer
block_count Block counter for read

Return If it succeeds, return ERR_NONE.

Description EMMC read command

int EMMC_WRITE(HANDLE handler, UINT32 dev_addr, VOID *p_data, UINT32 block_count)

Parameter handler Device handle
dev_addr Address
p_data Data pointer
block_count Block counter for write

Return If it succeeds, return ERR_NONE.
UM-WI-046 Rev.2.6 RENESAS Page 293

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item

Description

Description

EMMC write command

void EMMC_SEND_CMD(HANDLE handler, UINT32 cmd, UINT32 cmd_arg)

Parameter handler

Device handle

cmd SDIO command without response. Defined in <SDIO.h>.
cmd_arg SDIO command argument
Return If it succeeds, return TRUE. If it fails, return FALSE.
Description Send command to SDIO
void EMMC_SEND_CMD_RES(HANDLE handler, UINT32 cmd, UINT32 cmd_arg, UINT32 *rsp)
Parameter handler Device handle
cmd SDIO command with response
cmd_arg SDIO command argument
rsp Response pointer
Return None
Description After this function call, the response is stored in rsp.

int EMMC_IOCTL(HANDLE handler, UINT32 cmd, VOID *data)

Parameter handler

Device handle

cmd The command that is defined in EMMC.h.
data Data pointer
Return If it succeeds, return ERR_NONE.
Description EMMC IOCTL command

int EMMC_CLOSE(HANDLE

handler)

Parameter handler

Device handle

Return

If it succeeds, return ERR_NONE.

Description

EMMC driver close command

17.10.3 How to Run

1. In the e? studio, import a project for the SD_EMMC sample application.
~/SDK/apps/common/examples/Peripheral/SD EMMC/projects/dal6200

2. The sample application code is written in the following source file:

~/SDK/apps/common/examples/Peripheral/SD EMMC/src/sd emmc sample.c

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. The sample runs as soon as the boot is complete.
[/DA16200] # emmc sample start

fail / total 0 / 100
[/DA16200] #

5. Ifthe SD card is not ready, then the message "emmc _init fail" is returned.
6. Connect GPIOA[9:4] to the SD card socket as shown below.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 294

DA16200 DA16600 FreeRTOS SDK Programmer Guide

SDIO & SD/eMMC Connector

[2.3.5.6] vy [t <

1003, 34 12,356
[=17
1010 -
o = = % = Bl & T
F5 a8 F 4 ¢ oML wxazkraost 3
2 &2 E & & & & / o
3
g
(4.7] HOST_S0_DATAZ 2] par
[4.7] HOST_SD_DATA3 ¢} L. co/oaT3
1.7 HET_S0.00 <} 2] 20 e
Fy
[4.7] HET S 0K ¢} ! g én_;?
4.7 HOST_S0_DATAD ¢} = tato
[4.7] HOST_SO_DATAT b DATL ~
g8 8
7
4] HIST_S0_0ET 3 - B2
[4] HET S0 e =

53%

R282
-
|
I

Figure 122. SDIO and SD/eMMC connector

NOTE

The CMD and DATA pins of the SD card connections are open-drain at initialization. When the SD card initialization is not

working normally, it needs to use smaller pull-up resisters for CMD and DATA pins or a shorter length jumper wire of the
SD card connections.

GPIOA[9] - mSDeMMCIO_DO0, GPIOA[8] - mSDeMMCIO_D1

= GPIOA[7] - mSDeMMCIO_D2, GPIOA[6] - mSDeMMCIO_D3

= GPIOA[5] - mSDeMMCIO_CLK, GPIOA[4] - mSDeMMCIO_CMD
= GPIOA[10] is not mandatory (for write protect function).

17.10.4 Sample Code

This sample code shows how the eMMC host writes random data to a slave memory card and reads back the
written data to check if that data matches.

Function Emmc_verify() compares the written data with the data read from the SD memory card. The sector size

of the SD memory card is 512 bytes. The "addr" variable value (210) in the code is just an example sector
number in the SD memory card.

void emmc init () {

DA16X CLOCK SCGATE->Off SysC HIF = 0;
DA16X SYSCLOCK->CLK DIV EMMC = EMMC CLK DIV VAL;
DA16X SYSCLOCK->CLK EN SDeMMC = 0x01; // clock enable

= Set pin multiplexing

/*

* SDIO Master

*/

// GPIO[9] - mSDeMMCIO DO, GPIO[8] - mSDeMMCIO D1
_dal6x io pinmux (PIN EMUX, EMUX SDm);

// GPIO[5] - mSDeMMCIO CLK, GPIO[4] - mSDeMMCIO CMD
_dal6éx io pinmux (PIN CMUX, CMUX SDm);

// GPIO[7] - mSDeMMCIO D2, GPIO[6] - mSDeMMCIO D3
_dal6x io pinmux (PIN DMUX, DMUX SDm);

= Create and initialize an SD/eMMC handle

UM-WI-046 Rev.2.6 RENESAS Page 295
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

if (_emmc == NULL) {
_emmc = EMMC CREATE () ;

}
err = EMMC INIT(emmc);

17.11 User SFLASH Read/Write Example

17.11.1 How to Run
1. In the e? studio, import a project for the SD_EMMC sample application.
~/SDK/apps/common/examples/Peripheral/Sflash API/projects/dal6200

2. The sample application code is written in the following source file:
~/SDK/apps/common/examples/Peripheral/Sflash API/src/sflash sample.c

3. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.

4. After booting, the sample starts automatically.

Fystem Mode @ Station Only (H>

»»> DAlex Supp Ver2.? - 28020_87

>>> MAC address <(sta@> : d4:3d:3%9:1B:cc:78
»>>» staB interface add OK

»»>» Start S5TA mode...

Figure 123. SFlash example sample test

17.11.2 User Task

The user task of the sflash api sample application is defined as below and executed by the system.
SAMPLE_SFLASH should be a unique name to create a task. This test is not related to network initialization and

DPM mode.

~/SDK/apps/common/examples/Peripheral/Sflash API/src/sample apps.c
static const app task info t sample apps table[] = {
SAMPLE SFLASH, user sflash test, 1024, USER PRI APP(1l), FALSE, FALSE, UNDEF PORT,
RUN_ALL MODE },

}i

17.11.3 Sample Code

17.11.3.1 Application Initialization
The user_sflash_test function is run after the basic initialization is complete.

void SFLASH API sample (void *param)
{
/* DO SOMETHING */
PRINTF("SFLASH_API_SAMPLE\H");

test sflash write();
vTaskDelay (10); // Dealy 100 msec

test sflash read();
vTaskDelete (NULL) ;

UM-WI-046 Rev.2.6 RENESAS Page 296
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

return ;

17.11.3.2 SFlash Read and Write

// user sflash APIs

sflash addr: see above user sflash area
rd buf: buffer to which data is copied
rd size: data size

sflash addr: see above user sflash area
rd buf: buffer from which data is copied to sflash addr
rd size: data size

void test sflash write (void)

{

UCHAR *wr_buf = NULL;

UINT wr_addr;
#define SFLASH WR TEST ADDR SFLASH USER AREA START
#define TEST WR SIZE SF_SECTOR_SZ

wr buf = (UCHAR *)malloc(TEST WR SIZE) ;

if (wr buf == NULL) {
PRINTF (" [%s] malloc fail ...\n", func);
return;

}

memset (wr_buf, 0, TEST WR SIZE);

for (int i = 0; i < TEST WR SIZE; i++) {
wr buf[i] = 0x41; // A

}

wr_addr = SFLASH WR TEST ADDR;

PRINTF ("=== SFLASH Write Data \n") ;
user sflash write(wr addr, wr buf, TEST WR SIZE);

void test sflash read(void)

{

UCHAR *rd buf = NULL;

UINT rd addr;

UINT status;
#define SFLASH RD TEST ADDR SFLASH USER AREA START
#define TEST RD SIZE (1 * 1024)

rd buf = (UCHAR *)malloc(TEST RD SIZE);

if (rd buf == NULL) {
PRINTF (" [%s] malloc fail ...\n", func);
return;

extern UINT user sflash read(UINT sflash addr, VOID *rd buf, UINT rd size);

extern UINT user sflash write (UINT sflash addr, UCHAR *wr buf, UINT wr size);

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 297

DA16200 DA16600 FreeRTOS SDK Programmer Guide

}
memset (rd buf, 0, TEST RD SIZE);

rd addr = SFLASH RD TEST ADDR;
status = user sflash read(rd addr, (VOID *)rd buf, TEST RD SIZE);

if (status == TRUE) {
hex dump (rd buf, 128);
}

free (rd buf);

NOTE

user_sflash_read/write is a blocking function.

Take special care when running this code under DPM mode enabled (sleep mode 2 or sleep mode 3 applications): when
invoking user_sflash_write(), make sure to get the result before the DPM sleeping APl is invoked.

17.120TP

17.12.1 Introduction

The DA16200/DA16600 includes a one-time electrically field programmable non-volatile CMOS memory. This
memory is to protect and manage major information essential for mass production and management of products,
such as booting information, MAC address, serial number, and others.

OTP is also used for storing secret information which is used for the advanced security functions such as secure
booting, secure debugging, and secure asset storage. But this secret information cannot be accessed in a
normal way of CPU read or write access so that it is protected from external access.

Table 81. OTP map

Offset Field Size (Bytes)

0x000 Renesas Reserved 1024

0x100 MAC Address #0 Low 4

0x101 MAC Address #0 High 4

0x102 MAC Address #1 Low 4

0x103 MAC Address #1 High 4

0x104 MAC Address #2 Low 4

0x105 MAC Address #2 High 4

0x106 MAC Address #3 Low 4

0x107 MAC Address #3 High 4

0x10A XTAL Offset #0 4

0x10B XTAL Offset #1 4

0x10C to Ox1FE User Area 972
UM-WI-046 Rev.2.6 RENESAS Page 298

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

17.12.2 API
Table 82. OTP API list

Item

Description

void otp_mem_create(void)

Parameter None

Return

None

Description

Initialize OTP hardware.

Before calling this function, it needs otp_clock_enable.
{
DA16200_SYSCLOCK ->PLL_CLK_EN_4_PHY = 1;
DA16200_SYSCLOCK ->CLK_EN_PHYBUS = 1;
extern void
DA16X_SecureBoot_OTPLock(1); // unlock

#define CLK_GATING_OTP 0x50006048
MEM_BYTE_WRITE(CLK_GATING_OTP, 0x00);
otp_mem_create();

DA16X_SecureBoot_OTPLock(unsigned int mode);

}
void otp_mem_close(void)
Parameter None
Return None
Description Close the OTP hardware.
int otp_mem_read(UINT32 offset, UINT32 *data)
Parameter offset OTP memory offset (0x00 ~ Ox1FE)
data [out] data pointer of buffer
Return OTP_OK if it succeeds.
Description Each offset stores 32-bit data.

See Table 81.

Offset 0x00 to Ox2c used for security purposes. So, it may not be accessible.

int otp_mem_write (UINT32 offset, UINT32 data)

offset OTP memory offset (0x00 ~ Ox1FE)
Parameter
data Data to write
Return OTP_OK if it succeeds.
Description Offset 0x00 to Ox2c used for security purposes. Do not write any data within.

See Table 81.

int otp_mem_lock_read (UIN

T32 offset, UINT32 *data)

offset Lock status offset. Always (OxFFF).
Parameter

data Data pointer of lock status
Return OTP_OK if it succeeds.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 299

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

Description The OTP memory can be locked.
Each lock bit can lock range ~ 0x40.
For example:

lock bit O lock offset 0 ~ 0x3F

lock bit 1 lock offset 0x40 ~ Ox7F
lock bit 2 lock offset 0x80 ~ OxBF
lock bit 3 lock offset 0xCO ~ OxFF
lock bit 4 lock offset 0x100 ~ Ox13F
lock bit 5 lock offset 0x140 ~ Ox17F
lock bit 6 lock offset 0x180 ~ Ox1BF
lock bit 7 lock offset 0x1CO ~ Ox1FE

lock status value 0x00000002, it means that offset 0x40~0x7F OTP memory locked.

int otp_mem_lock_write (UINT32 offset, UINT32 *data)

offset Lock status offset. Always (OxFFF).
Parameter

data Lock status value.
Return OTP_OK if it succeeds.
Description Refer otp_mem_lock_read().

17.13 Bluetooth LE Coexistence

The Bluetooth Low Energy (LE) coexistence feature can be enabled and disabled through a configuration

register. The activation scenarios based on the status of each pin are as follows:
= BT_sig0 (oWlanAct)

¢ When asserted, the external Bluetooth/Bluetooth LE device is expected to stop occupying RF.

e This signal can be configured as always high by software to block the external Bluetooth/Bluetooth LE

device from occupying RF. See Section 17.13.4 for details
= BT_sig1 (iBtAct)
e When asserted, the DA16200/DA 16600 stops occupying RF
= BT_sig2 (iBtPri)
o This is optional.

¢ When iBtPri is active, the DA16200/DA16600 stops occupying RF when iBtAct is active even if a Wi-Fi

transmission is in progress.

When both DA16200/DA16600 and Bluetooth/Bluetooth LE try to transmit a packet at the same time, there is a

configuration in the DA16200/DA16600 that determines which has the priority over the other.

When the priority of the DA16200/DA16600 is set to be higher than Bluetooth/Bluetooth LE, it ignores iBtAct
signal and transmits its packet anyway. When the priority of the DA16200/DA16600 is set to be lower than
Bluetooth/Bluetooth LE, it delays transmission of its packet until Bluetooth/Bluetooth LE de-asserts the iBtAct

signal.

Priority can be set through an API which is described in Section 17.13.4.
17.13.1 Pin Configuration

Table 83 shows the 3-pin configuration of Bluetooth LE coexistence interface. If the iBTPri pin is not controlled, it

must be configured as pull-up or pull-down and not high-z to avoid any leakage.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 300

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Table 83. 3-Pin Bluetooth LE coexistence pin configuration

Pin number
Signals Description 110 gslgsz'\?o DA16600MOD
0. DA16200 | DA16200MOD

DA16200 DA14531
oWlanAct | Wi-Fi active signal (0] GPIOA8 30 25 35 48 (P0_5)
iBtAGt Bluetooth active | GPIOA9 29 24 34 3 (P0_6)

signal

iBtPri Bluetooth priority I GPIOA10 28 23 33 47 (P0_7)

When GPIOA8 and GPIOA9 are assigned as either an SDIO or SPI interface, only the GPIOA10 pin should be
used for Bluetooth LE Coexistence. In this case, the GPIOA10 pin must be connected to the iBtAct pin of the
Bluetooth/Bluetooth LE chipset to coordinate the use of the RF signal between the DA16200/DA16600 and
Bluetooth/Bluetooth LE chipsets Table 84 shows 1-pin configuration of Bluetooth LE coexistence.

Table 84. 1-Pin Bluetooth LE coexistence pin configuration

Pin number
. i DA16200
Signals Description e} GPIO No. DA16600MOD
DA16200 DA16200MOD
DA16200 | DA14531
iBtAct SBigf:l’Oth active GPIOA10 28 23 33 3 (P0_6)

17.13.2 Pin Multiplex

Pin multiplexing for the Bluetooth LE coexistence feature can be configured by modifying the
initialize bt coex(void) function in the "rf_meas_api.c" file as follows:

// pin mux setup for Bluetooth LE coexistence
#ifndef SUPPORT BTCOEX 1PIN
_daléx io pinmux (PIN EMUX, EMUX BT);
#endif
_dal6x io pinmux (PIN FMUX, FMUX GPIOBT);

17.13.3 SDK Feature Definition

The Bluetooth LE coexistence feature can be enabled in the DA16200/DA16600 SDK in the
config generic sdk.hfile as follows:

* 3-Pin Bluetooth LE Coexistence
#define SUPPORT BTCOEX // BT Coexistences

= 1-Pin Bluetooth LE Coexistence

#define SUPPORT BTCOEX // BT Coexistences
#define SUPPORT BTCOEX 1PIN // BT Coexistences with 1 pin
NOTE

When 1-pin Bluetooth LE Coexistence is defined in "config_generic_sdk.h," the GPIOA10 pin should be connected to the
iBtAct pin of the Bluetooth/Bluetooth LE chipset.

17.13.4 API
Table 85. APIs for Bluetooth LE coexistence

Item ‘ Description

void rf_meas_btcoex(uint8_t enable, uint8_t priority, uint8_t polarity);

enable ‘ 0 or 1 (1: enable, 0: disable)

UM-WI-046 Rev.2.6 RENESAS Page 301

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

priority Priority: 0, 1, 2, 3

0: BT > WLAN (BT priority is higher than WLAN)

1: BT = WLAN (BT and WLAN priorities are equal)
2: BT < WLAN (WLAN priority is higher than BT)

3: BT < WLAN, oWlanAct is forced to be always high
polarity Polarity: 0 and 1 for oWlanAct, iBtAct, and iBtPri PIN
0: Normal (Active-High)

1: Inverted (Active-low)

Return None

Example code for the Bluetooth LE coexistence APl when using 3 pins:

// The 1lst Element means BT coexistence is enabled

rf meas btcoex(l, 0, 0); // 0: Bluetooth® win in conflict

rf meas btcoex(l, 2, 0); // 2: WLAN win in conflict

rf meas btcoex(l, 3, 0); // 3: Set oWlanAct pin high always, available in SDK v3.2.6.0 or
later

Example code for the Bluetooth LE coexistence APl when using 1 pin:

rf meas btcoex(l, 0, 0); // 1l: BT coexistence is enabled, 0: Bluetooth® win in conflict

To change the default setting, after starting the system, rf meas btcoex (1, 0, 0) is called in user main() to
set the default configuration of the Bluetooth LE coexistence interface.

The rf meas btcoex () function can be called at any time after system startup to reconfigure the priorities
without requiring a reboot.

17.14RTC Timer in DPM

This sample code describes how to use the RTC timer for waking up from Sleep mode 2 or Sleep mode 3 and,
see Ref. [2] for further details.

17.14.1 How to Run
1. In the e? studio, import a project for the RTC timer sample application.
~/SDK/apps/common/examples/Peripheral /RTC Timer DPM/projects/dal6200
2. Build the DA16200 SDK, download the RTOS image to the DA16200 EVB, and reboot.
3. Use the console terminal of DA16200 EVB to set up the Wi-Fi station interface and enable DPM mode.
4. After rebooting, the RTC timer sample application starts automatically.
The user can select Sleep modes in the sample code.
/* Defines for sample */

#undef SAMPLE FOR DPM SLEEP 2 // Sleep mode 2
#define SAMPLE FOR DPM SLEEP 3 // Sleep mode 3

17.14.2 Timer Creation: Sleep Mode 2

Sleep mode 2 powers off all components of DA16200 except RTC. However, for test purposes, retention
memory can be powered on. External wake-up or RTC timer can wake up a DUT (Device Under Test) in Sleep
mode 2. If the RTC timer is not set, the DUT in Sleep mode 2 is not woken up by the RTC timer. When the DUT
is woken up by wake-up sources, it works using the data of retention memory.

To go to Sleep mode 2, run APl dpm_sleep_start_mode_2().

Void rtc timer sample(void * param)

{

unsigned long long wakeup time;

UM-WI-046 Rev.2.6 RENESAS Page 302
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

/* Just work in case of RTC timer wakeup */
if (dpm mode is wakeup() == DPM WAKEUP
&& dpm get wakeup source() != WAKEUP COUNTER WITH RETENTION) {
dpm app sleep ready set (SAMPLE RTC TIMER);
return;

}

/* TRUE : Maintain RTM area for DPM operation */
wakeup time = MICROSEC FOR ONE SEC * RTC TIMER WAKEUP ONCE;
dpm sleep start mode 2 (wakeup time, TRUE);

17.14.3 Timer Creation: Sleep Mode 3

Sleep mode 3 powers off all components except RTC, retention memory, and pTIM (should be in running state
to be connected to Wi-Fi). Sleep mode 3 is always connected to Wi-Fi, but Sleep mode 2 needs to connect to
the Wi-Fi network first and transmits or receives data. For more detailed information on Sleep mode 3, see
Ref. [3].

This sample code shows how to create the one-shot RTC timer and a periodic RTC timer.

{

void rtc timer sample(void * param)

ULONG status;

if (dpm mode is wakeup() == NORMAL BOOT) ({
/*
* Create a timer only once during normal boot.
*/

dpm app sleep ready clear (SAMPLE RTC TIMER);

/* One-Shot timer */
status = dpm timer create (SAMPLE RTC TIMER,
"timerl",
rtc timer dpm once cb,
RTC TIMER WAKEUP ONCE,
0);
switch ((int)status) {
case DPM MODE NOT ENABLED
case DPM TIMER SEC OVERFLOW :
case DPM TIMER ALRFADY EXIST:
case DPM TIMER NAME ERROR
case DPM UNSUPPORTED RTM
case DPM TIMER REGISTER FAIL:
case DPM TIMER MAX ERR :
PRINTE (">>> Fail to create %s timer (err=%d)\n",
SAMPLE CUR TIME DPM, (int)status);
// Delay to display above message on console ...
vTaskDelay (2) ;

break;

}

/* Periodic timer */

status = dpm timer create(SAMPLE RTC TIMER,
"timer2",
rtc timer dpm periodic cb,
RTC TIMER WAKEUP PERIOD,
RTC TIMER WAKEUP PERIOD);

UM-WI-046 Rev.2.6 RENESAS Page 303
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

switch ((int)status) {
case DPM MODE NOT ENABLED
case DPM_TIMER_SEC_OVERFLOW :
case DPM TIMER ALREADY EXIST:
case DPM TIMER NAME ERROR
case DPM_UNSUPPORTED_RTM
case DPM_TIME‘.R_REGISTER_FAIL:
case DPM TIMER MAX ERR

SAMPLE_CUR TIME DPM, (int)status);

vTaskDelay (2) ;

break;

}

dpm app sleep ready set (SAMPLE RTC TIMER);
} else {
/* Notice initialize done to DPM module */
dpm app wakeup done (SAMPLE RTC TIMER) ;
}

while (1) {
/* Nothing to do... */
vTaskDelay (100) ;

PRINTF (">> Fail to create %s timer (err=%d)\n",

// Delay to display above message on console ...

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 304

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18. DA16600 Example Applications

The DA16600 module is comprised of the DA16200 (Wi-Fi) and the DA14531 (Bluetooth LE) SoC. The two chips
exchange data with each other through the GTL interface. This document describes the test steps and code
walkthrough of four example applications with the DA16600.

The DA16600 SDK has four example applications as listed below and all of them support Wi-Fi provisioning and
OTA download.

= Gas leak detection sensor

= TCP clientin DPM

= DA14531 peripheral driver

= |oT sensor gateway

The applications are based on the two basic external host examples included in the DA14531 SDK.

" [DA14531 SDK ROOT]\projects\host apps\windows\proximity\monitor
" [DA14531 SDK ROOT]\projects\host apps\windows\proximity\reporter

A DA16600 user application (that may desire to use both Wi-Fi and Bluetooth LE functions) needs the
development of functions that use both Wi-Fi APIs and Bluetooth LE APls.

To develop a function that talks to a Bluetooth LE peer (for example, can talk to the Provisioning Mobile
Application), see Ref. [9] for details.

To develop a local function such as driver function in the DA14531 (for example, to handle a custom GTL
message that should be handled in the DA14531), the user also needs to understand the local APIs of the
DA14531. See Ref. [10] or the API documentation included in the DA14531 SDK.

For the hardware configuration of the DA16600 EVB, see Ref. [3].

18.1 Source Structure and Common APIs

The DA16600 example applications working with Bluetooth LE (DA14531) are added into the DA16200 SDK.
The Wi-Fi (DA16200) and Bluetooth LE (DA14531) chips are connected through a four-wire UART (TX, RX,
RTS, and CTS, the baud rate is 115200 by default) and communicating with each other over Renesas
Electronics’ proprietary GTL interface. In the GTL architecture, a Bluetooth LE application is running on the
external host (DA16200).

As the GTL architecture and the DA16200 based SDK are used in the DA16600, the application developer
should understand and know how to use the user APIs for both host platforms — the DA16200 SDK and
Bluetooth LE platform (DA14531).

UM-WI-046 Rev.2.6 RENESAS Page 305
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.1.1 DA16600 Bluetooth Source Structure
Figure 124 shows the folder structure for Wi-Fi and Bluetooth LE applications.

~ da16600 ~ (& ble_interface

= » = ble_inc
» (& config &
» G core (» & include
v (@ customer_app b = src
» & include » G bsp
» (% config
v src
o » (% freertos
» &= apps » (g libraries
v (= ble_svc » (& segger_tools
= include » G system

= provision » (& wifistack
&

&
b

3

» (= sensor_gw
» (= user_sensor
» (= user_util

» = wifi_svc

» = wifi_svc_peri

» = wifi_svc_tcp_client_dpm
¥ (= user_main

Figure 124. DA16600 Bluetooth source structure

= core/ble_interface/gtl folder contains Bluetooth LE image load, boot, and reset

= customer_app/src/ble_svc folder contains four example applications: The examples support the Wi-Fi
provisioning application — GATT Server implementation to communicate with Bluetooth LE peer applications

(Wi-Fi Provisioning Mobile APP) and OTA download as default
e sensor_gw: loT Sensor Gateway

GAP Central example application based on a Bluetooth LE example; this is a GATT Client application

used in this application.

o wifi_svc: Gas leak detection sensor application

GAP Peripheral example application based on a Bluetooth LE example, works with a gas leak sensor
(virtual) that is locally connected to the DA14531 chip. When a gas leak event occurs, this application

posts a message to a network server in TCP/IP network.

¢ wifi_svc_tcp_client_dpm: TCP Client DPM application (default enabled)

GAP Peripheral example application based on a Bluetooth LE example, a pure TCP/IP network
application that communicates with a TCP Server in the connected network.

o wifi_svc_peri: DA14531 Peripheral driver sample application

GAP Peripheral example application based on a Bluetooth LE example, this configures and runs some

peripheral devices locally attached to DA14531.

18.1.2 Application APIs and Console Commands

Table 86 and Table 87 show the list of common APIs used in the example applications.

Table 86. Application functions

Item Description
system_start Entry point for customer main.
combo_init 4-wire UART initialization, the DA14531 firmware load.
wlaninit WLAN initialization
gtl_main Main GTL message handler
gtl_host_ifc_mon GTL/UART1 RX monitoring task
ble_app_usr_cmd_hdler Bluetooth LE Application User Command handler
UM-WI-046 Rev.2.6 RENESAS Page 306

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Item Description

BleReceiveMsg Receive a message from the DA14531 through the GTL.

BleSendMsg Send a message to the DA14531 through the GTL.

start_user_apps Start system application, Entry point of user's applications defined in

user_apps_table][].

initialize_bt_coex Initialize the DA16600 Wi-Fi and Bluetooth LE Combo module.
Table 87. Major console commands

Root commands Description

help CMD:-list display and help command.

top Go to the ROOT directory.

up Go to the upper directory.

dpm DPM enable/disable

factory Factory reset, if type 'y’ after this command, factory reset is complete.

getwlanmac Show MAC_addr

ping Ping help

reboot Device reboot command

ver Version display

Sub-commands

ble Bluetooth LE application commands

net Network commands

nvram NVRAM commands

sys System commands

user User commands

18.2 Environment Setup

The DA16600 module consists of two SoC chips — DA16200 and DA14531. The firmware images of the two
chips are stored in the SPI flash memory of the DA16600 module. The flash memory is only accessible by
DA16200 and not accessible by DA14531 directly. That is, the DA16200 reads and transfers it to DA14531.

The list of firmware images required to run each SoC chip is as follows:
DA16200: Wi-Fi chip

= Two image files:
¢ FBOOT image: secondary bootloader
¢ FRTOS image: main operation software which user applications are built
= Code storage memory
e SFlash of DA16200
DA14531: Bluetooth LE chip
= Single image file:
¢ Main image: main operation software which user applications are built
= Code storage memory
e SFlash of DA16200 or DA14531 OTP memory (32 kB allocated for OTP image)

o OTP memory can be used to burn a default image but since OTP can only be written once, the firmware
cannot be updated. If an OTA firmware update is required, then the SFlash of the DA16200 should be
used to store the DA14531 firmware.

UM-WI-046 Rev.2.6 RENESAS Page 307
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.2.1 SFlash Memory Map

The following code shows the DA16200 source code which defines the address where the Bluetooth LE
firmware is stored in SFlash.

.\core\bsp\driver\include\DA16200\dal6200 map.h

/*

* 0x003A D000 BLE Area 0x10000 ~ 0x15000 (64 KB MIN ~ 84 KB MAX)

* Bluetooth Firmware Size Max 0x10000 ~ 0x14000 (64 KB MIN ~ 80 KB MAX)
* BLE Security DB 0x00000 ~ 0x01000 (00 KB MIN ~ 04 KB MAX)

.;/

#define SFLASH 14531 BLE AREA START
(SFLASH NVRAM BACKUP + SFLASH NVRAM BACKUP - SFLASH NVRAM ADDR) // 0x003AD000

/* DA14531 Bluetooth LE Firmware start */
#define SFIASH BIE FW BASE (SFLASH 14531 BLE AREA START)

Two image banks are defined in the SFlash memory map for storing firmware, one for the DA16200 image and
one for the DA14531 image.

The following sections describe how to build the firmware for the DA16200 and the DA14531 based on the
memory map above.

18.2.2 Build the DA16600 SDK

To build the FreeRTOS based version of the DA16600 SDK, install the e? studio. See Ref. [3] for details on how
to install and set up the development environment.

This section describes four example applications and provides instructions on how to configure and build the
SDK. Each application supports provisioning of the Wi-Fi interface through the Bluetooth LE device and OTA
firmware download through the Wi-Fi interface. Before building one of the following four applications, the key
features for the selected application should be configured in the following main header file:

\apps\dal6600\get started\include\apps\user custom config.h

18.2.2.1 Gas Leak Detection Sensor Example Feature
This application supports the example described in Section 18.5.
* Change the features as follows.

#define BLE PERI WIFI SVC

#undef BLE PERI WIFI SVC TCP DPM

#undef BLE PERI WIFI SVC PERIPHERAL

#undef BLE CENT SENSOR GW

18.2.2.1.1 How to Add Security Feature

In addition to Gas Leak Detection Sensor Example Feature, if security needs to be enabled, then enable it in
ble combo features.h(.\apps\dal6600\get started\include\apps\) as follows:

» #define WIFI SVC SECURITY

NOTE

There are two pairing modes in Bluetooth pairing mechanism and they depend on the test mobile phone's Bluetooth
authentication capability configuration:

Legacy Pairing: the mobile application may show an input box and ask a user to enter a passkey that can be found on
the display of the DA16600 hardware, and then a user needs to enter the exact passkey on the test smartphone to
successfully connect to the DA16600.

UM-WI-046 Rev.2.6 RENESAS Page 308
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

NOTE

Secure Connection Pairing (SC Pairing): the mobile application may show a PIN code on the test mobile and ask a user
to compare the PIN code with the one printed on the display of the DA16600 hardware. If the PIN code matches, click the
OK button to connect the DA16600 to test the mobile application.

The DA16600 example currently can save bond information for up to ten Bluetooth LE peers.

When the bond information is stored in the test mobile phone, the test mobile phone's Bluetooth LE peer application can
be connected to the DA16600 without the need to repeat the pairing process. If either party loses the pairing credentials,
the pairing process starts again when trying to reconnect.

18.2.2.2 TCP Client in DPM Example Feature
This application supports the examples described in Section 18.6.

= Change the features as follows:
#undef BLE PERI WIFI SVC
#define BLE PERI WIFI SVC TCP DPM
#undef BLE PERI WIFI SVC PERIPHERAL
#undef _ BLE CENT SENSOR GW

18.2.2.3 Peripherals in DA14531 Driver Example Feature
This application supports the examples described in Section 18.7.

= Change the features as follows:
#undef BLE PERI WIFI SVC
#undef BLE PERI WIFI SVC TCP DPM
#define BLE PERI WIFI SVC PERIPHERAL
#undef BLE CENT SENSOR GW

18.2.2.4 loT Sensor Gateway Example Feature
This application supports the examples described in Section 18.8.

= Change the features as follows:
#undef BLE PERI WIFI SVC
#undef BLE PERI WIFI SVC TCP DPM
#undef BLE PERI WIFI SVC PERIPHERAL
#define BLE CENT SENSOR GW

UM-WI-046 Rev.2.6 RENESAS Page 309
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.2.2.5 Build SDK in e2studio IDE

DA16600 - da16600/customer_app/include fapps/user_custom_config.h - e? studio - o0 &

File Edit Source Refactor MNavigate Search Project RenesasViews Run Renesas Al Window Help

B~ B T iB e Qo Q i® [o+
{5 Project Explorer x = 4 user_custom_config.h x ble_combo_features.h = B | /5= outline x = g
2% 7 3 sj & * user custom config.h[] 5L W W e %G
33 o#ifndef USER CUSTOM CONFIG H_ = fhome/roy/project/freer
» ¥ Binaries 34 #define USER_CUSTOM CONFIG_H_ &1 /home/roy/project/freei
» @il Includes i,) o f* # USER NFIG
b % app_common 37 * BLE: Peripheral Role(Slave). # _BLE
» G config i‘ WiFi service.
b (G core 40 */
¥ [z customer_app 41 #define _ BLE PERI WIFI SVC
b (g include jg ol
b (R SrC 44 * BLE: Peripheral Role(Slave).
» (= Debug-da16600-mad 45 TCP DPM sample.
» =img jL */
» G include 45 #undef _ BLE_PERT WIFI_SVC_TCP DPM__
» i library 49
b src 1#} Problems | B Console x | Properties| @ Smart Browser | L smart Manual = B8
b (g version

& B & = =+ ~ -
[%] da16600 Debug-da16600-mod.launch X 0 4S B @l % | & 2 a1

= makefile.targets CDT Build Console [da16600]

arm-none-eabi-size --format=berkeley "dal6606.elf"
text data bss dec hex filename
1170036 7396 148944 1326376 143d28 dal6608.elf

17:00:34 Build Finished. © errors, © warnings. (took 4m:35s.246ms)

writable Smart Insert 41:31:1797 B

Figure 125. Project view

To build the SDK based on FreeRTOS, right-click the da16600 folder in the project explorer panel, and then
select Build project in the list. After the build is complete, the following two DA16200 images can be found in
the [DA16600 SDK ROOT]\apps\dal6600\get started\projects\dalc600\img\ folder:

= DA16600_FRTOS-*.img
= DA16600_FBOOT-*.img

18.2.3 Build DA14531 SDK

The DA14531 software (Bluetooth LE Software) used in the DA16600 SDK is based on the DA14531 SDK
version 6.0.24. To build the DA14531 software, it needs a DA14531 SDK 6.0.24 that is specifically adapted for
DA16600. It is available in [DA16600 SDK ROOT]\utility\combo\dal4531 sdk v xxx.zip. The DA14531 SDK
project is determined by which DA16600 example application is required.

18.2.3.1 DA14531 Peripheral Role Project
The peripheral role project (used for 18.2.2.1, 18.2.2.2, and 18.2.2.3) is located in
[DA14531_SDK_ROOT]\projects\target_apps\ble _examples\prox_reporter_sensor_ext_coex.

18.2.3.2 DA14531 Central Role Project

The central role project (used for 18.2.2.4) is located in
[DA14531_SDK_ROOT]\projects\target_apps\ble _examples\prox_monitor_aux_ext_coex.

18.2.3.3 Build the DA14531 projects with Keil

18.2.3.3.1 Install Keil
For information on the Keil installation, see Ref. [8].

NOTE
The Keil IDE download URL is https://www.keil.com/download/product/.

UM-WI-046 Rev.2.6 RENESAS Page 310
Oct 3, 2025 CFR0012

https://www.keil.com/download/product/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.2.3.3.2 Build Project
To build a project in Keil, go to Project > Open Project, and then select the .uvprojx file.

For peripheral role project example, open
[DA14531 SDK ROOT]\projects\target apps\ble examples\prox reporter sensor ext coex\Keil 5\prox
reporter ext.uvprojx.

Or for central role project example, open
[DA14531 SDK ROOT]\projects\target apps\ble examples\prox monitor aux ext coex\Keil 5\prox moni
tor ext.uvprojx.

On the project window, do the following:

1. Go to Project > Clean Targets.
2. Click Rebuild.

File Edit View Iash Debug Peripherals Tools SVCS Window Help

™ - .Y \ w E iF /= /li| @ CFG_DEVELOPMENT_DEEV] 3
: " - $% | paas3 o X| & ¢ O
Project L~ | _] da1458x_config_basich] user_configh] user_periph_setup.h
5} I3 Project: prox_reporter_ext 150 | /* Fisa is mot defineds: T ———
- w2 DA14531 151
+ {d sdk_boot i:‘;
3 sdk_arch 1sa P
{3 sdk_driver 155
{3 sdk_ble 156

157
158

159
user_platform 160

| sdk_profiles

R I O~ -~ I - I

|
L3 user_config
—
—

user_app 16l
162
163

"Erroj [@Books| O Fun... |0, 1e <

Build Output

compiling rf
compiling i

compiling nvds.
comniling rf 531

Figure 126. Keil — build

18.2.3.3.3 Peripheral Role Image

After Peripheral role projects are built with the Keil IDE, the pxr_coex_ext_*.bin file is generated in
[DA14531 SDK ROOT]\projects\target apps\ble examples\prox reporter sensor ext coex\Keil 5\out D

A14531\0bjects\.

Based on the bin file, following *.img files are generated as well for Sflash image update in

[DA14531 SDK ROOT]\projects\target apps\ble examples\prox reporter sensor ext coex\Keil 5\out i
mg\.

® dal4531 multi part proxr.img: for Sflash image update

" pxr sr coex ext *** ota.img: for image update by OTA

18.2.3.3.4 Central Role Image

After Central role project are built with the Keil IDE, the pxm_coex_ext_*.bin file is generated in
[DA14531 SDK ROOT]\projects\target apps\ble examples\prom monitor aux ext coex\Keil 5\out DA145

31\Objects\.

Based on the bin file, following *.img files are generated as well for Sflash image update in

[DA14531 SDK ROOT]\projects\target apps\ble examples\prox reporter sensor ext coex\Keil 5\out i
mg\.

® dal4531 multi part proxm.img: for Sflash image update

® pxm sr coex ext *** ota.img: for image update by OTA

UM-WI-046 Rev.2.6 RENESAS Page 311
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

NOTE

To quickly test an example without building the DA14531 software, use the pre-built DA14531 image -
da14531_multi_part_prox*.img. See the folder
[DA16600 SDK ROOT]\apps\dal6600\get started\projects\dal6600\img\DA14531 x:

DA14531_P — Peripheral role

DA14531_C - Central role
If you want to run multiple DA16600 boards at the same time (with the same example project), this feature is available to
get random BD address - USE_BLE_RANDOM_STATIC_ADDRESS, otherwise you need to build the DA14531 projects
with different BD addresses and update the DA14531 firmware. Ensure that each DA16600 board's BD address is unique

to avoid an address conflict. You can change the BD address of DA14531 in the da1458x_config_advanced.h file
(search for CFG_NVDS_TAG_BD_ADDRESS at the bottom of the source).

18.2.3.4 Build the DA14531 projects with e? studio

18.2.3.4.1 Install e?studio
For information on the e? studio installation, see Section 5.3 in Ref. [3].

18.2.3.4.2 Build Project
The projects are located in the following paths:

= [DA14531 SDK ROOT]\projects\target apps\ble examples\prox reporter sensor ext coex\e2studio
= [DA14531 SDK ROOT]\projects\target apps\ble examples\prom monitor aux ext coex\e2studio.
To build the projects in e? studio, import the pxr_sr_coex_ext_531 project for peripheral role or

pxm_sr_coex_ext 531 for central role. How to import the projects, see Section 5.4 in Ref. [3], or Figure 127,
Figure 128, and Figure 129.

After code build, the image is generated in this folder:
\projects\target_apps\ble_examples\prox_reporter_sensor_ext_coex\e2studio\out_img. To replace the DA14531
image with the DA16600 project, see the note at the end of Section 18.2.3.3.4.

UM-WI-046 Rev.2.6 RENESAS Page 312
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK

Programmer Guide

DUl - &< sudio
SDK_6.0.24.1464 - ¢ studi

File Edit Source Refactor MNavigate Search Project

| R~ w it Q-
Project Explorer % = 8
= =SV

There are no projects in your workspace.
To add a project:

Create 3 new Makefile project in 2
directory containing existing code

Create a new C or C++ project

& import O X - o X
Renesas sal
ect
=i
Impert Dialeg SDK project. |E\"§ I b B ‘ @ C/Ce
X = 8

Select an import wizard:

| type filter text

=% DA CMake SDK Project (experimental)
[2 Dialog SDK Project
= Existing Projects into Workspace

(=) File System
[T Preferences

0 items selected

< Back

Finish

Cancel

o active editor that
n outline.

a8
Import Projects

Select directory to search for existing projects

(@) Select SDK root directory: ||C'anrkWSDK_E 0241464

~ | Browse...

Projects:

[] host_suctai (C:#¥workwSDK_6.0.24.1464% projectsi¢host_appswwindows#suotawinitiator)
[] mkimage (C:#tworkwSDK_6.0.24.14644%utilitiest¥mkimagewgec)

[prodtest (C#workwSDK_6.0.24. 14644 utilitieswprod_testwprod_test_ cmds#prodtest)

[reporter (C:#work#SDK_6.0.24.1464%projectsihost_apps#twindows#proximity#reporter)
[] secondary_bootloader (C#twork#SDK_6.0.24.1464%utilitiesttsecondary_bootloader)

[] monitor (C#work#SDK_6.0.24.1464%projectsithost_appstwindowstproximityf¥monitor)

[prox_reporter (CworkwSDEK_6.0.24.1464% projectswiarget_appswble_sxamplest¥prox_reporterte2studio)
[prox_reporter (C#workSDK_6.0.24. 14644 projectswtarget_appswble_examples#tprox_reporteritEclipse)

[] pxm_sr_coex_ext 531 (C:wworkWSDK_6.0.24.1464%projectswiarget_appswble_examplesitprox_monitor_aux_ext_coexte2studio)
pur_sr_coex_ext 531 (C:workwSDK_6.0.24.1 464w projectswtarget_appswhle_exampleswprox_reporter_sensor_ext_cosxteZstudio) =

Select All
Deselect All

Refresh

Options
Search for nested projects
[]Hide projects that already exist in the workspace

)

< Back

Next =

Finish

Cancel

Figure 127. Project selection

Dialog SDK Project

Select toolchain and target device

Application
Toolchain Settings
Toolchain: LLVM Embedded Toclchain for Arm

Toolchain version: | 17.0.1

Device Settings

Target device: &

Manage Teclchain| Device Selection

You can filter devices by regular expression

Search Device

Device
~ Dialeg
w Dialog/DA1453x
DAT4531_01
DA14533
DA14535

ial

masacn

@

Cancel

Mext =

Cancel

Figure 128. Device selection

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 313

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Q SDK_5.0.24.1484 - pxr_sr_coex_ext_531/user_app/user_proxr.c - e* studio — [m] X
File Edit Source Refactor Navigate Search Project Renesas Views Run Window Help
| ®~ &~ LR Sl N Q ®|[@oce
Project Explorer x = A [d user oroxre % = 0 Outline x = 0
5% T New > ol SR e R
~ |5 pxr_sr_coex_ext_531 (in e2studi Go Into &l rwip_configh
> i . i
3, Binaries Open in New Window 21 user_periph_setup h
[Includes h t-shit 2 user_proxrh
E’E\ sk arch Show In Alt+Shift+W » 0 arch_apih
R sck _ble B con P o user configh
(&R sdk_boot . P P . L &l ext_host_ble aux taskh
L Paste Ctrl+V // SW configuration .
(2 sdk_driver — — // SW configuration 2 ext_host_ble_auxh
(2R sdk_profiles ® Delete 4z & wian_coexch
~ [user_app Source > o
[ext_host_ble_aux_task.c Move... a
[ext_host_ble_aux.c Emema & & user
[g4 peri_test_function.c ® user_on_init(void) : void
[user_proxr.c fag Import. @ user_validate_sleep(sleep_mode
[user_uart_gtl.c 4 Export..
(2R user_config -
(R user_platform Build Project
@ Debug RAM_DAT453 Gam Drc]m‘ Incremental Build of Selected Projects
[= outimg 2 Refresh F5
v
] crea.tegmg t.:at) Close Project
=| DA1453xJLinkScript —— el i 2
= ” Close Unrelated Project =
=| makefile.targets i . It Browser Smart Manual ® | 4 &[5 BB BB =N rf=|| = B~-y=0
X| pxr_sr_coex_ext_531 Debug R4 Build Targets >
Index > . A
i . . [@ 24 2.img’
Build Cenfiguraticns >
1@ 24 1.img"
Source >
Q Runas >
Debug As >
]
Restore frem Lecal History... Bs- (took 325.384ms)
MISRA-C H3 v
€ ¥ C/C++ Project Settings Ctrl+Alt+P >
. Renesas C/C++ Project Settings >
= pr_sr_coex_ext 53 # Run C/C++ Code Analysis

Figure 129. e2 studio project build

18.2.4 Firmware Image Update
After building DA16200 SDK, the relevant firmware images are located properly in
.\apps\dal6600\get started\projects\dal6600\img\ folder.
But after building DA14531 SDK, the built image - da14531_multi_part_prox*.img should be copied to the above
folder manually. And some notes are similar to items listed below for the DA14531 images.

= da14531_multi_part_prox*.img: this is a multi-part format image and the file used for direct download to flash,
when new built image is required, copy this file to the folder where the DA16200 images are located
(-\apps\dal6600\get started\projects\dal6e600\img\, described in Section 18.2.2.5), then download into
the flash as described in the sections 18.2.4.1 or 18.2.4.2.

= px*_coex_ext_* ota.img: this file is a single-part format image for the OTA update used in Section 18.4.

18.2.4.1 Firmware Update with *.ttl File
In the [DA16600 SDK ROOT]\apps\dal6600\get started\projects\dal6600\img\ folder, the following .ttl file
can be found in:
= da16600 da14531_ P_download.ttl
This script file is used for peripheral example applications using in Sections 18.2.2.1, 18.2.2.2, and 18.2.2.3
= da16600 _da14531 _C_download.ttl
This script file is used for central example application using in Section 18.2.2.4
Make sure that all images are ready in the [DA16600 SDK ROOT]
\apps\dal6600\get started\projects\dale600\img\ folder as follows:
= DA16600_FBOOT-*.img
= DA16600_FRTOS-*.img
= da14531_multi_part_proxr.img in DA14531_P
= da14531_multi_part_proxm.img in DA14531_C

UM-WI-046 Rev.2.6 RENESAS Page 314
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

apps * daleBll » get started » projects » dal6el0 » img

Fat

G Mame

m DA14531_1

&, DA14531_2

é,. dales00_dald331_1_download.ttl

é,. daletdl_dald4531_2_download.ttl
| DATBE00_FBOCT-GENDT-01-922f1e27d_W25032/W.img
| DAT6600_FRTOS-GEMO1-01-c367d16a9-005996.img

Figure 130. DA16600 images and .ttl files to program
When the files are ready, complete the following steps:

1. Put a micro-USB cable in the CN1 USB port of the DA16600 board (see Ref. [3]).
The recommendation is to put the other end of this USB cable in a USB hub with a power switch attached
per port and connect that USB hub to your computer to make a "power cycle" of the board easy during the
test.

2. Run Tera Term.
Windows detects two USB ports (for example, COM34 and COM35).

3. Connect Tera Term to the lowest of the two COM port numbers that were detected (for example, COM34,
which is UARTO of DA16200).

4. Make sure that the baud rate is 230400.
5. Press Enter several times to check that it is online with the DA16600 EVB.
6. Type reset and then press Enter. Check the [MROM] prompt.

In the Tera term, go to Control > Macro, then browse and select the .t file in the img folder.
The three images are programed step by step and then rebooted. Now it is ready to test.

. COM34:230400baud - Tera Term VT
File Edit Setup Control Window Help

Reset terminal

Reset remote title

Are you there
Send break
Reset port

Broadcast command

Open TEK
Close TEK

[ude_clie M MACRO: Open macro

[/DA 16680

&« v » ThisPC » DATA(D:) » dal6600_sdk3 » img @& Search dal6600_sdk3 o

Macro

Show Macro Window Organize = MNew folder SEEERY o

Reset BLE ... [This PC "~ Name
2., OSDisk (C:) build
EEEEEEEREEERRERRRRERE — DATA (D) core DAT4531_1
* FCI FCOK Mas - - customer
¥ - =x simulation (\\krsrvapps-034l] DA145312
¥ gggg gTeMgaE]éTagtg@ & Network f:locs Qj. dal6600_dal4331_1_download.ttl
* W Ygr‘ai?n Num . - g [da16600_da14531_2_download.ttl
¥ i ption KR-FAE-LT-RI2 lib
* RoSDK Date & Time |
Build Date & Time e
* http: /7w Y version
EEEEEEERERERRERARRERE

File name: | v| Macro files (*.ttl) -

Figure 131. Steps to program by .ttl file

18.2.4.2 Firmware Update without .ttl File
To program SFlash without .ttl file, check the steps (until step 6) described in Section 18.2.4.1.

UM-WI-046 Rev.2.6 RENESAS Page 315
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Type reset and then click Enter. Check the [MROM] prompt).

2. Before entering a command, copy the location path to the folder where the three firmware images are stored
(FBOOT, RTOS, and DA14531 image) in advance for sure so that you do not get a timeout error while
running the loady command. If you select a file slowly, the Tera Term's ymodem transfer progress dialog is

stuck or not working. Then, you need to re-run the loady command.
3. Type loady 0 1000 and press Enter.

Go to File > Transfer > YMODEM > Send to quickly find file DA16600_FBOOT-*.img, see Figure 132.

These shortcut keys can be used: keep the Alt+ Fand T, Y, S.

o COM34:230400baud - Tera Term VT
File Edit Setup Control Window Help

MNew connection... Alt+N

. . 333333333333 3343333381831
e e DA1660@ SDK Information
Cygwin connection I — — —— ——— —————— e e — == =

oz b : Cortex-M4 (120MHz)
Comment to Log... 5 H FFEERTOS 180.4.3

View Log - : v3 @ 0.0 CM

Show Log dialog... : FRTOS-GEN@1-21-14145-220000
Send file... ld Time : May 18 2021 11:43:25

Transfer > Kermit ¥

S5H SCP... XMODEM > 2E33 333 3L
Change directory... YMODEM > Receive...

Replay Log... ZMODEM -]

TTY Record B-Plus ¥

TTV Replay Quick-VAN >

Print... Alt+P

Disconnect Alt+]

Exit VS t o transfer

Bt All 4.2 (id=1) at bank_1

: Station Only (@)
upp Yer2.7 - Q_a7
C address (sta®) : d4:3d:39:11:32:7e
@ interface add 0K
mode.

fault, rf_meas btcoex(l @,)

APM DEVICE READY_I
dev_name="DA166 @@ BLE len=12
mbol Advertising..

S
2>
>
>
>
b
<
I
L

Figure 132. Tera Term
It takes time to download (to serial flash) of the selected image file.

5. Similar to step 3, type loady 23000 1000 and press Enter. Then, select DA16600_FRTOS-*.img.

This ymodem transfer takes the longest time to complete.

6. Similar to step 3, type loady 3ad000 1000 bin and press Enter. Then, select
da14531_multi_part_proxr.img or da14531_multi_part_proxm.img.

NOTE

When downloading only one image file (RTOS or da14531), Renesas strongly recommends downloading the FBOOT
image first (loady 0 1000) and then either 1oady 23000 1000 for RTOS or loady 3ad000 1000 bin for da14531.

7. After all images are transferred to SFlash, type boot, and then press Enter.

Some debug messages are printed in Tera Term.
8. Press Enter several times until the prompt [/DA16600] # shows.

IMPORTANT

the DA16600.

Switch off and on the USB port (if a user USB hub has a power switch per port, then toggle it) or remove the USB cable
completely and then put it back in. This is needed to change DA14531 to Bootloader mode and wait to get an image from

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 316

DA16200 DA16600 FreeRTOS SDK Programmer Guide

9. Wait until the Tera Term is connected to COMxx (for example, COM34). Or simply reconnect with serial.
This step is not needed if Tera Term is not used during the test.

NOTE

When Tera Term is connected, type reboot in the Tera Term console to check early boot messages.

18.2.5 Run DA16600 with JTAG

When the steps in Section 18.2.3.4 are complete, it is ready to run the example applications. Users can also use
JTAG to run DA16600 because the DA16600 has two chips — Wi-Fi (DA16200) and Bluetooth LE (DA14531) —
and each chip has its JTAG port.

18.2.5.1 Run DA16200 with JTAG

The JTAG cable should be connected to JTAG PIN (ID 5 or J7) of the DA16600 EVB. See Section of Debugging
with J-Link Debug Probe in Ref. [3] on how to run the JTAG debugging. If you want to boot the DA16600 EVB in
"non" JTAG mode again after JTAG is used, then SPI re-programming with two DA16200 images is required.
This is because the memory map is different for JTAG boot and normal boot — as DA16200 is using XIP: JTAG
writes code in SFlash by its memory map which is not the same as the DA16600's memory map.

18.2.5.2 Run DA14531 with JTAG
To load a DA14531 image (.bin) with the JTAG function in the Keil IDE:

NOTE

The default DA16200 software loads and transfers a DA14531 image to DA14531 at boot. Disable this Bluetooth LE image
transfer feature before starting the procedure.

1. Build the DA16600 SDK with DA14531 BOOT FROM UART disabled (see
[DA16600 SDK ROOT]\apps\dal6600\get started\include\apps\ble combo features.h), and program
SFlash with the three DA16200 images (FBOOT and FRTOS). The DA14531 image does not need to be
programmed.

2. Set DA16600 EVB's DIP switch configuration (SW4 - PO_2, PO_10 on DA16600 EVB figure in Ref. [3]) as
shown in Figure 151.

3. Connect a USB cable to the CN6 USB Port (DA14531 JTAG Port) of the DA16600 EVB. See the
Components on DA16600 EVB figure in Ref. [3].

4. Connect a USB cable to the CN1 USB Port (see Figure 2. DA16600 EVB hardware configuration of Ref. [3]
of the DA16600 EVB for a Tera Term connection.

5. Switch ON (in a USB hub) the two USB cable connections.
6. Run the Keil IDE and open a DA14531 project.

7. Click the I icon as shown in Figure 133.

UM-WI-046 Rev.2.6 RENESAS Page 317
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
2" IR - | |® \ R|EEE KRB
1 B -] 98 passa vﬁ'-.'; ¢ O

Project L x|] da1458x_config_basich |] usel

=% Project: prox_reporter_ext 150 | /* Flag is not
E-42 DA14531 os | / Flag is defi

® |__j Sdk_bODt 152 J..f
Ea sdk h 153 | Fundef CFG_WDG_TRIG

H-td sdk_arc 154
L sdk_driver 155 | /axaxsxasaxaxanannan
#-J sdk_ble 156 | /* Determines maxim
@ L3 sdk_profiles 157 | /* to service mulci
e fi 158 | /* should be set to
L4 user_contlg 159 | /* - MAX value
- Ld user_platform 160 | /rssanansanannnnnnn
-3 user_app 161 | #define CFG_MAX CON

162
1£3 | fadaxdd At hhhikidhikh

Figure 133. Keil — option
8. Select the Debug tab and click Settings. See Figure 134.
kA Options for Target 'DA14531' X

Dovis | Target | Ot | Ly | User. | /o] e | tirker Wl]umm

' Use Simulator

with restrictions

[” Limit Speed to Real-Time

™ Load Application at Startup ~

Settings | | @ Use: |J-LINK / J-TRACE Cottex _:]

I Load Appiication at Startup F

Initialization File: Inialization Fle:
| _] [\ \.\..\..\sdk \common_project_files\mi: J Edt...
Restore Debug Session Settings Restore Debug Session Settings
¥ Breakpoints ¥ Toobox [V Breakpoints [V Toolbox
¥ Watch Windows & Pefomance Analyzer W Watch Windows
¥ Memory Display [V System Viewer ¥ Memory Display vV System Viewer
CPUDLL: Parameter; Driver DLL: Parameter:
[sARMCM3.DLL | |SARMCM3DLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:

[pARMCM1.DLL |1>cmo¢
[~ Wam if outdated Executable is loaded

lTARMCMl,DLL {pCMOo
[Wam f outdated Executable is loaded

Manage Component Viewer Description Files ..

|

[ok | coce | Defaurs |

Help

Figure 134. Keil — debug
9. Set SN and SWD fields with valid values. See Figure 135.

NOTE

firmware on the DA16600 EVB.

If there is invalid value for SN or SWD, the JTAG/J-Link firmware does not exist or is not enabled in the JTAG chip of the
DA16600, or the JTAG is not working for some reason. In this case, contact Renesas Electronics to update the JTAG

10. If the DA14531 JTAG is successfully recognized, click OK.
11. Switch OFF the power to the two USB cables.
12. Switch ON the power to the two USB cables.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 318

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Cortex JLink/JTrace Target Driver Setup

Trace | Flash Download |

J-Link / J-Trace Adapter
Device: | J-Link OB-SAM3U128
HW: | v300 di:| V63mh
FW: [J-Link OB-SAM3U128 V3 con
Port: Max Clock:
[sw ~| |sMHz ~|
Auto Ck |

SW Device

IDCODE

SWD (o 0x0BC11477 | ARM CoreSight SW-DP

o
-

Device Name

Connect & Reset Options

Cache Options

]
B}
—

I
—

Download Options

Connect: [Nomal | Reset: [Nomal ~||| ¥ Cache Code I” Verify Code Download
[V Reset after Connect [V Cache Memory [~ Download to Flash
Interfface TCP/IP Misc
& USB " TCP/P Network Settings 7
IP-Address Port (Auto: 0) Aulodelect' Juink Info |
Scan = |
| JLink Cmd |

State: ready

OK I
Figure 135. Keil - JTAG device

13. In Tera Term (to which the lower number COM port is connected), make sure that the DA16200 boots
successfully. If it succeeds, the following messages are shown as in Figure 136.

Cancel | |

BaudRate=11520(

»>>> UARTL C lock=80000000,
UART1 DMA Enabled ...
BLE_BOOT_MODE_O

Figure 136. Tera Term — DA16200 waiting for DA14531 to connect

Enable JTAG SWD pins by changing a compiler flag:

el

[DA14531 SDK ROOT]\projects\target apps\ble examples\prox reporter sensor ext coex\include\ext host ble a
ux task.h

#undef DISABLE JTAG SWD PINS IN BLE

14. After the build is done, click the Start Debugger button. See Figure 137.

Flash Debug Peripherals Tools SVCS Window Help

3 . L = F . j VR Q- e & 4
63 | patas3t SEIF K A) @ Start/stop Debud
Enter or leave a d|

2 d] main.c

h_setup.c

Fm.c

Figure 137. Keil — start debugger
15. Click OK.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 319

DA16200 DA16600 FreeRTOS SDK Programmer Guide

uVision @

i EVALUATION MODE
Running with Code Size Limit: 32K

o]

Figure 138. Keil — evaluation mode dialog
16. Click the Run button. See Figure 139.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
5 dad A - | P i iF L
3;% G000 || DRREGA-0-83-%-02-0-
Project 2 B
2o | [Ell Run (F5)] mainc
il Start code execution lf
sy b 2| AR AR R R A KRR ARk
+# {3 sdk_boot 3 |
5 4 | file main
#-Ld sdk_driver 5 |
- LI user_app 3 : rief Blin example
1 mainc 7 |

Figure 139. Keil — run
If you see the message as shown in Tera Term, then the DA14531 is successfully started.

[combo] BLE FW transfer done

<<< GAPM DEVICE READY IND
IoT dev name="DA16600-327E", len=12
[combo] Advertising...

Now the DA16600 starts Bluetooth LE advertising and can allow a Bluetooth peer to connect to DA16600.

18.2.6 Test Environment Setup
The items in the following sections are used in the examples for the test.

18.2.6.1 Wi-Fi Access Point
Any Wi-Fi routers are acceptable. The Wi-Fi Access Point is called MyAP from here onwards.

18.2.6.2 Bluetooth LE Peers

Bluetooth LE peers are used for all the examples. Several types of Bluetooth peers are used, listed in the
following subsections.

18.2.6.2.1 Bluetooth LE Mobile App

Renesas provides a sample mobile application (Android/IOS App) called "Wi-Fi Provisioning" to test example
applications. This mobile application is used to give Wi-Fi provision information (Wi-Fi router connection
information plus any customer proprietary information to configure the DA16600) to the DA16600 board.

NOTE

You can also download (from the App Store) and use a general-purpose Bluetooth LE mobile application that supports a
GATT Client (that can read/write a GATT characteristic of a GATT Server). If you are familiar with the Wi-Fi SVC GATT
Server database structure and JSON application protocols (see Section 18.3.5), you can use a general Bluetooth LE
Mobile App as well to send a command.

18.2.6.2.2 Bluetooth LE Sensors

To test the IoT Sensor Gateway Example (Bluetooth LE Central) application, one or two (up to three) Bluetooth
LE peer devices are required. In these Bluetooth peer devices, it should be implemented for a simple GATT

UM-WI-046 Rev.2.6 RENESAS Page 320
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

server application, and this is implemented in the DA16600 SDK with the feature (__ USER_SENSOR__) to be
referred.

For example, there are one or two DA16600 EVBs which run gas leeak detection sensor example (Bluetooth LE
peripheral) Gas Leak Detection Sensor Example (Bluetooth LE Peripheral)application, then they can be
connected to the loT Sensor Gateway application.

18.2.6.3 Laptop to Control Bluetooth LE Peers and DA16600 Boards
1. Use a LAN cable to connect your computer to MyAP.
2. Use PuTTy to open two ssh windows (to RBP3_1) — login as root.
3. Enter cd /home/pi for two ssh windows (let us say ssh_win_1).
Mobile Application (UDP or TCP) can be used instead of the ssh_win_1 accordingly

4. Open one Tera Term window and connect to the COM port (the lower port number of the two, with baud rate
230400) of the DA16600. Let us call this Tera Term window "da16_tera_win" from here onwards.

5. Open another Tera Term window and connect to the other COM port (the higher port number of the two, with
Baud rate 115200) of the DA16600. Let us call this Tera Term window "da14_tera_win" from here onwards
(this Tera Term is connected to UARTZ2 of DA14531 chip).

18.3 Wi-Fi Provisioning Over Bluetooth LE

Each application supports Wi-Fi provisioning and Wi-Fi plays the main role, and Bluetooth LE assists with "Wi-Fi
Provisioning" for the initial setup (Out-of-Box). It allows users to configure Wi-Fi (such as the SSID, password,
and server information for user's Wi-Fi router) into the DA16600 module. Figure 140 shows how the devices are
connected and worked.

service server ota senver

) (@D

Figure 140. Bluetooth LE assisted with Wi-Fi provisioning

18.3.1 Description and Requirements

A Bluetooth LE mobile application is used for the Wi-Fi provisioning. The host Bluetooth application in smart
phone can talk to the DA14531 of the DA16600 EVB to start Wi-Fi provisioning.

18.3.2 Test Procedure

After the DA16600 EVB boots up, it starts advertising. Then, the host Bluetooth LE application in smart phone
starts scanning, it is connected by selecting the DA16600 EVB on the Mobile application.

1. Power ON DA16600 EVB or else.
a. Do a Power On Reset (POR) boot: plug out and then plug in the USB cable.

UM-WI-046 Rev.2.6 RENESAS Page 321
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

b. After boot-up, run the command - factory to clear any existing NVRAM content.
The command - factory also triggers a reboot after NVRAM is cleared.

c. Make sure that "Advertising ..." is printed on da16_tera_win.

This should work as described for the Bluetooth peripheral-based examples but in case of the lIoT
Sensor Gateway Example (Bluetooth Central), it needs to type below command to do the Bluetooth
based provisioning. After the command below, the DA14531 role is switched to the peripheral role to
start advertising, and it gets back to the central role mode after provisioning is done.

[/DA16600] # ble. monitor provision mode

2. Run the Wi-Fi provisioning App shown in Figure 141, which is available in the Google Play Store or iOS App
Store.

3. Configure Wi-Fi environment as shown in Ref. [4].

4. Steps: Start DA16600-based > Start > Select 'DA16600-XXXX' > Wait for some seconds > Scan Wi-Fi
network > select [MyAP name] (input Password if need) > Connect to [MyAP name], then the provisioning
information is transferred to DA16600, which saves the information into NVRAM and rebooted. After
rebooting, Wi-Fi is connected to the selected AP.

Renesas
WiFiProvisioning

Renesas

Install « Share [} Addtowishlist

Figure 141. Renesas Wi-Fi provisioning app
To remove the provisioning information,
1. Establish a Bluetooth LE connection again with DA16600 EVB.
2. Click the Reset the device button.
Now you can start provisioning again.

NOTE

As an alternative, you also can use command factory > y to clear any provisioning information.

UM-WI-046 Rev.2.6 RENESAS Page 322
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.3.3 GTL Workflow
1. Initialization until advertising.

A16200 A14531
Initialization
boot_path_1 [(before entering gtl mssage loop)
app_rst_gap
init app_env

GAPM_RESET_CMD =>x>
boot_path_2 [(in case DA16200 already in message loop, and BLE is reset
<< << GAPM_DEVICE_READY_IND
gapm_device_ready_ind_handler
app_rst_gap

GAPM_RESET_CMD >35>

<<<< GAPM_CMP_EVT
HandleGapmCmpEvt
case GAPM_RESET.
gapm_reset_completion_handler
app_set_mode // initialize gap mode
role = GAP_ROLE_PERIPHERAL
max_mtu

GAPM_SET_DEV_CONFIG_CMD >35>
<<z« GAPM_CMP_EVT
HandleGapmCmpEvt
GAPM_SET_DEV_CONFIG
gapm_set_dev_config_completion_handler
app_env state = APP_COMMNECTABLE;
app_diss_create_db

GAPM_PROFILE_TASK_ADD_CMD >>>>

<=<< GAPM_PROFILE_ADDED_IND: (for TASK_ID_DISS)
gapm_profile_added_ind_handler
case TASK_ID_DISS:
app_proxr_create_db

GAPM_PROFILE_TASK ADD_CMD >>>>

<< << GAPM_PROFILE_ADDED_IND: (for TASK_ID_PROXR)
gapm_profile_added_ind_handler
case TASK_|D_PROXR:
attm_svc_create_custom_db_wifsve

GATTM_ADD_SVC_REQ >>>>

<<<< GATIM_ADD_SVC_ RSP =
gattm_add_svc_rsp_hnd

my_custom_service_wisve_start_handle = param-=start_hdl;

app_adv_start
cmd->op.code = GAPM_ADV_UNDIRECT:
md->intv_min = APP_ADV_INT_MIN; // 687.5ms
cmd->intv_max = APP_ADV_INT_MAX; // 687.5ms
cmd->info.host mode = GAP_GEN_DISCOVERABLE;
cmd->info.hest.adv_filt_policy = ADV_ALLOW_SCAN_ANY_CON_ANY;
PRINTF("Advertising...#n");

GAPM_START_ADVERTISE_CMD »>>>

Figure 142. GTL message sequence chart - initialization

UM-WI-046 Rev.2.6 RENESAS Page 323
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

2. Connection Request and Characteristic "Write" Request.

A_PEER_CON_REQ

<<= connection req from a peer

<<<< GAPC_CONNECTION_REQ_IND
gapc_connection_req_ind_handler

app_connect_confirm((enum gap_auth)(user_security_configuration.auth), 1);

GAPC_CONNMECTION_CFM >»5x
user_custom_profile wfsvc_enable
write USER_DESC

GATTM_ATT_SET WALUE REQ »>>>
enable Notify (WFACT_RES, APSCAN_RES)

GATTC_SEND_EVT_CMD (GATTC_NOTIFY) »>»>
user_gattc_sxc_mtu_cmd

GATTC_EXC_MTU_CMD (GATTC_MTU_EXCH) ===

<<<< GATTM_ATT_SET_VALUE_RSP

A_PEER_WRITE_REQ
<<< (from peer) "write"

<<<< GATTC_WRITE_REC_IND
gattc_write_req_ind_hnd
user_custom_profile_wfsve_write_cmd_ind_ocx
write on (#ifdef CFG_WFSWC_ENABLE)
WFCMD

GATTC_WRITE_CFM >>>>
wifi_conf_parse_json »>= (to peer) "write" confirm
{"dialeg_cmd":"scan"}
wifi_sta_scan_request
fill in wifi_scan_result
GATTC_SEND_EVT_CMD (GATTC_NOTIFY) »3»=

»»> (to peer) notify
{"dialog_cmd":"select_ap"}

{"dialeg_cmd":"fw_update"}

WFACT_RES_CHAR_CONF {CCCD)

GATTC_WRITE_CFM »>>>
>>> (to peer) "write" confirm
DBG_INFO[" A BLE Peer subscribed to WiFi command result #n");
APSCAN_RES_CHAR_CONF (CCCD)

Figure 143. GTL message sequence chart — connect and write
3. Characteristic "Read" request.

A_PEER_READ_REQ! EERHEEEEERET SETEsoSsTsTsosooT SETEIsossoTs <<= (from peer) "read"
<<=< GATTC_READ_REQIND
gattc_read_req_ind_hnd

WFACT_RES_CHAR_CONF_DESC (CCCD)

APSCAN_RES_CHAR_CONF_DESC (CCCD)

WFACT_RES

APSCAN_RES

GATTC_READ_CFM ==>>

Figure 144. GTL message sequence chart — read

18.3.4 Wi-Fi Service GATT Database Design

The Wi-Fi Service sample — GATT Server database is added as a reference in the application source. It may
need to modify the database or create a different one. See the * user custom profile.c/h (for example,
wifi svc user custom profile.c/h) file and gattm svc desc wfsvc variable for more details.

18.3.5 W.i-Fi Service Application Protocol

The following protocols are used between the Wi-Fi SVC application and the Provisioning Mobile App
application.

= Characteristic: "Wi-Fi Cmd" (244 bytes), WRITE
¢ "scan" command: scan Wi-Fi routers, (Mobile host application -> DA16600)

{
"dialog cmd":"scan"
}
UM-WI-046 Rev.2.6 RENESAS Page 324

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

¢ "network_info” command: provide the network information necessary during the provisioning. (Mobile host
application -> DA16600)

{

"dialog cmd":"network info",
"ping addr":"8.8.8.8",

"svr addr":"172.16.0.100",
"svr port":10195,

"svr url":"www.google.com"

}

e "select_ap" command: select the AP in the AP list received by the scan command. (Mobile host application
0 DA16600), The DA16600 device tries to connect to the selected AP with the information after the
command, upon receipt of this command, the DA16600 stores the credentials in permanent storage
(NVRAM) and reboots

{

"dialog cmd":"select ap",
"SSID":"linksys",
"security type":3,
"password":"123456789",
"isHidden":0
}

¢ "fw_update" command: download new firmware from a specified OTA server, (Mobile host application ->
DA16600)

{

"dialog cmd":"fw update"
}

e "factory reset" command: remove the Wi-Fi network profile saved in the DA16600 EVB, the EVB reboots
after the reset. (Mobile host application -> DA16600)

{

"dialog cmd":"factory reset"

}

¢ "reboot" command: reboot the DA16600 device. DA16600 tries to connect to the selected AP after rebooted
if the provisioning is completed before (Mobile host application -> DA16600)

{

"dialog cmd":"reboot"

}

o "wifi_status" command: check the Wi-Fi connection status (connected or disconnected). The Bluetooth LE
peer can be notified of or read, the status via the "Wi-Fi Action Result" characteristic (DA16600 -> Mobile
host application)

{

"dialog cmd":"wifi status"

}

¢ "disconnect" command: disconnect a Wi-Fi connection from the connected AP. If the user sends the
command "reboot", then it can reconnect to the connected AP before. (Mobile host application -> DA16600)

{

"dialog cmd":"disconnect"

}

¢ If you want to add a new custom command, use the following:
enum WIFI CMD > define a new custom command
> user custom profile wfsvc write cmd ind xxx(): add the handler of the command
>wifi conf parse json:add the parser of the command

UM-WI-046 Rev.2.6 RENESAS Page 325
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

= Characteristic: "Wi-Fi Action Result" (two bytes), READ, NOTIFY
¢ A Bluetooth LE Peer is supposed to enable notification on this characteristic on connection.
e Then the Bluetooth peer is notified of the result of a Wi-Fi command sent.

// Wi-Fi Action Result

enum WIFI ACTION RESULT {
COMBO WIFI CMD SCAN AP SUCCESS = 1,
COMBO WIFI CMD SCAN AP FAIL,
COMBO WIFI CMD FW BLE DOWNLOAD SUCCESS,
COMBO WIFI CMD FW BLE DOWNLOAD FAIL,
COMBO WIFI CMD INQ WIFI STATUS CONNECTED,
COMBO WIFI CMD INQ WIFI STATUS NOT CONNECTED,
COMBO WIFI PROV DATA VALIDITY CHK ERR,
COMBO WIFI PROV DATA SAVE SUCCESS,
COMBO WIFI CMD MEM ALLOC FAIL,
COMBO WIFI CMD UNKNOWN RCV

};

e Especially on receipt of "COMBO_WIFI_CMD_SCAN_AP_SUCCESS", a Bluetooth LE Peer is supposed to
initiate a "READ" request on the characteristic "AP Scan Result". Usually, the total list of AP Scan results is
about 2 kB in size, therefore the Bluetooth peer should initiate a "READ" request on the characteristic
multiple times until all SSIDs are fully read

= Characteristic: "AP Scan Result" (244 bytes), READ

e When a Bluetooth LE Peer gets the first read response (with payload), the payload included in the "read"
response includes a 4-byte 'application-specific custom' header (that a user can modify freely to a user
application needs). See the following sample payload structure

e [H_1][H_2][JSON_STR]
o H_1: first two bytes of the header includes the remaining length of the total JSON_STR

o H_2: the second two bytes of the header includes the total length of JSON_STR. Normally the total size
is over 2 kB

o JSON_STR: JSON encoded "AP Scan result"

e Upon receipt of a read response, a Bluetooth LE Peer is supposed to keep triggering "read" requests on this
characteristic until H_1 becomes 0. The read response message that contains 0 as H_1 contains the final
fragment of JSON_STR

¢ Next, a Bluetooth LE Peer needs to combine and parse the whole JSON_STR to get the necessary
information (in this case, the list of Wi-Fi routers).

Depending on how a Bluetooth LE Peer App is implemented, a Bluetooth LE Peer App may let the user select an
AP from the list and send a "write" request with {"dialog_cmd":"select_ap",} on the characteristic "Wi-Fi
Cmd".

18.4 Bluetooth LE Firmware OTA Download Through Wi-Fi

When the Wi-Fi has been successfully provisioned and the DA16600 device can receive notifications over Wi-Fi
from a remote service server indicating that there is new Wi-Fi or Bluetooth LE firmware available for the
DA16600. Upon receipt of the notification, the DA16600 can securely download the new firmware from an OTA
server through Wi-Fi, store the firmware in its flash memory and then trigger the firmware update. Figure 140
shows how the devices are connected and worked.

18.4.1 Description and Requirements

OTA firmware download service (Wi-Fi download of firmware) is supported and enabled in all examples, and AP
and HTTP(s) server are required to set up and the mobile APP is used to trigger the OTA download as well.
18.4.2 Test Procedure

For this test, make sure that an HTTP(s) server is running on the MyAP network and complete the following
steps.

UM-WI-046 Rev.2.6 RENESAS Page 326
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

1. Install HTTP server on a personal computer with Apache as the web server that is connected to MyAP.
Go to apache.org to download Apache and for instructions.

2. Increase the version number (2 > 3) of .\binaries\dal4531\mkimage\app version.h as follows and build
the project. This is to get a different image version to compare the previous image.

- #define SDK VERSION "6.0.14.1114.3"

3. Copy file px*_coex_ext_531_6_0_14_1_ota.img (described in Section 18.2.4.1) to the htdocs folder of the
Apache server (or any http server that you want to use).

4. Make sure that your computer is connected to MyAP and the px*_coex_ext_531_6_0_14_1_ota.img file is
available through a web browser with the link. The IP address is just an example:
http://192.168.0.230/pxr_sr_coex_ext 531 6 0 14 1114_1 ota.img.

5. See the following console commands.

[/DA16600] # nvram

[/DA16600/NVRAM] setenv URI BLE

http://192.168.0.230/pxr sr coex ext 531 6 0 14 1114 1 ota.img
[/DA16600/NVRAM] reboot

BLE FW VER to transfer
>>> v 6.0.14.1114.2 (id=1) at bank 1 // check current version and bank number.

[/DA16600] # nvram
[/DA16600/NVRAM] # getenv

URI BLE (STR,53) http://192.168.0.230/pxr_sr coex ext 531 6 0 14 1114 1 ota.img

6. In the Bluetooth LE Mobile App (for example, mobile phone), send the firmware update command.

< DA16600-x%¢%4

Device address: 48:23:35:A0: 000K

State: Connected [EslEie{elyIN|Sen

Scan Wi-Fi network @ Hidden Wi-Fi network

Custom command

Reset the device

|{"diaIog_cmd":"fw_update"} |

[l (@] <

Figure 145. Provisioning application — custom command

a. Bluetooth LE Mobile Application > Start DA16600-based > Start > Connect to "DA16600-BLE" >
Custom command (see Figure 145), type the command {"dialog_cmd":"fw_update"} and click Send.

b. To enter the command easily, open a notepad on the smartphone to type the command, and then copy
and paste the command on the Bluetooth LE Mobile Application.

7. When the command "fw_update" is reached to the DA16600, it tries to connect to an OTA server
(192.168.0.230) to download a Bluetooth LE firmware file. This log shows some details of the steps.

UM-WI-046 Rev.2.6 RENESAS Page 327
Oct 3, 2025 CFR0012

https://apache.org/

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DA16600/NVRAM] #
<<< GAPC_CONNECTION REQ IND

<<< GATTC WRITE REQ IND
Receive - FW UPDATE
COMBO WIFI CMD FW BLE DOWNLOAD received
[ota fw update combo] uri rtos =
[ota fw update combo] uri ble = http://192.168.0.230/pxr sr coex ext 531 6 0 14 1114 1 ota.img
[BLE OTA] New FW: ver = v 6.0.14.1114.3, timestamp = 1587376260
[BLE OTA] bank 1 (act): ver = v 6.0.14.1114.2, timestamp = 1588134660
[BLE OTA] bank 2 : ver = v _6.0.14.1114.1, timestamp = 1588134660

>> HTTP(s) Client Downloading... 100 %(17232/17232 bytes)
- OTA Update : <BLE FW> Download — Success
[BLE OTA] CASE 1: BLE EW Update Only ...
ble reset cmd sent
- OTA Update (BLE FW) : 0 seconds left to REBOOT....

Wake-up source is 0x00 // rebooted ...

BLE FW VER to transfer
>>> v 6.0.14.1114.3 (id=2) at bank 2 // new FW boots from bank 2 (< bank 1)

18.4.3 Working Flow
There are two ways to trigger an OTA firmware download service:

= Option 1: using a networked peer (a mobile application that is connected to the Internet or a customer cloud
server application on the Internet).

Option 1 can be used for unattended/automatic OTA operation. It works as follows:

o As a DA16600 device (DA16200 Wi-Fi chip included) is "always" in the connected state with a Wi-Fi router
connected to the Internet, a Service Server/Cloud Server can talk with this DA16600 device when there is
new firmware available on an OTA Server. A Service Server can contact a user through 4G/Wi-Fi (in the
form of a push message) for firmware update confirmation. Upon receipt of 'user confirmation', the Service
Server may ask the DA16600 device to download new firmware by giving an HTTP(s) URI to an OTA
Server. When the new firmware is received, that firmware is stored in SFlash connected to the DA16600
device, and the DA16600 device restarts to boot with the new software.

= Option 2: using a Bluetooth LE Peer.

For Option 2, a Bluetooth LE Peer App should "write" the following command on the characteristic "Wi-Fi
CMD" to trigger an OTA firmware update.

{
"dialog cmd":"fw update"
}

Upon receipt of the command, GATTC WRITE REQ INDis sentto DA14531 and DA16200, and then a handler is
invoked. See the following steps.
= Host Bluetooth LE application (Mobile phone) fw_update command

> DA16600 receives the command and calls the following functions

> HandleBleMsg (bType = GATTC WRITE REQ IND)

> gattc write req ind hnd()

> user custom profile wfsvc write cmd ind xxx()

>wifi conf parse json()

> ota fw update combo ()

> ota update start download()

UM-WI-046 Rev.2.6 RENESAS Page 328
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

> ota update http client update proc(): handles http connection, http download, and firmware renewing
process

18.5 Gas Leak Detection Sensor Example (Bluetooth LE Peripheral)

This example demonstrates how the DA16600 can wirelessly interact with a standalone Gas Leak Detection
Sensor through Bluetooth LE and communicate events to a server over Wi-Fi.

A virtual gas density check sensor is attached to the Bluetooth wireless interface of the DA16600. The DA16600
operates in low-power mode and periodically checks the gas density level at a time interval defined by the user.
When a certain gas density level value is reached, the Wi-Fi device is activated, and a "gas leak" event is
created and sent to the Wi-Fi device. The Wi-Fi device then posts the "gas leak" event to a cloud server where a
user is notified, and action can be taken. Figure 146 show this example works.

gas leak occurred !!!

DA16600

DA16600
.,)) gas leak occurred !!! ((‘. gas leak occurred 1I”

DA16600

e.g. Standalone gas leak detector

Figure 146. Standalone gas leak detection sensor

18.5.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.1. The DA16200 sends the command to
DA14531 to get the gas leak sensor started in DA14531. When a Gas leak is detected, the DA16200 is woken
up by the DA14531 and receives the event and then sends the information to the UDP server. Sleep mode 2 is
used in this application.

NOTE

Connection with a Bluetooth LE Peer is not required in the Gas Leak Detection Sensor application.

18.5.2 Test Procedure

1. ssh_win_1: type the following command to start the UDP server (for example, Raspberry-pi or can be set up
on android/iOS phone).

UM-WI-046 Rev.2.6 RENESAS Page 329
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

root@raspberrypi:/home/pi# python udp server.py
UDP Server: waiting for a messsage ... at 172.16.30.136:10954

On the console, the provisioning command JSON string "network_info" of the Provisioning App (see Section
18.3.5) should have the following data.

a. "svr_addr":"172.16.30.136"
b. "svr_port": 10954

2. Type dpm on command after provisioning, the device is rebooted. Then type the bold font (command) in the
log box below. The DA16600 (Wi-Fi) goes to sleep (while in sleep, keyboard input is not working, wait for
some minutes).

[/DA16600] # ble
[/DR16600/ble] # iot sensor start

sleep (rtm ON) entered

3. After DA16600 wakes up and posts a message to a server, then it goes to sleep mode again.

>>> [msg sent] : gas leak occurred, plz fix it !!!
sleep (rtm ON) entered

4. On the server, the following message is shown (for example, ssh_win_1).

UDP Server: waiting for a messsage ... at 172.16.30.136:10954
>>> sensor connected
>>> [Gas Leak Sensor]: gas leak occurred, go home and fix it!!!

Then, the following occurs:

* |f you run the command iot sensor start, the command is sent over (through GTL) to DA14531 which starts
a timer task that is supposed to read a gas leak density sensor periodically.

= |f DA14531 reads that the density is above the threshold "gas leak" level, then DA14531 wakes up the
DA16200 and sends the event ("gas leak occurred!") to DA16200. The DA16200, on receipt of the alert from
DA14531, sends an alert message to a UDP server where you can see the alert message printed.

18.5.3 Workflow

The gas leak detection example starts by typing the command — ble.iot_sensor start in the console. The
following function is invoked after the command.
= [/DA16600] # ble.iot sensor start >

> ConsoleSendSensorStart ()

> ConsoleEvent handler (CONSOLE IOT SENSOR START Or STOP)

> app sensor start() Or app sensor stop ()

> BleMsgAlloc (APP GAS LEAK SENSOR START, TASK ID EXT HOST BLE AUX, TASK ID GTL, 0);

* The message " APP GAS LEAK SENSOR START"is sent to Bluetooth LE (DA14531) which starts the sensor
reading task (periodically reads a gas-leak sensor)

In DA14531, to exchange messages or commands to an external host (DA16200), the following code should be

implemented on both Wi-Fi and Bluetooth LE SDKs.

= For both DA16200 SDK and DA14531 SDK, define custom messages:

e DA16600 SDK: send a custom user-defined message through the GTL interface with
TASK ID EXT HOST BLE AUX as the destination task.

e DA14531 SDK: enable the DA14531 AUX task (TASK ID EXT HOST BLE AUX) to receive user-defined
custom messages.

UM-WI-046 Rev.2.6 RENESAS Page 330
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

e The same ext host ble aux task msg t should be defined on both the app.h (in DA16600 SDK) and the
ext host ble aux task.h(in DA14531 SDK).

typedef enum {

APP GAS LEAK SENSOR START,

APP GAS LEAK SENSOR START CFM,

APP GAS LEAK SENSOR STOP,

APP GAS LEAK SENSOR STOP CFM,
APP GAS LEAK EVT IND,

APP GAS LEAK SENSCR RD TIMER ID,

APP_CUSTOM COMMANDS IAST,
} ext host ble aux task msg t;

» Regarding the message handlers in the DA14531 SDK/ext host ble aux task.c,
e DA16600/BleMsgAlloc (APP GAS LEAK SENSOR START)
> DA14531/ext_host ble aux task handler (APP GAS LEAK SENSOR START)
> DA14531/app_gas_leak sensor start cfm send with APP GAS LEAK SENSOR START CEM
> DA16200

When the gas leak sensor starts, the DA16600 enters Sleep mode. Later, if a gas leak event occurs, the
DA14531 wakes up the DA16200, and then sends a message to a server and enters Sleep mode again.

® system start() > sleep2 monitor start()
® gtl init() > sleep2 monitor regi ()
" app sensor event ind hnd()
> sleep2 monitor set state (SLEEPZ CLR)
> set iot _sensor data info.is gas leak happened = TRUE

" udp client(): send the warning message to server when gas leak occurred and tell sleep2_monitor to go into
sleep

18.6 TCP Client in DPM Example (Bluetooth LE Peripheral)

This example demonstrates how the DA16600 module runs a TCP client in a low-power mode where the
DA16200 stays in DPM mode and the DA14531 stays in Extended Sleep mode. The DA16600 module wakes up
from low-power or Sleep mode, then receives and processes a Wi-Fi packet from a network peer or Bluetooth LE
data from a Bluetooth peer. After either a Wi-Fi packet or Bluetooth data has been handled, DA16600 enters
Sleep mode again to save power.

UM-WI-046 Rev.2.6 RENESAS Page 331
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

TCP Server

1) (@

TCP Client

Figure 147. DA16600 TCP client in DPM

18.6.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.2. In this example, the DA16600 receives
TCP packets while in DPM mode, and AP and a TCP server utility are required as well. Sleep mode 3 is used in
this application.

18.6.2 Test Procedure
1. Wi-Fi Router: MyAP.
TCP Client: DA16600 EVB.
Two Tera Term windows: da16_tera_win, and da14_tera_win.
TCP Server: any TCP Server utilities are OK such as IONINJA, or Android/IOS TCP network tool.
TCP Server machine (Windows utility/mobile application).
a. Connect to MyAP (either through a wired port or Wi-Fi port — wired connection preferred).
b. Run TCP Server tool (with the port number set to 10194).
c. Take note of TCP Server information: IP = 192.168.0.230, Port = 10194.
6. TCP Client.
a. da16_tera_win

o~ e

b. type factory>typey
c. Run Wi-Fi Provisioning to connect to MyAP. See Section 18.3.2.
d. Type this command to set the server information in NVRAM.
nvram.setenv TCPC SERVER IP 192.168.0.230
nvram.setenv TCPC SERVER PORT 10194
e. Type dpm on.
f. DA16600 EVB is rebooted and enters DPM Sleep as in Figure 148
7. TCP Server Tool: Send a text to TCP Client.
8. TCP Client — TCP Client wakes up, receives, processes data, and enters sleep as shown in Figure 149.

UM-WI-046 Rev.2.6 RENESAS Page 332
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

BLE FW VER to transfer ..
>>> v_6.0.14.1114.1 (1d 1) at bank_1
>>> Selected BSS 90:9f:33:66:26:52 ssid="mike.sj.home.2G"' (-32)
>>> Network Interface (wlan0) : uUP
>>> Associated with 90:9f:33:66:26:52

omnection COMPLETE to 90:91:33:66:26:52

-— DHCP Client WLANO: SEL

-— DHCP Client WLANO: REQ

BLE FW transfer done

<<< GAPM_DEVICE_READY_IND

Advertising...

-— DHCP Client WLANO: BOUND

Assigned addr : 192.168.0.24

netmask : 4 .255 0
gateway s s
DNS addr : A .163.82

DHCP Server IP : . =0
Lease Time : 00s
Renewal Time 40m 00s
[tcp_client_dpm_sample] Start TCP Client Sample
[tecp_client_dpm_sample_load_server_info] TCP Server Information(192
.168.0.230:10194)
[tcp_client_dpm sample_init_callback] Boot initialization
[dpmTcpC lientManager] Started dpmTcpClientManager session no:l
[runTcpClient] TCP Client Start (name:DPM_SESS1 TRD svrIp:192.168.0
-230 svrrport:10194 local_port:10192)

[tcp_client_dpm _sample_comnect_callback] TCP Comnection Result(0x0)

UART-RTS: pulldown retained in sleep
[runTcpClient] Connected server_ip: 192.168.0.230 server_port:10194
ka_interval:0

>>> Start DPM Power-Down !!!

Figure 148. TCP client in DPM sleep

UART-RTS: pulldown retained in sleep
[runTcpClient] Connected server_ip: 192 168.0.230 server_port:10194
ka_interval:0

>>> Start DPM Power-Down !!!

wakeup source is Ox82
gpi10 wakeup enable 04010001

>>> TIM STATUS: 0x00000001
>>> TIM : UC
by default, rf_meas_btcoex(1, 0, 0)
[tcp_client_dpm_sample] Start TCP Client Sample
wakeup_type=2
BLE_BOOT_MODE_1
[tcp_client_dpm_sample_wakeup_callback] DPM wakeup
[dpmTcpClientManager] Started dpmTcpClientManager session no:1l
[runTcpClient] TCP Client Start (name:DPM_SESS1_TRD svriIp:192.168.0
-230 svrPort:10194 local_port:10192)
> Received Packet(5)
Sent Packet

S: pulldown retained in sleep ...

Start DPM Power—-Down !!!
d

Figure 149. TCP client — wake up from DPM sleep

18.6.3 Workflow

TCP Client thread which uses DPM manager — tcp_client_dpm_sample is run when network is alive. User
callbacks for TCP events are registered in tcp client dpm sample init user config() including
tcp client dpm sample recv callback(). In the receive callback, when a user receives and processes data,
then calls the dpm mng job done ().

tcp client dpm sample ()

> tcp client dpm sample init user config(): callback functions are registered

> tcp client dpm sample recv callback(): called when received the packet, process the data

> dpm mng_job done ()

The TCP Client application is a network application, and the Provisioning application is a Bluetooth LE
application. Both applications should register to the DPM subsystem that coordinates how these two applications
enter DPM Sleep.

® gtl init() > dpm app register(): register to DPM sub-system

® gapc connection req ind handler ()

UM-WI-046 Rev.2.6 RENESAS Page 333
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

> dpm app_sleep ready clear():if a peeris connected (until disconnected), tell DPM sub-system to hold
going into sleep

> dpm_abnormal chk hold(): told DPM Abnormal Checker. DPM Abnormal Checker can force sleep if
network is disconnected, hold its operation until the job (Provisioning APP's job) is done

" gapc disconnect ind handler ()
> dpm app sleep ready set(): tell DPM sub-system to enter sleep as the peer is disconnected
> dpm abnormal chk resume (): tell DPM Abnormal Checker to resume its work

18.7 DA14531 Peripheral Driver Example (Bluetooth LE Peripheral)

This example shows the way to control the peripherals in DA14531 devices by DA16200, the peripherals in
DA14531 can be configured and used as the GPIO, 12C, SPI, and PWM.

DA16600

Wam

Peripherals
Control

LED, SPI Flash, 12C
EEPROM, Quadrature

Encoder. Buzzer, etc.
Decode

Figure 150. DA14531 peripheral device control

18.7.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.3. For this example, some proper
components or connections are required for each test, and the DA14531 GPIO pins can be controlled by the
DA16200 in the DA16600.

18.7.2 Test Environment Setup

18.7.2.1 DA16600 EVB Setup

See the EVB configuration of Ref. [3] for the components such as SW4, SW5, SW6, SW8, J2, J3, and GPIO
pins. To test this example, use the following configurations.

18.7.21.1 Configuration_1

GPIO Pins 1-8 OFF | P0_8 to USBA/Rx
PO 2 | GPIO swa 2-7 ON P0_9 to USBA/Tx
P0O_8 | GPIO 3-6 ON PO 2 to SWCLK
PO 9 | UART2_RX 4-5 | ON | P0_10 to SWDIO
PO_10| GPIO 1-4 OFF GPIOC-6 to USBA/Rx
PO_11] GPIO SW5 2-3 | OFF | GPIOC-7 to USBA/Tx

SW6 1-4 OFF P0O_5 to USBA/Tx
(twire UART) | 2-3 OFF PO 5 to USBA/Rx

1-4 ON GPIOAB to WPS Button
2-3 ON GPIOA7 to Factory Reset Button

Figure 151. DA16600 EVB SW config. 1

SWs

UM-WI-046 Rev.2.6 RENESAS Page 334
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.7.2.1.2 Configuration_2

GPIO Pins 1-8 | OFF
PO_2 | GPIO 2-7 ON
PO_8 | GPIO SW4 3-6 OFF
PO_9 | UART2_RX 4-5 OFF
PO_10| GPIO 1-4 OFF
PO_11] GPIO W5 ST o

swe | 1-4 | OFF
(1wire UART) | 2-3 OFF
1-4 ON

SWe 2-3 ON

PO_8 to USBA/Rx
PO_9 to USBA/Tx
P0_2 to SWCLK

PO_10 to SWDIO

GPIOC-6 to USBA/Rx

GPIOC-7 to USBA/Tx

PO_5 to USBA/Tx

PO_5 to USBA/Rx

GPIOA6 to WPS Button
GPIOAT to Factory Reset Button

Figure 152. DA16600 EVB SW config. 2

18.7.2.2 Tera Term Setup
Two Tera Term windows are required.

= Teraterm_1 (da16_tera_win): connect to COMxx (lower one) with 230400 as baud rate. This is the debug
console of the DA16200 where the user command is entered

= Teraterm_2 (da14_tera_win): connect to COMxx (higher one) with 115200 as baud rate. This is the debug

console of the DA14531. Test progress is printed

18.7.2.3 DA14531 Peripheral Driver Samples
Ten peripheral samples are described in this section. The list of the DA14531 Peripheral Driver samples follows

the commands bolded.

[/DA16600] # ble
[/DA16600/ble] # peri

peri : Run DA14531 Peripheral Driver Sample
type a command below

peri blinky
peri systick

peri batt 1vl

peri spi:flash
peri gpio

[01]

[02]

[03] peri timer0 gen :
[04] peri timer0 buz :
[05] peri timer2 pwm :
[06]

[07] peri i2c eeprom :
[08]

[09]

: SPI flash read/write sample
: GPIO contorl (High/Low)

: blinking LED sample
: systick timer sample

timer0 general sample

timer0 PWM buzzer sample

timer2 PWM LED array sample

: battery level read sample

I2C EEPROM read/write sample

18.7.3 Test Procedure

18.7.31 peri blinky

One GPIO is used to blink the LED connected to the GPIO.
1. DA16600 EVB Configuration (See Figure 151).

By default, PO_8 is used to connect to LED. Connect J3:P0_8 to any pins in P10 or P11 (#17 or #18 of
DA16600 EVB Hardware Configuration figure in Ref. [3]).

2. Run command as in Figure 153. The LED that is connected to the GPIO specified blinks.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS

CFR0012

Page 335

DA16200 DA16600 FreeRTOS SDK Programmer Guide

4 COME67 - COMBO VT = (m] X)

File Edit Setup Control Window Help

[/DA16200/ble] #
[/DA16200/ble] # peri blinky

--> run blinky sample w/ default config (GPIO=p0_8, blink_count=5)
peri blinky start 8 10
--> run blinky sample w/ LED (on p0_8), blink 10 times

[/DA16200/ble] # peri blinky start def
[/DA16200/ble] # —
l<<< APP_PERI_BLINKY_START_IND

. Started

[/DA16200/ble] #
[/DA16200/ble] # peri blinky start 11 5
[/DA16200/ble] #
l<<< APP_PERI_BLINKY_START_IND

. Started

[/DA16200/ble] #

Figure 153. Peri blinky

18.7.3.2 peri systick

The systick timer of DA14531 is used in this sample.

1. This sample uses 1 GPIO to change the state of the LED that is connected to the GPIO.
2. DA16600 EVB Configuration (See Figure 151).

By default, PO_8 is used to connect to LED. Connect J3:P0O_8 to any pins in P10 or P11 (#17 or #18 of
DA16600 EVB Hardware Configuration figure in Ref. [3]).

3. Run command as in Figure 154. Whenever the systick timer expires, it toggles the LED state.

UM-WI-046 Rev.2.6 RENESAS Page 336
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

M COMGT - COMBO VT - (]

File Edit Setup Control Window Help

[/DAl6200/ble] # peri systick

systick :

(: peri systick start [per
systick stop

peri systick start def]
> run systick sample w/ default config (period=lsec, GPIO=p0_8)
peri systick start 1000000 8
-=> run systick timer. ick expires in 1000000 us (1 sec)
turn LED ON or OFF per
peri systick stop
top systick timer

ble] # peri systick start def
y ble] # ——m/—™—/m/m/mm—
< APP_PERI_SYSTICK_START_IND
. Started

) ble] #
/ 6200/ble] # peri systick stop
DALlB2 ble] # —m—m——————
APP_PERI_SYSTICK_STOP_IND
Stopped

/DA16200/ble] # peri systick start 500000 8
[/DAl162 1
<<< APP_PERI_SYSTICK_START_IND

. Started

ble] # peri systick stop
blel] # ———
< APP_PERI_SYSTICK_STOP_IND
. Stopped

/DAL16200/ble
Figure 154. Peri systick

18.7.3.3 peri timer0_gen

The TIMERO general example demonstrates how to configure TIMERO to count a specified amount of time and
generate an interrupt. A LED is changing state upon each timer interrupt.

1. Use one GPIO connected to an LED to show how TIMERO can be used.
2. DA16600 EVB Configuration (See Figure 151).

By default, PO_8 is used to connect to LED. Connect J3:P0_8 to any pins in P10 or P11 (#17 or #18 of
DA16600 EVB Hardware Configuration figure in Ref. [3]).

3. Run command as in Figure 155 and check LED.

UM-WI-046 Rev.2.6 RENESAS Page 337
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

¥ COMST - COMBOVT - o Pl T imer0 clock div ?
0. TIMO_CLK_DIV_B8Y_10
T CLK_NO_DIV

1.
[/DA16200/ble] # peri timer0_gen Blype [Qluit or [ENTER] for default (TIMO_CLK DIV_BY_10) :

file Edit Setup

COUNTER reload value ?

: e.g.) reload value for 100ms (T = 1/200kHz * RELOAD_100MS =
20000 = 100ms)

Type [ENTER] only for default (RELOAD_100m: 20000) :

i timerO_gen start
(lnlcldcllwe cunhq menu 1ollows)

['unlbz()() l)]e] # Pl(Umeln gen start : : A
Sample (onhgunat%ﬁﬁ?ﬂ'n————— onfiguration Summary

GPIO PIN nunbeg 0z r0/Timer2 input clock division factor
1. p0.2 clock source TI
2. p0_8 imer0) pwm mode = PWM_MODE_ONE
3. p0_10 timer0 clock division TIMO_CLK_DIV_BY_10
4. p0_11 timer0 ON COUTNER ucload value 20000
Type [Qluit or [ENTER] for default (p0_8) : S

Test duration (in sec) ?
Type [Qluit or [ENTER] for default (10 sec) : [/DA16200/ble
o l<<< APP_PERI_TIMERO_GEN
Tlmerlemvr? |rvul clock division factor ? . Started
LK_DIV_1
CLK_DIV i / 6200/ble
K ’ =
S-cikbrvos CoMse
NTER] for default (TIMO_2 CLK DIV_8) :

- COMBO - DA14531 VT

File Edit Setup Control Window Help

0. TIMO_CLK_32K
1. TIMO_CLK_FAST L
Type [Qluit or [ENTER] for default (TIMO_CLK FAST) : RARRRRRXRAXRRXRARAXRARAR
* TIMERO GENERAL TEST
® % 12 2.2 24 2 23

timer0) pwm mode ?
0. PWM_MODE _ONE
. PWM_MODE_CLOCK_DIV_BY_TWO

Type lQluu(or [ENTER] for default (PWM_MODE_ONE) : LED will change state every second.

Test will run for: OA seconds.

TIMERO started!
TIMERO stopped!

End of test

Figure 155. Peri Timer0_gen

18.7.3.4 peri timer0_buz

This is TIMERO (PWMO0, PWM1) example that demonstrates how to configure TIMERO to produce PWM signals.

A melody is produced on an externally connected buzzer if connected.

1. Use two GPIOs connected to an external buzzer.

DA16600 EVB Configuration: By default, PO_8 and PO_11 are used to connect to a buzzer. Connect
J3:P0_8 and J2:P0_11 to a buzzer. See Ref. [3] for J2 and J3.

2. Run commands as shown in Figure 156 and Figure 157.

¥ COME67 - COMBO VT == o X

File Edit Setup Control Window Help

[/DA16200/ble] #

[/DA16200/ble] # peri timer0_buz ODE_ONE
—— 1. PWM_MODE_CLOCK_DIV_BY_TWO
ERErr PP R i Type [Qluit or [ENTER] for default (PWM_MODE_ONE) :
peri timerO_bu. run timer0 buzzer
-------------- Timer0 clock div ?

0. TIMO_CLK_DIV_BY_10

1. TIMO_CLK_NO. /
Type [Qluit or [ENTER] for default (TIMO_CLK NO_DIV) :

timer0O_buz start
(interactive config menu follows)

[/DAIGZOO/Me] # peri timer0O_buz start
o A s

Sample Configurat ON COUNTER reload value ?

Type [ENTER] only for default (1000) :

(High) COUNTER reload value ?

hoose two GPIO PINs (on which LEDs connected) for PWM control Type [ENTER] only for default (500) :

N (Low) COUNTER reload value ?

|GPIO PIN number for PwM_0 () ?
1 Type [ENTER] only for default (200) :

1. p0_2
2. p
3. p0_10
4. p0_11
[Type [QJuit or [ENTER] for default (p0_8) :

onfiguration Summary

[pwmO_pin
pwml_pin
buzzer test counter = 50
i i i TIMO_2_CLK_DIV_8
LK_FAST

GPIO PIN nunbcr for PM_1 O ?
: 1)

2p08
3. p0_10

4. p0_11
ype [Qluit or [ENTER] for default (p0_11) :

timerQ clock division

timer0 ON COUTNER reload value
timer0 M (HIGH) COUTNER reload value
timer0 N (LOW) COUTNER veload value

Buzzer Test Counter (BTC)?
50 -> 320ms * 50 = 16 sec. 320ms is based on sample t0 buzZ

[Type [QJuit or [ENTER] for default (BTC=50) :
[/DA16200/ble] #
<<< APP_PERI_TIMERO_BUZ_START_IND

2 . : Iviss ?
Timer0/Timer2 input clock division factor ? . Started

. TIMO_2_CLK_DIV_1
1. TIMO_2_CLK_DIV_2
?. TIM 2 _CLK_DIV_4
TIM _CLK_DIV_8
Type [Q]u}t or [ENTER] for default (TIMO_2_CLK _DIV_8)

/DA16200/ble

Figure 156. Peri Timer0_buz

UM-WI-046 Rev.2.6 RENESAS Page 338

Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

T COM®68 - COMBO - DA14531 VT
File Edit Setup Control Window Help

TIMERO PwM TEST ¥

R AR R AN AN AR NAS

IMERO starts!
ou can hear the sound produced by PwM0O or PWM1l

if you attach a buzzer on pins PO_8 or PO_11 respectively.
Playing melody. Please wait...

e ¥ 3% ¥ 3 ¢ F o o o I I Jb o b T S e bt T LR AR R R E R R

IMERO stopped!

nd of test

Figure 157. Peri Timer0_buz (Continued)

18.7.3.5 peri timer2_pwm

The TIMER2 (PWM2, PWM3, PWM4) example demonstrates how to configure TIMERZ2 to produce PWM
signals. The PWM outputs are used to change the brightness of the LEDs in this example.

1. Use three GPIOs connected to an LED to show how TIMER2 PWM can be used.
2. DA16600 EVB Configuration (See Figure 151).

By default, PO_8, PO_11, and PO_2 are used to connect to an LED.

Connect J3:P0_8 and J2:P0_11, and J3:P0O_2 to an LED. For J2 and J3, see Ref. [3].
3. Run command as in Figure 158.

¥ COM67 - COMBO VT o timer2 pause (by HW) ?
2
File Edit Setup Control Window Help ?‘ 1§n§‘g:’g:3§§’gzr

[/DA16200/ble] #

b1 # i timer N
[/0A16200/ble] # peri timer2 pwm [2 Wz, 16 kHz], i input clock frequency is 32 khz,
77 - [123 Hz, 1 MHZ], i 2 input clock frequency is 2 MHz,
- [245 Hz, 2 MHZ], er2 input clock frequency is 4 MHz,

if Timer2 input clock frequency is 8 MHz,
if Timer2 input clock frequency is 16 MHz

[/DA16200/ble] # peri timer2_pwm start
lSample Configuration Menu S »
“onfiguration Summary

hoose 3 GPIO PINs (on which LEDs connected) for PwM control owm2_pin 8
i 2 m3_pi 11
GPIO PIN number for PwM_2 () ? Bt:-ﬁi S;:: 2

1. p0_2 i 0/Timer2 input clock division factor IMO_2_CLK_DIV_8
2. p0_8 i pause (by HW) IM2_HW_PAUSE_OFF
3. p0_10 i PWM Frequency 00 Hz
4. p0_11 -
[Qluit or [ENTER] for default (p0_8) : SAMPLE CONFIGURATION CONFIRM 7IMRTEWEILVIITRES BN

2 [/DA16200/ble] #
PIN number for PwM_3 () ? <<< APP_PERI_TIMER2_PWM_START_IND
. Started

1
2,
i)
4. p0_11 % COM6S - COMBO - DA14531 V
[Qluit or [ENTER] for default (p0_11) : COMBE S E0ME0 = OATISIVY
File Edit Setup Control Window Help

PIN number for PaM_4 () ?
1. p0_2

4. p0_11
[Qluit or [ENTER] for default (p0_2) :

Timer0/Timer2 input clock division factor ?
0. TIMO_2_CLK_DIV_1
1. TIMO_2_CLK_DIV_2
2. TIMO_2_CLK_DIV_4
3. TIMO_2_CLK_DIV_8
Type [QJuit or [ENTER] for default (TIMO_2 _CLK DIV_8) :

started!
stopped!

test

Figure 158. Peri Timer2_pwm

18.7.3.6 peri batt_Ivl
The Battery example demonstrates how to read the level of the battery connected to DA14531.

1. DA16600 EVB Configuration (See Figure 151).
2. Run commands as in Figure 159.

UM-WI-046 Rev.2.6 RENESAS Page 339
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

. COME67 - COMBO VT
Eile Edit Setup Control Window Help

[/DA16200/ble] # peri batt_1lvl

read level of the battery
that is connected to DAl14531

[/DA16200/ble] # peri batt_1v] get
[/DA16200/ble] # ———————————
<<< APP_PERI_BATT_LVL_IND

battery type = ALKALINE

battery level = 0

[/DA16200/ble] # W

Figure 159. Peri Batt_lIvl

18.7.3.7 perii2c_eeprom
The 12C EEPROM example demonstrates how to initiate, read, write, and erase an 12C EEPROM memory. This
example works if the user connects an external memory.
1. DA16600 EVB Configuration (See Figure 151).

By default, PO_8 (SCL — Serial Clock) and PO_11 (SDA — Serial Data) are used. Connect J3:P0_8, J2:P0_11
to an external 12C_EEPROM. See Ref. [3] for J2 and J3.

2. Run command as in Figure 160 and Figure 161.

a4 COM67 - COMBO VT

File Edit Setup Control Window Help

[/DA16200/ble] # peri i2c_eeprom

peri i2c_eeprom : read/write test of i2c eeprom
that is connected to DA14531.
>>> SCL (p0_8), sbA (p0_11)

[/DA16200/ble] # peri i2c_eeprom start
[/DAL16200/ble] # =———
<<< APP_PERI_I2C_EEPROM_START_IND

. Started

[/DA16200/ble] #
[/DA16200/ble] # A

Figure 160. Peri 12c_eeprom

UM-WI-046 Rev.2.6 RENESAS

Oct 3, 2025

CFR0012

Page 340

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Test 11 s

odid Page Read to verify that new bytes have been written correctly
wre Tost 1 woem

L‘““"s page to EEPROM (values @x88-FF)... kA 81 @2 @3 B4 05 @6 87 08 B9 @A @B BC OD OE OF 18 11 12 13 14 15 5A 17 18 19 1A
S 1B 1C 1D FF 1F 2@ 21 22 23 24 25 26 27 28 29 2 2B 2C 2D 2E 2F 3@ 31 32 33 34 3
- b,38,32,38,39 30 3B 3¢ 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4 4B 4C 4D 4E 4F

lBytes written: Bx808100 3 52 53 54 55 56 57 58 59 SA 5B 5C 5D S5E SF 68 61 62 63 64 65 66 67 68 69 6A
OB 6C 6D CE G 70 91 9293 74 75 96 97 98 99 70 7B 7C I JE IF 80 81 62 83 84 8

Test 2 sx E 86 87 88 89 80 8B 8C 8D SE 8F 9@ 91 92 93 94 95 96 97 98 99 9 9B 9C 9D IE 9F

ho A1 A2 A3 A4 AS A6 A7 AB A9 AR AB AC AD AE AF B@ Bi B2 B3 B4 BS B6 B? B8 B9 BA

Reading EEPROM. BB BC BD BE BF CB C1 C2 C3 C4 C5 C6 C?7 C8 C9 CA CB CC CD CE CF D@ D1 D2 D3 D4 D

b D6 D7 D8 D9 DA DB DC DD DE DF E@ Ei E2 E3 F4 E5 E6 E? E8 E9 EA EB EC ED EE EF
9 @1 62 03 B4 85 06 07 08 89 BA B OC @D OE OF 18 11 12 13 14 15 16 17 18 19 1A @ F1 F2 F3 F4 F5 F6 F? F8 F9 FA FB FC FD FE 70

43 pites Faads
2 53 54 55 56 57 58 59 50 5B 5C 5n SE 5F 60 61 62 63 64 65 66 67 68 69 68 figtes road: WANRING
6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 70 7B 7C 7D 7E 7F 80 81 82 83 84 8
86 87 88 89 8 8B 8C 8D 8E 8F 98 91 92 93 94 95 96 97 98 99 9a 9B 9C 9D IE 9F
AP A1 A2 A3 A4 AS A6 A7 A8 A9 AR AB AC AD AE AF BA Bi B2 B3 B4 BS B6 B? B8 BY BA End of test
BB BC BD BE BF CB C1 C2 €3 C4 C5 C6 C? C8 C9 CA CB CC CD CE CF DB Di D2 D3 D4 D
D6 D? D8 D9 DA DB DC DD DE DF E@ E1 E2 E3 E4 ES5 E6 E? E8 E9 EA EB EC ED EE EF
[Fo F1 F2 F3 F4 F5 F6 F? F8 F9 FA FB FC FD FE FF
I'Byle;; read: Bx000100
Test 3 wwx
Write byte <(Bx5A> @ address 22 <(zero based)...

Irite done.

Read byte @ address 22: @xSA
peese Test § ssn
irite byte (Bx6A)> @ address @ (zero based)...
rite done.
poex Test 6w
lead byte @ address @: @x6A
wwn Test 7 wew
Hrite byte (Bx?A)> @ address 255 (zero based)...
WUrite done.
poex Test 8 swe
Read byte @ address 255: @x7A
t‘“ Test 9 s
rite byte (BxFF)> @ address 38 (zero based)...
Urite done.
poen Test 10 wsx

iRead byte @ address 3@: @xFF

Figure 161. Peri 12c_eeprom read/write

18.7.3.8 peri spi_flash

The SPI Flash memory example demonstrates how to initiate, read, write, and erase an SPI Flash memory with
the SPI Flash driver.

1. The following are the pre-defined characteristics configured in the DA14531 image:

#define SPI MS MODE SPI_MS MODE MASTER
#define SPI_CP MODE SPI CP MODE | 0
#define SPI WSZ SPI_MODE 8BIT
#define SPI CS SPI CS O

#define SPI FLASH DEV SIZE (256 * 1024)

2. DA16600 EVB Configuration (See Figure 152).

By default, 4 GPIO pins are used: SPI_EN (J3: P0O_8), SPI_CLK (J2:P0_11), SPI_DO (J3:P0_2), SPI_DI
(J3:P0_10). For J2 and J3, see DA16600 EVB Hardware Configuration figure in Ref. [3].

3. Download the following DA14531 image for this test.
[DA16600 SDK ROOT]\apps\dal6600\get started\projects\dale600\img\DA14531 P\peri spi flash\
dal4531 multi part proxr s.img.
If you do not use the image above, the message shown in Figure 162 appears.

[/DA16200/bTle] # peri spi_flash start
Please use a DA14531 img ver 6.0.14.1114.1.s

[/DA16200/ble] #
[/DA16200/ble] #

Figure 162. Peri Spi_flash — wrong image warning

4. After booting with a correct Bluetooth LE test image, you can find the version string printed at boot as in
Figure 163.

UM-WI-046 Rev.2.6 RENESAS Page 341
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

System Mode : Station Only (0)
>>> DALOXXX supplicant Verl 00 20170213-01
> MAC address (sta0) : 39:11:4b:20
> sta0 interface add OK
Start STA mode...
y default, rf_meas_btcoex(1l, 0, O

wakeup_type=0

Clock=80000000, BaudRate=115200
DMA Enabled
BLE_BOOT_MODE_O
BLE rw VER to transfer
0.14.1114.1.s (id=1) at bank
>>> Se1ecﬁm3 66:26: 5 ssid
>> Network Interface (wlanQ)
>> Associated with 90:9f:33:66‘26:52

Connection COMPLETE to

- DHCP Client WLANO: SEL
- DHCP Client WLANO: REQ
BLE FW transfer done

<<< GAPM_DEVICE_READY_IND

IAdvertisin
- DHCP Client WLANO:

Assigned addr

netmask

gateway

BOU
192.168.0.24
255.255.255.0
192.168.0.1

mike.sj.home.2G'

(-54

Figure 163. Correct image version for peri Spi_flash sample

5. Run command as shown in Figure 164 and Figure 165.

@ COM67 - COMBO VT

File Edit Setup Control Window Help

[/DA16200/ble] #

[/DA16200/ble] # peri spi_flash

flash read/write test of spi_flash
that is connected to DA14531.
>>> SPI_EN (p0_8),

>>> SPI_DO (p0_2),

peri spi_

SPI_DI

{/DA16200/b1e] # peri spi_flash start
/DA16200/ble] # —mmm——————
<<< APP_PERI_SPI_FLASH_START_IND

... Started

[/DA16200/ble] # N

Figure 164. Peri Spi_flash

Perforning Progran Page.

Reading SPI Flash fi 256 byt FF_FF FF FF FF FF FF FF FF FF FF FF FF FF FF
BEFECFR FE FEFE P FE PP PP F FF FF FF FF FF FF FF FF FF FF FF FF FF FF F

peading SPI Flash £
FF_FF 8 1"

FF FF
FF F2 F3 4 FS F6
ea

[Bytes Read: 8x0100

P1 nuh JEDEC ID is
ng FK2ORIBISE - Hbit SPI Flash device.

Perforning Sector Erase.

X25R Power Mode: Low Power Mode

SPI Flash Erase/Program/Read test...

Perforning Program Page... Page progranmed.
Reading SPI F1
us us 5 e m m\ 60 6C BD OF OF 19 11 12 13 14 18 16 17 18 19 10
X 20 2B 2C_2D

)
93 9495

2 F3 rdFSFﬁF?FHF?I‘aFRF(‘FDFI’FF
Read: @x@1

Perforning Sector Era Sector erased.

Performing 512 byte write...Data written.
ading SPI Fla 01 02 03 01 65 06
1E

£ 2 00 07,08 09 0 o8 oc oD OF
13 14 i°ieoi W* 19744 1B 1

SPI_CLK (p0_11)
(p0_10)

7,08 09 A9 0D

E BF
52"Ds Do "ba DB DC_DD_DE DF B0 £1
F2 ¥2"Ps Fo Fa PB FC FD M

Page progranmed.
bytes

irst 256
03 04°05 6 67 08 89 0n 6 BC D BE OF 10 11 12 13 14 15 16 17 18 19 1A

,52,62,% CB CC D8 D1 D2 D3 D4 D
b6 7 E8 E9 EA EB EC ED EE EF

Sector erased.
Data written.

9,61 €2 83 04 85 95 07,09 6 00 6D OC 8D OF

110" 8" 8" s B Go' Ca G Ca B &
e W8 T 2 %3 ES E6

Figure 165. Peri Spi_flash read/write

18.7.3.9 peri gpio

The GPIO example demonstrates how to set/get the state of a GPIO of DA14531 and how to set as input or
output. If you set the state of a GPIO of DA14531 to either HIGH or LOW in output mode, the state is kept

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

although DA14531 is in sleep. If you do not want to control the GPIO state of DA14531 anymore, then you need
to set the GPIO to OxFF.
1. DA16600 EVB Configuration (See Figure 151).
See Section 18.7.5 to check available GPIOs in DA14531.
2. The DA14531 image should be the same as the following image for this test.
[DA16600 SDK ROOT]\apps\dal6600\get started\projects\dale600\img\DA14531 P\
dal4531 multi part proxr.img
3. The DA14531 GPIO can be configured to output and input with some options.
e Syntax: peri gpio set port_no pin_no state [func]
o port_no, pin_no: port/pin number.
o state: 1 (high), O (low), FF (Not used)
o func: 0 (INPUT), 1 (INPUT_PULLUP), 2 (INPUT_PULLDOWN), 3 (OUTPUT) - Default OUTPUT
a. Example: set the PO_8 to high in output mode.

peri gpioset081 3

b. Example: set the PO_8 as INPUT.
peri gpio set08 00

c. Example: get the PO_8 status.
peri gpio get 0 8

B COM155:230400baud - Tera Term VT

File Edit Setup Control Window Help

[/DA166QB/ble] #
[/DAl6ERA/ble] # peri gpio

peri gpio : Set/Get GPIQ of DA14531
- To set GPIO, checking required
whether the GPIO is free or not

peri gpio set port_no pi tate [func]
state : 1(H B(E),
func INPUTY, 1(I ULLUP) 2(INPUT PULLDOHN) 3(0UTPUT) - Default OQUTPUT
ex) peri gplo set @ 8 i Set PR_S to 13 OUTPUT
ex) peri gpio set @ 8 ; Set PO 8 as

SYNTAX: GET . .)
peri_gpio get port_no pin_no
ex) peri gpio get @ ; Get PB_8 status

#
Al66RB /ble] # peri gp10 set B 813
I0 SET) port @, pi 8, High

le]
APP PERI GPIO _SET_IND

ET port: @, pin:
[/DA166RA/ble] #
{<< APP PERI G?Ia GET_IND

< APP_PERI GPIO _SET_IND
Success

[/DA16600/ble] #

Figure 166. Peri GPIO configuration

18.7.4 Workflow

This example application is not required for Wi-Fi provisioning and controls the DA14531 peripherals (GPIOs) by
sending commands in the DA16200 and each example to the DA14531 through the GTL interface.

= Most types and definitions of GTL messages are defined in the app.h.
[DA16600 SDK ROOT]\apps\dal6600\get started\src\ble svc\include\app.h

" ext host ble aux task msg t must be exactly same as in both DA16600 and DA14531 SDK.
= Timer buz console command flow in the DA16600, all test cases should have similar workflow.

UM-WI-046 Rev.2.6 RENESAS Page 343
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

ble.peri timer0 buz start

> cmd peri sample ()

> app peri timer0 buz start send()
> BleSendMsg ()

* Timer buz console command flow in the DA14531.
GTL > ext _host ble aux task handler (msgid = APP PERI TIMERO BUZ START)
> app peri timer0O buz start ind send():run a timer to start the sample action and send back the GTL

"APP PERI TIMERO BUZ START IND"to DA16200 indicating timer0_buz sample soon starts. On receipt of this
message, DA16200 prints that TIMERO_BUZ started

> ext host ble aux task handler (): handles for the other commands as well
> app peri timer0 buz run()

> pwm0_user callback function()

18.7.5 GPIO PINs in DA14531

The DA14531 has 12 GPIOs. Among them, seven GPIOs are reserved and being used by GTL (four-wire UART,
thus four pins) and BT-Wi-Fi Coex (3-wire, thus 3 pins), therefore, there are five GPIOs free for peripheral
devices. Depending on the actual design, the default usage of pins may vary.

* P0_2: SWD. Free if DISABLE JTAG SWD PINS IN BLE is defined (by default, SWD disabled)
= P0_8/P0_9: used as UART2 for peripheral driver sample print-out

= P0_10: SWD. Free if DISABLE JTAG SWD PINS IN BLE is defined (by default, SWD disabled)
= P0_11: available as the RESET pin after booting up

= P0Q_5: used as Coex: wlanAct in default DA14531 image

NOTE

Some driver samples (systick, pwm) are using ISR callbacks in the DA14531 for implementing driver sample actions. If
customization is required, the ISR callback implementation needs to be modified (the DA14531 needs to be compiled).

For the sample implementation, GPIO pins are configured when a user command runs and are reverted to GPIO mode
after the user command finishes. In real application scenarios, if extended Sleep mode is used in the DA14531 with a
peripheral device attached for a certain purpose, every time the DA14531 wakes up, it should restore the GPIO pin
configuration for the peripheral device purpose. In this case, the pin configuring code should reside in periph_init() then
while waking up, the DA14531 can restore the needed pin configuration successfully.

If new/custom driver GTL messages are required to be defined based on the user application scenario, the new
messages/handlers should be defined in both DA16600 and DA14531 SDK.

18.8 loT Sensor Gateway Example (Bluetooth LE Central)

In this example, the DA16600 plays the role of a gateway device for multiple Bluetooth LE temperature sensors.
A Bluetooth LE sensor posts the current temperature value periodically via the notify function of Bluetooth LE.
The Bluetooth LE chip of DA16600 gathers the information as a central (host) device and asks Wi-Fi to
(periodically) post notifications to a service server in the cloud. Figure 167 shows how the data is transferred to
the server.

UM-WI-046 Rev.2.6 RENESAS Page 344
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

@ T BLE sensorl 124 C

BLE sensor2 : 21 C
BLE sensor3 - 18 C
BLE sensord : 12 C
BLE sensor5 : 14 C
BLE sensorg : 24 C

. BATEEO0 ” 6 BLEsensorl |)
S (-E®

) =)

DA16600

(.« @9 0 BLE: ancors)

9 BLE sensord : B BLE sensorg
a BLE sensorS

Figure 167. loT sensor gateway

18.8.1 Description and Requirements

To build and run for this application, see Sections 18.2.2 and 18.2.2.4. In this example, a few Bluetooth LE
peripheral devices are used (See Section 18.5). The DA16600 receives sensor data through DA14531 which
works as central mode, coming from peripheral devices and sends them to the server.

18.8.2 Test Setup and Procedure
Set up the DA16600 boards (up to three) as peripheral sensor devices.

NOTE

Gas Leak Detection Sensor application starts advertising after booting up. That is the application is waiting to be
connected by a GAP Central — this example application.

1. da16_tera_win:
a. Connect the USB cable to IoT Sensor Gateway Example.

UM-WI-046 Rev.2.6 RENESAS Page 345
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

b. Connect Tera Term to the EVB.

By default, the sensor gateway application is running as "Bluetooth LE GAP Central" that scans neighbor
GAP Peripheral devices, the provisioning should be done before this test. See Section 18.3.2 and run the

provisioning procedure if it is not done yet.

2. The Gateway device in Bluetooth LE is in scanning mode, when the scan is finished, the list is as shown

below when there are two peripheral sensor boards.

51 R
DA14531 Proximity Monitor demo application
fidesadadadadasdapabadapadadadadadaaaadadaaabadadad

No. bd addr Name Rssi
1 b8:00:00:00:00:01 DA16600-ARAA -48 dB
2 b8:00:00:00:00:02 DA16600-BBBB -42 dB
3 ec:00:00:00:00:00 Mi Smart Band 4 -62 dB
4 80:ea:ca:80:00:01 Dialog SOC Demo -58 dB

Scanning... Wait GAPM ADV REPORT IND

>>> Connect or rescan. Type in "[/DA16200] # ble. monitor" for cmd options

3. By typing ble and monitor command below, the commands available in the example are displayed in the

following log box.

[/DA16600/] # ble
[/DA16600/ble] # monitor

monitor [OPTION]
OPTION DESCRIPTION

scan
Scan BLE peers around

show conn dev
shows connected BLE peers with status

rd rssi conn dev
read rssi for all connected devices

read temp
read temperature sensor values from all connected devices

conn [1~9]
connect to a ble peer from the scan list
choose index from the scan list

peer [1~9] [A|B|...|Z]
take an action on a connected BLE peer
———————————— proxm cmd

A: Read Link Loss Alert Level

B: Read Tx Power Level

C: Start High Level Immediate Alert
D: Start Mild Level Immediate Alert
E: Stop Immediate Alert

F: Set Link Loss Alert Level to None
G: Set Link Loss Alert Level to Mild
H: Set Link Loss Alert Level to High
I: Show device info
———————————— custom cmd
J: Enable iot sensor's temperature posting
K: Disable iot sensor's temperature posting
———————————— common cmd
Z: Disconnect from the device

exit
all peers are disconnected

4. To connect the devices (NO 1, NO 2) in the scan list, type the following commands:

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 346

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[/DA16600/ble] # monitor conn 1
[/DA16600/ble] # monitor conn 2

No. Model No. BDA Bonded RSSI LLA TX PL Temp

#

* 1 iot sensor b8:00:00:00:00:01 NO
2 iot_sensor b8:00:00:00:00:02 NO
3 -— Empty Slot —-—

5. To enable the notification from the peer device - the IoT sensor device, type the command in the log box.
Then the temperatures should be posted from the peer device to the gateway device.

[/DA16600/ble] # monitor peer 1 J

[/DA16600/ble] # monitor peer 2 J

No. Model No. BDA Bonded RSSI LILA TX PL Temp
* 1 iot sensor b8:00:00:00:00:01 NO 35
2 iot sensor b8:00:00:00:00:02 NO 13
3 -- Empty Slot —-

NOTE

Depending on a user's RF signal environment, sensor_1 or sensor_2 may not easily get connected. In such a case, run
the scan again and try to connect.

6. Command "J" let sensor start temperature posting.
7. ssh_win_1 or mobile application: the temperature data are posted to the server as follows.

root@raspberrypi:/home/pi# python udp server.py
UDP Server: waiting for a messsage ... at 172.16.30.136:10954

>>> iot sensor([l], temperature value = 33
>>> iot sensor([2], temperature value = 11
>>> iot sensor([l], temperature value = 31
>>> iot sensor(2], temperature value 8

NOTE

Details of sensor service are that implement the following GATT service on a user Bluetooth LE device:

= Temperature characteristic: UUID = '"12345678-1234-5678-1234-56789abcdef1', Permission = READ | NOTIFY, Value
size = 1 byte

= |f subscription (on CCCD) is requested by a peer, periodic notification starts every five sec (the temperature value is
notified every five seconds)

= |f subscription (on CCCD) is requested by a peer, periodic notification starts every five sec (the temperature value is
notified every five seconds)

18.8.3 Workflow

After provisioned and booted up, the DA16600 tries to scan and connect the peripheral devices. When the
connection between DA14531 and peripheral is established, the sensor data is transmitted to DA16600
(DA14531 - GTL - DA16200), and then DA16200 sends the data to the server.

UM-WI-046 Rev.2.6 RENESAS Page 347
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

= The DA16600 tries to scan automatically after booting up or by typing the following scan command to start

[/DA16600]

ble. monitor scan

NOTE

For DA14531/Bluetooth LE scan activity, if the DA16600 is connected to the network, the duration available for Wi-Fi
network should be more than 110ms, it can be calculated by scan interval and window duration as follows.

= Available duration for Wi-Fi = interval x 0.625(time slot) — window x 0.625(time slot)
= |t can be tuned in the app_inq() function in sensor_gw_app.c (.\apps\da16600\get_started\src\ble_svc\sensor_gw\src)
= Renesas recommends that separate the Wi-Fi activities and Bluetooth LE activities if it takes long time

= ConsoleEvent (): Ul handler for controlling sensor gateway, the console commands are sent to DA14531

through GTL.

= Connect the devices and enable the notification to the peripheral devices.
= The peripheral devices send the data to DA14531.
= Transfer the data to DA16200 and post it to the server.

18.8.4 GTL Message Flow

18.8.4.1 Initialization
DA16200 DA14531
Initialization | boot
app_rst_gap
init application
GAPM_RESET_CMD z==»
<2< GAPM_CMP_EVT
gapm_cmp_evt_handler
case GAPM_RESET:
app_set_mode // config GAF mode
.role = GAP_ROLE CENTRAL
att_cfg= GAPM_MASK_ATT_SVC_CHG_EN
GAPM_SET_DEV_CONFIG_CMD >>>>
<2< GAPM_CMP_EVT
GAPM_SET_DEV_CONFIG
app_disc_create
GAPM_PROFILE_TASK_ADD_CMD (TASK_ID_DISC) >=>=>
app_proxm_create
GAPM_PROFILE_TASK_ADD_CMD (TASK_ID_PROXM) > = >
app_inq // start scan
GAPM_START_SCAN_CMD »===
(GAP_GEN_DISCOVERY, GAPM_SCAN_ACTIVE, scan_interval=10, ..)
<<<< GAPM_ADV_REPORT_IND
<=<< GAPM_ADV_REPORT_IND
scan list updated ...
<<<< GAPM_CMP_EVT (operation == GAPM_SCAN_ACTIVE/GAPM_SCAN_PASSIVE)
PRINTF("#r ==> Please connect or rescan. Type in #'[/DA16x0o/ble] # proxm_sensor_gws" for cmd options #n");
Figure 168. GTL message sequence chart — initialization
UM-WI-046 Rev.2.6 RENESAS Page 348

Oct 3, 2025

CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.8.4.2 Provisioning Mode

A_PEER_CON_REQ

A_PEER_READ_REQ

Provision mode

A_PEER WRITE_REQ

USEr runs “proxm_sensor_gw provision_mode” at console

app_rst_gap

GAPM_RESET_CMD >>>>

<<<< GAPM_CMP_EVT
gapm_cmp_evt_handler
case GAPM_RESET.
app_set_mode_peri // initialize gap mode as peri
role = GAP_ROLE_PERIPHERAL
max_mtu

<<<< GAPM_CMP_EVT

GAPM_SET_DEV_CONFIG_CMD >>>>

gapm_cmp_evt_handler
GAPM_SET_DEV_CONFIG

attm_svc_create_custom_db_wfsve

<<<< GATTM_ADD_SVC_RSP

GATTM_ADD_SVC REQ >>>>

gattm_add_svc_rsp_hnd
my_custom_service_wfsvc_start_handle = param->start_hdl;
app_adv_start
PRINTF("Advertising...s#n");

same 35 5413

same 3s 54.1.3

same as 54,13

GAPM_START_ADVERTISE_CMD >>>>

Figure 169. GTL message sequence chart —

provisioning mode

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 349

DA16200 DA16600 FreeRTOS SDK Programmer Guide

18.8.4.3 Scan and Connect to Sensor

Scan sensors.
User runs "proxm_senser_gw scan”
CONSOLE_DEV_DISC_CMD
2pp_ing

GAPM_START_SCAN_CMD =>=>

<<z<= GAPM_ADV_REPCRT_IND

<<<< GAPM_ADV_REFORT_IND

<<<< GAPM_CMP_EVT (operation == GAPM_SCAMN_ACTIVE/GAPM_SCAN_PASSIVE)
PRIMNTF{"#r === Please connect or rescan. Type in %"[/DA16:00¢/ble] # proxm_sensor_gw#" for cmd options #n");

Connect to a sensor,
proxm_sensor_gw conn [1/2/...]
CONSOLE_COMMECT_CMD
app_connect

GAPM_START_CONMECTION_CMD #»=>
(w/ connecticn parameters)

==== GAPC_COMNNECTION_REQ_IND
gapc_cennection_req_ind_handler

app_connect_confirm(GAP_AUTH_REQ_NO_MITM_NO_BOND,cen_id);

app_proxm_enable

GAPC_COMMNECTION_CFM »=>

app_disc_enable // Device Information Service Client

app_discover_sve_by_uuid_128

GATTC_DISC_CMD

DISC_ENABLE_REQ (PRF_CON_DISCOVERY) >>>

PROXM_ENABLE_REQ >3

(Discovery type connecticn)

(GATTC_DISC_BY_UUID_SVC) »=>

<<< GAPC_LE PKT_SIZE_IND
gapc_le_pkt_size_ind_handler
app_start_gatt_mtu_negotiation

GATTC_EXC_MTU_CMD (GATTC_MTU_EXCH) »>>=>

<<« GAPC_PARAM_UPDATE_REQ_IND
gapc_param_update_req_ind_handler
(master may want to check connection paramters)

GAPC_PARAM_UPDATE_CFM (accept=true) »»>

<<< PROXM_EMABLE RSP
proxm_enable_rsp_handler

<<< GATTC_MTU_CHANGED_IND
gattc_mtu_changed_ind_handler

<< GATTC_DISC_SVC_IND

gattc_disc_svc_ind_handler (SVC start-end handle saved)
"loT Senser SVC found"

<<< GAPC_PARAM_UPDATED_IND

<<= GATTC_CMP_EVT (GATTC_DISC_BY_UUID_SWC)
gattc_cmp_evt_handler
case GATTC_DISC_BY_UUID_SWC:
app_discover_all_char_uuid_128

<<< GAPC_GET_DEV_INFO_REQ_IND

GATTC_DISC_CMD (GATTC_DISC_ALL CHAR) »>=

GAPC_DEV_NAME
GAPC_DEV_APPEARANCE

<<< DISC_ENABLE_RSP

GAPC_GET_DEV_INFO_CFM »>>

disc_enable_rsp_handler

DISC_RD_CHAR_REQ (DISC_MANUFACTURER_MAME_CHAR) »>>>
(this command will fail if the connected peer is not proxr device)

<< Peer may trigger this req

<<= GAPC_PARAM_UPDATE_CMD
(by Peer - slave)

<<< May or may not be triggered
by Peer

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS

CFR0012

Page 350

DA16200 DA16600 FreeRTOS SDK Programmer Guide

<< GATTC_DISC_CHAR_IND
gattc_disc_char_ind_handler
"iot sensor sve's temperature value characteristic handle saved”

<< GATTC_CMP_EVT (GATTC_DISC_ALL_CHAR)
app_discover_char_desc_uuid_128

GATTC_DISC_CMD (GATTC_DISC_DESC CHAR) >=>

<<= GATTC_SVC_CHANGED_CFG_IND (eg. CCCD) =
app_send_svc_changed_cmd

GATTC_SEND_SWC_CHANGED_CMD (GATTC_SVC_CHANGED) ==
<<= GATTC_DISC_CHAR_DESC_IND

<<= GATTC_DISC_CHAR_DESC_IND
gattc_disc_char_desc_ind_handler
case CLIENT_CHARACTERISTIC_CONFIGURATION_DESCRIPTOR_UUID
cced handle is saved
<<< GATTC_CMP_EWT (GATTC_SWC_CHANGED)

<<= GATTC_CMP_EVT (GATTC_DISC_DESC_CHAR)
"loT Sensor SVC & characteristics discovery done I"

<<< peer enables a CCCD

Figure 170. GTL message sequence chart — scan and connect

18.8.4.4 Enable Sensor Posting

Enable sensor posting
proxm_sensor_gw peer [1/2/..]]
CONSOLE_IOT_SENSOR_TEMP_POST_CTL_CMD
app_characteristic_write (..., ENABLE, ..)

GATTC_WRITE_CMD »>>

<<< GATTC_CMP_EVT (GATTC_WRITE / GATTC_WRITE_NG_RESPONSE)
gattc_cmp_evt_handler
subscripticn status updated (app_env)

<<< GATTC_EVENT_IND (NOTI or INDI)
gattc_event_ind_handler
fetch value and do whatever is needed with it

=== enable CCCD
value of Peer

<=< value updated (from Peer)

Figure 171. GTL message sequence chart — enable sensor posting

18.8.4.5 Disable Sensor Posting

Dlsable sensor posting
proxm_sensor_gw peer [1/2/..] K
CONSOLE_IOT_SENSOR_TEMP_PQST_CTL CMD
app_characteristic_write (.., ENABLE, ..}

<<< GATTC_CMP_EVT (GATTC_WRITE / GATTC_WRITE_NO_RESPONSE)

GATTC_WRITE CMD ===

>=> disable CCCD
value of Peer

gattc_cmp_evt_handler
subscription status updated (app_env)

Figure 172. GTL message sequence chart — disable sensor posting

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 351

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Appendix A License Information

A.1 Mosquitto 1.4.14 License

Eclipse Distribution License 1.0

Copyright (c) 2007, Eclipse Foundation, Inc. and its licensors.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
* Neither the name of the Eclipse Foundation, Inc.
nor the names of its contributors may be used to endorse or
promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTTES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPIARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.2 MiniUPnPc License

Copyright (c) 2005-2016, Thomas BERNARD

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* The name of the author may not be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPIARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, CR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

UMAC GPL License
Linux kernel 3.9.0 rc3 version (backport 4.2.6-1)

UM-WI-046 Rev.2.6 RENESAS Page 352
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Appendix B TX Power Table Edit

The DA16200/DA16600 SDK allows users to tune and edit TX Power (per channel) for FCC or country-
dependent product customization/optimization. The country code and channels describe in Table 89.

Ch.2 11b 11g 11n

Power Index | 1Mbps | 2Mbps | 5.5Mbps| 11Mbps | 6Mbps | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | MCSO MCS1 M52 MCS3 MCS4 MCS5 MCS6 MCS7
0 209 209 210 211 190 190 190 190 174 17.5 163 153 189 189 188 173 173 16.1 154 153
1 204 204 205 206 184 184 184 184 168 169 155 146 182 182 183 16.7 16.7 15.5 146 147
2 197 197 198 198 176 178 176 176 159 160 148 137 174 175 175 159 159 147 138 136
3 19.1 19.1 192 192 170 17.1 169 170 153 154 140 131 163 163 16.8 152 152 140 131 131
4 180 180 181 181 159 160 158 159 141 142 128 119 158 158 157 140 141 128 120 118
5 168 167 168 169 148 143 148 148 134 138 121 12 147 147 147 133 133 121 112 11
6 162 16.1 163 162 142 142 142 142 128 129 115 105 140 141 141 128 127 114 105 105
7 154 154 154 155 134 134 134 133 119 120 106 97 132 132 133 118 119 106 97 87
8 148 148 143 149 128 128 128 128 12 13 98 90 127 127 127 11 11 98 90
9 13.8 138 138 138 1.7 1.7 117 1.7 102 103 89 8.0 115 116 115 102 101 9.0 81 8.0
10 13.1 131 132 132 110 1.1 110 110 97 97 83 75 109 109 109 95 95 a3 74 74
n 126 126 127 127 105 105 104 105 a5 85 71 62 103 104 103 83 84 71 62 62

Figure 173. TX power table

NOTE

The 2.4 GHz band is divided into 14 channels at 5 MHz intervals centered at 2.412 GHz, starting with channel 1. The last
channel (CH 14) has additional restrictions or cannot be used for all regulatory areas.

= TX power setting value range: 0x0 ~ OxB
= Setting value for unsupported channel: OxF

B.1 Tune TX Power

Users can tune and test TX power through CLI command and AT GUI tool. When the TX power value increases
by 1 step, the actual TX power decreases by 0.8 dB. Unsupported channels should be set to OxF. See the
corresponding section of Ref. [5] on how to tune TX power using CLI or AT GUI tool.

This example shows the range of values for TX power.

Table 88. TX power setting value range

= TX power gap per value step: 0.8 dB
= TX power setting value range: 0x0 ~ OxB
= Setting value for unsupported channel: OxF

B.2 Apply Tuned TX Power to Main Image
The following procedure describes how to set the tuned TX power indices to the Main image.
1. Inthe DA16200/DA16600 SDK, open

~/FreeRTOS SDK/core/system/src/common/main/sys user feature.c.

UM-WI-046 Rev.2.6 RENESAS Page 353
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

File Edit Source Refactor MNsvigate Search Project Run Window Help

[o][=]

I Project Explorer 23

257 8
125 customer_app
v IS sdk_main
[l Includes
(config
v G core
fiw bsp
i config
i freertos
[y libraries
(& segger_toals
v i system
[if include
v i stc
iy at_emd
iR coap
“ g commen
ji= command
= library
Vv [main
1el asdc
18 £c3120_hw_eng_initialize.c
I8 dalbx initialize.c
LE| dal6x_time.c
[@ gpio_handle.c
L8| init_systemn.c
LE| init_umac.c
[& schd_idle.c
[€] schd_system.c
Ag] schd_trace.c
[sys_common_func.c
LBl sys_exception.c
AE| sys_feature.c
[] sys_user feature.c
AE| util_api.c
= network
= nviam
[clib.c

No Launch Cenfigurations on: | - =

= B [g sys_user_feature.c T

A 214 dpm_dynamic_period_setting flag = pdTRUE;

#endif // _ SUPPORT_DPM_DYNAMIC_PERIOD_SET__

#if defined (XIP_CACHE_BOOT)
/

3 Tx Power Table

#include "commen_config.h”

N N I I I N R

const country_ch_power_level t cc_power_lewvel[MAX_COUNTRY_CNT] =

/ 14 */
/* Andorra */

{ "AD", @x3, ex3, ex3, ex3, ©x3, 8x3, ox3, ex3, ex3, ex3, ex3, ex3, ex3, exF },]
/* UME */

{ "AE", @x3, ex3, ex3, 8x3, ox3, 8x3, Ox3, ex3, Ox3, ex3, ex3, Ox3, ox3, @xF },
/* Afghanistan */

{OUAFT, B3, B3, B3, B3, B3, 8x3, k3, 3, 8x3, B3, B3, B3, B3, &F },
/* Anguilla =/
{ "AI", @x3, Ox3, Bx3, Bx3, Ox3, Ox3, Ox3, @x3, 8x3, 0x3, &3, Bx3, Ox3, OxF },

/* Albania */

{ "AL", @x3, ex3, ex3, ex3, @x3, 8x3, ox3, ex3, ex3, ex3, ex3, ex3, ex3, exF },
/* Armenia */

{ "AaMY, ex3, ex3, ex3, 8x3, ox3, 8x3, Ox3, ex3, Ox3, ex3, ex3, @x3, ox3, @xF }, //5
/* Argentina */

ax3, Bx3, Bx3, Bx3, Ox3, Ox3, 8x3, 8x3, 8x3, Bx3, 6x3, Ox3, 8xF },
ox3, 8x3, Bx3, Bx3, Ox3, Ox3, @x3, Ox3, 8x3, Bx3, OxF, OxF, OxF },
@x3, 8x3, ex3, @x3, @x3, @x3, ex3, ex3, ex3, ex3, ex3, ex3, exF },

Bx3, 8x3, 8x3, @x3, ox3, 8x3, Ox3, @x3, ox3, 8x3, ox3, @x3, exF },

{ AW, ex3, ex3, ex3, @3, 8x3, 8x3, Ox3, @x3, Bx3, 8x3, &3, &3, ex3, @xF }, // 18
/* Azerbaijan =/
{ "Az", @x3, @x3, Bx3, Bx3, Bx3, Ox3, Ox3, @x3, 8x3, Ox3, Ox3, Bx3, Ox3, OxF },

Figuré 174. TX power table source code

| & - K -mig-&-[

The array cc_power_level contains the default values customized for FCC. Edit the power values for a
specific country or the desired countries with tuned values. See Table 88 for more information.

2. Re-build the SDK.

When the rebuilt software is started and the country is selected, the corresponding TX power value set for

that channel takes effect.

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 354

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Appendix C Tips

C.1 Find/Optimize Stack Size for Applications

To check the stack size of the application, the DA16200/DA16600 has a tool (a console command) called ps that
shows the list of threads and the status of each application stack. Figure 175 is a snapshot of command ps when
tcp client sample.cis run.

[-DA162BA] # ps

{{<{ Task information >>»>
Task coun 20 TotalTime: 587 Ticks

State Run—-Tm Run—Fer io Stack-B Stack-E S5-8ize Stack-L

system_laun Blocked 3 S Bxaf2h8
IDLE Ready » Bxaf £58
Tmr_Sve Blocked BxhASHA
GConsole_OUT Blocked Bxh4ced
GConsole_IN Running BAxh58e@
wdt_kicking Blocked Bxh7578
UnTaskletSu Blocked Bxbh?130
UnTxNiTd Blocked Bxb?az2B
UnBRxMacTd Blocked Bxbh2hB8
UmMacHNiTd Blocked Bxhc 358
BLmacMain Blocked Bxhdab8
ElUmacRx Blocked Bxheh58
UmbllrkgSvc Blocked Bxhif28
LulP_init Blocked Bxclaf@
1lulP Blocked Bxc2hfR
wifi_ev_mon Blocked Bxc3B88
dalbéx_supp Blocked Bxc3?88
sntp_thread Blocked Bxc7a?@
poll_qgpio Blocked BxcB8h28
IC Blocked Bxd41f@ BxdS1ied

.
g
[-a]

A
a
a
a
a
a
1
a
1
a
a
a
1
A
5
a
a
a

Figure 175. Check stack size

TCPC is the name of the tread for this sample application, and the stack size is 1020 (which is defined in
sample_apps.c).

This is a sample code of TCP Client.

#if defined (_ TCP CLIENT SAMPLE)
{ SAMPLE TCP CLI, tcp client sample, 1024, (tskIDLE PRIORITY + 7), TRUE, FALSE,
TCP_CLI TEST PORT, RUN ALL MODE },

#endif // (_ TCP CLIENT SAMPLE)

Command ps shows the following information:

= Stack-B/E: the stack address
= S-Size: the stack size allocated
= Stack-L: peak usage size of the stack

To find and optimize the stack size for this application, for example if this application has four use cases, follow
the steps below:

1. First, over-allocate stack memory as a precaution, like 2K, "just to be safe".
2. Run each use case and examine the peak stack usage with command ps.

3. Allocate optimal memory based on peak usage information. If all the possible use case scenarios are
confirmed, allocate the stack size with extra memory as a precaution.

C.2 How to Make/Write User Data to User Area of Flash Externally

Many different methods are available to generate user data and program it into Flash, and here is a simple
method to get started. User data can be generated using any hex editor. Figure 176 shows a snapshot for
editing data in hex editor, Notepad++. The hex data (left side) or string (right side) can be added and updated.

UM-WI-046 Rev.2.6 RENESAS Page 355
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

[&f CAUsers\jbam\Desktop\user_data.bin - Notepads++

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

=] & LR ST EEERRe®| @
=] user_data.bin .J}

Hom

Address 0 1 2 3 4 5 6 7 8 9 a b c d e f Dump
00000000 44 41 31 36 32 30 30 5f 00 00 00 00 00 00 00 00 DA16200

00000010 55 53 00 00 00 00 00 0O 00O 00 00 00 00 00 00 00 Us

00000020 44 45 56 49 43 45 5f 4e 41 4d 45 31 00 00 00 00 DEVICE_NAME]....

Figure 176. Snapshot of hex editor

User data can be programmed to the user area of flash in DA16200 using MultiDownloader. See Ref. [3] for
more details. Figure 177 shows the settings of MultiDownloader for programming data to a specific address.

User data can be confirmed using "sflash read address size" command in MROM. See Figure 178.

Settings - m} X
Type
05 Module
[FreeRTOS [DA16200 [DA16600

Ll EraseFlash StantAddress: 0x[0] Size: Ox [400000

BOOT_#0 Image

Address
[oot 0x D
[J RTOS1 0x| 0|
[sLiet 0x| 0|
BOOT_#1 Image
Address
[RTOS? | | 0]]
Osue2 | | ox] 0]
DATA Image
Address
DATAT [user_data bin | 0x| 3ad00d
] paTAZ | | 0x| q
Address
Reboot [] Change BOOT Index El Dx
Read Setting Save Setting Reset Setting Done

Figure 177. Settings of multidownloader

M COMS:230400bps - Tera Term VT -

File Edit Setup Control Window Help
[DA1628A]1 # Lowest free heap size = 151576 hyte.

[-DA16260]1 # reset

FCI FCIK MaskROM BootLoader
S¥S 128888 KHz)>
Bea>

Cortex—M4 (XTAL 4P06H Kl

Console Baud Rate : @

HU Version Mum. :

Build Option

RoSDK Date & Time

Build Date & Time : Mar 13 2819 13:
http wuu.fci.co ke

[MROM] sflash read 2adBBB 40
BBIADBAA] = 44 41 31 36 32 30 30 SF 60 08

ADP1@1 : 55 53 @@ ©P B B0 PO 09 B0 B
BIADE2@] : 44 45 56 49 43 45 SF 4E 41 4D 45 31 @6 08 0@
i663aDB381 : FF FF FF FF EF FF FF FF FF FF FF FF FF FF FF FF
inRon1 I

Figure 178. Read user data using command

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 356

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Appendix D Country Code and TX Power

This section lists the country codes that the DA16200/DA16600 supports and the supported channels of 2.4 GHz

bandwidth in the STA and the Soft AP mode.

D.1 Country Code and Channels

Table 89. Country code

g:::try Country STA channels Soft AP channels

"AD" Andorra 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AE” United Arab Emirates 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AF” Afghanistan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
Al Anguilla 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AL” Albania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AM” Netherlands Antilles 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AR” Argentina 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AS” American Samoa 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“AT” Austria 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AU” Australia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“AW” Aruba 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
AL Azerbaijan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BA” Bosnia and Herzegovina 1,2,3,45,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BB” Barbados 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BD” Bangladesh 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘BE’ Belgium 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BF” Burkina Faso 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BG” Bulgaria 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BH” Bahrain 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘BL Saint-Barthelemy 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BM” Bermuda 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“BN” Brunei Darussalam 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BO” Bolivia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BR” Brazil 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BS” Bahamas 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BT” Bhutan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BY” Belarus 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“BZ" Belize 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“CA” Canada 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“CF” Central African Republic 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“CH” Switzerland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“‘CI" Ivory Coast 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“CL”" Chile 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“CN’ China 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 357

DA16200 DA16600 FreeRTOS SDK Programmer Guide

g::: " | country STA channels Soft AP channels

“CO” Colombia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“CR” Costa Rica 1,2,3,4,5,6,7,8,9,10,11,12,13 1.2.3.456,7891011,12,13
“cu Cuba 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“CX” Christmas Island 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
cY” Cyprus 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
cz Czech Republic 1,2,3,4,5,6,7,89,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘DE” Germany 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“DK” Denmark 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“DM” Dominica 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“DO” Dominican Republic 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

‘D Algeria 1,2,34,56,7,89,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“EC” Ecuador 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“EE” Estonia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘EG Egypt 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘ES” Spain 1,2,3,4,56,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘ET Ethiopia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘EV Europe 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“FI" Finland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“FM” g{;{:gi?'a Federated 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“FR” France 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“GA” Gabon 1,2,3,4,5,6,7,8,9,10,11,12,13 123456,7891011,12,13
‘GB’ United Kingdom 1,2,3,4,5,6,7,8,9,10,11,12,13 12.34567891011,12.13
“‘GD” Grenada 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“GE” Georgia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“GF” French Guiana 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“GH” Ghana 1,2,3,4,5,6,7,8,9,10,11,12,13 1.2.3.456,7891011,12,13
“GL” Greenland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“GP” Guadeloupe 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“GR” Greece 1,2,3,4,5,6,7,8,9,10,11,12,13 123456,7891011,12,13
“‘GT” Guatemala 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“‘GU” Guam 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

‘GY” Guyana 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“HK” Hong Kong 1,2,3,4,5,6,7,8,9,10,11,12,13 1234,5678910,11,12,13
“HN” Honduras 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“HT” Haiti 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

"HU Hungary 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“ID” Indonesia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“IE” Ireland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“IL” Israel 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 358

DA16200 DA16600 FreeRTOS SDK Programmer Guide

g::: " | country STA channels Soft AP channels

“IN" India 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“IR” Iran, Islamic Republic of 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“IS” Iceland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
T Italy 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“IM” Jamaica 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“JO" Jordan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
"JP Japan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘KE” Kenya 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“KH” Cambodia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“KN” Saint Kitts and Nevis 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“KP” North Korea 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘KR South Korea 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
KW Kuwait 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
KY” Cayman Islands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“KZ" Kazakhstan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“LB" Lebanon 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“LC” Saint Lucia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘LI Liechtenstein 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“LK” Sri Lanka 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“LS” Sesotho 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
LT Lithuania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
Lo Luxembourg 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“LV” Latvia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MA” Morocco 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MC” Monaco 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MD” Moldova 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“ME” Montenegro 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MF” Saint-Martin (French part) 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“‘MH" Marshall Islands 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“MK” Macedonia, Republic of 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MN” Mongolia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MO” Macao 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“‘MP” Northern Mariana Islands 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

‘MQ’ Martinique 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MR” Mauritania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MT” Malta 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MU” Mauritius 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MV” Maldives 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MW” Malawi 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“MX” Mexico 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 359

DA16200 DA16600 FreeRTOS SDK Programmer Guide

g::: ™| country STA channels Soft AP channels

“‘MY” Malaysia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘NG Nigeria 1,2,3,4,5,6,7,8,9,10,11,12,13 1.23.4567891011.12.13
NI Nicaragua 1,2,3,4,5,6,7,8,9,10,11 12,3,4,567,891011

“NL” Netherlands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“NO” Norway 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“NP” Nepal 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“NZ’ New Zealand 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
"OM” Oman 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PA” Panama 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“PE” Peru 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PF” French Polynesia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PG” Papua New Guinea 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PH Philippines 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PK” Pakistan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PL” Poland 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PM” Saint Pierre and Miquelon 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PR” Puerto Rico 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

PT” Portugal 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“PW” Palau 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

PY” Paraguay 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
QA7 Qatar 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“RE” Reunion 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“RO” Romania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“RS” Serbia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“‘RU” Russian Federation 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“RW” Rwanda 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“SA” Saudi Arabia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“SE” Sweden 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
SG Singapore 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“sl” Slovenia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“SK” Slovak Republic 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“SN” Senegal 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“SR” Suriname 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“SV” El Salvador 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
‘SY” Syrian Arab Republic 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“TC Turks and Caicos Islands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“TD” Chad 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
TG Togo 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“TH Thailand 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“TN” Tunisia 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 360

DA16200 DA16600 FreeRTOS SDK Programmer Guide

g::: ™| country STA channels Soft AP channels

R Turkey 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“TT Trinidad and Tobago 1,2,3,4,5,6,7,8,9,10,11,12,13 1.2.3.456,7891011,12,13
“TW’ Taiwan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“TZ" Tanzania 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“UA” Ukraine 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
"ue” Uganda 1,2,3,4,5,6,7,8,9,10,11,12,13 1.23.4567891011.12.13
“us” United States of America 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

uy” Uruguay 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“uz’ Uzbekistan 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“ver Saint vincent and 12,3,4,5,6,7,8,9,10,11,12,13 12,3.4,5,6,7,89,10,11,12,13
“VE Venezuela 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“VI Virgin Islands 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

“VN” Vietnam 1,2,3,4,5,6,7,8,9,10,11,12,13 123.456,7891011,12,13
“VU” Vanuatu 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“WF” Walls and Futuna Islands 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“WS” Samoa 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“YE” Yemen 1,2,3,4,5,6,7,8,9,10,11,12,13 123.456,7891011,12,13
T Mayotte 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“ZN South Africa 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“ZW” Zimbabwe 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13
“ALL” Worldwide 1,2,3,4,5,6,7,8,9,10,11,12,13 123456,7891011,12,13
XX 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11

D.2 Programming

All of the power level settings are 0x0 as default setting, so it should be set as required for the customer’s
specifications and requirement. The power table consists of two types, one is for OFDM and the other is for
DSSS. DA16200/DA16600 refers to the levels either of the cc_power_level table for OFDM mode or the
cc_power_level dsss for DSSS mode.

In the DA16200/DA16600 SDK, users can change the supporting "country code list" for their product. See Table
88 and Table 90.

NOTE

The 2.4 GHz band is divided into 14 channels at 5 MHz intervals centered at 2.412 GHz, starting with channel 1. The last
channel (CH 14) has additional restrictions or cannot be used in all regulatory areas.

= TX power setting value range: 0x0 ~ OxB
= Setting value for unsupported channel: OxF

® FreeRTOS SDK/apps/da6200 (dal6600)/get started/src/apps/main/user system feature.c
This is programming examples of country codes.

Table 90. Programming example for country code

const country ch power level t cc power level [MAX COUNTRY CNT] =
{

/* Country 1 2 3 4 5 6 7 8 9 10 11 12 13 14 */

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 361

DA16200 DA16600 FreeRTOS SDK Programmer Guide

S — */
/* Andorra */

{ "ap", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, OxF },
/* URE */

{ "AE", O0x0, 0x0, 0Ox0, 0x0, 0Ox0, 0x0O, 0x0, 0x0, 0x0, 0x0O0, 0x0, 0x0O, 0x0, OxF },
/* Afghanistan */

{ "ar", 0x0, 0Ox0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, OxF },
const country ch power level t cc power level dsss[MAX COUNTRY CNT] =
{
/* Country 1 2 3 4 5 6 7 8 9 10 11 12 13 14 */
2 — */
/* Andorra */

{ "ap", O0x0, 0x0, 0Ox0, 0x0, 0Ox0, 0x0O, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, OxF },
/* URE */

{ "ag", 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, OxF },
/* Afghanistan */

{ "Aar", O0x0, 0x0, 0Ox0, 0x0, 0x0, 0x0O, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0O, 0Ox0, OxF 1},

UM-WI-046 Rev.2.6
Oct 3, 2025

RENESAS
CFR0012

Page 362

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Appendix E How to Use J-Link Debugger

To debug DA16200 and DA16600, J-Link debug probe and J-Link software are required. See the Debugging
with J-Link Debug Probe section of Ref. [3] on how to use J-Link debugger.

Appendix F Create RTOS Image for fcCSP Using SDK v3.2.7.1 or
Earlier

For fcCSP type package, to create a RTOS image with the DA16200/DA16600 SDK, change the files as shown
below, and then follow the Build SDK instructions described in Section 4.c.

= Library file for Low-Power:

o ~/FreeRTOS_SDKI/library/liblmac.a.fcCSP_LP (or libimac.fcCSP.LP.a) —
~/FreeRTOS_SDK/library/libimac.a

= Library file for Normal-Power:

o ~/FreeRTOS_SDK/library/libimac.a.fcCSP_NP (or libimac.fcCSP.NP.a) —
~/FreeRTOS_SDK/library/libimac.a
= Compile feature:
¢ ~/FreeRTOS_SDK/apps/da16200/get_started/include/user_main/sys_common_features.h
o #undef FOR FCCSP SDK _ — #define FOR FCCSP SDK
o In case of Low-Power: #define FCCSP_LOW POWER
o In case of Normal-Power: #undef _ FCCSP LOW POWER

UM-WI-046 Rev.2.6 RENESAS Page 363
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Appendix G Bluetooth LE Customization

G.1 How to Change Bluetooth LE Device Name

The Bluetooth LE device name can be changed by editing the definition - USER_DEVICE_NAME in the
\SDK_ROOT\apps\da16600\get_started\src\ble_svclinclude\user_config.h file.

#define APPEND EXTRA INFO AT DEVICE NAME

#ifdef APPEND EXTRA INFO AT DEVICE NAME

#define USER DEVICE NAME ("DA16600-XXXX")
#else

#define USER DEVICE NAME ("DA16600™)
#endif

If APPEND EXTRA INFO AT DEVICE NAME is defined, then the string("xxxx") is replaced by the last 4 digits of the
MAC address stored at the EVB or target board in the app rst gap () function. If it is not defined, then the fixed
device name is used. The change may not be immediately seen because of the phone or APP caching the
previous ADV device name, so the cache of the user's APP and BT system APP should be cleared before
testing with a new device name.

G.2 How to Change Bluetooth LE ADV Interval

The advertising interval can be changed by the define - USER CFG DEFAULT ADV INTERVAL MSin

[SDK ROOT]\apps\dal6600\get started\src\ble svc\include\app. h file for Example appllcatlons (Bluetooth
LE peripheral) in [SDK ROOT]\apps\dal6600\get started\src\ble svc\sensor gw\inc\app.h file for Example
application (Bluetooth LE central).

/* Bdvertising and Connection related parameters */
#define USER CFG DEFAULT ADV INTERVAL MS (687.5)

/// Bdvertising minimum interval

#define APP ADV_INT MIN MS_TO BLESLOTS (USER CFG DEFAULT ADV_INTERVAL MS)
/// BAdvertising maximum interval
#define APP ADV INT MAX MS TO BLESLOTS (USER CFG DEFAULT ADV INTERVAL MS)

The ADV interval should not be too long, Renesas recommends not to set it bigger than 1 or 2 seconds because
it may not be scanned well by the host due to its longer advertising. The shorter interval can be scanned faster
by the hosts of course, but to save the power consumption we have set it to the appropriate value — 687.5 ms.

G.3 How to Configure Bluetooth LE Hardware Reset

To configure Bluetooth LE hardware reset, the GPIOC_8/DA16200 must be connected to PO_11/DA14531 first,
then users should define the CFG ENABLE BLE HW RESET as follows in the DA16600 SDK.

// [SDK ROOT]\apps\dal6600\get started\include\apps\user custom config.h

#if defined(BLE PERI WIFI SVC_) ||
defined(BLE PERTI WIFT SVC TCP_DPWL_) |
defined(BLE CENT SENSOR GW)
#define _ CFG ENABLE BLE HW RESET // Enable hardware reset of Bluetooth
#endif

And it needs to configure the POR register in DA14531 for PO_11 working as a reset pin, the
CFG ENABLE POR PIN should be defined in the DA14531 SDK as well, build the SDK and replace the image file —

da14531 multl _part_proxr.img or da14531_multi_part_proxm.img.

//[DA14531 SDK ROOT]\projects\target apps\ble examples\prox reporter sensor ext coex\src\conf
1g\da1458x config advanced.h (reporter project) or

[DA14531 SDK ROOT]\projects\target apps\ble examples\prox monitor aux ext coex\src\config\dal
458x config advanced.h (Monitor/Central project)

UM-WI-046 Rev.2.6 RENESAS Page 364
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

/***/

/* Enable HW RESET by PO 11 if need */

/***/

#define CFG ENABLE POR PIN

The GPIOC_8/DA16200 and PO_11 should not be used in any other cases apart from this purpose to use the

Bluetooth LE hardware reset properly.

UM-WI-046 Rev.2.6 RENESAS
Oct 3, 2025 CFR0012

Page 365

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Appendix H QSPI Clock Selection

The XFC driver in the ROM decides the QSPI clock based on the maximum frequency information in the SFDP
and core clock during boot. The clock is (core clock/N) which is less than or equal to the maximum frequency in
SFDP. N is larger than 1.

For example, if the maximum frequency in the SFDP is 100 MHz and the core clock is 120 MHz, then the QSPI
clock is configured as 60 MHz (120/2 <= max. frequency 100 MHz in SFDP). If the maximum frequency in SFDP
is 40 MHz and the core clock is 120 MHz, the QSPI clock is 120/3 = 40 MHz.

Appendix | Power Down Step
To power down, complete the following steps:

1. Put the DA16200/DA16600 into Sleep mode 2 or Sleep mode 3. See dpm sleep start mode 2() or
dem sleep start mode 3() used in Section 17.14 APlIs or sleep AT commands (AT+SETSLEEP2EXT=0,0
or AT+SETSLEEP3EXT=10000) in Ref. [7].

2. Put the DA16200 to Sleep mode 1 using RTC Power Key.

UM-WI-046 Rev.2.6 RENESAS Page 366
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

19. Revision History

Revision

Date

Description

2.6

Oct 3, 2025

= Added Section 3.7.
= Added Section 9.2.1 and 9.2.2.
= Added Section 18.2.3.4.

2.5

Apr 16, 2025

= Updated TLS certificate in Selection 6.

= Added the note for network latency and HTTP timeout in Section 15.4.4
= Added Appendix C.2 and Appendix H.

= Updated loady command for FBOOT in Section 18.2.4.2

= Added Section 3.8.2.

= Added Section 13.3 and updated Section 13.4.4.

24

May 17, 2024

= DA16600 - Change cli command name "proxm_sensor_gw" to "monitor"

= DA16600 - Change Bluetooth image folder name to DA14531_P (from
DA14531_1) and DA14531_C (from DA14531_2)

= Section 18.3 title updated

2.3

Mar. 21, 2024

= Added Wi-Fi Functionality
= Added UM-WI-052 DA16600 FreeRTOS Example Application Manual
= Added Wake-up sources

2.2

Aug. 18, 2023

= Updated MCU transmission protocol changes in Section 15.6.2
= Added Certificate APl in Section 6
= Added parameters into Section 9.1.1
e DA16X_CONF_INT_HIDDEN_O
e DA16X_CONF_INT_AUTH_MODE_0
e DA16X_CONF_INT_EAP_PHASE1_0
e DA16X_CONF_INT_EAP_PHASE2_0
= Added parameters into Section 9.1.2
e DA16X_CONF_STR_EAP_IDENTITY
e DA16X_CONF_STR_EAP_PASSWORD
= Added WPA enterprise Sample code into Section 9.1.3
= Added Watchdog service in Section 8
= Changed IDE to e?studio
= Changed description about fcCSP Low Power RTOS Image in Section 3.8.1

21

May. 31, 2023

Added missing section of the Introduction 3

2.0

May. 19, 2023

= Merged MQTT Programmer Guide, FreeROTS OTA Update, and
FreeRTOS Example Application Manual

= Added the details for Bluetooth LE Coexistence part in Section 17.13
= Modified wake-up status in Table 64

1.9

Jan. 04 2023

= Added Bluetooth LE Coexistence part in Section 17.13

= Memory map updated: adjustable Bluetooth LE firmware size and user area
in DA16600

= Updated Figures of Eclipse IDE screen capture

1.8

Oct. 24, 2022

Added TX power setting value range and step in Appendix B.1

1.7

Aug. 11, 2022

Changed TLS certificate area index number of SFlash area
CHO, #1, #2, #3 > #1, #2, #3, #4 in Section 15.2

1.6

Jun. 14, 2022

= Updated company name of Reference documents
= Updated Sflash memory map for the DA16200/DA16600in Section 15.2
= Updated TX power table programming in Appendix B.2

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 367

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Revision Date Description

1.5 Mar 28, 2022 Updated logo, disclaimer, and copyright.

1.4 Dec 22, 2021 Added description about fcCSP Low Power RTOS Image.
1.3 Nov 26, 2021 The title was changed.

1.2 Nov 09, 2021 TW Editorial.

1.1 Oct 25, 2021 Added description about OTP.

1.0 Apr 13, 2021 First release.

UM-WI-046 Rev.2.6

Oct 3, 2025

RENESAS
CFR0012

Page 368

DA16200 DA16600 FreeRTOS SDK Programmer Guide

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED The content of this document has been approved for publication.

or unmarked

RoHS Compliance

Renesas Electronics’ suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of
the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
RoHS certificates from our suppliers are available on request.

UM-WI-046 Rev.2.6 RENESAS Page 369
Oct 3, 2025 CFR0012

DA16200 DA16600 FreeRTOS SDK Programmer Guide

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources
are subject to change without notice. Renesas grants you permission to use these resources only to develop an application
that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any
other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you
will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from
your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other
applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable
warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.1 Jan 2024)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales

office, please visit www.renesas.com/contact-us/

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of
Renesas Electronics Corporation. All trademarks and
registered trademarks are the property of their
respective owners.

© 2025 Renesas Electronics Corporation. All rights reserved.

UM-WI-046 Rev.2.6 RENESAS Page 370
Oct 3, 2025 CFR0012

https://www.renesas.com/
http://www.renesas.com/contact-us/

	Contents
	Figures
	Tables
	1. Terms and Definitions
	2. References
	3. Introduction
	3.1 Overview
	3.2 Development Environment
	3.3 System and Application Startup
	3.4 System Applications
	3.5 User Applications
	3.6 Sample Applications
	3.6.1 Wi-Fi Configuration for Sample Application

	3.7 RED Security
	3.7.1 RED Security Support
	3.7.2 Secure AT Channel

	3.8 Build SDK
	3.8.1 Create RTOS Image for fcCSP
	3.8.2 Build a Project Using Command Line

	4. Wake-Up Source
	5. NVRAM
	5.1 API

	6. TLS Certificate
	6.1 Certificate for MQTT Client
	6.2 Certificate for WPA Enterprise
	6.3 Certificate for HTTPs Client/Server or OTA
	6.4 Certificate for TLS Client/Server
	6.5 APIs for Accessing Prefixed Area of SFlash
	6.6 Store Certificates to Flash Using Console Command
	6.6.1 Console Command for Certificate
	6.6.2 Store Certificates
	6.6.3 Root CA, Client Cert, and Private Key
	6.6.3.1 Root CA
	6.6.3.2 Client Cert
	6.6.3.3 Private Key

	7. Hardware Accelerators
	7.1 Set SRAM to Zero
	7.1.1 API
	7.1.2 Sample Code

	7.2 CRC Calculation
	7.2.1 API
	7.2.2 Sample Code

	7.3 Pseudo Random Number Generator (PRNG)
	7.3.1 API
	7.3.2 Sample Code

	7.4 Memory Copy Using DMA
	7.4.1 API
	7.4.2 Sample Code

	8. Watchdog Service
	8.1 Overview
	8.2 Concept
	8.3 API
	8.4 Sample Code

	9. Wi-Fi Interface Configuration
	9.1 API
	9.1.1 Integer Type Parameters
	9.1.2 String Type Parameters
	9.1.3 Sample Code

	9.2 Soft AP Configuration by Factory Reset
	9.2.1 S2 – FTR_RST Button Behavior
	9.2.2 Factory Default AP SSID, AP Password, and AT_KEY
	9.2.3 Configure Data Structure
	9.2.4 Configure Soft AP Interface

	9.3 Soft AP Provisioning Protocol

	10. Wi-Fi Functionality
	10.1 Simple Roaming
	10.1.1 Using Simple Roaming

	10.2 Scanning and Example
	10.2.1 Active Scanning
	10.2.2 Passive-Scanning
	10.2.3 Get Scan Result Example

	11. Network Examples: Socket Communication
	11.1 Test Environment
	11.1.1 DA16200
	11.1.2 Peer Application
	11.1.2.1 Example of Peer Application

	11.2 TCP Client
	11.2.1 How to Run
	11.2.2 How It Works
	11.2.3 Sample Code
	11.2.3.1 Registration
	11.2.3.2 Data Transmission
	11.2.3.3 Disconnection

	11.3 TCP Client in DPM
	11.3.1 How to Run
	11.3.2 How It Works
	11.3.3 Sample Code
	11.3.3.1 Registration
	11.3.3.2 Data Transmission

	11.4 TCP Server
	11.4.1 How to Run
	11.4.2 How It Works
	11.4.3 Sample Code
	11.4.3.1 Connection
	11.4.3.2 Data Transmission
	11.4.3.3 Disconnection

	11.5 TCP Server in DPM
	11.5.1 How to Run
	11.5.2 How It Works
	11.5.3 Sample Code
	11.5.3.1 Registration
	11.5.3.2 Data Transmission

	11.6 TCP Client with KeepAlive in DPM
	11.6.1 How to Run
	11.6.2 Sample Code
	11.6.2.1 Registration
	11.6.2.2 Data Transmission

	11.6.3 How It Works

	11.7 UDP Socket
	11.7.1 How to Run
	11.7.2 How It Works
	11.7.3 Sample Code
	11.7.3.1 Initialization
	11.7.3.2 Data Transmission

	11.8 UDP Server in DPM
	11.8.1 How to Run
	11.8.2 How It Works
	11.8.3 Sample Code
	11.8.3.1 Registration
	11.8.3.2 Data Transmission

	11.9 UDP Client in DPM
	11.9.1 How to Run
	11.9.2 How It Works
	11.9.3 Sample Code
	11.9.3.1 Registration
	11.9.3.2 Data Transmission

	12. Network Examples: Security
	12.1 Peer Application
	12.1.1 Peer Application Examples
	12.1.1.1 TLS Server
	12.1.1.2 TLS Client
	12.1.1.3 DTLS Server
	12.1.1.4 DTLS Client

	12.2 TLS Server
	12.2.1 How to Run
	12.2.2 How It Works
	12.2.3 Sample Code
	12.2.3.1 Initialization
	12.2.3.2 TLS Handshake
	12.2.3.3 Data Transmission

	12.3 TLS Server in DPM
	12.3.1 How to Run
	12.3.2 How It Works
	12.3.3 Sample Code
	12.3.3.1 Registration
	12.3.3.2 TLS Setup
	12.3.3.3 Data Transmission

	12.4 TLS Client
	12.4.1 How to Run
	12.4.2 How It Works
	12.4.3 Sample Code
	12.4.3.1 Registration
	12.4.3.2 TLS Handshake
	12.4.3.3 Data Transmission

	12.5 TLS Client in DPM
	12.5.1 How to Run
	12.5.2 How It Works
	12.5.3 Sample Code
	12.5.3.1 Registration
	12.5.3.2 TLS Setup
	12.5.3.3 Data Transmission

	12.6 DTLS Server
	12.6.1 How to Run
	12.6.2 How It Works
	12.6.3 Sample Code
	12.6.3.1 Initialization
	12.6.3.2 DTLS Handshake
	12.6.3.3 Data Transmission

	12.7 DTLS Server in DPM
	12.7.1 How to Run
	12.7.2 How It Works
	12.7.3 Sample Code
	12.7.3.1 Registration
	12.7.3.2 DTLS Setup
	12.7.3.3 Data Transmission

	12.8 DTLS Client
	12.8.1 How to Run
	12.8.2 How It Works
	12.8.3 Sample Code
	12.8.3.1 Initialization
	12.8.3.2 DTLS Handshake
	12.8.3.3 Data Transmission

	12.9 DTLS Client in DPM
	12.9.1 How to Run
	12.9.2 How It Works
	12.9.3 Sample Code
	12.9.3.1 Registration
	12.9.3.2 DTLS Setup
	12.9.3.3 Data Transmission

	13. Network Examples: MQTT
	13.1 Overview
	13.1.1 SDK Build

	13.2 API
	13.2.1 APIs for Operating MQTT
	13.2.2 APIs for Configure MQTT Messaging

	13.3 MQTT Connection and Flow Chart
	13.4 Test
	13.4.1 Test Environment
	13.4.2 Setup
	13.4.3 Certificate
	13.4.4 Publisher
	13.4.4.1 QoS=0 Message
	13.4.4.2 QoS=1/2 Message
	13.4.4.3 MQTT over TLS
	13.4.4.4 Username and Password

	13.4.5 Subscriber
	13.4.5.1 Setup
	13.4.5.2 MQTT over TLS
	13.4.5.3 Username and Password
	13.4.5.4 WILL

	13.4.6 MQTT Pub/Sub Test with DPM and TLS
	13.4.6.1 MQTT Reconnection Scheme
	13.4.6.1.1 Non-DPM Mode
	13.4.6.1.2 DPM Mode

	13.4.6.2 DPM Power Profile

	13.4.7 MQTT CleanSession=0 Test Guide
	13.4.7.1 CleanSession=0 Mode
	13.4.7.1.1 CleanSession and QoS Matrix Table for PUBLISH Rx
	13.4.7.1.2 CleanSession and QoS Matrix Table for PUBLISH Tx

	13.4.7.2 Test Steps
	13.4.7.2.1 How to connect with CleanSession=0
	13.4.7.2.2 How to restart CleanSession=0 test
	13.4.7.2.3 PUBLISH RX Test
	13.4.7.2.4 PUBLISH Tx Test

	13.4.8 Reset

	13.5 Sample Code
	13.5.1 Test Environment
	13.5.2 Setup
	13.5.3 How to Test
	13.5.3.1 Test with Non-DPM Mode
	13.5.3.1.1 MQTT Publish
	13.5.3.1.2 Receive MQTT Message
	13.5.3.1.3 Receive and Reply MQTT Message
	13.5.3.1.4 MQTT Unsubscribe

	13.5.3.2 Test with DPM Mode
	13.5.3.2.1 MQTT Publish
	13.5.3.2.2 Receive MQTT Message
	13.5.3.2.3 Receive and Reply MQTT Message
	13.5.3.2.4 MQTT Unsubscribe

	13.5.4 Code Walkthrough

	14. Network Examples: Protocols/Applications
	14.1 CoAP Client
	14.1.1 Peer Application
	14.1.2 How to Run
	14.1.3 CoAP Client Initialization
	14.1.4 CoAP Client Deinitialization
	14.1.5 CoAP Client Request and Response
	14.1.5.1 CoAP URI and Proxy URI
	14.1.5.2 GET Method
	14.1.5.3 POST Method
	14.1.5.4 PUT Method
	14.1.5.5 DELETE Method
	14.1.5.6 CoAP Ping
	14.1.5.7 CoAP Response

	14.1.6 CoAP Observe
	14.1.6.1 Registration
	14.1.6.2 Deregistration

	14.2 DNS Query
	14.2.1 How to Run
	14.2.2 DNS Query Initialization
	14.2.3 Get Single IPv4 Address

	14.3 SNTP and Get Current Time
	14.3.1 How to Run
	14.3.2 Sample Code

	14.4 SNTP and Get Current Time in DPM
	14.4.1 How to Run
	14.4.2 Sample Code

	14.5 HTTP Client
	14.5.1 How to Run
	14.5.2 Sample Code

	14.6 HTTP Client in DPM
	14.6.1 How to Run
	14.6.2 Sample Code

	14.7 HTTP Server
	14.7.1 How to Run
	14.7.2 Sample Code

	14.8 WebSocket Client
	14.8.1 How to Run
	14.8.2 Sample Code

	15. Network Examples: OTA
	15.1 Overview
	15.2 SFLASH Memory Area
	15.3 HTTP Protocol
	15.4 OTA Firmware Update
	15.4.1 Header
	15.4.2 Version
	15.4.3 Result Code
	15.4.4 DOWNLOAD
	15.4.5 RENEW
	15.4.5.1 Boot Index

	15.5 API
	15.5.1 Type
	15.5.2 Structure
	15.5.3 APIs
	15.5.4 Example
	15.5.4.1 Test Command
	15.5.4.2 Sample Code

	15.6 OTA Firmware Update – Extensions
	15.6.1 Certificates
	15.6.2 MCU Firmware
	15.6.2.1 CRC-32 Calculation

	15.7 Bluetooth® LE Firmware Update OTA
	15.8 OTA Test Server

	16. Crypto Examples
	16.1 Crypto API
	16.1.1 How to Run
	16.1.2 How to Enable Cryptographic Algorithm
	16.1.3 Cryptographic Algorithms – AES
	16.1.3.1 Application Initialization
	16.1.3.2 AES-CBC-128, 192, and 256
	16.1.3.3 AES-CFB128-128, 192, and 256
	16.1.3.4 AES-ECB-128, 192, and 256
	16.1.3.5 AES-CTR-128
	16.1.3.6 AES-CCM-128, 192, and 256
	16.1.3.7 AES-GCM-128, 192, and 256
	16.1.3.8 AES-OFB-128, 192, and 256

	16.1.4 Cryptographic Algorithms – DES
	16.1.4.1 Application Initialization
	16.1.4.2 DES-CBC-56, DES3-CBC-112, and 168

	16.1.5 Cryptographic Algorithms – HASH and HMAC
	16.1.5.1 Application Initialization
	16.1.5.2 SHA-1 Hash
	16.1.5.3 SHA-224 Hash
	16.1.5.4 SHA-256 Hash
	16.1.5.5 SHA-384 Hash
	16.1.5.6 SHA-512 Hash
	16.1.5.7 MD5 Hash
	16.1.5.8 HASH and HMAC with Generic Message-Digest Wrapper
	16.1.5.8.1 Supported Message-digest Functions
	16.1.5.8.2 How to Calculate HASH Using Single Text String
	16.1.5.8.3 How to Calculate HASH Using Multiple Text Strings
	16.1.5.8.4 How to Calculate HMAC and HASH

	16.1.6 Cryptographic Algorithms – DRBG
	16.1.6.1 Application Initialization
	16.1.6.2 CTR_DRBG with Prediction Resistance
	16.1.6.3 CTR_DRBG Without Prediction Resistance
	16.1.6.4 HMAC_DRBG with Prediction Resistance
	16.1.6.5 HMAC_DRBG Without Prediction Resistance

	16.1.7 Cryptographic Algorithms – ECDSA
	16.1.7.1 Application Initialization
	16.1.7.2 Generate ECDSA Key Pair and Verifies ECDSA Signature

	16.1.8 Cryptographic Algorithms – Diffie-Hellman Key Exchange
	16.1.8.1 Application Initialization
	16.1.8.2 How Diffie-Hellman Works
	16.1.8.2.1 How to Load Diffie-Hellman Parameters
	16.1.8.2.2 How Diffie-Hellman Works

	16.1.9 Cryptographic Algorithms – RSA PKCS#1
	16.1.9.1 Application Initialization
	16.1.9.2 How RSA PKCS#1 Works

	16.1.10 Cryptographic Algorithms – ECDH
	16.1.10.1 Application Initialization
	16.1.10.2 How ECDH Key Exchange Works

	16.1.11 Cryptographic Algorithms – KDF
	16.1.11.1 Application Initialization
	16.1.11.2 How KDF Works

	16.1.12 Cryptographic Algorithms – Public Key Abstraction Layer
	16.1.12.1 Application Initialization
	16.1.12.2 How to Use Public Key Abstraction Layer

	16.1.13 Cryptographic Algorithms – Generic Cipher Wrapper
	16.1.13.1 Application Initialization
	16.1.13.2 How Generic Cipher Wrapper is Used

	17. Peripheral and System Examples
	17.1 UART
	17.1.1 Introduction
	17.1.2 API
	17.1.3 How to Run
	17.1.4 Sample Code
	17.1.4.1 Application Initialization
	17.1.4.2 Data Read/Write

	17.2 GPIO
	17.2.1 Introduction
	17.2.2 API
	17.2.3 How to Run
	17.2.4 Sample Code

	17.3 GPIO Retention
	17.3.1 How to Run
	17.3.2 Sample Code

	17.4 I2C
	17.4.1 Introduction
	17.4.1.1 I2C Master
	17.4.1.2 I2C Slave

	17.4.2 API
	17.4.3 How to Run
	17.4.3.1 Test Procedure
	17.4.3.2 Sample Code for Using I2C

	17.5 I2S
	17.5.1 How to Run
	17.5.2 User Task
	17.5.3 Sample Code

	17.6 PWM
	17.6.1 Introduction
	17.6.2 API
	17.6.3 How to Run
	17.6.3.1 Test Procedure
	17.6.3.2 Sample Code

	17.7 ADC
	17.7.1 Introduction
	17.7.2 API
	17.7.3 Interrupt Description
	17.7.4 How to Run
	17.7.5 Sample Code – SAMPLE_READ
	17.7.5.1 Test Procedure
	17.7.5.2 Sample Code for Reading ADC

	17.7.6 Sample Code – ADC_SAMPLE_INTERRUPT
	17.7.6.1 Test Procedure
	17.7.6.2 Sample Code for ADC Interrupt

	17.7.7 Sample Code – ADC_SAMPLE_DPM
	17.7.7.1 Test Procedure
	17.7.7.2 Sample Code for Wake Up DPM

	17.8 SPI
	17.8.1 Introduction
	17.8.1.1 SPI Master
	17.8.1.2 SPI Slave

	17.8.2 API
	17.8.3 How to Run
	17.8.4 Sample Code

	17.9 SDIO
	17.9.1 Introduction
	17.9.1.1 SDIO Master
	17.9.1.2 SDIO Slave

	17.9.2 API
	17.9.3 How to Run
	17.9.4 Sample Code

	17.10 SD/eMMC
	17.10.1 Introduction
	17.10.2 API
	17.10.3 How to Run
	17.10.4 Sample Code

	17.11 User SFLASH Read/Write Example
	17.11.1 How to Run
	17.11.2 User Task
	17.11.3 Sample Code
	17.11.3.1 Application Initialization
	17.11.3.2 SFlash Read and Write

	17.12 OTP
	17.12.1 Introduction
	17.12.2 API

	17.13 Bluetooth LE Coexistence
	17.13.1 Pin Configuration
	17.13.2 Pin Multiplex
	17.13.3 SDK Feature Definition
	17.13.4 API

	17.14 RTC Timer in DPM
	17.14.1 How to Run
	17.14.2 Timer Creation: Sleep Mode 2
	17.14.3 Timer Creation: Sleep Mode 3

	18. DA16600 Example Applications
	18.1 Source Structure and Common APIs
	18.1.1 DA16600 Bluetooth Source Structure
	18.1.2 Application APIs and Console Commands

	18.2 Environment Setup
	18.2.1 SFlash Memory Map
	18.2.2 Build the DA16600 SDK
	18.2.2.1 Gas Leak Detection Sensor Example Feature
	18.2.2.1.1 How to Add Security Feature

	18.2.2.2 TCP Client in DPM Example Feature
	18.2.2.3 Peripherals in DA14531 Driver Example Feature
	18.2.2.4 IoT Sensor Gateway Example Feature
	18.2.2.5 Build SDK in e2 studio IDE

	18.2.3 Build DA14531 SDK
	18.2.3.1 DA14531 Peripheral Role Project
	18.2.3.2 DA14531 Central Role Project
	18.2.3.3 Build the DA14531 projects with Keil
	18.2.3.3.1 Install Keil
	18.2.3.3.2 Build Project
	18.2.3.3.3 Peripheral Role Image
	18.2.3.3.4 Central Role Image

	18.2.3.4 Build the DA14531 projects with e2 studio
	18.2.3.4.1 Install e2 studio
	18.2.3.4.2 Build Project

	18.2.4 Firmware Image Update
	18.2.4.1 Firmware Update with *.ttl File
	18.2.4.2 Firmware Update without .ttl File

	18.2.5 Run DA16600 with JTAG
	18.2.5.1 Run DA16200 with JTAG
	18.2.5.2 Run DA14531 with JTAG

	18.2.6 Test Environment Setup
	18.2.6.1 Wi-Fi Access Point
	18.2.6.2 Bluetooth LE Peers
	18.2.6.2.1 Bluetooth LE Mobile App
	18.2.6.2.2 Bluetooth LE Sensors

	18.2.6.3 Laptop to Control Bluetooth LE Peers and DA16600 Boards

	18.3 Wi-Fi Provisioning Over Bluetooth LE
	18.3.1 Description and Requirements
	18.3.2 Test Procedure
	18.3.3 GTL Workflow
	18.3.4 Wi-Fi Service GATT Database Design
	18.3.5 Wi-Fi Service Application Protocol

	18.4 Bluetooth LE Firmware OTA Download Through Wi-Fi
	18.4.1 Description and Requirements
	18.4.2 Test Procedure
	18.4.3 Working Flow

	18.5 Gas Leak Detection Sensor Example (Bluetooth LE Peripheral)
	18.5.1 Description and Requirements
	18.5.2 Test Procedure
	18.5.3 Workflow

	18.6 TCP Client in DPM Example (Bluetooth LE Peripheral)
	18.6.1 Description and Requirements
	18.6.2 Test Procedure
	18.6.3 Workflow

	18.7 DA14531 Peripheral Driver Example (Bluetooth LE Peripheral)
	18.7.1 Description and Requirements
	18.7.2 Test Environment Setup
	18.7.2.1 DA16600 EVB Setup
	18.7.2.1.1 Configuration_1
	18.7.2.1.2 Configuration_2

	18.7.2.2 Tera Term Setup
	18.7.2.3 DA14531 Peripheral Driver Samples

	18.7.3 Test Procedure
	18.7.3.1 peri blinky
	18.7.3.2 peri systick
	18.7.3.3 peri timer0_gen
	18.7.3.4 peri timer0_buz
	18.7.3.5 peri timer2_pwm
	18.7.3.6 peri batt_lvl
	18.7.3.7 peri i2c_eeprom
	18.7.3.8 peri spi_flash
	18.7.3.9 peri gpio

	18.7.4 Workflow
	18.7.5 GPIO PINs in DA14531

	18.8 IoT Sensor Gateway Example (Bluetooth LE Central)
	18.8.1 Description and Requirements
	18.8.2 Test Setup and Procedure
	18.8.3 Workflow
	18.8.4 GTL Message Flow
	18.8.4.1 Initialization
	18.8.4.2 Provisioning Mode
	18.8.4.3 Scan and Connect to Sensor
	18.8.4.4 Enable Sensor Posting
	18.8.4.5 Disable Sensor Posting

	Appendix A License Information
	A.1 Mosquitto 1.4.14 License
	A.2 MiniUPnPc License

	Appendix B TX Power Table Edit
	B.1 Tune TX Power
	B.2 Apply Tuned TX Power to Main Image

	Appendix C Tips
	C.1 Find/Optimize Stack Size for Applications
	C.2 How to Make/Write User Data to User Area of Flash Externally

	Appendix D Country Code and TX Power
	D.1 Country Code and Channels
	D.2 Programming

	Appendix E How to Use J-Link Debugger
	Appendix F Create RTOS Image for fcCSP Using SDK v3.2.7.1 or Earlier
	Appendix G Bluetooth LE Customization
	G.1 How to Change Bluetooth LE Device Name
	G.2 How to Change Bluetooth LE ADV Interval
	G.3 How to Configure Bluetooth LE Hardware Reset

	Appendix H QSPI Clock Selection
	Appendix I Power Down Step
	19. Revision History

