

 RZ/G2 Group

Linux BSP Porting Guide

Rev.1.10 May. 31, 2022

Renesas MPU

RZ Family

RZ/G Series

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by Renesas

Electronics Corp. without notice. Please review the latest information published by Renesas

Electronics Corp. through various means, including the Renesas Electronics Corp. website

(http://www.renesas.com).

U
s
e

r’s
 M

a
n

u
a

l

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of

these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or

other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;

undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims

any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is

inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products

are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,

injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety

design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging

degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas

Electronics Corporation. All trademarks and registered trademarks

are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

How to Use This Manual

1. Purpose and Target Readers

This manual describes how users can port the Linux BSP for the RZ/G2 reference boards to boards (henceforth referred

to as “custom boards”) which they are developing with the use of the RZ/G2 Group MPU.

 For more information on how to access the sources and how to build, see the manuals provided for each distribution

method of Linux BSP.

• Via GitHub: “RZ/G2 Yocto recipe Start-Up Guide”

• Verified Linux Package for 64bit kernel (hereinafter called as VLP64): “Release Note” provided with VLP64

This manual is intended for users who intend to develop their own custom boards.

Statements in this manual apply to the following version of the BSP.

MPU Reference Board BSP Version

RZ/G2E Silicon Linux EK874 Evaluation Kit (EK874)

Revision E

BSP-1.0.7 or later (later version is recommended)

RZ/G2H Hoperun Technology HiHope RZ/G2H platform BSP-1.0.4 or later (later version is recommended)

RZ/G2M

v1.3

Hoperun Technology HiHope RZ/G2M platform BSP-1.0.1 or later (later version is recommended)

RZ/G2M

v3.0

Hoperun Technology HiHope RZ/G2M platform BSP-1.0.5 or later (later version is recommended)

RZ/G2N Hoperun Technology HiHope RZ/G2N platform BSP-1.0.2 or later (later version is recommended)

RZ/G2E Silicon Linux EK874 Evaluation Kit (EK874) BSP-1.0.0 or later (later version is recommended)

This manual includes references to the documents listed in the table below.

No. Reference Content Document Title Number or Web Site for

Obtaining the Document

[1] Descriptions of how to handle the GitHub

based development environment

RZ/G2 Yocto recipe Start-Up Guide R01US0398EJ

[2] Descriptions of how to handle the VLP

based development environment, how to

write TF-A to the reference boards

RZ/G Verified Linux Package for 64bit

kernel Release Note

R01TU0277EJ

[3] Specifications of the device tree Devicetree Specification 0.2 https://github.com/devicetre

e-org/devicetree-

specification/releases/down

load/v0.2/devicetree-

specification-v0.2.pdf

[4] Pin configurations RZ/G Series, 2nd Generation User’s

Manual: Hardware

R01UH0808EJ

[5] How to write TF-A to the reference boards RZ/G2 Reference Boards Start-up

Guide

R01TU0279EJ

[6] How to port the U-Boot to the custom board README of Das U-Boot v2021.10 https://github.com/renesas-

rz/renesas-u-boot-

cip/blob/v2021.10/rzg2/RE

ADME

https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/devicetree-org/devicetree-specification/releases/download/v0.2/devicetree-specification-v0.2.pdf
https://github.com/renesas-rz/renesas-u-boot-cip/blob/v2021.10/rzg2/README
https://github.com/renesas-rz/renesas-u-boot-cip/blob/v2021.10/rzg2/README
https://github.com/renesas-rz/renesas-u-boot-cip/blob/v2021.10/rzg2/README
https://github.com/renesas-rz/renesas-u-boot-cip/blob/v2021.10/rzg2/README

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within

the body of the text, at the end of each section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the

text of the manual for details.

2. List of Abbreviations, Acronyms and Keywords

Word Full Form Description

BSP Board Support Package A set of software components that allows a given OS to run on

a specific hardware platform.

Linux BSP Linux Board Support Package Board support package to run the Linux environment

U-Boot Das U-Boot This is a boot loader, also referred to as the Universal Boot

Loader, which is released under the GPL. “Universal” indicates

that it can run on multiple types of platform.

VLP64 RZ/G Verified Linux Package for

64bit kernel

The software packages provided by Renesas for the users to

evaluate/develop the GNU/Linux environment on the RZ/G2

Group processors.

TF-A Trusted Firmware-A -

ATF Arm Trusted Firmware-A -

ATF-A Arm Trusted Firmware-A -

EK874 - Silicon Linux RZ/G2E evaluation kit

TFTP Trivial File Transfer Protocol -

PRR Product Register PRR indicates the product version and which of the Arm

Cortex cores is present.

BL1 Boot Loader stage 1 -

BL2 Boot Loader stage 2 -

BL31 Boot Loader stage 3-1 -

BL33 Boot Loader stage 3-2 -

custom

board

- The board which will be based on RZ/G2 reference boards

and includes the user’s customization

3. Notations Used in This Manual

Constant width text means the code fragment or the variable, function, environment variable or keyword

in the body text.

Constant width bold text means the commands to be executed.

Green highlighter in the source code fragment shows the part to be focused on.

Characters with border in the source code fragment are the part to be referred from the body text.

The meaning of the other notation in the source code fragment is shown near each fragment.

All trademarks and registered trademarks are the property of their respective owners.

• The official name of Windows is Microsoft® Windows® Operating System.

• Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States

and/or other countries.

• Linux is a registered trademark or trademark of Linus Torvalds in the United States and other countries.

• Ubuntu is a trademark or registered trademark of Canonical Ltd. in the United Kingdom and other countries.

• Qt is a trademark or registered trademark of The Qt Company Ltd. and its subsidiaries in the United States and other

countries.

• GitHub is a trademark or registered trademark of The GitHub, Inc.. and its subsidiaries in the United States and other

countries.

• The symbols for trademark and registered trademark (® and ™) may be omitted in this manual.

Contents

1. Overview ... 1

1.1 Porting Parts Explained in this Document ... 1

1.2 Prerequisites .. 2

1.3 Overview of the boot sequence ... 3

2. Adding new machine configuration to Yocto recipes ... 4

2.1 Create machine config file ... 4

2.2 Add compatible machine.. 5

2.3 Update build configuration ... 5

3. Porting Trusted Firmware-A ... 7

3.1 Customization flow ... 7

3.2 How to customize a functionality in TF-A ... 8

3.2.1 Board specific flag .. 8

3.2.2 PFC/GPIO setting .. 9

3.2.3 Mapping on SPI Flash .. 15

3.2.4 DRAM settings ... 16

4. Porting U-Boot ... 17

4.1 Editing the U-Boot Source Code .. 17

4.2 List of Board-specific files .. 19

4.3 Procedure for Porting U-Boot .. 20

4.3.1 Deciding the board name ... 21

4.3.2 Creating the Board Directory .. 21

4.3.3 Creating the board file .. 21

4.3.4 Creating the board Kconfig file ... 23

4.3.5 Creating the Makefile ... 24

4.3.6 Creating the defconfig file .. 24

4.3.7 Creating the board header File .. 25

4.3.8 Adding the entry to the board Kconfig file to architecture's Kconfig .. 27

4.3.9 Creating the Device tree file ... 27

4.3.10 Building U-Boot .. 28

4.3.11 Writing U-Boot to a Custom Board ... 28

5. Porting the Linux Kernel .. 29

5.1 Editing the Source Code of the Linux Kernel ... 29

5.2 Procedure for Porting the Linux Kernel .. 29

5.3 List of Board-specific Files ... 30

5.4 Adding, Modifying, and Deleting Device Drivers ... 31

5.5 Creating the Device Tree and Modifying the Makefile ... 33

5.5.1 Device Trees of the RZ/G2E EK874 Kit ... 35

5.5.2 Creating the Device Tree and Modifying the Makefile ... 36

5.5.3 Customizing CMA .. 36

5.5.4 Enabling or Disabling Existing Devices .. 38

5.5.5 Customizing the pin multiplex .. 39

5.5.6 Newly Creating a Pin Group ... 42

5.5.7 Adding, Deleting, and Modifying Devices .. 44

5.6 Changing the Kernel Configuration .. 46

5.7 Building the Linux Kernel ... 46

5.8 Examples of Adding Devices/Kernel functions .. 47

5.8.1 Adding an I2C Device .. 48

R01US0447EJ0110 Rev. 1.10 Page 1 of 51
May. 31, 2022

RZ/G Series Linux BSP Porting Guide
Renesas RZ Family Microprocessors

1. Overview

This manual describes how users can port the Linux BSP from the RZ/G2 Linux platform that supports RZ/G2

reference boards to custom boards they are developing. Linux BSP for the RZ/G2 reference boards are provided

as a part of the Yocto recipe on the GitHub repository or "RZ/G Verified Linux Package for 64bit kernel"

(hereinafter, referred to as VLP64). When the users make their own custom boards based on the Linux BSP on

the RZ/G2 reference boards, the Linux BSP are to be updated. Some parts in this manual describes how to port

the Linux BSP for the Silicon Linux RZ/G2E evaluation kit (EK874) to a custom board as an example.

1.1 Porting Parts Explained in this Document

As shown in Figure 1.1, this document explains about following software components:

• Trusted Firmware-A (refer to the section 3. Porting Trusted Firmware-A)

• Das U-Boot (refer to the section 4. Porting U-Boot)

• Linux kernel (refer to the section 5. Porting the Linux Kernel)

• Also, how to add new machine configuration to Yocto recipe is explained in the section 0.

 Adding new machine configuration to Yocto recipes. This enables the build configuration for

the custom boards to both of Das U-boot and Linux kernel in Yocto build.

This document doesn’t explain about Loader or user-land/root file system. To port user-land/root file system,

please refer “Yocto Start-up Guide” document.

Also, this document assumes the boot process is QSPI flash boot.

This document assumes the boot procedure using SPI flash as a boot device.

Figure 1.1 Porting Parts Explained in this Document

R01US0447EJ0110

Rev. 1.10

May. 31, 2022

On-Chip ROM

Boot code

Trusted

Firmware-A
Das U-Boot Linux Kernel

Boot Process

See chapter 5 See Chapter 4 See Chapter 3

RZ/G2 Group Linux BSP Porting Guide 1. Overview

R01US0447EJ0110 Rev. 1.10 Page 2 of 51
May. 31, 2022

1.2 Prerequisites

This document assumes the prerequisites on Table 1.1.

Table 1.1 Prerequisites

Item description

Linux BSP Version 1.0.0 or later [VLP64 based development]

tag: BSP-1.0.0 or later [Yocto recipe-based development]

Reference board Hoperun Technology HiHope RZ/G2H platform [RZ/G2H]

Hoperun Technology HiHope RZ/G2M platform [RZ/G2M v1.3, RZ/G2M v3.0]

Hoperun Technology HiHope RZ/G2N platform [RZ/G2N]

Silicon Linux RZ/G2E evaluation kit (EK874) [RZ/G2E]

Development

environments

Listed on “2. Build environment” of VLP64’s release notes or “2. Environmental

Requirement” of “RZ/G2 Yocto recipe Start-Up Guide” [1]

Supported boards are depend on the Linux BSP version which provided by Yocto recipe on GitHub or in

VLP64 (Table 1.2). Later version is recommended when multiple versions support a board.

Table 1.2 Supported boards by each Linux BSP version

Version Silicon

Linux

EK874

Evaluation

Kit (EK874)

Hoperun

Technology

HiHope RZ/G2M

platform

(RZ/G2M v1.3)

Hoperun

Technology

HiHope RZ/G2M

platform

(RZ/G2M v3.0)

Hoperun

Technology

HiHope RZ/G2N

platform

Hoperun

Technology

HiHope RZ/G2H

platform

1.0.0 X

1.0.1 X X

1.0.2 X X X

1.0.3-RT X X X

1.0.4 X X X X

1.0.5-RT

1.0.6

…

X X X X X

VLP64 are available on the site below. Please create an account to download the packages. Basic packages
of VLP64 can be downloaded.

• Non-RT: https://www.renesas.com/products/microcontrollers-microprocessors/rz-cortex-a-mpus/rzg-
linux-platform/rzg-marketplace/verified-linux-package/rzg2-vlp-eva

• RT: https://www.renesas.com/products/microcontrollers-microprocessors/rz-cortex-a-mpus/rzg-linux-
platform/rzg-marketplace/verified-linux-package/rzg2-vlp-eva-rt

Yocto recipe are available on the following GitHub repository (also the related repositories described on

README.md of this repository):

• https://github.com/renesas-rz/meta-rzg2

https://www.renesas.com/products/microcontrollers-microprocessors/rz-cortex-a-mpus/rzg-linux-platform/rzg-marketplace/verified-linux-package/rzg2-vlp-eva
https://www.renesas.com/products/microcontrollers-microprocessors/rz-cortex-a-mpus/rzg-linux-platform/rzg-marketplace/verified-linux-package/rzg2-vlp-eva
https://www.renesas.com/products/microcontrollers-microprocessors/rz-cortex-a-mpus/rzg-linux-platform/rzg-marketplace/verified-linux-package/rzg2-vlp-eva-rt
https://www.renesas.com/products/microcontrollers-microprocessors/rz-cortex-a-mpus/rzg-linux-platform/rzg-marketplace/verified-linux-package/rzg2-vlp-eva-rt
https://github.com/renesas-rz/meta-rzg2

RZ/G2 Group Linux BSP Porting Guide 1. Overview

R01US0447EJ0110 Rev. 1.10 Page 3 of 51
May. 31, 2022

1.3 Overview of the boot sequence

The boot process of the Linux BSP for RZ/G2 are composed by the following sequences (shown on Figure 1.2).

1. Boot Loader stage 1 (BL1): Boot ROM Program loads Trusted Boot Firmware of Trusted Firmware-A and

execute it.

2. Boot Loader stage 2 (BL2): Trusted Boot Firmware loads EL3 Runtime Software and U-Boot to the DRAM.

Trusted Boot Firmware executes EL3 Runtime Software.

3. Boot Loader stage 3-1 (BL31): EL3 Runtime Software executes U-Boot.

4. Boot Loader stage 3-3 (BL33) U-Boot loads kernel image and devicetree and execute kernel image.

Figure 1.2 Overview of VLP64 boot sequence

BL33

U-Boot

Execution

Image load

Execution

BL2

BL31

EL3 Runtime Software

Image load
Execution

Linux
Execution

Image load

RZ/G2 Group Linux BSP Porting Guide 2. Adding new machine configuration to Yocto recipes

R01US0447EJ0110 Rev. 1.10 Page 4 of 51
May. 31, 2022

2. Adding new machine configuration to Yocto recipes

Linux BSP for RZ/G2 are provided as a Yocto recipe and the machine configuration manages the MPU and

the board information used by the U-boot, the Linux kernel and the other software in common. This chapter is

optional for porting but recommended for easier board management.

2.1 Create machine config file

First create a machine config file in Renesas Yocto layer meta-rzg2, for example meta-

rzg2/conf/machine/custom-rzg2e.conf. In this case, the machine name is custom-rzg2e. The

typical machine name is composed only by lowercase letters: a-z, numbers: 0-9 and hyphen. Machine name

example can be found in the conf/machine directories of the Yocto Metadata layers available on

https://git.yoctoproject.org/cgit/cgit.cgi.

Refer to Renesas reference files at:

• ek874: meta-rzg2/conf/machine/ek874.conf

• hihope-rzg2m: meta-rzg2/conf/machine/hihope-rzg2m.conf

• hihope-rzg2n: meta-rzg2/conf/machine/hihope-rzg2n.conf

• hihope-rzg2h: meta-rzg2/conf/machine/hihope-rzg2h.conf

In this file, there are some noticeable settings as below example (taken from ek874.conf)

Symbol Example value Description

SOC_FAMILY r8a774c0 Part name of RZ/G2E.

Change this if another MPU is used. Note that list of

available MPU can be found as .inc files under meta-

rzg2/conf/machine/include/ (Ex: r8a774c0.inc,

r8a774a1.inc…)

DEFAULTTUNE cortexa53 Tune setting when building. In this case, choose this

value because RZ/G2E r8a774c0 is based on ARM

Cortex-A53.

Change this corresponding to SOC_FAMILY.

SERIAL_CONSOLE "115200 ttySC0" Setting for using debug serial console (in this case

EK874 use ttySC0 channel for debug serial, with baud

rate 115200).

Change this corresponding to hardware setting of

custom board.

PREFERRED_PROVIDER_virtual

/kernel

linux-renesas Use package "linux-renesas" package for Linux kernel

(shouldn’t change)

KERNEL_DEVICETREE "renesas/r8a774c0-

ek874.dtb

renesas/r8a774c0-

cat874.dtb"

List of device tree in Linux kernel that will be used for

this machine.

Change this to the device tree of custom board created

in 5.5

PREFERRED_VERSION_u-boot v2021.10% Version of u-boot to be build

(shouldn’t change)

UBOOT_CONFIG

ek874

Set defconfig for building u-boot.

Change this to the defconfig of custom board created

in 4.3.6
UBOOT_CONFIG[ek874] silinux_ek874_defconfig

https://git.yoctoproject.org/cgit/cgit.cgi

RZ/G2 Group Linux BSP Porting Guide 2. Adding new machine configuration to Yocto recipes

R01US0447EJ0110 Rev. 1.10 Page 5 of 51
May. 31, 2022

2.2 Add compatible machine

Next, the newly created machine is needed to be added as compatible to some packages to allow building.

meta-rzg2/recipes-kernel/linux/linux-renesas_4.19.bb

recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bb

COMPATIBLE_MACHINE = "ek874|hihope-rzg2m|hihope-rzg2n|hihope-rzg2h|custom-rzg2e"

If the multimedia features like OpenGL support or window system support is to be supported, need to add to

some multimedia support packages as well.

(At default, the multimedia features are available in core-image-weston, core-image-bsp, core-image-hmi, and

not available in core-image-minimal, core-image-bsp)

meta-rzg2/recipes-kernel/kernel-module-gles/kernel-module-gles.bb

meta-rzg2/recipes-graphics/wayland/wayland-kms_1.6.0.bb

meta-rzg2/recipes-graphics/wayland/libgbm.bb

meta-rzg2/recipes-graphics/gles-module/gles-user-module.bb

COMPATIBLE_MACHINE = "ek874|hihope-rzg2m|hihope-rzg2n|hihope-rzg2h|custom-rzg2e"

2.3 Update build configuration

Certain packages require specific build configurations depend on the MPU and the board. For MPU

dependences, Yocto can configure automatically if SOC_FAMILY is the same with the reference boards,

therefore following packages can work without any modification:

meta-rzg2/recipes-kernel/kernel-module-gles/kernel-module-gles.bb

SRC_URI_r8a774e1 = 'file://GSX_KM_H3.tar.bz2'

SRC_URI_r8a774b1 = 'file://GSX_KM_M3N.tar.bz2'

SRC_URI_r8a774a1 = 'file://GSX_KM_M3.tar.bz2'

SRC_URI_r8a774c0 = 'file://GSX_KM_E3.tar.bz2'

meta-rzg2/recipes-graphics/gles-module/gles-user-module.bb

SRC_URI_r8a774b1 = "file://r8a77965_linux_gsx_binaries_gles.tar.bz2"

SRC_URI_r8a774a1 = "file://r8a77960_linux_gsx_binaries_gles.tar.bz2"

SRC_URI_r8a774c0 = "file://r8a77990_linux_gsx_binaries_gles.tar.bz2"

SRC_URI_r8a774e1 = "file://r8a77951_linux_gsx_binaries_gles.tar.bz2"

But there is one package that depends on the board hardware and must be modified manually. But it can be
skipped if multimedia features are not used when the target image is core-image-minimal or core-image-bsp.

meta-rzg2/recipes-kernel/kernel-module-mmngr/kernel-module-mmngr.bb

MMNGR_CFG_ek874 = "MMNGR_EBISU"

MMNGR_CFG_hihope-rzg2m = "MMNGR_SALVATORX"

MMNGR_CFG_hihope-rzg2n = "MMNGR_SALVATORX"

MMNGR_CFG_hihope-rzg2h = "MMNGR_SALVATORX"

RZ/G2 Group Linux BSP Porting Guide 2. Adding new machine configuration to Yocto recipes

R01US0447EJ0110 Rev. 1.10 Page 6 of 51
May. 31, 2022

MMNGR module depends on the RAM setting of the board. With different value of macro MMNGR_CFG it will

have different set of definitions (for different address and memory size). If custom board has same memory
setting with one reference boards from Renesas, set the same value.

MMNGR_CFG_custom-rzg2e = "MMNGR_EBISU"

If custom board has completely different RAM setting with all Renesas reference boards, need to create a new
setting for it. This involves modifying source code of MMNGR. If it is too difficult, please contact to Renesas
Sales.

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 7 of 51
May. 31, 2022

3. Porting Trusted Firmware-A

Linux BSP for RZ/G2 uses Trusted Firmware-A (originally, known as Arm Trusted Firmware-A. hereinafter,
referred to as TF-A) as a loader for BL2 and BL31 as shown on 0

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 8 of 51
May. 31, 2022

Overview of the boot sequence.

3.1 Customization flow

Followings are one of example customization flow of TF-A provided with VLP64. This flow is based on one

shown in https://wiki.yoctoproject.org/wiki/TipsAndTricks/Patching_the_source_for_a_recipe.

1. Setup the bitbake build environment. The directory /home/user/work is just an example and specify

your existing Yocto build environment's work directory.

⎯ export WORK=/home/user/user_work

⎯ source poky/oe-init-build-env

2. (Optional) Making the layer for the customization. This step is required only when the modification for

porting will be stored on the new Yocto layer (other than meta-rzg2). For the details of the following

command, please refer to https://www.yoctoproject.org/docs/2.4.3/dev-manual/dev-

manual.html#creating-a-general-layer-using-the-bitbake-layers-script.

Note that the layer name "meta-userboard" is just an example and specify your custom boards' layer

name.

⎯ bitbake-layers create-layer $WORK/meta-userboard

⎯ bitbake-layers add-layer $WORK/meta-userboard

3. Confirm the recipe or bbappend of the recipe has the appropriate COMPATIBLE_MACHINE (in this

example "custom-rzg2e") as shown in 2.2 Add compatible machine.

4. Get TF-A source code. After the following commands, the source code will be available on the directory

$WORK/build/workspace/sources/arm-trusted-firmware able.

⎯ devtool modify arm-trusted-firmware

5. Modify the source code with reference to “3.2 How to customize a functionality in TF-A”. bitbake arm-

trusted-firmware -c devshell is easy to access the source code (not mandatory)

6. Modify the recipe $WORK/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-

firmware_git.bb if requred. devtool edit-recipe arm-trusted-firmware -a is easy to

access the recipe (not mandatory).

7. Build and test TF-A to confirm that the modification is correct and works well. Build results will be

available on $WORK/build/tmp/deploy/images/[machine name]. Regarding how to write TF-A to

the board, refer to the section “1.3Writing Bootloader” of “RZ/G2 Reference Boards Start-up Guide” [5]

provided with VLP64 or the section “4. Writing of IPL/Secure” of “Yocto recipe Start-Up Guide” [1].

⎯ bitbake arm-trusted-firmware

8. Repeat from step 4 to get the TF-A for the custom board.

9. Commit the changes to the source code in the source code directory. The number of commits will be the

same as the number of patch files created in the step 8.

⎯ cd $WORK/build/workspace/sources/arm-trusted-firmware

⎯ git add .

⎯ git commit

10. Convert the changes of the source code to the recipe. There are two ways:

⚫ devtool update-recipe arm-trusted firmware to update the original arm-trusted-

firmware’s recipe on $WORK/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-

trusted-firmware_git.bb

⚫ devtool update-recipe -a $WORK/meta-userboard arm-trusted-firmware to convert

the changes to .bbappend file on the different layer like $WORK/meta-userboard/recipes-

bsp/arm-trusted-firmware/arm-trusted-firmware_git.bbappend and patches on

https://wiki.yoctoproject.org/wiki/TipsAndTricks/Patching_the_source_for_a_recipe
https://www.yoctoproject.org/docs/2.4.3/dev-manual/dev-manual.html#creating-a-general-layer-using-the-bitbake-layers-script
https://www.yoctoproject.org/docs/2.4.3/dev-manual/dev-manual.html#creating-a-general-layer-using-the-bitbake-layers-script

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 9 of 51
May. 31, 2022

$WORK/meta-userboard/recipes-bsp/arm-trusted-firmware/arm-trusted-

firmware/. Note that layer name "meta-userboard" are the same as the one used in step 2.

11. If the customization is finished, run the following command to remove the source code directory

$WORK/build/workspace/sources/arm-trusted-firmware and recover the normal build method

using $WORK/build/tmp/work/...

⎯ devtool reset arm-trusted-firmware

3.2 How to customize a functionality in TF-A

3.2.1 Board specific flag

From TF-A v2.5, code support for RZ/G2 will be divided into 2 types:

- Common code: code is used for both RZ/G2 and RCar Gen 3. Some built macros will have “RCAR” in

their name and use “common” folder to store the source code.

- Specific code: code is used for only RZ/G2 and have “RZG” in name of build macros. Also code will

be stored in “rzg” folder.

VLP64's TF-A can be applied the board specific configuration by using the build argument in ATFW_OPT

defined in arm-trusted-firmware_git.bb.

$WORK/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bb:

... (snip) ...

COMPATIBLE_MACHINE = "(ek874|hihope-rzg2m|hihope-rzg2n|hihope-rzg2h)"

PLATFORM = "rzg"

ATFW_OPT_LOSSY = "${@base_conditional("USE_MULTIMEDIA", "1", "RCAR_LOSSY_ENABLE=1", "",

d)}"

ATFW_OPT_r8a774c0 = "LSI=G2E RCAR_SA0_SIZE=0 RCAR_DRAM_DDR3L_MEMCONF=1

RCAR_DRAM_DDR3L_MEMDUAL=1 SPD="none""

ATFW_OPT_r8a774a1 = "LSI=G2M RCAR_DRAM_SPLIT=2 SPD="none""

ATFW_OPT_r8a774b1 = "LSI=G2N SPD="none""

ATFW_OPT_r8a774e1 = "LSI=G2H RCAR_DRAM_SPLIT=2 RCAR_DRAM_LPDDR4_MEMCONF=1

RCAR_DRAM_CHANNEL=5 SPD="none""

... (snip) ...

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 10 of 51
May. 31, 2022

3.2.2 PFC/GPIO setting

VLP64’s TF-A have PFC/GPIO settings for each device’s reference board. The customization of PFC/GPIO

settings based on the difference between the reference board and the custom board.

Following files are related to PFC/GPIO setting of RZ/G2 devices.

drivers/renesas/rzg/pfc

├── pfc_init.c

├── pfc.mk

├── pfc_regs.h

├── G2E

│ ├── pfc_init_g2e.c

│ └── pfc_init_g2e.h

├── G2H

│ ├── pfc_init_g2h.c

│ └── pfc_init_g2h.h

├── G2M

│ ├── pfc_init_g2m.c

│ └── pfc_init_g2m.h

├── G2N

│ ├── pfc_init_g2n.c

│ └── pfc_init_g2n.h

pfc_init() calls each device’s PFC/GPIO initialization function depends on the value of Product Register (PRR)

of RZ/G2 group. Table 3.1 shows each device’s PFC/GPIO initialization function.

Table 3.1 File and Function list of PFC/GPIO setting

Product Filename Function

RZ/G2H pfc_init_g2h.c pfc_init_g2h()

RZ/G2M (v1.3, v3.0) pfc_init_g2m.c pfc_init_g2m()

RZ/G2N pfc_init_g2n.c pfc_init_g2n()

RZ/G2E pfc_init_g2e.c pfc_init_g2e()

3.2.2.1 Multiplexed pin functions

Some groups of pins of RZ/G2 Group devices have selectable two or more functions. "Module Select Register

0" (MOD_SEL0) to "Module Select Register n" (MOD_SELn) (n=2 [RZG2H], [RZG2M], [RZ/G2N]; n=1

[RZ/G2E]) can be configured as follows:

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 11 of 51
May. 31, 2022

 /* initialize module select */

 pfc_reg_write(PFC_MOD_SEL0, MOD_SEL0_FOO

 | MOD_SEL0_BAR);

 pfc_reg_write(PFC_MOD_SEL1, MOD_SEL1_FOO

 | MOD_SEL1_BAR);

Macro definitions for MOD_SEL0 and MOD_SEL1 register values are defined in the files listed on Table 3.1

as follows:

...

#define MOD_SEL0_HSCIF0_A ((uint32_t)0U << 24U)

#define MOD_SEL0_HSCIF0_B ((uint32_t)1U << 24U)

#define MOD_SEL0_HSCIF1_A ((uint32_t)0U << 23U)

#define MOD_SEL0_HSCIF1_B ((uint32_t)1U << 23U)

#define MOD_SEL0_HSCIF2_A ((uint32_t)0U << 22U)

#define MOD_SEL0_HSCIF2_B ((uint32_t)1U << 22U)

...

Refer to "8.2.9 Module Select Register 0-2 (MOD_SEL0-2)" [RZG2H], [RZ/G2M] [RZ/G2N] or "9.2.9 Module

Select Register 0-1 (MOD_SEL0-1)" [RZ/G2E] of "RZ/G Series, 2nd Generation User’s Manual: Hardware" [4]

for the meaning of each bit.

Some pins of RZ/G2 Group devices have selectable two or more functions. Peripheral Function Select

Register 0 (IPSR0) to Peripheral Function Select Register 15 (IPSR15) can be configured as follows:

 /* initialize peripheral function select */

 pfc_reg_write(PFC_IPSR0, IPSR_28_FUNC(2) /* select 2nd function for IP0[31:28] */

 ...

 | IPSR_4_FUNC(1)); /* select 1st function for IP0[7:4] */

 | IPSR_0_FUNC(0)); /* select 0th function for IP0[3:0] */

 pfc_reg_write(PFC_IPSR1, IPSR_28_FUNC(2) /* select 2nd function for IP1[31:28] */

 ...

 | IPSR_4_FUNC(1)); /* select 1st function for IP1[7:4] */

 | IPSR_0_FUNC(0)); /* select 0th function for IP1[3:0] */

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 12 of 51
May. 31, 2022

Macro definitions "IPSR_n_FUNC" are defined in the files listed on Table 3.1 as follows:

...

#define IPSR_28_FUNC(x) ((uint32_t)(x) << 28U)

#define IPSR_24_FUNC(x) ((uint32_t)(x) << 24U)

#define IPSR_20_FUNC(x) ((uint32_t)(x) << 20U)

#define IPSR_16_FUNC(x) ((uint32_t)(x) << 16U)

#define IPSR_12_FUNC(x) ((uint32_t)(x) << 12U)

#define IPSR_8_FUNC(x) ((uint32_t)(x) << 8U)

#define IPSR_4_FUNC(x) ((uint32_t)(x) << 4U)

#define IPSR_0_FUNC(x) ((uint32_t)(x) << 0U)

...

Refer to "9.2.3 Peripheral Function Select Register 0-18 (IPSR0-18)" [RZG2H], [RZ/G2M] [RZ/G2N] or "9.2.3

Peripheral Function Select Register 0-15 (IPSR0-15)" [RZ/G2E] of "RZ/G Series, 2nd Generation User’s

Manual: Hardware" [4] for the meaning of each bit.

3.2.2.2 GPIO/Peripheral Function Select

Some pins of RZ/G2 Group devices can be configured as GPIO or peripheral function. GPIO/Peripheral

Function Select Register 0 (GPSR0) to GPIO/Peripheral Function Select Register 6 (GPSR6) can be

configured as follows:

 /* initialize GPIO/peripheral function select */

 pfc_reg_write(PFC_GPSR0, GPSR0_FOO

 | GPSR0_BAR);

Macro definitions for the registers GPSR0 to GPSR6 are defined in the files listed on Table 3.1 as follows:

...

#define GPSR0_SDA4 ((uint32_t)1U << 17U)

#define GPSR0_SCL4 ((uint32_t)1U << 16U)

#define GPSR0_D15 ((uint32_t)1U << 15U)

#define GPSR0_D14 ((uint32_t)1U << 14U)

#define GPSR0_D13 ((uint32_t)1U << 13U)

...

Refer to "8.2.2 GPIO/Peripheral Function Select Register 0-7 (GPSR0-7)" [RZG2H], [RZ/G2M] [RZ/G2N] or

"9.2.2 GPIO/Peripheral Function Select Register 0-6 (GPSR0-6)" [RZ/G2E] of "RZ/G Series, 2nd Generation

User’s Manual: Hardware" [4] for the meaning of each bit.

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 13 of 51
May. 31, 2022

3.2.2.3 Drive voltage select

SD Card/MMC Interfaces and EthernetAVB-IF have multiple IO voltage level.

POC Control Register 0 (POCCTRL0, named as POCCTRL0in the source code) controls IO voltage level of

SD Card/MMC Interfaces. Note that the settings on this register must match the voltage of VDDQ_MMC.

 /* initialize POC control */

 reg = mmio_read_32(POCCTRL0_MASK);

 reg = ((reg & POCCTRL0_MASK) | POC_SD1_DAT3_33V

 | POC_SD1_DAT2_33V

 | POC_SD1_DAT1_33V

 | POC_SD1_DAT0_33V

 | POC_SD1_CMD_33V

 | POC_SD1_CLK_33V

 | POC_SD0_DAT3_33V

 | POC_SD0_DAT2_33V

 | POC_SD0_DAT1_33V

 | POC_SD0_DAT0_33V

 | POC_SD0_CMD_33V

 | POC_SD0_CLK_33V);

 pfc_reg_write(PFC_POCCTRL0, reg);

Macro definition for POCCTRL0 register values are defined in the files listed on Table 3.1 as follows:

...

#define POC_SD3_DS_33V ((uint32_t)1U << 29U)

#define POC_SD3_DAT7_33V ((uint32_t)1U << 28U)

#define POC_SD3_DAT6_33V ((uint32_t)1U << 27U)

#define POC_SD3_DAT5_33V ((uint32_t)1U << 26U)

#define POC_SD3_DAT4_33V ((uint32_t)1U << 25U)

...

Refer to "8.2.5 POC Control Register 0 (POCCTRL0)" [RZG2H], [RZ/G2M] [RZ/G2N] or "9.2.5 POC Control

Register 0 (POCCTRL0)" [RZG2E] of "RZ/G Series, 2nd Generation User’s Manual: Hardware" [4] for the

meaning of each bit.

POC Control Register 2 (POCCTRL2, named as POCCTRL2 in the source code) controls IO voltage level of

Ethernet AVB-IF. Note that the settings on this register must match the voltage of VDDQ25_AVB0.

 reg = mmio_read_32(POCCTRL2_MASK);

 reg = ((reg & POCCTRL2_MASK) & ~ POC2_VREF_33V);

 pfc_reg_write(PFC_POCCTRL2, reg);

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 14 of 51
May. 31, 2022

Macro definition for POCCTRL2 register values are defined in the files listed on Table 3.1 as follows:

#define POC2_VREF_33V ((uint32_t)1U << 0U)

Refer to "9.2.6 POC Control Register 2 (POCCTRL2)" [RZ/G2E] of "RZ/G Series, 2nd Generation User’s

Manual: Hardware" [4] for the meaning of each bit.

3.2.2.4 Pull-up/Pull-down

LSI pin pull-up/down control Register 0 (PUD0) to LSI pin pull-up/down control Register 5 (PUD5) control pull-

up/pull-down of pins.

 /* initialize LSI pin pull-up/down control */

 pfc_reg_write(PFC_PUD0, 0x00080000U);

 pfc_reg_write(PFC_PUD1, 0xCE398464U);

 pfc_reg_write(PFC_PUD2, 0xA4C380F4U);

 pfc_reg_write(PFC_PUD3, 0x0000079FU);

 pfc_reg_write(PFC_PUD4, 0xFFF0FFFFU);

 pfc_reg_write(PFC_PUD5, 0x40000000U);

Refer to "8.2.8 LSI pin pull-up/down control Register 0-5 (PUD0-5)" [RZG2H], [RZ/G2M] [RZ/G2N] or "9.2.9

LSI pin pull-up/down control Register 0-5 (PUD0-5)" [RZG2E] of "RZ/G Series, 2nd Generation User’s Manual:

Hardware" [4] for the meaning of each bit.

LSI pin pull-enable register 0 (PUEN0) to LSI pin pull-enable register 5 (PUEN5) control on/off of pins pull-

up/pull-down.

 /* initialize LSI pin pull-enable register */

 pfc_reg_write(PFC_PUEN0, 0x00000000U);

 pfc_reg_write(PFC_PUEN1, 0x00300000U);

 pfc_reg_write(PFC_PUEN2, 0x00400074U);

 pfc_reg_write(PFC_PUEN3, 0x00000000U);

 pfc_reg_write(PFC_PUEN4, 0x07900600U);

 pfc_reg_write(PFC_PUEN5, 0x00000000U);

Refer to "8.2.7 LSI pin pull-enable register 0-5 (PUEN0-5)" [RZG2H], [RZ/G2M] [RZ/G2N] or "9.2.8 LSI pin

pull-enable register 0-5 (PUEN0-5)" [RZ/G2E] of "RZ/G Series, 2nd Generation User’s Manual: Hardware" for

the meaning of each bit.

Please be careful when set these bits. It can break your board if any wrong setting.

3.2.2.5 GPIO polarity

Positive/Negative Logic Select Register 0 (POSNEG0) to Positive/Negative Logic Select Register n

(POSNEGn) (n = 7 [RZ/G2H], [RZ/G2M], [RZ/G2N]; n=6 [RZ/G2E]) select the polarity (positive or negative

logic) of each port pin in general input mode, general output mode, or interrupt input mode.

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 15 of 51
May. 31, 2022

 /* initialize positive/negative logic select */

 mmio_write_32(GPIO_POSNEG0, 0x00000000U);

 mmio_write_32(GPIO_POSNEG1, 0x00000000U);

 mmio_write_32(GPIO_POSNEG2, 0x00000000U);

 mmio_write_32(GPIO_POSNEG3, 0x00000000U);

 mmio_write_32(GPIO_POSNEG4, 0x00000000U);

 mmio_write_32(GPIO_POSNEG5, 0x00000000U);

 mmio_write_32(GPIO_POSNEG6, 0x00000000U);

Refer to "10.2.9 Positive/Negative Logic Select Register n (POSNEG0 to POSNEGn)" of "RZ/G Series, 2nd

Generation User’s Manual: Hardware" [4] for the meaning of each bit.

3.2.2.6 General IO/Interrupt Switching

General IO/Interrupt Switching Register 0 (IOINTSEL0) to General IO/Interrupt Switching Register n

(IOINTSELn) (n = 7 [RZ/G2H], [RZ/G2M], [RZ/G2N]; n=6 [RZ/G2E]) select either general input/output mode or

interrupt input mode for each of the port pins 0 to 31 of the GPIO block.

 /* initialize general IO/interrupt switching */

 mmio_write_32(GPIO_IOINTSEL0, 0x00000000U);

 mmio_write_32(GPIO_IOINTSEL1, 0x00000000U);

 mmio_write_32(GPIO_IOINTSEL2, 0x00000000U);

 mmio_write_32(GPIO_IOINTSEL3, 0x00000000U);

 mmio_write_32(GPIO_IOINTSEL4, 0x00000000U);

 mmio_write_32(GPIO_IOINTSEL5, 0x00000000U);

 mmio_write_32(GPIO_IOINTSEL6, 0x00000000U);

Refer to " 10.2.1 General IO/Interrupt Switching Register n (IOINTSEL0 to IOINTSELn)" of "RZ/G Series, 2nd

Generation User’s Manual: Hardware" [4] for the meaning of each bit.

3.2.2.7 GPIO output value settings

General Output Register 0 (OUTDT0) to General Output Register n (OUTDTn) (n = 7 [RZ/G2H], [RZ/G2M],

[RZ/G2N]; n=6 [RZ/G2E]) select the values of GPIOs with General output mode.

 /* initialize general output register */

 mmio_write_32(GPIO_OUTDT0, 0x00000000U);

 mmio_write_32(GPIO_OUTDT1, 0x00000000U);

 mmio_write_32(GPIO_OUTDT2, 0x00000000U);

 mmio_write_32(GPIO_OUTDT3, 0x00006000U);

 mmio_write_32(GPIO_OUTDT5, 0x00000000U);

 mmio_write_32(GPIO_OUTDT6, 0x00000000U);

Refer to "10.2.3 General Output Register n (OUTDT0 to OUTDTn)" of "RZ/G Series, 2nd Generation User’s

Manual: Hardware" [4] for the meaning of each bit.

Please be careful when set these bits. It can break your board if any wrong setting.

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 16 of 51
May. 31, 2022

3.2.2.8 GPIO input/output

General Input/Output Switching Register 0 (INOUTSEL0) to General Input/Output Switching Register n

(INOUTSELn) (n = 7 [RZ/G2H], [RZ/G2M], [RZ/G2N]; n=6 [RZ/G2E]) select selects either general input or

general output mode for a port using the bit corresponding to the port number.

 /* initialize general input/output switching */

 mmio_write_32(GPIO_INOUTSEL0, 0x00020000U);

 mmio_write_32(GPIO_INOUTSEL1, 0x00100000U);

 mmio_write_32(GPIO_INOUTSEL2, 0x03000000U);

 mmio_write_32(GPIO_INOUTSEL3, 0x0000E000U);

 mmio_write_32(GPIO_INOUTSEL4, 0x00000440U);

 mmio_write_32(GPIO_INOUTSEL5, 0x00080000U);

 mmio_write_32(GPIO_INOUTSEL6, 0x00000010U);

Refer to "10.2.2 General Input/Output Switching Register n (INOUTSEL0 to INOUTSELn)" of "RZ/G Series,

2nd Generation User’s Manual: Hardware" [4] for the meaning of each bit.

3.2.3 Mapping on SPI Flash

On VLP64 environment, U-Boot is stored the SPI flash area starting from 0x00300000 on SPI Flash. U-Boot’s

store address and size are defined in tools/renesas/rzg_layout_create/sa6.c . Defined values on

Table 3.2 will specify the address and size of U-Boot.

Table 3.2 Defined value related to U-Boot in sa6.c

Define Default value Description

RZG_BL33SRC_ADDRESS *1 0x00300000 Offset address of U-Boot on SPI

Flash

RZG_BL33DST_ADDRESS *1 0x50000000 Load destination address of U-Boot

(Lower 32 bits of 64 bits address)

RZG_BL33DST_ADDRESSH *1 0x00000000 Load destination address of U-Boot

(Higher 32 bits of 64 bits address)

RZG_BL33DST_SIZE 0x00040000 U-boot image size in a word unit

Note: 1.: RZG_SA6_TYPE is set to RZG_SA6_TYPE_HYPERFLASH on VLP64 so definitions surrounded by ifdef-else of

RZG_SA6_TYPE==RZG_SA6_TYPE_HYPERFLASH will be activated.

RZ/G2 Group Linux BSP Porting Guide 3. Porting Trusted Firmware-A

R01US0447EJ0110 Rev. 1.10 Page 17 of 51
May. 31, 2022

tools/renesas/rzg_layout_create/sa6.c:

...

#define RZG_SA6_TYPE_HYPERFLASH (0)

#define RZG_SA6_TYPE_EMMC (1)

#if (RZG_SA6_TYPE == RZG_SA6_TYPE_HYPERFLASH)

...

/* Source address on flash for BL33 */

#define RZG_BL33SRC_ADDRESS (0x00300000U)

...

/* Destination address for BL33 */

#define RZG_BL33DST_ADDRESS (0x50000000U)

#define RZG_BL33DST_ADDRESSH (0x00000000U)

/* Destination size for BL33 */

#define RZG_BL33DST_SIZE (0x00040000U)

...

3.2.4 DRAM settings

Regarding how to port TF-A to the custom board with different DRAM capacity, number or speed from the

reference boards, please contact to Renesas sales.

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 18 of 51
May. 31, 2022

4. Porting U-Boot

This section describes how to port U-Boot to a custom board you are developing.

For details on the environment-specific procedure of U-boot porting, for example accessing source code,

building or deploying, see the following environment-related documents:

• GitHub-based development environment: Refer to "RZ/G2 Yocto recipe Start-Up Guide" [1]

• VLP64: Refer to "Release Note" [2] and "Board Start-up Guide" [5] provided with VLP64

For details on the functions of U-Boot, see the “U-Boot User’s Manual: Software” for the RZ/G 2nd Generation

Series.

4.1 Editing the U-Boot Source Code

To port U-Boot in the Linux BSP for use with the reference boards provided as the RZ/G Linux platform to a

custom board you are developing, edit the U-Boot source code.

For details on how to edit the U-Boot source code, see the document for each development environment.

• GitHub-based development environment:

A. From Bitbake tmp directory:

After executing “Building Instructions” in “RZ/G2 Yocto recipe Start-Up Guide” [1], the U-boot sources

will be on $WORK/build/tmp/work/[machine name]-poky-linux/u-

boot/...(snip).../git/. You can edit these sources using editor application. Note that all

source modification on this directory should be saved as Yocto recipes outside this directory.

B. From GitHub:

https://github.com/renesas-rz/renesas-u-boot-cip.git

(branch v2018.09/rzg2,

revision d2e3e367b6eb704f8c49537ca8e05577af6885e1 in the case of BSP-1.0.0,

revision ca1cfbd21c01030027f476d34cd77d7aca3f5e82 in the case of BSP-1.0.1,

revision d867a25a9e2b1a3e33ab3ae84c1a7512f51547c1 in the case of BSP-1.0.2,

revision d9dbce52865ec3bf962769a02ce608e6e5c56bc0 in the case of BSP-1.0.3-RT,

revision af0a5da1dd977a2ab1b00411d8e261796fb5fd5d in the case of BSP-1.0.4,

revision 1e52f9518a85563f4752b7ca90ec34e0e000be25 in the case of BSP-1.0.5-RT,

revision 19d7c74495e20b5d072e8843945e84364b0a0c1e in the case of BSP-1.0.6,

revision a5d350acb9a0580a2bf53b9e07a9262257597eb6 in the case of BSP-1.0.7-RT)

(branch v2020.10/rzg2,

revision 3bc1267362123ce07acb6bdbcaeedec161bf3eef in the case of BSP-1.0.8,

revision 3bc1267362123ce07acb6bdbcaeedec161bf3eef in the case of BSP-1.0.9-RT,

revision c85fc78bf2de38d7580b571f29553cb1df236da0 in the case of BSP-1.0.10)

(branch v2021.10/rzg2,

revision 22ccd65ae1f645a3ed5bfd8e80e27a3af15f9243 in the case of BSP-1.0.12)

• VLP64: "After executing “Building images to run on the board” in “Release Note” provided with VLP64", the

U-boot sources will be on $WORK/build/tmp/work/[machine name]-poky-

linux/u-boot/...(snip).../git/. You can edit these sources using editor

application. Note that all source modification on this directory should be saved as Yocto

recipes outside this directory.

https://github.com/renesas-rz/renesas-u-boot-cip.git

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 19 of 51
May. 31, 2022

Table 4.1 The directories of U-Boot source

Version Board Directory of source codes

1.0.0 Silicon Linux EK874 Evaluation Kit (RZ/G2E) $WORK/build/tmp/work/ek874-poky-linux/u-

boot/…(snip)…/git/

1.0.1 Silicon Linux EK874 Evaluation Kit (RZ/G2E) $WORK/build/tmp/work/ek874-poky-linux/u-

boot/…(snip)…/git/

 Hoperun Technology HiHope RZ/G2M platform $WORK/build/tmp/work/hihope_rzg2m-poky-

linux/…(snip)…/git/

1.0.2 Silicon Linux EK874 Evaluation Kit (RZ/G2E) $WORK/build/tmp/work/ek874-poky-linux/u-

boot/…(snip)…/git/

Hoperun Technology HiHope RZ/G2M platform $WORK/build/tmp/work/hihope_rzg2m-poky-

linux/…(snip)…/git/

Hoperun Technology HiHope RZ/G2N platform $WORK/build/tmp/work/hihope_rzg2n-poky-

linux/…(snip)…/git/

1.0.3-RT Silicon Linux EK874 Evaluation Kit (RZ/G2E) $WORK/build/tmp/work/ek874-poky-linux/u-

boot/…(snip)…/git/

Hoperun Technology HiHope RZ/G2M platform $WORK/build/tmp/work/hihope_rzg2m-poky-

linux/…(snip)…/git/

Hoperun Technology HiHope RZ/G2N platform $WORK/build/tmp/work/hihope_rzg2n-poky-

linux/…(snip)…/git/

1.0.4

1.0.5-RT

…

Silicon Linux EK874 Evaluation Kit (RZ/G2E) $WORK/build/tmp/work/ek874-poky-linux/u-

boot/…(snip)…/git/

Hoperun Technology HiHope RZ/G2M platform $WORK/build/tmp/work/hihope_rzg2m-poky-

linux/…(snip)…/git/

Hoperun Technology HiHope RZ/G2N platform $WORK/build/tmp/work/hihope_rzg2n-poky-

linux/…(snip)…/git/

Hoperun Technology HiHope RZ/G2H platform $WORK/build/tmp/work/hihope_rzg2h-poky-

linux/…(snip)…/git/

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 20 of 51
May. 31, 2022

4.2 List of Board-specific files

Table 4.2 lists files which include board specific parts to the EK874 evaluation kit as an example of the board.

Table 4.2 List of Board-specific Files

Category Filename Remarks

Files related to board initialize board/silinux/ek874/ek874.c The names of directories and files

depend on the reference board. For

custom board support, the new

directories and files are required

based on those of the reference

boards.

board/silinux/ek874/Kconfig

board/silinux/ek874/Makefile

include/configs/silinux-ek874.h

Note: Followings are the coresspondings between the boards name code and the actual board names:

• ek874: Silicon Linux EK874 Evaluation Kit (combine of CAT874 base-board and CAT875 sub-board)

• hihope-rzg2m: Hoperun Technology HiHope RZ/G2M platform

• hihope-rzg2n: Hoperun Technology HiHope RZ/G2N platform

• hihope-rzg2h: Hoperun Technology HiHope RZ/G2H platform

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 21 of 51
May. 31, 2022

4.3 Procedure for Porting U-Boot

Follow the steps below to port the U-Boot.

Details on the steps of porting are given under “Building the Software”, “Testing of U-Boot Modifications, Ports

to New Hardware, etc.”, and “U-Boot Porting Guide” in the README file [6] of the U-Boot source code.

Table 4.3 Procedure for Porting U-Boot

Section for Reference

on Details
Description

4.3.1 Deciding the board name

"custom-rzg2e"

4.3.2 Creating the Board Directory

board/renesas/custom-rzg2e

4.3.3 Creating the board file

board/renesas/custom-rzg2e/custom-rzg2e.c

This file contains board_early_init_f(), board_init(), and board_late_init() functions,

which perform init actions for the board.

4.3.4 Creating the board Kconfig file

board/renesas/custom-rzg2e/Kconfig

4.3.5 Creating the Makefile

board/renesas/custom-rzg2e/Makefile

4.3.6 Creating the defconfig file

configs/r8a774c0_custom-rzg2e_defconfig

4.3.7 Creating the board header File

include/configs/custom-rzg2e.h

4.3.8 Adding the entry to the board Kconfig file to architecture's Kconfig

arch/arm/mach-rmobile/Kconfig.64

4.3.9 Creating the Device tree file

arch/arm/dts/r8a774c0-custom-rzg2e.dts

4.3.10 Building U-Boot

4.3.11 Writing U-Boot to a Custom Board

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 22 of 51
May. 31, 2022

4.3.1 Deciding the board name

U-Boot requires the board name to manage the settings for each board. It is recommended that the board name

for U-Boot is the same as Yocto's machine configuration name set in 2.1 Create machine config file. Followings

are the name of RZ/G2 reference boards:

• ek874: Silicon Linux EK874 Evaluation Kit (combine of CAT874 base-board and CAT875 sub-board)

• hihope-rzg2m: Hoperun Technology HiHope RZ/G2M platform

• hihope-rzg2n: Hoperun Technology HiHope RZ/G2N platform

• hihope-rzg2h: Hoperun Technology HiHope RZ/G2H platform

4.3.2 Creating the Board Directory

Users need to create board-specific versions of the files listed in the Table 4. for the custom board. Create the

custom-rzg2e directory for the board under the directory board, and copy the files from the reference board’s

files:

• RZ/G2E: files in the “board/silinux/ek874”

• RZ/G2H, RZ/G2M (v1.3, v3.0), RZ/G2N: files in the “board/hoperun/hihope-rzg2”

Note: the actual naming rule is "board/<vendor name>/<board name>", so making your <vendor name>

directory is recommended. In this document, the vender name is “renesas” for the ease of explanation.

Change the filenames of ek874.c to the desired names. In this case, they have been changed to custom-

rzg2e.c. An example of the configuration of board-specific files that the users are to create is given in below

table.

Table 4.4 Example of the File Configuration for the Custom Board

Directory Filename

board/renesas/custom-rzg2e Makefile

custom-rzg2e.c

Kconfig

4.3.3 Creating the board file

Create the file board/renesas/custom-rzg2e/custom-rzg2e.c based on the file of the reference

boards:

• RZ/G2E: board/silinux/ek874/ek874.c

• RZ/G2H, RZ/G2M (v1.3, v3.0), RZ/G2N: board/hoperun/hihope-rzg2/hihope-rzg2.c

This file must implement function board_init() to perform the board initialize action. Also

board_early_init_f() and board_late_init() functions can be used for early and late actions.

The board is initialized by the board_init_f() functions in the common/board_f.c file. The

board_init_f() function handles processing defined by the init_sequence_f[] array of pointers to

functions. The init_sequence_f[] array includes a pointer to the board_early_init_f() function.

static const init_fnc_t init_sequence_f[] = {

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 23 of 51
May. 31, 2022

setup_mon_len,

#ifdef CONFIG_OF_CONTROL

 fdtdec_setup,

#endif

 ...

 arch_cpu_init, /* basic arch cpu dependent setup */

 mach_cpu_init, /* SoC/machine dependent CPU setup */

 initf_dm,

 arch_cpu_init_dm,

#if defined(CONFIG_BOARD_EARLY_INIT_F)

 board_early_init_f,

#endif

#if defined(CONFIG_PPC) || defined(CONFIG_SYS_FSL_CLK) || defined(CONFIG_M68K)

 /* get CPU and bus clocks according to the environment variable */

 get_clocks, /* get CPU and bus clocks (etc.) */

#endif

 ...

};

In addition, the board_init() and board_late_init() functions are called from the board_init_r()

function in common/board_r.c. The board_init_r() function handles processing defined by the

init_sequence_r[] array of pointers to functions, which includes board_init() and

board_late_init().

static init_fnc_t init_sequence_r[] = {

 initr_trace,

 initr_reloc,

 ...

#if defined(CONFIG_ARM) || defined(CONFIG_NDS32) || defined(CONFIG_RISCV) || \

 defined(CONFIG_SANDBOX)

 board_init, /* Setup chipselects */

#endif

 ...

#ifdef CONFIG_BOARD_LATE_INIT

 board_late_init,

#endif

 ...

}

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 24 of 51
May. 31, 2022

Use the functions in the board/renesas/custom-rzg2e/custom-rzg2e.c file shown in Table 4.5 to

initialize new boards.

Table 4.5 List of Board Initialization Functions

Function Name Description

board_early_init_f(void) This function is called if CONFIG_BOARD_EARLY_INIT_F is defined in the

include/configs/custom-rzg2e.h file.

For U-Boot for use with the EK874, this function does nothing.

board_init(void) This function is called between the board_early_init_f() and board_late_init() functions.

For U-Boot for use with the EK874, this function just set the boot parameters address.

board_late_init(void) This function is called if CONFIG_BOARD_LATE_INIT is defined in the

include/configs/custom-rzg2e.h file.

U-Boot for use with the EK874 does not use this config.

4.3.4 Creating the board Kconfig file

Create the file board/renesas/custom-rzg2e/Kconfig base on reference:

• RZ/G2E: board/silinux/ek874/Kconfig

• RZ/G2H, RZ/G2M (v1.3, v3.0), RZ/G2N: board/hoperun/hihope-rzg2/Kconfig

Following is the Kconfig example for the custom board:

if TARGET_CUSTOM_RZG2E

config SYS_SOC

 default "rmobile"

config SYS_BOARD

 default "custom-rzg2e"

config SYS_VENDOR

 default "renesas"

config SYS_CONFIG_NAME

 default "custom-rzg2e"

endif

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 25 of 51
May. 31, 2022

Settings here will indicate the path to the Makefile to include the board file (related to 4.3.2 Creating the Board

Directory and 4.3.3 Creating the board file) and the path to the board header file (related to 4.3.7 Creating the

board header File):

board/SYS_VENDOR/SYS_BOARD/Makefile -> board/renesas/custom-rzg2e/Makefile

include/configs/SYS_CONFIG_NAME.h -> include/configs/custom-rzg2e.h

Note that TARGET_CUSTOM_RZG2E should be defined in the defconfig file which created in 4.3.6 Creating the

defconfig file.

4.3.5 Creating the Makefile

Create file board/renesas/custom-rzg2e/Makefile file with below content. The name must be matched

with the board file created in 4.3.3 Creating the board file, but change .c extension to .o

obj-y := custom-rzg2e.o

4.3.6 Creating the defconfig file

The defconfig file contains the user config-able settings for the board. A new file should be created for custom

board, for example configs/r8a774c0_custom_rzg2e_defconfig, based on below reference:

• RZ/G2E: configs/silinux_ek874_defconfig

• RZ/G2H, RZ/G2M (v1.3, v3.0), RZ/G2N: configs/ hihope-rzg2_defconfig

In this defconfig, the default device tree must point to the file created above, but change .dts extension to

.dtb (.dtb is the file extension of binary device tree after build from .dts). This device tree name is related

to 5.5 Creating the Device Tree and Modifying the Makefile.

CONFIG_DEFAULT_FDT_FILE="r8a774c0-custom-rzg2e.dtb"

Also, the settings to specify MPU and boards shall be specified in this defconfig:

CONFIG_ARM=y

CONFIG_ARCH_RMOBILE=y

...

CONFIG_RCAR_GEN3=y

CONFIG_R8A774C0=y

CONFIG_TARGET_CUSTOM_RZG2E=y

...

Note that CONFIG_R8A774C0 is specified depends on the MPU on the custom board, and CONFIG_TARGET

CUSTOM_RZG2E is specified as defined in the board Kconfig file (refer to 4.3.4 Creating the board Kconfig

file).

Identify the devicetree for U-boot configuration is also required. This setting must be the same as the devicetree

creating in 4.3.9 Creating the Device tree file.

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 26 of 51
May. 31, 2022

...

CONFIG_DEFAULT_DEVICE_TREE="r8a774c0-custom-rzg2e-u-boot"

...

Other configs can be chosen freely. For example, below are list of configs to enable driver support for micro-SD

and USB in EK874:

...

CONFIG_DM_MMC=y

CONFIG_MMC_IO_VOLTAGE=y

CONFIG_MMC_UHS_SUPPORT=y

CONFIG_MMC_HS200_SUPPORT=y

CONFIG_RENESAS_SDHI=y

...

CONFIG_USB=y

CONFIG_DM_USB=y

CONFIG_USB_XHCI_HCD=y

CONFIG_USB_EHCI_HCD=y

CONFIG_USB_EHCI_GENERIC=y

CONFIG_USB_STORAGE=y

Note that each configuration items must be described on Kconfig files in the U-Boot source. For example,

CONFIG_USB is specified in drivers/usb/Kconfig.

4.3.7 Creating the board header File

Copy the boad header file of your MPU’s reference board and change its filename as desired. In this case, it

has been changed to include/configs/custom-rzg2e.h.

• RZ/G2E: include/configs/silinux-ek874.h

• RZ/G2H, RZ/G2M (v1.3, v3.0), RZ/G2N: include/configs/hihope-rzg2.h

Modify the macro definitions in the include/configs/custom-rzg2e.h file for the custom board. This

section only describes some of items to be set.

Note that the U-boot configuration by the macros in board header file is gradually migrated to defconfig, Kconfig

and devicetree approach. Already many configurations are done by defconfig and device tree.

For details on the other items, refer to “Configuration Options” in README for the U-Boot source code.

Below table shows some of settings in the include/configs/silinux-ek874.h file.

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 27 of 51
May. 31, 2022

Table 4.6 Some of Settings in the include/configs/silinux-ek874.h File

Symbol Example value Description

#include "rcar-gen3-common.h" Includes the commons configs in file rcar-gen3-common.h,

include some configs for console, memory, …

CONFIG_BITBANGMII_MULTI Define config to enable Ethernet features

Below table shows some of settings in the include/configs/rcar-gen3-common.h file.

Table 4.7 Some of Settings in the include/configs/rcar-gen3-common.h File

Symbol Example value Description

DRAM_RSV_SIZE 0x08000000 Size of the reserved DRAM area from the top of

DRAM area. Note that this macro is only used

in rcar-gen3-common.h

CONFIG_SYS_SDRAM_BASE (0x40000000 +

DRAM_RSV_SIZE)

Start address of DRAM area for U-Boot

CONFIG_MAX_MEM_MAPPED (0x80000000u -

DRAM_RSV_SIZE)

DRAM size

CONFIG_SYS_LOAD_ADDR 0x58000000

CONFIG_LOADADDR CONFIG_SYS_LOAD_ADDR Default address to be set to environment

variable "loadaddr"

CONFIG_EXTRA_ENV_SETTINGS "usb_pgood_delay=2000\0" \

"fdt_high=0xffffffffffffffff\0" \

"initrd_high=0xffffffffffffffff\0"

Additional default environment settings (note

that some default environment settings)

fdt_high: If set this restricts the maximum

address that the flattened device tree will be

copied into upon boot. If this is set to the special

value 0xFFFFFFFFFFFFFFFF then the fdt will

not be copied.

initrd_high: If this variable is not set, initrd

images will be copied to the highest possible

address in RAM. If this is set to the special value

0xFFFFFFFFFFFFFFFF then the initrd images

will not be copied.

usb_pgood_delay: Wait for power to become

stable (msec).

If not defined, the default wait time is 100 ms. If

it is set to a value less than 100, it will be

processed with a waiting time of 100 ms.

CONFIG_BOOTCOMMAND "tftp 0x48080000 Image; tftp

0x48000000 Image-

"CONFIG_DEFAULT_FDT_FILE";

booti 0x48080000 - 0x48000000"

Command line to boot Linux Kernel. This

command will be executed after bootdelay

seconds. If no definitions are held on this

variable, u-boot use console mode.

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 28 of 51
May. 31, 2022

4.3.8 Adding the entry to the board Kconfig file to architecture's Kconfig

The board Kconfig files created in 4.3.4 Creating the board Kconfig file are to be included the architecture's

Kconfig file. Add config entry for the board Kconfig file and source that file in arch/arm/mach-

rmobile/Kconfig.64 as follows:

if RCAR_GEN3

...

choice

...

config TARGET_CUSTOM_RZG2E

 bool "RZ/G2 Custom board"

 help

 Support for RZ/G2 Custom board

endchoice

config SYS_SOC

 default "rmobile"

...

source "board/renesas/custom-rzg2e/Kconfig"

...

endif

4.3.9 Creating the Device tree file

U-boot uses device tree in the same manner as Linux kernel. For detail explanation of device tree, refer to 5.5.

Creating the Device Tree and Modifying the Makefile

Create the device tree for custom board, for example arch/arm/dts/r8a774c0-custom-rzg2e.dts with

example:

• RZ/G2E: arch/arm/dts/r8a774c0-ek874.dts

• RZ/G2M (v1.3, v3.0): arch/arm/dts/r8a774a1-hihope-rzg2m.dts

• RZ/G2N: arch/arm/dts/r8a774a1-hihope-rzg2n.dts

• RZ/G2H: arch/arm/dts/r8a774b1-hihope-rzg2h.dts

This file must be modified corresponding to the real hardware on the custom board.

RZ/G2 Group Linux BSP Porting Guide 4. Porting U-Boot

R01US0447EJ0110 Rev. 1.10 Page 29 of 51
May. 31, 2022

For example, if memory (DRAM) of the custom board is different, memory setting must be changed:

 memory@48000000 {

 device_type = "memory";

 /* first 128MB is reserved for secure area. */

 reg = <0x0 0x48000000 0x0 0x38000000>;

 };

Or if the custom board does not use the Ethernet over AVB module, remove the AVB node:

&avb {

 pinctrl-0 = <&avb_pins>;

 pinctrl-names = "default";

 renesas,no-ether-link;

 phy-handle = <&phy0>;

 phy-mode = "rgmii-txid";

 status = "okay";

 phy0: ethernet-phy@0 {

 rxc-skew-ps = <1500>;

 reg = <0>;

 interrupt-parent = <&gpio2>;

 interrupts = <21 IRQ_TYPE_LEVEL_LOW>;

 reset-gpios = <&gpio1 20 GPIO_ACTIVE_LOW>;

 };

};

4.3.10 Building U-Boot

For details on how to build U-Boot, see the documents for each development environment:

• GitHub-based development environment/downloaded VLP: Execute bitbake -C compile u-boot.

Symbolic links u-boot.bin and u-boot.srec on $WORK/build/tmp/deploy/images/*/ will be updated.

⎯ Note that all modification to the source code under $WORK/build/tmp/work should be saved as a

Yocto recipe. This is because the directories under the $WORK/build/tmp/work will be removed by

the Bitbake commands like bitbake -c cleanall u-boot.

4.3.11 Writing U-Boot to a Custom Board

• GitHub-based development environment: Refer to "Writing of IPL/Secure" of "RZ/G2 Yocto recipe Start-Up

Guide" [1]

• VLP64: Refer to the section "Writing Bootloader" in "Board Start-up Guide" [5] provided with VLP64.

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 30 of 51
May. 31, 2022

5. Porting the Linux Kernel

This section describes how to port the Linux kernel to a custom board you are developing.

For details on the procedure for using the RZ/G Linux platform tools to customize the Linux kernel, see the

documents for each development environments:

• GitHub-based development environment: Refer to "RZ/G2 Yocto recipe Start-Up Guide" [1]

• VLP64: Refer to "Release Note" [2] and "Board Start-up Guide" [5] provided with VLP64

5.1 Editing the Source Code of the Linux Kernel

To port the Linux kernel in the Linux BSP for use with the RZ/G2E Silicon Linux EK874 Evaluation kit provided

as the RZ/G Linux platform to a custom board you are developing, edit the source code of the Linux kernel as

required.

For details on how to edit the source code of the Linux kernel, see the document for each development

environment:

• GitHub-based development environment: After executing “Building Instructions” in “RZ/G2 Yocto recipe

Start-Up Guide” [1], the kernel source will be on $WORK/build/tmp/work-shared/[machine

name]/kernel-source/. You can edit sources using editor. Note that all source modification in this

directory should be saved as Yocto recipe outside of this directory.

• Downloaded VLP: After executing “Building images to run on the board” in “Release Note” [2] provided with

VLP64", the kernel source will be on $WORK/build/tmp/work-shared/[machine name]/kernel-

source/. You can edit sources using editor. Note that all source modification in this directory should be

saved as Yocto recipe outside of this directory.

5.2 Procedure for Porting the Linux Kernel

Table 5.1 shows the procedure for porting the Linux kernel.

Table 5.1 Procedure for Porting the Linux Kernel

Step Description

Section for Reference

on Details

1 Adding the device drivers 5.4

2 Creating the device tree and editing the Makefile 5.5

3 Amending the kernel configuration 5.6

4 Building the Linux Kernel 5.7

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 31 of 51
May. 31, 2022

5.3 List of Board-specific Files

Table 5.2 lists files specific to the Silicon Linux EK874 Evaluation kit for RZ/G2E as an example of board-specific

files.

Table 5.2 List of Board-specific Files

Classification Filename Remarks

Kernel configs arch/arm64/configs/defconfig —

Files related to device

tree

arch/arm64/boot/dts/renesas/Makefile

arch/arm64/boot/dts/renesas/r8a774c0.dtsi The filenames are depend on the

reference board and these are the

examples of RZ/G2E and EK874. arch/arm64/boot/dts/renesas/r8a774c0-cat874.dts

arch/arm64/boot/dts/renesas/cat875.dtsi

arch/arm64/boot/dts/renesas/r8a774c0-ek874.dts

arch/arm64/boot/dts/renesas/r8a774c0-ek874-idk-

2121wr.dts

arch/arm64/boot/dts/renesas/r8a774c0-ek874-mipi-

2.1.dts

or

arch/arm64/boot/dts/renesas/r8a774c0-ek874-mipi-

2.4.dts

arch/arm64/boot/dts/renesas/aistarvision-mipi-

adapter-2.1.dtsi

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 32 of 51
May. 31, 2022

5.4 Adding, Modifying, and Deleting Device Drivers

To add the device drivers for new device on the custom board, take the following steps:

1. Add the source files of the drivers: Add the source files of the drivers to be added to the corresponding

directories under drivers/.

2. Add the settings for compiling the added source files to the Makefile under the directories to which the

source files have been added.

3. Add a configuration option to the Kconfig under the directories to which the source files have been added.

This allow user to select enabling the drivers during kernel configuration.

4. Enable the configuration option during kernel configuration.

To change the device drivers to be used, change the settings to enable or disable the given drivers in the kernel

configuration (see section 5.6 Changing the Kernel Configuration).

To delete a device driver, disable the device driver to be deleted in the kernel configuration. In most cases,

removing the source files of the drivers is not required.

Followings are how the pin function controller driver are implemented and built on the Linux kernel. Most of the

drivers can be introduced in the same manner.

1. The source file of the GPIO driver is stored under the drivers/gpio directory. The source file gpio-

rcar.c of the driver is placed in the above directory.

drivers/gpio/

 Makefile

 Kconfig

 ...

 gpio-rcar.c

 ...

2. The line corresponding to each driver is included in the Makefile in the individual directories so that each

source file becomes a target for compilation. The driver for the Renesas GPIO in the statement of the file.

drivers/gpio/Makefile:

...

obj-$(CONFIG_GPIO_RCAR) += gpio-rcar.o

...

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 33 of 51
May. 31, 2022

3. The entry corresponding to drivers/gpio/Kconfig is included so as to use make menuconfig or

another method to set CONFIG_GPIO_RCAR. This config is set as the tristate type. This indicates that both

embedding the driver in the kernel and handling the driver as a loadable kernel module are supported for

this driver. In addition, it being placed between if and endif indicates that CONFIG_GPIO_RCAR is only

specifiable when GPIOLIB is set. Take this into account.

drivers/gpio/Kconfig:

GPIO infrastructure and drivers

config ARCH_HAVE_CUSTOM_GPIO_H

 bool

 help

 Selecting this config option from the architecture Kconfig allows

 the architecture to provide a custom asm/gpio.h implementation

 overriding the default implementations. New uses of this are

 strongly discouraged.

menuconfig GPIOLIB

 bool "GPIO Support"

 select ANON_INODES

 help

 This enables GPIO support through the generic GPIO library.

 You only need to enable this, if you also want to enable

 one or more of the GPIO drivers below.

 If unsure, say N.

if GPIOLIB

...

config GPIO_RCAR

 tristate "Renesas R-Car GPIO"

 depends on ARCH_RENESAS || COMPILE_TEST

 select GPIOLIB_IRQCHIP

 help

 Say yes here to support GPIO on Renesas R-Car SoCs.

...

endif

4. To compile the Renesas GPIO driver as part of building the kernel, CONFIG_GPIO_RCAR = y (for

embedding the driver in the kernel) or CONFIG_GPIO_RCAR = m (for handling the driver as a loadable

kernel module) is set in the kernel configuration. For details on how to change the kernel configuration, see

section 5.6 Changing the Kernel Configuration.

5. After enable the config, user need to enable driver in device tree as well. Refer to next section 5.5 for the
detail explanation.

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 34 of 51
May. 31, 2022

5.5 Creating the Device Tree and Modifying the Makefile

Copy the device tree source file and rename and edit it for your custom board. This section describes how to

customize the devicetree for the custom board based on RZ/G2E as an example, but the custom board based

on the other RZ/G2 Group devices can be handled in the same manner. When the custom board is based on

the main board of RZ/G2E EK874 Kit, copy the r8a774c0-cat874.dts file and rename it respectively for your

custom board and edit it. In this case, it is assumed that the copied file is r8a774c0-custom-rzg2e.dts.

Refer to Table 5.1 for the other boards.

Table 5.1 Device Tree Files to be copied

Note: All above files are placed in the directory arch/arm64/boot/dts/renesas/.

Processor
LSI

Version
Board

Board
Revision

Device Tree Included Files

G2H 3.0
HiHope-
G2H

4

• r8a774e1-hihope-rzg2h.dts

• r8a774e1-hihope-rzg2h-ex.dts

• r8a774e1-hihope-rzg2h-ex-idk-
1110wr.dts

• r8a774e1-hihope-rzg2h-ex-mipi-
2.1.dts

• r8a774e1.dtsi

• hihope-common.dtsi

• hihope-rev4.dtsi

• hihope-rzg2-ex.dtsi

• hihope-rzg2-ex-lvds.dtsi

• rzg2-advantech-idk-
1110wr-panel.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

G2M

1.2

HiHope-
G2M

2

• r8a774a1-hihope-rzg2m-
rev2.dts

• r8a774a1-hihope-rzg2m-rev2-
ex.dts

• r8a774a1-hihope-rzg2m-rev2-
ex-idk-1110wr.dts

• r8a774a1-hihope-rzg2m-rev2-
ex-mipi-2.1.dts

• r8a774a1.dtsi

• hihope-common.dtsi

• hihope-rev2.dtsi

• hihope-rzg2-ex-lvds.dtsi

• hihope-rzg2-ex.dtsi

• rzg2-advantech-idk-
1110wr-panel.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

1.3 4

• r8a774a1-hihope-rzg2m.dts

• r8a774a1-hihope-rzg2m-ex.dts

• r8a774a1-hihope-rzg2m-ex-idk-
1110wr.dts

• r8a774a1-hihope-rzg2m-ex-
mipi-2.1.dts

• r8a774a1.dtsi

• hihope-common.dtsi

• hihope-rev4.dtsi

• hihope-rzg2-ex.dtsi

• hihope-rzg2-ex-lvds.dtsi

• rzg2-advantech-idk-
1110wr-panel.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

3.0 4

• r8a774a3-hihope-rzg2m.dts

• r8a774a3-hihope-rzg2m-ex.dts

• r8a774a3-hihope-rzg2m-ex-idk-
1110wr.dts

• r8a774a3-hihope-rzg2m-ex-
mipi-2.1.dts

• r8a774a3.dtsi

• hihope-common.dtsi

• hihope-rev4.dtsi

• hihope-rzg2-ex.dtsi

• hihope-rzg2-ex-lvds.dtsi

• rzg2-advantech-idk-
1110wr-panel.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

G2N 1.1
HiHope-
G2N

2

• r8a774b1-hihope-rzg2n-rev2.dts

• r8a774b1-hihope-rzg2n-rev2-
ex.dts

• r8a774b1-hihope-rzg2n-rev2-ex-
idk-1110wr.dts

• r8a774b1-hihope-rzg2n-rev2-ex-
mipi-2.1.dts

• r8a774b1.dtsi

• hihope-common.dtsi

• hihope-rev2.dtsi

• hihope-rzg2-ex-lvds.dtsi

• hihope-rzg2-ex.dtsi

• rzg2-advantech-idk-
1110wr-panel.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

4 • r8a774b1-hihope-rzg2n.dts • r8a774b1.dtsi

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 35 of 51
May. 31, 2022

• r8a774b1-hihope-rzg2n-ex.dts

• r8a774b1-hihope-rzg2n-ex-idk-
1110wr.dts

• r8a774b1-hihope-rzg2n-ex-mipi-
2.1.dts

• hihope-common.dtsi

• hihope-rzg2-ex.dtsi

• rzg2-advantech-idk-
1110wr-panel.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

G2E

1.0

EK874

B

• r8a774c0-es10-cat874.dts

• r8a774c0-es10-ek874.dts

• r8a774c0-es10-ek874-idk-
2121wr.dts

• r8a774c0-es10-ek874-mipi-
2.1.dts

• r8a774c0-es10.dtsi

• cat875.dtsi

• cat874-common.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

1.1

C

• r8a774c0-cat874-revc.dts

• r8a774c0-ek874-revc.dts

• r8a774c0-ek874-revc-idk-
2121wr.dts

• r8a774c0-ek874-revc-mipi-
2.1.dts

• r8a774c0.dtsi

• cat875.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

• cat874-common.dtsi

E

• r8a774c0-cat874.dts

• r8a774c0-ek874.dts

• r8a774c0-ek874-idk-2121wr.dts

• r8a774c0-ek874-mipi-2.1.dts

• r8a774c0.dtsi

• cat875.dtsi

• aistarvision-mipi-adapter-
2.1.dtsi

• cat874-common.dtsi

Structure of device tree files for all platforms:

• Main board only:

▪ G2H: r8a774e1-hihope-rzg2h.dts

▪ G2M v1.3: r8a774a1-hihope-rzg2m.dts, r8a774a1-hihope-rzg2m-rev2.dts.

▪ G2M v3.0: r8a774a3-hihope-rzg2m.dts

▪ G2N: r8a774b1-hihope-rzg2n.dts, r8a774b1-hihope-rzg2n-rev2.dts

▪ G2E: r8a774c0-cat874.dts, r8a774c0-cat874-revc.dts, r8a774c0-es10-cat874.dts

• Main board + Sub board:

▪ G2H: r8a774e1-hihope-rzg2h-ex.dts

▪ G2M v1.3: r8a774a1-hihope-rzg2m-ex.dts, r8a774a1-hihope-rzg2m-rev2-ex.dts.

▪ G2M v3.0: r8a774a3-hihope-rzg2m-ex.dts

▪ G2N: r8a774b1-hihope-rzg2n-ex.dts, r8a774b1-hihope-rzg2n-rev2-ex.dts

▪ G2E: r8a774c0-ek874.dts, r8a774c0-ek874-revc.dts, r8a774c0-es10-ek874.dts

• Main board + Sub board + LVDS Panel:

▪ G2H: r8a774e1-hihope-rzg2h-ex-idk-1110wr.dts

▪ G2M v1.3: r8a774a1-hihope-rzg2m-ex-idk-1110wr.dts, r8a774a1-hihope-rzg2m-rev2-ex-idk-

1110wr.dts.

▪ G2M v3.0: r8a774a3-hihope-rzg2m-ex-idk-1110wr.dts

▪ G2N: r8a774b1-hihope-rzg2n-ex-idk-1110wr.dts, r8a774b1-hihope-rzg2n-rev2-ex-idk-1110wr.dts

▪ G2E: r8a774c0-ek874-idk-2121wr.dts, r8a774c0-ek874-revc-idk-2121wr.dts, r8a774c0-es10-ek874-

idk-2121wr.dts

• Main board + Sub board + MIPI Mezzanine Camera Adapter v2.1:

▪ G2H: r8a774e1-hihope-rzg2h-ex-mipi-2.1.dts

▪ G2M v1.3: r8a774a1-hihope-rzg2m-ex-mipi-2.1.dts, r8a774a1-hihope-rzg2m-rev2-ex.dts.

▪ G2M v3.0: r8a774a3-hihope-rzg2m-ex-mipi-2.1.dts

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 36 of 51
May. 31, 2022

▪ G2N: r8a774b1-hihope-rzg2n-ex-mipi-2.1.dts, r8a774b1-hihope-rzg2n-rev2-ex-mipi-2.1.dts

▪ G2E: r8a774c0-ek874-mipi-2.1.dts, r8a774c0-ek874-revc-idk-2121wr.dts, r8a774c0-es10-ek874-mipi-

2.1.dts

Note: All device tree files support HDMI by default.

To support MIPI Mezzanine Camera Adapter v2.1 along with LVDS panel, please update in device tree files:

Example:

• Main board + Sub board + MIPI Mezzanine Camera Adapter v2.1: r8a774e1-hihope-rzg2h-ex-mipi-

2.1.dts

- #include "r8a774e1-hihope-rzg2h-ex.dts"

+ #include " r8a774e1-hihope-rzg2h-ex-idk-1110wr.dts "

• Main board + Sub board + LVDS Panel: r8a774e1-hihope-rzg2h-ex-idk-1110wr.dts

- #include "r8a774e1-hihope-rzg2h-ex.dts"

+ #include " r8a774e1-hihope-rzg2h-ex-mipi-2.1.dts"

5.5.1 Device Trees of the RZ/G2E EK874 Kit

This subsection briefly describes the configuration of the device trees of the Silicon Linux EK874 kit. For the

fundamentals of device trees, see the documentation on the Web page at

http://elinux.org/Device_Tree_Reference or the Devicetree Specification 0.2 [3].

“Device Tree” means “Device tree source files” or “Device tree blob”. “Device tree source files (DTS)” are text

files, included in the kernel source tree. “Device tree blob (DTB)” is a binary file, which will be read from the

kernel image when booting. As shown in Figure 5.1, the device tree compiler builds the device tree blob from

the device tree source files and related header files.

http://elinux.org/Device_Tree_Reference

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 37 of 51
May. 31, 2022

Figure 5.1 A flow from device tree source files to a device tree blob

5.5.2 Creating the Device Tree and Modifying the Makefile

Copy arch/arm64/boot/dts/renesas/r8a774c0-cat874.dts and rename it for your custom board. In

this case, it is assumed that the copied file is r8a774c0-custom-rzg2e.dts.

To build the copied device tree for the custom board, it is required to edit arch/arm/boot/dts/Makefile.

Note that the filename which should be listed on Makefile is not .dts but .dtb. Following is the example edit

result:

arch/arm64/boot/dts/renesas/Makefile:

dtb-$(CONFIG_ARCH_R8A774C0) += r8a774c0-cat874.dtb r8a774c0-ek874.dtb \

 r8a774c0-custom-rzg2e.dtb

dtb-$(CONFIG_ARCH_R8A7795) += r8a7795-salvator-x.dtb r8a7795-h3ulcb.dtb

dtb-$(CONFIG_ARCH_R8A7795) += r8a7795-h3ulcb-kf.dtb

5.5.3 Customizing CMA

There are three types of CMA regions defined in device tree.

1) Default CMA region: It is for kernel, general drivers and multimedia package

e.g. arch/arm64/boot/dts/renesas/r8a774c0-cat874.dts

/* global autoconfigured region for contiguous allocations */

 linux,cma@58000000 {

 compatible = "shared-dma-pool";

 reusable;

 reg = <0x00000000 0x58000000 0x0 0x10000000>;

 linux,cma-default;

.dtsi .h

.dts .dtb
Device tree compiler

include

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 38 of 51
May. 31, 2022

 };

0x58000000 is start address of CMA region

0x10000000 is size of CMA region

Notes)

• 128 MB in this CMA is reserved for kernel and general drivers, and the remaining is reserved

for multimedia package.

• This CMA region can be adjusted by changing the start address and the size.

• Should take care of the lack of memory allocated by kernel and general drivers when reducing

the region size.

2) CMA region for MMP: it is for multimedia package (specific H/Ws)

e.g. arch/arm64/boot/dts/renesas/r8a774c0-cat874.dts

/* device specific region for contiguous allocations */

 mmp_reserved: linux,multimedia {

 compatible = "shared-dma-pool";

 reusable;

 reg = <0x00000000 0x68000000 0x0 0x08000000>;

 };

0x68000000 is start address of CMA region

0x08000000 is size of CMA region

Notes)

• This CMA is reserved for multimedia package.

• This CMA region can be adjusted by changing the start address and the size.

• Should take care of the lack of memory allocated by kernel and general drivers when reducing

the region size.

3) CMA region for lossy compress/decompress (specific H/Ws)

e.g. arch/arm64/boot/dts/renesas/r8a774a1-hihope-rzg2m.dts

/* device specific region for Lossy Decompression */

 lossy_decompress: linux,lossy_decompress@54000000 {

 no-map;

 reg = <0x00000000 0x54000000 0x0 0x03000000>;

 }

0x54000000 is start address of CMA region

0x03000000 is size of CMA region

Notes)

• This CMA is reserved for lossy compress/decompress feature supported by multimedia

package (RZG2E does not support lossy compress/decompress)

• This CMA region can NOT be adjusted, start address and the size is fixed.

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 39 of 51
May. 31, 2022

5.5.4 Enabling or Disabling Existing Devices

Most devices in arch/arm64/boot/dts/renesas/r8a774c0.dtsi are disabled by default. Set the

states of individual devices through the properties as shown below.

• Enabling a device: Modify status property as status = "okay";.

• Disabling a device: Modify status property as status = "disabled";.

If not set the status property, it will be "okay" as default.

For example, the SCIF1 and SCIF2 of RZ/G2E are disabled in r8a774c0.dtsi.

arch/arm64/boot/dts/renesas/r8a774c0.dtsi:

 scif1: serial@e6e68000 {

 compatible = "renesas,scif-r8a774c0",

 "renesas,rcar-gen3-scif", "renesas,scif";

 reg = <0 0xe6e68000 0 64>;

 interrupts = <GIC_SPI 153 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&cpg CPG_MOD 206>,

 <&cpg CPG_CORE R8A774C0_CLK_S3D1C>,

 <&scif_clk>;

 clock-names = "fck", "brg_int", "scif_clk";

 dmas = <&dmac1 0x53>, <&dmac1 0x52>,

 <&dmac2 0x53>, <&dmac2 0x52>;

 dma-names = "tx", "rx", "tx", "rx";

 power-domains = <&sysc R8A774C0_PD_ALWAYS_ON>;

 resets = <&cpg 206>;

 status = "disabled";

 };

 scif2: serial@e6e88000 {

 compatible = "renesas,scif-r8a774c0",

 "renesas,rcar-gen3-scif", "renesas,scif";

 reg = <0 0xe6e88000 0 64>;

 interrupts = <GIC_SPI 164 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&cpg CPG_MOD 310>,

 <&cpg CPG_CORE R8A774C0_CLK_S3D1C>,

 <&scif_clk>;

 clock-names = "fck", "brg_int", "scif_clk";

 power-domains = <&sysc R8A774C0_PD_ALWAYS_ON>;

 resets = <&cpg 310>;

 status = "disabled";

 };

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 40 of 51
May. 31, 2022

For the Silicon Linux EK874 Kit, of scif1 and scif2, only scif2 is enabled in r8a774c0-ek874.dts.

arch/arm64/boot/dts/renesas/r8a774c0-ek874.dts

&scif2 {

 pinctrl-0 = <&scif2_pins>;

 pinctrl-names = "default";

 status = "okay";

};

5.5.5 Customizing the pin multiplex

This subsection describes how to handle the device tree when changing the pin configuration.

For the general statements related to the pin configuration in the device tree, see the

Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt. For statements specific

to the Renesas pin function controller, which is a driver from Renesas for controlling the pin configuration, see

the Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt.

Setting the pin configuration requires the following items.

pinctrl-0 and pinctrl-names properties of the device for which the pin configuration is to be set

Pin configuration node, which is a child node of the pin function controller

For example, the pin configuration of the HSCIF3 interface is set as follows: the node &hscif3 for HSCIF3

configuration has the pinctrl-0 property, which refers to the hscif3_pins node ((1) below). After that, the

hscif3_pins node (1) is added as a child node of the pin function controller, pfc, and in the hscif3_pins

node, hscif3 (2) is specified as the "function" property and hscif3_data_c (3) and hscif3_ctrl_c (4)

are specified as the “groups” properties.

 arch/arm64/boot/dts/renesas/r8a774c0-cat874.dts:

...

&pfc {

 ...

 hscif3_pins: hscif3 {

 groups = "hscif3_data_c", "hscif3_ctrl_c";

 function = "hscif3";

 };

 ...

};

...

&hscif3 {

 pinctrl-0 = <&hscif3_pins>;

 pinctrl-names = "default";

(1)

(1)

(2)

(3)

(4)

https://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git/tree/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt?h=linux-4.19.y
https://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git/tree/Documentation/devicetree/bindings/pinctrl/renesas,pfc-pinctrl.txt?h=linux-4.19.y

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 41 of 51
May. 31, 2022

 ...

};

The values for “function” and “groups” properties are defined in drivers/pinctrl/sh-pfc/pfc-

r8a77990.c

Notice The file name is different here (should be pfc-r8a774c0.c for RZ/G2E). This happens because

r8a77990 pin is compatible with r8a774c0, so RZ/G2E re-uses pin define from r8a77990 instead of

creating a new file. But remember that r8a77990 has more hardware than RZ/G2E, and in some

hardware r8a77990 has more channels than RZ/G2E. Should refer to hardware manual of RZ/G2E

to confirm.

This is decided by below configs in

arch/arm64/boot/dts/renesas/r8a774c0.dtsi

pfc: pin-controller@e6060000 {

 compatible = "renesas,pfc-r8a774c0";

 reg = <0 0xe6060000 0 0x50c>;

};

and

drivers/pinctrl/sh-pfc/core.c

#ifdef CONFIG_PINCTRL_PFC_R8A774C0

{

 compatible = "renesas,pfc-r8a774c0",

 .data = &r8a774c0_pinmux_info,

},

#endif

and

drivers/pinctrl/sh-pfc/pfc-r8a77990.c

#ifdef CONFIG_PINCTRL_PFC_R8A774C0

const struct sh_pfc_soc_info r8a774c0_pinmux_info = {

 .name = "r8a774c0_pfc",

 .ops = &r8a77990_pinmux_ops,

 .unlock_reg = 0xe6060000, /* PMMR */

 .function = { PINMUX_FUNCTION_BEGIN, PINMUX_FUNCTION_END },

 .pins = pinmux_pins,

 .nr_pins = ARRAY_SIZE(pinmux_pins),

 ...

#ifdef CONFIG_PINCTRL_PFC_R8A77990

const struct sh_pfc_soc_info r8a77990_pinmux_info = {

 .name = "r8a77990_pfc",

(5)

(5)

(6)

(6)

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 42 of 51
May. 31, 2022

 .ops = &r8a77990_pinmux_ops,

 .unlock_reg = 0xe6060000, /* PMMR */

 .function = { PINMUX_FUNCTION_BEGIN, PINMUX_FUNCTION_END },

 .pins = pinmux_pins,

 .nr_pins = ARRAY_SIZE(pinmux_pins),

 ...

The values specifiable as the “function” properties are arranged in an array as shown below. For example,

hscif3 (2) is specifiable as the “function” property in the pin configuration node.

drivers/pinctrl/sh-pfc/pfc-r8a77990.c:

static const struct {

 struct sh_pfc_function common[41];

 struct sh_pfc_function r8a77990[0];

} pinmux_functions = {

 .common = {

 SH_PFC_FUNCTION(audio_clk),

 SH_PFC_FUNCTION(avb),

 ...

 SH_PFC_FUNCTION(hscif3),

 ...

 SH_PFC_FUNCTION(du),

 SH_PFC_FUNCTION(ssi),

};

The values specifiable as the “groups” properties are defined in the array below in response to the “function”

properties being specified. For example, if hscif3 (2) is specified as the “function” property, the values

specifiable as the “groups” properties are defined in the hscif3_groups[] array.

drivers/pinctrl/sh-pfc/pfc-r8a77990.c:

static const char * const hscif3_groups[] = {

 "hscif3_data_a",

 "hscif3_data_b",

 "hscif3_clk_b",

 "hscif3_data_c",

 "hscif3_clk_c",

 "hscif3_ctrl_c",

 "hscif3_data_d",

 "hscif3_data_e",

 "hscif3_ctrl_e",

};

(2)

(2)

(3)

(4)

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 43 of 51
May. 31, 2022

The meanings of the values specifiable as individual “groups” properties can be judged from the following

structures. The code below is an example, showing the case where hscif3_data_c (3) is specified as a

“groups” property. hscif3_data_c_pins[] is a group of the numbers of the GPIO pins corresponding to

pins assigned when hscif3_data_c (3) is specified as a “groups” property. hscif3_data_c_mux[]

represents the pin names assigned when hscif3_data_c (3) is specified as a “groups” property. The pin

names, such as HRX3_C (7) and HTX3_C (8), are described in the hardware manual.

drivers/pinctrl/sh-pfc/pfc-r8a77990.c:

static const unsigned int hscif3_data_c_pins[] = {

 /* RX, TX */

 RCAR_GP_PIN(2, 10), RCAR_GP_PIN(2, 9),

};

static const unsigned int hscif3_data_c_mux[] = {

 HRX3_C_MARK, HTX3_C_MARK,

};

5.5.6 Newly Creating a Pin Group

If no pin groups satisfy the combination of pins to be used in section 0

Customizing the pin multiplex, adding a new pin group is required. Add a new pin group to the pinctrl drivers of

your MPU. If you use RZ/G2E (R8A774C0), add a new pin group to drivers/pinctrl/sh-pfc/pfc-r8a77990.c.

Followings are how to add a new pin group “module1_data_c” corresponding to “module1” to pinctrl

driver. Find entries of pins you want to add in the pin multiplexing table in the hardware manual of the MPU.

And add lines using “Pin Name” of pins and corresponding GPIO in the entry as follows.

drivers/pinctrl/sh-pfc/pfc-r8a77990.c:

(3)

③

(3)

(7)

(8)

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 44 of 51
May. 31, 2022

static const unsigned int module1_data_c_pins[] = {

 RCAR_GP_PIN(m, n), RCAR_GP_PIN(m, n),

};

static const unsigned int module1_data_c_mux[] = {

 MODULE1_SIG1_C_MARK, MODULE1_SIG2_C_MARK,

};

static const struct sh_pfc_pin_group pinmux_groups[] = {

 ...

 SH_PFC_PIN_GROUP(module1_data_c),

 ...

};

static const char * const module1_groups[] = {

 "module1_data",

 "module1_data_b",

 "module1_data_c",

};

If MODULE1_SIG1_C_MARK or MODULE1_SIG2_C_MARK is not defined in drivers/pinctrl/sh-

pfc/pfc-r8a77990.c, please contact to Renesas sales.

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 45 of 51
May. 31, 2022

5.5.7 Adding, Deleting, and Modifying Devices

Adding, deleting, or modifying devices correspond to adding, deleting, or modifying nodes in the device tree,

respectively.

In addition, what the node of a device should be depends on the specifications of the driver for the given

device. For details on the items to be included in the node, see the documentation for the given driver under

Documentation/devicetree/bindings. For example, the specifications of the device tree of the HSCIF

module are given in the following file.

• Documentation/devicetree/bindings/serial/renesas,sci-serial.txt

Here, a change to the HSCIF channels to be used is described as an example. In this example, the changes

shown in Table 5.3 are made.

Table 5.3 Example of Changes to the HSCIF Channels to be used

 RZ/G2E Evaluation Kit EK874 Custom Board

HSCIF2 Used with HRX2_A pin, HTX2_A pin,

HCTS2#_A and HRTS2#_A

Unused

HSCIF3 Unused Used with HRX3_C pin, HTX3_C pin,

HCTS3#_C and HRTS3#_C

In this case, the changes described below are required. This is because HSCIF2 and HSCIF3 are handled as

different devices in the device tree although both are channels of the HSCIF module. Specifically, the deletion

of HSCIF2 and the addition of HSCIF3 are required.

1. Disabling HSCIF2 and deleting the corresponding node from the pin configuration

2. Enabling HSCIF3 and adding the corresponding node to the pin configuration

https://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git/tree/Documentation/devicetree/bindings/serial/renesas,sci-serial.txt?h=linux-4.19.y

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 46 of 51
May. 31, 2022

1. Disabling HSCIF2 and deleting the corresponding node from the pin configuration

arch/arm/boot/dts/r8a774c0-custom-rzg2e.dts:

(Note that this code fragment is in unified diff format. Add the lines starting with + and delete those starting

with ‒ and make sure the character '+' or '-' will not be included in your code.)

 &pfc {

- hscif2_pins: hscif2 {

- groups = "hscif2_data_a", "hscif2_ctrl_a";

- function = "hscif2";

- };

 ...

 };

 ...

-&hscif2 {

- pinctrl-0 = <&hscif2_pins>;

- pinctrl-names = "default";

-

- uart-has-rtscts;

- status = "okay";

-};

2. Enabling SCIF0 and adding the corresponding node to the pin configuration

arch/arm/boot/dts/r8a774c0-custom-rzg2e.dts:

(Note that this code fragment is in unified diff format. Add the lines starting with + and delete those starting

with ‒ and make sure the character '+' or '-' will not be included in your code.)

 &pfc {

+ hscif3_pins: hscif3 {

+ groups = "hscif3_data_c", "hscif3_ctrl_c";

+ function = "hscif3";

+ };

 ...

 };

 ...

+&hscif3 {

+ pinctrl-0 = <&hscif3_pins>;

+ pinctrl-names = "default";

+

+ uart-has-rtscts;

+ status = "okay";

+};

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 47 of 51
May. 31, 2022

5.6 Changing the Kernel Configuration

For details on how to change the kernel configuration, see the document for each development environments:

• GitHub-based development environment/VLP64:

1. Making kernel configuration fragment (.cfg). Refer to https://www.yoctoproject.org/docs/2.4.3/kernel-

dev/kernel-dev.html#creating-config-fragments for the details.

A. By executing bitbake linux-renesas -c menuconfig, you can edit the kernel configuration

with menuconfig. After that, the command bitbake linux-renesas -c diffconfig will

makes the fragment.cfg under the $WORK/build/tmp/work/[machine name]-poky-

linux/linux-renesas/4.19...(snip).../.

B. Writing kernel configuration fragment manually. For example, a command echo

"CONFIG_USB_VIDEO_CLASS=y" >> fragment.cfg makes the simple kernel configuration

fragment.

2. Copy the fragment under the directory $WORK/meta-rzg2/recipes-kernel/linux/linux-

renesas/ . And rename it for the ease of configurations management.

3. Add following lines to $WORK/meta-rzg2/recipes-kernel/linux/linux-renesas_4.19.bb

to include the fragment to the sources of kernel configuration:

SRC_URI_append = " \

 file://fragment.cfg \

"

5.7 Building the Linux Kernel

For details on how to build the Linux kernel, see the document for each development environments:

• GitHub-based development environments/downloaded VLP: After building the kernel with the command

bitbake -C compile linux-renesas, the symbolic links to kernel image and device tree are

available as shown on Table 5.2.

⎯ Note that all modifications to the kernel sources and configurations should be saved as Yocto recipe.

Table 5.2 Symbolic link path for images and devicetrees

Processor LSI Version Board
Board

Revision

Symbolic link path after

$WORK/build/tmp/deploy/images/

G2H 3.0 HiHope-G2H 4

• hihope-rzg2h/r8a774e1-hihope-rzg2h.dts

• hihope-rzg2h/r8a774e1-hihope-rzg2h-ex.dts

• hihope-rzg2h/r8a774e1-hihope-rzg2h-ex-idk-
1110wr.dts

• hihope-rzg2h/r8a774e1-hihope-rzg2h-ex-
mipi-2.1.dts

• hihope-rzg2h/r8a774e1-hihope-rzg2h-ex-
mipi-2.4.dts

G2M 1.2 HiHope-G2M 2

• hihope-rzg2m/r8a774a1-hihope-rzg2m-
rev2.dts

• hihope-rzg2m/r8a774a1-hihope-rzg2m-rev2-
ex.dts

https://www.yoctoproject.org/docs/2.4.3/kernel-dev/kernel-dev.html#creating-config-fragments
https://www.yoctoproject.org/docs/2.4.3/kernel-dev/kernel-dev.html#creating-config-fragments

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 48 of 51
May. 31, 2022

• hihope-rzg2m/r8a774a1-hihope-rzg2m-rev2-
ex-idk-1110wr.dts

• hihope-rzg2m/r8a774a1-hihope-rzg2m-rev2-
ex-mipi-2.1.dts

• hihope-rzg2m/r8a774a1-hihope-rzg2m-rev2-
ex-mipi-2.4.dts

1.3 4

• hihope-rzg2m/r8a774a1-hihope-rzg2m.dts

• hihope-rzg2m/r8a774a1-hihope-rzg2m-ex.dts

• hihope-rzg2m/r8a774a1-hihope-rzg2m-ex-
idk-1110wr.dts

• hihope-rzg2m/r8a774a1-hihope-rzg2m-ex-
mipi-2.1.dts

• hihope-rzg2m/r8a774a1-hihope-rzg2m-ex-
mipi-2.4.dts

3.0 4

• hihope-rzg2m/r8a774a3-hihope-rzg2m.dts

• hihope-rzg2m/r8a774a3-hihope-rzg2m-ex.dts

• hihope-rzg2m/r8a774a3-hihope-rzg2m-ex-
idk-1110wr.dts

• hihope-rzg2m/r8a774a3-hihope-rzg2m-ex-
mipi-2.1.dts

• hihope-rzg2m/r8a774a3-hihope-rzg2m-ex-
mipi-2.4.dts

G2N 1.1 HiHope-G2N

2

• hihope-rzg2n/r8a774b1-hihope-rzg2n-
rev2.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-rev2-
ex.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-rev2-
ex-idk-1110wr.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-rev2-
ex-mipi-2.1.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-rev2-
ex-mipi-2.4.dts

4

• hihope-rzg2n/r8a774b1-hihope-rzg2n.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-ex.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-ex-idk-
1110wr.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-ex-
mipi-2.1.dts

• hihope-rzg2n/r8a774b1-hihope-rzg2n-ex-
mipi-2.4.dts

G2E

1.0

EK874

B

• ek874/r8a774c0-es10-cat874.dts

• ek874/r8a774c0-es10-ek874.dts

• ek874/r8a774c0-es10-ek874-idk-2121wr.dts

• ek874/r8a774c0-es10-ek874-mipi-2.1.dts

• ek874/r8a774c0-es10-ek874-mipi-2.4.dts

1.1

C

• ek874/r8a774c0-cat874-revc.dts

• ek874/r8a774c0-ek874-revc.dts

• ek874/r8a774c0-ek874-revc-idk-2121wr.dts

• ek874/r8a774c0-ek874-revc-mipi-2.1.dts

• ek874/r8a774c0-ek874-revc-mipi-2.4.dts

E

• ek874/r8a774c0-cat874.dts

• ek874/r8a774c0-ek874.dts

• ek874/r8a774c0-ek874-idk-2121wr.dts

• ek874/r8a774c0-ek874-mipi-2.1.dts

• ek874/r8a774c0-ek874-mipi-2.4.dts

5.8 Examples of Adding Devices/Kernel functions

This section provides examples of adding several peripheral devices.

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 49 of 51
May. 31, 2022

5.8.1 Adding an I2C Device

If you are to connect an I2C device to the I2C or IIC module in the RZ/G2 on the custom board, proceed with

the following steps.

• Settings of the I2C or IIC module in the RZ/G2

➢ Enable the I2C or IIC module to be used (see section 5.5.4 Enabling or Disabling Existing Devices).

Change the pin configuration if you wish to use a configuration which differs

from that for use with the reference board (see section 0

➢ Customizing the pin multiplex).

• Settings of the I2C device connected to the RZ/G2

➢ If the kernel does not include a driver for the I2C device, add the driver (see section 5.5.7 Adding,

Deleting, and Modifying Devices).

➢ Add the I2C device to the device tree (see section 5.5.7 Adding, Deleting, and Modifying Devices).

➢ Change the kernel configuration so as to enable the driver for the I2C device (see section 5.6

Changing the Kernel Configuration).

Examples of the connection of I2C devices are given in sections 5.8.1.1 Using the I2C Connection to Add an

RTC and 5.8.1.2 Using the I2C Connection to Add an EEPROM Device.

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 50 of 51
May. 31, 2022

5.8.1.1 Using the I2C Connection to Add an RTC

Using the I2C connection to add a realtime clock (RTC) is described here. In this example, RTC chip

BQ32000 Series will be connected to I2C channel 2.

Add the following node to the device tree. For details on how to enter a node in the device tree, see the

Documentation/devicetree/bindings/rtc/ti,bq32k.txt, which is an explanatory note on the

device tree for the BQ32000 Series. In this example, the i2c2 interface is used as the I2C module for

connection.

&i2c2{ /* Select the appropriate master for connection */

 ...

 rtc@68 {

 compatible = “bq32000”;

 reg = <0x68>;

 };

 ...

};

To enable the driver for the BQ32000 Series, set CONFIG_RTC_DRV_BQ32K = y (for embedding the driver in

the kernel) or CONFIG_RTC_DRV_BQ32K = m (for handling the driver as a loadable kernel module) in the

kernel configuration.

RZ/G2 Group Linux BSP Porting Guide 5. Porting the Linux Kernel

R01US0447EJ0110 Rev. 1.10 Page 51 of 51
May. 31, 2022

5.8.1.2 Using the I2C Connection to Add an EEPROM Device

Using the I2C connection to add an EEPROM device is described here. The file

drivers/misc/eeprom/at24.c is used as the driver for a general EEPROM with I2C interface. For details

on how to enter a node in the device tree, see the

Documentation/devicetree/bindings/eeprom/eeprom.txt. Followings is the example of using

Renesas I2C interface EEPROM R1EX24002ATAS0I.

Add the following node to the device tree. In this example, the i2c2 interface is used as the I2C module for

connection. Take care with the following points.

• In this example, the EEPROM is connected to the i2c2 interface. Select the actual destination for

connection of the given device.

• 0x50 represents the address of the device. Select the address to suit the setting on the device side.

• In this example, the page size is set to 16 bytes (not essential). Set the size to suit the specifications of

the given device.

• In this example, read-only is set as the type of read or write operation (not essential). Select the operation

to suit the intended use of the given device.

&i2c2 { /* Select the appropriate master for connection */

 ...

 eeprom@50 { /* Select the address */

 compatible = “renesas,24c02”;

 reg = <0x50>; /* Select the address */

 pagesize = <16>; /* Optional: Default is 1. */

 read-only; /* optional */

 };

 ...

};

To enable the driver drivers/misc/eeprom/at24.c, set CONFIG_EEPROM_AT24 = y (for embedding

the driver in the kernel) or CONFIG_EEPROM_AT24 = m (for handling the driver as a loadable kernel module)

in the kernel configuration.

C - 1

Revision History RZ/G2 Group Linux BSP Porting Guide

Rev. Date Description

Page Summary

1.00 Oct. 29, 2019 ⎯ Initial release

1.01 Jan. 10, 2020 38,39 Add section 5.5.3 Customizing CMA

1.02 Jun. 15, 2020 ⎯ Add support G2H

1.03 Aug. 17, 2020 ⎯ Add support G2M v3.0

1.04 Nov. 16, 2020 ⎯ Change version to keep consistent with other documents.

1.05 Feb. 26, 2021 8, 9,

10,

16, 17

Update change of TF-A Yocto recipe and source code.

Update Renesas webpage URL to download VPL64 package.

1.06 May. 31, 2021 ⎯ Add support EK874 Revision E Board (RZ/G2E)

1.07 Aug. 31, 2021 8 Add information about RZ/G2’s TF-A source code from v2.5

1.08 Nov. 15, 2021 ⎯ Change version to keep consistent with other documents.

1.09 Feb. 28, 2022 46, 47 Add new devicetree files for MIPI Adapter v2.4

1.10 May. 31, 2022 ⎯ Update information about new U-boot version v2021.10

RZ/G2 Group Linux BSP Porting Guide

Publication Date: Rev.1.10 May. 31, 2022

Published by: Renesas Electronics Corporation

RZ/G2 Group Linux BSP Porting Guide

	1. Overview
	1.1 Porting Parts Explained in this Document
	1.2 Prerequisites
	1.3 Overview of the boot sequence

	2. Adding new machine configuration to Yocto recipes
	2.1 Create machine config file
	2.2 Add compatible machine
	2.3 Update build configuration

	3. Porting Trusted Firmware-A
	3.1 Customization flow
	3.2 How to customize a functionality in TF-A
	3.2.1 Board specific flag
	3.2.2 PFC/GPIO setting
	3.2.2.1 Multiplexed pin functions
	3.2.2.2 GPIO/Peripheral Function Select
	3.2.2.3 Drive voltage select
	3.2.2.4 Pull-up/Pull-down
	3.2.2.5 GPIO polarity
	3.2.2.6 General IO/Interrupt Switching
	3.2.2.7 GPIO output value settings
	3.2.2.8 GPIO input/output

	3.2.3 Mapping on SPI Flash
	3.2.4 DRAM settings

	4. Porting U-Boot
	4.1 Editing the U-Boot Source Code
	4.2 List of Board-specific files
	4.3 Procedure for Porting U-Boot
	4.3.1 Deciding the board name
	4.3.2 Creating the Board Directory
	4.3.3 Creating the board file
	4.3.4 Creating the board Kconfig file
	4.3.5 Creating the Makefile
	4.3.6 Creating the defconfig file
	4.3.7 Creating the board header File
	4.3.8 Adding the entry to the board Kconfig file to architecture's Kconfig
	4.3.9 Creating the Device tree file
	4.3.10 Building U-Boot
	4.3.11 Writing U-Boot to a Custom Board

	5. Porting the Linux Kernel
	5.1 Editing the Source Code of the Linux Kernel
	5.2 Procedure for Porting the Linux Kernel
	5.3 List of Board-specific Files
	5.4 Adding, Modifying, and Deleting Device Drivers
	5.5 Creating the Device Tree and Modifying the Makefile
	5.5.1 Device Trees of the RZ/G2E EK874 Kit
	5.5.2 Creating the Device Tree and Modifying the Makefile
	5.5.3 Customizing CMA
	5.5.4 Enabling or Disabling Existing Devices
	5.5.5 Customizing the pin multiplex
	5.5.6 Newly Creating a Pin Group
	5.5.7 Adding, Deleting, and Modifying Devices

	5.6 Changing the Kernel Configuration
	5.7 Building the Linux Kernel
	5.8 Examples of Adding Devices/Kernel functions
	5.8.1 Adding an I2C Device
	5.8.1.1 Using the I2C Connection to Add an RTC
	5.8.1.2 Using the I2C Connection to Add an EEPROM Device

