LENESAS

-
W
P
s
<
D
S
-
D

RX Family RXv1 Instruction Set Architecture

08,
N

User’s Manual: Software

RENESAS 32-Bit MCU
RX Family

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.30 Dec 2019

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical
information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and
application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification,
copying or reverse engineering.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended

applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other

Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a

direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious

property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military

equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising

from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other

Renesas Electronics document.

When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the
ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of
the use of Renesas Electronics products outside of such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless
designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing
safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.
Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of
the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate
the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or
losses occurring as a result of your noncompliance with applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control
laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or
otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this
document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly

controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

How to Use This Manual

Thismanual isdesigned to provide users with an understanding of RXv1 instruction set architecture (RXv1). The manual
contains detailed descriptions of CPU features and instruction sets. The manual is intended for users who are designing
application systems using this CPU. Target users are expected to understand the fundamental s of microcomputers.

Notation in This Manual

Thefollowing isalist of the elements of the notation used in this manual.

Classification Notation Meaning
Symbols IMM Immediate value

SIMM Immediate value for sign extension according to the processing size

UIMM Immediate value for zero extension according to the processing size

src, src2 Source of an instruction operand

dest Destination of an instruction operand

dsp Displacement of relative addressing

pcdsp Displacement of relative addressing of the program counter

[1] Represents indirect addressing

Rn General-purpose register. RO to R15 are specifiable unless stated
otherwise.

Rs General-purpose register as a source. RO to R15 are specifiable unless
stated otherwise.

Rs2 In the instructions where two general-purpose registers can be specified
for operand, the first general-purpose register specified as a source is
described as Rs and the second general-purpose register specified as a
source is described as Rs2.

Rd General-purpose register as a destination. RO to R15 are specifiable
unless stated otherwise.

Rd2 In the instructions where two general-purpose registers can be specified
for operand, the first general-purpose register specified as a destination is
described as Rd and the second general-purpose register specified as a
destination is described as Rd2.

Rb General-purpose register specified as a base register. RO to R15 are
specifiable unless stated otherwise.

Ri General-purpose register as an index register. RO to R15 are specifiable
unless stated otherwise.

Rx Represents a control register. The PC, ISP, USP, INTB, PSW, BPC, BPSW,
FINTV, and FPSW are selectable, although the PC is only selectable as the
src operand of MVFC and PUSHC instructions.

flag Represents a bit (U or 1) or flag (O, S, Z, or C) in the PSW.

ACC Accumulator

tmp, tmp0, tmp1, Temporary registers

tmp2, tmp3 etc.

Values 000b Binary number
0000h Hexadecimal number
Bit length #IMM:8 etc. Represents the effective bit length for the operand symbol.

A Indicates an effective length of one bit.

2 Indicates an effective length of two bits.

3 Indicates an effective length of three bits.

4 Indicates an effective length of four bits.

5 Indicates an effective length of five bits.

8 Indicates an effective length of eight bits.

;16 Indicates an effective length of 16 bits.

24 Indicates an effective length of 24 bits.

32 Indicates an effective length of 32 bits.

Classification Notation Meaning
Size specifiers MOV.W etc. Indicates the size that an instruction handles.
.B Byte (8 hits) is specified.
W Word (16 bits) is specified.
L Longword (32 bits) is specified.
Branch distance BRA.A etc. Indicates the length of the valid bits to represent the distance to the branch
specifiers relative destination.
.S 3-bit PC forward relative is specified. The range of valid values is 3 to 10.
B 8-bit PC relative is specified. The range of valid values is —128 to 127.
W 16-bit PC relative is specified. The range of valid values is —32768 to
32767.
A 24-bit PC relative is specified. The range of valid values is —8388608 to
8388607.
L 32-bit PC relative is specified. The range of valid values is —2147483648 to

2147483647.

Size extension
specifiers added to
memory operands

dsp:16[Rs].UB etc.

Indicates the size of a memory operand and the type of extension. If the
specifier is omitted, the memory operand is handled as longword.

Byte (8 bits) is specified. The extension is sign extension.

Byte (8 bits) is specified. The extension is zero extension.

Word (16 bits) is specified. The extension is sign extension.

Word (16 bits) is specified. The extension is zero extension.

I~ E ls |% oo}

Longword (32 bits) is specified.

Operations

(Operations in this manual are written in accordance with C language syntax. The following is the
notation in this manual.)

Assignment operator. The value on the right is assigned to the variable on
the left.

Indicates negation as a unary operator or a "difference" as a binary
operator.

Indicates "sum" as a binary operator.

Indicates a pointer or a "product” as a binary operator.

Indicates "quotient” as a binary operator.

Indicates "remainder" as a binary operator.

Indicates bit-wise "NOT" as a unary operator.

Indicates bit-wise "AND" as a binary operator.

Indicates bit-wise "OR" as a binary operator.

Indicates bit-wise "Exclusive OR" as a binary operator.

Indicates the end of a statement.

Classification

Notation

Meaning

Operations

{}

Indicates the start and end of a complex sentence. Multiple statements can
be putin { }.

if (expression)
statement 1 else
statement 2

Indicates an if-statement. The expression is evaluated; statement 1 is
executed if the result is true and statement 2 is executed if the result is
false.

for (statement 1;
expression;
statement 2)
statement 3

Indicates a for-statement. After executing statement 1 and then evaluating
the expression, statement 3 is executed if the result is true. After statement
3 is executed the first time, the expression is evaluated after executing
statement 2.

do statement while
(expression);

Indicates a do-statement. As long as the expression is true, the statement
is executed. Regardless of whether the expression is true or false, the
statement is executed at least once.

while (expression)

Indicates a while-statement. As long as the expression is true, the

statement statement is executed.
==, I= Comparison operators. "==" means "is equal to" and "!'=" means "is not
equal to".
> < Comparison operators. ">" means "greater than" and "<" means "less
than".
>=, <= Comparison operators. The condition includes "==" as well as ">" or "<".
&& Logical operator. Indicates the "AND" of the conditions to the left and right
of the operator.
I Logical operator. Indicates the "OR" of the conditions to the left and right of
the operator.
<<, >> Shift operators, respectively indicating leftward and rightward shifts.
Floating-point NaN Not a number
datum
Floating-point SNaN Signaling NaN
representation ONaN Quiet NaN

Contents

HOW t0 USE ThiS MaANUAIuueiiiiiei e e e e e e e e e e e e e e e e e aeeees 3
List of RXv1 Instruction Set for RX Famlyuuiiiiiiiiiiiiciieecie e 9
Quick Page Reference in AlIPhabetiCal OFQEocoo i e et 9

1. CPU Programming MoOdelccouuiiiiiiiiiiiiiii e 13
11 FFEALUIES ...ttt sttt bt a e bt et e bt e at e e bt e e e eRe e e e ohe e beeh e e a b e eRe e b e eRe e Rt eRe e et eaeebeaanesreennens 13
1.2 REGIStEr SEt Of the CPU ... bbbt s bbb n e ees 14
121 General-Purpose RegiSters (RO 10 R15)ccoocirieirieirieirieie sttt 15

122 CONLIOI REJISLENS ...ttt sttt sttt bbbt b et b et b et bt b et b et b et st e bt s b et b e et e b 15
1221 Interrupt Stack Pointer (ISP)/User Stack POINLEr (USP)coveiieerieerieienieie e 16

1222 Interrupt Table REGISIEr (INTB) ...c.coueiiieeiieirieeeiee ettt 16

1223 Program COUNLE (PC)c..eeiuiirieirieesieeeteesi ettt se e b e eb e nens 16

1224 Processor StatUS WOI (PSW) ..ottt 17

1225 o U o1 = O (=1 =) TSRS 19

1.2.2.6 BaCKUP PSW (BPSW) ...ttt bbb s s sne s s aenn 19

1227 Fast Interrupt Vector REGISIEr (FINTV) ..ot 19

1228 Floating-Point StAUS WOrd (FPSW)cocciiieiiiiiicerieesieesie et 20

123 ACCUMUIBLOL ...ttt ettt ettt st st e e et e e st e st s st e besteseese e e eeeseeneeseeseeseeaessensensensanseneeneeneas 23

1.3 Floating-POiNt EXCEPLIONSciiietirietirieiereei ettt ettt e ettt n e sn s 24
131 L@ g 1 o R 24

132 LU o L= 1 o SRS 24

133 101C o TSSO P P UPOPRPRPURRPRR 25

134 DIVISION-DY-ZEI0 ...ttt bbbttt e bt 25

135 INVAT OPEIALTION ...ttt bbbt b bbbt e bbbttt 26

1.3.6 UNimplemented PrOCESSINGcouruireruieeririeiinesierisiei ettt b et s e e b e b nne 26

14 L aTerc= = o TV oo TP 27
14.1 S 1 V7o 1Y/ oo L= 27

14.2 USEN IMOOE ...ttt b bbb bbbt bbbt sttt et 27

1.4.3 L RV = o T= o 1 g o ot o o 27

1.4.4 Switching BEtWeen ProCeSSOr MOUEScceieiuirieieeeieeeeteseste st teseeseeae e e e sse s sreste e seeneeneesesneens 27

15 = 7= B 1Y - SRR 28
151 1o = 28

15.2 Floating-POoiNt NUMDEEccuoiiceeee st et es e e st saesne e e e e e e e e ennens 28

153 2] OSSPSR 29

154 S 1 OSSR 29

16 D= e N =10 =0T o OSSP RR 30
16.1 Data Arrangement iN REJISLENScviiiiieieieie s s et e e s st e e e et s e sre st e seess e senae e eneesesseenesrennes 30

1.6.2 Data ArrangemeNt IN IMEIMOIY ..ovoeeeeeeeee sttt e et esbesa et es e e e e esaesessesaesresteseeneeneenennn 30

17 RV = (o I o OO RRTSPSN 31
171 FIXEA VECION TAIE ...ttt sttt et 31

17.2 REIOCALADIE VECION TADIEcveeeiciee bbbt bt 32

1.8 AGAINESS SPBCE ...o.veveiisieieeeee ettt e s e e e e seesesseseeebeseeseesten s e ee e eneeneaseeReereneeeeententeneentenseneennnnens 33

2. AJAresSINg MOUESoouuiiiiiiii e 34
21 GUIETO THiS SECLION ...ttt b e et et a e it aeehe b e s be st e e et et et e neebenaeene 35
2.2 N0 01125 1o 111, o o (=SS 36
221 RaNges for IMMEIALE VEIUESocueeee ettt ettt sttt e aesee st e e e nne s 40

G T 1 151 (0 (o 1o g DTS o3] 11 o] O 41
31 OVErVIEW Of INSEIUCHION SELoeeeeeeeeeeet ettt e e ae e ae e e e e e e e e eneerenneens 41
3.2 (T80 [(0T I T3S = 1o o 45
33 LS W oo TS T = S 50

N 1 0153 1 (1 [1T N @ Yo [PSP 165

41 (10 L0 (SR (o T I aTETS = (o o [165

4.2 Instruction Code DESCIIDEA IN DELAIooocuiiiieii e e s s s see s eaee s sares 168

ST b (o= 1 0] o USRS 247
51 TYPES OF EXCEPLION ...ttt bbb e bbbt b et b e st b s b et b e e b e seebeseebe s 247
511 Undefined INSLrUCtiON EXCEPLIONcc.ciriiiiriiieiiriierieise ettt 248
512 Privileged INSrUCLiON EXCEPLIONccciriiiieiieecrie et s 248
513 ACCESS EXCEPLION ..ttt b e st b et b e ekt b e ekt bese et ne b nnebe e 248
514 Floating-POiNt EXCEPLIONSc.couiiiiiiriiirierieese sttt sb e 248
515 (S PP P TR PRSP 248
51.6 NON-MESKEDIE TNLEITUDL ...ttt 248
51.7 L1010 (0L TP PRSPPI 248
518 UNCONGITIONG] TTAD ..ottt b bbbt b e e bt sttt b e nes 248
52 Exception Handling PrOCEAUIEcooiiiiiiieieeie ettt et sttt e s s bbb e 249
53 ACCEPLANCE OF EXCEPLIONS ..ottt e sttt bbbt s nbne 251
531 Timing of Acceptance and SAVEd PC VAIUEcocviciiiiiceeee st 251
532 Vector and Site for Preserving the PC and PSW ...t 252
5.4 Hardware Processing for Accepting and Returning from EXCEPLIONSc.ccoevvereeenneneneniee e 253
55 HarOWare Pre-PrOCESSING .. c..eeiveerieierieterieesiete st st st s et sttt st st et be e st e et e et et ebeseebeseebeseebeneebeseebeneas 254
551 Undefined INSLrUCtION EXCEPLIONcccciririiirieiiricierieiniecsie ettt nnenes 254
552 Privileged INSrUCLON EXCEPLIONcccoiiiirieiieieeieree et 254
553 ACCESS EXCEPLION ..ttt b bbbkttt se et e se et e se et e neebe e 254
554 Floating-POiNt EXCEPLIONSc.ciueiiriririeiiriereeere sttt s n e nenes 254
55.5 LS O PTOR TR PRPRPR 254
5.5.6 NON-MaSKaDI € INTEITUPL ...t st r e r et tese e e enennennenrens 255
55.7 1= 0]S 255
5.5.8 LU T wTo gl [To =!I I =" o SRR 255
5.6 Return from Exception Handling ROULINESc..civeieiiiececccece st e enens 256
5.7 (@0 1= o)l = AT T 4V o] gl ST (e=: o1 o] 256
0 T0 [TP PPPPPPPPPPPPTPP 257

REVISION HISTORY ..o e 259

RX Family RXv1 Instruction Set Architecture

List of RXv1 Instruction Set for RX Family

List of RXv1 Instruction Set for RX Family

Quick Page Reference in Alphabetical Order (1/4)

Instruction Instruction
Described Code Described
in Detail in Detail
Mnemonic Function (on Page) (on Page)
ABS Absolute value 51 169
ADC Add with carry 52 170
ADD Add without carry 53 171
AND Logical AND 55 173
BCLR Clear a bit 57 175
BCnd BGEU Conditional relative branch 58 177
BC 58 177
BEQ 58 177
Bz 58 177
BGTU 58 177
BPZ 58 177
BGE 58 177
BGT 58 177
BO 58 177
BLTU 58 177
BNC 58 177
BNE 58 177
BNZ 58 177
BLEU 58 177
BN 58 177
BLE 58 177
BLT 58 177
‘BNO 58 177
BMCnd BMGEU Conditional bit transfer 59 179
BMC 59 179
BMEQ 59 179
BMZ 59 179
BMGTU 59 179
BMPZ 59 179
'BMGE 59 179
BMGT 59 179
BMO 59 179
BMLTU 59 179
BMNC 59 179
BMNE 59 179
BMNZ 59 179
'BMLEU 59 179
BMN 59 179
BMLE 59 179
BMLT 59 179
BMNO 59 179
BNOT Not a bit 61 180
BRA Unconditional relative branch 62 181

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 9 of 271

RX Family RXv1 Instruction Set Architecture List of RXv1 Instruction Set for RX Family

Quick Page Reference in Alphabetical Order (2/4)

Instruction Instruction
Described Code Described

in Detail in Detail
Mnemonic Function (on Page) (on Page)
BRK Unconditional trap 63 182
BSET Set a bit 64 182
BSR Relative branch to subroutine 65 184
BTST Test a bit 66 185
CLRPSW Clear a flag or bit in the PSW 67 186
CMP Compare 68 187
DIV Divide signed 69 188
DIVU Divide unsigned 70 190
EMUL Extended multiply signed 71 191
EMULU Extended multiply unsigned 73 192
FADD® Add floating-point 75 194
FCMPT Comparefloating-point 77 195
FDIV'® Divide floating-point 79 196
FMUL™ Multiply floating-point 81 197
FSUB™ Subtractfloating-point 83 198
FToIt Convert floating-point to signed integer 85 199
INT Software interrupt 88 200
ITOFT Convert signed integer to floating-point 89 200
JMP Unconditional jump 91 201
JSR Jump to subroutine 92 201
MACHI Multiply-Accumulate the upper words 93 202
MACLO Multiply-Accumulate the lower words 94 202
MAX Maximum of two signed integers 95 203
MIN Minimum of two signed integers 96 204
MOV Move 97 205
MOVU Move unsigned 100 210
MUL Multiply 102 211
MULHI Multiply the upper words 104 213
MULLO Multiply the lower words 105 213
MVFACHI Move data from the upper longword of the accumulator 106 213
MVFACMI Move data from the middle-order longword of the 107 214
accumulator

MVFC Move data from a control register 108 214
MVTACHI Move data to the upper longword of the accumulator 109 215
MVTACLO Move data to the lower longword of the accumulator 110 215
MVTC Move data to a control register 111 216
MVTIPL Move data to IPL 112 217
(privileged instruction)

NEG Negate (two’s complement) 113 218
NOP No operation 114 218
NOT Logical NOT (one’s complement) 115 219
OR Logical OR 116 220
POP Pop register from stack 117 221
POPC Pop a control register from stack 118 222
POPM Pop multiple registers from stack 119 222
PUSH Push register on stack 120 223

RO1US0032EJ0130 Rev.1.30 RENESAS Page 10 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

List of RXv1 Instruction Set for RX Family

Quick Page Reference in Alphabetical Order (3/4)

Instruction Instruction
Described Code Described
in Detail in Detail
Mnemonic Function (on Page) (on Page)
PUSHC Push a control register on stack 121 224
PUSHM Push multiple registers on stack 122 224
RACW Round the accumulator word 123 225
REVL Reverse endian within longword 125 225
REVW Reverse endian within word 126 225
RMPA Repeat multiply-accumulate 127 226
ROLC Rotate left with carry 129 226
RORC Rotate right with carry 130 227
ROTL Rotate left 131 227
ROTR Rotate right 132 228
ROUND™ Round floating-point to signed integer 133 229
RTE Return from exception 136 229
(privileged instruction)
RTFI Return from fast interrupt 137 230
(privileged instruction)
RTS Return from subroutine 138 230
RTSD Return from subroutine after deallocating stack frame 139 230
SAT Saturate 141 231
SATR Saturate for RMPA 142 231
SBB Subtract with borrow 143 232
SCCnd SCGEU Store condition 144 233
scc 144 233
SCEQ 144 233
SCz 144 233
SCGTU 144 233
SCPz 144 233
SCGE 144 233
SCGT 144 233
SCO 144 233
'SCLTU 144 233
SCNC 144 233
SCNE 144 233
'SCNz 144 233
SCLEU 144 233
SCN 144 233
'SCLE 144 233
SCLT 144 233
SCNO 144 233
SCMPU String compare until not equal 145 233
SETPSW Set a flag or bit in the PSW 146 234
SHAR Arithmetic shift right 147 235
SHLL Logical shift left 148 236
SHLR Logical shift right 149 237
SMOVB String move backward 150 238
SMOVF String move forward 151 238
SMOVU String move until zero detected 152 238

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 11 of 271

RX Family RXv1 Instruction Set Architecture

List of RXv1 Instruction Set for RX Family

Quick Page Reference in Alphabetical Order (4/4)

Instruction Instruction
Described Code Described

in Detail in Detail

Mnemonic Function (on Page) (on Page)
SSTR String store 153 239
STNZ Store on not zero 154 239
STZ Store on zero 155 240
SUB Subtract without borrow 156 241
SUNTIL String search until equal 157 242
SWHILE String search while equal 159 242
TST Test logical 161 243
WAIT Wait 162 244
(privileged instruction)

XCHG Exchange 163 244
XOR Logical Exclusive OR 164 245

Note: 1. The floating-point arithmetic instructions are optional functions. Whether or not the product has the floating-point
arithmetic instructions will depend on the product. For details, refer to the user’s manual: hardware for each

product.

Note: 2. Products of the RX610 Group do not support the MVTIPL instruction.

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 12 of 271

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1. CPU Programming Model
The RXvlinstruction set architecture (RXv1) has the following features.

» Adoption of variable-length instruction format

The RXv1 CPU has short formats for frequently used instructions, facilitating the devel opment of efficient programs
that take up less memory.

» Powerful instruction set
The RXv1 supports 90 selected instructions. DSP instructions and floating-point arithmetic instructions realize high-
speed arithmetic processing.

e Versatile addressing modes

The RXv1 CPU has 10 versatile addressing modes, with register-register operations, register-memory operations, and
bitwise operations included. Data transfer between memory locationsis also possible.

1.1 Features

» Minimum instruction execution rate: One clock cycle
« Address space: 4-Gbyte linear addresses
* Register set of the CPU
General purpose: Sixteen 32-hit registers
Control: Nine 32-bit registers
Accumulator: One 64-bit register
» Variable-length instruction format (Iengths from one to eight bytes)
e 90instructions/10 addressing modes
Basic instructions: 73
Floating-point arithmetic instructions: 8 (as an optional function*)
DSPinstructions: 9
* Processor modes
Supervisor mode and user mode
* Vector tables
Fixed vector table and rel ocatable vector table
« Memory protection unit (as an optional function)
* Dataarrangement
Selectable as little endian or big endian

Note: * The floating-point arithmetic instructions are optional functions. Whether or not the product has the floating-point
arithmetic instructions will depend on the product. For details, refer to the user's manual: hardware for each
product.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 13 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2 Register Set of the CPU

The RXv1 CPU has sixteen general -purpose registers, nine control registers, and one accumulator used for DSP
instructions.

General-purpose register Control register

b31 b0 b31 b0
RO(SP)*1 ISP (Interrupt stack pointer)
R1 USP (User stack pointer)
R2
R3 | INTB (Interrupt table register) |
R4 | PC (Program counter) |
R5
R6 | PSW (Processor status word) |
R7 | BPC (Backup PC) |
R8
R9 | BPSW (Backup PSW) |
R10 | FINTV (Fast interrupt vector register) |
R11
R12 | FPSW (Floating-point status word) |
R13
R14
R15

DSP instruction register
b63 b0
ACC (Accumulator)

Note: 1. The stack pointer (SP) is switchable between the interrupt stack pointer (ISP) and user stack pointer
(USP) by changing the value of the U bit in the PSW.

Figure 1.1 Register Set of the CPU

RO1US0032EJ0130 Rev.1.30 RENESAS Page 14 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

1. CPU Programming Model

1.2.1

General-Purpose Registers (RO to R15)

This CPU has sixteen 32-bit general-purpose registers (RO to R15). RO to R15 can be used as data register or address
register.
RO, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate asthe

interrupt stack pointer (1SP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor
status word (PSW).

1.2.2 Control Registers

This CPU has the following nine control registers.

Interrupt stack pointer (ISP)

User stack pointer (USP)

Interrupt table register (INTB)
Program counter (PC)

Processor status word (PSW)

Backup PC (BPC)

Backup PSW (BPSW)

Fast interrupt vector register (FINTV)
Floating-point status word (FPSW)

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 15 of 271

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

b31 b0

ISP

I e e e S A
Value afterreset 0 0 0 0 0 0 0 0 0 0 0 O O O O OOOOOOOOOOOOOOOODO

b31 b0

USP

I O e o
Value afterreset: 0 0 0 0 0 0 0 0 0 0 0 O O O O O OO OOOOOOOOOOOOODO

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP).
Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the
processor status word (PSW).

1.2.2.2 Interrupt Table Register (INTB)

b31 b0

I T e e
Value after reset: Undefined

Theinterrupt table register (INTB) specifies the address where the relocatable vector table starts.

1.2.2.3 Program Counter (PC)

b31 b0

I e O A
Value after reset: Reset vector (Contents of addresses FFFFFFFCh to FFFFFFFFh)

The program counter (PC) indicates the address of the instruction being executed.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 16 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

1. CPU Programming Model

1.2.2.4 Processor Status Word (PSW)
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7 bl6
— — — — | IPL[‘3:0] — — — | PM | — — u I
Value after reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bl5 bl4 bl3 bl2 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl b0
— — — — — — — — — — — — o] S z (o}
Value after reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit Symbol Bit Name Description R/W
b0 C Carry flag 0: No carry has occurred. R/W
1: A carry has occurred.
bl z Zero flag 0: Result is non-zero. R/W
1: Resultis 0.
b2 S Sign flag 0: Result is a positive value or 0. R/W
1: Result is a negative value.
b3 (0] Overflow flag 0: No overflow has occurred. R/W
1: An overflow has occurred.
bl5tob4 — Reserved These bits are read as 0. The write value R/W
should be 0.
b16 " Interrupt enable bit 0: Interrupt disabled. RIW
1: Interrupt enabled.
b17 Ut Stack pointer select bit 0: Interrupt stack pointer (ISP) is selected. R/W
1: User stack pointer (USP) is selected.
b19, b18 — Reserved These bits are read as 0. The write value R/W
should be 0.
b20 PM™"2."3 processor mode select bit 0: Supervisor mode is selected. RIW
1: User mode is selected.
b23to b21 — Reserved These bits are read as 0. The write value R/W
should be 0.
b27 to b24 1PL[3:0] Processor interrupt priority level 027~ b24 R/W
*1, %4 0 0 O O: Priority level O (lowest)
0 0 O 1: Priority level 1
0 0 1 O: Priority level 2
0 0 1 1: Priority level 3
0 1 O O: Priority level 4
0 1 O 1: Priority level 5
0 1 1 O: Priority level 6
0 1 1 1:Priority level 7
1 0 O O: Priority level 8
1 0 O 1: Priority level 9
1 0 1 O: Priority level 10
1 0 1 1:Priority level 11
1 1 0 O: Priority level 12
1 1 0 1:Priority level 13
1 1 1 O:Priority level 14
1 1 1 1:Priority level 15 (highest)
b31to b28 — Reserved These bits are read as 0. The write value R/W
should be 0.
Note: 1. In user mode, writing to the IPL[3:0], PM, U, and I bits by an MVTC or POPC instruction is ignored. Writing to the

IPL[3:0] bits by an MVTIPL instruction generates a privileged instruction exception.

Note: 2.
is possible.

In supervisor mode, writing to the PM bit by an MVTC or POPC instruction is ignored, but writing to the other bits

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 17 of 271

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

Note: 3. Switching from supervisor mode to user mode requires execution of an RTE instruction after having set the PM
bit in the PSW on the stack to 1 or executing an RTFI instruction after having set the PM bit in the backup PSW
(BPSW) to 1.

Note: 4. Bit 27, the IPL[3] bit, is reserved in products of the RX610 group. Writing to this bit is ignored. The bit is read as 0.

The processor status word (PSW) indicates results of instruction execution or the state of the CPU.

C flag (Carry flag)
This flag retains the state of the bit after a carry, borrow, or shift-out has occurred.

Z flag (Zero flag)
Thisflag isset to 1 if the result of an operation is 0; otherwise its valueis cleared to O.

S flag (Sign flag)
Thisflag isset to 1if the result of an operation is negative; otherwiseits value is cleared to 0.

O flag (Overflow flag)
Thisflag isset to 1 if the result of an operation overflows; otherwiseitsvalueis cleared to 0.

| bit (Interrupt enable bit)
This bit enables interrupt requests. When an exception is accepted, the value of this bit becomes 0.

U bit (Stack pointer select bit)

This bit specifies the stack pointer as either the ISP or USP. When an exception request is accepted, this bit is set to 0.
When the processor mode is switched from supervisor mode to user mode, this bit is set to 1.

PM bit (Processor mode select bit)
This bit specifies the operating mode of the processor. When an exception is accepted, the value of this bit becomes 0.

IPL[3:0] bits (Processor interrupt priority level)

The IPL[3:0] bits specify the processor interrupt priority level asone of sixteen levelsfrom zero to fifteen, where priority
level zero isthe lowest and priority level fifteen the highest. When the priority level of arequested interrupt is higher
than the processor interrupt priority level, the interrupt is enabled. Setting the IPL[3:0] bitsto level 15 (Fh) disables all
interrupt requests. The IPL[3:0] bits are set to level 15 (Fh) when anon-maskable interrupt is generated. When interrupts
in general are generated, the bits are set to the priority levels of accepted interrupts.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 18 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.25 Backup PC (BPC)

b31 b0

I e e e O A A
Value after reset: Undefined

The backup PC (BPC) is provided to speed up response to interrupts. After afast interrupt has been generated, the
contents of the program counter (PC) are saved in the BPC.

1.2.2.6 Backup PSW (BPSW)

b31 b0

Value after reset: Undefined

The backup PSW (BPSW) is provided to speed up response to interrupts. After afast interrupt has been generated, the
contents of the processor status word (PSW) are saved in the BPSW. The allocation of bitsin the BPSW corresponds to
that in the PSW.

1.2.2.7 Fast Interrupt Vector Register (FINTV)

b31 b0

I e e e O A A
Value after reset: Undefined

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifiesa
branch destination address when a fast interrupt has been generated.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 19 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model
1.2.2.8 Floating-Point Status Word (FPSW)
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 bl8 bl7 bl
FS | FX | FU | FZ | FO | FV | — — — — — — — — — —
Value after reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bl5 bl4 Db13 bl2 bll b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0
— | EX | EU | EZ | EO | EV | — | DN | CE | CX | CU | CZ | CO | CV RM[1:0]
l
Value after reset: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Bit Symbol Bit Name Description R/W
b1, b0 RM[1:0] Floating-point rounding-mode b1 b0 R/W
setting bits 0 0: Round to the nearest value
0 1: Round towards O
1 0: Round towards +w
1 1: Round towards —oo
b2 CcVv Invalid operation cause flag 0: No invalid operation has been encountered. R/(W)*1
1: Invalid operation has been encountered.
b3 CcO Overflow cause flag 0: No overflow has occurred. R/(W)*1
1: Overflow has occurred.
b4 Ccz Division-by-zero cause flag 0: No division-by-zero has occurred. R/(W)*1
1: Division-by-zero has occurred.
b5 CuU Underflow cause flag 0: No underflow has occurred. R/(W)*1
1: Underflow has occurred.
b6 CX Inexact cause flag 0: No inexact exception has been generated. R/(W)*1
1: Inexact exception has been generated.
b7 CE Unimplemented processing 0: No unimplemented processing has been R/(W)*1
cause flag encountered.
1: Unimplemented processing has been
encountered.
b8 DN 0 flush bit of denormalized 0: A denormalized number is handled as a R/W
number denormalized number.
1: A denormalized number is handled as 0."
b9 — Reserved This bit is read as 0. The write value should be R/W
0.
b10 EV Invalid operation exception 0: Invalid operation exception is masked. R/W
enable bit 1: Invalid operation exception is enabled.
b11 EO Overflow exception enable bit 0: Overflow exception is masked. R/W
1: Overflow exception is enabled.
b12 EZ Division-by-zero exception 0: Division-by-zero exception is masked. R/W
enable bit 1: Division-by-zero exception is enabled.
b13 EU Underflow exception enable bit 0: Underflow exception is masked. R/W
1: Underflow exception is enabled.
b14 EX Inexact exception enable bit 0: Inexact exception is masked. R/W
1: Inexact exception is enabled.
b25to b1l5 — Reserved These bits are read as 0. The write value R/W
should be 0.
b26 FV' Invalid operation flag 0: No invalid operation has been encountered. R/W
1: Invalid operation has been encountered.®
b27 FO™ Overflow flag 0: No overflow has occurred. RIW
1: Overflow has occurred.®
b28 Fz"™ Division-by-zero flag 0: No division-by-zero has occurred. RIW
1: Division-by-zero has occurred.®

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 20 of 271

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

Bit Symbol Bit Name Description R/W

b29 FU'® Underflow flag 0: No underflow has occurred. RIW
1: Underflow has occurred.”®

b30 FX7 Inexact flag 0: No inexact exception has been generated. R/W
1: Inexact exception has been generated.”®

b31 FS Floating-point error summary flag This bit reflects the logical OR of the FU, FZ, R

FO, and FV flags.

Note: 1. When 0 is written to the bit, the setting of the bit will be 0; the bit retains the previous value in response to the
writing of 1.

Note: 2. Positive denormalized numbers are treated as +0, negative denormalized numbers as —0.

Note: 3. When the EV bit is set to 0, the FV flag is enabled.

Note: 4. When the EO bit is set to 0, the FO flag is enabled.

Note: 5. When the EZ bit is set to 0, the FZ flag is enabled.

Note: 6. When the EU bit is set to O, the FU flag is enabled.

Note: 7. When the EX bit is set to 0, the FX flag is enabled.

Note: 8. Once the bit has been set to 1, this value is retained until it is cleared to 0 by software.

The floating-point status word (FPSW) indicates the results of floating-point arithmetic operations. In products that do
not support the floating-point instruction, 00000000h is read and the writing is ignored.

When the corresponding exception handling enable bits (Ej) are set to enable processing of the exceptions (Ej = 1), the Cj
flags can be used by the exception handling routine to identify the source of that exception. If handling of an exceptionis
masked (Ej = 0), the Fj flag can be used to check for the generation of the exception at the end of a sequence of
processing. The Fj flags operate in an accumulative fashion (j = X, U, Z, O, or V).

RM[1:0] bits (Floating-point rounding-mode setting bits)
These hits specify the floating-point rounding-mode.

Explanation of Floating-Point Rounding Modes

¢ Rounding to the nearest value An inexact result is rounded to the available value that is closest to the result of a
(the default behavior): hypothetical calculation with infinite precision. If two available values are equally
close, rounding is to the even alternative.

¢ Rounding towards O: An inexact result is rounded to the smallest available absolute value; i.e., in the
direction of zero (simple truncation).
¢ Rounding towards +o: An inexact result is rounded to the nearest available value in the direction of

positive infinity.

¢ Rounding towards —o: An inexact result is rounded to the nearest available value in the direction of
negative infinity.

(1) Rounding to the nearest value is specified as the default mode and returns the most accurate value.

(2) Modes such as rounding towards 0, rounding towards +0, and rounding towards —o are used to ensure precision
when interval arithmetic is employed.

CV flag (Invalid operation cause flag), CO flag (Overflow cause flag),

CZ flag (Division-by-zero cause flag), CU flag (Underflow cause flag),

CX flag (Inexact cause flag), and CE flag (Unimplemented processing cause flag)

Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,

division-by-zero, and invalid operation. For afurther floating-point exception that is generated upon detection of

unimplemented processing, the corresponding flag (CE) isset to 1.

» If an exception or processing that is not implemented is not encountered in the execution of a floating-point
arithmetic instruction, the corresponding flags become 0.

* When Oiswritten to the bit by the MV TC and POPC instructions, the bit is set to 0; the bit retains the previous value
when 1 iswritten by the instruction.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 21 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

DN bit (0 flush bit of denormalized number)

When this bit is set to 0, a denormalized number is handled as a denormalized number.
When this bit is set to 1, a denormalized number is handled as 0.

EV bit (Invalid operation exception enable bit), EO bit (Overflow exception enable bit),
EZ bit (Division-by-zero exception enable bit), EU bit (Underflow exception enable bit), and
EX bit (Inexact exception enable bit)

When any of five floating-point exceptions specified in the IEEE754 standard is generated by the floating-point
arithmetic instruction, the bit decides whether the CPU will start handling the exception. When the bit is set to O, the
exception handling is masked; when the bit is set to 1, the exception handling is enabled.

FV flag (Invalid operation flag), FO flag (Overflow flag), FZ flag (Division-by-zero flag),

FU flag (Underflow flag), and FX flag (Inexact flag)

While the exception handling enable bit (Ej) is 0 (exception handling is masked), if any of five floating-point exceptions
specified in the IEEE754 standard is generated, the corresponding bit isset to 1.

* When Ej is 1 (exception handling is enabled), the value of the flag remains.

* When the corresponding flag is set to 1, it remains 1 until it is cleared to O by software (accumulation flag).

FS flag (Floating-point error summary flag)
This bit reflectsthe logical OR of the FU, FZ, FO, and FV flags.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 22 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.3 Accumulator

The accumulator (ACC) is a 64-bit register used for DSP instructions. ACC is aso used for the multiply and multiply-
and-accumulate instructions; EMUL, EMULU, FMUL, MUL, and RMPA, in which case the prior valuein ACC is
modified by execution of the instruction.

Usethe MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO
instructions write data to the upper 32 bits (bits 63 to 32) and the lower 32 bits (bits 31 to 0), respectively.

Usethe MVFACHI and MVFACMI ingtructions for reading data from the accumulator. The MVFACHI and MVFACMI
instructions read data from the upper 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.

’—Range for reading by MVFACMIj

b63 b48 b47 b32 b31 b16 bl5 b0
ACC
Range for writing by MVTACHI .
and reading by MVFACHI Range for writing by MVTACLO
Value after reset: Undefined
RO1US0032EJ0130 Rev.1.30 RENESAS Page 23 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.3 Floating-Point Exceptions

Floating-point exceptions are generated when any of the five exceptions specified in the IEEE754 standard, namely
overflow, underflow, inexact, division-by-zero, or invalid operation, or an attempts to use processing that is not
implemented, is detected upon execution of afloating-point arithmetic instruction. Exception handling by the CPU only
proceeds when any among the EX, EU, EZ, EO, or EV bitsin the FPSW, which corresponding to the five types of
exception, isset to 1.

Thefollowing is an outline of the events that cause floating-point exceptions.

Note: Floating-point exceptions do not occur on the products which do not support the floating-point arithmetic
instructions.

1.3.1 Overflow

An overflow occurs when the absolute value of the result of an arithmetic operation is greater than the range of values
that can be represented in the floating-point format. Table 1.1 lists the results of operationswhen an overflow exception
occurs.

Table 1.1 Operation Results When an Overflow Exception Has Occurred

Operation Result (Value in the Destination Register)

Floating-Point Rounding Mode Sign of Result EO=0 EO=1
Rounding towards —o + +MAX No change
— —o0
Rounding towards +oo + +00
- —MAX
Rounding towards 0 + +MAX
- —MAX
Rounding to the nearest value + +00
— —o0

Note: An inexact exception will be generated when an overflow error occurs while EO = 0.

1.3.2 Underflow

An underflow occurs when the absolute value of the result of an arithmetic operation is smaller than the range of
normalized values that can be represented in the floating-point format. (However, this does not apply when theresult is
0.) Table 1.2 liststhe results of operations when an underflow exception occurs.

Table 1.2 Operation Results When an Underflow Exception Has Occurred
Operation Result (Value in the Destination Register)
EU=0 EU=1
DN = 0: No change. (An unimplemented processing exception is generated.) No change
DN = 1: The value of 0 is returned.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 24 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.3.3 Inexact

An inexact exception occurs when the result of a hypothetical calculation with infinite precision differs from the actual
result of the operation. Table 1.3 lists the conditions leading to an inexact exception and the results of operations.

Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results

Operation Result (Value in the Destination Register)

Occurrence Condition EX=0 EX=1

An overflow exception has occurred Refer to Table 1.1, Operation Results When an No change
while overflow exceptions are masked. Overflow Exception Has Occurred

Rounding has been produced. Value after rounding

Note: 1. An inexact exception will not be generated when an underflow error occurs.
Note: 2. An inexact exception will not be generated when an overflow exception occurs while overflow exceptions are
enabled, regardless of the rounding generation.

1.34 Division-by-Zero
Dividing a non-zero finite number by zero produces a division-by-zero exception. Table 1.4 lists the results of

operations that have led to a division-by-zero exception. However, if the dividend is one of those listed in Table 1.5, the
operation is not treated as division by zero.

Table 1.4 Operation Results When a Division-by Zero Exception Has Occurred
Operation Result (Value in the Destination Register)
Dividend EZ=0 EzZz=1

Non-zero finite number +oo (the sign bit is the logical exclusive or of the sign No change
bits of the divisor and dividend)

Table 1.5 Dividends and Operations that are not Treated as Division by Zero

Dividend Result
0 An invalid operation exception is generated.
0 No exception is generated. The result is .
Denormalized number (DN = 0) An unimplemented processing exception is generated.
QNaN No exception is generated. The result is QNaN.
SNaN An invalid operation exception is generated.
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 25 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.35 Invalid Operation

Executing an invalid operation produces an invalid exception. Table 1.6 lists the conditions leading to an invalid
exception and the results of operations.

Table 1.6 Conditions Leading to an Invalid Exception and the Operation Results

Operation Result (Value in the Destination Register)

Occurrence Condition EV=0 EV=1
Operation on SNaN operands QNaN No change
+00 + (—o0), +o00 — (+0), —00 — (—0)
0 x o0
0+0,00=+00
Overflow in integer conversion or attempting The return value is 7FFFFFFFh when the sign bit
integer conversion of NaN or o when before conversion was 0 and 80000000h when the
executing FTOI or ROUND instruction sign bit before conversion was 1.
Comparison of SNaN operands No destination
Legend

NaN (Not a Number): Not a Number

SNaN (Signaling NaN): SNaN is a kind of NaN where the most significant bit in the fraction part is 0.
Using an SNaN as a source operand in an operation generates an invalid operation. Using
an SNaN as the initial value of a variable facilitates the detection of bugs in programs. Note
that the hardware will not generate an SNaN.

QNaN (Quiet NaN): QNaN is a kind of NaN where the most significant bit in the fraction part is 1.
Using a QNaN as a source operand in an operation (except in a comparison or format
conversion) does not generate an invalid operation. Since a QNaN is propagated through
operations, just checking the result without performing exception handling enables the
debugging of programs. Note that hardware operations can generate a QNaN.

Table 1.7 liststhe rules for generating QNaNs as the results of operations.

Table 1.7 Rules for Generating QNaNs

Source Operands Operation Result (Value in the Destination Register)
An SNaN and a QNaN The SNaN source operand converted into a QNaN

Two SNaNs dest converted into a QNaN

Two QNaNs dest

An SNaN and a real value The SNaN source operand converted into a QNaN

A QNaN and a real value The QNaN source operand

Neither source operand is an NaN and an invalid 7FFFFFFFh

operation exception is generated

Note: The SNaN is converted into a QNaN while the most significant bit in the fraction part is 1.

1.3.6 Unimplemented Processing

An unimplemented processing exception occurs when DN = 0 and a denormalized number is given as an operand, or
when an underflow exception is generated as the result of an operation with DN = 0. An unimplemented processing
exception will not occur with DN = 1.

There is no enable bit to mask an unimplemented processing exception, so this processing exception cannot be masked.
The destination register remains asis.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 26 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.4 Processor Mode

The RXv1 CPU supports two processor modes, supervisor and user. These processor modes and the memory protection
function enable the realization of a hierarchical CPU resource protection and memory protection mechanism. Each
processor mode imposes alevel on rights of access to memory and the instructions that can be executed. Supervisor
mode carries greater rights than user mode. Theinitial state after areset is supervisor mode.

1.4.1 Supervisor Mode

In supervisor mode, all CPU resources are accessible and all instructions are avail able. However, writing to the processor
mode select bit (PM) in the processor status word (PSW) by executing an MV TC or POPC instruction will be ignored.
For details on how to write to the PM bit, refer to section 1.2.2.4, Processor Status Word (PSW).

1.4.2 User Mode

In user mode, write access to the CPU resources listed below isrestricted. The restriction applies to any instruction
capable of write access.

» Some hits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)

e Interrupt stack pointer (1SP)

* Interrupt table register (INTB)

» Backup PSW (BPSW)

» Backup PC (BPC)

e Fast interrupt vector register (FINTV)

1.4.3 Privileged Instruction

Privileged instructions can only be executed in supervisor mode. Executing a privileged instruction in user mode
produces a privileged instruction exception. Privileged instructions include the RTFI, MV TIPL, RTE, and WAIT
instructions.

1.4.4 Switching Between Processor Modes

Manipulating the processor mode select bit (PM) in the processor status word (PSW) switches the processor mode.

However, rewriting the PM bit by executing an MV TC or POPC instruction is prohibited. Switch the processor mode by

following the procedures described bel ow.

(1) Switching from user mode to supervisor mode
After an exception has been generated, the PM bit in the PSW is set to 0 and the CPU switches to supervisor mode.
The hardware pre-processing is executed in supervisor mode. The state of the processor mode before the exception
was generated is retained in the PM bit in the PSW that is saved on the stack.

(2) Switching from supervisor mode to user mode
Executing an RTE instruction when the value of the PM bit in the PSW that has been saved on the stack is“1” or an
RTFI instruction when the value of the PM bit in the PSW that has been saved in the backup PSW (BPSW) is“1”
causes atransition to user mode. In the transition to user mode, the value of the stack pointer designation bit (the U
bit in the PSW) becomes“1”.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 27 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

15 Data Types
The RXv1 CPU can handle four types of data: integer, floating-point number, bit, and string.

151 Integer

An integer can be signed or unsigned. For signed integers, negative values are represented by two’s complements.

b7 b0

Signed byte (8-bit) integer

b7 b0

Unsigned byte (8-bit) integer m

b15 b0

Signed word (16-bit) integer s]

b15 b0

Unsigned word (16-bit) integer | L ‘ L |

b31 b0

Slgned |0ngword (32-blt) Integer |S\ L L L L L L ‘ L L L L L L L ‘ L L L L L L L ‘ L L L L L L L |

b31 b0

UnSIgned |0ngWOl’d (32-blt) Integer | L L L L L L L ‘ L L L L L L L ‘ L L L L L L L ‘ L L L L L L L |
Legend

S: Signed bit

Figure 1.2 Integer

1.5.2 Floating-Point Number

The floating-point number is compliant with that specified in the IEEE754 standard; operands of thistype can be used in
eight floating-point arithmetic instructions: FADD, FCMP, FDIV, FMUL, FSUB, FTOI, ITOF, and ROUND.

) o b31 bo
Slng_le-pre(_:lsmn |s‘ £ F |
ﬂoatlng_pOInt number I I T N B | I T T O
Legend
S: Sign (1 bit)

E: Exponent (8 bits)
F: Fraction (23 bits)

Value = (-1)S x(1+Fx 2-23) x (E127)

Figure 1.3 Floating-Point Number

The floating-point number can represent the values listed below.
e 0<E<255(normal numbers)

e E=0andF=0(signed zero)

e« E=0andF > 0 (denormalized numbers)*

e E=255and F =0 (infinity)

e E=255and F> 0 (NaN: Not-a-Number)

Note: * The number is treated as 0 when the DN bit in the FPSW is 1. When the DN bit is 0, an unimplemented
processing exception is generated.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 28 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.5.3 Bit
Five bit-manipulation instructions are provided for bitwise operations: BCLR, BMCnd, BNOT, BSET, and BTST.

A bitin aregister is specified as the destination register and a bit number in the range from 31 to 0.
A bit in memory is specified as the destination address and a bit number from 7 to 0. The addressing modes available to
specify addresses are register indirect and register relative.

Register
. b31 bo Example
(bit-glfobg’i-nomw)l | I » #30,R1 (register R1, bit 30)
Memory
. b7 b0 Example
o710 — L —» #2,[R2] (address [R2], bit 2)

Figure 1.4 Bit

154 String

The string data type consists of an arbitrary number of consecutive byte (8-bit), word (16-bit), or longword (32-bit) units.
Seven string manipulation instructions are provided for use with strings: SCMPU, SMOVB, SMOVF, SMOVU, SSTR,

SUNTIL, and SWHILE.

String of byte (8-bit) data
< 8>

String of word (16-bit) data
<« 16 —»

String of longword (32-bit) data
< 32

Figure 1.5 String

\ 4

RO1US0032EJ0130 Rev.1.30 RENESAS Page 29 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

1. CPU Programming Model

1.6 Data Arrangement

1.6.1 Data Arrangement in Registers

Figure 1.6 showsthe relation between the sizes of registers and bit numbers.

Byte (8-hit) data

Word (16-bit) data

Longword (32-bit) data

b7 b0

b15 b0
L]

p31 b0
L.]
MSB LSB

Figure 1.6 Data Arrangement in Registers

1.6.2 Data Arrangement in Memory

Datain memory have three sizes; byte (8-bit), word (16-hit), and longword (32-bit). The data arrangement is selectable
aslittle endian or big endian. Figure 1.7 shows the arrangement of datain memory.

Data type Address Data image Data image
(Little endian) (Big endian)
b7 b0 b7 b0
1-bit data AddressN | 7 | 6 [5 4] 3] 2[1]0 7/6/5/ 4[3[2][1]0
Byte data AddressN [MSB! ILSB MSB! ILSB
Word data Address N LSB MSB
Address N+1 |MSB LSB
Longword data Address N LSB MSB
Address N+1
Address N+2
Address N+3 |MSB LSB
Figure 1.7 Data Arrangement in Memory
R0O1US0032EJ0130 Rev.1.30 I!ENESAS Page 30 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.7 Vector Table

There are two types of vector table: fixed and relocatable. Each vector in the vector table consists of four bytes and
specifies the address where the corresponding exception handling routine starts.

1.7.1 Fixed Vector Table

The fixed vector tableis allocated to a fixed address range. The individual vectors for the privileged instruction
exception, access exception, undefined instruction exception, floating-point exception, non-maskable interrupt, and reset
are alocated to addresses in the range from FFFFFF80h to FFFFFFFFh. Figure 1.8 shows the fixed vector table.

MSB | | | LSB
FFFFFF80h (Reserved)
FFFFFFCCh (Reserved)
FFFFFFDON Privileged instruction exception
FFFFFFD4h Access exception
FFFFFFD8h (Fresenven)
FFFFFFDCh Undefined instruction exception
FFFFFFEO (Reserved)
FFFFFFE4h Floating-point exception
FFFFFFESh (Reserved)
FFFFFFECh (Reserved)
FFFFFFFOh (Reserved)
FFFFFFF4h (Reserved)
FEFFFFFSh Non-maskable interrupt
FFFFFFFCh Reset
Figure 1.8 Fixed Vector Table
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 31 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.7.2 Relocatable Vector Table

The address where the rel ocatabl e vector tableis placed can be adjusted. The table isa1,024-byte region that contains all
vectors for unconditional traps and interrupts and starts at the address (IntBase) specified in the interrupt table register
(INTB). Figure 1.9 shows the relocatable vector table.

Each vector in the relocatable vector table has a vector number from 0 to 255. Each of the INT instructions, which act as
the sources of unconditional traps, is allocated to the vector that has the same number as that of the instruction itself
(from 0 to 255). The BRK instruction is allocated to the vector with number 0. Furthermore, vector numbers within the
set from 0 to 255 may also be allocated to other interrupt sources on a per-product basis.

b31 b0
INTB Intl?1a§e

L,

IntBase + 4
— >

IntBase + 8
— >

Interrupt vectors are
allocated in this order.

IntBase + 1020
—>

255 ¥

Figure 1.9 Relocatable Vector Table

RO1US0032EJ0130 Rev.1.30 RENESAS Page 32 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.8 Address Space

The address space of the RXv1 CPU isthe 4 Gbyte range from address 0000 0000h to address FFFF FFFFh. Program
and data regions taking up to atotal of 4 Gbytes are linearly accessible. The address space of the RXv1 CPU is depicted
in Figure 1.10. For all regions, the designation may differ with the product and operating mode. For details, refer to the
user’s manual: hardware for each product.

00000000h N
Data regions/
— Program regions
(4 Gbhytes, linear)
FFFFFFFFh]

Figure 1.10 Address Space

RO1US0032EJ0130 Rev.1.30 RENESAS Page 33 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

2. Addressing Modes

The following is adescription of the notation and operations of each addressing mode.
There are ten types of addressing mode.

* Immediate

* Register direct

e Register indirect

* Register relative

e Post-increment register indirect
* Pre-decrement register indirect
* Indexed register indirect

» Control register direct

« PSW direct

» Program counter relative

RO1US0032EJ0130 Rev.1.30 RENESAS Page 34 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

2.1 Guide to This Section

The following sample shows how the information in this section is presented.

(1)——Regie&e1—l€e@ive Memory

Register

dsp:5[Rn] The effective address of the operand is
(Rn o R7) | the least significant 32 bits of the sum of | add'jss
(2H ﬂ the displacement (dsp) value, after zero- Direction of
extension to 32 bits and multiplication by asp = (O e eenting
dsp:8[Rn] 1, 2, o7 Zgccording to the specification | - inswuction that takes asize | L
CHRMT=RUTORIS) \ﬁ@gram at right), and the value speciier

in the cified register. The range of :‘LN.': o
(4) dsp16[RN] vatitaddresses s fromo0800606hto —TSTUCTon That T2 /
sp: n

FFFFFFFFh. dsp:n represents an n-bit extension specifer
(Rn = RO to R15) | long displacement value. The following Wi x2
mode can be specified:

dsp:5[Rn] (Rn = RO to R7),

dsp:8[Rn] (Rn = RO to R15), and
dsp:16[Rn] (Rn = RO to R15).
dsp:5[Rn] (Rn = RO to R7) is used only
with MOV and MOVU instructions.

(1) Name
The name of the addressing mode is given here.

(2) Symbolic notation
This notation represents the addressing mode.
:8 or :16 represents the number of valid bits just before an instruction in this addressing mode is executed.
This symbolic notation is added in the manual to represent the number of valid bits, and is not included in the
actual program.

(3) Description
The operation and effective address range are described here.

(4) Operation diagram
The operation of the addressing modeisillustrated here.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 35 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

2. Addressing Modes

2.2

Addressing Modes

Immediate

#MM:1
#IMM:3
#IMM:4
#UIMM:4
#IMM:5

#MM:1

The operand is the 1-bit immediate value
indicated by #IMM. This addressing mode
is used to specify sources for the RACW

instruction.

#IMM:3

The operand is the 3-bit immediate value
indicated by #IMM. This addressing mode
is used to specify the bit number for the bit
manipulation instructions: BCLR, BMCnd,
BNOT, BSET, and BTST.

#IMM:4

The operand is the 4-bit immediate value
indicated by #IMM. This addressing mode
is used to specify the interrupt priority level
for the MVTIPL instruction.

#UIMM:4

The operand is the 4-bit immediate value
indicated by #UIMM after zero extension to
32 bits. This addressing mode is used to
specify sources for ADD, AND, CMP, MOV,
MUL, OR, and SUB instructions.

#IMM:5

The operand is the 5-bit immediate value
indicated by #IMM. This addressing mode
is used in the following ways:

- to specify the bit number for the bit-
manipulation instructions: BCLR,
BMCnd, BNOT, BSET, and BTST,

- to specify the number of bit places of
shifting in certain arithmetic/logic
instructions: SHAR, SHLL, and SHLR,;
and

- to specify the number of bit places of
rotation in certain arithmetic/logic
instructions: ROTL and ROTR.

b0
#IMM:1 |:|

#IMM:3

#IMM:4

b31 b4b3 b0
zeroextenson | |

#UIMM:4

b4 b0

L]

#IMM:5

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 36 of 271

RX Family RXv1 Instruction Set Architecture

2. Addressing Modes

addresses is from 00000000h to

< Instruction that takes a size

Immediate _ o
- — When the size specifier is B b7 bo
#IMM:8 The operand is the value specified by the
#IMM:8
#SIMM:8 immediate value. In addition, the operand I
4UIMM:8 will be the result of zero-extending or sign- | when the size specifier is W o1 vob7 o
' extending the immediate value when it is £SIMM:B [Sonoxension] |
#IMM:16 specified by #UIMM or #SIMM. #IMM:n,
#SIMM:16 #UIMM:n, and #SIMM:n represent n-bit b1s _b8b7 bo
long immediate values oS el L L L |
#SIMM:24 9 :
#IMM:32 For the range of IMM, refer to section b5 bo
' 2.2.1, Ranges for Immediate Values. #IMM:16 I |
When the size specifier is L
b31 b8b7 b0
#woumm:s [Zeroextension o |
b31 b8b7 b0
#SIMM:8 | Sign extension ‘ |
“““““ GUSEEEIN——
b31 b16b15 b0
#siMm:16 [Signextension T |
b31 b24b23 b0
#SIMM:24 [Signextension | |
b31 bo
wwmm:2 [|
Register Direct
Register
Rn The operand is the specified register. In |b31 9 el
(Rn = RO to R15) | addition, the Rn value is transferred to the S A S
program counter (PC) when this Memory
addressing mode is used with JMP and Register
JSR instructions. The range of valid Rn
addresses is from 00000000h to Direction of
— : dd
FFFFFFFFh. Rn (Rn = RO to R15) can be Register Incrementing
specified. Pc| F—
Register Indirect
[Rn] The value in the specified register is the Memory
(Rn = RO to R15) | effective address of the operand. The Register
range of valid addresses is from Rn
00000000h to FFFFFFFFh. [Rn] (Rn = RO Direction of
to R15) can be specified. > menting
Register Relative "
. lemory
dsp:5[Rn] The effective address of the operand is the Register
(Rn=ROto R7) | leastsignificant 32 bits of the sum of the | * addffss
displacement (dsp) value, after zero- Direction of
extension to 32 bits and multiplication by 1, dsp —> (O—>(®) e eenting
dsp:8[Rn] 2, or 4 according to the specification (see | - insucion that takes asize T L
(Rn = RO to R15) | the diagram at right), and the value in the spectter
specified register. The range of valid W 2

dsp:16[Rn] FEFEFEFFh. dsp:n represents an n-bit extension specifer

(Rn = RO to R15) | long displacement value. The following WU 2
mode can be specified:
dsp:5[Rn] (Rn = RO to R7),
dsp:8[Rn] (Rn = RO to R15), and
dsp:16[Rn] (Rn = RO to R15).
dsp:5[Rn] (Rn = RO to R7) is used only with
MOV and MOVU instructions.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 37 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

Post-increment Register Indirect "
lemory
[Rn+] The value in the specified register is the Register
(Rn = RO to R15) effective adc_;lress of the operand. The Rn o
range of valid addresses is from ‘[v Direction of
00000000h to FFFFFFFFh. After the - ‘3’439 sy o
operation, 1, 2, or 4 is added to the value in | when e e 2’52323 2 Wi
the specified register according to the size | When thesize specifieris L. +4
specifier: .B, .W, or .L. This addressing
mode is used with MOV and MOVU
instructions.
Pre-decrement Register Indirect "
lemory
[-Rn] According to the size specifier: .B, .W, or When the size specifier is B: -1
. . When the size specifier is W: —2 —(2)
(Rn = RO to R15) .L, 1, 2, or 4 is subtracted from the value in | when the size specifieris .L: -4 v
the specified register. The value after the @) = —E> Direction of
operation is the effective address of the [b e menting
operand. The range of valid addresses is Register |
from 00000000 to FFFFFFFFh. This Rn address
addressing mode is used with MOV and
MOVU instructions.
Indexed Register Indirect y
emory
[Ri, RDb] The effective address of the operand is the Base register
. . . Rb address
(Ri = RO to R15, | least significant 32 bits of the sum of the
Rb = RO to R15) | value in the index register (Ri), multiplied _ Index register @ Directionof
by 1, 2, or 4 according to the size specifier: R T l incrementing
.B, .W, or .L, and the value in the base (D>
register (Rb). The range of valid addresses | yynen e size specifier is 5: x1 ?
is from 00000000h to FFFFFFFFh. This e e Sz et 2
addressing mode is used with MOV and
MOVU instructions.
Control Register Direct Redist
egister
PC The operand is the specified control b31 bo
ISP register. This addressing mode isusedwith (P¢ L. o]
USP _I\/IVFC,_MVTC, POPC, and PUSHC b31 bo
instructions. sp | |
The PC is only selectable as the src
PSW operand of MVFC and PUSHC b3t bo
BPC instructions. s |
BPSW b31 b0
EINTV wve | o
FPSW b31 b0
psw |]
b31)
o
b31)
Bpsw |]
b31)
b31 b0
FPSW |]
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 38 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

2. Addressing Modes

PSW Direct

C
4
S
@]
|

U

The operand is the specified flag or bit.
This addressing mode is used with
CLRPSW and SETPSW instructions.

b24 b23

b16

IPL[3:0] |

| v [Ul

b0

[o]s]z[c]

Program Counter

Relative

pcdsp:3

When the branch distance specifier is .S,
the effective address is the least significant
32 bits of the unsigned sum of the value in
the program counter (PC) and the
displacement (pcdsp) value. The range of
the branch is from 3 to 10. The range of
valid addresses is from 00000000h to
FFFFFFFFh. This addressing mode is to
be used with the BCnd (only applicable in
BEQ, BZ, BNE, and BNZ), and BRA
instructions.

Register

Memory

Branch instruction

Direction of
address
incrementing

®—> Label

pcdsp J

pcdsp:8
pcdsp:16
pcdsp:24

When the branch distance specifier is .B,
W, or .A, the effective address is the
signed sum of the value in the program
counter (PC) and the displacement (pcdsp)
value. The range of pcdsp depends on the
branch distance specifier.

For .B: —-128 < pcdsp:8 <127
For .W: —32768 < pcdsp:16 < 32767
For .A: —8388608 < pcdsp:24 < 8388607

The range of valid addresses is from
00000000h to FFFFFFFFh. This
addressing mode with the branch distance
specifier “.B” is for use with any of the
BCnd instructions and the BRA instruction,
with the branch distance specifier “W” is
only for use with certain BCnd instructions
(BEQ, BZ, BNE, and BNZ) and the BRA
and BSR instructions, and with the branch
distance specifier “.A” is only for use with
the BRA and BSR instructions.

When the pcdsp value is negative

pcdsp—» @—» Label

Register T

Memory

Direction of

PC |

Branch instruction | | address

pcdsp —> :)—> Label

When the pcdsp value is positive

incrementing

Rn
(Rn = R0 to R15)

The effective address is the signed sum of
the value in the program counter (PC) and
the Rn value. The range of the Rn value is
from —2147483648 to 2147483647. The
range of valid addresses is from
00000000h to FFFFFFFFh. This
addressing mode is used with BRA(.L) and
BSR(.L) instructions.

When the Rn value is negative

Register

I

Rn O
T

Register

Memory

Direction of

PC | |

Branch instruction | | address

Register

When the Rn value is positive

b

Rn

incrementing

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 39 of 271

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

2.2.1 Ranges for Immediate Values

Ranges for immediate values are listed in Table 2.1.

Unless specifically stated otherwise in descriptions of the variousinstructions under section 3.3, Instructions in Detail,
ranges for immediate values are as listed below.

Table 2.1 Ranges for Imnmediate Values

IMM In Decimal Notation In Hexadecimal Notation
IMM:1 lor2 1hor 2h

IMM:3 Oto7 Oh to 7h

IMM:4 Oto 15 Oh to OFh

UiIMM:4 Oto 15 Oh to OFh

IMM:5 Oto 3l Oh to 1Fh

IMM:8 —128 to 255 —80h to OFFh

UIMM:8 0 to 255 Oh to OFFh

SIMM:8 -128to 127 —80h to 7Fh

IMM:16 —32768 to 65535 —8000h to OFFFFh
SIMM:16 —-32768 to 32767 —8000h to 7FFFh
SIMM:24 —8388608 to 8388607 —800000h to 7FFFFFh
IMM:32 —2147483648 to 4294967295 —80000000h to OFFFFFFFFh

Note: 1. The RX Family assembler from Renesas Electronics Corp. converts instruction codes with immediate values to
have the optimal numbers of bits.

Note: 2. The RX Family assembler from Renesas Electronics Corp. is capable of depicting hexadecimal notation as a 32-
bit notation. For example “—~127” in decimal notation, i.e. “~7Fh” in hexadecimal, can be expressed as
“OFFFFFF81h".

Note: 3. For the ranges of immediate values for INT and RTSD instructions, see the relevant descriptions under section
3.3, Instructions in Detail.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 40 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

3. Instruction Descriptions

3.1 Overview of Instruction Set

The number of instructions for the RXv1 Architecture is 90. A variable-length instruction format of 1 to 8 bytesis used.

The RXv1 instruction set is listed below.

List of Instructions (1/4)

Instruction
Instruction | Code
Described |Described
Instruction in Detail in Detail
Type Mnemonic Function (on Page) |[(on Page) |Notes
Basic instructions
Arithmetic/ ABS Absolute value 51 169
logic ADC Add with carry 52 170
instructions -
ADD Add without carry 53 171
AND Logical AND 55 173
CMP Compare 68 187
DIV Divide signed 69 188
DIVU Divide unsigned 70 190
EMUL Extended multiply signed 71 191
EMULU Extended multiply unsigned 73 192
MAX Maximum of two signed integers 95 203
MIN Minimum of two signed integers 96 204
MUL Multiply 102 211
NEG Negate (two’s complement) 113 218
NOP No operation 114 218
NOT Logical NOT (one’s complement) 115 219
OR Logical OR 116 220
RMPA Repeat multiply-accumulate 127 226
ROLC Rotate left with carry 129 226
RORC Rotate right with carry 130 227
ROTL Rotate left 131 227
ROTR Rotate right 132 228
SAT Saturate 141 231
SATR Saturate for RMPA 142 231
SBB Subtract with borrow 143 232
SHAR Arithmetic shift right 147 235
SHLL Logical shift left 148 236
SHLR Logical shift right 149 237
SUB Subtract without borrow 156 241
TST Test logical 161 243
XOR Logical Exclusive OR 164 245

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 41 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions
List of Instructions (2/4)
Instruction
Instruction | Code
Described |Described
Instruction in Detail in Detail
Type Mnemonic Function (on Page) |(on Page) |Notes
Data transfer | MOV Move 97 205
instructions ['\ovy Move unsigned 100 210
POP Pop register from stack 117 221
POPC Pop a control register from stack 118 222
POPM Pop multiple registers from stack 119 222
PUSH Push register on stack 120 223
PUSHC Push a control register on stack 121 224
PUSHM Push multiple registers on stack 122 224
REVL Reverse endian within longword 125 225
REVW Reverse endian within word 126 225
SCCnd |SCGEU | Store condition 144 233
SCC 144 233
SCEQ 144 233
SCcz 144 233
SCGTU 144 233
SCPz 144 233
SCGE 144 233
SCGT 144 233
SCO 144 233
SCLTU 144 233
SCNC 144 233
SCNE 144 233
SCNz 144 233
SCLEU 144 233
SCN 144 233
SCLE 144 233
SCLT 144 233
SCNO 144 233
STNZ Store on not zero 154 239
STZ Store on zero 155 240
XCHG Exchange 163 244

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 42 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions
List of Instructions (3/4)
Instruction
Instruction | Code
Described |Described
Instruction in Detail in Detail
Type Mnemonic Function (on Page) |(on Page) |Notes
Branch BCnd BGEU Conditional relative branch 58 177
instructions BC 58 177
BEQ 58 177
Bz 58 177
BGTU 58 177
BPZ 58 177
BGE 58 177
BGT 58 177
BO 58 177
BLTU 58 177
BNC 58 177
BNE 58 177
BNZ 58 177
BLEU 58 177
BN 58 177
BLE 58 177
BLT 58 177
BNO 58 177
BRA Unconditional relative branch 62 181
BSR Relative branch to subroutine 65 184
JMP Unconditional jump 91 201
JSR Jump to subroutine 92 201
RTS Return from subroutine 138 230
RTSD Return from subroutine after deallocating | 139 230
stack frame
Bit BCLR Clear a bit 57 175
manipulation [gyvcnd [BMGEU | Conditional bit transfer 59 179
instructions BMC 59 179
BMEQ 59 179
BMZ 59 179
BMGTU 59 179
BMPZ 59 179
BMGE 59 179
BMGT 59 179
BMO 59 179
BMLTU 59 179
BMNC 59 179
BMNE 59 179
BMNZ 59 179
BMLEU 59 179
BMN 59 179
BMLE 59 179
BMLT 59 179
BMNO 59 179
BNOT Not a bit 61 180
BSET Set a bit 64 182
BTST Test a bit 66 185

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 43 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions
List of Instructions (4 / 4)
Instruction
Instruction | Code
Described |Described
Instruction in Detail in Detail
Type Mnemonic Function (on Page) |(on Page) |Notes
String SCMPU String compare until not equal 145 233
manipulation ['gpovB String move backward 150 238
instructions -
SMOVF String move forward 151 238
SMOVU String move until zero detected 152 238
SSTR String store 153 239
SUNTIL String search until equal 157 242
SWHILE String search while equal 159 242
System BRK Unconditional trap 63 182
manipulation I'c Rpsw Clear a flag or bit in the PSW 67 186
instructions -
INT Software interrupt 88 200
MVFC Move data from a control register 108 214
MVTC Move data to a control register 111 216
MVTIPL (privileged | Move data to IPL 112 217
instruction) *1
RTE (privileged Return from exception 136 229
instruction)
RTFI (privileged Return from fast interrupt 137 230
instruction)
SETPSW Set a flag or bit in the PSW 146 234
WAIT (privileged Wait 162 244
instruction)
Floating-point instructions (optional)
Floating-point | FADD Add floating-point 75 194
arithmetic FCMP Comparefloating-point 77 195
instructions — - -
FDIV Divide floating-point 79 196
FMUL Multiply floating-point 81 197
FSuUB Subtractfloating-point 83 198
FTOI Convert floating-point to signed integer 85 199
ITOF Convert signed integer to floating-point 89 200
ROUND Round floating-point to signed integer 133 229
DSP instructions
DSP MACHI Multiply-Accumulate the upper words 93 202
Instructions MACLO Multiply-Accumulate the lower words 94 202
MULHI Multiply the upper words 104 213
MULLO Multiply the lower words 105 213
MVFACHI Move data from the upper longword of the | 106 213
accumulator
MVFACMI Move data from the middle-order longword | 107 214
of the accumulator
MVTACHI Move data to the upper longword of the 109 215
accumulator
MVTACLO Move data to the lower longword of the 110 215
accumulator
RACW Round the accumulator word 123 225

Note: 1. Products of the RX610 Group do not support the MVTIPL instruction.

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 44 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

3.2 Guide to This Section

This section describes the functionality of each instruction by showing syntax, operation, function, src/dest to be
selected, flag change, and description example.

The following shows how to read this section by using an actual page as an example.

Absolute value A B S

(2) ——Arithmetic/logic instruction)

3) (Instruction Code
Page: 272

(5)————_Operation)

[J
(1) if(dest<0)
dest = -dest;
(2) if(src<0)
dest = -src;
else
dest = src;

(6)———(Fanstion)

(1) This instruction takes the absolute value of dest and places the result in dest.
(2) This instruction takes the absolute value of src and places the result in dest.

(7) Flag Change

Flag Change Condition
C —

z v The flag is set when dest is 0 after the operation; otherwise it is cleared.
S v The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
0 v

(1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.
(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

(8)—(Instruction Format)

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) ABS dest L — Rd 2
(2) ABS src, dest L Rs Rd 3
(9)———(Description Example)
ABS R2
ABS R1,R2

(1) Mnemonic
Indicates the mnemonic name of the instruction explained on the given page. The center column givesasimple
description of the operation and the full name of the instruction.

(2) Instruction Type
Indicates the type of instruction.

(3) Instruction Code
Indicates the page in which instruction codeis listed.
Refer to this page for instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 45 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3.

Instruction Descriptions

(4) Syntax
Indicates the syntax of the instruction using symbols.

(b) Size specifier

(c) Operand
Describes the operand.

(&) Mnemonic

Describes the mnemonic.

.Size

For data-transfer instructions, some string-manipulation instructions, and the RMPA instruction, a size specifier
can be added to the end of the mnemonic. This determines the size of the data to be handled as follows.

.B Byte (8 bits)
W Word (16 hits)
L Longword (32 bits)

src, dest

src Source operand

dest

(5) Operation
Describes the operation performed by the instruction. A C-language-style notation is used for the descriptions of

(6)

)

operations.

(a) Data type

signed char

signed short
signed long

signed long long
unsigned char
unsigned short
unsigned long
unsigned long long
float

(b) Pseudo-functions

register(n):
register_num(Rn):

(c) Special notation

RN[i+7:i]:
Rm:Rn:

RI:Rm:Rn:

{ byte3, byte2, bytel, byteO} :

Function

Destination operand

Signed byte (8-bit) integer

Signed word (16-bit) integer

Signed longword (32-bit) integer
Signed long longword (64-bit) integer
Unsigned byte (8-bit) integer

Unsigned word (16-bit) integer
Unsigned longword (32-bit) integer
Unsigned long longword (64-bit) integer
Single-precision floati ng-point number

Returns register Rn, where n is the register number (n: 0 to 15).
Returns register number n for Rn.

Indicates the unsigned byte integer for bits (i + 7) toi of Rn.

(n: 0to 15, i: 24, 16, 8, or 0)

Indicates the virtual 64-hit register for two connected registers.

(m, n: 0to 15. Rmisallocated to bits 63 to 32, Rnto bits 31t0 0.)

Indicates the virtual 96-bit register for three connected registers.

(I, m, n: 0to 15. Rl isalocated to bits 95 to 64, Rm to bits 63 to 32, and Rn to
bits31t0 0.

Indicates the unsigned longword integer for four connected unsigned byte
integers.

Explains the function of the instruction and precautions to be taken when using it.

Flag Change

Indicates changes in the states of flags (O, S, Z, and C) in the PSW.

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS Page 46 of 271

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

For floating-point arithmetic instructions, changesin the states of flags (FX, FU, FZ, FO, FV, CE, CX, CU, CZ,
CO, and CV) in the FPSW are also indicated.
The symbolsin the table mean the following:

— The flag does not change.

v The flag changes depending on condition.

(8) Instruction Format
Indicates the instruction format.

Instruction Format

Processing Operand
Syntax Size src src2 gyt Code Size (Byte)
(a) tT—AND—STC test HOtvvE — '\Rd) 2
L PEIIERN — ® 3
(d) L [#SIMM:16 — Rd 4
4 L \#sivm:24) — Rd 5
M:32 — Rd 6
() KLR) ?:g - — Rd 2
\L/ [Rs].me — Rd 2 (memex == “UB”)
3 (memex !=“UB”")
(e) T 5B s].memex*) — Rd 3 (memex == “UB")
4 (memex != “UB”")
L dsp:16[R3waemel — Rd 4 (memex == “UB")
5 (memex != “UB")
(2) AND src, src2, dest L Rs Rs2 Rd 3
Instruction Format
Operand
Syntax Processing Size src _dest Code Size (Byte)
MVTC src, dest L #SIMM:8 Rx 4
L #SIMM:16 [Rx |\ 5
(b) T FSTIVINGZZ | Rx] 6
L #IMM:32 \ R/ 7
L Rs _Rx/ 3
Instruction Format
Operand Code Size
Syntax t (Byte)
(C) SETRSW dest {fiag) 2
N —

(a) Registers

Rs, Rs2, Rd, Rd2, Ri, and Rb mean that RO to R15 are specifiable unless stated otherwise.

(b) Control registers

Rx indicates that the PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW are selectable. The PC isonly
selectable as the src operand of MVFC and PUSHC instructions.

(c) Flag and bit

“flag” indicates that a bit (U or I) or aflag (O, S, Z, or C) inthe PSW is specifiable.

(d) Immediate value

#IMM:n, #UIMM:n, and #SIMM:n indicate n-bit immediate values. When extension is necessary, UMM

specifies zero extension and SIMM specifies sign extension.

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 47 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

(e) Size extension specifier (.memex) appended to a memory operand
.memex indicates the size of an operand in memory and the form of extension. Each instruction with a size-
extension specifier is expanded accordingly and then executed at the corresponding processing size.

memex Size Extension

B Byte Sign extension
UB Byte Zero extension
W Word Sign extension
uw Word Zero extension
L Longword None

If the extension specifier is omitted, byte size is assumed for bit-manipulation instructions and longword sizeis
assumed for other instructions.

(f) Processing size
The processing size indicates the size for transfer or calculation within the CPU.

(9) Description Example
Shows a description example for the instruction.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 48 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

The following explains the syntax of BCnd, BRA, and BSR instructions by using the BRA instruction as an actual
example.

B RA Unconditional relative branch B R A

Branch instruction
ength src Instruction Code

(4)
@)

Page: 286
(b) Operation
PC =PC +src;
Function
This instruction executes a relative branch to destination address specified by src.
Flag Change
This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax Length src Range of pcdsp/Rs (Byte)
BRA(.length) src S pcdsp:3 3 <pcdsp <10 1
B pcdsp:8 —128 < pcdsp <127 2
w pcdsp:16 —32768 < pcdsp < 32767 3
A pcdsp:24 —8388608 < pcdsp < 8388607 4
L Rs —2147483648 < Rs < 2147483647 2

Description Example

BRA labell
BRA.A label2
BRA R1
BRA.L R2

Note: For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of
the instruction.

Description Example

BRA label
BRA 1000h

(4) Syntax
Indicates the syntax of the instruction using symbols.

(@) Mnemonic
Describes the mnemonic.

(b) Branch distance specifier .length
For branch or jump instructions, a branch distance specifier can be added to the end of the mnemonic. This
determines the number of bitsto be used to represent the relative distance value for the branch.

S 3-bit PC forward relative specification. Valid values are 3 to 10.

B 8-hit PC relative specification. Valid values are —128 to 127.

A 16-bit PC relative specification. Valid values are —32768 to 32767.

A 24-bit PC relative specification. Valid values are —-8388608 to 8388607.

L 32-bit PC relative specification. Valid values are —2147483648 to 2147483647.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 49 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

3.3 Instructions in Detail
The following pages give details of the RXv1 instructions.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 50 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

A B S Absolute value A B S

Syntax Arithmetic/logic instruction
(1) ABS dest Instruction Code
(2) ABS src, dest Page: 169

Operation
(1) if(dest<0)

dest = -dest;
(2) if(src<0)
dest = -src;
else
dest = src;
Function

(1) Thisinstruction takes the absolute value of dest and places the result in dest.
(2) Thisinstruction takes the absolute value of src and places the result in dest.

Flag Change

Flag Change Condition

C —

Z v The flag is set when dest is 0 after the operation; otherwise it is cleared.

S v The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
(0] v (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Instruction Format

Processing Operand Code Size

Syntax Size src dest (Byte)

(1) ABS dest L — Rd 2

(2) ABS src, dest L Rs Rd 3
Description Example

ABS R2

ABS R1,R2

R0O1US0032EJ0130 Rev.1.30 RENESAS Page 51 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

A DC Add with carry A D C

Syntax Arithmetic/logic instruction
ADC src, dest Instruction Code

Page: 170
Operation

dest = dest + src + C;

Function
e Thisinstruction adds dest, src, and the C flag and places the result in dest.

Flag Change

Flag Change Condition

C 4 The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.
z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] v The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ADC src, dest L #SIMM:8 Rd 4

L #SIMM:16 Rd 5

L #SIMM:24 Rd 6

L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 4

L dsp:8[Rs].L" Rd 5

L dsp:16[Rs].L" Rd 6

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 24) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

Description Example
ADC #127,R2

ADC R1,R2
ADC [R1],R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 52 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

A D D Add without carry A D D

Syntax Arithmetic/logic instruction

(1) ADD src, dest Instruction Code
(2) ADD src, src2, dest Page: 171
Operation

(1) dest=dest + src;
(2) dest=src2 + src;

Function

(1) Thisinstruction adds dest and src and places the result in dest.
(2) Thisinstruction adds src2 and src and places the result in dest.

Flag Change

Flag Change Condition

C v The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.
z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] v The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand
Syntax Size src src2 dest Code Size (Byte)
(1) ADD src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB")
3 (memex = "“UB”)
L dsp:8[Rs].memex" — Rd 3 (memex == “UB")
4 (memex !=“UB")
L dsp:lG[Rs].memex* — Rd 4 (memex == “UB")
5 (memex = “UB")
(2) ADD src, src2, dest L #SIMM:8 Rs Rd 3
L #SIMM:16 Rs Rd 4
L #SIMM:24 Rs Rd 5
L #IMM:32 Rs Rd 6
L Rs Rs2 Rd 3

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .\W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 53 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

Description Example

ADD
ADD
ADD
ADD
ADD
ADD

#15, R2

R1, R2
[R1], R2
[R1].UB, R2
#127, R1, R2
R1, R2, R3

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 54 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

A N D Logical AND A N D

Syntax Arithmetic/logic instruction

(1) AND src, dest Instruction Code
(2) AND src, src2, dest Page: 173
Operation

(1) dest=dest & src;
(2) dest=src2 & src;

Function

(1) Thisinstruction logically ANDs dest and src and places the result in dest.
(2) Thisinstruction logically ANDs src2 and src and places the result in dest.

Flag Change

Flag Change Condition

C J—

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Instruction Format

Processing Operand
Syntax Size src src2 dest Code Size (Byte)
(1) AND src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”")
3 (memex = “UB”)
L dsp:8[Rs].memex" — Rd 3 (memex == “UB")
4 (memex !=“UB")
L dsp:lG[Rs].memex* — Rd 4 (memex == “UB”)
5 (memex = “UB")
(2) AND src, src2, dest L Rs Rs2 Rd 3

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 55 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

Description Example

AND
AND
AND
AND
AND

#15, R2

R1, R2
[R1], R2
[R1].UW, R2
R1, R2, R3

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 56 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

BCLR Clear a bit BCLR

Syntax Bit manipulation instruction
BCLR src, dest Instruction Code

Page: 175
Operation

(1) When dest is a memory location:
unsigned char dest;
dest&="(1l<<(src&7));

(2) When dest is a register:
register unsigned long dest;
dest &="(1 << (src & 31));

Function

e Thisinstruction clears the bit of dest, which is specified by src.
* Theimmediate value given as src is the number (position) of the bit.
Therange for IMM:3 operandsis0 < IMM:3< 7. Therangefor IMM:5is0<IMM:5< 31.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BCLR src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5
(2) BCLR src, dest L #IMM:5 Rd 2
L Rs Rd 3
Description Example
BCLR #7,[R2]
BCLR R1,[R2]
BCLR #31,R2
BCLR R1,R2
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 57 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

BCnd

Syntax

Conditional relative branch

BCnd(.length) src

Operation
if(Cnd)
PC=PC+

Function

SIC;

BCnd

Branch instruction

Instruction Code
Page: 177

e Thisinstruction makes the flow of relative branch to the location indicated by src when the condition specified by
Cnd istrue; if the condition is false, branching does not proceed.

e Thefollowing table lists the types of BCnd.

BCnd Condition Expression BCnd Condition Expression
BGEU, C== Equal to or greater than/ < BLTU, C== Less than/ >
BC Cflagis 1 BNC Cflagis O
BEQ, ZzZ-== Equal to/Z flag is 1 = BNE, Z== Not equal to/Z flagis O #
Bz BNZ
BGTU (C &7Z) == 1 Greater than < BLEU (C &7Z)==0Equal to or less than >
BPZ S== Positive or zero 0= BN S== Negative 0>
BGE (S~ 0)==0 Equalto or greater than < BLE ((8"~0)|zZ) Equalto orlessthanas 2
as signed integer == signed integer
BGT ((S~0)|Z) Greaterthan assigned < BLT (S~ 0)==1 Less than as signed >
== integer integer
BO O== Oflagis 1 BNO O== Oflagis O
Flag Change
e Thisinstruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax Length src Range of pcdsp (Byte)
(1) BEQ.S src S pcdsp:3 3 <pcdsp <10 1
(2) BNE.S src S pcdsp:3 3 <pcdsp =10 1
(3) BCnd.B src B pcdsp:8 —128 < pcdsp < 127 2
(4) BEQ.W src w pcdsp:16 —32768 < pcdsp < 32767 3
(5) BNE.W src W pcdsp:16 —32768 < pcdsp < 32767 3

Description Example

BC labell
BC.B label2
Note:

For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified

by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16). The value of the
specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the

instruct

ion.

Description Example

BC
BC

label
1000h

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 58 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

B M Cn d Conditional bit transfer B M Cn d

Syntax Bit manipulation instruction
BMCnd src, dest Instruction Code

Page: 179
Operation

(1) When dest is a memory location:
unsigned char dest;
if (Cnd)
dest|=(1<<(src&7));
else
dest&="(1<<(src&7));

(2) When dest is a register:
register unsigned long dest;
if (Cnd)

dest |= (1 << (src &31));
else
dest &="(1 << (src & 31));

Function

e Thisinstruction moves the truth-value of the condition specified by Cnd to the bit of dest, which is specified by
sre; that is, 1 or O istransferred to the bit if the condition istrue or false, respectively.
e Thefollowing table lists the types of BMCnd.

BMCnd Condition Expression BMCnd Condition Expression

BMGEU, C==1 Equal to or greater than/ < BMLTU, C== Less than/ >

BMC Cflagis 1 BMNC Cflagis O

BMEQ, Z-== Equal to/Z flag is 1 = BMNE, Z== Not equal to/Z flagis 0 #

BMZ BMNZ

BMGTU (C &~Z) == Greater than < BMLEU (C &7Z)== Equal to or less than 2
1 0

BMPZ S== Positive or zero 0< BMN S== Negative 0>

BMGE (S~ 0O)== Equalto or greater than < BMLE ((S”O)|2) Equal to or less than as =
0 as signed integer == signed integer

BMGT ((S”"O)|2Z) Greater than as signed < BMLT (S™0) == Less than as signed >
== integer 1 integer

BMO O0==1 Oflagis 1 BMNO O-== O flagis O

« Theimmediate value given as src is the number (position) of the bit.
Therange for IMM:3 operandsis0 < IMM:3< 7. Therangefor IMM:5is0 < IMM:5 < 31.

Flag Change
e Thisinstruction does not affect the states of flags.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 59 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BMCnd src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5
(2) BMCnd src, dest L #IMM:5 Rd 3
Description Example
BMC #7, [R2]
BMZ #31,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 60 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

BNOT Hota bl BNOT

Syntax Bit manipulation instruction
BNOT src, dest Instruction Code

Page: 180
Operation

(1) When dest is a memory location:
unsigned char dest;
dest"=(1<<(src&7));

(2) When dest is a register:
register unsigned long dest;
dest"=(1<<(src&31));

Function

e Thisinstruction invertsthe value of the bit of dest, which is specified by src, and places the result into the specified
bit.

e Theimmediate value given as src is the number (position) of the bit.
Therange for IMM:3 operandsis0 < IMM:3< 7. Therangefor IMM:5is0<IMM:5< 31.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BNOT src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5
(2) BNOT src, dest L #IMM:5 Rd 3
L Rs Rd 3
Description Example
BNOT #7,[R2]
BNOT R1,[R2]
BNOT #31,R2
BNOT R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 61 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

B RA Unconditional relative branch B RA

Syntax Branch instruction
BRA(.length) src Instruction Code
Page: 181
Operation
PC =PC + src;
Function

e Thisinstruction executes arelative branch to destination address specified by src.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax Length src Range of pcdsp/Rs (Byte)
BRA(.length) src S pcdsp:3 3 < pcdsp =10 1
B pcdsp:8 —128 < pcdsp < 127 2
w pcdsp:16 —32768 < pcdsp < 32767 3
A pcdsp:24 —8388608 < pcdsp < 8388607 4
L Rs —2147483648 < Rs < 2147483647 2

Description Example

BRA labell
BRA.A label2
BRA R1
BRA.L R2

Note: For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of
the instruction.

Description Example

BRA label
BRA 1000h
RO1US0032EJ0130 Rev.1.30 RENESAS Page 62 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

B R K Unconditional trap B R K

Syntax System manipulation instruction

BRK Instruction Code
Page: 182

Operation
tmp0 = PSW;
U=0;

I=0;

PM = 0;

tmpl =PC + 1,
PC = *IntBase;
SP=SP -4;
*SP =tmp0O;
SP =SP - 4;
*SP =tmpl,;

Function

e Thisinstruction generates an unconditional trap of number O.

e Thisinstruction causes atransition to supervisor mode and clears the PM bit in the PSW.
e Thisinstruction clearsthe U and | bitsin the PSW.

e Theaddress of the instruction next to the executed BRK instruction is saved.

Flag Change

e Thisinstruction does not affect the states of flags.
« The state of the PSW before execution of thisinstruction is saved on the stack.

Instruction Format

Syntax Code Size (Byte)
BRK 1

Description Example
BRK

RO1US0032EJ0130 Rev.1.30 RENESAS Page 63 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

BSET setabt BSET

Syntax Bit manipulation instruction
BSET src, dest Instruction Code

Page: 182
Operation

(1) When dest is a memory location:
unsigned char dest;
dest|=(1l<<(src&7));

(2) When dest is a register:
register unsigned long dest;
dest|=(1<<(src&31));

Function

e Thisinstruction setsthe bit of dest, which is specified by src.
* Theimmediate value given as src is the number (position) of the bit.
Therange for IMM:3 operandsis0 < IMM:3< 7. Therangefor IMM:5is0<IMM:5< 31.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BSET src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5
(2) BSET src, dest L #IMM:5 Rd 2
L Rs Rd 3
Description Example
BSET #7, [R2]
BSET R1,[R2]
BSET #31,R2
BSET R1,R2
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 64 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

B S R Relative branch to subroutine

Syntax
BSR(.length) src

BSR

Branch instruction

Instruction Code

Page: 184
Operation
SP=SP - 4;
*SP=(PC+n);"
PC = PC + src;
Note: * (PC + n) is the address of the instruction following the BSR instruction.
“n” indicates the code size. For details, refer to “Instruction Format”.
Function
e Thisinstruction executes arelative branch to destination address specified by src.
Flag Change
e Thisinstruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax Length src Range of pcdsp/Rs (Byte)
BSR(.length) src W pcdsp:16 —32768 < pcdsp < 32767 3
A pcdsp:24 —8388608 < pcdsp < 8388607 4
L Rs —2147483648 < Rs < 2147483647 2

Description Example

BSR labell
BSR.A label2
BSR R1
BSR.L R2

Note: For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:16, pcdsp:24). The value of the specified
address minus the address where the instruction is allocated will be stored in the pcdsp section of the instruction.

Description Example

BSR label
BSR 1000h
RO1US0032EJ0130 Rev.1.30 RENESAS Page 65 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

BTST BTST

Syntax Bit manipulation instruction
BTST src, src2 Instruction Code

Page: 185
Operation

(1) When src2 is a memory location:
unsigned char src2;
Z="((src2>>(src&7))&1);
C=((src2>>(src&7))&1);

(2) When src2 is a register:
register unsigned long src2;
Z="((src2>>(src&31))&1);
C=((src2>>(src&31))&1);

Function

e Thisinstruction movesthe inverse of the value of the bit of scr2, which is specified by src, to the Z flag and the
value of the bit of scr2, which is specified by src, to the C flag.

Theimmediate value given as src is the number (position) of the bit.
Therange for IMM:3 operandsis0 < IMM:3< 7. Therangefor IMM:5is0<IMM:5< 31.

Flag Change

Flag Change Condition

C v The flag is set if the specified bit is 1; otherwise it is cleared.
z v The flag is set if the specified bit is 0; otherwise it is cleared.
S —

O J—

Instruction Format

Processing Operand Code Size
Syntax Size src src2 (Byte)
(1) BTST src, src2 B #IMM:3 [Rs].B 2
B #IMM:3 dsp:8[Rs].B 3
B #IMM:3 dsp:16[Rs].B 4
B Rs [Rs2].B 3
B Rs dsp:8[Rs2].B 4
B Rs dsp:16[Rs2].B 5
(2) BTST src, src2 L #IMM:5 Rs 2
L Rs Rs2 3
Description Example
BTST #7,[R2]
BTST R1,[R2]
BTST #31,R2
BTST R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 66 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

CLRPSW

Syntax
CLRPSW dest

Operation
dest=0;

Function

e Thisinstruction clearsthe O, S, Z, or C flag, which is specified by dest, or the U or | bit.

Clear a flag or bit in the PSW

CLRPSW

System manipulation instruction

Instruction Code
Page: 186

e Inuser mode, writing tothe U or | hit isignored. In supervisor mode, all flags and bits can be written to.

Flag Change

Flag Change Condition
C *

Z *

S *

O *

Note: * The specified flag becomes 0.

Instruction Format

Operand
Syntax dest Code Size (Byte)
CLRPSW dest flag 2

Description Example

CLRPSW C
CLRPSW Z

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 67 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

CMP CMP

Syntax Arithmetic/logic instruction
CMP src, src2 Instruction Code
Page: 187
Operation
Src2 - src;
Function

e Thisinstruction changes the states of flagsin the PSW to reflect the result of subtracting src from src2.

Flag Change

Flag Change Condition

C v The flag is set if an unsigned operation does not produce an overflow; otherwise it is cleared.
z v The flag is set if the result of the operation is O; otherwise it is cleared.

S v The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.

(0] 4 The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand
Syntax Size src src2 Code Size (Byte)
CMP src, src2 L #UIMM:4 Rs 2
L #UIMM:8™ Rs 3
L #SIMM:8™L Rs 3
L #SIMM:16 Rs 4
L #SIMM:24 Rs 5
L #IMM:32 Rs 6
L Rs Rs2 2
L [Rs].memex Rs2 2 (memex == “UB”")
3 (memex !=“UB")
L dsp:8[Rs].memex*2 Rs2 3 (memex == “UB”")
4 (memex !="“UB”")
L dsp:lG[Rs].memex*2 Rs2 4 (memex == “UB")

5 (memex = "“UB")

Note: 1. Values from O to 127 are always specified as the instruction code for zero extension.

Note: 2. For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

CMP #7,R2
CMP R1,R2
CMP [R1], R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 68 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

D IV Divide signed D IV

Syntax Arithmetic/logic instruction
DIV src, dest Instruction Code

Page: 188
Operation

dest = dest / src;

Function

e Thisinstruction divides dest by src as signed values and places the quotient in dest. The quotient is rounded
towards 0.

e Thecdculation is performed in 32 bits and the result is placed in 32 hits.

e Thevalue of dest is undefined when the divisor (src) is 0 or when overflow is generated after the operation.

Flag Change

Flag Change Condition

C —

Z —

S —

(0] v This flag is set if the divisor (src) is 0 or the calculation is —2147483648 / —1; otherwise it is

cleared.

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
DIV src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”")
4 (memex = “UB")
L dsp:8[Rs].memex" Rd 4 (memex == “UB")
5 (memex = “UB")
L dsp:16[Rs].memex" Rd 5 (memex == “UB”)

6 (memex = "“UB")

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

DIV #10, R2
DIV RI1,R2
DIV [R1], R2

DIV 3[R1].B, R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 69 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

D IVU Divide unsigned D IVU

Syntax Arithmetic/logic instruction
DIVU src, dest Instruction Code

Page: 190
Operation

dest = dest / src;

Function

e Thisinstruction divides dest by src as unsigned values and places the quotient in dest. The quotient is rounded
towards 0.

e Thecdculation is performed in 32 bits and the result is placed in 32 hits.

¢ Thevalue of dest is undefined when the divisor (src) isO.

Flag Change

Flag Change Condition

C —

Z —

S —

(0] v The flag is set if the divisor (src) is O; otherwise it is cleared.

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
DIVU src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”")
4 (memex !|=“UB")
L dsp:8[Rs].memex” Rd 4 (memex == “UB")
5 (memex != “UB”")
L dsp:16[Rs].memex” Rd 5 (memex == “UB”)

6 (memex !=“UB”")

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

DIVU #10, R2
DIVU R1,R2
DIVU [R1], R2
DIVU 3[R1].UB, R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 70 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

E M U L Extended multiply signed E M U L

Syntax Arithmetic/logic instruction
EMUL src, dest Instruction Code

Page: 191
Operation

dest2:dest = dest * src;

Function

e Thisinstruction multiplies dest by src, treating both as signed values.
e Thecdculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the
register pair, dest2:dest (R(n+1):Rn).
¢ Any of the 15 general-purpose registers (Rn (n = 0 to 14)) is specifiable for dest.
Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is

undefined.
Register Specified for dest Registers Used for 64-Bit Extension
RO R1:RO
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14
Flag Change

e Thisinstruction does not affect the states of flags.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 71 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
EMUL src, dest L #SIMM:8 Rd (Rd = RO to R14) 4
L #SIMM:16 Rd (Rd = RO to R14) 5
L #SIMM:24 Rd (Rd = RO to R14) 6
L #IMM:32 Rd (Rd = RO to R14) 7
L Rs Rd (Rd = RO to R14) 3
L [Rs].memex Rd (Rd = RO to R14) 3 (memex == “UB")
4 (memex |=“UB")
L dsp:8[Rs].memex" Rd (Rd = R0 to R14) 4 (memex == “UB")
5 (memex !=“UB”")
L dsp:16[Rs].memex” Rd (Rd = RO to R14) 5 (memex == “UB”")
6 (memex !=“UB")
Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value

multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

EMUL #10, R2
EMUL R1,R2
EMUL [R1], R2
EMUL 8[R1].W, R2

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 72 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

E M U L U Extended multiply unsigned E M U L U

Syntax Arithmetic/logic instruction
EMULU src, dest Instruction Code

Page: 192
Operation

dest2:dest = dest * src;

Function

e Thisinstruction multiplies dest by src, treating both as unsigned values.
e Thecdculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the
register pair, dest2:dest (R(n+1):Rn).
¢ Any of the 15 general-purpose registers (Rn (n = 0 to 14)) is specifiable for dest.
Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is

undefined.
Register Specified for dest Registers Used for 64-Bit Extension
RO R1:RO
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14
Flag Change

e Thisinstruction does not affect the states of flags.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 73 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
EMULU src, dest L #SIMM:8 Rd (Rd = RO to R14) 4
L #SIMM:16 Rd (Rd = RO to R14) 5
L #SIMM:24 Rd (Rd = RO to R14) 6
L #IMM:32 Rd (Rd = RO to R14) 7
L Rs Rd (Rd = RO to R14) 3
L [Rs].memex Rd (Rd = RO to R14) 3 (memex == “UB")
4 (memex |=“UB")
L dsp:8[Rs].memex" Rd (Rd = R0 to R14) 4 (memex == “UB")
5 (memex != “UB”)
L dsp:16[Rs].memex" Rd (Rd = R0 to R14) 5 (memex == “UB")

6 (memex !=“UB")

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

EMULU #10, R2
EMULU R1,R2
EMULU [R1], R2
EMULU 8[R1].UW, R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 74 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

I:A D D Add floating-point FA D D

Syntax Floating-point arithmetic instruction
FADD src, dest Instruction Code

Page: 194
Operation

dest = dest + src;

Function
e Thisinstruction adds the single-precision floating-point numbers stored in dest and src and places the result in
dest.

* Rounding of the result is in accordance with the setting of the RM[1:0] bitsin the FPSW.

¢ Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

e Theresult of the operation is +0 if src and dest have the opposite signs and their sum is exactly 0, except when the
rounding mode is towards —o. The operation result is—0 when the rounding mode is towards —o.

Flag Change

Flag Change Condition

C J—

z v The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S v The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —

CcVv v The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO v The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz v The value of the flag is 0.

CuU v The flag is set if an underflow exception is generated; otherwise it is cleared.

CX 4 The flag is set if an inexact exception is generated; otherwise it is cleared.

CE v The flag is set if an unimplemented processing is generated; otherwise it is cleared.

FV v The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO v The flag is set if an overflow exception is generated, and otherwise left unchanged.

Fz —

FU v The flag is set if an underflow exception is generated, and otherwise left unchanged.

FX 4 The flag is set if an inexact exception is generated, and otherwise left unchanged.

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
FADD src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 75 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions

Unimplemented processing
Invalid operation

Overflow

Underflow

Inexact

Description Example

FADD R1,R2
FADD [R1], R2

Supplementary Description

e Thefollowing tables show the correspondences between the src and dest values and the results of operations when
the value of the DN bit inthe FPSW is0 or 1.

When DN =0
src
Normalized +0 -0 40 —0 Denormalized QNaN SNaN
dest | Normalized Sum
+0 +0 * —0
-0 * -0
+0 Invalid
+o0 .
operation
—0 Invalid
—00 . —00
operation
Denormalized Unimplemented processing
QNaN QNaN
SNaN Invalid operation

Note: * The result is —0 when the rounding mode is set to rounding towards — and +0 in other rounding modes.

When DN =1
src
Normalized +0, -0, +00 —0 QNaN SNaN
+Denormalized | —-Denormalized
dest Normalized Sum Normalized
+0, *
+Denormalized . +0 -
Normalized
_01 * _0
—Denormalized
+00 Invalid
+o0 .
operation
—© Invalid
—0 . —o0
operation
QNaN QNaN
SNaN Invalid operation

Note: * The result is —0 when the rounding mode is set to rounding towards — and +0 in other rounding modes.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 76 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

FCMP

Syntax

FCMP src, src2

Operation

Src2 - src;

Function

Thisinstruction compares the single-precision floating-point numbers stored in src2 and src and changes the states
of flags according to the result.
Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Comparefloating-point F C M P

Floating-point arithmetic instruction

Instruction Code
Page: 195

Flag Change

Flag Change Condition

C J—

z v The flag is set if src2 == src; otherwise it is cleared.

S v The flag is set if src2 < src; otherwise it is cleared.

(0] v The flag is set if an ordered classification based on the comparison result is impossible;
otherwise it is cleared.

cVv v The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO v The value of the flag is 0.

Ccz v The value of the flag is 0.

CcuU v The value of the flag is 0.

CX 4 The value of the flag is 0.

CE v The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.

FV v The flag is set if an invalid operation exception is generated; otherwise it does not change.

FO —

Fz —

FU —

FX —

Note: The FV flag does not change if the exception enable bit EV is 1. The O, S, and Z flags do not change when an

exception is generated.

Flag
Condition (@) S z
Src2 > src 0 0 0
Src2 < src 0 1 0
Src2 == src 0 0 1
Ordered classification impossible 1 0 0
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 77 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Processing Operand
Syntax Size src src2 Code Size (Byte)
FCMP src, src2 L #IMM:32 Rs 7

L Rs Rs2 3

L [Rs].L Rs2 3

L dsp:8[Rs].L" Rs2 4

L dsp:16[Rs].L" Rs2 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from O to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

Sources of Floating-Point Exceptions

Unimplemented processing
Invalid operation

Description Example

FCMP R1,R2
FCMP [R1], R2

Supplementary Description

« Thefollowing tables show the correspondences between the src and src2 values and the results of operations when
the value of the DN bit inthe FPSW isO or 1.
(>: src2 > sre, <: Src2 < SIC, = Src2 == Src)

When DN =0

src
Normalized | +0 | -0 +00 —0 Denormalized QNaN SNaN
src2 | Normalized | Comparison
+0 <
-0
+00 > =

—00 < =
Denormalized Unimplemented processing
QNaN Ordered classification impossible
SNaN Invalid operation (Ordered classification impossible)

When DN =1

src
Normalized +0, -0, +00 —0 QNaN SNaN
+Denormalized | —-Denormalized

src2| Normalized |Comparison
+0,

+Denormalized
_0,

—Denormalized
+o0 > =

—0 < =
QNaN Ordered classification impossible
SNaN Invalid operation (Ordered classification impossible)

RO1US0032EJ0130 Rev.1.30 RENESAS Page 78 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

I: D IV Divide floating-point F D IV

Syntax Floating-point arithmetic instruction
FDIV src, dest Instruction Code

Page: 196
Operation

dest = dest / src;

Function

e Thisinstruction divides the single-precision floating-point number stored in dest by that stored in src and places
theresult in dest.

« Rounding of the result is in accordance with the setting of the RM[1:0] bitsin the FPSW.

¢ Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Flag Change

Flag Change Condition

C —

z v The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S v The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O J—

cVv v The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO v The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz 4 The flag is set if a division-by-zero exception is generated; otherwise it is cleared.

CuU v The flag is set if an underflow exception is generated; otherwise it is cleared.

CX v The flag is set if an inexact exception is generated; otherwise it is cleared.

CE v The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV v The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO v The flag is set if an overflow exception is generated; otherwise it does not change.

Fz 4 The flag is set if a division-by-zero exception is generated; otherwise it does not change.
FU 4 The flag is set if an underflow exception is generated; otherwise it does not change.

FX v The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX, FU, FZ, FO, and FV flags do not change if any of the exception enable bits EX, EU, EZ, EO, and EV is 1.
The S and Z flags do not change when an exception is generated.

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
FDIV src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 79 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions

Unimplemented processing
Invalid operation

Overflow

Underflow

Inexact

Division-by-zero

Description Example

FDIV R1,R2
FDIV [R1], R2

Supplementary Description

« Thefollowing tables show the correspondences between the src and dest values and the results of operations when
the value of the DN bit in the FPSW isO or 1.

When DN =0

src
Normalized +0 -0 +00 —0 Denormalized QNaN SNaN
dest | Normalized Division Division-by-zero 0
+0 +0 -0
0 Invalid operation
-0 -0 +0
+00 +00 —® ; ;
o0 Invalid operation
—0 —o0 +00
Denormalized Unimplemented processing
QNaN QNaN

SNaN Invalid operation

When DN =1

src
Normalized +0, -0, +00 —o0 QNaN SNaN
+Denormalized | -Denormalized
dest| Normalized Division Division-by-zero 0
+0,
+Denormalized
_0,
—Denormalized
+o0 +o00 —00 .)
) Invalid operation
—0 —o0 +o0
QNaN QNaN
SNaN Invalid operation

+0 -0

0 Invalid operation
-0 +0

RO1US0032EJ0130 Rev.1.30 RENESAS Page 80 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

I: M U L Multiply floating-point F M U L

Syntax Floating-point arithmetic instruction
FMUL src, dest Instruction Code

Page: 197
Operation

dest = dest * src;

Function

e Thisinstruction multiplies the single-precision floating-point number stored in dest by that stored in src and places
the result in dest.

* Rounding of the result is in accordance with the setting of the RM[1:0] bitsin the FPSW.

¢ Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined regardless of generation of floating-point exceptions.

Flag Change

Flag Change Condition

C J—

z v The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S v The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —

CcVv v The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO v The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz v The value of the flag is 0.

CuU v The flag is set if an underflow exception is generated; otherwise it is cleared.

CX 4 The flag is set if an inexact exception is generated; otherwise it is cleared.

CE v The flag is set if an unimplemented processing is generated; otherwise it is cleared.

FV v The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO v The flag is set if an overflow exception is generated, and otherwise left unchanged.

Fz —

FU v The flag is set if an underflow exception is generated, and otherwise left unchanged.

FX 4 The flag is set if an inexact exception is generated, and otherwise left unchanged.

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
FMUL src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 81 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions

Unimplemented processing
Invalid operation
Overflow

Underflow

Inexact

Description Example

FMUL R1,R2
FMUL [R1], R2

Supplementary Description

e Thefollowing tables show the correspondences between the src and dest values and the results of operations when
the value of the DN bit inthe FPSW is0 or 1.

When DN =0

src
Normalized +0 -0 +o0 —o0 Denormalized QNaN SNaN
dest | Normalized |Multiplication o
+0 +0 -0
-0 -0 +0
+o0 +o0 —0

) Invalid operation
—00 —o0 +00

Invalid operation

Denormalized Unimplemented processing
QNaN QNaN
SNaN Invalid operation

When DN =1

src
Normalized +0, -0, +00 —0 QNaN SNaN
+Denormalized | -Denormalized
dest| Normalized [Multiplication 0
+0,
+Denormalized
_07
—Denormalized

+0 -0

Invalid operation
-0 +0

+00 X i +00 —0
) Invalid operation
—00 —0 +o0

QNaN QNaN
SNaN Invalid operation

RO1US0032EJ0130 Rev.1.30 RENESAS Page 82 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

FS U B Subtractfloating-point F S U B

Syntax Floating-point arithmetic instruction
FSUB src, dest Instruction Code

Page: 198
Operation

dest = dest - src;

Function

e Thisinstruction subtracts the single-precision floating-point number stored in src from that stored in dest and
places the result in dest.

* Rounding of the result is in accordance with the setting of the RM[1:0] bitsin the FPSW.

¢ Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

e Theresult of the operation is+0 if src and dest have the same sign and the result of subtractionis exactly 0, except
when the rounding mode is towards —o. The operation result is—0 when the rounding mode is towards —o.

Flag Change

Flag Change Condition

C J—

z v The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S v The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —

CcVv v The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO v The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz v The value of the flag is 0.

CuU v The flag is set if an underflow exception is generated; otherwise it is cleared.

CX 4 The flag is set if an inexact exception is generated; otherwise it is cleared.

CE v The flag is set if an unimplemented processing is generated; otherwise it is cleared.

FV v The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO v The flag is set if an overflow exception is generated, and otherwise left unchanged.

Fz —

FU v The flag is set if an underflow exception is generated, and otherwise left unchanged.

FX 4 The flag is set if an inexact exception is generated, and otherwise left unchanged.

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
FSUB src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 83 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions

Unimplemented processing
Invalid operation

Overflow

Underflow

Inexact

Description Example

FSUB R1,R2
FSUB [R1], R2

Supplementary Description
e Thefollowing tables show the correspondences between the src and dest values and the results of operations when
the value of the DN bit inthe FPSW is0 or 1.

When DN =0
src
Normalized +0 -0 +o0 —o0 Denormalized QNaN SNaN
dest | Normalized [Subtraction
+0 * +0 —0
-0 -0 * +00
+0 Invalid
+00 .
operation
—0 Invalid
—00 .
operation
Denormalized Unimplemented processing
QNaN QNaN
SNaN Invalid operation

Note: * The result is —0 when the rounding mode is set to rounding towards — and +0 in other rounding modes.

When DN =1

Src

Normalized +0, -0, +00 —o0 QNaN SNaN
+Denormalized | —-Denormalized

dest Normalized Subtraction

+0, * +O
+Denormalized —0
-0, +00

—Denormalized
+o0 Invalid
operation
—o0 Invalid
—00 .
operation
QNaN QNaN
SNaN Invalid operation

Note: * The result is —0 when the rounding mode is set to rounding towards — and +0 in other rounding modes.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 84 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

FTOI Convert floating-point to signed integer FTOI

Syntax Floating-point arithmetic instruction
FTOI src, dest Instruction Code

Page: 199
Operation

dest = ('signed long) src;

Function

e Thisinstruction converts the single-precision floating-point number stored in src into a signed longword (32-hbit)
integer and places the result in dest.
e Theresult is aways rounded towards O, regardless of the setting of the RM[1:0] bitsin the FPSW.

Flag Change

Flag Change Condition

C J—

z v The flag is set if the result of the operation is 0; otherwise it is cleared.

S v The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —

CcVv v The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO v The value of the flag is 0.

Ccz v The value of the flag is 0.

CcuU v The value of the flag is 0.

CX v The flag is set if an inexact exception is generated; otherwise it is cleared.

CE v The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV v The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO —

Fz —

FU —

FX 4 The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
FTOI src, dest L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 85 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

Sources of Floating-Point Exceptions

Unimplemented processing
Invalid operation
I nexact

Description Example
FTOl R1,R2
FTOIl [R1],R2

Supplementary Description

« Thefollowing tables show the correspondences between the src value and the result of operations when the value
of the DN bit in the FPSW is 0 or 1.

When DN =0
src Value (exponent is shown without bias) dest Exception
srcz0 +00 When an invalid operation exception is Invalid operation
generated with the EV = 1: No change exception
31 < Exponent < 127 Other cases: 7FFFFFFFh
—126 < Exponent < 30 00000000h to 7FFFFF80h None™®

+Denormalized number No change Unimplemented
processing exception
+0 00000000h None
src<0 -0
—Denormalized number No change Unimplemented

processing exception

—126 < Exponent < 30

00000000h to 80000080h

None™

31 < Exponent £ 127

When an invalid operation exception is
generated with the EV = 1: No change

Invalid operation
. *
exception 2

—0 Other cases: 80000000h
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV = 1: No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CFO00000h.

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 86 of 271

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

When DN =1
src Value (exponent is shown without bias) dest Exception
srcz0 +00 When an invalid operation exception is Invalid operation
generated with the EV = 1: No change exception
31 < Exponent < 127 Other cases: 7FFFFFFFh
—126 < Exponent < 30 00000000h to 7FFFFF80h None™®
+0, +Denormalized number 00000000h None
src<0 —0, —Denormalized number
—126 < Exponent < 30 00000000h to 80000080h None't

31 < Exponent £ 127

When an invalid operation exception is
generated with the EV = 1. No change

Other cases: 80000000h

Invalid operation
o
exception”?

—0
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV = 1: No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CFO00000h.

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 87 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

I N T Software interrupt I N T

Syntax System manipulation instruction

INT src Instruction Code
Page: 200

Operation
tmp0 = PSW;
U=0;

I=0;

PM =0;

tmpl =PC + 3,

PC =*(IntBase + src * 4);
SP =SP - 4;

*SP =tmp0O;

SP =SP - 4;

*SP =tmpl,;

Function

e Thisinstruction generates the unconditional trap which corresponds to the number specified as src.
e ThelINT instruction number (src) isin therange 0 < src < 255.

e Thisinstruction causes atransition to supervisor mode, and clears the PM bit in the PSW to 0.

e Thisinstruction clearsthe U and | bitsin the PSW to 0.

Flag Change
e Thisinstruction does not affect the states of flags.

« The state of the PSW before execution of thisinstruction is saved on the stack.

Instruction Format

Operand Code Size
Syntax src (Byte)
INT src #IMM:8 3
Description Example
INT #0
RO1US0032EJ0130 Rev.1.30 RENESAS Page 88 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

I TO F Convert signed integer to floating-point ITO I:

Syntax Floating-point arithmetic
ITOF src, dest instruction
Instruction Code
Page: 200

Operation

dest = (float) src;

Function

e Thisinstruction converts the signed longword (32-bit) integer stored in src into a single-precision floating-point
number and places the result in dest.

¢ Rounding of theresult isin accordance with the setting of the RM[1:0] bitsin the FPSW. 00000000h is handled as
+0 regardless of the rounding mode.

Flag Change

Flag Change Condition

C —

z v The flag is set if the result of the operation is +0; otherwise it is cleared.

S v The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O J—

cVv 4 The value of the flag is 0.

CO v The value of the flag is 0.

Ccz v The value of the flag is 0.

Ccu v The value of the flag is 0.

CX v The flag is set if an inexact exception is generated; otherwise it is cleared.

CE v The value of the flag is 0.

FV —

FO —

Fz —

FU —

FX v The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX flag does not change if the exception enable bit EX is 1. The S and Z flags do not change when an
exception is generated.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 89 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ITOF src, dest L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”")
4 (memex !=“UB”")
L dsp:8[Rs].memex* Rd 4 (memex == “UB")
5 (memex = “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == "UB”")

6 (memex = "“UB”)

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .\W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Sources of Floating-Point Exceptions

Inexact

Description Example
ITOF R1,R2

ITOF [R1], R2
ITOF 16[R1].L, R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 90 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

J M P Unconditional jump J M P

Syntax Branch instruction
JMP src Instruction Code
Page: 201
Operation
PC =src;
Function

e Thisinstruction branches to the instruction specified by src.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src (Byte)
JMP src Rs 2
Description Example
JMP R1
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 91 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3.

Instruction Descriptions

.J S R Jump to subroutine

Syntax
JSR src

Operation
SP=SP-4;
*SP=(PC+2);"
PC = src;

Note: * (PC + 2) is the address of the instruction following the JSR instruction.

Function

e Thisinstruction causes the flow of execution to branch to the subroutine specified by src.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

JSR

Branch instruction

Instruction Code
Page: 201

Operand Code Size
Syntax src (Byte)
JSR src Rs 2
Description Example
JSR R1
RO1US0032EJ0130 Rev.1.30 RENESAS Page 92 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MACH I Multiply-Accumulate the upper words MACH I

Syntax
MACHI src, src2

DSP instruction

Instruction Code
Page: 202

Operation

signed short tmp1, tmp2;

signed long long tmp3;

tmp1 = (signed short) (src >> 16);

tmp2 = (signed short) (src2 >> 16);

tmp3 = (signed long) tmp1l * (signed long) tmp2;

ACC = ACC + (tmp3 << 16);

Function

This instruction multiplies the upper 16 bits of src by the upper 16 bits of src2, and adds the result to the valuein
the accumulator (ACC). The addition is performed with the least significant bit of the result of multiplication

corresponding to bit 16 of ACC. The result of addition is stored in ACC. The upper 16 bits of src and the upper 16
bits of src2 are treated as signed integers.

b31 b16 b15 b0
| Upper 16 bits ‘ | src
X | Upper 16 bits ‘ | src2
Sign extension | <«— ‘ ‘ 0 | Result of multiplication
+ | ‘ ‘ ‘ | ACC value before executing

the MACHI instruction

ACC value after executing
the MACHI instruction

b63 b48 ba7 b32 b31 b16 b15 b0

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src src2 (Byte)
MACHI src, src2 Rs Rs2 3
Description Example
MACHI R1, R2
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 93 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MA C L O Multiply-Accumulate the lower words MA C L O

Syntax DSP instruction
MACLO src, src2 Instruction Code

Page: 202
Operation

signed short tmp1, tmp2;

signed long long tmp3;

tmp1 = (signed short) src;

tmp2 = (signed short) src2;

tmp3 = (signed long) tmp1l * (signed long) tmp2;
ACC = ACC + (tmp3 << 16);

Function

e Thisinstruction multiplies the lower 16 bits of src by the lower 16 bits of src2, and adds the result to the valuein
the accumulator (ACC). The addition is performed with the least significant bit of the result of multiplication
corresponding to bit 16 of ACC. The result of addition is stored in ACC. The lower 16 bits of src and the lower 16
bits of src2 are treated as signed integers.

b31 b16 bl5 b0
| ‘ Lower 16 bits | src

X | ‘ Lower 16 bits | src2
Sign extension | 4—}0 ‘ ‘ 0 | Result of multiplication
+ | ‘ ‘ ‘ | ACC value before executing

the MACLO instruction

ACC value after executing
the MACLO instruction

b63 b48 ba7 b32 b31 b16 bl5 b0

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src src2 (Byte)
MACLO src, src2 Rs Rs2 3
Description Example
MACLO R1, R2
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 94 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MAX Maximum of two signed integers MAX

Syntax Arithmetic/logic instruction
MAX src, dest Instruction Code
Page: 203
Operation
if (src > dest)
dest = src;
Function

e Thisinstruction compares src and dest as signed values and places whichever is greater in dest.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
MAX src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”")
4 (memex !=“UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)
5 (memex = “UB”)
L dsp:lG[Rs].memex* Rd 5 (memex == “UB")

6 (memex = "“UB”)

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .\W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

MAX #10, R2
MAX R1,R2
MAX [R1], R2

MAX 3[R1].B, R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 95 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

M I N Minimum of two signed integers M I N

Syntax Arithmetic/logic instruction
MIN src, dest Instruction Code
Page: 204
Operation
if (src < dest)
dest = src;
Function

e Thisinstruction compares src and dest as signed values and places whichever is smaller in dest.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
MIN src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”")
4 (memex !=“UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)
5 (memex = “UB”)
L dsp:lG[Rs].memex* Rd 5 (memex == “UB")

6 (memex = "“UB”)

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .\W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

MIN #10, R2
MIN R1, R2
MIN [R1], R2

MIN 3[R1].B, R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 96 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3.

Instruction Descriptions

Move

MOV

Syntax
MOV.size src, dest

MOV

Data transfer instruction
Instruction Code

Page: 205

Operation

dest = src;

Function

e Thisinstruction transfers src to dest aslisted in the following table.

Src

dest

Function

Immediate value

Register

Transfers the immediate value to the register. When the immediate value is
specified in less than 32 bits, it is transferred to the register after being zero-
extended if specified as #UIMM and sign-extended if specified as #SIMM.

Immediate value

Memory location

Transfers the immediate value to the memory location in the specified size.
When the immediate value is specified with a width in bits smaller than the
specified size, it is transferred to the memory location after being zero-extended
if specified as #UIMM and sign-extended if specified as #SIMM.

Register

Register

Transfers the data in the source register (src) to the destination register (dest).
When the size specifier is .B, the data is transferred to the register (dest) after
the least significant byte of the register (src) has been sign-extended to form a
longword of data. When the size specifier is .W, the data is transferred to the
register (dest) after the lower word of the register (src) has been sign-extended
to form a longword of data.

Register

Memory location

Transfers the data in the register to the memory location. When the size
specifier is .B, the least significant byte of the register is transferred. When the
size specifier is .W, the lower word of the register is transferred.

Memory location

Register

Transfers the data at the memory location to the register. When the size
specifier is .B or .W, the data at the memory location are sign-extended to form
a longword, which is transferred to the register.

Memory location

Memory location

Transfers the data with the specified size at the source memory location (src) to
the specified size at the destination memory location (dest).

Flag Change

e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size Size src dest (Byte)
MOQV.size src, dest Store (short format)
B/W/L size Rs dsp:5[Rd]™? 2
(Rs = RO to R7) (Rd = RO to R7)
Load (short format)
BW/L L dsp:5[Rs] T Rd 2

(Rs = RO to R7) (Rd = RO to R7)

Set immediate value to register (short format)

L L #UIMM:4 Rd

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 97 of 271

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

Processing Operand Code Size
Syntax Size Size src dest (Byte)
MOV.size src, dest Set immediate value to memory location (short format)
B B #IMM:8 dsp:5[Rd]™? 3
(Rd = RO to R7)
WiIL size #UIMM:8 dsp:5[Rd]™? 3
(Rd = RO to R7)
Set immediate value to register
L L #UIMM:8" Rd 3
L L #SIMM:8™2 Rd 3
L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6
Data transfer between registers (sign extension)
B/W L Rs Rd 2
Data transfer between registers (no sign extension)
L L Rs Rd 2
Set immediate value to memory location
B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd]? 4
B B #IMM:8 dsp:16[Rd]™* 5
W W #SIMM:8 [Rd] 3
W W #SIMM:8 dsp:8[Rd]™? 4
w w #SIMM:8 dsp:16[Rd]™? 5
W w #IMM:16 [Rd] 4
W w #IMM:16 dsp:8[Rd]? 5
W w #IMM:16 dsp:16[Rd]™* 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd]™? 4
L L #SIMM:8 dsp:16 [Rd]* 5
L L #SIMM:16 [Rd] 4
L L #SIMM:16 dsp:8[Rd]? 5
L L #SIMM:16 dsp:16 [Rd]™* 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd]™? 6
L L #SIMM:24 dsp:16 [Rd]* 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd]™? 7
L L #IMM:32 dsp:16 [Rd]™* 8
Load
BW/IL L [Rs] Rd 2
BW/L L dsp:8[Rs] T Rd 3
BW/L L dsp:16[Rs] * Rd 4
BW/L L [Ri, Rb] Rd 3
Store
B/WI/L size Rs [Rd] 2
B/WIL size Rs dsp:8[Rd]™? 3
B/W/L size Rs dsp:16[Rd]™? 4
B/WI/L size Rs [Ri, Rb] 3
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 98 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3.

Instruction Descriptions

Processing Operand Code Size
Syntax Size Size src dest (Byte)
MOV.size src, dest Data transfer between memory locations

B/WI/L size [Rs] [Rd] 2
B/WIL size [Rs] dsp:8[Rd]™? 3
B/W/L size [Rs] dsp:16[Rd]™* 4
B/WIL size dsp:8[Rs]’T [Rd] 3
B/W/L size dsp:8[Rs]'* dsp:8[Rd]™? 4
B/W/L size dsp:8[Rs]'* dsp:16[Rd]™? 5
B/W/L size dsp:16[Rs] * [Rd] 4
B/WIL size dsp:16[Rs]* dsp:8[Rd]™? 5
B/WIL size dsp:16[Rs]* dsp:16[Rd]™* 6
Store with post-increment’™>

B/WI/L size Rs [Rd+] 3
Store with pre-decrement’™>

B/WI/L size Rs [-Rd] 3
Load with post-increment™

B/W/L L [Rs+] Rd 3
Load with pre-decrement™

BW/L L [-Rs] Rd 3

Note: 1.

Note: 2.
Note: 3.

Note: 4.

For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the displacement value
(dsp:5, dsp:8, dsp:16). With dsp:5, values from 0 to 62 (31 x 2) can be specified when the size specifier is .W, or
values from 0 to 124 (31 x 4) when the specifier is .L. With dsp:8, values from 0 to 510 (255 x 2) can be specified
when the size specifier is .W, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size specifier is .W, or values from 0 to 262140 (65535
x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

For values from 0 to 127, an instruction code for zero extension is always selected.

In cases of store with post-increment and store with pre-decrement, if the same register is specified for Rs and
Rd, the value before updating the address is transferred as the source.

In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and Rd,

the data transferred from the memory location are saved in Rd.

Description Example

MOV.L #0, R2
MOV.L #128:8, R2
MOV.L #-128:8, R2
MOV.L R1,R2
MOV.L #0, [R2]
MOV.W [R1], R2
MOV.W R1, [R2]
MOV.W [R1, R2], R3
MOV.W R1,[R2, R3]
MOV.W [R1], [R2]
MOV.B R1, [R2+]
MOV.B [R1+], R2
MOV.B R1, [-R?]
MOV.B [-R1], R2

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 99 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MOVU Move unsigned MOVU

Syntax Data transfer instruction
MOVUé.size src, dest Instruction Code
Page: 210
Operation
dest = src;
Function

e Thisinstruction transfers src to dest aslisted in the following table.

src dest Function

Register Register Transfers the least significant byte or lower word of the register (src) to the
destination register (dest), after zero-extension to form a longword data.

Memory location Register Transfers the byte or word of data at the memory location to the register, after

zero-extension to form a longword data.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size Size src dest (Byte)
MOVU.size src, dest Load (short format)
B/W L dsp:5[Rs]*t Rd 2

(Rs = R0 to R7) (Rd = R0 to R7)
Data transfer between registers (zero extension)

B/W L Rs Rd 2
Load

BIW L [Rs] Rd 2
B/W L dsp:8[Rs]** Rd 3
B/W L dsp:16[Rs]* Rd 4
BW L [Ri, Rb] Rd 3
Load with post-increment*2

BIW L [Rs+] Rd 3
Load with pre-decrement*?

BW L [Rs] Rd 3

Note: 1. For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W) as the displacement value (dsp:5, dsp:8, dsp:16). With
dsp:5, values from 0 to 62 (31 x 2) can be specified when the size specifier is .W. With dsp:8, values from 0 to
510 (255 x 2) can be specified when the size specifier is .W. With dsp:16, values from 0 to 131070 (65535 x 2)
can be specified when the size specifier is .W. The value divided by 2 will be stored in the instruction code.

Note: 2. In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and Rd,
the data transferred from the memory location are saved in Rd.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 100 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Description Example

MOVU.W 2[R1], R2
MOVU.W R1, R2

MOVU.B [R1+], R2
MOVU.B [-R1], R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 101 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

M U L Multiply M U L

Syntax Arithmetic/logic instruction

(1) MUL src, dest Instruction Code
(2) MUL src, src2, dest Page: 211
Operation

(1) dest=src* dest;
(2) dest=src* srcz;

Function

(1) Thisinstruction multiplies src and dest and places the result in dest.
» Thecalculation is performed in 32 bits and the lower 32 bits of the result are placed.
« The operation result will be the same whether a singed or unsigned multiply is executed.

(2) Thisinstruction multiplies src and src2 and places the result in dest.
» Thecalculation is performed in 32 bits and the lower 32 bits of the result are placed.

« The operation result will be the same whether a singed or unsigned multiply is executed.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand
Syntax Size src src2 dest Code Size (Byte)
(1) MUL src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB")
3 (memex !=“UB”")
L dsp:8[Rs].memex’ — Rd 3 (memex == “UB")
4 (memex !=“UB")
L dsp:16[Rs].memex’ — Rd 4 (memex == “UB")
5 (memex = “UB”)
(2) MUL src, src2, dest L Rs Rs2 Rd 3

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction code.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 102 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

Description Example

MUL
MUL
MUL
MUL
MUL

#10, R2
R1, R2
[R1], R2
4[R1].W, R2
R1, R2, R3

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 103 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

M U L H I Multiply the upper words M U L H I

Syntax DSP instruction

MULHI src, src2 Instruction Code

Page: 213

Operation

signed short tmp1, tmp2;

signed long long tmp3;

tmp1 = (signed short) (src >> 16);

tmp2 = (signed short) (src2 >> 16);

tmp3 = (signed long) tmp1l * (signed long) tmp2;

ACC = (tmp3 << 16);

Function

e Thisinstruction multiplies the upper 16 bits of src by the upper 16 bits of src2, and stores the result in the
accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of ACC,
and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are cleared
to 0. The upper 16 bits of src and the upper 16 bits of src2 are treated as signed integers.

b31 b16 bl5 b0
| Upper 16 bits ‘ | src
X | Upper 16 bits ‘ | src2
; ; < ° ACC value after executin
Sign extension l ‘ ‘ 0 l the MULHI instruction 9
b63 b48 ba7 b32 b31 b16 bl5 b0
Flag Change

e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax src src2 Code Size (Byte)
MULHI src, src2 Rs Rs2 3
Description Example
MULHI R1, R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 104 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

M U L L O Multiply the lower words M U L L O

Syntax DSP instruction
MULLO src, src2 Instruction Code

Page: 213
Operation

signed short tmp1, tmp2;

signed long long tmp3;

tmp1 = (signed short) src;

tmp2 = (signed short) src2;

tmp3 = (signed long) tmp1l * (signed long) tmp2;
ACC = (tmp3 << 16);

Function

e Thisinstruction multiplies the lower 16 bits of src by the lower 16 bits of src2, and stores the result in the
accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of ACC,
and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are cleared
to 0. The lower 16 bits of src and the lower 16 bits of src2 are treated as signed integers.

b31 b16 b15 b0
| ‘ Lower 16 bits | src

X | ‘ Lower 16 bits | src2
; ; P Py ACC value after executin
Sign extension l ‘ ‘ 0 l the MULLO instruction g
b63 b48 b4a7 b32 b31 b16 b15 b0

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax src src2 Code Size (Byte)
MULLO src, src2 Rs Rs2 3
Description Example
MULLO R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 105 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

MVFACHI

Syntax
MVFACHI dest

Operation
dest = (signed long) (ACC >> 32);

Function

Move data from the upper longword
of the accumulator

MVFACHI

DSP instruction

Instruction Code
Page: 213

¢ Thisinstruction moves the contents of upper 32 bits of the accumulator (ACC) to dest.

b63 b32 b31 b0
| ACC |
N J

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax dest Code Size (Byte)
MVFACHI dest Rd 3
Description Example
MVFACHI R1
RO1US0032EJ0130 Rev.1.30 RENESAS Page 106 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MVFACMI Move data from the middle-order MVFACMI

longword of the accumulator

Syntax DSP instruction

MVFACMI dest Instruction Code

Page: 214

Operation

dest = (signed long) (ACC >> 16);
Function

e Thisinstruction moves the contents of bits 47 to 16 of the accumulator (ACC) to dest.

b63 b48 b47 b32 b31 b16 b15 b0
A(FC L |
J
b31 T bo
dest

Flag Change

e Thisinstruction does not affect the states of flags.
Instruction Format

Operand

Syntax dest Code Size (Byte)
MVFACMI dest Rd 3
Description Example

MVFACMI R1

RO1US0032EJ0130 Rev.1.30 RENESAS Page 107 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MVFC Move data from a control register MVFC

Syntax System manipulation instruction

MVFC src, dest Instruction Code
Page: 214

Operation

dest = src;

Function

e Thisinstruction transfers src to dest.
¢ Whenthe PC is specified as src, thisinstruction transfers its own address to dest.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax Processing Size src” dest Code Size (Byte)
MVFC src, dest L Rx Rd 3

Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW

Description Example
MVFC USP,R1

RO1US0032EJ0130 Rev.1.30 RENESAS Page 108 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MVTACHI Move data to the upper longword MVTACHI

of the accumulator

Syntax DSP instruction

MVTACHI src Instruction Code

Page: 215
Operation

ACC = (ACC & 00000000FFFFFFFFh) | ((signed long long src << 32);

Function
e Thisinstruction moves the contents of src to the upper 32 bits (bits 63 to 32) of the accumulator (ACC).

b31 b0
I sc |
s N
b63 b32 b31 b0
| ACC
Flag Change

e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax src Code Size (Byte)
MVTACHI src Rs 3
Description Example
MVTACHI R1
RO1US0032EJ0130 Rev.1.30 RENESAS Page 109 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MVTACL O Move data to the lower longword MVTACL O

of the accumulator

Syntax DSP instruction
MVTACLO src Instruction Code
Page: 215

Operation

ACC = (ACC & FFFFFFFF00000000h) | (unsigned long long) src;

Function

e Thisinstruction moves the contents of src to the lower 32 bits (bits 31 to 0) of the accumulator (ACC).

b31 bo
I sre |
s N
b63 b32 b31 b0
| ACC

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax src Code Size (Byte)
MVTACLO src Rs 3
Description Example
MVTACLO R1
RO1USO0032EJ0130 Rev.1.30 RENESAS Page 110 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MVTC Move data to a control register MVTC

Syntax System manipulation instruction

MVTC src, dest Instruction Code
Page: 216

Operation

dest = src;

Function

e Thisinstruction transfers src to dest.
e Inuser mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and | bitsin the PSW
isignored. In supervisor mode, writing to the PM bit in the PSW isignored.

Flag Change

Flag Change Condition
C *

Z *

S *

O *

Note: * The flag changes only when dest is the PSW.

Instruction Format

Operand
Syntax Processing Size src dest” Code Size (Byte)
MVTC src, dest L #SIMM:8 Rx 4
L #SIMM:16 Rx 5
L #SIMM:24 Rx 6
L #IMM:32 Rx 7
L Rs Rx 3
Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Note that the PC cannot be specified as dest.
Description Example
MVTC #O0FFFFFOOOh, INTB
MVTC R1, USP
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 111 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MVTIPL Move data to IPL MVTIPL

Syntax System manipulation instruction
MVTIPL src Instruction Code
Page: 217
Operation
IPL = src;
Function

e Thisinstruction transfers src to the IPL[3:0] bitsin the PSW.

e Thisinstruction isa privileged instruction. Attempting to execute this instruction in user mode generates a
privileged instruction exception.

e Thevalueof srcisan unsigned integer in therange 0 < src < 15.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax src Code Size (Byte)
MVTIPL src #IMM:4 3

Description Example
MVTIPL #2

Note: Products of the RX610 Group do not support the MVTIPL instruction. Use the MVTC instruction for products of the
RC610 Group.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 112 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

N EG Negate (two’s complement) N EG

Syntax Arithmetic/logic instruction

(1) NEG dest Instruction Code
(2) NEG src, dest Page: 218
Operation

(1) dest=-dest;
(2) dest=-src;

Function

(1) Thisinstruction arithmetically inverts (takes the two's complement of) dest and places the result in dest.
(2) Thisinstruction arithmetically inverts (takes the two's complement of) src and places the result in dest.

Flag Change

Flag Change Condition

C v The flag is set if dest is O after the operation; otherwise it is cleared.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] v (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Instruction Format

Operand
Syntax Processing Size src dest Code Size (Byte)
(1) NEG dest L — Rd 2
(2) NEG src, dest L Rs Rd 3
Description Example
NEG R1
NEG R1,R2
RO1USO0032EJ0130 Rev.1.30 RENESAS Page 113 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

NOP

Syntax
NOP

Operation
/* No operation */

Function

No operation

NOP

Arithmetic/logic instruction

Instruction Code
Page: 218

e Thisinstruction executes no process. The operation will be continued from the next instruction.

Flag Change

e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)

NOP 1

Description Example
NOP

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 114 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

N OT Logical NOT (one’s complement) N OT

Syntax Arithmetic/logic instruction

(1) NOT dest Instruction Code
(2) NOT src, dest Page: 219
Operation

(1) dest="dest;
(2) dest="src;

Function

(1) Thisinstruction logically inverts dest and places the result in dest.
(2) Thisinstruction logically inverts src and places the result in dest.

Flag Change

Flag Change Condition

C J—

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Instruction Format

Operand
Syntax Processing Size src dest Code Size (Byte)
(1) NOT dest L — Rd 2
(2) NOT src, dest L Rs Rd 3
Description Example
NOT R1
NOT R1,R2
RO1USO0032EJ0130 Rev.1.30 RENESAS Page 115 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

O R Logical OR O R

Syntax Arithmetic/logic instruction

(1) OR src, dest Instruction Code
(2) OR src, src2, dest Page: 220
Operation

(1) dest=dest| src;
(2) dest=src2 | src;

Function

(1) Thisinstruction takes the logical OR of dest and src and places the result in dest.
(2) Thisinstruction takesthe logical OR of src2 and src and places the result in dest.

Flag Change

Flag Change Condition

C J—

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Instruction Format

Processing Operand
Syntax Size src src2 dest Code Size (Byte)
(1) OR src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”")
3 (memex = “UB”)
L dsp:8[Rs].memex" — Rd 3 (memex == “UB")
4 (memex !=“UB")
L dsp:lG[Rs].memex* — Rd 4 (memex == “UB")
5 (memex = “UB")
(2) OR src, src2, dest L Rs Rs2 Rd 3

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

OR #8,R1
OR R1,R2
OR [R1],R2

OR 8[R1].L,R2
OR R1,R2 R3

RO1US0032EJ0130 Rev.1.30 RENESAS Page 116 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

PO P Pop register from stack

Syntax
POP dest

Operation
tmp = *SP;
SP=SP +4;
dest = tmp;

Function
* Thisinstruction restores data from the stack and transfersit to dest.

¢ Thestack pointer in useis specified by the U bit in the PSW.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

POP

Data transfer instruction

Instruction Code
Page: 221

Operand
Syntax Processing Size dest Code Size (Byte)
POP dest L Rd 2
Description Example
POP R1
RO1USO0032EJ0130 Rev.1.30 RENESAS Page 117 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

P O P C Pop a control register from stack P O P C

Syntax Data transfer instruction

POPC dest Instruction Code
Page: 222

Operation
tmp = *SP;
SP=SP +4;
dest = tmp;

Function

e Thisinstruction restores data from the stack and transfers it to the control register specified as dest.

¢ Thestack pointer in useis specified by the U bit in the PSW.

¢ Inuser mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and | bitsin the PSW
isignored. In supervisor mode, writing to the PM bit in the PSW isignored.

Flag Change

Flag Change Condition
C *

Z *

S *

O *

Note: * The flag changes only when dest is the PSW.

Instruction Format

Operand
Syntax Processing Size dest” Code Size (Byte)
POPC dest L Rx 2

Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Note that the PC cannot be specified as dest

Description Example
POPC PSW

RO1US0032EJ0130 Rev.1.30 RENESAS Page 118 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

P O P M Pop multiple registers from stack PO P M

Syntax Data transfer instruction
POPM dest-dest2 Instruction Code

Page: 222
Operation

signed char i;

for (i =register_num(dest); i <= register_num(dest2); i++) {
tmp = *SP;
SP =SP + 4;
register(i) = tmp;

}

Function

e Thisinstruction restores values from the stack to the block of registers in the range specified by dest and dest2.

e Therangeis specified by first and last register numbers. Note that the condition (first register number < |ast
register number) must be satisfied.

¢ RO cannot be specified.

e Thestack pointer in useis specified by the U bit in the PSW.

¢ Registersare restored from the stack in the following order:

|R15|R14|R13|R12| |R2|R1|

i
«

Restoration is in sequence from R1.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand

Syntax Size dest dest2 Code Size (Byte)

POPM dest-dest2 L Rd Rd2 2
(Rd = R1 to R14) (Rd2 = R2 to R15)

Description Example

POPM R1-R3

POPM R4-R8

RO1USO0032EJ0130 Rev.1.30 RENESAS Page 119 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

P U S H Push register on stack P U S H

Syntax Data transfer instruction
PUSH.size src Instruction Code
Page: 223
Operation
tmp = src;
SP=SP-4;"
*SP =tmp;

Note: * SP is decremented by 4 even when the size specifier (.size) is .B or .W. The upper 24 and 16 bits in the
respective cases (.B and .W) are undefined.

Function

e Thisinstruction pushes src onto the stack.

e Whensrcisinregister and the size specifier for the PUSH instructionis.B or .W, the byte or word of datafrom the
LSB in the register are saved respectively.

e Thetransfer to the stack is processed in longwords. When the size specifier is .B or .W, the upper 24 or 16 bits are
undefined respectively.

e Thestack pointer in useis specified by the U bit in the PSW.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax Size Processing Size src Code Size (Byte)
PUSH.size src B/WI/L L Rs 2
B/WI/L L [Rs] 2
B/WIL L dsp:8[Rs]" 3
B/WIL L dsp:16[Rs]’ 4

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the displacement value
(dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size specifier is .W, or
values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values from 0 to 131070 (65535 x 2) can be
specified when the size specifier is .W, or values from 0 to 262140 (65535 x 4) when the specifier is .L. The value
divided by 2 or 4 will be stored in the instruction code.

Description Example

PUSH.B R1
PUSH.L [R1]
RO1US0032EJ0130 Rev.1.30 RENESAS Page 120 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

P U S H C Push a control register on stack P U S H C

Syntax Data transfer instruction

PUSHC src Instruction Code
Page: 224

Operation
tmp = src;
SP=SP-4;
*SP =tmp;

Function

e Thisinstruction pushes the control register specified by src onto the stack.
¢ Thestack pointer in useis specified by the U bit in the PSW.
* Whenthe PC is specified as src, thisinstruction pushes its own address onto the stack.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax Processing Size src” Code Size (Byte)
PUSHC src L Rx 2

Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW

Description Example
PUSHC PSW

RO1US0032EJ0130 Rev.1.30 RENESAS Page 121 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

P U S H M Push multiple registers on stack P U S H M

Syntax Data transfer instruction
PUSHM src-src2 Instruction Code
Page: 224
Operation
signed char i;

for (i =register_num(src2); i >= register_num(src); i--) {
tmp = register(i);
SP =SP - 4;
*SP =tmp;

}

Function

e Thisinstruction saves values to the stack from the block of registersin the range specified by src and src2.

e Therangeis specified by first and last register numbers. Note that the condition (first register number < |ast
register number) must be satisfied.

¢ RO cannot be specified.

e Thestack pointer in useis specified by the U bit in the PSW.

¢ Registersare saved on the stack in the following order:

|R15|R14|R13|R12| |R2|R1|

Saving is in sequence from R15.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax Processing Size src src2 Code Size (Byte)
PUSHM src-src2 L Rs Rs2 2

(Rs=R1toR14) (Rs2=R2toR15)

Description Example

PUSHM R1-R3
PUSHM RA4-R8

RO1US0032EJ0130 Rev.1.30 RENESAS Page 122 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

RACW

Syntax
RACW src

Operation
signed long long tmp;
tmp = (signed long long) ACC << src;
tmp = tmp + 0000000080000000h;

Round the accumulator word

if (tmp > (signed long long) 00007FFFO0000000h)

ACC = 00007FFF00000000h;

else if (tmp < (signed long long) FFFF800000000000h)

ACC = FFFF800000000000h;
else
ACC =tmp & FFFFFFFFO0000000h;

Function

RACW

DSP instruction

Instruction Code
Page: 225

* Thisinstruction rounds the value of the accumulator into aword and stores the result in the accumul ator.

b63 b48 ba7 b32 b31 b16

b15 b0

| ACC

RACW instruction

b0

| Sign ‘

Data 0 |

« The RACW instruction is executed according to

Processing 1.

the following procedures.

The value of the accumulator is shifted to the Ieft by one or two bits as specified by src.

b63 b48 b47 b32 b31 b16

b15 b0

Shifted to the left by one or two bits

b63 b48 ba7 b32 b31 b16

b15

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 123 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Processing 2:
The value of the accumulator changes according to the value of 64 bits after the contents have been shifted to the
left by one or two bits.

b63 b48 b47 b32 b31 b16 bl5 b0

A I
b63 b0
— 0000 7FFF 0000 0000
Positive
values :
0000 7FFE 8000 0000 h | b63 b32 b31 b0
0000 7FFE 7FFF FFFF h | |
: No carrying when bit 31 is 0
¢ » Carrying when bit 31 is 1
0000 0000 0:000 0000 h Bits 31 to O are cleared to 0
: b63 b32 b3l b0
FFFF 8000 8000 0000 h | 0000 0000
FFFF 8000 7FFF FFFF h |
Negative
values : b63 bo
: — FFFF 8000 0000 0000
v — 1
Flag Change

e Thisinstruction does not affect the states of flags.

Instruction Format

Operand

Syntax src Code Size (Byte)

RACW src #IMM:1 3

(IMM:1 =1, 2)

Description Example

RACW #1

RACW #2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 124 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

R EVL Reverse endian within longword

Syntax
REVL src, dest

Operation
Rd = { Rs[7:0], Rs[15:8], Rs[23:16], Rs[31:24] }

Function

REVL

Data transfer instruction

Instruction Code
Page: 225

e Thisinstruction converts the endian byte order within a 32-bit datum, which is specified by src, and saves the

result in dest.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax src dest Code Size (Byte)
REVL src, dest Rs Rd 3
Description Example
REVL R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 125 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

R EVW Reverse endian within word

Syntax
REVW src, dest

Operation
Rd = { Rs[23:16], Rs[31:24], Rs[7:0], Rs[15:8] }

Function

REVW

Data transfer instruction

Instruction Code
Page: 225

e Thisinstruction converts the endian byte order within the higher- and lower 16-bit data, which are specified by src,

and saves the result in dest.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Operand
Syntax src dest Code Size (Byte)
REVW src, dest Rs Rd 3
Description Example
REVW R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 126 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

R M PA Repeat multiply-accumulate R M PA

Syntax Arithmetic/logic instruction
RMPA size Instruction Code
Page: 226

Operation

while (R31=0){
R6:R5:R4 = R6:R5:R4 + *R1 * *R2;

R1=R1+n;
R2=R2 +n;
R3=R3-1;

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. When the size specifier (.size) is .B, .W, or .L, nis 1, 2, or 4, respectively.

Function

e Thisinstruction performs a multiply-and-accumul ate operation with the multiplicand addresses specified by R1,
the multiplier addresses specified by R2, and the number of multiply-and-accumulate operations specified by R3.
The operands and result are handled as signed values, and the result is placed in R6:R5:R4 as an 80-bit datum.
Note that the upper 16 bits of R6 are set to the value obtained by sign-extending the lower 16 bits of R6.

e Thegreatest value that is specifiable in R3 is 00010000h.

b31 b6 b15 b0 b31 b0 b31 b0
Sign-extended [+———1® | | | | R6:R5:R4
R6 R5 R4

¢ Thedatain R1 and R2 are undefined when instruction execution is completed.

« Specify theinitial valuein R6:R5:R4 before executing the instruction. Furthermore, be sure to set R6 to
FFFFFFFFh when R5:R4 is negative or to 00000000h if R5:R4 is positive.

¢ Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, R4, R5, R6, and PSW when an interrupt is generated and
restore them when execution is returned from the interrupt routine.

« Inexecution of theinstruction, the data may be prefetched from the multiplicand addresses specified by R1 and the
multiplier addresses specified by R2, with R3 as the upper limit. For details of the data size to be prefetched, refer
to the user’s manual: hardware of each product.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 127 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Flag Change

Flag Change Condition

C J—

Z —

S v The flag is set if the MSB of R6 is 1; otherwise it is cleared.

o v The flag is set if the R6:R5:R4 data is greater than 2 °> —1 or smaller than —2 * ; otherwise it is

cleared.

Instruction Format

Processing
Syntax Size Size Code Size (Byte)
RMPA size B/WI/L size 2
Description Example
RMPA.W
RO1US0032EJ0130 Rev.1.30 RENESAS Page 128 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

R O L C Rotate left with carry R O L C

Syntax Arithmetic/logic instruction

ROLC dest Instruction Code
Page: 226
Operation
dest <<=1;
if (C==0)
dest &= FFFFFFFEh;
else
dest |= 00000001h;

Function
e Thisinstruction treats dest and the C flag as a unit, rotating the whole one bit to the left.

L{MS.B dest LSB

Flag Change

Flag Change Condition

C 4 The flag is set if the shifted-out bit is 1; otherwise it is cleared.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Instruction Format

Processing Operand
Syntax Size dest Code Size (Byte)
ROLC dest L Rd 2
Description Example
ROLC R1
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 129 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

R O R C Rotate right with carry R O R C

Syntax Arithmetic/logic instruction

RORC dest Instruction Code
Page: 227
Operation
dest >>=1;
if (C==0)
dest &= 7FFFFFFFh;
else
dest |= 80000000h;

Function
e Thisinstruction treats dest and the C flag as a unit, rotating the whole one bit to the right.

L»{MSB dest LSB

Flag Change

Flag Change Condition

C 4 The flag is set if the shifted-out bit is 1; otherwise it is cleared.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Instruction Format

Processing Operand
Syntax Size dest Code Size (Byte)
RORC dest L Rd 2
Description Example
RORC R1
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 130 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

ROTL Rotate left ROTL

Syntax Arithmetic/logic instruction
ROTL src, dest Instruction Code

Page: 227
Operation

unsigned long tmp0, tmp1;

tmp0 = src & 31;

tmp1 = dest << tmp0;

dest = ((unsigned long) dest >> (32 - tmp0)) | tmp1;

Function

Thisinstruction rotates dest |eftward by the number of bit positions specified by src and saves the value in dest.
Bits overflowing from the MSB are transferred to the LSB and to the C flag.

srcisan unsigned integer in the range of 0 < src < 31.

When srcisin register, only five bitsin the LSB are valid.

4 MSB dest LSB |<J

Flag Change

Flag Change Condition

C v After the operation, this flag will have the same LSB value as dest. In addition, when src is 0O,
this flag will have the same LSB value as dest.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S 4 The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

O —

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ROTL src, dest L #IMM:5 Rd 3
L Rs Rd 3
Description Example
ROTL #1,R1
ROTL R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 131 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

ROTR Rotate right ROTR

Syntax Arithmetic/logic instruction
ROTR src, dest Instruction Code

Page: 228
Operation

unsigned long tmp0, tmp1;

tmp0 = src & 31;

tmpl = (unsigned long) dest >> tmp0;
dest = (dest << (32 -tmp0)) | tmp1;

Function

Thisinstruction rotates dest rightward by the number of bit positions specified by src and saves the value in dest.
Bits overflowing from the LSB are transferred to the MSB and to the C flag.

srcisan unsigned integer in the range of 0 < src < 31.

When srcisin register, only five bitsin the LSB are valid.

L| MSB dest LSB F

Flag Change

Flag Change Condition

C v After the operation, this flag will have the same MSB value as dest. In addition, when src is 0,
this flag will have the same MSB value as dest.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

O —

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ROTR src, dest L #IMM:5 Rd 3
L Rs Rd 3
Description Example
ROTR #1,R1
ROTR R1,R2
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 132 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

ROUND

Syntax

ROUND src, dest

Operation
dest = ('signed long) src;

Function

Round floating-point to signed integer RO U N D

Floating-point arithmetic
instruction

Instruction Code
Page: 229

This instruction converts the single-precision floating-point number stored in src into a signed longword (32-hit)
integer and places the result in dest.
Rounding of the result isin accordance with the setting of the RM[1:0] bitsin the FPSW.

Bits RM[1:0] Rounding Mode
00b Round to the nearest value
01lb Round towards 0
10b Round towards +wo
11b Round towards —o
Flag Change
Flag Change Condition
C —
z v The flag is set if the result of the operation is O; otherwise it is cleared.
S v The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O J—
cVv v The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO v The value of the flag is 0.
Ccz 4 The value of the flag is 0.
CcuU v The value of the flag is 0.
CX v The flag is set if an inexact exception is generated; otherwise it is cleared.
CE v The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV v The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO —
Fz —
FU —
FX v The flag is set if an inexact exception is generated; otherwise it does not change.
Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.
RO1US0032EJ0130 Rev.1.30 RENESAS Page 133 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ROUND src, dest L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

Sources of Floating-Point Exceptions

Unimplemented processing
Invalid operation
I nexact

Description Example

ROUND R1, R2
ROUND [R1], R2

Supplementary Description

e Thefollowing tables show the correspondences between the src value and the result of operations when the value
of the DN bit in the FPSW is 0 or 1.

When DN =0
src Value (exponent is shown without bias) dest Exception
src=0 +00 When an invalid operation exception is Invalid operation
generated with the EV = 1: No change exception
31 < Exponent < 127 Other cases: 7FFFFFFFh
—126 < Exponent < 30 00000000h to 7FFFFF80h None™®

+Denormalized number No change Unimplemented
processing exception
+0 00000000h None
src<0 -0
—Denormalized number No change Unimplemented

processing exception

—126 < Exponent < 30

00000000h to 80000080h

None™

31 < Exponent < 127

When an invalid operation exception is
generated with the EV = 1: No change

Invalid operation
. *
exception”?

—0 Other cases: 80000000h
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV = 1. No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CFO00000h.

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 134 of 271

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

When DN =1
src Value (exponent is shown without bias) dest Exception
srcz0 +00 When an invalid operation exception is Invalid operation
generated with the EV = 1: No change exception
31 < Exponent < 127 Other cases: 7FFFFFFFh
—126 < Exponent < 30 00000000h to 7FFFFF80h None™®
+0, +Denormalized number 00000000h None
src<0 —0, —Denormalized number
—126 < Exponent < 30 00000000h to 80000080h None't

31 < Exponent £ 127

When an invalid operation exception is
generated with the EV = 1. No change

Other cases: 80000000h

Invalid operation
o
exception”?

—0
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV = 1: No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CFO00000h.

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 135 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

RT E Return from exception RT E

Syntax System manipulation instruction

RTE Instruction Code
Page: 229

Operation
PC =*SP;
SP =SP + 4,
tmp =*SP;
SP=SP+4;
PSW =tmp;

Function

e Thisinstruction returns execution from the exception handling routine by restoring the PC and PSW contents that
were saved when the exception was accepted.

e Thisinstruction isa privileged instruction. Attempting to execute thisinstruction in user mode generates a
privileged instruction exception.

e [f returning is accompanied by atransition to user mode, the U hit in the PSW becomes 1.

Flag Change

Flag Change Condition
C *

Z *

S *

O *

Note: * The flags become the corresponding values on the stack.

Instruction Format

Syntax Code Size (Byte)
RTE 2

Description Example
RTE

RO1US0032EJ0130 Rev.1.30 RENESAS Page 136 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

RT F I Return from fast interrupt RT F I

Syntax System manipulation instruction
RTFI Instruction Code
Page: 230
Operation
PSW = BPSW;
PC =BPC;
Function

e Thisinstruction returns execution from the fast-interrupt processing routine by restoring the PC and PSW contents
that were saved in the BPC and BPSW when the fast interrupt request was accepted.

e Thisinstruction isa privileged instruction. Attempting to execute thisinstruction in user mode generates a
privileged instruction exception.

e [f returning is accompanied by atransition to user mode, the U hit in the PSW becomes 1.

¢ Thedatain the BPC and BPSW are undefined when instruction execution is completed.

Flag Change

Flag Change Condition
C *

Z *

S *

O *

Note: * The flags become the corresponding values from the BPSW.

Instruction Format

Syntax Code Size (Byte)
RTFI 2

Description Example
RTFI

RO1US0032EJ0130 Rev.1.30 RENESAS Page 137 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

RTS Return from subroutine RTS

Syntax Branch instruction
RTS Instruction Code
Page: 230
Operation
PC =*SP;
SP =SP + 4,
Function

¢ Thisinstruction returns the flow of execution from a subroutine.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)
RTS 1

Description Example
RTS

RO1US0032EJ0130 Rev.1.30 RENESAS Page 138 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

RTSD RTSD

Syntax Branch instruction

(1) RTSD src Instruction Code
(2) RTSD src, dest-dest2 Page: 230

Return from subroutine after deallocating
stack frame

Operation

(1) SP=SP +src;
PC =*SP;
SP =SP +4;

(2) signed chari;
SP = SP + (src - (register_num(dest2) - register_num(dest) +1) * 4);
for (i = register_num(dest); i <= register_num(dest2); i++) {
tmp =*SP;
SP =SP + 4;
register(i) = tmp;
}
PC =*SP;
SP =SP +4;

Function

(1) Thisinstruction returns the flow of execution from a subroutine after deallocating the stack frame for the
subroutine.

» Specify src to be the size of the stack frame (auto conversion area).

Before After
executing the executing the

instruction instruction
Number of bytes specified Auto o
by src conversion Direction of

area address
Return incrementing

addre_ss Sp > .

Function v Function

argument argument

RO1US0032EJ0130 Rev.1.30 -IENESAS Page 139 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

(2) Thisinstruction returns the flow of execution from a subroutine after deall ocating the stack frame for the
subroutine and also restoring register values from the stack.
» Specify src to be thetotal size of the stack frame (auto conversion area and register restore area).

SP

Number of bytes specified
by src

Before
executing the
instruction

<

Auto
conversion
area

Register
restore area

Return
address

Function
argument

Direction of
address
incrementing

SP

After
executing the
instruction

A 4

Function
argument

» Thisinstruction restores values for the block of registersin the range specified by dest and dest2 from the stack.
* Therangeis specified by first and last register numbers. Note that the condition (first register number < last
register number) must be satisfied.

* RO cannot be specified.

« The stack pointer in useis specified by the U hit in the PSW.
* Registers arerestored from the stack in the following order:

| R15 | R14 | R13 | R12 |

<
<«

Flag Change

e Thisinstruction does not affect the states of flags.

Instruction Format

Restoration is in sequence from R1.

Operand Code Size
Syntax dest dest2 (Byte)
(1) RTSD src #UIMM:8" — —
(2) RTSD sic, dest-dest2 #UIMM:8" Rd(Rd=R1toR15) Rd2(Rd2=R1toR15) 3

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the immediate value. With UIMM:8, values from 0 to 1020 (255 x 4) can be specified. The
value divided by 4 will be stored in the instruction code.

Description Example

RTSD #4
RTSD #16, R5-R7

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 140 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S AT Saturate S AT

Syntax Arithmetic/logic instruction
SAT dest Instruction Code

Page: 231
Operation

if(0==1&&S==1)
dest = 7FFFFFFFh;

elseif(0O==1&&S==0)
dest = 80000000h;

Function

e Thisinstruction performs a 32-bit signed saturation operation.

e WhentheOflagis1andthe Sflagis 1, theresult of the operation is 7FFFFFFFh and it is placed in dest.
When the O flag is 1 and the Sflag is O, the result of the operation is 80000000h and it is placed in dest. In other
cases, the dest value does not change.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand
Syntax Size dest Code Size (Byte)
SAT dest L Rd 2
Description Example
SAT R1
RO1US0032EJ0130 Rev.1.30 RENESAS Page 141 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

SAT R Saturate for RMPA SAT R

Syntax Arithmetic/logic instruction
SATR Instruction Code
Page: 231

Operation

if(0==1&&S==0)

R6:R5:R4 = 000000007FFFFFFFFFFFFFFFh;
elseif(0O==1&&S==1)

R6:R5:R4 = FFFFFFFF8000000000000000h;

Function

e Thisinstruction performs a 64-bit signed saturation operation.

e WhentheOflagis1andthe SflagisO, theresult of the operation is 000000007FFFFFFFFFFFFFFFh and it is
placed in R6:R5:R4. When the O flag is 1 and the Sflag is 1, the result of the operationis
FFFFFFFF8000000000000000h and it is place in R6:R5:R4. In other cases, the R6:R5:R4 value does not change.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)
SATR 2

Description Example
SATR

RO1US0032EJ0130 Rev.1.30 RENESAS Page 142 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S B B Subtract with borrow S B B

Syntax Arithmetic/logic instruction
SBB src, dest Instruction Code

Page: 232
Operation

dest = dest - src - "C;

Function

e Thisinstruction subtracts src and the inverse of the C flag (borrow) from dest and places the result in dest.

Flag Change

Flag Change Condition

C v The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.
z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] 4 The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
SBB src, dest L Rs Rd 3

L [Rs].L Rd 4

L dsp:8[Rs].L" Rd 5

L dsp:16[Rs].L" Rd 6

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4) can be
specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will be
stored in the instruction code.

Description Example

SBB R1,R2
SBB [R1], R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 143 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

SCCn d Store condition SCCn d

Syntax Data transfer instruction

SCCnd.size dest Instruction Code
Page: 233

Operation
if (Cnd)
dest=1;
else
dest=0;

Function

e Thisinstruction moves the truth-value of the condition specified by Cnd to dest; that is, 1 or O is stored to dest if
the condition istrue or false, respectively.
e Thefollowing table lists the types of SCCnd.

SCCnd Condition Expression SCCnd Condition Expression
SCGEU, C== Equal to or greater than/ < SCLTU, C== Less than/ >
SCC Cflagis 1 SCNC Cflagis O
SCEQ, Z== Equal to/ = SCNE, Z== Not equal to/ #
SCz Zflagis 1 SCNz Zflagis O
SCGTU (C &7Z) == Greater than < SCLEU (C &7Z) == Equal to or less than >
1 0
SCPZ S== Positive or zero 0< SCN S=1 Negative 0>
SCGE (S"0)== Equalto or greater than < SCLE ((8"™0)|2) Equal to or less than as =
0 as signed integer == signed integer
SCGT ((S"0O)|Z) Greater than as signed < SCLT (S™0) == Less than as signed >
== integer 1 integer
SCO O == Oflagis 1 SCNO O== Oflagis O
Flag Change
e Thisinstruction does not affect the states of flags.
Instruction Format
Operand
Syntax Size Processing Size dest Code Size (Byte)
SCCnd.size dest L L Rd 3
B/WI/L size [Rd] 3
B/W/L size dsp:8[Rd]" 4
B/WIL size dsp:16[Rd]" 5

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the displacement value
(dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size specifier is .W, or
values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values from 0 to 131070 (65535 x 2) can be
specified when the size specifier is .W, or values from 0 to 262140 (65535 x 4) when the specifier is .L. The value
divided by 2 or 4 will be stored in the instruction code.

Description Example

Scc.L R2
SCNE.W [R2]
RO1US0032EJ0130 Rev.1.30 RENESAS Page 144 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

SC M P U String compare until not equal SC M P U

Syntax String manipulation instruction
SCMPU Instruction Code
Page: 233

Operation

unsigned char *R2, *R1, tmp0, tmp1;
unsigned long R3;
while (R31=0) {

tmp0 = *R1++;

tmpl = *R2++;

R3--;

if (tmpO !=tmp1l || tmp0 =="0") {

break;

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

e Thisinstruction compares strings in successively higher addresses specified by R1, which indicates the source
address for comparison, and R2, which indicates the destination address for comparison, until the values do not
match or the null character “\0” (= 00h) is detected, with the number of bytes specified by R3 as the upper limit.

¢ Inexecution of theinstruction, the datamay be prefetched from the source address for comparison specified by R1
and the destination address for comparison specified by R2, with R3 as the upper limit. For details of the datasize
to be prefetched, refer to the user’s manual: hardware of each product.

¢ Thecontents of R1 and R2 are undefined upon completion of the instruction.

e Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

Flag Change Condition

C v This flag is set if the operation of (*R1 — *R2) as unsigned integers produces a value greater
than or equal to 0; otherwise it is cleared.

z v This flag is set if the two strings have matched; otherwise it is cleared.

S J—

(@) N

Instruction Format

Syntax Processing Size Code Size (Byte)
SCMPU B 2

Description Example
SCMPU

RO1US0032EJ0130 Rev.1.30 RENESAS Page 145 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

SETPSW

Syntax
SETPSW dest

Operation
dest=1;

Function

e Thisinstruction setsthe O, S, Z, or C flag or the U or | bit specified by dest to 1.

Set a flag or bit in the PSW

SETPSW

System manipulation instruction

Instruction Code
Page: 234

¢ Inuser mode, writing to the U or | bit in the PSW will be ignored. In supervisor mode, all flags and bits can be

written to.
Flag Change
Flag Change Condition
C *
Z *
S *
O *

Note: * The specified flag is set to 1.

Instruction Format

Operand Code Size
Syntax dest (Byte)
SETPSW dest flag 2
Description Example
SETPSW C
SETPSW Z
RO1US0032EJ0130 Rev.1.30 RENESAS Page 146 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S HA R Arithmetic shift right S HA R

Syntax Arithmetic/logic instruction

(1) SHAR src, dest Instruction Code
(2) SHAR src, src2, dest Page: 235
Operation

(1) dest=(signedlong) dest>>(src &31);
(2) dest=(signedlong) src2>>(src&31);

Function

(1) Thisinstruction arithmetically shifts dest to the right by the number of bit positions specified by src and saves the
valuein dest.
« Bitsoverflowing from the LSB are transferred to the C flag.
e srcisanunsigned in therange of 0 < src < 31.
* When srcisinregister, only five bitsin the LSB are valid.

(2) After thisinstruction transfers src2 to dest, it arithmetically shifts dest to the right by the number of bit positions
specified by src and saves the valuein dest.
« Bitsoverflowing from the LSB are transferred to the C flag.
e srcisan unsigned integer in the range of 0 < src < 31.

m/ISB dest LSB

Flag Change

Flag Change Condition

C v The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag
is also cleared.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S 4 The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] 4 The flag is cleared to 0.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) SHAR src, dest L #IMM:5 — Rd 2
L Rs — Rd 3
(2) SHAR src, src2, dest L #IMM:5 Rs Rd 3
Description Example
SHAR #3,R2
SHAR R1,R2
SHAR #3,R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 147 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S H L L Logical shift left S H L L

Syntax Arithmetic/logic instruction

(1) SHLL src, dest Instruction Code
(2) SHLL src, src2, dest Page: 236
Operation

(1) dest=dest<<(src&31);
(2) dest=src2<<(src&31);

Function

(1) Thisinstruction arithmetically shifts dest to the left by the number of bit positions specified by src and saves the
valuein dest.
« Bitsoverflowing from the MSB are transferred to the C flag.
« When srcisin register, only five bitsin the LSB are valid.
¢ srcisan unsigned integer in the range of 0 < src < 31.

(2) After thisinstruction transfers src2 to dest, it arithmetically shifts dest to the |eft by the number of bit positions
specified by src and saves the valuein dest.
 Bitsoverflowing from the MSB are transferred to the C flag.
* srcisan unsigned integer in the range of 0 < src < 31.

44 MSB dest LSBle— 0

Flag Change

Flag Change Condition

C v The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag
is also cleared.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] 4 This bit is cleared to 0 when the MSB of the result of the operation is equal to all bit values that

have been shifted out (i.e. the shift operation has not changed the sign); otherwise it is set to 1.
However, when src is 0, this flag is also cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) SHLL src, dest L #IMM:5 — Rd 2
L Rs — Rd 3
(2) SHLL src, src2, dest L #IMM:5 Rs Rd 3
Description Example
SHLL #3,R2
SHLL R1,R2
SHLL #3,R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 148 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S H L R Logical shift right S H L R

Syntax Arithmetic/logic instruction

(1) SHLR src, dest Instruction Code
(2) SHLR src, src2, dest Page: 237
Operation

(1) dest=(unsigned long) dest>>(src & 31);
(2) dest = (unsigned long) src2 >>(src & 31);

Function

(1) Thisinstruction logically shifts dest to the right by the number of bit positions specified by src and savesthe value
in dest.
« Bitsoverflowing from the LSB are transferred to the C flag.
e srcisan unsigned integer in the range of 0 < src < 31.
* When srcisinregister, only five bitsin the LSB are valid.

(2) After thisinstruction transfers src2 to dest, it logically shifts dest to the right by the number of bit positions
specified by src and saves the valuein dest.
« Bitsoverflowing from the LSB are transferred to the C flag.
e srcisan unsigned integer in the range of 0 < src < 31.

0 —»MsB dest LSB

Flag Change

Flag Change Condition

C v The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag
is also cleared.

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

O —

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) SHLR src, dest L #IMM:5 — Rd 2
L Rs — Rd 3
(2) SHLR src, src2, dest L #IMM:5 Rs Rd 3
Description Example
SHLR #3,R2
SHLR R1,R2
SHLR #3,R1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 149 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S M OV B String move backward S M OV B

Syntax String manipulation instruction
SMOVB Instruction Code
Page: 238

Operation

unsigned char *R1, *R2;
unsigned long R3;
while (R31=0) {
*R1-- = *R2--;
R3=R3-1,;
}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

e Thisinstruction transfers a string consisting of the number of bytes specified by R3 from the source address
specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of decreasing
addresses.

¢ Inexecution of the instruction, data may be prefetched from the source address specified by R2, with R3 asthe
upper limit. For details of the data size to be prefetched, refer to the user’ s manual: hardware of each product.

« Thedestination address specified by R1 should not be included in the range of datato be prefetched, which starts
from the source address specified by R2.

¢ Oncompletion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

« Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Processing Size Code Size (Byte)
SMOVB B 2

Description Example
SMOVB

RO1US0032EJ0130 Rev.1.30 RENESAS Page 150 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S M OVF String move forward S M OVF

Syntax String manipulation instruction
SMOVF Instruction Code
Page: 238

Operation

unsigned char *R1, *R2;
unsigned long R3;
while (R31=0) {
*R1++ = *R2++;
R3=R3-1;
}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

e Thisinstruction transfers a string consisting of the number of bytes specified by R3 from the source address
specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of increasing
addresses.

¢ Inexecution of the instruction, data may be prefetched from the source address specified by R2, with R3 asthe
upper limit. For details of the data size to be prefetched, refer to the user’ s manual: hardware of each product.

« Thedestination address specified by R1 should not be included in the range of datato be prefetched, which starts
from the source address specified by R2.

¢ Oncompletion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

« Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Processing Size Code Size (Byte)
SMOVF B 2

Description Example
SMOVF

RO1US0032EJ0130 Rev.1.30 RENESAS Page 151 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S M OVU String move until zero detected S M OVU

Syntax String manipulation instruction
SMOVU Instruction Code
Page: 238

Operation

unsigned char *R1, *R2, tmp;
unsigned long R3;
while (R31=0) {

tmp = *R2++;

*R1++ = tmp;

R3--;

if (tmp=="0") {

break;

}

}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

e Thisinstruction transfers strings successively from the source address specified by R2 to the higher destination
addresses specified by R1 until the null character “\0” (= 00h) is detected, with the number of bytes specified by
R3 as the upper limit. String transfer is completed after the null character has been transferred.

¢ Inexecution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the user’s manual: hardware of each product.

* Thedestination address specified by R1 should not be included in the range of datato be prefetched, which starts
from the source address specified by R2.

¢ Thecontents of R1 and R2 are undefined upon completion of the instruction.

« Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Processing Size Code Size (Byte)
SMOVU B 2

Description Example
SMOVU

RO1US0032EJ0130 Rev.1.30 RENESAS Page 152 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

SSTR String store SSTR

Syntax String manipulation instruction
SSTR.size Instruction Code
Page: 239

Operation

unsigned { char | short | long } *R1, R2;
unsigned long R3;
while (R31=0) {
*R1++ = R2;
R3=R3-1;
}

Notes: 1. If this instruction is executed with R3 set to O, it is ignored and has no effect on registers and flags.

2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4
for .L.

3. R2: How much of the value in R2 is stored depends on the size specifier (.size): the byte from the LSB end of
R2 is stored for .B, the word from the LSB end of R2 is stored for .W, and the longword in R2 is stored for .L.

Function

e Thisinstruction stores the contents of R2 successively proceeding in the direction of increasing addresses
specified by R1 up to the number specified by R3.

¢ Oncompletion of instruction execution, R1 indicates the next address in sequence from that for the last transfer.

* Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Size Processing Size Code Size (Byte)
SSTR.size B/W/L size 2

Description Example
SSTR.W

RO1US0032EJ0130 Rev.1.30 RENESAS Page 153 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

STNZ Store on not zero STNZ

Syntax Data transfer instruction
STNZ src, dest Instruction Code
Page: 239
Operation
if(Z==0)
dest = src;
Function

e Thisinstruction moves src to dest when the Z flag is 0. dest does not change when the Z flag is 1.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size

Syntax Size src dest (Byte)

STNZ src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7

Description Example

STNZ #1,R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 154 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

STZ Store on zero STZ

Syntax Data transfer instruction
STZ src, dest Instruction Code
Page: 240
Operation
if(z==1)
dest = src;
Function

e Thisinstruction moves src to dest when the Z flag is 1. dest does not change when the Z flag is 0.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand

Syntax Size src dest Code Size (Byte)

STZ src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7

Description Example

STZ #1,R2
RO1US0032EJ0130 Rev.1.30 RENESAS Page 155 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3.

Instruction Descriptions

SUB

Syntax

(1) SUB src, dest
(2) SUB src, src2, dest

Operation

(1) dest=dest - src;
(2) dest=src2 - src;

Function

(1) Thisinstruction subtracts src from dest and places the result in dest.
(2) Thisinstruction subtracts src from src2 and places the result in dest.

Flag Change

Flag

Change Condition

Subtract without borrow

SUB

Arithmetic/logic instruction

Instruction Code
Page: 241

C

v The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.

The flag is set if dest is O after the operation; otherwise it is cleared.

z
S
(0]

v
v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
v The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand
Syntax Size src src2 dest Code Size (Byte)
(1) SUB src, dest L #UIMM:4 — Rd 2
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB")
3 (memex != “UB”)
L dsp:8[Rs].memex" — Rd 3 (memex == “UB")
4 (memex !|=“UB")
L dsp:16[Rs].memex" — Rd 4 (memex == “UB")
5 (memex != “UB”)
(2) SUB src, src2, dest L Rs Rs2 Rd 3

Note: *

For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .\W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

SUB
SUB
SUB
SUB
SUB

#15, R2
R1, R2
[R1], R2
1[R1].B, R2
R1, R2, R3

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 156 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

S U NTI L String search until equal S U NTI L

Syntax String manipulation instruction
SUNTIL.size Instruction Code
Page: 242

Operation

unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R31=0) {
tmp = (unsigned long) *R1++;
R3--;
if (tmp==R2){
break;

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4
for .L.

Function

e Thisinstruction searches a string for comparison from the first address specified by R1 for a match with the value
specified in R2, with the search proceeding in the direction of increasing addresses and the number specified by
R3 as the upper limit on the number of comparisons. When the size specifier (.size) is.B or .W, the byte or word
data on the memory is compared with the value in R2 after being zero-extended to form alongword of data.

¢ Inexecution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the user’ s manual: hardware of
each product.

e FHags change according to the results of the operation “*R1 — R2".

e Thevauein R1 upon completion of instruction execution indicates the next address where the data matched.
Unless there was a match within the limit, the value in R1 is the next address in sequence from that for the last
comparison.

e Thevauein R3 on completion of instruction execution is theinitial value minus the number of comparisons.

* Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
Flag Change Condition
C v The flag is set if a comparison operation as unsigned integers results in any value equal to or
greater than 0; otherwise it is cleared.
Z v The flag is set if matched data is found; otherwise it is cleared.
S J—
O —
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 157 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

Instruction Format

Syntax Size Processing Size Code Size (Byte)
SUNTIL.size B/WI/L L 2
Description Example
SUNTIL.W
RO1US0032EJ0130 Rev.1.30 RENESAS Page 158 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

SWH I L E String search while equal SWH I L E

Syntax String manipulation instruction
SWHILE.size Instruction Code
Page: 242

Operation

unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R31=0) {
tmp = (unsigned long) *R1++;
R3--;
if (tmp I=R2){
break;

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4
for .L.

Function

e Thisinstruction searches a string for comparison from the first address specified by R1 for an unmatch with the
value specified in R2, with the search proceeding in the direction of increasing addresses and the number specified
by R3 asthe upper limit on the number of comparisons. When the size specifier (.size) is. B or .W, the byte or word
data on the memory is compared with the value in R2 after being zero-extended to form alongword of data.

¢ Inexecution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the user’ s manual: hardware of
each product.

e FHags change according to the results of the operation “*R1 — R2".

e Thevauein R1 upon completion of instruction execution indicates the next addresses where the data did not
match. If all the data contents match, the value in R1 is the next address in sequence from that for the last
comparison.

e Thevauein R3 on completion of instruction execution is theinitial value minus the number of comparisons.

* Aninterrupt request during execution of thisinstruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
Flag Change Condition
C v The flag is set if a comparison operation as unsigned integers results in any value equal to or
greater than 0; otherwise it is cleared.
Z v The flag is set if all the data contents match; otherwise it is cleared.
S J—
O J—
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 159 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

3. Instruction Descriptions

Instruction Format

Syntax Size Processing Size Code Size (Byte)
SWHILE.size B/WI/L L 2
Description Example
SWHILE.W
RO1US0032EJ0130 Rev.1.30 RENESAS Page 160 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

TST Test logical TST

Syntax Arithmetic/logic instruction
TST src, src2 Instruction Code
Page: 243
Operation
src2 & src;
Function

¢ Thisinstruction changes the flag states in the PSW according to the result of logical AND of src2 and src.

Flag Change

Flag Change Condition

C —

z v The flag is set if the result of the operation is O; otherwise it is cleared.

S v The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.
O J—

Instruction Format

Processing Operand
Syntax Size src src2 Code Size (Byte)
TST src, src2 L #SIMM:8 Rs 4
L #SIMM:16 Rs 5
L #SIMM:24 Rs 6
L #IMM:32 Rs 7
L Rs Rs2 3
L [Rs].memex Rs2 3 (memex == “UB")
4 (memex |="“UB")
L dsp:8[Rs].memex” Rs2 4 (memex == “UB")
5 (memex !=“UB”")
L dsp:16[Rs].memex" Rs2 5 (memex == “UB")

6 (memex !=“UB”")

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

TST #7,R2
TST R1,R2
TST [R1], R2

TST 1[R1].UB, R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 161 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

WAIT wat WAIT

Syntax System manipulation instruction
WAIT Instruction Code
Page: 244
Operation
Function

e Thisinstruction stops program execution. Program execution is then restarted by acceptance of a non-maskable
interrupt, interrupt, or generation of areset.

« Thisinstruction isa privileged instruction. Attempting to execute this instruction in user mode generates a
privileged instruction exception.

e Thel bit in the PSW becomes 1.

e Theaddress of the PC saved at the generation of an interrupt is the one next to the WAIT instruction.

Note: For the power-down state when the execution of the program is stopped, refer to the user's manual: hardware of
each product.

Flag Change
e Thisinstruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)
WAIT 2

Description Example
WAIT

RO1US0032EJ0130 Rev.1.30 RENESAS Page 162 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

XCHG

Syntax
XCHG src, dest

Operation
tmp = src;
src = dest;
dest = tmp;

Function

Exchange XC H G

Data transfer instruction

Instruction Code
Page: 244

e Thisinstruction exchanges the contents of src and dest as listed in the following table.

src dest

Function

Register Register

Exchanges the data in the source register (src) and the destination register
(dest).

Memory location Register

Exchanges the data at the memory location and the register. When the size
extension specifier (.size) is .B or .UB, the byte of data in the LSB of the register
is exchanged with the data at the memory location. When the size extension
specifier (.size) is .W or .UW, the word of data in the LSB of the register is
exchanged with the data at the memory location. When the size extension
specifier is other than .L, the data at the memory location is transferred to the
register after being extended with the specified type of extension to form a
longword of data.

e Thisinstruction may be used for the exclusive control. For details, refer to the user’s manual: hardware of each

product.

Flag Change

e Thisinstruction does not affect the states of flags.

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
XCHG src, dest L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
L dsp:8[Rs].memex" Rd 4 (memex == “UB")
5 (memex = “UB")
L dsp:16[Rs].memex" Rd 5 (memex == “UB")

6 (memex !=“UB")

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .\W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

XCHG R1,R2
XCHG [R1].W, R2

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS Page 163 of 271

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

XO R Logical Exclusive OR XO R

Syntax Arithmetic/logic instruction
XOR src, dest Instruction Code

Page: 245
Operation

dest = dest " src;

Function
e Thisinstruction exclusive ORs dest and src and places the result in dest.

Flag Change

Flag Change Condition

C J—

z v The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Instruction Format

Processing Operand
Syntax Size src dest Code Size (Byte)
XOR src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == "UB")
4 (memex !=“UB”")
L dsp:8[Rs].memex* Rd 4 (memex == “UB”")
5 (memex = “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == "UB”)

6 (memex |="UB”)

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .\W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
XOR #8,R1
XOR R1,R2
XOR [R1],R2
XOR 16[R1].L,R2

RO1US0032EJ0130 Rev.1.30 RENESAS Page 164 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

4. Instruction Code

4.1 Guide to This Section

This section describes instruction codes by showing the respective opcodes.

The following shows how to read this section by using an actual page as an example.

ADD

Ve
(1} Code Size
Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 — Rd 2
(2) ADD src, dest #SIMM:8 — Rd 3
#SIMM:16 — Rd 4
#SIMM:24 — Rd 5
#IMM:32 — Rd 6
(3) ADD src, dest Rs — Rd 2
[Rs].memex — Rd 2 (memex == “UB”)
3 (memex != “UB”)
dsp:8[Rs].memex — Rd 3 (memex == “UB”)
2r— 4 (memex != “UB”)
dsp:16[Rs].memex — Rd 4 (memex == “UB”)
5 (memex != “UB”)
(4) ADD src, src2, dest #SIMM:8 Rs Rd 3
#SIMM:16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6
(5) ADD src, src2, dest Rs Rs2 Rd 3 _)
@y——((1) ADD src, dest)
(b7 b0 b b0 h
[o] 1 oJo]ol1]o] immpoy | 3o |
(A
imm[3:0] src rd[3:0] dest
9 0000b to 1111b |#UIMM:4 |0to 15 0000b to 1111b |Rd |R0 (SP) to R15)
(3————— (2) ADD src, dest D)
é 0 b b0 li[1:0] src)
[ol+[1]1]o oo] vz, | 3o | o1b
(A 10
1o [#SIMM:24
00b [#IMM:32
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM: 16
11b #SIMM:24
00b #IMM:32

Note: The instruction code is the same with the instruction code listed as (4) where src2 and dest have the same value.

J

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 165 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(1) Mnemonic
Indicates the mnemonic name of the instruction explained on the given page.

(2) List of Code Size
Indicates the number of bytes the instruction requires. An individual RXv1 CPU instruction takes up from one to
eight bytes.

(3) Syntax
Indicates the syntax of the instruction using symbols.

(4) Instruction Code
Indicates the instruction code. The code in parentheses may be selected or omitted depending on src/dest to be
selected.

See Figure 4.1

When memex == “UB” or src == Rs

- N
b0 b7 1d[1:0] src
|0\1\o\0\1\o\|d[1o1(rs[3:0] . X rd[30])| 11b None
L J L \/ Y J 00b None
The contents of the byte atthe The contents of the byte\ at 01b
address of the instruction (address of the instruction + 1) 10b
See Figure 4.1
When memex !=“UB” — —
emex b0 b7 __DO\ b7 b0 Id[1:0] src
|o oo \ olo|1]1]ofmirodo|o1]oCdro)\ 30, | rd3o] | 11b None
00b None
01lb :
The contents of the byte atthe The contents of the byte at The contents of the byte at
address of the instruction (address of the instruction + 1) (address of the instruction + 2) 10b
'mi[l:O]) memex (Id[l:O]) src qrs[3:0]/rd[3:0] D src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b W 00b [Rs]
10b L 01lb dsp:8[Rs]
11b uw 10b dsp:16[Rs]
RO1US0032EJ0130 Rev.1.30 I!ENESAS Page 166 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

The contents of the operand, that isthe byte at (address of theinstruction +2) or (following address of the instruction +3)
in the previous page, are arranged as shown in Figure 4.1.

+0 +1 +2 +3
AL A N A
R R
#IMM:8
#SIMM:8 b7 bo
#UIMM:8 8 bits
dsp:8
pcdsp:8
ﬁ'sm/ﬁe b7 b0 bi5 bs
dsp:16. Lower 8 bits Upper 8 bits
pcdsp:16
4SIMM:24 b7 b0 bl5 b8 b23 b16
pcdsp:é4 Lower 8 bits Middle 8 bits Upper 8 bits
b7 b0 b15 b8 b23 b16 b31 b24

#IMM:32 | Lower 8 bits | Middle-lower 8 bits | Middle-upper 8 bits Upper 8 bits

Figure 4.1 Immediate (IMM) and Displacement (dsp) Values

The abbreviations such asfor rs, rd, Id, and mi represent the following.

rs. Sourceregister

rs2: Second source register

rd: Destination register

rd2: Second destination register

ri: Index register

rb: Baseregister

li: Length of immediate

Id: Length of displacement

Ids: Length of source displacement
Idd: Length of destination displacement
mi: Memory extension size infix
imm: Immediate

dsp: Displacement

cd: Condition code

cr: Control register

cb: Control bit
sz: Size specifier
ad: Addressing
RO1US0032EJ0130 Rev.1.30 RENESAS Page 167 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

4.2 Instruction Code Described in Detall

The following pages give details of the instruction codes for the RXv1 instructions.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 168 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

ABS

ABS

Code Size
Syntax src dest Code Size (Byte)
(1) ABS dest — Rd 2
(2) ABS src, dest Rs Rd 3
(1) ABS dest
b0 b7 b0
[o[a]afala]a]a]ofo]ol1][o] rao
rd[3:0] dest
0000b to 1111b |Rd |R0 (SP) to R15
(2) ABS src, dest
b0
|1\1\1\1\1\1\o\o|o\o\o\o\1\1\1\1| 1s[3:0] rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b |Rs/Rd |R0 (SP) to R15
RO1US0032EJ0130 Rev.1.30 RENESAS Page 169 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

ADC

ADC

Code Size

Syntax src dest Code Size (Byte)

(1) ADC src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) ADC src, dest Rs Rd 3

(3) ADC src, dest [Rs].L Rd 4
dsp:8[Rs].L Rd 5
dsp:16[Rs].L Rd 6

(1) ADC src, dest

bo li[1:0] src

bo b7 bo b7
[1]alafalafafolafola]a]a]imo]olofolo[1]o] ramo |

01b [#SIMM:8

10b |#SIMM:16

11b [#SIMM:24

00b [#IMM:32
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) ADC src, dest
b0 b7 b0 b7 b0
[1/2]a]2]a]1]olo]olofoloa]o]mpa| @y [ooy |
Id[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
(3) ADC src, dest
b7 memex b0 b7 b0 b7 po 1d[1:0] src
[ololololof1]1]o]miof1]o]o]olmmofolofolofolo1lo] o rd[zo) | /00 None
10b __dsp:16

mi[1:0] |memex Id[1:0] src rs[3:0]/rd[3:0] src/dest
10b L 00b [Rs] 0000b to 1111b |[Rs/Rd |RO (SP) to R15

01b dsp:8[Rs]

10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 170 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

ADD

ADD

Code Size
Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 — Rd 2
(2) ADD src, dest #SIMM:8 — Rd 3
#SIMM:16 — Rd 4
#SIMM:24 — Rd 5
#IMM:32 — Rd 6
(3) ADD src, dest Rs — Rd 2
[Rs].memex — Rd 2 (memex == “UB")
3 (memex !="“UB")
dsp:8[Rs].memex — Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:16[Rs].memex — Rd 4 (memex == “UB")
5 (memex != “UB”)
(4) ADD src, src2, dest #SIMM:8 Rs Rd 3
#SIMM:16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6
(5) ADD src, src2, dest Rs Rs2 Rd 3
(1) ADD src, dest
b0
[o[1]1]o]ofof1]o] mmzoy | razo |
imm{[3:0] src rd[3:0] dest
0000b to 1111b |#UIMM:4 |0 to 15 0000b to 1111b |Rd |RO (SP) to R15
(2) ADD src, dest
b7 b0 b7 b0 li[1:0] src
[o[2]a]2]o]o]nmo| razo) rd[3:0] o1b
11b [#SIMM:24
00b [#mMMm:32
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
Note: The instruction code is the same with the instruction code listed as (4) where src2 and dest have the same value.

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 171 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code
(3) ADD src, dest
When memex == “UB” or src == Rs
b7 b0 b7 b0 Id[1:0] src
[ol1]o]ol1]o]ro| rs3o] [rdz01 | 11b None
00b None
When memex !=“UB”
b7 memex b0 b7 b0 bo Id[1:0] src
[o]ofolofo/1][1]o|miuofolo]1]o]wuo| rs(301 | rd30], | 11b None
00b None

mi[1:0] |memex Id[1:0] src rs[3:0]/rd[3:0] src/dest

00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15
0lb W 00b [Rs]

10b L 01b dsp:8[Rs]

11b uw 10b dsp:16[Rs]

(4) ADD src,src2, dest

b7 b0 b7 b0 li[1:0] src
o[ala]a]ofoluuo| r23o | oo | o1b

11b [#SIMM:24 |
00b [#Mm:32 |

li[1:0] src rs2[3:0]/rd[3:0] src2/dest

01b #SIMM:8 0000b to 1111b |Rs/Rd |RO (SP) to R15

10b #SIMM:16

11b #SIMM:24

00b #IMM:32

(5) ADD src,src2, dest

b7 b0 b7 b0 b7 b0
[1]alafalafafala]olola]o] oy [w3y [rs2zop |
rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd |R0 (SP) to R15

RO1US0032EJ0130 Rev.1.30 ;{ENESAS Page 172 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

AND

AND

Code Size
Syntax src src2 dest Code Size (Byte)
(1) AND src, dest #UIMM:4 — Rd 2
(2) AND src, dest #SIMM:8 — Rd 3
#SIMM:16 — Rd 4
#SIMM:24 — Rd 5
#IMM:32 — Rd 6
(3) AND src, dest Rs — Rd 2
[Rs].memex — Rd 2 (memex == "“UB")
3 (memex !="UB")
dsp:8[Rs].memex — Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:16[Rs].memex — Rd 4 (memex == “UB")
5 (memex !="“UB")
(4) AND src, src2, dest Rs Rs2 Rd 3
(1) AND src, dest
b7 b0 b7 b0
[ols2lofofs]ofo] jmmzg | |

‘ rd[?:O] ‘

imm([3:0] src

rd[3:0]

dest

0000b to 1111b

#UIMM:4 |0to 15

0000b to 1111b |Rd

| RO (SP) to R15

Src

(2) AND src, dest

b7 b0 b7 b0 li[1:0]

[olala]alofalimorfofol1]o] rao oib [rSivms]
11b [#SIMM:24
00b [#MMm:32

1i[1:0] src rd[3:0] dest

01b #SIMM:8 0000b to 1111b | Rd ‘ RO (SP) to R15

10b #SIMM:16

11b #SIMM:24

00b #IMM:32

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 173 of 271

RX Family RXv1 Instruction Set Architecture

4. Instruction Code
(3) AND src, dest
When memex ==“UB” or src == Rs
b7 b0 b0 Id[1:0] src
[o]1]o]1]o]o0]ro| rs3o] | rd30] | 11b None
00b None
10b
When memex !=“UB”
b7 memex b0 b7) b0 1d[1:0] src

[o]ofofofof[1]1]o|mfrojjo]1]o|o]dmo| rs[30 | rd30 | 11b None

00b None

010

100
mi[1:0] | memex 1d[1:0] src rs[3:0]/rd[3:0] |src/dest
00b B 11b Rs 0000b to 1111b | Rs/Rd | RO (SP) to R15
01lb W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
(4) AND src, src2, dest
b7 b0 b7 b0 b7 bo
[1]alafalafafalafola]oo] oy [rs30) [rs2z0 |
rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd \ RO (SP) to R15

R0O1US0032EJ0130 Rev.1.30 -ZENESAS Page 174 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

BCLR

BCLR

Code Size
Syntax src dest Code Size (Byte)
(1) BCLR src, dest #IMM:3 [Rd].B 2
#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4
(2) BCLR src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5
(3) BCLR src, dest #IMM:5 Rd 2
(4) BCLR src, dest Rs Rd 3
(1) BCLR src, dest
b7 0 b0 1d[1:0] dest
[1]2]1]2]o]o]mo| razoy [1] imm20 | 00b None
o [ssp5]
N
1d[1:0] dest rd[3:0] dest imm{[2:0] src
00b [Rd] 0000b to 1111b |Rd ‘ RO (SP) to R15 000b to 111b #IMM:3 |[Oto7
01lb dsp:8[Rd]
10b dsp:16[Rd]
(2) BCLR src, dest
b7 b0 b7 b0 b7 b0 1d[1:0] dest
[1]2]afala]afofofola]1]o]o] 1 o] w0 s3] | 00b None
0b
105
1d[1:0] dest rs[3:0]/rd[3:0] |src/dest
00b [Rd] 0000b to 1111b | Rs/Rd | RO (SP) to R15
01lb dsp:8[Rd]
10b dsp:16[Rd]
(3) BCLR src, dest
b7 b0 b7 b0
lo[s[s]afafofa] mmma [rza |
imm[4:0] src rd[3:0] dest
00000b to 11111b | #IMM:5 ‘ 0to 31 0000b to 1111b |Rd | RO (SP) to R15
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 175 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

(4) BCLR src, dest

b7

b7

b7

b0

[1/2]a]a]1]a]olo]ola]1lo]ol1]na| rmo | sizo

1d[1:0] dest rs[3:0]/rd[3:0] |src/dest

11b Rd 0000b to 1111b | Rs/Rd ‘ RO (SP) to R15
RO1US0032EJ0130 Rev.1.30 RENESAS

Dec 26, 2019

Page 176 of 271

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

BCnd

Code Size

Syntax src Code Size (Byte)
(1) BCnd.S src pcdsp:3 1

(2) BCnd.B src pcdsp:8 2

(3) BCnd.W src pcdsp:16 3

(1) BCnd.S src

b7

b0

[ofo]ol1]cal asprzor

Note: * dsp[2:0] specifies pcdsp:3 = src.
cd BCnd dsp[2:0] | Branch Distance
Ob BEQ, BZ 011b 3
1b BNE, BNZ 100b 4

101b 5
110b 6
111b 7
000b 8
001b 9
010b 10

(2) BCnd.B src
b7 b0 src
[To[io] wba | [peawe]

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction
cd[3:0] [BCnd cd[3:0] |[BCnd
0000b |BEQ, BZ 1000b |BGE
0001b |BNE, BNZ 1001b |BLT
0010b |BGEU,BC |1010b |BGT
0011b |BLTU,BNC [1011b |[BLE
0100b [BGTU 1100b |BO
0101b |BLEU 1101b |BNO
0110b |BPZ 1110b BRA.B
0111b |BN 1111b Reserved

BCnd

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 177 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(3) BCnd.W src

b7 bo src
[olofal1]1T0]1]cd] [poaspae’

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

cd BCnd
Ob BEQ, BZ
1b BNE, BNZ
RO1US0032EJ0130 Rev.1.30 RENESAS Page 178 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

Instruction Code

BMCnd

BMCnd

Code Size
Syntax src dest Code Size (Byte)
(1) BMCnd src, dest #IMM:3 [Rd].B 3
#IMM:3 dsp:8[Rd].B 4
#IMM:3 dsp:16[Rd].B 5
(2) BMCnd src, dest #IMM:5 Rd 3
(1) BMCnd src, dest
b7 b0 b7 b0 b7 b0 Id[1:0] dest
i To o]+ [+ [: [meo o] g0l | ool
10b
imm{[2:0] src Id[1:0] dest
000b to 111b |#IMM:3 |Oto 7 00b [Rd]
01b dsp:8[Rd]
10b dsp:16[Rd]
rd[3:0] dest cd[3:0] BMCnd cd[3:0] BMCnd
0000b to 1111b |Rd |R0 (SP) to R15 0000b BMEQ, BMZ 1000b BMGE
0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC [1010b BMGT
0011b BMLTU, BMNC [1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved
(2) BMCnd src, dest
b0 b7 b0 b7 b0
LG i) e | wpa | eo]
imm{[4:0] src cd[3:0] BMCnd cd[3:0] BMCnd
00000b to 11111b |#IMM:5 |O to 31 0000b BMEQ, BMZ 1000b BMGE
0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC [1010b BMGT
0011b BMLTU, BMNC |1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved
rd[3:0] dest
0000b to 1111b |Rd |R0 (SP) to R15
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 179 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

BNOT

BNOT

Code Size
Syntax src dest Code Size (Byte)
(1) BNOT src, dest #IMM:3 [Rd].B 3
#IMM:3 dsp:8[Rd].B 4
#IMM:3 dsp:16[Rd].B 5
(2) BNOT src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5
(3) BNOT src, dest #IMM:5 Rd 3
(4) BNOT src, dest Rs Rd 3
(1) BNOT src, dest
b0 b7 0 b7 b0 Id[1:0] dest
[1]2laala]afolofa]a]a] imm2o) [wpo| a0y [2]1]1]1] 00b None
o1
100
imm{[2:0] src 1d[1:0] dest
000b to 111b #IMM:3 Oto7 00b [Rd]
01b dsp:8[Rd]
10b dsp:16[Rd]
rd[3:0] dest
0000b to 1111b |Rd |R0 (SP) to R15
(2) BNOT src, dest
7 7 b0 1d[1:0] dest
[1]2]a]alafafofofola]1]o]1]1 o] riz0 s | 00b None
o1
O
1d[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]
(3) BNOT src, dest
b7 b0 b7 b0 b7 b0
[elafafafafafolafafafa] wmmwa [alaf[a]a] o |
imm{[4:0] src rd[3:0] dest
00000b to 11111b |#IMM:5 |0 to 31 0000b to 1111b |Rd |RO (SP) to R15
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 180 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

(4) BNOT src, dest

b7 b0 b7 b0 b7 b0
[1]alafa]a]afolofola]alo]a]1]upna| rzo [rsfz0
1d[1:0] dest rs[3:0]/rd[3:0] src/dest

11b Rd 0000b to 1111b |Rs/Rd |RO (SP) to R15

BRA

Code Size

Syntax src Code Size (Byte)
(1) BRA.S src pcdsp:3 1

(2) BRAB src pcdsp:8 2

(3) BRAW src pcdsp:16 3

(4) BRA.A src pcdsp:24 4

(5) BRA.L src Rs 2

(1) BRA.S src

b7 bo
[oo]o]o]1] dspror

Note: * dsp[2:0] specifies pcdsp:3 = src.

dsp[2:0] [Branch Distance
011b
100b
101b
110b
111b
000b
001b
010b 10

O|lo|N[O|O| bW

(2) BRA.B src

b7 b0 SIc
oo IiTile]

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction

(3) BRA.W src

b7 bo src
[o]o]1l1]1T0]0 o] [pcaspie

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

BRA

RO1US0032EJ0130 Rev.1.30 RENESAS
Dec 26, 2019

Page 181 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

(4) BRA.A src

b7 b0

[o]o]ololol1]o]o] [pcasp2r’

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

(5) BRA.L src

b7 bo b7 bo
[olalafalafafafafofa]o]o] o
rs[3:0] src

0000b to 1111b [Rs [RO (SP) to R15

BRK

BRK

Code Size
Syntax Code Size (Byte)
(1) BRK 1
(1) BRK
[olofofofofolo]o]
Code Size
Syntax src dest Code Size (Byte)
(1) BSET src, dest #IMM:3 [Rd].B 2
#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4
(2) BSET src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5
(3) BSET src, dest #IMM:5 Rd 2
(4) BSET src, dest Rs Rd 3
RO1US0032EJ0130 Rev.1.30 RENESAS Page 182 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(1) BSET src, dest

b7 b0 b7 bo Id[1:0] dest
[1]2]2]2]o]o]uamo| razo) [0 immz20) | 00b None

01b
Id[1:0] dest rd[3:0] dest imm{[2:0] src
00b [Rd] 0000b to 1111b |Rd |R0 (SP) to R15 000b to 111b #MM:3 [0to7
01b dsp:8[Rd]
10b dsp:16[Rd]

(2) BSET src, dest

b0 b7 b0 b7 bo 1d[1:0] dest
[1/2]a]ala]a]ofofola]1]o]o]o]mpo| w0 s3] | 00b None
106
Id[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b [Rs/Rd |RO (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]
(3) BSET src, dest
b7 bo b7 bo
[o[ala]a]1]o]o] mmao | rz0 |
imm{[4:0] src rd[3:0] dest
00000b to 11111b [#IMM:5 0031 0000b to 1111b |[Rd [RO (SP) to R15
(4) BSET src, dest
b7 b0 b7 b0 b7 bo
[1]2la]a]a]a]olofola]alololo]mpo| iz [rsi30
1d[1:0] dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b |Rs/Rd |R0 (SP) to R15
RO1US0032EJ0130 Rev.1.30 RENESAS Page 183 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

BSR BSR

Code Size

Syntax src Code Size (Byte)
(1) BSR.W src pcdsp:16 3

(2) BSR.A src pcdsp:24 4

(3) BSR.L src Rs 2

(1) BSR.W src

Src

b7 b0
[olol1]a]1]olof1]| [ocaspae’

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

(2) BSR.A src

src
[o]o]ololol1]o[1] [pcasp2r |

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

(3) BSR.L src

b0
IO‘l‘l‘l‘l‘l‘l‘l|0‘l‘0‘l‘ ‘rs[i‘S:O]‘

rs[3:0] src
0000b to 1111b |Rs |R0 (SP) to R15

RO1US0032EJ0130 Rev.1.30 RENESAS Page 184 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

BTST

BTST

Code Size
Syntax src src2 Code Size (Byte)
(1) BTST src, src2 #IMM:3 [Rs].B 2

#IMM:3 dsp:8[Rs].B 3

#IMM:3 dsp:16[Rs].B 4
(2) BTST src, src2 Rs [Rs2].B 3

Rs dsp:8[Rs2].B 4

Rs dsp:16[Rs2].B 5
(3) BTST src, src2 #IMM:5 Rs 2
(4) BTST src, src2 Rs Rs2 3
(1) BTST src,src2
b7 b0 b7 bo Id[1:0] src2
[1]2la]a]o]a o] oy [o] immezo | 00b None

o [eps]
100
1d[1:0] src2 rs[3:0] src2 imm{[2:0] src
00b [Rs] 0000b to 1111b |Rs |RO (SP) to R15 000b to 111b #IMM:3 |0to 7
01b dsp:8[Rs]
10b dsp:16[Rs]
(2) BTST src,src2
bo 1d[1:0] src2
[1]2]a]a]1]a]olofola][alo]a]o]upa] remoy | rs3o 00b None
o [6p5]
100
1d[1:0] src2 rs[3:0]/rs2[3:0] src/src2
00b [Rs2] 0000b to 1111b |Rs/Rs2 |R0 (SP) to R15
01b dsp:8[Rs2]
10b dsp:16[Rs2]
(3) BTST src,src2
b7 b0 b7 b0
lo[a[sfafafafo] mmuwa [3o |
imm{[4:0] src rs[3:0] src2
00000b to 11111b |#IMM:5 |O to 31 0000b to 1111b |Rs |R0 (SP) to R15
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 185 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) BTST src,src2

b7 b0 b7 b0 b7 b0
[1]2la]al1]afolofola]alofa]o]mpo| rs2zo [rsiz0
1d[1:0] src2 rs[3:0]/rs2[3:0] src/src2

11b Rs2 0000b to 1111b |Rs/Rs2 |RO (SP) to R15

CLRPSW CLRPSW

Code Size
Syntax dest Code Size (Byte)
(1) CLRPSW dest flag 2

(1) CLRPSW dest

b0

b0 b7
[oTelalalalelele]2]o]2]1] o

cb[3:0] |dest

0000b flag C

0001b z

0010b S

0011b (0]

0100b Reserved

0101b Reserved

0110b Reserved

0111b Reserved

1000b |

1001b U

1010b Reserved

1011b Reserved

1100b Reserved

1101b Reserved

1110b Reserved

1111b Reserved
RO1US0032EJ0130 Rev.1.30 RENESAS Page 186 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

CMP CMP

Code Size
Syntax src src2 Code Size (Byte)
(1) CMP src, src2 #UIMM:4 Rs 2
(2) CMP src, src2 #UIMM:8 Rs 3
(3) CMP src, src2 #SIMM:8 Rs 3
#SIMM:16 Rs 4
#SIMM:24 Rs 5
#IMM:32 Rs 6
(4) CMP src, src2 Rs Rs2 2
[Rs].memex Rs2 2 (memex == “UB")
3 (memex !=“UB”")
dsp:8[Rs].memex Rs2 3 (memex == “UB")
4 (memex !|=“UB")
dsp:16[Rs].memex Rs2 4 (memex == “UB")
5 (memex !=“UB")
(1) CMP src,src2
b7 b0 b7 b0
[o[2]1]ofofofola] immzoy | rs230] |
imm[3:0] src rs2[3:0] src2
0000b to 1111b [#UIMM:4 [0to 15 0000b to 1111b [Rs [RO (SP) to R15
(2) CMP src,src2
b7 b0 b7 b0 src

[o[ala]a]ofafola]ofa]ol1] 230y | [ruimMms]

rs2[3:0] src2
0000b to 1111b |Rs |RO (SP) to R15

(3) CMP src,src2

b7 b0 b7 b0 li[1:0] src
[o[ala]a]o]a]imo[ofofolo] 230 | 01b
11b [#SIMM:24 |
00b [#IMMm:32 |
li[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b |Rs |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
RO1US0032EJ0130 Rev.1.30 RENESAS Page 187 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

(4) CMP src,src2
When memex == “UB” or src == Rs
b7 b0 b7 b0 Id[1:0] src
[o]1]o]o]o]1]dro| rs[3:0] | rd30] | 11b None
00b None
10b |dsp:16
When memex !="“UB”
b7 memex b0 b7 b0 b0 1d[1:0] src
[o]ofofofof[1]1]o|mfrojjo]olo|1]mo| rs30 | rd30] | 11b None
00b None
01b
mi[1:0] |memex Id[1:0] src rs[3:0]/rs2[3:0] srcl/src2
00b B 11b Rs 0000b to 1111b [Rs/Rs2 |R0 (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
DIV DIV
Code Size
Syntax src dest Code Size (Byte)
(1) DIV src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) DIV src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rd 4 (memex == “UB")
5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == "UB”)
6 (memex !=“UB")
RO1US0032EJ0130 Rev.1.30 RENESAS Page 188 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4,

Instruction Code

(1) DIV src, dest

b7 b0 b7 b0 b7 b0 li[1:0] src
[1]2lafa]a]afolafola]a]a]imo]olof1]o]olo] rmo | o1b [rsivms]

11b [#SIMM:24

00b [#IMM:32 |
li[1:0] src rd[3:0] dest
0lb #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) DIV src, dest
When memex == “UB” or src == Rs
b0 b7 b0 b7 b0 1d[1:0] src
[1]2]a]a]a]a]ofofolof1]o]o]o o] rsfzo rd[z0], | 11b None
00b None
10b

When memex !=“UB”
b7 memex b0 b7 7 7 b0 1d[1:0] src
[o[olofolofa]1o]miuof1]o]olofmmofolofoflols]olo]o] sz rd[3:0] 11b None

00b None

01

100
mi[1:0] |memex Id[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b [Rs/Rd |RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30 RENESAS Page 189 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

DIVU

DIVU

Code Size
Syntax src dest Code Size (Byte)
(1) DIVU src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) DIVU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rd 4 (memex == “UB”)
5 (memex !=“UB")
dsp:16[Rs].memex Rd 5 (memex == “UB")
6 (memex !="UB”)
(1) DIVU src, dest
b7 b7 b7 b0 li[1:0] src
|1‘1‘1‘1‘1‘1‘0‘1|0‘1‘1‘1‘|i[;:0]|0‘0|1‘0‘0‘1‘ rd[3:0] | 01b
11b [#SIMM:24 |
oob [#IMM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) DIVU src, dest
When memex == “UB” or src == Rs
b0 b7 b0 b7 b0 1d[1:0] src
[1]a]a]a]1]a]o]o]olo]a]o]o]1]umo| w30 rd[3:0] 11b None
00b None
01b
When memex !=“UB”
b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[ololololola1]1]o]miof1]o]o]o]umafolofolo[1]olols] o | rzo 116 None
00b None
01b
105
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 190 of 271

RX Family RXv1 Instruction Set Architecture

4.

EMUL

EMUL

Code Size
Syntax src dest Code Size (Byte)
(1) EMUL src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) EMUL src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rd 4 (memex == “UB”")
5 (memex !=“UB")
dsp:16[Rs].memex Rd 5 (memex == “UB")
6 (memex !="“UB”)
(1) EMUL src, dest
b7 b7 b7 b0 li[1:0] src
|1‘1‘1‘1‘1‘1‘0‘1|0‘1‘1‘1‘|i[;:0]|0‘0|0‘1‘1‘0‘ rd[3:0] | 01b
100 [FSmvie
11b [#SIMM:24 |
00b [#IMM:32
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b |Rd |RO (SP) to R14
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) EMUL src, dest
When memex == “UB” or src == Rs
b0 b7 b0 b7 b0 1d[1:0] src
[1]a]aa]a]a]o]o]olofola]a]o]umo| w30 rd[3:0] 11b None
00b None
01b
When memex !=“UB”
b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[ololololol1]1]o]mo]1]o]o]ofupafolofolofols][1]o] s@o | razo | 11b None
00b None
01b
mi[1:0] |memex Id[1:0] src rs[3:0] src
00b B 11b Rs 0000b to 1111b |Rs |RO (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b uw 10b dsp:16[Rs] 0000b to 1110b |Rd |RO (SP) to R14

RO1US0032EJ0130 Reuv.

Dec 26, 2019

1.30

RENESAS

Page 191 of 271

Instruction Code

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

EMULU EMULU

Code Size
Syntax src dest Code Size (Byte)
(1) EMULU src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) EMULU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rd 4 (memex == “UB”")
5 (memex !=“UB")
dsp:16[Rs].memex Rd 5 (memex == “UB")
6 (memex !="“UB”)
(1) EMULU src, dest
b7 b0 b7 b0 b7 b0 li[1:0] src
|1‘1‘1‘1‘1‘1‘0‘1|0‘1‘1‘1‘|i[;:0]|0‘0|0‘1‘1‘1‘ rd[3:0] | 01b
106
110 [#SIMM:24 |
oob [#IMM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b |Rd |RO (SP) to R14
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
RO1US0032EJ0130 Rev.1.30 RENESAS Page 192 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(2) EMULU src, dest
When memex ==“UB” or src == Rs
b0 b7 b b7 bo Id[1:0] st
[1T1Tala]1]a]ololo ool el 11T rs@o 3o | 11b None
00b None
01b
106

When memex !=“UB”"

b7 memex bl b0 Id[lill.i)O] Non sre
[oTololo o110 mizo]1]o o o wmofolo o olol1]ala] o dzo] | one
00b None
mi[1:0] |memex Id[1:0] src rs[3:0] src
00b B 11b Rs 0000b to 1111b |Rs |RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b uw 10b dsp:16[Rs] 0000b to 1110b |Rd |RO (SP) to R14
RO1US0032EJ0130 Rev.1.30 I!ENESAS Page 193 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

FADD

FADD

Code Size
Syntax src dest Code Size (Byte)
(1) FADD src, dest #IMM:32 Rd 7
(2) FADD src, dest Rs Rd 3

[Rs].L Rd 3

dsp:8[Rs].L Rd 4

dsp:16[Rs].L Rd 5
(1) FADD src, dest

b0 b7 b0 b7 b0 src
[1]ala]ala]afolafola]a]1]olola]ofolo]1]o] rmmo | [avma2
rd[3:0] dest
0000b to 1111b |Rd |RO (SP) to R15
(2) FADD src, dest
b0 b7 b0 b7 bo Id[1:Q] src
[1]2]1]a]a]2]ofofs]olofo]1]o o] rs[z0 0] | 11b None
00b None

1d[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 194 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

FCMP

FCMP

Code Size
Syntax src src2 Code Size (Byte)
(1) FCMP src, src2 #IMM:32 Rs 7
(2) FCMP src, src2 Rs Rs2 3

[Rs].L Rs2 3

dsp:8[Rs].L Rs2 4

dsp:16[Rs].L Rs2 5
(1) FCMP src, src2

b0 b7 b0 b7 b0 src
[1]a]alaalaloafo a]ala]oola]oolo ola] spoy | [amms32
rs[3:0] src2
0000b to 1111b [Rs |RO (SP) to R15
(2) FCMP src, src2
b0 b7 b0 b7 bo Id[1:Q] src
[1]2]1]2]a]1]olofs]olo]olof1]uuo] rszo) | rs20) | 11b None
00b None

1d[1:0] src rs[3:0]/rs2[3:0] src/src2
11b Rs 0000b to 1111b |Rs/Rs2 |R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 195 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

FDIV

FDIV

Code Size
Syntax src dest Code Size (Byte)
(1) FDIV src, dest #IMM:32 Rd 7
(2) FDIV src, dest Rs Rd 3

[Rs].L Rd 3

dsp:8[Rs].L Rd 4

dsp:16[Rs].L Rd 5
(1) FDIV src, dest

b0 b7 b0 b7 b0 src

[1]a]alaalalo 2o a]ala]o]ola]ool1]olo] o | [amma32

rd[3:0]

dest

0000b to 1111b |Rd

[RO (SP) to R15

(2) FDIV src, dest

b0 b7 b0 b7 bo Id[1:Q] src
[1]2]1]a]a]2]o]ofs]olof[2]o]o o] rs[z0 raz0] | 11b None
00b None
01b
1d[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |R0 (SP)to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]
RO1US0032EJ0130 Rev.1.30 RENESAS Page 196 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

FMUL

FMUL

Code Size
Syntax src dest Code Size (Byte)
(1) FMUL src, dest #IMM:32 Rd 7
(2) FMUL src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5
(1) FMUL src, dest
b0 b7 b0 b7 b0 src
[1]a]alaalaloafo a]ala]oola]oolo1]a] o | [amms32
rd[3:0] dest
0000b to 1111b |Rd [RO (SP) to R15
(2) FMUL src, dest
b0 b7 b0 b7 bo Id[1:Q] src
[1]a]a]a]a]a]ofols]olofo]a]1]umo] [0 raz0] | 11b None
00b None
oo [E5p5]
O C—
1d[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP)to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 197 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

FSUB

FSUB

Code Size
Syntax src dest Code Size (Byte)
(1) FSUB src, dest #IMM:32 Rd 7
(2) FSUB src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5
(1) FSUB src, dest
b0 b7 b0 b7 b0 src
[1]a]ala]alaloaJo a]aTa]o]ol1]o]olo olo] o | [amma32
rd[3:0] dest
0000b to 1111b |Rd [RO (SP) to R15
(2) FSUB src, dest
b0 b7 b0 b7 bo Id[1:Q] src
[1]2]1]2]a]1]o]ofs]olof[o]o]o o] [0 raz0] | 11b None
00b None
oo [E5p5]
N o —
1d[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP)to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 198 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

FTOI

FTOI

Code Size
Syntax src dest Code Size (Byte)
(1) FTOI src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5
(1) FTOI src, dest
bo Id[1:0] src
[1]a]1/a]1]a]ofols]olof[a]o]1]umo] rspzo raz0] | 11b None
00b None
1d[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS Page 199 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

INT

INT

Code Size
Syntax src Code Size (Byte)
(1) INT src #IMM:8 3
(1) INT src
b0 b7 src
[o[2]1]a]ofa]ola]o]1]1]0]0lo]0]o| [amms]
Code Size
Syntax src dest Code Size (Byte)
(1) ITOF src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex = “UB")
dsp:8[Rs].memex Rd 4 (memex == “UB")
5 (memex != “UB")
dsp:16[Rs].memex Rd 5 (memex == “UB”")
6 (memex !="“UB")
(1) |ITOF src, dest
When memex ==“UB” or src == Rs
b7 b0 b7 b0 b7 b0 1d[1:0] src
[1]2]1]2]1]2]ofofo]2]ofo]o]1]ummo] rs[z0 raz0] | 11b None
00b None
o1
105

When memex !=“UB”

b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[o[olofolofa]1o]miof1/o]olofmmafolofof1lo]olo]1] 30 30 |/ e N
00b None
01b -dsp:S
10b _dsp:lG
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b [Rs/Rd |RO (SP) to R15
01lb W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 200 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

IJMP IJMP

Code Size
Syntax src Code Size (Byte)
(1) IMP src Rs 2

(1)) JIMP src

b7 b0 b7 b0
[olalafalafala]a]o]olo]o] o
rs[3:0] src

0000b to 1111b |Rs |RO (SP) to R15

JSR JSR

Code Size
Syntax src Code Size (Byte)
(1) JSR src Rs 2

(1) JSR src

bo b7 bo
lola]alafa]ala]1]olofoa] rsioy
rs[3:0] src
0000b to 1111b |Rs RO (SP) to R15
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 201 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

MACHI

MACHI

Code Size
Syntax src src2 Code Size (Byte)
(1) MACHI src, src2 Rs Rs2 3
(1) MACHI src, src2
b7 b0 b7 b0 b7 b0
[1]2]a]a]1]a]ola]ololo]olols]olo| moy [rs2z0 |
rs[3:0]/rs2[3:0] src/src2
0000b to 1111b |[Rs/Rs2 |RO (SP) to R15
Code Size
Syntax src src2 Code Size (Byte)
(1) MACLO src, src2 Rs Rs2 3
(1) MACLO src, src2
7 7 b0
[1]2]a]a]1]a]ola]ololo]olola]ola] 'm0y [rs2zo |
rs[3:0]/rs2[3:0] |src/src2
0000b to 1111b |[Rs/Rs2 |RO (SP) to R15
RO1US0032EJ0130 Rev.1.30 RENESAS Page 202 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

MAX

MAX

Code Size
Syntax src dest Code Size (Byte)
(1) MAX src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) MAX src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rd 4 (memex == “UB")
5 (memex !=“UB")
dsp:16[Rs].memex Rd 5 (memex == “UB")
6 (memex != “UB")
(1) MAX src, dest
b7 b7 b7 bo li[1:0] src
[1]2]a]a]a]afolafola]a]a]imo]olofol1]olo] rumo | 01b
110 [#SIMM:24 |
00b [#IMM:32
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) MAX src, dest
When memex == “UB” or src == Rs
b0 1d[1:0] src
[1]2]1]2]1]2]o]ofololof[1]o]o o] rs[zo 1[3:0] 11b None
00b None
01b
10b
When memex !="“UB”
b7 memex b0 b7 b0 b7 b0 b7 bo ld[1:0] sre
[oolofolofa]1]o|mmof1/o]ololwnafolofolofol1lolo] ws@mo | o | /™ "
00b None
01b
mi[1:0] |memex Id[1:0] |[src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd [RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 203 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

MIN

MIN

Code Size
Syntax src dest Code Size (Byte)
(1) MIN src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) MIN src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rd 4 (memex == “UB")
5 (memex !=“UB")
dsp:16[Rs].memex Rd 5 (memex == “UB")
6 (memex != “UB")
(1) MIN src, dest
b0 b7 b0 b7 b0 li[1:0] src
[1]alafala]afola]ola]ala]imo]olofol1]o]1] 3o 01b
11b [#sIMm:24 |
00b [#MM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) MIN src, dest
When memex ==“UB” or src == Rs
b0 b7 b0 b7 b0 1d[1:0] src
[1]2]1]a]1]2]o]olo]olof[a]o]1]umo] rs[30 rd[3:0] 11b None
00b None
o1
When memex !=“UB”
b7 memex b0 Id[1:0] src
[oolofolofa]1]o]mof1/o]ololwnafolofolofol1lol1] s@o | o | / 1m0 Nere
00b None
10b [dspi6]
mi[1:0] |memex Id[1:0] |[src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 204 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

MOV

MOV

Code Size
Processing Code Size
Syntax Size Size src dest (Byte)
(1) MOV.size src, dest B/W/L size Rs dsp:5[Rd] 2
(Rs = RO to R7) (Rd = RO to R7)
(2) MOV.size src, dest B/WI/L L dsp:5[Rs] Rd 2
(Rs = RO to R7) (Rd = RO to R7)
(3) MOV.size src, dest L L #UIMM:4 Rd 2
(4) MOQV.size src, dest B B #IMM:8 dsp:5[Rd] 3
(Rd = RO to R7)
WI/L size #UIMM:8 dsp:5[Rd] 3
(Rd = RO to R7)
(5) MOV.size src, dest L L #UIMM:8 Rd 3
(6) MOV.size src, dest L L #SIMM:8 Rd 3
L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6
(7) MOQV.size src, dest B/W L Rs Rd 2
L L Rs Rd 2
(8) MOV.size src, dest B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd] 4
B B #IMM:8 dsp:16[Rd] 5
w w #SIMM:8 [Rd] 3
w w #SIMM:8 dsp:8[Rd] 4
w w #SIMM:8 dsp:16[Rd] 5
w w #IMM:16 [Rd] 4
w w #IMM:16 dsp:8[Rd] 5
w w #IMM:16 dsp:16[Rd] 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd] 4
L L #SIMM:8 dsp:16 [Rd] 5
L L #SIMM:16 [Rd] 4
L L #SIMM:16 dsp:8[Rd] 5
L L #SIMM:16 dsp:16 [Rd] 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd] 6
L L #SIMM:24 dsp:16 [Rd] 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd] 7
L L #IMM:32 dsp:16 [Rd] 8
(9) MOV.size src, dest B/W/L L [Rs] Rd 2
B/WI/L L dsp:8[Rs] Rd 3
B/W/L L dsp:16[Rs] Rd 4
(10)MOV.size src, dest B/W/L L [Ri, Rb] Rd 3
(11) MQOV.size src, dest B/WI/L size Rs [Rd] 2
B/W/L size Rs dsp:8[Rd] 3
B/WI/L size Rs dsp:16[Rd] 4
RO1US0032EJ0130 Rev.1.30 RENESAS Page 205 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code
Processing Code Size
Syntax Size Size src dest (Byte)
(12)MOV.size src, dest B/W/L size Rs [Ri, Rb] 3
(13)MOV.size src, dest B/WI/L size [Rs] [Rd] 2
B/WI/L size [Rs] dsp:8[Rd] 3
B/W/L size [Rs] dsp:16[Rd] 4
B/WI/L size dsp:8[Rs] [Rd] 3
B/WI/L size dsp:8[Rs] dsp:8[Rd] 4
B/W/L size dsp:8[Rs] dsp:16[Rd] 5
B/WI/L size dsp:16[Rs] [Rd] 4
B/WI/L size dsp:16[Rs] dsp:8[Rd] 5
B/W/L size dsp:16[Rs] dsp:16[Rd] 6
(14)MOV.size src, dest B/WI/L size Rs [Rd+] 3
B/WI/L size Rs [-Rd] 3
(15)MOQOV.size src, dest B/WI/L L [Rs+] Rd 3
B/WIL L [-Rs] Rd 3
(1) MOV.size src, dest
b7 b0 b7 b0
[[oTswa[o [T I [weo [weo |
dsp[4:0]
sz[1:0] [Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
00b B 00000b to 11111b |0 to 31 000b to 111b Rs/Rd |R0 (SP) to R7
01b w
10b L
(2) MOV.size src, dest
b7 b0 b7 b0
[elofsmaf s [[[[| o [| reo |
dsp[4:0]
sz[1:0] |Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
00b B 00000b to 11111b |0 to 31 000b to 111b Rs/Rd |RO (SP) to R7
01b w
10b L
(3) MOV.size src, dest
b0 b7 b0
[o[2]1]olofa]1]o] wmmpmo | raz0)
imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 |00 15 0000b to 1111b |Rd |RO (SP) to R15
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 206 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

(4) MOV.size src, dest

b7 b0 b7 b0 Src
[olola]1]1]1 s Q\rq[zzq]]] [rmm:e]
dsp[4:0] #UIMM:8

sz[1:0] |Size dsp[4:0] dsp:5 rd[2:0] dest
00b B 00000b to 11111b Oto31 000b to 111b Rd |RO (SP) to R7
01lb w

10b L

(5) MOV.size src, dest

b7 b0 b7 bo src
lo[a[s]sfofsfofs]ols]ol0] o | [umwse]

rd[3:0] dest

0000b to 1111b |Rd [RO (SP) to R15
(6) MOV.size src, dest

b7 bO_b7 bo lif1:0] src

|1‘1‘1‘1‘1‘0‘1‘1| rd[3:0] ‘Ii[;:o1|1‘0| 01b
100 [rsmmiie |

11b [#SIMM:24

oob [#MM:32 |

li[1:0] src rd[3:0] dest

01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15

10b #SIMM:16

11b #SIMM:24

00b #IMM:32
(7) MOV.size src, dest

b7 b0 b7 b0

[1]alsa|1[afa]a] oy | rdzo |

sz[1:0] |Size rs[3:0]/rd[3:0] src/dest

00b B 0000b to 1111b |Rs/Rd |RO (SP) to R15

01b W

10b L

RO1US0032EJ0130 Rev.1.30 -IENESAS Page 207 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

(8) MOV.size src, dest

b7 b0 Id[1:0] dest li[1:0] src
[1]2l1]2]1]o o] oy o [szuo) 00b None o1b
10b 11b [#SIMM:24 |
o0ob [emm:32 |
1d[1:0] dest rd[3:0] dest li[1:0] src sz[1:0] |Size
00b [Rd] 0000b to 1111b |Rd |RO (SP) to R15 01b #SIMM:8 00b B
01b dsp:8[Rd] 10b #SIMM:16 01b w
10b dsp:16[Rd] 11b #SIMM:24 10b L
00b #IMM:32
(9) MOV.size src, dest
b7 b0 b7 b0 Id[1:0] src
I 1 ‘ 1 ‘sz[;:o]‘ 1 ‘ 1 ‘Id[l‘:0]| ‘rs[S‘:O]‘ ‘rd[‘3:0]‘ I 00b None
010

sz[1:0] [Size 1d[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 00b [Rs] 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b w 01b dsp:8[Rs]
10b L 10b dsp:16[Rs]
(10) MOV.size src, dest

b0 b7 b0 b7 b0
[1]a]alafafala]ofola]sro] o [zoy, | o |
sz[1:0] |Size ri[3:0]/rb[3:0]/rd[3:0] src/dest
00b B 0000b to 1111b Ri/Rb/Rd |R0 (SP) to R15
01b w
10b L

(11) MOV.size src, dest

b7 b0 b7 bo Id[1:0] dest
[1]1]szr0)]amoy| 1/ 1] o)) rs[30] | 00b None
01b
sz[1:0] |Size Id[1:0] |dest rs[3:0]/rd[3:0] src/dest
00b B 00b [Rd] 0000b to 1111b |Rs/Rd [RO (SP) to R15
01b W 01b dsp:8[Rd]
10b L 10b dsp:16[Rd]

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 208 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code
(12) MOV.size src, dest
b7 b7 b0 b7 b0
[1]2la]a]a]af1]o]oo]suo] nizoy [oy [sz |
sz[1:0] |Size rs[3:0]/ri[3:0]/rb[3:0] src/dest
00b B 0000b to 1111b Rs/Ri/Rb |RO (SP) to R15
01b w
10b L
(13) MOV.size src, dest
b7 b0 b7 b0 lds[1:0] src Idd[1:0] dest
[1] 1] szr0 odppopiusiaiof] rsf30 1d[3:0] 00b None 00b None
sz[1:0] [Size Ids[1:0]/1dd[1:0] |src/dest rs[3:0]/rd[3:0] src/dest
00b B 00b [Rs)/[Rd] 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b W 01b dsp:8[Rs]/dsp:8[Rd]
10b L 10b dsp:16[Rs]/dsp:16[Rd]
(14) MOV.size src, dest
b0 b7 b0 b0
[1]2la]a]1]a]ola]olo]1]o0adrofsiuo| w0y [rsi3o |
ad[1:0] |Addressing sz[1:0] |[Size rs[3:0]/rd[3:0] src/dest
00b Rs, [Rd+] 00b B 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b Rs, [-Rd] 01b w
10b L
(15) MOV.size src, dest
b0 b7 b0 b0
[1]2]a]a]a]a]ola]olo]1]o0adrofsio| rsz0) [3o |
ad[1:0] |Addressing sz[1:0] |[Size rs[3:0]/rd[3:0] src/dest
10b [Rs+], Rd 00b B 0000b to 1111b |Rs/Rd |RO (SP) to R15
11b [-Rs], Rd 01b w
10b L

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 209 of 271

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

MOVU

MOVU

Code Size
Syntax Size Processing Size src dest Code Size (Byte)
(1) MOVU.size src, dest B/W L dsp:5[Rs] Rd 2
(Rs=ROtoR7) (Rd=ROtoR7)
(2) MOVU.size src, dest B/W L Rs Rd 2
B/W L [Rs] Rd 2
B/W L dsp:8[Rs] Rd 3
B/W L dsp:16[Rs] Rd 4
(3) MOVU.size src, dest B/W L [Ri, Rb] Rd 3
(4) MOVU.size src, dest B/W L [Rs+] Rd 3
B/W L [-Rs] Rd 3
(1) MOVU.size src, dest
b7 b0 b7 b0
[elolafafee] | | 20 | | iz |
dsp[4:0]
sz Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
0Ob B 00000b to 11111b [0 to 31 000b to 111b Rs/Rd |R0 (SP) to R7
1b W
(2) MOVU.size src, dest
b7 b0 b7 b0 Id[1:0] src
[o[1]o]a]1]sz]iomor] rspz0r) 1d[3:0] 11b None
00b None
sz Size Id[1:0] |[src rs[3:0]/rd[3:0] src/dest
Ob B 11b Rs 0000b to 1111b |Rs/Rd [RO (SP) to R15
1b W 00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]
(3) MOVU.size src, dest
b0 b7 b0 b7 b0
[1]alafalafafaofa]a]o]sz] rizoy [b3y [rdizoy |
sz Size ri[3:0]/rb[3:0]/rd[3:0] src/dest
0Ob B 0000b to 1111b Ri/Rb/Rd |RO (SP) to R15
1b W

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 210 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

(4) MOVU.size src, dest

b7

b7

b7

b0

Il‘1‘1‘1‘1‘1‘0‘1|0‘0‘1‘1‘ad[;:0]|0‘sz| ‘rs[§:0]‘ ‘ ‘rd[§:0]‘ I
ad[1:0] |Addressing sz Size rs[3:0]/rd[3:0] src/dest
10b [Rs+], Rd Ob B 0000b to 1111b |Rs/Rd |R0 (SP) to R15
11b [-Rs], Rd 1b w
Code Size
Syntax src src2 dest Code Size (Byte)
(1) MUL src, dest #UIMM:4 - Rd 2
(2) MUL src, dest #SIMM:8 - Rd 3
#SIMM:16 - Rd 4
#SIMM:24 - Rd 5
#IMM:32 - Rd 6
(3) MUL src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == “UB")
3 (memex !="UB")
dsp:8[Rs].memex - Rd 3 (memex == “UB")
4 (memex = “UB")
dsp:16[Rs].memex - Rd 4 (memex == “UB")
5 (memex = “UB")
(4) MUL src, src2, dest Rs Rs2 Rd 3
(1) MUL src, dest
b7 b7 b0
[o[2l1]olofol1]a] immzoy | oo |
imm{[3:0] src rd[3:0] dest

0000b to 1111b

#UIMM:4 |Oto 15

0000b to 1111b |Rd

[RO (SP) to R15

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 211 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(2) MUL src, dest

b7 b0 b7 bo li[1:0] src
o[ala]a]o]a]muo]oofol1] rzo | 01b [#siMm:8]

11b [4sIMMm:24 |

00b [#IMMm:32 |

li[1:0] src rd[3:0] dest

01lb #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15

10b #SIMM:16

11b #SIMM:24

00b #IMM:32
(3) MUL src, dest
When memex == “UB” or src == Rs

b7 b0 b7 b0 Id[1:0] src

[ol1lolof1]a o] rso] | rd3o] | 11b None

00b None
105
When memex !=“UB”
b7 memex b0 b7 b0 b7 b0 Id[1:0] src
[o]ofolofol1][1]o|miuofolo]1]1]irol| rs(30] | rd3:0], | 11b None
00b None
105

mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest

00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b W 00b [Rs]

10b L 01b dsp:8[Rs]

11b uw 10b dsp:16[Rs]

(4) MUL src,src2, dest

b7 b0 b7 b0 b7 bo
[1]alafalafafalafolola]a] oy | m3oy | rs2zop |

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest

0000b to 1111b Rs/Rs2/Rd |RO (SP) to R15

R0O1US0032EJ0130 Rev.1.30 RENESAS Page 212 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

MULHI MULHI

Code Size
Syntax src src2 Code Size (Byte)
(1) MULHI src, src2 Rs Rs2 3

(1) MULHI src, src2

b7 bO b7 bo b7 b0
[1]2]1]2]1]a]ol2]ololo]ololofolo| 'm0y [rs2zo |

rs[3:0]/rs2[3:0] |src/src2
0000b to 1111b |Rs/Rs2 |RO (SP) to R15

MULLO MULLO

Code Size
Syntax src src2 Code Size (Byte)
(1) MULLO src, src2 Rs Rs2 3

(1) MULLO src, src2

b0 b7 b0 b7 b0
[1]2]a]a]1]a]ola]ololo]ololofola]| 'm0y [rs2zo |

rs[3:0]/rs2[3:0] |src/src2
0000b to 1111b |Rs/Rs2 |RO (SP) to R15

MVFACHI MVFACHI

Code Size
Syntax dest Code Size (Byte)
(1) MVFACHI dest Rd 3

(1) MVFACHI dest

b0

[1]a]1]a]al1]olafofolola]a]1]a]2]o]o]o]0] o
rd[3:0] dest
0000b to 1111b |Rd RO (SP) to R15
RO1US0032EJ0130 Rev.1.30 RENESAS Page 213 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

MVFACMI

MVFACMI

Code Size

Syntax dest Code Size (Byte)

(1) MVFACMI dest Rd 3
(1) MVFACMI dest

b0

[ESESENESENES ENEY ENEN Y EN EN E EY S I RS AR

rd[3:0] dest

0000b to 1111b |Rd [RO (SP) to R15
Code Size

Syntax src dest Code Size (Byte)
(1) MVFC src, dest Rx Rd 3
(1) MVFC src, dest

b7 b0 b7 b0 b7 b0

[aaols[o[i[a ol [o]i]0] oba_| wga_]

cr[3:0] src rd[3:0] dest
0000b Rx PSW 0000b to 1111b Rd |R0 (SP) to R15
0001b PC

0010b USP

0011b FPSW

0100b Reserved

0101b Reserved

0110b Reserved

0111b Reserved

1000b BPSW

1001b BPC

1010b ISP

1011b FINTV

1100b INTB

1101b to 1111b Reserved

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 214 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

MVTACHI

MVTACHI

Code Size

Syntax src Code Size (Byte)
(1) MVTACGU src Rs 3

(1) MVTACHI src

b7 0 b b0 b7 b0
[1/2la]a]1]a]ola]ololola]ola]a]1]olo]olo] sio

rs[3:0]

src

0000D to 1111b Rs

[RO (SP) to R15

MVTACLO

MVTACLO

Code Size
Syntax src Code Size (Byte)
(1) MVTACLO src Rs 3

(1) MVTACLO src

b0

b0 b7
[1l2]a]a]sfs]ola]olofofs]ofa]a]s]ofofo]1]

‘ rs[C‘%:O] ‘
rs[3:0] src
0000b to 1111b Rs | RO (SP) to R15
R0O1US0032EJ0130 Rev.1.30 RENESAS
Dec 26, 2019

Page 215 of 271

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

MVTC

MVTC

Code Size
Syntax src dest Code Size (Byte)
(1) MVTC src, dest #SIMM:8 Rx 4
#SIMM:16 Rx 5
#SIMM:24 Rx 6
#IMM:32 Rx 7
(2) MVTC src, dest Rs Rx 3
(1) MVTC src, dest
0 bo_b7 bo li[1:0] src
[1]2lafalafafolafolafa]a]imo]al1]olofolo] ez | 01b [#siMms]
100 [Fmzs]
110 [#SIMM:24 |
oob [#IMM:32 |
li[1:0] src cr[3:0] dest
01b #SIMM:8 0000b Rx PSW
10b #SIMM:16 0001b Reserved
11b #SIMM:24 0010b USP
00b #IMM:32 0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved
RO1US0032EJ0130 Rev.1.30 RENESAS Page 216 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

(2) MVTC src, dest
b7 b7 b7 b0
[i]2]1]1]z]1]0]1]o]1]1]0]1]0]0 0] ol | oo
cr[3:0] dest rs[3:0] src
0000b Rx PSW 0000b to 1111b Rs |R0 (SP) to R15
0001b Reserved
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

MVTIPL

Code Size

Syntax

Src

Code Size (Byte)

MVTIPL

(1) MVTIPL src

#IMM:4

3

(1) MVTIPL src

b0

b0 b7 b0 b7
[o[AaTe e[[o[s [o[:[s[s[o[oToTo o o oo] sy]

imm[3:0]

#IMM:4

0000b to 1111b

Oto 15

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 217 of 271

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

NEG

NEG

Code Size
Syntax src dest Code Size (Byte)
(1) NEG dest - Rd 2
(2) NEG src, dest Rs Rd 3
(1) NEG dest
b0 b7 b0
[o[2]afafala]2]ofofo]o]1]

‘rM§ﬂL

rd[3:0] dest

0000b to 1111b |Rd

[RO (SP) to R15

(2) NEG src, dest

b7 b0 b7

b0 b7 b0

[1]2]aa]a]a]o]ofololofolola]a]a] rs[3z0 rd[3:0]

rs[3:0]/rd[3:0] src/dest

0000b to 1111b |Rs/Rd

[RO (SP) to R15

NOP

Code Size

Syntax Code Size (Byte)
(1) NOP 1

(1) NOP

[ofofofofofofa]1]

NOP

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 218 of 271

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

NOT

NOT

Code Size
Syntax src dest Code Size (Byte)
(1) NOT dest - Rd 2
(2) NOT src, dest Rs Rd 3
(1) NOT dest
b0 b7 b0
[ola]a]ala]a]s]o]o]olo]o] razo

rd[3:0] dest

0000b to 1111b |Rd

[RO (SP) to R15

(2) NOT src, dest

b7 b0 b7 bo b7 bo
[1]a]afalafafofofolofafa]alofa]a] rs[30 rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b t0 1111b_|Rs/Rd_|RO (SP) to R15
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 219 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

OR

OR

Code Size
Syntax src src2 dest Code Size (Byte)
(1) OR src, dest #UIMM:4 - Rd 2
(2) OR src, dest #SIMM:8 - Rd 3
#SIMM:16 - Rd 4
#SIMM:24 - Rd 5
#IMM:32 - Rd 6
(3) OR src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == “UB")
3 (memex = “UB")
dsp:8[Rs].memex - Rd 3 (memex == “UB")
4 (memex !="UB")
dsp:16[Rs].memex - Rd 4 (memex == “UB")
5 (memex = “UB”")
(4) OR src, src2, dest Rs Rs2 Rd 3
(1) OR src, dest
b7 b0 b7 b0
[o[2la]olofa]ola] immzoy | rz0 |
imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 [0 to 15 0000b to 1111b |Rd [RO (SP) to R15

(2) OR src, dest

b7 bo_b7 bo lif1:0] src

o[ala]afofalmmofofof[a]1] rzo | 01b
11b [#SIMM:24 |
00b [#mMMm:32

li[1:0] src rd[3:0] dest

01b #SIMM:8 0000b to 1111b |Rd RO (SP) to R15

10b #SIMM:16

11b #SIMM:24

00b #IMM:32

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 220 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

(3) OR src, dest

When memex ==“UB” or src == Rs

b7 b0 b7 b0 Id[1:0] src
[o]1]o]1]o]1]ro| rs3o] | rd301 | 11b None

00b None
100
When memex !=“UB”
b7 memex b0 b7 b0 b7 b0 Id[1:0] src
[o]ofofofof2]1]o|muoo|2]o|1]mo| rs0] | rdz0 | 11b None
00b None
o1

mi[1:0] |memex Id[1:0] src rs[3:0]/rd[3:0] src/dest

00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b W 00b [Rs]

10b L 01b dsp:8[Rs]

11b uw 10b dsp:16[Rs]
(4) OR src, src2, dest

b7 b0 b7 b0 b7 bo
[1]alafalafafafafolafofa] oy [mi3oj [rs2zo |

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest

0000b to 1111b Rs/Rs2/Rd [RO (SP) to R15
Code Size

Syntax dest Code Size (Byte)

(1) POP dest Rd 2
(1) POP dest

7 b0

EIENESENENENEN) ENE N EN N

rd[3:0] dest

0000b to 1111b |Rd [RO (SP) to R15

R0O1US0032EJ0130 Rev.1.30 -IENESAS Page 221 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

POPC

POPC

Code Size

Syntax dest Code Size (Byte)

(1) POPC dest Rx 2
(1) POPC dest

b7 b7 b0

lolafafafafalafofafa]a]0] om0,

cr[3:0] dest

0000b Rx PSW

0001b Reserved

0010b USP

0011b FPSW

0100b Reserved

0101b Reserved

0110b Reserved

0111b Reserved

1000b BPSW

1001b BPC

1010b ISP

1011b FINTV

1100b INTB

1101b to 1111b Reserved

Code Size

Syntax dest dest2 Code Size (Byte)
(1) POPM dest-dest2 Rd Rd2 2
(1) POPM dest-dest2

b0 b7 b0

o[alafola]afa]a] oy | ra2po |

rd[3:0] dest rd2[3:0] dest2

0001b to 1110b |Rd |R1 to R14 0010b to 1111b |Rd2 R2 to R15

RO1US0032EJ0130 Rev.1.30 -IENESAS Page 222 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

PUSH

Code Size
Syntax src Code Size (Byte)
(1) PUSH.size src Rs 2
(2) PUSH:.size src [Rs] 2

dsp:8[Rs] 3

dsp:16[Rs] 4
(1) PUSH.size src

b0
[o[x]1]]2]1]1]o0]1]0]wno] rpo |
sz[1:0] |Size rs[3:0] src
00b B 0000b to 1111b |Rs |RO (SP) to R15
01b w
10b L
(2) PUSH.size src
b7 b0 b7 b0 1d[1:0] src
[1]2]a]2]o]1]omo] @0 [1]o]szuo 00b None
o (G55]

1d[1:0] src rs[3:0] src sz[1:0] |Size
00b [Rs] 0000b to 1111b |Rs |RO (SP) to R15 00b B
01b dsp:8[Rs] 01b w
10b dsp:16[Rs] 10b L

PUSH

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 223 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

PUSHC

PUSHC

Code Size

Syntax src Code Size (Byte)

(1) PUSHC src Rx 2
(1) PUSHC src

b7 b0

[o i a i e o[+ [:[o o] ool

cr[3:0] src

0000b Rx PSW

0001b PC

0010b USP

0011b FPSW

0100b Reserved

0101b Reserved

0110b Reserved

0111b Reserved

1000b BPSW

1001b BPC

1010b ISP

1011b FINTV

1100b INTB

1101b to 1111b Reserved

Code Size

Syntax src src2 Code Size (Byte)
(1) PUSHM src-src2 Rs Rs2 2
(1) PUSHM src-src2

b0 b7 b0

[o[alafolaafalo] moy | rs23o) |

rs[3:0] src rs2[3:0] src2

0001b to 1110b |Rs |R1 to R14 0010b to 1111b |Rs2 R2 to R15

RO1US0032EJ0130 Rev.1.30 -IENESAS Page 224 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

RACW

RACW

Code Size
Syntax src Code Size (Byte)
(1) RACW src #IMM:1 3

(IMM:1 = 1, 2)

(1) RACW src

b7 b0 b7 b0 b7 b0
[1]1T72]1]al1]olaolofola[1To]olo]ololofmlololo]0]

imm src
Ob, 1b #IMM:1 |1, 2

REVL

REVL

Dec 26, 2019

Code Size

Syntax src dest Code Size (Byte)
(1) REVL src, dest Rs Rd 3

(1) REVL src, dest

b0

|1 ‘1‘ 1‘ 1‘ 1‘ 1‘ o‘ 1| o‘ 1‘ 1‘ o‘ 0‘ 1‘ 1‘ 1| 1s[3:0] rd[3:0]

rs[3:0]/rd[3:0] src/dest

0000b to 1111b |Rs/Rd |RO (SP) to R15

Code Size

Syntax src dest Code Size (Byte)
(1) REVW src, dest Rs Rd 3
(1) REVW src, dest

b7 b0 b7 b0 b7 b0
[i]:]1]e]2]1]0]s]o 1] o]0 1]0]2] wma_ | wpo
rs[3:0]/rd[3:0] src/dest
0000b to 1111b |Rs/Rd |RO (SP) to R15
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 225 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

RMPA RMPA

Code Size
Syntax Size Code Size (Byte)
(1) RMPA.size B 2
w 2
L 2
(1) RMPA.size
b7 b0 b7 b0

[ofafafafa]afala]alo]olo]1]1]szra]

sz[1:0] [Size
00b B
01b W
10b L

ROLC ROLC

Code Size
Syntax dest Code Size (Byte)
(1) ROLC dest Rd 2

(1) ROLC dest

b0

b0 b7
[olalafalafafafofofa]o]1] roy

rd[3:0] dest
0000b to 1111b |Rd [RO (SP) to R15
R01US0032EJ0130 Rev.1.30 RENESAS Page 226 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

RORC

RORC

Code Size
Syntax dest Code Size (Byte)
(1) RORC dest Rd 2

(1) RORC dest

b7 b0 b7 bo
[ola]a]ala]afa]ofo]2]o]o] rumo
rd[3:0] dest

0000b to 1111b |Rd RO (SP) to R15

ROTL

ROTL

Code Size

Syntax src dest Code Size (Byte)
(1) ROTL src, dest #IMM:5 Rd 3

(2) ROTL src, dest Rs Rd 3

(1) ROTL src, dest

b0

bo b7 bo b7
[1]alafalafafolafolafa]ofa]a]a] immao

EEE

imm[4:0] src rd[3:0] dest
00000b to 11111b [#IMM:5 |0 to 31 0000b to 1111b |Rd [RO (SP) to R15
(2) ROTL src, dest

b0 b7 b0 b7 bo
[1]alafalafafofafolafa]olola]a]o] o rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd |RO (SP) to R15

RO1US0032EJ0130 Rev.1.30 RENESAS Page 227 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

ROTR ROTR

Code Size

Syntax src dest Code Size (Byte)
(1) ROTR src, dest #IMM:5 Rd 3

(2) ROTR src, dest Rs Rd 3

(1) ROTR src, dest

b0 b7 b0 b7 bo
[1]2lafalafafolafolafa]ola]2]o] —immaoy [3o |
imm{[4:0] src rd[3:0] dest
00000b to 11111b [#IMM:5 |0 to 31 0000b to 1111b |Rd [RO (SP) to R15

(2) ROTR src, dest

b7 b0 b7 bo b7 bo
[1]a]afalafafofafola]a]olol1]olo] o rd[3:0]
rs[3:0]/rd[3:0] src/dest

0000b to 1111b Rs/Rd [RO (SP) to R15

RO1US0032EJ0130 Rev.1.30 RENESAS Page 228 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4,

Instruction Code

ROUND ROUND

Code Size
Syntax src dest Code Size (Byte)
(1) ROUND src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5
(1) ROUND src, dest
b0 b7 b0 b7 b0 1d[1:0] src
[1]2]a]ala1]a]olof1]olola]1]o]mpo| w30 rd[z0] | 11b None
00b None
1d[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]
Code Size
Syntax Code Size (Byte)
(1) RTE 2
(1) RTE

b0 b7
[ofs]s]sfafsfafa]a]ofo]sfofs]o]s]

RO1US0032EJ0130 Rev.1.30 RENESAS
Dec 26, 2019

Page 229 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

RTFI

Code Size

Syntax Code Size (Byte)
(1) RTFI 2

(1) RTFI

b7 b0 b7

lols]alafafsfafa]afofola]o[2]0]o]

RTS

Code Size

Syntax Code Size (Byte)
(1) RTS 1

(1) RTS

Lolofofofofof1]o]

RTSD

RTFI

RTS

RTSD

Code Size
Syntax src dest dest2 Code Size (Byte)
(1) RTSD src #UIMM:8 - - 2
(2) RTSD src, dest-dest2 #UIMM:8 Rd Rd2 3
(1) RTSD src
b7 b0 src
[o[1]1]olo]a]1]1] [rUmMme]
(2) RTSD src, dest-dest2
b7 b0 b7 b0 src
lofolafalafafa/a] raoy | r2@o | [ruiMmis]
rd[3:0]/rd2[3:0] dest/dest2
0001b to 1111b Rd/Rd2 |R1 to R15
RO1US0032EJ0130 Rev.1.30 RENESAS Page 230 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

SAT SAT

Code Size
Syntax dest Code Size (Byte)
(1) SAT dest Rd 2

(1) SAT dest

b7 b0 b7 b0
IO\1\1\1\1\1\1\o|o\o\1\1\ rd[3:0]
rd[3:0] dest

0000b to 1111b |Rd |RO (SP) to R15

SATR SATR

Code Size

Syntax Code Size (Byte)
(1) SATR 2

(1) SATR

b0 b7
Lof2[2falafala]a]alofolalolo]a]a]

RO1US0032EJ0130 Rev.1.30 RENESAS Page 231 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

SBB

SBB

Code Size
Syntax src dest Code Size (Byte)
(1) SBB src, dest Rs Rd 3
(2) SBB src, dest [Rs].L Rd 4
dsp:8[Rs].L Rd 5
dsp:16[Rs].L Rd 6
(1) SBB src, dest
b0 b7 b0 b7 b0
[1/2]1]2]1]2]olo]ololololololmmo| oy | rso
1d[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15

(2) SBB src, dest

b7 memex

b7

b7

b0 1d[1:0] src

b0 bo b b
[o[olofolofa]1lo]1]o][1]o]o]o]umo[o]oofolo]olofo] o

rd[3:0] 00b None

1d[1:0] src rs[3:0]/rd[3:0] src/dest

00b [Rs] 0000b to 1111b |[Rs/Rd [RO (SP) to R15
01b dsp:8[Rs]

10b dsp:16[Rs]

o1
10b |dsp:16

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 232 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

SCCnd SCCnd

Code Size
Syntax Size dest Code Size (Byte)
(1) SCCnd.size dest L Rd 3
B/WI/L [Rd] 3
B/WI/L dsp:8[Rd] 4
B/WI/L dsp:16[Rd] 5
(1) SCCnd.size dest
b0 b7 b0 b0 [d[1:0] dest
[1]2]a]al1]a]olo]1]1]0]1]szn0mmo| riz0p cdi30] | 11b None
00b None
ot (5]
oo [pze]
sz[1:0] |Size 1d[1:0] dest rd[3:0] dest
00b B 11b Rd 0000b to 1111b |Rd |R0 (SP) to R15
01b w 00b [Rd]
10b L 01b dsp:8[Rd]
10b dsp:16[Rd]
cd[3:0] [SCCnd cd[3:0] [SCCnd

0000b SCEQ, SCZ [1000b SCGE
0001b SCNE, SCNZ |1001b SCLT
0010b SCGEU, SCC |1010b SCGT
0011b SCLTU, SCNC|1011b SCLE

0100b SCGTU 1100b SCO
0101b SCLEU 1101b SCNO
0110b SCPZ 1110b Reserved
0111b SCN 1111b Reserved

SCMPU SCMPU

Code Size

Syntax Code Size (Byte)
(1) SsCMPU 2

(1) SCMPU

b7 b0 b7 b0

[ofs]s]sfafsfafa]a]ofofofofofa]s]

RO1US0032EJ0130 Rev.1.30 RENESAS Page 233 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

SETPSW

SETPSW

Code Size
Syntax dest Code Size (Byte)
(1) SETPSW dest flag 2
(1) SETPSW dest
b7 b0 b7 b0
[o[1]x]1]1]2]1]1]1]01]0] ooma
cb[3:0] dest
0000b flag C
0001b z
0010b S
0011b 0]
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b |
1001b u
1010b Reserved
1011b Reserved
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved
RO1US0032EJ0130 Rev.1.30 RENESAS Page 234 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

SHAR

Code Size
Syntax

src src2

dest

SHAR

Code Size (Byte)

(1) SHAR src, dest

#IMM:5 -

Rd 2

(2) SHAR src, dest

Rs -

Rd 3

(3) SHAR

src, src2, dest

#IMM:5 Rs

Rd 3

(1) SHAR

b7

src, dest

b0

[o[ala]ol1]ol1] immaop | rzop |

imm{[4:0]

Src

rd[3:0]

dest

00000b to 11111b

#IMM:5 [0 to 31

0000b to 1111b

Rd

[RO (SP) to R15

(2) SHAR src, dest

b0

bo b7 bo b7
[1]2]a]ala]afola]ola]1]o]ololol1] 30y

‘ rd[?:O] ‘

rs[3:0]/rd[3:0]

src/dest

0000b to 1111b

Rs/Rd

[RO (SP) to R15

(3) SHAR src, src2, dest

b0 b7

b0

b0 b7
[tle]s]a]sfafo]a]afofs]

im‘m[4‘:0]‘ | ‘r52L3:O]‘ ‘ ‘rd[§:0]‘ I

imm[4:0]

Src

rs2[3:0]/rd[3:0]

src2/dest

00000b to 11111b

#IMM:5 [0 to 31

0000b to 1111b

Rs/Rd

[RO (SP) to R15

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 235 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

SHLL

SHLL

Code Size
Syntax src src2 dest Code Size (Byte)
(1) SHLL src, dest #IMM:5 - Rd 2
(2) SHLL src, dest Rs - Rd 3
(3) SHLL src, src2, dest #IMM:5 Rs Rd 3
(1) SHLL src, dest
b7 b0 b7
[oli[ioli[i]o] _mmisor | ol
imm{[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 |O to 31 0000b to 1111b |Rd |RO (SP) to R15
(2) SHLL src, dest
b0 b7 b0 b7 bo
[1]2]afala]afola]ola]1]o]olola]o] 30 rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b [Rs/Rd [RO (SP) to R15
(3) SHLL src, src2, dest
b0 b7 b0 b7 bo
[1]alafalafafolafa]a]o] immaop [rs2zo) | rdizo) |
imm{[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b [#IMM:5 |0 to 31 0000b to 1111b |Rs/Rd [RO (SP) to R15

RO1US0032EJ0130
Dec 26, 2019

Rev.1.30

RENESAS

Page 236 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

SHLR

SHLR

Code Size
Syntax src2 dest Code Size (Byte)
(1) SHLR src, dest - Rd 2
(2) SHLR src, dest - Rd 3
(3) SHLR src, src2, dest Rs Rd 3
(1) SHLR src, dest
b7 b0 b7
[o[i[iloli oTo] _mpior | ol
imm{[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 |O to 31 0000b to 1111b |Rd |RO (SP) to R15
(2) SHLR src, dest
b0 b7 b0 b7 bo
[1]2]a]a]a]a]ola]ola]1]o]olololo] 30 rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd |RO (SP) to R15
(3) SHLR src, src2, dest
b0 b7 b0 b7 bo
[1]2lafalafafolaf1lolo] immao [rs2zo) | rdizo) |
imm{[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b [#IMM:5 |0 to 31 0000b to 1111b |Rs/Rd [RO (SP) to R15

RO1US0032EJ0130
Dec 26, 2019

Rev.1.30

RENESAS

Page 237 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

SMOVB

Code Size

Syntax Code Size (Byte)
(1) SMOVB 2

(1) SMovB

b7 b0 b7 bo
lols]afafafafafa]afofofofs]ofa]s]

SMOVF

Code Size

Syntax Code Size (Byte)
(1) SMOVF 2

(1) SMOVF

bo
lols]alafafafafa]afofofofafa]a]s]

SMOVU

Code Size

Syntax Code Size (Byte)
(1) sMovu 2

(1) SMovu

b7 b0 b7 b0

[ofs]s]sfafsfafa]a]ofofofofs]a]s]

SMOVB

SMOVF

SMOVU

RO1US0032EJ0130 Rev.1.30 RENESAS
Dec 26, 2019

Page 238 of 271

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

SSTR SSTR

Code Size
Syntax Size Processing Size Code Size (Byte)
(1) SSTR.size B B 2
w W 2
L L 2
(1) SSTR.size
b7 b0 b7 b0

o[alafafafafala]1]o]olo]1]o0]szuo

sz[1:0] [Size
00b B
01b W
10b L

STNZ STNZ

Code Size
Syntax src dest Code Size (Byte)
(1) STNZ src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(1) STNZ src, dest
b7 bo b7 bo b7 bo li[1:0] src
[1]alafalafafolafolafa]a]mmololofa]a]a]1] o | 01b
N e —
11b [#SIMM:24 |
00b [#IMM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd [RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
R0O1US0032EJ0130 Rev.1.30 -IENESAS Page 239 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

STZ

STZ

Code Size
Syntax src dest Code Size (Byte)
(1) STZ src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(1) STZ src, dest
bo li[1:0] src
|1‘1‘1‘1‘1‘1‘0‘1|o‘1‘1‘1‘|i[;:0]‘0‘0|1‘1‘1‘0‘ rd[3:0] | 01b
11b [4sIMM24 |
00b [#MM:32 |
li[1:0] src rd[3:0] dest
01lb #SIMM:8 0000b to 1111b |Rd |RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 240 of 271

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

SUB

SUB

Code Size
Syntax src src2 dest Code Size (Byte)
(1) SUB src, dest #UIMM:4 - Rd 2
(2) SUB src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == “UB")
3 (memex !=“UB")
dsp:8[Rs].memex - Rd 3 (memex == “UB")
4 (memex = “UB")
dsp:16[Rs].memex - Rd 4 (memex == “UB")
5 (memex !=“UB")
(3) SUB src, src2, dest Rs Rs2 Rd 3
(1) SUB src, dest
b0 b7 b0
[o/1]1]olofolo]o] immao | razop
imm{[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 |O to 15 0000b to 1111b (Rd |R0 (SP) to R15
(2) SUB src, dest
When memex ==“UB” or src == Rs
b7 b0 b7 b0 Id[1:0] src
[o]1]o]o]ooliro| rsz0], | rd30] | 11b None
00b None

When memex !=“UB”"

10b |dsp:16

b7 memex b0_b7 b0 b7 b0 1d[1:0] src

[o]ofofofo[1]1]o[mitojjo]oo|o]dro| rsz0 | rd30 | 11b None
00b None

mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest

00b B 11b Rs 0000b to 1111b |[Rs/Rd |RO (SP) to R15

01b W 00b [Rs]

10b L 01b dsp:8[Rs]

11b uw 10b dsp:16[Rs]

(3) SUB src, src2, dest

b7 b0 b7 b0 b7 b0

[1]2laalafafala]ololo]o] oy [mi3oj [rs2z0 |

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest

0000b to 1111b Rs/Rs2/Rd

RO (SP) to R15

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 241 of 271

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

SUNTIL

SUNTIL

Code Size
Syntax Size Processing Size Code Size (Byte)
(1) SUNTIL.size B B 2
w W 2
L L 2
(1) SUNTIL.size
b7 b0 b7 b0

o[alafaf1]af1la]1]o0]0olo]0]o]szuol

sz[1:0] [Size
00b B
01b W
10b L

SWHILE

SWHILE

Code Size
Syntax Size Processing Size Code Size (Byte)
(1) SWHILE.size B B 2

w w 2

L L 2

(1) SWHILE.size

bo b7 bo
[o[alafafafa]a]a]1]o]olo]o]1]szuol

sz[1:0] |Size
00b B
01b w
10b L
RO1US0032EJ0130 Rev.1.30 RENESAS Page 242 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4.

Instruction Code

TST

TST

Code Size
Syntax src src2 Code Size (Byte)
(1) TST src, src2 #SIMM:8 Rs 4
#SIMM:16 Rs 5
#SIMM:24 Rs 6
#IMM:32 Rs 7
(2) TST src, src2 Rs Rs2 3
[Rs].memex Rs2 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rs2 4 (memex == “UB")
5 (memex !=“UB")
dsp:16[Rs].memex Rs2 5 (memex == “UB")
6 (memex != “UB")
(1) TST src,src2
b7 b7 b7 b0 li[1:0] src
|1‘1‘1‘1‘1‘1‘0‘1|0‘1‘1‘1‘ |i[;:0]‘0‘0|1‘1‘0‘0‘ 1s2[3:0] | 01b
11b [#SIMM:24 |
oob [#IMMm:32 |
li[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b |Rs |RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) TST src,src2
When memex == “UB” or src == Rs
Y 1d[1:0] src
[1/2]a]a]1]a]olofolol1]a]ololmo| rs@o [ooy | 11b None
00b None
106
When memex !=*“UB”
b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[oolofolof1]1]0]miol1/o]ololunafolofolols][1]olo] o | w2z | /2 N
00b None
01b
10b
mi[1:0] |memex Id[1:0] src rs[3:0]/rs2[3:0] src/src2
00b B 11b Rs 0000b to 1111b Rs/Rs2 |RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 243 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

WAIT

Code Size

Syntax Code Size (Byte)
(1) WAIT 2

(1) WAIT

b7 b0 b7

lols]alafafafafa]afofolafofs]1]o]

XCHG

WAIT

XCHG

Code Size
Syntax src dest Code Size (Byte)
(1) XCHG src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex !=“UB")
dsp:8[Rs].memex Rd 4 (memex == “UB")
5 (memex !=“UB")
dsp:16[Rs].memex Rd 5 (memex == “UB")
6 (memex !=“UB")
(1) XCHG src, dest
When memex == “UB” or src == Rs
0 B0 b7 B0 id[1:0] src
[1]2]1]a]1]2]olo]ols]olo]o]o]wma| o rd[z0] | 116 None
00b None
105
When memex !=“UB”
b7 memex b0 b7 b0 b7 b0 b7 b0 d[1:0] src
[oofolololala o mof1]oloolwmafololol1lolololo] mmoy | oy | /2 ™
00b None
01b
10b _dsp:16
mi[1:0] |memex Id[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
RO1US0032EJ0130 Rev.1.30 -IENESAS Page 244 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

4. |Instruction Code

XOR

XOR

Code Size
Syntax src dest Code Size (Byte)
(1) XOR src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) XOR src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB")
4 (memex != “UB")
dsp:8[Rs].memex Rd 4 (memex == “UB")
5 (memex !=“UB")
dsp:16[Rs].memex Rd 5 (memex == “UB")
6 (memex != “UB")
(1) XOR src, dest
b7 bo b7 bo li[1:0] src

[1]alafalafafolafolafa]alimo]olofa]a]o]1] o |

01b [#SIMM:8
10b [#SIMM:16

11b [#siMM:24 |

oob [#IMMm:32 |

li[1:0] src rd[3:0] dest
01lb #SIMM:8 0000b to 1111b |Rd |RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
RO1US0032EJ0130 Rev.1.30 RENESAS Page 245 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code
(2) XOR src, dest
When memex == “UB” or src == Rs
b0 b7 b0 b7 b0 1d[1:0] src
[1]2]a]al1]a]olofolola]1]o]1]mmo| s rd[z0] | 11b None
00b None
01b
10b
When memex !=“UB”
b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[oolofolof1]1]o]mual1/olololwrafolofolols]1lols] s@oy | ramo | / 10 New
00b None
100
mi[1:0] |memex Id[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |[Rs/Rd |RO (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 246 of 271

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5. Exceptions

5.1 Types of Exception

During the execution of aprogram by the CPU, the occurrence of certain events may necessitate suspending execution of
the main flow of the program and starting the execution of another flow. Such events are called exceptions.

Figure 5.1 shows the types of exception.

The occurrence of an exception causes the processor mode to switch to supervisor mode.

Exceptions Undefined instruction exception
Privileged instruction exception
Access exception
Floating-point exceptions
Reset

Non-maskable interrupt

Interrupts

Unconditional trap

Figure 5.1 Types of Exception

RO1US0032EJ0130 Rev.1.30 RENESAS Page 247 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.1.1 Undefined Instruction Exception

An undefined instruction exception occurs when execution of an undefined instruction (an instruction not implemented)
is detected.

5.1.2 Privileged Instruction Exception

A privileged instruction exception occurs when execution of a privileged instruction is detected while operationisin user
mode. Privileged instructions can only be executed in supervisor mode.

5.1.3 Access Exception

When it detects an error in memory access, the CPU generates an access exception. Detection of memory protection
errors for memory protection units generates exceptions of two types: instruction-access exceptions and operand-access
exceptions.

514 Floating-Point Exceptions

Floating-point exceptions are generated when any of the five exceptions specified in the IEEE754 standard, namely
overflow, underflow, inexact, division-by-zero, or invalid operation, or an attempts to use processing that is not
implemented, is detected upon execution of afloating-point arithmetic instruction. Exception handling by the CPU only
proceeds when any among the EX, EU, EZ, EO, or EV bitsin the FPSW, which corresponding to the five types of
exception, isset to 1.

Note: Floating-point exceptions do not occur on the products which do not support the floating-point arithmetic
instructions.

5.1.5 Reset

A reset through input of the reset signal to the CPU causes the exception handling. This has the highest priority of any
exception and is always accepted.

5.1.6 Non-Maskable Interrupt

The non-maskable interrupt is generated by input of the non-maskable interrupt signal to the CPU and is only used when
the occurrence of afatal fault has been detected in the system. Never end the exception handling routine for the non-
maskabl e interrupt with an attempt to return to the program that was being executed at the time of interrupt generation.

5.1.7 Interrupts

Interrupts are generated by the input of interrupt signalsto the CPU. The interrupt with the highest priority can be
selected for handling as afast interrupt. In the case of the fast interrupt, hardware pre-processing and hardware post-

processing are handled fast. The priority level of the fast interrupt is 15" (the highest). The exception processing of
interrupts is masked when the | bitin PSW is 0.

Note: * The priority level of the fast interrupt is 7 in products of the RX610 group.

5.1.8 Unconditional Trap

An unconditional trap is generated when the INT or BRK instruction is executed.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 248 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

5. Exceptions

5.2

Exception Handling Procedure

For exception handling, part of the processing is handled automatically by hardware and part is handled by a program
(the exception handling routine) that has been written by the user. Figure 5.2 shows the handling procedure when an
exception other than areset is accepted.

Generation of an exception event request

v

Instruction | Instruction
A B

Instruction
C

Exception request

The program is suspended
and the exception is
accepted.

Hardware pre-processing

(For the fast interrupt)
PC —» BPC

PSW — BPSW

Uu=0

1=0

PM=0

PC — Stack (ISP)
PSW —» Stack (ISP)
u=0

1=0

PM=0

(For exceptions other than the fast interrupt)

Switch to the
supervisor mode

Read the
vector.

Restarting of the program

Instruction | Instruction
C D
'} 2 '}

« Instruction canceling type

(Undefined instruction exception, Privileged instruction
exception, Access exception, and Floating-point

exception)
« Instruction suspending type
(Reception of an interrupt during execution
RMPA instruction or a string manipulation i
« Instruction completion type
(interrupt and unconditional trap)

Transition to the user mode when the

PM bit in the PSW is 1.

of the
nstruction)

(For the fast interrupt)
BPC —» PC
BPSW — PSW

Stack —» PC
Stack - PSW

(For exceptions other than the fast interrupt)

Hardware post-processing

Processing of user-written program code

Branch to the
start of the

handler. -
Saving of
Exception handling general-
routine other than purpose
the non-maskable registers
interrupt _

Restoration of

(For the fast interrupt)
RTFI instruction

Handling general-
routine purpose (For exceptions other than th
registers interrupt)

RTE instruction

N
J

Non-maskable
interrupt

Non-maskable
interrupt processing

4>{ End of the program or resetting of the system

Figure 5.2 Outline of the Exception Handling Procedure

When an exception is accepted, hardware processing by the CPU is followed by vector table access to acquire the
address of the branch destination. A vector addressis allocated to each exception. The branch destination address of the
exception handling routine for the given exception is written to each vector address.
Hardware pre-processing by the CPU handles saving of the contents of the program counter (PC) and processor status
word (PSW). In the case of the fast interrupt, the contents are saved in the backup PC (BPC) and the backup PSW
(BPSW), respectively. In the case of other exceptions, the contents are saved on the stack. General purpose registers and
control registers other than the PC and PSW that are to be used within the exception handling routine must be saved by
user program code at the start of the exception handling routine.
At the end of exception handling routine, after the restoration of registers saved by the user, the RTE instruction is

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 249 of 271

RX Family RXv1 Instruction Set Architecture 5. Exceptions

executed to return from the exception handling routine to the original program. For return from the fast interrupt, the
RTFI instruction is used instead. In the case of the non-maskable interrupt, end the program or reset the system without
returning to the original program.

Hardware post-processing by the CPU handles restoration of the pre-exception contents of the PC and PSW. In the case
of thefast interrupt, the contents of the BPC and BPSW are restored to the PC and PSW, respectively. In the case of other
exceptions, the contents are restored from the stack to the PC and PSW.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 250 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

5. Exceptions

5.3

Acceptance of Exceptions

When an exception occurs, the CPU suspends the execution of the program and processing branches to the start of the

exception handling routine.

5.3.1

Timing of Acceptance and Saved PC Value

Table 5.1 lists the timing of acceptance and program counter (PC) value to be saved for each type of exception event.

Table 5.1

Exception

Type of Handling

Timing of Acceptance and Saved PC Value

Timing of Acceptance

Value Saved in the BPC/
on the Stack

Undefined instruction exception

Instruction canceling
type

During instruction
execution

PC value of the instruction
that generated the exception

Privileged instruction exception

Instruction canceling
type

During instruction
execution

PC value of the instruction
that generated the exception

Access exception

Instruction canceling
type

During instruction
execution

PC value of the instruction

that generated the exception

Floating-point exceptions

Instruction canceling

During instruction

PC value of the instruction

type execution that generated the exception
Reset Program Any machine cycle None
abandonment type
Non- During execution of the Instruction During instruction PC value of the instruction
maskable RMPA, SCMPU, SMOVB, suspending type execution being executed
interrupt SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions
Other than the above Instruction completion At the next break PC value of the next
type between instructions instruction
Interrupts During execution of the Instruction During instruction PC value of the instruction

RMPA, SCMPU, SMOVB,
SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions

suspending type

execution

being executed

Other than the above

Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

Unconditional trap

Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 251 of 271

RX Family RXv1 Instruction Set Architecture

5. Exceptions

5.3.2 Vector and Site for Preserving the PC and PSW

The vector for each type of exception and the site for preserving the contents of the program counter (PC) and processor

status word (PSW) arelisted in Table 5.2.

Table 5.2 Vector and Site for Preserving the PC and PSW

Site for Preserving the PC

Exception Vector and PSW

Undefined instruction exception Fixed vector table Stack

Privileged instruction exception Fixed vector table Stack

Access exception Fixed vector table Stack

Floating-point exceptions Fixed vector table Stack

Reset Fixed vector table Nowhere

Non-maskable interrupt Fixed vector table Stack

Interrupts Fast interrupt FINTV BPC and BPSW
Other than the above Relocatable vector table Stack

Unconditional trap Relocatable vector table Stack

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS

Page 252 of 271

RX Family RXv1 Instruction Set Architecture 5. Exceptions

54 Hardware Processing for Accepting and Returning from Exceptions

This section describes the hardware processing for accepting and returning from an exception other than a reset.

(1) Hardware pre-processing for accepting an exception
(a) Preserving the PSW

(For the fast interrupt)
PSW — BPSW

(For other exceptions)
PSW — Stack

Note: The FPSW is not saved by the hardware preprocessing. If floating-point arithmetic instructions are to
be used within an exception handling routine, save the FPSW on the stack from within the exception
handling routine.

(b) Updating of the PM, U, and | bits in the PSW
I: Cleared to O
U: Clearedto O
PM: Cleared to O

(c) Preserving the PC
(For the fast interrupt)
PC — BPC
(For other exceptions)
PC — Stack

(d) Set the branch-destination address of the exception handling routine in the PC

Processing is shifted to the exception handling routine by acquiring the vector corresponding to the exception
and branching accordingly.

(2) Hardware post-processing for executing RTE and RTFI instructions
(a) Restoring the PSW
(For the fast interrupt)
BPSW — PSW
(For other exceptions)
Stack — PSW

(b) Restoring the PC
(For the fast interrupt)

BPC — PC
(For other exceptions)
Stack — PC
R0O1US0032EJ0130 Rev.1.30 RENESAS Page 253 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.5

Hardware Pre-processing

The sequences of hardware pre-processing from reception of each exception request to execution of the associated
exception handling routine are explained below.

5.5.1 Undefined Instruction Exception
(1) Thevalue of the processor status word (PSW) is saved on the stack (1SP).

@

©)
(4)
©)

The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (1) in the PSW are
cleared to O.

The value of the program counter (PC) is saved on the stack (1SP).

The vector is fetched from address FFFFFFDCh.

The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.2 Privileged Instruction Exception

)
@)

©)
4)
©)

The value of the processor status word (PSW) is saved on the stack (ISP).

The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (1) in the PSW are
cleared to O.

The value of the program counter (PC) is saved on the stack (1SP).

The vector is fetched from address FFFFFFDOh.

The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.3 Access Exception

D
@)

©)
4
©)

The value of the processor status word (PSW) is saved on the stack (1SP).

The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (1) in the PSW are
cleared to O.

The value of the program counter (PC) is saved on the stack (1SP).

The vector is fetched from address FFFFFFD4h.

The PC is set to the fetched address and processing branches to the start of the exception handling routine.

554 Floating-Point Exceptions

@
@

©)
4
©)

The value of the processor status word (PSW) is saved on the stack (ISP).

The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (1) in the PSW are
cleared to O.

The value of the program counter (PC) is saved on the stack (1SP).

The vector is fetched from address FFFFFFE4h.

The PC is set to the fetched address and processing branches to the start of the exception handling routine.

555 Reset

)
@
©)

The control registers are initialized.
The address of the processing routine is fetched from the vector address, FFFFFFFCh.
The PC is set to the fetched address.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 254 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.5.6 Non-Maskable Interrupt

(1) Thevalue of the processor status word (PSW) is saved on the stack (1SP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (1) in the PSW are
cleared to O.

(3) If theinterrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOV U, SSTR,
SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved on the stack
(ISP). For other instructions, the PC value of the next instruction is saved.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW are set to Fh.

(5) Thevector isfetched from address FFFFFFF8h.

(6) ThePC isset to the fetched address and processing branches to the start of the exception handling routine.

5.5.7 Interrupts

(1) Thevaue of the processor status word (PSW) is saved on the stack (I1SP) or, for the fast interrupt, in the backup
PSW (BPSW).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (1) in the PSW are
cleared to O.

(3) If theinterrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOV U, SSTR,
SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved on the stack
(ISP). For other instructions, the PC value of the next instruction is saved. Saving of the PC isin the backup PC
(BPC) for fast interrupts and on the stack for other interrupts.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW indicate the interrupt priority level of the
interrupt.

(5) Thevector for an interrupt source other than the fast interrupt is fetched from the rel ocatabl e vector table. For the
fast interrupt, the address is fetched from the fast interrupt vector register (FINTV).

(6) ThePC isset to the fetched address and processing branches to the start of the exception handling routine.

5.5.8 Unconditional Trap

(1) Thevalue of the processor status word (PSW) is saved on the stack (1SP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (1) in the PSW are
cleared to O.

(8) Thevaue of the program counter (PC) is saved on the stack (I1SP).

(4) Forthe INT instruction, the value at the vector corresponding to the INT instruction number is fetched from the
rel ocatable vector table.
For the BRK instruction, the value at the vector from the start address is fetched from the relocatable vector table.

(5) ThePC isset to the fetched address and processing branches to the start of the exception handling routine.

RO1US0032EJ0130 Rev.1.30 RENESAS Page 255 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.6 Return from Exception Handling Routines

Executing the instructions listed in Table 5.3 at the end of the corresponding exception handling routines restores the
values of the program counter (PC) and processor status word (PSW) that were saved on the stack or in the backup PC
(BPC) or the backup PSW (BPSW) by the hardware preprocessing.

Table 5.3 Return from Exception Handling Routines

Exception Instruction for Return
Undefined instruction exception RTE
Privileged instruction exception RTE
Access exception RTE
Floating-point exceptions RTE
Reset Return is impossible
Non-maskable interrupt Return is disabled
Interrupts Fast interrupt RTFI

Other than the above RTE
Unconditional trap RTE

5.7 Order of Priority for Exceptions

The order of priority for exceptionsis given in Table 5.4. When multiple exceptions are generated at the same time, the
exception with the highest priority is accepted first.

Table 5.4 Order of Priority for Exceptions

Order of Priority Exception
High 1 Reset
A 2 Non-maskable interrupt
3 Interrupts
4 Instruction access exception
5 Undefined instruction exception

Privileged instruction exception

6 Unconditional trap
7 Operand access exception
Low 8 Floating-point exceptions
RO1US0032EJ0130 Rev.1.30 RENESAS Page 256 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture Index

Index
Numerics F
0 flush bit of denormalized number (DN bit)cccvvvnvnnens 22 fast interrupt vector register (FINTV) .uvvveveveieieienenennnenens 19
FINTV (fast interrupt vector register).....ovevevevereneninrnnnns 19
A fiXxed VECIOr tabIE....evvrrreeeeeeeeeeeeerree e e e e e e e eerrae s 31
floating-point error summary flag (FSflag)......cocvvvvvenennns 22
ACC (BCCUMUIALOr) «.vuveieeeeeeeeea s rarare e e eeenes 23 floating-point EXCEPLIONSvuvuiuieiniiiiireranananens 24, 248
BCCESS EXCEPLION ruvvirninieriereiar e reans 248 floating-poiNt NUMDES v..cuveiieieiire e 28
ACCUMUIAEOr (ACC) euiuieieieieierereieneaearaeneararsarrrnsnnans 23 floating-point rounding-mode setting bits (RM[1:0] bits)..... 21
floating-point status word (FPSW)ouveveiiiininininiinenns 20
B FO flag (overflow flag) «ooeeeveeeeeeeieiieieieeee e 22
FPSW (floating-point StatUS WOrd)veveverereienenennnnnnnnns 20
backup PC (BPC) euvuiiiiiiiiiiiiiiirr e 19 FSflag (floating-point error summary flag)......c.cveveuinennns 22
backup PSW (BPSW) ...cucviiiiieiineirenee e 19 FU flag (underflow flag) ..euveveeieniiiiniiieiincneeens 22
DItWiSe OPEratioNS.vuveeeees s s rrr e e e eeaens 29 FV flag (invalid operation flag)oveveverevvveveierenenenenens 22
BPC (DaCKUP PC) e e e 19 FX flag (inexact flag) «.eeveririeiiiiiiiiiiirrneeens 22
BPSW (baCkup PSW) ...vvrenieiiiiieniiniesa s nesaens 19 FZ flag (division-by-zero flag)eovuvenriinieninininiineninnss 22
C G
(O F- o J (o= VA 1 F-o) I PPN 18 general-purpose registers (RO (SP) toR15) «vuvuvuvveninnnnnns 15
carry flag (Cflag) ..cveviiiiiiiii 18
CE flag (unimplemented processing cause flag) 21 I
COflag (overflow causeflag) ...veveveeeieieiriririririrnnnannns 21
CONLrol register direCt.....vuvuieieieiiieieeer s 38 I bit (interrupt enable bit)vvveieieiiii e 18
CONLIOl FEJISIEIS . vueuieenia s e 15 IMMEIBLE ... eiiveiei e 36
CU flag (underflow causeflag)vveveieieiriririeinininnnnnns 21 indexed register iNAdIreCtovvevevevereieieieieereraraeaeeaenss 38
CV flag (invalid operation cause flag)ocvvvviviviiiininnnns 21 inexact cause flag (CX flag)ovveveieiinininiiiiiiiinieeens 21
CX flag (inexact cause flag)vevvureieiiineiiniieiiceiieean 21 inexact exception enable bit (EX bit) v.vvveveiiieiiniiinnnnne, 22
CZ flag (division-by-zero causeflag)covevrireininnnnnnnns 21 inexact flag (FX flag) «euvvvviviiiiiiirecre e e eeaes 22
INTB (interrupt table register)eeeeiiiiiiiiiirreenens 16
D 710zt SR 28
interrupt enable bit (1 bit) ..vvevii e 18
division-by-zero cause flag (CZ flag)oeeveerieiiiiiininnnns 21 interrupt stack pointer (ISP)vevvieiiree e 16
division-by-zero exception enable bit (EZ bit)cuvuee. 22 interrupt table register (INTB) ..uvvvviviiiiiiiiieieen, 16
division-by-zero flag (FZ flag).....vcveveieneieiririeinininnnnnns 22 101 (0o 248
DN bit (O flush bit of denormalized number) 22 invalid operation cause flag (CV flag)ccovvvviiieienininnnns 21
invalid operation exception enable bit (EV bit)........c.eueuee. 22
E invalid operation flag (FV flag) ...cceeeeeeeeeeeereeeeeeeeeeeeeeen, 22
IPL[3:0] bits (processor interrupt priority level) 18
EO bit (overflow exception enable bit)vevvuvevriinieninnnns 22 ISP (interrupt stack POINEr) v..vuvuieeeierire e 16
EU bit (underflow exception enable bit).........cccvveveenen. 22
EV bit (invalid operation exception enable bit)................. 22 N
EX bit (inexact exception enable bit)ceevvviinienenene. 22
EZ hit (division-by-zero exception enable bit) 22 NaN (NOot aNUMDEN) ..uvuvirieiririeieierrrrve e rerenenenens 26
NoN-Maskable INtErTUPL.......cuvvieiee e e 248
RO1US0032EJ0130 Rev.1.30 RENESAS Page 257 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture Index
@) SiZ€ EXtENSION SPECIFIEN .. uvvrrieeieeeeececrreeeee e e e e e e e aneeees 48
SIZE SPECITIEN cuieiiiieiir 46
Oflag (overflow flag) c.uvvveveieieieiiiecececececee e aeaas 18 SNaN (Signaling NaN).....vvviirerererer e raeeenes 26
order of priority for exceptionsc.ceveieiiiiiiiiiiiiiienn, 256 stack pointer (RO (SP)) «.vueeeeeereerarrarrrrrararasas 15
overflow cause flag (COflag) ..evvuveriiieiiniiiiiiiniiieenn, 21 stack pointer select bit (U Dit) .oeuveeieieiiiiiiiniiieen, 18
overflow exception enable bit (EO bit) ...vvveeivieieinnnnnns 22 LS PPN 29
overflow flag (FOflag) «..oevvveieieiiiiiiiiciiccec e 22 SUPENVISOr MOOE. 1. eieieieieieeeeeeeerrrrasa s raranananes 27
overflow flag (O flag) vuverrveieniiiiiiiinii e 18
U
P
U bit (stack pointer select bit)vvevuienriinieiiniieiineiane, 18
PC (Program COUNEr) vuuvueueurrrrreearnrnrnrnsnrererenenenes 16 UNCONAItioNal traP...uvueesiirrer e e e raeearraas 248
PM bit (processor mode select bit)vuveviiiiiiieiaanes 18 undefined INStruction eXception.......c.cvvevereienininineenns 248
post-increment register iNdireCt.....ovuveevveneiieneiiennnininnes 38 underflow cause flag (CU flag) ...vvvvvevienriinneniininininnen, 21
pre-decrement register iNdireCtovevevevereneieneirnrnennnnns 38 underflow exception enable bit (EU bit)......ccevevieieiennnnnns 22
privileged iNStruCtioN......ocoviviiiiiii e 27 underflow flag (FU flag)covviiiiiieececieeeeeea 22
privileged inStruction exceptionvevverrveieneareneienn 248 unimplemented processing cause flag (CEflag)euee. 21
processor interrupt priority level (IPL[3:0] bitS) ...ccovuvuenens 18 LU 100 o LN 27
PrOCESSOr MOOE. .+ neueuenenensnrrrnsnrnraranere e e e e e seaeaens 27 user stack POINtEr (USP) ...uiuieiiieierererereceeeeeeeaeaes 16
processor mode select bit (PM bit) ..vuvvevuieieiiineiinniiinenss 18 USP (user Stack POINEr) ..vuverrueuieeierrnresrreareennanes 16
processor statusWord (PSW)...uvuiiiieiiernineeneeeeaens 17
Program COUNEEr (PC) «vveeeeeeeeeeeeeeeeesesesessesessssssasnnnns 16 V
Program COUNtEr relatiVe.....ueuveriiereniarreieneieenaeaas 39
PSW (processor StatuSWOord) ...eueueueueueuenenrninrnrarararesenes 17 VECLOr tal€ w.vviiiiii i 31
PSW dir€Ct . vuivieiiiiiiiiinein e 39
Z
Q
Zflag (Zeroflag) veveninviniiiiiiiii 18
QNaN (QUIEE NaN) ..uvueuierieier e 26 zeroflag (Z flag) ovevevevriiiiiiiii e 18
R
RO (SP) to R15 (general-purpose registers)veveverererenenss 15
(1= 01K (= () 46
(=0 1S 1 B[] = ot N 37
(101K (= A 001 (= o 37
(0= 0K (= = o 1Y 37
register_NUM (RN) wovuveiiiiieieir e 46
relocatable vector tableovvveiiiiiiiiiiii 32
1= 248
RM[1:0] bits (floating-point rounding-mode setting bits)..... 21
Rounding to the nearest value.oeviiiininiiiiienanes 21
Rounding tOWardS —00vuiriiinseerrr e e e reneenas 21
RouNding tOWardS +00 ...vuvuvneneeeeeeaerrararerereeenenenas 21
Rounding towardS 0eueneniniinsreiiiirararereseneens 21
S
Sflag (SIgNflag) eeveeeieiii s 18
SigN flag (SFlag) «euvevereiieiiiii 18
RO1US0032EJ0130 Rev.1.30 REN ESNS Page 258 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

REVISION HISTORY

RX Family RXv1 Instruction Set Architecture
User’s Manual: Software

Description

Rev. Date Page

Summary

0.10 Now. 12,2007 —

First edition issued

0.20 Mar. 18,2008 3to5

Notation in This Manual changed

81013

List of Instructions for RX Family changed

14
14
15
15
16
17
18
19
20
20

21
22
24

25
25
25
25
29
29
29
30

Section 1 CPU Functions changed

1.1 Features changed

1.2 Register Set of the CPU changed

Figure 1.1 Register Set of the CPU changed

1.2.2 Control Registers changed

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP) changed

1.2.2.4 Processor Status Word (PSW): b31 to b4 changed, Notes 1 and 2 changed
IPL[2:0] bits (Processor interrupt priority level) changed

1.2.2.6 Backup PSW Register (BPSW) added

1.2.2.7 Vector Register (VCT) — 1.2.2.7 Fast Interrupt Vector Register (FINTV)
changed

1.2.2.8 Floating-Point Status Word (FPSW): b25 to b15, b9, b7 to b0 changed
1.2.2.9 Coprocessor Enable Register (CPEN) added

Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results
changed

1.4.1 Supervisor Mode changed

1.4.2 User Mode added

1.4.3 Privileged Instruction changed

1.4.4 Switching Between Processor Modes changed
1.7 Vector Table changed

1.7.1 Fixed Vector Table changed

Figure 1.8 Fixed Vector Table changed

1.7.2 Relocatable Vector Table changed

31
32
33
33
33
34
34
35
35
35
36

36
36

37

2.1 Types of Addressing Mode, (3) Special Instruction Addressing Modes added
2.2 Guide to This Section, (2) Symbolic notation changed

Immediate: #IMM:S8, #IMMEX:U8 added

Register Indirect: Operation diagram added

Register Relative: Description, Operation diagram changed

Short Immediate: #IMM:2 added, Description for #IMM:3 changed

Short Register Relative: Description changed, Operation diagram added
Post-increment Register Indirect: Operation diagram added

Pre-decrement Register Indirect: Description changed, Operation diagram added
Indexed Register Indirect: Operation diagram added

Control Register Direct: VCT — FINTV changed, CPEN added, Description
changed, Operation diagram changed

Program Counter Relative: Rn added

Program Counter Relative: label (dsp:3) — pcdsp:3 changed, Description
changed, Operation diagram changed

Program Counter Relative: label (dsp:8) (dsp:16) (dsp:24) — pcdsp:8 pcdsp:16
pcdsp:24 changed, Description changed, Operation diagram changed

RO1US0032EJ0130 Rev.1.30
Dec 26, 2019

RENESAS Page 259 of 271

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Description
Rev. Date Page Summary
37 Register Direct: added
38 Section 3 Instruction Descriptions added
159 Section 5 EXCEPTIONS added
0.30 Jul. 31,2008 3to5 Notation in This Manual

Symbols: IMM, IMMEX — IMM, SIMM, UIMM changed
Bit length specifiers: :1 added

Bit length extension specifier: :S8, :U8 deleted
Operations: tmp2, tmp3 added

81013 List of Instructions for RX Family
FREIT instruction — RTFI instruction, REIT instruction — RTE instruction
changed

EDIV instruction, EDIVU instruction, MULU instruction, PUSHA instruction, and
STOP instruction deleted

For floating-point operation instructions and coprocessor instructions, the
description as an optional function added

DSP instructions added

14 Section 1 CPU Functions changed

14 1.1 Features changed

15 1.2 Register Set of the CPU changed

15 Figure 1.1 Register Set of the CPU changed

17 1.2.2.2 Interrupt Table Register (INTB)
Interrupt vector table — Relocatable vector table changed

18 1.2.2.4 Processor Status Word (PSW), Note 3 changed

19 U bit (Stack pointer select bit) changed

22 1.2.2.8 Floating-Point Status Word (FPSW), Note 3 added

23 1.2.3 Accumulator (ACC) added

24 1.3.2 Underflow added

24 Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results,
Notes added

25 1.3.4 Division-by-Zero, Note for denormalized number, QNaN, and SNaN added

25 Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results
changed

26 Table 1.6 Rules for Generating QNaNs added

26 1.3.6 Unimplemented Processing changed, Note deleted

27 1.4.3 Privileged Instruction changed

27 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to

user mode changed

331039 Section 2 Addressing Modes changed

42 (5) Operation, (c) Special notation added
43 (8) Instruction Format, (d) Immediate value changed
47 to 171 Code Size in Instruction Format added

48 ADC instruction: Instruction Format changed

50 ADD instruction: Instruction Format changed

51 AND instruction: Instruction Format changed

54 BCnd instruction: Instruction Format changed

58 BRA instruction: Instruction Format changed

64 CMP instruction: Instruction Format, Description Example changed
RO1US0032EJ0130 Rev.1.30 RENESAS Page 260 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Description

Rev. Date Page Summary

0.30 Jul. 31,2008 65 DIV instruction: Instruction Format changed
67 DIVU instruction: Instruction Format changed

69 to 70 EMUL instruction: Note in Function added, Instruction Format changed
71t072 EMULU instruction: Note in Function added, Instruction Format changed
73 FADD instruction: Flag Change, Note in Instruction Format changed

75t0 77 FCMP instruction: Syntax, Operation, Function, Flag Change, Instruction Format,
Supplementary Description changed

78 FDIV instruction: Flag Change, Note in Instruction Format changed

80to 82 FMUL instruction: Note in Function added, Flag Change, Note in Instruction
Format, Supplementary Description changed

83 to 84 FSUB instruction: Flag Change, Note in Instruction Format changed

86 to 88 FTOIl instruction: Function, Flag Change, Instruction Format, Supplementary
Description changed

89 INT instruction: Instruction Format, Syntax: INT — INT src changed
90to 91 ITOF instruction: Function, Flag Change, Instruction Format changed
94 MACHI instruction added

95 MACLO instruction added

96 MAX instruction: Instruction Format changed

97 MIN instruction: Instruction Format changed

98to 100 MOV instruction: Function, Instruction Format, Description Example changed
101 MOWVU instruction: Note in Instruction Format changed

103 to 104 MUL instruction: Syntax, Operation, Function, Flag Change, Instruction Format,
Description Example changed

105 MULHI instruction added

106 MULLO instruction added

107 MVFACHI instruction added

108 MVFACMI instruction added

111 MVTACHI instruction added

112 MVTACLO instruction added

113 MVTC instruction: Instruction Format changed
114 MVTCP instruction: Instruction Format changed
117 NOP instruction: Operation, Function changed
120 OR instruction: Instruction Format changed
125 PUSH instruction: Function added, Note in Instruction Format changed
128to 129 RACW instruction added

132 RMPA instruction: Function added, Note added

138 to 140 ROUND instruction: Function, Flag Change, Instruction Format changed,
Supplementary Description added

141 RTE instruction: REIT instruction — RTE instruction changed
142 RTFI instruction: FREIT instruction — RTFI instruction changed
144 to 145 RTSD instruction: Operation, Function, Instruction Format changed
148 SBB instruction: Note in Instruction Format changed
149 SCCnd instruction: Note in Instruction Format changed
151 SCMPU instruction: Operation, Function, Flag Change changed
156 SMOVB instruction: Operation, Function changed
157 SMOVF instruction: Operation, Function changed
158 SMOVU instruction: Operation, Function changed
RO1US0032EJ0130 Rev.1.30 RENESAS Page 261 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Description

Rev. Date Page Summary

0.30 Jul. 31,2008 159 SSTR instruction: Operation, Function changed
160 STNZ instruction: Instruction Format changed
161 STZ instruction: Instruction Format changed
162 SUB instruction: Instruction Format changed

163 to 164 SUNTIL instruction: Operation, Function, Flag Change, Instruction Format
changed

165to 166 SWHILE instruction: Note 3 in Operation deleted, Operation, Function, Flag
Change, Instruction Format changed

167 TST instruction: Instruction Format changed

169to 170 XCHG instruction: Syntax, Function, Instruction Format, Description Example
changed

171 XOR instruction: Instruction Format changed

172 to 260 Section 4 Instruction Code added

262 5.2.1 Undefined Instruction Exception added

262 5.2.5 Reset changed

262 5.2.6 Non-Maskable Interrupt changed

264 Figure 5.2 Outline of the Exception Handling Procedure changed

265 5.3 Exception Handling Procedure: FREIT instruction — RTFI instruction, REIT
instruction — RTE instruction changed

268 5.5 Hardware Processing for Accepting and Returning from Exceptions
(2) FREIT instruction — RTFI instruction, REIT instruction — RTE instruction
changed

(a) Changed
269 to 270 5.6 Exception Sequences: Processor mode select bit, RM — PM error amended

271 Table 5.3 Return from Exception Processing Routines: FREIT instruction — RTFI
instruction, REIT instruction — RTE instruction changed

271 Table 5.4 Order of Priority for Exceptions changed

0.50 Feb.3,2009 3 Notation in This Manual

Rx added, Fx — flag changed

9,13 List of Instructions for RX Family
Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted

14 Section 1 CPU Functions, 1.1 Features, changed

15 Figure 1.1 Register Set of the CPU, CPEN register deleted

16 1.2.2 Control Registers, CPEN register deleted

17 1.2.2.2 Interrupt Table Register (INTB) changed

18 1.2.2.4 Processor Status Word (PSW): | bit changed, PM bit added

20 1.2.2.7 Fast Interrupt Vector Register (FINTV) changed

22 1.2.2.8 Floating-Point Status Word (FPSW): Notes changed and added

22 [Explanation of Floating-Point Rounding Modes] added

26 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to
user mode, changed

30 Figure 1.8 Fixed Vector Table changed

31 1.7.2 Relocatable Vector Table, Description changed

32 1.8 Address Space added

Section 2 Addressing Modes
3510 36 Immediate: #IMM:2 deleted, Operation diagram for #UIMM:8 added

37 Control Register Direct: PC added, CPEN deleted
39 2.2.1 Ranges for Immediate Values added
RO1US0032EJ0130 Rev.1.30 RENESAS Page 262 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture

REVISION HISTORY

Rev. Date

Description

Page

Summary

0.50 Feb. 3, 2009

41
42
43

53
54
55
57
58
59
60
61
61
62
70
72
73
75
78
80
83
86
89
90
99 to 100
101
109
112
113
120
123
129
135
142
148
153
154
155
156
160
162
165

Section 3 Instruction Descriptions, 3.1 Guide to This Section:
(4) Syntax, (c) Operand, changed
(5) Operation, (b) Pseudo-functions, changed

(8) Instruction Format, (b) Control registers, changed, (c) Flag and bit, changed
Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted

Bit pattern of the instruction — Instruction code changed
BCLR instruction: Function added

BCnd instruction, Description Example: Note added
BMCnd instruction: Function added

BNOT instruction: Function added

BRA instruction, Description Example: Note added

BRK instruction: Function changed

BSET instruction: Function added

BSR instruction: Note in Operation added

BSR instruction, Description Example: Note added
BTST instruction: Function added

EMUL instruction: Instruction Format added

EMULU instruction: Instruction Format added

FADD instruction: Note in Flag Change changed

FCMP instruction: Function changed, Note in Flag Change changed
FDIV instruction: Note in Flag Change changed

FMUL instruction: Note in Flag Change changed

FSUB instruction: Note in Flag Change changed

FTOI instruction: Note in Flag Change changed

INT instruction: Function changed

ITOF instruction: Note in Flag Change changed

MOV instruction: Instruction Format changed, Note 1 changed
MOVU instruction: Note 1 in Instruction Format changed

MVFC instruction: Function added, Note in Instruction Format changed

MVTC instruction: Note in Instruction Format changed

MVTIPL instruction: Function added

POPC instruction: Instruction Format changed

PUSHC instruction: Function added, Instruction Format changed
RMPA instruction: Note in Operation changed

ROUND instruction: Note in Flag Change changed

RTSD instruction, Instruction Format: Description added, Note changed

SCMPU instruction: Note in Operation changed

SMOVB instruction: Note in Operation changed

SMOVF instruction: Note in Operation changed

SMOVU instruction: Note in Operation changed

SSTR instruction: Note in Operation changed

SUNTIL instruction: Note in Operation changed

SWHILE instruction: Note in Operation changed

WAIT instruction, Function: Description added, Note added

RO1US0032EJ0130 Rev.1.30

Dec 26, 2019

RENESAS

Page 263 of 271

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Description
Rev. Date Page Summary
0.50 Feb. 3, 2009 Section 4 Instruction Code
170 4.1 Guide to This Section, (2) List of Code Size: Description added

— Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted
180to 181 BCnd: Instruction codes (1) and (3) changed
213to 214 MOV: Code Size (list) changed

217 MOV: Instruction code (14) changed, Instruction code (15) added

222 MVFACMI: Instruction code (1) changed

223 MVFEC: Instruction code (1) changed

225t0 226 MVTC: Instruction codes (1) and (2) changed

231 POPC: Instruction code (1) changed

233 PUSHC: Instruction code (1) changed
Section 5 Exceptions

257 5.1 Types of Exception: Section title changed

257 Figure 5.1 Types of Exception changed

258 5.1.4 Floating-Point Exceptions changed

258 5.1.7 Interrupts changed

258 5.1.8 Unconditional Trap added (5.2.8 INT Instruction Exceptions and 5.2.9 BRK
Instruction Exception deleted)

259 Figure 5.2 Outline of the Exception Handling Procedure changed

260 5.2 Exception Handling Procedure changed

261 Table 5.1 Timing of Acceptance and Saved PC Value changed

262 Table 5.2 Vector Table and Site for Preserving the PC and PSW Registers changed

263 5.4 Hardware Processing for Accepting and Returning from Exceptions,

(1) Hardware pre-processing for accepting an exception, (a) Preserving the PSW
register: Note added

265 5.5.8 Unconditional Trap added (5.6.8 INT Instruction Exceptions and 5.6.9 BRK
Instruction Exception deleted)

266 Table 5.3 Return from Exception Processing Routines changed
266 Table 5.4 Order of Priority for Exceptions changed
267 Index added
0.51 Mar. 24,2009 — DSP instructions, floating-point operation instructions, floating-point operation unit
are described without the phase “(as an optional function)”.
30 1.7.1 Fixed Vector Table, Figure 1.8 Fixed Vector Table
Reserved area is added to addresses in the range from FFFFFF80h to
FFFFFFCCh.
0.60 May. 26, 2009 9 List of Instructions Classified in Alphabetical Order
MVTIPL (privileged instruction) deleted
13 List of Instructions Classified by Type
MVTIPL (privileged instruction) deleted
18 1.2.2.4 Processor Status Word (PSW)
Description on the MVTIPL deleted from Note 1
26 1.4.3 Privileged Instruction
Description on the MVTIPL deleted
35 2.2 Addressing Modes

Immediate, #IMM:3: Description on the MVTIPL deleted

— 3.2 Instructions in Detall
Description on the MVTIPL deleted

— 4.2 Instruction Code Described in Detail
Description on the MVTIPL including the code size deleted

RO1US0032EJ0130 Rev.1.30 RENESAS Page 264 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Description
Rev. Date Page Summary
1.00 June 11,2010 5 Notation in This Manual, Operations: << and >> added, tmp32 and tmp64 deleted
810 16 List of Instructions for RX Family
BCnd, BMCnd, and SCCnd instructions: Cnd described as mnemonic
MVTIPL instruction (privileged instruction) added, table note added
All Exception sequence — Hardware pre-processing, Exception handler — Exception

handling routine, changed

Section 1 CPU Functions
1.1 Features

17 Register set of the CPU, and the accumulator, changed
1.2 Register Set of the CPU

18 Figure 1.1 Register Set of the CPU, changed
1.2.2.3 Program Counter (PC)

20 Bit arrangement diagram, Value after reset, changed
1.2.2.4 Processor Status Word (PSW)

21 Bit arrangement diagram: Note for b27, added

21 Bits IPL[2:0] — Bits IPL[3:0] changed

22 Note 1 changed, Note 4 added

22 Description on bits IPL[3:0] changed
1.2.2.8 Floating-Point Status Word (FPSW)

25 FS: Floating-point flag summary bit — Floating-point error summary flag,

changed

25 to 26 Description on bits added

26 1.2.3 Accumulator (ACC), changed

29 1.3.6 Unimplemented Processing, changed
1.4.2 User Mode

30 Bits IPL[2:0] — Bits IPL[3:0] changed
1.4.3 Privileged Instruction

30 MVTIPL instruction added

Section 2 Addressing Modes
2.2 Addressing Modes

39 Immediate, #IMM:3: changed, Immediate, #IMM:4: added
41 PSW Direct, Operation diagram: Bits IPL[2:0] — Bits IPL[3:0] changed
43 Table 2.1 Ranges for Inmediate Values: IMM:4 added
Section 3 Instruction Descriptions
46 3.1 Guide to This Section, (a) Data type: signed long long, unsigned long long, and
float, added
57 BCLR instruction: Operation (1) and (2), changed
58 BCnd instruction, Function: The column for Cnd described as mnemonic
59 BMCnd instruction: Operation (1) and (2), changed
Function: The column for Cnd described as mnemonic
61 BNOT instruction: Operation (1) and (2), changed
80 FCMP instruction:
Supplementary Description, =: src2 = src — src2 == src changed
98 MACHI instruction: Operation and Function, changed
99 MACLO instruction: Operation and Function, changed
109 MULHI instruction: Operation changed
110 MULLO instruction: Operation changed
114 MVTACHI instruction: Operation changed
115 MVTACLO instruction: Operation changed
116 MVTC instruction: Function changed
117 MVTIPL instruction, added
RO1US0032EJ0130 Rev.1.30 RENESAS Page 265 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Description

Rev. Date Page Summary

1.00 June 11,2010 124 POPC instruction: Function changed
129 RACW instruction: Operation changed
135 ROLC instruction: Operation added, Function changed
136 RORC instruction: Operation added, Function changed
137 ROTL instruction: Operation added, Function changed
138 ROTR instruction: Operation added, Function changed
145 RTSD instruction: Operation (2), changed
147 SAT instruction: Operation changed
148 SATR instruction: Operation changed
150 SCCnd instruction, Function: The column for Cnd described as mnemonic
154 SHAR instruction: Operation added, Function changed
155 SHLL instruction: Operation added, Function changed
156 SHLR instruction: Operation added, Function changed
164 SUNTIL instruction: Operation changed
166 SWHILE instruction: Operation changed

Section 4 Instruction Code
4.1 Guide to This Section

174 (4) Instruction Code: Instruction code for memex (when memex == UB or src ==
Rs, when memex != UB) and src/dest description changed

4.2 Instruction Code Described in Detail
177 to 255 Description of memex specifier: SB — B, SW — W, changed
185to 186 BCnd instruction: The column for Cnd described as mnemonic

187 BMCnd instruction: The column for Cnd described as mnemonic
227 MVTIPL instruction, added
243 SCCnd instruction: The column for Cnd described as mnemonic

Section 5 Exceptions

257 5.1.3 Access Exception, changed

257 5.1.7 Interrupts, changed

258 5.2 Exception Handling Procedure, changed

261 5.3.2 Vector and Site for Preserving the PC and PSW, changed
261 Table 5.2 Vector and Site for Preserving the PC and PSW, changed

5.4 Hardware Processing for Accepting and Returning from Exceptions:
Description added

262 (b) Updating of the PM, U, and | bits in the PSW, changed
264 5.5.6 Non-Maskable Interrupt, (4) changed
264 5.5.7 Interrupts, (4) changed
1.10 Aug. 11,2011 Al RX200 specifications in the RX200 Series are reflected
Section 2 Addressing Modes
39 2.2 Addressing Modes

Immediate, Symbol: #iMM:4, added
Section 3 Instruction Descriptions

58 BCnd instruction, Function: The expression described in the condition column,
changed (parentheses added)

59 BMCnd instruction, Function: The expression described in the condition column,
changed (parentheses added)

66 BTST instruction, Instruction Format: The column for src2, changed

80 FCMP instruction, Instruction Format: The column for src2, changed

150 SCCnd instruction, Function: The expression described in the condition column,

changed (parentheses added)

RO1US0032EJ0130 Rev.1.30 RENESAS Page 266 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Rev. Date

Description

Page Summary

1.10 Awug. 11, 2011

Section 4 Instruction Code

194 BTST instruction, Code Size: Description of (1) and (3) in the column for src2,
changed
205 FCMP instruction, Code Size: Description of (1) in the column for src2, changed
1.20 Apr. 15,2013 All RX100 specifications in the RX100 Series are reflected
1.30 Dec 26,2019 Front Document title changed to “RX Family RXv1 Instruction Set Architecture User’'s
cover Manual: Software”
All Support details by product series deleted

Expression “for details, refer to the user's manual: hardware for each product”
used as required

3 How to Use This Manual: The entire section added

Notation in This Manual

4 Symbols: “src2” added to Notation; meanings for “Rs2” and “Rd2” changed;
“ACC” added; “tmp, tmp0, tmp1, tmp2, tmp3” moved from Operations

5 Operations: “!” deleted

9 List of RXv1 Instruction Set for RX Family: The title changed; description deleted

12 Quick Page Reference in Alphabetical Order: Description for Note 1 modified
List of Instructions: The title changed; moved to section 3

13 1. CPU Programming Model: Section title changed; descriptions modified
1.1 Features: Descriptions and note modified

14 Figure 1.1 Register Set of the CPU: Layout changed

16 1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP): The second
paragraph deleted

17,18 1.2.2.4 Processor Status Word (PSW): Note deleted; descriptions for flags
modified

21 1.2.2.8 Floating-Point Status Word (FPSW): Descriptions modified

23 1.2.3 Accumulator: Description in the figure modified

24 1.3 Floating-Point Exceptions: Descriptions modified

25 1.3.4 Division-by-Zero: Description in note included to the text

26 1.3.5 Invalid Operation: Term “mantissa” modified to “fraction”

28 1.5.2 Floating-Point Number: Term “Mantissa” modified to “Fraction”
2. Addressing Modes

37 2.2 Addressing Modes, Register Relative: Mnemonic “MOVE” corrected to
“MOVU”
3. Instruction Descriptions

41 3.1 Overview of Instruction Set: newly added
List of Instructions: The title changed; moved from Notation in This Manual

All 3.3 Instructions in Detail: Caption “Possible Exceptions” changed to “Sources of
Floating-Point Exceptions”

76 FADD instruction, Supplementary Description: Note for the table of operation result
when DN = 0 added

81 FMUL instruction, Function: Note modified

84 FSUB instruction, Supplementary Description: Note for the table of operation result
when DN = 0 added

110 MVTACLO instruction: Operation modified

124 RACW instruction, Instruction Format: Note deleted

143 SBB instruction, Operation: Operator “!” corrected to “™”

146 SETPSW instruction, Function: Description corrected

148 SHLL instruction, Flag Change: Term “scr” corrected to “src”

RO1US0032EJ0130 Rev.1.30 RENESAS Page 267 of 271

Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

Description
Rev. Date Page Summary
1.30 Dec 26, 2019 4. Instruction Code
171 ADD instruction, Code Size: Item number (2) added
225 RACW instruction, Code Size: Range of immediate value for src added
5. Exceptions
247 Figure 5.1 Types of Exception: Note deleted
256 Table 5.3 Return from Exception Handling Routines, Non-maskable interrupt:

Description “Return is impossible” corrected to “Return is disabled”

RO1US0032EJ0130 Rev.1.30 RENESAS Page 268 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture
User’s Manual: Software

Publication Date: Rev.0.10 Nov 12, 2007
Rev.1.30 Dec 26, 2019

Published by: Renesas Electronics Corporation

LENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86- 10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd.
No0.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2019 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

RX Family RXv1 Instruction Set Architecture

RENESAS

Renesas Electronics Corporation

R0O1US0032EJ0130

	Cover
	Notice
	How to Use This Manual
	Contents
	List of RXv1 Instruction Set for RX Family
	Quick Page Reference in Alphabetical Order (1 / 4)

	1. CPU Programming Model
	1.1 Features
	1.2 Register Set of the CPU
	1.2.1 General-Purpose Registers (R0 to R15)
	1.2.2 Control Registers
	1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)
	1.2.2.2 Interrupt Table Register (INTB)
	1.2.2.3 Program Counter (PC)
	1.2.2.4 Processor Status Word (PSW)
	1.2.2.5 Backup PC (BPC)
	1.2.2.6 Backup PSW (BPSW)
	1.2.2.7 Fast Interrupt Vector Register (FINTV)
	1.2.2.8 Floating-Point Status Word (FPSW)

	1.2.3 Accumulator

	1.3 Floating-Point Exceptions
	1.3.1 Overflow
	1.3.2 Underflow
	1.3.3 Inexact
	1.3.4 Division-by-Zero
	1.3.5 Invalid Operation
	1.3.6 Unimplemented Processing

	1.4 Processor Mode
	1.4.1 Supervisor Mode
	1.4.2 User Mode
	1.4.3 Privileged Instruction
	1.4.4 Switching Between Processor Modes

	1.5 Data Types
	1.5.1 Integer
	1.5.2 Floating-Point Number
	1.5.3 Bit
	1.5.4 String

	1.6 Data Arrangement
	1.6.1 Data Arrangement in Registers
	1.6.2 Data Arrangement in Memory

	1.7 Vector Table
	1.7.1 Fixed Vector Table
	1.7.2 Relocatable Vector Table

	1.8 Address Space

	2. Addressing Modes
	2.1 Guide to This Section
	2.2 Addressing Modes
	2.2.1 Ranges for Immediate Values

	3. Instruction Descriptions
	3.1 Overview of Instruction Set
	3.2 Guide to This Section
	3.3 Instructions in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	4. Instruction Code
	4.1 Guide to This Section
	4.2 Instruction Code Described in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	5. Exceptions
	5.1 Types of Exception
	5.1.1 Undefined Instruction Exception
	5.1.2 Privileged Instruction Exception
	5.1.3 Access Exception
	5.1.4 Floating-Point Exceptions
	5.1.5 Reset
	5.1.6 Non-Maskable Interrupt
	5.1.7 Interrupts
	5.1.8 Unconditional Trap

	5.2 Exception Handling Procedure
	5.3 Acceptance of Exceptions
	5.3.1 Timing of Acceptance and Saved PC Value
	5.3.2 Vector and Site for Preserving the PC and PSW

	5.4 Hardware Processing for Accepting and Returning from Exceptions
	5.5 Hardware Pre-processing
	5.5.1 Undefined Instruction Exception
	5.5.2 Privileged Instruction Exception
	5.5.3 Access Exception
	5.5.4 Floating-Point Exceptions
	5.5.5 Reset
	5.5.6 Non-Maskable Interrupt
	5.5.7 Interrupts
	5.5.8 Unconditional Trap

	5.6 Return from Exception Handling Routines
	5.7 Order of Priority for Exceptions

	Index
	REVISION HISTORY
	Colophon
	Address List
	Back cover

