To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

-
»
@
ﬁ\
»
<
)
>
-
o

W
N

LENESAS

SH-4
Software Manual

Renesas 32-Bit RISC
Microcomputer
SuperH™ RISC engine Family

Renesas Electronics Rev.6.00 2006.09

Unknown
The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 6.00 Sep 13, 2006 page ii of xiv

RENESAS

Preface

The SH-4 has been developed as the top-end model in the SuperH™* RISC engine family,
featuring a 128-bit graphic engine for multimedia applications and 360 MIPS performance.

The SH-4 CPU has a RISC type instruction set, and features upward-compatibility at the
instruction set level with SH-1, SH-2, SH-3 microcomputers.

In addition to single- and double-precision floating-point operation capability, the on-chip FPU
has a 128-bit graphic engine that enables 32-bit floating-point data to be processed 128 bits at a
time. It also supports 4 X 4 array operations and inner product operations.

A superscalar architecture is employed that enables simultaneous execution of two instructions
(including FPU instructions), providing performance of up to twice that of conventional
architectures at the same frequency.

This software manual gives details of the SH-4 instructions. For hardware details, refer to the
relevant hardware manual.

Related Manual:
SH7750, SH7750S, SH7750R Group Hardware Manual
SH7751, SH7751R Group Hardware Manual

Please consult your Renesas sales representative for information on development environment
systems.

Note: * SuperH™ is a trademark of Renesas Technology Corp.

Rev. 6.00 Sep 13, 2006 page iii of xx

RENESAS

Rev. 6.00 Sep 13, 2006 page iv of xx

RENESAS

Main Revisions for This Edition

ltem Page Revision (See Manual for Details)

All — « Notification of change in company name amended
(Before) Hitachi, Ltd. — (After) Renesas Technology Corp.

Preface iii Description amended

... at the instruction set level with SH-1, SH-2, SH-3
microcomputers.

Related Manual:
SH7750, SH7750S, SH7750R Group Hardware Manual
SH7751, SH7751R Group Hardware Manual

1.1 SH-4 Features 1

Table 1.1 SH-4
Features

Description amended

... featuring instruction set upward-compatibility with SH-1, SH-2,
and SH-3 microcomputers. ...

Table amended

¢ RISC-type instruction set (upward-compatible with SH-1, SH-
2, and SH-3)

2.6 Processor States 18
Table 2.6 Reset State

Table amended
SH7750/SH7750S/SH7750R
SH7751/SH7751R, SH7760

Figure 2.6 Processor
State Transitions
(SH7750/SH7750S/SH
7750R)

Description amended
Bus-Released State:

SH7750, SH7750S, and SH7750R state transitions are shown in
figure 2.6, and SH7751, SH7751R, and SH7760 state transitions
in figure 2.7.

Figure title amended

Figure 2.7 Processor 20
State Transitions
(SH7751/SH7751R,
SH7760)

Figure title amended

Rev. 6.00 Sep 13, 2006 page v of xiv

RENESAS

ltem Page

Revision (See Manual for Details)

3.2 Register 26
Descriptions

Description added
1 Page table entry high register (PTEH):

After updating the ASID field of PTEH register, a branch
instruction to the PO, P3, or UO area, where the new ASID value
will be used, should be located at least 6 instructions after the
PTEH update instruction.

Description amended
3. Page table entry assistance register (PTEA):
In the SH7750 Series, except the SH7750, ...

In the SH7750 series access to ...

3.3.1 Physical 29
Memory Space

Description amended
In the SH7750S, SH7750R, SH7751, and SH7751R, ...

3.3.7 Address Space 35
Identifier (ASID)

Note added

Notes: 1. In single virtual memory mode of the SH7751 Series,
entries with the same virtual page number (VPN) but different
ASIDs cannot be set in the TLB simultaneously.

2. In single virtual memory mode of the SH7751, if the UTLB
contains address translation information including an ITLB miss
address with a different ASID and unshared state (SH bit is 0),
SH7751 may hang up or an instruction TLB multiple hit exception
may occur during hardware ITLB miss handling (see section
3.5.4, Hardware ITLB Miss Handling). To avoid this, when
switching the ASID values (PTEH and ASID) of the current
processing, purge the UTLB, or manage the changes of the
program instruction addresses in user mode so that no instruction
is executed in an address area (including overrun prefetch of
instruction) that is registered in the UTLB with a different ASID
and unshared address translation information. Note that this
restriction does not apply to the SH7750, SH7750S, SH7750R,
SH7751R, and SH7760.

4.1.1 Features 59

Table 4.1 Cache
Features (SH7750,
SH7750S, SH7751)

Description amended

... The features of these caches are summarized in table 4.1 and
4.2.

After a power-on reset or manual reset, the initial value of the
EMODE bit is 0. The SH-4 supports two 32-byte store queues
(SQs) for performing high-speed writes to external memory. SQ
features are shown in table 4.3.

Table title amended

Rev. 6.00 Sep 13, 2006 page vi of xiv

RENESAS

ltem Page

Revision (See Manual for Details)

4.1.1 Features 59

Table 4.2 Cache
Features (SH7750R,
SH7751R, SH7760)

Table added

Table 4.3 Store 60 Table title added
Queues Features

4.2 Register 61 Figure replaced
Descriptions

Figure 4.1 Cache and
Store Queue Control
Registers

Description amended

(1) Cache Control Register (CCR): CCR contains the following
bits:

EMODE:Double-sized cache mode (Available for SH7750R,
SH7751R, and SH7760; reserved bit for SH7750, SH7750S, and
SH7751)

11X: IC index enable

ICI: IC invalidation

ICE: IC enable

OIX: OC index enable
ORA: OC RAM enable
OCI: OC invalidation

CB: Copy-back enable
WT: Write-through enable
OCE: OC enable

Longword access to CCR can be performed from H'FF00 001C in
the P4 area and H'1F00 001C in area 7. The CCR bits are used
for the cache settings described below. Consequently, CCR
modifications must only be made by a program in the non-cached
P2 area. After CCR is updated, an instruction that performs data
access to the PO, P1, P3, or UO area should be located at least
four instructions after the CCR update instruction. Also, a branch
instruction to the PO, P1, P3, or U0 area should be located at
least eight instructions after the CCR update instruction.

Rev. 6.00 Sep 13, 2006 page vii of xiv

RENESAS

ltem Page Revision (See Manual for Details)
4.2 Register 62 EMODE: Double-sized cache mode bit
Descriptions

Figure 4.1 Cache and
Store Queue Control
Registers

In the SH7750R, SH7751R, and SH7760, this bit indicates
whether the double-sized cache mode is used or not. This bit
is reserved in the SH7750, SH7750S, and SH7751. The
EMODE bit must not be written to while the cache is being
used.

0: SH7750/SH7750S/SH7751-compatible mode™ (intial value)
1: Double-sized cache mode

Note: * No compatibility for RAM mode in OC index mode
and address assignment in RAM mode.

IIX: IC index enable bit

0: Address bits [12:5] used for IC entry selection

1: Address bits [25] and [11:5] used for IC entry selection
ICI: IC invalidation bit

When 1 is written to this bit, the V bits of all IC entries are
cleared to 0. This bit always returns O when read.

ICE: IC enable bit

Indicates whether or not the IC is to be used. When address
translation is performed, the IC cannot be used unless the C
bit in the page management information is also 1.

0: IC not used

1:1C used

OIX: OC index enable bit*

0: Address bits [13:5] used for OC entry selection

1: Address bits [25] and [12:5] used for OC entry selection

Note: * When the ORA bit is 1 in the SH7750R, the OIX bit
should be cleared to 0.

ORA: OC RAM enable bit*

When the OC is enabled (OCE = 1), the ORA bit specifies
whether the 8 kbytes from entry 128 to entry 255 and from
entry 384 to entry 511 of the OC are to be used as RAM.
When the OC is not enabled (OCE = 0), the ORA bit should
be cleared to 0.

0: 16 kbytes used as cache

1: 8 kbytes used as cache, and 8 kbytes as RAM

Note: * When the OIX bit in the SH7750R is 1, the ORA bit
should be cleared to 0.

Rev. 6.00 Sep 13, 2006 page viii of xiv

RENESAS

ltem Page

Revision (See Manual for Details)

4.3 Operand Cache 64
(0C)

Description added

Hereafter, this section explains the SH7750, SH7750S and
SH7751. For other SH-4 products, refer to the corresponding
products’ hardware manual.

4.5 Memory-Mapped 73
Cache Configuration

Description amended
In the SH7750 and SH7750S, ...

4.6.5 SQ Usage 81, 82
Notes

Newly added

5.2 Reqgister 84
Descriptions

Figure 5.1 Register
Bit Configurations

Description amended

2. The interrupt event register (INTEVT) resides at P4 address
H'FF00 0028, and contains a 12-bit (SH7750, SH750S,
SH7750R) or 14-bit (SH7751, SH7751R) exception code. ...

EXPEVT (SH7750/SH7750S/SH7750R, SH7751/SH7751R,
SH7760),

INTEVT (SH7750/SH7750S/SH7750R)

5.3.1 Exception 85
Handling Flow

Description amended

6.The exception code is written to bits 11-0 of the exception
event register (EXPEVT): SH7750, SH7750S, SH7750R, bits 13—
0 of the exception event register (EXPEVT): SH7751, SH7751R,
SH7760 or interrupt event register (INTEVT).

5.4 Exception Types 87, 88
and Priorities

Table 5.2 Exceptions

Table amended

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Peripheral TMUO TUNIO 4 *2 (V BR) H'600 H'400
module i1 TUNIL H420
interrupt B
(module/ TMU2 TUNI2 H'440
source) TICPI2 H'460
TMU3 TUNI3 H'BOO
TMU4 TUNI4 H'B80
PCIC| PCISERR HAOD
PCIERR H'AEOQ
PCIPWDWN H'ACO

Module/source: Example of the SH7751/SH7751R. For details,
refer to the corresponding products’ hardware manual.

Note 3 deleted

5.6.1 Resets 92

Description amended

0 SCK2 pin high level and RESET pin low level
(SH7750/SH7750S/SH7750R)/RESET pin low level
(SH7751/SH7751R)

93

In the SH7750, SH7750S and SH7750R, if the SCK2 pin is ...
In the SH7751, SH7750R and SH7760, if the RESET pinis ...

Rev. 6.00 Sep 13, 2006 page ix of xiv

RENESAS

ltem Page

Revision (See Manual for Details)

5.6.1 Resets 94

Description amended

O SCK2 pin low level and RESET pin low level
(SH7750/SH7750S/SH7750R)/MRESET pin low level and
RESET pin high level (SH7751/SH7751R, SH7760)

Table 5.3 Typesof 95
Reset

Table title amended

(SH7750/SH7750S/SH
7750R)
Table 5.4 Types of
Reset
(SH7751/SH7751R,
SH7760)
5.6.3 Interrupts 115 Description amended
(3) Peripheral Module Interrupts (Example of SH7751/SH7751R)
For details, refer to the corresponding products’ hardware
manual.
» Source: The interrupt mask bit setting in SR is smaller than
the peripheral module (H-UDI, GPIO, DMAC, PCIC , TMU,
RTC, SCI, SCIF, WDT, or REF) interrupt level, and the BL bit
in SR is 0 (accepted at instruction boundary).
6.6.1 Geometric 129 Description amended

Operation Instructions

In future version of SuperH™ RISC engine family, the above
error is guaranteed, but the same result as SH-4 is not
guaranteed.

6.7 Usage Notes 131, 132

6.7.1 Notice about
FPU Instructions
Issues

6.7.2 Notice about the 132
Overflow Flag by FIPR

and FTRYV Instruction
Command

6.7.3 Notice about the 133
Sign of the Operation
Result by FIPR and

FTRYV Instruction
Command

6.7.4 Notice about 133, 134
Double Precision

FADD and FSUB

Instructions for SH-4

Newly added

Rev. 6.00 Sep 13, 2006 page x of xiv

RENESAS

ltem Page Revision (See Manual for Details)
6.7.5 FPU Double 135to0 Newly added

Precision 142

7.4 Notes on Use of 161 to

TRAPA 163

Instruction/SLEEP

Instruction/Undefined
Instruction (H'FFFD)

Section 8 Pipelining 165

Description amended

... For details, refer to the corresponding products’ hardware
manual.

8.3 Execution Cycles 178
and Pipeline Stalling

Description added

There is the possibility that idle cycles are added to the number
of cycles which is set by Bus State Controller (BSC) for the
external memory, because of the data transmission between
different clock frequency internal Buses.

Section 9 Instruction 206
Descriptions

Note amended

Note: SuperH™ RISC engine family cross-assembler version 1.0
does not support conditional assembler functions.

Rev. 6.00 Sep 13, 2006 page xi of xiv

RENESAS

Rev. 6.00 Sep 13, 2006 page xii of xiv

RENESAS

Contents

SECLION 1 OVEIVIEW ..ot 1
L1 SHA4 FRATUIES. ..coueiiiiiieiiieiieeitcieete ettt sttt ettt sttt 1
Section 2 Programming Model...........cc.coooioiiiiiiininieieeee e 5
2.1 Data FOTMALS .c...eeiiiiiiiieiieeie ettt ettt sttt ettt et s 5
2.2 Register CONfIGUIAtIONcooiiiiiiiiieiieie ettt 6
2.2.1 Privileged Mode and Banksccoecveeiiriirienienienieic et 6
2.2.2 General REGISTETScevuieiieiieiieieeieeeeetteste et eie e see st e st e sseesseenseenseensessnessnenns 9
2.2.3 Floating-Point REZISEIS........ccvevvieieriieriieieeieeie sttt e st ese e seaeseaeseees 11
224 Control REGISTEIS. ...cueiuiiiuiiiieiiieitiett ettt ettt ettt se ettt et e 13
2.2.5 SyStem REGISTETSoiuiitiiiiiiieit ettt e 14
2.3 Memory-Mapped REGISIEISccueeuiiiieiiietieiiieitiesteee ettt ettt 16
2.4 Data FOrmat in REGISTETSc.eccviiieiiieriieiieii ettt ettt ete e steesseesseeaessnesneesseeseenseans 17
2.5 Data FOrmats in MEIMOTYccueecvirierieriiesiietieieeetesteesseesseesessessesssesseesseessesssesssesssenseens 17
2.6 PTOCESSOT STALESeouvieiiiiiiiiiiiiieiienie ettt ettt ettt ettt sae bt et et saeesaeesbeenne e 18
2.7 ProOCESSOT MOGESeouiieiiieiieeie ettt ettt ettt et a e b ettt eete s s ees 20
Section 3 Memory Management Unit (MMU)............coooivieicicivieeeecee e 21
31 OVEIVIEW ettt h ettt s e h st eb ettt s bbbt e bt e st et et saeebesbeeanenaens 21
BuLi] FRATUIES .coutiiiiiiiitetecteet ettt ettt ettt et st st s ae e een 21
3.1.2 Role 0f the MMU ...c.oiuiiiiiiiiiiiiiiereeeeteeee ettt 21
3.1.3 Register Configurationcceieerierieiiiiieeiertiesieee ettt eaeeneeens 24
TN B O 15 o) 1 USSP 24
3.2 ReEgIStEr DESCIIPLIONSeiiieiieiieiieiie ettt ettt ettt ettt ettt e b e bt e e e ee e eee 25
3.3 IMEIMOTY SPACE ..eeevieiiieiiiieeiieesite et te st e sttt e st e sttt e sabeesateesabeesabeesabeesateesaseensteesaseensseesaneennees 28
3.3.1 Physical MemOTY SPACE.....c.eecirierieriieriieniieieeteeeresteesieesseesseeaesseesseesseesseensenssens 28
3.3.2 EXternal MemOTY SPACE.....c.cecvireuerierieniieniieieeiieeseesteesteesesssesssessnesssesssesseensenssens 31
3.3.3 Virtual MemOTY SPACEeeuieuieiiieiiietieie et eie ettt ettt st sttt e seeesaeeneeens 32
3.34 On-Chip RAM SPACE ...c.ueiitiitieiieieeie ettt ettt s s sae e ens 34
3.3.5 Address Translationcoceeiieiieiiiieieee e e 34
3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode.................... 35
3.3.7 Address Space Identifier (ASID)couveciiiierieriieiieieeie et 35
3.4 TLB FUNCHONS ...eetitiitiiiteiieieteiest ettt ettt ettt st ettt be st ebt et aenbenaen 36
3.4.1 Unified TLB (UTLB) Configuration............cccceeriererienieiieniesieenieeee e 36
3.4.2 Instruction TLB (ITLB) Configurationcccccoeeerienieneinienie e 40
3.43 Address Translation Method...........cooiiiiiiiiiiniiee e 40
3.5 MMU FUNCHOMNS ...ttt ettt ettt ettt ettt bt sbeeateseenenaen 43
3.5.1 MMU Hardware Managementcceeevereerieenreerreesreneesneseesseesseessessessnensaens 43

Rev. 6.00 Sep 13, 2006 page xiii of xx

RENESAS

3.5.2 MMU Software Management............ceeeverevereerirerseenreecressesseesseessesssessseseesseensenns 43

3.5.3 MMU Instruction (LDTLB)cccieiiiiiiiiieieeieriieieeieeie et 43
3.54 Hardware ITLB Miss Handling............cccoooiriiniiniinieieee e 44
3.5.5 Avoiding Synonym Problems..........ccceiiiiiiiiiiieieecee e 45
3.6 MMU EXCEPIIONS ...ttt ettt ettt et ettt et st sae e st e bt e st es e es e sbeenbe e beemteeneesaeesee 46
3.6.1 Instruction TLB Multiple Hit EXCEPtiON.......cccevveriieriiriieiierieieeieeie e 46
3.6.2 Instruction TLB MiSS EXCEPLONcccuieriieriieiieiiieiieciieieeie e 46
3.6.3 Instruction TLB Protection Violation EXCeptioncccoccevvverienienieniencienienen. 48
3.6.4 Data TLB Multiple Hit EXCEPtION.c.coiuiiiiiiiiiieieie et 48
3.6.5 Data TLB MisS EXCEPION. ...ccuiiiiiiiiiieiieiieieeeei et 49
3.6.6 Data TLB Protection Violation EXCEPtion..........cccceevuerieriinieniiiieiceieececenene 50
3.6.7 Initial Page Write EXCEPLIONc.eecvieiiriieiieiieieeie ettt 51
3.7 Memory-Mapped TLB Configuration...........cceccververiierieenieeieeieereseeseeseesseesseesseessessnenns 52
3.7.1 ITLB Address AITAYcceeovieciieiieieeieiiesiesieeie et et eaeseaesseesseesseenseessessnessnensaens 53
3.7.2 ITLB Data AITAY 1 .ccueouieeieieiieieiesie ettt sttt see 54
3.7.3 ITLB DAt AITAY 2...eeoueeuieuieiieieieeie ettt ee sttt ettt e st e e eeesteseesse st eneaneensesaens 55
3.7/4 UTLB Address AITAY ...cc.eeiuieiiieieetieitieieeie ettt e st ettt eseeseeesbeesaeenaeeneeeneeeas 55
3.7.5 UTLB Data ATTAY 1 .oooueieiiiiiiieiiteeieeeiteette sttt sttt st s 57
3.7.6 UTLB Data ATTAY 2 .ooveeeieiieriiieiiiteeieesiee ettt e stte st e steesabeesbeesabeesseesabeesnseesnnes 58
SECtION 4 CACRES ... 59
o B O)< o [OOSR 59
T O O 0T i 11 (<SOSR RPRUPRS 59
4.1.2 Register CoNfigUIAtIONccueevirieriieiieiieie e stesee st esreeseeseeseeessaessaeseesesnsesnnes 60
4.2 RegiSter DESCIIPLIONSecuviiereiiieitieiieieeieeteeeesteesteeteebeeeaessaessaesseesseessesnsessnesssesseensessenns 61
4.3 Operand Cache (OC)......ccueiiiiieiieieeie ettt ettt te e aessaesseeseenseessesssesseenseeseens 64
4.3.1 CONTIGUIALIONeitiiiieiieie ettt ettt ettt sb e b et e 64
4.3.2 ReAd OPCIAtION ..uveeueieiiieiiieiie ettt ettt ettt ettt eae e bt et e teenteeeeeeaeas 65
T I B VA U (<l 0 015 15 o) 4 PSRRI 66
4.3.4 Write-Back BUffer.........cccooiiiiiiiiiii e 68
4.3.5 Write-Through BUffer.........cccoooiiiiiiiiiiceceeeceste e 68
43,6 RAM MOGE ...cuiiiiiiiiiiiieiisieee ettt sttt 68
4377 OC INAEX MOME.....cceeiiiiiieieiieitet ettt ettt ettt 69
4.3.8 Coherency between Cache and External Memory..........ccooceveenieiinienneneeneeee 70
4.3.9 PrefetCh OPerationccceevieiieiiieiieieee sttt ettt 70
4.4 Instruction Cache (IC).....ciieiiiieiieiieiieit ettt ettt steeae e sraeeseessaesseeseenseessesnsans 71
T B 00} 1V 4D (o) SRR 71
442 Read OPEIAtIONeeuvieiieeieiieeeeeiiete et eteeteeitestaesteesseesessaesssesseenseenseensesnsesssessnes 72
443 TCINACK MOMEeiiuiiiiiiieiiee ettt ettt ettt et 73
4.5 Memory-Mapped Cache Configuration.............ceeeuerierierienienieeieeie e 73
4.5.1 IC AdAress ATTAY ..cc.eeeuieieieiiieiieie ettt ettt e et 73

Rev. 6.00 Sep 13, 2006 page xiv of xx

RENESAS

4.5.2 TC DAt ATTAY ..ccouvieiiieeiieiiee ettt ettt ettt ettt et e st e et e e bteesateesateesabeesnseenaneenes 74

4.5.3 OC AdAress ATTAY.....cccveeeeiierieeieeiesteseestt et ereetesaesaesseeseensesssesssesseesseensennsens 75
4.5.4 OC DAt AITAY ..eoteeiietieie ettt ettt se et ettt e et e sbe et e beete e e eneas 77
4.6 STOTC QUEUES ..eeuvvieeieeiiieiieeiteeetteeteeerteeeteeeteeetaeeseeessaeasseesssaeanseesssesasseessseeanseessseennseeenes 78
4.6.1 SQ CONTIGUIATION ..ottt sttt ettt eaeesae et et et e eaeeaeas 78
4.0.2 SQ WIILES..ueiitieetie et ettt eetee ettt et e et ett e et e e etbeeeaee e s beesaseesebeesasessaseesasesenreesaneeans 78
4.6.3 Transfer to External MEmMOTYccceeveriieiiieiieeieiiesieenie e eee e seve st se e 79
4.6.4 SQ ProteCHIONcuviiiiiiitieeiee et e et et ete e et e et e et eeveeeveeeaveeevaeeareseseesaresereeenns 80
4.6.5 SQ USALZE NOLESeeuietieiieiieie ettt ie it e ettt ee st e et ettt et esaeesbe e teenteenteeneesneas 81
SECION 5 EXCEPLIONSovoiiiieieieie et 83
5.1 OVEIVIEW .ttt ettt b et eh ettt et b e bt bt et es et e st b s bt sbeebe e e 83
S.101 0 FRATUIES .ccuviiiiiiiiteteetee ettt ettt ettt e st s s be e eas 83
5.1.2 Register Configuration...........ceccveriieriieriiesieeieniestieseesseeaesresseesseesseensesssessnenseens 83
5.2 RegIStEr DESCIIPLIONSeeiuieitieiieiiieiieet ettt ettt ettt e e e beeae e e e 84
5.3 Exception Handling FUnCtionsccoooiiiiiiiiiiiiiiiee et 85
5.3.1 Exception Handling FIOW.........ccccoooiiiiiiiiiiie e 85
5.3.2 Exception Handling Vector Addresses..........coevveviereerieeniesiienieneenie e eee e 85
5.4 Exception Types and PrioTitiescccciecuierieeienienieeiieesiesteetesteeieere e seneseeesaeenseesesnnes 86
5.5 EXCEPON FLOW .tiiuiiiiiiiiieciieciieie ettt ettt enseenseensessnensees 89
5.5.1 EXCePtion FIOWcouiiiiiiiiiieee et 89
5.5.2 EXCeption SOUICE ACCEPLANCE......ccueeruieiieiieiieetientieieenteeteeieeseeesteeneeeeeeneeeneesneens 90
5.5.3 Exception Requests and BL Bitcccociiiiiiiiiiinieiieieeeee e 92
5.54 Return from Exception Handlingccccoevvieiieiinienieecece e 92
5.6 Description Of EXCEPIONS ...ccueervieiiiieiieriietieieeie et eeesiee e eaeeaesseesaeesseeseenseessessnessaensees 92
5.6.1 RESCES ..ttt ettt ettt st st e eae 92
5.6.2 General EXCEPLIONScccuiiiiiiiiiieitieit ettt ettt sttt seeen 99
5.60.3 INTEITUPES ..eeiiiiiiieeite ettt ettt et sttt e st et e sttt e s e 113
5.6.4 Priority Order with Multiple EXCEPtions.........cccerueiieiieniiiiie e 116
5.7 USAGE INOES tuuveeitieiieeiiieeste ettt et ettt ettt ettt ettt ettt ebte e baeensteebeeenseesabaeenseesnbaeenseesnsaeenseeen 117
5.8 RESIIICHONS. .ttt ettt ettt ettt b ettt b e bbbt it et e e 118
Section 6 Floating-Point Unit...........c.coooiiiiriiiiieieieeee e 119
LT B € 1<) o 4 1<) OSSR SRRP 119
6.2 Data FOIMALSooueiitiiiieie ettt ettt ettt ee e e e 119
6.2.1 Floating-Point FOIMAatcccecieiiiiiiiieiiesiee et 119
6.2.2 Non-Numbers (NaN)......c..cccieiieriierierierie ettt et se e eresaesseesseesseesseenseensens 121
6.2.3 Denormalized NUMDETScoeririririiiiieniisesieeteeee ettt 122
(T T T 4) £ USRI 123
6.3.1 Floating-Point ReGISTErS.......cceeitiiiiiieiie et 123
6.3.2 Floating-Point Status/Control Register (FPSCR)cccoooiiiiiiniiniiiiiecee 125

Rev. 6.00 Sep 13, 2006 page xv of xx

RENESAS

6.3.3 Floating-Point Communication Register (FPUL).........ccccccoveviveverienienieeeeeene 126

6.4 ROUNAING...c..iiiiiiiiieiie ettt ettt et et e et e s e st e saee s e enseesseesseessensaeseenseessennsesnnennns 126
6.5 Floating-Point EXCEPLIONSeeiiiiiiiiiiiieieie et s 127
6.6 Graphics SUPPOIt FUNCHONScoiuiiiiiiiieiieiee et 128
6.6.1 Geometric Operation INSrUCTIONScoovieiiiiiriirieieeee e 129
6.6.2 Pair Single-Precision Data Transfer..........c.coccevcverierienieneiiesie e 130
6.7 USAZE NNOLES ..euvieeutieeitie et ette et te et te st e st e st eesateesbeesateesabeesabeesabeesateesabeesabeesaseenateesaseenanes 131
6.7.1 Notice about FPU Instructions ISSUEScccevuererineririenienienienenceteieene e 131
6.7.2 Notice about the Overflow Flag by FIPR and FTRV Instruction Command 132
6.7.3 Notice about the Sign of the Operation Result by FIPR and FTRV
Instruction Command..............ccoooiiiiiiiiiieeeee e 133
6.7.4 Notice about Double Precision FADD and FSUB Instructions for SH-4............. 133
6.7.5 FPU DOUDIE PreCiSION.ccueiuiiiieiiiiiniinierieeitetetete sttt ettt 135
Section 7 INSIUCHION SEL........ovoiiiiieieieieieie e 143
7.1 Execution ENVIrONMENtcceeiiiiiiiiiiiiieiiee ettt e 143
7.2 Addressing MOAES.coouieiiiiiiieeiieiee ettt sttt ettt sttt e 144
7.3 INSIIUCHION S ..cuvitiitiiiieitiientestert ettt ettt st b ettt e bbbt ebeeaeenne e 149
7.4 Notes on Use of TRAPA Instruction/SLEEP Instruction/Undefined Instruction
(H'FEFFD) ettt sttt st sttt ebe et et ennenee 161
SeCtion 8 PIPCININGouovviviiiiiieiee e s 165
LT I o010 1S) U 4 1SR RS PRSI 165
8.2 Parallel-EXeCUtabilitycccvevuieiirieeiieiieie ettt et ettt e e enaennees 172
8.3 Execution Cycles and Pipeline Stalling...........cccoecvrierienienieiicieseeeee e 176
Section 9 Instruction DESCIIPLIONS...........coocoirivivrieeieieieieiee e 193
9.1 ADD ADD DINaryccceeeeereenienieeee e Arithmetic Instruction............ 207
9.2 ADDC ... ADD with Carryccccevveeveeneeieeeeieeeens Arithmetic Instruction............ 209
9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction............ 210
94 AND AND logicalcccoeevevieiieiieieeeeeiens Logical Instruction................. 212
9.5 BF i Branch if Falsecccevevinincniniiicicns Branch Instruction.................. 214
9.6 BF/S ... Branch if False with delay Slot Branch Instruction 216
9.7 BRA BRANCh ..o, Branch Instruction.................. 218
9.8 BRAF BRAnch Far ..o, Branch Instruction 220
99 BSR Branch to SubRoutineccccoceeeeveeienene Branch Instruction.................. 222
9.10 BSRF Branch to SubRoutine Farc..cccceceeeee Branch Instruction.................. 224
9.11 BT Branch if True Branch Instruction...........c.. vococeeeevienienenincnicieneneneeee 226
9.12 BT/S Branch if True with delay Slot Branch Instruction.................. 228
9.13 CLRMAC CleaR MAC registercccceveevueeueneennenns System Control Instruction.... 230
9.14 CLRS CleaR S bit ..ooeeeeieieieieecee e System Control Instruction.... 231

Rev. 6.00 Sep 13, 2006 page xvi of xx

RENESAS

9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28

9.29

9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44
9.45
9.46

9.47
9.48
9.49
9.50
9.51
9.52

CLRT CleaR T bit .oocvevveieieieeieee e System Control Instruction.... 232

CMP/cond ... CoMPare conditionallyc...cccveurenenne Arithmetic Instruction............ 233
DIVOS DIVide (step 0) as Signedccccceereennene Arithmetic Instruction............ 237
DIVOU DIVide (step 0) as Unsignedcccce.... Arithmetic Instruction............ 238
DIVI1 DIVide 1 Step ..ooeevienieiieeee e Arithmetic Instruction............ 239
DMULS.L ... Double-length MULLtiply as Signed Arithmetic Instruction............ 244
DMULU.L ... Double-length MULtiply as Unsigned Arithmetic Instruction............ 246
DT .ccooenne. Decrement and Testcccceceveeieienencnnene Arithmetic Instruction............ 248
EXTS EXTend as Signedccccooeeeviriiiinienenns Arithmetic Instruction............ 249
EXTU EXTend as Unsignedccocceeveriinienncns Arithmetic Instruction............ 251
FABS Floating-point ABSolute value Floating-Point Instruction...... 253
FADD Floating-point ADDcceevvrviveieniennns Floating-Point Instruction...... 254
FCMP Floating-point CoMParec.cccveevvennenn. Floating-Point Instruction...... 257
FCNVDS Floating-point CONVEIT........cccveriieciieiiriens cereeieeieseeseeenee e eeeeeve e saee e 261
..................... Double to Single precision Floating-Point Instruction...... 261
FCNVSD Floating-point CONVEIt........ccoiiiiiiiiiiiiies et 264
..................... Single to Double precision Floating-Point Instruction...... 264
FDIV Floating-point DIVideccocvvvvrerennne Floating-Point Instruction...... 266
FIPR Floating-point Inner PRoduct Floating-Point Instruction...... 270
FLDIO Floating-point LoaD Immediate 0.0 Floating-Point Instruction...... 272
FLDII Floating-point Loa Immediate 1.0 Floating-Point Instruction...... 273
FLDS Floating-point LoaD to System register Floating-Point Instruction...... 274
FLOAT Floating-point convert from integer Floating-Point Instruction...... 275
FMAC Floating-point Multiply and ACcumulate .. Floating-Point Instruction...... 277
FMOV Floating-point MOVecccoocvvvveirerrennne Floating-Point Instruction...... 283
FMOV Floating-point MOVe extension Floating-Point Instruction...... 287
FMUL Floating-point MULtiplyc.ccceceniene. Floating-Point Instruction...... 290
FNEG Floating-point NEGate value Floating-Point Instruction...... 293
FRCHG FR-bit CHanGecccceveeveeiieieiceieee Floating-Point Instruction...... 294
FSCHG Sz-bit CHanGecccoeevvvverrerieeieerenene, Floating-Point Instruction...... 295
FSQRT Floating-point SQuare RooTcc........ Floating-Point Instruction...... 296
FSTS Floating-point STore System register Floating-Point Instruction...... 299
FSUB Floating-point SUBtractc.ccceceveenee Floating-Point Instruction...... 300
FTRC Floating-point TRuncate and Convert to integer

... Floating-Point Instruction...... 303
FTRV Floating-point TRansform Vector Floating-Point Instruction...... 306
IMP JUMP Branch Instruction.................. 309
JSR . Jump to SubRoutingccooevvvverveniiennnns Branch Instruction.................. 310
LDC LoaD to Control registercceceeeenne System Control Instruction.... 312
LDS LoaD to FPU System register System Control Instruction.... 317
LDS LoaD to System registerccocceeeeenneene System Control Instruction.... 319

Rev. 6.00 Sep 13, 2006 page xvii of xx

RENESAS

9.53
9.54
9.55
9.56
9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70
9.71
9.72
9.73
9.74
9.75
9.76
9.77
9.78
9.79
9.80
9.81
9.82
9.83
9.84
9.85
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93

LDTLB LoaD PTEH/PTEL/PTEA to TLB System Control Instruction....
MAC.L Multiply and ACcumulate Long Arithmetic Instruction...........
MAC.W Multiply and ACcumulate Word Arithmetic Instruction...........
MOV MOVe datac.occeeveeieenieeeceeeeeees Data Transfer Instruction......
MOV MOVe constant valuec..ccoceeeeencenens Data Transfer Instruction......
MOV MOVe global dataccceeevvvvenieniiennns Data Transfer Instruction......
MOV MOVe structure datac.cceceeeeverenennene Data Transfer Instruction......
MOVA ... MOVe effective Addresscccceceeveeuennene Data Transfer Instruction......
MOVCAL.L .. MOVe with Cache block Allocation Data Transfer Instruction......
MOVT MOVE T Dit oo, Data Transfer Instruction......
MUL.L MULLtiply Long ..ooveveieieiieieieeceeieee Arithmetic Instruction...........
MULS.W MULtiply as Signed Wordcoeeuvneen. Arithmetic Instruction...........
MULU.W MULtiply as Unsigned Word Arithmetic Instruction...........
NEG NEGALEoovveiiiiieiiienieineeeeee e Arithmetic Instruction...........
NEGC NEGate with Carryccccoeceevveieeieneenen. Arithmetic Instruction...........
NOP No OPerationccceeceeveeveenienieeieeeeee. System Control Instruction....
NOT NOT-logical complement Logical Instruction................
OCBI Operand Cache Block Invalidate Data Transfer Instruction......
OCBP Operand Cache Block Purge Data Transfer Instruction......
OCBWSB Operand Cache Block Write Back Data Transfer Instruction......
OR ...cccoe OR logicalccoeeriiieiieieeee e Logical Instruction................
PREF PREFetch data to cachecccoceeiennes Data Transfer Instruction......
ROTCL ROTate with Carry Leftcccoccevinienns Shift Instruction....................
ROTCR ROTate with Carry Rightccccoeeurenenns Shift Instruction....................
ROTL ROTate Left ...ccoveeieiiiiniiinciiciecee Shift Instruction....................
ROTR ROTate Rightcccccvevieiieiieiieieeieeies Shift Instruction....................
RTE ReTurn from Exceptioncccccoecvevienes System Control Instruction....
RTS ... ReTurn from Subroutineccccceveeneees Branch Instruction
SETS SET S Dit ceeeeieiieieeeeeeee e System Control Instruction....
SETT SET T Dit ceeveeveeiecieieeeeee e System Control Instruction....
SHAD SHift Arithmetic Dynamically Shift Instruction....................
SHAL SHift Arithmetic Leftcccoocenininiienennnn Shift Instruction....................
SHAR SHift Arithmetic Rightc..c.coe Shift Instruction....................
SHLD SHift Logical Dynamicallycccc........ Shift Instruction....................
SHLL SHift Logical Leftccoovveiiniiiiie Shift Instruction....................
SHLLn n bits SHift Logical Leftcccccveeiennen. Shift Instruction....................
SHLR SHift Logical Rightccccoevvenieniiennnne, Shift Instruction....................
SHLRn n bits SHift Logical Rightc..c.cccce.. Shift Instruction....................
SLEEP SLEEP ..ot System Control Instruction....
STC STore Control registerccceeveerueeneene. System Control Instruction....
STS oo STore System registercooceeveereeeeeee System Control Instruction....

Rev. 6.00 Sep 13, 2006 page xviii of xx

RENESAS

321
323
327
330
336

342
345
346
347
348
349
350
351
352
353
354
355
356
357
358
360
361
362
363
364
365
367
369
370
371
373
374
375
377
378
380
381
383
384
389

9.94 STS ...ccee.. STore from FPU System register System Control Instruction.... 391

9.95 SUB............ SUBtract binarycccceeveevereenveerveenennn, Arithmetic Instruction............ 394
9.96 SUBC SUBtract with Carrycccecoeevervenenene Arithmetic Instruction............ 395
9.97 SUBV SUBtract with (V flag) underflow check ... Arithmetic Instruction............ 396
9.98 SWAP SWARP register halvesc.cccoceeveenrneee Data Transfer Instruction....... 398
9.99 TAS Test And Set ...oovveeevevieieieeece e, Logical Instruction................. 400
9.100 TRAPA TRAP AIWAYS ..oovveiieiieieeieeie e System Control Instruction.... 402
9.101 TSTc.c...... TeST logicaloccvvvvevieiieeeceeeeeees Logical Instruction................. 404
9.102 XOR eXclusive OR logicalccccoeveirienienee Logical Instruction................. 406
9.103 XTRCT eXTRACT ..o Data Transfer Instruction....... 408
Appendix A InStruction Codesocoovvoiiiiiiieiiiieiece e 409
A.1 Instruction Set by Addressing MOdec.cccverieriieniieriieieeie et 409
Appendix B Instruction Prefetch Side Effects............cocoooviiiniiiiniiece 423

Rev. 6.00 Sep 13, 2006 page xix of xx

RENESAS

Rev. 6.00 Sep 13, 2006 page xx of xx

RENESAS

Section 1 Overview

Section 1 Overview

1.1 SH-4 Features

The SH-4 is a 32-bit RISC (reduced instruction set computer) microprocessor, featuring
instruction set upward-compatibility with SH-1, SH-2, and SH-3 microcomputers. Its 16-bit fixed-
length instruction set enables program code size to be reduced by almost 50% compared with 32-

bit instructions.

The features of the SH-4 are summarized in table 1.1.

Table 1.1 SH-4 Features

Item Features

Architecture .

Original Renesas Technology SH architecture

32-bit internal data bus

General register file:

O Sixteen 32-bit general registers (and eight 32-bit shadow registers)
O Seven 32-bit control registers

O Four 32-bit system registers

RISC-type instruction set (upward-compatible with SH-1, SH-2, and SH-3)
Fixed 16-bit instruction length for improved code efficiency
Load-store architecture

Delayed branch instructions

Conditional execution

O 0O oo o

C-based instruction set

Superscalar architecture (providing simultaneous execution of two
instructions) including FPU

Instruction execution time: Maximum 2 instructions/cycle

Virtual address space: 4 Gbytes (448-Mbyte external memory space)
Space identifier ASIDs: 8 bits, 256 virtual address spaces

On-chip multiplier

Five-stage pipeline

Rev. 6.00 Sep 13, 2006 page 1 of 424
REJ09B0318-0600

RENESAS

Section 1 Overview

Item Features

FPU .

On-chip floating-point coprocessor

Supports single-precision (32 bits) and double-precision (64 bits)
Supports IEEE754-compliant data types and exceptions

Two rounding modes: Round to Nearest and Round to Zero

Handling of denormalized numbers: Truncation to zero or interrupt
generation for compliance with IEEE754

Floating-point registers: 32 bits x 16 words x 2 banks
(single-precision x 16 words or double-precision x 8 words) x 2 banks

32-bit CPU-FPU floating-point communication register (FPUL)

Supports FMAC (multiply-and-accumulate) instruction

Supports FDIV (divide) and FSQRT (square root) instructions

Supports FLDIO/FLDI1 (load constant 0/1) instructions

Instruction execution times

O Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8
cycles (double-precision)

O Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles
(double-precision)

Note: FMAC is supported for single-precision only.

3-D graphics instructions (single-precision only):

O 4-dimensional vector conversion and matrix operations (FTRV): 4
cycles (pitch), 7 cycles (latency)

O 4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles
(latency)

Five-stage pipeline

Memory .
management
unit (MMU)

4-Gbyte address space, 256 address space identifiers (8-bit ASIDs)
Single virtual mode and multiple virtual memory mode

Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte
4-entry fully-associative TLB for instructions

64-entry fully-associative TLB for instructions and operands

Supports software-controlled replacement and random-counter
replacement algorithm

TLB contents can be accessed directly by address mapping

Rev. 6.00 Sep 13, 2006 page 2 of 424

REJ09B0318-0600

RENESAS

Section 1 Overview

Item Features

Cache memory * Instruction cache (IC)

O 8 kbytes, direct mapping

O 256 entries, 32-byte block length

O Normal mode (8-Kbyte cache)

O Index mode

* Operand cache (OC)

16 kbytes, direct mapping
512 entries, 32-byte block length
Normal mode (16-Kbyte cache)
Index mode
RAM mode (8-Kbyte cache + 8-Kbyte RAM)
Choice of write method (copy-back or write-through)

O 0Ooooog g

» Single-stage copy-back buffer, single-stage write-through buffer

« Cache memory contents can be accessed directly by address mapping
(usable as on-chip memory)

« Store queue (32 bytes x 2 entries)

Rev. 6.00 Sep 13, 2006 page 3 of 424
REJ09B0318-0600

RENESAS

Section 1 Overview

Rev. 6.00 Sep 13, 2006 page 4 of 424
REJ09B0318-0600

RENESAS

Section 2

Programming Model

Section 2 Programming Model

2.1 Data Formats

The data formats handled by the SH-4 are shown in figure 2.1.

Byte (8 bits)

Word (16 bits)

Longword (32 bits)

Single-precision floating-point (32 bits)

Double-precision floating-point (64 bits)

7 0
15 0
31 0
3130 22 0
s| exp fraction
63 62 51 0
s| exp fraction

Figure 2.1 Data Formats

RENESAS

Rev. 6.00 Sep 13, 2006 page 5 of 424

REJ09B0318-0600

Section 2 Programming Model

2.2 Register Configuration

2.2.1 Privileged Mode and Banks

Processor Modes: The SH-4 has two processor modes, user mode and privileged mode. The SH-4
normally operates in user mode, and switches to privileged mode when an exception occurs or an
interrupt is accepted. There are four kinds of registers—general registers, system registers, control
registers, and floating-point registers—and the registers that can be accessed differ in the two
processor modes.

General Registers: There are 16 general registers, designated R0 to R15. General registers RO to
R7 are banked registers which are switched by a processor mode change.

In privileged mode, the register bank bit (RB) in the status register (SR) defines which banked
register set is accessed as general registers, and which set is accessed only through the load control
register (LDC) and store control register (STC) instructions.

When the RB bit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1 general
registers RO BANK1 to R7 BANKI1 and non-banked general registers R8 to R15 can be accessed
as general registers RO to R15. In this case, the eight registers comprising bank 0 general registers
RO BANKO to R7_BANKO are accessed by the LDC/STC instructions. When the RB bit is 0 (that
is, when bank 0 is selected), the 16 registers comprising bank 0 general registers RO BANKO to
R7 BANKO and non-banked general registers R8 to R15 can be accessed as general registers R0
to R15. In this case, the eight registers comprising bank 1 general registers RO BANKI1 to

R7 BANKI are accessed by the LDC/STC instructions.

In user mode, the 16 registers comprising bank 0 general registers RO BANKO to R7 BANKO and
non-banked general registers R8 to R15 can be accessed as general registers RO to R15. The eight
registers comprising bank 1 general registers RO BANK1 to R7_ BANKI cannot be accessed.

Control Registers: Control registers comprise the global base register (GBR) and status register
(SR), which can be accessed in both processor modes, and the saved status register (SSR), saved
program counter (SPC), vector base register (VBR), saved general register 15 (SGR), and debug
base register (DBR), which can only be accessed in privileged mode. Some bits of the status
register (such as the RB bit) can only be accessed in privileged mode.

System Registers: System registers comprise the multiply-and-accumulate registers
(MACH/MACL), the procedure register (PR), the program counter (PC), the floating-point
status/control register (FPSCR), and the floating-point communication register (FPUL). Access to
these registers does not depend on the processor mode.

Rev. 6.00 Sep 13, 2006 page 6 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

Floating-Point Registers: There are thirty-two floating-point registers, FRO-FR15 and XF0—
XF15. FRO-FR15 and XFO—XF15 can be assigned to either of two banks (FPRO_BANKO0—-
FPR15 BANKO or FPRO BANKI1-FPR15 BANKI1).

FRO-FR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision floating-
point registers, or pair registers) or the four registers FV0/4/8/12 (register vectors), while XF0—
XF15 can be used as the eight registers XD0/2/4/6/8/10/12/14 (register pairs) or register matrix
XMTRX.

Register values after a reset are shown in table 2.1.

Table 2.1 Initial Register Values

Type Registers Initial Value®

General registers R0_BANKO-R7_BANKO, Undefined
RO_BANK1-R7_BANK1,

R8-R15
Control registers SR MD bit = 1, RB bit =1, BL bit =1, FD bit =0,
13-10 = 1111 (H'F), reserved bits = 0, others
undefined
GBR, SSR, SPC, SGR, Undefined
DBR
VBR H'00000000
System registers MACH, MACL, PR, FPUL Undefined
PC H'A0000000
FPSCR H'00040001
Floating-point FRO-FR15, XFO-XF15 Undefined

registers

Note: * Initialized by a power-on reset and manual reset.

The register configuration in each processor is shown in figure 2.2.

Switching between user mode and privileged mode is controlled by the processor mode bit (MD)
in the status register.

Rev. 6.00 Sep 13, 2006 page 7 of 424
REJ09B0318-0600
RENESAS

Section 2 Programming Model

31 0 31 0 31 0
RO_BANKO*1*2 RO_BANK1*1*3 RO_BANKOQ*1*4
R1_BANKQ*2 R1_BANK1*3 R1_BANKO**
R2_BANKO0*2 R2_BANK1*3 R2_BANKO*4
R3_BANKO0*? R3_BANK1*3 R3_BANKO**
R4_BANKQ*2 R4_BANK1*3 R4_BANKOQ*4
R5_BANKOQ*2 R5_BANK1*3 R5_BANKO*4
R6_BANKOQ*2 R6_BANK1*3 R6_BANKOQ*4
R7_BANKO0*2 R7_BANK1*3 R7_BANKO*4
R8 R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15
SR SR SR
SSR SSR
GBR GBR GBR
MACH MACH MACH
MACL MACL MACL
PR PR PR
VBR VBR
PC | PC PC
SPC SPC
| SGR | SGR |
[DBR | | DBR |
RO_BANKQ*1*4 RO_BANK1*1*3
R1_BANKO** R1_BANK1*3
R2_BANKO** R2_BANK1*3
R3_BANKO*4 R3_BANK1*3
R4_BANKO** R4_BANK1*3
R5_BANKOQ*4 R5_BANK1*3
R6_BANKO*4 R6_BANK1*3
R7_BANKO*4 R7_BANK1*3
(a) Register configuration (b) Register configuration in (c) Register configuration in
in user mode privileged mode (RB = 1) privileged mode (RB = 0)

Notes: 1. The RO register is used as the index register in indexed register-indirect addressing mode and

indexed GBR indirect addressing mode.

2. Banked registers

3. Banked registers
Accessed as general registers when the RB bit is set to 1 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.

4. Banked registers
Accessed as general registers when the RB bit is cleared to 0 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is set to 1.

Figure 2.2 CPU Register Configuration in Each Processor Mode

Rev. 6.00 Sep 13, 2006 page 8 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

2.2.2 General Registers

Figure 2.3 shows the relationship between the processor modes and general registers. The SH-4
has twenty-four 32-bit general registers (RO BANKO-R7 BANKO, RO BANKI1-R7 BANKI,
and R8-R15). However, only 16 of these can be accessed as general registers RO—R15 in one
processor mode. The SH-4 has two processor modes, user mode and privileged mode, in which
RO-R7 are assigned as shown below.

* RO BANKO-R7 BANKO
In user mode (SR.MD = 0), RO-R7 are always assigned to R0 BANKO-R7 BANKO.

In privileged mode (SR.MD = 1), RO-R7 are assigned to R0 BANKO-R7 BANKO only when
SR.RB =0.

* RO BANKI1-R7 BANKI1
In user mode, RO BANK1-R7 BANKI cannot be accessed.
In privileged mode, RO-R7 are assigned to RO BANK1-R7 BANKI only when SR.RB = 1.

Rev. 6.00 Sep 13, 2006 page 9 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

SR.MD =0or
(SR.MD =1, SR.RB =0) (SR.MD =1, SR.RB =1)
RO RO_BANKO RO_BANKO
R1 R1_BANKO R1_BANKO
R2 R2_BANKO R2_BANKO
R3 R3_BANKO R3_BANKO
R4 R4 _BANKO R4_BANKO
R5 R5_BANKO R5_BANKO
R6 R6_BANKO R6_BANKO
R7 R7_BANKO R7_BANKO
RO_BANK1 RO_BANK1 RO
R1_BANK1 R1_BANK1 R1
R2_BANK1 R2_BANK1 R2
R3_BANK1 R3_BANK1 R3
R4 _BANK1 R4_BANK1 R4
R5 BANK1 R5_BANK1 R5
R6_BANK1 R6_BANK1 R6
R7_BANK1 R7_BANK1 R7
RS R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15

Figure 2.3 General Registers

Programming Note: As the user’s RO-R7 are assigned to RO BANKO-R7 BANKO, and after an
exception or interrupt RO—R7 are assigned to RO BANK1-R7 BANKI, it is not necessary for the
interrupt handler to save and restore the user’s RO—R7 (RO BANKO-R7 BANKO).

After a reset, the values of RO BANKO-R7 BANKO, RO BANK1-R7 BANKI, and R§8-R15 are
undefined.

Rev. 6.00 Sep 13, 2006 page 10 of 424
REJ09B0318-0600
RENESAS

Section 2 Programming Model

2.23 Floating-Point Registers

Figure 2.4 shows the floating-point registers. There are thirty-two 32-bit floating-point registers,
divided into two banks (FPRO BANKO-FPR15 BANKO and FPRO BANKI1-FPR15 BANKI).
These 32 registers are referenced as FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XFO—XF15,
XD0/2/4/6/8/10/12/14, or XMTRX. The correspondence between FPRn BANKIi and the reference
name is determined by the FR bit in FPSCR (see figure 2.4).

Floating-point registers, FPRn_BANKi (32 registers)

FPRO_BANKO, FPR1_BANKO, FPR2 BANKO, FPR3 BANKO, FPR4 BANKO,
FPR5 BANKO, FPR6 BANKO, FPR7 BANKO, FPR8 BANKO, FPR9 BANKO,
FPR10_BANKGO, FPR11_BANKO, FPR12 BANKO, FPR13_BANKO, FPR14 BANKO,
FPR15_BANKO

FPRO BANKI, FPR1 BANKI, FPR2 BANKI, FPR3 BANKI, FPR4 BANKI,

FPR5 BANKI, FPR6 BANKI, FPR7 BANKI, FPR§ BANKI, FPR9 BANKI,
FPR10 BANKI, FPR11 BANKI, FPR12 BANKI, FPR13 BANKI, FPR14 BANKI,
FPR15 BANKI

Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 are assigned to FPRO_ BANKO-FPR15 BANKO.
When FPSCR.FR = 1, FRO-FR15 are assigned to FPRO BANK1-FPR15 BANKI.

Double-precision floating-point registers or single-precision floating-point register pairs, DRi
(8 registers): A DR register comprises two FR registers.

DRO = {FRO, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},

DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers

FVO0 = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},

FV8 = {FRS§, FRY, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO-XF15 are assigned to FPRO BANKI1-FPR15 BANKI.
When FPSCR.FR = 1, XFO-XF15 are assigned to FPRO BANKO-FPR15 BANKO.

Single-precision floating-point extended register pairs, XDi (8 registers): An XD register
comprises two XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},

XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

Rev. 6.00 Sep 13, 2006 page 11 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

» Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers

XMTRX = | XFO0 XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

FPSCR.FR=0 FPSCR.FR=1
FVO DRO FRO FPRO_BANKO XFO XD0 XMTRX
FR1 FPR1_BANKO XF1
DR2 FR2 FPR2_BANKO XF2 XD2
FR3 FPR3_BANKO XF3

Fv4 DR4 FR4 FPR4_BANKO XF4 XD4
FR5 FPR5_BANKO XF5
DR6 FR6 FPR6_BANKO XF6 XD6
FR7 FPR7_BANKO XF7
FV8 DRS8 FRS8 FPR8_BANKO XF8 XD8
FR9 FPR9_BANKO XF9
DR10 FR10 FPR10_BANKO XF10 XD10
FR11 FPR11_BANKO XF11
FV12 DR12 FR12 FPR12_BANKO XF12 XD12
FR13 FPR13_BANKO XF13
DR14 FR14 FPR14_BANKO XF14 XD14
FR15 FPR15_BANKO XF15
XMTRX XDO XFO FPRO_BANK1 FRO DRO FVO
XF1 FPR1_BANK1 FR1
XD2 XF2 FPR2_BANK1 FR2 DR2
XF3 FPR3_BANK1 FR3
XD4 XF4 FPR4_BANK1 FR4 DR4 FV4
XF5 FPR5_BANK1 FR5
XD6 XF6 FPR6_BANK1 FR6 DR6
XF7 FPR7_BANK1 FR7
XD8 XF8 FPR8_BANK1 FR8 DR8 FV8
XF9 FPR9_BANK1 FR9
XD10 XF10 FPR10_BANK1 FR10 DR10
XF11 FPR11_BANK1 FR11
XD12 XF12 FPR12_BANK1 FR12 DR12 FV12
XF13 FPR13_BANK1 FR13
XD14 XF14 FPR14_BANK1 FR14 DR14
XF15 FPR15_BANK1 FR15

Figure 2.4 Floating-Point Registers

Rev. 6.00 Sep 13, 2006 page 12 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

Programming Note: After a reset, the values of FPRO BANKO-FPR15 BANKO and
FPRO BANKI1-FPR15 BANKI are undefined.

2.2.4 Control Registers

Status register, SR (32 bits, privilege protection, initial value = 0111 0000 0000 0000 0000
00XX 1111 00XX (X: Undefined))

31 30 29 28 27 16 15 14 0 9 8 7 4 3 2 1 0
|—|MD|RB|BL| — |FD| — |M|Q| IMASK | — |S|T|
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

e MD: Processor mode

MD = 0: User mode (some instructions cannot be executed, and some resources cannot be
accessed)

MD = 1: Privileged mode

* RB: General register bank specifier in privileged mode (set to 1 by a reset, exception, or
interrupt)
RB =0: RO BANKO-R7 BANKO are accessed as general registers RO—R7. (RO_ BANK1—-
R7 BANKI can be accessed using LDC/STC RO_ BANK-R7 BANK instructions.)

RB =1: RO BANKI1-R7 BANKI are accessed as general registers RO—R7. (RO_ BANKO—-
R7 BANKO can be accessed using LDC/STC RO BANK-R7 BANK instructions.)

» BL: Exception/interrupt block bit (set to 1 by a reset, exception, or interrupt)

BL = I: Interrupt requests are masked. If a general exception other than a user break occurs
while BL = 1, the processor switches to the reset state.

* FD: FPU disable bit (cleared to 0 by a reset)

FD = 1: An FPU instruction causes a general FPU disable exception, and if the FPU instruction

is in a delay slot, a slot FPU disable exception is generated. (FPU instructions: H'F***
instructions, LDC(.L)/STS(.L) instructions for FPUL/FPSCR)

* M, Q: Used by the DIVOS, DIVOU, and DIV1 instructions.

* IMASK: Interrupt mask level
External interrupts of a same level or a lower level than IMASK are masked.

* S: Specifies a saturation operation for a MAC instruction.

* T: True/false condition or carry/borrow bit

Rev. 6.00 Sep 13, 2006 page 13 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

Saved status register, SSR (32 bits, privilege protection, initial value undefined): The current
contents of SR are saved to SSR in the event of an exception or interrupt.

Saved program counter, SPC (32 bits, privilege protection, initial value undefined): The
address of an instruction at which an interrupt or exception occurs is saved to SPC.

Global base register, GBR (32 bits, initial value undefined): GBR is referenced as the base
address in a GBR-referencing MOV instruction.

Vector base register, VBR (32 bits, privilege protection, initial value = H'0000 0000): VBR is
referenced as the branch destination base address in the event of an exception or interrupt. For
details, see section 5, Exceptions.

Saved general register 15, SGR (32 bits, privilege protection, initial value undefined): The
contents of R15 are saved to SGR in the event of an exception or interrupt.

Debug base register, DBR (32 bits, privilege protection, initial value undefined): When the
user break debug function is enabled (BRCR.UBDE = 1), DBR is referenced as the user break
handler branch destination address instead of VBR.

2.2.5 System Registers

Multiply-and-accumulate register high, MACH (32 bits, initial value undefined)
Multiply-and-accumulate register low, MACL (32 bits, initial value undefined)
MACH/MACL is used for the added value in a MAC instruction, and to store a MAC instruction
or MUL operation result.

Procedure register, PR (32 bits, initial value undefined): The return address is stored in PR in a
subroutine call using a BSR, BSRF, or JSR instruction, and PR is referenced by the subroutine
return instruction (RTS).

Program counter, PC (32 bits, initial value = H'A000 0000): PC indicates the instruction fetch
address.

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0
— |FR |SZ |PR |DN | Cause Enable | Flag | RM |
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

Rev. 6.00 Sep 13, 2006 page 14 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

FR: Floating-point register bank
FR =0: FPRO BANKO-FPR15 BANKO are assigned to FRO-FR15; FPRO BANKI1-
FPR15 BANKI are assigned to XFO-XF15.

FR =1: FPRO_BANKO-FPR15 BANKO are assigned to XFO-XF15; FPRO BANKI1-
FPR15 BANKI1 are assigned to FRO-FRI15.

SZ: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = I: Floating-point instructions are executed as double-precision operations (the result of
instructions for which double-precision is not supported is undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

Cause: FPU exception cause field

Enable: FPU exception enable field

Flag: FPU exception flag field

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z) (O) (V) (U]
Cause FPU exception Bit17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

flag field

When an FPU operation instruction is executed, the FPU exception cause field is cleared to
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag field

holds the status of the exception generated after the field was last cleared.

Rev. 6.00 Sep 13, 2006 page 15 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

* RM: Rounding mode
RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

e Bits 22 to 31: Reserved

Floating-point communication register, FPUL (32 bits, initial value undefined): Data transfer
between FPU registers and CPU registers is carried out via the FPUL register.

Programming Note: When SZ = 1 and big endian mode is selected, FMOV can be used for
double-precision floating-point load or store operations. In little endian mode, two 32-bit data size
moves must be executed, with SZ = 0, to load or store a double-precision floating-point number.

23 Memory-Mapped Registers

The control registers are double-mapped to the following two memory areas. All registers have
two addresses.

H'1C00 0000-H'1 FFF FFFF
H'FC00 0000-H'FFFF FFFF

These two areas are used as follows.

e H'1C00 0000-H'1FFF FFFF
This area must be accessed using the MMU's address translation function. A memory-mapped
register can be accessed by setting the page number of this area in the corresponding field of
the TLB. Operation is not guaranteed if this area is accessed without using the MMU's address
translation function.

* H'FC00 0000-H'FFFF FFFF
Access to area H'FC00 0000-H'FFFF FFFF in user mode will cause an address error. Memory-
mapped registers can be referenced in user mode by means of access that involves address
translation.

Note: Do not access undefined locations in either area The operation of an access to an
undefined location is undefined. Also, memory-mapped registers must be accessed using a
fixed data size. The operation of an access using an invalid data size is undefined.

Rev. 6.00 Sep 13, 2006 page 16 of 424
REJ09B0318-0600
RENESAS

Section 2 Programming Model

24 Data Format in Registers

Register operands are always longwords (32 bits). When a memory operand is only a byte (8 bits)
or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0
Longword

2.5 Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed in
8-bit byte, 16-bit word, or 32-bit longword form. A memory operand less than 32 bits in length is
sign-extended before being loaded into a register.

A word operand must be accessed starting from a word boundary (even address of a 2-byte unit:
address 2n), and a longword operand starting from a longword boundary (even address of a 4-byte
unit: address 4n). An address error will result if this rule is not observed. A byte operand can be
accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should be set
with the MD5 external pin in a power-on reset. Big endian is selected when the MD5 pin is low,
and little endian when high. The endian cannot be changed dynamically. Bit positions are
numbered left to right from most-significant to least-significant. Thus, in a 32-bit longword, the
leftmost bit, bit 31, is the most significant bit and the rightmost bit, bit 0, is the least significant
bit.

The data format in memory is shown in figure 2.5.

A A+l A+2 A+3 A+11 A+10 A+9 A+8
31 23 15 7 0 31 23 15 7 0
7 0|7 0[7 o7 0 7 0|7 0[7 o7 0
Address A | gyte 0| Byte 1 | Byte 2 | Byte 3 Byte 3| Byte 2 | Byte 1 | Byte 0 | Address A + 8
15 0[15 0 15 0[15 0
Address A + 4 Word 0 Word 1 Word 1 Word 0 Address A + 4
31 0 31 0
Address A+ 8 Longword Longword Address A
Big endian Little endian

Figure 2.5 Data Formats In Memory

Rev. 6.00 Sep 13, 2006 page 17 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

Note: The SH-4 does not support endian conversion for the 64-bit data format. Therefore, if
double-precision floating-point format (64-bit) access is performed in little endian mode,
the upper and lower 32 bits will be reversed.

2.6 Processor States

The SH-4 has five processor states: the reset state, exception-handling state, bus-released state,
program execution state, and power-down state.

Reset State: In this state the CPU is reset. There are two kinds of reset state, power-on reset and
manual reset, defined as shown in table 2.6 according to the relevant external pin states.

Table 2.6 Reset State

Power-On Reset State Manual Reset State
SH7750/SH7750S/SH7750R RESET =0and MRESET =1 RESET =0 and MRESET =0
SH7751/SH7751R, SH7760 RESET =0 RESET =1 and MRESET =0

For more information on resets, see section 5, Exceptions.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module
registers are initialized. In the manual reset state, the internal state of the CPU and registers of on-
chip peripheral modules other than the bus state controller (BSC) are initialized. Since the bus
state controller (BSC) is not initialized in the manual reset state, refreshing operations continue.
Refer to the register configurations in the relevant sections for further details.

Exception-Handling State: This is a transient state during which the CPU’s processor state flow
is altered by a reset, general exception, or interrupt exception handling source.

In the case of a reset, the CPU branches to address H'A000 0000 and starts executing the user-
coded exception handling program.

In the case of a general exception or interrupt, the program counter (PC) contents are saved in the
saved program counter (SPC), the status register (SR) contents are saved in the saved status
register (SSR), and the R15 contents are saved in saved general register 15 (SGR). The CPU
branches to the start address of the user-coded exception service routine found from the sum of the
contents of the vector base address and the vector offset. See section 5, Exceptions, for more
information on resets, general exceptions, and interrupts.

Program Execution State: In this state the CPU executes program instructions in sequence.

Rev. 6.00 Sep 13, 2006 page 18 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

Power-Down State: In the power-down state, CPU operation halts and power consumption is
reduced. The power-down state is entered by executing a SLEEP instruction. There are two modes
in the power-down state: sleep mode and standby mode. For details, see hardware manual, Power-
Down Modes.

Bus-Released State: In this state the CPU has released the bus to a device that requested it.

SH7750, SH7750S, and SH7750R state transitions are shown in figure 2.6, and SH7751,
SH7751R, and SH7760 state transitions in figure 2.7.

MRESET =1

From any state when From any state when

RESET = 0 and MRESET =1 RESET = 0 and MRESET =0
\ 4
Power-on reset state Manual reset state
1 RESET =0, !

Reset state

RESET =1,
MRESET =1

RESET =1,
MRESET =0

Exception-handling state

Bus request
q Bus request

clearance
Interrupt Interrupt
Exception End of exception
Bus-released state _ interrupt transition

processing

Bus request

Bus clearance

request

A 4

Bus request
clearance

Bus request Program execution state

SLEEP instruction SLEEP instruction
with STBY bit with STBY bit set
cleared

Sleep mode Standby mode

Power-down state !

Figure 2.6 Processor State Transitions (SH7750/SH7750S/SH7750R)

Rev. 6.00 Sep 13, 2006 page 19 of 424
REJ09B0318-0600

RENESAS

Section 2 Programming Model

From any state when From any state when

RESET =0 RESET =1 and MRESET =0
, \ 4
, Power-on reset state Manual reset state
' RESET =0 '

Reset state

RESET =1 RESET =1,
MRESET =1

Exception-handling state

Bus request
q Bus request

clearance
Interrupt Interrupt
Exception End of exception
Bus-released state _ interrupt transition
> processing

Bus request

clearance
request

y

Bus request
clearance

Bus request Program execution state

SLEEP instruction
with STBY bit
cleared

SLEEP instruction
with STBY bit set

Sleep mode Standby mode

Power-down state

Figure 2.7 Processor State Transitions (SH7751/SH7751R, SH7760)

2.7 Processor Modes

There are two processor modes: user mode and privileged mode. The processor mode is
determined by the processor mode bit (MD) in the status register (SR). User mode is selected
when the MD bit is cleared to 0, and privileged mode when the MD bit is set to 1. When the reset
state or exception state is entered, the MD bit is set to 1. When exception handling ends, the MD
bit is cleared to 0 and user mode is entered. There are certain registers and bits which can only be
accessed in privileged mode.

Rev. 6.00 Sep 13, 2006 page 20 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

Section 3 Memory Management Unit (MMU)

3.1 Overview

3.1.1 Features

The SH-4 can handle 29-bit external memory space from an 8-bit address space identifier and 32-
bit logical (virtual) address space. Address translation from virtual address to physical address is
performed using the memory management unit (MMU) built into the SH-4. The MMU performs
high-speed address translation by caching user-created address translation table information in an
address translation buffer (translation lookaside buffer: TLB). The SH-4 has four instruction TLB
(ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies are stored in the ITLB by
hardware. A paging system is used for address translation, with support for four page sizes (1, 4,
and 64 Kbytes, and 1 Mbyte). It is possible to set the virtual address space access right and
implement storage protection independently for privileged mode and user mode.

3.1.2 Role of the MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown in
figure 3.1, when a process is smaller in size than the physical memory, the entire process can be
mapped onto physical memory, but if the process increases in size to the point where it does not fit
into physical memory, it becomes necessary to divide the process into smaller parts, and map the
parts requiring execution onto physical memory on an ad hoc basis ((1)). Having this mapping
onto physical memory executed consciously by the process itself imposes a heavy burden on the
process. The virtual memory system was devised as a means of handling all physical memory
mapping to reduce this burden ((2)). With a virtual memory system, the size of the available
virtual memory is much larger than the actual physical memory, and processes are mapped onto
this virtual memory. Thus processes only have to consider their operation in virtual memory, and
mapping from virtual memory to physical memory is handled by the MMU. The MMU is
normally managed by the OS, and physical memory switching is carried out so as to enable the
virtual memory required by a task to be mapped smoothly onto physical memory. Physical
memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time sharing
system (TSS) that allows a number of processes to run simultaneously ((3)). Running a number of
processes in a TSS did not increase efficiency since each process had to take account of physical
memory mapping. Efficiency is improved and the load on each process reduced by the use of a
virtual memory system ((4)). In this system, virtual memory is allocated to each process. The task
of the MMU is to map a number of virtual memory areas onto physical memory in an efficient

Rev. 6.00 Sep 13, 2006 page 21 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

manner. It is also provided with memory protection functions to prevent a process from
inadvertently accessing another process’s physical memory.

When address translation from virtual memory to physical memory is performed using the MMU,
it may happen that the translation information has not been recorded in the MMU, or the virtual
memory of a different process is accessed by mistake. In such cases, the MMU will generate an
exception, change the physical memory mapping, and record the new address translation
information.

Although the functions of the MMU could be implemented by software alone, having address
translation performed by software each time a process accessed physical memory would be very
inefficient. For this reason, a buffer for address translation (the translation lookaside buffer: TLB)
is provided in hardware, and frequently used address translation information is placed here. The
TLB can be described as a cache for address translation information. However, unlike a cache, if
address translation fails—that is, if an exception occurs—switching of the address translation
information is normally performed by software. Thus memory management can be performed in a
flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physical
memory: the paging method, using fixed-length address translation, and the segment method,
using variable-length address translation. With the paging method, the unit of translation is a
fixed-size address space called a page (usually from 1 to 64 kbytes in size).

In the following descriptions, the address space in virtual memory in the SH-4 is referred to as
virtual address space, and the address space in physical memory as physical address space.

Rev. 6.00 Sep 13, 2006 page 22 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

‘ Physical h
memory
Process 1
N

4 Physical)
Process 1 meymory
(1)
N J
(Physical)
ysical
Process 1 memory
Process 2,
Process 3,"
3
_ ® J

‘ Virtual h
memory MmuU Physical
Process1 meymory
L | @
N J
/ Virtual h
Process1 memory
“MMU Physical
\ memory
Process 2 i

Process 3

AN

Figure 3.1 Role of the MMU

Rev. 6.00 Sep 13, 2006 page 23 of 424

RENESAS

REJ09B0318-0600

Section 3 Memory Management Unit (MMU)

3.13 Register Configuration
The MMU registers are shown in table 3.1.

Table 3.1 MMU Registers

Abbrevia- Initial P4 Area 7 Access
Name tion RW Value™ Address** Address*® Size
Page table entry high PTEH R/W Undefined H'FFO0 0000 H'1F00 0000 32
register
Page table entry low PTEL R/W Undefined H'FF00 0004 H'1F00 0004 32
register
Page table entry PTEA R/W Undefined H'FF00 0034 H'1F00 0034 32
assistance register
Translation table base TTB R/W Undefined H'FFO0 0008 H'1FO00 0008 32
register
TLB exception address TEA R/W Undefined H'FF00 000C H'1F00 000C 32
register

MMU control register MMUCR R/W H'0000 0000 H'FF00 0010 H'1F00 0010 32

Notes: 1. The initial value is the value after a power-on reset or manual reset.

2. This is the address when using the virtual/physical address space P4 area. The area 7
address is the address used when making an access from physical address space area
7 using the TLB.

3.14 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is accessed.

Rev. 6.00 Sep 13, 2006 page 24 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

3.2 Register Descriptions

There are six MMU-related registers.

1. PTEH

31 109 8 7 0

VPN —|— ASID

2. PTEL

31 .30 29 28 10 9 8 7 6 5 4 3 2 1 0

—|—|= PPN —|V|sz| PR |Sz|C|D |SHWT|
3. PTEA

31 4 3 2 0

TC| SA

4, TTB

31 0

TTB

5. TEA

31

Virtual address at which MMU exception or address error occurred

6. MMUCR

31 26 25 24 23 18 17 16 15 10 9 8 7 6 5 4 3 2 1.0

LRUI —|— URB —|— URC SV|—|—|—|—|—]|TI|—|AT
|
SQMD

Note: — indicates a reserved bit: the write value must be 0, and a read will return

an undefined value.

Figure 3.2 MMU-Related Registers

1 Page table entry high register (PTEH): Longword access to PTEH can be performed from
H'FF00 0000 in the P4 area and H'1F00 0000 in area 7. PTEH consists of the virtual page number
(VPN) and address space identifier (ASID). When an MMU exception or address error exception
occurs, the VPN of the virtual address at which the exception occurred is set in the VPN field by
hardware. VPN varies according to the page size, but the VPN set by hardware when an exception
occurs consists of the upper 22 bits of the virtual address which caused the exception. VPN setting

Rev. 6.00 Sep 13, 2006 page 25 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

can also be carried out by software. The number of the currently executing process is set in the
ASID field by software. ASID is not updated by hardware. VPN and ASID are recorded in the
UTLB by means of the LDLTB instruction.

After updating the ASID field of PTEH register, a branch instruction to the PO, P3, or U0 area,
where the new ASID value will be used, should be located at least 6 instructions after the PTEH
update instruction.

2. Page table entry low register (PTEL): Longword access to PTEL can be performed from
H'FF00 0004 in the P4 areca and H'1F00 0004 in area 7. PTEL is used to hold the physical page
number and page management information to be recorded in the UTLB by means of the LDTLB
instruction. The contents of this register are not changed unless a software directive is issued.

3. Page table entry assistance register (PTEA): Longword access to PTEA can be performed
from H'FF00 0034 in the P4 area and H'1F00 0034 in area 7. PTEL is used to store assistance bits
for PCMCIA access to the UTLB by means of the LDTLB instruction.

In the SH7750 Series, except the SH7750, when access to a PCMCIA interface area is performed
from the CPU with MMUCR.AT = 0, access is always performed using the values of the SA bit
and TC bit in this register. In the SH7750, it is not possible to access a PCMCIA interface area
with MMUCR.AT =0.

In the SH7750 series access to a PCMCIA interface area by the DMAC is always performed using
the DMAC’s CHCRn.SSAn, CHCRn.DSAn, CHCRn.STC, and CHCRn.DTC values. See the
DMAC section in hardware manual for details.

The contents of this register are not changed unless a software directive is issued.

4. Translation table base register (TTB): Longword access to TTB can be performed from
H'FF00 0008 in the P4 area and H'1F00 0008 in area 7. TTB is used, for example, to hold the base
address of the currently used page table. The contents of TTB are not changed unless a software
directive is issued. This register can be freely used by software.

5. TLB exception address register (TEA): Longword access to TEA can be performed from
H'FF00 000C in the P4 area and H'1F00 000C in area 7. After an MMU exception or address error
exception occurs, the virtual address at which the exception occurred is set in TEA by hardware.
The contents of this register can be changed by software.

6. MMU control register (MMUCR): MMUCR contains the following bits:
LRUI: Least recently used ITLB

URB: UTLB replace boundary

URC: UTLB replace counter

Rev. 6.00 Sep 13, 2006 page 26 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

SQMD: Store queue mode bit
SV: Single virtual mode bit
TI: TLB invalidate

AT: Address translation bit

Longword access to MMUCR can be performed from H'FF00 0010 in the P4 area and H'1F00
0010 in area 7. The individual bits perform MMU settings as shown below. Therefore, MMUCR
rewriting should be performed by a program in the P1 or P2 area. After MMUCR is updated, an
instruction that performs data access to the PO, P3, U0, or store queue area should be located at
least four instructions after the MMUCR update instruction. Also, a branch instruction to the PO,
P3, or UO area should be located at least eight instructions after the MMUCR update instruction.
MMUCR contents can be changed by software. The LRUI bits and URC bits may also be updated
by hardware.

e LRUI: The LRU (least recently used) method is used to decide the ITLB entry to be replaced
in the event of an ITLB miss. The entry to be purged from the ITLB can be confirmed using
the LRUI bits. LRUI is updated by means of the algorithm shown below. A dash in this table
means that updating is not performed.

LRUI
[5] [4] [3] [2] 1] [0]
When ITLB entry O is used 0 0 0 — — —
When ITLB entry 1 is used 1 — — 0 0 —
When ITLB entry 2 is used — 1 — 1 — 0
When ITLB entry 3 is used — — 1 — 1
Other than the above — — — — — —

When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated by
an ITLB miss. An asterisk in this table means “don’t care”.

LRUI
[51 (4] 31 [2] 11 [0]
ITLB entry 0 is updated 1 1 1 * * *
ITLB entry 1 is updated 0 * * 1 1 *
ITLB entry 2 is updated * 0 * 0 * 1
ITLB entry 3 is updated * * 0 * 0 0
Other than the above Setting prohibited

Rev. 6.00 Sep 13, 2006 page 27 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

Ensure that values for which “Setting prohibited” is indicated in the above table are not set at
the discretion of software. After a power-on or manual reset the LRUI bits are initialized to 0,
and therefore a prohibited setting is never made by a hardware update.

» URB: Bits that indicate the UTLB entry boundary at which replacement is to be performed.
Valid only when URB > 0.

* URC: Random counter for indicating the UTLB entry for which replacement is to be
performed with an LDTLB instruction. URC is incremented each time the UTLB is accessed.
When URB > 0, URC is reset to 0 when the condition URC = URB occurs. Also note that, ifa
value is written to URC by software which results in the condition URC > URB, incrementing
is first performed in excess of URB until URC = H'3F. URC is not incremented by an LDTLB
instruction.

* SQMD: Store queue mode bit. Specifies the right of access to the store queues.
0: User/privileged access possible

1: Privileged access possible (address error exception in case of user access)

* SV: Bit that switches between single virtual memory mode and multiple virtual memory mode.
0: Multiple virtual memory mode
1: Single virtual memory mode
When this bit is changed, ensure that 1 is also written to the TI bit.

e TI: Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB bits. This bit always
returns 0 when read.

* AT: Specifies MMU enabling or disabling.
0: MMU disabled
1: MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that does not
use the MMU, therefore, the AT bit should be cleared to 0.

33 Memory Space

3.3.1 Physical Memory Space

The SH-4 supports a 32-bit physical memory space, and can access a 4-Gbyte address space.
When the MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space is this
physical memory space. The physical memory space is divided into a number of areas, as shown
in figure 3.3. The physical memory space is permanently mapped onto 29-bit external memory

Rev. 6.00 Sep 13, 2006 page 28 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

space; this correspondence can be implemented by ignoring the upper 3 bits of the physical
memory space addresses. In privileged mode, the 4-Gbyte space from the PO area to the P4 area
can be accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. Accessing the P1
to P4 areas (except the store queue area) in user mode will cause an address error.

External
memory space
H'0000 0000 Area 0 H'0000 0000
Area 1
Area 2
Area 3
PO area Area 4 U0 area
Cacheable Area 5 Cacheable
Area 6
Area 7
H'8000 0000 H'8000 0000
P1 area
Cacheable
H'A000 0000 P2 area
Non-cacheable dd
. Address error
H'C000 0000 P3 area
Cacheable
H'E000 0000 ; | H'E000 0000
______ P4 aLea b| Store queue area H'EA00 0000
H'FEFF FFEF Non-cacheable Address error H'EEEFE FFEE

Privileged mode

User mode

Figure 3.3 Physical Memory Space (MMUCR.AT = 0)
In the SH7750, it is not possible to access a PCMCIA interface area from the CPU.

In the SH7750S, SH7750R, SH7751, and SH7751R, when access to a PCMCIA interface area is
performed from the CPU, the SA and TC values set in the PTEA register are always used for the
access.

Access to a PCMCIA interface area by the DMAC is always performed using the DMAC’s
CHCRn.SSAn and CHCRn.STCn values. See the DMAC section for details.

PO, P1, P3, U0 Areas: The PO, P1, P3, and U0 areas can be accessed using the cache. Whether or
not the cache is used is determined by the cache control register (CCR). When the cache is used,
with the exception of the P1 area, switching between the copy-back method and the write-through
method for write accesses is specified by the CCR.WT bit. For the P1 area, switching is specified
by the CCR.CB bit. Zeroizing the upper 3 bits of an address in these areas gives the corresponding

Rev. 6.00 Sep 13, 2006 page 29 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

external memory space address. However, since area 7 in the external memory space is a reserved
area, a reserved area also appears in these areas.

P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upper 3
bits of an address gives the corresponding external memory space address. However, since area 7
in the external memory space is a reserved area, a reserved area also appears in this area.

P4 Area: The P4 area is mapped onto SH-4 on-chip I/O channels. This area cannot be accessed
using the cache. The P4 area is shown in detail in figure 3.4.

H'E000 0000
Store queue

H'E400 0000

Reserved area
H'FO00 0000 Instruction cache address array
H'F100 0000 Instruction cache data array
H'F200 0000 Instruction TLB address array
H'F300 0000 Instruction TLB data arrays 1 and 2
HF400 0000 Operand cache address array
H'FS00 0000 Operand cache data array
H'F600 0000 Unified TLB address array
HF700 0000 Unified TLB data arrays 1 and 2
H'F800 0000

Reserved area
H'FC00 0000

Control register area

H'FFFF FFFF

Figure 3.4 P4 Area

The area from H'E000 0000 to H'E3FF FFFF comprises addresses for accessing the store queues
(SQs). When the MMU is disabled (MMUCR.AT = 0), the SQ access right is specified by the
MMUCR.SQMD bit. For details, see section 4.6, Store Queues.

Rev. 6.00 Sep 13, 2006 page 30 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

The area from H'FO00 0000 to H'FOFF FFFF is used for direct access to the instruction cache
address array. For details, see section 4.5.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache data
array. For details, see section 4.5.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB
address array. For details, see section 3.7.1, ITLB Address Array.

The area from H'F300 0000 to H'F3FF FFFF is used for direct access to instruction TLB data
arrays 1 and 2. For details, see sections 3.7.2, ITLB Data Array 1, and 3.7.3, ITLB Data Array 2.

The area from H'F400 0000 to H'FAFF FFFF is used for direct access to the operand cache address
array. For details, see section 4.5.3, OC Address Array.

The area from H'F500 0000 to H'FSFF FFFF is used for direct access to the operand cache data
array. For details, see section 4.5.4, OC Data Array.

The area from H'F600 0000 to H'F6FF FFFF is used for direct access to the unified TLB address
array. For details, see section 3.7.4, UTLB Address Array.

The area from H'F700 0000 to H'F7FF FFFF is used for direct access to unified TLB data arrays 1
and 2. For details, see sections 3.7.5, UTLB Data Array 1, and 3.7.6, UTLB Data Array 2.

The area from H'FC00 0000 to H'FFFF FFFF is the control register area.

3.3.2 External Memory Space

The SH-4 supports a 29-bit external memory space. The external memory space is divided into
eight areas as shown in figure 3.5. Areas 0 to 6 relate to memory, such as SRAM, synchronous
DRAM, DRAM, and PCMCIA. Area 7 is a reserved area. For details, see section 13, Bus State
Controller (BSC), in the Hardware Manual.

Rev. 6.00 Sep 13, 2006 page 31 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

H'0000 0000 Area 0
H'0400 0000 Area 1
H'0800 0000 Area 2
H'0C00 0000 Area 3
H'1000 0000 Area 4
H'1400 0000 Area 5
H'1800 0000 Area 6
:1;82 22?:?: Area 7 (reserved area)

Figure 3.5 External Memory Space

3.33 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the PO, P3, and U0 areas of the physical memory space in
the SH-4 to be mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page
units. By using an 8-bit address space identifier, the PO, U0, P3, and store queue areas can be
increased to a maximum of 256. This is called the virtual memory space. Mapping from virtual
memory space to 29-bit external memory space is carried out using the TLB. Only when area 7 in
external memory space is accessed using virtual memory space, addresses H'1C00 0000 to H'I FFF
FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area control
register area in the physical memory space. Virtual memory space is illustrated in figure 3.6.

Rev. 6.00 Sep 13, 2006 page 32 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

256 = R External 256 ==
ﬁ *._ memory space //'
Area 0
Area 1
Area 2
PO area Area 3 U0 area
Cacheable Area 4
Address translation possible Cachea_ble .
Area 5 Address translation possible
Area 6
Area 7
H- "6 s
P1area i
Cacheable ," /
Address translation not possible / ;'
P2 area !
Non-cacheable ,,’
Address translation not possible 0! Address error
P3 area
Cacheable
Address translation possible 1
___________ Pdarea. ... _..__| Store queue area
Non-cacheable
Address translation not possible Address error
Privileged mode User mode

Figure 3.6 Virtual Memory Space (MMUCR.AT =1)

When areas PO, P3, and U0 are mapped onto PCMCIA interface areas by the TLB in the cache-
enabled state, it is necessary to specify 1 for the WT bit of that page, or to clear the C bit to 0.
Access is performed using the SA and TC values set for individual TLB pages.

It is not possible to access a PCMCIA interface area from the CPU by access to area P1, P2, or P4.

Access to a PCMCIA interface area by the DMAC is always performed using the DMAC’s
CHCRn.SSAn and CHCRn.STCn values. See the DMAC section for details.

PO, P3, U0 Areas: The PO area (excluding addresses H'7C00 0000 to H'7FFF FFFF), P3 area, and
U0 area allow access using the cache and address translation using the TLB. These areas can be
mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. When
CCR is in the cache-enabled state and the TLB enable bit (C bit) is 1, accesses can be performed
using the cache. In write accesses to the cache, switching between the copy-back method and the

write-through method is indicated by the TLB write-through bit (WT bit), and is specified in page
units.

Rev. 6.00 Sep 13, 2006 page 33 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

Only when the PO, P3, and UO areas are mapped onto external memory space by means of the
TLB, addresses H'1C00 0000 to H'IFFF FFFF of area 7 in external memory space are allocated to
the control register area. This enables control registers to be accessed from the U0 area in user
mode. In this case, the C bit for the corresponding page must be cleared to 0.

P1, P2, P4 Areas: Address translation using the TLB cannot be performed for the P1, P2, or P4
area (except for the store queue area). Accesses to these areas are the same as for physical memory
space. The store queue area can be mapped onto any external memory space by the MMU.
However, operation in the case of an exception differs from that for normal PO, U0, and P3 spaces.
For details, see section 4.6, Store Queues.

3.34 On-Chip RAM Space

In the SH-4, half (8 kbytes) of the instruction cache (16 kbytes) can be used as on-chip RAM. This
can be done by changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), PO area addresses H'7C00
0000 to H'7FFF FFFF are an on-chip RAM area. Data accesses (byte/word/longword/quadword)
can be used in this area. This area can only be used in RAM mode.

3.35 Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and
translation to physical addresses is carried out in these page units. The address translation table in
external memory contains the physical addresses corresponding to virtual addresses and additional
information such as memory protection codes. Fast address translation is achieved by caching the
contents of the address translation table located in external memory into the TLB. In the SH-4,
basically, the ITLB is used for instruction accesses and the UTLB for data accesses. In the event
of an access to an area other than the P4 area, the accessed virtual address is translated to a
physical address. If the virtual address belongs to the P1 or P2 area, the physical address is
uniquely determined without accessing the TLB. If the virtual address belongs to the PO, U0, or P3
area, the TLB is searched using the virtual address, and if the virtual address is recorded in the
TLB, a TLB hit is made and the corresponding physical address is read from the TLB. If the
accessed virtual address is not recorded in the TLB, a TLB miss exception is generated and
processing switches to the TLB miss exception routine. In the TLB miss exception routine, the
address translation table in external memory is searched, and the corresponding physical address
and page management information are recorded in the TLB. After the return from the exception
handling routine, the instruction which caused the TLB miss exception is re-executed.

Rev. 6.00 Sep 13, 2006 page 34 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory, either
of which can be selected with the MMUCR.SV bit. In the single virtual memory system, a number
of processes run simultaneously, using virtual address space on an exclusive basis, and the
physical address corresponding to a particular virtual address is uniquely determined. In the
multiple virtual memory system, a number of processes run while sharing the virtual address
space, and a particular virtual address may be translated into different physical addresses
depending on the process. The only difference between the single virtual memory and multiple
virtual memory systems in terms of operation is in the TLB address comparison method (see
section 3.4.3, Address Translation Method).

3.3.7 Address Space Identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used to distinguish
between processes running simultaneously while sharing the virtual address space. Software can
set the ASID of the currently executing process in PTEH in the MMU. The TLB does not have to
be purged when processes are switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes running
simultaneously while using the virtual memory space on an exclusive basis.

Notes: 1. In single virtual memory mode of the SH7751 Series, entries with the same virtual
page number (VPN) but different ASIDs cannot be set in the TLB simultaneously.

2. In single virtual memory mode of the SH7751, if the UTLB contains address
translation information including an ITLB miss address with a different ASID and
unshared state (SH bit is 0), SH7751 may hang up or an instruction TLB multiple hit
exception may occur during hardware ITLB miss handling (see section 3.5.4, Hardware
ITLB Miss Handling). To avoid this, when switching the ASID values (PTEH and
ASID) of the current processing, purge the UTLB, or manage the changes of the
program instruction addresses in user mode so that no instruction is executed in an
address area (including overrun prefetch of instruction) that is registered in the UTLB
with a different ASID and unshared address translation information. Note that this
restriction does not apply to the SH7750, SH7750S, SH7750R, SH7751R, and
SH7760.

Rev. 6.00 Sep 13, 2006 page 35 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

34 TLB Functions

34.1 Unified TLB (UTLB) Configuration
The unified TLB (UTLB) is so called because of its use for the following two purposes:

1. To translate a virtual address to a physical address in a data access

2. As atable of address translation information to be recorded in the instruction TLB in the event
of an ITLB miss

Information in the address translation table located in external memory is cached into the UTLB.
The address translation table contains virtual page numbers and address space identifiers, and
corresponding physical page numbers and page management information. Figure 3.7 shows the
overall configuration of the UTLB. The UTLB consists of 64 fully-associative type entries. Figure
3.8 shows the relationship between the address format and page size.

Entry0 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10]|SZ [1:0] |SH|C|PR[1:0]| D|WT|SA [2:0]| TC
Entry 1 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10]|SZ[1:0]|SH|C|PR [1:0]| D|WT|SA[2:0]|TC
Entry2 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10]|SZ[1:0] |SH|C|PR [1:0]| D|WT|SA[2:0]|TC

Entry 63 |ASID [7:0] | V.PN [31:10] |v | |PPN [28:10] | Sz [L:0] | sr.| | c | PR [L:0] | D | WT| SA [2:0] | TC ‘

Figure 3.7 UTLB Configuration

Rev. 6.00 Sep 13, 2006 page 36 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

¢ 1-Kbyte page

Virtual address Physical address
31 10 9 0 28 10 9 0

VPN Offset —) PPN Offset

« 4-Kbyte page

Virtual address Physical address
31 12 11 0 28 12 11 0

VPN Offset —) PPN Offset

« 64-Kbyte page

Virtual address Physical address
31 16 15 0 28 16 15 0

VPN Offset — PPN Offset

¢ 1-Mbyte page
Virtual address Physical address
31 2019 0 28 2019 0

VPN Offset —) PPN Offset

Figure 3.8 Relationship between Page Size and Address Format

* VPN: Virtual page number
For 1-Kbyte page: upper 22 bits of virtual address
For 4-Kbyte page: upper 20 bits of virtual address
For 64-Kbyte page: upper 16 bits of virtual address
For 1-Mbyte page: upper 12 bits of virtual address

* ASID: Address space identifier
Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the SH
bit is 0, this identifier is compared with the ASID in PTEH when address comparison is
performed.

Rev. 6.00 Sep 13, 2006 page 37 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

* SH: Share status bit
When 0, pages are not shared by processes.
When 1, pages are shared by processes.

* SZ: Page size bits
Specify the page size.
00: 1-Kbyte page
01: 4-Kbyte page
10: 64-Kbyte page
11: 1-Mbyte page

* V: Validity bit
Indicates whether the entry is valid.
0: Invalid
1: Valid
Cleared to 0 by a power-on reset.

Not affected by a manual reset.

* PPN: Physical page number
Upper 22 bits of the physical address.
With a 1-Kbyte page, PPN bits [28:10] are valid.
With a 4-Kbyte page, PPN bits [28:12] are valid.
With a 64-Kbyte page, PPN bits [28:16] are valid.
With a 1-Mbyte page, PPN bits [28:20] are valid.
The synonym problem must be taken into account when setting the PPN (see section 3.5.5,
Avoiding Synonym Problems).

* PR: Protection key data
2-bit data expressing the page access right as a code.
00: Can be read only, in privileged mode
01: Can be read and written in privileged mode
10: Can be read only, in privileged or user mode
11: Can be read and written in privileged mode or user mode

Rev. 6.00 Sep 13, 2006 page 38 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

When control register space is mapped, this bit must be cleared to 0.

When performing PCMCIA space mapping in the cache enabled state, either clear this bit to 0
or set the WT bitto 1.

D: Dirty bit
Indicates whether a write has been performed to a page.
0: Write has not been performed

1: Write has been performed

WT: Write-through bit
Specifies the cache write mode.
0: Copy-back mode

1: Write-through mode

When performing PCMCIA space mapping in the cache enabled state, either set this bit to 1 or
clear the C bit to 0.

SA: Space attribute bits

Valid only when the page is mapped onto PCMCIA connected to area 5 or 6.
000: Undefined

001: Variable-size 1/O space (base size according to IOIS16 signal)

010: 8-bit I/O space

011: 16-bit I/O space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-bit attribute memory space

111: 16-bit attribute memory space

TC: Timing control bit

Used to select wait control register bits in the bus control unit for areas 5 and 6.

0: WCR2 (A5W2-A5W0) and PCR (ASPCW1-A5PCWO0, ASTED2-A5TEDO, ASTEH2-
ASTEHO) are used

1: WCR2 (A6W2-A6W0) and PCR (A6PCW1-A6PCW0, A6GTED2-A6TEDO, AGTEH2—
A6TEHO0) are used

Rev. 6.00 Sep 13, 2006 page 39 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

3.4.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access.
Information in the address translation table located in the UTLB is cached into the ITLB. Figure
3.9 shows the overall configuration of the ITLB. The ITLB consists of 4 fully-associative type
entries.

Entry O |ASID [7:0] | VPN [31:10]
Entry 1 |ASID [7:0] | VPN [31:10]
Entry 2 | ASID [7:0] | VPN [31:10]
Entry 3 |ASID [7:0] | VPN [31:10]

PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH

PR|SA[2:0]|TC
PR|SA[2:0]|TC
PR|SA[2:0]|TC
PR|SA[2:0]|TC

O|l0O[0|0

\Y
\Y
\Y
\Y

Notes: 1. D and WT bits are not supported.
2. There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.

Figure 3.9 ITLB Configuration

343 Address Translation Method

Figures 3.10 and 3.11 show flowcharts of memory accesses using the UTLB and ITLB.

Rev. 6.00 Sep 13, 2006 page 40 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

< Data access to virtual address (VA) >

VA is VAis VAis
inP4 area | in P2 area in P1 area

f!
On-chip 1/0 access

VAis in PO, UO,
or P3 area

VPNs match
and ASIDs match and
v=1

VPNs match No

andV=1

Data TLB miss
exception

0 (User)

Data TLB protection
Data TLB protection violation exception

violation exception

Cache access
in copy-back mode

Cache access

in write-through mode ¥

>I Memory access

(Non-cacheable)

Figure 3.10 Flowchart of Memory Access Using UTLB

Rev. 6.00 Sep 13, 2006 page 41 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

(Instruction access to virtual address (VA) >

VAis VAis VAis
inP4 area | in P2 area in P1 area

VAis in PO, UO,
or P3 area

Access prohibited 0 CCR.

VPNs match
and ASIDs match and
v=1

VPNs match No

andV=1

Hardware ITLB
miss handling

Only one
entry matches

Record in ITLB

Instruction TLB
miss exception

1 (Privileged)

Instruction TLB
multiple hit exception

c=1
and CCR.ICE=1

Instruction TLB protection
violation exception

>I Cache access

>I Memory access

(Non-cacheable)

Figure 3.11 Flowchart of Memory Access Using ITLB

Rev. 6.00 Sep 13, 2006 page 42 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

3.5 MMU Functions

3.5.1 MMU Hardware Management
The SH-4 supports the following MMU functions.

1. The MMU decodes the virtual address to be accessed by software, and performs address
translation by controlling the UTLB/ITLB in accordance with the MMUCR settings.

2. The MMU determines the cache access status on the basis of the page management
information read during address translation (C, WT, SA, and TC bits).

3. If address translation cannot be performed normally in a data access or instruction access, the
MMU notifies software by means of an MMU exception.

4. If address translation information is not recorded in the ITLB in an instruction access, the
MMU searches the UTLB, and if the necessary address translation information is recorded in
the UTLB, the MMU copies this information into the ITLB in accordance with
MMUCR.LRUI.

3.5.2 MMU Software Management
Software processing for the MMU consists of the following:

1. Setting of MMU-related registers. Some registers are also partially updated by hardware
automatically.

2. Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB
entries: by using the LDTLB instruction, or by writing directly to the memory-mapped UTLB.
ITLB entries can only be recorded by writing directly to the memory-mapped ITLB. For
deleting or reading UTLB/ITLB entries, it is possible to access the memory-mapped
UTLB/ITLB.

3. MMU exception handling. When an MMU exception occurs, processing is performed based on
information set by hardware.

353 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB
instruction is issued, the SH-4 copies the contents of PTEH, PTEL, and PTEA to the UTLB entry
indicated by MMUCR.URC. ITLB entries are not updated by the LDTLB instruction, and
therefore address translation information purged from the UTLB entry may still remain in the
ITLB entry. As the LDTLB instruction changes address translation information, ensure that it is

Rev. 6.00 Sep 13, 2006 page 43 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

issued by a program in the P1 or P2 area. The operation of the LDTLB instruction is shown in
figure 3.12.

MMUCR
31 26 25 24 23 181716 15 1098 7 3210
LRUI —_ URB —_ URC \S —_ TIH—|AT]
——\
Entry specification SQMD
PTEL
31 2928 109876543210
— PPN |—|V|sZ PR |sz|c|D[sHwT
PTEH
31 1098 7 0
VPN — ASID PTEA
31 432 0
— Tc| sa
Y III

Entry 0 |ASID[7:0] | VPN[31:10] | V| |PPN[28:10] |SZ[1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entry1 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10] [SZ[1:0] |SH|C [PR[1:0] | D | WT|SA[2:0] | TC

Entry2 |ASID[7:0] | VPN[31:10] | V| |PPN[28:10] |SZ[1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entry 63 |ASID [7:0] |VPN [31:10] |v | |PPN [28:10] |sz [1:0] |SH| C |PR [1:0] | D |WT| SA [2:0] |TC|

UTLB

Figure 3.12 Operation of LDTLB Instruction

354 Hardware ITLB Miss Handling

In an instruction access, the SH-4 searches the ITLB. If it cannot find the necessary address
translation information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware, and
if the necessary address translation information is present, it is recorded in the ITLB. This
procedure is known as hardware ITLB miss handling. If the necessary address translation

Rev. 6.00 Sep 13, 2006 page 44 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

information is not found in the UTLB search, an instruction TLB miss exception is generated and
processing passes to software.

3.5.5 Avoiding Synonym Problems

When 1- or 4-Kbyte pages are recorded in TLB entries, a synonym problem may arise. The
problem is that, when a number of virtual addresses are mapped onto a single physical address, the
same physical address data is recorded in a number of cache entries, and it becomes impossible to
guarantee data integrity. This problem does not occur with the instruction TLB or instruction
cache . In the SH-4, entry specification is performed using bits [13:5] of the virtual address in
order to achieve fast operand cache operation. However, bits [13:10] of the virtual address in the
case of a 1-Kbyte page, and bits [13:12] of the virtual address in the case of a 4-Kbyte page, are
subject to address translation. As a result, bits [13:10] of the physical address after translation may
differ from bits [13:10] of the virtual address.

Consequently, the following restrictions apply to the recording of address translation information
in UTLB entries.

1. When address translation information whereby a number of 1-Kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN [13:10]
values are the same.

2. When address translation information whereby a number of 4-Kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN [13:12]
values are the same.

3. Do not use 1-Kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

4. Do not use 4-Kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

The above restrictions apply only when performing accesses using the cache. When cache index
mode is used, VPN [25] is used for the entry address instead of VPN [13], and therefore the above
restrictions apply to VPN [25].

Note: When multiple items of address translation information use the same physical memory to
provide for future SuperH RISC engine family expansion, ensure that the VPN [20:10]
values are the same. Also, do not use the same physical address for address translation
information of different page sizes.

Rev. 6.00 Sep 13, 2006 page 45 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

3.6 MMU Exceptions

There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB
miss exception, instruction TLB protection violation exception, data TLB multiple hit exception,
data TLB miss exception, data TLB protection violation exception, and initial page write
exception. Refer to figures 3.10 and 3.11 for the conditions under which each of these exceptions
occurs.

3.6.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the
virtual address to which an instruction access has been made. If multiple hits occur when the
UTLB is searched by hardware in hardware ITLB miss handling, a data TLB multiple hit
exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and cache coherency is
not guaranteed.

Hardware Processing: In the event of an instruction TLB multiple hit exception, hardware carries
out the following processing:

1. Sets the virtual address at which the exception occurred in TEA.
2. Sets exception code H'140 in EXPEVT.
3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The ITLB entries which caused the multiple hit exception
are checked in the reset handling routine. This exception is intended for use in program
debugging, and should not normally be generated.

3.6.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual
address to which an instruction access is made is not found in the UTLB entries by the hardware
ITLB miss handling procedure. The instruction TLB miss exception processing carried out by
hardware and software is shown below. This is the same as the processing for a data TLB miss
exception.

Rev. 6.00 Sep 13, 2006 page 46 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

Hardware Processing: In the event of an instruction TLB miss exception, hardware carries out
the following processing:

A e S

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3.
4

Sets exception code H'040 in EXPEVT.

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bit in SR to 1.

Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the instruction TLB miss exception handling routine.

Software Processing (Instruction TLB Miss Exception Handling Routine): Software is
responsible for searching the external memory page table and assigning the necessary page table
entry. Software should carry out the following processing in order to find and assign the necessary
page table entry.

1.

Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values of the
SA and TC bits should be written to PTEA.

When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the TLB.
Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

Rev. 6.00 Sep 13, 2006 page 47 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry
contains address translation information matching the virtual address to which an instruction
access is made, the actual access type is not permitted by the access right specified by the PR bit.
The instruction TLB protection violation exception processing carried out by hardware and
software is shown below.

Hardware Processing: In the event of an instruction TLB protection violation exception,
hardware carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0AO in EXPEVT.
4

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bit in SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the instruction TLB protection violation exception handling routine.

A e I

Software Processing (Instruction TLB Protection Violation Exception Handling Routine):
Resolve the instruction TLB protection violation, execute the exception handling return instruction
(RTE), terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

3.64 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual
address to which a data access has been made. A data TLB multiple hit exception is also generated
if multiple hits occur when the UTLB is searched in hardware ITLB miss handling.

When a data TLB multiple hit exception occurs a reset is executed, and cache coherency is not
guaranteed. The contents of PPN in the UTLB prior to the exception may also be corrupted.

Rev. 6.00 Sep 13, 2006 page 48 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

Hardware Processing: In the event of a data TLB multiple hit exception, hardware carries out the
following processing:

1. Sets the virtual address at which the exception occurred in TEA.
2. Sets exception code H'140 in EXPEVT.
3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The UTLB entries which caused the multiple hit exception
are checked in the reset handling routine. This exception is intended for use in program
debugging, and should not normally be generated.

3.6.5 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address to
which a data access is made is not found in the UTLB entries. The data TLB miss exception
processing carried out by hardware and software is shown below.

Hardware Processing: In the event of a data TLB miss exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in the case of a read, or H'060 in the case of a write, in EXPEVT
(OCBP, OCBWRB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bit in SR to 1.

Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the data TLB miss exception handling routine.

A e IS

Software Processing (Data TLB Miss Exception Handling Routine): Software is responsible
for searching the external memory page table and assigning the necessary page table entry.
Software should carry out the following processing in order to find and assign the necessary page
table entry.

Rev. 6.00 Sep 13, 2006 page 49 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

1.

Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values of the
SA and TC bits should be written to PTEA.

When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

3.6.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains
address translation information matching the virtual address to which a data access is made, the
actual access type is not permitted by the access right specified by the PR bit. The data TLB
protection violation exception processing carried out by hardware and software is shown below.

Hardware Processing: In the event of a data TLB protection violation exception, hardware
carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

O xR =N A

Sets the virtual address at which the exception occurred in TEA.

Sets exception code H'0AO in the case of a read, or H'0CO in the case of a write, in EXPEVT
(OCBP, OCBWB: read; OCBI, MOVCA.L: write).

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bit in SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the data TLB protection violation exception handling routine.

Rev. 6.00 Sep 13, 2006 page 50 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

Software Processing (Data TLB Protection Violation Exception Handling Routine): Resolve
the data TLB protection violation, execute the exception handling return instruction (RTE),
terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

3.6.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is 0 even though a UTLB entry contains
address translation information matching the virtual address to which a data access (write) is
made, and the access is permitted. The initial page write exception processing carried out by
hardware and software is shown below.

Hardware Processing: In the event of an initial page write exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'080 in EXPEVT.
4

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bit in SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the initial page write exception handling routine.

A e I

Rev. 6.00 Sep 13, 2006 page 51 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

Software Processing (Initial Page Write Exception Handling Routine): The following
processing should be carried out as the responsibility of software:

1. Retrieve the necessary page table entry from external memory.
2. Write 1 to the D bit in the external memory page table entry.

3. Write to PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bits in the page table
entry recorded in external memory. If necessary, the values of the SA and TC bits should be
written to PTEA.

4. When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

5. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

6. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration

To enable the ITLB and UTLB to be managed by software, their contents can be read and written
by a P2 area program with a MOV instruction in privileged mode. Operation is not guaranteed if
access is made from a program in another area. A branch to an area other than the P2 area should
be made at least 8 instructions after this MOV instruction. The ITLB and UTLB are allocated to
the P4 area in physical memory space. VPN, V, and ASID in the ITLB can be accessed as an
address array, PPN, V, SZ, PR, C, and SH as data array 1, and SA and TC as data array 2. VPN,
D, V, and ASID in the UTLB can be accessed as an address array, PPN, V, SZ, PR, C, D, WT, and
SH as data array 1, and SA and TC as data array 2. V and D can be accessed from both the address
array side and the data array side. Only longword access is possible. Instruction fetches cannot be
performed in these areas. For reserved bits, a write value of 0 should be specified; their read value
is undefined.

Rev. 6.00 Sep 13, 2006 page 52 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

3.7.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to HF2FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, V, and ASID to be written to the address array are
specified in the data field.

In the address field, bits [31:24] have the value H'F2 indicating the ITLB address array, and the
entry is selected by bits [9:8]. As longword access is used, 0 should be specified for address field
bits [1:0].

In the data field, VPN is indicated by bits [31:10], V by bit [8], and ASID by bits [7:0].
The following two kinds of operation can be used on the ITLB address array:

1. ITLB address array read

VPN, V, and ASID are read into the data field from the ITLB entry corresponding to the entry
set in the address field.

2. ITLB address array write

VPN, V, and ASID specified in the data field are written to the ITLB entry corresponding to
the entry set in the address field.

31 2423 109 8 7 0
Address field [1|1[1]1[0[0]2[0] «-vooerveremeemmmii E | coeeeeniieieenne
31 109 8 7 0
Data field VPN -V ASID
Legend:

VPN: Virtual page number ASID: Address space identifier
V: Validity bit --- . Reserved bits (0 write value, undefined
E: Entry read value)

Figure 3.13 Memory-Mapped ITLB Address Array

Rev. 6.00 Sep 13, 2006 page 53 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

3.7.2 ITLB Data Array 1

ITLB data array 1 is allocated to addresses H'F300 0000 to HF37F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, and SH to be written to the data array are
specified in the data field.

In the address field, bits [31:23] have the value H'F30 indicating ITLB data array 1, and the entry
is selected by bits [9:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bit
[6], C by bit [3], and SH by bit [1].

The following two kinds of operation can be used on ITLB data array 1:

1. ITLB data array 1 read

PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry corresponding to
the entry set in the address field.

2. ITLB data array 1 write

PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

31 2423 109 8 7 0
Address field [1[1]2]2[0]0[1]2]0] «-ovrererrommmmeii E | cooieviiiiis
31302928 109876543210
Data field | PPN ...V ..l cl-] |-
| / |
Legend: PL\S/Z S‘H
PPN: Physical page number PR: Protection key data
V: Validity bit C: Cacheability bit
E: Entry SH: Share status bit
SZ: Page size bits ---- 1 Reserved bits (0 write value, undefined
read value)

Figure 3.14 Memory-Mapped ITLB Data Array 1

Rev. 6.00 Sep 13, 2006 page 54 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

3.7.3 ITLB Data Array 2

ITLB data array 2 is allocated to addresses H'F380 0000 to HF3FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the data
field.

In the address field, bits [31:23] have the value H'F38 indicating ITLB data array 2, and the entry
is selected by bits [9:8].

In the data field, SA is indicated by bits [2:0], and TC by bit [3].
The following two kinds of operation can be used on ITLB data array 2:

1. ITLB data array 2 read

SA and TC are read into the data field from the ITLB entry corresponding to the entry set in
the address field.

2. ITLB data array 2 write

SA and TC specified in the data field are written to the ITLB entry corresponding to the entry
set in the address field.

31 2423 10987 0
Addressfield |11 2[1]0]0]2[1|1] «vroerreerrrmemmmmmeeiiiieenen, E | coeeereiiiiiiiiien.
31 4320
Data field | «eeeeneeeiee SA
|
\
TC
Legend:
TC: Timing control bit SA: Space attribute bits
E: Entry ----: Reserved bits (0 write value, undefined read value)

Figure 3.15 Memory-Mapped ITLB Data Array 2

3.7.4 UTLB Address Array

The UTLB address array is allocated to addresses H'F600 0000 to HF6FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, D, V, and ASID to be written to the address array are
specified in the data field.

Rev. 6.00 Sep 13, 2006 page 55 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

In the address field, bits [31:24] have the value H'F6 indicating the UTLB address array, and the
entry is selected by bits [13:8]. The address array bit [7] association bit (A bit) specifies whether
or not address comparison is performed when writing to the UTLB address array.

In the data field, VPN is indicated by bits [31:10], D by bit [9], V by bit [8], and ASID by bits
[7:0].

The following three kinds of operation can be used on the UTLB address array:

1.

UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry corresponding
to the entry set in the address field. The A bit in the address field should be cleared to 0.

UTLB address array write (associative)

When a write is performed with the A bit in the address field set to 1, comparison of all the
UTLB entries is carried out using the VPN specified in the data field and PTEH.ASID. The
usual address comparison rules are followed, but if a UTLB miss occurs, the result is no
operation, and an exception is not generated. If the comparison identifies a UTLB entry
corresponding to the VPN specified in the data field, D and V specified in the data field are
written to that entry. If there is more than one matching entry, a data TLB multiple hit
exception results. This associative operation is simultaneously carried out on the ITLB, and if a
matching entry is found in the ITLB, V is written to that entry. Even if the UTLB comparison
results in no operation, a write to the ITLB side only is performed as long as there is an ITLB
match. If there is a match in both the UTLB and ITLB, the UTLB information is also written to
the ITLB.

31 2423 1413 8 7 210
Addressfield |11 1[2[0[2[2[0] -veevermerememmenininns E Al e
31302928 109 8 7 0
Data field VPN D|V ASID
Legend:
VPN: Virtual page number ASID: Address space identifier
V: Validity bit A: Association bit
E: Entry ----: Reserved bits (0 write value, undefined
D: Dirty bit read value)

Figure 3.16 Memory-Mapped UTLB Address Array

Rev. 6.00 Sep 13, 2006 page 56 of 424
REJ09B0318-0600

RENESAS

Section 3 Memory Management Unit (MMU)

3.7.5 UTLB Data Array 1

UTLB data array 1 is allocated to addresses HF700 0000 to HF77F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, D, SH, and WT to be written to the data
array are specified in the data field.

In the address field, bits [31:23] have the value H'F70 indicating UTLB data array 1, and the entry
is selected by bits [13:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bits
[6:5], C by bit [3], D by bit [2], SH by bit [1], and WT by bit [0].

The following two kinds of operation can be used on UTLB data array 1:

1. UTLB data array 1 read

PPN, V, SZ, PR, C, D, SH, and WT are read into the data field from the UTLB entry
corresponding to the entry set in the address field.

2. UTLB data array 1 write

PPN, V, SZ, PR, C, D, SH, and WT specified in the data field are written to the UTLB entry
corresponding to the entry set in the address field.

31 2423 1413 8 7 0
Address field |1 {1120 2[1]1]0] «--evereeeremeeremeeiennnn E | oo
31302928 109876543210
Data field | PPN BV, PR clp
/ |
PPN: Physical page number PR: Protection key data

V: Validity bit C: Cacheability bit

E: Entry SH: Share status bit

SZ: Page size bits WT: Write-through bit
D: Dirty bit -...: Reserved bits (0 write value, undefined

read value)

Figure 3.17 Memory-Mapped UTLB Data Array 1

Rev. 6.00 Sep 13, 2006 page 57 of 424
REJ09B0318-0600
RENESAS

Section 3 Memory Management Unit (MMU)

3.7.6 UTLB Data Array 2

UTLB data array 2 is allocated to addresses HF780 0000 to HF7FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is

specified in the address field, and SA and TC to be written to data array 2 are specified in the data
field.

In the address field, bits [31:23] have the value H'F78 indicating UTLB data array 2, and the entry
is selected by bits [13:8].

In the data field, TC is indicated by bit [3], and SA by bits [2:0].
The following two kinds of operation can be used on UTLB data array 2:

1. UTLB data array 2 read

SA and TC are read into the data field from the UTLB entry corresponding to the entry set in
the address field.

2. UTLB data array 2 write

SA and TC specified in the data field are written to the UTLB entry corresponding to the entry
set in the address field.

31 2423 14 13 8 7 0
Address field [1 12210l lalL] «cvoveerereveimiiinnnn. E | e
31 432 0
Data field | ..o SA
Legend: TC
TC: Timing control bit SA: Space attribute bits
E: Entry ----: Reserved bits (0 write value, undefined read
value)

Figure 3.18 Memory-Mapped UTLB Data Array 2

Rev. 6.00 Sep 13, 2006 page 58 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

Section 4 Caches

4.1 Overview

4.1.1 Features

The SH-4 has an on-chip 8-Kbyte instruction cache (IC) for instructions and 16-Kbyte operand
cache (OC) for data. Half of the memory of the operand cache (8 kbytes) can also be used as on-
chip RAM. The features of these caches are summarized in table 4.1 and 4.2.

After a power-on reset or manual reset, the initial value of the EMODE bit is 0. The SH-4 supports
two 32-byte store queues (SQs) for performing high-speed writes to external memory. SQ features
are shown in table 4.3.

Table 4.1 Cache Features (SH7750, SH7750S, SH7751)

Item Instruction Cache Operand Cache

Capacity 8-Kbyte cache 16-Kbyte cache or 8-Kbyte cache +
8-Kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Entries 256 512

Write method Copy-back/write-through selectable

Table 4.2 Cache Features (SH7750R, SH7751R, SH7760)

Item Instruction Cache Operand Cache
Capacity 16-Kbyte cache 32-Kbyte cache or 16-Kbyte cache +
16-Kbyte RAM

Type 2-way set-associative 2-way set-associative

Line size 32 bytes 32 bytes

Entries 256 entry/way 512 entry/way

Write method Copy-back/write-through selectable

Replace method LRU (Least Recently Used) LRU (Least Recently Used)
algorithm algorithm

Rev. 6.00 Sep 13, 2006 page 59 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

Table 4.3 Store Queues Features

Item Store Queues

Capacity 2 x 32 bytes

Addresses H'E000 0000 to H'E3FF FFFF

Write Store instruction (1-cycle write)
Write-back Prefetch instruction

Access right MMU off: according to MMUCR.SQMD

MMU on: according to individual page PR

4.1.2 Register Configuration
Table 4.4 shows the cache control registers.

Table 4.4 Cache Control Registers

Initial P4 Area7 Access
Name Abbreviation R'W Value™' Address* Address™ Size
Cache control CCR R/W H'0000 0000 H'FF00001C H'1F00001C 32
register
Queue address QACRO R/W Undefined H'FF00 0038 H'1F00 0038 32
control register 0
Queue address QACR1 R/W Undefined H'FFO0 003C H'1F00 003C 32

control register 1

Notes: 1. The initial value is the value after a power-on or manual reset.
2. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

Rev. 6.00 Sep 13, 2006 page 60 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

4.2 Register Descriptions

There are three cache and store queue related control registers, as shown in figure 4.1.

CCR
3130 161514 1211109 8 76 54 3 2 1 0
I .. I I ’I e I e I CB/ I
EMODE* 11X ICI ICE OIX ORA OCI WT OCE
QACRO
31 54 210
.. AREA N
QACR1
31 54 210
.. AREA PRI

*: SH7750R, SH7751R and SH7760
-------- indicates reserved bits: 0 must be specified in a write; the read value is 0.

Figure 4.1 Cache and Store Queue Control Registers
(1) Cache Control Register (CCR): CCR contains the following bits:

EMODE: Double-sized cache mode (Available for SH7750R, SH7751R, and SH7760; reserved bit
for SH7750, SH77508S, and SH7751)

1IX: IC index enable

ICI: IC invalidation

ICE: IC enable

OIX: OC index enable

ORA: OC RAM enable

OCI: OC invalidation

CB: Copy-back enable

WT: Write-through enable

OCE: OC enable

Longword access to CCR can be performed from H'FF00 001C in the P4 area and H'1F00 001C in
area 7. The CCR bits are used for the cache settings described below. Consequently, CCR
modifications must only be made by a program in the non-cached P2 area. After CCR is updated,

Rev. 6.00 Sep 13, 2006 page 61 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

an instruction that performs data access to the PO, P1, P3, or U0 area should be located at least
four instructions after the CCR update instruction. Also, a branch instruction to the PO, P1, P3, or
UO area should be located at least eight instructions after the CCR update instruction.

EMODE: Double-sized cache mode bit

In the SH7750R, SH7751R, and SH7760, this bit indicates whether the double-sized cache
mode is used or not. This bit is reserved in the SH7750, SH7750S, and SH7751. The EMODE
bit must not be written to while the cache is being used.

0: SH7750/SH7750S/SH7751-compatible mode* (intial value)
1: Double-sized cache mode

Note: * No compatibility for RAM mode in OC index mode and address assignment in RAM
mode.

IIX: IC index enable bit
0: Address bits [12:5] used for IC entry selection
1: Address bits [25] and [11:5] used for IC entry selection

ICI: IC invalidation bit

When 1 is written to this bit, the V bits of all IC entries are cleared to 0. This bit always returns
0 when read.

ICE: IC enable bit

Indicates whether or not the IC is to be used. When address translation is performed, the IC
cannot be used unless the C bit in the page management information is also 1.

0: IC not used
1: IC used

OIX: OC index enable bit*

0: Address bits [13:5] used for OC entry selection

1: Address bits [25] and [12:5] used for OC entry selection

Note: * When the ORA bit is 1 in the SH7750R, the OIX bit should be cleared to 0.

ORA: OC RAM enable bit*

When the OC is enabled (OCE = 1), the ORA bit specifies whether the 8 kbytes from entry
128 to entry 255 and from entry 384 to entry 511 of the OC are to be used as RAM. When the
OC is not enabled (OCE = 0), the ORA bit should be cleared to 0.

0: 16 kbytes used as cache
1: 8 kbytes used as cache, and 8 kbytes as RAM
Note: * When the OIX bit in the SH7750R is 1, the ORA bit should be cleared to 0.

Rev. 6.00 Sep 13, 2006 page 62 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

¢ OCI: OC invalidation bit

When 1 is written to this bit, the V and U bits of all OC entries are cleared to 0. This bit always
returns 0 when read.

* CB: Copy-back bit
Indicates the P1 area cache write mode.
0: Write-through mode
1: Copy-back mode

* WT: Write-through bit
Indicates the PO, U0, and P3 area cache write mode. When address translation is performed,
the value of the WT bit in the page management information has priority.
0: Copy-back mode
1: Write-through mode

* OCE: OC enable bit
Indicates whether or not the OC is to be used. When address translation is performed, the OC
cannot be used unless the C bit in the page management information is also 1.
0: OC not used
1: OC used

(2) Queue Address Control Register 0 (QACRO0): Longword access to QACRO can be
performed from H'FF00 0038 in the P4 area and H'1F00 0038 in area 7. QACRO specifies the area
onto which store queue 0 (SQO) is mapped when the MMU is off.

(3) Queue Address Control Register 1 (QACR1): Longword access to QACR1 can be
performed from H'FF00 003C in the P4 area and H'1F00 003C in area 7. QACRI specifies the
area onto which store queue 1 (SQ1) is mapped when the MMU is off.

Rev. 6.00 Sep 13, 2006 page 63 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

Hereafter, this section explains the SH7750, SH7750S and SH7751. For other SH-4 products, refer
to the corresponding products’ hardware manual.

4.3 Operand Cache (OC)

4.3.1 Configuration

Figure 4.2 shows the configuration of the operand cache.

Effective address
31 26 25 131211109 543210

 /\ A

<
<

\4

RAM area
determination

\ 4

v [11:5]
OIX —» =

22 "

9 Longword (LW) selection
Address array 3 Data array

5 0 Tag u|vVv LWO | LW1 | LW2 | LW3|LW4 | LW5 | LW6 | LW7
8
Q
Q
2]

MMU 2
c
Wiy

19

511 19 bits 1 bit[1 bit 32 hits|32 bits|32 bits|32 bits|32 bits|32 bits|32 bits|32 bits
[/'Y [} [/'Y [}

A A
A4 A4 v A4 A4 v A4 A4
L >

1 x
Read data Write data

Hit signal

Figure 4.2 Configuration of Operand Cache

Rev. 6.00 Sep 13, 2006 page 64 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

The operand cache consists of 512 cache lines, each composed of a 19-bit tag, V bit, U bit, and 32-
byte data.

Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached.
The tag is not initialized by a power-on or manual reset.

V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.
U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-
back mode. That is, the U bit indicates a mismatch between the data in the cache line and the
data in external memory. The U bit is never set to 1 while the cache is being used in write-
through mode, unless it is modified by accessing the memory-mapped cache (see section 4.5,
Memory-Mapped Cache Configuration). The U bit is initialized to 0 by a power-on reset, but
retains its value in a manual reset.

Data field

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized
by a power-on or manual reset.

4.3.2 Read Operation

When the OC is enabled (CCR.OCE = 1) and data is read by means of an effective address from a
cacheable area, the cache operates as follows:

1. The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].

The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

e Ifthe tag matches and the V bit is 1 - (3a)
e Ifthe tag matches and the V bit is 0 - (3b)
» Ifthe tag does not match and the V bit is 0 - (3b)

 If the tag does not match, the V bit is 1, and the U bitis 0 — (3b)
 Ifthe tag does not match, the V bit is 1, and the U bitis 1 — (3¢c)

Rev. 6.00 Sep 13, 2006 page 65 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

3a.

Cache hit

The data indexed by effective address bits [4:0] is read from the data field of the cache line
indexed by effective address bits [13:5] in accordance with the access size
(quadword/longword/word/byte).

3b. Cache miss (no write-back)

3¢

Data is read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and when the corresponding data arrives in the
cache, the read data is returned to the CPU. While the remaining one cache line of data is being
read, the CPU can execute the next processing. When reading of one line of data is completed,
the tag corresponding to the effective address is recorded in the cache, and 1 is written to the V
bit.

. Cache miss (with write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are saved in the
write-back buffer. Then data is read into the cache line from the external memory space
corresponding to the effective address. Data reading is performed, using the wraparound
method, in order from the longword data corresponding to the effective address, and when the
corresponding data arrives in the cache, the read data is returned to the CPU. While the
remaining one cache line of data is being read, the CPU can execute the next processing. When
reading of one line of data is completed, the tag corresponding to the effective address is
recorded in the cache, 1 is written to the V bit, and 0 to the U bit. The data in the write-back
buffer is then written back to external memory.

4.3.3 Write Operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective address to a
cacheable area, the cache operates as follows:

1. The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].

The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:
Copy-back Write-through

e Ifthe tag matches and the V bit is 1 - (3a) - (3b)
e If the tag matches and the V bit is 0 - (3¢) - (3d)
¢ Ifthe tag does not match and the V bit is 0 - (3¢) - (3d)
 Ifthe tag does not match, the V bit is 1, and the U bitis 0 — (3¢c) - (3d)
 Ifthe tag does not match, the V bit is 1, and the U bitis 1 — (3e) - (3d)

Rev. 6.00 Sep 13, 2006 page 66 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

3a.

3b.

3c.

Cache hit (copy-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then 1 is set in the U bit.

Cache hit (write-through)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. A write is also performed to the corresponding
external memory using the specified access size.

Cache miss (no copy-back/write-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then, data is read into the cache line from the external
memory space corresponding to the effective address. Data reading is performed, using the
wraparound method, in order from the longword data corresponding to the effective address,
and one cache line of data is read excluding the written data. During this time, the CPU can
execute the next processing. When reading of one line of data is completed, the tag
corresponding to the effective address is recorded in the cache, and 1 is written to the V bit and
U bit.

3d. Cache miss (write-through)

3e.

A write of the specified access size is performed to the external memory corresponding to the
effective address. In this case, a write to cache is not performed.

Cache miss (with copy-back/write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are first saved
in the write-back buffer, and then a data write in accordance with the access size
(quadword/longword/word/byte) is performed for the data indexed by bits [4:0] of the effective
address of the data field of the cache line indexed by effective address bits [13:5]. Then, data is
read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and one cache line of data is read excluding the
written data. During this time, the CPU can execute the next processing. When reading of one
line of data is completed, the tag corresponding to the effective address is recorded in the
cache, and 1 is written to the V bit and U bit. The data in the write-back buffer is then written
back to external memory.

Rev. 6.00 Sep 13, 2006 page 67 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

4.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH-4 has a write-
back buffer which holds the relevant cache entry when it becomes necessary to purge a dirty cache
entry into external memory as the result of a cache miss. The write-back buffer contains one cache
line of data and the physical address of the purge destination.

Physical address bits [28:5] | LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7

Figure 4.3 Configuration of Write-Back Buffer

4.3.5 Write-Through Buffer

The SH-4 has a 64-bit buffer for holding write data when writing data in write-through mode or
writing to a non-cacheable area. This allows the CPU to proceed to the next operation as soon as
the write to the write-through buffer is completed, without waiting for completion of the write to
external memory.

Physical address bits [28:0] | LWO | LW1

Figure 4.4 Configuration of Write-Through Buffer

4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The operand
cache entries used as RAM are entries 128 to 255 and 384 to 511 . Other entries can still be used
as cache. RAM can be accessed using addresses H'7C00 0000 to H'7FFF FFFF. Byte-, word-,
longword-, and quadword-size data reads and writes can be performed in the operand cache RAM
area. Instruction fetches cannot be performed in this area.

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries 128 to 256 are
designated as RAM area 1, and the 4 kbytes comprising OC entries 384 to 511 as RAM area 2.

Rev. 6.00 Sep 13, 2006 page 68 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

e When OC index mode is off (CCR.OIX = 0)
H'7C00 0000 to H'7C00 OFFF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 2
H'7C00 3000 to H'7C00 3FFF (4 kB): Corresponds to RAM area 2
H'7C00 4000 to H'7C00 4FFF (4 kB): Corresponds to RAM area 1

RAM areas 1 and 2 then repeat every 8 kbytes up to H'7FFF FFFF.

Thus, to secure a continuous 8-Kbyte RAM area, the area from H'7C00 1000 to H'7C00 2FFF
can be used, for example.

¢ When OC index mode is on (CCR.OIX = 1)
H'7C00 0000 to H'7C00 OFFF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 1

H'7DFF F000 to H'7DFF FFFF (4 kB): Corresponds to RAM area 1
H'7E00 0000 to H'7E00 OFFF (4 kB): Corresponds to RAM area 2
H'7E00 1000 to H'7E00 1FFF (4 kB): Corresponds to RAM area 2

H'7FFF F000 to H'7FFF FFFF (4 kB): Corresponds to RAM area 2

As the distinction between RAM areas 1 and 2 is indicated by address bit [25], the area from
H'7DFF F000 to H'7E00 OFFF should be used to secure a continuous 8-Kbyte RAM area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using bit [25] of the effective address.
This is called OC index mode. In normal mode, with CCR.OIX cleared to 0, OC indexing is
performed using bits [13:5] of the effective address; therefore, when 16 kbytes or more of
consecutive data is handled, the OC is fully used by this data. This results in frequent cache
misses. Using index mode allows the OC to be handled as two 8-Kbyte areas by means of
effective address bit [25], providing efficient use of the cache.

Rev. 6.00 Sep 13, 2006 page 69 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

4.3.8 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH-4, the
following four new instructions are supported for cache operations. For details of these
instructions, see section 9, Instruction Descriptions.

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)
Purge instruction: OCBP @Rn Cache invalidation (with write-back)
Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L RO,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH-4 supports a prefetch instruction to reduce the cache fill penalty incurred as the result of a
cache miss. If it is known that a cache miss will result from a read or write operation, it is possible
to fill the cache with data beforehand by means of the prefetch instruction to prevent a cache miss
due to the read or write operation, and so improve software performance. If a prefetch instruction
is executed for data already held in the cache, or if the prefetch address results in a UTLB miss or
a protection violation, the result is no operation, and an exception is not generated. For details of
the prefetch instruction, see section 9.74, PREF.

Prefetch instruction: PREF @Rn

Rev. 6.00 Sep 13, 2006 page 70 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

4.4 Instruction Cache (IC)

4.4.1 Configuration

Figure 4.5 shows the configuration of the instruction cache.

Effective address
31 26 25 131211109 543210

000N \/

[11:5]

A4
[IX —» ==

22 Longword (LW) selection
8 Address array 3 Data array
5 0 Tag \Y LWO | LW1 [LW2 [LW3 | LW4 | LW5 | LW6 | LW7
k3]
(]
©
0
MMU P
<
wl o,
19
255 19 bits 1 bit 32 bits|32 bits|32 bits|32 bits|32 hits|32 bits|32 bits|32 bits
A A A A A A A A
A\ A\ v A4 v A\ A\ v
L »
A 4
Compare l
Read data

Hit signal

Figure 4.5 Configuration of Instruction Cache

Rev. 6.00 Sep 13, 2006 page 71 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, and 32-
byte data (16 instructions).

* Tag
Stores the upper 19 bits of the 29-bit external address of the data line to be cached. The tag is
not initialized by a power-on or manual reset.
* 'V bit (validity bit)
Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.
e Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized
by a power-on or manual reset.

4.4.2 Read Operation

When the IC is enabled (CCR.ICE = 1) and instruction fetches are performed by means of an
effective address from a cacheable area, the instruction cache operates as follows:

1. The tag and V bit are read from the cache line indexed by effective address bits [12:5].

2. The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

» If the tag matches and the V bit is 1 - (3a)

» Ifthe tag matches and the V bit is 0 - (3b)

» Ifthe tag does not match and the V bit is 0 - (3b)

» Ifthe tag does not match and the V bit is 1 - (3b)
3a. Cache hit

The data indexed by effective address bits [4:2] is read as an instruction from the data field of
the cache line indexed by effective address bits [12:5].

3b. Cache miss

Data is read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and when the corresponding data arrives in the
cache, the read data is returned to the CPU as an instruction. When reading of one line of data
is completed, the tag corresponding to the effective address is recorded in the cache, and 1 is
written to the V bit.

Rev. 6.00 Sep 13, 2006 page 72 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

4.4.3 IC Index Mode

Setting CCR.IIX to 1 enables IC indexing to be performed using bit [25] of the effective address.
This is called IC index mode. In normal mode, with CCR.IIX cleared to 0, IC indexing is
performed using bits [12:5] of the effective address; therefore, when 8 kbytes or more of
consecutive program instructions are handled, the IC is fully used by this program. This results in
frequent cache misses. Using index mode allows the IC to be handled as two 4-Kbyte areas by
means of effective address bit [25], providing efficient use of the cache.

4.5 Memory-Mapped Cache Configuration

In the SH7750 and SH7750S, to enable the IC and OC to be managed by software, their contents
can be read and written by a P2 area program with a MOV instruction in privileged mode.

In privileged mode in the SH7751, the contents of OC can be read and written by a P1 or P2 area
program with a MOV instruction, and the contents of IC can be read and written by a P2 area
program with a MOV instruction.

Operation is not guaranteed if access is made from a program in another area. In this case, a
branch to the other area should be made at least 8 instructions after this MOV instruction. The IC
and OC are allocated to the P4 area in physical memory space. Only data accesses can be used on
both the IC address array and data array and the OC address array and data array, and accesses are
always longword-size. Instruction fetches cannot be performed in these areas. For reserved bits, a
write value of 0 should be specified; their read value is undefined.

4.5.1 IC Address Array

The IC address array is allocated to addresses HF000 0000 to H'FOFF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'FO indicating the IC address array, and the entry
is specified by bits [12:5]. CCR.IIX has no effect on this entry specification. The address array bit
[3] association bit (A bit) specifies whether or not association is performed when writing to the IC
address array. As only longword access is used, 0 should be specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the IC address
array tag is 19 bits in length, data field bits [31:29] are not used in the case of a write in which
association is not performed. Data field bits [31:29] are used for the virtual address specification
only in the case of a write in which association is performed.

Rev. 6.00 Sep 13, 2006 page 73 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

The following three kinds of operation can be used on the IC address array:

1. IC address array read

The tag and V bit are read into the data field from the IC entry corresponding to the entry set in
the address field. In a read, associative operation is not performed regardless of whether the
association bit specified in the address field is 1 or 0.

2. IC address array write (non-associative)

The tag and V bit specified in the data field are written to the IC entry corresponding to the
entry set in the address field. The A bit in the address field should be cleared to 0.

3. IC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the entry
specified in the address field is compared with the tag specified in the data field. If the MMU
is enabled at this time, comparison is performed after the virtual address specified by data field
bits [31:10] has been translated to a physical address using the ITLB. If the addresses match
and the V bit is 1, the V bit specified in the data field is written into the IC entry. This
operation is used to invalidate a specific IC entry. If an ITLB miss occurs during address
translation, or the comparison shows a mismatch, no operation results and the write is not
performed. If an instruction TLB multiple hit exception occurs during address translation,
processing switches to the instruction TLB multiple hit exception handling routine.

31 2423 1312 543210
Address field |1 1]1]21010]0]0] - ccveverereemiiiiinine. Entry A
31 109 10
Data field Tag address e \V
Legend:
V : Validity bit

A : Association bit
--: Reserved bits (0 write value, undefined read value)

Figure 4.6 Memory-Mapped IC Address Array

4.5.2 IC Data Array

The IC data array is allocated to addresses H'F100 0000 to HF1FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the longword
data to be written is specified in the data field.

Rev. 6.00 Sep 13, 2006 page 74 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

In the address field, bits [31:24] have the value H'F1 indicating the IC data array, and the entry is
specified by bits [12:5]. CCR.IIX has no effect on this entry specification. Address field bits [4:2]
are used for the longword data specification in the entry. As only longword access is used, 0
should be specified for address field bits [1:0].

The data field is used for the longword data specification.
The following two kinds of operation can be used on the IC data array:

1. IC data array read
Longword data is read into the data field from the data specified by the longword specification
bits in the address field in the IC entry corresponding to the entry set in the address field.

2. IC data array write
The longword data specified in the data field is written for the data specified by the longword

specification bits in the address field in the IC entry corresponding to the entry set in the
address field.

31 2423 1312 54 210
Address field [1]{1[1[1]0]0[0]1] ceevererrmremrmmmimiiiiiinanns. Entry L e
31 0
Data field Longword data
Legend:

L : Longword specification bits
....: Reserved bits (0 write value, undefined read value)

Figure 4.7 Memory-Mapped IC Data Array

453 OC Address Array

The OC address array is allocated to addresses H'F400 0000 to H'F4FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag, U bit, and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F4 indicating the OC address array, and the
entry is specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry
specification. The address array bit [3] association bit (A bit) specifies whether or not association
is performed when writing to the OC address array. As only longword access is used, 0 should be
specified for address field bits [1:0].

Rev. 6.00 Sep 13, 2006 page 75 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

In the data field, the tag is indicated by bits [31:10], the U bit by bit [1], and the V bit by bit [0].
As the OC address array tag is 19 bits in length, data field bits [31:29] are not used in the case of a
write in which association is not performed. Data field bits [31:29] are used for the virtual address
specification only in the case of a write in which association is performed.

The following three kinds of operation can be used on the OC address array:

1.

OC address array read

The tag, U bit, and V bit are read into the data field from the OC entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry corresponding to
the entry set in the address field. The A bit in the address field should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after write-
back of that cache line, the tag, U bit, and V bit specified in the data field are written.

. OC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the entry
specified in the address field is compared with the tag specified in the data field. If the MMU
is enabled at this time, comparison is performed after the virtual address specified by data field
bits [31:10] has been translated to a physical address using the UTLB. If the addresses match
and the V bit is 1, the U bit and V bit specified in the data field are written into the OC entry.
This operation is used to invalidate a specific OC entry. If the OC entry U bit is 1, and 0 is
written to the V bit or to the U bit, write-back is performed. If an UTLB miss occurs during
address translation, or the comparison shows a mismatch, no operation results and the write is
not performed. If a data TLB multiple hit exception occurs during address translation,
processing switches to the data TLB multiple hit exception handling routine.

31 2423 1413 543210
Address field |1 1[2[2[0]2][0]0]- - rreeeememeremieniinen. Entry c Al
31 109 210
Data field Tag [ulv
Legend:
V : Validity bit
U : Dirty bit

A : Association bit
--: Reserved bits (0 write value, undefined read value)

Figure 4.8 Memory-Mapped OC Address Array

Rev. 6.00 Sep 13, 2006 page 76 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

4.5.4 OC Data Array

The OC data array is allocated to addresses HF500 0000 to HFSFF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the longword
data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F5 indicating the OC data array, and the entry is
specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry specification.
Address field bits [4:2] are used for the longword data specification in the entry. As only longword
access is used, 0 should be specified for address field bits [1:0].

The data field is used for the longword data specification.
The following two kinds of operation can be used on the OC data array:

1. OC data array read
Longword data is read into the data field from the data specified by the longword specification
bits in the address field in the OC entry corresponding to the entry set in the address field.

2. OC data array write
The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the OC entry corresponding the entry set in the address
field. This write does not set the U bit to 1 on the address array side.

31 2423 1413 54 210
Address field | 1112011 0] 1] - -coereeereeememrememeneninnn. Entry Lo feeeees
31 0
Data field Longword data
Legend:

L : Longword specification bits
--: Reserved bits (0 write value, undefined read value)

Figure 4.9 Memory-Mapped OC Data Array

Rev. 6.00 Sep 13, 2006 page 77 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

4.6 Store Queues

Two 32-byte store queues (SQs) are supported to perform high-speed writes to external memory.
In the SH7750S and SH7751, when not using the SQs, the low power dissipation power-down
modes, in which SQ functions are stopped, can be used. The queue address control registers
(QACRO and QACR1) cannot be accessed while SQ functions are stopped. See section 9, Power-
Down Modes, for the procedure for stopping SQ functions.

4.6.1 SQ Configuration

There are two 32-byte store queues, SQO0 and SQ1, as shown in figure 4.10. These two store
queues can be set independently.

SQO | SQO[0] | SQO[1] | SQO[2] | SQO[3] | SQO[4] | SQO[S] | SQO[6] | SQO[7]

SQ1 | SQ1[0] | SQI[1] | SQ1[2] | SQ1[3] | SQ1[4] | SQ1[5] | SQ1[6] | SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

Figure 4.10 Store Queue Configuration

4.6.2 SQ Writes

A write to the SQs can be performed using a store instruction on P4 area H'E000 0000 to HE3FF
FFFC. A longword or quadword access size can be used. The meaning of the address bits is as
follows:

[31:26]: 111000 Store queue specification

[25:6]: Don’t care Used for external memory transfer/access right
[5]: 0/1 0: SQO specification 1: SQI specification
[4:2]: LW specification Specifies longword position in SQ0/SQ1

[1:0] 00 Fixed at 0

Rev. 6.00 Sep 13, 2006 page 78 of 424
REJ09B0318-0600
RENESAS

Section 4 Caches

4.6.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF).
Issuing a PREF instruction for P4 area H'E000 0000 to H'E3FF FFFC starts a transfer from the
SQs to external memory. The transfer length is fixed at 32 bytes, and the start address is always at
a 32-byte boundary. While the contents of one SQ are being transferred to external memory, the
other SQ can be written to without a penalty cycle, but writing to the SQ involved in the transfer to
external memory is deferred until the transfer is completed.

The SQ transfer destination external memory address bit [28:0] specification is as shown below,
according to whether the MMU is on or off.

When MMU is on (MMUCR.AT = 1)

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in VPN of the UTLB, and the transfer
destination external memory address in PPN. The ASID, V, SZ, SH, PR, and D bits have the
same meaning as for normal address translation, but the C and WT bits have no meaning with
regard to this page. It is not possible to perform data transfer to a PCMCIA interface area using
the SQs.

When a prefetch instruction is issued for the SQ area, address translation is performed and
external memory address bits [28:10] are generated in accordance with the SZ bit specification.
For external memory address bits [9:5], the address prior to address translation is generated in
the same way as when the MMU is off. External memory address bits [4:0] are fixed at 0.
Transfer from the SQs to external memory is performed to this address.

When MMU is off (MMUCR.AT = 0)

The SQ area (H'E000 0000 to H'E3FF FFFF) is specified as the address at which a prefetch is
performed. The meaning of address bits [31:0] is as follows:

[31:26]: 111000 Store queue specification
[25:6]: Address External memory address bits [25:6]
[5]: 0/1 0: SQO specification
1: SQI specification and external memory address bit [5]
[4:2]: Don’t care No meaning in a prefetch
[1:0] 00 Fixed at 0

External memory address bits [28:26], which cannot be generated from the above address, are
generated from the QACRO/1 registers.

QACRO [4:2]: External memory address bits [28:26] corresponding to SQO
QACRI [4:2]: External memory address bits [28:26] corresponding to SQ1

Rev. 6.00 Sep 13, 2006 page 79 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

External memory address bits [4:0] are always fixed at O since burst transfer starts at a 32-byte
boundary.

In the SH7750, it is not possible to perform data transfer to a PCMCIA interface area using the
SQs.

In the SH7750S and SH7751, data transfer to a PCMCIA interface area is always performed
using the values of the SA bit and TC bit in PTEA.

4.6.4 SQ Protection

It is possible to set protection against SQ writes and transfers to external memory. If an SQ write
violates the protection setting, an exception will be generated but the SQ contents will be
corrupted. If a transfer from the SQs to external memory (prefetch instruction) violates the
protection setting, the transfer to external memory will be inhibited and an exception will be
generated.

When MMU is on

Operation is in accordance with the address translation information recorded in the UTLB, and
MMUCR.SQMD. Write type exception judgment is performed for writes to the SQs, and read
type for transfer from the SQs to external memory (PREF instruction), and a TLB miss
exception, protection violation exception, or initial page write exception is generated.
However, if SQ access is enabled, in privileged mode only, by MMUCR.SQMD, an address
error will be flagged in user mode even if address translation is successful.

When MMU is off

Operation is in accordance with MMUCR.SQMD.
0: Privileged/user access possible

1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an address error will
be flagged.

Rev. 6.00 Sep 13, 2006 page 80 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

4.6.5 SQ Usage Notes

If an exception occurs within the three instructions preceding an ainstruction that writes to an SQ
in the SH7750 and SH7750S, a branch may be made to the exception handling routine after
execution of the SQ write that should be suppressed when exception occrs.

This may be due to the bug described in 1 or 2 below.

1. When SQ data is tranferred to external memory within a normal program

If a PREF instruction for transfer from an SQ to external memory is included in the three
instructions preceding an SQ store instruction, the SQ is updated because the SQ write that
should be suppressed when a branch is made to the exception handling routine is executed, and
after returning from the exception handling routine the execution order of the PREF instruction
and SQ store instruction is reversed, so that erroneous data may be transferred to external
memory.

2. When SQ data is transferred to external memory in an exception handling routine

If store queue contents are transferred to external memory within an exception handling
routine, erroneous data may be transferred to external mamory.

Example 1: When a SQ store instruction is executed after a PREF instruction for transfer from
that same SQ to external memory

PREF instruction ; PREF isntruction for transfer from SQ to external memory
; Address of this saved to SPC when exception occurs.
; Instruction 1, instruction 2, or instruction 3 may be executed on return from
exception handling routine.
Instruction 1; May be executed if a SQ store instruction.
Instruction 2; May be executed if a SQ store instruction.
Instruction 3; May be executed if a SQ store instruction.
Instruction 4; Note executed even if a SQ store instruction.

Example 2: When an instruction that generates an exception branches using a branch instruction

Instruction 1 (branch instruction); Address of this instruction is saved to SPC when exception
occurs.
Instruction 2; May be executed if instruction 1 is a delay slot instruction and an instruction to store
data to SQ.

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Rev. 6.00 Sep 13, 2006 page 81 of 424
REJ09B0318-0600

RENESAS

Section 4 Caches

Instruction 7 (branch destination of instruction 1); May be executed if a SQ access instruction.
Instruction 8; May be executed if a SQ store instruction.

Example 3: When an instruction that generates an exception does not branch using a branch
instruction

Instruction 1 (branch instruction); Address of this instruction is saved to SPC when exception
occurs.

Instruction 2; May be executed if a SQ store instruction.

Instruction 3; May be executed if a SQ store instruction.

Instruction 4; May be executed if a SQ store instruction.

Instruction 5

To recover from this problem it is necessary that conditions 1 and 2 be satisfied.

1. After the PREF instruction to transfer data from the store queue (SQO, SQ1) to external
memory, a store instruction for the same store queue must be executed, and conditions a and b
below must be satisfied.

a. Three NOP instructions™' must be inserted between the above two instructions.
b. There must not be a PREF instruction to transfer data from the store queue to external
memory in the delay slot of the branch instruction.

2. There must be no PREF instruction to transfer data from the store queue to external memory
executed in the exception handling routine.

If such an instruction is executed, and if there is a store to the store queue instruction among
the four instructions™ at the address referred to by SPC, the data transferred to external
memory by the PREF instruction may indicate that execution of the store instruction has
completed.

Notes: 1. Ifthere are other instructions between the above two instructions, the problem can be
avoided if the other instructions and NOP instructions together total three or more
instructions.

2. If the instruction at the address referred to by SPC is a branch instruction the two
instructions at the branch destination may be affected.

Rev. 6.00 Sep 13, 2006 page 82 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

Section 5 Exceptions

5.1 Overview

5.1.1 Features

Exception handling is processing handled by a special routine, separate from normal program
processing, that is executed by the CPU in case of abnormal events. For example, if the executing
instruction ends abnormally, appropriate action must be taken in order to return to the original
program sequence, or report the abnormality before terminating the processing. The process of
generating an exception handling request in response to abnormal termination, and passing control
to a user-written exception handling routine, in order to support such functions, is given the
generic name of exception handling.

SH-4 exception handling is of three kinds: for resets, general exceptions, and interrupts.

51.2 Register Configuration
The registers used in exception handling are shown in table 5.1.

Table 5.1 Exception-Related Registers

Abbrevia- P4 Area 7 Access
Name tion RW Initial Value® Address™ Address™ Size
TRAPA exception TRA R/W Undefined H'FF00 0020 H'1F00 0020 32
register
Exception event EXPEVT R/W H'0000 0000/ H'FF00 0024 H'1F00 0024 32
register H'0000 0020™*"
Interrupt event INTEVT R/W Undefined H'FF00 0028 H'1F00 0028 32
register

Notes: 1. H'0000 0000 is set in a power-on reset, and H'0000 0020 in a manual reset.
2. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

Rev. 6.00 Sep 13, 2006 page 83 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

5.2

Register Descriptions

There are three registers related to exception handling. These are allocated to memory, and can be
accessed by specifying the P4 address or area 7 address.

1.

The exception event register (EXPEVT) resides at P4 address HFF00 0024, and contains a 12-
bit exception code. The exception code set in EXPEVT is that for a reset or general exception
event. The exception code is set automatically by hardware when an exception occurs.
EXPEVT can also be modified by software.

The interrupt event register (INTEVT) resides at P4 address HFF00 0028, and contains a 12-
bit (SH7750, SH750S, SH7750R) or 14-bit (SH7751, SH7751R) exception code. The
exception code set in INTEVT is that for an interrupt request. The exception code is set
automatically by hardware when an exception occurs. INTEVT can also be modified by
software.

The TRAPA exception register (TRA) resides at P4 address HFF00 0020, and contains 8-bit
immediate data (imm) for the TRAPA instruction. TRA is set automatically by hardware when
a TRAPA instruction is executed. TRA can also be modified by software.

The bit configurations of EXPEVT, INTEVT, and TRA are shown in figure 5.1.

EXPEVT (SH7750/SH7750S/SH7750R, SH7751/SH7751R, SH7760),
INTEVT (SH7750/SH7750S/SH7750R)

31 12 11 0
0 0 Exception code

INTEVT (SH7751/SH7751R, SH7760)

31 14 13 0
0 0 Exception code

TRA

31 10 9 210
0 0 imm 00
Legend:

0: Reserved bits. These bits are always read as 0, and should only be written
with 0.
imm: 8-bit immediate data of the TRAPA instruction

Figure 5.1 Register Bit Configurations

Rev. 6.00 Sep 13, 2006 page 84 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

5.3 Exception Handling Functions

5.3.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC), status register (SR), and R15 are
saved in the saved program counter (SPC), saved status register (SSR), and saved general
register]15 (SGR), and the CPU starts execution of the appropriate exception handling routine
according to the vector address. An exception handling routine is a program written by the user to
handle a specific exception. The exception handling routine is terminated and control returned to
the original program by executing a return-from-exception instruction (RTE). This instruction
restores the PC and SR contents and returns control to the normal processing routine at the point at
which the exception occurred.

The SGR contents are not written back to R15 by an RTE instruction.

The basic processing flow is as follows. See section 2, Programming Model, for the meaning of
the individual SR bits.

The PC, SR, and R15 contents are saved in SPC, SSR, and SGR.
The block bit (BL) in SR is set to 1.

The mode bit (MD) in SR is setto 1.

The register bank bit (RB) in SR is set to 1.

In a reset, the FPU disable bit (FD) in SR is cleared to 0.

The exception code is written to bits 11-0 of the exception event register (EXPEVT): SH7750,
SH7750S, SH7750R, bits 13—0 of the exception event register (EXPEVT): SH7751, SH7751R,
SH7760 or interrupt event register (INTEVT).

7. The CPU branches to the determined exception handling vector address, and the exception
handling routine begins.

A o e

53.2 Exception Handling Vector Addresses

The reset vector address is fixed at H'A000 0000. Exception and interrupt vector addresses are
determined by adding the offset for the specific event to the vector base address, which is set by
software in the vector base register (VBR). In the case of the TLB miss exception, for example,
the offset is H'0000 0400, so if H'9CO08 0000 is set in VBR, the exception handling vector address
will be H'9C08 0400. If a further exception occurs at the exception handling vector address, a
duplicate exception will result, and recovery will be difficult; therefore, fixed physical addresses
(P1, P2) should be specified for vector addresses.

Rev. 6.00 Sep 13, 2006 page 85 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

5.4 Exception Types and Priorities

Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and
exception/interrupt codes.

Table 5.2 Exceptions

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Reset Abort type Power-on reset 1 1 H'A000 0000 — H'000
Manual reset 1 2 H'A000 0000 — H'020
H-UDI reset 1 1 H'A000 0000 — H'000
Instruction TLB multiple-hit 1 3 H'A000 0000 — H'140
exception
Data TLB multiple-hit exception 1 4 H'A000 0000 — H'140
General Re- User break before instruction 2 (VBR/DBR) H'100/— H'1EO
exception execution execution™'
type Instruction address error 2 1 (VBR) H'100 H'OEO
Instruction TLB miss exception 2 2 (VBR) H'400 H'040
Instruction TLB protection 2 3 (VBR) H'100 H'0A0
violation exception
General illegal instruction 2 4 (VBR) H'100 H'180
exception
Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0
General FPU disable exception 2 4 (VBR) H'100 H'800
Slot FPU disable exception 2 4 (VBR) H'100 H'820
Data address error (read) 2 5 (VBR) H'100 H'OEOQ
Data address error (write) 2 5 (VBR) H'100 H'100
Data TLB miss exception (read) 2 6 (VBR) H'400 H'040
Data TLB miss exception (write) 2 6 (VBR) H'400 H'060
Data TLB protection 2 7 (VBR) H'100 H'0AO
violation exception (read)
Data TLB protection 2 7 (VBR) H'100 H'0CO
violation exception (write)
FPU exception 2 8 (VBR) H100 H'120
Initial page write exception 2 (VBR) H'100 H'080
Completion Unconditional trap (TRAPA) 2 (VBR) H'100 H'160
type User break after instruction 2 10 (VBR/DBR) H'100/— H"1EO

. *
execution

1

Rev. 6.00 Sep 13, 2006 page 86 of 424

REJ09B0318-0600

RENESAS

Section 5 Exceptions

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Interrupt Completion Nonmaskable interrupt 3 — (VBR) H'600 H'1CO
type External IRL3— 0 4 *2 (VBR) H'600 H'200
interrupts IRLO 1 H'220
2 H'240
3 H'260
4 H'280
5 H'2A0
6 H'2C0
7 H'2E0
8 H'300
9 H'320
A H'340
B H'360
C H'380
D H'3A0
E H'3C0
Peripheral TMUO TUNIO 4 *2 (VBR) H'600 H400
ir:t‘;dr:ﬂzt TMU1 TUNI H'420
(module/ TMU2 TUNI2 H'440
source) TICPI2 H'460
TMU3 TUNI3 H'BOO
TMU4 TUNI4 H'B80
RTC ATI H'480
PRI H'4A0
Cul H'4CO
SClI ERI H'4EOQ
RXI H'500
TXI H'520
TEI H'540
WDT ITI H'560
REF RCMI H'580
ROVI H'5A0

Rev. 6.00 Sep 13, 2006 page 87 of 424

RENESAS

REJ09B0318-0600

Section 5 Exceptions
Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Interrupt Completion Peripheral H-UDI H-UDI 4 2 (VBR) H'600 H'600
type module 515 Gpio] He20
interrupt R
(module/ DMAC DMTEO H'640
source) DMTE1 H'660
DMTE2 H'680
DMTE3 H'6A0
DMAE H'6CO
SCIF ERI H'700
RXI H'720
BRI H'740
TXI H'760
PCIC PCISERR HA0O
PCIERR H'AEOQ
PCIPWDWN HACO
PCIPWON H'AAO
PCIDMAO H'A80
PCIDMA1 HA60
PCIDMA2 H'A40
PCIDMA3 HA20

Priority: Priority is first assigned by priority level, then by priority order within each level (the lowest
number represents the highest priority).

Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset] in

other cases.

Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an interrupt.
IRL: Interrupt request level (pins IRL3-IRLO).
Module/source: Example of the SH7751/SH7751R. For details, refer to the corresponding products’

hardware manual.

Notes: 1. When BRCR.UBDE =1, PC = DBR. In other cases, PC = VBR + H'100.
2. The priority order of external interrupts and peripheral module interrupts can be set by

software.

Rev. 6.00 Sep 13, 2006 page 88 of 424

REJ09B0318-0600

RENESAS

Section 5 Exceptions

5.5 Exception Flow

5.5.1 Exception Flow

Figure 5.2 shows an outline flowchart of the basic operations in instruction execution and
exception handling. For the sake of clarity, the following description assumes that instructions are
executed sequentially, one by one. Figure 5.2 shows the relative priority order of the different
kinds of exceptions (reset/general exception/interrupt). Register settings in the event of an
exception are shown only for SSR, SPC, SGR, EXPEVT/INTEVT, SR, and PC, but other registers
may be set automatically by hardware, depending on the exception. For details, see section 5.6,
Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple Exceptions, for
exception handling during execution of a delayed branch instruction and a delay slot instruction,
and in the case of instructions in which two data accesses are performed.

Reset Yes

requested?

Execute next instruction

Is highest-
priority exception
re-exception

General
exception requested?

Yes

type? - . "
P Cancel instruction execution
No result
Interrupt
requested?
y Y
No SSR ~ SR EXPEVT — exception code
SPC ~ PC SR. {MD, RB, BL, FD, IMASK} ~ 11101111
SGR « R15 PC ~ H'A000 0000

EXPEVT/INTEVT — exception code

SR.{MD,RB,BL} ~ 111

PC ~ (BRCR.UBDE=1 && User_Break?
DBR: (VBR + Offset))

A, A A,

Figure 5.2 Instruction Execution and Exception Handling

Rev. 6.00 Sep 13, 2006 page 89 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

5.5.2 Exception Source Acceptance

A priority ranking is provided for all exceptions for use in determining which of two or more
simultaneously generated exceptions should be accepted. Five of the general exceptions—the
general illegal instruction exception, slot illegal instruction exception, general FPU disable
exception, slot FPU disable exception, and unconditional trap exception—are detected in the
process of instruction decoding, and do not occur simultaneously in the instruction pipeline. These
exceptions therefore all have the same priority. General exceptions are detected in the order of
instruction execution. However, exception handling is performed in the order of instruction flow
(program order). Thus, an exception for an earlier instruction is accepted before that for a later
instruction. An example of the order of acceptance for general exceptions is shown in figure 5.3.

Rev. 6.00 Sep 13, 2006 page 90 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

Pipeline flow:

Instruction n
Instruction n+1

i

Instruction n+2

i

Instruction n+3

Order of detection:

V TLB miss (data access)

IF ID | EX | MA | WB

IF ID | EX | MA | WB

A General illegal instruction exception

V TLB miss (instruction access)
| F | D | EX | MA | wB |

| F | D | Ex | ™MA wa|

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

!

TLB miss (instruction n)

Order of exception handling:

Program order

TLB miss (instruction n)

Re-execution of instruction n

General illegal instruction exception

(instruction n+1)

Re-execution of instruction n+1

!

TLB miss (instruction n+2)

|

Re-execution of instruction n+2

!

Execution of instruction n+3 4

Legend:

IF: Instruction fetch

ID: Instruction decode
EX: Instruction execution
MA: Memory access
WB: Write-back

Figure 5.3 Example of General Exception Acceptance Order

Rev. 6.00 Sep 13, 2006 page 91 of 424

RENESAS

REJ09B0318-0600

Section 5 Exceptions

5.5.3 Exception Requests and BL Bit
When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU’s
internal registers and the registers of the other modules are set to their states following a manual
reset, and the CPU branches to the same address as in a reset (H'A000 0000). For the operation in
the event of a user break, see User Break Controller in the hardware manual. If an ordinary
interrupt occurs, the interrupt request is held pending and is accepted after the BL bit has been
cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held pending or
accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable
multiple exception state acceptance.

5.5.4 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is
executed, the SPC contents are restored to PC and the SSR contents to SR, and the CPU returns
from the exception handling routine by branching to the SPC address. If SPC and SSR were saved
to external memory, set the BL bit in SR to 1 before restoring the SPC and SSR contents and
issuing the RTE instruction.

5.6 Description of Exceptions

The various exception handling operations are described here, covering exception sources,
transition addresses, and processor operation when a transition is made.

5.6.1 Resets
(1) Power-On Reset

e Sources:

O SCK2 pin high level and RESET pin low level (SH7750/SH7750S/SH7750R)/RESET pin
low level (SH7751/SH7751R)

0 When the watchdog timer overflows while the WT/IT bit is set to 1 and the RSTS bit is
cleared to 0 in WTCSR. For details, see Clock Oscillation Circuits in hardware manual.

e Transition address: H'A000 0000

Rev. 6.00 Sep 13, 2006 page 92 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I13—10) are
setto B’1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections. For some CPU functions, the TRST pin and RESET pin
must be driven low. It is therefore essential to execute a power-on reset and drive the TRST
pin low when powering on.

If the SCK2 pin is changed to the low level while the RESET pin is low, a manual reset may
occur after the power-on reset operation. Do not drive the SCK2 pin low during this interval
(see Electrical Characteristics in the hardware manual).

In the SH7750, SH7750S and SH7750R, if the SCK2 pin is changed to the low level while the
RESET pin is low, a manual reset may occur after the power-on reset operation. Do not drive
the SCK2 pin low during this interval. For details, see Electrical Characteristics in the
hardware manual.

In the SH7751, SH7750R and SH7760, if the RESET pin is driven high before the MRESET
pin while both these pins are low, a manual reset may occur after the power-on reset operation.
The RESET pin must be driven high at the same time as, or after, the MRESET pin.

Power _on_reset ()

{

EXPEVT = H 00000000;
VBR = H 00000000;

SR.MD = 1;

SR RB = 1;

SR BL = 1;

SR (10-13) = B 1111;
SR. FD=0;

Initialize_CPU();
Initialize_Mdul e(Power On);
PC = H A0000000;

Rev. 6.00 Sep 13, 2006 page 93 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(2) Manual Reset

Sources:

O

g
O

SCK2 pin low level and RESET pin low level (SH7750/SH7750S/SH7750R)/MRESET pin
low level and RESET pin high level (SH7751/SH7751R, SH7760)
When a general exception other than a user break occurs while the BL bit is set to 1 in SR

When the watchdog timer overflows while the WT/IT bit is set to 1 and the RSTS bit is set
to 1 in WTCSR. For details, see Clock Oscillation Circuits in the hardware manual.

Transition address: H'A000 0000

Transition operations:

Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a

branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I13—10) are

setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register

descriptions in the relevant sections.

Manual _reset ()

{

EXPEVT = H 00000020;
VBR = H 00000000;

SR.MD = 1;
SR RB = 1;
SR BL = 1;

SR (10-13) = B 1111;

SR FD = 0;

Initialize CPU);
Initialize_Mdul e(Manual);
PC = H A0000000;

Rev. 6.00 Sep 13, 2006 page 94 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

Table 5.3 Types of Reset (SH7750/SH7750S/SH7750R)

Reset State Transition

Conditions Internal States
_ On-Chip Peripheral
Type SCK2 RESET CPU Modules
Power-on reset High Low Initialized See Register
Manual reset Low Low Initialized Configuration in

individual sections of
the hardware

manual
Table 5.4 Types of Reset (SH7751/SH7751R, SH7760)
Reset State Transition
Conditions Internal States
On-Chip Peripheral
Type MRESET RESET CPU Modules
Power-on reset — Low Initialized See Register

Configuration in
individual sections of
the hardware
manual

Manual reset Low High Initialized

Rev. 6.00 Sep 13, 2006 page 95 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(3) H-UDI Reset

* Source: SDIR.TI3-TI0 = B'0110 (negation) or B'0111 (assertion)
* Transition address: H'A000 0000
* Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I13—10) are
setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

H UDI _reset ()

{
EXPEVT = H 00000000;
VBR = H 00000000;
SR MD = 1;
SR RB = 1;
SR BL = 1;
SR (10-13) = B 1111;
SR FD = 0;
Initialize_CPU();
Initialize_Mdul e(Power On);
PC = H A0000000;

Rev. 6.00 Sep 13, 2006 page 96 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(4) Instruction TLB Multiple-Hit Exception

* Source: Multiple ITLB address matches
* Transition address: H'A000 0000
* Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA, and the

corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I13—10) are
setto B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual
reset. For details, see the register descriptions in the relevant sections.

TLB mul ti _hit()

{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
EXPEVT = H 00000140;
VBR = H 00000000;
SR MD = 1;
SR RB = 1,
SR BL = 1;
SR (10-13) = B 1111;
SR FD = 0;
Initialize_CPU();
Initialize_Mdul e(Manual);
PC = H A0000000;

}

Rev. 6.00 Sep 13, 2006 page 97 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

(5) Operand TLB Multiple-Hit Exception

* Source: Multiple UTLB address matches
* Transition address: H'A000 0000
* Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA, and the

corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I13—10) are
setto B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual
reset. For details, see the register descriptions in the relevant sections.

TLB mul ti _hit()

{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
EXPEVT = H 00000140;
VBR = H 00000000;
SR MD = 1;
SR RB = 1,
SR BL = 1;
SR (10-13) = B 1111;
SR FD = 0;
Initialize_CPU();
Initialize_Mdul e(Manual);
PC = H A0000000;

}

Rev. 6.00 Sep 13, 2006 page 98 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

5.6.2 General Exceptions
(1) Data TLB Miss Exception

* Source: Address mismatch in UTLB address comparison
* Transition address: VBR + H'0000 0400
* Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Dat a_TLB m ss_exception()

{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER
SPC = PC,
SSR = SR,
SGR = R15;
EXPEVT = read_access ? H 00000040 : H 00000060;
SR MD =1
SR RB = 1;
SR BL = 1,
PC = VBR + H 00000400;
}

Rev. 6.00 Sep 13, 2006 page 99 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(2) Instruction TLB Miss Exception

* Source: Address mismatch in ITLB address comparison
* Transition address: VBR + H'0000 0400
* Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

| TLB_ni ss_exception()

{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PG,
SSR = SR;
SGR = R15;
EXPEVT = H 00000040;
SR MD = 1;
SRRB =1
SR BL = 1;
PC = VBR + H 00000400;
}

Rev. 6.00 Sep 13, 2006 page 100 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

(3) Initial Page Write Exception

* Source: TLB is hit in a store access, but dirty bit D =0
* Transition address: VBR + H'0000 0100
* Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

Initial _wite_exception()
{
TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR
SGR = R15;
EXPEVT = H 00000080;
SR MD ;
SR. RB 1;
SR BL = 1;
PC = VBR + H 00000100;

Rev. 6.00 Sep 13, 2006 page 101 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

(4) Data TLB Protection Violation Exception

» Source: The access does not accord with the UTLB protection information (PR bits) shown

below.

PR Privileged Mode User Mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible
11 Read/write access possible Read/write access possible

e Transition address: VBR + H'0000 0100

* Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0AO (for a read access) or H'0OCO (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

Dat a_TLB protection_viol ation_exception()

{

TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR
SGR = R15;

EXPEVT = read_access ? H 000000A0 :

SR. MD ;
SR RB = 1;
SR. BL ;
PC = VBR + H 00000100;

H 000000C0;

Rev. 6.00 Sep 13, 2006 page 102 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

(5) Instruction TLB Protection Violation Exception

|
{

Source: The access does not accord with the ITLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode
0 Access possible Access not possible
1 Access possible Access possible

Transition address: VBR + H'0000 0100
Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0AO is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

TLB_protection_violation_exception()

TEA = EXCEPTI ON_ADDRESS;
PTEH. VPN = PAGE_NUMBER;
SPC = PG,

SSR = SR;

SGR = R15;

EXPEVT = H 000000AO;

SR MD = 1;

SR RB = 1;

SR BL = 1;

PC = VBR + H 00000100;

Rev. 6.00 Sep 13, 2006 page 103 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(6) Data Address Error

* Sources:
O Word data access from other than a word boundary (2n +1)
0 Longword data access from other than a longword data boundary (4n +1, 4n + 2, or 4n +3)

O Quadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +3, 8n
+4,8n+5,8n+6,0r 8n+7)

0 Access to area H'8000 0000—H'FFFF FFFF in user mode
e Transition address: VBR + H'0000 0100
* Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'OEO (for a read access) or H'100 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. For
details, see section 3, Memory Management Unit (MMU).

Dat a_address_error()
{
TEA = EXCEPTI ON_ADDRESS;
PTEN. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR
SGR = R15;
EXPEVT = read_access? H 000000EO: H 00000100;
SR.MD = 1;
SR RB =
SR. BL
PC = VBR + H 00000100;

1
1

Rev. 6.00 Sep 13, 2006 page 104 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(7) Instruction Address Error

* Sources:

U Instruction fetch from other than a word boundary (2n +1)

O Instruction fetch from area H'8000 0000—H'FFFF FFFF in user mode
» Transition address: VBR + H'0000 0100
» Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'OEO is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. For details, see section 3, Memory Management Unit
(MMU).

Instruction_address_error()
{
TEA = EXCEPTI ON_ADDRESS;
PTEN. VPN = PAGE_NUMBER;
SPC = PC,
SSR = SR,
SGR = R15;
EXPEVT = H 000O00O0EQ;
SR.MD = 1;
SR RB = 1;
SR. BL = 1;
PC = VBR + H 00000100;

Rev. 6.00 Sep 13, 2006 page 105 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(8) Unconditional Trap

* Source: Execution of TRAPA instruction

e Transition address: VBR + H'0000 0100

* Transition operations:
As this is a processing-completion-type exception, the PC contents for the instruction
following the TRAPA instruction are saved in SPC. The values of SR and R15 when the
TRAPA instruction is executed are saved in SSR and SGR. The 8-bit immediate value in the
TRAPA instruction is multiplied by 4, and the result is set in TRA [9:0]. Exception code H'160
is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC =
VBR + H'0100.

TRAPA_exception()

{
SPC = PC + 2;
SSR = SR;
SGR = R15;
TRA = imm << 2;
EXPEVT = H 00000160;
SRMD =1
SR.RB = 1;
SR BL = 1;
PC = VBR + H 00000100;
}

Rev. 6.00 Sep 13, 2006 page 106 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

(9) General Illegal Instruction Exception

* Sources:
0 Decoding of an undefined instruction not in a delay slot
Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S
Undefined instruction: HFFFD
0 Decoding in user mode of a privileged instruction not in a delay slot
Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR
* Transition address: VBR + H'0000 0100
» Transition operations:
The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

General _illegal _instruction_exception()
{

SPC = PC;

SSR = SR

SGR = R15;

EXPEVT = H 00000180;

SR M =1

SR RB = 1;

SRBL =1

PC = VBR + H 00000100;

Rev. 6.00 Sep 13, 2006 page 107 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

(10) Slot Illegal Instruction Exception

e Sources:

0 Decoding of an undefined instruction in a delay slot
Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S
Undefined instruction: HFFFD

O Decoding of an instruction that modifies PC in a delay slot
Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+,SR

0 Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

O Decoding of a PC-relative MOV instruction or MOVA instruction in a delay slot

* Transition address: VBR + H'0000 0100

* Transition operations:
The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.
Exception code H'1 A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

Slot_illegal _instruction_exception()

{

SPC = PC - 2;

SSR = SR

SGR = R15;

EXPEVT = H 000001AQ;
SR MD = 1;

SR RB
SR BL
PC = VBR + H 00000100;

1
1

Rev. 6.00 Sep 13, 2006 page 108 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(11) General FPU Disable Exception

* Source: Decoding of an FPU instruction™ not in a delay slot with SR.FD =1
* Transition address: VBR + H'0000 0100
* Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB bits are set to | in SR, and a
branch is made to PC = VBR + H'0100.

Note: * FPU instructions are instructions in which the first 4 bits of the instruction code are F
(but excluding undefined instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L
instructions corresponding to FPUL and FPSCR.

CGener al _f pu_di sabl e_exception()
{

SPC = PC;

SSR = SR,

SGR = R15;

EXPEVT = H 00000800;

SR. MD 1;

SR RB ;

SR. BL 1;

PC = VBR + H 00000100;

Rev. 6.00 Sep 13, 2006 page 109 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(12) Slot FPU Disable Exception

* Source: Decoding of an FPU instruction in a delay slot with SR.FD =1

* Transition address: VBR + H'0000 0100

* Transition operations:
The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.
Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits are set to | in SR, and a
branch is made to PC = VBR + H'0100.

Sl ot _f pu_di sabl e_excepti on()

{

SPC = PC - 2;

SSR = SR;

SGR = R15;

EXPEVT = H 00000820;
SR MD = 1;

SR RB = 1;

SR. BL 1;

PC = VBR + H 00000100;

Rev. 6.00 Sep 13, 2006 page 110 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(13) User Breakpoint Trap

Source: Fulfilling of a break condition set in the user break controller

Transition address: VBR + H'0000 0100, or DBR

Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the
instruction at which the breakpoint is set are set in SPC. In the case of a pre-execution break,
the PC contents for the instruction at which the breakpoint is set are set in SPC.

The SR and R15 contents when the break occurred are saved in SSR and SGR. Exception code
H'1EO is set in EXPEVT.

The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. It is
also possible to branch to PC = DBR.

For details of PC, etc., when a data break is set, see User Break Controller in the hardware
manual.

User _break_exception()

{

SPC = (pre_execution break? PC: PC + 2);
SSR = SR

SGR = R15;

EXPEVT = H 000001EOQ;

SR MD = 1;

SR. RB = 1;

SR BL = 1;

PC = (BRCR UBDE==1 ? DBR : VBR + H 00000100);

Rev. 6.00 Sep 13, 2006 page 111 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

(14) FPU Exception

* Source: Exception due to execution of a floating-point operation
* Transition address: VBR + H'0000 0100
* Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR. Exception code H'120 is set in EXPEVT.
The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

FPU_exception()
{
SPC = PC;
SSR = SR
SGR = R15;
EXPEVT = H 00000120;
SR M =1
SR RB 1;
SR BL = 1;
PC = VBR + H 00000100;

Rev. 6.00 Sep 13, 2006 page 112 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

5.6.3 Interrupts
(1) NMI

* Source: NMI pin edge detection
* Transition address: VBR + H'0000 0600
* Transition operations:

The contents of PC and SR immediately after the instruction at which this interrupt was
accepted are saved in SPC and SSR, and the contents of R15 are saved in SGR.

Exception code H'1CO is set in INTEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not
masked by the interrupt mask bits in SR, and is accepted at the highest priority level. When the
BL bit in SR is 1, a software setting can specify whether this interrupt is to be masked or
accepted. For details, see Interrupt Controller in the hardware manual.

NM ()
{
SPC = PC,
SSR = SR
SGR = R15;
I NTEVT = H 000001C0;
SR MD = 1;
SR RB 1;
SR BL ;
PC = VBR + H 00000600;

Rev. 6.00 Sep 13, 2006 page 113 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(2) IRL Interrupts

* Source: The interrupt mask bit setting in SR is smaller than the IRL (3-0) level, and the BL bit
in SR is 0 (accepted at instruction boundary).

* Transition address: VBR + H'0000 0600

* Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the IRL (3-0) level is set in INTEVT. See table 19.5, Interrupt
Exception Handling Sources and Priority Order, for the corresponding codes. The BL, MD,
and RB bits are set to 1 in SR, and a branch is made to VBR + H'0600. The acceptance level is
not set in the interrupt mask bits in SR. When the BL bit in SR is 1, the interrupt is masked.
For details, see Interrupt Controller in the hardware manual.

I RL()
{
SPC = PC,
SSR = SR
SGR = R15;
I NTEVT = H 00000200 ~ H 000003C0;
SR M =1
SR. RB 1;
SR BL = 1;
PC = VBR + H 00000600;

Rev. 6.00 Sep 13, 2006 page 114 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

(3) Peripheral Module Interrupts (Example of SH7751/SH7751R)
For details, refer to the corresponding products’ hardware manual.

* Source: The interrupt mask bit setting in SR is smaller than the peripheral module (H-UDI,
GPIO, DMAC, PCIC, TMU, RTC, SCI, SCIF, WDT, or REF) interrupt level, and the BL bit in
SR is 0 (accepted at instruction boundary).

* Transition address: VBR + H'0000 0600
* Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the interrupt source is set in INTEVT. The BL, MD, and RB bits
are set to 1 in SR, and a branch is made to VBR + H'0600. The module interrupt levels should
be set as values between B’0000 and B’1111 in the interrupt priority registers (IPRA-IPRC) in
the interrupt controller. For details, see Interrupt Controller in the hardware manual.

Modul e_i nterruption()

{
SPC = PC,
SSR = SR
SGR = R15;
I NTEVT = H 00000400 ~ H 00000760;
SR.MD = 1;
SR RB
SR BL =
PC = VBR + H 00000600;

1
1

Rev. 6.00 Sep 13, 2006 page 115 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

5.6.4

Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the
indivisible pair comprising a delayed branch instruction and delay slot instruction, multiple
exceptions occur. Care is required in these cases, as the exception priority order differs from the
normal order.

1.

Instructions that make two accesses to memory

With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS
instructions, two data transfers are performed by a single instruction, and an exception will be
detected for each of these data transfers. In these cases, therefore, the following order is used
to determine priority.

e

Data address error in first data transfer

TLB miss in first data transfer

TLB protection violation in first data transfer
Initial page write exception in first data transfer
Data address error in second data transfer

TLB miss in second data transfer

TLB protection violation in second data transfer

Initial page write exception in second data transfer

Indivisible delayed branch instruction and delay slot instruction

As a delayed branch instruction and its associated delay slot instruction are indivisible, they
are treated as a single instruction. Consequently, the priority order for exceptions that occur in
these instructions differs from the usual priority order. The priority order shown below is for
the case where the delay slot instruction has only one data transfer.

a.

The delayed branch instruction is checked for priority level 1 and 2 abort type and re-
execution type exceptions.

The delay slot instruction is checked for priority level 1 and 2 abort type and re-execution
type exceptions.

The delayed branch instruction is checked for a priority level 2 completion type exception.
The delay slot instruction is checked for a priority level 2 completion type exception.

A check is performed for priority level 3 in the delayed branch instruction and priority
level 3 in the delay slot instruction. (There is no priority ranking between these two.)

A check is performed for priority level 4 in the delayed branch instruction and priority
level 4 in the delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step b, as in
1 above.

Rev. 6.00 Sep 13, 2006 page 116 of 424
REJ09B0318-0600

RENESAS

Section 5 Exceptions

If the accepted exception (the highest-priority exception) is a delay slot instruction re-
execution type exception, the branch instruction PR register write operation (PC — PR
operation performed in BSR, BSRF, JSR) is inhibited.

5.7

Usage Notes

1. Return from exception handling

a.

a.

Check the BL bit in SR with software. If SPC and SSR have been saved to external
memory, set the BL bit in SR to 1 before restoring them.

Issue an RTE instruction. When RTE is executed, the SPC contents are set in PC, the SSR
contents are set in SR, and branch is made to the SPC address to return from the exception
handling routine.

If an exception or interrupt occurs when SR.BL = 1

Exception

When an exception other than a user break occurs, a manual reset is executed. The value in
EXPEVT at this time is H'0000 0020; the value of the SPC and SSR registers is undefined.
Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted after
the BL bit in SR has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software. In the
sleep or standby state, however, an interrupt is accepted even if the BL bit in SR is set to 1.

3. SPC when an exception occurs

a.

Re-execution type exception

The PC value for the instruction in which the exception occurred is set in SPC, and the
instruction is re-executed after returning from exception handling. If an exception occurs in
a delay slot instruction, however, the PC value for the delay slot instruction is saved in SPC
regardless of whether or not the preceding delay slot instruction condition is satisfied.
Completion type exception or interrupt

The PC value for the instruction following that in which the exception occurred is set in
SPC. If an exception occurs in a branch instruction with delay slot, however, the PC value
for the branch destination is saved in SPC.

An exception must not be generated in an RTE instruction delay slot, as the operation will be

undefined in this case.

Rev. 6.00 Sep 13, 2006 page 117 of 424
REJ09B0318-0600
RENESAS

Section 5 Exceptions

5.8 Restrictions

Restrictions on first instruction of exception handling routine

e Do not locate a BT, BF, BT/S, BF/S, BRA, or BSR instruction at address VBR + H'100, VBR
+ H'400, or VBR + H'600.

* When the UBDE bit in the BRCR register is set to 1 and the user break debug support
function* is used, do not locate a BT, BF, BT/S, BF/S, BRA, or BSR instruction at the address
indicated by the DBR register.

Note: * See User Break Debug Support Function in the hardware manual.

Rev. 6.00 Sep 13, 2006 page 118 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

Section 6 Floating-Point Unit

6.1 Overview
The floating-point unit (FPU) has the following features:

* Conforms to IEEE754 standard

* 32 single-precision floating-point registers (can also be referenced as 16 double-precision
registers)

* Two rounding modes: Round to Nearest and Round to Zero

e Two denormalization modes: Flush to Zero and Treat Denormalized Number

* Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow,
and Inexact

» Comprehensive instructions: Single-precision, double-precision, graphics support, system
control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FPU
instruction will cause an FPU disable exception.

6.2 Data Formats

6.2.1 Floating-Point Format

A floating-point number consists of the following three fields:

» Sign (s)
* Exponent ()
* Fraction (f)

The SH-4 can handle single-precision and double-precision floating-point numbers, using the
formats shown in figures 6.1 and 6.2.

31 30 23 22 0
|s‘ e f

Figure 6.1 Format of Single-Precision Floating-Point Number

Rev. 6.00 Sep 13, 2006 page 119 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

63 62 52 51 0

Figure 6.2 Format of Double-Precision Floating-Point Number
The exponent is expressed in biased form, as follows:
e =E + bias

The range of unbiased exponent E is E;, — 1 to Epx + 1. The two values E;, — 1 and E, + 1 are
distinguished as follows. E,;;, — 1 indicates zero (both positive and negative sign) and a
denormalized number, and E,,x + 1 indicates positive or negative infinity or a non-number (NaN).
Table 6.1 shows bias, E,;,, and E,,, values.

Table 6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision
Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

Bias +127 +1023

Emax +127 +1023

Emin -126 -1022

Floating-point number value v is determined as follows:

IfE=E..x t 1 and f# 0, v is a non-number (NaN) irrespective of sign s
IfE =E . + 1 and £=0, v = (-1)° (infinity) [positive or negative infinity]
If Emin < E < Epax » v = (—1)°2F (1.f) [normalized number]

IfE=E,;,— 1 and f# 0, v = (~1)"2"™" (0.f) [denormalized number]

IfE =E,— 1 and f= 0, v = (=1)°0 [positive or negative zero]

Table 6.2 shows the ranges of the various numbers in hexadecimal notation.

Rev. 6.00 Sep 13, 2006 page 120 of 424
REJ09B0318-0600
RENESAS

Section 6 Floating-Point Unit

Table 6.2

Type

Floating-Point Ranges

Single-Precision

Double-Precision

Signaling non-number

H'7FFFFFFF to H'7FC00000

H7FFFFFFF FFFFFFFF to
H'7FF80000 00000000

Quiet non-number

H'7FBFFFFF to H'7F800001

H'7FF7FFFF FFFFFFFF to
H'7FF00000 00000001

Positive infinity

H'7F800000

H'7FF00000 00000

Positive normalized
number

H'7F7FFFFF to H'00800000

H'7FEFFFFF FFFFFFFF to
H'00100000 00000000

Positive denormalized
number

H'007FFFFF to H'00000001

H'000FFFFF FFFFFFFF to
H'00000000 00000001

Positive zero

H'00000000

H'00000000 00000000

Negative zero

H'80000000

H'80000000 00000000

Negative denormalized
number

H'80000001 to H'807FFFFF

H'80000000 00000001 to
H'800FFFFF FFFFFFFF

Negative normalized
number

H'80800000 to H'FF7FFFFF

H'80100000 00000000 to
H'FFEFFFFF FFFFFFFF

Negative infinity

H'FF800000

H'FFFO0000 00000000

Quiet non-number

H'FF800001 to HFFBFFFFF

H'FFF00000 00000001 to
H'FFF7FFFF FFFFFFFF

Signaling non-number

H'FFC00000 to HFFFFFFFF

H'FFF80000 00000000 to
H'FFFFFFFF FFFFFFFF

6.2.2 Non-Numbers (NaN)
Figure 6.3 shows the bit pattern of a non-number (NaN). A value is NaN in the following case:

* Sign bit: Don’t care
* Exponent field: All bits are 1
* Fraction field: At least one bit is 1

The NaN is a signaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN (qNaN)
if the MSB is 0.

Rev. 6.00 Sep 13, 2006 page 121 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

31 30 23 22 0

X 11111111 XXX XXX XXX XX

N = 1: sNaN
N = 0: gNaN

Figure 6.3 Single-Precision NaN Bit Pattern

An sNAN is input in an operation, except copy, FABS, and FNEG, that generates a floating-point
value.

* When the EN.V bit in the FPSCR register is 0, the operation result (output) is a qNaN.

* When the EN.V bit in the FPSCR register is 1, an invalid operation exception will be
generated. In this case, the contents of the operation destination register are unchanged.

If a qNaN is input in an operation that generates a floating-point value, and an sNaN has not been
input in that operation, the output will always be a qNaN irrespective of the setting of the EN.V bit
in the FPSCR register. An exception will not be generated in this case.

The qNAN values generated by the SH-4 as operation results are as follows:

* Single-precision qNaN: H'7FBFFFFF
* Double-precision qNaN: H'7FF7FFFF FFFFFFFF

See section 9, Instruction Descriptions, for details of floating-point operations when a non-number
(NaN) is input.

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the exponent field is expressed as 0, and the
fraction field as a non-zero value.

When the DN bit in the FPU’s status register FPSCR is 1, a denormalized number (source operand
or operation result) is always flushed to 0 in a floating-point operation that generates a value (an
operation other than copy, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result) is
processed as it is. See section 9, Description of Instructions, for details of floating-point operations
when a denormalized number is input.

Rev. 6.00 Sep 13, 2006 page 122 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

6.3 Registers

6.3.1 Floating-Point Registers

Figure 6.4 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers, referenced by specifying FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0—
XF15, XD0/2/4/6/8/10/12/14, or XMTRX.

1. Floating-point registers, FPRi BANK] (32 registers)
FPRO BANKO-FPR15 BANKO
FPRO BANKI1-FPR15 BANKI1

2. Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 indicate FPRO BANKO-FPR15 BANKO;
when FPSCR.FR = 1, FRO-FR15 indicate FPRO_ BANK1-FPR15 BANKI.

3. Double-precision floating-point registers, DRi (8 registers): A DR register comprises two FR
registers
DRO = {FRO, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

4. Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers
FVO0 = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FRS, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

5. Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO-XF15 indicate FPRO BANK1-FPR15 BANKI;
when FPSCR.FR = 1, XFO-XF15 indicate FPRO BANKO-FPR15 BANKO.

6. Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers
XDO0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

Rev. 6.00 Sep 13, 2006 page 123 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

7. Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers

XMTRX = | XFO XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

FPSCR.FR=0 FPSCR.FR=1
FVO DRO FRO FPRO_BANKO XFO XDO XMTRX
FR1 FPR1_BANKO XF1
DR2 FR2 FPR2_BANKO XF2 XD2
FR3 FPR3_BANKO XF3

Fv4 DR4 FR4 FPR4_BANKO XE4 XD4
FR5 FPR5_BANKO XF5
DR6 FR6 FPR6_BANKO XF6 XD6
FR7 FPR7_BANKO XF7
FV8 DR8 FRS FPR8_BANKO XF8 XD8
FR9 FPR9_BANKO XF9
DR10 FR10 FPR10_BANKO XF10 XD10
FR11 FPR11_BANKO XF11
FV12 DR12 FR12 FPR12_BANKO XF12 XD12
FR13 FPR13_BANKO XF13
DR14 FR14 FPR14 BANKO XF14 XD14
FR15 FPR15_BANKO XF15
XMTRX XDO XFO FPRO_BANK1 FRO DRO FVO
XF1 FPR1 BANK1 FR1
XD2 XF2 FPR2_BANK1 FR2 DR2
XF3 FPR3_BANK1 FR3
XD4 XF4 FPR4_BANK1 FR4 DR4 FV4
XF5 FPR5_BANK1 FR5
XD6 XF6 FPR6_BANK1 FR6 DR6
XF7 FPR7_BANK1 FR7
XD8 XF8 FPR8_BANK1 FRS DR8 FV8
XF9 FPR9_BANK1 FR9
XD10 XF10 FPR10_BANK1 FR10 DRI10
XF11 FPR11_BANK1 FR11
XD12 XF12 FPR12_BANK1 FR12 DR12 FV12
XF13 FPR13_BANK1 FR13
XD14 XF14 FPR14_BANK1 FR14 DR14
XF15 FPR15_BANK1 FR15

Figure 6.4 Floating-Point Registers

Rev. 6.00 Sep 13, 2006 page 124 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

6.3.2 Floating-Point Status/Control Register (FPSCR)

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0
—_ |FR |SZ |PR |DN | Cause Enable | Flag | RM |
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

* FR: Floating-point register bank

FR =0: FPRO_ BANKO-FPR15 BANKO are assigned to FRO-FR15; FPRO BANKI1-
FPR15 BANKI are assigned to XFO-XF15.

FR =1: FPRO_BANKO-FPR15 BANKO are assigned to XFO-XF15; FPRO BANKI1-
FPR15 BANKI1 are assigned to FRO-FRI15.

e SZ: Transfer size mode
SZ = 0: The data size of the FMOV instruction is 32 bits.
SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

* PR: Precision mode
PR = 0: Floating-point instructions are executed as single-precision operations.

PR = I: Floating-point instructions are executed as double-precision operations (graphics
support instructions are undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

¢ DN: Denormalization mode
DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

* Cause: FPU exception cause field
* Enable: FPU exception enable field
* Flag: FPU exception flag field

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z) (O) (U) ()]
Cause FPU exception Bit17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2
flag field

Rev. 6.00 Sep 13, 2006 page 125 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

When an FPU operation instruction is executed, the FPU exception cause field is cleared to
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag field
holds the status of the exception generated after the field was last cleared.

* RM: Rounding mode
RM = 00: Round to Nearest
RM =01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

e Bits 22 to 31: Reserved

These bits are always read as 0, and should only be written with 0.

Notes: The following functions have been added to the FPU of the SH-4 (not provided in the FPU
of the SH7718):

1. The FR, SZ, and PR bits have been added.

2. Exception O (overflow), U (underflow), and I (inexact) bits have been added to the
cause, enable, and flag fields.

3. An exception E (FPU error) bit has been added to the cause field.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via the FPUL register. The 32-bit FPUL
register is a system register, and is accessed from the CPU side by means of LDS and STS
instructions. For example, to convert the integer stored in general register R1 to a single-precision
floating-point number, the processing flow is as follows:

R1 - (LDS instruction) -— FPUL — (single-precision FLOAT instruction) — FR1

6.4 Rounding

In a floating-point instruction, rounding is performed when generating the final operation result
from the intermediate result. Therefore, the result of combination instructions such as FMAC,
FTRYV, and FIPR will differ from the result when using a basic instruction such as FADD, FSUB,
or FMUL. Rounding is performed once in FMAC, but twice in FADD, FSUB, and FMUL.

There are two rounding methods, the method to be used being determined by the RM field in
FPSCR.

Rev. 6.00 Sep 13, 2006 page 126 of 424
REJ09B0318-0600
RENESAS

Section 6 Floating-Point Unit

¢ RM = 00: Round to Nearest
e RM=01: Round to Zero

Round to Nearest: The value is rounded to the nearest expressible value. If there are two nearest
expressible values, the one with an LSB of 0 is selected.

If the unrounded value is 2°™ (2 — 2°") or more, the result will be infinity with the same sign as
the unrounded value. The values of Emax and P, respectively, are 127 and 24 for single-precision,
and 1023 and 53 for double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will be
the maximum expressible absolute value.

6.5 Floating-Point Exceptions
FPU-related exceptions are as follows:

* General illegal instruction/slot illegal instruction exception

The exception occurs if an FPU instruction is executed when SR.FD = 1.

* FPU exceptions

The exception sources are as follows:
FPU error (E): When FPSCR.DN = 0 and a denormalized number is input
Invalid operation (V): In case of an invalid operation, such as NaN input
Division by zero (Z): Division with a zero divisor
Overflow (O): When the operation result overflows

Underflow (U): When the operation result underflows

Oo0Ooogogo

Inexact exception (I): When overflow, underflow, or rounding occurs

The FPSCR cause field contains bits corresponding to all of above sources E, V, Z, O, U, and
I, and the FPSCR flag and enable fields contain bits corresponding to sources V, Z, O, U, and
I, but not E. Thus, FPU errors cannot be disabled.

When an exception source occurs, the corresponding bit in the cause field is set to 1, and 1 is
added to the corresponding bit in the flag field. When an exception source does not occur, the
corresponding bit in the cause field is cleared to 0, but the corresponding bit in the flag field
remains unchanged.

Rev. 6.00 Sep 13, 2006 page 127 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

* FPU exception handling

FPU exception occurs in the following cases:

g
O
g
O
g

O

FPU error (E): FPSCR.DN = 0 and a denormalized number is input

Invalid operation (V): FPSCR.EN.V =1 and (instruction = FTRV or invalid operation)
Division by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor

Overflow (O): FPSCR.EN.O = 1 and instruction with possibility of operation result
overflow

Underflow (U): FPSCR.EN.U = 1 and instruction with possibility of operation result
underflow

Inexact exception (I): FPSCR.EN.I = 1 and instruction with possibility of inexact operation
result

These possibilities are shown in the individual instruction descriptions. All exception events
that originate in the FPU are assigned as the same exception event. The meaning of an
exception is determined by software by reading system register FPSCR and interpreting the
information it contains. If no bits are set in the cause field of FPSCR when one or more of bits
0, U, I, and V (in case of FTRV only) are set in the enable field, this indicates that an actual
FPU exception is not generated. Also, the destination register is not changed by any FPU
exception handling operation.

Except for the above, the bit corresponding to source V, Z, O, U, or L is set to 1, and a default
value is generated as the operation result.

O
g
O

6.6

Invalid operation (V): qNAN is generated as the result.
Division by zero (Z): Infinity with the same sign as the unrounded value is generated.
Overflow (O):

When rounding mode = RZ, the maximum normalized number, with the same sign as the
unrounded value, is generated.

When rounding mode = RN, infinity with the same sign as the unrounded value is
generated.

Underflow (U):

When FPSCR.DN = 0, a denormalized number with the same sign as the unrounded value,
or zero with the same sign as the unrounded value, is generated.

When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.
Inexact exception (I): An inexact result is generated.

Graphics Support Functions

The supports two kinds of graphics functions: new instructions for geometric operations, and pair
single-precision transfer instructions that enable high-speed data transfer.

Rev. 6.00 Sep 13, 2006 page 128 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

6.6.1 Geometric Operation Instructions

Geometric operation instructions perform approximate-value computations. To enable high-speed
computation with a minimum of hardware, the SH-4 ignores comparatively small values in the
partial computation results of four multiplications. Consequently, the error shown below is
produced in the result of the computation:

Maximum error = MAX (individual multiplication result x o o
2—MIN (number of multiplier significant digits—1, number of multiplicand significant d|g|ts—1)) + MAX (result

value x 2_23, 2_149)

The number of significant digits is 24 for a normalized number and 23 for a denormalized number
(number of leading zeros in the fractional part).

In future version of SuperH™ RISC engine family, the above error is guaranteed, but the same
result as SH-4 is not guaranteed.

FIPR FVm, FVn (m, n: 0, 4, 8, 12): Examples of the use of this instruction are shown below.

* Inner product (m # n):
This operation is generally used for surface/rear surface determination for polygon surfaces.
* Sum of square of elements (m = n):

This operation is generally used to find the length of a vector.

Since approximate-value computations are performed to enable high-speed computation, the
inexact exception (I) bit in the cause field and flag field is always set to 1 when an FIPR
instruction is executed. Therefore, if the corresponding bit is set in the enable field, enable
exception handling will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8, 12): Examples of the use of this instruction are shown below.

* Matrix (4 x 4) Ovector (4):
This operation is generally used for viewpoint changes, angle changes, or movements called
vector transformations (4-dimensional). Since affine transformation processing for angle +
parallel movement basically requires a 4 X 4 matrix, the SH-4 supports 4-dimensional
operations.

e Matrix (4 x 4) X matrix (4 x 4):
This operation requires the execution of four FTRV instructions.

Since approximate-value computations are performed to enable high-speed computation, the

inexact exception (I) bit in the cause field and flag field is always set to 1 when an FTRV
instruction is executed. Therefore, if the corresponding bit is set in the enable field, FPU exception

Rev. 6.00 Sep 13, 2006 page 129 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

handling will be executed. For the same reason, it is not possible to check all data types in the
registers beforehand when executing an FTRV instruction. If the V bit is set in the enable field,
FPU exception handling will be executed.

FRCHG: This instruction modifies banked registers. For example, when the FTRV instruction is
executed, matrix elements must be set in an array in the background bank. However, to create the
actual elements of a translation matrix, it is easier to use registers in the foreground bank. When
the LDC instruction is used on FPSCR, this instruction expends 4 to 5 cycles in order to maintain
the FPU state. With the FRCHG instruction, an FPSCR.FR bit modification can be performed in
one cycle.

6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful geometric operation instructions, the SH-4 also supports high-speed
data transfer instructions.

When FPSCR.SZ = 1, the SH-4 can perform data transfer by means of pair single-precision data
transfer instructions.

* FMOV DRnvXDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)
e FMOV DRnvXDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precision (2 x 32-bit) data items to be transferred; that is, the
transfer performance of these instructions is doubled.

* FSCHG

This instruction changes the value of the SZ bit in FPSCR, enabling fast switching between use
and non-use of pair single-precision data transfer.

Programming Note

When FPSCR.SZ = 1 and big-endian mode is used, FMOV can be used for a double-precision
floating-point load or store. In little-endian mode, a double-precision floating-point load or store
requires execution of two 32-bit data size operations with FPSCR.SZ = 0.

Rev. 6.00 Sep 13, 2006 page 130 of 424
REJ09B0318-0600
RENESAS

Section 6 Floating-Point Unit

6.7 Usage Notes

6.7.1 Notice about FPU Instructions Issues

When a rounding mode of Round to Nearest is used , underflow flag is not set even if the result is
in the range to cause underflow defined in IEEE754.

Phenomenon: When a rounding mode of Round to Nearest is used, result of infinity precision x
satisfies 1 or 2 (single precision), or result of infinity precision x satisfies 3 or 4 (double
precision), there is a case that the result after rounding become a normalized number but
underflow flag is set in IEEE754.

The FPU does not set underflow flag in the above case , correct results are written to FRn.

Once more underflow flag is not set but inexact flag is set in this case. So FPU exceptions occurs
when enable field is set.

1. H'007F FFFF <x <H'0080 0000
2. H'807F FFFF > x > H'8080 0000
3. H'000F FFFF FFFF FFFF <x <H'0010 0000 0000 0000
4. H'800F FFFF FFFF FFFF > x > H'8010 0000 0000 0000

Examples:

Case of single precision
FPSCR.RM = 00 (Round to Nearest), FPSCR.PR = 0 (single precision),
FMUL instruction (H'00FF FO00 * H'3F00 0800) is executed.

* IEEE754
Result : H'0080 0000
FPSCR : H'0004 300C
 SH-4FPU
Result : H'0080 0000
FPSCR : H'0004 1004

Case of double precision
FPSCR.RM = 00 (Round to Nearest), FPSCR.PR = 1 (double precision),
FDIV instruction (H'001F FFFF FFFF FFFF/H'4000 0000 0000 0000) is executed.

Rev. 6.00 Sep 13, 2006 page 131 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

» IEEE754
Result : H'0010 0000 0000 0000
FPSCR : H'000C 300C

* SH-4 FPU
Result : H'0010 0000 0000 0000
FPSCR : H'000C 1004

Effect: The main purpose of underflow is to indicate the result of arithmetic is a denormalized
numk or zero, but the result of arithmetic is a normalized number in this case. So this case-
underflow flag is not set-does not violate this main purpose of detecting an underflow. The effect
of this debug is limited to users who need all underflow case exactly.

Workaround

1. Use FPSCR.RM = 01(Round to Zero)
2. When using FPSCR.RM = 00 (Round to Nearest), in order to detect the precise underflow

condition, set enable field of inexact, and analize the underflow condition in the exception
handler.

6.7.2 Notice about the Overflow Flag by FIPR and FTRYV Instruction Command

When the maximum error produced in the result of the computation of FIPR or FTRV is larger
than the maximum normalized number (H'7F7F FFFF), the overflow flag may be set to 1, even if
the operation result is a positive or negative zero (H'0000 0000 or H'8000 0000).

Workaround: FIPR and FTRYV instruction command is not used, but it is operated by FADD and
FMUL and FMAC instruction command.

Example: The operation result after "FIPR FV4, FV0" which considers the following register
value as an input, and FV0 command execution (FR7) is H'0000 0000 (positive zero). It is not
concerned but an overflow flag is set. When input the following register value, an operation results
after "FIPR FV4, FV0" instruction command (FR7) execution is "H'0000 0000 (positive zero).

Regardless of H'0000 0000 (positive zero) which is the result (FR7) after execution of "FIPR FV4,
FO0" instruction command, the overflow flag may be set.

FPSCR = H'00040001
FRO = HFF7EF631, FR1 = H80000000, FR2 = H'8087F451, FR3 = H'7F7EF631
FR4 = H'7F7EF631, FR5 = H'0087F451, FR6 = H'7F7EF631, FR7 = H'7F7EF631

Rev. 6.00 Sep 13, 2006 page 132 of 424
REJ09B0318-0600
RENESAS

Section 6 Floating-Point Unit

6.7.3 Notice about the Sign of the Operation Result by FIPR and FTRYV Instruction
Command

When two or more of the data which are operated by FIPR and FTRYV instruction command are
infinity, and all of the infinities in the result of multiplication in FIPR or FTRV instruction
operation have the same sign, there is a possibility to mistake the sign of operation result.

Workaround

1. Do not use an infinity. When all of the following a—c conditions consist, an infinity isn’t
treated.

a. Rounding to Zero (FPSCR.RM = 01) is used as a rounding mode.
b. Itis not divided by Zero.
c. A positive or negative infinity is not loaded to FRO-FR15 or XF0-XF15.

2. Neither FIPR nor the FTRV instruction commands are used, and it operates it by FADD,
FMUL, and FMAC instruction command.

6.7.4 Notice about Double Precision FADD and FSUB Instructions for SH-4

This document reports the analysis on problem about double precision FADD and FSUB
instruction for SH-4. All SH-4 products and SH-4 core has the same problem. This document
explains the problem.

Condition in which the Problem Occurs: When all the following conditions are satisfied, the
Problem may occur.

1. Double precision FADD instruction or Double precision FSUB instruction is executed.
2. Difference of exponents of two inputs (DRm,DRn) is 43 to 50.

3. Bit 24 to 31 of the input with the smaller absolute value of DRn and DRm is NOT all 0.
4. Bit 0 to 23 of the input with the smaller absolute value of DRn and DRm is all 0.

5. Bit 32 to 40 of the input with the smaller absolute value of DRn and DRm is all 0.

What happens by the Problem is

The operation is inexact but FPSCR.Flag.I or FPSCR.Cause.I may not be set to 1. The operation
has incorrect rounding.

In detail, SH-4 selects the smallest expressible value of larger side of the pre-rounding one instead
of the largest expressible value of smaller side of the pre-rounding one, or vice versa.

Rev. 6.00 Sep 13, 2006 page 133 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

Examples: The result of double precision FSUB DR0,DR2 is H'C4B250D2 0CC1F974 as against
the expected value H'C4B250D2 0CC1F973, and FPSCR.Flag.l or FPSCR.Cause.l is not set to 1,

though the operation is inexact.

(input data) FPSCR = H' 000C0001

DRO = H' C1F00000 80000000, DR2 = H' C4B250D2 0CC1FB74

(correct result) DR2 = H'C4B250D2 0CC1F973
(result of FPU) DR2 = H'C4B250D2 0CC1F974

Effect of the problem: In addition to the above explanation, the effect of the numeric value of this
problem can be limited within the boundary that can be described by the small arithmetic error,
1/256 of LSB in the significant, and the rounding mechanism. Strictly speaking, it is explained as

follows.

a: The computing result of infinite accuracy

b: The largest expressible value of smaller side of a
c: The smallest expressible value of larger side of a
d: The right rounded value of a

e: FPU’s rounded value of a

1.

Round to Nearest

When the rounding is correctly performed, the value of the rounding error is
0<=|d—a|<=(1/2) *(c—Db)

But the result of FPU is

0 <=le —a| <(129/256) * (c — b)

The range of the rounding error is 1/256 * (¢ — b) larger than that of correct error.
Round to Zero

When the rounding is correctly performed, the value of the rounding error is
(-D*(c-b)<ld-|a] <=0

But the result of FPU is

(-1) * (¢ —b) <le[- [a| < (1/256) * (c — b)

The range of the rounding error is 1/256 * (¢ — b) larger than that of correct error.

Rev. 6.00 Sep 13, 2006 page 134 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

6.7.5 FPU Double Precision

Double precision denormalized numbers in the FDIV, FADD, FSUB, and FMUL instructions give
wrong results.

Target User: Software designers who develop software in scientific and engineering field are the
target.

Especially, those designers who use double precision floating point instructions and treat the
denormalized number as it is. But this concerning target is not for those designers who use double
precision floating point instructions and treat zero-flushed denormalized number and also not for
those designers who use single precision floating point instruction as well.

Phenomena: These are two phenomena. First, when the inputs are denormalized numbers as
described in (a) and (b), then wrong results are generated. And second one, when the inputs are
denormalized numbers and gNaN as described in (c), then wrong results are generated:

(a) In double-precision FDIV, there are cases that are wrong results generates as 0 or infinity when
inputs include denormalized number.

(b) In double-precision FMUL, there are cases that the wrong result generates as infinity when
inputs include denormalized number.

(c) In double-precision FDIV, FADD, FSUB, or FMUL, there are cases that exception occurs by
mistake and the wrong result generates as infinity when inputs are denormalized number and
gqNaN.

Effect: The worst case is, when double precision FDIV or FMUL instruction with denormlized
number’s input is used the wrong result is written in register. Particularly, denormalized
number/denormalized number = 0, denromalized number/0 = 0 is not appropriate in mathematical
sense.

Workaround: 1 is recommended. 2 is desirable when there are needs to calucrate denormalized
numbers in scientific and engineering fields.

1. Double precision instruction is only used at the mode “FPSCR.DN = B'1” which means
denormalized number is treated as zero. The performance does not decrease in this work
around.

2. The case that wrong results are generated when inputs are denormalized numbers (a, b) should
be modified by software. Please refer to section 4, Software modification in detail.

O Source and destination register (DRn) should be saved.
0 When the result is 0 or infinity in double-precision FDIV, the function that calculate
denormalized numbers is called. The function should be prepared by software designer.

Rev. 6.00 Sep 13, 2006 page 135 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

The case that wrong results are generated when inputs are denormalized numbers and qNaN
(c) should be modified by TRAP routine. Please refer to section 5, TRAP routin modification
in detail.

0 When one of the input is denormalized numbers and the other is qNaN in double-precision
FDIV, FADD, FSUB, or FMUL, qNaN (H'7FF7FFFF_FFFFFFFF) is written in destinaion
register by the TRAP routine.

e Details

Definition: Data pattern that cause wrong results is defined. The data patterns from (A) to (D)
in tables correspond to the following patterns.

(A)Double precision denormalized number
H'00000000 XXXXXXXX or H'80000000 XXXXXXXX (X:0or1)
Condition: HXXXXXXXX! = H'00000000

(B)Double precision denormalized number
H'000YYYYY XXXXXXXX or H800YYYYY XXXXXXXX (X:0o0rl)
Condition: HYYYYY! = H'00000

(C)Double precision qNaN
H'7FF00000 XXXXXXXX or HFFF00000 XXXXXXXX (X:0o0r 1)
Condition: H'XXXXXXXX! = H'00000000

(D)Double precision qNaN *unlimited qNaN
H7FFXXXXX XXXXXXXX or HFFFXXXXX XXXXXXXX (X:0or1)
Condition: HXXXXX XXXXXXXX!=H'00000 00000000

* Wrong results list

Table 6.3 shows the combination of instruction and data that generate wrong results in case of
FPSCR.DN = B'0 (denormalized numbers is treated as it is).

The inputs (A), (B), and (C) are the data patterns as the above definition.

The NG types from (1) to (7) is classified from the wrong results category and these NG types
is used in tables 6.4 to 6.6.

In NG types (1), (2), (3), and (7), the output O or infinity is the wrong result.

In NG types (4), (5), and (6), if exception TRAP (FPU Error) occurs then qNaN is not written.
The relations among the items of Phenomena and table 6.3 are as follows:

O Phenomena (a) corresponds to the NG types (1), (2), and (3) in the table 6.3.
O Phenomena (b) corresponds to the NG type (7).
O Phenomena (c) corresponds to the NG types (4), (5), and (6).

Rev. 6.00 Sep 13, 2006 page 136 of 424
REJ09B0318-0600
RENESAS

Section 6 Floating-Point Unit

Table 6.3 NG Results
Inputs
NG Type Instruction DRm DRn SH-4 Correct
(1) FDIV +0/-0 (A) DENORM +0/-0 Dz
(2) FDIV (A) DENORM +0/-0 +0/-0 FPU Error
(A) DENORM | (A) DENORM
(3) FDIV (A) DENORM +INF/-INF +INF/-INF FPU Error
(4) FDIV (C) gNaN (A) DENORM FPU Error gNaN*
(C) gNaN (B) DENORM
(B) DENORM (C) gNaN
(5) FADD/FSUB (C) gNaN DENORM FPU Error gNaN*
DENORM (C) gNaN
(6) FMUL (C) gNaN (B) DENORM FPU Error gNaN*
(B) DENORM (C) gNaN
(7) FMUL (A) DENORM +INF/-INF +INF/-INF FPU Error
+INF/-INF (A) DENORM
Note: * gNaN: H'7FF7FFFF_FFFFFFFF

No NG occurs in case FPSCR.DN = B'l (denormalized numbers is flushed to zero). The summary

of special cases in double FDIV, FADD, FSUB, and FMUL instructions are shown.

Rev. 6.00 Sep 13, 2006 page 137 of 424

RENESAS

REJ09B0318-0600

Section 6 Floating-Point Unit

Table 6.4 FDIV DRm, DRn (DRn/DRm - DRn)
DRn (A) (A)
Positive | Negative (B) ©) (D)
DRm NORM | +0 -0 | +INF|-INF | DENORM | DENORM |DENORM | gNaN gNaN | sNaN
NORM DIV 0 INF Error
+0 DZ |Invalid +INF | -INF +0 (1) -0 (1) DZ
-0 =INF [+INF -0 (1) +0 (1)
+INF 0 +0 -0 |Invalid Error gNaN Invalid
—-INF -0 +0
(A) Positive ®) | B
DENORM +0 (2)|-0 (2) +INE | INF +0 (2) -0 (2)
(A) Negative _ @6 |
DENORM 02|+ @) =INF | +INF 0@ 0@
(B) DENORM Error (4)
(C) gNaN Error (4)
(D) gNaN
sNaN

[1 SH-4 outputs correct results in dotted box.
[1 SH-4 outputs wrong results in white box.

Rev. 6.00 Sep 13, 2006 page 138 of 424

REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

Table 6.5 FADD DRm, DRn (DRn + DRm — DRn)
FSUB DRm, DRn (DRn — DRm - DRn)
DRn (A (A)
Positive | Negative (B) ©) (D)
DRm NORM | +0 -0 | +INF|-INF | DENORM | DENORM |[DENORM | gNaN gNaN | sNaN
NORM ADD +INF | -INF Error
+0 +0
-0 -0
+INF Invalid gNaN Invalid
-INF —INF |Invalid —INF
(A) Positive £
DENORM rror (5)

(A) Negative
DENORM

(B) DENORM

(C) gNaN

(D) gNaN

Error

©)

sNaN

[1 SH-4 outputs correct results in dotted box.
[1 SH-4 outputs wrong results in white box.

Rev. 6.00 Sep 13, 2006 page 139 of 424

RENESAS

REJ09B0318-0600

Section 6 Floating-Point Unit

Table 6.6 FMUL DRm, DRn (DRn*DRm - DRn)
DRn (A) (A
Positive | Negative (B) ©) (D)
DRm NORM | +0 -0 | +INF|-INF | DENORM | DENORM |DENORM | gNaN gNaN | sNaN
NORM MUL 0 INF Error
+0 0 +0 -0 [Invalid
-0 -0 +0
+INF INF |[Invalid +INF [=INF | +INF (7) =INF (7) gNaN Invalid
-INF =INF [+INF{| -INF (7) +INF (7)
(A) Positive +INF | =INE
DENORM) 7
(A) Negative —-INF | +INF
DENORM URNG
(B) DENORM Error (6)
(C) gNaN Error (6)
(D) gNaN
sNaN

[1 SH-4 outputs correct results in dotted box.
[1 SH-4 outputs wrong results in white box.

Software Modification

* NG type: (1), (2), or (3)

In NG types (1), (2), or (3), software should be modified according to the following flows.

Source operand is adjusted by multiplying

number.

1536
2

, and should be calculated as normalized

If NG type is (1) and Divide by Zero exception is enabled, divide by zero exception occurs and

the destination register is not modified.

If NG type is (1) and Divide by Zero exception is disabled, the destination register is set to
infinity with sign based on source operands.

Rev. 6.00 Sep 13, 2006 page 140 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

START

A
| Source DRn is saved. |

v

| FDIVDRm,DRn |

Is result £INF or £0?

Is NG type (1), (2), or (3)2 ves

| Source DRn is restored. |

v

| DRm x 21536’ DRnN x 21536 |

v

| FDIVDRm,DRn |

A

END

* NG type: (7)
If NG type is (7), FPU Error exception does not occur. But results is correct, and thus
modification by software is not needed.

Trap Routine Modification: In NG types (4), (5), or (6), instruction and input data should be
checked and qNaN should be written in destination register as table 6.7 in TRAP routine.

qNaN is always H'7FF7FFFF_FFFFFFFF.

Rev. 6.00 Sep 13, 2006 page 141 of 424
REJ09B0318-0600

RENESAS

Section 6 Floating-Point Unit

Table 6.7 TRAP Routine
Input Check
NG Type Instruction Check DRm DRn Result
4) FDIV gNaN DENORM gNaN
FDIV gNaN DENORM gNaN
FDIV DENORM gNaN gNaN
(5) FADD/FSUB gNaN DENORM gNaN
FADD/FSUB DENORM gNaN gNaN
(6) FMUL gNaN DENORM gNaN
FMUL DENORM gNaN gNaN

Rev. 6.00 Sep 13, 2006 page 142 of 424
REJ09B0318-0600

RENESAS

Section 7 Instruction Set

Section 7 Instruction Set

7.1 Execution Environment
PC: At the start of instruction execution, PC indicates the address of the instruction itself.

Data sizes and data types: The SH-4’s instruction set is implemented with 16-bit fixed-length
instructions. The SH-4 can use byte (8-bit), word (16-bit), longword (32-bit), and quadword (64-
bit) data sizes for memory access. Single-precision floating-point data (32 bits) can be moved to
and from memory using longword or quadword size. Double-precision floating-point data (64 bits)
can be moved to and from memory using longword size. When a double-precision floating-point
operation is specified (FPSCR.PR = 1), the result of an operation using quadword access will be
undefined. When the SH-4 moves byte-size or word-size data from memory to a register, the data
is sign-extended.

Load-Store Architecture: The SH-4 features a load-store architecture in which operations are
basically executed using registers. Except for bit-manipulation operations such as logical AND
that are executed directly in memory, operands in an operation that requires memory access are
loaded into registers and the operation is executed between the registers.

Delayed Branches: Except for the two branch instructions BF and BT, the SH-4’s branch
instructions and RTE are delayed branches. In a delayed branch, the instruction following the
branch is executed before the branch destination instruction. This execution slot following a
delayed branch is called a delay slot. For example, the BRA execution sequence is as follows:

Static Sequence Dynamic Sequence

BRA TARGET BRA TARGET

ADD R1, RO ADD R1, RO ADD in delay slot is executed before
next_2 target_instr branching to TARGET

Delay Slot: An illegal instruction exception may occur when a specific instruction is executed in a
delay slot. See section 5, Exceptions. The instruction following BF/S or BT/S for which the branch
is not taken is also a delay slot instruction.

Rev. 6.00 Sep 13, 2006 page 143 of 424
REJ09B0318-0600

RENESAS

Section 7 Instruction Set

T Bit: The T bit in the status register (SR) is used to show the result of a compare operation, and is
referenced by a conditional branch instruction. An example of the use of a conditional branch
instruction is shown below.

ADD #1, R0 ; T bit is not changed by ADD operation
CMP/EQ R1, RO ; If RO=RI1, T bit is set to 1
BT TARGET ; Branches to TARGET if T bit=1 (R0 =R1)

In an RTE delay slot, status register (SR) bits are referenced as follows. In instruction access, the
MD bit is used before modification, and in data access, the MD bit is accessed after modification.
The other bits—S, T, M, Q, FD, BL, and RB—after modification are used for delay slot
instruction execution. The STC and STC.L SR instructions access all SR bits after modification.

Constant Values: An 8-bit constant value can be specified by the instruction code and an
immediate value. 16-bit and 32-bit constant values can be defined as literal constant values in
memory, and can be referenced by a PC-relative load instruction.

MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn

There are no PC-relative load instructions for floating-point operations. However, it is possible to
set 0.0 or 1.0 by using the FLDIO or FLDI1 instruction on a single-precision floating-point
register.

7.2 Addressing Modes

Addressing modes and effective address calculation methods are shown in table 7.1. When a
location in virtual memory space is accessed (MMUCR.AT = 1), the effective address is translated
into a physical memory address. If multiple virtual memory space systems are selected
(MMUCR.SV = 0), the least significant bit of PTEH is also referenced as the access ASID. See
section 3, Memory Management Unit (MMU).

Rev. 6.00 Sep 13, 2006 page 144 of 424
REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Table 7.1 Addressing Modes and Effective Addresses
Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register Rn Effective address is register Rn. —
direct (Operand is register Rn contents.)
Register @Rn Effective address is register Rn contents. Rn - EA
indirect (EA: effective
Register @Rn+ Effective address is register Rn contents. Rn - EA
indirect A constant is added to Rn after instruction After
with post- execution: 1 for a byte operand, 2 for a word instruction
increment operand, 4 for a longword operand, 8 for a execution
quadword operand. Byte:
Word:
Rn + 1/2/4/8 Rn+2 - Rn
Longword:
1/2/4/8 Rn+4 - Rn
Quadword:
Rn+8 - Rn
Register @-Rn Effective address is register Rn contents, Byte:
indirect decremented by a constant beforehand: Rn—-1 - Rn
with pre- 1 for a byte operand, 2 for a word operand, Word:
decrement 4 for a longword operand, 8 for a quadword RN — 2 ~ Rn
operand.
Longword:
R | Rn—4 — Rn
Rn —1/2/4/8 Quadword:
Rn —1/2/4/8 Rn—8 - Rn
1/2/4/8 Rn - EA
(Instruction
executed
with Rn after
calculation)

Rev. 6.00 Sep 13, 2006 page 145 of 424

RENESAS

REJ09B0318-0600

Section 7 Instruction Set

Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register @(disp:4, Rn) Effective address is register Rn contents with Byte: Rn +
indirect with 4-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), \y/orq: RN +
or 4 (longword), according to the operand size. disp x 2 L EA
Longword:
- Rn + disp x 4
disp Rn + disp x 1/2/4 - EA
(zero-extended)
Indexed @(RO, Rn) Effective address is sum of register Rn and RO Rn+ R0 - EA
register contents.
indirect
GBRindirect @(disp:8, Effective address is register GBR contents with Byte: GBR +
with GBR) 8-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), \yor4: GBR +
or 4 (longword), according to the operand size. disp x 2 L EA
Longword:
GBR + disp x
disp _GBR 4 _ EA
(zero-extended) + disp x 1/2/4
Indexed @(RO, GBR) Effective address is sum of register GBR and RO GBR + RO -
GBR indirect contents. EA

GBR + RO

Rev. 6.00 Sep 13, 2006 page 146 of 424
REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
PC-relative @(disp:8, PC) Effective address is PC+4 with 8-bit displacement Word: PC + 4
with disp added. After disp is zero-extended, it is +dispx2 >
displacement multiplied by 2 (word), or 4 (longword), according EA
to the operaqd size. With a longword operand, Longword:
the lower 2 bits of PC are masked. PC &
H'FFFFFFFC
+4 + disp x4
- EA
PC + 4 + disp
x 2
or PC &
: H'FFFFFFFC
disp)
(zero-extended) t4+dispx4
Note: * With longword
operand
PC-relative disp:8 Effective address is PC+4 with 8-bit displacement PC + 4 + disp

disp added after being sign-extended and

multiplied by 2.

PC + 4 + disp x 2

(sign-extended)

x 2 - Branch-
Target

Rev. 6.00 Sep 13, 2006 page 147 of 424
REJ09B0318-0600

RENESAS

Section 7 Instruction Set

Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
PC-relative disp:12 Effective address is PC+4 with 12-bit displacement PC + 4 + disp
disp added after being sign-extended and x 2 - Branch-
multiplied by 2. Target
PC + 4 + disp x 2
(sign-extended)
Rn Effective address is sum of PC+4 and Rn. PC+4+Rn
- Branch-
Target

PC +4+Rn

Immediate #imm:8

8-bit immediate data imm of TST, AND, OR, or —
XOR instruction is zero-extended.

#imm:8

8-bit immediate data imm of MOV, ADD, or —
CMP/EQ instruction is sign-extended.

#imm:8

8-bit immediate data imm of TRAPA instruction is —
zero-extended and multiplied by 4.

Note: For the addressing modes below that use a displacement (disp), the assembler descriptions
in this manual show the value before scaling (x1, X2, or x4) is performed according to the
operand size. This is done to clarify the operation of the chip. Refer to the relevant
assembler notation rules for the actual assembler descriptions.

@ (disp:4, Rn) ; Register indirect with displacement
@ (disp:8, GBR) ; GBR indirect with displacement

@ (disp:8, PC) ; PC-relative with displacement
disp:8, disp:12 ; PC-relative

Rev. 6.00 Sep 13, 2006 page 148 of 424

REJ09B0318-0600

RENESAS

Section 7 Instruction Set

7.3 Instruction Set

Table 7.2 shows the notation used in the following SH instruction list.

Table 7.2 Notation Used in Instruction List

Item Format Description
Instruction OP.Sz SRC, DEST OFP: Operation code
mnemonic Sz: Size
SRC: Source
DEST: Source and/or destination operand
Summary of -, Transfer direction
operation (xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
O Logical exclusive-OR of individual bits
~ Logical NOT of individual bits
<<n, >>n n-bit shift
Instruction code MSB ~ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: RO, FRO
0001: R1, FR1
1111: R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRm, XDm, Rn_BANK)
000: DRO, XD0, RO_BANK
001: DR2, XD2, R1_BANK
111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn: Register number (FVn)
00: FVO
01: Fv4
10: Fv8
11: FV12
iiii: Immediate data
dddd: Displacement

Privileged mode

“Privileged” means the instruction can only be executed
in privileged mode.

T bit

Value of T bit after ~—: No change

instruction execution

Note: Scaling (x1, x2, x4, or x8) is executed according to the size of the instruction operand(s).

Rev. 6.00 Sep 13, 2006 page 149 of 424
REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Table 7.3 Fixed-Point Transfer Instructions

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm - sign extension - Rn 1110nnnniiiiiiii — —

MOV.W @(disp,PC),Rn (disp x 2 + PC + 4) - sign 1001nnnndddddddd — —
extension - Rn

MOV.L @(disp,PC),Rn (disp x4 + PC & H'FFFFFFFC 1101nnnndddddddd — —
+4) - Rn

MOV Rm,Rn Rm - Rn 0110nnnnmmm0011 — —

MOV.B Rm,@Rn Rm - (Rn) 0010nnnnAMMmMOO000 — —

MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmm0001 — —

MOV.L Rm,@Rn Rm - (Rn) 0010nnnnAPMMO010 — —

MOV.B @Rm,Rn (Rm) - sign extension -~ Rn 0110nnnnmmm0000 — —

MOV.W @Rm,Rn (Rm) - sign extension -~ Rn~ 0110nnnnmmmm0001 — —

MOV.L @Rm,Rn (Rm) - Rn 0110nnnnnmMMmO010 — —

MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmm0100 — —

MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnmmm0101 — —

MOV.L Rm,@-Rn Rn-4 -~ Rn, Rm - (Rn) 0010nnnnAPMMO110 — —

MOV.B @Rm+,Rn (Rm)- sign extension - Rn, 0110nnnnmmm0100 — —
Rm+1 - Rm

MOV.W @Rm+,Rn (Rm) - sign extension -~ Rn, 0110nnnnmm0101 — —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmm0110 — —

MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd — —

MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd — —

MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 0001nnnnmmmdddd — —

MOV.B @(disp,Rm),R0 (disp + Rm) - sign extension 10000100mmmdddd — —
- RO

MOV.W @(disp,Rm),RO (disp x 2 + Rm) — sign 10000101mmmdddd — —
extension - RO

MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnnmmmdddd — —

MOV.B Rm,@(R0,Rn) Rm - (RO + Rn) 0000nnnnmmMMO0100 — —

MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnNnnMMMO101 — —

MOV.L Rm,@(R0,Rn) Rm - (RO + Rn) 0000nnnnmmMMmMO0110 — —

MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnnnmMMML100 — —
- Rn

MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnnnmmMMML101 — —

- Rn

Rev. 6.00 Sep 13, 2006 page 150 of 424

REJO9B03

18-0600

RENESAS

Section 7

Instruction Set

Instruction Operation Instruction Code Privileged T Bit

MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000OnnnnmMMML110 — —

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd — —

MOV.W RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd — —

MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),R0 (disp + GBR) - 11000100dddddddd — —
sign extension - RO

MOV.W @(disp,GBR),R0 (disp x 2 + GBR) - 11000101dddddddd — —
sign extension -~ RO

MOV.L @(disp,GBR),R0 (disp x4 + GBR) - RO 11000110dddddddd — —

MOVA @(disp,PC),R0 disp x4 + PC & H'FFFFFFFC 1100011ldddddddd — —
+4 - RO

MOVT Rn T - Rn 0000nnnn00101001 — —

SWAP.B Rm,Rn Rm - swap lower 2 bytes 0110nnnnmMmMMmM1000 — —
- Rn

SWAP.W Rm,Rn Rm - swap upper/lower 0110nnnnmmmml001 — —
words — Rn

XTRCT Rm,Rn Rm:Rn middle 32 bits -~ Rn 0010nnnnmmmi101 — —

Rev. 6.00 Sep 13, 2006 page 151 of 424

RENESAS

REJ09B0318-0600

Section 7

Instruction Set

Table 7.4 Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmill00 — —

ADD #imm,Rn Rn +imm - Rn Ollinnnniiiiiiii — —

ADDC Rm,Rn Rn+Rm+T - Rn,carry -~ T 001lnnnnmmmmll10 — Carry

ADDV Rm,Rn Rn+Rm - Rn, overflow - T 0011nnnnmmmmllll — Overflow

CMP/EQ #imm,RO When RO =imm, 1 - T 10001000iiiiiiii — Comparison
Otherwise, 0 - T result

CMP/EQ Rm,Rn WhenRn=Rm,1 - T 0011nnnnmmm0000 — Comparison
Otherwise, 0 - T result

CMP/HS Rm,Rn When Rn = Rm (unsigned), 0011nnnnmmm®OO010 — Comparison
1T result
Otherwise, 0 - T

CMP/GE Rm,Rn When Rn = Rm (signed), 1 - T 0011nnnnnmm?0011 — Comparison
Otherwise, 0 - T result

CMP/HI Rm,Rn When Rn > Rm (unsigned), 0011nnnnmmm0110 — Comparison
1T result
Otherwise, 0 - T

CMP/GT Rm,Rn When Rn > Rm (signed), 1 -~ T 0011nnnnmmmm0111 — Comparison
Otherwise, 0 - T result

CMP/PZ Rn WhenRn=0,1-T 0100nnnn00010001 — Comparison
Otherwise, 0 - T result

CMP/PL Rn WhenRn>0,1 - T 0100nnnn00010101 — Comparison
Otherwise, 0 - T result

CMP/STR Rm,Rn When any bytes are equal, 0010nnnnmmmml100 — Comparison
1T result
Otherwise, 0 - T

DIV1 Rm,Rn 1-step division (Rn + Rm) 0011nnnnmmm®OD100 — Calculation

result

DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnnmmm®D111 — Calculation
MSBofRm - M,MQ - T result

DIVOU 0 - M/QIT 0000000000011001 — 0

DMULS.L Rm,Rn Signed, Rn x Rm - MAC, 0011nnnnmmmmll01 — —
32 x 32 - 64 bits

DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 0011nnnnmmm0101 — —
32 x 32 - 64 bits

DT Rn Rn -1 - Rn; when Rn =0, 0100nnnn00010000 — Comparison
1T result

WhenRn#0,0 - T

Rev. 6.00 Sep 13, 2006 page 152 of 424

REJ09B0318-0600

RENESAS

Section 7 Instruction Set

Instruction Operation Instruction Code Privileged T Bit

EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmmml110 — —
byte - Rn

EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmm1l11l — —
word - Rn

EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmm1100 — —
byte - Rn

EXTUW Rm,Rn Rm zero-extended from 0110nnnnmmm1101 — —
word - Rn

MAC.L @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC - 0000nnnnmmmM1111 — —
MAC

Rn+4 - Rn,Rm+4 - Rm
32 x 32 + 64 - 64 bits

MAC.W @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC - 0100nnnnmmmmi111 — —
MAC
Rn+2 - Rn,Rm+2 - Rm
16 x 16 + 64 — 64 bits

MUL.L Rm,Rn Rn x Rm - MACL 000OnnnnmmMMO111 — —

32 x 32 - 32 bits
MULS.W Rm,Rn Signed, Rn x Rm - MACL 00i10nnnnmmmmllll — —

16 x 16 — 32 bits
MULU.W Rm,Rn Unsigned, Rn x Rm -~ MACL 0010nnnnmmmml110 — —

16 x 16 — 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmi01l — —
NEGC Rm,Rn 0-Rm-T - Rn, borrow - T 0110nnnnmmml010 — Borrow
SUB Rm,Rn Rn-—Rm - Rn 0011nnnnmmm1000 — —
SUBC Rm,Rn Rn—Rm-T - Rn, borrow - T 0011nnnnnmmm1010 — Borrow
SUBV Rm,Rn Rn —Rm - Rn, underflow - T 001lnnnnmmmil01l1 — Underflow

Rev. 6.00 Sep 13, 2006 page 153 of 424
REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Table 7.5 Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

AND Rm,Rn Rn & Rm - Rn 0010nnnnmmm1001 — —

AND #mm,RO RO & imm - RO 1100100%iiiiiiii — —

AND.B #imm,@(R0,GBR) (RO + GBR) & imm - (RO + 1100110%iiiiiiii — —
GBR)

NOT Rm,Rn ~Rm - Rn 0110nnnnmm0111 — —

OR Rm,Rn Rn|Rm - Rn 0010nnnnmmml 011 — —

OR #imm,RO RO | imm - RO 1100101%iiiiiiii — —

OR.B #imm,@(R0O,GBR) (RO + GBR)|imm - (RO + 1100111%iiiiiiii —
GBR)

TAS.B @Rn When (Rn)=0,1 - T 0100nnnn00011011 — Test result
Otherwise, 0 - T
In both cases, 1 - MSB of (Rn)

TST Rm,Rn Rn & Rm; when result = 0, 0010nnnnmMMML000 — Test result
1T
Otherwise, 0 - T

TST #imm,R0O RO & imm; when result = 0, 11001000iiiiiiii — Test result
1T
Otherwise, 0 - T

TST.B #imm,@(R0,GBR) (RO + GBR) & imm; when result 11001100iiiiiiii — Test result
=0,1-T
Otherwise, 0 - T

XOR Rm,Rn RnORm - Rn 0010nnnnMMMML010 — —

XOR #imm,R0O RO Oimm - RO 11001010iiiiiiii — —

XOR.B #imm,@(R0,GBR) (RO + GBR) Oimm - (RO + 11001110iiiiiiii — —

GBR)

Rev. 6.00 Sep 13, 2006 page 154 of 424

REJ09B0318-0600

RENESAS

Section 7 Instruction Set

Table 7.6 Shift Instructions

Instruction Operation Instruction Code Privileged T Bit
ROTL Rn T « Rn -« MSB 0100nnnn00000100 — MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101 — LSB
ROTCL Rn T<Rn T 0100nnnn00100100 — MSB
ROTCR Rn ToRn-T 0100nnnn00100101 — LSB
SHAD Rm,Rn When Rn =0, Rn << Rm - Rn 0100nnnnmmml100 — —

When Rn <0, Rn >>Rm -

[MSB - Rn]
SHAL Rn T<Rn-0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 — LSB
SHLD Rm,Rn When Rn =0, Rn << Rm - Rn 0100nnnnmmml101 — —

When Rn <0, Rn>>Rm -

[0 - Rn]
SHLL Rn T~Rn~0 0100nnnn00000000 — MSB
SHLR Rn 0-Rn-T 0100nnnn00000001 — LSB
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 — —
SHLR2 Rn Rn>>2 . Rn 0100nnnn00001001 — —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — —
SHLL16 Rn Rn << 16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —

Rev. 6.00 Sep 13, 2006 page 155 of 424
REJ09B0318-0600

RENESAS

Section 7 Instruction Set

Table 7.7 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BF label When T =0, disp x2 + PC + 10001011dddddddd — —

4 - PC

When T = 1, nop
BF/S label Delayed branch; when T = 0, 10001111dddddddd — —

dispx2+PC+4 - PC
When T = 1, nop

BT label When T =1, disp x2+PC + 10001001dddddddd — —
4 - PC
When T =0, nop

BT/S label Delayed branch; when T = 1, 10001101dddddddd — —

dispx2+PC+4 - PC
When T =0, nop

BRA label Delayed branch, disp x 2 + 1010dddddddddddd — —
PC+4 - PC

BRAF Rn Rn+PC+4 - PC 0000nnnn00100011 — —

BSR label Delayed branch, PC +4 - PR, 10l1ldddddddddddd — —
dispx2+PC+4 - PC

BSRF Rn Delayed branch, PC + 4 - PR, 0000nnnn00000011 — —
Rn+PC+4 - PC

JMP @Rn Delayed branch, Rn - PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC +4 - PR, 0100nnnn00001011 — —
Rn - PC

RTS Delayed branch, PR - PC 0000000000001011 — —_

Rev. 6.00 Sep 13, 2006 page 156 of 424
REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Table 7.8 System Control Instructions
Instruction Operation Instruction Code Privileged T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0-T 0000000000001000 — 0
LDC Rm,SR Rm - SR 0100nmMmMMD0001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100mmMmMD0011110 — —
LDC Rm,VBR Rm - VBR 0100nmmMm00101110 Privileged —
LDC Rm,SSR Rm - SSR 0100mmMmMDO0111110 Privileged —
LDC Rm,SPC Rm - SPC 0100mmmD1001110 Privileged —
LDC Rm,DBR Rm - DBR 0100mMmMM11111010 Privileged —
LDC Rm,Rn_BANK Rm - Rn_BANK (n=0to7) 0100nmmmilnnn1110 Privileged —
LDC.L @Rm+,SR (Rm) -~ SR,Rm +4 - Rm 0100mmmD0000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) - GBR,Rm+4 . Rm 0100mmmD0010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm +4 . Rm 0100mmm00100111 Privileged —
LDC.L @Rm+,SSR (Rm) - SSR,Rm+4 -~ Rm 0100nmmm00110111 Privileged —
LDC.L @Rm+,SPC (Rm) - SPC,Rm+4 -~ Rm 0100mmmD1000111 Privileged —
LDC.L @Rm+,DBR (Rm) - DBR,Rm+4 - Rm 0100mmmil1110110 Privileged —
LDC.L @Rm+,Rn_BANK (Rm) - Rn_BANK, 0100mmmilnnn0111 Privileged —
Rm+4 - Rm
LDS Rm,MACH Rm - MACH 0100mMmMMD0001010 — —
LDS Rm,MACL Rm - MACL 0100mmMMD0011010 — —
LDS Rm,PR Rm - PR 0100mmMmMD0101010 — —
LDS.L @Rm+,MACH (Rm) -~ MACH, Rm +4 -~ Rm 0100mmmD0000110 — —
LDS.L @Rm+,MACL (Rm) - MACL,Rm+4 - Rm 0100mmm©00010110 — —
LDS.L @Rm+,PR (Rm) - PR,Rm+4 - Rm 0100mmMMD0100110 — —
LDTLB PTEH/PTEL - TLB 0000000000111000 Privileged —
MOVCA.L RO,@Rn RO - (Rn) (without fetching 0000nnNnNn11000011 — —
cache block)
NOP No operation 0000000000001001 — —
OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —
OCBP @Rn Writes back and invalidates 0000nnnNn10100011 — —
operand cache block
OCBWB @Rn Writes back operand cache 0000nnnn10110011 — —
block
PREF @Rn (Rn) - operand cache 0000nnNnNn10000011 — —

RENESAS

Rev. 6.00 Sep 13, 2006 page 157 of 424

REJ09B0318-0600

Section 7 Instruction Set

Instruction Operation Instruction Code Privileged T Bit
RTE Delayed branch, SSR/SPC - 0000000000101011 Privileged —
SR/PC
SETS 1-S 0000000001011000 — —
SETT 1-T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011 Privileged —
STC SR,Rn SR - Rn 0000nnnNn00000010 Privileged —
STC GBR,Rn GBR - Rn 0000nnNNN00010010 — —
STC VBR,Rn VBR - Rn 0000nnNNn00100010 Privileged ——
STC SSR,Rn SSR - Rn 0000nnnNn00110010 Privileged —
STC SPC,Rn SPC - Rn 0000nnNn01000010 Privileged —
STC SGR,Rn SGR - Rn 0000nnnn00111010 Privileged —
STC DBR,Rn DBR - Rn 0000nnnNn11111010 Privileged —
STC Rm_BANK,Rn Rm_BANK - Rn(m=0to7) 0000nnnnlnm©0010 Privileged —
STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged —
STC.L GBR,@-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 — —
STC.L VBR,@-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 Privileged —
STC.L SSR,@-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 Privileged —
STC.L SPC,@-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnn01000011 Privileged —
STC.L SGR,@-Rn Rn-4 - Rn, SGR - (Rn) 0100nnnn00110010 Privileged —
STC.L DBR,@-Rn Rn-4 - Rn, DBR - (Rn) 0100nnnn11110010 Privileged —
STC.L Rm_BANK,@-Rn Rn-4 - Rn, 0100nnnn1nmmmD011 Privileged —
Rm_BANK - (Rn) (m=0to7)

STS MACH,Rn MACH - Rn 0000nnNNN00001010 — —
STS MACL,Rn MACL - Rn 0000nnnn00011010 — —
STS PR,Rn PR - Rn 0000nnNnNN00101010 — —
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 — —
STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 — —
TRAPA #imm PC +2 - SPC, SR - SSR, 1100001%iiiiiiii — —

#imm << 2 - TRA,
H'160 - EXPEVT,
VBR + H'0100 - PC

Rev. 6.00 Sep 13, 2006 page 158 of 424

REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Table 7.9 Floating-Point Single-Precision Instructions
Instruction Operation Instruction Code Privileged T Bit
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 — —
FLDI1 FRn H'3F800000 - FRn 1111nnnn10011101 — —
FMOV FRm,FRn FRm - FRn 1111nnnnnmmmmi1l100 — —
FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnmmmmil000 — —
FMOV.S @(RO,Rm),FRn (RO + Rm) - FRn 1111nnnnmmm0110 — —
FMOV.S @Rm+,FRn (Rm) - FRn,Rm+4 - Rm 111llnnnnmmmi001 — —
FMOV.S FRm,@Rn FRm - (Rn) 111innnnmmmmil010 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnmmm1011 — —
FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 111innnnmmmo0111 — —
FMOV DRm,DRn DRm - DRn 1111nnnOMMD1100 — —
FMOV @Rm,DRn (Rm) -~ DRn 11121nnnOmmmM1L000 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnOmMmmMm0110 — —
FMOV @Rm+,DRn (Rm) - DRn,Rm+8 -~ Rm 1111nnnOmmmi001 — —
FMOV DRm,@Rn DRm - (Rn) 1111nnnnmm?01010 — —
FMOV DRm,@-Rn Rn-8 -~ Rn, DRm - (Rn) 1111nnnnmmm01011 — —
FMOV DRm,@(RO,Rn) DRm - (RO + Rn) 1111nnnnmm?00111 — —
FLDS FRm,FPUL FRm - FPUL 1111nmmm©00011101 — —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 — —
FABS FRn FRn & H'7FFF FFFF - FRn 1111nnnn01011101 — —
FADD FRm,FRn FRn + FRm - FRn 111innnnmmmO000 — —
FCMP/EQ FRm,FRn When FRn=FRm,1 - T 1111nnnnmm®0100 — Comparison
Otherwise, 0 - T result
FCMP/GT FRm,FRn When FRn>FRm,1 - T 1111nnnnmm®0101 — Comparison
Otherwise, 0 — T result
FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmmoO0011 — —
FLOAT FPUL,FRn (float) FPUL — FRn 1111nnnn00101101 — —
FMAC FRO,FRm,FRn FRO*FRm + FRn - FRn 111innnnnmmil10 — —
FMUL FRm,FRn FRn*FRm - FRn 1111nnnnnmmmm0010 — —
FNEG FRn FRn OH'80000000 - FRn 1111nnnn01001101 — —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — —
FSUB FRm,FRn FRn - FRm - FRn 1111nnnnnmmmm0001 — —
FTRC FRm,FPUL (long) FRm - FPUL 1111pmmm©00111101 — —

Rev. 6.00 Sep 13, 2006 page 159 of 424
REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Table 7.10 Floating-Point Double-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit
FABS DRn DRn & H'7FFF FFFF FFFF 1111nnn001011101 — —
FFFF - DRn
FADD DRm,DRn DRn + DRm - DRn 1111nnnOMMDO000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - T 1111nnnOMmmO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT DRm,DRn When DRn>DRm, 1 - T 1112nnnOmMmm00101 — Comparison
Otherwise, 0 - T result
FDIV DRm,DRn DRn /DRm - DRn 1111nnnOmmO0011 — —
FCNVDS DRm,FPUL double_to_floatfDRm] -— FPUL 1111nm010111101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] -~ DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL - DRn 1111nnn000101101 — —
FMUL DRm,DRn DRn *DRm - DRn 1111nnnOMMD0010 — —
FNEG DRn DRn ~ H'8000 0000 0000 0000 1111nnn001001101 — —
- DRn
FSQRT DRn VvDRn - DRn 1111nnn001101101 — —
FSUB DRm,DRn DRn - DRm - DRn 1111nnnOnmmD0001 — —
FTRC DRm,FPUL (long) DRm - FPUL 1111mm©000111101 — —
Table 7.11 Floating-Point Control Instructions
Instruction Operation Instruction Code Privileged T Bit
LDS Rm,FPSCR Rm - FPSCR 0100mM®D1101010 — —
LDS Rm,FPUL Rm - FPUL 0100mM®D1011010 — —
LDSL @Rm+FPSCR (Rm) - FPSCR,Rm+4 - Rm 0100mmm®©1100110 — —
LDS.L @Rm+,FPUL (Rm) - FPUL,Rm+4 -~ Rm 0100mmm01010110 — —
STS FPSCR,Rn FPSCR - Rn 0000nnnNn01101010 — —
STS FPUL,Rn FPUL - Rn 0000nnnNn01011010 — —
STS.L FPSCR,@-Rn Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 — —
STS.L FPUL,@-Rn Rn-4 - Rn, FPUL - (Rn) 0100nnnn01010010 — —

Rev. 6.00 Sep 13, 2006 page 160 of 424
REJ09B0318-0600

RENESAS

Section 7

Instruction Set

Table 7.12 Floating-Point Graphics Acceleration Instructions

Instruction Operation Instruction Code Privileged T Bit
FMOV DRm,XDn DRm - XDn 1111nnnlnm©01100 — —
FMOV XDm,DRn XDm - DRn 1111nnnOMM11100 — —
FMOV XDm,XDn XDm - XDn 1111nnnlnmm11100 — —
FMOV ~ @Rm,XDn (Rm) - XDn 1111nnn1mmmmil000 — —
FMOV ~ @Rm+,XDn (Rm) - XDn, Rm +8 - Rm 1111nnn1mm1001 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnn1mmm0110 — —
FMOV XDm,@Rn XDm - (Rn) 1111nnnnnmmmi11010 — —
FMOV XDm,@-Rn Rn -8 - Rn, XDm - (Rn) 1111nnnnmm11011 — —
FMOV XDm,@(RO,Rn) XDm - (RO + Rn) 111innnnnmmmi0111 — —
FIPR FVm,FVn inner_product [FVm, FVn] - 1111nnml1101101 — —
FR[n+3]
FTRV ~ XMTRX,FVn transform_vector [XMTRX, FVn] 1111nn0111111101 — —
- FVn
FRCHG ~FPSCR.FR - FPSCR.FR 1111101111111101 — —
FSCHG ~FPSCR.SZ - FPSCR.SZ 1111001111111101 — —
7.4 Notes on Use of TRAPA Instruction/SLEEP Instruction/Undefined

Instruction (H'FFFD)

» There is a possibility of writing the erroneous data in cache when TRAPA instruction or
Undefined instruction code H'FFFD is executed.
When TRAPA instruction or Undefined instruction code H'FFFD is executed, the ITLB hit
judgment may be mistaken. Then, after re-registration, there is a possibility to generate the
ITLB multi-hit exception.

There is a possibility of writing the erroneous data in the FPU registers or MACH and MACL
registers, when TRAPA instruction or SLEEP instruction or Undefined instruction code

H'FFFD is executed.

Rev. 6.00 Sep 13, 2006 page 161 of 424

RENESAS

REJ09B0318-0600

Section 7 Instruction Set

Generated Condition

1.

There is a possibility of writing a wrong instruction to Instruction cache when three following
conditions consist at the same time.

a.
b.

Instruction cache is ON. (CCR.ICE = 1)

TRAPA instruction or Undefined instruction code H'FFFD in a Cache On Space
(U0/P0/P1/P3 space) is executed.

The code interpreted as the instruction (both read and write) accessed to the address
(H'F0000000-H'F7FFFFFF) exists in following 4 words of TRAPA instruction or
Undefined instruction code HFFFD of above-mentioned b.

There is a possibility of writing the erroneous data in Operand cache when three following
conditions consist at the same time.

a.
b.
c.

Operand cache is ON. (CCR.OCE = 1)
Undefined instruction code H'FFFD is executed.

The code interpreted as the OCBI/OCBP/OCBWB/TAS.B instruction accessed to the built-
in store queues address (H'E0000000—H'E3FFFFFF) exists in following 4 words of
Undefined instruction code H'FFFD of above-mentioned b.

There is a possibility to which the ITLB hit judgment is mistaken when three conditions of the
following conditions consist at the same time. When the ITLB hit is mistaken and it is judged
that it makes a mistake, re-registration to ITLB is done. After that, there is a possibility to
generate the ITLB multi-hit exception.

a.
b.

MMU is ON. (MMUCR.AT = 1)

TRAPA instruction or Undefined instruction code H'FFFD in the TLB conversion space
(U0/P0/P3 space) is executed.

The code interpreted as the instruction (both read and write) accessed to the address
(H'FO000000—-H'F7FFFFFF) exists in following 4 words of TRAPA instruction or
Undefined instruction code H'FFFD of above-mentioned b.

There is a possibility of writing a wrong value to register (FRO-FR15, XFO-XF15, FPSCR,
and FPUL) related to FPU, MACH, and MACL when two following conditions consist at the
same time.

a.

b.

TRAPA or SLEEP instruction or Undefined instruction code H'FFFD is executed.

The code interpreted in combining FPSCR and PR at that time in following 8 words of
TRAPA or SLEEP instruction or Undefined instruction code H'FFFD of above-mentioned
a, excluding H 'FFFD in H'Fxxx (the instruction whose initial 4 bits are H'F) as an
Undefined instruction exists.

Example: Instruction H'FxxE (x: arbitrary hexadecimal number) is defined here as an Undefined
instruction in FPSCR.PR = 1.

Rev. 6.00 Sep 13, 2006 page 162 of 424
REJ09B0318-0600

RENESAS

Section 7 Instruction Set

Note: For the number of following instructions, internally, there is a possibility that this trouble

occurs in case of 1 to 3 is following 2xI clock, and in case of 4 is the case of it is
executable within following 4xI clock. Therefore, the number of instructions which can be
executed in 2xI clock or 4xI clock is maximum 4 instructions or maximum 8§ instructions
respectively.

Workaround: Take measures of either following 1 or 2.

1.

Put the NOP instruction on eight following words of TRAPA instruction, SLEEP instruction,
and Undefined instruction code H'FFFD.

Put “OR RO, RO” instruction on five following words of TRAPA instruction, SLEEP
instruction, and Undefined instruction code H'FFFD. The OR instruction is not executed
simultaneously. Therefore, because it requires more than 5xI clock for execution, “In case of
H'Fxxx exists in eight following words" of the generation condition of 4-b can be evaded.

Rev. 6.00 Sep 13, 2006 page 163 of 424
REJ09B0318-0600
RENESAS

Section 7 Instruction Set

Rev. 6.00 Sep 13, 2006 page 164 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Section 8§ Pipelining

The SH-4 is a 2-ILP (instruction-level-parallelism) superscalar pipelining microprocessor.
Instruction execution is pipelined, and two instructions can be executed in parallel. The execution
cycles depend on the implementation of a processor. For details, refer to the corresponding
products’ hardware manual.

8.1 Pipelines

Figure 8.1 shows the basic pipelines. Normally, a pipeline consists of five or six stages: instruction
fetch (I), decode and register read (D), execution (EX/SX/FO/F1/F2/F3), data access (NA/MA),
and write-back (S/FS). An instruction is executed as a combination of basic pipelines. Figure 8.2
shows the instruction execution patterns.

Rev. 6.00 Sep 13, 2006 page 165 of 424
REJ09B0318-0600
RENESAS

Section 8 Pipelining

1. General Pipeline

| D EX NA S
* Instruction fetch « Instruction « Operation * Non-memory « Write-back
decode data access
« Issue
« Register read
« Destination address calculation
for PC-relative branch
2. General Load/Store Pipeline
| D EX MA S
« Instruction fetch e« Instruction « Address * Memory data » Write-back
decode calculation access
« Issue
« Register read
3. Special Pipeline
| D SX NA S
« Instruction fetch < Instruction « Operation « Non-memory Write-back
decode data access
« Issue
* Register read
4. Special Load/Store Pipeline
| D SX MA S
« Instruction fetch < Instruction * Address * Memory data « Write-back
decode calculation access
« Issue
* Register read
5. Floating-Point Pipeline
I D F1 F2 FS
« Instruction fetch e Instruction « Computation 1 « Computation 2« Computation 3
decode « Write-back
* Issue
* Register read
6. Floating-Point Extended Pipeline
I D FO F1 F2 FS
« Instruction fetch < Instruction « Computation 0 « Computation 1 « Computation 2« Computation 3
decode * Write-back

* Issue
* Register read

7. FDIVIFSQRT Pipeline

Computation: Takes several cycles

Figure 8.1 Basic Pipelines

Rev. 6.00 Sep 13, 2006 page 166 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

. 1-step operation: 1 issue cycle

EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIV*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,

LDS to FPUL, STS from FPUL/FPSCR, FLDIO, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

[T T o T ex [Na [s |

. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

[1 [T o [ex | wma | s]

. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)
[T o [sx [ma [s |

. JMP, RTS, BRAF: 2 issue cycles

[v T o EX NA s
D EX NA s |

. TST.B: 3 issue cycles

[+ [b sX MA s
D SX NA s
D SX NA s |

. AND.B, OR.B, XOR.B: 4 issue cycles

[1 T o SX MA S
D SX NA S
D SX NA s
D | sx MA s |
. TAS.B: 5 issue cycles
[1+ T o EX MA S
D EX MA s
D EX NA s
D EX NA s
D | Ex MA s]
. RTE: 5 issue cycles
[1+ [o EX NA S
D EX NA S
D EX NA s
D EX NA s
D | Ex NA s |
. SLEEP: 4 issue cycles
[1+ T o EX NA s
D EX NA s
D EX NA s
D | Ex NA s]

Figure 8.2 Instruction Execution Patterns

Rev. 6.00 Sep 13, 2006 page 167 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

10.

11.

12.

13.

14.

15.

16.

17.

18.

OCBI: 1 issue cycle
L+ [o [ex | wa s]

OCBP, OCBWSB: 1 issue cycle

L+ [o [ex [wva s |
L_mA
MA
MA
MA
MOVCA.L: 1 issue cycle
C T T o [Ex [wa s]
MA
MA
MA
MA
MA
MA
TRAPA: 7 issue cycles
[7 T o EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA

LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR: 1 issue cycle

[+ T o | Ex NA [s |
[SX
|| SX
LDC to GBR: 3 issue cycles
[1 T o EX NA [s]
D SX
[D] SX
LDC to SR: 4 issue cycles
[T o EX NA [s]
D SX
D SX
LD | sx
LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle
= vA | s |
SX
T Lsx
LDC.L to GBR: 3 issue cycles
[1 T o EX MA [s |
D SX
D || SX

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 6.00 Sep 13, 2006 page 168 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

19

20

21

22

23

24

27.

28.

20.

30.

. LDC.L to SR: 4 issue cycles
[T T o EX MA | s
D SX
D SX
D [l sx
. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[7 T o SX NA s
D SX NA s |
. STC.L from SGR: 3 issue cycles
[1 T o SX NA s
D SX NA S
D SX NA s |
. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[+ [D SX NA s
D sX MA s |
. STC.L from SGR: 3 issue cycles
[+ [o SX NA s
D SX NA S
D SX MA s |
. LDS to PR, JSR, BSRF: 2 issue cycles
[7 T b EX NA [s
[o SX
[sx
25. LDS.L to PR: 2 issue cycles
[T T o EX MA | s
[o SX
| sx
26. STS from PR: 2 issue cycles
[7 T o SX NA s
D SX NA s |
STS.L from PR: 2 issue cycles
[7 T o SX NA s
D SX MA s |
CLRMAC, LDS to MACH/L: 1 issue cycle
[+ [b [Ex N
[F1
[A F2 FS
LDS.L to MACHJ/L: 1 issue cycle
[+ [o [Ex MA | S
[F1
[A F2 | FS]
STS from MACHJ/L: 1 issue cycle
[T [o [ex | Nna | s

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 6.00 Sep 13, 2006 page 169 of 424

RENESAS

REJ09B0318-0600

Section 8 Pipelining

31. STS.L from MACHI/L: 1 issue cycle
Cr T o T ex [wmaTl s]
32. LDS to FPSCR: 1 issue cycle
[1 [o [ex NA | s]
[L_F1
F1
F1
33. LDS.L to FPSCR: 1 issue cycle
[T T o T Ex A | s |
|L_F1
F1
F1

34. Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W
[T T o EX NA | |
D EX | nNa | s |
fl
[n [T 2 T Fs |
35. MAC.W, MAC.L: 2 issue cycles
7 T o T ex [wa [s]
Co_J ex [wma [s |
f1
[n [2 T Fs |

(CPU)

(FPU)

(CPU)

(FPU)

36. Single-precision floating-point computation: 1 issue cycle
FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG
[T o T m | Fr2 | Fs |
37. Single-precision FDIV/SQRT: 1 issue cycle
L v T o T rm T T F 1
B |
[A 1 Fr2] Fs]
38. Double-precision floating-point computation 1: 1 issue cycle
FCNVDS, FCNVSD, FLOAT, FTRC
L v T o T rm T k2 T Fs |
d [F | 2 | Fs |
39. Double-precision floating-point computation 2: 1 issue cycle
FADD, FMUL, FSUB
[T b I ~mn F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 Fs_ |
F1 F2_ | Fs

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 6.00 Sep 13, 2006 page 170 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

40.

41.

42.

43.

Notes:

Double-precision FCMP: 2 issue cycles
FCMP/EQ,FCMP/GT

D

F1l

F2

ES

D

F1

F2

FS

Double-precision FDIV/SQRT: 1 issue cycle

FDIV, FSQRT
) F1 F2 FS
d F1 2 |
F3
F1 F2 FS
F1 F2 FS
. F1 F2 Fs_ |
FIPR: 1 issue cycle
L+ [o [Fo F1 F2 FS
FTRV: 1 issue cycle
L+ [o FO F1 F2 FS
d FO F1 F2 FS
d FO F1 F2 FS
d FO F1 F2 Fs |
: Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.

. Locks D-stage

[d__|: Register read only

| . Locks, but no operation is executed.

. Can overlap another f1, but not another F1.

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 6.00 Sep 13, 2006 page 171 of 424

RENESAS

REJ09B0318-0600

Section 8 Pipelining

8.2 Parallel-Executability

Instructions are categorized into six groups according to the internal function blocks used, as
shown in table 8.1. Table 8.2 shows the parallel-executability of pairs of instructions in terms of
groups. For example, ADD in the EX group and BRA in the BR group can be executed in parallel.

Table 8.1 Instruction Groups

1. MT Group

CLRT CMP/HI Rm,Rn MOV Rm,Rn
CMP/EQ #imm,RO CMP/HS Rm,Rn NOP

CMP/EQ Rm,Rn CMP/PL Rn SETT

CMP/GE Rm,Rn CMP/PZ Rn TST #imm,R0
CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn
2. EX Group

ADD #imm,Rn MOVT Rn SHLL2 Rn
ADD Rm,Rn NEG Rm,Rn SHLLS8 Rn
ADDC Rm,Rn NEGC Rm,Rn SHLR Rn
ADDV Rm,Rn NOT Rm,Rn SHLR16 Rn
AND #imm,R0 OR #imm,RO SHLR2 Rn
AND Rm,Rn OR Rm,Rn SHLR8 Rn
DIVOS Rm,Rn ROTCL Rn SuUB Rm,Rn
DIVOU ROTCR Rn SUBC Rm,Rn
DIV1 Rm,Rn ROTL Rn SUBvV Rm,Rn
DT Rn ROTR Rn SWAP.B Rm,Rn
EXTS.B Rm,Rn SHAD Rm,Rn SWAP.W Rm,Rn
EXTS.W Rm,Rn SHAL Rn XOR #imm,R0
EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn
EXTU.W Rm,Rn SHLD Rm,Rn XTRCT Rm,Rn
MOV #imm,Rn SHLL Rn

MOVA @(disp,PC),R0 |SHLL16 Rn

Rev. 6.00 Sep 13, 2006 page 172 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

3. BR Group

BF disp BRA disp BT disp

BF/S disp BSR disp BT/S disp

4. LS Group

FABS DRn FMOV.S @Rm+,FRn MOV.L RO,@(disp,GBR)
FABS FRn FMOV.S FRm,@(RO,Rn) |MOV.L Rm,@(disp,Rn)
FLDIO FRn FMOV.S FRm,@-Rn MOV.L Rm,@(RO,Rn)
FLDI1 FRn FMOV.S FRm,@Rn MOV.L Rm,@-Rn
FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn
FMQOV @(RO,Rm),DRn |[FNEG FRn MOV.W @(disp,GBR),R0
FMOV @(RO,Rm),XDn |FSTS FPUL,FRn MOV.W @(disp,PC),Rn
FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0
FMQOV @Rm,XDn MOV.B @(disp,GBR),R0 |[MOV.W @(RO,Rm),Rn
FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 |MOV.W @Rm,Rn
FMQOV @Rm+,XDn MOV.B @(RO,Rm),Rn MOV.W @Rm+,Rn
FMOV DRm,@(RO,Rn) MOV.B @Rm,Rn MOV.W RO,@(disp,GBR)
FMQOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W RO,@(disp,Rn)
FMOV DRm,@Rn MOV.B RO,@(disp,GBR) |MOV.W Rm,@(RO,Rn)
FMQOV DRm,DRn MOV.B RO,@(disp,Rn) |MOV.W Rm,@-Rn
FMOV DRm,XDn MOV.B Rm,@(RO,Rn) MOV.W Rm,@Rn
FMQOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L RO,@Rn

FMOV XDm,@(R0O,Rn) |MOV.B Rm,@Rn OcCBI @Rn

FMQOV XDm,@-Rn MOV.L @(disp,GBR),R0 |OCBP @Rn

FMQOV XDm,@Rn MOV.L @(disp,PC),Rn |OCBWB @Rn

FMOV XDm,DRn MOV.L @(disp,Rm),Rn |PREF @Rn

FMQOV XDm,XDn MOV.L @(RO,Rm),Rn STS FPUL,Rn
FMOV.S @(RO,Rm),FRn |MOV.L @Rm,Rn

FMOV.S @Rm,FRn MOV.L @Rm+,Rn

Rev. 6.00 Sep 13, 2006 page 173 of 424

RENESAS

REJ09B0318-0600

Section 8 Pipelining

5. FE Group

FADD DRm,DRn FIPR FVm,FVn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn
FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn
FCMP/GT FRm,FRn FMAC FRO,FRm,FRn |FSUB FRm,FRn
FCNVDS DRm,FPUL FMUL DRm,DRn FTRC DRm,FPUL
FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL
FDIV DRm,DRn FRCHG FTRV XMTRX,FVn
FDIV FRm,FRn FSCHG

Rev. 6.00 Sep 13, 2006 page 174 of 424

REJ09B0318-0600

RENESAS

Section 8 Pipelining

6. CO Group

AND.B #imm,@(R0,GBR) |LDS Rm,FPSCR STC SR,Rn

BRAF Rn LDS Rm,MACH STC SSR,Rn

BSRF Rn LDS Rm,MACL STC VBR,Rn
CLRMAC LDS Rm,PR STC.L DBR,@-Rn
CLRS LDS.L @Rm+,FPSCR |STC.L GBR,@-Rn
DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn
DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn
FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn
FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn

JMP @Rn LDTLB STC.L SSR,@-Rn

JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn
LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,Rn

LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn

LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn

LDC Rm,SR OR.B #imm,@(R0,GBR) [STS.L FPSCR,@-Rn
LDC Rm,SSR RTE STS.L FPUL,@-Rn
LDC Rm,VBR RTS STS.L MACH,@-Rn
LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn
LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn
LDC.L @Rm+,Rp_BANK |STC DBR,Rn TAS.B @Rn

LDC.L @Rm+,SPC STC GBR,Rn TRAPA #imm

LDC.L @Rm+,SR STC Rp_BANK,Rn TST.B #imm,@(R0,GBR)
LDC.L @Rm+,SSR STC SGR,Rn XOR.B #imm,@(R0,GBR)
LDC.L @Rm+,VBR STC SPC,Rn

Rev. 6.00 Sep 13, 2006 page 175 of 424

RENESAS

REJ09B0318-0600

Section 8 Pipelining

Table 8.2 Parallel-Executability

2nd Instruction
MT EX BR LS FE co

1st MT
Instruction EX

BR
LS
FE
CO

X|O|O0|0l0| 0O

X O|O0|0O| X| 0O
X|O|O0| X|0O|0O
X|O|X|O|0O0|0O
X|X|O|O|O0| 0O
X| X | X | X| X| X

Legend:
O: Can be executed in parallel
X: Cannot be executed in parallel

8.3 Execution Cycles and Pipeline Stalling

There are three basic clocks in this processor: the I-clock, B-clock, and P-clock. Each hardware
unit operates on one of these clocks, as follows:

e I-clock: CPU, FPU, MMU, caches
e B-clock: External bus controller

* P-clock: Peripheral units

The frequency ratios of the three clocks are determined with the frequency control register
(FRQCR). In this section, machine cycles are based on the I-clock unless otherwise specified. For
details of FRQCR, see Clock Oscillation Circuits in the hardware manual.

Instruction execution cycles are summarized in table 8.3. Penalty cycles due to a pipeline stall or
freeze are not considered in this table.

» Issue rate: Interval between the issue of an instruction and that of the next instruction

» Latency: Interval between the issue of an instruction and the generation of its result
(completion)

* Instruction execution pattern (see figure 8.2)

* Locked pipeline stages

» Interval between the issue of an instruction and the start of locking

* Lock time: Period of locking in machine cycle units

Rev. 6.00 Sep 13, 2006 page 176 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

The instruction execution sequence is expressed as a combination of the execution patterns shown
in figure 8.2. One instruction is separated from the next by the number of machine cycles for its
issue rate. Normally, execution, data access, and write-back stages cannot be overlapped onto the
same stages of another instruction; the only exception is when two instructions are executed in
parallel under parallel-executability conditions. Refer to (a) through (d) in figure 8.3 for some
simple examples.

Latency is the interval between issue and completion of an instruction, and is also the interval
between the execution of two instructions with an interdependent relationship. When there is
interdependency between two instructions fetched simultaneously, the latter of the two is stalled
for the following number of cycles:

* (Latency) cycles when there is flow dependency (read-after-write)

» (Latency — 1) or (latency — 2) cycles when there is output dependency (write-after-write)
O Single/double-precision FDIV, FSQRT is the preceding instruction (latency — 1) cycles
O The other FE group is the preceding instruction (latency — 2) cycles

* 5 or 2 cycles when there is anti-flow dependency (write-after-read), as in the following cases:
O FTRYV is the preceding instruction (5 cycle)
O A double-precision FADD, FSUB, or FMUL is the preceding instruction (2 cycles)

In the case of flow dependency, latency may be exceptionally increased or decreased, depending
on the combination of sequential instructions (figure 8.3 (e)).

* When a floating-point (FPU) computation is followed by an FPU register store, the latency of
the floating-point computation may be decreased by 1 cycle.

» If'there is a load of the shift amount immediately before an SHAD/SHLD instruction, the
latency of the load is increased by 1 cycle.

» If an instruction with a latency of less than 2 cycles, including write-back to an FPU register, is
followed by a double-precision FPU instruction, FIPR, or FTRV, the latency of the first
instruction is increased to 2 cycles.

The number of cycles in a pipeline stall due to flow dependency will vary depending on the
combination of interdependent instructions or the fetch timing (see figure 8.3. (e)).

Output dependency occurs when the destination operands are the same in a preceding FE group
instruction and a following LS group instruction.

For the stall cycles of an instruction with output dependency, the longest latency to the last write-
back among all the destination operands must be applied instead of “latency” (see figure 8.3 (f)).
A stall due to output dependency with respect to FPSCR, which reflects the result of a floating-
point operation, never occurs. For example, when FADD follows FDIV with no dependency

Rev. 6.00 Sep 13, 2006 page 177 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

between FPU registers, FADD is not stalled even if both instructions update the cause field of
FPSCR.

Anti-flow dependency can occur only between a preceding double-precision FADD, FMUL,
FSUB, or FTRV and a following FMOV, FLDIO, FLDI1, FABS, FNEG, or FSTS. See figure 8.3

()

If an executing instruction locks any resource—i.e. a function block that performs a basic
operation—a following instruction that attempts to use the locked resource must be stalled (figure
8.3 (h)). This kind of stall can be compensated by inserting one or more instructions independent
of the locked resource to separate the interfering instructions. For example, when a load
instruction and an ADD instruction that references the loaded value are consecutive, the 2-cycle
stall of the ADD is eliminated by inserting three instructions without dependency. Software
performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

e Instruction TLB miss
» Instruction access to external memory (instruction cache miss, etc.)
» Data access to external memory (operand cache miss, etc.)

» Data access to a memory-mapped control register

During the penalty cycles of an instruction TLB miss or external instruction access, no instruction
is issued, but execution of instructions that have already been issued continues. The penalty for a
data access is a pipeline freeze: that is, the execution of uncompleted instructions is interrupted
until the arrival of the requested data. The number of penalty cycles for instruction and data
accesses is largely dependent on the user’s memory subsystems.

There is the possibility that idle cycles are added to the number of cycles which is set by Bus State
Controller (BSC) for the external memory, because of the data transmission between different
clock frequency internal Buses.

Rev. 6.00 Sep 13, 2006 page 178 of 424
REJ09B0318-0600
RENESAS

Section 8 Pipelining

(a) Serial execution: non-parallel-executable instructions

(b

~

(c

~

(d)

SHAD RO,R1
ADD R2,R3
next

<— 1lissue cycle

[D [ExX] Nna] s |

| [o [ex| na| s |

<— 1stall cycle

Parallel execution: parallel-executable and no dependency

ADD R2,R1
MOV.L @R4,R5

<— lissue cycle

Issue rate: multi-step instruction

AND.B#1,@(R0,GBR) |

MOV R1,R2
next

Branch

BT/S L_far
ADD RO,R1
SUB R2,R3

BT/S L_far
ADD RO,R1

L_far

BT L_skip
ADD #1,R0
L_skip:

EX-group SHAD and EX-group ADD
cannot be executed in parallel. Therefore,
SHAD is issued first, and the following
ADD is recombined with the next
instruction.

EX-group ADD and LS-group MOV.L can
be executed in parallel. Overlapping of
stages in the 2nd instruction is possible.

AND.B and MOV are fetched
simultaneously, but MOV is stalled due to
resource locking. After the lock is released,
MOV is refetched together with the next
instruction.

No stall occurs if the branch is not taken.

[I ol ex[nNal] s |
[T T ol ex] mal[s
< » 4 issue cycles
I | o [sx][ma[s
D | sx | Nna| s
D SX NA S
D | sx| ma| s
L] i | D[E[Al s]
< > 1]
4 stall cycles —
[D | EX[Na[s
[D | EX| NA[s
I D | X[Nna| s]

<+— > 2-cycle latency for I-stage of branch destination

[T T o[Eex] nNna s]
[T T ol ex] na[s]
<«—» 1stallcycle
[D | EX[Nna| s]
[D e —
i D |..

No stall

If the branch is taken, the I-stage of the
branch destination is stalled for the period
of latency. This stall can be covered with a
delay slot instruction which is not parallel-
executable with the branch instruction.

Even if the BT/BF branch is taken, the I-
stage of the branch destination is not
stalled if the displacement is zero.

Figure 8.3 Examples of Pipelined Execution

Rev. 6.00 Sep 13, 2006 page 179 of 424

RENESAS

REJ09B0318-0600

Section 8 Pipelining

(e) Flow dependency

Zero-cycle latency The following instruction, ADD, is not

MOV RO,R1 []Tobo \|\ EX| Nal s | stalled when executed after an instruction
ADD R2,R1 [T o Rex]Nnal s] with zero-cycle latency, even if there is
dependency.
<— 1-cycle latency
ADD R2.RL [D [EXJ Na] s | ADD and MOV.L are not executed in
MOV.L @él R1 [i D MEx | ma[s | parallel, since MOV.L references the result
next ’ ' - of ADD as its destination address.
1 stall cycle
<«+——» 2-cycle latency
MOV.L @R1,R1 | | D EX | MAJ S | Because MOV.L and ADD are not fetched
ADD RO Ri | D |<—>|\Ex [Nna] s] simultaneously in this example, ADD is
next | 1 stall cycle stalled for only 1 cycle even though the
4 latency of MOV.L is 2 cycles.
2-cycle latency
<+—> 1-cycle increase
MOV.L @R1,R1 [D | Ex[mal s | Due to the flow dependency between the
SHAD R1,R2 | D | X4 [Ex][NA[s] load and the SHAD/SHLD shift amount,
next | the latency of the load is increased to 3
2 stall cycles cycles.
4-cycle latency for FPSCR
FADD FR1,FR2 [1 [b F1 | F2 | Es
STS FPUL,R1 [D EX | NA s
STS FPSCR,R2 | D | x| Na] s |
2 stall cycles
< » 7-cycle latency for lower FR
8-cycle latency for upper FR
FADD DRODR2 | 1 | D[FA]| F2] Fs

[d F1 | F2 | Fs

d F1 E2 ES. | FR3 write
F1 F2 N FS \|FR2 write

FMOV FR3,FR5 D [EX\ NA] s |
FMOV FR2,FR4 D Nex[Nnal s]

<«— - 3-cycle latency for upper/lower FR

FLOAT FPULDRO [I | D F1 | F2 | Fs | FR1write _
FMOV.S FR0,@-R15 d | F1 [F2 Fs || FRO write
I D EXY[Ma] s

Zero-cycle latency
<+— > 3-cycle increase
FLDIL FR3 [P ol Eex[nal s |
FIPR FVOFV4 ! D [d [r[FR]FrR[EF]
<« » 3stallcycles

<«———» 2-cycle latency
<«— l-cycle increase
[Ex] mA] s
d FO F1 F2 FS
d FO F1 F2 FS
d [Fo [1] 2] Fs |
d FO | F1L | F2 | Fs |

FMOV @R1,xD14 [1 |
FTRV XMTRX,FVO I

D
D

3 stall cycles

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 6.00 Sep 13, 2006 page 180 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

(e) Flow dependency (cont)

-—» Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

LS ROFPUL ! D | EX\| NA| S
FLOAT FPUL,FRO ! D F1L | F2 | FS
LDS R1,FPUL | D EX~| NA| s
FLOAT FPUL,R1 I D F1 | F2 Fs |
FTR FRO FPUL | | D F1 E2 FS |<«— Effectively 1_-cyc|e I_atencyforconsecutive
STSC FPS’L Rg | D EX | NA [Xs | FTRC/STS instructions
FTRC FR1,FPUL | D F1 | F2 [Fs
STS FPUL,R1 | D EX NA S |
(f) Output dependency
- » 1l-cycle latency
FSQRT FR4 LilolrmlrlF]
F3
[Fr] 2] Fs |
FMOV FROFR4 [1 | D |« >| F1L | F2 | Fs
10 stall cycles = latency (11) - 1 The registers are written-back
in program order.
< 7-cycle latency for lower FR
FADD DRO,DR2 < > 8-cycle latency for upper FR
| | | D | F1 F2 FS
[d FL | 2 | FS
d F1 | F2 | FS
d Fl1 | F2 | FS
d F1 E2 FS | FR3 write
F1 = Fs | FR2 write
FMOV FROFR3 [1 | D]« » Ex [NA| s |
6 stall cycles = longest latency (8) - 2
(g9) Anti-flow dependency
FTRV XMTRXFvo L1 | D | Fo[Fi | F2 [Fs
[d Fo [F1 [F2 [Fs
d Fo | F1 | 2 | Fs
d Fo [FL [r2 [Fs]
FMOV @R1xD0 | I | D |« > Ex | MA | s |
5 stall cycles
FADD DRODR2 L I | D[FI | Fo] Fs
[d FL [k2 [Fs
d F1 F2 | FS
d F1 [F2 FS
d FL [k2] Fs |
F1 | r2 [Fs]
FMOV FR4FR1 || | D | NA] S

2 stall cycles

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 6.00 Sep 13, 2006 page 181 of 424

RENESAS

REJ09B0318-0600

Section 8 Pipelining

(h) Resource conflict

#1 #2 #3 e #8 #9 #10 #11 #12
~—» 1cyclelissue Latency
FDIV FR6,FR7 [T o % FL | F2 | FS | <—>l F1 stage locked for 1 cycle
F3
F1 F2 FS
FMAC FRO,FR8,FR9 t T o[R FrTJFs]
FMAC FRO,FR10,FR11 [T o[AmT r]rF]
FMAC FRO,FR12,FR13 ' 7T T o] (AT e s]

1 stall cycle (F1 stage resource conflict)

FIPR FV8FVO [[p[r[TRA[FR]F]
FADD FR15,FR4 Lt [bl Fr [F2] Fs]
1 stall cycle
LDSL @R15+PR [1 | D | EX] MA] Fs |
SX
sx
STC GBRR2 L] (D] [sx[nal s |
[D [sx | Nna| s |
3 stall cycles
FADD DRO,DR2 [t [o[FAmTFr[eFs
[d [Fr | Fr2]Fs
d F1 | F2 | Fs |
d F1 [F2 [Fs
d FL [F2 | Fs
[Fi] r2] Fs |
MACW @R1+@R2+ [[D |« > Ex [vma| s]
5 stall cycles 1
D | Ex| MA| s |
f1
fl [F2 | Fs|
f1L | F2 | Fs
MAC.W @R1+.@R2+[| [D EX MA[S] f1 stage can overlap preceding f1,
1 but F1 cannot overlap f1.
D | EX| ma] s |
f1
fl [F2 | Fs
1 F2 | Fs |
MACW @R1+@R2+ [| J«—[D [EX| MA[s
1 stall 1
cycle D | ex] MA] s |
f1
1 [F2 | Fs
[n F2 | Fs
FADD DR4,DR6 [Je—»[D FL| F2 | Fs
3 stall cycles 2 stallcycles [g F1 F2 Fs |
d | FL | F2 | Fs
[d F1 | F2 | Fs |
d | F1 | F2 | FS |
F1

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 6.00 Sep 13, 2006 page 182 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Table 8.3 Execution Cycles
Instruc- Execu- Lock

Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

Data 1 EXTS.B Rm,Rn EX 1 1 #1 — — —

transfer 5 ExTSW Rm.Rn EX 1 1 #1 - - =

instructions
3 EXTU.B Rm,Rn EX 1 1 #1 — — —
4 EXTUW Rm,Rn EX 1 1 #1 — — —
5 MOV Rm,Rn MT 1 0 #1 — — —
6 MOV #imm,Rn EX 1 1 #1 — — —
7 MOVA @(disp,PC),R0 EX 1 1 #1 — - =
8 MOV.W @(disp,PC),Rn LS 1 2 #2 — - —
9 MOV.L @(disp,PC),Rn LS 1 2 #2 — — —
10 MOV.B @Rm,Rn LS 1 2 #2 — — —
11 MOV.W @Rm,Rn LS 1 2 #2 — — —
12 MOV.L @Rm,Rn LS 1 2 #2 — — —
13 MOV.B @Rm+,Rn LS 1 1/2 #2 — — —
14 MOV.W @Rm+Rn LS 1 12 #2 — — —
15 MOV.L @Rm+,Rn LS 1 1/2 #2 — — —
16 MOV.B @(disp,Rm),RO LS 1 2 #2 — S —
17 MOV.W @(disp,Rm),R0 LS 1 2 #2 — — —
18 MOV.L @(disp,Rm),Rn LS 1 2 #2 — S —
19 MOV.B @(RO,Rm),Rn LS 1 2 #2 — — —
20 MOV.W @(RO,Rm),Rn LS 1 2 #2 — — —
21 MOV.L @(RO,Rm),Rn LS 1 2 #2 — — —
22 MOV.B @(disp,GBR),R0 LS 1 2 #3 — — —
23 MOV.W @(disp,GBR),R0O LS 1 2 #3 — S —
24 MOV.L @(disp,GBR),RO LS 1 2 #3 — S —
25 MOV.B Rm,@Rn LS 1 1 #2 — — —
26 MOV.W Rm,@Rn LS 1 1 #2 — — —
27 MOV.L Rm,@Rn LS 1 1 #2 — — —
28 MOV.B Rm,@-Rn LS 1 11 #2 — — —
29 MOV.W Rm,@-Rn LS 1 11 #2 — — —
30 MOV.L Rm,@-Rn LS 1 1M1 #2 — — —
31 MOV.B RO,@(disp,Rn) LS 1 1 #2 — S —

Rev. 6.00 Sep 13, 2006 page 183 of 424

RENESAS

REJ09B0318-0600

Section 8 Pipelining

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Data 32 MOV.W RO,@(disp,Rn) LS 1 1 #2 — — —
:;Zrt‘fjstrions 33 MOV.L Rm@(disp,Rn) LS 1 1 #2 - — _
34 MOV.B Rm,@(R0,Rn) LS 1 1 #2 — — —
35 MOV.W Rm,@(RO,Rn) LS 1 1 #2 — — —
36 MOV.L Rm,@(R0,Rn) LS 1 1 #2 — — —
37 MOV.B RO,@(disp,GBR) LS 1 1 #3 — — —
38 MOV.W RO,@(disp,GBR) LS 1 1 #3 — — —
39 MOV.L RO,@(disp,GBR) LS 1 1 #3 — — —
40 MOVCA.L RO,@Rn LS 1 3-7 #12 MA 4 3-7
41 MOVT Rn EX 1 1 #1 — — —
42 OCBI @Rn LS 1 1-2 #10 MA 4 1-2
43 OCBP @Rn LS 1 1-5 #11 MA 4 1-5
44 OCBWB @Rn LS 1 1-5 #11 MA 4 1-5
45 PREF @Rn LS 1 1 #2 — — —
46 SWAP.B Rm,Rn EX 1 1 #1 — — —
47 SWAP.W Rm,Rn EX 1 1 #1 — — —
48 XTRCT Rm,Rn EX 1 1 #1 — — —
Fixed-point 49 ADD Rm,Rn EX 1 1 #1 — — —
arithmetic 55~ App #imm,Rn EX 1 1 #1 - - -
instructions
51 ADDC Rm,Rn EX 1 1 #1 — — —
52 ADDV Rm,Rn EX 1 1 #1 — — —
53 CMP/EQ #imm,RO MT 1 1 #1 — — —
54 CMP/EQ Rm,Rn MT 1 1 #1 — — —
55 CMP/GE Rm,Rn MT 1 1 #1 — — —
56 CMP/GT Rm,Rn MT 1 1 #1 — — —
57 CMP/HI Rm,Rn MT 1 1 #1 — — —
58 CMP/HS Rm,Rn MT 1 1 #1 — — —
59 CMP/PL Rn MT 1 1 #1 — — —
60 CMP/PZ Rn MT 1 1 #1 — — —
61 CMP/STR Rm,Rn MT 1 1 #1 — — —
62 DIVOS Rm,Rn EX 1 1 #1 — — —

Rev. 6.00 Sep 13, 2006 page 184 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Fixed-point 63 DIVOU EX 1 1 #1 — — —
arithmetic 6,y /4 Rm.Rn EX 1 1 #1 — -
instructions
65 DMULS.L Rm,Rn CcoO 2 4/4 #34 F1 4
66 DMULU.L Rm,Rn CcO 2 4/4 #34 F1 4 2
67 DT Rn EX 1 1 #1 — — —
68 MAC.L @Rm+,@Rn+ Cco 2 2/2/4/4 #35 F1 4 2
69 MACW @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2
70 MUL.L Rm,Rn CcoO 2 4/4 #34 F1 4 2
71 MULSW Rm,Rn CcoO 2 4/4 #34 F1 4 2
72 MULUW Rm,Rn CcO 2 4/4 #34 F1 4 2
73 NEG Rm,Rn EX 1 1 #1 — — —
74 NEGC Rm,Rn EX 1 1 #1 — — —
75 SUB Rm,Rn EX 1 1 #1 — — —
76 SUBC Rm,Rn EX 1 1 #1 — — —
77 SUBV Rm,Rn EX 1 1 #1 — — —
Logical 78 AND Rm,Rn EX 1 1 #1 — — —
instructions 79~ AND #imm,RO EX 1 1 #1 - - -
80 AND.B #imm,@(RO,GBR) CO 4 4 #6 — — —
81 NOT Rm,Rn EX 1 1 #1 — — —
82 OR Rm,Rn EX 1 1 #1 — — —
83 OR #imm,RO EX 1 1 #1 — — —
84 ORB #imm,@(R0,GBR) CO 4 4 #6 — — —
85 TASB @Rn CcoO 5 5 #7 — — —
86 TST Rm,Rn MT 1 1 #1 — — —
87 TST #imm,RO MT 1 1 #1 — — —
88 TST.B #imm,@(RO,GBR) CO 3 3 #5 — — —
89 XOR Rm,Rn EX 1 1 #1 — — —
90 XOR #imm,RO EX 1 1 #1 — — —
91 XOR.B #imm,@(RO,GBR) CO 4 4 #6 — — —

Rev. 6.00 Sep 13, 2006 page 185 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Shift 92 ROTL Rn EX 1 1 #1 — — —
instructions g3 ROTR ~ Rn EX 1 1 #1 - - =
94 ROTCL Rn EX 1 1 #1 — — —
95 ROTCR Rn EX 1 1 #1 — — —
96 SHAD Rm,Rn EX 1 1 #1 — — —
97 SHAL Rn EX 1 1 #1 — — —
98 SHAR Rn EX 1 1 #1 — — —
99 SHLD Rm,Rn EX 1 1 #1 — — —
100 SHLL Rn EX 1 1 #1 — — —
101 SHLL2 Rn EX 1 1 #1 — — —
102 SHLL8 Rn EX 1 1 #1 — — —
103 SHLL16 Rn EX 1 1 #1 — — —
104 SHLR Rn EX 1 1 #1 — — —
105 SHLR2 Rn EX 1 1 #1 — — —
106 SHLRS Rn EX 1 1 #1 — — —
107 SHLR16 Rn EX 1 1 #1 — — —
Branch 108 BF disp BR 1 2(or1) # — — —
instructions 449 BF/g disp BR 1 2(r1) #1 - - -
110 BT disp BR 1 2(or1) #1 — — —
111 BT/S disp BR 1 2(or1) #1 — — —
112 BRA disp BR 1 2 #1 — — —
113 BRAF Rn CO 2 3 #4 — — —
114 BSR disp BR 1 2 #14 SX
115 BSRF Rn Cco 2 3 #24 SX
116 JMP @Rn CO 2 3 #4 — — —
117 JSR @Rn Cco 2 3 #24 SX 3 2
118 RTS CO 2 3 #4 — — —

Rev. 6.00 Sep 13, 2006 page 186 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
System 119 NOP MT 1 0 #1 — — —
control 420 CLRMAC co 1 3 #28 F1 3 2
instructions
121 CLRS CcO 1 1 #1 — — —
122 CLRT MT 1 1 #1 — — —
123 SETS CcO 1 1 #1 — — —
124 SETT MT 1 1 #1 — — —
125 TRAPA #imm CcO 7 7 #13 — — —
126 RTE CcO 5 5 #8 — — —
127 SLEEP CcO 4 4 #9 — — —
128 LDTLB CO 1 1 #2 — — —
129 LDC Rm,DBR CcO 1 3 #14 SX 3 2
130 LDC Rm,GBR CO 3 3 #15 SX 3 2
131 LDC Rm,Rp_BANK CcO 1 3 #14 SX 3 2
132 LDC Rm,SR CcO 4 4 #16 SX 3 2
133 LDC Rm,SSR (of0) 1 3 #14 SX 3 2
134 LDC Rm,SPC (of0) 1 3 #14 SX 3 2
135 LDC Rm,VBR CcO 1 3 #14 SX 3 2
136 LDC.L @Rm+,DBR (of0) 1 13 #17 SX 3 2
137 LDC.L @Rm+,GBR CO 3 3/3 #18 SX 3 2
138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2
139 LDC.L @Rm+,SR CcO 4 4/4 #19 SX 3 2
140 LDC.L @Rm+,SSR CcO 1 1/3 #17 SX 3 2
141 LDC.L @Rm+,SPC CO 1 13 #17 SX 3 2
142 LDC.L @Rm+,VBR CO 1 1/3 #17 SX 3 2
143 LDS Rm,MACH CcO 1 #28 F1 3 2
144 LDS Rm,MACL CcO 1 #28 F1 3 2
145 LDS Rm,PR CcO 2 #24 SX 3 2
146 LDS.L @Rm+,MACH CcO 1 1/3 #29 F1 3 2
147 LDS.L @Rm+,MACL CcO 1 13 #29 F1 3 2
148 LDS.L @Rm+,PR CcO 2 2/3 #25 SX 3 2
149 STC DBR,Rn CcO 2 2 #20 — — —
150 STC SGR,Rn CcO 3 3 #21 — — —

Rev. 6.00 Sep 13, 2006 page 187 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
System 151 STC GBR,Rn CcO 2 2 #20 — — —
control 455 §TC Rp_BANKRn CO 2 2 #wo - —
instructions
153 STC SR,Rn CO 2 2 #20 — — —
154 STC SSR,Rn CO 2 2 #20 — — —
155 STC SPC,Rn CO 2 2 #20 — — —
156 STC VBR,Rn CcO 2 2 #20 — — —
157 STC.L DBR,@-Rn CO 2 2/2 #22 — — —
158 STC.L SGR,@-Rn CO 3 3/3 #23 — — —
159 STC.L GBR,@-Rn CcO 2 2/2 #22 — — —
160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 — — —
161 STC.L SR,@-Rn CcO 2 2/2 #22 — — —
162 STC.L SSR,@-Rn CcO 2 2/2 #22 — — —
163 STC.L SPC,@-Rn CO 2 2/2 #22 — — —
164 STC.L VBR,@-Rn CcO 2 2/2 #22 — — —
165 STS MACH,Rn CO 1 3 #30 — — —
166 STS MACL,Rn CO 1 3 #30 — — —
167 STS PR,Rn CcO 2 2 #26 — — —
168 STS.L MACH,@-Rn Cco 1 11 #31 — — —
169 STS.L MACL,@-Rn CcO 1 1M #31 — — —
170 STS.L PR,@-Rn CcO 2 2/2 #27 — — —
Single- 171 FLDIO FRn LS 1 #1 — — —
gg‘;‘i;i;’;omt FLDI1 FRn Ls 1 #1 - - =
instructions 173 FMOV FRm,FRn LS 1 #1 — — —
174 FMOV.S @Rm,FRn LS 1 2 #2 — — —
175 FMOV.S @Rm+,FRn LS 1 1/2 #2 — — —
176 FMOV.S @(RO,Rm),FRn LS 1 2 #2 — — —
177 FMOV.S FRm,@Rn LS 1 1 #2 — — —
178 FMOV.S FRm,@-Rn LS 1 171 #2 — — —
179 FMOV.S FRm,@(RO,Rn) LS 1 1 #2 — — —
180 FLDS FRm,FPUL LS 1 #1 — — —
181 FSTS FPUL,FRn LS 1 #1 — — —

Rev. 6.00 Sep 13, 2006 page 188 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Single- 182 FABS FRn LS 1 0 #1 — — —
;’Ing:ig’gom (183 FADD FRm.FRn FE 1 3/4 #36 - - —
instructions 184 FCMP/EQ FRm,FRn FE 1 2/4 #36 — S —
185 FCMP/GT FRm,FRn FE 1 2/4 #36 — — —
186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10
F1 11 1
187 FLOAT FPUL,FRn FE 1 3/4 #36 — — —
188 FMAC FRO,FRm,FRn FE 1 3/4 #36 — — —
189 FMUL FRm,FRn FE 1 3/4 #36 — — —
190 FNEG FRn LS 1 0 #1 — — —
191 FSQRT FRn FE 1 11/12 #37 F3 2 9
F1 10 1
192 FSUB FRm,FRn FE 1 3/4 #36 — — —
193 FTRC FRm,FPUL FE 1 3/4 #36 — — —
194 FMOV DRm,DRn LS 1 #1 — — —
195 FMOV @Rm,DRn LS 1 #2 — — —
196 FMOV @Rm+,DRn LS 1 1/2 #2 — — —
197 FMOV @(RO,Rm),DRn LS 1 2 #2 — — —
198 FMOV DRm,@Rn LS 1 1 #2 — — —
199 FMOV DRm,@-Rn LS 1 11 #2 — — —
200 FMOV DRm,@(RO,Rn) LS 1 1 #2 — — —
Double- 201 FABS DRn LS 1 0 #1 — — —
;’Ing:ig’gom (202 FADD DRmDRn FE 1 (7,89 #39 F1 2 6
instructions 203 FCMP/EQ DRm,DRn CcO 2 3/5 #40 F1 2 2
204 FCMP/GT DRm,DRn CO 2 3/5 #40 F1 2 2
205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2
206 FCNVSD FPUL,DRn FE 1 (3,4)5 #38 F1 2 2
207 FDIV DRm,DRn FE 1 (24, 25)/ #41 F3 2 23
26 I 22 3
F1 2 2
208 FLOAT FPUL,DRn FE 1 (3,4)5 #38 F1 2
209 FMUL DRm,DRn FE 1 (7,8)9 #39 F1 6

Rev. 6.00 Sep 13, 2006 page 189 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Double- 210 FNEG DRn LS 1 0 #1 — — —
precision FSQRT DRn FE 1 (23, 24) #41 F3 2 22
floating-point 25
instructions F1 21 3
F1 2
212 FSUB DRm,DRn FE 1 (7,8)9 #39 F1 6
213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2
FPU system 214 LDS Rm,FPUL LS 1 1 #1 — — —
control LDS Rm,FPSCR co 1 4 #32 F1 3 3
instructions
216 LDS.L @Rm+,FPUL CcO 1 1/2 #2 — — —
217 LDS.L @Rm+,FPSCR CO 1 1/4 #33 F1 3 3
218 STS FPUL,Rn LS 1 3 #1 — — —
219 STS FPSCR,Rn CcO 1 3 #1 — — —
220 STS.L FPUL,@-Rn CO 1 171 #2 — — —
221 STS.L FPSCR,@-Rn CcoO 1 17 #2 — — —
Graphics 222 FMOV DRm,XDn LS 1 #1 — — —
acceleration FMOV XDm,DRn LS 1 #1 - - =
instructions
224 FMOV XDm,XDn LS 1 #1 — — —
225 FMOV @Rm,XDn LS 1 #2 — — —
226 FMOV @Rm+,XDn LS 1 1/2 #2 — — —
227 FMOV @(RO,Rm),XDn LS 1 2 #2 — — —
228 FMOV XDm,@Rn LS 1 1 #2 — — —
229 FMOV XDm,@-Rm LS 1 171 #2 — — —
230 FMOV XDm,@(RO,Rn) LS 1 1 #2 — S —
231 FIPR FVm,FVn FE 1 4/5 #42 F1 3 1
232 FRCHG FE 1 1/4 #36 — — —
233 FSCHG FE 1 1/4 #36 — — —
234 FTRV XMTRX,FVn FE 1 (5,5,6, #43 FO
7)/8 F1

Notes: 1. See table 8.1 for the instruction groups.

2. Latency “L1/L2...”: Latency corresponding to a write to each register, including
MACH/MACL/FPSCR.

Example: MOV.B @Rm+, Rn “1/2”: The latency for Rm is 1 cycle, and the latency for
Rn is 2 cycles.

3. Branch latency: Interval until the branch destination instruction is fetched

4. Conditional branch latency “2 (or 1)”: The latency is 2 for a nonzero displacement, and
1 for a zero displacement.

Rev. 6.00 Sep 13, 2006 page 190 of 424
REJ09B0318-0600

RENESAS

Section 8 Pipelining

9.

Double-precision floating-point instruction latency “(L1, L2)/L3”: L1 is the latency for FR
[n+1], L2 that for FR [n], and L3 that for FPSCR.

FTRV latency “(L1, L2, L3, L4)/L5": L1 is the latency for FR [n], L2 that for FR [n+1], L3
that for FR [n+2], L4 that for FR [n+3], and L5 that for FPSCR.

Latency “L1/L2/L3/L4” of MAC.L and MAC.W instructions: L1 is the latency for Rm, L2
that for Rn, L3 that for MACH, and L4 that for MACL.

Latency “L1/L2” of MUL.L, MULS.W, MULU.W, DMULS.L, and DMULU.L instructions:
L1 is the latency for MACH, and L2 that for MACL.

Execution pattern: The instruction execution pattern number (see figure 8.2)

10. Lock/stage: Stage locked by the instruction
11. Lock/start: Locking start cycle; 1 is the first D-stage of the instruction.
12. Lock/cycles: Number of cycles locked

Exceptions:

1.

When a floating-point computation instruction is followed by an FMOV store, an STS

FPUL, Rn instruction, or an STS.L FPUL, @-Rn instruction, the latency of the floating-

point computation is decreased by 1 cycle.

When the preceding instruction loads the shift amount of the following SHAD/SHLD, the

latency of the load is increased by 1 cycle.

When an LS group instruction with a latency of less than 3 cycles is followed by a

double-precision floating-point instruction, FIPR, or FTRV, the latency of the first

instruction is increased to 3 cycles.

Example: In the case of FMOV FR4,FRO and FIPR FV0,FV4, FIPR is stalled for 2
cycles.

When MAC*/MUL*/DMUL* is followed by an STS.L MAC*, @-Rn instruction, the latency

of MAC*/MUL*/DMUL* is 5 cycles.

In the case of consecutive executions of MAC*/MUL*/DMUL*, the latency is decreased

to 2 cycles.

When an LDS to MAC* is followed by an STS.L MAC*, @-Rn instruction, the latency of

the LDS to MAC* is 4 cycles.

When an LDS to MAC* is followed by MAC*/MUL*/DMUL*, the latency of the LDS to

MAC* is 1 cycle.

When an FSCHG or FRCHG instruction is followed by an LS group instruction that

reads or writes to a floating-point register, the aforementioned LS group instruction[s]

cannot be executed in parallel.

When a single-precision FTRC instruction is followed by an STS FPUL, Rn instruction,

the latency of the single-precision FTRC instruction is 1 cycle.

Rev. 6.00 Sep 13, 2006 page 191 of 424
REJ09B0318-0600
RENESAS

Section 8 Pipelining

Rev. 6.00 Sep 13, 2006 page 192 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Section 9 Instruction Descriptions

Instructions are listed in this section in alphabetical order. The following format is used for the
instruction descriptions.

Instruction Name Full Name Instruction Type
Function (Indication of delayed branch
instruction or interrupt-disabling
instruction)
Instruction Execution
Format Summary of Operation Code States T Bit
The assembler input Summarizes the operation Shown in The no-wait Shows
format is shown. imm of the instruction. MSB ~ - LSB valueis the T bit
and disp are numeric order. shown. value after
values, expressions, execution
or symbols. of the
instruction.
Description

Describes the operation of the instruction.

Notes

Identifies points to be noted when using the instruction.
Operation

Shows the operation in C. This is given as reference material to help understand the operation of
the instruction. Use of the following resources is assumed.

char 8-bit integer

short 16-bit integer

i nt 32-bit integer

| ong 64-bit integer

fl oat si ngl e-precision floating point nunber(32 bits)
doubl e doubl e-precision floating point nunber (64 bits)
These are data types.

Rev. 6.00 Sep 13, 2006 page 193 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

unsi gned char Read_Byte(unsigned | ong Addr);
unsi gned short Read_Word(unsigned | ong Addr);
unsi gned long Read_Long(unsigned | ong Addr);

These reflect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsi gned char Wite_Byte(unsigned | ong Addr, unsigned |ong Data);
unsi gned short Wite_Wrd(unsigned | ong Addr, unsigned |ong Data);
unsi gned |l ong Wite_Long(unsigned | ong Addr, unsigned |ong Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n address,
or a longword write to other than a 4n address, will be detected as an address error.

Del ay_Sl ot (unsi gned | ong Addr);

Shifts to execution of the slot instruction at address (Addr).

unsi gned | ong R 16];

unsi gned | ong SR, GBR, VBR;
unsi gned | ong MACH, MACL, PR;
unsi gned | ong PC;

Registers

struct SRO {
unsi gned | ong dummyO: 22;
unsi gned | ong MD: 1;
unsi gned | ong Q: 1;
unsi gned | ong 1 0: 4,
unsi gned | ong dumyl: 2;
unsi gned | ong S0: 1;
unsi gned | ong TO: 1;

I

SR structure definitions

define M ((*(struct SRO *)(&SR)). M)
#define Q ((*(struct SRO *)(&SR)). Q0)
#define S ((*(struct SRO *)(&SR)). S0)

Rev. 6.00 Sep 13, 2006 page 194 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

#define T ((*(struct SRO *)(&SR)). TO)
Definitions of bits in SR

Error(char *er);

Error display function

These are floating-point number definition statements.

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

PZERO
NZERO
DENORM
NORM

Pl NF

NI NF
gNaN
sNaN
EQ

GT

LT

uo

I NVALI D
FADD
FSuB

CAUSE
SET_E
SET_V
SET_Z
SET_O
SET_U
SET |
ENABLE_VOUI
ENABLE_V
ENABLE_Z
ENABLE_OUI

0

P O A WO N PFPF O N O O BN ODN P

0x0003f 000
0x00020000
0x00010040
0x00008020
0x00004010
0x00002008
0x00001004
0x00000b80
0x00000800
0x00000400
0x00000380

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FPSCR(bi t 17-12) */
FPSCR(bi t 17) */
FPSCR(bi t 16, 6) */
FPSCR(bi t 15, 5) */
FPSCR(bi t 14, 4) */
FPSCR(bi t 13, 3) */
FPSCR(bi t 12, 2) */
FPSCR(bi t 11, 9-7) */
FPSCR(bi t 11) */
FPSCR(bi t 10) */
FPSCR(bi t 9-7) */

Rev. 6.00 Sep 13, 2006 page 195 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

#defi ne ENABLE I 0x00000080 /* FPSCR(bit7) */
#defi ne FLAG 0x0000007C /* FPSCR(bit6-2) */
#defi ne FPSCR_FR FPSCR>>21&1
#defi ne FPSCR_PR FPSCR>>19&1
#defi ne FPSCR_DN FPSCR>>18&1
#defi ne FPSCR_I FPSCR>>12&1
#defi ne FPSCR_RM FPSCR&1
#defi ne FR_HEX frf.l[FPSCR_FR]
#define FR frf.f[FPSCR_FR]
#defi ne DR frf.d[FPSCR_FR]
#defi ne XF_HEX frf.l[~FPSCR_FR]
#defi ne XF frf.f[~FPSCR_FR]
#define XD frf.d[~FPSCR_FR]
uni on {
int [[2][16];
float f[2][16];
doubl e d[2][8];
} frf;
i nt FPSCR;

int sign_of (int n)

{

}

r et ur n(FR_HEX[n] >>31) ;

int data_type of(int n) {

int abs;

abs

= FR HEX[n] & Ox7fffffff;
i f(FPSCR_PR == 0) { /* Single-precision */
i f (abs < 0x00800000) {

i f((FPSCR.DN == 1) || (abs == 0x00000000)){

if(sign_of(n) == 0) {zero(n,

el se

{zero(n,

0);
1);

ret urn(PZERO) ; }
return(NZERO) ; }

Rev. 6.00 Sep 13, 2006 page 196 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

el se
}
el se if(abs < 0x7f800000)
el se if(abs

if(sign_of(n) == 0)
el se
}
el se if(abs < 0x7fc00000)
el se
}
el se { /* Double-precision */
i f(abs < 0x00100000) {
i f ((FPSCR_DN 1 ||
((abs

if(sign_of(n)

el se
}
el se
}
el se if(abs < 0x7ff00000)
else if((abs
(FR_HEX[n+1]
if(sign_of(n)

0)

el se

}
el se if(abs < 0x7ff80000)
el se

}
voi d register_copy(int

{

m n)

FRn]
FRI n+1] =

i f (FPSCR_PR == 1)

}
voi d nornmal _faddsub(int mn,type)

0x00000000) && (FR_HEX[n+1]
0)

r et ur n(DENORM) ;

return(NORM ;

== 0x7f 800000) {

return(Pl NF);
return(N NF);

return(gNaN) ;
return(sNaN);

0x00000000)) {
return(PZERO ; }
return(NZERO) ; }

{zero(n, 0);

{zero(n, 1);

r et ur n(DENORM ;

return(NORM ;

0x7ff00000) &&
0x00000000)) {
return(Pl NF);
return(N NF);

return(gNaN) ;
return(sNaN);

FRO N ;
FRl m+1] ;

Rev. 6.00 Sep 13, 2006 page 197 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

{
uni on {
float f;
int |;
} dstf, srcf;
uni on {
l ong d;
int 1[2];
} dstd, srcd;
uni on { [* “long double” format: */
| ong doubl e x; [* 1-bitsign */
int |[4]; /* 15-bit exponent */
} dst x; [* 112-bit mantissa */
i f(FPSCR_PR == 0) {
if(type == FADD) srcf.f = FR[ni;
el se srcf.f = -FR[n;

dstd.d = FR[n]; /* Conversion from single-precision to double-precision */
dstd.d += srcf.f;
if(((dstd.d == FR[n]) && (srcf.f 1=0.0)) ||
((dstd.d == srcf.f) & (FRIn] !'=0.0))) {
set _1();
if(sign_of(mM~" sign_of(n)) {
dstd.l[1] -= 1;
if(dstd.1[1] == Oxffffffff) dstd.I[0] -= 1;

}
if(dstd.1[1] & Ox1fffffff) set_I();

dstf.f += srcf.f; /* Roundto nearest */

i f(FPSCR_ RM == 1) {
dstd.l[1] &= 0xe0000000; /* Round to zero */
dstf.f = dstd.d;

}

check_si ngl e_exception(&R[n],dstf.f);

} else {
if(type == FADD) srcd.d = DR np>1];

Rev. 6.00 Sep 13, 2006 page 198 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

el se srcd.d = -DR[mp>1];
dstx.x = DR[n>>1];
/ * Conversion from double-precision to extended double-precision */
dstx.x += srcd.d;
if(((dstx.x == DR[n>>1]) && (srcd.d !=0.0)) ||
((dstx.x == srcd.d) && (DR[n>>1] !=0.0))) {
set _1();
if(sign_of(mM”" sign_of(n)) {
dstx.1[3] -= 1,
if(dstx.1[3] == Oxffffffff) {dstx.1[2] -
if(dstx.1[2] == Oxffffffff) {dstx.I[1] - ;
if(dstx.1[1] == Oxffffffff) {dstx.I[O] -= 1;}}}

o
= P

}
if((dstx.1[2] & OxOfffffff) || dstx.1[3]) set_I();
dst.d += srcd.d; /* Round to nearest */
i f(FPSCR_ RM == 1) {
dstx.l[2] &= Oxf0000000; /* Round to zero */
dstx.l1[3] = 0x00000000;
dst.d = dstx. x;

}
check_doubl e_excepti on(&DR[n>>1] , dst.d);
}
}
void normal _frul (int mn)
{
uni on {
float f;
int |;
} t npf ;
uni on {
doubl e d;
int 1[2];
} t mpd;
uni on {

Rev. 6.00 Sep 13, 2006 page 199 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

| ong doubl e x;
int 1[4];
} t npx;
i f(FPSCR_PR == 0) {
tmpd.d = FR[n]; /* Single-precision to double-precision */
tmpd.d *= FR[nl; /* Precise creation */
tnpf.f *= FR[n]; /* Round to nearest */
if(tnmpf.f != tnpd.d) set_I();
if((tnmpf.f > tnpd.d) && (FPSCR RM == 1)) {
tmpf.l -=1; /* Roundtozero */
}
check_si ngl e_exception(&-R[n], tnpf.f);
} else {
tmpx. x = DR[n>>1]; /* Single-precision to double-precision */
tnpx.x *= DR[mp>1]; /* Precise creation */
tmpd.d *= DR[nm>>1]; /* Round to nearest */
if(tnmpd.d !'= tnpx.x) set _1();
if(tnmpd.d > tnpx.x) &% (FPSCR_RM == 1)) {
tnpd.I[1] -= 1; /* Roundtozero */
if(tmpd.1[1] == Oxffffffff) tnpd.1[0] -= 1;

}
check_doubl e_excepti on(&DR[n>>1], tnpd.d);
}
}
void fipr(int mn)
{
uni on {
doubl e d;
int 1[2];
} mt[4];
float dstf;

if((data_type_of(n) == sNaN) || (data_type_of(n) == sNaN) ||
(data_type_of (m+tl) == sNaN) || (data_type_of(n+l) == sNaN) ||
(data_type_of (m2) == sNaN) || (data_type_of(n+2) == sNaN) ||
(data_type_of (m+3) == sNaN) || (data_type_of(n+3) == sNaN) ||

Rev. 6.00 Sep 13, 2006 page 200 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

(check_product _invalid(mn)) ||
(check_product _invalid(m1, n+1)) ||
(check_product _i nval i d(m+2, n+2)) ||
(check_product _i nval i d(mt3, n+3))) i nval i d(n+3);

else if((data_type_of (m == gNaN)|| (data_type_of(n) == gNaN)]| |
(data_type_of (mtl) == gNaN) || (data_type_of(n+1l) == gNaN) ||
(data_type_of (m+2) == gNaN) || (data_type_of(n+2) == gNaN) ||

(data_type_of (m3) == gNaN) || (data_type_of(n+3) == gNaN))
gnan(n+3);

else if (check_ positive_infinity() &&

(check_ negative_infinity()) i nval i d(n+3);
else if (check_ positive_infinity()) inf(n+3,0);
else if (check_ negative_infinity()) inf(n+3,1);

el se {
for(i=0;i<4;i++) {
/* IfFPSCR_DN == 1, zeroize */

if (data_type_of (mti) == PZERO) FR m+i] = +0.0;
else if(data type of (mti) == NZERO) FR[m+i] = -0.0;
if (data_type_of (n+i) == PZERO) FR n+i] = +0.0;

else if(data _type_ of (n+i) == NZERO) FR[n+i] = -0.0;
mt[i].d = FREm+i];
mt[i].d *= FR[n+i];

| * To be precise, with FIPR, the lower 18 bits are discarded; therefore, this description
is simplified, and differs from the hardware. */
mt[i].l[1] &= Oxff000000;
mt[i].I[1] |= 0x00800000;
}
mt[0].d += mt[1].d + mMt[2].d + mMt[3].d;
mt[0].1[1] &= Oxff800000;
dstf = nmt[O].d,;
set_1();
check_si ngl e_excepti on(&R n+3], dstf);

Rev. 6.00 Sep 13, 2006 page 201 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

voi d check_si ngl e_exception(float *dst,result)

{
uni on {
float f;
int |;
} t np;
fl oat abs;
if(result < 0.0) tnp.l = Oxff800000; /* —infinity */
el se tmp. | = 0x7f800000; /* +infinity */
if(result == tnm.f) {
set_Q(); set_I();
i f(FPSCR_RM == 1) {
tnp.l -= 1; /* Maximum value of normalized number */
result = tnmp.f;
}
}
if(result < 0.0) abs = -result;
el se abs = result;
tnp.l = 0x00800000; /* Minimum value of normalized number */
if(abs < tnp.f) {
if((FPSCR_DN == 1) && (abs !=0.0)) {
set _1();
if(result < 0.0) result = -0.0; /* Zeroize denormalized number */
el se result = 0.0;
}
if(FPSCR_I == 1) set_U();
}
i f (FPSCR & ENABLE_QUI') fpu_exception_trap();
el se *dst = result;
}
voi d check_doubl e_excepti on(doubl e *dst,result)
{
uni on {
doubl e d;
int 1[2];

Rev. 6.00 Sep 13, 2006 page 202 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

} t np;

doubl e abs;
if(result < 0.0) tnp.1[0] = Oxfff00000; /* —infinity */
el se tnp.1[0] = Ox7ff00000; /* +infinity */

tnp. 1 [1] 0x00000000;
if(result == tnp.d)
set_Q(); set_I();
i f (FPSCR_RM == 1) {
tnmp.1[0] -= 1;
tp. I [1] = Oxffffffff;

result = tnp.d; /* Maximum value of normalized number */
}
}
if(result < 0.0) abs = -result;
el se abs = result;
tmp. 1 [0] = 0x00100000; /* Minimum value of normalized number */
tmp.1[1] = 0x00000000;

if(abs < tnp.d) {
if((FPSCR DN == 1) && (abs !'= 0.0)) {
set _1();
if(result < 0.0) result = -0.0;

| * Zeroize denormalized number */

el se result = 0.0;
}
if(FPSCR_I == 1) set_U();
}
i f(FPSCR & ENABLE QUI) fpu_exception_trap();
el se *dst = result;
}
i nt check_product_invalid(int mn)
{
return(check_product _infinity(mn) &&
((data_type_of (m) == PZERO || (data_type_of(n) == PZERO ||
(data_type_of (M) == NZERO) || (data_type_of (n) == NZERO)));
}

Rev. 6.00 Sep 13, 2006 page 203 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

int check_ product _infinity(int mn)

{
return((data_type_of (n) == PINF) || (data_type_of(n) == PINF) ||
(data_type_of (n) == NINF) || (data_type_of(n) == NINF));
}
int check_ positive_infinity(int mn)
{

return(((check_ product_infinity(mn) && (~sign_of(m~*
sign_of(n))) |

((check_ product _infinity(mtl, n+1) && (~sign_of (m1)”"
sign_of (n+1))) ||

((check_ product _infinity(mt2, n+2) && (~sign_of (m2)"
sign_of (n+2))) ||

((check_ product _infinity(mt3, n+3) && (~sign_of (mt3)"
sign_of (n+3))));

}
int check_ negative_infinity(int mn)
{
return(((check_ product_infinity(mn) & (sign_of(m” sign_of(n))) ||

((check_ product_infinity(m+l, n+l) && (sign_of (m+1)"
sign_of (n+1))) ||

((check_ product _infinity(m2, n+2) && (sign_of (m+2)"
sign_of (n+2))) ||

((check_ product _infinity(mt3, n+t3) && (sign_of (m+3)"
sign_of (n+3))));

}
voi d cl ear_cause () {FPSCR &= ~CAUSE; }
void set _E() {FPSCR | = SET_E; fpu_exception_trap();}
void set_V() {FPSCR | = SET_V;}
void set_Z() {FPSCR | = SET_Z;}
void set_Q) {FPSCR |= SET_O}
void set_U() {FPSCR | = SET_U;}
void set _I() {FPSCR |= SET_I;}
void invalid(int n)
{
set _V();
i f((FPSCR & ENABLE_V) == 0 gnan(n);

Rev. 6.00 Sep 13, 2006 page 204 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

el se f pu_exception_trap();

void dz(int n,sign)

{
set_Z();
i f((FPSCR & ENABLE Z) == 0 inf(n,sign);
el se f pu_exception_trap();
}
voi d zero(int n,sign)
{
if(sign == 0) FR_HEX [n] = 0x00000000;
el se FR_HEX [n] = 0x80000000;
if (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;
}

void inf(int n,sign) {
i f (FPSCR_PR==0) ({
if(sign == 0) FR_HEX [n]

0x7f 800000;

el se FR_HEX [n] = Oxf f 800000;
} else {
if(sign == 0) FR HEX [n] = 0x7f f00000;
el se FR_HEX [n] = Oxf ff00000;
FR_HEX [n+1] = 0x00000000;
}
}
voi d gnan(int n)
{
if (FPSCR_PR==0) FR[N] = Ox7fbfffff;
el se { FR[n] = Ox7ff7ffff;
FR[n+1] = Oxffffffff;
}
}

Rev. 6.00 Sep 13, 2006 page 205 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example

An example is shown using assembler mnemonics, indicating the states before and after execution
of the instruction.

Italics (e.g., .align) indicate an assembler control instruction. The meaning of the assembler
control instructions is given below. For details, refer to the Cross-Assembler User’s Manual.

.org Location counter setting

.data.w Word integer data allocation
.data.l Longword integer data allocation
.sdata String data allocation

.align 2 2-byte boundary alignment
.align 4 4-byte boundary alignment

.align 32 32-byte boundary alignment

.arepeat 16 16-times repeat expansion

.arepea t 32 32-times repeat expansion

.aendr Count-specification repeat expansion end

Note: SuperH™ RISC engine family cross-assembler version 1.0 does not support conditional
assembler functions.

Rev. 6.00 Sep 13, 2006 page 206 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.1 ADD ADD binary Arithmetic Instruction
Binary Addition
Execution
Format Summary of Operation Instruction Code States T Bit
ADD Rm,Rn Rn+Rm - Rn 0011nnnnnmml100 1 —
ADD #imm,Rn Rn+imm - Rn Ollinnnniiiiiiii 1 —
Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in

Rn.

8-bit immediate data can also be added to the contents of general register Rn.

8-bit immediate data is sign-extended to 32 bits, allowing use in decrement operations.

Operation

ADD(long m long n) /* ADD Rm Rn */

{
REn] +=R(ni
PC+=2,
}
ADDI (long i, long n) /* ADD #i mmRn */
{
if ((i&x80)==0)

R[n] +=(0x000000FF & (long)i);
el se R n] +=(OxFFFFFFOO | (long)i);
PC+=2;

}

Rev. 6.00 Sep 13, 2006 page 207 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
ADD RO, R1L ; Before execution RO = H'7FFFFFFF, R1 = H'00000001
; After execution R1 =H'80000000
ADD #H 01, R2 ; Before execution R2 =H'00000000
; After execution R2 =H'00000001
ADD #H FE, R3 ; Before execution R3 =H'00000001

; After execution R3 = H'FFFFFFFF

Rev. 6.00 Sep 13, 2006 page 208 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.2 ADDC ADD with Carry Arithmetic Instruction
Binary Addition
with Carry
Execution
Format Summary of Operation Instruction Code States T Bit
ADDC Rm,Rn Rn+Rm+T - Rn, carry -~ T 001lnnnnnmmmil110 1 Carry
Description

This instruction adds together the contents of general registers Rn and Rm and the T bit, and stores
the result in Rn. A carry resulting from the operation is reflected in the T bit. This instruction is
used for additions exceeding 32 bits.

Operation

ADDC(1 ong m | ong n) /* ADDC Rm Rn */

{
unsi gned | ong tnpO, t np1l;
tmpl=Rn] +R(ni
t mpO=R{ n] ;
R n] =t mp1+T;
if (tmpO>tnpl) T=1,;
el se T=0;
if (tnpl>Rn]) T=1;
PC+=2;
}
Example
CLRT ; RO:R1(64 bits) + R2:R3(64 bits) = RO:R1(64 bits)
ADDC R3,R1 ; Before execution T =0, R1 =H'00000001, R3 = HFFFFFFFF
; After execution T =1, R1=H'00000000
ADDC R2, RO ; Before execution T =1, R0 =H'00000000, R2 = H'00000000

; After execution T =0, RO=H'00000001

Rev. 6.00 Sep 13, 2006 page 209 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction

Binary Addition
with Overflow Check
Execution
Format Summary of Operation Instruction Code States T Bit
ADDV Rm,Rn Rn+Rm - Rn, 0011nnnnmmmmil111 1 Overflow

overflow - T

Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in
Rn. If overflow occurs, the T bit is set.

Operation

ADDV(l ong m 1ong n) /* ADDV Rm Rn */
{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;

el se dest=1;

if ((long) RRmM>=0) src=0;

el se src=1;

src+=dest ;

REn] +=R(ni

if ((long)R n]>=0) ans=0;

el se ans=1;

ans+=dest ;

if (src==0 || src==2) {
if (ans==1) T=1;

el se T=0;
}
el se T=0;
PC+=2,

Rev. 6.00 Sep 13, 2006 page 210 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

Example
ADDV RO, Rl ; Before execution RO =H'00000001, R1 = H7FFFFFFE, T=0
; After execution R1 = H'7FFFFFFF, T=0
ADDV RO, Rl ; Before execution RO =H'00000002, R1 = H7FFFFFFE, T=0

; After execution R1 =H'80000000, T=1

Rev. 6.00 Sep 13, 2006 page 211 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.4 AND AND logical Logical Instruction
Logical AND
Execution
Format Summary of Operation Instruction Code States T Bit
AND Rm,Rn Rm & Rm - Rn 0010nnnnnmml001 1 —
AND #imm,R0 RO & imm - RO 1100100%iiiiiiii 1 —
AND.B #imm,@(R0,GBR) (R0O+GBR) & imm - 1100110%iiiiiiii 4 —
(RO+GBR)
Description

This instruction ANDs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to AND general register RO contents with zero-extended 8-bit

immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit

immediate data.

Notes

With AND #imm,RO0, the upper 24 bits of RO are always cleared as a result of the operation.

Operation

AND(| ong m [ong n) /* AND Rm Rn */
{

Rl n] &R n;

PC+=2;

ANDI (1 ong i) /* AND #i nm RO */
{
R[0] &=(0x000000FF & (long)i);
PC+=2;

ANDM'| ong i) /* AND. B #i mm @ R0, GBR) */

{

Rev. 6.00 Sep 13, 2006 page 212 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

| ong tenp;

tenp=(1 ong) Read_Byt e(GBR+R[0]) ;
t enp&=(0x000000FF & (long)i);
Wite_ Byte(GBR+R 0], tenp);

PC+=2;
}
Example
AND RO, R1 ; Before execution RO =H'AAAAAAAA, R1=H'55555555
; After execution R1=H'00000000
AND #H OF, RO ; Before execution RO = H'FFFFFFFF

; After execution RO = H'0000000F
AND. B #H 80, @ R0, GBR) ; Before execution (R0,GBR)=H'A5
; After execution (R0O,GBR)=H'80

Rev. 6.00 Sep 13, 2006 page 213 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.5 BF Branch if False Branch Instruction

Conditional Branch

Execution
Format Summary of Operation Instruction Code States T Bit
BF label IfT=0 10001011dddddddd 1 —
PC +4 +dispx2 - PC
If T=1, nop

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 0, and
not taken if T = 1. The branch destination is address (PC + 4 + displacement % 2). The PC source
value is the BF instruction address. As the 8-bit displacement is multiplied by two after sign-
extension, the branch destination can be located in the range from —256 to +254 bytes from the BF
instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BF in
combination with a BRA or JMP instruction, for example.

Operation

BF(int d) /* BF disp */

{
int disp;
i f ((d&0x80)==0)
di sp=(0x000000FF & d);
el se di sp=(OxFFFFFFOO | d);
if (T==0)
PC=PC+4+(di sp<<1);
el se PC+=2;
}

Rev. 6.00 Sep 13, 2006 page 214 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
CLRT ; Normally T =0
BT TRGET_T ; T =0, so branch is not taken.
BF TRCGET_F ; T=0, so branch to TRGET F.
NOP ;
NOP
TRCGET_F: ; « BF instruction branch destination

Rev. 6.00 Sep 13, 2006 page 215 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.6 BF/S Branch if False with delay Slot Branch Instruction
Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BF/S label IfT=0 10001111dddddddd 1 —
PC+4 +dispx2 - PC
If T=1, nop
Description

This is a delayed conditional branch instruction that references the T bit. If T = 1, the next
instruction is executed and the branch is not taken. If T = 0, the branch is taken after execution of
the next instruction.

The branch destination is address (PC + 4 + displacement % 2). The PC source value is the BF/S
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from —256 to +254 bytes from the BF/S instruction.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.
If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it
is identified as a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/S in
combination with a BF, BRA, or JMP instruction, for example.

Rev. 6.00 Sep 13, 2006 page 216 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

BFS(i nt d) /* BFS disp */

{
int disp;
unsi gned int tenp;
t enp=PC;
i f ((d&0x80)==0)

di sp=(0x000000FF & d);
el se di sp=(OxFFFFFFOO | d);
if (T==0)
PC=PC+4+(di sp<<l);

el se PC+=4;
Del ay_Sl ot (t enp+2);

}

Example

CLRT ; Normally T =0
BT/S TRGET_T : T =0, so branch is not taken.
NOP ;
BF/ S TRGET_F : T =0, so branch to TRGET.
ADD RO, R1 ; Executed before branch.
NOP ;

TRCGET_F: .« BF/S instruction branch destination

Rev. 6.00 Sep 13, 2006 page 217 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.7 BRA BRAnch

Unconditional Branch

Branch Instruction
Delayed Branch Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
BRA label PC+4 +dispx2 - PC 1010dddddddddddd 1 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 +
displacement x 2). The PC source value is the BRA instruction address. As the 12-bit
displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from —4096 to +4094 bytes from the BRA instruction. If the branch destination cannot be
reached, this branch can be performed with a JMP instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before

the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRA(i nt d)
{

/* BRA disp */

int disp;
unsi gned int tenp;

t emp=PC;
i f ((d&0x800)==0)

di sp=(0x00000FFF & d);
el se di sp=(OxFFFFFO00 | d);
PC=PC+4+(di sp<<l);
Del ay_Sl ot (t enp+2) ;

Rev. 6.00 Sep 13, 2006 page 218 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

Example

BRA TRGET

ADD RO, R1

NOP
TRCGET:

; Branch to TRGET.
; ADD executed before branch.

. « BRA instruction branch destination

Rev. 6.00 Sep 13, 2006 page 219 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

9.8 BRAF BRAnch Far Branch Instruction
Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BRAF Rn PC+4+Rn - PC 0000nnnn00100011 2 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + Rn). The
branch destination address is the result of adding 4 plus the 32-bit contents of general register Rn
to PC.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRAF(int n) /* BRAF Rn */

{
unsi gned int tenp;
t enp=PC;
PC=PC+4+R[n] ;
Del ay_Sl ot (t enp+2) ;
}

Rev. 6.00 Sep 13, 2006 page 220 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example

MOV. L #(TRGET- BRAF_PC), RO ; Set displacement.

BRAF RO ; Branch to TRGET.

ADD RO,R1 ; ADD executed before branch.
BRAF_PC: ;

NOP
TRGET: ; « BRAF instruction branch destination

Rev. 6.00 Sep 13, 2006 page 221 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.9 BSR Branch to SubRoutine Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSR label PC+4 - PR, 1011dddddddddddd 1 —

PC +4 +dispx2 - PC

Description

This instruction branches to address (PC + 4 + displacement X 2), and stores address (PC + 4) in
PR. The PC source value is the BSR instruction address. As the 12-bit displacement is multiplied
by two after sign-extension, the branch destination can be located in the range from —4096 to
+4094 bytes from the BSR instruction. If the branch destination cannot be reached, this branch can
be performed with a JSR instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BSR(i nt d) /* BSR disp */
{

int disp;

unsi gned int tenp;

t emp=PC;
i f ((d&0x800)==0)

di sp=(0x00000FFF & d);
el se di sp=(0xFFFFFO00 | d);
PR=PC+4;
PC=PC+4+(di sp<<1);
Del ay_Sl ot (t enp+2);

Rev. 6.00 Sep 13, 2006 page 222 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
BSR TRGET ; Branch to TRGET.
MOV R3, R4 ; MOV executed before branch.
ADD RO, R1 ; Subroutine procedure return destination (contents of PR)
TRGET: ; « Entry to procedure
MOV R2,R3 ;
RTS : Return to above ADD instruction.
MOV #1, RO ; MOV executed before branch.

Rev. 6.00 Sep 13, 2006 page 223 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.10 BSRF Branch to SubRoutine Far Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSRF Rn PC+4 - PR, 0000nnnNn00000011 2 —

PC+4+Rn - PC

Description

This instruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in PR. The PC
source value is the BSRF instruction address. The branch destination address is the result of
adding the 32-bit contents of general register Rn to PC + 4.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BSRF(i nt n) /* BSRF Rn */
{

unsi gned int tenp;

t emp=PC;

PR=PC+4;

PC=PC+4+R[n] ;

Del ay_Sl ot (tenp+2) ;

Rev. 6.00 Sep 13, 2006 page 224 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example

MOV.L #(TRGET- BSRF_PC), RO ; Set displacement.

BSRF RO ; Branch to TRGET.

MoV R3, R4 ; MOV executed before branch.
BSRF_PC: ;

ADD RO, R1 ;
TRGET: ; « Entry to procedure

MoV R2, R3 ;

RTS ; Return to above ADD instruction.

MoV #1, RO ; MOV executed before branch.

Rev. 6.00 Sep 13, 2006 page 225 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.11 BT Branch if True Branch Instruction

Conditional Branch

Execution
Format Summary of Operation Instruction Code States T Bit
BT label fT=1 10001001dddddddd 1 —
PC +4 +dispx2 - PC
If T=0, nop

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and
not taken if T = 0.

The branch destination is address (PC + 4 + displacement X 2). The PC source value is the BT
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from —256 to +254 bytes from the BT instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BT in
combination with a BRA or JMP instruction, for example.

Operation

BT(int d) /* BT disp */

{
int disp;
i f ((d&0x80)==0)
di sp=(0x000000FF & d);
el se di sp=(OxFFFFFFOO0 | d);
if (T==1)
PC=PC+4+(di sp<<1);
el se PC+=2;
}

Rev. 6.00 Sep 13, 2006 page 226 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
SETT ; Normally T =1
BF TRCGET_F ; T=1, so branch is not taken.
BT TRGET_T ; T=1, so branch to TRGET T.
NOP ;
NOP
TRCGET_T: .« BT instruction branch destination

Rev. 6.00 Sep 13, 2006 page 227 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.12 BT/S Branch if True with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BT/S label fT=1 10001101dddddddd 1 —
PC+4 +dispx2 - PC
If T=0, nop
Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and
not taken if T = 0.

The PC source value is the BT/S instruction address. As the 8-bit displacement is multiplied by
two after sign-extension, the branch destination can be located in the range from —256 to +254
bytes from the BT/S instruction. If the branch destination cannot be reached, the branch must be
handled by using BT/S in combination with a BRA or JMP instruction, for example.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

Rev. 6.00 Sep 13, 2006 page 228 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

BTS(int d) /* BTS disp */

{
int disp;
unsi gned tenp;
t enp=PC;
i f ((d&0x80)==0)
di sp=(0x000000FF & d);
el se di sp=(OxFFFFFFOO0 | d);
if (T==1)
PC=PC+4+(di sp<<1);
el se PC+=4;
Del ay_Sl ot (t enp+2);
}
Example
SETT ; Normally T =1
BF/S TRGET_F : T =1, so branch is not taken.
NOP ;
BT/S TRGET_T ; T=1, so branch to TRGET _T.
ADD RO, Rl ; Executed before branch.
NOP ;
TRCGET_T: ;. « BT/S instruction branch destination

Rev. 6.00 Sep 13, 2006 page 229 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.13 CLRMAC CleaR MAC register System Control Instruction
MAC Register Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRMAC 0 -~ MACH, MACL 0000000000101000 1 —
Description

This instruction clears the MACH and MACL registers.
Operation

CLRMVAC() /* CLRVAC */

{
MACH=0;
MACL=0;
PC+=2;

}

Example

CLRVAC ; Clear MAC register to initialize.
MAC. W @RO+, @R1+ ; Multiply-and-accumulate operation

MAC. W @RO+, @R1+

Rev. 6.00 Sep 13, 2006 page 230 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.14 CLRS CleaR S bit System Control Instruction
S Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRS 0-8 0000000001001000 1 —
Description

This instruction clears the S bit to 0.
Operation

CLRS() /* CLRS */
{

S=0;

PC+=2;
}

Example

CLRS ; Before execution S =1

; After execution S=0

Rev. 6.00 Sep 13, 2006 page 231 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.15 CLRT CleaR T bit System Control Instruction
T Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRT 0-T 0000000000001000 1 0
Description

This instruction clears the T bit.
Operation

CLRT() /* CLRT */
{

T=0;

PC+=2;
}

Example

CLRT ; Before execution T=1

; After execution T=0

Rev. 6.00 Sep 13, 2006 page 232 of 424
REJ09B0318-0600
RENESAS

Section 9

Instruction Descriptions

9.16 CMP/cond

CoMPare conditionally

Arithmetic Instruction

Compare
Execution
Format Summary of Operation Instruction Code States T Bit
CMP/IEQ Rm[Rn I[fRn=Rm,1-T 0011nnnnmmmD000 1 Result of
comparison
CMP/GE Rm,Rn IfRn=Rm, signed,1 -~ T 001lnnnnmm®0011 1 Result of
comparison
CMP/GT Rm,Rn IfRn>Rm,signed,1 - T 001llnnnnmm®0111 1 Result of
comparison
CMP/HI Rm,Rn If Rn>Rm, unsigned, 1 - T 0011lnnnnmm®0110 1 Result of
comparison
CMP/HS Rm,Rn If Rn=Rm, unsigned, 1 - T 0011lnnnnmm®0010 1 Result of
comparison
CMP/PL Rn IfRn>0,1-T 0100nnnn00010101 1 Result of
comparison
CMP/PZ Rn fRn>0,1-T 0100nnnn00010001 1 Result of
comparison
CMP/STR Rm,Rn If any bytes are equal, 1 -~ T 0010nnnnmmm1.100 1 Result of
comparison
CMP/EQ #imm,RO IfRO=imm,1 - T 10001000iiiiiiii 1 Result of
comparison
Description

This instruction compares general registers Rn and Rm, and sets the T bit if the specified condition
(cond) is true. If the condition is false, the T bit is cleared. The contents of Rn are not changed.
Nine conditions can be specified. For the two conditions PZ and PL, Rn is compared with 0.

With the EQ condition, sign-extended 8-bit immediate data can be compared with R0O. The
contents of RO are not changed.

Rev. 6.00 Sep 13, 2006 page 233 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

Mnemonic Description

CMP/EQ Rm,Rn IfRNn=Rm, T=1

CMP/GE Rm,Rn If Rn = Rm as signed values, T =1
CMP/GT Rm,Rn If Rn > Rm as signed values, T =1
CMP/HI Rm,Rn If Rn > Rm as unsigned values, T =1
CMP/HS Rm,Rn If Rn = Rm as unsigned values, T = 1
CMP/PL Rn fRn>0,T=1

CMP/PZ Rn IfRn=0,T=1

CMP/STR Rm,Rn If any bytes are equal, T = 1
CMP/EQ #imm,R0 If RO =imm, T =1

Operation

CMPEQ(l ong m 1 ong n) /* CMP_EQ Rm Rn */
{

it (Rin]==R(n) T=1;

el se T=0;

PC+=2;
}
CMPCGE(1 ong m 1 ong n) /* CMP_CE Rm Rn */
{

it ((long) Rin]>=(long)Rin) T=1;

el se T=0;

PC+=2;

CWPGT(l ong m |ong n) /* CMP_GT RmRn */
{

if ((long)RInI>(long)RInj) T=1;

el se T=0;

PC+=2,

CWPHI (1 ong m 1 ong n) /* CMP_H RmRn */
{

Rev. 6.00 Sep 13, 2006 page 234 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

if ((unsigned | ong)RIn]>(unsigned long) RIni) T=1,
el se T=0;
PC+=2,

CVMPHS(1 ong m | ong n) /* CWP_HS Rm Rn */

{
if ((unsigned long)Rin]>=(unsigned long) RfmM) T=1;
el se T=0;
PC+=2;
}
CWPPL(| ong n) /* CMP_PL Rn */
{
if ((long) R n]>0) T=1;
el se T=0;
PC+=2;
}

CMPPZ(| ong n) /* CMP_PZ Rn */
{

if ((long)R n]>=0) T=1,;

el se T=0;

PC+=2;

CWPSTR(l1 ong m long n) /* CVMP_STR Rm Rn */
{

unsi gned | ong tenp;

long HH, HL, LH, LL;

temp=R[n] *R[n{;

HH=(t enp&XFF000000) >>24;
HL=(t enp&x00FF0000) >>16;
LH=(t enp&x0000FF00) >>8;

Rev. 6.00 Sep 13, 2006 page 235 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

LL=t enp&x000000FF;
HH=HH&EHL &&L H&&L L ;
if (HH==0) T=1;

el se T=0;

PC+=2;

CWPI Ml ong i) /* CMP_EQ #i nm RO */

{
| ong i nm
if ((i&x80)==0) immr(0x000000FF & (long i));
el se i mm=(OXFFFFFFOO | (long i));
if (RO]==imm T=1,
el se T=0;
PC+=2;
}
Example
CWP/ GE RO, R1 ; RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; T =0, so branch is not taken.
CMP/ HS RO, R1 ; RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; T=1, so branch is taken.
CW/ STR R2, R3 ; R2="ABCD", R3 ="XYCZ"
BT TRGET_T ; T=1, so branch is taken.

Rev. 6.00 Sep 13, 2006 page 236 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.17 DIVOS DIVide (step 0) as Signed Arithmetic Instruction

Initialization for
Signed Division

Execution
Format Summary of Operation Instruction Code States T Bit
DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmm©0111 1 Result of
MSB of Rm - M, calculation

MMQ - T

Description

This instruction performs initial settings for signed division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV1 instruction for details.

Operation

DI VOS(long m long n) /* DIVOS Rm Rn */

{
if ((Rn] & 0x80000000)==0) Q=0;
el se (=1,
if ((Rinl & 0x80000000)==0) M=O0;
el se M-1;
T=H(M=Q;
PC+=2;

}

Example

See the examples for the DIV instruction.

Rev. 6.00 Sep 13, 2006 page 237 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.18 DIVOU DIVide (step 0) as Unsigned Arithmetic Instruction

Initialization for Unsigned Division

Execution
Format Summary of Operation Instruction Code States T Bit
DIVOU 0 - M/QIT 0000000000011001 1 0

Description

This instruction performs initial settings for unsigned division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV1 instruction for details.

Operation

DI VOU() /* DIVOU */

{
MeQ=T=0;
PC+=2;

}

Example

See the examples for the DIV instruction.

Rev. 6.00 Sep 13, 2006 page 238 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.19 DIV1 DIVide 1 step Arithmetic Instruction
Division
Execution
Format Summary of Operation Instruction Code States T Bit
DIV1 Rm,Rn 1-step division 0011nnnnnmmm©0100 1 Result of
(Rn + Rm) calculation
Description

This instruction performs 1-digit division (1-step division) of the 32-bit contents of general
register Rn (dividend) by the contents of Rm (divisor). The quotient is obtained by repeated
execution of this instruction alone or in combination with other instructions. The specified
registers and the M, Q, and T bits must not be modified during these repeated executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, and
the quotient bit is reflected in the Q bit according to whether the result is positive or negative.

The remainder can be found as follows after first finding the quotient using the DIV1 instruction:
(Remainder) = (dividend) — (divisor) x (quotient)

Detection of division by zero or overflow is not provided. Check for division by zero and overflow
division before executing the division. A remainder operation is not provided. Find the remainder
by finding the product of the divisor and the obtained quotient, and subtracting this value from the
dividend.

Initial settings should first be made with the DIVOS or DIVOU instruction. DIV1 is executed once
for each bit of the divisor. If a quotient of more than 17 bits is required, place an ROTCL
instruction before the DIV1 instruction. See the examples for details of the division sequence.

Operation

DI Vi(long m long n) /* DIV1I RmRn */
{

unsi gned | ong tnp0, tnp2;

unsi gned char old_q, tnpil;

ol d_g=@Q
Q=(unsi gned char) ((0x80000000 & R n])!=0);

tnp2= R n;

Rev. 6.00 Sep 13, 2006 page 239 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

R n] <<=1;
R n] | =(unsi gned | ong) T;

swi tch(ol d_qg){
case 0:switch(M{
case 0:tnmpO=R[n];

R n] - =t np2;

t mp1=(R[n] >t np0) ;

switch(Q{

case 0: Q=t np1;
br eak;

case 1: Q=(unsigned char) (tnmpl==0);
br eak;

}

br eak;

case 1:tnpO=R[n];

R n] +=t np2;

t mp1=(R[n] <t np0);

switch(Q{

case 0: Q=(unsigned char) (tnmpl==0);
br eak;

case 1: Q=t np1l;
br eak;

br eak;

}

br eak;

case 1l:switch(M/{

case 0:tnpO0=R[n];
R[n] +=t np2;
t mp1=(R n] <t np0);
switch(Q{
case 0: Q=t np1;

br eak;

case 1: Q=(unsigned char) (tnmpl==0);

Rev. 6.00 Sep 13, 2006 page 240 of 424
REJ09B0318-0600
RENESAS

Section 9

Instruction Descriptions

br eak;

}

br eak;

case 1:tnmpO=R[n];

R n] - =t np2;

t mp1=(R[n] >t np0) ;

switch(Q{

case 0: @=(unsigned char) (tnmpl==0);
br eak;

case 1: Q=t np1l;

br eak;
}
br eak;
}
br eak;

}

T=(&F=M;

PC+=2;
}

Example 1
; R1 (32 bits) + RO (16 bits) = R1 (16 bits); unsigned

SHLL16 RO ; Set divisor in upper 16 bits, clear lower 16 bits to 0
TST RO, RO ; Check for division by zero
BT ZERO DI V ;
CVP/ HS RO, R1 ; Check for overflow
BT OVER DI V ;
Dl VOU ; Flag initialization
.arepeat 16 ;
Dl Vi1 RO, R1 ; Repeat 16 times
. aendr ;
ROTCL R1 ;
EXTU. W Rl, R1 ; R1 = quotient

Rev. 6.00 Sep 13, 2006 page 241 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

Example 2

TST

BT

CWP/ HS
BT

Dl VOU

. ar epeat
ROTCL

D vi

. aendr
ROTCL

Example 3

SHLL16
EXTS. W
XOR
MOV
ROTCL
SUBC

DI VOS

. ar epeat
Dl v1

. aendr
EXTS. W
ROTCL
ADDC
EXTS. W

; R1:R2 (64 bits) + RO (32 bits) = R2 (32 bits); unsigned

RO, RO ; Check for division by zero
ZERO DI V ;
RO, R1 ; Check for overflow
OVER DI V ;
; Flag initialization
32 ;
R2 ; Repeat 32 times
RO, R1 ;
R2 ; R2 = quotient
; R1 (16 bits) + RO (16 bits) = R1 (16 bits); signed
RO ; Set divisor in upper 16 bits, clear lower 16 bits to 0
R1, R1 ; Dividend sign-extended to 32 bits
R2, R2 ;R2=0
R1, R3 ;
R3 ;
R2, R1 ; If dividend is negative, subtract 1
RO, R1 ; Flag initialization
16 ;
RO, R1 ; Repeat 16 times
R1, R1 ;
R1 ; R1 = quotient (one’s complement notation)
R2, R1 ; f MSB of quotient is 1, add 1 to convert to two’s complement notation
R1, R1 ; R1 = quotient (two’s complement notation)

Rev. 6.00 Sep 13, 2006 page 242 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example 4

MOV
ROTCL
SUBC
XOR
SUBC
DI VOS
. ar epeat
ROTCL
Dl v1

. aendr
ROTCL
ADDC

R2, R3

R1, R1
R3, R3
R3, R2
RO, R1
32

R2

RO, R1

: R2 (32 bits) + RO (32 bits) = R2 (32 bits); signed

1

; Dividend sign-extended to 64 bits (R1:R2)
;R3=0

; If dividend is negative, subtract 1 to convert to one’s complement notation

; Flag initialization
; Repeat 32 times

; R2 = quotient (one’s complement notation)

; f MSB of quotient is 1, add 1 to convert to two’s complement notation

; R2 = quotient (two’s complement notation)

Rev. 6.00 Sep 13, 2006 page 243 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

9.20 DMULS.L Double-length
MULtiply as Signed Arithmetic Instruction
Signed Double-Length
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
DMULS.L Rm,Rn Signed, 0011nnnnmml101 2-5 —
Rn xRm -
MACH, MACL
Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplication
is performed as a signed arithmetic operation.

Operation

DMJULS(long m long n) /* DMIS.L RmRn */

{
unsi gned | ong RnL, RnH, RrL, RnH, ResO0, Res1, Res2;
unsi gned | ong tenpO0, tenpl, tenp2, t enp3;
| ong tenpm tenpn, f nLnL;

tenmpn=(long) R n];

tenpm=(l ong) RIn ;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

if ((long)(RInN]*"R[n)<0) fnLnlL=-1;
el se fnLnL=0;

tenmpl=(unsi gned | ong)tenpn;
t enp2=(unsi gned | ong)t enpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0x0000FFFF;
RL=t enp2&0x0000FFFF;

Rev. 6.00 Sep 13, 2006 page 244 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

RH=(t enp2>>16) &0x0000FFFF;

t enpO=RnL*RnL;
t enpl=RntH* RnL;
t enp2=RnL* RnH,;
t enp3=RntH* RnH,

Res2=0;

Resl=t enpl+t enp2;

i f (Resl<tenpl) Res2+=0x00010000;
t enpl=(Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l;

i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

if (fnLnli<0) {
Res2="Res2;
i f (Res0==0)
Res2++;
el se
Res0=("Res0) +1;

}
MACH=Res 2;
MACL=ResO;
PC+=2;
}
Example
DMULS. L RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution ~MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH, RO ; Get operation result (upper)
STS MACL, R1 ; et operation result (lower)

Rev. 6.00 Sep 13, 2006 page 245 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

9.21 DMULU.L Double-length MULtiply

as Unsigned Arithmetic Instruction
Unsigned Double-Length
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
DMULU.L Rm,Rn Unsigned, 0011nnnnnmmD101 2-5 —
Rn xRm -
MACH, MACL
Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplication
is performed as an unsigned arithmetic operation.

Operation

DMULU(long m long n) /* DMJULU. L RmRn */

{
unsi gned | ong RnL, RnH, R, RnH, ResO, Res1, Res2;
unsi gned | ong tenpO0, tenpl, tenp2, t enp3;

RnL=R[n] &x0000FFFF;
RnH=(R[n] >>16) &0x0000FFFF;

R1L=R[nj &0x0000FFFF;
RH=(R nj >>16) &0x 0000FFFF;

t enpO=RnL*RnL;
t enpl=RntH* RnL;
t enp2=RnL* RnH,;
t enp3=RmH* RnH;

Res2=0
Resl=t enpl+t enp2;

Rev. 6.00 Sep 13, 2006 page 246 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

if (Resl<tenpl) Res2+=0x00010000;
tenpl=(Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l;

i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

MACH=Res2;

MACL=ResO;

PC+=2;
}

Example
DMULU. L RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution ~MACH = H'00005554, MACL = H'FFFF5556

STS MACH, RO ; Get operation result (upper)
STS MACL, R1 ; Get operation result (lower)

Rev. 6.00 Sep 13, 2006 page 247 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.22 DT Decrement and Test Arithmetic Instruction
Decrement and Test

Execution
Format Summary of Operation Instruction Code States T Bit
DT Rn Rn-1 - Rn; 0100nnnn00010000 1 Test
ifRNn=0,1-T result

ifRnz20,0 - T

Description

This instruction decrements the contents of general register Rn by 1 and compares the result with
zero. If the result is zero, the T bit is set to 1. If the result is nonzero, the T bit is cleared to 0.

Operation

DT(long n)/* DT Rn */

{
RIn]--;
if (Rn]==0) T=1;
el se T=0;
PC+=2;

}

Example

MOV #4,R5 ; Set loop count

LOOP:
ADD RO, R1 ;
DT R5 ; Decrement R5 value and check for 0.
BF LOOP ; If T =0, branch to LOOP (in this example, 4 loops are executed).

Rev. 6.00 Sep 13, 2006 page 248 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.23 EXTS EXTend as Signed Arithmetic Instruction

Sign Extension

Execution
Format Summary of Operation Instruction Code States T Bit
EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmm110 1 —
byte - Rn
EXTS.W Rm,Rn Rm sign-extended from 0o110nnnnmmmmil111 1 —
word - Rn

Description
This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, the value of Rm bit 7 is transferred to Rn bits 8 to 31. For a word
specification, the value of Rm bit 15 is transferred to Rn bits 16 to 31.

Operation

EXTSB(long m long n) /* EXTS.B RmRn */

{
R n] =R ;
i f ((R[M &x00000080) ==0) R[n] &0x000000FF;
el se R[n] | =0xFFFFFFOO;
PC+=2;
}

EXTSWIlong m long n) /* EXTS.WRmRn */

{
R n] =R ;
i f ((R[M &x00008000) ==0) R[n] &0x0000FFFF;
el se R[n] | =0xFFFF0000;
PC+=2;
}

Rev. 6.00 Sep 13, 2006 page 249 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
EXTS.B RO, Rl ; Before execution RO =H'00000080
; After execution R1 = H'FFFFFF80
EXTS. W RO, R1L ; Before execution RO =H'00008000

; After execution R1 =H'FFFF8000

Rev. 6.00 Sep 13, 2006 page 250 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.24 EXTU EXTend as Unsigned Arithmetic Instruction
Zero Extension
Execution
Format Summary of Operation Instruction Code States T Bit
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnnmml100 1 —
byte - Rn
EXTUW Rm,Rn Rm zero-extended from 0110nnnnmmmm101 1 —
word - Rn

Description

This instruction zero-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, 0 is transferred to Rn bits 8 to 31. For a word specification, 0 is
transferred to Rn bits 16 to 31.

Operation

EXTUB(| ong m

{

R n] =R ni;

long n) /* EXTU B RmRn */

R[n] &0x000000FF;

PC+=2;

EXTUN | ong m

{

R n] =R Ny ;

long n) /* EXTUWRmMRn */

R[n] &=0x0000FFFF;

PC#+=2;

Rev. 6.00 Sep 13, 2006 page 251 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
EXTU. B RO, RL ; Before execution RO = H'FFFFFF80
; After execution R1 =H'00000080
EXTU. W RO, RL ; Before execution RO = H'FFFF8000

. After execution R1 =H'00008000

Rev. 6.00 Sep 13, 2006 page 252 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.25 FABS Floating-point ABSolute value Floating-Point Instruction
Floating-Point

Absolute Value
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FABS FRn [FRn| - FRn 1111nnnn01011101 1 —
1 FABS DRn IDRn| — DRn 1111nnn001011101 1 —
Description

This instruction clears the most significant bit of the contents of floating-point register FRn/DRn
to 0, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

voi d FABS (int n){
FRIn] = FRIn] & Ox7fffffff;
pc += 2;

}

/* Same operation is performed regardless of precision. * /

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 253 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.26 FADD Floating-point ADD Floating-Point Instruction
Floating-Point
Addition
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FADD FRm,FRn FRn+FRm - FRn 1111nnnnnmmmOD000 1 —
1 FADD DRm,DRn DRn + DRm - DRn 11121nnnOnmmD0000 6 —
Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point numbers in FRn
and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbers in
DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/1 is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FADD (int mn)
{
pc += 2;
cl ear _cause();
if((data_type_of (m == sNaN ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gqNaN)) qnan(n);
else if((data_type_of (n) == DENORM ||
(data_type_of (n) == DENORM) set E();
el se switch (data_type_of (m){
case NORM switch (data_type_of (n)){
case NORM nor mal _faddsub(m n, ADD); break;
case PZERO

Rev. 6.00 Sep 13, 2006 page 254 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

case NZERO regi ster_copy(mn); break;
defaul t: br eak;

} br eak;

case PZERO switch (data_type_of(n)){
case NZERO zero(n, 0); break;

defaul t: br eak;

} br eak;

case NZERO br eak;

case PINF: switch (data_type_of(n)){
case NI NF: i nvalid(n); br eak;
def aul t: inf(n,0); br eak;

} br eak;

case NINF: switch (data_type_of(n)){
case PI NF: i nvalid(n); br eak;
def aul t: inf(n,1); br eak;

} br eak;

}

FADD Special Cases

FRm,DRm FRn,DRn

NORM‘ +0 \ 0 +INF —INF |DENORM| gNaN sNaN

NORM ADD —INF
+0 +0
-0 -0
+INF +INF Invalid
—INF —INF ‘ Invalid —INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 6.00 Sep 13, 2006 page 255 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Possible Exceptions:

FPU error
Invalid operation
Overflow
Underflow
Inexact

Rev. 6.00 Sep 13, 2006 page 256 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.27 FCMP Floating-point CoMPare Floating-Point Instruction

Floating-Point
Comparison

Execution

No. PR Format Summary of Operation Instruction Code States T Bit

wDn

0 FCMP/EQFRm,FRn (FRn==FRm)?1:0 - T 111ilnnnnmmm0100 1 1/0
FCMP/EQ DRm,DRn (DRn==DRm)?1:0 -~ T 1111nnnOmm00100 1 1/0
FCMP/GT FRm,FRn (FRn>FRm)?1:0 - T 1111nnnnmmmm0101 2 1/0
FCMP/GT DRm,DRn (DRn>DRm)?1:0 - T 1111nnnOmmD0101 2 1/0

_ O =

Description

1.

When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if they are equal, or 0 otherwise.
When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if they are equal, or 0 otherwise.
When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.
When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if DRn > DRm, or 0 otherwise.

Operation

void FOWP_EQint mn) /* FOMP/ EQ FRm FRn */

{
pc += 2;
cl ear _cause();
if(fcnp_chk (mn) == INVALID) fcnp_invalid();
else if(fcnp_chk (mn) == EQ T = 1,
el se T = 0;
}
void FCMP_GT(int mn) /* FCMW/ GI FRm FRn */
{
pc += 2;

cl ear _cause();
if ((fcmp_chk (mn) == INVALID) ||

Rev. 6.00 Sep 13, 2006 page 257 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

(fcnp_chk (mn) == UQ)) fcnp_invalid();
else if(fcnp_chk (mn) == GI) T = 1;
el se T = 0;
}
int fcnp_chk (int mn)

{
if((data_type_of (nm) == sNaN) ||

(data_type_of (n) == sNaN)) return(l NVALI D);

else if((data_type_of (m == gNaN) ||

(data_type_of (n) == gNaN)) return(UO ;

el se switch(data_type_of (m){
case NORM swi tch(data_type_of (n)){
case PINF :return(GrT); break;
case NI Nr :return(LT); break;

defaul t: br eak;
} br eak;
case PZERCO
case NZERO swi tch(data_type_of (n)){
case PZERO
case NZERO :return(EQ; break;
def aul t: br eak;
} br eak;
case PINF : switch(data_ type_of (n)){
case PINF :return(EQ; break;
defaul t:return(LT); br eak;
} br eak;
case NI NF : switch(data_ type_of (n)){
case N Nr :return(EQ; break;
defaul t:return(GT); br eak;
} br eak;
}
i f(FPSCR_PR == 0) {
if(FRIn] == FR[n) return(EQ ;
else if(FRIn] > FRInM) return(Gr);
el se return(LT);

Rev. 6.00 Sep 13, 2006 page 258 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

}else {

i f(DR[n>>1] == DR np>1]) return(EQ;
else i f(DR[n>>1] > DR n>>1]) return(GI);

el se return(LT);

}
}
void fcnp_invalid()
{

set_V(); i f((FPSCR & ENABLE_V) == 0) T = 0;

el se fpu_exception_trap();

}

Rev. 6.00 Sep 13, 2006 page 259 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

FCMP Special Cases

FCMP/EQ

FRn,DRN

FRm,DRm

NORM ‘DNORM‘

+0

+INF \ —INF \ gNaN

sNaN

NORM

DNORM

+0

-0

CMP

EQ

+INF

—-INF

gNaN

EQ

EQ

IEQ

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

FCMP/GT

FRn,DRN

FRm,DRm

NORM \DENORM\

+0

+INF

—INF

gNaN

sNaN

NORM

DENORM

+0

-0

CMP

+INF

IGT

IGT

GT

IGT

—-INF

GT

IGT

IGT

gNaN

uo

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

UO means unordered. Unordered is treated as false (!GT).

Possible Exceptions:
Invalid operation

Rev. 6.00 Sep 13, 2006 page 260 of 424

REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.28 FCNVDS Floating-point CoNVert
Double to Single precision Floating-Point Instruction

Double-Precision
to Single-Precision

Conversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 — — — — —
1 FCNVDS DRm,FPUL (float)DRm - FPUL 1112mm010111101 2 —
Description

When FPSCR.PR = 1: This instruction converts the double-precision floating-point number in
DRm to a single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FPUL is not updated. Appropriate processing should therefore
be performed by software.

Operation

void FCNVDS(int m float *FPUL){
case((FPSCR. PR) {
0: undefined_operation(); /* reserved */
1. fcnvds(m *FPUL); break; /* FCNVDS */

}
}
void fcnvds(int m float *FPUL)
{

pc += 2;

cl ear _cause();
case(data_type_of (m *FPUL)){
NORM
PZERO :
NZERO : normal _ fcnvds(m *FPUL); break;
DENORM : set E();

Rev. 6.00 Sep 13, 2006 page 261 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

PINF *FPUL = Ox7f800000; break;
NI NF *FPUL = Oxff800000; break;
gNaN *FPUL = Ox7fbfffff; break;
sNaN : set _V();
i f((FPSCR & ENABLE_V) == 0) *FPUL = Ox7fbfffff;
el se fpu_exception_trap(); br eak;
}
}
voi d normal _fcnvds(int m float *FPUL)
{
int sign;
fl oat abs;
uni on {
float f;
int |;
} dstf, t mpf;
uni on {
doubl e d;
int 1[2];
} dstd;
dstd.d = DR n»>1];
if(dstd.I[1] & OxAfffffff)) set_I();
i f(FPSCR_ RM == 1) dstd.l[1] &= 0xe0000000; /* round toward zero*/
dstf.f = dstd.d;
check_singl e_exception(FPUL, dstf.f);
}

Rev. 6.00 Sep 13, 2006 page 262 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

FCNVDS Special Cases

FRn +NORM —NORM +0 | -0 +INF | —INF | gNaN | sNaN

FCNVDS(FRn FPUL) |FCNVDS FCNVDS +0 |-0 +INF |-INF |gNaN |Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation
e Overflow
¢ Underflow

¢ Inexact

Rev. 6.00 Sep 13, 2006 page 263 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.29 FCNVSD Floating-point CoNVert
Single to Double precision Floating-Point Instruction
Single-Precision
to Double-Precision
Conversion

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 — — — — —

1 FCNVSD FPUL, DRn (double) FPUL -~ DRn 1111nnn010101101 2 —

Description

When FPSCR.PR = 1: This instruction converts the single-precision floating-point number in
FPUL to a double-precision floating-point number, and stores the result in DRn.

Operation

void FCNVSD(int n, float *FPUL){
pc += 2;
cl ear _cause();
case((FPSCR_PR){
0: undefined_operation(); /* reserved */
1. fcnvsd (n, *FPUL); break; /* FCNVSD */

}
}
void fcnvsd(int n, float *FPUL)
{
case(fpul _type(FPUL)) {
PZERO :
NZERO :
Pl NF
NI NF DR[n>>1] = *FPUL; br eak;
DENORM : set _E(); br eak;
gNaN gnan(n); br eak;
sNaN i nvalid(n); br eak;

Rev. 6.00 Sep 13, 2006 page 264 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

}
int fpul _type(int *FPUL)
{
int abs;
abs = *FPUL & Ox7fffffff;
i f (abs < 0x00800000) {
if((FPSCR_.DN == 1) || (abs == 0x00000000)) {
if(sign_of(src) == 0) return(PZERO);
el se ret ur n(NZERO) ;
}
el se r et ur n(DENORM) ;
}
el se i f(abs < 0x7f800000) return(NORM;
el se if(abs == 0x7f800000) {
if(sign_of(src) == 0) return(PINF);
el se return(N NF);
}
el se if(abs < 0x7fc00000) return(gNaN);
el se return(sNaN);
}
FCNVSD Special Cases
FRn +NORM | -NORM +0 | -0 +INF —INF | gNaN | sNaN
FCNVSD(FPUL FRn) [+NORM |-NORM +0 |-0 +INF —INF |gNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation

Rev. 6.00 Sep 13, 2006 page 265 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

9.30 FDIV Floating-point DIVide Floating-Point Instruction
Floating-Point
Division
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FDIV FRm,FRn FRn/FRm - FRn 1111nnnnnmmm0011 10 —
1 FDIV DRm,DRn DRn/DRm - DRn 1111nnnOnmmD0011 23 —
Description

When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point number in FRn by
the single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DRn
by the double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/1 is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation
void FDIV(int mn) /* FDIV FRm FRn */
{
pc += 2;

cl ear _cause();
if((data_type_of (m == sNaN ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gqNaN)) qnan(n);
el se switch (data_type_of (m){
case NORM switch (data_type_of (n))({
case PI NF:
case NI NF: i nf(n,sign_of (m”sign_of(n)); break;
case PZERC
case NZERO zero(n, sign_of (m"sign_of (n));break;

Rev. 6.00 Sep 13, 2006 page 266 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

case DENORM set E(); br eak;
defaul t: normal _fdiv(mn); break;
} br eak;
case PZERO switch (data_type_of(n)){
case PZERC
case NZERO invalid(n); break;
case PINF:
case NI NF: break;
defaul t: dz(n, sign_of (mM~sign_of(n)); break;
} br eak;
case NZERO switch (data_type_of (n)){
case PZERC
case NZERO. invalid(n); break;
case PINF: inf(n,1); br eak;
case NI NF: inf(n,0); br eak;
defaul t: dz(FR[n], sign_of (m~sign_of (n)); break;
} br eak;
case DENORM set _E(); br eak;
case PINF :

case NINF : switch (data_type_of(n)){
case DENORM set E(); break;

case PI NF:
case NINF: invalid(n); br eak;
defaul t: zero(n, si gn_of (m~sign_of(n)); break
} br eak;
}
}
voi d normal _fdiv(int mn)
{
uni on {
float f;
int |;
} dstf, t nmpf;
uni on {
doubl e d;

Rev. 6.00 Sep 13, 2006 page 267 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

int 1[2];
} dstd, t npd;
uni on {
int double x;
int 1[4];
} t mpx;
i f(FPSCR_PR == 0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f /= FRIm; /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tnmpd.d *= FR[nj;
if(tnpf.f I'= tnpd.d) set_I();
if((tnpf.f < tnpd.d) && (SPSCR RM == 1))
dstf.l -=1; /* round toward zero */
check_singl e_exception(&-R[n], dstf.f);
} else {
tnpd.d = DRI n>>1]; /* save destination value */
dstd.d /= DRI np>1]; /* round toward nearest or even */
tnpx.x = dstd.d; /* convert double to int double */
tmpx. x *= DR[m>>1];
if(tnmpd.d !'= tnpx.x) set _1();
if((tnpd.d < tnpx.x) && (SPSCR_RM == 1)) {
dstd.I[1] -=1; /* round toward zero */
if(dstd.1[1] == Oxffffffff) dstd.I[0] -= 1;
}
check_doubl e_excepti on(&DR[n>>1], dstd.d);

Rev. 6.00 Sep 13, 2006 page 268 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

FDIV Special Cases
FRm,DRm FRn,DRnN
NORM +0 -0 +INF —-INF |DENORM| gNaN sNaN
NORM DIV 0 INF Error
+0 Dz Invalid +INF —INF Dz
-0 —INF +INF
+INF 0 +0 -0 Invalid
—INF -0 +0
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation
* Divide by zero

* Overflow

* Underflow

¢ Inexact

Rev. 6.00 Sep 13, 2006 page 269 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.31 FIPR Floating-point Inner

PRoduct Floating-Point Instruction
Floating-Point
Inner Product

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FIPR FVm,FVn FVn[FVm - FR[n+3] 1111nnmi1101101 1 —

Notes: FVO = {FRO, FR1, FR2, FR3}
FV4 = {FR4, FR5, FR6, FR7}
FVv8 = {FR8, FR9, FR10, FR11}
FV12 = {FR12, FR13, FR14, FR15}

Description

When FPSCR.PR = 0: This instruction calculates the inner products of the 4-dimensional single-
precision floating-point vector indicated by FVn and FVm, and stores the results in FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FIPR
execution sequence is as follows:

Multiplies all terms. The results are 28 bits long.
Aligns these results, rounding them to fit within 30 bits.
Adds the aligned values.

Eal S

Performs normalization and rounding.
Special processing is performed in the following cases:

1. If an input value is an sNaN, an invalid exception is generated.

2. Ifthe input values to be multiplied include a combination of 0 and infinity, an invalid
exception is generated.

3. In cases other than the above, if the input values include a qNaN, the result will be a qNaN.
4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

Rev. 6.00 Sep 13, 2006 page 270 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

5. If the input values do not include an sNaN, qNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FIPR(int mn) /* FI PR FVm Fvn */

{
if(FPSCR_PR == 0) {
pc += 2;
cl ear _cause();
fipr(mn);
}
el se undef i ned_operation();
}

Possible Exceptions:
* Invalid operation

e Overflow
e Underflow

¢ Inexact

Rev. 6.00 Sep 13, 2006 page 271 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.32 FLDIO Floating-point
LoaD Immediate 0.0 Floating-Point Instruction
0.0 Load
Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FLDIO FRn 0x00000000 - FRn

1111nnnn10001101 1 —

Description

When FPSCR.PR = 0, this instruction loads floating-point 0.0 (0x00000000) into FRn.

Operation

void FLDI O(int n)

{
FRIn] = 0x00000000;

pc += 2;
}

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 272 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.33 FLDI1 Floating-point LoaD

Immediate 1.0 Floating-Point Instruction
1.0 Load
Execution
Format Summary of Operation Instruction Code States T Bit
FLDIM1 FRn 0x3F800000 - FRn 1111nnnn10011101 1 —
Description

When FPSCR.PR = 0, this instruction loads floating-point 1.0 (0x3F800000) into FRn.
Operation

void FLDI 1(int n)

{
FRIn] = Ox3F800000;

pc += 2;
}

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 273 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.34 FLDS Floating-point
LoaD to System register Floating-Point Instruction
Transfer to System
Register
Execution

Format Summary of Operation Instruction Code States T Bit
FLDS FRm,FPUL FRm - FPUL 111100011101 1 —
Description

This instruction loads the contents of floating-point register FRm into system register FPUL.

Operation

void FLDS(int m float *FPUL)

{
*FPUL = FRImM ;
pc += 2;

}

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 274 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.35 FLOAT Floating-point
convert from integer Floating-Point Instruction
Integer to Floating-Point
Conversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FLOAT FPUL,FRn (float)FPUL - FRn 1111nnnn00101101 1 —

1 FLOAT FPUL,DRn (double)FPUL — DRn 1111nnn000101101 2 —

Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
single-precision floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
double-precision floating-point number and stores the result in DRn.

When FPSCR.enable.l = 1, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Rev. 6.00 Sep 13, 2006 page 275 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

void FLOAT(int n, float *FPUL)

{
uni on {
doubl e d;
int 1[2];
} t np;
pc += 2;
cl ear _cause();
i f (FPSCR. PR==0) {
FRIn] = *FPUL; /* convert frominteger to float */
tmp.d = *FPUL;
if(tnp.1[1] & Ox1fffffff) inexact();
} else {
DR n>>1] = *FPUL; /* convert frominteger to double */
}
}

Possible Exceptions:
Inexact: Not generated when FPSCR.PR = 1.

Rev. 6.00 Sep 13, 2006 page 276 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

936 FMAC Floating-point Multiply

and ACcumulate Floating-Point Instruction
Floating-Point Multiply
and Accumulate

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FMAC FRO,FRm,FRn FRO*FRm + FRn - FRn 111lnnnnmmmml110 1 —

1 — — — — —

Description

When FPSCR.PR = 0: This instruction arithmetically multiplies the two single-precision floating-
point numbers in FRO and FRm, arithmetically adds the contents of FRn, and stores the result in
FRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FMAC(int mn)
{
pc += 2;
cl ear _cause();
i f(FPSCR_PR == 1) undefi ned_operation();
else if((data_type_of (0) == sNaN) ||
(data_type_of (n) == sNaN) ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (0) == gNaN) ||
(data_type_of (m == gqNaN)) qnan(n);
else if((data_type_of (0) == DENORM ||
(data_type_of (m == DENORM) set E();
el se switch (data_type_of (0){
case NORM switch (data_type_of (m){
case PZERC

Rev. 6.00 Sep 13, 2006 page 277 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

case NZERO switch (data_type_of (n)){
case DENORM set E(); break;
case qNaN: gnan(n); break;
case PZERO

case NZERO zero(n,sign_of (0)” sign_of (m~"sign_of(n));
br eak;

def aul t: br eak;
}
case PI NF:
case NINF: switch (data_type_of(n)){
case DENORM set _E(); break;
case qNaN: gnan(n); break;
case PI NF:
case NINF: if(sign_of (0)" sign_of(m~sign_of(n)) invalid(n);
el se inf(n,sign_of (0)" sign_of (m); break;
def aul t: inf(n,sign_of (0)" sign_of (m); break;
}
case NORM switch (data_type_of (n)){
case DENORM set_E(); break;
case qNaN: gnan(n); break;

case PI NF:
case N NF: inf(n,sign_of(n)); break;
case PZERC
case NZERC
case NORM normal _fmac(mn); break;
} br eak;
case PZERC
case NZERO switch (data_type_of (m){
case PI NF:
case NINF: invalid(n); break;
case PZERC
case NZERC
case NORM switch (data_type_of (n))({
case DENORM set E(); br eak;
case qNaN: gnan(n); br eak;

Rev. 6.00 Sep 13, 2006 page 278 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

case PZERC
case NZERO zero(n,sign_of (0)” sign_of (m~sign_of(n)); break;
defaul t: br eak;
} br eak;

} br eak;

case PINF :

case NINF : switch (data_type_of (m){
case PZERC
case NZERG invalid(n); break;
default: switch (data_type_of(n)){
case DENORM set E(); break;

case gNaN: gnan(n); break;
defaul t: i nf(n, sign_of (0)”sign_of (m~sign_of(n)); break
} br eak;
} br eak;
}
}
voi d nornal _frmac(int mn)
{
uni on {
int double x;
int 1[4];
} dst x, t npx;
float dstf,srcf;

if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
srcf = 0.0; /* flush denormalized val ue */
el se srcf = FR[n];
tnpx.x = FR[O]; /* convert single to int double */
tmpx.x *= FR[nj; /* exact product */
dstx.x = tnmpx.x + srcf;
if(((dstx.x == srcf) && (tnpx.x !'=0.0)) ||
((dstx.x == tnpx.x) && (srcf !=0.0))) {

set _1();
if(sign_of (0)" sign_of(m~” sign_of(n)) {
dstx.1[3] -=1; /* correct result */

Rev. 6.00 Sep 13, 2006 page 279 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

if(dstx.1[3] == Oxffffffff) dstx.1[2] -= 1
if(dstx.1[2] == Oxffffffff) dstx.1[1] -= 1;
if(dstx.1[1] == Oxffffffff) dstx.1[0] -

}
el se dstx.I1[3] |= 1,
}
if((dstx.I[1] & OxO1ffffff) || dstx.I[2] || dstx.I[3]) set_I();
i f(FPSCR_RM == 1) {
dstx.l[1] &= Oxfe000000; /* round toward zero */
dstx.1[2] = 0x00000000;
dstx.I1[3] = 0x00000000;
}
dstf = dstx.Xx;
check_singl e_exception(&-R[n], dstf);

Rev. 6.00 Sep 13, 2006 page 280 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

FMAC Special Cases

FRn FRO FRm
+Norm‘—Norm‘ +0 ‘ -0 +INF —INF [Denorm| gNaN | sNaN
Norm | Norm | MAC INF
0 Invalid
INF INF Invalid INF
+0 Norm | MAC
0 +0 Invalid
INF INF Invalid INF
-0 +Norm | MAC +0 -0 +INF | —INF
—Norm -0 +0 —INF | +INF
+0 +0 -0 +0 -0 Invalid
-0 -0 +0 -0 +0
INF INF Invalid INF
+INF | +Norm | +INF Invalid
—Norm +INF
0 Invalid
+INF Invalid +INF
—INF | Invalid | +INF ‘ +INF
—INF | +Norm | —INF | —INF
—Norm
0
+INF | Invalid Invalid —INF
—INF | —INF ‘—INF Invalid
Denorm| Norm
0 Invalid |
INF | Invalid
IsNaN |Denorm Error
gNaN 0 Invalid |
INF | Invalid
Norm
IsNaN | gNaN gNaN
All types| sNaN
SNaN |all types Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 6.00 Sep 13, 2006 page 281 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Possible Exceptions:

FPU error
Invalid operation
Overflow
Underflow
Inexact

Rev. 6.00 Sep 13, 2006 page 282 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.37 FMOV Floating-point MOVe Floating-Point Instruction
Floating-Point
Transfer

Summary of Execution

No. SZ Format Operation Instruction Code States T Bit

1. 0 FMOV FRm,FRn FRm - FRn 1111nnnnnmmmil100 1 —

2. 1 FMOV DRm,DRn DRm - DRn 11121nnnOnMm©01100 1 —

3. 0 FMOV.S FRm,@Rn FRm - (Rn) 111innnnmmmmml010 1 —

4. 1 FMOV DRm,@Rn DRm - (Rn) 1111nnnnnmmo01010 1 —

5. 0 FMOV.S @Rm,FRn (Rm) - FRn 11121nnnnmmmmml000 1 —

6. 1 FMOV @Rm,DRn (Rm) - DRn 1111nnnOnmmmL000 1 —

7. 0 FMOV.S @Rm+,FRn (Rm) - FRn, 111innnnmmmmml001 1 —
Rm+ =4

8. 1 FMOV @Rm+DRn (Rm) - DRn, 1111nnnOnmmmL001 1 —
Rm+ =8

9. 0 FMOV.S FRm,@-Rn Rn-=4, FRm - 111innnnmmmmi0l11 1 —
(Rn)

10. 1 FMOV DRm,@-Rn Rn- =8, DRm - 1111nnnnnmm©01011 1 —
(Rn)

11. 0 FMOV.S @(RO,Rm),FRn (RO +Rm) — FRn 1111nnnnmmm0110 1 —

12. 1 FMOV ~ @(RO,Rm),DRn (RO +Rm) — DRn 1111nnnOnmm0110 1 —

13. 0 FMOV.S FRm,@(RO,Rn) FRm - (RO +Rn) 111lnnnnmmmo0111 1 —

14. 1 FMOV DRm,@(RO,Rn) DRm - (RO+Rn) 111lnnnnnmm00111 1 —

Description

1. This instruction transfers FRm contents to FRn.

2. This instruction transfers DRm contents to DRn.

3. This instruction transfers FRm contents to memory at address indicated by Rn.

4. This instruction transfers DRm contents to memory at address indicated by Rn.

5. This instruction transfers contents of memory at address indicated by Rm to FRn.

6. This instruction transfers contents of memory at address indicated by Rm to DRn.

7. This instruction transfers contents of memory at address indicated by Rm to FRn, and adds 4 to

Rm.
8. This instruction transfers contents of memory at address indicated by Rm to DRn, and adds 8

to Rm.

Rev. 6.00 Sep 13, 2006 page 283 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9. This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address
indicated by resulting Rn value.

10. This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address
indicated by resulting Rn value.

11. This instruction transfers contents of memory at address indicated by (RO + Rm) to FRn.
12. This instruction transfers contents of memory at address indicated by (RO + Rm) to DRn.
13. This instruction transfers FRm contents to memory at address indicated by (R0 + Rn).
14. This instruction transfers DRm contents to memory at address indicated by (RO + Rn).

Operation
void FMOV(int mn) /* FMOV FRm FRn */
{
FRIn] = FRIn;
pc += 2;
}
void FMOV_DR(i nt mn) /* FMOV DRm DRn */
{
DRI n>>1] = DRI nm>>1];
pc += 2;
}
voi d FMOV_STORE(i nt mn) /* FMOV. S FRm @n */
{
store_int(FRInM,Rn]);
pc += 2;
}
void FMOV_STORE DR(int mn) /* FMOV DRm @n */
{
store_quad(DR[m>>1], R n]);
pc += 2;
}
void FMOV_LQAD(i nt mn) /* FMOV. S @m FRn */
{
load_int(R{mM,FR n]);
pc += 2;
}

Rev. 6.00 Sep 13, 2006 page 284 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

voi d

voi d

voi d

voi d

voi d

voi d

voi d

FMOV_LOAD_DR(i nt m n) /* FMOV @m DRn */

| oad_quad(R[n{, DR[n>>1]);
pc += 2;

FMOV_RESTORE(i nt m n) /* FMOV. S @mt, FRn */

load_int (R n,FRN]);
R += 4;
pc += 2;

FMOV_RESTORE DR(int mn) /* FMOV @+, DRn */

| oad_quad(R[nj, DR[n>>1]) ;
Rim += 8;
pc += 2;

FMOV_SAVE(int m n) /* FMOV.S FRm @Rn */

store_int(FR[nj, R n]-4);
Rn] -= 4;
pc += 2,

FMOV_SAVE DR(int mn) /* FMOV DRm @Rn */
store_quad(DR m>>1], R n] - 8);

Rin] -= 8;
pc += 2;

FMOV_I NDEX_LOAD(int mn) /* FMOV.S @RO, R, FRn */

load_int(R[O] + Rim,FR[N]);
pc += 2;

FMOV_| NDEX_LOAD DR(int mn) /*FMOV @RO, R, DRn */

Rev. 6.00 Sep 13, 2006 page 285 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

{

l'oad_quad(R[O] + R[nj, DRI n>>1]);
pc += 2;

voi d FMOV_I NDEX_STORE(int mn) /*FMOV.S FRm @RO, Rn) */

store_int(FRInl, RO] + Rn]);
pc += 2;

voi d FMOV_I NDEX_STORE_DR(i nt m n)/*FMOV DRm @ RO, Rn) */

store_quad(DR[nm>>1], R[0] + R n]);
pc += 2;

}

Possible Exceptions:
* Data TLB miss exception

» Data protection violation exception
* Initial write exception
* Address error

Rev. 6.00 Sep 13, 2006 page 286 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.38 FMOV Floating-point
MOVe extension Floating-Point Instruction
Floating-Point
Transfer
Summary of Execution
No. PR Format Operation Instruction Code States T Bit
1. 1 FMOV XDm,@Rn XRm - (Rn) 1112nnnnrmmi1010 1 —
2. 1 FMOV @Rm,XDn (Rm) —» XDn 1111nnn1nmmmi000 1 —
3.1 FMOV @Rm+,XDn (Rm) - XDn, 1111nnnlnmmmi001 1 —
Rm+=8
4. 1 FMOV XDm,@-Rn Rn-=8, XDm - (Rn)111lnnnnmmml1011 1 —
5 1 FMOV @(RO,Rm),XDn (RO + Rm) - XDn 1111nnnlnmmm®O0110 1 —
6. 1 FMOV XDm,@(RO,Rn) XDm - (RO+Rn) 111lnnnnnmmil0111 1 —
7. 1 FMOV XDm,XDn XDm - XDn 1111nnn1lnmmil1100 1 —
8. 1 FMOV XDm,DRn XDm - DRn 1111nnnOnm11100 1 —
9. 1 FMOV DRm,XDn DRm - XDn 1111nnn1nmm01100 1 —
Description

1. This instruction transfers XDm contents to memory at address indicated by Rn.

O X =N W

This instruction transfers contents of memory at address indicated by Rm to XDn.

This instruction transfers contents of memory at address indicated by Rm to XDn, and adds 8
to Rm.

This instruction subtracts 8 from Rn, and transfers XDm contents to memory at address
indicated by resulting Rn value.

This instruction transfers contents of memory at address indicated by (RO + Rm) to XDn.
This instruction transfers XDm contents to memory at address indicated by (RO + Rn).
This instruction transfers XDm contents to XDn.

This instruction transfers XDm contents to DRn.

This instruction transfers DRm contents to XDn.

Rev. 6.00 Sep 13, 2006 page 287 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

Operation
voi d FMOV_STORE_XD(i nt m n) /* FMOV XDm @n */
{
store_quad(XD m>>1], R n]);
pc += 2,
}
void FMOV_LQAD XD(int mn) /* FMOV @m XDn */
{
| oad_quad(R m , XDO[n>>1]);
pc += 2;
}

voi d FMOV_RESTORE_XD(int mn) /* FMOV @Rm+, DBn */

{
| oad_quad(R[M , XD[n>>1]) ;

RIm += 8;

pc += 2;
}
voi d FMOV_SAVE_XD(i nt mn) /* FMOV XDm @Rn */
{

store_quad(XD n»>1], R n] - 8);

Rin] -=8;

pc += 2;
}
voi d FMOV_| NDEX_LOAD_XD(i nt mn) /* FMOV @ RO, Rn), XDn */
{

| oad_quad(R[0] + R nm, XD n>>1]);

pc += 2;
}
voi d FMOV_I NDEX_STORE_XD(int mn) /* FMOV XDm @ RO, Rn) */
{

store_quad(XD{ me>1], R O] + Rin]);
pc += 2;

}
voi d FMOV_XDXD(i nt m n) /* FMOV XDm XDn */
{

Rev. 6.00 Sep 13, 2006 page 288 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

voi d

voi d

}

XD[n>>1] = XD me>1] ;

pc += 2;

FMOV_XDDR(int mn) /* FMOV XDm DRn */
DR n>>1] = XO np>1];

pc += 2;

FMOV_DRXD(int mn) /* FMOV DRm XDn */

XD[n>>1] =
pc += 2

DR[n»>1] ;

Possible Exceptions:
Data TLB miss exception

Data protection violation exception

Initial write exception

Address error

Rev. 6.00 Sep 13, 2006 page 289 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

9.39 FMUL Floating-point MULtiply Floating-Point Instruction
Floating-Point
Multiplication
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FMUL FRm,FRn FRn*FRm - FRn 1111nnnnnmmmD010 1 —
1 FMUL DRm,DRn DRn*DRm - DRn 1111nnnOmmD0010 6 —
Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-point numbers
in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point numbers
in DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/1 is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FMIL(int mn)
{
pc += 2;
cl ear _cause();
if((data_type_of (m == sNaN ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gqNaN)) qnan(n);
else if((data_type_of (n) == DENORM ||
(data_type_of (n) == DENORM) set _E();
el se switch (data_type_of (m{
case NORM switch (data_type_of (n)){
case PZERC
case NZERQO zero(n,sign_of (m~sign_of(n)); break;

Rev. 6.00 Sep 13, 2006 page 290 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

case PINF:
case NI NF: inf(n,sign_of (m~sign_of(n)); break;
def aul t: normal _frmul (mn); break;
} br eak;
case PZERC
case NZERO switch (data_type_of(n)){
case PINF:
case NINF: invalid(n); break;
defaul t: zero(n, sign_of (m~sign_of(n));break;
} br eak;
case PINF :
case NINF : switch (data_type_of (n)){
case PZERC
case NZERO invalid(n); br eak;
def aul t: inf(n,sign_of(nm~sign_of(n)); break
} br eak;
}
}
FMUL Special Cases
FRm,DRm FRn,DRn
NORM +0 -0 +INF —INF |DENORM| gNaN sNaN
NORM MUL 0 INF
+0 0 +0 -0 Invalid
-0 -0 +0
+INF INF Invalid +INF —INF
—INF —INF +INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 6.00 Sep 13, 2006 page 291 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Possible Exceptions:

FPU error
Invalid operation
Overflow
Underflow
Inexact

Rev. 6.00 Sep 13, 2006 page 292 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.40 FNEG Floating-point NEGate value Floating-Point Instruction
Floating-Point
Sign Inversion

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FNEG FRn —FRn - FRn 1111nnnn01001101 1 —
1 FNEG DRn -DRn - DRn 1111nnn001001101 1 —

Description

This instruction inverts the most significant bit (sign bit) of the contents of floating-point register
FRn/DRn, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

voi d FNEG (int n){

FRIN] = -FRN];
pc += 2;

/ * Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 293 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

941 FRCHG FR-bit CHanGe Floating-Point Instruction
FR Bit
Inversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FRCHG FPSCR.FR=~FPSCR.FR 1111101111111101 1 —
Description

This instruction inverts the FR bit in floating-point register FPSCR. When the FR bit in FPSCR is
changed, FRO to FR15 in FPRO_ BANKO to FPR15 BANKO and FPRO BANKI to

FPR15 BANKI1 become XRO to XR15, and XRO to XR15 become FRO to FR15. When
FPSCR.FR =0, FPRO_ BANKO to FPR15 BANKO correspond to FRO to FR15, and

FPRO BANKI to FPR15 BANKI correspond to XRO to XR15. When FPSCR.FR =1,

FPRO BANKI to FPR15 BANKI1 correspond to FRO to FR15, and FPRO_BANKO to

FPR15 BANKO correspond to XR0 to XR15.

Operation

void FRCHE) /* FRCHG */

{
i f(FPSCR_PR == 0){
FPSCR ~= 0x00200000; /* bit 21 */
PC += 2;
}
el se undefi ned_operation();
}

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 294 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

942 FSCHG Sz-bit CHanGe Floating-Point Instruction
SZ Bit
Inversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSCHG FPSCR.SZ = ~FPSCR.SZ 1111001111111101 1 —
Description

This instruction inverts the SZ bit in floating-point register FPSCR. Changing the SZ bit in
FPSCR switches FMOV instruction data transfer between one single-precision data unit and a data
pair. When FPSCR.SZ = 0, the FMOYV instruction transfers one single-precision data unit. When
FPSCR.SZ =1, the FMOV instruction transfers two single-precision data units as a pair.

Operation

void FSCHE) /* FSCHG */

{
i f (FPSCR_PR == 0){
FPSCR A= 0x00100000; /* bit 20 */
PC += 2;
}
el se undefi ned_operation();
}

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 295 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction

Floating-Point
Square Root

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSQRT FRn VFRn - FRn 1111nnnn01101101 9 —
1 FSQRT DRn VvDRn - DRn 1111nnnn01101101 22 —

Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision floating-point
number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-point
number in DRn, and stores the result in DRn.

When FPSCR.enable.l is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FSQRT(int n){
pc += 2;
cl ear _cause();
switch(data_type_of (n)){

case NORM : if(sign_of(n) == 0) normal _ fsqrt(n);
el se invalid(n); break;

case DENORM if(sign_of(n) == 0) set_E();
el se invalid(n); break;

case PZERO :

case NZERO :

case PINF : br eak;

case NINF : i nval i d(n); break;

case qNaN : gnan(n); br eak;

case sNaN : i nval i d(n); break;

Rev. 6.00 Sep 13, 2006 page 296 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

}

void normal _fsqrt(int n)

{

uni on

uni on

uni on

{

float f;

int |;

dstf, t mpf;

{

doubl e d;

int 1[2];

dstd, t npd;

{

int double x;

int 1[4];

t mpx;

i f(FPSCR_PR == 0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f = sqrt(FR[n]); /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tnpd.d *= dstf.f;
if(tnpf.f != tnpd.d) set_I();
if((tnmpf.f < tnpd.d) && (SPSCR RM == 1))

dstf.l -=1; /* round toward zero */
i f(FPSCR & ENABLE |) fpu_exception_trap();
el se FR[n] = dstf.f;
} else {

tmpd.d = DR[n>>1]; /* save destination value */
dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */
tmpx.x = dstd.d; /* convert double to int double */
tnpx. x *= dstd. d;
if(tnpd.d !'= tnpx.x) set_I();
if((tmpd.d < tnmpx.x) &% (SPSCR_RM == 1)) {
dstd.I[1] -=1; /* round toward zero */
if(dstd.I1[1] == Oxffffffff) dstd.I[0] -= 1;

Rev. 6.00 Sep 13, 2006 page 297 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

}
i f(FPSCR & ENABLE_ |) fpu_exception_trap();
el se DR n>>1] = dstd.d;
}
}
FSQRT Special Cases
FRn +NORM —NORM +0 -0 +INF —INF gNaN sNaN
FSQRT(FRn) SQRT Invalid +0 -0 +INF Invalid gNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

e FPU error

* Invalid operation

¢ Inexact

Rev. 6.00 Sep 13, 2006 page 298 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.44 FSTS Floating-point STore
System register Floating-Point Instruction
Transfer from
System Register
Execution

Format Summary of Operation Instruction Code States T Bit
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 1 —
Description

This instruction transfers the contents of system register FPUL to floating-point register FRn.
Operation

void FSTS(int n, float *FPUL)

{
FRI n] = *FPUL;
pc += 2;

}

Possible Exceptions:
None

Rev. 6.00 Sep 13, 2006 page 299 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

945 FSUB Floating-point
SUBtract Floating-Point Instruction
Floating-Point
Subtraction
Execution

PR Format Summary of Operation Instruction Code States T Bit
0 FSUB FRm,FRn FRn-FRm - FRn 1111nnnnmmmO0001 1 —
1 FSUB DRm,DRn DRn-DRm - DRn 1111nnnOnmmD0001 6
Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point number in FRm
from the single-precision floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in
DRm from the double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FSUB (int mn)
{
pc += 2;
cl ear _cause();
if((data_type_of (m) == sNaN) ||
(data_type_of (n) == sNaN)) invalid(n);
else if((data_type_of (m == gNaN) ||
(data_type_of (n) == gNaN)) qnan(n);
else if((data_type_of (n) == DENORM ||
(data_type_of (n) == DENORM) set E();
el se switch (data_type_of (m)({
case NORM switch (data_type_of(n)){
case NORM nornmal _faddsub(m n, SUB); break;

Rev. 6.00 Sep 13, 2006 page 300 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

case PZERCO
case NZERO register_copy(mn); FR[n] = -FR n]; break;
defaul t: br eak;
} br eak;
case PZERO break;
case NZERO switch (data_type_of(n)){
case NZERO zero(n, 0); break;
defaul t: br eak;
} br eak;
case PINF: switch (data_type_of (n))({
case PINF: invalid(n); br eak;
defaul t: inf(n,1); br eak;
} br eak;
case NINF: switch (data_type_of (n)){
case NI NF: invalid(n); br eak;
defaul t: inf(n,0); br eak;
} br eak;
}
}
FSUB Special Cases
FRm,DRm FRn,DRn
NORM ‘ +0 -0 +INF —INF |DENORM| ¢gNaN sNaN
NORM SUB +INF —INF
+0 -0
-0 +0
+INF —INF Invalid
—INF +INF Invalid
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 6.00 Sep 13, 2006 page 301 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Possible Exceptions:

FPU error
Invalid operation
Overflow
Underflow
Inexact

Rev. 6.00 Sep 13, 2006 page 302 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

946 FTRC Floating-point TRuncate
and Convert to integer Floating-Point Instruction
Conversion
to Integer
Execution

PR Format Summary of Operation Instruction Code States T Bit
0 FTRC FRm,FPUL (long)FRm - FPUL 111100111101 1 —
1 FTRC DRm,FPUL (long)DRm - FPUL 1111mm000111101 2 —
Description

When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

The rounding mode is always truncation.
Operation

#define N_INT_SI NGLE_RANGE Oxcf000000 & Ox7fffffff /* -1.000000 * 2731 */
#define P_INT_SINGLE RANGE Oxdef fffff /* 1.fffffe * 2730 */

#define N_I NT_DOUBLE_RANGE Oxc1e0000000200000 & Ox7fffffffffffffff
#define P_I NT_DOUBLE RANGE 0x41e0000000000000

void FTRC(int m int *FPUL)
{
pc += 2;
cl ear _cause();
i f (FPSCR. PR==0) {
case(ftrc_single_ type_of(m){

NORM *FPUL = FRIn ; br eak;
Pl NF: ftrc_invalid(0); break;
NI NF: ftrc_invalid(1l); break;
}

Rev. 6.00 Sep 13, 2006 page 303 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

el se{ /* case FPSCR PR=1 */
case(ftrc_doubl e_type_of (m)({
NORM *FPUL = DR[np>1]; break;
Pl NF: ftrc_invalid(0); break;
NI NF: ftrc_invalid(1); break;
}
}
}
int ftrc_signle_type_of(int nm
{
if(sign_of(m == 0){
i f(FR_HEX[n] > 0x7f800000) return(N NF); /* NaN */
el se i f(FR HEX[n] > P_I NT_SI NGLE_RANGE)
return(Pl NF); /* out of range, +I NF */
el se return(NORM ; /* +0, +NORM */
} else {
if((FR.HEXIm & Ox7fffffff) > N_INT_SI NGLE RANGE)
return(NINF); /* out of range ,+l NF, NaN*/
el se return(NORM ; /[* -0, - NORM */
}
}
int ftrc_double_type_of(int m
{

if(sign_of(m == 0){
if((FR_HEX[n] > 0x7ff00000) ||
((FR_HEX[n] == 0x7ff00000) &&

(FR_HEX[m+1] != 0x00000000))) return(N NF); /* NaN */

el se i f (DR _HEX[n»>1] >= P_| NT_DOUBLE_RANGE)
return(Pl NF); /* out of range, +I NF */

el se return(NORM ; /* +0, +NORM */

} else {

if((DR_HEX[nP>1] & Ox7fffffffffffffff) >= N_| NT_DOUBLE RANGE)
return(N NF); /* out of range , +I NF, NaN*/

el se return(NORM ; /* -0, - NORM */

Rev. 6.00 Sep 13, 2006 page 304 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

}
void ftrc_invalid(int sign, int *FPUL)
{
set _V();
i f ((FPSCR & ENABLE V) == 0){
if(sign == 0) *FPUL = Ox7fffffff;
el se *FPUL = 0x80000000;
}
el se fpu_exception_trap();
}

FTRC Special Cases

Positive | Negative
Outof | Outof

FRn,DRn NORM +0 -0 Range | Range +INF —INF gNaN | sNaN
FTRC TRC 0 0 Invalid |Invalid |Invalid |Invalid |Invalid |Invalid
(FRn,DRn) +MAX |-MAX |[+MAX |-MAX |-MAX |-MAX

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* Invalid operation

Rev. 6.00 Sep 13, 2006 page 305 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.47 FTRV Floating-point
TRansform Vector Floating-Point Instruction
Vector
Transformation
Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FTRV XMTRX,FVn XMTRX*FVn - FVn 1111nn0111111101 4 —

1 — — — — —

Description

When FPSCR.PR = 0: This instruction takes the contents of floating-point registers XF0 to XF15
indicated by XMTRX as a 4-row % 4-column matrix, takes the contents of floating-point registers
FR[n] to FR[n + 3] indicated by FVn as a 4-dimensional vector, multiplies the array by the vector,
and stores the results in FV[n].

XMTRX FVn FVn
XF[0] XF[4] XF[8] XF[12] FR[n] FR[n]
XF[1] XF[5] XF[9] XF[13] | x | FR[n+1] | » | FR[n+1]
XF[2] XF[6] XF[10] XF[14] FR[n+2] FR[n+2]
XF[3] XF[7] XF[l11] XF[15] FR[n+3] FR[n+3]

The FTRYV instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FTRV
execution sequence is as follows:

1. Multiplies all terms. The results are 28 bits long.

2. Aligns these results, rounding them to fit within 30 bits.
3. Adds the aligned values.
4

. Performs normalization and rounding.
Special processing is performed in the following cases:

1. Ifan input value is an sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of 0 and infinity, an invalid
operation exception is generated.

3. In cases other than the above, if the input values include a qNaN, the result will be a qNaN.

Rev. 6.00 Sep 13, 2006 page 306 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

5. If the input values do not include an sNaN, qNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.V/O/U/1 is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FTRV (int n) /* FTRV FVn */
{

float saved_vec[4],result_vec[4];
int saved_fpscr;

int dst,i;
i f(FPSCR_PR == 0) {
PC += 2;
cl ear _cause();
saved_fpscr = FPSCR;
FPSCR &= ~ENABLE VOUI; /* mask VOU enable */
dst = 12 - n; /* select other vector than Fvn */
for(i=0;i<4;i++)saved_vec [i] = FRIdst+i];
for(i=0;i<4;i++){
for(j=0;j<4;j++) FRIdst+j] = XF[i+4j];
fipr(n,dst);
saved_fpscr | = FPSCR & (CAUSE| FLAG ;
result_vec [i] = FR dst+3];
}
for(i=0;i<4;i++)FR[dst+i] = saved_vec [i];
FPSCR = saved_f pscr;
i f(FPSCR & ENABLE VOUI) fpu_exception_trap();
el se for(i=0;i<4;i++) FRIn+i] = result_vec [i];
}

Rev. 6.00 Sep 13, 2006 page 307 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

el se undefi ned_operation();

}

Possible Exceptions:
* Invalid operation

e Overflow
e Underflow

¢ Inexact

Rev. 6.00 Sep 13, 2006 page 308 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.48 JMP JuMP Branch Instruction
Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JMP @Rn Rn - PC 0100nnnn00101011 2 —
Description

Unconditionally makes a delayed branch to the address specified by Rn.
Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

JMP(int n)/* JVMP @n */

{
unsi gned int tenp;
t emp=PC;
PC=R[n] ;
Del ay_Sl ot (t enp+2) ;
}
Example
MOV. L JVP_TABLE, RO ; RO =TRGET address
JMP @ro ; Branch to TRGET.
MoV RO, R1 ; MOV executed before branch.
.align 4
JMP_TABLE: .data.l TRGET ; Jump table
TRCGET: ADD #1, R1 ; « Branch destination

Rev. 6.00 Sep 13, 2006 page 309 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.49 JSR Jump to SubRoutine Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JSR @Rn PC+4 - PR,Rn - PC 0100nnnn00001011 2 —
Description

This instruction makes a delayed branch to the subroutine procedure at the specified address after
execution of the following instruction. Return address (PC + 4) is saved in PR, and a branch is
made to the address indicated by general register Rn. JSR is used in combination with RTS for
subroutine procedure calls.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

JSR(int n)/* JSR @n */

{
unsi gned int tenp;
t enp=PC;
PR=PC+4;
PC=R(n];
Del ay_Sl ot (t enp+2) ;
}

Rev. 6.00 Sep 13, 2006 page 310 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example

JSR TABLE:
TRGET:

MOV. L
JSR

JSR TABLE, RO
@ro

R1, Rl

RO, R1

TRCGET

R2, R3

#70, R1

; RO =TRGET address
; Branch to TRGET.
; XOR executed before branch.

; « Procedure return destination (PR contents)

; Jump table

; < Entry to procedure

; Return to above ADD instruction.
; MOV executed before RTS.

Rev. 6.00 Sep 13, 2006 page 311 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

LDC.L @Rm+, RO_BANK (Rm) — RO_BANK, Rm +4 -~ Rm 0100mmm0000111
LDC.L @Rm+, R1_BANK (Rm) — R1_BANK, Rm +4 - Rm 0100mmm0010111
LDC.L @Rm+, R2_ BANK (Rm) - R2_BANK, Rm+4 -~ Rm 0100mmmm0100111
LDC.L @Rm+, R3_BANK (Rm) — R3_BANK, Rm +4 —~ Rm 0100mmmi0110111
LDC.L @Rm+, R4_BANK (Rm) — R4_BANK, Rm +4 — Rm 0100mmmi1000111
LDC.L @Rm+, R5_BANK (Rm) — R5_BANK, Rm+4 - Rm 0100mmmm1010111
LDC.L @Rm+, R6_BANK (Rm) — R6_BANK, Rm +4 - Rm 0100mmmi1100111
LDC.L @Rm+, R7_BANK (Rm) — R7_BANK, Rm +4 —~ Rm 0100mmmi1110111

9.50 LDC LoaD to Control register System Control Instruction
Load to Control
Register (Privileged Instruction)

Execution
Format Summary of Operation Instruction Code States T Bit
LDC Rm, SR Rm - SR 0100mmMmD0001110 4 LSB
LDC Rm, GBR Rm - GBR 0100mmMmD0011110 3 —
LDC Rm, VBR Rm - VBR 0100mMmmm00101110 1 —
LDC Rm, SSR Rm - SSR 0100mmm00111110 1 —
LDC Rm, SPC Rm - SPC 0100mMmmMmMD1001110 1
LDC Rm, DBR Rm - DBR 0100mmm©1111010 1 —
LDC Rm, RO_BANK Rm - RO_BANK 0100mmm1L0001110 1 —
LDC Rm, R1_BANK Rm - R1_BANK 0100mmm10011110 1 —
LDC Rm, R2_BANK Rm - R2_BANK 0100mmm10101110 1 —
LDC Rm, R3_BANK Rm - R3_BANK 0100mmm0111110 1 —
LDC Rm, R4 _BANK Rm - R4_BANK 0100mmm11001110 1 —
LDC Rm, R5_BANK Rm - R5_BANK 0100mmm©L1011110 1 —
LDC Rm, R6_BANK Rm - R6_BANK 0100mmm©L1101110 1 —
LDC Rm, R7_BANK Rm - R7_BANK 0100mmm11111110 1 —
LDC.L @Rm+, SR (Rm) - SR,Rm+4 - Rm 0100mmMmD0000111 4 LSB
LDC.L @Rm+, GBR (Rm) - GBR,Rm+4 - Rm 0100mmmD0010111 3 —
LDC.L @Rm+, VBR (Rm) — VBR, Rm +4 _ Rm 0100mmm00100111 1 —
LDC.L @Rm+, SSR (Rm) - SSR,Rm+4 - Rm 0100mmmD0110111 1 —
LDC.L @Rm+, SPC (Rm) - SPC,Rm+4 - Rm 0100mmmD1000111 1 —
LDC.L @Rm+, DBR (Rm) - DBR, Rm +4 _. Rm 0100mmm11110110 1 —

1

1

1

1

1

1

1

1

Rev. 6.00 Sep 13, 2006 page 312 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC,
DBR, or RO BANK to R7_BANK.

Notes

With the exception of LDC Rm,GBR and LDC.L @Rm+,GBR, the LDC/LDC.L instructions are
privileged instructions and can only be used in privileged mode. Use in user mode will cause an
illegal instruction exception. However, LDC Rm,GBR and LDC.L @Rm+,GBR can also be used
in user mode.

With the LDC Rm, Rn. BANK and LDC.L @Rm, Rn_ BANK instructions, Rn_ BANKO is
accessed when the RB bit in the SR register is 1, and Rn BANKI is accessed when this bit is 0.

Operation

LDCSR(int m /* LDC Rm SR : Privileged */
{

SR=R[n] &0x700083F3;

PC+=2;

LDCGBR(i nt m) /* LDC Rm GBR */

GBR=R[n{ ;
PC+=2;

LDCVBR(i nt m /* LDC RmVBR : Privileged */
{

VBR=R[n ;

PC+=2;

LDCSSR(i nt m /* LDC Rm SSR : Privileged */
{

SSR=R[n ,

PC+=2;

Rev. 6.00 Sep 13, 2006 page 313 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

}

LDCSPC(i nt m /* LDC Rm SPC : Privileged */
{

SPC=R[n{ ;

PC+=2;

LDCDBR(i nt m) /* LDC RmDBR : Privileged */
{

DBR=R[] ;

PC+=2;

LDCRn_BANK(int m) /* LDC Rm Rn_BANK : Privileged */

[* n=0-7 */

{

Rn_BANK=R[n ;

PC+=2,
}
LDCVSR(i nt m /* LDC.L @mt+, SR : Privileged */
{

SR=Read_Long(R m) &x700083F3;

R +=4;

PC+=2;
}
LDCMGBR(i nt m) /* LDC. L @Rm+, GBR */
{

GBR=Read_Long(R[M) ;

R +=4;

PC+=2,
}

Rev. 6.00 Sep 13, 2006 page 314 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

LDCWBR(i nt m
{
VBR=Read_Long(R[n);
R +=4;
PC+=2;

LDCVSSR(int m
{
SSR=Read_Long(R[M);
Rl m +=4;
PC+=2;

LDCVSPC(i nt m
{
SPC=Read_Long(R[n);
R[M +=4;
PC+=2,

LDCVDBR(i nt m)
{
DBR=Read_Long(R[) ;
Rl m +=4;
PC+=2;

/* LDC.L @m+, VBR : Privileged */

/* LDC.L @mt, SSR : Privileged */

/* LDC.L @m+, SPC : Privileged */

/* LDC.L @m+,DBR : Privileged */

LDCVRn_BANK(Long m) /* LDC.L @m+ Rn_BANK : Privileged */

[* n=0-7 */
{
Rn_BANK=Read_Long(R[nj);
R m +=4;
PC+=2;
}

Rev. 6.00 Sep 13, 2006 page 315 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Possible Exceptions:

General illegal instruction exception
[llegal slot instruction exception

Data TLB miss exception

Data TLB protection violation exception
Address error

Rev. 6.00 Sep 13, 2006 page 316 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.51 LDS LoaD to FPU System
register System Control Instruction
Load to FPU
System Register
Execution

Format Summary of Operation Instruction Code States T Bit
LDS Rm,FPUL Rm - FPUL 0100nMMM©01011010 1 —
LDS.L @Rm+,FPUL (Rm) - FPUL,Rm+4 -~ Rm 0100nmmm01010110 1 —
LDS Rm,FPSCR Rm - FPSCR 0100nMmMM©01101010 1 —
LDS.L @Rm+,FPSCR (Rm) - FPSCR,Rm +4 - Rm 0100nmmm01100110 1 —

Description
This instruction loads the source operand into FPU system registers FPUL and FPSCR.
Operation

#def i ne FPSCR_MASK O0xO003FFFFF

LDSFPUL(int m int *FPUL) /* LDS Rm FPUL */
{
*FPUL=R] nj ;
PC+=2;
}
LDSMFPUL(int m int *FPUL) /* LDS.L @m+, FPUL */
{
*FPUL=Read_Long(R[M);
R +=4;
PC+=2;
}
LDSFPSCR(int m /* LDS Rm FPSCR */
{
FPSCR=R[n] & FPSCR_MASK;
PC+=2;
}

LDSMFPSCR(i nt m) /* LDS.L @+, FPSCR */

Rev. 6.00 Sep 13, 2006 page 317 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

{
FPSCR=Read_Long(R[n]) & FPSCR_MASK;
R +=4;
PC+=2;

}

Possible Exceptions:

* Data TLB miss exception

» Data access protection exception
* Address error

Rev. 6.00 Sep 13, 2006 page 318 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.52 LDS LoaD to System register System Control Instruction

Load to System

Register

Execution

Format Summary of Operation Instruction Code States T Bit
LDS Rm,MACH Rm - MACH 0100nmMmMmMD0001010 1 —
LDS Rm,MACL Rm - MACL 0100nMmMmMD0011010 1 —
LDS Rm,PR Rm- PR 0100nMmMMD0101010 2 —
LDS.L @Rm+MACH (Rm) - MACH, Rm +4 - Rm 0100nmmm©00000110 1 —
LDS.L @Rm+,MACL (Rm) - MACL, Rm +4 - Rm 0100mmm©00010110 1 —
LDS.L @Rm+,PR (Rm) -~ PR,Rm+4 - Rm 0100nMmmMmMD0100110 2 —
Description

Stores the source operand into the system registers MACH, MACL, or PR.
Operation

LDSMACH(i nt m) /* LDS Rm MACH */
{

MACH=R[nj ;

PC+=2,

LDSMACL(int m /* LDS Rm MACL */
{

MACL=R[n{ ;

PC+=2;

LDSPR(i nt m) /* LDS Rm PR */
{

PR=R{ M ;
PC+=2,

Rev. 6.00 Sep 13, 2006 page 319 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

LDSMVACH(i nt m /* LDS.L @m+, MACH */
{
MACH=Read_Long(R[m);
R +=4;
PC+=2;
}
LDSMVACL(int m /* LDS.L @m+, MACL */
{
MACL=Read_Long(R[M);
Rl mM +=4;
PC+=2;
}
LDSMPR(i nt) /* LDS.L @m+, PR */
{
PR=Read_Long(R[nl);
R +=4;
PC+=2,
}
Example
LDS RO, PR ; Before execution RO =H'12345678, PR = H'00000000
; After execution PR =H'12345678
LDS. L @R15+, MACL ; Before execution R15=H'10000000

; After execution R15=H'10000004, MACL = (H'10000000)

Rev. 6.00 Sep 13, 2006 page 320 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.53 LDTLB LoaD PTEH/PTEL/PTEA

to TLB System Control Instruction
Load to TLB (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
LDTLB PTEH/PTEL/PTEA - TLB 0000000000111000 1 —

Description

This instruction loads the contents of the PTEH/PTEL/PTEA registers into the TLB (translation
lookaside buffer) specified by MMUCR.URC (random counter field in the MMC control register).

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an illegal instruction exception.

Notes

As this instruction loads the contents of the PTEH/PTEL/PTEA registers into a TLB, it should be
used either with the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled (see
section 3, Memory Management Unit, for details). After this instruction is issued, there must be at
least one instruction between the LDTLB instruction and issuance of an instruction relating to
address to areas PO, U0, and P3 (i.e. BRAF, BSRF, JMP, JSR, RTS, or RTE).

Rev. 6.00 Sep 13, 2006 page 321 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

LDTLB() /*LDTLB */

{
TLB[MMUCR. URC] .AS| D=PTEH & O0x000000FF;
TLB[MMUCR. URC] .VPN=(PTEH & OxFFFFFC00) >>10;
TLB[MMUCR. URC] .PPN=(PTEH & Ox1FFFFC00) >>10;
TLB[MMUCR. URC] .SZ=(PTEL & 0x00000080)>>6 |

(PTEL & 0x00000010) >>4;

TLB[MMUCR. URC] . SH=(PTEH & 0x00000002) >>1;
TLB[MMUCR. URC] .PR=(PTEH & 0x00000060) >>5;
TLB[MMUCR. URC] .WI=(PTEH & 0x00000001);
TLB[MMUCR. URC] .C=(PTEH & 0x00000008) >>3;
TLB[MMUCR. URC] .D=(PTEH & 0x00000004) >>2;
TLB[MMUCR. URC] .V=(PTEH & 0x00000100) >>8;
TLB[MUCR. URC] . SA=(PTEA & 0x00000007) ;
TLB[MMUCR. URC] .TC=(PTEA & 0x00000008) >>3;

PC+=2;
}
Example
MOV @R0, Rl ; Load page table entry (upper) into R1
MoV R1, @r2 ; Load R1 into PTEH; R2 is PTEH address (H'FF000000)
LDTLB ; Load PTEH, PTEL, PTEA registers into TLB

Rev. 6.00 Sep 13, 2006 page 322 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.54 MAC.L Multiply and ACcumulate

Long Arithmetic Instruction
Double-Precision
Multiply-and-Accumulate

Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.L @Rm+,@Rn+ Signed, 0000nnnnmmmM1111 2-5 —
(Rn) x (Rm) + MAC - MAC
Rn+4 -~ Rn,Rm+4 -~ Rm
Description

This instruction performs signed multiplication of the 32-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 64-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 4 each time
they are read.

If the S bit is 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, the addition to the MAC register contents is a saturation operation at the 48th bit
from the LSB. In a saturation operation, only the lower 48 bits of the MAC register are valid, and
the result range is limited to H'FFFF800000000000 (minimum value) to H'00007FFFFFFFFFFF
(maximum value).

Operation

MACL(l ong m long n) /* MAC. L @+, @GRn+ */

{
unsi gned | ong RnL, RnH, RrL, RnH, ResO0, Res1, Res2;
unsi gned | ong tenpO0, tenpl, tenp2,tenps;
| ong tenpm tenpn, f nLni;

tenpn=(1 ong) Read_Long(R[n]);
Rl n] +=4;
tenpm=(| ong) Read_Long(R[n});
Rl +=4;

Rev. 6.00 Sep 13, 2006 page 323 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

if ((long)(tenpn™tenpn)<0) fnLnml=-1;
el se fnLnL=0;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

tenmpl=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong)tenpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0x0000FFFF;
RL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0x0000FFFF;
t enpO=RmL* RnL;

t enp1=RmH* RnL;

t enp2=RnL* RnH;

t enp3=RH* RnH;

Res2=0;

Resl1l=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l;
i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

i f(fnLmi<0){
Res2="Res2;
i f (Res0==0) Res2++;
el se Res0=(ResO0) +1;
}
i f(S==1){
ResO0=MACL+ResO;

Rev. 6.00 Sep 13, 2006 page 324 of 424
REJ09B0318-0600
RENESAS

Section 9

Instruction Descriptions

if (MACL>Res0) Res2++;

i f (MACH&0x00008000) ;

el se Res2+=MACH OxFFFF000O;
Res2+=MACH&0x00007FFF;

i f (((1ong) Res2<0) &&(Res2<0xFFFF8000)) {
Res2=0x FFFF8000;
Res0=0x00000000;

}

i f (((1ong) Res2>0) &&(Res2>0x00007FFF)) {
Res2=0x00007FFF;
Res0=0x FFFFFFFF;

MACH=(Res2&0x0000FFFF) | (MACH&OX FFFF0000) ;

MACL=ResO0;

el se {
ResO0=MACL+ResO;
i f (MACL>ResO) Res2++;
Res2+=MACH;

MACH=Res?2;
MACL=ResO0;

}
PC+=2;

Rev. 6.00 Sep 13, 2006 page 325 of 424

RENESAS

REJ09B0318-0600

Section 9

Instruction Descriptions

Example

TBLM

TBLN

TBLM RO
RO, R1
TBLN, RO

@r0+, @RL+
@0+, @r1+
MACL, RO

2

H 1234ABCD
H 5678EF01
H 0123ABCD
H 4567DEFO

; Get table address

1

; Get table address

; MAC register initialization

1

; Get result in RO

Rev. 6.00 Sep 13, 2006 page 326 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.55 MACW Multiply and
ACcumulate Word Arithmetic Instruction
Single-Precision
Multiply-and-Accumulate

Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.W @Rm+,@Rn+ Signed, 0100nnnnmmm1111 2-5 —

MAC @Rm+ @Rn+ (Rn) x (Rm) + MAC - MAC
Rn+2 - Rn,Rm+2 - Rm

Description

This instruction performs signed multiplication of the 16-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 32-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 2 each time
they are read.

Ifthe Sbitis 0,a 16 X 16 + 64 — 64-bit multiply-and-accumulate operation is performed, and the
64-bit result is stored in the linked MACH and MACL registers.

Ifthe Sbitis 1,a 16 X 16 + 32 - 32-bit multiply-and-accumulate operation is performed, and the
addition to the MAC register contents is a saturation operation. In a saturation operation, only the
MACL register is valid, and the result range is limited to H'80000000 (minimum value) to
H'7FFFFFFF (maximum value). If overflow occurs, the LSB of the MACH register is set to 1.
H'80000000 (minimum value) is stored in the MACL register if the result overflows in the
negative direction, and H'7FFFFFFF (maximum value) is stored if the result overflows in the
positive direction

Notes

Ifthe S bitis 0,a 16 X 16 + 64 — 64-bit multiply-and-accumulate operation is performed.

Rev. 6.00 Sep 13, 2006 page 327 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

MACW I ong m |long n) /* MAC. W @+, @Rn+ */

{

| ong tenpm t enpn, dest, src, ans;
unsi gned | ong tenpl;
tenmpn=(1 ong) Read_Word(R[n]);
Rl n] +=2;
tenmpn=(l ong) Read_Word(R[mM) ;
Rl M +=2;
t enpl =MACL;
tenpm=((1 ong) (short)tenmpn* (1l ong)(short)tenpmn;
if ((long) MVACL>=0) dest =0;
el se dest =1,
if ((long)tenmpnk=0) {
src=0;
t enpn=0;
}
el se {
src=1;
t enpn=0xFFFFFFFF;
}
src+=dest;
MACL+=t enpm
if ((long) MACL>=0) ans=0;
el se ans=1;
ans+=dest ;
it (S==1) {
if (ans==1) {
i f (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}

el se {
MACH+=t enpn;
if (tenpl >MACL) MACH+=1;

Rev. 6.00 Sep 13, 2006 page 328 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

}
PC+=2;
}
Example
MOVA TBLM RO ; Get table address
MoV RO, R1 ;
MOVA TBLN, RO ; Get table address
CLRVAC ; MAC register initialization
MAC. W @R0+, @R1L+ :
MAC. W @RO+, @RL+
STS MACL, RO : Get result in RO
align2 ;
TBLM .data.w H 1234
.data.w H 5678 ;
TBLN .data.w H 0123
.data.w H 4567 ;

Rev. 6.00 Sep 13, 2006 page 329 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.56 MOV MOVe data Data Transfer Instruction
Data Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV Rm,Rn Rm - Rn 0110nnnnmmmoO011 1 —
MOV.B Rm,@Rn Rm - (Rn) 0010nnnnMmmMmMO000 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmMOD001 1 —
MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmMmmm0010 1 —
MOV.B @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmOD000 1 —
MOV.W @Rm,Rn (Rm) sign extension Rn 0110nnnnmmm0001 1 —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmm0D010 1 —
MOV.B Rm,@-Rn Rn-1 - Rn,Rm - (Rn) 0010nnnnmmmm0100 1 —
MOV.W Rm,@-Rn Rn-2 - Rn,Rm - (Rn) 0010nnnnmmmM0101 1 —
MOV.L Rm,@-Rn Rn-4 - Rn,Rm - (Rn) 0010nnnnmmmm0110 1 —
MOV.B @Rm+,Rn (Rm) sign extension Rn, 0110nnnnmmm®0100 1 —
Rm+1 - Rm
MOV.W @Rm+,Rn (Rm) sign extension Rn, 0110nnnnmmm0101 1 —
Rm+2 - Rm
MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmm0110 1 —
MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000NnNNNMMOD100 1 —
MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnNNMMMO101 1 —
MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000NnnNNNMMOD110 1 —
MOV.B @(R0O,Rm),Rn (RO + Rm) sign extension Rn 0000nnnnnmmm1100 1 —
MOV.W @(R0O,Rm),Rn (RO + Rm) sign extension Rn 0000nnnnnmmm1101 1 —
MOV.L @(RO,Rm),Rn (RO +Rm) - Rn 0000nnnnMMMMM110 1 —

Description

This instruction transfers the source operand to the destination. When an operand is memory, the
data size can be specified as byte, word, or longword. When the source operand is memory, the
loaded data is sign-extended to longword before being stored in the register.

Rev. 6.00 Sep 13, 2006 page 330 of 424

REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

MM(long m |ong n) /* MOV RmRn */
{

RIn]=R[n;

PC+=2;

MOVBS(long m long n) /* MOV.B Rm @n */
{

Wite Byte(Rn],R[nl);

PC+=2;

MOWS(long m long n) /* MOV.WRm @n */
{

Wite Word(Rn], R n);
PC+=2;

MWVLS(long m long n) /* MOW.L Rm @n */
{

Wite Long(Rn],Rn);
PC+=2;

MOVBL(long m long n) /* MOV.B @mRn */

{
R n] =(1 ong) Read_Byte(R[n);
if ((R[n]&0x80)==0) R[n] &0x000000FF;
el se R[n] | =OxFFFFFFOO;
PC+=2;
}

MOWAL(long m long n) /* MOWV.W@RmRn */
{

Rev. 6.00 Sep 13, 2006 page 331 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

R n] =(| ong) Read_Word(R[n});

if ((R[n] &x8000)==0) R[n] &0x0000FFFF;
el se R[n] | =OxFFFF0000;

PC+=2;

MWVLL(long m long n) /* MOWV.L @RmRn */
}

R{n] =Read_Long(R[n{);
PC+=2;

MOVBMlong m long n) /* MV.B Rm@Rn */
{

Wite Byte(R[n]-1,Rni);

R n] - =1;

PC+=2;

MOVWWMlong m long n) /* MOV.WRm @Rn */
{

Wite_ Wrd(Rn]-2,R[nmM);

R n]-=2;

PC+=2;

MWLMl ong m |ong n) /[* MOV.L Rm @Rn */
{

Wite Long(Rn]-4, R n);

R n]-=4;

PC+=2;

MOVBP(long m long n) /* MOW.B @m+, Rn */
{

Rev. 6.00 Sep 13, 2006 page 332 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

R n] =(1 ong) Read_Byte(R[n);
if ((R[n]&x80)==0) R[n] &0x000000FF;
el se R[n] | =OxFFFFFFOO;
if (nl=m R nM +=1;
PC+=2;
}
MOWWP(l ong m |ong n) [* MOV. W @mt, Rn */
{
R n] =(| ong) Read_Word(R[n});
if ((R[n] &x8000) ==0) R[n] &0x0000FFFF;
el se R[n] | =OxFFFF000O0;
if (nl=m R nmM +=2;
PC+=2;

MOVLP(l ong m |ong n) /[* MOV.L @m+, Rn */
{

R[n] =Read_Long(R M) ;

if (nl=m R nM +=4;

PC+=2;

MOVBSO(long m long n) /* MOV.B Rm @RO, Rn) */
{

Wite Byte(Rn]+R 0], R ni);

PC+=2;

MOWS0(long m long n) /* MOV.WRmMm @RO, Rn) */
{

Wite Word(R[n]+R[0], R n);

PC+=2;

MWVLSO(long m long n) /* MOV.L Rm @RO, Rn) */

Rev. 6.00 Sep 13, 2006 page 333 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

{
Wite Long(R[n]+R[0], R ni):
PC+=2;

MOVBLO(long m long n) /* MWVW.B @RO, Rm, Rn */
{

R{n] =(I ong) Read_Byt e(R{ m +R{ 0]) ;

i f ((R[n] &x80)==0) R[n] &0x000000FF;

el se R[n] | =OxFFFFFFO0;

PC+=2;

MOWALO(|l ong m | ong n) /* MOV.W @RO, R, Rn */
{

R n] =(1 ong) Read_Word(R n +R[0]) ;

i f ((R[n] &x8000) ==0) R[n] &=0x0000FFFF;

el se R[n]| =0xFFFF0000;

PC+=2;

MOVLLO(l ong m |ong n) /* MOV.L @RO,Rm),Rn */
{

R n] =Read_Long(R[n} +R{ 0]) ;

PC+=2,

Rev. 6.00 Sep 13, 2006 page 334 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example

MoV

MOV. W

MOV. B

MOV. W

MOV. L

MOV. B

MOV. W

RO, R1

RO, @1

@r0, R1

RO, @Rl

@0+, R1

Rl, @ RO, R2)

@RO,R2),R1

; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution

; After execution

RO = H'FFFFFFFF, R1 = H'00000000
R1 = H'FFFFFFFF

RO = H'FFFF7F80

(R1) = H'7F80

(RO) = H'80, R1 = H'00000000

R1 = H'FFFFFF80

RO = HAAAAAAAA, (R1) = HFFFF7F80
R1 = HFFFF7FTE, (R1) = HAAAA
RO = H'12345670

RO = H'12345674, R1 = (H'12345670)
R2 = H'00000004, RO = H'10000000
R1 = (H'10000004)

R2 = H'00000004, RO = H'10000000
R1 = (H'10000004)

Rev. 6.00 Sep 13, 2006 page 335 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.57 MOV MOVe constant value Data Transfer Instruction
Immediate Data
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV #imm,Rn imm sign extension Rn 1110nnnniiiiiiii 1 —

MOV.W @(disp,PC),Rn (disp x2 + PC +4) - sign 1001nnnndddddddd 1 —
extension Rn

MOV.L @(disp,PC),Rn (disp x4 +PC+4) - Rn 1101nnnndddddddd 1 —

Description

This instruction stores immediate data, sign-extended to longword, in general register Rn. In the
case of word or longword data, the data is stored from memory address (PC + 4 + displacement x
2) or (PC + 4 + displacement X 4).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the
relative distance from the table is in the range up to PC + 4 + 510 bytes. The PC value is the
address of this instruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so the
relative distance from the operand is in the range up to PC + 4 + 1020 bytes. The PC value is the
address of this instruction. A value with the lower 2 bits adjusted to B'00 is used in address
calculation.

Notes

If a PC-relative load instruction is executed in a delay slot, an illegal slot instruction exception will
be generated.

Rev. 6.00 Sep 13, 2006 page 336 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

Operation

MM (int i, int n) /* MO #immRn */

{
if ((i&0x80)==0) R n]=(0x000000FF & i);
el se R n] =(OxFFFFFF0OO0 | i);
PC+=2;

MOVW (d, n) /* MOV.W @di sp, PC), Rn */
{

unsi gned int disp;

di sp=(unsi gned int)(0x000000FF & d);

R[n] =(i nt) Read_Wor d(PC+4+(di sp<<1));

i f ((R[n] &x8000)==0) R n] &=0x0000FFFF;
el se R[n] | =0xFFFF0000;

PC+=2;

MOVLI (int d, int n)/* MWV.L @disp,PC),Rn */

unsi gned int disp;

di sp=(unsi gned int)(0x000000FF & (int)d);

R[n] =Read_Long((PC&OXFFFFFFFC) +4+(di sp<<2));
PC+=2;

Rev. 6.00 Sep 13, 2006 page 337 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

Example

Addr ess

1000
1002
1004
1006
1008
100A
100C
100E
1010
1012
1014

1018
101C

NEXT

MOV. W
ADD
TST
MOV. L
BRA

.data.w
.data.w
JMP

CWP/ EQ
.align
.data.l
.data.l

#H 80, R1

I MM R2
#1, RO
RO, RO
@3,PC,R3
NEXT

H 9ABC

H 1234

@r3

#0, RO

4

H 12345678
H 9ABCDEFO

; R1 = HFFFFFF&0
; R2Z=H'FFFFOABC IMM means (PC + 4 + H'08)

1

; R3=H"'12345678

; Delayed branch instruction

; BRA branch instruction

1

Rev. 6.00 Sep 13, 2006 page 338 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.58 MOV MOVe global data Data Transfer Instruction
Global Data
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV.B @(disp,GBR),R0 (disp + GBR) - sign 11000100dddddddd 1 —
extension RO
MOV.W @(disp,GBR), RO (disp x 2 + GBR) - sign 11000101dddddddd 1 —
extension RO
MOV.L @(disp,GBR),R0 (disp x4 + GBR) - RO 11000110dddddddd 1 —
MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd 1 —
MOV.W RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd 1 —
MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd 1 —

Description

This instruction transfers the source operand to the destination. Byte, word, or longword can be
specified as the data size, but the register is always RO. If the transfer data is byte-size, the 8-bit
displacement is only zero-extended, so a range up to +255 bytes can be specified. If the transfer
data is word-size, the 8-bit displacement is multiplied by two after zero-extension, enabling a
range up to +510 bytes to be specified. With longword transfer data, the 8-bit displacement is
multiplied by four after zero-extension, enabling a range up to +1020 bytes to be specified.

When the source operand is memory, the loaded data is sign-extended to longword before being

stored in the register.

Notes

When loading, the destination register is always RO.

RENESAS

Rev. 6.00 Sep 13, 2006 page 339 of 424

REJ09B0318-0600

Section 9 Instruction Descriptions

Operation

MOVBLG(i nt d) /* MOV.B @disp, GBR), RO */
{

unsi gned int disp;

di sp=(unsi gned i nt)(0x000000FF & d);
R[0] =(i nt) Read_Byt e(GBR+di sp) ;

i f ((R[0] &x80)==0) R[0] &0x000000FF;
el se R[0] | =0xFFFFFFOO;

PC+=2;

MOWALG(int d) /* MOV. W @disp, GBR), RO */

unsi gned int disp;

di sp=(unsi gned int)(0x000000FF & d);

R[0] =(i nt) Read_Wor d(GBR+(di sp<<1));

i f ((R[0] &x8000) ==0) R[0] &=0x0000FFFF;
el se R 0] | =0OxFFFF0000;

PC+=2;

MOVLLG(int d) /* MOV.L @disp, GBR), RO */

unsi gned int disp;

di sp=(unsi gned i nt)(0x000000FF & d);
R[0] =Read_Long(GBR+(di sp<<2));
PC+=2,

}

MOVBSG(int d) /* MOV.B RO, @disp, GBR) */

{

Rev. 6.00 Sep 13, 2006 page 340 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

unsi gned int disp;
di sp=(unsi gned i nt)(0x000000FF & d);

Wite Byte(@BR+disp, R0]);
PC+=2;

MOWBG(i nt d) /* MOV. WRO, @di sp, GBR) */

{
unsi gned int disp;
di sp=(unsi gned int)(0x000000FF & d);
Wite Word(GBR+(di sp<<l),R0]);
PC+=2;

}

MOVLSG(int d) /* MO.L RO, @disp, GBR) */

{
unsi gned int disp;
di sp=(unsi gned i nt)(0x000000FF & (long)d);
Wite_Long(GBR+(di sp<<2),R0]);
PC+=2;
}
Example

MOV.L @2, GBR), RO ; Before execution (GBR+8)=H'12345670
; After execution RO = (H'12345670)
MOV. B RO, @1, GBR) ; Before execution RO = H'FFFF7F80
; After execution (GBR+1) =H'80

Rev. 6.00 Sep 13, 2006 page 341 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.59 MOV MOVe structure data Data Transfer Instruction
Structure Data
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd 1
MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 0001nnnnmmmdddd 1 —
1

MOV.B @(disp,Rm),R0 (disp + Rm) - sign 10000100mMmMmdddd
extension RO

MOV.W @(disp,Rm),R0O (disp x 2 + Rm) - sign 10000101mmmdddd 1 —
extension RO

MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnmmmdddd 1 —

Description

This instruction transfers the source operand to the destination. It is ideal for accessing data inside
a structure or stack. Byte, word, or longword can be specified as the data size, but with byte or
word data the register is always RO.

If the data is byte-size, the 4-bit displacement is only zero-extended, so a range up to +15 bytes
can be specified. If the data is word-size, the 4-bit displacement is multiplied by two after zero-
extension, enabling a range up to +30 bytes to be specified. With longword data, the 4-bit
displacement is multiplied by four after zero-extension, enabling a range up to +60 bytes to be
specified. If a memory operand cannot be reached, the previously described @(R0,Rn) mode must
be used.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes

When loading byte or word data, the destination register is always R0. Therefore, if the following
instruction attempts to reference RO, it is kept waiting until completion of the load instruction.
This allows optimization by changing the order of instructions.

MV.B @2, Rl), R0 MV.B @2, RL), R0
AND #80, RO ADD #20, Rl
ADD #20, Rl AND #80, RO

Rev. 6.00 Sep 13, 2006 page 342 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

MOVBS4(1 ong d, long n /* MOV.B RO, @disp, Rn) */

{
| ong di sp;
di sp=(0x0000000F & (long)d);
Wite Byte(R n]+disp, R0]);
PC+=2;

}

MOWB4(long d, long n) /* MOV.WRO, @disp, R) */

{
| ong di sp;
di sp=(0x0000000F & (long)d);
Wite Wrd(R n]+(disp<<l),R0]);
PC+=2,
}

MOVLS4(long m long d, long n) /* MOV.L Rm @di sp, Rn) */

{
I ong di sp;

di sp=(0x0000000F & (long)d);

Wite Long(R[n]+(disp<<2),R[ni);
PC+=2;

MOVBL4(long m long d) /* MOV.B @disp, Rm, RO */

{
| ong di sp;

di sp=(0x0000000F & (long)d);

R[0] =Read_Byt e(Rl m +di sp) ;

if ((R[0]&0x80)==0) R[0] &=0x000000FF;
el se R[0] | =0xFFFFFFOO;

Rev. 6.00 Sep 13, 2006 page 343 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

PC+=2;

MOWL4(long m long d) /* MOW.W@&@di sp, Ry, RO */
{
I ong disp;

di sp=(0x0000000F & (long)d);

R[0] =Read_Wor d(R[m] +(di sp<<1));

if ((R[0] &x8000)==0) R[0] &0x0000FFFF;
el se R[0] | =OxFFFF0000;

PC+=2;

MWVLL4(long m long d, long n) /* MOW.L @disp, R),Rn */

{
I ong di sp;

di sp=(0x0000000F & (long)d);
R[n] =Read_Long(R n] +(di sp<<2));

PC+=2,
}
Example
MOV. L @2,R0),R1 ; Before execution (R0+8) =H'12345670
; After execution R1 = (H'12345670)
MOV. L RO, @H F, R1) ; Before execution RO = H'FFFF7F80

; After execution (R1+60) = H'FFFF7F80

Rev. 6.00 Sep 13, 2006 page 344 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.60 MOVA MOVe effective Address Data Transfer Instruction
Effective Address
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit

MOVA @(disp,PC),R0 disp x4 + PC +4 . RO 11000111dddddddd 1 —

Description

This instruction stores the source operand effective address in general register R0O. The 8-bit
displacement is multiplied by four after zero-extension. The PC value is the address of this
instruction, but a value with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes

If this instruction is executed in a delay slot, an illegal slot instruction exception will be generated.

Operation
MOVA(i nt d) /* MOWA @disp, PC), RO */
{
unsi gned int disp;
di sp=(unsi gned i nt)(0x000000FF & d);
R[0] =(PC&0xFFFFFFFC) +4+(di sp<<2);
PC+=2,
}
Example

Address .org H 1006

1006 MOVA STR, RO ; STR address — RO

1008 MOV. B @r0, R1 ; R1 =X Position after adjustment of lower 2 bits of PC

100A ADD R4, R5 ; « Original PC position in MOVA instruction address calculation
.align 4

100C STR .sdata "XYzP12"

Rev. 6.00 Sep 13, 2006 page 345 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.61 MOVCA.L MOVe with Cache

block Allocation Data Transfer Instruction
Cache Block Allocation
Execution
Format Summary of Operation Instruction Code States T Bit
MOVCAL RO,@Rn RO - (Rn) 0000nNNN11000011 1 —

Description

This instruction stores the contents of general register RO in the memory location indicated by
effective address Rn. This instruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block will
be allocated but an RO data write will be performed to that cache block without performing a block
read. Other cache block contents are undefined.

Operation

MOVCAL(i nt n) /*MOWCA. L RO, @n */
{
if ((is_wite_back _nmenmory(R[n]))
&& (1 ook_up_i n_operand_cache(R[n]) == M SS))
al | ocat e_operand_cache_bl ock(R[n]);
Wite_Long(Rn], RO0]);
PC+=2;
}

Possible Exceptions:
* Data TLB miss exception

» Data TLB protection violation exception
* Initial page write exception
* Address error

Rev. 6.00 Sep 13, 2006 page 346 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.62 MOVT MOVe T bit Data Transfer Instruction
T Bit Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOVT Rn T-Rn 0000nnnn00101001 1 —
Description

This instruction stores the T bit in general register Rn. When T =1, Rn=1; when T =0, Rn=0.

Operation
MOVT(| ong n) /* MOVT Rn */
{
R[n] =(0x00000001 & SR);
PC+=2;
}
Example
XOR R2, R2 ' R2=0
CVP/ PZ R2 T=
MOVT RO »RO=1
CLRT T=0
MOVT R1 :R1=0

Rev. 6.00 Sep 13, 2006 page 347 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.63 MUL.L MULtiply Long Arithmetic Instruction
Double-Precision
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
MUL.L Rm,Rn Rn x Rm - MACL 0000NnNnnNnmMmMMD111 2-5 —
Description

This instruction performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The contents of MACH are not
changed.

Operation

MJLL(long m long n) /* MJL.L RmRn */

{
MACL=R[n] *R[n] ;
PC+=2;
}
Example
MJUL. L RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACL = H'FFFF5556
STS MACL, RO ; Get operation result

Rev. 6.00 Sep 13, 2006 page 348 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.64 MULS.W MULtiply as Signed Word Arithmetic Instruction

Signed
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
MULS.W Rm,Rn Signed, Rn xRm -~ MACL 0010nnnnnmmi111 2-5 —

MULS Rm,Rn

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The multiplication is performed as a signed
arithmetic operation. The contents of MACH are not changed.

Operation

MJULS(long m long n) /* MJLS RmRn */

{
MACL=((I ong) (short)R[n]*(long) (short)R[n{);
PC+=2;
}
Example
MJULS. W RO,R 1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACL = H'FFFF5556
STS MACL, RO ; Get operation result

Rev. 6.00 Sep 13, 2006 page 349 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
Unsigned Multiplication

Execution
Format Summary of Operation Instruction Code States T Bit

MULU.W Rm,Rn Unsigned, Rn x Rm - MACL 0010nnnnnmmi110 2-5 —
MULU Rm,Rn

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The multiplication is performed as an unsigned
arithmetic operation. The contents of MACH are not changed.

Operation

MJLU(long m long n) /* MJULU RmRn */

{
MACL=((unsi gned | ong) (unsi gned short)R n]*
(unsi gned | ong) (unsi gned short)R m ;
PC+=2;
}
Example
MULU. W RO, R1 ; Before execution RO =H'00000002, R1 = HFFFFAAAA
; After execution MACL =H'00015554
STS MACL, RO ; Get operation result

Rev. 6.00 Sep 13, 2006 page 350 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.66 NEG NEGate Arithmetic Instruction

Sign Inversion

Execution
Format Summary of Operation Instruction Code States T Bit
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmml011 1 —

Description

This instruction finds the two’s complement of the contents of general register Rm and stores the
result in Rn. That is, it subtracts Rm from 0 and stores the result in Rn.

Operation

NEGlong m long n) /* NEG RmRn */

{
RIn]=0-Rni;
PC+=2;
}
Example
NEG RO, R1 ; Before execution RO =H'00000001

; After execution R1 = HFFFFFFFF

Rev. 6.00 Sep 13, 2006 page 351 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.67 NEGC NEGate with Carry Arithmetic Instruction

Sign Inversion with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
NEGC Rm,Rn 0-Rm-T - Rn, 0110nnnnmmml010 1 Borrow

borrow - T

Description

This instruction subtracts the contents of general register and the T bit from 0 and stores the result
in Rn. A borrow resulting from the operation is reflected in the T bit. The NEGC instruction is
used for sign inversion of a value exceeding 32 bits.

Operation

NEGC(long m long n) /* NEGC Rm Rn */

{
unsi gned | ong tenp;
tenp=0-R nj;
Rl n]=tenp-T;
if (O<tenp) T=1;
el se T=0;
if (tenmp<R[n]) T=1,;
PC+=2;
}
Example
CLRT ; Sign inversion of RO:R1 (64 bits)
NEGC R1,R1 ; Before execution R1=H'00000001, T=0
;. After execution R1 =H'FFFFFFFF, T=1
NEGC RO, RO ; Before execution RO =H'00000000, T =1

. After execution RO = H'FFFFFFFF, T=1

Rev. 6.00 Sep 13, 2006 page 352 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.68 NOP No OPeration System Control Instruction
No Operation

Execution
Format Summary of Operation Instruction Code States T Bit
NOP No operation 0000000000001001 1 —

Description

This instruction simply increments the program counter (PC), advancing the processing flow to
execution of the next instruction.

Operation

NOP() /* NOP */
{
PC+=2;

}
Example

NOP ; Time equivalent to one execution state elapses.

Rev. 6.00 Sep 13, 2006 page 353 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.69 NOT NOT-logical complement Logical Instruction

Bit Inversion

Execution
Format Summary of Operation Instruction Code States T Bit
NOT Rm,Rn [(Rm - Rn 0110nnnnmmoO111 1 —

Description

This instruction finds the one’s complement of the contents of general register Rm and stores the
result in Rn. That is, it inverts the Rm bits and stores the result in Rn.

Operation

NOT(long m long n) /* NOT RmRn */

{
RIn] =R ni;
PC+=2;
}
Example
NOT RO, R1 ; Before execution RO = HAAAAAAAA

; After execution R1=H'55555555

Rev. 6.00 Sep 13, 2006 page 354 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.70 OCBI Operand Cache Block

Invalidate Data Transfer Instruction
Cache Block Invalidation

Execution
Format Summary of Operation Instruction Code States T Bit
OCBI @Rn Operand cache block 0000nNnNn10010011 1 —

invalidation

Description

This instruction accesses data using the contents indicated by effective address Rn. In the case of a
hit in the cache, the corresponding cache block is invalidated (the V bit is cleared to 0). If there is
unwritten information (U bit = 1), write-back is not performed even if write-back mode is selected.
No operation is performed in the case of a cache miss or an access to a non-cache area.

Operation

OCBI (i nt n) /* OCBI @n */

{
i nval i dat e_operand_cache_bl ock(R[n]);
PC+=2;

}

Possible Exceptions:
* Data TLB miss exception

» Data TLB protection violation exception
» Initial page write exception

e Address error

Note that the above exceptions are generated even if OCBI does not operate.

Rev. 6.00 Sep 13, 2006 page 355 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.71 OCBP Operand Cache Block
Purge Data Transfer Instruction
Cache Block Purge
Execution
Format Summary of Operation Instruction Code States T Bit
OCBP @Rn Operand cache block purge 0000nnnn10100011 1 —
Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache is
hit and there is unwritten information (U bit = 1), the corresponding cache block is written back to
external memory and that block is invalidated (the V bit is cleared to 0). If there is no unwritten
information (U bit = 0), the block is simply invalidated. No operation is performed in the case of a
cache miss or an access to a non-cache area.

Operation

OCBP(i nt n) /* OCBP @un */

{
if(is_dirty_block(Rn])) wite_back(Rn])
i nval i dat e_operand_cache_bl ock(R[n]);
PC+=2;

}

Possible Exceptions:
* Data TLB miss exception

» Data TLB protection violation exception

e Address error

Note that the above exceptions are generated even if OCBP does not operate.

Rev. 6.00 Sep 13, 2006 page 356 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.72 OCBWB Operand Cache Block

Write Back Data Transfer Instruction
Cache Block Write-Back

Execution
Format Summary of Operation Instruction Code States T Bit
OCBWB @Rn Operand cache block write- 0000nnnn10110011 1 —

back

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache is
hit and there is unwritten information (U bit = 1), the corresponding cache block is written back to
external memory and that block is cleaned (the U bit is cleared to 0). In other cases (i.e. in the case
of a cache miss or an access to a non-cache area, or if the block is already clean), no operation is
performed.

Operation
OCBWB(i nt n) /* OCBWB @Rn */
{
if(is_dirty block(Rn])) wite_back(Rn]);
PC+=2;
}

Possible Exceptions:
* Data TLB miss exception

» Data TLB protection violation exception

e Address error

Note that the above exceptions are generated even if OCBWB does not operate.

Rev. 6.00 Sep 13, 2006 page 357 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.73 OR OR logical Logical Instruction
Logical OR
Execution
Format Summary of Operation Instruction Code States T Bit
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmm011 1 —
OR #imm,R0 RO |imm - RO 1100101%iiiiiiii 1 —
OR.B #imm,@(R0,GBR) (RO + GBR) | imm - 1100111%iiiiiiii 4 —
(RO + GBR)
Description

This instruction ORs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to OR general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to OR 8-bit memory with 8-bit
immediate data.

Rev. 6.00 Sep 13, 2006 page 358 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

OR(long m long n) /* OR RmRn */
{

Rin]|=Rni;

PC+=2;

Ri(long i) /* OR#A M RO */

{
R[0] | =(0x000000FF & (1ong)i);

PC+=2;

ORMlong i) /* OR B #imm @R0, GBR) */

{
| ong tenp;
t emp=(1 ong) Read_Byt e(GBBR+R[0]) ;
t enp| =(0x000000FF & (long)i);
Wite Byte(GBR+R[0], tenp);
PC+=2;
}
Example
OoRrR RO, R1 : Before execution RO =H'AAAA5555, R1 =H'55550000
; After execution R1 =H'FFFF5555
R #H FO, RO ; Before execution RO =H'00000008

. After execution RO = H'000000F8
OR B #H 50, @R0O, GBR) ; Before execution (R0,GBR)=H'A5
; After execution (R0,GBR)=H'F5

Rev. 6.00 Sep 13, 2006 page 359 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.74 PREF PREFetch data to cache Data Transfer Instruction
Prefetch to Data
Cache
Execution
Format Summary of Operation nstruction Code States T Bit
PREF @Rn Prefetch cache block 0000nnnn10000011 1 —
Description

This instruction reads a 32-byte data block starting at a 32-byte boundary into the operand cache.
The lower 5 bits of the address specified by Rn are masked to zero.

This instruction does not generate address-related errors. In the event of an error, the PREF
instruction is treated as an NOP (no operation) instruction.

Operation

PREF(int n) /* PREF */

{
PC+=2,
}
Example

MOV. L #SOFT_PF, R1 ; R1 address is SOFT_PF
PREF @rl ; Load SOFT PF data into on-chip cache
.align 32

SOFT_PF: .data.l H 12345678
. data. | H 9ABCDEFO
. data. | H AAAA5555
. data. | H 5555AAAA
. data. | H 11111111
. data. | H 22222222
. data. | H 33333333
. data. | H 44444444

Rev. 6.00 Sep 13, 2006 page 360 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.7 ROTCL ROTate with Carry Left Shift Instruction
One-Bit Left Rotation
through T Bit
Execution
Format Summary of Operation Instruction Code States T Bit
ROTCL Rn T<«Rn«T 0100nnnn00100100 1 MSB
Description

This instruction rotates the contents of general register Rn one bit to the left through the T bit, and
stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCL <

Operation

ROTCL(long n) /* ROTCL Rn */

{
| ong tenp;
i f ((R[n] &x80000000) ==0) tenp=0;
el se tenp=1;
Rl n] <<=1;
if (T==1) R n]|=0x00000001;
el se R[n] &0xFFFFFFFE;
if (tenp==1) T=1,
el se T=0;
PC+=2;

}

Example
ROTCL RO ; Before execution RO =H'80000000, T =0

; After execution RO =H'00000000, T =1

Rev. 6.00 Sep 13, 2006 page 361 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.76 ROTCR ROTate with Carry Right Shift Instruction
One-Bit Right Rotation
through T Bit
Execution
Format Summary of Operation Instruction Code States T Bit
ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB
Description

This instruction rotates the contents of general register Rn one bit to the right through the T bit,
and stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCR I—V

ROTCR(l1 ong n) /* ROTCR Rn */

Operation

{
I ong tenp;
i f ((R[n]&x00000001)==0) tenp=0;
el se tenmp=1;
R n] >>=1;
if (T==1) R n]|=0x80000000;
el se R[n] & 0x7FFFFFFF;
if (tenp==1) T=1,
el se T=0;
PC+=2;

}

Example
ROTCR RO ; Before execution RO =H'00000001, T=1

; After execution RO =H'80000000, T =1

Rev. 6.00 Sep 13, 2006 page 362 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.77 ROTL ROTate Left Shift Instruction
One-Bit Left
Rotation
Execution
Format Summary of Operation Instruction Code States T Bit
ROTL Rn T « Rn « MSB 0100nnnn00000100 1 MSB
Description

This instruction rotates the contents of general register Rn one bit to the left, and stores the result
in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTL 4—‘

ROTL(long n) /* ROTL Rn */

Operation

{
i f ((R[n]&x80000000)==0) T=0;
el se T=1,
R{n] <<=1;
if (T==1) R[n]|=0x00000001;
el se R[n] &0xFFFFFFFE;
PC+=2;

}

Example
ROTL RO ; Before execution RO =H'80000000, T=0

; After execution RO =H'00000001, T=1

Rev. 6.00 Sep 13, 2006 page 363 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.78 ROTR ROTate Right Shift Instruction
One-Bit Right
Rotation
Execution
Format Summary of Operation Instruction Code States T Bit
ROTR Rn LSB -~ Rn - T 0100nnnn00000101 1 LSB
Description

This instruction rotates the contents of general register Rn one bit to the right, and stores the result
in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTR |—>

ROTR(l ong n) /* ROTR Rn */

Operation

{
i f ((R n]&x00000001)==0) T=0;
el se T=1;
R n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R n] &=0x7FFFFFFF;
PC+=2,

}

Example
ROTR RO ; Before execution RO =H'00000001, T=0

; After execution RO =H'80000000, T =1

Rev. 6.00 Sep 13, 2006 page 364 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.79 RTE ReTurn from Exception System Control Instruction
Return from Exception Handling (Privileged Instruction)
Delayed Branch Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
RTE SSR - SR, SPC- PC 0000000000101011 5 —

Description

This instruction returns from an exception or interrupt handling routine by restoring the PC and
SR values from SPC and SSR. Program execution continues from the address specified by the
restored PC value.

RTE is a privileged instruction, and can only be used in privileged mode. Use of this instruction in
user mode will cause an illegal instruction exception.

Notes

As this is a delayed branch instruction, the instruction following the RTE instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. An exception
must not be generated by the instruction in this instruction’s delay slot. If the following instruction
is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it
is identified as a slot illegal instruction.

The SR value accessed by the instruction in the RTE delay slot is the value restored from SSR by
the RTE instruction. The SR and MD values defined prior to RTE execution are used to fetch the
instruction in the RTE delay slot.

Rev. 6.00 Sep 13, 2006 page 365 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

RTE() /* RTE */

{
unsi gned int tenp;
t enp=PC;
SR=SSR,
PC=SPC;
Del ay_Sl ot (t enp+2);
}
Example
RTE ; Return to original routine.
ADD #8, R14 ; Executed before branch.

Note: In a delayed branch, the actual branch operation occurs after execution of the slot
instruction, but instruction execution (register updating, etc.) is in fact performed in
delayed branch instruction — delay slot instruction order. For example, even if the register
holding the branch destination address is modified in the delay slot, the branch destination
address will still be the register contents prior to the modification.

Rev. 6.00 Sep 13, 2006 page 366 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.80 RTS ReTurn from Subroutine Branch Instruction
Return from Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
RTS PR - PC 0000000000001011 2 —
Description

This instruction returns from a subroutine procedure by restoring the PC from PR. Processing
continues from the address indicated by the restored PC value. This instruction can be used to
return from a subroutine procedure called by a BSR or JSR instruction to the source of the call.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

The instruction that restores PR must be executed before the RTS instruction. This restore
instruction cannot be in the RTS delay slot.

Operation

RTS() /* RTS */

{
unsi gned int tenp;
t enp=PC;
PC=PR,
Del ay_Sl ot (t enp+2) ;
}

Rev. 6.00 Sep 13, 2006 page 367 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
MOV. L TABLE, R3 ; R3=TRGET address
JSR @3 ; Branch to TRGET.
NOP ; NOP executed before branch.
ADD RO, R1 ; « Subroutine procedure return destination (PR contents)
TABLE: .data.l TRGET ; Jump table
TRCGET: MoV R1, RO ; < Entry to procedure
RTS ; PR contents — PC
MoV #12, RO ; MOV executed before branch.

Rev. 6.00 Sep 13, 2006 page 368 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.81 SETS
S Bit Setting

SET S bit

System Control Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
SETS 158 0000000001011000 1 —
Description

This instruction sets the S bit to 1.
Operation

SETS() /* SETS */

{
S=1;
PC+=2;
}
Example
SETS ; Before execution S=0

; After execution S=1

Rev. 6.00 Sep 13, 2006 page 369 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.82 SETT SET T bit System Control Instruction
T Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
SETT 1-T 0000000000011000 1 1
Description

This instruction sets the T bit to 1.
Operation

SETT() /* SETT */

{
T=1;
PC+=2;
}
Example
SETT ; Before execution T=0

; After execution T=1

Rev. 6.00 Sep 13, 2006 page 370 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.83 SHAD SHift Arithmetic Dynamically Shift Instruction
Dynamic Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAD Rm, Rn When Rm = 0, 0100nnnnnmmML100 1 —
Rn <<Rm - Rn
When Rm < 0,

Rn>>Rm - [MSB - Rn]

Description

This instruction arithmetically shifts the contents of general register Rn. General register Rm
specifies the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, the MSB is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The left
shift range is 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

Rm <0 MSB LSB

MSB ———»

Rev. 6.00 Sep 13, 2006 page 371 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

Operation

SHAD(int mn) /*SHAD Rm Rn */

{
int sgn=R[n] & 0x80000000;
i f (sgn==0)
Rln] <<= (RlmM & 0x1F);
else if ((RIM & Ox1F) == 0) {
if ((Rin] & 0x80000000) == 0)
Rin] =0;
el se
R[n] = OxFFFFFFFF;
}
el se
Rin]=(long) R n] >> ((~RnM & Ox1F)+1);
PC+=2;
}
Example
SHAD R1, R2 ; Before execution R1=H'FFFFFFEC, R2 =H'80180000
; After execution R1=H'FFFFFFEC, R2 = HFFFFF801
SHAD R3, R4 ; Before execution R3 =H'00000014, R4 = H'FFFFF801

; After execution R3 =H'00000014, R4 = H'80100000

Rev. 6.00 Sep 13, 2006 page 372 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.84 SHAL SHift Arithmetic Left Shift Instruction
One-Bit Left
Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAL Rn T<Rn<0 0100nnnn00100000 1 MSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the left, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

Operation

SHAL(long n) /* SHAL Rn (Sane as SHLL) */

{
i f ((R[n]&x80000000)==0) T=0;
el se T=1,
R n] <<=1;
PC+=2,

}

Example
SHAL RO ; Before execution RO =H'80000001, T=0

; After execution RO =H'00000002, T =1

Rev. 6.00 Sep 13, 2006 page 373 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.85 SHAR SHift Arithmetic Right Shift Instruction
One-Bit Right
Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the right, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAR >
—

Operation

SHAR(I ong n) /* SHAR Rn */

{
| ong tenp;
i f ((R n]&x00000001)==0) T=0;
el se T=1;
if ((Rn]&0x80000000)==0) tenp=0;
el se tenp=1;
R n] >>=1;
if (tenp==1) R[n]|=0x80000000;
el se R n] &=0x7FFFFFFF;
PC+=2;

}

Example
SHAR RO ; Before execution RO =H'80000001, T=0

; After execution RO =H'C0000000, T=1

Rev. 6.00 Sep 13, 2006 page 374 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.86 SHLD SHift Logical Dynamically Shift Instruction
Dynamic Logical
Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLD Rm, Rn When Rm = 0, 0100nnnnmmMM1101 1 —
Rn <<Rm - Rn
When Rm < 0,

Rn>>Rm - [0 - Rn]

Description

This instruction logically shifts the contents of general register Rn. General register Rm specifies
the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, Os are added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The left
shift range is 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

Rm<0 MSB LSB

Rev. 6.00 Sep 13, 2006 page 375 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

SHLD(int mn)/*SHLD Rm Rn */

{
int sgn = Rini & 0x80000000;
if (sgn == 0)
Rln] <<= (RlmM & 0x1F);
elseif ((RRM & Ox1F) == 0)
Rin] =0;
el se
R[n] =(unsigned) R n] >> ((~R[mM & Ox1F)+1);
PC+=2;
}
Example
SHLD Rl1l, R2 ; Before execution R1=H'FFFFFFEC, R2 = H'80180000
; After execution R1 =H'FFFFFFEC, R2 =H'00000801
SHLD R3, R4 ; Before execution R3 =H'00000014, R4 = HFFFFF801

; After execution R3 =H'00000014, R4 =H'80100000

Rev. 6.00 Sep 13, 2006 page 376 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.87 SHLL SHift Logical Left Shift Instruction
One-Bit Left
Logical Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLL Rn T<Rn-0 0100nnnn00000000 1 MSB
Description

This instruction logically shifts the contents of general register Rn one bit to the left, and stores the
result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

[T} M

Operation

SHLL(long n) /* SHLL Rn (Same as SHAL) */

{
i f ((R[n]&x80000000)==0) T=0;
el se T=1,
R n] <<=1;
PC+=2,

}

Example
SHLL RO ; Before execution RO =H'80000001, T=0

; After execution RO =H'00000002, T =1

Rev. 6.00 Sep 13, 2006 page 377 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.88 SHLLn n bits SHift Logical Left Shift Instruction

n-Bit Left

Logical Shift

Execution

Format Summary of Operation Instruction Code States T Bit
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 1 —
Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the left, and
stores the result in Rn. The bits shifted out of the operand are discarded.

SHLL2 MSB LSB

SHLLS8 MSB LSB

SHLL16 MSB LSB

Rev. 6.00 Sep 13, 2006 page 378 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

SHLL2(long n) /* SHLL2 Rn */
{

R[n] <<=2;

PC+=2;

SHLL8(long n) /* SHLL8 Rn */

{
R[n] <<=8;
PC+=2;

SHLL16(1ong n) /* SHLL16 Rn */

{
Rl n] <<=16;
PC+=2;
}
Example
SHLL2 RO ; Before execution RO =H'12345678
; After execution RO =H'48D159E0
SHLL8 RO ; Before execution RO =H'12345678
. After execution RO =H'34567800
SHLL16 RO ; Before execution RO =H'12345678

. After execution RO =H'56780000

Rev. 6.00 Sep 13, 2006 page 379 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.89 SHLR SHift Logical Right Shift Instruction
One-Bit Right
Logical Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLR Rn 0-Rn->T 0100nnnn00000001 1 LSB
Description

This instruction logically shifts the contents of general register Rn one bit to the right, and stores
the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

o

SHLR

Operation

SHLR(long n) /* SHLR Rn */

{
i f ((R n]&x00000001)==0) T=0;
el se T=1;
R n] >>=1;
Rl n] &0x7FFFFFFF;
PC+=2;

}

Example
SHLR RO ; Before execution RO =H'80000001, T=0

. After execution RO =H'40000000, T =1

Rev. 6.00 Sep 13, 2006 page 380 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.90 SHLRn n bits SHift Logical Right Shift Instruction

n-Bit Right

Logical Shift

Execution

Format Summary of Operation Instruction Code States T Bit
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —
SHLR8 Rn Rn>>8 . Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —
Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the right, and
stores the result in Rn. The bits shifted out of the operand are discarded.

SHLR2 MSB LSB

SHLR8 MSB LSB

SHLR16 MSB LSB

Rev. 6.00 Sep 13, 2006 page 381 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

Operation
SHLR2(1 ong n) /* SHLR2 Rn */
{
R n] >>=2;
R[n] &0x3FFFFFFF;
PC+=2;
}
SHLR8(I ong n) /* SHLR8 Rn */
{
R[n] >>=8;
R[n] &0x00FFFFFF;
PC+=2;
}
SHLR16(1 ong n) /* SHLR16 Rn */
{
R n] >>=16;
R[n] &=0x0000FFFF;
PC+=2,
}
Example
SHLR2 RO ; Before execution RO =H'12345678
; After execution RO =H'048D159E
SHLR8 RO ; Before execution RO =H'12345678
; After execution RO =H'00123456
SHLR16 RO ; Before execution RO =H'12345678

; After execution RO =H'00001234

Rev. 6.00 Sep 13, 2006 page 382 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

991 SLEEP SLEEP System Control Instruction
Transition to Power-Down Mode (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
SLEEP Sleep 0000000000011011 4 —
Description

This instruction places the CPU in the power-down state.

In power-down mode, the CPU retains its internal state, but immediately stops executing
instructions and waits for an interrupt request. When it receives an interrupt request, the CPU exits
the power-down state.

SLEEP is a privileged instruction, and can only be used in privileged mode. Use of this instruction
in user mode will cause an illegal instruction exception.

Notes

SLEEP performance depends on the standby control register (STBCR). See Power-Down Modes
in hardware manual, for details.

Operation

SLEEP() /* SLEEP */

{
Sl eep_st andby();

}
Example

SLEEP ; Transition to power-down mode

Rev. 6.00 Sep 13, 2006 page 383 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

992 STC STore Control register System Control Instruction
Store from Control Register (Privileged Instruction)
Execution

Format Summary of Operation Instruction Code States T Bit
STC SR, Rn SR - Rn 0000nnNnNn00000010 2 —
STC GBR,Rn GBR - Rn 0000nnNnn00010010 2 —
STC VBR,Rn VBR - Rn 0000nnNnn00100010 2 —
STC SSR, Rn SSR - Rn 0000nnnn00110010 2 —
STC SPC,Rn SPC - Rn 0000nnNnn01000010 2 —
STC SGR,Rn SGR - Rn 0000nnNnn00111010 3 —
STC DBR, Rn DBR - Rn 0000nnnn11111010 2 —
STC RO_BANK, Rn RO_BANK - Rn 0000nnNnn10000010 2 —
STC R1_BANK, Rn R1_BANK - Rn 0000nnNnn10010010 2 —
STC R2_BANK, Rn R2_BANK - Rn 0000nnNnn10100010 2 —
STC R3_BANK, Rn R3_BANK - Rn 0000nnNnn10110010 2 —
STC R4_BANK, Rn R4_BANK - Rn 0000nnNnn11000010 2 —
STC R5_BANK, Rn R5_BANK - Rn 0000nnNnn11010010 2 —
STC R6_BANK, Rn R6_BANK - Rn 0000nnNnn11100010 2 —
STC R7_BANK, Rn R7_BANK - Rn 0000nnNnn11110010 2 —
STC.L SR, @-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 2 —
STC.L GBR, @-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 —
STC.L VBR, @-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 2 —
STC.L SSR, @-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 2 —
STC.L SPC, @-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnn01000011 2 —
STC.L SGR, @-Rn Rn-4 - Rn, SGR - (Rn) 0100nnnn00110010 3 —
STC.L DBR, @-Rn Rn-4 - Rn, DBR - (Rn) 0100nnnn11110010 2 —
STC.L RO_BANK, @-Rn Rn-4 - Rn, RO_BANK - (Rn) 0100nnnn10000011 2 —
STC.L R1_BANK, @-Rn Rn-4 - Rn, R1_BANK - (Rn) 0100nnnn10010011 2 —
STC.L R2_BANK, @-Rn Rn-4 - Rn, R2_BANK - (Rn) 0100nnnn10100011 2 —
STC.L R3_BANK, @-Rn Rn-4 - Rn, R3_BANK - (Rn) 0100nnnn10110011 2 —
STC.L R4_BANK, @-Rn Rn-4 - Rn, R4_BANK - (Rn) 0100nnnn11000011 2 —
STC.L R5_BANK, @-Rn Rn-4 - Rn,R5_BANK - (Rn) 0100nnnn11010011 2 —
STC.L R6_BANK, @-Rn Rn-4 - Rn, R6_BANK - (Rn) 0100nnnn11100011 2 —
STC.L R7_BANK, @-Rn Rn-4 - Rn, R7_BANK - (Rn) 0100nnnn11110011 2 —

Rev. 6.00 Sep 13, 2006 page 384 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Description

This instruction stores control register SR, GBR, VBR, SSR, SPC, SGR, DBR or Rm_BANK (m

= 0-7) in the destination.

Rm BANK operands are specified by the RB bit of the SR register:

when the RB bit is 1 Rm_BANKO is accessed,
when the RB bit is 0 Rm_BANKI1 is accessed.

Notes

STC/STC.L can only be used in privileged mode excepting STC GBR, Rn/STC.L GBR, @-Rn.
Use of these instructions in user mode will cause illegal instruction exceptions.

Operation
STCSR(i nt n) /* STC SR Rn :
{
R n] =SR;
PC+=2;
}
STCGBR(i nt n) /* STC GBR, Rn */
{
R n] =SGR,
PC+=2;
}
STCVBR(i nt n) /* STC VBR Rn :
{
R[n] =VBR;
PC+=2;
}
STCSSR(i nt n) /* STC SSR Rn :
{
R[n] =SSR;
PC+=2;

Privil eged */

Privileged */

Privileged */

Rev. 6.00 Sep 13, 2006 page 385 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

}
STCSPC(i nt n) [* STC SPC,Rn : Privileged */
{
R n] =SPC,
PC+=2;
}
STCSCR(i nt n) /[* STC SGR, Rn : Privileged */
{
R n] =SGR,
PC+=2;
}
STCDBR(i nt n) /* STC DBR,Rn : Privileged */
{
R[n] =DBR,
PC+=2;
}
STCRm BANK(i nt n) /* STC RmBANK, Rn : Privileged */
I* me0-7 */
{
R[n] =Rm_BANK;
PC+=2;
}
STCVMBR(i nt n) /* STC.L SR @Rn : Privileged */
{
Rl n] —=4;
Wite Long(R[n], SR);
PC+=2;
}
STCMGBR(i nt n) /* STC.L GBR @Rn */

Rev. 6.00 Sep 13, 2006 page 386 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

{
R n] —=4;
Wite_Long(R n], GBR);
PC+=2;
}
STCWBR(i nt n) /* STC.L VBR @Rn : Privileged */
{
R n] —=4;
Wite_Long(R n], VBR);
PC+=2;
}
STCMBSR(i nt n) /* STC.L SSR, @Rn : Privileged */
{
Rl n] —=4;
Wite_ Long(R[n], SSR);
PC+=2;
}
STCMSPC(i nt n) /* STC.L SPC,@Rn : Privileged */
{
R n] —=4;
Wite_Long(R n], SPC);
PC+=2,
}
STCMSGER(i nt n) /* STC.L SGR @Rn : Privileged */
{
R n] —=4;
Wite_ Long(R[n], SCR);
PC+=2;
}
STCVDBR(i nt n) /* STC.L DBR, @Rn : Privileged */

Rev. 6.00 Sep 13, 2006 page 387 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

{
R n] —=4;
Wite_Long(R[n], DBR);
PC+=2;

}

STCMRm BANK(i nt n) /* STC.L RmBANK, @ Rn : Privil eged */
[* me0-7 */

{
R n] —=4;
Wite_Long(R[n], Rm BANK);
PC+=2;

}

Possible Exceptions:
* General illegal instruction exception

* Slot illegal instruction exception
* Data TLB miss exception
» Data TLB protection violation exception

e Address error

Rev. 6.00 Sep 13, 2006 page 388 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.93 STS STore System register System Control Instruction

Store from

System Register

Execution

Format Summary of Operation Instruction Code States T Bit
STS MACH,Rn MACH - Rn 0000nnNNN00001010 1 —
STS MACL,Rn MACL - Rn 0000nnNn00011010 1 —
STS PR,Rn PR - Rn 0000nnNnNn00101010 1 —
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 1 —

Description

This instruction stores system register MACH, MACL, or PR in the destination.

Operation

STSMACH(i nt n)
{
Rl n] =MACH,
PC+=2;

STSMACL(i nt n)
{
R[n] =MACL;
PC+=2;

STSPR(i nt n)
{
R n] =PR;
PC+=2;

/* STS MACH, Rn */

/* STS MACL, Rn */

/* STS PR Rn */

Rev. 6.00 Sep 13, 2006 page 389 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

STSMVACH(i nt n) /* STS.L MACH @Rn */
{
Rl n] —=4;
Wite_Long(R n], MACH);
PC+=2;
}
STSMVACL(i nt n) /* STS.L MACL, @Rn */
{
Rl n] —=4;
Wite_Long(R[n], MACL);
PC+=2;
}
STSMPR(i nt n) /* STS.L PR @Rn */
{
Rl n] —=4;
Wite_Long(R n], PR);
PC+=2,
}

Possible Exceptions:
* Data TLB miss exception

» Data TLB protection violation exception
* Address error

Example
STS MACH, RO ;. Before execution
; After execution
STS. L PR, @ R15 ;. Before execution

; After execution

RO = H'FFFFFFFF, MACH = H'00000000
RO =H'00000000

R15 =H'10000004

R15=H'10000000, (R15) =PR

Rev. 6.00 Sep 13, 2006 page 390 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.94 STS STore from FPU
System register System Control Instruction

Store from FPU
System Register

Execution
Format Summary of Operation Instruction Code States T Bit
STS FPUL,Rn FPUL - Rn 0000nnnNn01011010 1 —
STS FPSCR,Rn FPSCR - Rn 0000nnNnNn01101010 1 —
STS.L FPUL,@-Rn Rn-4 - Rn,FPUL - (Rn) 0100nnnn01010010 1 —
STS.L FPSCR,@-Rn Rn-4 -, Rn, FPSCR - (Rn) 0100nnnn01100010 1 —

Description

This instruction stores FPU system register FPUL or FPSCR in the destination.

Rev. 6.00 Sep 13, 2006 page 391 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation
STS(int n, int *FPUL) /* STS FPUL, Rn */
{
RIn] = *FPUL;
PC+=2;
}
STS_SAVE(int n, int *FPUL) /* STS.L FPUL, @Rn */
{
Rin]-=4;
Wite_Long(R n], *FPUL)
PC+=2;
}
STS(int n) /* STS FPSCR, Rn */
{

R[n] =FPSCR&0x003FFFFF;
PC+=2;
}
STS RESTORE(int n) /* STS.L FPSCR @Rn */
{
R n] - =4,
Wite_Long(R n], FPSCR&Ox003FFFFF)
PC+=2;
}

Possible Exceptions:
* Data TLB miss exception

» Data TLB protection violation exception
* Address error

Rev. 6.00 Sep 13, 2006 page 392 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Examples

STS

Example 1:

MOV.L #H 12ABCDEF, R12

LDS R12, FPUL

STS FPUL, R13
; After executing the STS instruction:
; R13 = 12ABCDEF

Example 2:
STS FPSCR, R2
; After executing the STS instruction:

; The current content of FPSCR is stored in register R2

STS.L
Example 1:
MOV.L #H 0C700148, R7
STS.L FPUL, @R7
; Before executing the STS.L instruction:
; R7=0C700148
; After executing the STS.L instruction:
; R7=0C700144, and the content of FPUL is saved at memory
; locatio\n 0C700144.

Example 2:
MOV.L #H 0C700154, R8
STS.L FPSCR, @RS
; After executing the STS.L instruction:
; The content of FPSCR is saved at memory location 0C700150.

Rev. 6.00 Sep 13, 2006 page 393 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.95 SUB SUBtract binary

Binary Subtraction

Arithmetic Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
SUB Rm,Rn Rn-Rm - Rn 0011nnnnnmml000 1 —
Description

This instruction subtracts the contents of general register Rm from the contents of general register
Rn and stores the result in Rn. For immediate data subtraction, ADD #imm,Rn should be used.

Operation

SUB(long m long n) /* SUB RmRn */
{

Rn]-=Rni;

PC+=2;

}

Example

SUB RO, R1

; After execution

; Before execution RO =H'00000001, R1 = H'80000000
R1 = H'7FFFFFFF

Rev. 6.00 Sep 13, 2006 page 394 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.96 SUBC SUBtract with Carry Arithmetic Instruction

Binary Subtraction with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
SUBC Rm,Rn Rn—Rm-T - Rn, borrow - T0011lnnnnnmmm1010 1 Borrow

Description

This instruction subtracts the contents of general register Rm and the T bit from the contents of
general register Rn, and stores the result in Rn. A borrow resulting from the operation is reflected
in the T bit. This instruction is used for subtractions exceeding 32 bits.

Operation

SUBC(long m long n) /* SUBC Rm Rn */

{
unsi gned | ong t npO, t npl;
tmpl=R(n]-R(n;
t np0=R[{ n] ;
RIn] =tnpl-T;
if (tnpO<tnpl) T=1;
el se T=0;
if (tnpl<R[n]) T=1;
PC+=2;
}
Example
CLRT : RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)
SUBC R3,Rl ; Before execution T =0, R1 =H'00000000, R3 = H'00000001
; After execution T =1, R1 = HFFFFFFFF
SUBC R2,R0 ; Before execution T =1, R0 =H'00000000, R2 = H'00000000

; After execution T =1, R0O=H'FFFFFFFF

Rev. 6.00 Sep 13, 2006 page 395 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.97 SUBV SUBtract with (V flag)
underflow check Arithmetic Instruction
Binary Subtraction
with Underflow Check
Execution

Format Summary of Operation Instruction Code States T Bit
SUBV Rm,Rn Rn—-Rm - Rn, underflow -~ T 0011nnnnnmmmmi011 1 Underflow
Description

This instruction subtracts the contents of general register Rm from the contents of general register
Rn, and stores the result in Rn. If underflow occurs, the T bit is set.

Operation

SUBV(long m long n) /* SUBY Rm Rn */
{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;
el se dest=1;
if ((long) R m >=0) src=0;
el se src=1;
src+=dest;
R n]-=R{ni;
if ((long)R n]>=0) ans=0;
el se ans=1;
ans+=dest ;
if (src==1) {
if (ans==1) T=1;
el se T=0;
}
el se T=0;
PC+=2;

Rev. 6.00 Sep 13, 2006 page 396 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Example
SUBV RO, RL ; Before execution RO =H'00000002, R1 =H'80000001
; After execution R1=H"7FFFFFFF, T=1
SUBV R2,R3 ; Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

; After execution R3 =H'80000000, T =1

Rev. 6.00 Sep 13, 2006 page 397 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.98 SWAP SWAP register halves Data Transfer Instruction
Upper-/Lower-Half
Swap
Execution
Format Summary of Operation Instruction Code States T Bit
SWAP.B Rm,Rn Rm - lower-2-byte upper-/ 0110nnnnmmmi000 1 —
lower-byte swap - Rn
SWAP.W Rm,Rn Rm - upper-/lower-word 0110nnnnnmmmmi001 1
swap - Rn
Description

This instruction swaps the upper and lower parts of the contents of general register Rm, and stores
the result in Rn.

In the case of a byte specification, the 8 bits from bit 15 to bit 8 of Rm are swapped with the 8 bits
from bit 7 to bit 0. The upper 16 bits of Rm are transferred directly to the upper 16 bits of Rn.

In the case of a word specification, the 16 bits from bit 31 to bit 16 of Rm are swapped with the 16
bits from bit 15 to bit 0.

Operation

SWAPB(1 ong m 1ong n) /* SWAP.B Rm Rn */
{
unsi gned | ong tenpO, tenpl;

t enp0=R[n] &xFFFF0000;
t empl=(R[n] &x000000FF) <<8;
R n] =(R nj &0x0000FF00) >>8;
Rin] =R n] | tenpl|tenpO;

PC+=2;

}

SWAPW I ong m |ong n) /* SWAP. WRm Rn */
{

unsi gned | ong tenp;

Rev. 6.00 Sep 13, 2006 page 398 of 424
REJ09B0318-0600

RENESAS

Section 9

Instruction Descriptions

t enp=(R ni >>16) &0x0000FFFF;

R n] =R[nj <<16;
R n] | =t enp;
PC+=2;
}
Example
SWAP.B RO, R1 ; Before execution
; After execution
SWAP. W RO, R1 ; Before execution

; After execution

RO =H'12345678
R1=H'12347856
RO =H'12345678
R1=H'56781234

Rev. 6.00 Sep 13, 2006 page 399 of 424

RENESAS

REJ09B0318-0600

Section 9 Instruction Descriptions

9.99 TAS Test And Set Logical Instruction

Memory Test
and Bit Setting

Execution
Format Summary of Operation Instruction Code States T Bit
TAS.B @Rn If(Rn)=0,1 - T,else0 - T 0100nnnn00011011 5 Test
1 - MSB of (Rn) result

Description

This instruction purges the cache block corresponding to the memory area specified by the
contents of general register Rn, reads the byte data indicated by that address, and sets the T bit to 1
if that data is zero, or clears the T bit to O if the data is nonzero. The instruction then sets bit 7 to 1
and writes to the same address. The bus is not released during this period.

The purge operation is executed as follows.

In a purge operation, data is accessed using the contents of general register Rn as the effective
address. If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the contents
of that cache block are written back to external memory, and the cache block is then invalidated
(by clearing the V bit to 0). If there is a cache hit and the corresponding cache block is clean (U bit
= 0), the cache block is simply invalidated (by clearing the V bit to 0). A purge is not executed in
the event of a cache miss, or if the accessed memory location is non-cacheable.

The two TAS.B memory accesses are executed automatically. Another memory access is not
executed between the two TAS.B accesses.

Rev. 6.00 Sep 13, 2006 page 400 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

Operation

TAS(int n) /* TAS.B @n */

{
int tenp;

temp=(int)Read_Byte(R[n]); /* Bus Lock */
if (tenp==0) T=1,;
el se T=0;
t enp| =0x00000080;
Wite Byte(R[n],tenp); /* Bus unlock */
PC+=2;

}

Possible Exceptions:
* Data TLB miss exception

» Data TLB protection violation exception
» Initial page write exception

e Address error

Exceptions are checked taking a data access by this instruction as a byte store.

Rev. 6.00 Sep 13, 2006 page 401 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.100 TRAPA TRAP Always System Control Instruction
Trap Exception
Handling
Execution
Format Summary of Operation Instruction Code States T Bit
TRAPA #imm imm - TRA, PC +2 - SPC, 1100001%iiiiiiii 7 —

SR - SSR, R15 - SGR,
1 -~ SR.MD/BL/RB,
0x160 - EXPEVT,
VBR + H'00000100 - PC

Description

This instruction starts trap exception handling. The values of (PC + 2), SR, and R15 are saved to
SPC and SSR, and 8-bit immediate data is stored in the TRA register (bits 9 to 2). The processor
mode is switched to privileged mode (the MD bit in SR is set to 1), and the BL bit and RB bit in
SR are set to 1. As a result, exception and interrupt requests are masked (not accepted), and the
BANKI registers (RO BANKI1 to R7 BANKI) are selected. Exception code 0x160 is written to
the EXPEVT register (bits 11 to 0). The program branches to address (VBR + H'00000100),
indicated by the sum of the VBR register contents and offset H'00000100.

Rev. 6.00 Sep 13, 2006 page 402 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

Operation

TRAPA(int i) /* TRAPA #i mm */
{
int imm

i mm=(0Ox000000FF & i);
TRA=I Mk<2;

SSR=SR;

SPC=PC+2;

SCR=R15;

SR. MD=1,;

SR. BL=1;

SR. RB=1;
EXPEVT=0x00000160;
PC=VBR+H 00000100;

Rev. 6.00 Sep 13, 2006 page 403 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.101 TST TeST logical Logical Instruction
AND Operation
T Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
TST Rm,Rn Rn & Rm; if result is 0, 0010nnnnnmMmmM1000 1 Test
15 T,else0 - T result
TST #imm,R0O RO & imm; if result is 0, 11001000iiiiiiii 1 Test
15 T,else0 - T result
TST.B #imm,@(R0,GBR) (RO + GBR) & imm; 11001100iiiiiiii 3 Test
ifresultis 0,1 - T, result

else0 - T

Description

This instruction ANDs the contents of general registers Rn and Rm, and sets the T bit if the result
is zero. If the result is nonzero, the T bit is cleared. The contents of Rn are not changed.

This instruction can be used to AND general register RO contents with zero-extended 8-bit

immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data. The contents of RO or the memory are not changed.

Operation

TST(long m long n) /* TST Rm Rn */
{

if ((RIn]&R[n)==0) T=1;

el se T=0;

PC+=2,

TSTI(long i) /* TST #inmm RO */
{
I ong tenp;

t emp=R] 0] & 0x000000FF & (long)i);
if (tenp==0) T=1,;
el se T=0;

Rev. 6.00 Sep 13, 2006 page 404 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

PC+=2;

TSTMlong i) /* TST.B #i mm @R0, GBR) */

{
I ong tenp;
t emp=(1 ong) Read_Byt e(GBR+R[0]) ;
t enp&=(0x000000FF & (long)i);
if (tenp==0) T=1,;
el se T=0;
PC+=2;
}
Example
TST RO, RO ; Before execution RO =H'00000000
; After execution T=1
TST #H 80, RO ; Before execution RO =H'FFFFFF7F

; After execution T=1
TST. B #H A5, @ R0, GBBR) ; Before execution (R0,GBR)=H'AS5

; After execution T=0

Rev. 6.00 Sep 13, 2006 page 405 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

9.102 XOR eXclusive OR logical Logical Instruction

Exclusive

Logical OR

Execution
Format Summary of Operation Instruction Code States T Bit
XOR Rm,Rn Rn*Rm - Rn 0010nnnnmmm010 1 —
XOR #imm,RO RO A imm - RO 11001010iiiiiiii 1 —
XOR.B #imm,@(R0,GBR) (RO + GBR) *imm - 11001110iiiiiiii 4 —
(RO + GBR)

Description

This instruction exclusively ORs the contents of general registers Rn and Rm, and stores the result
in Rn.

This instruction can be used to exclusively OR register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to exclusively OR 8-bit memory
with 8-bit immediate data.

Operation

XOR(long m long n) /* XOR Rm Rn */
{

RIn]"=Rn;

PC+=2,

XORI(long i) /* XOR #inmRO */

{
R[0] ~=(0X000000FF & (1l ong)i);
PC+=2;

XORMlong i) [/* XOR B #i mm @RO, GBR) */
{
int tenp;

Rev. 6.00 Sep 13, 2006 page 406 of 424
REJ09B0318-0600

RENESAS

Section 9 Instruction Descriptions

t enp=(1 ong) Read_Byt e(GBR+R[0]) ;
t enp”=(0Xx000000FF &(1 ong)i);
Wite_Byte(GBR+R[0], tenp);

PC+=2;
}
Example
XOR RO, R1 ; Before execution RO =H'AAAAAAAA, R1 =H'55555555
; After execution R1 = HFFFFFFFF
XOR #H FO, RO ; Before execution RO = H'FFFFFFFF

; After execution RO = H'FFFFFFOF
XOR B #H A5, @ R0, GBR) ; Before execution (R0,GBR)=H'A5
; After execution (R0,GBR)=H'00

Rev. 6.00 Sep 13, 2006 page 407 of 424
REJ09B0318-0600
RENESAS

Section 9 Instruction Descriptions

9.103 XTRCT eXTRaCT Data Transfer Instruction
Middle Extraction
from Linked Registers
Execution
Format Summary of Operation Instruction Code States T Bit

XTRCT Rm,Rn Middle 32 bits of Rm:Rn - Rn 0010nnnnmmm101 1 —

Description

This instruction extracts the middle 32 bits from the 64-bit contents of linked general registers Rm
and Rn, and stores the result in Rn.

MSB LSB MSB LSB
Rm Rn
\
Rn
Operation
XTRCT(long m 1long n) /* XTRCT Rm Rn */
{

unsi gned | ong tenp;

t enp=(R[ni <<16) &xFFFFO000;
R n] =(R{ n] >>16) &0x0000FFFF;

R n] | =t enp;
PG+=2;

}

Example

XTRCT RO, R1L ; Before execution RO =H'01234567, R1 = H'89ABCDEF
; After execution R1 =H'456789AB

Rev. 6.00 Sep 13, 2006 page 408 of 424
REJ09B0318-0600
RENESAS

Appendix A Instruction Codes

Appendix A Instruction Codes

Al Instruction Set by Addressing Mode

Table A.1 Instruction Set by Addressing Mode

Addressing Mode Category Sample Instruction Type
No operand — NOP 13
Register direct Destination operand only MOVT Rn 24
Source and destination ADD Rm,Rn 56
operands
Transfer to control register or LDC Rm,SR 16
system register
Transfer from control register or STS MACH,Rn 17
system register
Register indirect Destination operand only JMP @Rn 7
Register direct data transfer MOV.L Rm,@Rn 13
Register indirect with Multiply-and-accumulate MAC.W @Rm+,@Rn+ 2
post-increment operation
Direct data transfer from MOV.L @Rm+,Rn 6
register
Load to control register or LDC.L @Rm+SR 12
system register
Register indirect with Direct data transfer from MOV.L Rm,@-Rn 6
pre-decrement register
Store from control register or STC.L SR,@-Rn 13

system register

Register indirect with Register direct data transfer MOV.L Rm,@(disp,Rn) 6
displacement

Indexed register Register direct data transfer MOV.L Rm,@(RO,Rn) 12
indirect

GBR indirect with Register direct data transfer MOV.L RO,@(disp,GBR) 6
displacement

Indexed GBR indirect Immediate data transfer AND.B #imm,@(R0,GBR) 4
PC relative with Direct data transfer to register MOV.L @(disp,PC),Rn 3

displacement

Rev. 6.00 Sep 13, 2006 page 409 of 424
REJ09B0318-0600

RENESAS

Appendix A Instruction Codes
Addressing Mode Category Sample Instruction Type
PC relative using Rn Branch instruction BRAF Rn 2
PC relative Branch instruction BRA label 6
Immediate Load to register FLDIO FRn 2
Register direct arithmetic/logic ADD #imm,Rn 7
operation
Exception vector specification = TRAPA #mm 1
Total 234

(1) No Operand

Table A.2 No Operand
Instruction Operation Instruction Code Privileged T Bit
DIVOU 0 - M/IQ/T 0000000000011001 — 0
RTS Delayed branch, PR - PC 0000000000001011 — —
CLRMAC 0 -~ MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0-T 0000000000001000 — 0
LDTLB PTEH/PTEL - TLB 0000000000111000 Privileged —
NOP No operation 0000000000001001 — —
RTE Delayed branch, SSR/SPC -~ 0000000000101011 Privileged —
SR/PC
SETS 1-S 0000000001011000 — —
SETT 1-T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011 Privileged —
FRCHG ~FPSCR.FR - FPSCR.FR 1111101111111101 — —
FSCHG ~FPSCR.SZ - FPSCR.SZ 1111001111111101 — —

Rev. 6.00 Sep 13, 2006 page 410 of 424

REJ09B0318-0600

RENESAS

Appendix A

Instruction Codes

(2) Register Direct

Table A.3 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit
MOVT Rn T - Rn 0000nnnn00101001 — —
CMP/PZ Rn WhenRn=0,1-T 0100nnnn00010001 — Comparison
Otherwise, 0 - T result
CMP/PL Rn WhenRn>0,1 - T 0100nnnn00010101 — Comparison
Otherwise, 0 — T result
DT Rn Rn -1 - Rn; when Rn =0, 0100nnnn00010000 — Comparison
1-T result
WhenRn#0,0 - T
ROTL Rn T - Rn -« MSB 0100nnnn00000100 — MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101 — LSB
ROTCL Rn T<«Rn-T 0100nnnn00100100 — MSB
ROTCR Rn T-Rn-T 0100nnnn00100101 — LSB
SHAL Rn T<Rn-~0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 — LSB
SHLL Rn T-Rn-0 0100nnnn00000000 — MSB
SHLR Rn 0O-Rn-T 0100nnnn00000001 — LSB
SHLL2 Rn Rn<<2 -~ Rn 0100nnnn00001000 — —
SHLR2 Rn Rn>>2 -, Rn 0100nnnn00001001 — —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —
FABS FRn FRn & H'7FFF FFFF - FRn 1111nnnn01011101 — —
FNEG FRn FRn OH'80000000 - FRn 1111nnnn01001101 — —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — —
FABS DRn DRn & H'7FFF FFFF FFFF 1111nnn001011101 — —
FFFF —» DRn
FNEG DRn DRn * H'8000 0000 0000 0000 1111nnn001001101 — —
- DRn
FSQRT DRn VvDRn - DRn 1111nnn001101101 — —

Rev. 6.00 Sep 13, 2006 page 411 of 424
REJ09B0318-0600

RENESAS

Appendix A

Instruction Codes

Table A.4 Source and Destination Operands

Instruction Operation Instruction Code Privileged T Bit
MOV Rm,Rn Rm - Rn 0110nnnnmm®D011 — —
SWAP.B Rm,Rn Rm - swap lower 2 bytes 0110nnnnmmmml000 — —
- Rn
SWAP.W Rm,Rn Rm - swap upper/lower 0110nnnnmMmMMmM1001 — —
words —» Rn
XTRCT Rm,Rn Rm:Rn middle 32 bits -~ Rn 0010nnnnmmm1101 — —
ADD Rm,Rn Rn +Rm - Rn 0011lnnnnnmMmMm1100 — —
ADDC Rm,Rn Rn+Rm+T - Rn,carry -~ T 001lnnnnmmmil110 — Carry
ADDV Rm,Rn Rn+Rm - Rn, overflow - T 0011nnnnmmmmllll — Overflow
CMP/EQ Rm,Rn WhenRn=Rm,1 - T 0011nnnnnmmO000 — Comparison
Otherwise, 0 - T result
CMP/HS Rm,Rn When Rn = Rm (unsigned), 0011nnnnmmm®OO010 — Comparison
1T result
Otherwise, 0 - T
CMP/GE Rm,Rn When Rn = Rm (signed), 1 - T 0011nnnnnmm©0011 — Comparison
Otherwise, 0 - T result
CMP/HI' Rm,Rn When Rn > Rm (unsigned), 001innnnmmmm®O110 — Comparison
1T result
Otherwise, 0 - T
CMP/GT Rm,Rn When Rn > Rm (signed), 1 -~ T 0011nnnnmmm0111 — Comparison
Otherwise, 0 - T result
CMP/STR Rm,Rn When any bytes are equal, 0010nnnnmmml100 — Comparison
1T result
Otherwise, 0 - T
DIV1 Rm,Rn 1-step division (Rn + Rm) 0011nnnnmmm0100 — Calculation
result
DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmmm0111 — Calculation
MSB of Rm - M, M"Q - T result
DMULS.L Rm,Rn Signed, Rn x Rm - MAC, 001innnnmmmmll01 — —
32 x 32 - 64 bits
DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 001innnnmmm®O101 — —
32 x 32 - 64 bits
EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmm1110 — —
byte -~ Rn
EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmilll — —
word - Rn
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmm1100 — —

byte -~ Rn

Rev. 6.00 Sep 13, 2006 page 412 of 424

REJ09B0318-0600

RENESAS

Appendix A Instruction Codes
Instruction Operation Instruction Code Privileged T Bit
EXTUW Rm,Rn Rm zero-extended from 0110nnnnmmm1101 — —
word - Rn
MUL.L Rm,Rn Rn x Rm - MACL 0000nNnNNMMO111 — —
32 x 32 - 32 bits
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnmmMMm111l — —
16 x 16 — 32 bits
MULU.W Rm,Rn Unsigned, Rn x Rm -~ MACL 0010nnnnmmmml110 — —
16 x 16 — 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmi01l — —
NEGC Rm,Rn O0—-Rm-T - Rn,borrow - T 0110nnnnmmmm1010 — Borrow
SUB Rm,Rn Rn-—Rm - Rn 0011nnnnmmm1000 — —
SUBC Rm,Rn Rn—Rm-T - Rn, borrow - T 0011nnnnnmm1010 — Borrow
SUBV Rm,Rn Rn —Rm - Rn, underflow - T 001lnnnnmmmil01l1 — Underflow
AND Rm,Rn Rn & Rm - Rn 0010nnnnmmm1001 — —
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmO111 — —
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmml011 — —
TST Rm,Rn Rn & Rm; when result = 0, 0010nnnnmMmmm1000 — Test result
1-T
Otherwise, 0 - T
XOR Rm,Rn RnORm - Rn 0010nnnnmMM1010 — —
SHAD Rm,Rn When Rn =0, Rn <<Rm - Rn 0100nnnnmmm1100 — —
When Rn <0, Rn>>Rm -
[MSB - Rn]
SHLD Rm,Rn When Rn =0, Rn << Rm - Rn 0100nnnnmmml101 — —
When Rn <0, Rn>>Rm -
[0 - Rn]
FMOV FRm,FRn FRm - FRn 1111nnnnmmm1100 — —
FMOV DRm,DRn DRm - DRn 11121nnnOmm01100 — —
FADD FRm,FRn FRn + FRm - FRn 1111nnnnnmm0000 — —
FCMP/EQ FRm,FRn When FRn=FRm,1 - T 111innnnmmmmD100 — Comparison
Otherwise, 0 - T result
FCMP/GT FRm,FRn When FRn>FRm, 1 - T 1111nnnnmmm0101 — Comparison
Otherwise, 0 - T result
FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmmoO0011 — —
FMAC FRO,FRm,FRn FRO*FRm + FRn - FRn 1111nnnnnmm1110 — —
FMUL FRm,FRn FRn*FRm - FRn 1111nnnnnmmmm0010 — —
FSUB FRm,FRn FRn - FRm - FRn 1111nnnnnmm0001 — —

Rev. 6.00 Sep 13, 2006 page 413 of 424

RENESAS

REJ09B0318-0600

Appendix A Instruction Codes
Instruction Operation Instruction Code Privileged T Bit
FADD DRm,DRn DRn + DRm - DRn 1111nnnOnNMMD0O000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - T 1111nnnOMmmMO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT DRm,DRn When DRn>DRm, 1 - T 1111nnnOMmO0101 — Comparison
Otherwise, 0 - T result
FDIV DRm,DRn DRn /DRm - DRn 1111nnnOmmO0011 — —
FMUL DRm,DRn DRn *DRm - DRn 1111nnnONMMD0010 — —
FSUB DRm,DRn DRn - DRm - DRn 1111nnnOnmmD0001 — —
FMOV DRm,XDn DRm - XDn 1111nnn1nm01100 — —
FMOV XDPm,DRn XDPm - DRn 1111nnnOMmMM11100 — —
FMOV XDm,XDn XDm - XDn 1111nnninmmil1100 — —
FIPR FVm,FVn inner_product [FVm, FVn] - 1111nnmml1101101 — —
FR[n + 3]
FTRV XMTRX,FVn transform_vector [XMTRX, FVn] 1111nn0111111101 — —
- FVn
Table A.5 Transfer to Control Register or System Register
Instruction Operation Instruction Code Privileged T Bit
LDC Rm,SR Rm - SR 0100mMmmMmD00001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100mMmMD0011110 — —
LDC Rm,VBR Rm - VBR 0100mmmD0101110 Privileged —
LDC Rm,SSR Rm - SSR 0100mmMm00111110 Privileged —
LDC Rm,SPC Rm - SPC 0100nmMmMD1001110 Privileged —
LDC Rm,DBR Rm - DBR 0100mmm11111010 Privileged —
LDC Rm,Rn_BANK Rm - Rn_BANK (n=0to7) 0100mmmminnn1110 Privieged —
LDS Rm,MACH Rm - MACH 0100mMM®D0001010 — —
LDS Rm,MACL Rm - MACL 0100mMMM®D0011010 — —
LDS Rm,PR Rm - PR 0100mMD0101010 — —
FLDS FRm,FPUL FRm - FPUL 1111mmm©00011101 — —
FTRC FRm,FPUL (long) FRm - FPUL 1111nmmm©00111101 — —
FCNVDS DRm,FPUL double_to_ floatiDRm] - FPUL 1111mm©010111101 — —
FTRC DRm,FPUL (long) DRm - FPUL 1111nmm®D00111101 — —
LDS Rm,FPSCR Rm - FPSCR 0100mM®D1101010 — —
LDS Rm,FPUL Rm - FPUL 0100mM®D1011010 — —

Rev. 6.00 Sep 13, 2006 page 414 of 424

REJ09B0318-0600

RENESAS

Appendix A

Instruction Codes

Table A.6 Transfer from Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit
STC SR,Rn SR - Rn 0000nnnn00000010 Privileged —
STC GBR,Rn GBR - Rn 0000nnnn00010010 — —
STC VBR,Rn VBR - Rn 0000nnnn00100010 Privileged —
STC SSR,Rn SSR - Rn 0000nnnn00110010 Privileged —
STC SPC,Rn SPC - Rn 0000nnnn01000010 Privileged —
STC SGR,Rn SGR - Rn 0000nnnn00111010 Privileged —
STC DBR,Rn DBR - Rn 0000nnnn11111010 Privileged —
STC Rm_BANK,Rn Rm_BANK - Rn(m=0to7) 0000nnnnlmm0010 Privieged —
STS MACH,Rn MACH - Rn 0000nnnn00001010 — —
STS MACL,Rn MACL - Rn 0000nnNnn00011010 — —
STS PR,Rn PR - Rn 0000nnnNn00101010 — —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 — —
FLOAT FPUL,FRn (float) FPUL - FRn 1111nnnn00101101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] - DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL — DRn 1111nnn000101101 — —
STS FPSCR,Rn FPSCR - Rn 0000nnnn01101010 — —
STS FPUL,Rn FPUL - Rn 0000nnNnn01011010 — —

Rev. 6.00 Sep 13, 2006 page 415 of 424

RENESAS

REJ09B0318-0600

Appendix A

Instruction Codes

(3) Register Indirect

Table A.7 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit
TAS.B @Rn When (Rn)=0,1 - T 0100nnnn00011011 — Test result
Otherwise, 0 - T
In both cases, 1 -~ MSB of (Rn)
JMP @Rn Delayed branch, Rn -~ PC 0100nnnn00101011 — —
JSR @Rn Delayed branch, PC +4 - PR, 0100nnnn00001011 — —
Rn - PC
OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —
OCBP @Rn Writes back and invalidates 0000nnnn10100011 — —
operand cache block
OCBWB @Rn Writes back operand cache block 0000nnnn10110011 — —
PREF @Rn (Rn) - operand cache 0000nnnn10000011 — —
Table A.8 Register Direct Data Transfer
Instruction Operation Instruction Code Privileged T Bit
MOV.B Rm,@Rn Rm - (Rn) 0010nnnnAMMMOO000 — —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmm0001 — —
MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmm0010 — —
MOV.B @Rm,Rn (Rm) - sign extension -~ Rn 0110nnnnmmm0000 — —
MOV.W @Rm,Rn (Rm) - sign extension -~ Rn 0110nnnnmmm0001 — —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnnmMMmO010 — —
MOVCA.L RO,@Rn RO - (Rn) (without fetching 0000nnnn11000011 — —
cache block)
FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnmmm1000 — —
FMOV.S FRm,@Rn FRm - (Rn) 111innnnmmmil010 — —
FMOV @Rm,DRn (Rm) -~ DRn 1111nnnOmmmML000 — —
FMOV DRm,@Rn DRm - (Rn) 1111nnnnmmm01010 — —
FMOV @Rm,XDn (Rm) - XDn 1111nnn1mmmmil000 — —
FMOV XDm,@Rn XDm - (Rn) 1111nnnnmmm1010 — —

Rev. 6.00 Sep 13, 2006 page 416 of 424

REJ09B0318-0600

RENESAS

Appendix A Instruction Codes

(4) Register Indirect with Post-Increment

Table A.9 Multiply-and-Accumulate Operation

Instruction Instruction Code

MACL @Rm+@Rn+

Operation

Signed, (Rn) x (Rm) + MAC -~ MAC 0000nnnnmmmmi111
Rn+4 - Rn,Rm+4 - Rm
32 x 32 + 64 - 64 bits

Signed, (Rn) x (Rm) + MAC -~ MAC 0100nnnnmmmmi111
Rn+2 - Rn,Rm+2 - Rm
16 x 16 + 64 - 64 bits

Privileged T Bit

MACW @Rm+ @Rn+

Table A.10 Direct Data Transfer from Register

Instruction Operation Instruction Code Privileged T Bit

MOV.B @Rm+,Rn (Rm)- sign extension - Rn, 0110nnnnmmm0100 — —
Rm+1 - Rm

MOV.W @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmm0101 — —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnnmMMmD110 — —

FMOV.S @Rm+,FRn (Rm) -~ FRn,Rm+4 - Rm 1111nnnnnmmm1001 — —

FMOV @Rm+,DRn (Rm) -~ DRn,Rm+8 -~ Rm 1111nnnOMmmm1001 — —

FMOV @Rm+,XDn (Rm) - XDn, Rm +8 - Rm 1111nnnlpmm1001 — —

Table A.11 Load to Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit
LDC.L @Rm+,SR (Rm) - SR,Rm +4 - Rm 0100nmMM®D0000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) - GBR,Rm +4 . Rm 0100nMmMD0010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm +4 -, Rm 0100mMM®D0100111 Privileged —
LDC.L @Rm+,SSR (Rm) - SSR,Rm +4 —. Rm 0100nmM®D0110111 Privileged —
LDC.L @Rm+,SPC (Rm) - SPC,Rm +4 —. Rm 0100nmM®D1000111 Privileged —
LDC.L @Rm+,DBR (Rm) - DBR,Rm +4 - Rm 0100mMML1110110 Privileged —
LDC.L @Rm+,Rn_BANK (Rm) - Rn_BANK, Rm +4 - Rm 0100mmmlnnn0111 Privileged —
LDS.L @Rm+,MACH (Rm) - MACH, Rm +4 - Rm 0100nMmMMD0000110 — —
LDS.L @Rm+,MACL (Rm) - MACL, Rm +4 - Rm 0100nMmMMD0010110 — —
LDS.L @Rm+,PR (Rm) - PR,Rm +4 - Rm 0100nmMD0100110 — —
LDS.L @Rm+FPSCR (Rm) - FPSCR,Rm+4 -~ Rm 0100nmm01100110 — —
LDS.L @Rm+,FPUL (Rm) - FPUL, Rm +4 - Rm 0100nmM01010110 — —

Rev. 6.00 Sep 13, 2006 page 417 of 424
REJ09B0318-0600

RENESAS

Appendix A

Instruction Codes

(5) Register Indirect with Pre-Decrement

Table A.12 Direct Data Transfer from Register

Instruction Operation Instruction Code Privileged T Bit
MOV.B Rm,@-Rn Rn-1 - Rn,Rm - (Rn) 0010nnnnAMMO100 — —
MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnmmm0101 — —
MOV.L Rm,@-Rn Rn-4 - Rn,Rm - (Rn) 0010nnnnnPMMO110 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnmmm1011 — —
FMOV DRm,@-Rn Rn-8 - Rn, DRm - (Rn) 1111nnnnnmm01011 — —
FMOV XDm,@-Rn Rn -8 - Rn, XDm - (Rn) 1111nnnnmm11011 — —
Table A.13 Store from Control Register or System Register
Instruc Operation Instruction Code Privileged T Bit
tion
STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged —
STC.L GBR,@-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 — —
STC.L VBR,@-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 Privileged —
STC.L SSR,@-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 Privileged —
STC.L SPC,@-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnn01000011 Privileged —
STC.L SGR,@-Rn Rn-4 - Rn, SGR - (Rn) 0100nnnn00110010 Privileged —
STC.L DBR,@-Rn Rn-4 - Rn, DBR - (Rn) 0100nnnn11110010 Privileged —
STC.L Rm_BANK,@-Rn Rn-4 - Rn, 0100nnnn1mm0011 Privileged —
Rm_BANK - (Rn) (m=0to7)
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 — —
STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 — —
STS.L FPSCR,@-Rn Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 — —
STS.L FPUL,@-Rn Rn-4 - Rn, FPUL - (Rn) 0100nnnn01010010 — —

Rev. 6.00 Sep 13, 2006 page 418 of 424

REJ09B0318-0600

RENESAS

Appendix A

Instruction Codes

(6) Register Indirect with Displacement

Table A.14 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit
MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd — —
MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd — —
MOV.L Rm,@(disp,Rn) Rm - (disp x4 + Rn) 0001nnnnmmmdddd — —
MOV.B @(disp,Rm),R0O (disp + Rm) — sign extension = 10000100mmmdddd — —
- RO
MOV.W @(disp,Rm),R0O (disp x 2 + Rm) - sign 10000101mmmdddd — —
extension - RO
MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnmmmdddd — —

(7) Indexed Register Indirect

Table A.15 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit
MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000NnNNNMMMO100 — —
MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnnnmmMmM0101 — —
MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnNnnMMMO110 — —
MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnNNnMMMML100 — —
- Rn
MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnnnMMMM101 — —
- Rn
MOV.L @(RO,Rm),Rn (RO +Rm) - Rn 0000nnnnmmMMML110 — —
FMOV.S @(RO,Rm),FRn (RO + Rm) - FRn 111innnnmmm0110 — —
FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 1111nnnnmmm0111 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnOmMmmMm0110 — —
FMOV DRm,@(RO,Rn) DRm - (RO + Rn) 1111nnnnmm?00111 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnn1mmm0110 — —
FMOV XDm,@(RO,Rn) XDm - (RO+Rn) 1111nnnnnmMm10111 — —

Rev. 6.00 Sep 13, 2006 page 419 of 424

RENESAS

REJ09B0318-0600

Appendix A Instruction Codes

(8) GBR Indirect with Displacement

Table A.16 Register Direct Data Transfer

Instructi Operation Instruction Code Privileged T Bit

on

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd — —

MOV.W RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd — —

MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),R0 (disp + GBR) - 11000100dddddddd — —
sign extension -~ RO

MOV.W @(disp,GBR),R0 (disp x 2 + GBR) - 11000101dddddddd — —
sign extension - RO

MOV.L @(disp,GBR),RO (disp x4 + GBR) - RO 11000110dddddddd — —

(9) Indexed GBR Indirect

Table A.17 Immediate Data Transfer

Instructi Operation
on

Instruction Code

Privileged T Bit

AND.B #mm,@(RO,GBR) (RO + GBR) & imm — (RO +

GBR)

ORB #mm@(R0,GBR) (RO + GBR)|imm — (RO +

GBR)

=0,1-T
Otherwise, 0 - T

TST.B #imm,@(R0,GBR) (RO + GBR) & imm; when result 11001100iiiiiiii

Test result

XOR.B #imm,@(R0,GBR) (RO + GBR)Oimm - (RO +

GBR)

Rev. 6.00 Sep 13, 2006 page 420 of 424
REJ09B0318-0600

RENESAS

Appendix A Instruction Codes

(10) PC Relative with Displacement

Table A.18 Direct Data Transfer to Register

Instruction

Operation Instruction Code

Privileged T Bit

MOV.W @(disp,PC),Rn

(dispx2 + PC + 4) - sign 1001nnnndddddddd
extension - Rn

MOV.L @(disp,PC),Rn

(disp x 4 + PC & HFFFFFFFC 1101nnnndddddddd
+4) - Rn

MOVA @(disp,PC),R0

disp x 4 + PC & HFFFFFFFC ~ 11000111dddddddd
+4 . RO

(11) PC Relative Using Rn

Table A.19 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BRAF Rn Rn+PC+4 - PC 0000nnNn00100011 — —
BSRF Rn Delayed branch, PC + 4 - PR, 0000nnnn00000011 — —

Rn+PC+4 - PC

(12) PC Relative

Table A.20 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit

BF label When T =0, dispx2+PC+ 10001011dddddddd — —
4 - PC
When T = 1, nop

BF/S label Delayed branch; when T = 0, 10001111dddddddd — —
dispx2+PC+4 - PC
When T = 1, nop

BT label When T =1, dispx2+PC + 10001001dddddddd — —
4 -, PC
When T =0, nop

BT/S label Delayed branch; when T = 1, 10001101dddddddd — —
dispx2+PC+4 - PC
When T =0, nop

BRA label Delayed branch, disp x 2 + 1010dddddddddddd — —
PC+4 - PC

BSR label Delayed branch, PC +4 - PR, 10l1ldddddddddddd — —

dispx2+PC+4 _ PC

Rev. 6.00 Sep 13, 2006 page 421 of 424

RENESAS

REJ09B0318-0600

Appendix A Instruction Codes

(13) Immediate

Table A.21 Load to Register

Instruction Operation Instruction Code Privileged T Bit

FLDIO FRn H'00000000 - FRn 1111nnnn10001101 — —

FLDI1 FRn H'3F800000 - FRn 1111nnnn10011101 — —

Table A.22 Register Direct Arithmetic/Logic Operation

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm - sign extension —» Rn 1110nnnniiiiiiii — —

ADD #imm,Rn Rn +imm - Rn Olllnnnniiiiiiii — —

CMP/EQ #imm,R0 When RO =imm, 1 - T 10001000iiiiiiii — Comparison
Otherwise, 0 - T result

AND #imm,RO RO & imm - RO 1100100%iiiiiiii — —

OR #imm,RO RO | imm - RO 1100101%iiiiiiii — —

TST #imm,R0O RO & imm; when result = 0, 11001000iiiiiiii — Test result
1-T
Otherwise, 0 - T

XOR #imm,RO RO Oimm - RO 11001010iiiiiiii — —

Table A.23 Exception Vector Specification

Instruction Operation Instruction Code Privileged T Bit

TRAPA #imm

PC+2 - SPC, SR - SSR,
#imm << 2 - TRA,

H'160 — EXPEVT,

VBR + H'0100 - PC

Rev. 6.00 Sep 13, 2006 page 422 of 424
REJ09B0318-0600

RENESAS

Appendix B Instruction Prefetch Side Effects

Appendix B Instruction Prefetch Side Effects

The SH-4 is provided with an internal buffer for holding pre-read instructions, and always
performs pre-reading. Therefore, program code must not be located in the last 20-byte area of any
memory space. If program code is located in these areas, the memory area will be exceeded and a

bus access for instruction pre-reading may be initiated. A case in which this is a problem is shown
below.

Address .
H'03FFFFF8 ADD R1,R4 «—— PC (program counter)
H'O3FFFFFA JMP @R2
Area 0 H'O3FFFFFC NOP
H'03FFFFFE NOP
Area 1 H'04000000
H'04000002 « Instruction prefetch address

Figure B.1 Instruction Prefetch

Figure B.1 presupposes a case in which the instruction (ADD) indicated by the program counter
(PC) and the address H'0400002 instruction prefetch are executed simultaneously. It is also
assumed that the program branches to an area outside area 1 after executing the following JMP
instruction and delay slot instruction.

In this case, the program flow is unpredictable, and a bus access (instruction prefetch) to area 1
may be initiated.

Instruction Prefetch Side Effects
1. Tt is possible that an external bus access caused by an instruction prefetch may result in
misoperation of an external device, such as a FIFO, connected to the area concerned.

2. Ifthere is no device to reply to an external bus request caused by an instruction prefetch,
hangup will occur.

Remedies
1. These illegal instruction fetches can be avoided by using the MMU.

2. The problem can be avoided by not locating program code in the last 20 bytes of any area.

Rev. 6.00 Sep 13, 2006 page 423 of 424
REJ09B0318-0600
RENESAS

Appendix B Instruction Prefetch Side Effects

Rev. 6.00 Sep 13, 2006 page 424 of 424
REJ09B0318-0600

RENESAS

Renesas 32-Bit RISC Microcomputer
Software Manual
SH-4

Publication Date: 1st Edition, August 1998
Rev.6.00, September 13, 2006

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Customer Support Department
Global Strategic Communication Div.
Renesas Solutions Corp.

©2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

RenesasTech nology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

LENESAS
RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, N0.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: <603> 7955-9390, Fax: <603> 7955-9510

Colophon 6.0

SH-4
Software Manual

LENESAS

Renesas Electronics Corporation
1758, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO9B0318-0600

	Cover
	Cautions
	Preface
	Main Revisions for This Edition
	Contents
	Section 1 Overview
	1.1 SH-4 Features

	Section 2 Programming Model
	2.1 Data Formats
	2.2 Register Configuration
	2.2.1 Privileged Mode and Banks
	2.2.2 General Registers
	2.2.3 Floating-Point Registers
	2.2.4 Control Registers
	2.2.5 System Registers

	2.3 Memory-Mapped Registers
	2.4 Data Format in Registers
	2.5 Data Formats in Memory
	2.6 Processor States
	2.7 Processor Modes

	Section 3 Memory Management Unit (MMU)
	3.1 Overview
	3.1.1 Features
	3.1.2 Role of the MMU
	3.1.3 Register Configuration
	3.1.4 Caution

	3.2 Register Descriptions
	3.3 Memory Space
	3.3.1 Physical Memory Space
	3.3.2 External Memory Space
	3.3.3 Virtual Memory Space
	3.3.4 On-Chip RAM Space
	3.3.5 Address Translation
	3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode
	3.3.7 Address Space Identifier (ASID)

	3.4 TLB Functions
	3.4.1 Unified TLB (UTLB) Configuration
	3.4.2 Instruction TLB (ITLB) Configuration
	3.4.3 Address Translation Method

	3.5 MMU Functions
	3.5.1 MMU Hardware Management
	3.5.2 MMU Software Management
	3.5.3 MMU Instruction (LDTLB)
	3.5.4 Hardware ITLB Miss Handling
	3.5.5 Avoiding Synonym Problems

	3.6 MMU Exceptions
	3.6.1 Instruction TLB Multiple Hit Exception
	3.6.2 Instruction TLB Miss Exception
	3.6.3 Instruction TLB Protection Violation Exception
	3.6.4 Data TLB Multiple Hit Exception
	3.6.5 Data TLB Miss Exception
	3.6.6 Data TLB Protection Violation Exception
	3.6.7 Initial Page Write Exception

	3.7 Memory-Mapped TLB Configuration
	3.7.1 ITLB Address Array
	3.7.2 ITLB Data Array 1
	3.7.3 ITLB Data Array 2
	3.7.4 UTLB Address Array
	3.7.5 UTLB Data Array 1
	3.7.6 UTLB Data Array 2

	Section 4 Caches
	4.1 Overview
	4.1.1 Features
	4.1.2 Register Configuration

	4.2 Register Descriptions
	4.3 Operand Cache (OC)
	4.3.1 Configuration
	4.3.2 Read Operation
	4.3.3 Write Operation
	4.3.4 Write-Back Buffer
	4.3.5 Write-Through Buffer
	4.3.6 RAM Mode
	4.3.7 OC Index Mode
	4.3.8 Coherency between Cache and External Memory
	4.3.9 Prefetch Operation

	4.4 Instruction Cache (IC)
	4.4.1 Configuration
	4.4.2 Read Operation
	4.4.3 IC Index Mode

	4.5 Memory-Mapped Cache Configuration
	4.5.1 IC Address Array
	4.5.2 IC Data Array
	4.5.3 OC Address Array
	4.5.4 OC Data Array

	4.6 Store Queues
	4.6.1 SQ Configuration
	4.6.2 SQ Writes
	4.6.3 Transfer to External Memory
	4.6.4 SQ Protection
	4.6.5 SQ Usage Notes

	Section 5 Exceptions
	5.1 Overview
	5.1.1 Features
	5.1.2 Register Configuration

	5.2 Register Descriptions
	5.3 Exception Handling Functions
	5.3.1 Exception Handling Flow
	5.3.2 Exception Handling Vector Addresses

	5.4 Exception Types and Priorities
	5.5 Exception Flow
	5.5.1 Exception Flow
	5.5.2 Exception Source Acceptance
	5.5.3 Exception Requests and BL Bit
	5.5.4 Return from Exception Handling

	5.6 Description of Exceptions
	5.6.1 Resets
	5.6.2 General Exceptions
	5.6.3 Interrupts
	5.6.4 Priority Order with Multiple Exceptions

	5.7 Usage Notes
	5.8 Restrictions

	Section 6 Floating-Point Unit
	6.1 Overview
	6.2 Data Formats
	6.2.1 Floating-Point Format
	6.2.2 Non-Numbers (NaN)
	6.2.3 Denormalized Numbers

	6.3 Registers
	6.3.1 Floating-Point Registers
	6.3.2 Floating-Point Status/Control Register (FPSCR)
	6.3.3 Floating-Point Communication Register (FPUL)

	6.4 Rounding
	6.5 Floating-Point Exceptions
	6.6 Graphics Support Functions
	6.6.1 Geometric Operation Instructions
	6.6.2 Pair Single-Precision Data Transfer

	6.7 Usage Notes
	6.7.1 Notice about FPU Instructions Issues
	6.7.2 Notice about the Overflow Flag by FIPR and FTRV Instruction Command
	6.7.3 Notice about the Sign of the Operation Result by FIPR and FTRV Instruction Command
	6.7.4 Notice about Double Precision FADD and FSUB Instructions for SH-4
	6.7.5 FPU Double Precision

	Section 7 Instruction Set
	7.1 Execution Environment
	7.2 Addressing Modes
	7.3 Instruction Set
	7.4 Notes on Use of TRAPA Instruction/SLEEP Instruction/Undefined Instruction (H'FFFD)

	Section 8 Pipelining
	8.1 Pipelines
	8.2 Parallel-Executability
	8.3 Execution Cycles and Pipeline Stalling

	Section 9 Instruction Descriptions
	9.1 ADD ADD binary Arithmetic Instruction
	9.2 ADDC ADD with Carry Arithmetic Instruction
	9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
	9.4 AND AND logical Logical Instruction
	9.5 BF Branch if False Branch Instruction
	9.6 BF/S Branch if False with delay Slot Branch Instruction
	9.7 BRA BRAnch Branch Instruction
	9.8 BRAF BRAnch Far Branch Instruction
	9.9 BSR Branch to SubRoutine Branch Instruction
	9.10 BSRF Branch to SubRoutine Far Branch Instruction
	9.11 BT Branch if True Branch Instruction
	9.12 BT/S Branch if True with delay Slot Branch Instruction
	9.13 CLRMAC CleaR MAC register System Control Instruction
	9.14 CLRS CleaR S bit System Control Instruction
	9.15 CLRT CleaR T bit System Control Instruction
	9.16 CMP/cond CoMPare conditionally Arithmetic Instruction
	9.17 DIV0S DIVide (step 0) as Signed Arithmetic Instruction
	9.18 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction
	9.19 DIV1 DIVide 1 step Arithmetic Instruction
	9.20 DMULS.L Double-length MULtiply as Signed Arithmetic Instruction
	9.21 DMULU.L Double-length MULtiply as Unsigned Arithmetic Instruction
	9.22 DT Decrement and Test Arithmetic Instruction
	9.23 EXTS EXTend as Signed Arithmetic Instruction
	9.24 EXTU EXTend as Unsigned Arithmetic Instruction
	9.25 FABS Floating-point ABSolute value Floating-Point Instruction
	9.26 FADD Floating-point ADD Floating-Point Instruction
	9.27 FCMP Floating-point CoMPare Floating-Point Instruction
	9.28 FCNVDS Floating-point CoNVert Double to Single precision Floating-Point Instruction
	9.29 FCNVSD Floating-point CoNVert Single to Double precision Floating-Point Instruction
	9.30 FDIV Floating-point DIVide Floating-Point Instruction
	9.31 FIPR Floating-point Inner PRoduct Floating-Point Instruction
	9.32 FLDI0 Floating-point LoaD Immediate 0.0 Floating-Point Instruction
	9.33 FLDI1 Floating-point LoaD Immediate 1.0 Floating-Point Instruction
	9.34 FLDS Floating-point LoaD to System register Floating-Point Instruction
	9.35 FLOAT Floating-point convert from integer Floating-Point Instruction
	9.36 FMAC Floating-point Multiply and ACcumulate Floating-Point Instruction
	9.37 FMOV Floating-point MOVe Floating-Point Instruction
	9.38 FMOV Floating-point MOVe extension Floating-Point Instruction
	9.39 FMUL Floating-point MULtiply Floating-Point Instruction
	9.40 FNEG Floating-point NEGate value Floating-Point Instruction
	9.41 FRCHG FR-bit CHanGe Floating-Point Instruction
	9.42 FSCHG Sz-bit CHanGe Floating-Point Instruction
	9.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction
	9.44 FSTS Floating-point STore System register Floating-Point Instruction
	9.45 FSUB Floating-point SUBtract Floating-Point Instruction
	9.46 FTRC Floating-point TRuncate and Convert to integer Floating-Point Instruction
	9.47 FTRV Floating-point TRansform Vector Floating-Point Instruction
	9.48 JMP JuMP Branch Instruction
	9.49 JSR Jump to SubRoutine Branch Instruction
	9.50 LDC LoaD to Control register System Control Instruction
	9.51 LDS LoaD to FPU System register System Control Instruction
	9.52 LDS LoaD to System register System Control Instruction
	9.53 LDTLB LoaD PTEH/PTEL/PTEA to TLB System Control Instruction
	9.54 MAC.L Multiply and ACcumulate Long Arithmetic Instruction
	9.55 MAC.W Multiply and ACcumulate Word Arithmetic Instruction
	9.56 MOV MOVe data Data Transfer Instruction
	9.57 MOV MOVe constant value Data Transfer Instruction
	9.58 MOV MOVe global data Data Transfer Instruction
	9.59 MOV MOVe structure data Data Transfer Instruction
	9.60 MOVA MOVe effective Address Data Transfer Instruction
	9.61 MOVCA.L MOVe with Cache block Allocation Data Transfer Instruction
	9.62 MOVT MOVe T bit Data Transfer Instruction
	9.63 MUL.L MULtiply Long Arithmetic Instruction
	9.64 MULS.W MULtiply as Signed Word Arithmetic Instruction
	9.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
	9.66 NEG NEGate Arithmetic Instruction
	9.67 NEGC NEGate with Carry Arithmetic Instruction
	9.68 NOP No OPeration System Control Instruction
	9.69 NOT NOT-logical complement Logical Instruction
	9.70 OCBI Operand Cache Block Invalidate Data Transfer Instruction
	9.71 OCBP Operand Cache Block Purge Data Transfer Instruction
	9.72 OCBWB Operand Cache Block Write Back Data Transfer Instruction
	9.73 OR OR logical Logical Instruction
	9.74 PREF PREFetch data to cache Data Transfer Instruction
	9.75 ROTCL ROTate with Carry Left Shift Instruction
	9.76 ROTCR ROTate with Carry Right Shift Instruction
	9.77 ROTL ROTate Left Shift Instruction
	9.78 ROTR ROTate Right Shift Instruction
	9.79 RTE ReTurn from Exception System Control Instruction
	9.80 RTS ReTurn from Subroutine Branch Instruction
	9.81 SETS SET S bit System Control Instruction
	9.82 SETT SET T bit System Control Instruction
	9.83 SHAD SHift Arithmetic Dynamically Shift Instruction
	9.84 SHAL SHift Arithmetic Left Shift Instruction
	9.85 SHAR SHift Arithmetic Right Shift Instruction
	9.86 SHLD SHift Logical Dynamically Shift Instruction
	9.87 SHLL SHift Logical Left Shift Instruction
	9.88 SHLLn n bits SHift Logical Left Shift Instruction
	9.89 SHLR SHift Logical Right Shift Instruction
	9.90 SHLRn n bits SHift Logical Right Shift Instruction
	9.91 SLEEP SLEEP System Control Instruction
	9.92 STC STore Control register System Control Instruction
	9.93 STS STore System register System Control Instruction
	9.94 STS STore from FPU System register System Control Instruction
	9.95 SUB SUBtract binary Arithmetic Instruction
	9.96 SUBC SUBtract with Carry Arithmetic Instruction
	9.97 SUBV SUBtract with (V flag) underflow check Arithmetic Instruction
	9.98 SWAP SWAP register halves Data Transfer Instruction
	9.99 TAS Test And Set Logical Instruction
	9.100 TRAPA TRAP Always System Control Instruction
	9.101 TST TeST logical Logical Instruction
	9.102 XOR eXclusive OR logical Logical Instruction
	9.103 XTRCT eXTRaCT Data Transfer Instruction

	Appendix A Instruction Codes
	A.1 Instruction Set by Addressing Mode

	Appendix B Instruction Prefetch Side Effects
	Colophon
	Address List
	Back Cover

