
U
ser’s M

anual

www.renesas.com

RX Family RXv1 Instruction Set Architecture

User’s Manual: Software

RENESAS 32-Bit MCU
RX Family

Dec 2019

32

Rev.1.30

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Cover

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical
information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and
application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification,
copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;

home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication

equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious
property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military
equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising
from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other
Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the
ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of
the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless
designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing
safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.
Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of
the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate
the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or
losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control
laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or
otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this
document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly
controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

How to Use This Manual
This manual is designed to provide users with an understanding of RXv1 instruction set architecture (RXv1). The manual
contains detailed descriptions of CPU features and instruction sets. The manual is intended for users who are designing
application systems using this CPU. Target users are expected to understand the fundamentals of microcomputers.

Notation in This Manual
The following is a list of the elements of the notation used in this manual.

Classification Notation Meaning
Symbols IMM Immediate value

SIMM Immediate value for sign extension according to the processing size
UIMM Immediate value for zero extension according to the processing size
src, src2 Source of an instruction operand
dest Destination of an instruction operand
dsp Displacement of relative addressing
pcdsp Displacement of relative addressing of the program counter
[] Represents indirect addressing
Rn General-purpose register. R0 to R15 are specifiable unless stated

otherwise.
Rs General-purpose register as a source. R0 to R15 are specifiable unless

stated otherwise.
Rs2 In the instructions where two general-purpose registers can be specified

for operand, the first general-purpose register specified as a source is
described as Rs and the second general-purpose register specified as a
source is described as Rs2.

Rd General-purpose register as a destination. R0 to R15 are specifiable
unless stated otherwise.

Rd2 In the instructions where two general-purpose registers can be specified
for operand, the first general-purpose register specified as a destination is
described as Rd and the second general-purpose register specified as a
destination is described as Rd2.

Rb General-purpose register specified as a base register. R0 to R15 are
specifiable unless stated otherwise.

Ri General-purpose register as an index register. R0 to R15 are specifiable
unless stated otherwise.

Rx Represents a control register. The PC, ISP, USP, INTB, PSW, BPC, BPSW,
FINTV, and FPSW are selectable, although the PC is only selectable as the
src operand of MVFC and PUSHC instructions.

flag Represents a bit (U or I) or flag (O, S, Z, or C) in the PSW.
ACC Accumulator
tmp, tmp0, tmp1,
tmp2, tmp3 etc.

Temporary registers

Values 000b Binary number
0000h Hexadecimal number

Bit length #IMM:8 etc. Represents the effective bit length for the operand symbol.
:1 Indicates an effective length of one bit.
:2 Indicates an effective length of two bits.
:3 Indicates an effective length of three bits.
:4 Indicates an effective length of four bits.
:5 Indicates an effective length of five bits.
:8 Indicates an effective length of eight bits.
:16 Indicates an effective length of 16 bits.
:24 Indicates an effective length of 24 bits.
:32 Indicates an effective length of 32 bits.

Size specifiers MOV.W etc. Indicates the size that an instruction handles.
.B Byte (8 bits) is specified.
.W Word (16 bits) is specified.
.L Longword (32 bits) is specified.

Branch distance
specifiers

BRA.A etc. Indicates the length of the valid bits to represent the distance to the branch
relative destination.

.S 3-bit PC forward relative is specified. The range of valid values is 3 to 10.

.B 8-bit PC relative is specified. The range of valid values is –128 to 127.

.W 16-bit PC relative is specified. The range of valid values is –32768 to
32767.

.A 24-bit PC relative is specified. The range of valid values is –8388608 to
8388607.

.L 32-bit PC relative is specified. The range of valid values is –2147483648 to
2147483647.

Size extension
specifiers added to
memory operands

dsp:16[Rs].UB etc. Indicates the size of a memory operand and the type of extension. If the
specifier is omitted, the memory operand is handled as longword.

.B Byte (8 bits) is specified. The extension is sign extension.

.UB Byte (8 bits) is specified. The extension is zero extension.

.W Word (16 bits) is specified. The extension is sign extension.

.UW Word (16 bits) is specified. The extension is zero extension.

.L Longword (32 bits) is specified.
Operations (Operations in this manual are written in accordance with C language syntax. The following is the

notation in this manual.)
= Assignment operator. The value on the right is assigned to the variable on

the left.
– Indicates negation as a unary operator or a "difference" as a binary

operator.
+ Indicates "sum" as a binary operator.
* Indicates a pointer or a "product" as a binary operator.
/ Indicates "quotient" as a binary operator.
% Indicates "remainder" as a binary operator.
~ Indicates bit-wise "NOT" as a unary operator.
& Indicates bit-wise "AND" as a binary operator.
| Indicates bit-wise "OR" as a binary operator.
^ Indicates bit-wise "Exclusive OR" as a binary operator.
; Indicates the end of a statement.

Classification Notation Meaning

Operations { } Indicates the start and end of a complex sentence. Multiple statements can
be put in { }.

if (expression)
statement 1 else
statement 2

Indicates an if-statement. The expression is evaluated; statement 1 is
executed if the result is true and statement 2 is executed if the result is
false.

for (statement 1;
expression;
statement 2)
statement 3

Indicates a for-statement. After executing statement 1 and then evaluating
the expression, statement 3 is executed if the result is true. After statement
3 is executed the first time, the expression is evaluated after executing
statement 2.

do statement while
(expression);

Indicates a do-statement. As long as the expression is true, the statement
is executed. Regardless of whether the expression is true or false, the
statement is executed at least once.

while (expression)
statement

Indicates a while-statement. As long as the expression is true, the
statement is executed.

==, != Comparison operators. "==" means "is equal to" and "!=" means "is not
equal to".

>, < Comparison operators. ">" means "greater than" and "<" means "less
than".

>=, <= Comparison operators. The condition includes "==" as well as ">" or "<".
&& Logical operator. Indicates the "AND" of the conditions to the left and right

of the operator.
|| Logical operator. Indicates the "OR" of the conditions to the left and right of

the operator.
<<, >> Shift operators, respectively indicating leftward and rightward shifts.

Floating-point
datum

NaN Not a number

Floating-point
representation

SNaN Signaling NaN
QNaN Quiet NaN

Classification Notation Meaning

How to Use This Manual .. 3

List of RXv1 Instruction Set for RX Family ... 9
Quick Page Reference in Alphabetical Order .. 9

1. CPU Programming Model .. 13
1.1 Features ..13
1.2 Register Set of the CPU ...14

1.2.1 General-Purpose Registers (R0 to R15) ...15
1.2.2 Control Registers ...15

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP) ... 16
1.2.2.2 Interrupt Table Register (INTB) .. 16
1.2.2.3 Program Counter (PC) ... 16
1.2.2.4 Processor Status Word (PSW) ... 17
1.2.2.5 Backup PC (BPC) .. 19
1.2.2.6 Backup PSW (BPSW) ... 19
1.2.2.7 Fast Interrupt Vector Register (FINTV) .. 19
1.2.2.8 Floating-Point Status Word (FPSW) ... 20

1.2.3 Accumulator ...23
1.3 Floating-Point Exceptions ...24

1.3.1 Overflow ..24
1.3.2 Underflow ..24
1.3.3 Inexact ..25
1.3.4 Division-by-Zero ..25
1.3.5 Invalid Operation ...26
1.3.6 Unimplemented Processing ...26

1.4 Processor Mode ...27
1.4.1 Supervisor Mode ..27
1.4.2 User Mode ..27
1.4.3 Privileged Instruction ...27
1.4.4 Switching Between Processor Modes ..27

1.5 Data Types ...28
1.5.1 Integer ..28
1.5.2 Floating-Point Number ..28
1.5.3 Bit ...29
1.5.4 String ..29

1.6 Data Arrangement ..30
1.6.1 Data Arrangement in Registers ..30
1.6.2 Data Arrangement in Memory ...30

1.7 Vector Table ..31
1.7.1 Fixed Vector Table ..31
1.7.2 Relocatable Vector Table ...32

1.8 Address Space ..33

2. Addressing Modes .. 34
2.1 Guide to This Section ..35
2.2 Addressing Modes ...36

2.2.1 Ranges for Immediate Values ..40

3. Instruction Descriptions .. 41
3.1 Overview of Instruction Set ...41
3.2 Guide to This Section ..45
3.3 Instructions in Detail ...50

4. Instruction Code ... 165
4.1 Guide to This Section ..165

Contents

4.2 Instruction Code Described in Detail ..168

5. Exceptions .. 247
5.1 Types of Exception ..247

5.1.1 Undefined Instruction Exception ...248
5.1.2 Privileged Instruction Exception ..248
5.1.3 Access Exception ...248
5.1.4 Floating-Point Exceptions ..248
5.1.5 Reset ...248
5.1.6 Non-Maskable Interrupt ...248
5.1.7 Interrupts ..248
5.1.8 Unconditional Trap ..248

5.2 Exception Handling Procedure ..249
5.3 Acceptance of Exceptions ...251

5.3.1 Timing of Acceptance and Saved PC Value ..251
5.3.2 Vector and Site for Preserving the PC and PSW ...252

5.4 Hardware Processing for Accepting and Returning from Exceptions ...253
5.5 Hardware Pre-processing ...254

5.5.1 Undefined Instruction Exception ...254
5.5.2 Privileged Instruction Exception ..254
5.5.3 Access Exception ...254
5.5.4 Floating-Point Exceptions ..254
5.5.5 Reset ...254
5.5.6 Non-Maskable Interrupt ...255
5.5.7 Interrupts ..255
5.5.8 Unconditional Trap ..255

5.6 Return from Exception Handling Routines ...256
5.7 Order of Priority for Exceptions ..256

Index .. 257

REVISION HISTORY .. 259

R01US0032EJ0130 Rev.1.30 Page 9 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture List of RXv1 Instruction Set for RX Family

List of RXv1 Instruction Set for RX Family

Quick Page Reference in Alphabetical Order (1 / 4)

Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

ABS Absolute value 51 169
ADC Add with carry 52 170
ADD Add without carry 53 171
AND Logical AND 55 173
BCLR Clear a bit 57 175
BCnd BGEU Conditional relative branch 58 177

BC 58 177
BEQ 58 177
BZ 58 177
BGTU 58 177
BPZ 58 177
BGE 58 177
BGT 58 177
BO 58 177
BLTU 58 177
BNC 58 177
BNE 58 177
BNZ 58 177
BLEU 58 177
BN 58 177
BLE 58 177
BLT 58 177
BNO 58 177

BMCnd BMGEU Conditional bit transfer 59 179
BMC 59 179
BMEQ 59 179
BMZ 59 179
BMGTU 59 179
BMPZ 59 179
BMGE 59 179
BMGT 59 179
BMO 59 179
BMLTU 59 179
BMNC 59 179
BMNE 59 179
BMNZ 59 179
BMLEU 59 179
BMN 59 179
BMLE 59 179
BMLT 59 179
BMNO 59 179

BNOT Not a bit 61 180
BRA Unconditional relative branch 62 181

R01US0032EJ0130 Rev.1.30 Page 10 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture List of RXv1 Instruction Set for RX Family

BRK Unconditional trap 63 182
BSET Set a bit 64 182
BSR Relative branch to subroutine 65 184
BTST Test a bit 66 185
CLRPSW Clear a flag or bit in the PSW 67 186
CMP Compare 68 187
DIV Divide signed 69 188
DIVU Divide unsigned 70 190
EMUL Extended multiply signed 71 191
EMULU Extended multiply unsigned 73 192
FADD*1 Add floating-point 75 194
FCMP*1 Comparefloating-point 77 195
FDIV*1 Divide floating-point 79 196
FMUL*1 Multiply floating-point 81 197
FSUB*1 Subtractfloating-point 83 198
FTOI*1 Convert floating-point to signed integer 85 199
INT Software interrupt 88 200
ITOF*1 Convert signed integer to floating-point 89 200
JMP Unconditional jump 91 201
JSR Jump to subroutine 92 201
MACHI Multiply-Accumulate the upper words 93 202
MACLO Multiply-Accumulate the lower words 94 202
MAX Maximum of two signed integers 95 203
MIN Minimum of two signed integers 96 204
MOV Move 97 205
MOVU Move unsigned 100 210
MUL Multiply 102 211
MULHI Multiply the upper words 104 213
MULLO Multiply the lower words 105 213
MVFACHI Move data from the upper longword of the accumulator 106 213
MVFACMI Move data from the middle-order longword of the

accumulator
107 214

MVFC Move data from a control register 108 214
MVTACHI Move data to the upper longword of the accumulator 109 215
MVTACLO Move data to the lower longword of the accumulator 110 215
MVTC Move data to a control register 111 216
MVTIPL
(privileged instruction)*2

Move data to IPL 112 217

NEG Negate (two’s complement) 113 218
NOP No operation 114 218
NOT Logical NOT (one’s complement) 115 219
OR Logical OR 116 220
POP Pop register from stack 117 221
POPC Pop a control register from stack 118 222
POPM Pop multiple registers from stack 119 222
PUSH Push register on stack 120 223

Quick Page Reference in Alphabetical Order (2 / 4)

Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

R01US0032EJ0130 Rev.1.30 Page 11 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture List of RXv1 Instruction Set for RX Family

PUSHC Push a control register on stack 121 224
PUSHM Push multiple registers on stack 122 224
RACW Round the accumulator word 123 225
REVL Reverse endian within longword 125 225
REVW Reverse endian within word 126 225
RMPA Repeat multiply-accumulate 127 226
ROLC Rotate left with carry 129 226
RORC Rotate right with carry 130 227
ROTL Rotate left 131 227
ROTR Rotate right 132 228
ROUND*1 Round floating-point to signed integer 133 229
RTE
(privileged instruction)

Return from exception 136 229

RTFI
(privileged instruction)

Return from fast interrupt 137 230

RTS Return from subroutine 138 230
RTSD Return from subroutine after deallocating stack frame 139 230
SAT Saturate 141 231
SATR Saturate for RMPA 142 231
SBB Subtract with borrow 143 232
SCCnd SCGEU Store condition 144 233

SCC 144 233
SCEQ 144 233
SCZ 144 233
SCGTU 144 233
SCPZ 144 233
SCGE 144 233
SCGT 144 233
SCO 144 233
SCLTU 144 233
SCNC 144 233
SCNE 144 233
SCNZ 144 233
SCLEU 144 233
SCN 144 233
SCLE 144 233
SCLT 144 233
SCNO 144 233

SCMPU String compare until not equal 145 233
SETPSW Set a flag or bit in the PSW 146 234
SHAR Arithmetic shift right 147 235
SHLL Logical shift left 148 236
SHLR Logical shift right 149 237
SMOVB String move backward 150 238
SMOVF String move forward 151 238
SMOVU String move until zero detected 152 238

Quick Page Reference in Alphabetical Order (3 / 4)

Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

R01US0032EJ0130 Rev.1.30 Page 12 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture List of RXv1 Instruction Set for RX Family

Note: 1. The floating-point arithmetic instructions are optional functions. Whether or not the product has the floating-point
arithmetic instructions will depend on the product. For details, refer to the user’s manual: hardware for each
product.

Note: 2. Products of the RX610 Group do not support the MVTIPL instruction.

SSTR String store 153 239
STNZ Store on not zero 154 239
STZ Store on zero 155 240
SUB Subtract without borrow 156 241
SUNTIL String search until equal 157 242
SWHILE String search while equal 159 242
TST Test logical 161 243
WAIT
(privileged instruction)

Wait 162 244

XCHG Exchange 163 244
XOR Logical Exclusive OR 164 245

Quick Page Reference in Alphabetical Order (4 / 4)

Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

R01US0032EJ0130 Rev.1.30 Page 13 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1. CPU Programming Model
The RXv1 instruction set architecture (RXv1) has the following features.

• Adoption of variable-length instruction format
The RXv1 CPU has short formats for frequently used instructions, facilitating the development of efficient programs
that take up less memory.

• Powerful instruction set
The RXv1 supports 90 selected instructions. DSP instructions and floating-point arithmetic instructions realize high-
speed arithmetic processing.

• Versatile addressing modes
The RXv1 CPU has 10 versatile addressing modes, with register-register operations, register-memory operations, and
bitwise operations included. Data transfer between memory locations is also possible.

1.1 Features
• Minimum instruction execution rate: One clock cycle
• Address space: 4-Gbyte linear addresses
• Register set of the CPU

General purpose: Sixteen 32-bit registers
Control: Nine 32-bit registers
Accumulator: One 64-bit register

• Variable-length instruction format (lengths from one to eight bytes)
• 90 instructions/10 addressing modes

Basic instructions: 73
Floating-point arithmetic instructions: 8 (as an optional function*)
DSP instructions: 9

• Processor modes
Supervisor mode and user mode

• Vector tables
Fixed vector table and relocatable vector table

• Memory protection unit (as an optional function)
• Data arrangement

Selectable as little endian or big endian

Note: * The floating-point arithmetic instructions are optional functions. Whether or not the product has the floating-point
arithmetic instructions will depend on the product. For details, refer to the user's manual: hardware for each
product.

R01US0032EJ0130 Rev.1.30 Page 14 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2 Register Set of the CPU
The RXv1 CPU has sixteen general-purpose registers, nine control registers, and one accumulator used for DSP
instructions.

Figure 1.1 Register Set of the CPU

Note: 1. The stack pointer (SP) is switchable between the interrupt stack pointer (ISP) and user stack pointer
(USP) by changing the value of the U bit in the PSW.

R15
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0 (SP)*1

General-purpose register
b31 b0

DSP instruction register

b63 b0

ACC (Accumulator)

USP (User stack pointer)

ISP (Interrupt stack pointer)

INTB (Interrupt table register)

PC (Program counter)

PSW (Processor status word)

BPC (Backup PC)

BPSW (Backup PSW)

FINTV (Fast interrupt vector register)

FPSW (Single-precision floating-point status word)

Control register
b31 b0

FPSW (Floating-point status word)

R01US0032EJ0130 Rev.1.30 Page 15 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.1 General-Purpose Registers (R0 to R15)
This CPU has sixteen 32-bit general-purpose registers (R0 to R15). R0 to R15 can be used as data register or address
register.
R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the
interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor
status word (PSW).

1.2.2 Control Registers
This CPU has the following nine control registers.
• Interrupt stack pointer (ISP)
• User stack pointer (USP)
• Interrupt table register (INTB)
• Program counter (PC)
• Processor status word (PSW)
• Backup PC (BPC)
• Backup PSW (BPSW)
• Fast interrupt vector register (FINTV)
• Floating-point status word (FPSW)

R01US0032EJ0130 Rev.1.30 Page 16 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP).
Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the
processor status word (PSW).

1.2.2.2 Interrupt Table Register (INTB)

The interrupt table register (INTB) specifies the address where the relocatable vector table starts.

1.2.2.3 Program Counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

b31

ISP

b31

USP

0 0

Value after reset: 0

b0

b0

Value after reset:

b31 b0

Value after reset: Undefined

b31 b0

Value after reset: Reset vector (Contents of addresses FFFFFFFCh to FFFFFFFFh)

R01US0032EJ0130 Rev.1.30 Page 17 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.2.4 Processor Status Word (PSW)

Note: 1. In user mode, writing to the IPL[3:0], PM, U, and I bits by an MVTC or POPC instruction is ignored. Writing to the
IPL[3:0] bits by an MVTIPL instruction generates a privileged instruction exception.

Note: 2. In supervisor mode, writing to the PM bit by an MVTC or POPC instruction is ignored, but writing to the other bits
is possible.

Bit Symbol Bit Name Description R/W
b0 C Carry flag 0: No carry has occurred.

1: A carry has occurred.
R/W

b1 Z Zero flag 0: Result is non-zero.
1: Result is 0.

R/W

b2 S Sign flag 0: Result is a positive value or 0.
1: Result is a negative value.

R/W

b3 O Overflow flag 0: No overflow has occurred.
1: An overflow has occurred.

R/W

b15 to b4 — Reserved These bits are read as 0. The write value
should be 0.

R/W

b16 I*1 Interrupt enable bit 0: Interrupt disabled.
1: Interrupt enabled.

R/W

b17 U*1 Stack pointer select bit 0: Interrupt stack pointer (ISP) is selected.
1: User stack pointer (USP) is selected.

R/W

b19, b18 — Reserved These bits are read as 0. The write value
should be 0.

R/W

b20 PM*1, *2, *3 Processor mode select bit 0: Supervisor mode is selected.
1: User mode is selected.

R/W

b23 to b21 — Reserved These bits are read as 0. The write value
should be 0.

R/W

b27 to b24 IPL[3:0]
*1, *4

Processor interrupt priority level b27 b24
0 0 0 0: Priority level 0 (lowest)
0 0 0 1: Priority level 1
0 0 1 0: Priority level 2
0 0 1 1: Priority level 3
0 1 0 0: Priority level 4
0 1 0 1: Priority level 5
0 1 1 0: Priority level 6
0 1 1 1: Priority level 7
1 0 0 0: Priority level 8
1 0 0 1: Priority level 9
1 0 1 0: Priority level 10
1 0 1 1: Priority level 11
1 1 0 0: Priority level 12
1 1 0 1: Priority level 13
1 1 1 0: Priority level 14
1 1 1 1: Priority level 15 (highest)

R/W

b31 to b28 — Reserved These bits are read as 0. The write value
should be 0.

R/W

C—— — — — — — — — — — — O S Z

00 0 0 0 0 0 0 0 0 0 0 0 0 0

b4b15 b8 b7 b3 b2 b1

0

b0b14 b13 b12 b11 b10 b9 b6 b5

IPL[3:0]— —— — — — — PM — — U I

0 0000 0 00 00 0 0 0 0 0 0

b31 b26b27 b23b25 b24 b21 b20 b19 b18 b17 b16b30 b29 b28 b22

Value after reset:

Value after reset:

R01US0032EJ0130 Rev.1.30 Page 18 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

Note: 3. Switching from supervisor mode to user mode requires execution of an RTE instruction after having set the PM
bit in the PSW on the stack to 1 or executing an RTFI instruction after having set the PM bit in the backup PSW
(BPSW) to 1.

Note: 4. Bit 27, the IPL[3] bit, is reserved in products of the RX610 group. Writing to this bit is ignored. The bit is read as 0.

The processor status word (PSW) indicates results of instruction execution or the state of the CPU.

C flag (Carry flag)
This flag retains the state of the bit after a carry, borrow, or shift-out has occurred.

Z flag (Zero flag)
This flag is set to 1 if the result of an operation is 0; otherwise its value is cleared to 0.

S flag (Sign flag)
This flag is set to 1 if the result of an operation is negative; otherwise its value is cleared to 0.

O flag (Overflow flag)
This flag is set to 1 if the result of an operation overflows; otherwise its value is cleared to 0.

I bit (Interrupt enable bit)
This bit enables interrupt requests. When an exception is accepted, the value of this bit becomes 0.

U bit (Stack pointer select bit)
This bit specifies the stack pointer as either the ISP or USP. When an exception request is accepted, this bit is set to 0.
When the processor mode is switched from supervisor mode to user mode, this bit is set to 1.

PM bit (Processor mode select bit)
This bit specifies the operating mode of the processor. When an exception is accepted, the value of this bit becomes 0.

IPL[3:0] bits (Processor interrupt priority level)
The IPL[3:0] bits specify the processor interrupt priority level as one of sixteen levels from zero to fifteen, where priority
level zero is the lowest and priority level fifteen the highest. When the priority level of a requested interrupt is higher
than the processor interrupt priority level, the interrupt is enabled. Setting the IPL[3:0] bits to level 15 (Fh) disables all
interrupt requests. The IPL[3:0] bits are set to level 15 (Fh) when a non-maskable interrupt is generated. When interrupts
in general are generated, the bits are set to the priority levels of accepted interrupts.

R01US0032EJ0130 Rev.1.30 Page 19 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.2.5 Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the
contents of the program counter (PC) are saved in the BPC.

1.2.2.6 Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts. After a fast interrupt has been generated, the
contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to
that in the PSW.

1.2.2.7 Fast Interrupt Vector Register (FINTV)

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a
branch destination address when a fast interrupt has been generated.

b31 b0

Value after reset: Undefined

b31 b0

Value after reset: Undefined

b31 b0

Value after reset: Undefined

R01US0032EJ0130 Rev.1.30 Page 20 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.2.8 Floating-Point Status Word (FPSW)

Bit Symbol Bit Name Description R/W
b1, b0 RM[1:0] Floating-point rounding-mode

setting bits
b1 b0
0 0: Round to the nearest value
0 1: Round towards 0
1 0: Round towards +
1 1: Round towards –

R/W

b2 CV Invalid operation cause flag 0: No invalid operation has been encountered.
1: Invalid operation has been encountered.

R/(W)*1

b3 CO Overflow cause flag 0: No overflow has occurred.
1: Overflow has occurred.

R/(W)*1

b4 CZ Division-by-zero cause flag 0: No division-by-zero has occurred.
1: Division-by-zero has occurred.

R/(W)*1

b5 CU Underflow cause flag 0: No underflow has occurred.
1: Underflow has occurred.

R/(W)*1

b6 CX Inexact cause flag 0: No inexact exception has been generated.
1: Inexact exception has been generated.

R/(W)*1

b7 CE Unimplemented processing
cause flag

0: No unimplemented processing has been
encountered.

1: Unimplemented processing has been
encountered.

R/(W)*1

b8 DN 0 flush bit of denormalized
number

0: A denormalized number is handled as a
denormalized number.

1: A denormalized number is handled as 0.*2

R/W

b9 — Reserved This bit is read as 0. The write value should be
0.

R/W

b10 EV Invalid operation exception
enable bit

0: Invalid operation exception is masked.
1: Invalid operation exception is enabled.

R/W

b11 EO Overflow exception enable bit 0: Overflow exception is masked.
1: Overflow exception is enabled.

R/W

b12 EZ Division-by-zero exception
enable bit

0: Division-by-zero exception is masked.
1: Division-by-zero exception is enabled.

R/W

b13 EU Underflow exception enable bit 0: Underflow exception is masked.
1: Underflow exception is enabled.

R/W

b14 EX Inexact exception enable bit 0: Inexact exception is masked.
1: Inexact exception is enabled.

R/W

b25 to b15 — Reserved These bits are read as 0. The write value
should be 0.

R/W

b26 FV*3 Invalid operation flag 0: No invalid operation has been encountered.
1: Invalid operation has been encountered.*8

R/W

b27 FO*4 Overflow flag 0: No overflow has occurred.
1: Overflow has occurred.*8

R/W

b28 FZ*5 Division-by-zero flag 0: No division-by-zero has occurred.
1: Division-by-zero has occurred.*8

R/W

CZ— EX EU EZ EO EV — DN CE CX CU CO CV RM[1:0]

00 0 0 0 0 0 0 1 0 0 0 0 0 0

b4b15 b8 b7 b3 b2 b1

0

b0b14 b13 b12 b11 b10 b9 b6 b5

FS FOFZFX FU — — — — —

0 0000 0 00 00 0 0 0 0 0 0

b31 b26b27 b23b25 b24 b21 b20 b19 b18 b17 b16b30 b29 b28 b22

FV — — — — —

Value after reset:

Value after reset:

R01US0032EJ0130 Rev.1.30 Page 21 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

Note: 1. When 0 is written to the bit, the setting of the bit will be 0; the bit retains the previous value in response to the
writing of 1.

Note: 2. Positive denormalized numbers are treated as +0, negative denormalized numbers as –0.
Note: 3. When the EV bit is set to 0, the FV flag is enabled.
Note: 4. When the EO bit is set to 0, the FO flag is enabled.
Note: 5. When the EZ bit is set to 0, the FZ flag is enabled.
Note: 6. When the EU bit is set to 0, the FU flag is enabled.
Note: 7. When the EX bit is set to 0, the FX flag is enabled.
Note: 8. Once the bit has been set to 1, this value is retained until it is cleared to 0 by software.

The floating-point status word (FPSW) indicates the results of floating-point arithmetic operations. In products that do
not support the floating-point instruction, 00000000h is read and the writing is ignored.
When the corresponding exception handling enable bits (Ej) are set to enable processing of the exceptions (Ej = 1), the Cj
flags can be used by the exception handling routine to identify the source of that exception. If handling of an exception is
masked (Ej = 0), the Fj flag can be used to check for the generation of the exception at the end of a sequence of
processing. The Fj flags operate in an accumulative fashion (j = X, U, Z, O, or V).

RM[1:0] bits (Floating-point rounding-mode setting bits)
These bits specify the floating-point rounding-mode.

(1) Rounding to the nearest value is specified as the default mode and returns the most accurate value.
(2) Modes such as rounding towards 0, rounding towards +, and rounding towards – are used to ensure precision

when interval arithmetic is employed.

CV flag (Invalid operation cause flag), CO flag (Overflow cause flag),
CZ flag (Division-by-zero cause flag), CU flag (Underflow cause flag),
CX flag (Inexact cause flag), and CE flag (Unimplemented processing cause flag)
Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,
division-by-zero, and invalid operation. For a further floating-point exception that is generated upon detection of
unimplemented processing, the corresponding flag (CE) is set to 1.
• If an exception or processing that is not implemented is not encountered in the execution of a floating-point

arithmetic instruction, the corresponding flags become 0.
• When 0 is written to the bit by the MVTC and POPC instructions, the bit is set to 0; the bit retains the previous value

when 1 is written by the instruction.

b29 FU*6 Underflow flag 0: No underflow has occurred.
1: Underflow has occurred.*8

R/W

b30 FX*7 Inexact flag 0: No inexact exception has been generated.
1: Inexact exception has been generated.*8

R/W

b31 FS Floating-point error summary flag This bit reflects the logical OR of the FU, FZ,
FO, and FV flags.

R

Explanation of Floating-Point Rounding Modes
• Rounding to the nearest value

(the default behavior):
An inexact result is rounded to the available value that is closest to the result of a
hypothetical calculation with infinite precision. If two available values are equally
close, rounding is to the even alternative.

• Rounding towards 0: An inexact result is rounded to the smallest available absolute value; i.e., in the
direction of zero (simple truncation).

• Rounding towards +: An inexact result is rounded to the nearest available value in the direction of
positive infinity.

• Rounding towards –: An inexact result is rounded to the nearest available value in the direction of
negative infinity.

Bit Symbol Bit Name Description R/W

R01US0032EJ0130 Rev.1.30 Page 22 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

DN bit (0 flush bit of denormalized number)
When this bit is set to 0, a denormalized number is handled as a denormalized number.
When this bit is set to 1, a denormalized number is handled as 0.

EV bit (Invalid operation exception enable bit), EO bit (Overflow exception enable bit),
EZ bit (Division-by-zero exception enable bit), EU bit (Underflow exception enable bit), and
EX bit (Inexact exception enable bit)
When any of five floating-point exceptions specified in the IEEE754 standard is generated by the floating-point
arithmetic instruction, the bit decides whether the CPU will start handling the exception. When the bit is set to 0, the
exception handling is masked; when the bit is set to 1, the exception handling is enabled.

FV flag (Invalid operation flag), FO flag (Overflow flag), FZ flag (Division-by-zero flag),
FU flag (Underflow flag), and FX flag (Inexact flag)
While the exception handling enable bit (Ej) is 0 (exception handling is masked), if any of five floating-point exceptions
specified in the IEEE754 standard is generated, the corresponding bit is set to 1.
• When Ej is 1 (exception handling is enabled), the value of the flag remains.
• When the corresponding flag is set to 1, it remains 1 until it is cleared to 0 by software (accumulation flag).

FS flag (Floating-point error summary flag)
This bit reflects the logical OR of the FU, FZ, FO, and FV flags.

R01US0032EJ0130 Rev.1.30 Page 23 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.2.3 Accumulator
The accumulator (ACC) is a 64-bit register used for DSP instructions. ACC is also used for the multiply and multiply-
and-accumulate instructions; EMUL, EMULU, FMUL, MUL, and RMPA, in which case the prior value in ACC is
modified by execution of the instruction.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO
instructions write data to the upper 32 bits (bits 63 to 32) and the lower 32 bits (bits 31 to 0), respectively.
Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI
instructions read data from the upper 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.

Value after reset: Undefined

Range for reading by MVFACMI

b63 b48 b47 b32 b31 b16 b15 b0

Range for writing by MVTACHI
and reading by MVFACHI Range for writing by MVTACLO

ACC

R01US0032EJ0130 Rev.1.30 Page 24 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.3 Floating-Point Exceptions
Floating-point exceptions are generated when any of the five exceptions specified in the IEEE754 standard, namely
overflow, underflow, inexact, division-by-zero, or invalid operation, or an attempts to use processing that is not
implemented, is detected upon execution of a floating-point arithmetic instruction. Exception handling by the CPU only
proceeds when any among the EX, EU, EZ, EO, or EV bits in the FPSW, which corresponding to the five types of
exception, is set to 1.
The following is an outline of the events that cause floating-point exceptions.

Note: Floating-point exceptions do not occur on the products which do not support the floating-point arithmetic
instructions.

1.3.1 Overflow
An overflow occurs when the absolute value of the result of an arithmetic operation is greater than the range of values
that can be represented in the floating-point format. Table 1.1 lists the results of operations when an overflow exception
occurs.

Note: An inexact exception will be generated when an overflow error occurs while EO = 0.

1.3.2 Underflow
An underflow occurs when the absolute value of the result of an arithmetic operation is smaller than the range of
normalized values that can be represented in the floating-point format. (However, this does not apply when the result is
0.) Table 1.2 lists the results of operations when an underflow exception occurs.

Table 1.1 Operation Results When an Overflow Exception Has Occurred

Floating-Point Rounding Mode Sign of Result
Operation Result (Value in the Destination Register)
EO = 0 EO = 1

Rounding towards – + +MAX No change
– –

Rounding towards + + +
– –MAX

Rounding towards 0 + +MAX
– –MAX

Rounding to the nearest value + +
– –

Table 1.2 Operation Results When an Underflow Exception Has Occurred
Operation Result (Value in the Destination Register)

EU = 0 EU = 1
DN = 0: No change. (An unimplemented processing exception is generated.) No change
DN = 1: The value of 0 is returned.

R01US0032EJ0130 Rev.1.30 Page 25 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.3.3 Inexact
An inexact exception occurs when the result of a hypothetical calculation with infinite precision differs from the actual
result of the operation. Table 1.3 lists the conditions leading to an inexact exception and the results of operations.

Note: 1. An inexact exception will not be generated when an underflow error occurs.
Note: 2. An inexact exception will not be generated when an overflow exception occurs while overflow exceptions are

enabled, regardless of the rounding generation.

1.3.4 Division-by-Zero
Dividing a non-zero finite number by zero produces a division-by-zero exception. Table 1.4 lists the results of
operations that have led to a division-by-zero exception. However, if the dividend is one of those listed in Table 1.5, the
operation is not treated as division by zero.

Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results

Occurrence Condition
Operation Result (Value in the Destination Register)

EX = 0 EX = 1
An overflow exception has occurred
while overflow exceptions are masked.

Refer to Table 1.1, Operation Results When an
Overflow Exception Has Occurred

No change

Rounding has been produced. Value after rounding

Table 1.4 Operation Results When a Division-by Zero Exception Has Occurred

Dividend
Operation Result (Value in the Destination Register)

EZ = 0 EZ = 1
Non-zero finite number ±(the sign bit is the logical exclusive or of the sign

bits of the divisor and dividend)
No change

Table 1.5 Dividends and Operations that are not Treated as Division by Zero
Dividend Result
0 An invalid operation exception is generated.
 No exception is generated. The result is 
Denormalized number (DN = 0) An unimplemented processing exception is generated.
QNaN No exception is generated. The result is QNaN.
SNaN An invalid operation exception is generated.

R01US0032EJ0130 Rev.1.30 Page 26 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.3.5 Invalid Operation
Executing an invalid operation produces an invalid exception. Table 1.6 lists the conditions leading to an invalid
exception and the results of operations.

Legend

Table 1.7 lists the rules for generating QNaNs as the results of operations.

Note: The SNaN is converted into a QNaN while the most significant bit in the fraction part is 1.

1.3.6 Unimplemented Processing
An unimplemented processing exception occurs when DN = 0 and a denormalized number is given as an operand, or
when an underflow exception is generated as the result of an operation with DN = 0. An unimplemented processing
exception will not occur with DN = 1.
There is no enable bit to mask an unimplemented processing exception, so this processing exception cannot be masked.
The destination register remains as is.

Table 1.6 Conditions Leading to an Invalid Exception and the Operation Results

Occurrence Condition
Operation Result (Value in the Destination Register)

EV = 0 EV = 1
Operation on SNaN operands QNaN No change
++ (–), + – (+), – – (–)
0 
0 0, 
Overflow in integer conversion or attempting
integer conversion of NaN or when
executing FTOI or ROUND instruction

The return value is 7FFFFFFFh when the sign bit
before conversion was 0 and 80000000h when the
sign bit before conversion was 1.

Comparison of SNaN operands No destination

NaN (Not a Number): Not a Number
SNaN (Signaling NaN): SNaN is a kind of NaN where the most significant bit in the fraction part is 0.

Using an SNaN as a source operand in an operation generates an invalid operation. Using
an SNaN as the initial value of a variable facilitates the detection of bugs in programs. Note
that the hardware will not generate an SNaN.

QNaN (Quiet NaN): QNaN is a kind of NaN where the most significant bit in the fraction part is 1.
Using a QNaN as a source operand in an operation (except in a comparison or format
conversion) does not generate an invalid operation. Since a QNaN is propagated through
operations, just checking the result without performing exception handling enables the
debugging of programs. Note that hardware operations can generate a QNaN.

Table 1.7 Rules for Generating QNaNs
Source Operands Operation Result (Value in the Destination Register)
An SNaN and a QNaN The SNaN source operand converted into a QNaN
Two SNaNs dest converted into a QNaN
Two QNaNs dest
An SNaN and a real value The SNaN source operand converted into a QNaN
A QNaN and a real value The QNaN source operand
Neither source operand is an NaN and an invalid
operation exception is generated

7FFFFFFFh

R01US0032EJ0130 Rev.1.30 Page 27 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.4 Processor Mode
The RXv1 CPU supports two processor modes, supervisor and user. These processor modes and the memory protection
function enable the realization of a hierarchical CPU resource protection and memory protection mechanism. Each
processor mode imposes a level on rights of access to memory and the instructions that can be executed. Supervisor
mode carries greater rights than user mode. The initial state after a reset is supervisor mode.

1.4.1 Supervisor Mode
In supervisor mode, all CPU resources are accessible and all instructions are available. However, writing to the processor
mode select bit (PM) in the processor status word (PSW) by executing an MVTC or POPC instruction will be ignored.
For details on how to write to the PM bit, refer to section 1.2.2.4, Processor Status Word (PSW).

1.4.2 User Mode
In user mode, write access to the CPU resources listed below is restricted. The restriction applies to any instruction
capable of write access.
• Some bits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)
• Interrupt stack pointer (ISP)
• Interrupt table register (INTB)
• Backup PSW (BPSW)
• Backup PC (BPC)
• Fast interrupt vector register (FINTV)

1.4.3 Privileged Instruction
Privileged instructions can only be executed in supervisor mode. Executing a privileged instruction in user mode
produces a privileged instruction exception. Privileged instructions include the RTFI, MVTIPL, RTE, and WAIT
instructions.

1.4.4 Switching Between Processor Modes
Manipulating the processor mode select bit (PM) in the processor status word (PSW) switches the processor mode.
However, rewriting the PM bit by executing an MVTC or POPC instruction is prohibited. Switch the processor mode by
following the procedures described below.
(1) Switching from user mode to supervisor mode

After an exception has been generated, the PM bit in the PSW is set to 0 and the CPU switches to supervisor mode.
The hardware pre-processing is executed in supervisor mode. The state of the processor mode before the exception
was generated is retained in the PM bit in the PSW that is saved on the stack.

(2) Switching from supervisor mode to user mode
Executing an RTE instruction when the value of the PM bit in the PSW that has been saved on the stack is “1” or an
RTFI instruction when the value of the PM bit in the PSW that has been saved in the backup PSW (BPSW) is “1”
causes a transition to user mode. In the transition to user mode, the value of the stack pointer designation bit (the U
bit in the PSW) becomes “1”.

R01US0032EJ0130 Rev.1.30 Page 28 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.5 Data Types
The RXv1 CPU can handle four types of data: integer, floating-point number, bit, and string.

1.5.1 Integer
An integer can be signed or unsigned. For signed integers, negative values are represented by two’s complements.

Figure 1.2 Integer

1.5.2 Floating-Point Number
The floating-point number is compliant with that specified in the IEEE754 standard; operands of this type can be used in
eight floating-point arithmetic instructions: FADD, FCMP, FDIV, FMUL, FSUB, FTOI, ITOF, and ROUND.

Figure 1.3 Floating-Point Number

The floating-point number can represent the values listed below.
• 0 < E < 255 (normal numbers)
• E = 0 and F = 0 (signed zero)
• E = 0 and F > 0 (denormalized numbers)*
• E = 255 and F = 0 (infinity)
• E = 255 and F > 0 (NaN: Not-a-Number)
Note: * The number is treated as 0 when the DN bit in the FPSW is 1. When the DN bit is 0, an unimplemented

processing exception is generated.

Unsigned longword (32-bit) integer

Signed longword (32-bit) integer

Unsigned word (16-bit) integer

Signed word (16-bit) integer

Unsigned byte (8-bit) integer

Signed byte (8-bit) integer

Legend
S: Signed bit

b31 b0

b31 b0

b15 b0

b15 b0

b7 b0

b7 b0
S

S

S

Single-precision
floating-point number

b31 b0
S E F

Legend
S: Sign (1 bit)
E: Exponent (8 bits)
F: Fraction (23 bits)

Value = (-1)S × (1 + F × 2-23) × 2(E-127)

R01US0032EJ0130 Rev.1.30 Page 29 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.5.3 Bit
Five bit-manipulation instructions are provided for bitwise operations: BCLR, BMCnd, BNOT, BSET, and BTST.
A bit in a register is specified as the destination register and a bit number in the range from 31 to 0.
A bit in memory is specified as the destination address and a bit number from 7 to 0. The addressing modes available to
specify addresses are register indirect and register relative.

Figure 1.4 Bit

1.5.4 String
The string data type consists of an arbitrary number of consecutive byte (8-bit), word (16-bit), or longword (32-bit) units.
Seven string manipulation instructions are provided for use with strings: SCMPU, SMOVB, SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE.

Figure 1.5 String

Register
b31 b0

#bit, Rn
(bit: 31 to 0, n: 0 to 15)

b7 b0
#bit, mem
(bit: 7 to 0)

Memory

Example
#30,R1 (register R1, bit 30)

#2,[R2] (address [R2], bit 2)
Example

String of byte (8-bit) data
8

String of word (16-bit) data
16

String of longword (32-bit) data
32

R01US0032EJ0130 Rev.1.30 Page 30 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.6 Data Arrangement

1.6.1 Data Arrangement in Registers
Figure 1.6 shows the relation between the sizes of registers and bit numbers.

Figure 1.6 Data Arrangement in Registers

1.6.2 Data Arrangement in Memory
Data in memory have three sizes; byte (8-bit), word (16-bit), and longword (32-bit). The data arrangement is selectable
as little endian or big endian. Figure 1.7 shows the arrangement of data in memory.

Figure 1.7 Data Arrangement in Memory

Longword (32-bit) data
b31 b0

b15 b0

b7 b0

Word (16-bit) data

Byte (8-bit) data

MSB LSB

1-bit data

(Little endian)

Address N

Byte data

Word data Address N
Address N+1

Address N
Address N+1
Address N+2
Address N+3

Longword data

Data type

b7 b0

LSBMSB

Data imageAddress

7 6 5 4 3 2 1 0

LSB

LSB

MSB

MSB

b7 b0

LSBMSB

7 6 5 4 3 2 1 0

LSB

LSB

MSB

MSB

(Big endian)
Data image

Address N

R01US0032EJ0130 Rev.1.30 Page 31 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.7 Vector Table
There are two types of vector table: fixed and relocatable. Each vector in the vector table consists of four bytes and
specifies the address where the corresponding exception handling routine starts.

1.7.1 Fixed Vector Table
The fixed vector table is allocated to a fixed address range. The individual vectors for the privileged instruction
exception, access exception, undefined instruction exception, floating-point exception, non-maskable interrupt, and reset
are allocated to addresses in the range from FFFFFF80h to FFFFFFFFh. Figure 1.8 shows the fixed vector table.

Figure 1.8 Fixed Vector Table

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

Access exception

(Reserved)

(Reserved)

FFFFFFDCh

FFFFFFFCh

FFFFFFE0h

FFFFFFE4h

FFFFFFE8h

FFFFFFECh

FFFFFFF0h

FFFFFFF4h

FFFFFFF8h

Privileged instruction exception

Undefined instruction exception

Floating-point exception

LSB

Non-maskable interrupt

Reset

FFFFFFD0h

FFFFFFD4h

FFFFFFD8h

MSB

FFFFFFCCh

FFFFFF80h

R01US0032EJ0130 Rev.1.30 Page 32 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.7.2 Relocatable Vector Table
The address where the relocatable vector table is placed can be adjusted. The table is a 1,024-byte region that contains all
vectors for unconditional traps and interrupts and starts at the address (IntBase) specified in the interrupt table register
(INTB). Figure 1.9 shows the relocatable vector table.
Each vector in the relocatable vector table has a vector number from 0 to 255. Each of the INT instructions, which act as
the sources of unconditional traps, is allocated to the vector that has the same number as that of the instruction itself
(from 0 to 255). The BRK instruction is allocated to the vector with number 0. Furthermore, vector numbers within the
set from 0 to 255 may also be allocated to other interrupt sources on a per-product basis.

Figure 1.9 Relocatable Vector Table

INTB

0IntBase + 4

IntBase
b31 b0

IntBase + 8

255
IntBase + 1020

Interrupt vectors are
allocated in this order.

1
2

R01US0032EJ0130 Rev.1.30 Page 33 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 1. CPU Programming Model

1.8 Address Space
The address space of the RXv1 CPU is the 4 Gbyte range from address 0000 0000h to address FFFF FFFFh. Program
and data regions taking up to a total of 4 Gbytes are linearly accessible. The address space of the RXv1 CPU is depicted
in Figure 1.10. For all regions, the designation may differ with the product and operating mode. For details, refer to the
user’s manual: hardware for each product.

Figure 1.10 Address Space

00000000h

FFFFFFFFh

Data regions/
Program regions
(4 Gbytes, linear)

R01US0032EJ0130 Rev.1.30 Page 34 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

2. Addressing Modes
The following is a description of the notation and operations of each addressing mode.
There are ten types of addressing mode.

• Immediate
• Register direct
• Register indirect
• Register relative
• Post-increment register indirect
• Pre-decrement register indirect
• Indexed register indirect
• Control register direct
• PSW direct
• Program counter relative

R01US0032EJ0130 Rev.1.30 Page 35 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

2.1 Guide to This Section
The following sample shows how the information in this section is presented.

(1) Name
The name of the addressing mode is given here.

(2) Symbolic notation
This notation represents the addressing mode.
:8 or :16 represents the number of valid bits just before an instruction in this addressing mode is executed.
This symbolic notation is added in the manual to represent the number of valid bits, and is not included in the
actual program.

(3) Description
The operation and effective address range are described here.

(4) Operation diagram
The operation of the addressing mode is illustrated here.

Register Relative
dsp:5[Rn]
(Rn = R0 to R7)

dsp:8[Rn]
(Rn = R0 to R15)

dsp:16[Rn]
(Rn = R0 to R15)

The effective address of the operand is
the least significant 32 bits of the sum of
the displacement (dsp) value, after zero-
extension to 32 bits and multiplication by
1, 2, or 4 according to the specification
(see the diagram at right), and the value
in the specified register. The range of
valid addresses is from 00000000h to
FFFFFFFFh. dsp:n represents an n-bit
long displacement value. The following
mode can be specified:
dsp:5[Rn] (Rn = R0 to R7),
dsp:8[Rn] (Rn = R0 to R15), and
dsp:16[Rn] (Rn = R0 to R15).
dsp:5[Rn] (Rn = R0 to R7) is used only
with MOV and MOVU instructions.

addressRn address

dsp × +

Register
Memory

Direction of
address
incrementing

• Instruction that takes a size
specifier
.B : × 1
.W : × 2
.L : × 4

• Instruction that takes a size
extension specifier
.B/.UB : × 1
.W/.UW : × 2
.L : × 4

(1)

(2)

(3)

(4)

R01US0032EJ0130 Rev.1.30 Page 36 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

2.2 Addressing Modes
Immediate
#IMM:1
#IMM:3
#IMM:4
#UIMM:4
#IMM:5

#IMM:1
The operand is the 1-bit immediate value
indicated by #IMM. This addressing mode
is used to specify sources for the RACW
instruction.

#IMM:3
The operand is the 3-bit immediate value
indicated by #IMM. This addressing mode
is used to specify the bit number for the bit
manipulation instructions: BCLR, BMCnd,
BNOT, BSET, and BTST.

#IMM:4
The operand is the 4-bit immediate value
indicated by #IMM. This addressing mode
is used to specify the interrupt priority level
for the MVTIPL instruction.

#UIMM:4
The operand is the 4-bit immediate value
indicated by #UIMM after zero extension to
32 bits. This addressing mode is used to
specify sources for ADD, AND, CMP, MOV,
MUL, OR, and SUB instructions.

#IMM:5
The operand is the 5-bit immediate value
indicated by #IMM. This addressing mode
is used in the following ways:

- to specify the bit number for the bit-
manipulation instructions: BCLR,
BMCnd, BNOT, BSET, and BTST;

- to specify the number of bit places of
shifting in certain arithmetic/logic
instructions: SHAR, SHLL, and SHLR;
and

- to specify the number of bit places of
rotation in certain arithmetic/logic
instructions: ROTL and ROTR.

b31 b0
Zero extension#UIMM:4

b3b4

b0b4
#IMM:5

b0b2
#IMM:3

#IMM:4
b0b3

b0
#IMM:1

R01US0032EJ0130 Rev.1.30 Page 37 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

Immediate
#IMM:8
#SIMM:8
#UIMM:8
#IMM:16
#SIMM:16
#SIMM:24
#IMM:32

The operand is the value specified by the
immediate value. In addition, the operand
will be the result of zero-extending or sign-
extending the immediate value when it is
specified by #UIMM or #SIMM. #IMM:n,
#UIMM:n, and #SIMM:n represent n-bit
long immediate values.
For the range of IMM, refer to section
2.2.1, Ranges for Immediate Values.

Register Direct
Rn
(Rn = R0 to R15)

The operand is the specified register. In
addition, the Rn value is transferred to the
program counter (PC) when this
addressing mode is used with JMP and
JSR instructions. The range of valid
addresses is from 00000000h to
FFFFFFFFh. Rn (Rn = R0 to R15) can be
specified.

Register Indirect
[Rn]
(Rn = R0 to R15)

The value in the specified register is the
effective address of the operand. The
range of valid addresses is from
00000000h to FFFFFFFFh. [Rn] (Rn = R0
to R15) can be specified.

Register Relative
dsp:5[Rn]
(Rn = R0 to R7)

dsp:8[Rn]
(Rn = R0 to R15)

dsp:16[Rn]
(Rn = R0 to R15)

The effective address of the operand is the
least significant 32 bits of the sum of the
displacement (dsp) value, after zero-
extension to 32 bits and multiplication by 1,
2, or 4 according to the specification (see
the diagram at right), and the value in the
specified register. The range of valid
addresses is from 00000000h to
FFFFFFFFh. dsp:n represents an n-bit
long displacement value. The following
mode can be specified:
dsp:5[Rn] (Rn = R0 to R7),
dsp:8[Rn] (Rn = R0 to R15), and
dsp:16[Rn] (Rn = R0 to R15).
dsp:5[Rn] (Rn = R0 to R7) is used only with
MOV and MOVU instructions.

When the size specifier is W

When the size specifier is L

When the size specifier is B

#IMM:32

#SIMM:24

#SIMM:16

#SIMM:8

#UIMM:8

#IMM:16

#UIMM:8

#SIMM:8

#IMM:8
b7 b0

Sign extension
b7 b0b15 b8

Zero extension
b7 b0b15 b8

b0b15

Zero extension
b0b31 b7b8

Sign extension
b0b31 b7b8

Sign extension
b0b31 b15b16

Sign extension
b23 b0b31 b24

b31 b0b31

Registerb31 b0

Rn

PC

Rn

Register
Memory

Register
Direction of
address
incrementing

address
Register

Rn

Memory

Direction of
address
incrementing

addressRn address

dsp × +

Register
Memory

Direction of
address
incrementing

• Instruction that takes a size
specifier
.B : × 1
.W : × 2
.L : × 4

• Instruction that takes a size
extension specifier
.B/.UB : × 1
.W/.UW : × 2
.L : × 4

R01US0032EJ0130 Rev.1.30 Page 38 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

Post-increment Register Indirect
[Rn+]
(Rn = R0 to R15)

The value in the specified register is the
effective address of the operand. The
range of valid addresses is from
00000000h to FFFFFFFFh. After the
operation, 1, 2, or 4 is added to the value in
the specified register according to the size
specifier: .B, .W, or .L. This addressing
mode is used with MOV and MOVU
instructions.

Pre-decrement Register Indirect
[–Rn]
(Rn = R0 to R15)

According to the size specifier: .B, .W, or
.L, 1, 2, or 4 is subtracted from the value in
the specified register. The value after the
operation is the effective address of the
operand. The range of valid addresses is
from 00000000h to FFFFFFFFh. This
addressing mode is used with MOV and
MOVU instructions.

Indexed Register Indirect
[Ri, Rb]
(Ri = R0 to R15,
Rb = R0 to R15)

The effective address of the operand is the
least significant 32 bits of the sum of the
value in the index register (Ri), multiplied
by 1, 2, or 4 according to the size specifier:
.B, .W, or .L, and the value in the base
register (Rb). The range of valid addresses
is from 00000000h to FFFFFFFFh. This
addressing mode is used with MOV and
MOVU instructions.

Control Register Direct
PC
ISP
USP
INTB
PSW
BPC
BPSW
FINTV
FPSW

The operand is the specified control
register. This addressing mode is used with
MVFC, MVTC, POPC, and PUSHC
instructions.
The PC is only selectable as the src
operand of MVFC and PUSHC
instructions.

addressRn (1)

+(3)

(2)

(2)

Memory

When the size specifier is .B: + 1
When the size specifier is .W: + 2
When the size specifier is .L: + 4

Register

Direction of
address
incrementing

addressRn address

(1)

–(4)

(2)

(3)

When the size specifier is .B: – 1
When the size specifier is .W: – 2
When the size specifier is .L: – 4

Memory

Register

Direction of
address
incrementing

address
Base register

Rb

(1)

(1)

(2)

+

Index register
Ri

address

(2) (3)×
When the size specifier is .B: × 1
When the size specifier is .W: × 2
When the size specifier is .L: × 4

Memory

Direction of
address
incrementing

Register

FPSW
b31 b0

FINTV
b0b31

BPSW
b31 b0

BPC
b0b31

PSW
b31 b0

INTB
b0b31

USP
b31 b0

ISP
b31 b0

PC
b0b31

R01US0032EJ0130 Rev.1.30 Page 39 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

PSW Direct
C
Z
S
O
I
U

The operand is the specified flag or bit.
This addressing mode is used with
CLRPSW and SETPSW instructions.

Program Counter Relative
pcdsp:3 When the branch distance specifier is .S,

the effective address is the least significant
32 bits of the unsigned sum of the value in
the program counter (PC) and the
displacement (pcdsp) value. The range of
the branch is from 3 to 10. The range of
valid addresses is from 00000000h to
FFFFFFFFh. This addressing mode is to
be used with the BCnd (only applicable in
BEQ, BZ, BNE, and BNZ), and BRA
instructions.

pcdsp:8
pcdsp:16
pcdsp:24

When the branch distance specifier is .B,
.W, or .A, the effective address is the
signed sum of the value in the program
counter (PC) and the displacement (pcdsp)
value. The range of pcdsp depends on the
branch distance specifier.
For .B: –128 ≤ pcdsp:8 ≤ 127
For .W: –32768 ≤ pcdsp:16 ≤ 32767
For .A: –8388608 ≤ pcdsp:24 ≤ 8388607
The range of valid addresses is from
00000000h to FFFFFFFFh. This
addressing mode with the branch distance
specifier “.B” is for use with any of the
BCnd instructions and the BRA instruction,
with the branch distance specifier “.W” is
only for use with certain BCnd instructions
(BEQ, BZ, BNE, and BNZ) and the BRA
and BSR instructions, and with the branch
distance specifier “.A” is only for use with
the BRA and BSR instructions.

Rn
(Rn = R0 to R15)

The effective address is the signed sum of
the value in the program counter (PC) and
the Rn value. The range of the Rn value is
from –2147483648 to 2147483647. The
range of valid addresses is from
00000000h to FFFFFFFFh. This
addressing mode is used with BRA(.L) and
BSR(.L) instructions.

IPL[3:0] PM U I
b31 b24 b23 b16

O S Z C
b15 b8 b7 b0

PSW

PSW

Branch instruction

pcdsp

+

PC

Label

Register
Memory

Direction of
address
incrementing

Branch instruction

pcdsp

PC

pcdsp

When the pcdsp value is negative

+

+

When the pcdsp value is positive

Label

Register

Memory

Label

Direction of
address
incrementing

Branch instructionPC

When the Rn value is negative

Rn

Rn

+

+

Register

Memory

Register

Register

When the Rn value is positive

Direction of
address
incrementing

R01US0032EJ0130 Rev.1.30 Page 40 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 2. Addressing Modes

2.2.1 Ranges for Immediate Values
Ranges for immediate values are listed in Table 2.1.
Unless specifically stated otherwise in descriptions of the various instructions under section 3.3, Instructions in Detail,
ranges for immediate values are as listed below.

Note: 1. The RX Family assembler from Renesas Electronics Corp. converts instruction codes with immediate values to
have the optimal numbers of bits.

Note: 2. The RX Family assembler from Renesas Electronics Corp. is capable of depicting hexadecimal notation as a 32-
bit notation. For example “–127” in decimal notation, i.e. “–7Fh” in hexadecimal, can be expressed as
“0FFFFFF81h”.

Note: 3. For the ranges of immediate values for INT and RTSD instructions, see the relevant descriptions under section
3.3, Instructions in Detail.

Table 2.1 Ranges for Immediate Values
IMM In Decimal Notation In Hexadecimal Notation
IMM:1 1 or 2 1h or 2h
IMM:3 0 to 7 0h to 7h
IMM:4 0 to 15 0h to 0Fh
UIMM:4 0 to 15 0h to 0Fh
IMM:5 0 to 31 0h to 1Fh
IMM:8 –128 to 255 –80h to 0FFh
UIMM:8 0 to 255 0h to 0FFh
SIMM:8 –128 to 127 –80h to 7Fh
IMM:16 –32768 to 65535 –8000h to 0FFFFh
SIMM:16 –32768 to 32767 –8000h to 7FFFh
SIMM:24 –8388608 to 8388607 –800000h to 7FFFFFh
IMM:32 –2147483648 to 4294967295 –80000000h to 0FFFFFFFFh

R01US0032EJ0130 Rev.1.30 Page 41 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

3. Instruction Descriptions

3.1 Overview of Instruction Set
The number of instructions for the RXv1 Architecture is 90. A variable-length instruction format of 1 to 8 bytes is used.

The RXv1 instruction set is listed below.

List of Instructions (1 / 4)

Instruction
Type Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code
Described
in Detail
(on Page) Notes

Basic instructions
Arithmetic/
logic
instructions

ABS Absolute value 51 169
ADC Add with carry 52 170
ADD Add without carry 53 171
AND Logical AND 55 173
CMP Compare 68 187
DIV Divide signed 69 188
DIVU Divide unsigned 70 190
EMUL Extended multiply signed 71 191
EMULU Extended multiply unsigned 73 192
MAX Maximum of two signed integers 95 203
MIN Minimum of two signed integers 96 204
MUL Multiply 102 211
NEG Negate (two’s complement) 113 218
NOP No operation 114 218
NOT Logical NOT (one’s complement) 115 219
OR Logical OR 116 220
RMPA Repeat multiply-accumulate 127 226
ROLC Rotate left with carry 129 226
RORC Rotate right with carry 130 227
ROTL Rotate left 131 227
ROTR Rotate right 132 228
SAT Saturate 141 231
SATR Saturate for RMPA 142 231
SBB Subtract with borrow 143 232
SHAR Arithmetic shift right 147 235
SHLL Logical shift left 148 236
SHLR Logical shift right 149 237
SUB Subtract without borrow 156 241
TST Test logical 161 243
XOR Logical Exclusive OR 164 245

R01US0032EJ0130 Rev.1.30 Page 42 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Data transfer
instructions

MOV Move 97 205
MOVU Move unsigned 100 210
POP Pop register from stack 117 221
POPC Pop a control register from stack 118 222
POPM Pop multiple registers from stack 119 222
PUSH Push register on stack 120 223
PUSHC Push a control register on stack 121 224
PUSHM Push multiple registers on stack 122 224
REVL Reverse endian within longword 125 225
REVW Reverse endian within word 126 225
SCCnd SCGEU Store condition 144 233

SCC 144 233
SCEQ 144 233
SCZ 144 233
SCGTU 144 233
SCPZ 144 233
SCGE 144 233
SCGT 144 233
SCO 144 233
SCLTU 144 233
SCNC 144 233
SCNE 144 233
SCNZ 144 233
SCLEU 144 233
SCN 144 233
SCLE 144 233
SCLT 144 233
SCNO 144 233

STNZ Store on not zero 154 239
STZ Store on zero 155 240
XCHG Exchange 163 244

List of Instructions (2 / 4)

Instruction
Type Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code
Described
in Detail
(on Page) Notes

R01US0032EJ0130 Rev.1.30 Page 43 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Branch
instructions

BCnd BGEU Conditional relative branch 58 177
BC 58 177
BEQ 58 177
BZ 58 177
BGTU 58 177
BPZ 58 177
BGE 58 177
BGT 58 177
BO 58 177
BLTU 58 177
BNC 58 177
BNE 58 177
BNZ 58 177
BLEU 58 177
BN 58 177
BLE 58 177
BLT 58 177
BNO 58 177

BRA Unconditional relative branch 62 181
BSR Relative branch to subroutine 65 184
JMP Unconditional jump 91 201
JSR Jump to subroutine 92 201
RTS Return from subroutine 138 230
RTSD Return from subroutine after deallocating

stack frame
139 230

Bit
manipulation
instructions

BCLR Clear a bit 57 175
BMCnd BMGEU Conditional bit transfer 59 179

BMC 59 179
BMEQ 59 179
BMZ 59 179
BMGTU 59 179
BMPZ 59 179
BMGE 59 179
BMGT 59 179
BMO 59 179
BMLTU 59 179
BMNC 59 179
BMNE 59 179
BMNZ 59 179
BMLEU 59 179
BMN 59 179
BMLE 59 179
BMLT 59 179
BMNO 59 179

BNOT Not a bit 61 180
BSET Set a bit 64 182
BTST Test a bit 66 185

List of Instructions (3 / 4)

Instruction
Type Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code
Described
in Detail
(on Page) Notes

R01US0032EJ0130 Rev.1.30 Page 44 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Note: 1. Products of the RX610 Group do not support the MVTIPL instruction.

String
manipulation
instructions

SCMPU String compare until not equal 145 233
SMOVB String move backward 150 238
SMOVF String move forward 151 238
SMOVU String move until zero detected 152 238
SSTR String store 153 239
SUNTIL String search until equal 157 242
SWHILE String search while equal 159 242

System
manipulation
instructions

BRK Unconditional trap 63 182
CLRPSW Clear a flag or bit in the PSW 67 186
INT Software interrupt 88 200
MVFC Move data from a control register 108 214
MVTC Move data to a control register 111 216
MVTIPL (privileged
instruction) *1

Move data to IPL 112 217

RTE (privileged
instruction)

Return from exception 136 229

RTFI (privileged
instruction)

Return from fast interrupt 137 230

SETPSW Set a flag or bit in the PSW 146 234
WAIT (privileged
instruction)

Wait 162 244

Floating-point instructions (optional)
Floating-point
arithmetic
instructions

FADD Add floating-point 75 194
FCMP Comparefloating-point 77 195
FDIV Divide floating-point 79 196
FMUL Multiply floating-point 81 197
FSUB Subtractfloating-point 83 198
FTOI Convert floating-point to signed integer 85 199
ITOF Convert signed integer to floating-point 89 200
ROUND Round floating-point to signed integer 133 229

DSP instructions
DSP
instructions

MACHI Multiply-Accumulate the upper words 93 202
MACLO Multiply-Accumulate the lower words 94 202
MULHI Multiply the upper words 104 213
MULLO Multiply the lower words 105 213
MVFACHI Move data from the upper longword of the

accumulator
106 213

MVFACMI Move data from the middle-order longword
of the accumulator

107 214

MVTACHI Move data to the upper longword of the
accumulator

109 215

MVTACLO Move data to the lower longword of the
accumulator

110 215

RACW Round the accumulator word 123 225

List of Instructions (4 / 4)

Instruction
Type Mnemonic Function

Instruction
Described
in Detail
(on Page)

Instruction
Code
Described
in Detail
(on Page) Notes

R01US0032EJ0130 Rev.1.30 Page 45 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

3.2 Guide to This Section
This section describes the functionality of each instruction by showing syntax, operation, function, src/dest to be
selected, flag change, and description example.
The following shows how to read this section by using an actual page as an example.

(1) Mnemonic
Indicates the mnemonic name of the instruction explained on the given page. The center column gives a simple
description of the operation and the full name of the instruction.

(2) Instruction Type
Indicates the type of instruction.

(3) Instruction Code
Indicates the page in which instruction code is listed.
Refer to this page for instruction code.

Operation
(1) if (dest < 0)

dest = -dest;
(2) if (src < 0)

dest = -src;
else

dest = src;

Function
(1) This instruction takes the absolute value of dest and places the result in dest.

(2) This instruction takes the absolute value of src and places the result in dest.

Flag Change

Instruction Format

Description Example
ABS R2
ABS R1, R2

ABS Absolute value ABS
Syntax

(1) ABS dest
(2) ABS src, dest

Arithmetic/logic instruction
Instruction Code

Page: 272

Flag Change Condition
C —
Z The flag is set when dest is 0 after the operation; otherwise it is cleared.
S The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
O (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) ABS dest L — Rd 2
(2) ABS src, dest L Rs Rd 3

(1)

(7)

(6)

(5)

(4)

(8)

(9)

(3)
(2)

R01US0032EJ0130 Rev.1.30 Page 46 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

(4) Syntax
Indicates the syntax of the instruction using symbols.

(a) Mnemonic
Describes the mnemonic.

(b) Size specifier .size
For data-transfer instructions, some string-manipulation instructions, and the RMPA instruction, a size specifier
can be added to the end of the mnemonic. This determines the size of the data to be handled as follows.
.B Byte (8 bits)
.W Word (16 bits)
.L Longword (32 bits)

(c) Operand src, dest
Describes the operand.
src Source operand
dest Destination operand

(5) Operation
Describes the operation performed by the instruction. A C-language-style notation is used for the descriptions of
operations.

(a) Data type
signed char Signed byte (8-bit) integer
signed short Signed word (16-bit) integer
signed long Signed longword (32-bit) integer
signed long long Signed long longword (64-bit) integer
unsigned char Unsigned byte (8-bit) integer
unsigned short Unsigned word (16-bit) integer
unsigned long Unsigned longword (32-bit) integer
unsigned long long Unsigned long longword (64-bit) integer
float Single-precision floating-point number

(b) Pseudo-functions
register(n): Returns register Rn, where n is the register number (n: 0 to 15).
register_num(Rn): Returns register number n for Rn.

(c) Special notation
Rn[i+7:i]: Indicates the unsigned byte integer for bits (i + 7) to i of Rn.

(n: 0 to 15, i: 24, 16, 8, or 0)
Rm:Rn: Indicates the virtual 64-bit register for two connected registers.

(m, n: 0 to 15. Rm is allocated to bits 63 to 32, Rn to bits 31 to 0.)
Rl:Rm:Rn: Indicates the virtual 96-bit register for three connected registers.

(l, m, n: 0 to 15. Rl is allocated to bits 95 to 64, Rm to bits 63 to 32, and Rn to
bits 31 to 0.)

{byte3, byte2, byte1, byte0}: Indicates the unsigned longword integer for four connected unsigned byte
integers.

(6) Function
Explains the function of the instruction and precautions to be taken when using it.

(7) Flag Change
Indicates changes in the states of flags (O, S, Z, and C) in the PSW.

R01US0032EJ0130 Rev.1.30 Page 47 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

For floating-point arithmetic instructions, changes in the states of flags (FX, FU, FZ, FO, FV, CE, CX, CU, CZ,
CO, and CV) in the FPSW are also indicated.
The symbols in the table mean the following:

—: The flag does not change.
: The flag changes depending on condition.

(8) Instruction Format
Indicates the instruction format.

(a) Registers
Rs, Rs2, Rd, Rd2, Ri, and Rb mean that R0 to R15 are specifiable unless stated otherwise.

(b) Control registers
Rx indicates that the PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW are selectable. The PC is only
selectable as the src operand of MVFC and PUSHC instructions.

(c) Flag and bit
“flag” indicates that a bit (U or I) or a flag (O, S, Z, or C) in the PSW is specifiable.

(d) Immediate value
#IMM:n, #UIMM:n, and #SIMM:n indicate n-bit immediate values. When extension is necessary, UIMM
specifies zero extension and SIMM specifies sign extension.

Instruction Format
Processing
Size

Operand
Code Size (Byte)Syntax src src2 dest

(1) AND src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
L dsp:8[Rs].memex* — Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:16[Rs].memex* — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(2) AND src, src2, dest L Rs Rs2 Rd 3

(f)

(a)

(d)

(e)

Instruction Format

Processing Size
Operand

Code Size (Byte)Syntax src dest*

MVTC src, dest L #SIMM:8 Rx 4
L #SIMM:16 Rx 5
L #SIMM:24 Rx 6
L #IMM:32 Rx 7
L Rs Rx 3

(b)

Instruction Format
Operand Code Size

Syntax dest (Byte)
SETPSW dest flag 2(c)

R01US0032EJ0130 Rev.1.30 Page 48 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

(e) Size extension specifier (.memex) appended to a memory operand
.memex indicates the size of an operand in memory and the form of extension. Each instruction with a size-
extension specifier is expanded accordingly and then executed at the corresponding processing size.

If the extension specifier is omitted, byte size is assumed for bit-manipulation instructions and longword size is
assumed for other instructions.

(f) Processing size
The processing size indicates the size for transfer or calculation within the CPU.

(9) Description Example
Shows a description example for the instruction.

memex Size Extension
B Byte Sign extension
UB Byte Zero extension
W Word Sign extension
UW Word Zero extension
L Longword None

R01US0032EJ0130 Rev.1.30 Page 49 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

The following explains the syntax of BCnd, BRA, and BSR instructions by using the BRA instruction as an actual
example.

(4) Syntax
Indicates the syntax of the instruction using symbols.

(a) Mnemonic
Describes the mnemonic.

(b) Branch distance specifier .length
For branch or jump instructions, a branch distance specifier can be added to the end of the mnemonic. This
determines the number of bits to be used to represent the relative distance value for the branch.
.S 3-bit PC forward relative specification. Valid values are 3 to 10.
.B 8-bit PC relative specification. Valid values are –128 to 127.
.W 16-bit PC relative specification. Valid values are –32768 to 32767.
.A 24-bit PC relative specification. Valid values are –8388608 to 8388607.
.L 32-bit PC relative specification. Valid values are –2147483648 to 2147483647.

Operation
PC = PC + src;

Function
• This instruction executes a relative branch to destination address specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BRA label1
BRA.A label2
BRA R1
BRA.L R2

Note: For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of
the instruction.

Description Example
BRA label
BRA 1000h

BRA Unconditional relative branch BRA
Syntax

BRA(.length) src
Branch instruction

Instruction Code
Page: 286

Operand Code Size
(Byte)Syntax Length src Range of pcdsp/Rs

BRA(.length) src S pcdsp:3 3 pcdsp 10 1
B pcdsp:8 –128 pcdsp 127 2
W pcdsp:16 –32768 pcdsp 32767 3
A pcdsp:24 –8388608 pcdsp 8388607 4
L Rs –2147483648 Rs 2147483647 2

(4)
(a)

(b)

R01US0032EJ0130 Rev.1.30 Page 50 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

3.3 Instructions in Detail
The following pages give details of the RXv1 instructions.

R01US0032EJ0130 Rev.1.30 Page 51 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) if (dest < 0)

dest = -dest;
(2) if (src < 0)

dest = -src;
else

dest = src;

Function
(1) This instruction takes the absolute value of dest and places the result in dest.
(2) This instruction takes the absolute value of src and places the result in dest.

Flag Change

Instruction Format

Description Example
ABS R2
ABS R1, R2

ABS Absolute value ABS
Syntax

(1) ABS dest
(2) ABS src, dest

Arithmetic/logic instruction
Instruction Code

Page: 169

Flag Change Condition
C —
Z  The flag is set when dest is 0 after the operation; otherwise it is cleared.
S  The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
O  (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) ABS dest L — Rd 2
(2) ABS src, dest L Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 52 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest + src + C;

Function
• This instruction adds dest, src, and the C flag and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  24) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

Description Example
ADC #127, R2
ADC R1, R2
ADC [R1], R2

ADC Add with carry ADC
Syntax

ADC src, dest
Arithmetic/logic instruction

Instruction Code
Page: 170

Flag Change Condition
C  The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O  The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ADC src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 4
L dsp:8[Rs].L* Rd 5
L dsp:16[Rs].L* Rd 6

R01US0032EJ0130 Rev.1.30 Page 53 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = dest + src;
(2) dest = src2 + src;

Function
(1) This instruction adds dest and src and places the result in dest.
(2) This instruction adds src2 and src and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

ADD Add without carry ADD
Syntax

(1) ADD src, dest
(2) ADD src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 171

Flag Change Condition
C  The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O  The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand
Code Size (Byte)Syntax src src2 dest

(1) ADD src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
L dsp:8[Rs].memex* — Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:16[Rs].memex* — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(2) ADD src, src2, dest L #SIMM:8 Rs Rd 3

L #SIMM:16 Rs Rd 4
L #SIMM:24 Rs Rd 5
L #IMM:32 Rs Rd 6
L Rs Rs2 Rd 3

R01US0032EJ0130 Rev.1.30 Page 54 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Description Example
ADD #15, R2
ADD R1, R2
ADD [R1], R2
ADD [R1].UB, R2
ADD #127, R1, R2
ADD R1, R2, R3

R01US0032EJ0130 Rev.1.30 Page 55 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = dest & src;
(2) dest = src2 & src;

Function
(1) This instruction logically ANDs dest and src and places the result in dest.
(2) This instruction logically ANDs src2 and src and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

AND Logical AND AND
Syntax

(1) AND src, dest
(2) AND src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 173

Flag Change Condition
C —
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand
Code Size (Byte)Syntax src src2 dest

(1) AND src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
L dsp:8[Rs].memex* — Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:16[Rs].memex* — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(2) AND src, src2, dest L Rs Rs2 Rd 3

R01US0032EJ0130 Rev.1.30 Page 56 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Description Example
AND #15, R2
AND R1, R2
AND [R1], R2
AND [R1].UW, R2
AND R1, R2, R3

R01US0032EJ0130 Rev.1.30 Page 57 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) When dest is a memory location:

unsigned char dest;
dest &= ˜(1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
dest &= ˜(1 << (src & 31));

Function
• This instruction clears the bit of dest, which is specified by src.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0  IMM:3  7. The range for IMM:5 is 0  IMM:5  31.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BCLR #7, [R2]
BCLR R1, [R2]
BCLR #31, R2
BCLR R1, R2

BCLR Clear a bit BCLR
Syntax

BCLR src, dest
Bit manipulation instruction

Instruction Code
Page: 175

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BCLR src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5

(2) BCLR src, dest L #IMM:5 Rd 2
L Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 58 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (Cnd)

PC = PC + src;

Function
• This instruction makes the flow of relative branch to the location indicated by src when the condition specified by

Cnd is true; if the condition is false, branching does not proceed.
• The following table lists the types of BCnd.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BC label1
BC.B label2

Note: For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16). The value of the
specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the
instruction.

Description Example
BC label
BC 1000h

BCnd Conditional relative branch BCnd
Syntax

BCnd(.length) src
Branch instruction

Instruction Code
Page: 177

BCnd Condition Expression BCnd Condition Expression
BGEU,
BC

C == 1 Equal to or greater than/
C flag is 1

≤ BLTU,
BNC

C == 0 Less than/
C flag is 0

>

BEQ,
BZ

Z == 1 Equal to/Z flag is 1 = BNE,
BNZ

Z == 0 Not equal to/Z flag is 0 ≠

BGTU (C & ˜Z) == 1 Greater than < BLEU (C & ˜Z) == 0 Equal to or less than ≥
BPZ S == 0 Positive or zero 0 ≤ BN S == 1 Negative 0 >
BGE (S ^ O) == 0 Equal to or greater than

as signed integer
≤ BLE ((S ^ O) |Z)

== 1
Equal to or less than as
signed integer

≥

BGT ((S ^ O) |Z)
== 0

Greater than as signed
integer

< BLT (S ^ O) == 1 Less than as signed
integer

>

BO O == 1 O flag is 1 BNO O == 0 O flag is 0

Length
Operand Code Size

(Byte)Syntax src Range of pcdsp
(1) BEQ.S src S pcdsp:3 3 ≤ pcdsp ≤ 10 1
(2) BNE.S src S pcdsp:3 3 ≤ pcdsp ≤ 10 1
(3) BCnd.B src B pcdsp:8 –128 ≤ pcdsp ≤ 127 2
(4) BEQ.W src W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3
(5) BNE.W src W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3

R01US0032EJ0130 Rev.1.30 Page 59 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) When dest is a memory location:

unsigned char dest;
if (Cnd)

dest |= (1 << (src & 7));
else

dest &= ˜(1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
if (Cnd)

dest |= (1 << (src & 31));
else

dest &= ˜(1 << (src & 31));

Function
• This instruction moves the truth-value of the condition specified by Cnd to the bit of dest, which is specified by

src; that is, 1 or 0 is transferred to the bit if the condition is true or false, respectively.
• The following table lists the types of BMCnd.

• The immediate value given as src is the number (position) of the bit.
The range for IMM:3 operands is 0  IMM:3  7. The range for IMM:5 is 0  IMM:5  31.

Flag Change
• This instruction does not affect the states of flags.

BMCnd Conditional bit transfer BMCnd
Syntax

BMCnd src, dest
Bit manipulation instruction

Instruction Code
Page: 179

BMCnd Condition Expression BMCnd Condition Expression
BMGEU,
BMC

C == 1 Equal to or greater than/
C flag is 1

≤ BMLTU,
BMNC

C == 0 Less than/
C flag is 0

>

BMEQ,
BMZ

Z == 1 Equal to/Z flag is 1 = BMNE,
BMNZ

Z == 0 Not equal to/Z flag is 0 ≠

BMGTU (C & ˜Z) ==
1

Greater than < BMLEU (C & ˜Z) ==
0

Equal to or less than ≥

BMPZ S == 0 Positive or zero 0 ≤ BMN S == 1 Negative 0 >
BMGE (S ^ O) ==

0
Equal to or greater than
as signed integer

≤ BMLE ((S ^ O) |Z)
== 1

Equal to or less than as
signed integer

≥

BMGT ((S ^ O) |Z)
== 0

Greater than as signed
integer

< BMLT (S ^ O) ==
1

Less than as signed
integer

>

BMO O == 1 O flag is 1 BMNO O == 0 O flag is 0

R01US0032EJ0130 Rev.1.30 Page 60 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Description Example
BMC #7, [R2]
BMZ #31, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BMCnd src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5

(2) BMCnd src, dest L #IMM:5 Rd 3

R01US0032EJ0130 Rev.1.30 Page 61 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) When dest is a memory location:

unsigned char dest;
dest ^= (1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
dest ^= (1 << (src & 31));

Function
• This instruction inverts the value of the bit of dest, which is specified by src, and places the result into the specified

bit.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0  IMM:3  7. The range for IMM:5 is 0  IMM:5  31.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BNOT #7, [R2]
BNOT R1, [R2]
BNOT #31, R2
BNOT R1, R2

BNOT Not a bit BNOT
Syntax

BNOT src, dest
Bit manipulation instruction

Instruction Code
Page: 180

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BNOT src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5

(2) BNOT src, dest L #IMM:5 Rd 3
L Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 62 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
PC = PC + src;

Function
• This instruction executes a relative branch to destination address specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BRA label1
BRA.A label2
BRA R1
BRA.L R2

Note: For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of
the instruction.

Description Example
BRA label
BRA 1000h

BRA Unconditional relative branch BRA
Syntax

BRA(.length) src
Branch instruction

Instruction Code
Page: 181

Operand Code Size
(Byte)Syntax Length src Range of pcdsp/Rs

BRA(.length) src S pcdsp:3 3 ≤ pcdsp ≤ 10 1
B pcdsp:8 –128 ≤ pcdsp ≤ 127 2
W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3
A pcdsp:24 –8388608 ≤ pcdsp ≤ 8388607 4
L Rs –2147483648 ≤ Rs ≤ 2147483647 2

R01US0032EJ0130 Rev.1.30 Page 63 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
tmp0 = PSW;
U = 0;
I = 0;
PM = 0;
tmp1 = PC + 1;
PC = *IntBase;
SP = SP - 4;
*SP = tmp0;
SP = SP - 4;
*SP = tmp1;

Function
• This instruction generates an unconditional trap of number 0.
• This instruction causes a transition to supervisor mode and clears the PM bit in the PSW.
• This instruction clears the U and I bits in the PSW.
• The address of the instruction next to the executed BRK instruction is saved.

Flag Change
• This instruction does not affect the states of flags.
• The state of the PSW before execution of this instruction is saved on the stack.

Instruction Format

Description Example
BRK

BRK Unconditional trap BRK
Syntax

BRK
System manipulation instruction

Instruction Code
Page: 182

Syntax Code Size (Byte)
BRK 1

R01US0032EJ0130 Rev.1.30 Page 64 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) When dest is a memory location:

unsigned char dest;
dest |= (1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
dest |= (1 << (src & 31));

Function
• This instruction sets the bit of dest, which is specified by src.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0  IMM:3  7. The range for IMM:5 is 0  IMM:5  31.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BSET #7, [R2]
BSET R1, [R2]
BSET #31, R2
BSET R1, R2

BSET Set a bit BSET
Syntax

BSET src, dest
Bit manipulation instruction

Instruction Code
Page: 182

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BSET src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5

(2) BSET src, dest L #IMM:5 Rd 2
L Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 65 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
SP = SP - 4;
*SP = (PC + n); *

PC = PC + src;

Note: * (PC + n) is the address of the instruction following the BSR instruction.
“n” indicates the code size. For details, refer to “Instruction Format”.

Function
• This instruction executes a relative branch to destination address specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BSR label1
BSR.A label2
BSR R1
BSR.L R2

Note: For the RX Family assembler manufactured by Renesas Electronics Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:16, pcdsp:24). The value of the specified
address minus the address where the instruction is allocated will be stored in the pcdsp section of the instruction.

Description Example
BSR label
BSR 1000h

BSR Relative branch to subroutine BSR
Syntax

BSR(.length) src
Branch instruction

Instruction Code
Page: 184

Operand Code Size
(Byte)Syntax Length src Range of pcdsp/Rs

BSR(.length) src W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3
A pcdsp:24 –8388608 ≤ pcdsp ≤ 8388607 4
L Rs –2147483648 ≤ Rs ≤ 2147483647 2

R01US0032EJ0130 Rev.1.30 Page 66 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) When src2 is a memory location:

unsigned char src2;
Z = ˜((src2 >> (src & 7)) & 1);
C = ((src2 >> (src & 7)) & 1);

(2) When src2 is a register:
register unsigned long src2;
Z = ˜((src2 >> (src & 31)) & 1);
C = ((src2 >> (src & 31)) & 1);

Function
• This instruction moves the inverse of the value of the bit of scr2, which is specified by src, to the Z flag and the

value of the bit of scr2, which is specified by src, to the C flag.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0  IMM:3  7. The range for IMM:5 is 0  IMM:5  31.

Flag Change

Instruction Format

Description Example
BTST #7, [R2]
BTST R1, [R2]
BTST #31, R2
BTST R1, R2

BTST Test a bit BTST
Syntax

BTST src, src2
Bit manipulation instruction

Instruction Code
Page: 185

Flag Change Condition
C  The flag is set if the specified bit is 1; otherwise it is cleared.
Z  The flag is set if the specified bit is 0; otherwise it is cleared.
S —
O —

Processing
Size

Operand Code Size
(Byte)Syntax src src2

(1) BTST src, src2 B #IMM:3 [Rs].B 2
B #IMM:3 dsp:8[Rs].B 3
B #IMM:3 dsp:16[Rs].B 4
B Rs [Rs2].B 3
B Rs dsp:8[Rs2].B 4
B Rs dsp:16[Rs2].B 5

(2) BTST src, src2 L #IMM:5 Rs 2
L Rs Rs2 3

R01US0032EJ0130 Rev.1.30 Page 67 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = 0;

Function
• This instruction clears the O, S, Z, or C flag, which is specified by dest, or the U or I bit.
• In user mode, writing to the U or I bit is ignored. In supervisor mode, all flags and bits can be written to.

Flag Change

Note: * The specified flag becomes 0.

Instruction Format

Description Example
CLRPSW C
CLRPSW Z

CLRPSW Clear a flag or bit in the PSW CLRPSW
Syntax

CLRPSW dest
System manipulation instruction

Instruction Code
Page: 186

Flag Change Condition
C *
Z *
S *
O *

Operand
Code Size (Byte)Syntax dest

CLRPSW dest flag 2

R01US0032EJ0130 Rev.1.30 Page 68 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
src2 - src;

Function
• This instruction changes the states of flags in the PSW to reflect the result of subtracting src from src2.

Flag Change

Instruction Format

Note: 1. Values from 0 to 127 are always specified as the instruction code for zero extension.
Note: 2. For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value

multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
CMP #7, R2
CMP R1, R2
CMP [R1], R2

CMP Compare CMP
Syntax

CMP src, src2
Arithmetic/logic instruction

Instruction Code
Page: 187

Flag Change Condition
C  The flag is set if an unsigned operation does not produce an overflow; otherwise it is cleared.
Z  The flag is set if the result of the operation is 0; otherwise it is cleared.
S  The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.
O  The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand
Code Size (Byte)Syntax src src2

CMP src, src2 L #UIMM:4 Rs 2
L #UIMM:8*1 Rs 3
L #SIMM:8*1 Rs 3
L #SIMM:16 Rs 4
L #SIMM:24 Rs 5
L #IMM:32 Rs 6
L Rs Rs2 2
L [Rs].memex Rs2 2 (memex == “UB”)

3 (memex != “UB”)
L dsp:8[Rs].memex*2 Rs2 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:16[Rs].memex*2 Rs2 4 (memex == “UB”)

5 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 69 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest / src;

Function
• This instruction divides dest by src as signed values and places the quotient in dest. The quotient is rounded

towards 0.
• The calculation is performed in 32 bits and the result is placed in 32 bits.
• The value of dest is undefined when the divisor (src) is 0 or when overflow is generated after the operation.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
DIV #10, R2
DIV R1, R2
DIV [R1], R2
DIV 3[R1].B, R2

DIV Divide signed DIV
Syntax

DIV src, dest
Arithmetic/logic instruction

Instruction Code
Page: 188

Flag Change Condition
C —
Z —
S —
O  This flag is set if the divisor (src) is 0 or the calculation is –2147483648 / –1; otherwise it is

cleared.

Processing
Size

Operand
Code Size (Byte)Syntax src dest

DIV src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 70 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest / src;

Function
• This instruction divides dest by src as unsigned values and places the quotient in dest. The quotient is rounded

towards 0.
• The calculation is performed in 32 bits and the result is placed in 32 bits.
• The value of dest is undefined when the divisor (src) is 0.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
DIVU #10, R2
DIVU R1, R2
DIVU [R1], R2
DIVU 3[R1].UB, R2

DIVU Divide unsigned DIVU
Syntax

DIVU src, dest
Arithmetic/logic instruction

Instruction Code
Page: 190

Flag Change Condition
C —
Z —
S —
O  The flag is set if the divisor (src) is 0; otherwise it is cleared.

Processing
Size

Operand
Code Size (Byte)Syntax src dest

DIVU src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 71 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest2:dest = dest * src;

Function
• This instruction multiplies dest by src, treating both as signed values.
• The calculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the

register pair, dest2:dest (R(n+1):Rn).
• Any of the 15 general-purpose registers (Rn (n = 0 to 14)) is specifiable for dest.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change
• This instruction does not affect the states of flags.

EMUL Extended multiply signed EMUL
Syntax

EMUL src, dest
Arithmetic/logic instruction

Instruction Code
Page: 191

Register Specified for dest Registers Used for 64-Bit Extension
R0 R1:R0
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14

R01US0032EJ0130 Rev.1.30 Page 72 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
EMUL #10, R2
EMUL R1, R2
EMUL [R1], R2
EMUL 8[R1].W, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

EMUL src, dest L #SIMM:8 Rd (Rd = R0 to R14) 4
L #SIMM:16 Rd (Rd = R0 to R14) 5
L #SIMM:24 Rd (Rd = R0 to R14) 6
L #IMM:32 Rd (Rd = R0 to R14) 7
L Rs Rd (Rd = R0 to R14) 3
L [Rs].memex Rd (Rd = R0 to R14) 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd (Rd = R0 to R14) 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd (Rd = R0 to R14) 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 73 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest2:dest = dest * src;

Function
• This instruction multiplies dest by src, treating both as unsigned values.
• The calculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the

register pair, dest2:dest (R(n+1):Rn).
• Any of the 15 general-purpose registers (Rn (n = 0 to 14)) is specifiable for dest.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change
• This instruction does not affect the states of flags.

EMULU Extended multiply unsigned EMULU
Syntax

EMULU src, dest
Arithmetic/logic instruction

Instruction Code
Page: 192

Register Specified for dest Registers Used for 64-Bit Extension
R0 R1:R0
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14

R01US0032EJ0130 Rev.1.30 Page 74 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
EMULU #10, R2
EMULU R1, R2
EMULU [R1], R2
EMULU 8[R1].UW, R2

Processing
Size

Operand
Code Size (Byte)Syntax src dest

EMULU src, dest L #SIMM:8 Rd (Rd = R0 to R14) 4
L #SIMM:16 Rd (Rd = R0 to R14) 5
L #SIMM:24 Rd (Rd = R0 to R14) 6
L #IMM:32 Rd (Rd = R0 to R14) 7
L Rs Rd (Rd = R0 to R14) 3
L [Rs].memex Rd (Rd = R0 to R14) 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd (Rd = R0 to R14) 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd (Rd = R0 to R14) 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 75 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest + src;

Function
• This instruction adds the single-precision floating-point numbers stored in dest and src and places the result in

dest.
• Rounding of the result is in accordance with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.
• The result of the operation is +0 if src and dest have the opposite signs and their sum is exactly 0, except when the

rounding mode is towards –∞. The operation result is –0 when the rounding mode is towards –∞.

Flag Change

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

FADD Add floating-point FADD
Syntax

FADD src, dest
Floating-point arithmetic instruction

Instruction Code
Page: 194

Flag Change Condition
C —
Z  The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S  The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —
CV  The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO  The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ  The value of the flag is 0.
CU  The flag is set if an underflow exception is generated; otherwise it is cleared.
CX  The flag is set if an inexact exception is generated; otherwise it is cleared.
CE  The flag is set if an unimplemented processing is generated; otherwise it is cleared.
FV  The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO  The flag is set if an overflow exception is generated, and otherwise left unchanged.
FZ —
FU  The flag is set if an underflow exception is generated, and otherwise left unchanged.
FX  The flag is set if an inexact exception is generated, and otherwise left unchanged.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

FADD src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

R01US0032EJ0130 Rev.1.30 Page 76 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact

Description Example
FADD R1, R2
FADD [R1], R2

Supplementary Description
• The following tables show the correspondences between the src and dest values and the results of operations when

the value of the DN bit in the FPSW is 0 or 1.

When DN = 0

Note: * The result is –0 when the rounding mode is set to rounding towards – and +0 in other rounding modes.

When DN = 1

Note: * The result is –0 when the rounding mode is set to rounding towards – and +0 in other rounding modes.

src
Normalized +0 –0 + – Denormalized QNaN SNaN

dest Normalized Sum
+0 +0 * –
–0 * –0
+ + Invalid

operation
– – Invalid

operation –

Denormalized Unimplemented processing
QNaN QNaN
SNaN Invalid operation

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+ – QNaN SNaN

dest Normalized Sum Normalized
+0,

+Denormalized
Normalized

+0 * –

–0,
–Denormalized

* –0

+ + Invalid
operation

– – Invalid
operation –

QNaN QNaN
SNaN Invalid operation

R01US0032EJ0130 Rev.1.30 Page 77 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
src2 - src;

Function
• This instruction compares the single-precision floating-point numbers stored in src2 and src and changes the states

of flags according to the result.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Flag Change

Note: The FV flag does not change if the exception enable bit EV is 1. The O, S, and Z flags do not change when an
exception is generated.

FCMP Comparefloating-point FCMP
Syntax

FCMP src, src2
Floating-point arithmetic instruction

Instruction Code
Page: 195

Flag Change Condition
C —
Z  The flag is set if src2 == src; otherwise it is cleared.
S  The flag is set if src2 < src; otherwise it is cleared.
O  The flag is set if an ordered classification based on the comparison result is impossible;

otherwise it is cleared.
CV  The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO  The value of the flag is 0.
CZ  The value of the flag is 0.
CU  The value of the flag is 0.
CX  The value of the flag is 0.
CE  The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV  The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO —
FZ —
FU —
FX —

Flag
Condition O S Z
src2 > src 0 0 0
src2 < src 0 1 0
src2 == src 0 0 1
Ordered classification impossible 1 0 0

R01US0032EJ0130 Rev.1.30 Page 78 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

Sources of Floating-Point Exceptions
Unimplemented processing
Invalid operation

Description Example
FCMP R1, R2
FCMP [R1], R2

Supplementary Description
• The following tables show the correspondences between the src and src2 values and the results of operations when

the value of the DN bit in the FPSW is 0 or 1.
(>: src2 > src, <: src2 < src, =: src2 == src)

When DN = 0

When DN = 1

Processing
Size

Operand
Code Size (Byte)Syntax src src2

FCMP src, src2 L #IMM:32 Rs 7
L Rs Rs2 3
L [Rs].L Rs2 3
L dsp:8[Rs].L* Rs2 4
L dsp:16[Rs].L* Rs2 5

src
Normalized +0 –0 + – Denormalized QNaN SNaN

src2 Normalized Comparison

>
+0

=
<

–0
+ > =
– < =

Denormalized Unimplemented processing
QNaN Ordered classification impossible
SNaN Invalid operation (Ordered classification impossible)

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+ – QNaN SNaN

src2 Normalized Comparison

>

+0,
+Denormalized

=
<

–0,
–Denormalized

+ > =
– < =

QNaN Ordered classification impossible
SNaN Invalid operation (Ordered classification impossible)

R01US0032EJ0130 Rev.1.30 Page 79 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest / src;

Function
• This instruction divides the single-precision floating-point number stored in dest by that stored in src and places

the result in dest.
• Rounding of the result is in accordance with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Flag Change

Note: The FX, FU, FZ, FO, and FV flags do not change if any of the exception enable bits EX, EU, EZ, EO, and EV is 1.
The S and Z flags do not change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

FDIV Divide floating-point FDIV
Syntax

FDIV src, dest
Floating-point arithmetic instruction

Instruction Code
Page: 196

Flag Change Condition
C —
Z  The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S  The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —
CV  The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO  The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ  The flag is set if a division-by-zero exception is generated; otherwise it is cleared.
CU  The flag is set if an underflow exception is generated; otherwise it is cleared.
CX  The flag is set if an inexact exception is generated; otherwise it is cleared.
CE  The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV  The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO  The flag is set if an overflow exception is generated; otherwise it does not change.
FZ  The flag is set if a division-by-zero exception is generated; otherwise it does not change.
FU  The flag is set if an underflow exception is generated; otherwise it does not change.
FX  The flag is set if an inexact exception is generated; otherwise it does not change.

Processing
Size

Operand
Code Size (Byte)Syntax src dest

FDIV src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

R01US0032EJ0130 Rev.1.30 Page 80 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact
Division-by-zero

Description Example
FDIV R1, R2
FDIV [R1], R2

Supplementary Description
• The following tables show the correspondences between the src and dest values and the results of operations when

the value of the DN bit in the FPSW is 0 or 1.

When DN = 0

When DN = 1

src
Normalized +0 –0 + – Denormalized QNaN SNaN

dest Normalized Division Division-by-zero 0
+0

0 Invalid operation
+0 –0

–0 –0 +0
+


+ –

Invalid operation
– – +

Denormalized Unimplemented processing
QNaN QNaN
SNaN Invalid operation

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+ – QNaN SNaN

dest Normalized Division Division-by-zero 0
+0,

+Denormalized
0 Invalid operation

+0 –0

–0,
–Denormalized –0 +0

+


+ –
Invalid operation

– – +
QNaN QNaN
SNaN Invalid operation

R01US0032EJ0130 Rev.1.30 Page 81 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest * src;

Function
• This instruction multiplies the single-precision floating-point number stored in dest by that stored in src and places

the result in dest.
• Rounding of the result is in accordance with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined regardless of generation of floating-point exceptions.

Flag Change

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

FMUL Multiply floating-point FMUL
Syntax

FMUL src, dest
Floating-point arithmetic instruction

Instruction Code
Page: 197

Flag Change Condition
C —
Z  The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S  The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —
CV  The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO  The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ  The value of the flag is 0.
CU  The flag is set if an underflow exception is generated; otherwise it is cleared.
CX  The flag is set if an inexact exception is generated; otherwise it is cleared.
CE  The flag is set if an unimplemented processing is generated; otherwise it is cleared.
FV  The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO  The flag is set if an overflow exception is generated, and otherwise left unchanged.
FZ —
FU  The flag is set if an underflow exception is generated, and otherwise left unchanged.
FX  The flag is set if an inexact exception is generated, and otherwise left unchanged.

Processing
Size

Operand
Code Size (Byte)Syntax src dest

FMUL src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

R01US0032EJ0130 Rev.1.30 Page 82 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact

Description Example
FMUL R1, R2
FMUL [R1], R2

Supplementary Description
• The following tables show the correspondences between the src and dest values and the results of operations when

the value of the DN bit in the FPSW is 0 or 1.

When DN = 0

When DN = 1

src
Normalized +0 –0 + – Denormalized QNaN SNaN

dest Normalized Multiplication 
+0 +0 –0

Invalid operation
–0 –0 +0
+

 Invalid operation
+ –

– – +
Denormalized Unimplemented processing

QNaN QNaN
SNaN Invalid operation

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+ – QNaN SNaN

dest Normalized Multiplication 
+0,

+Denormalized +0 –0
Invalid operation

–0,
–Denormalized –0 +0

+
 Invalid operation

+ –
– – +

QNaN QNaN
SNaN Invalid operation

R01US0032EJ0130 Rev.1.30 Page 83 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest - src;

Function
• This instruction subtracts the single-precision floating-point number stored in src from that stored in dest and

places the result in dest.
• Rounding of the result is in accordance with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.
• The result of the operation is +0 if src and dest have the same sign and the result of subtraction is exactly 0, except

when the rounding mode is towards –∞. The operation result is –0 when the rounding mode is towards –∞.

Flag Change

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

FSUB Subtractfloating-point FSUB
Syntax

FSUB src, dest
Floating-point arithmetic instruction

Instruction Code
Page: 198

Flag Change Condition
C —
Z  The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S  The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —
CV  The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO  The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ  The value of the flag is 0.
CU  The flag is set if an underflow exception is generated; otherwise it is cleared.
CX  The flag is set if an inexact exception is generated; otherwise it is cleared.
CE  The flag is set if an unimplemented processing is generated; otherwise it is cleared.
FV  The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO  The flag is set if an overflow exception is generated, and otherwise left unchanged.
FZ —
FU  The flag is set if an underflow exception is generated, and otherwise left unchanged.
FX  The flag is set if an inexact exception is generated, and otherwise left unchanged.

Processing
Size

Operand
Code Size (Byte)Syntax src dest

FSUB src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

R01US0032EJ0130 Rev.1.30 Page 84 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact

Description Example
FSUB R1, R2
FSUB [R1], R2

Supplementary Description
• The following tables show the correspondences between the src and dest values and the results of operations when

the value of the DN bit in the FPSW is 0 or 1.

When DN = 0

Note: * The result is –0 when the rounding mode is set to rounding towards – and +0 in other rounding modes.

When DN = 1

Note: * The result is –0 when the rounding mode is set to rounding towards – and +0 in other rounding modes.

src
Normalized +0 –0 + – Denormalized QNaN SNaN

dest Normalized Subtraction

+
+0 * +0 –
–0 –0 *
+ + Invalid

operation
– – Invalid

operation
Denormalized Unimplemented processing

QNaN QNaN
SNaN Invalid operation

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+ – QNaN SNaN

dest Normalized Subtraction

–
+

+0,
+Denormalized

* +0

–0,
–Denormalized –0 *

+ + Invalid
operation

– – Invalid
operation

QNaN QNaN
SNaN Invalid operation

R01US0032EJ0130 Rev.1.30 Page 85 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = (signed long) src;

Function
• This instruction converts the single-precision floating-point number stored in src into a signed longword (32-bit)

integer and places the result in dest.
• The result is always rounded towards 0, regardless of the setting of the RM[1:0] bits in the FPSW.

Flag Change

Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

FTOI Convert floating-point to signed integer FTOI
Syntax

FTOI src, dest
Floating-point arithmetic instruction

Instruction Code
Page: 199

Flag Change Condition
C —
Z  The flag is set if the result of the operation is 0; otherwise it is cleared.
S  The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —
CV  The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO  The value of the flag is 0.
CZ  The value of the flag is 0.
CU  The value of the flag is 0.
CX  The flag is set if an inexact exception is generated; otherwise it is cleared.
CE  The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV  The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO —
FZ —
FU —
FX  The flag is set if an inexact exception is generated; otherwise it does not change.

Processing
Size

Operand
Code Size (Byte)Syntax src dest

FTOI src, dest L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

R01US0032EJ0130 Rev.1.30 Page 86 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Sources of Floating-Point Exceptions
Unimplemented processing
Invalid operation
Inexact

Description Example
FTOI R1, R2
FTOI [R1], R2

Supplementary Description
• The following tables show the correspondences between the src value and the result of operations when the value

of the DN bit in the FPSW is 0 or 1.

When DN = 0

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CF000000h.

src Value (exponent is shown without bias) dest Exception
src ≥ 0 + When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

31 ≤ Exponent ≤ 127 Other cases: 7FFFFFFFh
–126 ≤ Exponent ≤ 30 00000000h to 7FFFFF80h None*1

+Denormalized number No change Unimplemented
processing exception

+0 00000000h None
src < 0 –0

–Denormalized number No change Unimplemented
processing exception

–126 ≤ Exponent ≤ 30 00000000h to 80000080h None*1

31 ≤ Exponent ≤ 127 When an invalid operation exception is
generated with the EV = 1: No change

Invalid operation
exception*2

– Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

R01US0032EJ0130 Rev.1.30 Page 87 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

When DN = 1

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CF000000h.

src Value (exponent is shown without bias) dest Exception
src ≥ 0 + When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

31 ≤ Exponent ≤ 127 Other cases: 7FFFFFFFh
–126 ≤ Exponent ≤ 30 00000000h to 7FFFFF80h None*1

+0, +Denormalized number 00000000h None
src < 0 –0, –Denormalized number

–126 ≤ Exponent ≤ 30 00000000h to 80000080h None*1

31 ≤ Exponent ≤ 127 When an invalid operation exception is
generated with the EV = 1: No change

Invalid operation
exception*2

– Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

R01US0032EJ0130 Rev.1.30 Page 88 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
tmp0 = PSW;
U = 0;
I = 0;
PM = 0;
tmp1 = PC + 3;
PC = *(IntBase + src * 4);
SP = SP - 4;
*SP = tmp0;
SP = SP - 4;
*SP = tmp1;

Function
• This instruction generates the unconditional trap which corresponds to the number specified as src.
• The INT instruction number (src) is in the range 0 ≤ src ≤ 255.
• This instruction causes a transition to supervisor mode, and clears the PM bit in the PSW to 0.
• This instruction clears the U and I bits in the PSW to 0.

Flag Change
• This instruction does not affect the states of flags.
• The state of the PSW before execution of this instruction is saved on the stack.

Instruction Format

Description Example
INT #0

INT Software interrupt INT
Syntax

INT src
System manipulation instruction

Instruction Code
Page: 200

Operand Code Size
(Byte)Syntax src

INT src #IMM:8 3

R01US0032EJ0130 Rev.1.30 Page 89 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = (float) src;

Function
• This instruction converts the signed longword (32-bit) integer stored in src into a single-precision floating-point

number and places the result in dest.
• Rounding of the result is in accordance with the setting of the RM[1:0] bits in the FPSW. 00000000h is handled as

+0 regardless of the rounding mode.

Flag Change

Note: The FX flag does not change if the exception enable bit EX is 1. The S and Z flags do not change when an
exception is generated.

ITOF Convert signed integer to floating-point ITOF
Syntax

ITOF src, dest
Floating-point arithmetic

instruction
Instruction Code

Page: 200

Flag Change Condition
C —
Z  The flag is set if the result of the operation is +0; otherwise it is cleared.
S  The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —
CV  The value of the flag is 0.
CO  The value of the flag is 0.
CZ  The value of the flag is 0.
CU  The value of the flag is 0.
CX  The flag is set if an inexact exception is generated; otherwise it is cleared.
CE  The value of the flag is 0.
FV —
FO —
FZ —
FU —
FX  The flag is set if an inexact exception is generated; otherwise it does not change.

R01US0032EJ0130 Rev.1.30 Page 90 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Sources of Floating-Point Exceptions
Inexact

Description Example
ITOF R1, R2
ITOF [R1], R2
ITOF 16[R1].L, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ITOF src, dest L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 91 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
PC = src;

Function
• This instruction branches to the instruction specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
JMP R1

JMP Unconditional jump JMP
Syntax

JMP src
Branch instruction

Instruction Code
Page: 201

Operand Code Size
(Byte)Syntax src

JMP src Rs 2

R01US0032EJ0130 Rev.1.30 Page 92 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
SP = SP - 4;
*SP = (PC + 2); *

PC = src;

Note: * (PC + 2) is the address of the instruction following the JSR instruction.

Function
• This instruction causes the flow of execution to branch to the subroutine specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
JSR R1

JSR Jump to subroutine JSR
Syntax

JSR src
Branch instruction

Instruction Code
Page: 201

Operand Code Size
(Byte)Syntax src

JSR src Rs 2

R01US0032EJ0130 Rev.1.30 Page 93 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) (src >> 16);
tmp2 = (signed short) (src2 >> 16);
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = ACC + (tmp3 << 16);

Function
• This instruction multiplies the upper 16 bits of src by the upper 16 bits of src2, and adds the result to the value in

the accumulator (ACC). The addition is performed with the least significant bit of the result of multiplication
corresponding to bit 16 of ACC. The result of addition is stored in ACC. The upper 16 bits of src and the upper 16
bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MACHI R1, R2

MACHI Multiply-Accumulate the upper words MACHI
Syntax

MACHI src, src2
DSP instruction

Instruction Code
Page: 202

Operand Code Size
(Byte)Syntax src src2

MACHI src, src2 Rs Rs2 3

Upper 16 bits
b15b16b31 b0

src

Upper 16 bits src2×
0

+

b15b16b31 b0b32b47b48b63

Result of multiplication

ACC value before executing
the MACHI instruction

ACC value after executing
the MACHI instruction

Sign extension

R01US0032EJ0130 Rev.1.30 Page 94 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) src;
tmp2 = (signed short) src2;
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = ACC + (tmp3 << 16);

Function
• This instruction multiplies the lower 16 bits of src by the lower 16 bits of src2, and adds the result to the value in

the accumulator (ACC). The addition is performed with the least significant bit of the result of multiplication
corresponding to bit 16 of ACC. The result of addition is stored in ACC. The lower 16 bits of src and the lower 16
bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MACLO R1, R2

MACLO Multiply-Accumulate the lower words MACLO
Syntax

MACLO src, src2
DSP instruction

Instruction Code
Page: 202

Operand Code Size
(Byte)Syntax src src2

MACLO src, src2 Rs Rs2 3

Lower 16 bits
b15b16b31 b0

src

Lower 16 bits src2×
0

+

b15b16b31 b0b32b47b48b63

Result of multiplication

ACC value before executing
the MACLO instruction

ACC value after executing
the MACLO instruction

Sign extension

R01US0032EJ0130 Rev.1.30 Page 95 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (src > dest)

dest = src;

Function
• This instruction compares src and dest as signed values and places whichever is greater in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
MAX #10, R2
MAX R1, R2
MAX [R1], R2
MAX 3[R1].B, R2

MAX Maximum of two signed integers MAX
Syntax

MAX src, dest
Arithmetic/logic instruction

Instruction Code
Page: 203

Processing
Size

Operand Code Size
(Byte)Syntax src dest

MAX src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 96 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (src < dest)

dest = src;

Function
• This instruction compares src and dest as signed values and places whichever is smaller in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
MIN #10, R2
MIN R1, R2
MIN [R1], R2
MIN 3[R1].B, R2

MIN Minimum of two signed integers MIN
Syntax

MIN src, dest
Arithmetic/logic instruction

Instruction Code
Page: 204

Processing
Size

Operand Code Size
(Byte)Syntax src dest

MIN src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 97 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = src;

Function
• This instruction transfers src to dest as listed in the following table.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

MOV Move MOV
Syntax

MOV.size src, dest
Data transfer instruction

Instruction Code
Page: 205

src dest Function
Immediate value Register Transfers the immediate value to the register. When the immediate value is

specified in less than 32 bits, it is transferred to the register after being zero-
extended if specified as #UIMM and sign-extended if specified as #SIMM.

Immediate value Memory location Transfers the immediate value to the memory location in the specified size.
When the immediate value is specified with a width in bits smaller than the
specified size, it is transferred to the memory location after being zero-extended
if specified as #UIMM and sign-extended if specified as #SIMM.

Register Register Transfers the data in the source register (src) to the destination register (dest).
When the size specifier is .B, the data is transferred to the register (dest) after
the least significant byte of the register (src) has been sign-extended to form a
longword of data. When the size specifier is .W, the data is transferred to the
register (dest) after the lower word of the register (src) has been sign-extended
to form a longword of data.

Register Memory location Transfers the data in the register to the memory location. When the size
specifier is .B, the least significant byte of the register is transferred. When the
size specifier is .W, the lower word of the register is transferred.

Memory location Register Transfers the data at the memory location to the register. When the size
specifier is .B or .W, the data at the memory location are sign-extended to form
a longword, which is transferred to the register.

Memory location Memory location Transfers the data with the specified size at the source memory location (src) to
the specified size at the destination memory location (dest).

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

MOV.size src, dest Store (short format)
B/W/L size Rs

(Rs = R0 to R7)
dsp:5[Rd]*1
(Rd = R0 to R7)

2

Load (short format)
B/W/L L dsp:5[Rs]*1

(Rs = R0 to R7)
Rd
(Rd = R0 to R7)

2

Set immediate value to register (short format)
L L #UIMM:4 Rd 2

R01US0032EJ0130 Rev.1.30 Page 98 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

MOV.size src, dest Set immediate value to memory location (short format)
B B #IMM:8 dsp:5[Rd]*1

(Rd = R0 to R7)
3

W/L size #UIMM:8 dsp:5[Rd]*1
(Rd = R0 to R7)

3

Set immediate value to register
L L #UIMM:8*2 Rd 3
L L #SIMM:8*2 Rd 3
L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6
Data transfer between registers (sign extension)
B/W L Rs Rd 2
Data transfer between registers (no sign extension)
L L Rs Rd 2
Set immediate value to memory location
B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd]*1 4
B B #IMM:8 dsp:16[Rd]*1 5
W W #SIMM:8 [Rd] 3
W W #SIMM:8 dsp:8[Rd]*1 4
W W #SIMM:8 dsp:16[Rd]*1 5
W W #IMM:16 [Rd] 4
W W #IMM:16 dsp:8[Rd]*1 5
W W #IMM:16 dsp:16[Rd]*1 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd]*1 4
L L #SIMM:8 dsp:16 [Rd]*1 5
L L #SIMM:16 [Rd] 4
L L #SIMM:16 dsp:8[Rd]*1 5
L L #SIMM:16 dsp:16 [Rd]*1 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd]*1 6
L L #SIMM:24 dsp:16 [Rd]*1 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd]*1 7
L L #IMM:32 dsp:16 [Rd]*1 8
Load
B/W/L L [Rs] Rd 2
B/W/L L dsp:8[Rs]*1 Rd 3
B/W/L L dsp:16[Rs]*1 Rd 4
B/W/L L [Ri, Rb] Rd 3
Store
B/W/L size Rs [Rd] 2
B/W/L size Rs dsp:8[Rd]*1 3
B/W/L size Rs dsp:16[Rd]*1 4
B/W/L size Rs [Ri, Rb] 3

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

R01US0032EJ0130 Rev.1.30 Page 99 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Note: 1. For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the displacement value
(dsp:5, dsp:8, dsp:16). With dsp:5, values from 0 to 62 (31  2) can be specified when the size specifier is .W, or
values from 0 to 124 (31  4) when the specifier is .L. With dsp:8, values from 0 to 510 (255  2) can be specified
when the size specifier is .W, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size specifier is .W, or values from 0 to 262140 (65535
 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Note: 2. For values from 0 to 127, an instruction code for zero extension is always selected.
Note: 3. In cases of store with post-increment and store with pre-decrement, if the same register is specified for Rs and

Rd, the value before updating the address is transferred as the source.
Note: 4. In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and Rd,

the data transferred from the memory location are saved in Rd.

Description Example
MOV.L #0, R2
MOV.L #128:8, R2
MOV.L #-128:8, R2
MOV.L R1, R2
MOV.L #0, [R2]
MOV.W [R1], R2
MOV.W R1, [R2]
MOV.W [R1, R2], R3
MOV.W R1, [R2, R3]
MOV.W [R1], [R2]
MOV.B R1, [R2+]
MOV.B [R1+], R2
MOV.B R1, [-R2]
MOV.B [-R1], R2

MOV.size src, dest Data transfer between memory locations
B/W/L size [Rs] [Rd] 2
B/W/L size [Rs] dsp:8[Rd]*1 3
B/W/L size [Rs] dsp:16[Rd]*1 4
B/W/L size dsp:8[Rs]*1 [Rd] 3
B/W/L size dsp:8[Rs]*1 dsp:8[Rd]*1 4
B/W/L size dsp:8[Rs]*1 dsp:16[Rd]*1 5
B/W/L size dsp:16[Rs]*1 [Rd] 4
B/W/L size dsp:16[Rs]*1 dsp:8[Rd]*1 5
B/W/L size dsp:16[Rs]*1 dsp:16[Rd]*1 6
Store with post-increment*3

B/W/L size Rs [Rd+] 3
Store with pre-decrement*3

B/W/L size Rs [–Rd] 3
Load with post-increment*4

B/W/L L [Rs+] Rd 3
Load with pre-decrement*4

B/W/L L [–Rs] Rd 3

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

R01US0032EJ0130 Rev.1.30 Page 100 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = src;

Function
• This instruction transfers src to dest as listed in the following table.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: 1. For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W) as the displacement value (dsp:5, dsp:8, dsp:16). With
dsp:5, values from 0 to 62 (31  2) can be specified when the size specifier is .W. With dsp:8, values from 0 to
510 (255  2) can be specified when the size specifier is .W. With dsp:16, values from 0 to 131070 (65535  2)
can be specified when the size specifier is .W. The value divided by 2 will be stored in the instruction code.

Note: 2. In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and Rd,
the data transferred from the memory location are saved in Rd.

MOVU Move unsigned MOVU
Syntax

MOVU.size src, dest
Data transfer instruction

Instruction Code
Page: 210

src dest Function
Register Register Transfers the least significant byte or lower word of the register (src) to the

destination register (dest), after zero-extension to form a longword data.
Memory location Register Transfers the byte or word of data at the memory location to the register, after

zero-extension to form a longword data.

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

MOVU.size src, dest Load (short format)
B/W L dsp:5[Rs]*1

(Rs = R0 to R7)
Rd
(Rd = R0 to R7)

2

Data transfer between registers (zero extension)
B/W L Rs Rd 2
Load
B/W L [Rs] Rd 2
B/W L dsp:8[Rs]*1 Rd 3
B/W L dsp:16[Rs]*1 Rd 4
B/W L [Ri, Rb] Rd 3
Load with post-increment*2

B/W L [Rs+] Rd 3
Load with pre-decrement*2

B/W L [–Rs] Rd 3

R01US0032EJ0130 Rev.1.30 Page 101 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Description Example
MOVU.W 2[R1], R2
MOVU.W R1, R2
MOVU.B [R1+], R2
MOVU.B [-R1], R2

R01US0032EJ0130 Rev.1.30 Page 102 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = src * dest;
(2) dest = src * src2;

Function
(1) This instruction multiplies src and dest and places the result in dest.

• The calculation is performed in 32 bits and the lower 32 bits of the result are placed.
• The operation result will be the same whether a singed or unsigned multiply is executed.

(2) This instruction multiplies src and src2 and places the result in dest.
• The calculation is performed in 32 bits and the lower 32 bits of the result are placed.
• The operation result will be the same whether a singed or unsigned multiply is executed.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction code.

MUL Multiply MUL
Syntax

(1) MUL src, dest
(2) MUL src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 211

Processing
Size

Operand
Code Size (Byte)Syntax src src2 dest

(1) MUL src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
L dsp:8[Rs].memex* — Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:16[Rs].memex* — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(2) MUL src, src2, dest L Rs Rs2 Rd 3

R01US0032EJ0130 Rev.1.30 Page 103 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Description Example
MUL #10, R2
MUL R1, R2
MUL [R1], R2
MUL 4[R1].W, R2
MUL R1, R2, R3

R01US0032EJ0130 Rev.1.30 Page 104 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) (src >> 16);
tmp2 = (signed short) (src2 >> 16);
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = (tmp3 << 16);

Function
• This instruction multiplies the upper 16 bits of src by the upper 16 bits of src2, and stores the result in the

accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of ACC,
and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are cleared
to 0. The upper 16 bits of src and the upper 16 bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MULHI R1, R2

MULHI Multiply the upper words MULHI
Syntax

MULHI src, src2
DSP instruction

Instruction Code
Page: 213

Operand
Code Size (Byte)Syntax src src2

MULHI src, src2 Rs Rs2 3

Upper 16 bits
b15b16b31 b0

src

Upper 16 bits src2×
0

b15b16b31 b0b32b47b48b63

ACC value after executing
the MULHI instructionSign extension

R01US0032EJ0130 Rev.1.30 Page 105 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) src;
tmp2 = (signed short) src2;
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = (tmp3 << 16);

Function
• This instruction multiplies the lower 16 bits of src by the lower 16 bits of src2, and stores the result in the

accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of ACC,
and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are cleared
to 0. The lower 16 bits of src and the lower 16 bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MULLO R1, R2

MULLO Multiply the lower words MULLO
Syntax

MULLO src, src2
DSP instruction

Instruction Code
Page: 213

Operand
Code Size (Byte)Syntax src src2

MULLO src, src2 Rs Rs2 3

Lower 16 bits
b15b16b31 b0

src

Lower 16 bits src2×
0

b15b16b31 b0b32b47b48b63

ACC value after executing
the MULLO instructionSign extension

R01US0032EJ0130 Rev.1.30 Page 106 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = (signed long) (ACC >> 32);

Function
• This instruction moves the contents of upper 32 bits of the accumulator (ACC) to dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVFACHI R1

MVFACHI Move data from the upper longword
of the accumulator MVFACHI

Syntax
MVFACHI dest

DSP instruction
Instruction Code

Page: 213

Operand
Code Size (Byte)Syntax dest

MVFACHI dest Rd 3

b31 b0b32b63
ACC

dest
b0b31

R01US0032EJ0130 Rev.1.30 Page 107 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = (signed long) (ACC >> 16);

Function
• This instruction moves the contents of bits 47 to 16 of the accumulator (ACC) to dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVFACMI R1

MVFACMI Move data from the middle-order
longword of the accumulator MVFACMI

Syntax
MVFACMI dest

DSP instruction
Instruction Code

Page: 214

Operand
Code Size (Byte)Syntax dest

MVFACMI dest Rd 3

ACC

dest
b0b31

b15b16b31 b0b32b47b48b63

R01US0032EJ0130 Rev.1.30 Page 108 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = src;

Function
• This instruction transfers src to dest.
• When the PC is specified as src, this instruction transfers its own address to dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW

Description Example
MVFC USP, R1

MVFC Move data from a control register MVFC
Syntax

MVFC src, dest
System manipulation instruction

Instruction Code
Page: 214

Processing Size
Operand

Code Size (Byte)Syntax src* dest
MVFC src, dest L Rx Rd 3

R01US0032EJ0130 Rev.1.30 Page 109 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
ACC = (ACC & 00000000FFFFFFFFh) | ((signed long long src << 32);

Function
• This instruction moves the contents of src to the upper 32 bits (bits 63 to 32) of the accumulator (ACC).

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVTACHI R1

MVTACHI Move data to the upper longword
of the accumulator MVTACHI

Syntax
MVTACHI src

DSP instruction
Instruction Code

Page: 215

Operand
Code Size (Byte)Syntax src

MVTACHI src Rs 3

b31 b0b32b63
ACC

src
b0b31

R01US0032EJ0130 Rev.1.30 Page 110 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
ACC = (ACC & FFFFFFFF00000000h) | (unsigned long long) src;

Function
• This instruction moves the contents of src to the lower 32 bits (bits 31 to 0) of the accumulator (ACC).

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVTACLO R1

MVTACLO Move data to the lower longword
of the accumulator MVTACLO

Syntax
MVTACLO src

DSP instruction
Instruction Code

Page: 215

Operand
Code Size (Byte)Syntax src

MVTACLO src Rs 3

b31 b0b32b63
ACC

src
b0b31

R01US0032EJ0130 Rev.1.30 Page 111 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = src;

Function
• This instruction transfers src to dest.
• In user mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and I bits in the PSW

is ignored. In supervisor mode, writing to the PM bit in the PSW is ignored.

Flag Change

Note: * The flag changes only when dest is the PSW.

Instruction Format

Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
 Note that the PC cannot be specified as dest.

Description Example
MVTC #0FFFFF000h, INTB
MVTC R1, USP

MVTC Move data to a control register MVTC
Syntax

MVTC src, dest
System manipulation instruction

Instruction Code
Page: 216

Flag Change Condition
C *
Z *
S *
O *

Processing Size
Operand

Code Size (Byte)Syntax src dest*

MVTC src, dest L #SIMM:8 Rx 4
L #SIMM:16 Rx 5
L #SIMM:24 Rx 6
L #IMM:32 Rx 7
L Rs Rx 3

R01US0032EJ0130 Rev.1.30 Page 112 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
IPL = src;

Function
• This instruction transfers src to the IPL[3:0] bits in the PSW.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• The value of src is an unsigned integer in the range 0  src  15.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVTIPL #2

Note: Products of the RX610 Group do not support the MVTIPL instruction. Use the MVTC instruction for products of the
RC610 Group.

MVTIPL Move data to IPL MVTIPL
Syntax

MVTIPL src
System manipulation instruction

Instruction Code
Page: 217

Operand
Code Size (Byte)Syntax src

MVTIPL src #IMM:4 3

R01US0032EJ0130 Rev.1.30 Page 113 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = -dest;
(2) dest = -src;

Function
(1) This instruction arithmetically inverts (takes the two's complement of) dest and places the result in dest.
(2) This instruction arithmetically inverts (takes the two's complement of) src and places the result in dest.

Flag Change

Instruction Format

Description Example
NEG R1
NEG R1, R2

NEG Negate (two’s complement) NEG
Syntax

(1) NEG dest
(2) NEG src, dest

Arithmetic/logic instruction
Instruction Code

Page: 218

Flag Change Condition
C  The flag is set if dest is 0 after the operation; otherwise it is cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O  (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Processing Size
Operand

Code Size (Byte)Syntax src dest
(1) NEG dest L — Rd 2
(2) NEG src, dest L Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 114 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
/* No operation */

Function
• This instruction executes no process. The operation will be continued from the next instruction.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
NOP

NOP No operation NOP
Syntax

NOP
Arithmetic/logic instruction

Instruction Code
Page: 218

Syntax Code Size (Byte)
NOP 1

R01US0032EJ0130 Rev.1.30 Page 115 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = ˜dest;
(2) dest = ˜src;

Function
(1) This instruction logically inverts dest and places the result in dest.
(2) This instruction logically inverts src and places the result in dest.

Flag Change

Instruction Format

Description Example
NOT R1
NOT R1, R2

NOT Logical NOT (one’s complement) NOT
Syntax

(1) NOT dest
(2) NOT src, dest

Arithmetic/logic instruction
Instruction Code

Page: 219

Flag Change Condition
C —
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing Size
Operand

Code Size (Byte)Syntax src dest
(1) NOT dest L — Rd 2
(2) NOT src, dest L Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 116 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = dest | src;
(2) dest = src2 | src;

Function
(1) This instruction takes the logical OR of dest and src and places the result in dest.
(2) This instruction takes the logical OR of src2 and src and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
OR #8, R1
OR R1, R2
OR [R1], R2
OR 8[R1].L, R2
OR R1, R2, R3

OR Logical OR OR
Syntax

(1) OR src, dest
(2) OR src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 220

Flag Change Condition
C —
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand
Code Size (Byte)Syntax src src2 dest

(1) OR src, dest L #UIMM:4 — Rd 2
L #SIMM:8 — Rd 3
L #SIMM:16 — Rd 4
L #SIMM:24 — Rd 5
L #IMM:32 — Rd 6
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
L dsp:8[Rs].memex* — Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:16[Rs].memex* — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(2) OR src, src2, dest L Rs Rs2 Rd 3

R01US0032EJ0130 Rev.1.30 Page 117 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
tmp = *SP;
SP = SP + 4;
dest = tmp;

Function
• This instruction restores data from the stack and transfers it to dest.
• The stack pointer in use is specified by the U bit in the PSW.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
POP R1

POP Pop register from stack POP
Syntax

POP dest
Data transfer instruction

Instruction Code
Page: 221

Processing Size
Operand

Code Size (Byte)Syntax dest
POP dest L Rd 2

R01US0032EJ0130 Rev.1.30 Page 118 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
tmp = *SP;
SP = SP + 4;
dest = tmp;

Function
• This instruction restores data from the stack and transfers it to the control register specified as dest.
• The stack pointer in use is specified by the U bit in the PSW.
• In user mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and I bits in the PSW

is ignored. In supervisor mode, writing to the PM bit in the PSW is ignored.

Flag Change

Note: * The flag changes only when dest is the PSW.

Instruction Format

Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Note that the PC cannot be specified as dest

Description Example
POPC PSW

POPC Pop a control register from stack POPC
Syntax

POPC dest
Data transfer instruction

Instruction Code
Page: 222

Flag Change Condition
C *
Z *
S *
O *

Processing Size
Operand

Code Size (Byte)Syntax dest*

POPC dest L Rx 2

R01US0032EJ0130 Rev.1.30 Page 119 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
signed char i;
for (i = register_num(dest); i <= register_num(dest2); i++) {

tmp = *SP;
SP = SP + 4;
register(i) = tmp;

}

Function
• This instruction restores values from the stack to the block of registers in the range specified by dest and dest2.
• The range is specified by first and last register numbers. Note that the condition (first register number < last

register number) must be satisfied.
• R0 cannot be specified.
• The stack pointer in use is specified by the U bit in the PSW.
• Registers are restored from the stack in the following order:

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
POPM R1-R3
POPM R4-R8

POPM Pop multiple registers from stack POPM
Syntax

POPM dest-dest2
Data transfer instruction

Instruction Code
Page: 222

Processing
Size

Operand
Code Size (Byte)Syntax dest dest2

POPM dest-dest2 L Rd
(Rd = R1 to R14)

Rd2
(Rd2 = R2 to R15)

2

Restoration is in sequence from R1.

R15 R13R14 R12 R2 R1

R01US0032EJ0130 Rev.1.30 Page 120 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
tmp = src;
SP = SP - 4; *

*SP = tmp;

Note: * SP is decremented by 4 even when the size specifier (.size) is .B or .W. The upper 24 and 16 bits in the
respective cases (.B and .W) are undefined.

Function
• This instruction pushes src onto the stack.
• When src is in register and the size specifier for the PUSH instruction is .B or .W, the byte or word of data from the

LSB in the register are saved respectively.
• The transfer to the stack is processed in longwords. When the size specifier is .B or .W, the upper 24 or 16 bits are

undefined respectively.
• The stack pointer in use is specified by the U bit in the PSW.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the displacement value
(dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size specifier is .W, or
values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values from 0 to 131070 (65535  2) can be
specified when the size specifier is .W, or values from 0 to 262140 (65535  4) when the specifier is .L. The value
divided by 2 or 4 will be stored in the instruction code.

Description Example
PUSH.B R1
PUSH.L [R1]

PUSH Push register on stack PUSH
Syntax

PUSH.size src
Data transfer instruction

Instruction Code
Page: 223

Processing Size
Operand

Code Size (Byte)Syntax Size src
PUSH.size src B/W/L L Rs 2

B/W/L L [Rs] 2
B/W/L L dsp:8[Rs]* 3
B/W/L L dsp:16[Rs]* 4

R01US0032EJ0130 Rev.1.30 Page 121 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
tmp = src;
SP = SP - 4;
*SP = tmp;

Function
• This instruction pushes the control register specified by src onto the stack.
• The stack pointer in use is specified by the U bit in the PSW.
• When the PC is specified as src, this instruction pushes its own address onto the stack.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW

Description Example
PUSHC PSW

PUSHC Push a control register on stack PUSHC
Syntax

PUSHC src
Data transfer instruction

Instruction Code
Page: 224

Processing Size
Operand

Code Size (Byte)Syntax src*

PUSHC src L Rx 2

R01US0032EJ0130 Rev.1.30 Page 122 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
signed char i;
for (i = register_num(src2); i >= register_num(src); i--) {

tmp = register(i);
SP = SP - 4;
*SP = tmp;

}

Function
• This instruction saves values to the stack from the block of registers in the range specified by src and src2.
• The range is specified by first and last register numbers. Note that the condition (first register number < last

register number) must be satisfied.
• R0 cannot be specified.
• The stack pointer in use is specified by the U bit in the PSW.
• Registers are saved on the stack in the following order:

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
PUSHM R1-R3
PUSHM R4-R8

PUSHM Push multiple registers on stack PUSHM
Syntax

PUSHM src-src2
Data transfer instruction

Instruction Code
Page: 224

Processing Size
Operand

Code Size (Byte)Syntax src src2
PUSHM src-src2 L Rs

(Rs = R1 to R14)
Rs2
(Rs2 = R2 to R15)

2

Saving is in sequence from R15.

R15 R13R14 R12 R2 R1

R01US0032EJ0130 Rev.1.30 Page 123 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
signed long long tmp;
tmp = (signed long long) ACC << src;
tmp = tmp + 0000000080000000h;
if (tmp > (signed long long) 00007FFF00000000h)
 ACC = 00007FFF00000000h;
else if (tmp < (signed long long) FFFF800000000000h)
 ACC = FFFF800000000000h;
else
 ACC = tmp & FFFFFFFF00000000h;

Function
• This instruction rounds the value of the accumulator into a word and stores the result in the accumulator.

• The RACW instruction is executed according to the following procedures.

Processing 1:
The value of the accumulator is shifted to the left by one or two bits as specified by src.

RACW Round the accumulator word RACW
Syntax

RACW src
DSP instruction

Instruction Code
Page: 225

ACC

0DataSign

b15b16b31 b0b32b47b48b63

RACW instruction

b0b63

b15b16b31 b0b32b47b48b63

b15b16b31 b0b32b47b48b63

Shifted to the left by one or two bits

R01US0032EJ0130 Rev.1.30 Page 124 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Processing 2:
The value of the accumulator changes according to the value of 64 bits after the contents have been shifted to the
left by one or two bits.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
RACW #1
RACW #2

Operand
Code Size (Byte)Syntax src

RACW src #IMM:1
(IMM:1 = 1, 2)

3

No carrying when bit 31 is 0
Carrying when bit 31 is 1
Bits 31 to 0 are cleared to 0

Positive
values

Negative
values

b15b16b31 b0b32b47b48b63

0000 7FFE 8000 0000 h
0000 7FFE 7FFF FFFF h

FFFF 8000 8000 0000 h
FFFF 8000 7FFF FFFF h

0000 0000 0000 0000 h

00007FFF0000
b0b63

0000

b31 b0b32b63

0000
b31 b0b32b63

0000

00008000FFFF
b0b63

0000

R01US0032EJ0130 Rev.1.30 Page 125 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
Rd = { Rs[7:0], Rs[15:8], Rs[23:16], Rs[31:24] }

Function
• This instruction converts the endian byte order within a 32-bit datum, which is specified by src, and saves the

result in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
REVL R1, R2

REVL Reverse endian within longword REVL
Syntax

REVL src, dest
Data transfer instruction

Instruction Code
Page: 225

Operand
Code Size (Byte)Syntax src dest

REVL src, dest Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 126 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
Rd = { Rs[23:16], Rs[31:24], Rs[7:0], Rs[15:8] }

Function
• This instruction converts the endian byte order within the higher- and lower 16-bit data, which are specified by src,

and saves the result in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
REVW R1, R2

REVW Reverse endian within word REVW
Syntax

REVW src, dest
Data transfer instruction

Instruction Code
Page: 225

Operand
Code Size (Byte)Syntax src dest

REVW src, dest Rs Rd 3

R01US0032EJ0130 Rev.1.30 Page 127 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
while (R3 != 0) {

R6:R5:R4 = R6:R5:R4 + *R1 * *R2;
R1 = R1 + n;
R2 = R2 + n;
R3 = R3 - 1;

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. When the size specifier (.size) is .B, .W, or .L, n is 1, 2, or 4, respectively.

Function
• This instruction performs a multiply-and-accumulate operation with the multiplicand addresses specified by R1,

the multiplier addresses specified by R2, and the number of multiply-and-accumulate operations specified by R3.
The operands and result are handled as signed values, and the result is placed in R6:R5:R4 as an 80-bit datum.
Note that the upper 16 bits of R6 are set to the value obtained by sign-extending the lower 16 bits of R6.

• The greatest value that is specifiable in R3 is 00010000h.

• The data in R1 and R2 are undefined when instruction execution is completed.
• Specify the initial value in R6:R5:R4 before executing the instruction. Furthermore, be sure to set R6 to

FFFFFFFFh when R5:R4 is negative or to 00000000h if R5:R4 is positive.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, R4, R5, R6, and PSW when an interrupt is generated and
restore them when execution is returned from the interrupt routine.

• In execution of the instruction, the data may be prefetched from the multiplicand addresses specified by R1 and the
multiplier addresses specified by R2, with R3 as the upper limit. For details of the data size to be prefetched, refer
to the user’s manual: hardware of each product.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

RMPA Repeat multiply-accumulate RMPA
Syntax

RMPA.size
Arithmetic/logic instruction

Instruction Code
Page: 226

b31 b16

R6

b15 b0 b31

R5

b0 b31

R4

b0

R6:R5:R4Sign-extended

R01US0032EJ0130 Rev.1.30 Page 128 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Flag Change

Instruction Format

Description Example
RMPA.W

Flag Change Condition
C —
Z —
S  The flag is set if the MSB of R6 is 1; otherwise it is cleared.
O  The flag is set if the R6:R5:R4 data is greater than 2 –1 or smaller than –2 ; otherwise it is

cleared.

Processing
Code Size (Byte)Syntax Size Size

RMPA.size B/W/L size 2

63 63

R01US0032EJ0130 Rev.1.30 Page 129 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest <<= 1;
if (C == 0)

dest &= FFFFFFFEh;
else

dest |= 00000001h;

Function
• This instruction treats dest and the C flag as a unit, rotating the whole one bit to the left.

Flag Change

Instruction Format

Description Example
ROLC R1

ROLC Rotate left with carry ROLC
Syntax

ROLC dest
Arithmetic/logic instruction

Instruction Code
Page: 226

Flag Change Condition
C  The flag is set if the shifted-out bit is 1; otherwise it is cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand
Code Size (Byte)Syntax dest

ROLC dest L Rd 2

MSB dest LSB C

R01US0032EJ0130 Rev.1.30 Page 130 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest >>= 1;
if (C == 0)

dest &= 7FFFFFFFh;
else

dest |= 80000000h;

Function
• This instruction treats dest and the C flag as a unit, rotating the whole one bit to the right.

Flag Change

Instruction Format

Description Example
RORC R1

RORC Rotate right with carry RORC
Syntax

RORC dest
Arithmetic/logic instruction

Instruction Code
Page: 227

Flag Change Condition
C  The flag is set if the shifted-out bit is 1; otherwise it is cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand
Code Size (Byte)Syntax dest

RORC dest L Rd 2

MSB dest LSB C

R01US0032EJ0130 Rev.1.30 Page 131 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned long tmp0, tmp1;
tmp0 = src & 31;
tmp1 = dest << tmp0;
dest = ((unsigned long) dest >> (32 - tmp0)) | tmp1;

Function
• This instruction rotates dest leftward by the number of bit positions specified by src and saves the value in dest.

Bits overflowing from the MSB are transferred to the LSB and to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

Flag Change

Instruction Format

Description Example
ROTL #1, R1
ROTL R1, R2

ROTL Rotate left ROTL
Syntax

ROTL src, dest
Arithmetic/logic instruction

Instruction Code
Page: 227

Flag Change Condition
C  After the operation, this flag will have the same LSB value as dest. In addition, when src is 0,

this flag will have the same LSB value as dest.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ROTL src, dest L #IMM:5 Rd 3
L Rs Rd 3

C MSB dest LSB

R01US0032EJ0130 Rev.1.30 Page 132 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned long tmp0, tmp1;
tmp0 = src & 31;
tmp1 = (unsigned long) dest >> tmp0;
dest = (dest << (32 - tmp0)) | tmp1;

Function
• This instruction rotates dest rightward by the number of bit positions specified by src and saves the value in dest.

Bits overflowing from the LSB are transferred to the MSB and to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

Flag Change

Instruction Format

Description Example
ROTR #1, R1
ROTR R1, R2

ROTR Rotate right ROTR
Syntax

ROTR src, dest
Arithmetic/logic instruction

Instruction Code
Page: 228

Flag Change Condition
C  After the operation, this flag will have the same MSB value as dest. In addition, when src is 0,

this flag will have the same MSB value as dest.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ROTR src, dest L #IMM:5 Rd 3
L Rs Rd 3

CMSB dest LSB

R01US0032EJ0130 Rev.1.30 Page 133 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = (signed long) src;

Function
• This instruction converts the single-precision floating-point number stored in src into a signed longword (32-bit)

integer and places the result in dest.
• Rounding of the result is in accordance with the setting of the RM[1:0] bits in the FPSW.

Flag Change

Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.

ROUND Round floating-point to signed integer ROUND
Syntax

ROUND src, dest
Floating-point arithmetic

instruction
Instruction Code

Page: 229

Bits RM[1:0] Rounding Mode
00b Round to the nearest value
01b Round towards 0
10b Round towards +
11b Round towards –

Flag Change Condition
C —
Z  The flag is set if the result of the operation is 0; otherwise it is cleared.
S  The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O —
CV  The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO  The value of the flag is 0.
CZ  The value of the flag is 0.
CU  The value of the flag is 0.
CX  The flag is set if an inexact exception is generated; otherwise it is cleared.
CE  The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV  The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO —
FZ —
FU —
FX  The flag is set if an inexact exception is generated; otherwise it does not change.

R01US0032EJ0130 Rev.1.30 Page 134 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

Sources of Floating-Point Exceptions
Unimplemented processing
Invalid operation
Inexact

Description Example
ROUND R1, R2
ROUND [R1], R2

Supplementary Description
• The following tables show the correspondences between the src value and the result of operations when the value

of the DN bit in the FPSW is 0 or 1.

When DN = 0

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CF000000h.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ROUND src, dest L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

src Value (exponent is shown without bias) dest Exception
src ≥ 0 + When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

31 ≤ Exponent ≤ 127 Other cases: 7FFFFFFFh
–126 ≤ Exponent ≤ 30 00000000h to 7FFFFF80h None*1

+Denormalized number No change Unimplemented
processing exception

+0 00000000h None
src < 0 –0

–Denormalized number No change Unimplemented
processing exception

–126 ≤ Exponent ≤ 30 00000000h to 80000080h None*1

31 ≤ Exponent ≤ 127 When an invalid operation exception is
generated with the EV = 1: No change

Invalid operation
exception*2

– Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

R01US0032EJ0130 Rev.1.30 Page 135 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

When DN = 1

Note: 1. An inexact exception occurs when the result is rounded.
Note: 2. No invalid operation exception occurs when src = CF000000h.

src Value (exponent is shown without bias) dest Exception
src ≥ 0 + When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

31 ≤ Exponent ≤ 127 Other cases: 7FFFFFFFh
–126 ≤ Exponent ≤ 30 00000000h to 7FFFFF80h None*1

+0, +Denormalized number 00000000h None
src < 0 –0, –Denormalized number

–126 ≤ Exponent ≤ 30 00000000h to 80000080h None*1

31 ≤ Exponent ≤ 127 When an invalid operation exception is
generated with the EV = 1: No change

Invalid operation
exception*2

– Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

R01US0032EJ0130 Rev.1.30 Page 136 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
PC = *SP;
SP = SP + 4;
tmp = *SP;
SP = SP + 4;
PSW = tmp;

Function
• This instruction returns execution from the exception handling routine by restoring the PC and PSW contents that

were saved when the exception was accepted.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• If returning is accompanied by a transition to user mode, the U bit in the PSW becomes 1.

Flag Change

Note: * The flags become the corresponding values on the stack.

Instruction Format

Description Example
RTE

RTE Return from exception RTE
Syntax

RTE
System manipulation instruction

Instruction Code
Page: 229

Flag Change Condition
C *
Z *
S *
O *

Syntax Code Size (Byte)
RTE 2

R01US0032EJ0130 Rev.1.30 Page 137 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
PSW = BPSW;
PC = BPC;

Function
• This instruction returns execution from the fast-interrupt processing routine by restoring the PC and PSW contents

that were saved in the BPC and BPSW when the fast interrupt request was accepted.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• If returning is accompanied by a transition to user mode, the U bit in the PSW becomes 1.
• The data in the BPC and BPSW are undefined when instruction execution is completed.

Flag Change

Note: * The flags become the corresponding values from the BPSW.

Instruction Format

Description Example
RTFI

RTFI Return from fast interrupt RTFI
Syntax

RTFI
System manipulation instruction

Instruction Code
Page: 230

Flag Change Condition
C *
Z *
S *
O *

Syntax Code Size (Byte)
RTFI 2

R01US0032EJ0130 Rev.1.30 Page 138 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
PC = *SP;
SP = SP + 4;

Function
• This instruction returns the flow of execution from a subroutine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
RTS

RTS Return from subroutine RTS
Syntax

RTS
Branch instruction

Instruction Code
Page: 230

Syntax Code Size (Byte)
RTS 1

R01US0032EJ0130 Rev.1.30 Page 139 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) SP = SP + src;

PC = *SP;
SP = SP + 4;

(2) signed char i;
SP = SP + (src - (register_num(dest2) - register_num(dest) +1) * 4);
for (i = register_num(dest); i <= register_num(dest2); i++) {

tmp = *SP;
SP = SP + 4;
register(i) = tmp;

}
PC = *SP;
SP = SP + 4;

Function
(1) This instruction returns the flow of execution from a subroutine after deallocating the stack frame for the

subroutine.
• Specify src to be the size of the stack frame (auto conversion area).

RTSD Return from subroutine after deallocating
stack frame RTSD

Syntax
(1) RTSD src
(2) RTSD src, dest-dest2

Branch instruction
Instruction Code

Page: 230

Before
executing the

instruction
SP

Auto
conversion

area

Return
address
Function
argument

After
executing the

instruction

SP
Function
argument

Number of bytes specified
by src Direction of

address
incrementing

R01US0032EJ0130 Rev.1.30 Page 140 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

(2) This instruction returns the flow of execution from a subroutine after deallocating the stack frame for the
subroutine and also restoring register values from the stack.
• Specify src to be the total size of the stack frame (auto conversion area and register restore area).

• This instruction restores values for the block of registers in the range specified by dest and dest2 from the stack.
• The range is specified by first and last register numbers. Note that the condition (first register number ≤ last

register number) must be satisfied.
• R0 cannot be specified.
• The stack pointer in use is specified by the U bit in the PSW.
• Registers are restored from the stack in the following order:

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the immediate value. With UIMM:8, values from 0 to 1020 (255  4) can be specified. The
value divided by 4 will be stored in the instruction code.

Description Example
RTSD #4
RTSD #16, R5-R7

Operand Code Size
(Byte)Syntax src dest dest2

(1) RTSD src #UIMM:8* — — 2
(2) RTSD src, dest-dest2 #UIMM:8* Rd (Rd = R1 to R15) Rd2 (Rd2 = R1 to R15) 3

Before
executing the

instruction
SP

Auto
conversion

area

Return
address
Function
argument

After
executing the

instruction

SP
Function
argument

Register
restore area

Number of bytes specified
by src

Direction of
address
incrementing

Restoration is in sequence from R1.

R15 R13R14 R12 R2 R1

R01US0032EJ0130 Rev.1.30 Page 141 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (O == 1 && S == 1)

dest = 7FFFFFFFh;
else if (O == 1 && S == 0)

dest = 80000000h;

Function
• This instruction performs a 32-bit signed saturation operation.
• When the O flag is 1 and the S flag is 1, the result of the operation is 7FFFFFFFh and it is placed in dest.

When the O flag is 1 and the S flag is 0, the result of the operation is 80000000h and it is placed in dest. In other
cases, the dest value does not change.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SAT R1

SAT Saturate SAT
Syntax

SAT dest
Arithmetic/logic instruction

Instruction Code
Page: 231

Processing
Size

Operand
Code Size (Byte)Syntax dest

SAT dest L Rd 2

R01US0032EJ0130 Rev.1.30 Page 142 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (O == 1 && S == 0)

R6:R5:R4 = 000000007FFFFFFFFFFFFFFFh;
else if (O == 1 && S == 1)

R6:R5:R4 = FFFFFFFF8000000000000000h;

Function
• This instruction performs a 64-bit signed saturation operation.
• When the O flag is 1 and the S flag is 0, the result of the operation is 000000007FFFFFFFFFFFFFFFh and it is

placed in R6:R5:R4. When the O flag is 1 and the S flag is 1, the result of the operation is
FFFFFFFF8000000000000000h and it is place in R6:R5:R4. In other cases, the R6:R5:R4 value does not change.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SATR

SATR Saturate for RMPA SATR
Syntax

SATR
Arithmetic/logic instruction

Instruction Code
Page: 231

Syntax Code Size (Byte)
SATR 2

R01US0032EJ0130 Rev.1.30 Page 143 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest - src - ˜C;

Function
• This instruction subtracts src and the inverse of the C flag (borrow) from dest and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255  4) can be
specified; with dsp:16, values from 0 to 262140 (65535  4) can be specified. The value divided by 4 will be
stored in the instruction code.

Description Example
SBB R1, R2
SBB [R1], R2

SBB Subtract with borrow SBB
Syntax

SBB src, dest
Arithmetic/logic instruction

Instruction Code
Page: 232

Flag Change Condition
C  The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O  The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

SBB src, dest L Rs Rd 3
L [Rs].L Rd 4
L dsp:8[Rs].L* Rd 5
L dsp:16[Rs].L* Rd 6

R01US0032EJ0130 Rev.1.30 Page 144 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (Cnd)

dest = 1;
else

dest = 0;

Function
• This instruction moves the truth-value of the condition specified by Cnd to dest; that is, 1 or 0 is stored to dest if

the condition is true or false, respectively.
• The following table lists the types of SCCnd.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the displacement value
(dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size specifier is .W, or
values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values from 0 to 131070 (65535  2) can be
specified when the size specifier is .W, or values from 0 to 262140 (65535  4) when the specifier is .L. The value
divided by 2 or 4 will be stored in the instruction code.

Description Example
SCC.L R2
SCNE.W [R2]

SCCnd Store condition SCCnd
Syntax

SCCnd.size dest
Data transfer instruction

Instruction Code
Page: 233

SCCnd Condition Expression SCCnd Condition Expression
SCGEU,
SCC

C == 1 Equal to or greater than/
C flag is 1

≤ SCLTU,
SCNC

C == 0 Less than/
C flag is 0

>

SCEQ,
SCZ

Z == 1 Equal to/
Z flag is 1

= SCNE,
SCNZ

Z == 0 Not equal to/
Z flag is 0

≠

SCGTU (C & ˜Z) ==
1

Greater than < SCLEU (C & ˜Z) ==
0

Equal to or less than ≥

SCPZ S == 0 Positive or zero 0 ≤ SCN S == 1 Negative 0 >
SCGE (S ^ O) ==

0
Equal to or greater than
as signed integer

≤ SCLE ((S ^ O) |Z)
== 1

Equal to or less than as
signed integer

≥

SCGT ((S ^ O) |Z)
== 0

Greater than as signed
integer

< SCLT (S ^ O) ==
1

Less than as signed
integer

>

SCO O == 1 O flag is 1 SCNO O == 0 O flag is 0

Size Processing Size
Operand

Code Size (Byte)Syntax dest
SCCnd.size dest L L Rd 3

B/W/L size [Rd] 3
B/W/L size dsp:8[Rd]* 4
B/W/L size dsp:16[Rd]* 5

R01US0032EJ0130 Rev.1.30 Page 145 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned char *R2, *R1, tmp0, tmp1;
unsigned long R3;
while (R3 != 0) {
 tmp0 = *R1++;
 tmp1 = *R2++;
 R3--;
 if (tmp0 != tmp1 || tmp0 == '\0') {
 break;
 }
}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction compares strings in successively higher addresses specified by R1, which indicates the source

address for comparison, and R2, which indicates the destination address for comparison, until the values do not
match or the null character “\0” (= 00h) is detected, with the number of bytes specified by R3 as the upper limit.

• In execution of the instruction, the data may be prefetched from the source address for comparison specified by R1
and the destination address for comparison specified by R2, with R3 as the upper limit. For details of the data size
to be prefetched, refer to the user’s manual: hardware of each product.

• The contents of R1 and R2 are undefined upon completion of the instruction.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

Instruction Format

Description Example
SCMPU

SCMPU String compare until not equal SCMPU
Syntax

SCMPU
String manipulation instruction

Instruction Code
Page: 233

Flag Change Condition
C  This flag is set if the operation of (*R1 – *R2) as unsigned integers produces a value greater

than or equal to 0; otherwise it is cleared.
Z  This flag is set if the two strings have matched; otherwise it is cleared.
S —
O —

Syntax Processing Size Code Size (Byte)
SCMPU B 2

R01US0032EJ0130 Rev.1.30 Page 146 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = 1;

Function
• This instruction sets the O, S, Z, or C flag or the U or I bit specified by dest to 1.
• In user mode, writing to the U or I bit in the PSW will be ignored. In supervisor mode, all flags and bits can be

written to.

Flag Change

Note: * The specified flag is set to 1.

Instruction Format

Description Example
SETPSW C
SETPSW Z

SETPSW Set a flag or bit in the PSW SETPSW
Syntax

SETPSW dest
System manipulation instruction

Instruction Code
Page: 234

Flag Change Condition
C *
Z *
S *
O *

Operand Code Size
Syntax dest (Byte)
SETPSW dest flag 2

R01US0032EJ0130 Rev.1.30 Page 147 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = (signed long) dest >> (src & 31);
(2) dest = (signed long) src2 >> (src & 31);

Function
(1) This instruction arithmetically shifts dest to the right by the number of bit positions specified by src and saves the

value in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

(2) After this instruction transfers src2 to dest, it arithmetically shifts dest to the right by the number of bit positions
specified by src and saves the value in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

Flag Change

Instruction Format

Description Example
SHAR #3, R2
SHAR R1, R2
SHAR #3, R1, R2

SHAR Arithmetic shift right SHAR
Syntax

(1) SHAR src, dest
(2) SHAR src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 235

Flag Change Condition
C  The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag

is also cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O  The flag is cleared to 0.

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) SHAR src, dest L #IMM:5 — Rd 2
L Rs — Rd 3

(2) SHAR src, src2, dest L #IMM:5 Rs Rd 3

CMSB dest LSB

R01US0032EJ0130 Rev.1.30 Page 148 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = dest << (src & 31);
(2) dest = src2 << (src & 31);

Function
(1) This instruction arithmetically shifts dest to the left by the number of bit positions specified by src and saves the

value in dest.
• Bits overflowing from the MSB are transferred to the C flag.
• When src is in register, only five bits in the LSB are valid.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

(2) After this instruction transfers src2 to dest, it arithmetically shifts dest to the left by the number of bit positions
specified by src and saves the value in dest.
• Bits overflowing from the MSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

Flag Change

Instruction Format

Description Example
SHLL #3, R2
SHLL R1, R2
SHLL #3, R1, R2

SHLL Logical shift left SHLL
Syntax

(1) SHLL src, dest
(2) SHLL src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 236

Flag Change Condition
C  The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag

is also cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O  This bit is cleared to 0 when the MSB of the result of the operation is equal to all bit values that

have been shifted out (i.e. the shift operation has not changed the sign); otherwise it is set to 1.
However, when src is 0, this flag is also cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) SHLL src, dest L #IMM:5 — Rd 2
L Rs — Rd 3

(2) SHLL src, src2, dest L #IMM:5 Rs Rd 3

C 0MSB dest LSB

R01US0032EJ0130 Rev.1.30 Page 149 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = (unsigned long) dest >> (src & 31);
(2) dest = (unsigned long) src2 >> (src & 31);

Function
(1) This instruction logically shifts dest to the right by the number of bit positions specified by src and saves the value

in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

(2) After this instruction transfers src2 to dest, it logically shifts dest to the right by the number of bit positions
specified by src and saves the value in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

Flag Change

Instruction Format

Description Example
SHLR #3, R2
SHLR R1, R2
SHLR #3, R1, R2

SHLR Logical shift right SHLR
Syntax

(1) SHLR src, dest
(2) SHLR src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 237

Flag Change Condition
C  The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag

is also cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) SHLR src, dest L #IMM:5 — Rd 2
L Rs — Rd 3

(2) SHLR src, src2, dest L #IMM:5 Rs Rd 3

C0 MSB dest LSB

R01US0032EJ0130 Rev.1.30 Page 150 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned char *R1, *R2;
unsigned long R3;
while (R3 != 0) {

*R1-- = *R2--;
R3 = R3 - 1;

}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction transfers a string consisting of the number of bytes specified by R3 from the source address

specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of decreasing
addresses.

• In execution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the user’s manual: hardware of each product.

• The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

• On completion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SMOVB

SMOVB String move backward SMOVB
Syntax

SMOVB
String manipulation instruction

Instruction Code
Page: 238

Syntax Processing Size Code Size (Byte)
SMOVB B 2

R01US0032EJ0130 Rev.1.30 Page 151 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned char *R1, *R2;
unsigned long R3;
while (R3 != 0) {

*R1++ = *R2++;
R3 = R3 - 1;

}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction transfers a string consisting of the number of bytes specified by R3 from the source address

specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of increasing
addresses.

• In execution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the user’s manual: hardware of each product.

• The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

• On completion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SMOVF

SMOVF String move forward SMOVF
Syntax

SMOVF
String manipulation instruction

Instruction Code
Page: 238

Syntax Processing Size Code Size (Byte)
SMOVF B 2

R01US0032EJ0130 Rev.1.30 Page 152 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned char *R1, *R2, tmp;
unsigned long R3;
while (R3 != 0) {

tmp = *R2++;
*R1++ = tmp;
R3--;
if (tmp == '\0') {

break;
}

}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction transfers strings successively from the source address specified by R2 to the higher destination

addresses specified by R1 until the null character “\0” (= 00h) is detected, with the number of bytes specified by
R3 as the upper limit. String transfer is completed after the null character has been transferred.

• In execution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the user’s manual: hardware of each product.

• The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

• The contents of R1 and R2 are undefined upon completion of the instruction.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SMOVU

SMOVU String move until zero detected SMOVU
Syntax

SMOVU
String manipulation instruction

Instruction Code
Page: 238

Syntax Processing Size Code Size (Byte)
SMOVU B 2

R01US0032EJ0130 Rev.1.30 Page 153 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned { char | short | long } *R1, R2;
unsigned long R3;
while (R3 != 0) {

*R1++ = R2;
R3 = R3 - 1;

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4

for .L.
3. R2: How much of the value in R2 is stored depends on the size specifier (.size): the byte from the LSB end of

R2 is stored for .B, the word from the LSB end of R2 is stored for .W, and the longword in R2 is stored for .L.

Function
• This instruction stores the contents of R2 successively proceeding in the direction of increasing addresses

specified by R1 up to the number specified by R3.
• On completion of instruction execution, R1 indicates the next address in sequence from that for the last transfer.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SSTR.W

SSTR String store SSTR
Syntax

SSTR.size
String manipulation instruction

Instruction Code
Page: 239

Syntax Size Processing Size Code Size (Byte)
SSTR.size B/W/L size 2

R01US0032EJ0130 Rev.1.30 Page 154 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (Z == 0)

dest = src;

Function
• This instruction moves src to dest when the Z flag is 0. dest does not change when the Z flag is 1.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
STNZ #1, R2

STNZ Store on not zero STNZ
Syntax

STNZ src, dest
Data transfer instruction

Instruction Code
Page: 239

Processing
Size

Operand Code Size
(Byte)Syntax src dest

STNZ src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7

R01US0032EJ0130 Rev.1.30 Page 155 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
if (Z == 1)

dest = src;

Function
• This instruction moves src to dest when the Z flag is 1. dest does not change when the Z flag is 0.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
STZ #1, R2

STZ Store on zero STZ
Syntax

STZ src, dest
Data transfer instruction

Instruction Code
Page: 240

Processing
Size

Operand
Code Size (Byte)Syntax src dest

STZ src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7

R01US0032EJ0130 Rev.1.30 Page 156 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
(1) dest = dest - src;
(2) dest = src2 - src;

Function
(1) This instruction subtracts src from dest and places the result in dest.
(2) This instruction subtracts src from src2 and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
SUB #15, R2
SUB R1, R2
SUB [R1], R2
SUB 1[R1].B, R2
SUB R1, R2, R3

SUB Subtract without borrow SUB
Syntax

(1) SUB src, dest
(2) SUB src, src2, dest

Arithmetic/logic instruction
Instruction Code

Page: 241

Flag Change Condition
C  The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O  The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand
Code Size (Byte)Syntax src src2 dest

(1) SUB src, dest L #UIMM:4 — Rd 2
L Rs — Rd 2
L [Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
L dsp:8[Rs].memex* — Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:16[Rs].memex* — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(2) SUB src, src2, dest L Rs Rs2 Rd 3

R01US0032EJ0130 Rev.1.30 Page 157 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R3 != 0) {

tmp = (unsigned long) *R1++;
R3--;
if (tmp == R2) {

break;
}

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4

for .L.

Function
• This instruction searches a string for comparison from the first address specified by R1 for a match with the value

specified in R2, with the search proceeding in the direction of increasing addresses and the number specified by
R3 as the upper limit on the number of comparisons. When the size specifier (.size) is .B or .W, the byte or word
data on the memory is compared with the value in R2 after being zero-extended to form a longword of data.

• In execution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the user’s manual: hardware of
each product.

• Flags change according to the results of the operation “*R1 – R2”.
• The value in R1 upon completion of instruction execution indicates the next address where the data matched.

Unless there was a match within the limit, the value in R1 is the next address in sequence from that for the last
comparison.

• The value in R3 on completion of instruction execution is the initial value minus the number of comparisons.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

SUNTIL String search until equal SUNTIL
Syntax

SUNTIL.size
String manipulation instruction

Instruction Code
Page: 242

Flag Change Condition
C  The flag is set if a comparison operation as unsigned integers results in any value equal to or

greater than 0; otherwise it is cleared.
Z  The flag is set if matched data is found; otherwise it is cleared.
S —
O —

R01US0032EJ0130 Rev.1.30 Page 158 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Description Example
SUNTIL.W

Syntax Size Processing Size Code Size (Byte)
SUNTIL.size B/W/L L 2

R01US0032EJ0130 Rev.1.30 Page 159 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R3 != 0) {

tmp = (unsigned long) *R1++;
R3--;
if (tmp != R2) {

break;
}

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4

for .L.

Function
• This instruction searches a string for comparison from the first address specified by R1 for an unmatch with the

value specified in R2, with the search proceeding in the direction of increasing addresses and the number specified
by R3 as the upper limit on the number of comparisons. When the size specifier (.size) is. B or .W, the byte or word
data on the memory is compared with the value in R2 after being zero-extended to form a longword of data.

• In execution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the user’s manual: hardware of
each product.

• Flags change according to the results of the operation “*R1 – R2”.
• The value in R1 upon completion of instruction execution indicates the next addresses where the data did not

match. If all the data contents match, the value in R1 is the next address in sequence from that for the last
comparison.

• The value in R3 on completion of instruction execution is the initial value minus the number of comparisons.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

SWHILE String search while equal SWHILE
Syntax

SWHILE.size
String manipulation instruction

Instruction Code
Page: 242

Flag Change Condition
C  The flag is set if a comparison operation as unsigned integers results in any value equal to or

greater than 0; otherwise it is cleared.
Z  The flag is set if all the data contents match; otherwise it is cleared.
S —
O —

R01US0032EJ0130 Rev.1.30 Page 160 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Instruction Format

Description Example
SWHILE.W

Syntax Size Processing Size Code Size (Byte)
SWHILE.size B/W/L L 2

R01US0032EJ0130 Rev.1.30 Page 161 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
src2 & src;

Function
• This instruction changes the flag states in the PSW according to the result of logical AND of src2 and src.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
TST #7, R2
TST R1, R2
TST [R1], R2
TST 1[R1].UB, R2

TST Test logical TST
Syntax

TST src, src2
Arithmetic/logic instruction

Instruction Code
Page: 243

Flag Change Condition
C —
Z  The flag is set if the result of the operation is 0; otherwise it is cleared.
S  The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand
Code Size (Byte)Syntax src src2

TST src, src2 L #SIMM:8 Rs 4
L #SIMM:16 Rs 5
L #SIMM:24 Rs 6
L #IMM:32 Rs 7
L Rs Rs2 3
L [Rs].memex Rs2 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rs2 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rs2 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 162 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation

Function
• This instruction stops program execution. Program execution is then restarted by acceptance of a non-maskable

interrupt, interrupt, or generation of a reset.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• The I bit in the PSW becomes 1.
• The address of the PC saved at the generation of an interrupt is the one next to the WAIT instruction.

Note: For the power-down state when the execution of the program is stopped, refer to the user’s manual: hardware of
each product.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
WAIT

WAIT Wait WAIT
Syntax

WAIT
System manipulation instruction

Instruction Code
Page: 244

Syntax Code Size (Byte)
WAIT 2

R01US0032EJ0130 Rev.1.30 Page 163 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
tmp = src;
src = dest;
dest = tmp;

Function
• This instruction exchanges the contents of src and dest as listed in the following table.

• This instruction may be used for the exclusive control. For details, refer to the user’s manual: hardware of each
product.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
XCHG R1, R2
XCHG [R1].W, R2

XCHG Exchange XCHG
Syntax

XCHG src, dest
Data transfer instruction

Instruction Code
Page: 244

src dest Function
Register Register Exchanges the data in the source register (src) and the destination register

(dest).
Memory location Register Exchanges the data at the memory location and the register. When the size

extension specifier (.size) is .B or .UB, the byte of data in the LSB of the register
is exchanged with the data at the memory location. When the size extension
specifier (.size) is .W or .UW, the word of data in the LSB of the register is
exchanged with the data at the memory location. When the size extension
specifier is other than .L, the data at the memory location is transferred to the
register after being extended with the specified type of extension to form a
longword of data.

Processing
Size

Operand
Code Size (Byte)Syntax src dest

XCHG src, dest L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 164 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 3. Instruction Descriptions

Operation
dest = dest ^ src;

Function
• This instruction exclusive ORs dest and src and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Electronics Corp., enter a scaled value (the actual value
multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255  2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255  4) when the specifier is .L. With dsp:16, values
from 0 to 131070 (65535  2) can be specified when the size extension specifier is .W or .UW, or values from 0 to
262140 (65535  4) when the specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
XOR #8, R1
XOR R1, R2
XOR [R1], R2
XOR 16[R1].L, R2

XOR Logical Exclusive OR XOR
Syntax

XOR src, dest
Arithmetic/logic instruction

Instruction Code
Page: 245

Flag Change Condition
C —
Z  The flag is set if dest is 0 after the operation; otherwise it is cleared.
S  The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O —

Processing
Size

Operand
Code Size (Byte)Syntax src dest

XOR src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
L dsp:8[Rs].memex* Rd 4 (memex == “UB”)

5 (memex != “UB”)
L dsp:16[Rs].memex* Rd 5 (memex == “UB”)

6 (memex != “UB”)

R01US0032EJ0130 Rev.1.30 Page 165 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

4. Instruction Code

4.1 Guide to This Section
This section describes instruction codes by showing the respective opcodes.
The following shows how to read this section by using an actual page as an example.

Code Size

(1) ADD src, dest

(2) ADD src, dest

Note: The instruction code is the same with the instruction code listed as (4) where src2 and dest have the same value.

ADD ADD

Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 — Rd 2
(2) ADD src, dest #SIMM:8 — Rd 3

#SIMM:16 — Rd 4
#SIMM:24 — Rd 5
#IMM:32 — Rd 6

(3) ADD src, dest Rs — Rd 2
[Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
dsp:8[Rs].memex — Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:16[Rs].memex — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(4) ADD src, src2, dest #SIMM:8 Rs Rd 3

#SIMM:16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6

(5) ADD src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

imm[3:0]
b0b7 b0b7

0 1 1 0 0 0 1 0 rd[3:0]

rd[3:0] rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

(1)

(2)

(3)

(4)

(3)

(4)

R01US0032EJ0130 Rev.1.30 Page 166 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(1) Mnemonic
Indicates the mnemonic name of the instruction explained on the given page.

(2) List of Code Size
Indicates the number of bytes the instruction requires. An individual RXv1 CPU instruction takes up from one to
eight bytes.

(3) Syntax
Indicates the syntax of the instruction using symbols.

(4) Instruction Code
Indicates the instruction code. The code in parentheses may be selected or omitted depending on src/dest to be
selected.

When memex != “UB”

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

0 0 1 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7

rs[3:0] rd[3:0]
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

When memex == “UB” or src == Rs

0 0 1 0 ld[1:0]0
b0b7 b0b7

rs[3:0] rd[3:0]
srcld[1:0]

1 None11b

00b None

dsp:801b

dsp:1610b

See Figure 4.1

The contents of the byte at the
address of the instruction

The contents of the byte at
(address of the instruction + 1)

The contents of the byte at
(address of the instruction + 2)

See Figure 4.1

The contents of the byte at the
address of the instruction

The contents of the byte at
(address of the instruction + 1)

R01US0032EJ0130 Rev.1.30 Page 167 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

The contents of the operand, that is the byte at (address of the instruction +2) or (following address of the instruction +3)
in the previous page, are arranged as shown in Figure 4.1.

Figure 4.1 Immediate (IMM) and Displacement (dsp) Values

The abbreviations such as for rs, rd, ld, and mi represent the following.

rs: Source register
rs2: Second source register
rd: Destination register
rd2: Second destination register
ri: Index register
rb: Base register
li: Length of immediate
ld: Length of displacement
lds: Length of source displacement
ldd: Length of destination displacement
mi: Memory extension size infix
imm: Immediate
dsp: Displacement
cd: Condition code
cr: Control register
cb: Control bit
sz: Size specifier
ad: Addressing

8 bits
b0b7

Lower 8 bits Upper 8 bits

Lower 8 bits Middle 8 bits Upper 8 bits

Lower 8 bits Middle-lower 8 bits Middle-upper 8 bits Upper 8 bits

+0

#IMM:8
#SIMM:8
#UIMM:8
dsp:8
pcdsp:8

#IMM:16
#SIMM:16
dsp:16
pcdsp:16

#SIMM:24
pcdsp:24

#IMM:32

+1 +2 +3

b0b7 b8b15 b16b23 b24b31

b0b7 b8b15 b16b23

b0b7 b8b15

R01US0032EJ0130 Rev.1.30 Page 168 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

4.2 Instruction Code Described in Detail
The following pages give details of the instruction codes for the RXv1 instructions.

R01US0032EJ0130 Rev.1.30 Page 169 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) ABS dest

(2) ABS src, dest

ABS ABS
Syntax src dest Code Size (Byte)
(1) ABS dest — Rd 2
(2) ABS src, dest Rs Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 1 1 1 1 0 0 0 1 0 rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 rs[3:0] rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 170 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) ADC src, dest

(2) ADC src, dest

(3) ADC src, dest

ADC ADC

Syntax src dest Code Size (Byte)
(1) ADC src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) ADC src, dest Rs Rd 3
(3) ADC src, dest [Rs].L Rd 4

dsp:8[Rs].L Rd 5
dsp:16[Rs].L Rd 6

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
10b L 00b [Rs] 0000b to 1111b Rs/Rd R0 (SP) to R15

01b dsp:8[Rs]
10b dsp:16[Rs]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 li[1:0] 0 0 0 0 1 0 rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

ld[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 0 0 0 1 0 rs[3:0] rd[3:0]

b0b7 b0b7memex

1 0 0 0 ld[1:0]0 0 0 0 0 1 1 0 mi[1:0]
b0b7 b0b7

1 00 0 0 0 0 0 rs[3:0] rd[3:0]

srcld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

R01US0032EJ0130 Rev.1.30 Page 171 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) ADD src, dest

(2) ADD src, dest

Note: The instruction code is the same with the instruction code listed as (4) where src2 and dest have the same value.

ADD ADD

Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 — Rd 2
(2) ADD src, dest #SIMM:8 — Rd 3

#SIMM:16 — Rd 4
#SIMM:24 — Rd 5
#IMM:32 — Rd 6

(3) ADD src, dest Rs — Rd 2
[Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
dsp:8[Rs].memex — Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:16[Rs].memex — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(4) ADD src, src2, dest #SIMM:8 Rs Rd 3

#SIMM:16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6

(5) ADD src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

imm[3:0]
b0b7 b0b7

0 1 1 0 0 0 1 0 rd[3:0]

rd[3:0] rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 172 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(3) ADD src, dest
When memex == “UB” or src == Rs

When memex != “UB”

(4) ADD src, src2, dest

(5) ADD src, src2, dest

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

li[1:0] src rs2[3:0]/rd[3:0] src2/dest
01b #SIMM:8 0000b to 1111b Rs/Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

0 0 1 0 ld[1:0]0
b0b7 b0b7

rs[3:0] rd[3:0]
srcld[1:0]

1 None11b

00b None

dsp:801b

dsp:1610b

0 0 1 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7

rs[3:0] rd[3:0]
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs2[3:0] rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

b0b7 b0b7 b0b7
1 1 1 1 1 1 1 1 0 0 1 0 rd[3:0] rs[3:0] rs2[3:0]

R01US0032EJ0130 Rev.1.30 Page 173 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) AND src, dest

(2) AND src, dest

AND AND

Syntax src src2 dest Code Size (Byte)
(1) AND src, dest #UIMM:4 — Rd 2
(2) AND src, dest #SIMM:8 — Rd 3

#SIMM:16 — Rd 4
#SIMM:24 — Rd 5
#IMM:32 — Rd 6

(3) AND src, dest Rs — Rd 2
[Rs].memex — Rd 2 (memex == “UB”)

3 (memex != “UB”)
dsp:8[Rs].memex — Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:16[Rs].memex — Rd 4 (memex == “UB”)

5 (memex != “UB”)
(4) AND src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 1 0 0

rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 1 0 0 1 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 174 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(3) AND src, dest
When memex == “UB” or src == Rs

When memex != “UB”

(4) AND src, src2, dest

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

rs[3:0] rd[3:0]0 1 0 0 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rd[3:0]rs[3:0]0 1 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7

None
srcld[1:0]

11b

dsp:1610b

dsp:801b

00b None

1 1 1 1 1 1 1 1 0 1 0 0
b0b7 b0b7 b0b7

rd[3:0] rs2[3:0] rs[3:0]

R01US0032EJ0130 Rev.1.30 Page 175 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) BCLR src, dest

(2) BCLR src, dest

(3) BCLR src, dest

BCLR BCLR

Syntax src dest Code Size (Byte)
(1) BCLR src, dest #IMM:3 [Rd].B 2

#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4

(2) BCLR src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5

(3) BCLR src, dest #IMM:5 Rd 2
(4) BCLR src, dest Rs Rd 3

ld[1:0] dest rd[3:0] dest imm[2:0] src
00b [Rd] 0000b to 1111b Rd R0 (SP) to R15 000b to 111b #IMM:3 0 to 7
01b dsp:8[Rd]
10b dsp:16[Rd]

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

ld[1:0] rd[3:0]
b0b7 b0b7

imm[2:0]1 1 1 1 0 0 1
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

ld[1:0] rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 1
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rd[3:0]
b0b7 b0b7

0 1 1 1 1 0 1

R01US0032EJ0130 Rev.1.30 Page 176 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) BCLR src, dest

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b Rs/Rd R0 (SP) to R15

ld[1:0] rs[3:0]rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 1

R01US0032EJ0130 Rev.1.30 Page 177 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) BCnd.S src

Note: * dsp[2:0] specifies pcdsp:3 = src.

(2) BCnd.B src

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction

BCnd BCnd

Syntax src Code Size (Byte)
(1) BCnd.S src pcdsp:3 1
(2) BCnd.B src pcdsp:8 2
(3) BCnd.W src pcdsp:16 3

cd BCnd dsp[2:0] Branch Distance
0b BEQ, BZ 011b 3
1b BNE, BNZ 100b 4

101b 5
110b 6
111b 7
000b 8
001b 9
010b 10

cd[3:0] BCnd cd[3:0] BCnd
0000b BEQ, BZ 1000b BGE

0001b BNE, BNZ 1001b BLT

0010b BGEU, BC 1010b BGT

0011b BLTU, BNC 1011b BLE

0100b BGTU 1100b BO

0101b BLEU 1101b BNO

0110b BPZ 1110b BRA.B

0111b BN 1111b Reserved

cd1 dsp[2:0]
b0b7

0 0 0 *

cd[3:0]
b0b7

0 0 1 0 pcdsp:8
src

*

R01US0032EJ0130 Rev.1.30 Page 178 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(3) BCnd.W src

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

cd BCnd
0b BEQ, BZ
1b BNE, BNZ

cd1
b0b7

0 0 1 1 1 0 pcdsp:16
src

*

R01US0032EJ0130 Rev.1.30 Page 179 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) BMCnd src, dest

(2) BMCnd src, dest

BMCnd BMCnd

Syntax src dest Code Size (Byte)
(1) BMCnd src, dest #IMM:3 [Rd].B 3

#IMM:3 dsp:8[Rd].B 4
#IMM:3 dsp:16[Rd].B 5

(2) BMCnd src, dest #IMM:5 Rd 3

imm[2:0] src ld[1:0] dest
000b to 111b #IMM:3 0 to 7 00b [Rd]

01b dsp:8[Rd]
10b dsp:16[Rd]

rd[3:0] dest cd[3:0] BMCnd cd[3:0] BMCnd
0000b to 1111b Rd R0 (SP) to R15 0000b BMEQ, BMZ 1000b BMGE

0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC 1010b BMGT
0011b BMLTU, BMNC 1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved

imm[4:0] src cd[3:0] BMCnd cd[3:0] BMCnd
00000b to 11111b #IMM:5 0 to 31 0000b BMEQ, BMZ 1000b BMGE

0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC 1010b BMGT
0011b BMLTU, BMNC 1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0]imm[2:0] rd[3:0] cd[3:0]
b0b7 b0b7 b0b7
0 11 1 1 1 1 1 0 1 1

destld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rd[3:0]cd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 1 1 1

R01US0032EJ0130 Rev.1.30 Page 180 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) BNOT src, dest

(2) BNOT src, dest

(3) BNOT src, dest

BNOT BNOT

Syntax src dest Code Size (Byte)
(1) BNOT src, dest #IMM:3 [Rd].B 3

#IMM:3 dsp:8[Rd].B 4
#IMM:3 dsp:16[Rd].B 5

(2) BNOT src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5

(3) BNOT src, dest #IMM:5 Rd 3
(4) BNOT src, dest Rs Rd 3

imm[2:0] src ld[1:0] dest
000b to 111b #IMM:3 0 to 7 00b [Rd]

01b dsp:8[Rd]
10b dsp:16[Rd]

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rd[3:0]1 1 1 1 1 1 0 0 1 1 1 1 1 1 1ld[1:0]
b0b7 b0b7 b0b7

imm[2:0]
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

rd[3:0] rs[3:0]ld[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 1
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

R01US0032EJ0130 Rev.1.30 Page 181 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) BNOT src, dest

Code Size

(1) BRA.S src

Note: * dsp[2:0] specifies pcdsp:3 = src.

(2) BRA.B src

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction

(3) BRA.W src

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b Rs/Rd R0 (SP) to R15

BRA BRA

Syntax src Code Size (Byte)
(1) BRA.S src pcdsp:3 1
(2) BRA.B src pcdsp:8 2
(3) BRA.W src pcdsp:16 3
(4) BRA.A src pcdsp:24 4
(5) BRA.L src Rs 2

dsp[2:0] Branch Distance
011b 3
100b 4
101b 5
110b 6
111b 7
000b 8
001b 9
010b 10

rd[3:0] rs[3:0]ld[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 1

b0b7
0 0 0 0 1 dsp[2:0]*

b0b7
0 0 1 0 1 1 01 pcdsp:8

src
*

b0b7
0 0 1 1 1 0 0 0 pcdsp:16

src
*

R01US0032EJ0130 Rev.1.30 Page 182 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) BRA.A src

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

(5) BRA.L src

Code Size

(1) BRK

Code Size

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

BRK BRK

Syntax Code Size (Byte)
(1) BRK 1

BSET BSET

Syntax src dest Code Size (Byte)
(1) BSET src, dest #IMM:3 [Rd].B 2

#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4

(2) BSET src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5

(3) BSET src, dest #IMM:5 Rd 2
(4) BSET src, dest Rs Rd 3

b0b7
0 0 0 0 0 1 0 0 pcdsp:24

src
*

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 1 0 0

b0b7
0 0 0 0 0 0 0 0

R01US0032EJ0130 Rev.1.30 Page 183 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(1) BSET src, dest

(2) BSET src, dest

(3) BSET src, dest

(4) BSET src, dest

ld[1:0] dest rd[3:0] dest imm[2:0] src
00b [Rd] 0000b to 1111b Rd R0 (SP) to R15 000b to 111b #IMM:3 0 to 7
01b dsp:8[Rd]
10b dsp:16[Rd]

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b Rs/Rd R0 (SP) to R15

ld[1:0] rd[3:0] imm[2:0]
b0b7 b0b7

01 1 1 1 0 0
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

ld[1:0] rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 0
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rd[3:0]
b0b7 b0b7

0 1 1 1 1 0 0

ld[1:0] rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 0

R01US0032EJ0130 Rev.1.30 Page 184 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) BSR.W src

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

(2) BSR.A src

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

(3) BSR.L src

BSR BSR

Syntax src Code Size (Byte)
(1) BSR.W src pcdsp:16 3
(2) BSR.A src pcdsp:24 4
(3) BSR.L src Rs 2

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

b0b7
0 0 1 1 1 0 0 1 pcdsp:16

src
*

0 0 0 0 0 1 0 1
b0b7

pcdsp:24
src

*

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 1 0 1

R01US0032EJ0130 Rev.1.30 Page 185 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) BTST src, src2

(2) BTST src, src2

(3) BTST src, src2

BTST BTST

Syntax src src2 Code Size (Byte)
(1) BTST src, src2 #IMM:3 [Rs].B 2

#IMM:3 dsp:8[Rs].B 3
#IMM:3 dsp:16[Rs].B 4

(2) BTST src, src2 Rs [Rs2].B 3
Rs dsp:8[Rs2].B 4
Rs dsp:16[Rs2].B 5

(3) BTST src, src2 #IMM:5 Rs 2
(4) BTST src, src2 Rs Rs2 3

ld[1:0] src2 rs[3:0] src2 imm[2:0] src
00b [Rs] 0000b to 1111b Rs R0 (SP) to R15 000b to 111b #IMM:3 0 to 7
01b dsp:8[Rs]
10b dsp:16[Rs]

ld[1:0] src2 rs[3:0]/rs2[3:0] src/src2
00b [Rs2] 0000b to 1111b Rs/Rs2 R0 (SP) to R15
01b dsp:8[Rs2]
10b dsp:16[Rs2]

imm[4:0] src rs[3:0] src2
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs R0 (SP) to R15

imm[2:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 1 1 1 0 1 0
src2ld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

ld[1:0] rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 0
src2ld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 0

R01US0032EJ0130 Rev.1.30 Page 186 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) BTST src, src2

Code Size

(1) CLRPSW dest

ld[1:0] src2 rs[3:0]/rs2[3:0] src/src2
11b Rs2 0000b to 1111b Rs/Rs2 R0 (SP) to R15

CLRPSW CLRPSW

Syntax dest Code Size (Byte)
(1) CLRPSW dest flag 2

cb[3:0] dest
0000b flag C
0001b Z
0010b S
0011b O
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b I
1001b U
1010b Reserved
1011b Reserved
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved

ld[1:0] rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 0

cb[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 1 0 1 1

R01US0032EJ0130 Rev.1.30 Page 187 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) CMP src, src2

(2) CMP src, src2

(3) CMP src, src2

CMP CMP

Syntax src src2 Code Size (Byte)
(1) CMP src, src2 #UIMM:4 Rs 2
(2) CMP src, src2 #UIMM:8 Rs 3
(3) CMP src, src2 #SIMM:8 Rs 3

#SIMM:16 Rs 4
#SIMM:24 Rs 5
#IMM:32 Rs 6

(4) CMP src, src2 Rs Rs2 2
[Rs].memex Rs2 2 (memex == “UB”)

3 (memex != “UB”)
dsp:8[Rs].memex Rs2 3 (memex == “UB”)

4 (memex != “UB”)
dsp:16[Rs].memex Rs2 4 (memex == “UB”)

5 (memex != “UB”)

imm[3:0] src rs2[3:0] src2
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rs R0 (SP) to R15

rs2[3:0] src2
0000b to 1111b Rs R0 (SP) to R15

li[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b Rs R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

imm[3:0] rs2[3:0]
b0b7 b0b7

0 1 1 0 0 0 0 1

rs2[3:0]
b0b7 b0b7

0 1 1 1 0 1 0 1 0 1 0 1

src
#UIMM:8

rs2[3:0]li[1:0]
b0b7

0 1 1 1 0 1 0 0 0 0
b0b7

#SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 188 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) CMP src, src2
When memex == “UB” or src == Rs

When memex != “UB”

Code Size

mi[1:0] memex ld[1:0] src rs[3:0]/rs2[3:0] src/src2
00b B 11b Rs 0000b to 1111b Rs/Rs2 R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

DIV DIV

Syntax src dest Code Size (Byte)
(1) DIV src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) DIV src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rd 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == “UB”)

6 (memex != “UB”)

rs[3:0] rd[3:0]0 0 0 1 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rd[3:0]0 0 0 1 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

dsp:1610b

dsp:801b

00b None

None11b

R01US0032EJ0130 Rev.1.30 Page 189 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(1) DIV src, dest

(2) DIV src, dest
When memex == “UB” or src == Rs

When memex != “UB”

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

0 0 ld[1:0] rd[3:0] rs[3:0]
b0b7 b0b7

0 0 1 0 0 0
b0b7

1 1 1 1 1 1

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 0 0
b0b7 b0b7

0 0 0 0 1 0 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 190 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) DIVU src, dest

(2) DIVU src, dest
When memex == “UB” or src == Rs

When memex != “UB”

DIVU DIVU

Syntax src dest Code Size (Byte)
(1) DIVU src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) DIVU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rd 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == “UB”)

6 (memex != “UB”)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 1 0 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 0 1
b0b7 b0b7

0 0 0 0 1 0 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 191 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) EMUL src, dest

(2) EMUL src, dest
When memex == “UB” or src == Rs

When memex != “UB”

EMUL EMUL

Syntax src dest Code Size (Byte)
(1) EMUL src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) EMUL src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rd 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == “UB”)

6 (memex != “UB”)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b Rd R0 (SP) to R14
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0] src
00b B 11b Rs 0000b to 1111b Rs R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b UW 10b dsp:16[Rs] 0000b to 1110b Rd R0 (SP) to R14

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 1 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b7
0 1 0 0 0 ld[1:0]

b0 b0b7
0 0 0 0 1 1 0

memex
mi[1:0] 1 0

b0b7 b0b7
0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 192 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) EMULU src, dest

EMULU EMULU

Syntax src dest Code Size (Byte)
(1) EMULU src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) EMULU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rd 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == “UB”)

6 (memex != “UB”)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b Rd R0 (SP) to R14
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 193 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(2) EMULU src, dest
When memex == “UB” or src == Rs

When memex != “UB”

mi[1:0] memex ld[1:0] src rs[3:0] src
00b B 11b Rs 0000b to 1111b Rs R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b UW 10b dsp:16[Rs] 0000b to 1110b Rd R0 (SP) to R14

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 1 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 1 1
b0b7 b0b7

0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 194 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) FADD src, dest

(2) FADD src, dest

FADD FADD

Syntax src dest Code Size (Byte)
(1) FADD src, dest #IMM:32 Rd 7
(2) FADD src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 #IMM:32

src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 1 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 195 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) FCMP src, src2

(2) FCMP src, src2

FCMP FCMP

Syntax src src2 Code Size (Byte)
(1) FCMP src, src2 #IMM:32 Rs 7
(2) FCMP src, src2 Rs Rs2 3

[Rs].L Rs2 3
dsp:8[Rs].L Rs2 4
dsp:16[Rs].L Rs2 5

rs[3:0] src2
0000b to 1111b Rs R0 (SP) to R15

ld[1:0] src rs[3:0]/rs2[3:0] src/src2
11b Rs 0000b to 1111b Rs/Rs2 R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 #IMM:32
src

rs2[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 196 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) FDIV src, dest

(2) FDIV src, dest

FDIV FDIV

Syntax src dest Code Size (Byte)
(1) FDIV src, dest #IMM:32 Rd 7
(2) FDIV src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 #IMM:32
src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 1 0 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 197 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) FMUL src, dest

(2) FMUL src, dest

FMUL FMUL

Syntax src dest Code Size (Byte)
(1) FMUL src, dest #IMM:32 Rd 7
(2) FMUL src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 #IMM:32
src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 1 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 198 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) FSUB src, dest

(2) FSUB src, dest

FSUB FSUB

Syntax src dest Code Size (Byte)
(1) FSUB src, dest #IMM:32 Rd 7
(2) FSUB src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 #IMM:32
src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 0 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 199 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) FTOI src, dest

FTOI FTOI

Syntax src dest Code Size (Byte)
(1) FTOI src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 1 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 200 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) INT src

Code Size

(1) ITOF src, dest
When memex == “UB” or src == Rs

When memex != “UB”

INT INT

Syntax src Code Size (Byte)
(1) INT src #IMM:8 3

ITOF ITOF

Syntax src dest Code Size (Byte)
(1) ITOF src, dest Rs Rd 3

[Rs].memex Rd 3 (memex == “UB”)
4 (memex != “UB”)

dsp:8[Rs].memex Rd 4 (memex == “UB”)
5 (memex != “UB”)

dsp:16[Rs].memex Rd 5 (memex == “UB”)
6 (memex != “UB”)

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

b0b7 b0b7
0 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 #IMM:8

src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 1 0 0 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]mi[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex b0b7 b0b7

0 10 0 0 1 0 0 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 201 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) JMP src

Code Size

(1) JSR src

JMP JMP

Syntax src Code Size (Byte)
(1) JMP src Rs 2

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

JSR JSR

Syntax src Code Size (Byte)
(1) JSR src Rs 2

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 0 0 0

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 0 0 1

R01US0032EJ0130 Rev.1.30 Page 202 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MACHI src, src2

Code Size

(1) MACLO src, src2

MACHI MACHI

Syntax src src2 Code Size (Byte)
(1) MACHI src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

MACLO MACLO

Syntax src src2 Code Size (Byte)
(1) MACLO src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 0 a 1 0 00

rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 0 a 1 0 10

R01US0032EJ0130 Rev.1.30 Page 203 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MAX src, dest

(2) MAX src, dest
When memex == “UB” or src == Rs

When memex != “UB”

MAX MAX

Syntax src dest Code Size (Byte)
(1) MAX src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) MAX src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rd 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == “UB”)

6 (memex != “UB”)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 0 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]mi[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

0 0
b0b7 b0b7

0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 204 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MIN src, dest

(2) MIN src, dest
When memex == “UB” or src == Rs

When memex != “UB”

MIN MIN

Syntax src dest Code Size (Byte)
(1) MIN src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) MIN src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rd 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == “UB”)

6 (memex != “UB”)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 0 1
b0b7 b0b7

0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 205 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

MOV MOV

Syntax Size
Processing
Size src dest

Code Size
(Byte)

(1) MOV.size src, dest B/W/L size Rs
(Rs = R0 to R7)

dsp:5[Rd]
(Rd = R0 to R7)

2

(2) MOV.size src, dest B/W/L L dsp:5[Rs]
(Rs = R0 to R7)

Rd
(Rd = R0 to R7)

2

(3) MOV.size src, dest L L #UIMM:4 Rd 2
(4) MOV.size src, dest B B #IMM:8 dsp:5[Rd]

(Rd = R0 to R7)
3

W/L size #UIMM:8 dsp:5[Rd]
(Rd = R0 to R7)

3

(5) MOV.size src, dest L L #UIMM:8 Rd 3
(6) MOV.size src, dest L L #SIMM:8 Rd 3

L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6

(7) MOV.size src, dest B/W L Rs Rd 2
L L Rs Rd 2

(8) MOV.size src, dest B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd] 4
B B #IMM:8 dsp:16[Rd] 5
W W #SIMM:8 [Rd] 3
W W #SIMM:8 dsp:8[Rd] 4
W W #SIMM:8 dsp:16[Rd] 5
W W #IMM:16 [Rd] 4
W W #IMM:16 dsp:8[Rd] 5
W W #IMM:16 dsp:16[Rd] 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd] 4
L L #SIMM:8 dsp:16 [Rd] 5
L L #SIMM:16 [Rd] 4
L L #SIMM:16 dsp:8[Rd] 5
L L #SIMM:16 dsp:16 [Rd] 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd] 6
L L #SIMM:24 dsp:16 [Rd] 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd] 7
L L #IMM:32 dsp:16 [Rd] 8

(9) MOV.size src, dest B/W/L L [Rs] Rd 2
B/W/L L dsp:8[Rs] Rd 3
B/W/L L dsp:16[Rs] Rd 4

(10)MOV.size src, dest B/W/L L [Ri, Rb] Rd 3
(11) MOV.size src, dest B/W/L size Rs [Rd] 2

B/W/L size Rs dsp:8[Rd] 3
B/W/L size Rs dsp:16[Rd] 4

R01US0032EJ0130 Rev.1.30 Page 206 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(1) MOV.size src, dest

(2) MOV.size src, dest

(3) MOV.size src, dest

(12)MOV.size src, dest B/W/L size Rs [Ri, Rb] 3
(13)MOV.size src, dest B/W/L size [Rs] [Rd] 2

B/W/L size [Rs] dsp:8[Rd] 3
B/W/L size [Rs] dsp:16[Rd] 4
B/W/L size dsp:8[Rs] [Rd] 3
B/W/L size dsp:8[Rs] dsp:8[Rd] 4
B/W/L size dsp:8[Rs] dsp:16[Rd] 5
B/W/L size dsp:16[Rs] [Rd] 4
B/W/L size dsp:16[Rs] dsp:8[Rd] 5
B/W/L size dsp:16[Rs] dsp:16[Rd] 6

(14)MOV.size src, dest B/W/L size Rs [Rd+] 3
B/W/L size Rs [–Rd] 3

(15)MOV.size src, dest B/W/L L [Rs+] Rd 3
B/W/L L [–Rs] Rd 3

sz[1:0] Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
00b B 00000b to 11111b 0 to 31 000b to 111b Rs/Rd R0 (SP) to R7
01b W
10b L

sz[1:0] Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
00b B 00000b to 11111b 0 to 31 000b to 111b Rs/Rd R0 (SP) to R7
01b W
10b L

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

Syntax Size
Processing
Size src dest

Code Size
(Byte)

rd[2:0] rs[2:0]sz[1:0]
b0b7 b0b7

1 0 0

dsp[4:0]

rs[2:0] rd[2:0]sz[1:0]
b0b7 b0b7

1 0 1

dsp[4:0]

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 1 1 0

R01US0032EJ0130 Rev.1.30 Page 207 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) MOV.size src, dest

(5) MOV.size src, dest

(6) MOV.size src, dest

(7) MOV.size src, dest

sz[1:0] Size dsp[4:0] dsp:5 rd[2:0] dest
00b B 00000b to 11111b 0 to 31 000b to 111b Rd R0 (SP) to R7
01b W
10b L

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

sz[1:0] Size rs[3:0]/rd[3:0] src/dest
00b B 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W
10b L

11 1 rd[2:0]sz[1:0]
b0b7 b0b7

0 0 1

dsp[4:0]

src

#UIMM:8

#IMM:8

rd[3:0]
b0b7 b0b7

0 1 1 1 0 1 0 1 0 1 0 0
src

#UIMM:8

li[1:0]rd[3:0]
b0b7 b0b7

1 1 1 1 1 0 1 1 1 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

sz[1:0] rs[3:0] rd[3:0]
b0b7 b0b7

1 1 1 1 1 1

R01US0032EJ0130 Rev.1.30 Page 208 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(8) MOV.size src, dest

(9) MOV.size src, dest

(10) MOV.size src, dest

(11) MOV.size src, dest

ld[1:0] dest rd[3:0] dest li[1:0] src sz[1:0] Size
00b [Rd] 0000b to 1111b Rd R0 (SP) to R15 01b #SIMM:8 00b B
01b dsp:8[Rd] 10b #SIMM:16 01b W
10b dsp:16[Rd] 11b #SIMM:24 10b L

00b #IMM:32

sz[1:0] Size ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 00b [Rs] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 01b dsp:8[Rs]
10b L 10b dsp:16[Rs]

sz[1:0] Size ri[3:0]/rb[3:0]/rd[3:0] src/dest
00b B 0000b to 1111b Ri/Rb/Rd R0 (SP) to R15
01b W
10b L

sz[1:0] Size ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b B 00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 01b dsp:8[Rd]
10b L 10b dsp:16[Rd]

ld[1:0] li[1:0]rd[3:0]
b0b7 b0b7

1 1 1 1 1 0 sz[1:0]
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rs[3:0] rd[3:0]ld[1:0]sz[1:0]
b0b7 b0b7

1 1 1 1
srcld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

rb[3:0] rd[3:0]sz[1:0] ri[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 0 0 1

ld[1:0]sz[1:0] rd[3:0] rs[3:0]
b0b7 b0b7

1 1 1 1
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

R01US0032EJ0130 Rev.1.30 Page 209 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(12) MOV.size src, dest

(13) MOV.size src, dest

(14) MOV.size src, dest

(15) MOV.size src, dest

sz[1:0] Size rs[3:0]/ri[3:0]/rb[3:0] src/dest
00b B 0000b to 1111b Rs/Ri/Rb R0 (SP) to R15
01b W
10b L

sz[1:0] Size lds[1:0]/ldd[1:0] src/dest rs[3:0]/rd[3:0] src/dest
00b B 00b [Rs]/[Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 01b dsp:8[Rs]/dsp:8[Rd]
10b L 10b dsp:16[Rs]/dsp:16[Rd]

ad[1:0] Addressing sz[1:0] Size rs[3:0]/rd[3:0] src/dest
00b Rs, [Rd+] 00b B 0000b to 1111b Rs/Rd R0 (SP) to R15
01b Rs, [-Rd] 01b W

10b L

ad[1:0] Addressing sz[1:0] Size rs[3:0]/rd[3:0] src/dest
10b [Rs+], Rd 00b B 0000b to 1111b Rs/Rd R0 (SP) to R15
11b [-Rs], Rd 01b W

10b L

rb[3:0] rs[3:0]sz[1:0] ri[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 0 0 0

rs[3:0] rd[3:0]sz[1:0]
b0b7 b0b7

1 1 ldd[1:0] lds[1:0]
srclds[1:0]

00b

01b

10b

dsp:8

dsp:16

None
destldd[1:0]

00b

01b

10b

dsp:8

dsp:16

None

sz[1:0]1 0 rd[3:0] rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 ad[1:0]

sz[1:0]1 0 rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 ad[1:0]

R01US0032EJ0130 Rev.1.30 Page 210 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MOVU.size src, dest

(2) MOVU.size src, dest

(3) MOVU.size src, dest

MOVU MOVU

Syntax Size Processing Size src dest Code Size (Byte)
(1) MOVU.size src, dest B/W L dsp:5[Rs]

(Rs = R0 to R7)
Rd
(Rd = R0 to R7)

2

(2) MOVU.size src, dest B/W L Rs Rd 2
B/W L [Rs] Rd 2
B/W L dsp:8[Rs] Rd 3
B/W L dsp:16[Rs] Rd 4

(3) MOVU.size src, dest B/W L [Ri, Rb] Rd 3
(4) MOVU.size src, dest B/W L [Rs+] Rd 3

B/W L [–Rs] Rd 3

sz Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
0b B 00000b to 11111b 0 to 31 000b to 111b Rs/Rd R0 (SP) to R7
1b W

sz Size ld[1:0] src rs[3:0]/rd[3:0] src/dest
0b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
1b W 00b [Rs]

01b dsp:8[Rs]
10b dsp:16[Rs]

sz Size ri[3:0]/rb[3:0]/rd[3:0] src/dest
0b B 0000b to 1111b Ri/Rb/Rd R0 (SP) to R15
1b W

1 1 rs[2:0] rd[2:0]
b0b7 b0b7

1 0 sz

dsp[4:0]

rs[3:0] rd[3:0]ld[1:0]
b0b7 b0b7

0 1 0 1 1 sz

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

ri[3:0]0 rb[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 0 1 1 sz

R01US0032EJ0130 Rev.1.30 Page 211 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(4) MOVU.size src, dest

Code Size

(1) MUL src, dest

ad[1:0] Addressing sz Size rs[3:0]/rd[3:0] src/dest
10b [Rs+], Rd 0b B 0000b to 1111b Rs/Rd R0 (SP) to R15
11b [-Rs], Rd 1b W

MUL MUL

Syntax src src2 dest Code Size (Byte)
(1) MUL src, dest #UIMM:4 − Rd 2
(2) MUL src, dest #SIMM:8 − Rd 3

#SIMM:16 − Rd 4
#SIMM:24 − Rd 5
#IMM:32 − Rd 6

(3) MUL src, dest Rs − Rd 2
[Rs].memex − Rd 2 (memex == “UB”)

3 (memex != “UB”)
dsp:8[Rs].memex − Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:16[Rs].memex − Rd 4 (memex == “UB”)

5 (memex != “UB”)
(4) MUL src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 1 1 0 szad[1:0]

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 0 1 1

R01US0032EJ0130 Rev.1.30 Page 212 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(2) MUL src, dest

(3) MUL src, dest
When memex == “UB” or src == Rs

When memex != “UB”

(4) MUL src, src2, dest

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 1 0 0 0 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]rs[3:0]0 0 1 1 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rd[3:0]rs[3:0]0 0 1 1 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rs2[3:0]rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 1 0 0 1 1

R01US0032EJ0130 Rev.1.30 Page 213 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MULHI src, src2

Code Size

(1) MULLO src, src2

Code Size

(1) MVFACHI dest

MULHI MULHI

Syntax src src2 Code Size (Byte)
(1) MULHI src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

MULLO MULLO

Syntax src src2 Code Size (Byte)
(1) MULLO src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

MVFACHI MVFACHI

Syntax dest Code Size (Byte)
(1) MVFACHI dest Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

b0b7 b0b7
1 1 1 1 1 1 0 1 0 0 0 0 a 0 0 0 rs[3:0] rs2[3:0]

b0b7
0

rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 0 a 0 0 10

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0

R01US0032EJ0130 Rev.1.30 Page 214 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MVFACMI dest

Code Size

(1) MVFC src, dest

MVFACMI MVFACMI

Syntax dest Code Size (Byte)
(1) MVFACMI dest Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

MVFC MVFC

Syntax src dest Code Size (Byte)
(1) MVFC src, dest Rx Rd 3

cr[3:0] src rd[3:0] dest
0000b Rx PSW 0000b to 1111b Rd R0 (SP) to R15
0001b PC
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0

0 cr[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 0 1 0 1

R01US0032EJ0130 Rev.1.30 Page 215 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MVTACHI src

Code Size

(1) MVTACLO src

MVTACHI MVTACHI

Syntax src Code Size (Byte)
(1) MVTACGU src Rs 3

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

MVTACLO MVTACLO

Syntax src Code Size (Byte)
(1) MVTACLO src Rs 3

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 a 0 0 00

rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 a 0 0 10

R01US0032EJ0130 Rev.1.30 Page 216 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) MVTC src, dest

MVTC MVTC
Syntax src dest Code Size (Byte)
(1) MVTC src, dest #SIMM:8 Rx 4

#SIMM:16 Rx 5
#SIMM:24 Rx 6
#IMM:32 Rx 7

(2) MVTC src, dest Rs Rx 3

li[1:0] src cr[3:0] dest
01b #SIMM:8 0000b Rx PSW
10b #SIMM:16 0001b Reserved
11b #SIMM:24 0010b USP
00b #IMM:32 0011b FPSW

0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

cr[3:0]0li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 217 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(2) MVTC src, dest

Code Size

(1) MVTIPL src

cr[3:0] dest rs[3:0] src
0000b Rx PSW 0000b to 1111b Rs R0 (SP) to R15
0001b Reserved
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

MVTIPL MVTIPL

Syntax src Code Size (Byte)
(1) MVTIPL src #IMM:4 3

imm[3:0] #IMM:4
0000b to 1111b 0 to 15

rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 cr[3:0]

0 0 0 0
b0b7 b0b7 b0b7

0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 imm[3:0]

R01US0032EJ0130 Rev.1.30 Page 218 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) NEG dest

(2) NEG src, dest

Code Size

(1) NOP

NEG NEG

Syntax src dest Code Size (Byte)
(1) NEG dest − Rd 2
(2) NEG src, dest Rs Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

NOP NOP

Syntax Code Size (Byte)
(1) NOP 1

rd[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 0 0 0 0 1

rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

b0b7
0 0 0 0 0 0 1 1

R01US0032EJ0130 Rev.1.30 Page 219 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) NOT dest

(2) NOT src, dest

NOT NOT

Syntax src dest Code Size (Byte)
(1) NOT dest − Rd 2
(2) NOT src, dest Rs Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

rd[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 0 0 0 0 0

rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1

R01US0032EJ0130 Rev.1.30 Page 220 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) OR src, dest

(2) OR src, dest

OR OR

Syntax src src2 dest Code Size (Byte)
(1) OR src, dest #UIMM:4 − Rd 2
(2) OR src, dest #SIMM:8 − Rd 3

#SIMM:16 − Rd 4
#SIMM:24 − Rd 5
#IMM:32 − Rd 6

(3) OR src, dest Rs − Rd 2
[Rs].memex − Rd 2 (memex == “UB”)

3 (memex != “UB”)
dsp:8[Rs].memex − Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:16[Rs].memex − Rd 4 (memex == “UB”)

5 (memex != “UB”)
(4) OR src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 1 0 1

rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 1 0 0 1 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 221 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(3) OR src, dest
When memex == “UB” or src == Rs

When memex != “UB”

(4) OR src, src2, dest

Code Size

(1) POP dest

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

POP POP

Syntax dest Code Size (Byte)
(1) POP dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0] rd[3:0]0 1 0 1 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rd[3:0]0 1 0 1 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rs2[3:0]rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 1 0 1 0 1

b0b7 b0b7
0 1 1 1 1 1 1 0 1 0 1 1 rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 222 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) POPC dest

Code Size

(1) POPM dest-dest2

POPC POPC

Syntax dest Code Size (Byte)
(1) POPC dest Rx 2

cr[3:0] dest
0000b Rx PSW
0001b Reserved
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

POPM POPM

Syntax dest dest2 Code Size (Byte)
(1) POPM dest-dest2 Rd Rd2 2

rd[3:0] dest rd2[3:0] dest2
0001b to 1110b Rd R1 to R14 0010b to 1111b Rd2 R2 to R15

b0b7 b0b7
00 1 1 1 1 1 1 0 1 1 1 cr[3:0]

b0b7 b0b7
10 1 1 0 1 1 1 rd2[3:0]rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 223 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) PUSH.size src

(2) PUSH.size src

PUSH PUSH

Syntax src Code Size (Byte)
(1) PUSH.size src Rs 2
(2) PUSH.size src [Rs] 2

dsp:8[Rs] 3
dsp:16[Rs] 4

sz[1:0] Size rs[3:0] src
00b B 0000b to 1111b Rs R0 (SP) to R15
01b W
10b L

ld[1:0] src rs[3:0] src sz[1:0] Size
00b [Rs] 0000b to 1111b Rs R0 (SP) to R15 00b B
01b dsp:8[Rs] 01b W
10b dsp:16[Rs] 10b L

b0b7 b0b7
0 1 1 1 1 1 1 0 1 0 rs[3:0]sz[1:0]

b0b7 b0b7
1 1 1 1 0 1 1 0rs[3:0]ld[1:0] sz[1:0]

srcld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

R01US0032EJ0130 Rev.1.30 Page 224 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) PUSHC src

Code Size

(1) PUSHM src-src2

PUSHC PUSHC

Syntax src Code Size (Byte)
(1) PUSHC src Rx 2

cr[3:0] src
0000b Rx PSW
0001b PC
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

PUSHM PUSHM

Syntax src src2 Code Size (Byte)
(1) PUSHM src-src2 Rs Rs2 2

rs[3:0] src rs2[3:0] src2
0001b to 1110b Rs R1 to R14 0010b to 1111b Rs2 R2 to R15

b0b7 b0b7
00 1 1 1 1 1 1 0 1 1 0 cr[3:0]

b0b7 b0b7
00 1 1 0 1 1 1 rs2[3:0]rs[3:0]

R01US0032EJ0130 Rev.1.30 Page 225 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) RACW src

Code Size

(1) REVL src, dest

Code Size

(1) REVW src, dest

RACW RACW

Syntax src Code Size (Byte)
(1) RACW src #IMM:1

(IMM:1 = 1, 2)
3

imm src
0b, 1b #IMM:1 1, 2

REVL REVL

Syntax src dest Code Size (Byte)
(1) REVL src, dest Rs Rd 3

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

REVW REVW

Syntax src dest Code Size (Byte)
(1) REVW src, dest Rs Rd 3

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 imm 0 0 0 00

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 rs[3:0] rd[3:0]

b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 rs[3:0] rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 226 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) RMPA.size

Code Size

(1) ROLC dest

RMPA RMPA

Syntax Size Code Size (Byte)
(1) RMPA.size B 2

W 2
L 2

sz[1:0] Size
00b B
01b W
10b L

ROLC ROLC

Syntax dest Code Size (Byte)
(1) ROLC dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 1 sz[1:0]

b0b7 b0b7
0 1 1 1 1 1 1 0 0 1 0 1 rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 227 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) RORC dest

Code Size

(1) ROTL src, dest

(2) ROTL src, dest

RORC RORC

Syntax dest Code Size (Byte)
(1) RORC dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ROTL ROTL

Syntax src dest Code Size (Byte)
(1) ROTL src, dest #IMM:5 Rd 3
(2) ROTL src, dest Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 1 1 1 1 0 0 1 0 0 rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 imm[4:0] rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 rs[3:0] rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 228 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) ROTR src, dest

(2) ROTR src, dest

ROTR ROTR

Syntax src dest Code Size (Byte)
(1) ROTR src, dest #IMM:5 Rd 3
(2) ROTR src, dest Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 imm[4:0] rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 rs[3:0] rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 229 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) ROUND src, dest

Code Size

(1) RTE

ROUND ROUND

Syntax src dest Code Size (Byte)
(1) ROUND src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

RTE RTE

Syntax Code Size (Byte)
(1) RTE 2

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 1 0 0 1 1 0 rs[3:0] rd[3:0]ld[1:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1

R01US0032EJ0130 Rev.1.30 Page 230 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) RTFI

Code Size

(1) RTS

Code Size

(1) RTSD src

(2) RTSD src, dest-dest2

RTFI RTFI

Syntax Code Size (Byte)
(1) RTFI 2

RTS RTS

Syntax Code Size (Byte)
(1) RTS 1

RTSD RTSD

Syntax src dest dest2 Code Size (Byte)
(1) RTSD src #UIMM:8 − − 2
(2) RTSD src, dest-dest2 #UIMM:8 Rd Rd2 3

rd[3:0]/rd2[3:0] dest/dest2
0001b to 1111b Rd/Rd2 R1 to R15

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0

b0b7
0 0 0 0 0 0 1 0

b0b7
0 1 1 0 0 1 1 1

src
#UIMM:8

b0b7 b0b7
10 0 1 1 1 1 1 rd2[3:0]rd[3:0]

src
#UIMM:8

R01US0032EJ0130 Rev.1.30 Page 231 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SAT dest

Code Size

(1) SATR

SAT SAT

Syntax dest Code Size (Byte)
(1) SAT dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

SATR SATR

Syntax Code Size (Byte)
(1) SATR 2

b0b7 b0b7
0 1 1 1 1 1 1 0 0 0 1 1 rd[3:0]

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1

R01US0032EJ0130 Rev.1.30 Page 232 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SBB src, dest

(2) SBB src, dest

SBB SBB

Syntax src dest Code Size (Byte)
(1) SBB src, dest Rs Rd 3
(2) SBB src, dest [Rs].L Rd 4

dsp:8[Rs].L Rd 5
dsp:16[Rs].L Rd 6

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b [Rs] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rs]
10b dsp:16[Rs]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 0 0 0 0 0 0 rs[3:0] rd[3:0]ld[1:0]

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 1 0 0 0

memex
ld[1:0]

b0b7 b0b7
0 0 0 0 0 0 0 0 rd[3:0]rs[3:0]

srcld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

R01US0032EJ0130 Rev.1.30 Page 233 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SCCnd.size dest

Code Size

(1) SCMPU

SCCnd SCCnd

Syntax Size dest Code Size (Byte)
(1) SCCnd.size dest L Rd 3

B/W/L [Rd] 3
B/W/L dsp:8[Rd] 4
B/W/L dsp:16[Rd] 5

sz[1:0] Size ld[1:0] dest rd[3:0] dest
00b B 11b Rd 0000b to 1111b Rd R0 (SP) to R15
01b W 00b [Rd]
10b L 01b dsp:8[Rd]

10b dsp:16[Rd]

cd[3:0] SCCnd cd[3:0] SCCnd
0000b SCEQ, SCZ 1000b SCGE
0001b SCNE, SCNZ 1001b SCLT
0010b SCGEU, SCC 1010b SCGT
0011b SCLTU, SCNC 1011b SCLE
0100b SCGTU 1100b SCO
0101b SCLEU 1101b SCNO
0110b SCPZ 1110b Reserved
0111b SCN 1111b Reserved

SCMPU SCMPU

Syntax Code Size (Byte)
(1) SCMPU 2

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 1 1 0 1 rd[3:0] cd[3:0]sz[1:0] ld[1:0]

dsp:8

dsp:16

None
destld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1

R01US0032EJ0130 Rev.1.30 Page 234 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SETPSW dest

SETPSW SETPSW

Syntax dest Code Size (Byte)
(1) SETPSW dest flag 2

cb[3:0] dest
0000b flag C
0001b Z
0010b S
0011b O
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b I
1001b U
1010b Reserved
1011b Reserved
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 1 0 cb[3:0]

R01US0032EJ0130 Rev.1.30 Page 235 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SHAR src, dest

(2) SHAR src, dest

(3) SHAR src, src2, dest

SHAR SHAR

Syntax src src2 dest Code Size (Byte)
(1) SHAR src, dest #IMM:5 − Rd 2
(2) SHAR src, dest Rs − Rd 3
(3) SHAR src, src2, dest #IMM:5 Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 1 0 1 rd[3:0]imm[4:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 rs[3:0] rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 1 0 1 rs2[3:0] rd[3:0]imm[4:0]

R01US0032EJ0130 Rev.1.30 Page 236 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SHLL src, dest

(2) SHLL src, dest

(3) SHLL src, src2, dest

SHLL SHLL

Syntax src src2 dest Code Size (Byte)
(1) SHLL src, dest #IMM:5 − Rd 2
(2) SHLL src, dest Rs − Rd 3
(3) SHLL src, src2, dest #IMM:5 Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 1 1 0 rd[3:0]imm[4:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0 rs[3:0] rd[3:0]

b7 b0 b0b7 b0b7
1 1 1 1 1 1 0 1 1 1 0 rs2[3:0] rd[3:0]imm[4:0]

R01US0032EJ0130 Rev.1.30 Page 237 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SHLR src, dest

(2) SHLR src, dest

(3) SHLR src, src2, dest

SHLR SHLR

Syntax src src2 dest Code Size (Byte)
(1) SHLR src, dest #IMM:5 − Rd 2
(2) SHLR src, dest Rs − Rd 3
(3) SHLR src, src2, dest #IMM:5 Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 1 0 0 rd[3:0]imm[4:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 rd[3:0]rs[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 1 0 0 rs2[3:0] rd[3:0]imm[4:0]

R01US0032EJ0130 Rev.1.30 Page 238 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SMOVB

Code Size

(1) SMOVF

Code Size

(1) SMOVU

SMOVB SMOVB

Syntax Code Size (Byte)
(1) SMOVB 2

SMOVF SMOVF

Syntax Code Size (Byte)
(1) SMOVF 2

SMOVU SMOVU

Syntax Code Size (Byte)
(1) SMOVU 2

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1

R01US0032EJ0130 Rev.1.30 Page 239 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SSTR.size

Code Size

(1) STNZ src, dest

SSTR SSTR

Syntax Size Processing Size Code Size (Byte)
(1) SSTR.size B B 2

W W 2
L L 2

sz[1:0] Size
00b B
01b W
10b L

STNZ STNZ

Syntax src dest Code Size (Byte)
(1) STNZ src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 0 sz[1:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1li[1:0] rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 240 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) STZ src, dest

STZ STZ

Syntax src dest Code Size (Byte)
(1) STZ src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0li[1:0] rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 241 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SUB src, dest

(2) SUB src, dest
When memex == “UB” or src == Rs

 When memex != “UB”

(3) SUB src, src2, dest

SUB SUB

Syntax src src2 dest Code Size (Byte)
(1) SUB src, dest #UIMM:4 − Rd 2
(2) SUB src, dest Rs − Rd 2

[Rs].memex − Rd 2 (memex == “UB”)
3 (memex != “UB”)

dsp:8[Rs].memex − Rd 3 (memex == “UB”)
4 (memex != “UB”)

dsp:16[Rs].memex − Rd 4 (memex == “UB”)
5 (memex != “UB”)

(3) SUB src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 0 0 0 0 rd[3:0]imm[3:0]

rs[3:0] rd[3:0]0 0 0 0 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rd[3:0]0 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

b0b7 b0b7 b0b7
1 1 1 1 1 1 1 1 0 0 0 0 rs[3:0] rs2[3:0]rd[3:0]

R01US0032EJ0130 Rev.1.30 Page 242 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) SUNTIL.size

Code Size

(1) SWHILE.size

SUNTIL SUNTIL

Syntax Size Processing Size Code Size (Byte)
(1) SUNTIL.size B B 2

W W 2
L L 2

sz[1:0] Size
00b B
01b W
10b L

SWHILE SWHILE

Syntax Size Processing Size Code Size (Byte)
(1) SWHILE.size B B 2

W W 2
L L 2

sz[1:0] Size
00b B
01b W
10b L

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 0 sz[1:0]

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 1 sz[1:0]

R01US0032EJ0130 Rev.1.30 Page 243 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) TST src, src2

(2) TST src, src2
When memex == “UB” or src == Rs

When memex != “UB”

TST TST

Syntax src src2 Code Size (Byte)
(1) TST src, src2 #SIMM:8 Rs 4

#SIMM:16 Rs 5
#SIMM:24 Rs 6
#IMM:32 Rs 7

(2) TST src, src2 Rs Rs2 3
[Rs].memex Rs2 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rs2 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rs2 5 (memex == “UB”)

6 (memex != “UB”)

li[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b Rs R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rs2[3:0] src/src2
00b B 11b Rs 0000b to 1111b Rs/Rs2 R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0li[1:0] rs2[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

b0b7 b0b7 b0b7
001 1 1 1 1 1 0 0 0 0 1 1 ld[1:0] rs[3:0] rs2[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 0 0 ld[1:0]mi[1:0]

memex b0b7 b0b7
0 0 0 0 1 1 0 0 rs2[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 244 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) WAIT

Code Size

(1) XCHG src, dest
When memex == “UB” or src == Rs

When memex != “UB”

WAIT WAIT

Syntax Code Size (Byte)
(1) WAIT 2

XCHG XCHG

Syntax src dest Code Size (Byte)
(1) XCHG src, dest Rs Rd 3

[Rs].memex Rd 3 (memex == “UB”)
4 (memex != “UB”)

dsp:8[Rs].memex Rd 4 (memex == “UB”)
5 (memex != “UB”)

dsp:16[Rs].memex Rd 5 (memex == “UB”)
6 (memex != “UB”)

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

b0b7 b0b7 b0b7
001 1 1 1 1 1 0 0 0 1 0 0 ld[1:0] rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 0 0 ld[1:0]mi[1:0]

memex b0b7 b0b7
0 0 0 1 0 0 0 0 rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 245 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

Code Size

(1) XOR src, dest

XOR XOR

Syntax src dest Code Size (Byte)
(1) XOR src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) XOR src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == “UB”)

4 (memex != “UB”)
dsp:8[Rs].memex Rd 4 (memex == “UB”)

5 (memex != “UB”)
dsp:16[Rs].memex Rd 5 (memex == “UB”)

6 (memex != “UB”)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1li[1:0] rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

R01US0032EJ0130 Rev.1.30 Page 246 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 4. Instruction Code

(2) XOR src, dest
When memex == “UB” or src == Rs

When memex != “UB”

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

b0b7 b0b7 b0b7
101 1 1 1 1 1 0 0 0 0 1 1 ld[1:0] rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 0 0 ld[1:0]mi[1:0]

memex b0b7 b0b7
0 0 0 0 1 1 0 1 rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

R01US0032EJ0130 Rev.1.30 Page 247 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5. Exceptions

5.1 Types of Exception
During the execution of a program by the CPU, the occurrence of certain events may necessitate suspending execution of
the main flow of the program and starting the execution of another flow. Such events are called exceptions.
Figure 5.1 shows the types of exception.
The occurrence of an exception causes the processor mode to switch to supervisor mode.

Figure 5.1 Types of Exception

Undefined instruction exception

Privileged instruction exception

Access exception

Floating-point exceptions

Reset

Non-maskable interrupt

Interrupts

Unconditional trap

Exceptions

R01US0032EJ0130 Rev.1.30 Page 248 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.1.1 Undefined Instruction Exception
An undefined instruction exception occurs when execution of an undefined instruction (an instruction not implemented)
is detected.

5.1.2 Privileged Instruction Exception
A privileged instruction exception occurs when execution of a privileged instruction is detected while operation is in user
mode. Privileged instructions can only be executed in supervisor mode.

5.1.3 Access Exception
When it detects an error in memory access, the CPU generates an access exception. Detection of memory protection
errors for memory protection units generates exceptions of two types: instruction-access exceptions and operand-access
exceptions.

5.1.4 Floating-Point Exceptions
Floating-point exceptions are generated when any of the five exceptions specified in the IEEE754 standard, namely
overflow, underflow, inexact, division-by-zero, or invalid operation, or an attempts to use processing that is not
implemented, is detected upon execution of a floating-point arithmetic instruction. Exception handling by the CPU only
proceeds when any among the EX, EU, EZ, EO, or EV bits in the FPSW, which corresponding to the five types of
exception, is set to 1.

Note: Floating-point exceptions do not occur on the products which do not support the floating-point arithmetic
instructions.

5.1.5 Reset
A reset through input of the reset signal to the CPU causes the exception handling. This has the highest priority of any
exception and is always accepted.

5.1.6 Non-Maskable Interrupt
The non-maskable interrupt is generated by input of the non-maskable interrupt signal to the CPU and is only used when
the occurrence of a fatal fault has been detected in the system. Never end the exception handling routine for the non-
maskable interrupt with an attempt to return to the program that was being executed at the time of interrupt generation.

5.1.7 Interrupts
Interrupts are generated by the input of interrupt signals to the CPU. The interrupt with the highest priority can be
selected for handling as a fast interrupt. In the case of the fast interrupt, hardware pre-processing and hardware post-
processing are handled fast. The priority level of the fast interrupt is 15* (the highest). The exception processing of
interrupts is masked when the I bit in PSW is 0.

Note: * The priority level of the fast interrupt is 7 in products of the RX610 group.

5.1.8 Unconditional Trap
An unconditional trap is generated when the INT or BRK instruction is executed.

R01US0032EJ0130 Rev.1.30 Page 249 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.2 Exception Handling Procedure
For exception handling, part of the processing is handled automatically by hardware and part is handled by a program
(the exception handling routine) that has been written by the user. Figure 5.2 shows the handling procedure when an
exception other than a reset is accepted.

Figure 5.2 Outline of the Exception Handling Procedure

When an exception is accepted, hardware processing by the CPU is followed by vector table access to acquire the
address of the branch destination. A vector address is allocated to each exception. The branch destination address of the
exception handling routine for the given exception is written to each vector address.
Hardware pre-processing by the CPU handles saving of the contents of the program counter (PC) and processor status
word (PSW). In the case of the fast interrupt, the contents are saved in the backup PC (BPC) and the backup PSW
(BPSW), respectively. In the case of other exceptions, the contents are saved on the stack. General purpose registers and
control registers other than the PC and PSW that are to be used within the exception handling routine must be saved by
user program code at the start of the exception handling routine.
At the end of exception handling routine, after the restoration of registers saved by the user, the RTE instruction is

• Instruction canceling type
(Undefined instruction exception, Privileged instruction
exception, Access exception, and Floating-point
exception)

• Instruction suspending type
(Reception of an interrupt during execution of the
RMPA instruction or a string manipulation instruction)

• Instruction completion type
(interrupt and unconditional trap)

(For the fast interrupt)
PC  BPC
PSW  BPSW
U = 0
I = 0
PM = 0

(For exceptions other than the fast interrupt)
PC  Stack (ISP)
PSW  Stack (ISP)
U = 0
I = 0
PM = 0

(For the fast interrupt)
BPC  PC
BPSW  PSW

(For exceptions other than the fast interrupt)
Stack  PC
Stack  PSW

Transition to the user mode when the
PM bit in the PSW is 1.

Switch to the
supervisor mode

Hardware pre-processing

The program is suspended
and the exception is
accepted.

Instruction
A

Instruction
B

Instruction
DInstruction

C

Restarting of the program

Processing of user-written program code
Read the
vector.
Branch to the
start of the
handler.

Generation of an exception event request

Saving of
general-
purpose
registers

Handling
routine

Restoration of
general-
purpose
registers

(For the fast interrupt)
RTFI instruction

(For exceptions other than the fast
interrupt)

RTE instruction

Non-maskable
interrupt processing

End of the program or resetting of the system

Exception handling
routine other than
the non-maskable
interrupt

Non-maskable
interrupt

Hardware post-processing

Instruction
C

Exception request

R01US0032EJ0130 Rev.1.30 Page 250 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

executed to return from the exception handling routine to the original program. For return from the fast interrupt, the
RTFI instruction is used instead. In the case of the non-maskable interrupt, end the program or reset the system without
returning to the original program.
Hardware post-processing by the CPU handles restoration of the pre-exception contents of the PC and PSW. In the case
of the fast interrupt, the contents of the BPC and BPSW are restored to the PC and PSW, respectively. In the case of other
exceptions, the contents are restored from the stack to the PC and PSW.

R01US0032EJ0130 Rev.1.30 Page 251 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.3 Acceptance of Exceptions
When an exception occurs, the CPU suspends the execution of the program and processing branches to the start of the
exception handling routine.

5.3.1 Timing of Acceptance and Saved PC Value
Table 5.1 lists the timing of acceptance and program counter (PC) value to be saved for each type of exception event.

Table 5.1 Timing of Acceptance and Saved PC Value

Exception Type of Handling Timing of Acceptance
Value Saved in the BPC/
on the Stack

Undefined instruction exception Instruction canceling
type

During instruction
execution

PC value of the instruction
that generated the exception

Privileged instruction exception Instruction canceling
type

During instruction
execution

PC value of the instruction
that generated the exception

Access exception Instruction canceling
type

During instruction
execution

PC value of the instruction
that generated the exception

Floating-point exceptions Instruction canceling
type

During instruction
execution

PC value of the instruction
that generated the exception

Reset Program
abandonment type

Any machine cycle None

Non-
maskable
interrupt

During execution of the
RMPA, SCMPU, SMOVB,
SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions

Instruction
suspending type

During instruction
execution

PC value of the instruction
being executed

Other than the above Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

Interrupts During execution of the
RMPA, SCMPU, SMOVB,
SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions

Instruction
suspending type

During instruction
execution

PC value of the instruction
being executed

Other than the above Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

Unconditional trap Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

R01US0032EJ0130 Rev.1.30 Page 252 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.3.2 Vector and Site for Preserving the PC and PSW
The vector for each type of exception and the site for preserving the contents of the program counter (PC) and processor
status word (PSW) are listed in Table 5.2.

Table 5.2 Vector and Site for Preserving the PC and PSW

Exception Vector
Site for Preserving the PC
and PSW

Undefined instruction exception Fixed vector table Stack
Privileged instruction exception Fixed vector table Stack
Access exception Fixed vector table Stack
Floating-point exceptions Fixed vector table Stack
Reset Fixed vector table Nowhere
Non-maskable interrupt Fixed vector table Stack
Interrupts Fast interrupt FINTV BPC and BPSW

Other than the above Relocatable vector table Stack
Unconditional trap Relocatable vector table Stack

R01US0032EJ0130 Rev.1.30 Page 253 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.4 Hardware Processing for Accepting and Returning from Exceptions
This section describes the hardware processing for accepting and returning from an exception other than a reset.

(1) Hardware pre-processing for accepting an exception
(a) Preserving the PSW

(b) Updating of the PM, U, and I bits in the PSW

(c) Preserving the PC

(d) Set the branch-destination address of the exception handling routine in the PC

(2) Hardware post-processing for executing RTE and RTFI instructions
(a) Restoring the PSW

(b) Restoring the PC

(For the fast interrupt)
PSW → BPSW
(For other exceptions)
PSW → Stack
Note: The FPSW is not saved by the hardware preprocessing. If floating-point arithmetic instructions are to

be used within an exception handling routine, save the FPSW on the stack from within the exception
handling routine.

I: Cleared to 0
U: Cleared to 0
PM: Cleared to 0

(For the fast interrupt)
PC → BPC
(For other exceptions)
PC → Stack

Processing is shifted to the exception handling routine by acquiring the vector corresponding to the exception
and branching accordingly.

(For the fast interrupt)
BPSW → PSW
(For other exceptions)
Stack → PSW

(For the fast interrupt)
BPC → PC
(For other exceptions)
Stack → PC

R01US0032EJ0130 Rev.1.30 Page 254 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.5 Hardware Pre-processing
The sequences of hardware pre-processing from reception of each exception request to execution of the associated
exception handling routine are explained below.

5.5.1 Undefined Instruction Exception
(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The vector is fetched from address FFFFFFDCh.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.2 Privileged Instruction Exception
(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The vector is fetched from address FFFFFFD0h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.3 Access Exception
(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The vector is fetched from address FFFFFFD4h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.4 Floating-Point Exceptions
(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The vector is fetched from address FFFFFFE4h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.5 Reset
(1) The control registers are initialized.
(2) The address of the processing routine is fetched from the vector address, FFFFFFFCh.
(3) The PC is set to the fetched address.

R01US0032EJ0130 Rev.1.30 Page 255 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.5.6 Non-Maskable Interrupt
(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR,

SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved on the stack
(ISP). For other instructions, the PC value of the next instruction is saved.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW are set to Fh.
(5) The vector is fetched from address FFFFFFF8h.
(6) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.7 Interrupts
(1) The value of the processor status word (PSW) is saved on the stack (ISP) or, for the fast interrupt, in the backup

PSW (BPSW).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR,

SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved on the stack
(ISP). For other instructions, the PC value of the next instruction is saved. Saving of the PC is in the backup PC
(BPC) for fast interrupts and on the stack for other interrupts.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW indicate the interrupt priority level of the
interrupt.

(5) The vector for an interrupt source other than the fast interrupt is fetched from the relocatable vector table. For the
fast interrupt, the address is fetched from the fast interrupt vector register (FINTV).

(6) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.8 Unconditional Trap
(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) For the INT instruction, the value at the vector corresponding to the INT instruction number is fetched from the

relocatable vector table.
For the BRK instruction, the value at the vector from the start address is fetched from the relocatable vector table.

(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

R01US0032EJ0130 Rev.1.30 Page 256 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture 5. Exceptions

5.6 Return from Exception Handling Routines
Executing the instructions listed in Table 5.3 at the end of the corresponding exception handling routines restores the
values of the program counter (PC) and processor status word (PSW) that were saved on the stack or in the backup PC
(BPC) or the backup PSW (BPSW) by the hardware preprocessing.

5.7 Order of Priority for Exceptions
The order of priority for exceptions is given in Table 5.4. When multiple exceptions are generated at the same time, the
exception with the highest priority is accepted first.

Table 5.3 Return from Exception Handling Routines

Exception Instruction for Return
Undefined instruction exception RTE
Privileged instruction exception RTE
Access exception RTE
Floating-point exceptions RTE
Reset Return is impossible
Non-maskable interrupt Return is disabled
Interrupts Fast interrupt RTFI

Other than the above RTE
Unconditional trap RTE

Table 5.4 Order of Priority for Exceptions

Order of Priority Exception
High 1 Reset

2 Non-maskable interrupt
3 Interrupts
4 Instruction access exception
5 Undefined instruction exception

Privileged instruction exception
6 Unconditional trap
7 Operand access exception

Low 8 Floating-point exceptions

RX Family RXv1 Instruction Set Architecture Index

R01US0032EJ0130 Rev.1.30 Page 257 of 271
Dec 26, 2019

Numerics

0 flush bit of denormalized number (DN bit) 22

A

ACC (accumulator)... 23
access exception ... 248
accumulator (ACC)... 23

B

backup PC (BPC) ... 19
backup PSW (BPSW) .. 19
bitwise operations... 29
BPC (backup PC) ... 19
BPSW (backup PSW) .. 19

C

C flag (carry flag)... 18
carry flag (C flag)... 18
CE flag (unimplemented processing cause flag) 21
CO flag (overflow cause flag) 21
control register direct... 38
control registers ... 15
CU flag (underflow cause flag) 21
CV flag (invalid operation cause flag) 21
CX flag (inexact cause flag)....................................... 21
CZ flag (division-by-zero cause flag)............................ 21

D

division-by-zero cause flag (CZ flag) 21
division-by-zero exception enable bit (EZ bit) 22
division-by-zero flag (FZ flag).................................... 22
DN bit (0 flush bit of denormalized number) 22

E

EO bit (overflow exception enable bit) 22
EU bit (underflow exception enable bit)......................... 22
EV bit (invalid operation exception enable bit)................. 22
EX bit (inexact exception enable bit) 22
EZ bit (division-by-zero exception enable bit) 22

F

fast interrupt vector register (FINTV)............................ 19
FINTV (fast interrupt vector register)............................ 19
fixed vector table.. 31
floating-point error summary flag (FS flag)..................... 22
floating-point exceptions 24, 248
floating-point number .. 28
floating-point rounding-mode setting bits (RM[1:0] bits)..... 21
floating-point status word (FPSW) 20
FO flag (overflow flag) .. 22
FPSW (floating-point status word) 20
FS flag (floating-point error summary flag)..................... 22
FU flag (underflow flag)... 22
FV flag (invalid operation flag)................................... 22
FX flag (inexact flag) .. 22
FZ flag (division-by-zero flag).................................... 22

G

general-purpose registers (R0 (SP) to R15) 15

I

I bit (interrupt enable bit) .. 18
immediate .. 36
indexed register indirect ... 38
inexact cause flag (CX flag)....................................... 21
inexact exception enable bit (EX bit) 22
inexact flag (FX flag) .. 22
INTB (interrupt table register) 16
integer .. 28
interrupt enable bit (I bit) .. 18
interrupt stack pointer (ISP) 16
interrupt table register (INTB) 16
interrupts .. 248
invalid operation cause flag (CV flag) 21
invalid operation exception enable bit (EV bit)................. 22
invalid operation flag (FV flag)................................... 22
IPL[3:0] bits (processor interrupt priority level) 18
ISP (interrupt stack pointer) 16

N

NaN (Not a Number) ... 26
non-maskable interrupt.. 248

Index

RX Family RXv1 Instruction Set Architecture Index

R01US0032EJ0130 Rev.1.30 Page 258 of 271
Dec 26, 2019

O

O flag (overflow flag) .. 18
order of priority for exceptions 256
overflow cause flag (CO flag) 21
overflow exception enable bit (EO bit) 22
overflow flag (FO flag) .. 22
overflow flag (O flag) .. 18

P

PC (program counter) .. 16
PM bit (processor mode select bit) 18
post-increment register indirect................................... 38
pre-decrement register indirect 38
privileged instruction... 27
privileged instruction exception 248
processor interrupt priority level (IPL[3:0] bits) 18
processor mode.. 27
processor mode select bit (PM bit) 18
processor status word (PSW)...................................... 17
program counter (PC) .. 16
program counter relative... 39
PSW (processor status word)...................................... 17
PSW direct... 39

Q

QNaN (Quiet NaN)... 26

R

R0 (SP) to R15 (general-purpose registers) 15
register (n) ... 46
register direct .. 37
register indirect.. 37
register relative.. 37
register_num (Rn) .. 46
relocatable vector table .. 32
reset.. 248
RM[1:0] bits (floating-point rounding-mode setting bits)..... 21
Rounding to the nearest value..................................... 21
Rounding towards –∞ .. 21
Rounding towards +∞.. 21
Rounding towards 0 .. 21

S

S flag (sign flag) .. 18
sign flag (S flag) .. 18

size extension specifier... 48
size specifier... 46
SNaN (Signaling NaN)... 26
stack pointer (R0 (SP))... 15
stack pointer select bit (U bit)..................................... 18
strings... 29
supervisor mode... 27

U

U bit (stack pointer select bit)..................................... 18
unconditional trap.. 248
undefined instruction exception.................................. 248
underflow cause flag (CU flag) 21
underflow exception enable bit (EU bit)......................... 22
underflow flag (FU flag)... 22
unimplemented processing cause flag (CE flag) 21
user mode .. 27
user stack pointer (USP) ... 16
USP (user stack pointer) ... 16

V

vector table .. 31

Z

Z flag (zero flag) .. 18
zero flag (Z flag) .. 18

R01US0032EJ0130 Rev.1.30 Page 259 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

REVISION HISTORY RX Family RXv1 Instruction Set Architecture
User’s Manual: Software

Description
Rev. Date Page Summary
0.10 Nov. 12, 2007 — First edition issued
0.20 Mar. 18, 2008 3 to 5 Notation in This Manual changed

8 to 13 List of Instructions for RX Family changed
14 Section 1 CPU Functions changed
14 1.1 Features changed
15 1.2 Register Set of the CPU changed
15 Figure 1.1 Register Set of the CPU changed
16 1.2.2 Control Registers changed
17 1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP) changed
18 1.2.2.4 Processor Status Word (PSW): b31 to b4 changed, Notes 1 and 2 changed
19 IPL[2:0] bits (Processor interrupt priority level) changed
20 1.2.2.6 Backup PSW Register (BPSW) added
20 1.2.2.7 Vector Register (VCT) → 1.2.2.7 Fast Interrupt Vector Register (FINTV)

changed
21 1.2.2.8 Floating-Point Status Word (FPSW): b25 to b15, b9, b7 to b0 changed
22 1.2.2.9 Coprocessor Enable Register (CPEN) added
24 Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results

changed
25 1.4.1 Supervisor Mode changed
25 1.4.2 User Mode added
25 1.4.3 Privileged Instruction changed
25 1.4.4 Switching Between Processor Modes changed
29 1.7 Vector Table changed
29 1.7.1 Fixed Vector Table changed
29 Figure 1.8 Fixed Vector Table changed
30 1.7.2 Relocatable Vector Table changed
31 2.1 Types of Addressing Mode, (3) Special Instruction Addressing Modes added
32 2.2 Guide to This Section, (2) Symbolic notation changed
33 Immediate: #IMM:S8, #IMMEX:U8 added
33 Register Indirect: Operation diagram added
33 Register Relative: Description, Operation diagram changed
34 Short Immediate: #IMM:2 added, Description for #IMM:3 changed
34 Short Register Relative: Description changed, Operation diagram added
35 Post-increment Register Indirect: Operation diagram added
35 Pre-decrement Register Indirect: Description changed, Operation diagram added
35 Indexed Register Indirect: Operation diagram added
36 Control Register Direct: VCT → FINTV changed, CPEN added, Description

changed, Operation diagram changed
36 Program Counter Relative: Rn added
36 Program Counter Relative: label (dsp:3) → pcdsp:3 changed, Description

changed, Operation diagram changed
37 Program Counter Relative: label (dsp:8) (dsp:16) (dsp:24) → pcdsp:8 pcdsp:16

pcdsp:24 changed, Description changed, Operation diagram changed

REVISION HISTORY

R01US0032EJ0130 Rev.1.30 Page 260 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

37 Register Direct: added
38 Section 3 Instruction Descriptions added

159 Section 5 EXCEPTIONS added

0.30 Jul. 31, 2008 3 to 5 Notation in This Manual
Symbols: IMM, IMMEX → IMM, SIMM, UIMM changed
Bit length specifiers: :1 added
Bit length extension specifier: :S8, :U8 deleted
Operations: tmp2, tmp3 added

8 to 13 List of Instructions for RX Family
FREIT instruction → RTFI instruction, REIT instruction → RTE instruction
changed
EDIV instruction, EDIVU instruction, MULU instruction, PUSHA instruction, and
STOP instruction deleted
For floating-point operation instructions and coprocessor instructions, the
description as an optional function added
DSP instructions added

14 Section 1 CPU Functions changed

14 1.1 Features changed

15 1.2 Register Set of the CPU changed

15 Figure 1.1 Register Set of the CPU changed

17 1.2.2.2 Interrupt Table Register (INTB)
Interrupt vector table → Relocatable vector table changed

18 1.2.2.4 Processor Status Word (PSW), Note 3 changed

19 U bit (Stack pointer select bit) changed

22 1.2.2.8 Floating-Point Status Word (FPSW), Note 3 added

23 1.2.3 Accumulator (ACC) added

24 1.3.2 Underflow added

24 Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results,
Notes added

25 1.3.4 Division-by-Zero, Note for denormalized number, QNaN, and SNaN added
25 Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results

changed
26 Table 1.6 Rules for Generating QNaNs added
26 1.3.6 Unimplemented Processing changed, Note deleted
27 1.4.3 Privileged Instruction changed
27 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to

user mode changed
33 to 39 Section 2 Addressing Modes changed

42 (5) Operation, (c) Special notation added

43 (8) Instruction Format, (d) Immediate value changed

47 to 171 Code Size in Instruction Format added

48 ADC instruction: Instruction Format changed

50 ADD instruction: Instruction Format changed

51 AND instruction: Instruction Format changed

54 BCnd instruction: Instruction Format changed

58 BRA instruction: Instruction Format changed

64 CMP instruction: Instruction Format, Description Example changed

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 261 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

0.30 Jul. 31, 2008 65 DIV instruction: Instruction Format changed

67 DIVU instruction: Instruction Format changed

69 to 70 EMUL instruction: Note in Function added, Instruction Format changed

71 to 72 EMULU instruction: Note in Function added, Instruction Format changed

73 FADD instruction: Flag Change, Note in Instruction Format changed

75 to 77 FCMP instruction: Syntax, Operation, Function, Flag Change, Instruction Format,
Supplementary Description changed

78 FDIV instruction: Flag Change, Note in Instruction Format changed
80 to 82 FMUL instruction: Note in Function added, Flag Change, Note in Instruction

Format, Supplementary Description changed
83 to 84 FSUB instruction: Flag Change, Note in Instruction Format changed

86 to 88 FTOI instruction: Function, Flag Change, Instruction Format, Supplementary
Description changed

89 INT instruction: Instruction Format, Syntax: INT → INT src changed

90 to 91 ITOF instruction: Function, Flag Change, Instruction Format changed

94 MACHI instruction added

95 MACLO instruction added

96 MAX instruction: Instruction Format changed

97 MIN instruction: Instruction Format changed

98 to 100 MOV instruction: Function, Instruction Format, Description Example changed

101 MOVU instruction: Note in Instruction Format changed

103 to 104 MUL instruction: Syntax, Operation, Function, Flag Change, Instruction Format,
Description Example changed

105 MULHI instruction added
106 MULLO instruction added
107 MVFACHI instruction added
108 MVFACMI instruction added
111 MVTACHI instruction added
112 MVTACLO instruction added
113 MVTC instruction: Instruction Format changed
114 MVTCP instruction: Instruction Format changed

117 NOP instruction: Operation, Function changed

120 OR instruction: Instruction Format changed

125 PUSH instruction: Function added, Note in Instruction Format changed

128 to 129 RACW instruction added

132 RMPA instruction: Function added, Note added

138 to 140 ROUND instruction: Function, Flag Change, Instruction Format changed,
Supplementary Description added

141 RTE instruction: REIT instruction → RTE instruction changed
142 RTFI instruction: FREIT instruction → RTFI instruction changed
144 to 145 RTSD instruction: Operation, Function, Instruction Format changed
148 SBB instruction: Note in Instruction Format changed
149 SCCnd instruction: Note in Instruction Format changed
151 SCMPU instruction: Operation, Function, Flag Change changed
156 SMOVB instruction: Operation, Function changed
157 SMOVF instruction: Operation, Function changed
158 SMOVU instruction: Operation, Function changed

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 262 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

0.30 Jul. 31, 2008 159 SSTR instruction: Operation, Function changed

160 STNZ instruction: Instruction Format changed

161 STZ instruction: Instruction Format changed

162 SUB instruction: Instruction Format changed

163 to 164 SUNTIL instruction: Operation, Function, Flag Change, Instruction Format
changed

165 to 166 SWHILE instruction: Note 3 in Operation deleted, Operation, Function, Flag
Change, Instruction Format changed

167 TST instruction: Instruction Format changed

169 to 170 XCHG instruction: Syntax, Function, Instruction Format, Description Example
changed

171 XOR instruction: Instruction Format changed

172 to 260 Section 4 Instruction Code added

262 5.2.1 Undefined Instruction Exception added

262 5.2.5 Reset changed

262 5.2.6 Non-Maskable Interrupt changed

264 Figure 5.2 Outline of the Exception Handling Procedure changed

265 5.3 Exception Handling Procedure: FREIT instruction → RTFI instruction, REIT
instruction → RTE instruction changed

268 5.5 Hardware Processing for Accepting and Returning from Exceptions
(2) FREIT instruction → RTFI instruction, REIT instruction → RTE instruction
changed
(a) Changed

269 to 270 5.6 Exception Sequences: Processor mode select bit, RM → PM error amended
271 Table 5.3 Return from Exception Processing Routines: FREIT instruction → RTFI

instruction, REIT instruction → RTE instruction changed
271 Table 5.4 Order of Priority for Exceptions changed

0.50 Feb. 3, 2009 3 Notation in This Manual
Rx added, Fx → flag changed

9, 13 List of Instructions for RX Family
Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted

14 Section 1 CPU Functions, 1.1 Features, changed

15 Figure 1.1 Register Set of the CPU, CPEN register deleted

16 1.2.2 Control Registers, CPEN register deleted
17 1.2.2.2 Interrupt Table Register (INTB) changed
18 1.2.2.4 Processor Status Word (PSW): I bit changed, PM bit added
20 1.2.2.7 Fast Interrupt Vector Register (FINTV) changed
22 1.2.2.8 Floating-Point Status Word (FPSW): Notes changed and added
22 [Explanation of Floating-Point Rounding Modes] added
26 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to

user mode, changed
30 Figure 1.8 Fixed Vector Table changed

31 1.7.2 Relocatable Vector Table, Description changed

32 1.8 Address Space added
Section 2 Addressing Modes

35 to 36 Immediate: #IMM:2 deleted, Operation diagram for #UIMM:8 added

37 Control Register Direct: PC added, CPEN deleted

39 2.2.1 Ranges for Immediate Values added

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 263 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

0.50 Feb. 3, 2009 Section 3 Instruction Descriptions, 3.1 Guide to This Section:

41 (4) Syntax, (c) Operand, changed

42 (5) Operation, (b) Pseudo-functions, changed

43 (8) Instruction Format, (b) Control registers, changed, (c) Flag and bit, changed

— Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted
Bit pattern of the instruction → Instruction code changed

53 BCLR instruction: Function added

54 BCnd instruction, Description Example: Note added

55 BMCnd instruction: Function added

57 BNOT instruction: Function added

58 BRA instruction, Description Example: Note added

59 BRK instruction: Function changed

60 BSET instruction: Function added

61 BSR instruction: Note in Operation added

61 BSR instruction, Description Example: Note added

62 BTST instruction: Function added

70 EMUL instruction: Instruction Format added

72 EMULU instruction: Instruction Format added

73 FADD instruction: Note in Flag Change changed

75 FCMP instruction: Function changed, Note in Flag Change changed

78 FDIV instruction: Note in Flag Change changed

80 FMUL instruction: Note in Flag Change changed

83 FSUB instruction: Note in Flag Change changed

86 FTOI instruction: Note in Flag Change changed

89 INT instruction: Function changed

90 ITOF instruction: Note in Flag Change changed

99 to 100 MOV instruction: Instruction Format changed, Note 1 changed

101 MOVU instruction: Note 1 in Instruction Format changed

109 MVFC instruction: Function added, Note in Instruction Format changed

112 MVTC instruction: Note in Instruction Format changed

113 MVTIPL instruction: Function added

120 POPC instruction: Instruction Format changed

123 PUSHC instruction: Function added, Instruction Format changed

129 RMPA instruction: Note in Operation changed

135 ROUND instruction: Note in Flag Change changed

142 RTSD instruction, Instruction Format: Description added, Note changed

148 SCMPU instruction: Note in Operation changed

153 SMOVB instruction: Note in Operation changed

154 SMOVF instruction: Note in Operation changed

155 SMOVU instruction: Note in Operation changed

156 SSTR instruction: Note in Operation changed

160 SUNTIL instruction: Note in Operation changed

162 SWHILE instruction: Note in Operation changed

165 WAIT instruction, Function: Description added, Note added

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 264 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

0.50 Feb. 3, 2009 Section 4 Instruction Code

170 4.1 Guide to This Section, (2) List of Code Size: Description added

— Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted

180 to 181 BCnd: Instruction codes (1) and (3) changed

213 to 214
217

MOV: Code Size (list) changed
MOV: Instruction code (14) changed, Instruction code (15) added

222 MVFACMI: Instruction code (1) changed
223 MVFC: Instruction code (1) changed
225 to 226 MVTC: Instruction codes (1) and (2) changed
231 POPC: Instruction code (1) changed
233 PUSHC: Instruction code (1) changed

Section 5 Exceptions
257 5.1 Types of Exception: Section title changed
257 Figure 5.1 Types of Exception changed
258 5.1.4 Floating-Point Exceptions changed
258 5.1.7 Interrupts changed
258 5.1.8 Unconditional Trap added (5.2.8 INT Instruction Exceptions and 5.2.9 BRK

Instruction Exception deleted)
259 Figure 5.2 Outline of the Exception Handling Procedure changed

260 5.2 Exception Handling Procedure changed

261 Table 5.1 Timing of Acceptance and Saved PC Value changed

262 Table 5.2 Vector Table and Site for Preserving the PC and PSW Registers changed

263 5.4 Hardware Processing for Accepting and Returning from Exceptions,
(1) Hardware pre-processing for accepting an exception, (a) Preserving the PSW
register: Note added

265 5.5.8 Unconditional Trap added (5.6.8 INT Instruction Exceptions and 5.6.9 BRK
Instruction Exception deleted)

266 Table 5.3 Return from Exception Processing Routines changed

266 Table 5.4 Order of Priority for Exceptions changed

267 Index added

0.51 Mar. 24, 2009 —

30

DSP instructions, floating-point operation instructions, floating-point operation unit
are described without the phase “(as an optional function)”.
1.7.1 Fixed Vector Table, Figure 1.8 Fixed Vector Table
Reserved area is added to addresses in the range from FFFFFF80h to
FFFFFFCCh.

0.60 May. 26, 2009 9 List of Instructions Classified in Alphabetical Order
MVTIPL (privileged instruction) deleted

13 List of Instructions Classified by Type
MVTIPL (privileged instruction) deleted

18 1.2.2.4 Processor Status Word (PSW)
Description on the MVTIPL deleted from Note 1

26 1.4.3 Privileged Instruction
Description on the MVTIPL deleted

35 2.2 Addressing Modes
Immediate, #IMM:3: Description on the MVTIPL deleted

— 3.2 Instructions in Detail
Description on the MVTIPL deleted

— 4.2 Instruction Code Described in Detail
Description on the MVTIPL including the code size deleted

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 265 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

1.00 June 11, 2010 5 Notation in This Manual, Operations:  and  added, tmp32 and tmp64 deleted
8 to 16 List of Instructions for RX Family

BCnd, BMCnd, and SCCnd instructions: Cnd described as mnemonic
MVTIPL instruction (privileged instruction) added, table note added

All Exception sequence → Hardware pre-processing, Exception handler → Exception
handling routine, changed

17

18

20

21
21
22
22

25

25 to 26
26
29

30

30

Section 1 CPU Functions
1.1 Features

Register set of the CPU, and the accumulator, changed
1.2 Register Set of the CPU

Figure 1.1 Register Set of the CPU, changed
1.2.2.3 Program Counter (PC)

Bit arrangement diagram, Value after reset, changed
1.2.2.4 Processor Status Word (PSW)

Bit arrangement diagram: Note for b27, added
Bits IPL[2:0] → Bits IPL[3:0] changed
Note 1 changed, Note 4 added
Description on bits IPL[3:0] changed

1.2.2.8 Floating-Point Status Word (FPSW)
FS: Floating-point flag summary bit → Floating-point error summary flag,
changed
Description on bits added

1.2.3 Accumulator (ACC), changed
1.3.6 Unimplemented Processing, changed
1.4.2 User Mode

Bits IPL[2:0] → Bits IPL[3:0] changed
1.4.3 Privileged Instruction

MVTIPL instruction added

39
41
43

Section 2 Addressing Modes
2.2 Addressing Modes

Immediate, #IMM:3: changed, Immediate, #IMM:4: added
PSW Direct, Operation diagram: Bits IPL[2:0] → Bits IPL[3:0] changed
Table 2.1 Ranges for Immediate Values: IMM:4 added

46

57
58
59

61
80

98
99
109
110
114
115
116
117

Section 3 Instruction Descriptions
3.1 Guide to This Section, (a) Data type: signed long long, unsigned long long, and
float, added
BCLR instruction: Operation (1) and (2), changed
BCnd instruction, Function: The column for Cnd described as mnemonic
BMCnd instruction: Operation (1) and (2), changed

Function: The column for Cnd described as mnemonic
BNOT instruction: Operation (1) and (2), changed
FCMP instruction:

Supplementary Description, =: src2 = src → src2 == src changed
MACHI instruction: Operation and Function, changed
MACLO instruction: Operation and Function, changed
MULHI instruction: Operation changed
MULLO instruction: Operation changed
MVTACHI instruction: Operation changed
MVTACLO instruction: Operation changed
MVTC instruction: Function changed
MVTIPL instruction, added

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 266 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

1.00 June 11, 2010 124
129
135
136
137
138
145
147
148
150
154
155
156
164
166

POPC instruction: Function changed
RACW instruction: Operation changed
ROLC instruction: Operation added, Function changed
RORC instruction: Operation added, Function changed
ROTL instruction: Operation added, Function changed
ROTR instruction: Operation added, Function changed
RTSD instruction: Operation (2), changed
SAT instruction: Operation changed
SATR instruction: Operation changed
SCCnd instruction, Function: The column for Cnd described as mnemonic
SHAR instruction: Operation added, Function changed
SHLL instruction: Operation added, Function changed
SHLR instruction: Operation added, Function changed
SUNTIL instruction: Operation changed
SWHILE instruction: Operation changed

174

177 to 255
185 to 186
187
227
243

Section 4 Instruction Code
4.1 Guide to This Section
(4) Instruction Code: Instruction code for memex (when memex == UB or src ==
Rs, when memex != UB) and src/dest description changed
4.2 Instruction Code Described in Detail
Description of memex specifier: SB → B, SW → W, changed
BCnd instruction: The column for Cnd described as mnemonic
BMCnd instruction: The column for Cnd described as mnemonic
MVTIPL instruction, added
SCCnd instruction: The column for Cnd described as mnemonic

257
257
258
261
261

262
264
264

Section 5 Exceptions
5.1.3 Access Exception, changed
5.1.7 Interrupts, changed
5.2 Exception Handling Procedure, changed
5.3.2 Vector and Site for Preserving the PC and PSW, changed
Table 5.2 Vector and Site for Preserving the PC and PSW, changed
5.4 Hardware Processing for Accepting and Returning from Exceptions:

Description added
(b) Updating of the PM, U, and I bits in the PSW, changed

5.5.6 Non-Maskable Interrupt, (4) changed
5.5.7 Interrupts, (4) changed

1.10 Aug. 11, 2011 All RX200 specifications in the RX200 Series are reflected

39
Section 2 Addressing Modes
2.2 Addressing Modes
Immediate, Symbol: #IMM:4, added

58

59

66
80
150

Section 3 Instruction Descriptions
BCnd instruction, Function: The expression described in the condition column,
changed (parentheses added)
BMCnd instruction, Function: The expression described in the condition column,
changed (parentheses added)
BTST instruction, Instruction Format: The column for src2, changed
FCMP instruction, Instruction Format: The column for src2, changed
SCCnd instruction, Function: The expression described in the condition column,
changed (parentheses added)

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 267 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

1.10 Aug. 11, 2011
194

205

Section 4 Instruction Code
BTST instruction, Code Size: Description of (1) and (3) in the column for src2,
changed
FCMP instruction, Code Size: Description of (1) in the column for src2, changed

1.20 Apr. 15, 2013 All RX100 specifications in the RX100 Series are reflected
1.30 Dec 26, 2019 Front

cover
Document title changed to “RX Family RXv1 Instruction Set Architecture User’s
Manual: Software”

All Support details by product series deleted
Expression “for details, refer to the user’s manual: hardware for each product”
used as required

3 How to Use This Manual: The entire section added

4
Notation in This Manual

Symbols: “src2” added to Notation; meanings for “Rs2” and “Rd2” changed;
“ACC” added; “tmp, tmp0, tmp1, tmp2, tmp3” moved from Operations

5 Operations: “!” deleted
9 List of RXv1 Instruction Set for RX Family: The title changed; description deleted
12 Quick Page Reference in Alphabetical Order: Description for Note 1 modified

List of Instructions: The title changed; moved to section 3
13 1. CPU Programming Model: Section title changed; descriptions modified

1.1 Features: Descriptions and note modified
14 Figure 1.1 Register Set of the CPU: Layout changed
16 1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP): The second

paragraph deleted
17, 18 1.2.2.4 Processor Status Word (PSW): Note deleted; descriptions for flags

modified
21 1.2.2.8 Floating-Point Status Word (FPSW): Descriptions modified
23 1.2.3 Accumulator: Description in the figure modified
24 1.3 Floating-Point Exceptions: Descriptions modified
25 1.3.4 Division-by-Zero: Description in note included to the text
26 1.3.5 Invalid Operation: Term “mantissa” modified to “fraction”
28 1.5.2 Floating-Point Number: Term “Mantissa” modified to “Fraction”

37
2. Addressing Modes
2.2 Addressing Modes, Register Relative: Mnemonic “MOVE” corrected to
“MOVU”

41
3. Instruction Descriptions
3.1 Overview of Instruction Set: newly added
List of Instructions: The title changed; moved from Notation in This Manual

All 3.3 Instructions in Detail: Caption “Possible Exceptions” changed to “Sources of
Floating-Point Exceptions”

76 FADD instruction, Supplementary Description: Note for the table of operation result
when DN = 0 added

81 FMUL instruction, Function: Note modified
84 FSUB instruction, Supplementary Description: Note for the table of operation result

when DN = 0 added
110 MVTACLO instruction: Operation modified
124 RACW instruction, Instruction Format: Note deleted
143 SBB instruction, Operation: Operator “!” corrected to “˜”
146 SETPSW instruction, Function: Description corrected
148 SHLL instruction, Flag Change: Term “scr” corrected to “src”

Description
Rev. Date Page Summary

R01US0032EJ0130 Rev.1.30 Page 268 of 271
Dec 26, 2019

RX Family RXv1 Instruction Set Architecture REVISION HISTORY

1.30 Dec 26, 2019
171

4. Instruction Code
ADD instruction, Code Size: Item number (2) added

225 RACW instruction, Code Size: Range of immediate value for src added

247
256

5. Exceptions
Figure 5.1 Types of Exception: Note deleted
Table 5.3 Return from Exception Handling Routines, Non-maskable interrupt:
Description “Return is impossible” corrected to “Return is disabled”

Description
Rev. Date Page Summary

RX Family RXv1 Instruction Set Architecture
User’s Manual: Software

Publication Date: Rev.0.10 Nov 12, 2007
Rev.1.30 Dec 26, 2019

Published by: Renesas Electronics Corporation

Colophon

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2019 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

RX Family RXv1 Instruction Set Architecture

R01US0032EJ0130

Back cover

	Cover
	Notice
	How to Use This Manual
	Contents
	List of RXv1 Instruction Set for RX Family
	Quick Page Reference in Alphabetical Order (1 / 4)

	1. CPU Programming Model
	1.1 Features
	1.2 Register Set of the CPU
	1.2.1 General-Purpose Registers (R0 to R15)
	1.2.2 Control Registers
	1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)
	1.2.2.2 Interrupt Table Register (INTB)
	1.2.2.3 Program Counter (PC)
	1.2.2.4 Processor Status Word (PSW)
	1.2.2.5 Backup PC (BPC)
	1.2.2.6 Backup PSW (BPSW)
	1.2.2.7 Fast Interrupt Vector Register (FINTV)
	1.2.2.8 Floating-Point Status Word (FPSW)

	1.2.3 Accumulator

	1.3 Floating-Point Exceptions
	1.3.1 Overflow
	1.3.2 Underflow
	1.3.3 Inexact
	1.3.4 Division-by-Zero
	1.3.5 Invalid Operation
	1.3.6 Unimplemented Processing

	1.4 Processor Mode
	1.4.1 Supervisor Mode
	1.4.2 User Mode
	1.4.3 Privileged Instruction
	1.4.4 Switching Between Processor Modes

	1.5 Data Types
	1.5.1 Integer
	1.5.2 Floating-Point Number
	1.5.3 Bit
	1.5.4 String

	1.6 Data Arrangement
	1.6.1 Data Arrangement in Registers
	1.6.2 Data Arrangement in Memory

	1.7 Vector Table
	1.7.1 Fixed Vector Table
	1.7.2 Relocatable Vector Table

	1.8 Address Space

	2. Addressing Modes
	2.1 Guide to This Section
	2.2 Addressing Modes
	2.2.1 Ranges for Immediate Values

	3. Instruction Descriptions
	3.1 Overview of Instruction Set
	3.2 Guide to This Section
	3.3 Instructions in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	4. Instruction Code
	4.1 Guide to This Section
	4.2 Instruction Code Described in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	5. Exceptions
	5.1 Types of Exception
	5.1.1 Undefined Instruction Exception
	5.1.2 Privileged Instruction Exception
	5.1.3 Access Exception
	5.1.4 Floating-Point Exceptions
	5.1.5 Reset
	5.1.6 Non-Maskable Interrupt
	5.1.7 Interrupts
	5.1.8 Unconditional Trap

	5.2 Exception Handling Procedure
	5.3 Acceptance of Exceptions
	5.3.1 Timing of Acceptance and Saved PC Value
	5.3.2 Vector and Site for Preserving the PC and PSW

	5.4 Hardware Processing for Accepting and Returning from Exceptions
	5.5 Hardware Pre-processing
	5.5.1 Undefined Instruction Exception
	5.5.2 Privileged Instruction Exception
	5.5.3 Access Exception
	5.5.4 Floating-Point Exceptions
	5.5.5 Reset
	5.5.6 Non-Maskable Interrupt
	5.5.7 Interrupts
	5.5.8 Unconditional Trap

	5.6 Return from Exception Handling Routines
	5.7 Order of Priority for Exceptions

	Index
	REVISION HISTORY
	Colophon
	Address List
	Back cover

