LENESAS

-
»
o)
ﬁ\I
%)
<
)
>
-
)

RH850G3KH

oF
N

User’s Manual: Software

Renesas microcontroller

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.20 DeC, 2016

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a
reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL
(MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise
from entering the device when the input level is fixed, and also in the transition period when the input level
passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and according to related specifications
governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended
to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors should be grounded. The operator should be grounded using a wrist
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken
for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with reset functions have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A
device is not initialized until the reset signal is received. A reset operation must be executed immediately
after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately
for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply
while the device is not powered. The current injection that results from input of such a signal or I/O pull-up
power supply may cause malfunction and the abnormal current that passes in the device at this time may
cause degradation of internal elements. Input of signals during the power off state must be judged
separately for each device and according to related specifications governing the device.

Target and Readers

Conventions

How to Use This Manual

This manual is intended for users who wish to understand the RH850G3KH
software and design application systems using these products.

Data significance:

Active low representation:

Memory map address:

Note:
Caution:
Remark:

Numeric representation:

Higher digits on the left and lower digits on the
right

xxx (overscore over pin or signal name)

Higher addresses on the top and lower addresses on
the bottom

Footnote for item marked with Note in the text
Information requiring particular attention
Supplementary information

Binary ... Xxxx or xxxxg

Decimal ... xxxx

Hexadecimal ... XXXXy

Prefix indicating power of 2 (address space, memory capacity):

K (kilo): 210 = 1,024
M (mega): 220 = 1,0242
G (giga): 2%0 = 1,0243

All trademarks and registered trademarks are the property of their respective

owners.

Table of Contents

S T=Ted [0 o T IR @ V= 1= USSP 8
1.1 Features of the RHB50G3KH...........ooiiiiiiiiiie ettt e e et e e s e ntae e e e s snaaeeeanes 8
Section 2 ProCessOr MOELoooeiiiiiiiee e 9
2.1 CPU Operating MOGES.........uuiiiiiiieee e ettt e e e e e e e e e e e e e e e s e et aaeeeeeaaeeeeesaaaasssaeaeees 9
211 Definition of CPU Operating MOGESc.cuuiiiiiiiiiiieee e a e 9
21.2 CPU Operating Mode TransSitionccooiiiiiiiiiiiie e ee e 10
2.1.3 CPU Operating Modes and PrivilEgeS.........cccccuviiiiiiiiiiiee et 11

2.2 INSTFUCHION EXECULION ...t e e e e e e e et e e e e e e e e e e e e e e e ensanaeeeeees 13
2.3 EXCeptions and INterrUPLSoooi it a e e e e e 15
2.31 TYPES Of EXCEPLONS ...ttt e e e e e e e e e e e e e e e aaaeeeeeaannnes 15
2.3.2 (7= o[T Y PSS 16

24 L070T o] foTeT=T]~o] £ T PSR 17
241 Coprocessor Use PEermiSSIONSueiiiiiiiieaaeii et e e e e e e e e e e e 17
242 Correspondences between Coprocessor Use Permissions and Coprocessors................. 17
243 Coprocessor Unusable EXCEPLIONSooooii i 17
244 SYSIEM REGISTELSeeiiiiiieiee et e et e e e e e e e e s abeeeenanes 17

2.5 REGISTEISttt e ettt e e e e e e e e e bbbt e e e et e e e e e e e e 18
251 Program REGISTEIS.eiiiiiiiiii e 18
252 SYSIEM REGISTEISeiiiiiiiiiiie ettt e e et e e e e st e e e e snnaeeeeeeaseeeesane 18
253 Register Updating........ooueiiieii e 18
254 Accessing Undefined RegISIErS.........ooiiiiiiiiiii e 20

2.6 = L= 1Y/ 01 PRSPPI 21
2.6.1 D= = I (0] 4 40 F= PRSP 21
2.6.2 Data Representation....... ..o i a e e e e 23
2.6.3 [E=Y = N [T | 1o 1= o 1 S 24

2.7 AQAIESS SPACE ..ottt ettt e e ettt e e e s bttt e e e e e bt e e e e e b e et e e e e nba e e e e e ante e e e e anbreeeeeann 26
271 1= g o] Y1 =T o J PP 27
2.7.2 INSTrUCHION AArESSING ...ccoviiiiiiiiii e e e e e e e e e e e e aaaeaaaeeeeeeeeearerenes 28
2.7.3 [= 1= I Ao [0 [YT o SRR 30

2.8 Acquiring the CPU NUMDET ...t e e e e e e e e e e e e eeeeaae e s 35
29 System Protection Identifier.............oooiiii e 35
Section 3 ReGISter Set 36
3.1 Program REGISIEIS ...ttt e e e e e e et e e e e e e e e e e e e e b e aeeeeaeas 36
3.1.1 General-Purpose REGISIEISc..uuuiiiiiiiiie e e e e e e e e e e e e eanraees 37
3.1.2 PC — Program COUNTET. ettt e et e e e e e e e e e e e e e e ennnes e eeeeeaaaaeaens 38

3.2 BasiC SyStemM REGISTEISeeiiiiiiiiiie ettt e e s e e e 39
3.3 Interrupt FUNCHON REGISIEIS ... 58
3.3.1 Interrupt Function System RegiStersovviiiiiiiiiii e 58

3.4 FPU FUNCHON REGISIEIS. 63
3.4.1 Floating-Point REGISTErSueiiiiiie e 63

3.4.2 Floating-Point Function System RegiSterscouiiiiiiiiiiii e 63

3.5 MPU FUNCHON REGISTEIS ...ttt e s e e e sneaeeaeas 71

3.5.1 MPU Function System RegiSters. ... 71
Section 4 Exceptions and INterruptseeiioooi i 79
4.1 L@ 1011 a1 (=Y o] (o] o -SSP 79
4.1.1 EXCEPtioN CauSe LiSt.......cooiiiiiiiiieieeee e 79
4.1.2 Overview Of EXCEPION CAUSES.......coiuuiiieiiiiii et 82
4.1.3 BN 01T R0l = (o= o] 1o o T SRR 83
4.1.4 Exception Acknowledgment Conditions and Priority Order...........cccocviiiiiiiiiiiieee e, 84
41.5 Interrupt Exception Priority and Priority Masking............ccouuuiiiiiiiieee e 85
4.1.6 Return and ReSIOrationccccooeiiiiiiiiiii ettt 88
4.1.7 L070] 01 (=) AR T- 1Y/ 1T TSR SORRPR 89

4.2 Operation When Acknowledging an EXCEptioN............ooooiiiiiiiiiieiiee e 90
4.2.1 SPECIAl OPEIAtiONSeeeiiiiii ettt e e e e e e e e e e r e e e e e e e e e e e reees 92

4.3 Return from Exception Handlingueiiiiiii e 93
4.4 EXCeption ManagemeEnto e 95
441 Exception Synchronization INStruction..............occeiiiiiii e 95
442 Checking and Canceling Pending EXCeplion..........cccuuviiiiiiiieeii e 96

4.5 EXCeption HaNAIEr AQAIESSooiuieiiiii ettt ettt e e e s eneeee s 97
451 Resets, Exceptions, and INterrupts...........ooooiiiiiiiiiiiccce e 97
452 SYSIEM CallS. ... e e 102
45.3 Models fOr APPLICALIONcoo e e e e e e e 103
Section 5 Memory Managementoooieeeiiiiii e 105
5.1 Memory Protection Unit (IMPU) ... 105
511 FRATUIES ..ttt e e e e e e et e e e e e e e e e e e eee e 105
5.1.2 MPU Operation SEtlNGS........uueiiiiiiiiiiee et e e e eee e 106
51.3 Protection Area SEtlNgS.......ccveiiie e 108
514 Caution Points for Protection Area Setup...........ccooiiiiiiiiiiiiiiie e 109
51.5 ACCESS CONION ...ttt e e e e e e e e e s s aeeeeaaeeeas 110
5.1.6 Violations and EXCEPLIONSoouiiiiiiii e 111
5.1.7 Memory Protection Setting Check FUNCHON ..o 112

5.2 O o1 o 1= SRR 113
5.21 Execution Privilege of the CACHE/PREF Instructionccccvvveiiiieeeieiiieeeeee e, 113

5.3 L0 = T =] =3 oo RSSO 114
5.3.1 Shared Data that does not Require Mutual Exclusion Processing............cccccceevviiieenenne 114
5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions.................... 115
5.3.3 Performing Mutual Exclusion by Using the SET1 Instructionccccoviiiiiiiiinnens 117
5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction...........cccccccovviivieiiiiiiinnennns 118

5.4 Synchronization FUNCHONuuiiiiiiiiiic e e e e e e e e e e e e eanaes 119
SECLON B COPIOCESSON....uuu ettt ettt et e e e ettt e e e ettt e e e e e eet e e eeeeabaaneeeeeeens 121
6.1 F1oating-Point OPeration ...t s e e e e 121

6.1.1 Configuration of Floating-Point Operation Functionccccoiiiii e, 122

6.1.2 = = N o PRSPPI 123

6.1.3 LN=T0 1 (=T 7= SO PUSPR 127

6.1.4 Floating-Point INSTIUCHIONScooiiiiiiie e 127

6.1.5 Floating-Point Operation EXCEPLIONSeuiiiiiiiiiie et 128

6.1.6 EXCEPHON DELAlSooiiiiieiei e 131

6.1.7 Precise Exceptions and Imprecise EXCEptionS............ouvvviiiiiiiiiiiiiiiieeeeeeeceeeeeeeeen 135

6.1.8 Saving and Returning STatusoooiiiiiiii e 136

6.1.9 Flushing Subnormal NUMDETSoiiiiiiiiiii e e e 137

6.1.10 Selection of Floating-Point Operation Modeloccoeiiiiiiiiiiii e 139

6.1.11 FIUSh 10 NE@restt e e e e e 141
SeCtion 7 INSITUCHIONeeeiiiiiiieie e 142
71 Opcodes and INStruCtion FOrMALS...........uuiiiiiiiiiiie e e e e e e e e e e eenanes 142
7.11 CPU INSITUCTIONS. ...ttt ettt ettt e e et e e e s nnb e e e e snesaeeeeannnaee s 142

71.2 Coprocessor INSTIUCHIONSooi e 147

7.1.3 Reserved INSIIUCIONS ..o 147

7.2 BaSiC INSITUCHIONS ...ttt e e e e e e e e e e e st e e e e e eaeeeesennennrnnaeees 148
7.21 Overview of BasiC INSIUCHIONSeiiiiiiiiiie e 148

7.2.2 BasiC INSIrUCHION Set........ooiiiiiiiiie e e e 153

7.3 (07 Lol g LT [013 1 U (o] o I SRS 303
7.31 Overview of Cache INSrUCHIONSuuiiiiiiiiiie e e 303

7.3.2 Cache INSIFUCHION SEt.......uviiiiiiiiee e e e e e enneee s 303

7.4 Floating-Point INSTIUCLIONSooiiii e 306
7.41 INSTrUCION FOrMALS ... ee e e e e 306

7.4.2 Overview of Floating-Point INStruCtioNScooiiiiiii e 307

7.4.3 Conditions for Comparison INStruCHIONS...........coooiiiiiiiiiiee e 309

7.4.4 Floating-Point INStrUCtioN Setooiiiiiii e 311
SECHON 8 RESEL....uiieeeeeee e ——————— 368
8.1 Status of Registers after RESET..........uviiiiiiii e 368
APPENDIX A. Hazard Resolution Procedure for System Registersccccceeeeeeeeneein. 369
APPENDIX B. Number of G3KH Instruction Execution CloCckSccccceeiiiiiiiiiiiiinnes 370
APPENDIX C. Register INAEX ... 378
APPENDIX D. INStruCtion INAEXcccoiiiiiieiieeeee e 379

RH850G3KH Software

Section 1 Overview

Section 1

Overview

1.1 Features of the RH850G3KH

The RH850G3KH features backward compatibility with the instruction set for the 32-bit RISC
microcontroller V850 Series.

Table 1.1 shows the features of the RHS50G3KH.

Table 1.1 Features of the RH850G3KH

Item Features

CPU .
L]

High performance 32-bit architecture for embedded control
32-bit internal data bus
Thirty-two 32-bit general-purpose registers

RISC type instruction set (backward compatible with V850, V850E1, and V850E2)
Long/short type load/store instructions

Three-operand instructions

Instruction set based on C

CPU operating modes
User mode and supervisor mode

Address space: 4-Gbyte linear space for both data and instructions

Coprocessor .

A floating point operation coprocessor (FPU) can be installed.

Supports single precision (32-bit)

Supports IEEE754-compliant data types and exceptions

Rounding modes: Nearest, 0 direction, +« direction, and — direction

Handling on non-normalized numbers: These are truncated to 0, or an exception is
reported because such numbers do not comply with IEEE754.

Exceptions/interrupts .

Number of scalable interrupt channels
16-level interrupt priority that can be specified for each channel

Vector selection method that can be selected according to performance
requirements and the amount of consumed memory

Direct branch method exception vector (direct vector method)
Address-table-referencing indirect branch method exception vector (table reference
method)

Support for high-speed context backup and restoration processing on interrupt by
using dedicated instructions (PUSHSP, POPSP)

Memory management .

A memory protection unit (MPU) can be installed.

Caches .

The product does not have a cache.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS Page 8 of 384

RH850G3KH Software Section 2 Processor Model

Section 2 Processor Model

This CPU defines a processor model that has basic operation functions, registers, and an exception
management function.

This section describes the unique features of the processor model of this CPU.

21 CPU Operating Modes

This CPU has defines two operating statuses of the supervisor mode (SV) and the user mode (UM).
Whether the system is in supervisor mode or user mode is indicated by the UM bit in the PSW register.

o Supervisor mode (PSW.UM = 0): All hardware functions can be managed or used.

o User mode (PSW.UM = 1): The usable hardware functions are restricted.

211 Definition of CPU Operating Modes

(1) Supervisor mode (SV)

All hardware functions can be managed or used in this mode. The system always starts up in supervisor
mode after the end of reset processing.

(2) User mode (UM)

This operating mode makes up a pair with the supervisor mode. In user mode, address spaces to which
access is permitted by the supervisor and the system registers defined as user resources can be used.
Supervisor-privileged instructions cannot be executed and result in exceptions if they are.

Restriction in user mode (PSW.UM = 1)
o Privileged instruction violations due to SV-privileged-instruction operating restrictions (— PIE exceptions)

For details about privileged-instruction operating restrictions, see Section 2.1.3, CPU Operating Modes and
Privileges

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 9 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

21.2 CPU Operating Mode Transition

The CPU operating mode changes due to three events.

(1) Change due to acknowledging an exception
When an exception is acknowledged, the CPU operating mode changes to the mode specified for the
exception.

(2) Change due to a return instruction
When a return instruction is executed, the PSW value is restored according to the value of the
corresponding bit backed up to EIPSW and FEPSW.

(3) Change due to a system register instruction

The CPU operating mode changes when an LDSR instruction is used to directly overwrite the PSW
operating mode bits.

CAUTIONS

1. In supervisor mode, the LDSR instruction can be used to directly change the
value of the PSW.UM bit, but system-register-related hazards are defined in the
hardware specifications.For the change of this bit, it is recommended to use a
return instruction to avoid PSW-register-related hazards.

2. In user mode, the CPU operating mode cannot be changed because the higher 31
to 5 bits of the PSW register cannot be overwritten. The CPU operating mode
might be changed in supervisor mode, but system register access-related hazards
are defined in the hardware specifications. For the change of this bit, it is
recommended to use a return instruction to avoid PSW-register-related hazards.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 10 of 384
Dec 22, 2016

RH850G3KH Software

Section 2 Processor Model

21.3 CPU Operating Modes and Privileges

In this CPU, the usable functions can be restricted according to usage permission settings for specific

resources and the CPU operating mode. Specification instructions (including instructions that update

specific system registers) can only be executed in the defined operating mode. The permissions

necessary to execute these specification instructions are called “privileges” below. In operating modes

that do not have privileges, these instructions are not executed and exceptions occur.

This CPU defines the following two types of privileges (and usage permission).

e Supervisor (SV) privilege: Important system resources operation, fatal error processing,

privilege necessary for user-mode program execution management

e Coprocessor use permissions: Permissions necessary to use a coprocessor

o
] v
= S]
- Supervisor
= mode R /
) L
| l Restoration
‘; Exception
= UM
2
= User mode
o

Figure 2.1 CPU Operating Modes and Privileges

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 11 of 384

RH850G3KH Software Section 2 Processor Model

(1) Supervisor privilege (SV privilege)

The privilege necessary to perform the operation for important system resources, fatal error processing,
and user-mode program execution management is called the supervisor privilege (SV privilege). This
privilege is available in supervisor mode. The SV privilege is generally necessary to execute
instructions used to perform the operation for important system resources, and these instructions are
sometimes called SV privileged instructions.

(2) Coprocessor use permissions

Regardless of the CPU operating mode, it is possible to separately specify whether coprocessors can be
used.

The CU2 to CUO bits in the PSW register are used in supervisor mode to specify whether coprocessors
can be used by each program. If the CU bits are not set to 1, a coprocessor unusable exception occurs
when the corresponding coprocessor instruction is executed or the system register is accessed.

If no coprocessor is installed, it is not possible to set the corresponding CU bits to 1. The setting of the
CU2 to CUO bits is valid regardless of the CPU operating mode, and, if the supervisor accesses
coprocessor system registers, it is necessary to set the CU2 to CUO bits to enable coprocessor use.

(3) Operation when there is a privilege violation

When an attempt is made to execute a privileged instruction by someone who does not have the
required privilege, a PIE exception or UCPOP exception occurs. Table 2.1 shows the relationships
between the operating mode, usage permission status, and whether instructions can be executed.

Table 2.1 Operation When There is a Privilege Violation

PSW

UM Cu2 cu1 cuo Whether Operation is Possible
SV privileged instruction 0 — — — Possible

1 — — — Not possible/PIE exception
Coprocessor instruction 1*1 — — — 1 Possible
(PSW.CUO bit) — — — 0 Not possible/UCPOP exception
Coprocessor instruction 2+ — — 1 — Possible
(PSW.CU1 bit) — — 0 — Not possible/UCPOP exception
Coprocessor instruction 3+ — 1 — — Possible
(PSW.CU2 bit) — 0 — — Not possible/UCPOP exception
Instructions other than the above — — — — Possible

(user instructions)

Note 1. This includes the LDSR/STSR instruction for the coprocessor system register.
Note: —:Oor1

CAUTION

If a register whose access permission is defined as CUn or SV is accessed when CUn =
0 and UM = 0, a UCPOP exception occurs.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 12 of 384
Dec 22, 2016

RH850G3KH Software

Section 2 Processor Model

2.2

Instruction Execution

The instruction execution flow of this CPU is shown below.

@ecution of an instruction sta%

Are the terminating

Yes (terminating exception)

exception acknowledgment
conditions satisfied?

No

Is the execution privilege

No (PIE exception/lUCPOP exception)

of the instruction satisfied?

Yes

A resumable exception occurs
during operation

Execute operation

Reflect operation results
(register/memory/PC update, etc.)

Are the pending Yes (pending exception)

exception acknowledgment
conditions satisfied?

Y

|

No

Exception transition processing
(register/PC update, etc.)

Execution of the
next instruction starts

Figure 2.2 Instruction Execution Flow

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 13 of 384

RH850G3KH Software Section 2 Processor Model

If terminating exceptions can be acknowledged or if the execution privilege of the instruction is not
satisfied, an exception occurs before the instruction is executed. If a resumable exception occurs during
the execution of an instruction, the exception is acknowledged during execution of the instruction. In
these cases, the result of instruction execution is not reflected in the registers or memory, and the CPU
state before the instruction was executed is retained*!.

For a pending exception such as a software exception, the exception is acknowledged after the result of

instruction execution has been reflected.

Note 1. The following instructions might cause intermediate results to be reflected in the memory.
PREPARE, DISPOSE, PUSHSP, POPSP

R0O1US0165EJ0120 Rev.1.20 T{ENESAS Page 14 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.3 Exceptions and Interrupts

Exceptions and interrupts are exceptional events that cause the program under execution to branch to
another program. Exceptions and interrupts are triggered by various sources, including interrupts from
peripherals and program abnormalities.

For details, see Section 4, Exceptions and Interrupts.

2.31 Types of Exceptions
This CPU divides exceptions into the following three types according to their purpose.
e Terminating exceptions
e Resumable exceptions

e Pending exceptions

(1) Terminating exceptions

This is an exception acknowledged by interrupting an instruction before its operation is executed.
These exceptions include interrupts and imprecise exceptions.

Interrupts are generated by causes such as an interrupt or a hardware error and start up a program that is
unrelated to the program currently executing. Imprecise exceptions are caused by instruction operation,
but they do not start executing until the current instruction execution finishes; instead, they start
executing during execution of the subsequent instruction.

(2) Resumable exceptions

This is an exception acknowledged during the execution of instruction operation before the execution
is finished. Because this kind of an exception is correctly acknowledged without executing the next
instruction, it is also called a precise exception.

Unlike terminating-type imprecise exceptions, precise exceptions occur during instruction execution
and cause the execution of the instruction to stop. It is therefore possible to resume execution of the
same instruction after the exception has been processed. By specifying settings appropriate for the
exception handling by using a memory management or other function before resuming execution of the
same instruction, complex memory management can be achieved while retaining consistency in the
logical behavior of the program.

(3) Pending exceptions

This is an exception acknowledged after the execution of an instruction finishes as a result of executing
the instruction operation. Pending exceptions include software exceptions.

Because pending exceptions are defined to occur as part of the normal operation of an instruction,
unlike resumable-type exceptions, the instruction that caused the exception finishes normally and is not
re-executed. These exceptions are mainly used as call gates for calls made by the management
program.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 15 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.3.2 Exception Level

In this CPU, if an exception with a high degree of urgency occurs while another exception is being
processed, the urgent exception will be processed by priority. To make it possible to return to the
interrupted exception handling after acknowledging the urgent exception, even if the context had not
been saved to the memory, exception causes are managed in the following two hierarchical levels.

o El level exception
¢ FE level exception

EI level exceptions are used for processing such as regular user processing, interrupt servicing, and OS
processing. FE level exceptions are used to enable interrupts with a high degree of urgency for the
system or exceptions from the memory management function that might occur during OS processing to
be acknowledged even while an EI level exception is being processed.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 16 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

24 Coprocessors

In this CPU, single-precision FPU expansion function is incorporated.

241 Coprocessor Use Permissions

To execute a coprocessor instruction or defined opcode processing, permission to use the
corresponding coprocessor instruction is necessary. Coprocessor use permissions are specified by the
PSW.CU2 to PSW.CUO bits, and, if an attempt is made to execute an instruction for which the
corresponding coprocessor use permission is cleared to 0, a coprocessor unusable exception (UCPOP)
occurs.

24.2 Correspondences between Coprocessor Use Permissions and
Coprocessors

This CPU defines coprocessor use permissions to control the availability of the coprocessor for each
program during CPU operation. There are three coprocessor use permissions (CUO to CU2), and their
correspondences with the coprocessors are shown in the following table.

Table 2.2 Correspondences Between Coprocessor Use Permissions and Coprocessors
Coprocessor Use Permission Coprocessor Function Exception Cause Code
Cuo Single-precision FPU expansion 80K
function
Cu1 Reserved 814
Ccu2 Reserved 82y

243 Coprocessor Unusable Exceptions

A coprocessor unusable exception occurs if an attempt is made to execute a coprocessor instruction or
access a system register of the coprocessor without having the corresponding coprocessor use
permission (PSW.CUn = 0).

244 System Registers

Some coprocessor functions are defined by system registers. The coprocessor use permission is
necessary to access the system register of a coprocessor function. For some system registers, the
supervisor privilege (SV permission) is necessary in addition to the coprocessor use permission.

For details about the permissions necessary to access system registers, see Section 2.5, Registers.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 17 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.5 Registers

This CPU defines program registers (general-purpose registers and the program counter PC) and
system registers for controlling the status and storing exception information.

2.51 Program Registers

The program registers include general-purpose registers (r0 to r31) and the program counter (PC).

Table 2.3 Program Registers

Category Access Permission Name
Program counter UM PC
General-purpose registers UM r0 to r31

Note: UM: User register. This register can always be accessed because no access permission is required.

2.5.2 System Registers

For details about program registers, see Section 3.1, Program Registers.

Group numbers 0 to 3: Registers related to basic functions

Group numbers 4 to 7: Registers related to the memory management function
Group numbers 12 to 15: Registers defined in the CPU hardware specifications
Group numbers 16 and later: Reserved for future expansion

For details about system registers, see the relevant sections in Section 3, Register Set.

253 Register Updating

There are several methods used to update registers. Normally, no particular restrictions apply when
updating register by using an instruction. However, when updating registers by using the following
instructions, some restrictions might apply, depending on the operating mode.

e LDSR
e STSR
RO1US0165EJ0120 Rev.1.20 ENESAS Page 18 of 384

Dec 22, 2016

RH850G3KH

Software

Section 2 Processor Model

(1) LDSR and STSR

The LDSR and STSR instructions can access all the system registers. However, If a system register is

accessed without the proper permission, a PIE exception or UCPOP exception might occur. For details

about the access permission for each register, see the description of system registers in Section 3,
Register Set. For details about behaviors when a privilege violation occurs, see Section 2.1.3,

CPU Operating Modes and Privileges.

Figure 2.3 shows the flow of executing the LDSR and STSR instructions.

@ecution of an instruction sta@

Are the te

conditions

Execute operation

register? (or

Is this an undefined

as undefined?)

rminating

exception acknowledgment

satisfied?

Is the access permission
CUn, and PSW.CUn = 0?

Is the access permission SV
and PSW.UM = 1?

is it handled

Yes (any exception)

Yes (UCPOP exception)

Yes (PIE exception)

Yes

Y

Execute reg

ister access

The read result is undefined
or write is ignored

Reflect oper:
(register/

ation results
memory/

PC update, etc.)

Exception transition processing
(register/PC update, etc.)

Execution of the next
instruction starts

)

Figure 2.3 Flow of Executing the LDSR and STSR Instructions

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 19 of 384

RH850G3KH Software Section 2 Processor Model

254 Accessing Undefined Registers

If a system register number without any register assigned is accessed or if an inaccessible register is
accessed, the following results occur.

e Undefined registers are handled as having the SV permission. When they are accessed by an
LDSR or STSR instruction in user mode (PSW.UM = 1), a PIE exception occurs.

o For aread operation, the read result is undefined. If the read value is used in a program,
unexpected behaviors might occur.

e For a write operation, the write operation is ignored.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 20 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.6 Data Types

2.6.1 Data formats

This CPU handles data as little endian. This means that byte 0 of a halfword or a word is always the
least significant (rightmost) byte.

The supported data formats are as follows.
e Byte (8 bits)
e Halfword (16 bits)
e Word (32 bits)
e Double-word (64 bits)
e Bit (1 bit)

Data in the above formats are placed in memory as follows.

(1) Byte

A byte is placed in 8 consecutive bits of data that starts from any byte boundary. Numbers from 0 to 7
are assigned to these bits, with bit 0 as the LSB (least significant bit) and bit 7 as the MSB (most
significant bit). A word is specified by address “A”.

(se/2E(lN]
0| ©

Data

A Addresses

(2) Halfword

A halfword is placed in two consecutive bytes (16 bits) of data that starts from any byte boundary.
Numbers from 0 to 15 are assigned to these bits, with bit 0 as the LSB and bit 15 as the MSB. The bytes
in a halfword are specified using address “A”, so that the two addresses comprise byte data of “A” and
“A + 1’3.

—
5
®
~

Data

0| o

N

A+1 A Addresses

RO1US0165EJ0120 Rev.1.20 ENESAS Page 21 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

(3) Word
A word is placed in four consecutive bytes (32 bits) of data that starts from any byte boundary.
Numbers from 0 to 31 are assigned to these bits, with bit 0 as the LSB (least significant bit) and bit 31
as the MSB (most significant bit). A word is specified by address “A” and consists of byte data of four

addresses: “A”,
$£A + 1”’ E‘A + 2”’ and 6$A + 3”.

31 24 23 16 15 8 7 0
M T T T T T T T
S S | Data
B B
A+3 A+2 A+1 A Addresses
(4) Double-word
A double-word is placed in eight consecutive bytes (64 bits) that start from any byte boundary.
Numbers from 0 to 63 are assigned to these bits, with bit 0 as the LSB and bit 63 as the MSB. A
double-word is specified by address “A” and consists of byte data of eight addresses: “A”, “A + 17, “A
+ 29” $£A + 3”’ $$A + 4’7’ 6GA + 5’7’ ‘EA + 6’9’ and $6A + 7?"
63 56 55 48 47 40 39 32
T T T T T T T
'\SA Data
B
A+7 A+6 A+5 A+4 Addresses
31 24 23 16 15 8 7 0
T T T T T T T
é Data
B
A+3 A+2 A+1 A Addresses
(5) Bit
A bit is placed in bit data at the nth bit within 8-bit data that starts from any byte boundary. Each bit is
specified using its byte address “A” and its bit number “n” (n= 0 to 7).
7 n 0 Bit number
I I I I I
Address “A” byte Data
A Addresses
RO1US0165EJ0120 Rev.1.20 -IENESAS Page 22 of 384

Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.6.2 Data Representation

(1) Integers

Integers are represented as binary values using 2’s complement, and are used in one of four lengths: 64
bits, 32 bits, 16 bits, or 8 bits. Regardless of the length of an integer, its place uses bit 0 as the LSB, and
this place gets higher as the bit number increases. Because this is a 2’s complement representation, the
MSB is used as a signed bit.

The integer ranges for various data lengths are as follows.
e Double-word (64 bits): —9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
e Word (32 bits): —2,147,483,648 to +2,147,483,647
e Halfword (16 bits): —32,768 to +32,767
o Byte (8 bits): —128 to +127

(2) Unsigned integers

In contrast to “integers” which are data that can take either a positive or negative sign, “unsigned
integers” are never negative integers. Like integers, unsigned integers are represented as binary values,
and are used in one of four lengths: 64 bits, 32 bits, 16 bits, or 8§ bits. Also like integers, the place of
unsigned integers uses bit 0 as the LSB and gets higher as the bit number increases. However, unsigned
integers do not use a sign bit.

The unsigned integer ranges for various data lengths are as follows.
e Double-word (64 bits): 0 to 18,446,744,073,709,551,615
e Word (32 bits): 0 to 4,294,967,295
e Halfword (16 bits): 0 to 65,535
e Byte (8 bits): 0 to 255
(3) Bits

Bit data are handled as single-bit data with either of two values: cleared (0) or set (1). There are four
types of bit-related operations (listed below), which target only single-byte data in the memory space.

o Set
e (lear
e Invert
o Test
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 23 of 384

Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.6.3 Data Alignment

This CPU checks results for data alignment obtained by address calculation in two ways.
Type 1: Checking of data up to 32-bit alignment

When the data for access is a halfword, an access that does not have 16-bit alignment (the lowest-
order bit of the address = 0) is judged to be incorrectly aligned (an alignment violation). When the
data for access is a word or double-word, an access that does not have 32-bit alignment (the two
lower-order bits of the address = 0) is judged to be incorrectly aligned (an alignment violation).

For a violation of alignment, a misaligned access exception (MAE) can be generated.*1 Note that
access by the PREPARE, DISPOSE, PUSHSP, and POPSP instructions is always aligned because
they mask the two lower-order bits of addresses to 00.

Type 2: Checking of data up to 64-bit alignment

When the data for access is a halfword or word, type 1 checking is applied. When the data for
access is a double-word, an access that does not have 64-bit alignment (the three lower-order bits
= 0) is judged to be incorrectly aligned (an alignment violation).

When an instruction causing memory protection violation performs a misaligned access, 1 is set
in FEIC.MS bit.*2 Note that access by the PREPARE, DISPOSE, PUSHSP, and POPSP
instructions is always aligned because they mask the two lower-order bits of addresses to 00.

Note 1. This depends on the value of the MCTL.MA bit.

Note 2. For details on the FEIC.MS bit, see Table 5.1, Exception Cause Code of Memory

Protection Violation.

The combinations of instruction and address which will be judged to be misaligned by the type 1 or 2
alignment checking, and the expected behaviors are listed in Table 2.4 and Table 2.5.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 24 of 384

Dec 22, 2016

Section 2 Processor Model

RH850G3KH Software

‘uonje|oiA uonoajoid Alowsly Jo apo) asne) uondasxg ‘L°g a|qel @8s ‘Ig SIN'DIT4 8y} uo sjiejep Jo4

‘uolje|oIA uonoajold Alowsw sasned Uonondisul 8y} uaym AlUuQ | S10N
b =SW'OI34 | «} =SIW'OIAd|,x} =SIN'OITd| |« =SIN'OITd|x} = SW'OITd| «} = SIN'OIFd |« = SW'OI3S
'SIN000 YN | 'SIN000 YN | SIN220 JvIA '$IN000 JYN | 'SIN020 v | "SIN200 JYN — (snq ¥9)
N N N A N N N A MQ’LS ‘Mmaal piom-s|gnoQ
b =SIN'OId| | «L = SWOIA| | «l = SW'II34 1+ =SW'OI3d | «} = SIWOI3d|,«l = SWOITH
'SIN000 YN | "SIN000 YN | "SIN200 JYIA — "SIN020 JYN | 'SIN000 Qv | "SIN000 YN —
N N N A N N N A IXYO ‘MOLS ‘M 1a71
#b =SW'OI34|,«} =SIW'OI34|,«} = SW'II3S p»b =SW'OI3d | «} =SIW'OI3d| |« = SW'OI3S
— — (snqg geg)
A A A A A A A A M1S ‘M'LSS ‘M'als ‘mal PIOM
b = SIN'OI34 1+b = SW'OI34 1+b = SWOI34 yxb = SIN'OI34
— — — — (snagl)
A A A A A A A A H'1S ‘H'1SS ‘NH'A1s ‘H'd1s ‘nH'A1 ‘H'd1 piomjjeH
L oLl 1oL 00l Lo 0L0 100 000 uononysuj jew.od ejeq
(Bujoayo juawubije Jaye JoiAeyaq pajdadx3 :[|99 ayj jo Jed 1amo-]
‘(papiwiad jou :N ‘papiuniad :A) uoissiwiad ssa99Yy :|]99 3y} jo Med 1aybiH)
SSaIppe JO S}iq J19pJ0-19Mo]| ddy |
(1 = VIN"11OIN) s1o1aeyag pajoadx3 pue uone|oi juswubily 10} suoiipuo) G'¢ algeL
‘uolje|oiA uoljoajold Alowsal Jo apo) asne) uodaosxg ‘L°G a|qeL 99s YUg SIN'DIT4 9y} Uo s|iejap o4
‘uolje|oIA uonoajold Alowaw sasned uononyisul 8y} uaym AluQ | dJ0N
b =SIN'OIFd| | «b = SIWOIA| |«L = SWOIFH| | «} = SIN'DITd| |} = SWOIT | «l = SN'DIFH |} = SINDIAS
'SIN220 JyN | 'SIN000 YN | "SIN220 JvIN '$IN220 Iy | 'SIN020 Jyy | 'SIN220 JyYN — (snq ¥9)
N N N A N N N A MQ’LS ‘Mmaal piom-s|gnoQg
1xb =SW'OI34 |« =SW'OIA4|,«} = SW'OI3S pxb =SW'OId | «L =SIW'OI3d| |« = SW'OI3S
'SIN000 YN | "SIN000 YN | "SIN200 JYIA — "SIN020 JYN | 'SIN020 Iy | "SInoo0 YN — IXVD ‘M'DLS ‘M1adl (snq z¢)
N N N A N N N A MLS ‘M'LSS ‘Ma1S ‘M'al PJOAA
1xb = SIN'OI34 b = SW'OI34 1xb = SIW'OI34 yxb = SIN'OI34
'SIN020 Iy — 'SIN020 Iy — 'sIN920 JyN — 'sIN0%0 Iy — (snq 91)
N A N A N A N A H'LS ‘H'1SS ‘NH'd1S ‘H'AT1s 'NH'd1 ‘H'a1 piomjjeH
L oLl L0l 00l L0 0L0 100 000 uononysuj jew.od ejeq
(Bunjoays Juawubije tjaye Joireyaq pajdadxs :|j99 ay} jo ued Jamo]
‘(pepiwiad jou :N ‘paniwad :A) uoissiuiad ssa29Yy :||99 ayj} jo Jed 1aybiH)
SSaIppe JO S}iq J1apJ0-1aMo] daiy |
(0 = VIN1LOI) s1oireyag pajoadx3 pue uonejoip juswubily 10) suonipuo) ¥'C alqeL

Page 25 of 384

RENESAS

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.7 Address Space

This CPU supports a linear address space of up to 4 Gbytes. Both memory and I/O can be mapped to
this address space (using the memory mapped I/O method). The CPU outputs a 32-bit address for

memory and I/O, in which the highest address number is “232 — 17,

The byte data placed at various addresses is defined with bit 0 as the LSB and bit 7 as the MSB. When
the data is comprised of multiple bytes, it is defined so that the byte data at the lowest address is the
LSB and the byte data at the highest address is the MSB (i.e., in little endian format).

This manual stipulates that, when representing data comprised of multiple bytes, the right edge must be
represented as the lower address and the left side as the upper address, as shown below.

63 56 55 48 47 40 39 32
Double-word data at T T T T T 1 L L T T T T T T T T T T 1
Address “A” ... | ‘ ‘ | Data
A+7 A+6 A+5 A+4 Address
31 24 23 16 15 8 7 0
T T T T T 1 L L T T T T T T T T T T T
| ‘ ‘ ‘ Data
A+3 A+2 A+1 A Address
31 24 23 16 15 8 7 0
Word data at T T T T T 1 L L T T T T T T T T T T T 1
Address “A” ... | ‘ ‘ ‘ Data
A+3 A+2 A+1 A Address
15 8 7 0
Halfword data at T T T T T T T T T T T 1
Address “A” | ‘ | Data
A+1 A Address
z T T T T T 1 £
Byte data at
Address “A” | | Data
A Address
Figure 2.4 Address Space Byte Format
RO1US0165EJ0120 Rev.1.20 -IENESAS Page 26 of 384

Dec 22, 2016

RH850G3KH Software

Section 2 Processor Model

271 Memory Map

This CPU is 32-bit architecture and supports a linear address space of up to 4 Gbytes. The whole range
of this 4-Gbyte address space can be addressed by instruction addressing (instruction access) and

operand addressing (data access).

A memory map is shown in Figure 2.5.

TFFFFFFF,

00000000, Data
FFFEFFFEE, area
80000000,

Program
area

4 Gbytes

Address space

Figure 2.5 Memory Map (Address Space)

RO1US0165EJ0120 Rev.1.20 ENESAS

Dec 22, 2016

Page 27 of 384

RH850G3KH Software Section 2 Processor Model

2.7.2 Instruction Addressing

The instruction address is determined based on the contents of the program counter (PC), and is
automatically incremented according to the number of bytes in the executed instruction. When a branch
instruction is executed, the addressing shown below is used to set the branch destination address to the
PC.

(1) Relative addressing (PC relative)

Signed N-bit data (displacement: disp N) is added to the instruction code in the program counter (PC).
In this case, displacement is handled as 2’s complement data, and the MSB is a signed bit (S). If the
displacement is less than 32 bits, the higher bits are sign-extended (N differs from one instruction to
another).

The JARL, JR, and Bcond instructions are used with this type of addressing.

+
31 22 21 0
T T T T 1 T T T 1 L T
| Sign extension S disp22 0 |
31 l
T T 1 T
| PC o]

Instruction
(branch destination)

Note: This is an example of 22-bit displacement.

Figure 2.6 Relative Addressing

(2) Register addressing (register indirect)

The contents of the general-purpose register (regl) or system register (regID) specified by the
instruction are transferred to the program counter (PC).

The JMP, CTRET, EIRET, FERET, and DISPOSE instructions are used with this type of addressing.

31 0
T T T T T T T T T
| Reg1 or reglD |

31 l

| T \P\C\ T T \0|

Instruction
(branch destination)

Figure 2.7 Register Addressing

RO1US0165EJ0120 Rev.1.20 ENESAS Page 28 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

(3) Based addressing

Contents that are specified by the instruction in the general-purpose register (regl) and that include the
added N-bit displacement (dispN) are transferred to the program counter (PC). At this time, the
displacement is handled as a 2’s complement data, and the MSB is a signed bit (S). If the displacement
is less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The JMP instruction is used with this type of addressing.

31 0
T T 1 T

| reg1 |

31 + 0

|S‘ ‘dis£)32‘ ‘Ol

31 l 0

| T T 1 T |
PC 0

Instruction

(branch destination)

Figure 2.8 Based Addressing

(4) Other addressing

A value specified by an instruction is transferred to the program counter (PC). How a value is specified
is explained in [Operation] or [Description] of each instruction.

The CALLT, SYSCALL, TRAP, FETRAP, and RIE instructions, and branch in case of an exception are
used with this type of addressing.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 29 of 384
Dec 22, 2016

RH850G3KH Software

2.7.3

(1)

(2)

©)

Data Addressing

The following methods can be used to access the target registers or memory when executing an
instruction.

Register addressing

This addressing method accesses the general-purpose register or system register specified in the
general-purpose register field as an operand.

Any instruction that includes the operand regl, reg2, reg3, or reglD is used with this type of
addressing.

Immediate addressing
This address mode uses arbitrary size data as the operation target in the instruction code.

Any instruction that includes the operand immS5, imm16, vector, or cccc is used with this type of
addressing.

NOTE

vector: This is immediate data that specifies the exception vector (004 to 1Fy), and is an
operand used by the TRAP, FETRAP, and SYSCALL instructions. The data width
differs from one instruction to another.

cccc: This is 4-bit data that specifies a condition code, and is an operand used in the CMOV
instruction, SASF instruction, and SETF instruction. One bit (0) is added to the higher
position and is then assigned to an opcode as a 5-bit immediate data.

Based addressing

There are two types of based addressing, as described below.

(a) Type 1
The contents of the general-purpose register (regl) specified at the addressing specification field
in the instruction code are added to the N-bit displacement (dispN) data sign-extended to word
length to obtain the operand address, and addressing accesses the target memory for the operation.
At this time, the displacement is handled as a 2°s complement data, and the MSB is a signed bit
(S). If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one
instruction to another).

The LD, ST, and CAXI instructions are used with this type of addressing.

Section 2 Processor Model

31 0
1 1 1 1 r 1 rrrrrrr1r 1111 r71r 1t 1T 1T 1T T T T T T T T T 1
| regt |
+
31 16 15 0
T T T T T 1 T T T 1 T
| Sign extension ‘ S disp16 |
Target memory for
operation
Note: This is an example of 16-bit displacement.
Figure 2.9 Based Addressing (Type 1)
RO1US0165EJ0120 Rev.1.20 -IENESAS Page 30 of 384

Dec 22, 2016

RH850G3KH Software

Section 2 Processor Model

(b) Type 2
This addressing accesses a memory to be manipulated by using as an operand address the sum of
the contents of the element pointer (r30) and N-bit displacement data (dispN) that is zero-
extended to a word length. If the displacement is less than 32 bits, the higher bits are sign-
extended (N differs from one instruction to another).
The SLD instruction and SST instruction are used with this type of addressing.
31 0
| ‘ ‘ R3‘O (e‘lem‘en(g‘oint‘er) ‘ ‘ ‘ |
+
2 T T T T T T T T T T T & z T T T T T £
| 0 (zero extension) disp8 |
Target memory for
operation
Note: This is an example of 8-bit displacement.
Figure 210 Based Addressing (Type 2)

(4) Bit addressing
The contents of the general-purpose register (regl) are added to the N-bit displacement (dispN) data

sign-extended to word length to obtain the operand address, and bit addressing accesses one bit (as
specified by 3-bit data “bit #3”) in one byte of the target memory space. At this time, the displacement
is handled as a 2’s complement data, and the MSB is a signed bit (S). If the displacement is less than 32

bits,

the higher bits are sign-extended (N differs from one instruction to another).

The CLR1, SET1, NOTI, and TST1 instructions are used with this type of addressing.

31 0
T
| reg1 |
+
31 16 15 0
T T T T 1 T T T T T
| Sign extension ‘ S disp16 |

Target memory for operation
n

Z

Note: n: Bit position specified by 3-bit data (bit #3) (n =0 to 7)
This is an example of 16-bit displacement.
Figure 2.11 Bit Addressing

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 31 of 384

RH850G3KH Software Section 2 Processor Model

(5) Post index increment/decrement addressing

The contents of the general-purpose register (regl) are used as an operand address to access the target
memory, and then the general-purpose register (regl) is updated. The register is updated by either
incrementing or decrementing it, and there are three types (1 to 3).

If the result of incrementing the general-purpose register (regl) value exceeds the positive maximum
value OxFFFFFFFF, the result wraps around to 0x00000000, and, if the result of decrementing the
general-purpose register value is less than the positive minimum value 0x00000000, the result wraps
around to OXFFFFFFFF.

(a) Type 1

The general-purpose register (regl) is updated by adding a constant that depends on the type of
accessed data (the size of the accessed data) to the contents of the general-purpose register (regl). If the
type of accessed data is a byte, 1 is added, if the type is a halfword, 2 is added, if the type is a word, 4 is
added, and if the type is a double-word, 8 is added.

31 0

reg1

Target memory for
operation

/L[]

31 L 2 0

A 4

+
Access data size

31 l 0

reg1

Figure 2.12 Post Index Increment/Decrement Addressing (Type 1)

RO1US0165EJ0120 Rev.1.20 ENESAS Page 32 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

(b) Type 2

The general-purpose register (regl) is updated by subtracting a constant that depends on the size of the
accessed data from the contents of the general-purpose register (regl). If the size of accessed data is a

byte, 1 is subtracted, if the size is a halfword, 2 is subtracted, if the size is a word, 4 is subtracted, and if

the size is a double-word, 8 is subtracted.

31 0
reg1

Target memory for
operation

[/]/

31 2 0

A 4

Access data size

31 l 0

reg1

Figure 2.13 Post Index Increment/Decrement Addressing (Type 2)

(c) Type3

The general-purpose register (regl) is updated by adding the contents of another general-purpose
register (reg2) to it. If the MSB of the general-purpose register (reg2) is 1, a negative value is indicated,
so a post decrement operation is performed. If this MSB is 0, a positive value is indicated, so a post
increment operation is performed. The value of the general-purpose register (reg2) does not change.

31 0
reg1

Target memory for
operation

31 3 0

| | V//////
31 + 0

| | reg2

31 v 0

| | reg1

Figure 2.14 Post Index Increment/Decrement Addressing (Type 3)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 33 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

(6) Other addressing

This addressing is to access a memory to be manipulated by using a value specified by an instruction as
the operand address. How a value is specified is explained in [Operation] or [Description] of each

instruction.

The SWITCH, CALLT, SYSCALL, PREPARE, DISPOSE, PUSHSP, and POPSP instructions are used
with this type of addressing.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 34 of 384
Dec 22, 2016

RH850G3KH Software Section 2 Processor Model

2.8 Acquiring the CPU Number

This CPU provides a method for identifying CPUs in a multi-processor system.

In the multi-processor configuration, you can identify which CPU core is running a program by
referencing HTCFGO.PEID. With HTCFGO.PEID, unique numbers are assigned within multi-
processor systems.

2.9 System Protection Identifier

In this CPU, memory resources and peripheral devices are managed by system protection groups. By
specifying the group to which the program being executed belongs, you can assign operable memory
resources and peripheral devices to each machine.

The program being executed belongs to the group shown by MCFGO.SPID, and whether the memory
resources and peripheral devices are operable is decided using this SPID. Any value can be set to
MCFGO0.SPID by the supervisor.

CAUTION

According to the value of MCFGO0.SPID, how operations are assigned to memory
resources and peripheral devices is determined by the hardware specifications.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 35 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

Section 3 Register Set

This chapter describes the program register and system register mounted on this CPU.

3.1 Program Registers

Program registers includes general-purpose registers (10 to r31) and the program counter (PC). 10
always retains 0, whereas the value after reset is undefined in rl to r31.

Table 3.1 Program Registers

Program Register Name Function Description
General-purpose r0 Zero register Always retains 0
registers r1 Assembler reserved register Used as working register for generating
addresses
r2 Register for address and data variables
(used when the real-time OS used does not use this register)
r3 Stack pointer (SP) Used for generating a stack frame when a
function is called
r4 Global pointer (GP) Used for accessing a global variable in the
data area
r5 Text pointer (TP) Used as a register that indicates the start

of the text area
(area where program code is placed)

r6 to r29 Register for addresses and data variables

r30 Element pointer (EP) Used as a base pointer for generating
addresses when accessing memory
r31 Link pointer (LP) Used when the compiler calls a function
Program counter PC Retains instruction addresses during execution of programs

Note: For further descriptions of r1, r3 to r5, and r31 used for an assembler and/or C compiler, see the manual of
each software development environment.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 36 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

3.11 General-Purpose Registers

A total of 32 general-purpose registers (r0 to r31) are provided. All of these registers can be used for
either data variables or address variables.

Of the general-purpose registers, r0 to r5, 130, and 131 are assumed to be used for special purposes in
software development environments, so it is necessary to note the following when using them.

(1) r0, r3, and r30
These registers are implicitly used by instructions.

10 is a register that always retains 0. It is used for operations that use 0, addressing with base address
being 0, etc.

r3 is implicitly used by the PREPARE, DISPOSE, PUSHSP, and POPSP instructions.

r30 is used as a base pointer when the SLD instruction or SST instruction accesses memory.
(2) r1, r4, r5, and r31
These registers are implicitly used by the assembler and C compiler.

When using these registers, register contents must first be saved so they are not lost and can be restored
after the registers are used.

3) r2

This register is used by a real-time OS in some cases. If the real-time OS that is being used is not using
r2, r2 can be used as a register for address variables or data variables.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 37 of 384
Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

3.1.2 PC — Program Counter

The PC retains the address of the instruction being executed.

0
rrrrrrrrrrrrrrrrrr T T T 1T T T T 1T T T T/
PC PC31 to PCO value al‘ter reset
Table 3.2 PC Register Contents
Value after
Bit Name Description R/IW Reset
31to1 PC31to PC1 These bits indicate the address of the instruction being executed. R/W *
0 PCO This bit is fixed to 0. Branching to an odd number address is disabled. R/W 0
Note 1. For details, see the hardware manual of the product used.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 38 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

3.2 Basic System Registers

The basic system registers are used to control CPU status and to retain exception information.

Basic system registers are read from or written to by using the LDSR and STSR instructions and

specifying the system register number, which is made up of a register number and selection ID.

Table 3.3 Basic System Registers (1/2)

Register No.

(reglD, sellD) Symbol Function Access Permission

SRO, 0 EIPC Status save registers when acknowledging SV
El level exception

SR1,0 EIPSW Status save registers when acknowledging SV
El level exception

SR2,0 FEPC Status save registers when acknowledging SV
FE level exception

SR3, 0 FEPSW Status save registers when acknowledging SV
FE level exception

SR5, 0 PSW Program status word *1

SR6, 0 FPSR (See Section 3.4, FPU Function CUO and SV
Registers)

SR7,0 FPEPC (See Section 3.4, FPU Function CUO and SV
Registers)

SR8, 0 FPST (See Section 3.4, FPU Function Cuo
Registers)

SR9, 0 FPCC (See Section 3.4, FPU Function cuo
Registers)

SR10,0 FPCFG (See Section 3.4, FPU Function Cuo
Registers)

SR11,0 FPEC (See Section 3.4, FPU Function CUO and SV
Registers)

SR13,0 ElIC El level exception cause SV

SR14,0 FEIC FE level exception cause SV

SR16, 0 CTPC CALLT execution status save register UM

SR17,0 CTPSW CALLT execution status save register UM

SR20, 0 CTBP CALLT base pointer UM

SR28, 0 EIWR El level exception working register SV

SR29, 0 FEWR FE level exception working register SV

SR31,0 (BSEL) (Reserved for backward compatibility with SV
V850E2 series)*?

SRO, 1 MCFGO Machine configuration SV

SR2, 1 RBASE Reset vector base address SV

SR3, 1 EBASE Exception handler vector address SV

SR4, 1 INTBP Base address of the interrupt handler table SV

SR5, 1 MCTL CPU control SV

SR, 1 PID Processor ID SV

SR11,1 SCCFG SYSCALL operation setting SV

SR12, 1 SCBP SYSCALL base pointer SV

SRO, 2 HTCFGO Thread configuration SV

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 39 of 384

RH850G3KH

Software

Section 3 Register Set

Table 3.3 Basic System Registers (1/2)

Register No.

(regID, sellD) Symbol Function Access Permission
SR6, 2 MEA Memory error address SV

SR7, 2 ASID Address space ID SV

SR8, 2 MEI Memory error information SV

Note 1. The access permission differs depending on the bit. For details, see (5), PSW — Program status word in

Section 3.2, Basic System Registers.

Note 2. This bit is reserved to maintain backward compatibility with V850E2 series. This bit is always 0 when read.

Writing to this bit is ignored.

(1) EIPC — Status save register when acknowledging El level exception

When an EI level exception is acknowledged, the address of the instruction that was being executed

when the EI level exception occurred, or of the next instruction, is saved to the EIPC register (see

Section 4.1.3, Types of Exceptions).

Because there is only one pair of EI level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the EIPC register. An odd-numbered address must not be

specified.
31 0
rrrrrrrrrrrrrrrrrr T 1T 1T T T T 1T T T T/
Value after reset
EIPC EIPC31 to EIPCO Undefined
Table 3.4 EIPC Register Contents
Value after
Bit Name Description R/W Reset
31to1 EIPC31 to These bits indicate the PC saved when an El level exception is R/W Undefined
EIPC1 acknowledged.
0 EIPCO This bit indicates the PC saved when an El level exception is acknowledged. R/W Undefined
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the EIRET instruction is executed is 0.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 40 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(2) EIPSW — Status save register when acknowledging El level exception
When an EI level exception is acknowledged, the current PSW setting is saved to the EIPSW register.

Because there is only one pair of EI level exception status save registers, when processing multiple
exceptions, the contents of these registers must be saved by a program.

CAUTION
Bits 11 to 9 are related to the debug function and therefore cannot normally be
changed.
3130 29 1918 161514 12 11 9876543210
[[
U E NIE|1|S|clo Value after reset
EIPSW |0 |4(0(0(0{0{0[0[0|0|0|0|0|CU2to |[B|O|0|O|Debug |O|p|p|p|A|YV]|V|S|Z 0000 0020},
cuo |V T
Table 3.5 EIPSW Register Contents
Value after
Bit Name Description R/IW Reset
31 — (Reserved for future expansion. Be sure to set to 0.) R 0
30 UM This bit stores the PSW.UM bit setting when an El level exception is R/W 0
acknowledged.
2910 19 — (Reserved for future expansion. Be sure to set to 0.) R 0
18 to 16 CU2to CUO These bits store the PSW.CU2-0 field setting when an El level exceptionis R/W 0
acknowledged. (CU2-1 are reserved for future expansion. Be sure to set to
0.
15 EBV This bit stores the PSW.EBV bit setting when an El level exception is R/W 0
acknowledged.
14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0
11t09 Debug These bits store the PSW.Debug field setting when an El level exceptionis R/W 0
acknowledged.
8 — (Reserved for future expansion. Be sure to set to 0.) R 0
7 NP This bit stores the PSW.NP bit setting when an El level exception is R/W 0
acknowledged.
6 EP This bit stores the PSW.EP bit setting when an El level exception is R/W 0
acknowledged.
5 ID This bit stores the PSW.ID bit setting when an El level exception is R/W 1
acknowledged.
4 SAT This bit stores the PSW.SAT bit setting when an El level exception is R/W 0
acknowledged.
3 CcY This bit stores the PSW.CY bit setting when an El level exception is R/W 0
acknowledged.
2 ov This bit stores the PSW.OV bit setting when an El level exception is R/W 0
acknowledged.
1 S This bit stores the PSW.S bit setting when an El level exception is R/W 0
acknowledged.
0 z This bit stores the PSW.Z bit setting when an El level exception is R/W 0
acknowledged.
RO1US0165EJ0120 Rev.1.20 -IENESAS Page 41 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

(3) FEPC — Status save register when acknowledging FE level exception

When an FE level exception is acknowledged, the address of the instruction that was being executed
when the FE level exception occurred, or of the next instruction, is saved to the FEPC register (see
Section 4.1.3, Types of Exceptions). Because there is only one pair of FE level exception status
save registers, when processing multiple exceptions, the contents of these registers must be saved by a

program.

Be sure to set an even-numbered address to the FEPC register. An odd-numbered address must not be

specified.
31 0
rrrrrrrrrrrrrrrrr T T T T T T T 1T 1T T 1T T/
Value after reset
FEPC FEPC31 to FEPCO Undefined
Table 3.6 FEPC Register Contents
Value after
Bit Name Description R/W Reset
31to1 FEPC31 to These bits indicate the PC saved when an FE level exception is R/W Undefined
FEPC1 acknowledged.
0 FEPCO This bit indicates the PC saved when an FE level exception is R/W Undefined
acknowledged.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the FERET instruction is executed is 0.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 42 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

(4) FEPSW — Status save register when acknowledging FE level exception

When an FE level exception is acknowledged, the current PSW setting is saved to the FEPSW register.

Because there is only one pair of FE level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

CAUTION
Bits 11 to 9 are related to the debug function and therefore cannot normally be
changed.
3130 29 1918 161514 12 11 9876543210
[[
U E NIE|1|S|clo Value after reset
FEPSW |0 |y|0|0|0|0|0|0|0|0[0[0|0|CU2to |[B|O|0|0O| Debug |0|p|p|plAlYVIVIS|Z 0000 0020,
cuo |V T
Table 3.7 FEPSW Register Contents
Value after
Bit Name Description R/IW Reset
31 — (Reserved for future expansion. Be sure to set to 0.) R 0
30 UM This bit stores the PSW.UM bit setting when an FE level exception is R/W 0
acknowledged.
2910 19 — (Reserved for future expansion. Be sure to set to 0.) R 0
18 to 16 CU2to CUO These bits store the PSW.CU2-0 field setting when an FE level exceptionis R/W 0
acknowledged. (CU2-1 are reserved for future expansion. Be sure to set to
()
15 EBV This bit stores the PSW.EBV bit setting when an FE level exception is R/W 0
acknowledged.
14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0
11t09 Debug These bits store the PSW.Debug field setting when an FE level exceptionis R/W 0
acknowledged.
8 — (Reserved for future expansion. Be sure to set to 0.) R 0
7 NP This bit stores the PSW.NP bit setting when an FE level exception is R/W 0
acknowledged.
6 EP This bit stores the PSW.EP bit setting when an FE level exception is R/W 0
acknowledged.
5 ID This bit stores the PSW.ID bit setting when an FE level exception is R/W 1
acknowledged.
4 SAT This bit stores the PSW.SAT bit setting when an FE level exception is R/W 0
acknowledged.
3 CY This bit stores the PSW.CY bit setting when an FE level exception is R/W 0
acknowledged.
2 ov This bit stores the PSW.OV bit setting when an FE level exception is R/W 0
acknowledged.
1 S This bit stores the PSW.S bit setting when an FE level exception is R/W 0
acknowledged.
0 z This bit stores the PSW.Z bit setting when an FE level exception is R/W 0
acknowledged.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 43 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(5) PSW — Program status word

PSW (program status word) is a set of flags that indicate the program status (instruction execution
result) and bits that indicate the operation status of the CPU (flags are bits in the PSW that are
referenced by a condition instruction (Bcond, CMOY, etc.)).

CAUTIONS

1. When the LDSR instruction is used to change the contents of bits 7 to 0 in this
register, the changed contents become valid from the instruction following the
LDSR instruction.

2. The access permission for the PSW register differs depending on the bit. All bits
can be read, but some bits can only be written under certain conditions. See Table
3.8 for the access permission for each bit.

Table 3.8 Access Permission for PSW Register

Access Permission When

Bit Reading Access Permission When Writing
30 Um UM sv+!

18 to 16 CU2 to CUO s+t

15 EBV SV
11109 Debug Special*!
7 NP SV

6 EP s+t

5 ID SV

4 SAT UM

3 CcY UM

2 oV UM

1 S um

0 z UM

Note 1. The access permission for the whole PSW register is UM, so the PIE exception does not occur even if the
register is written by using an LDSR instruction when PSW.UM is 1. In this case, writing is ignored.

R0O1US0165EJ0120 Rev.1.20 T{ENESAS Page 44 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

313029 1918 161514 12 11 9 8 7 6 5

N
o

Value after reset
0000 0020y

U_
<0 |
<o &
(72}
N

4
0 L T 1 NI E S
PSWOMOOOOOOOOOOOCUZtoBOOODebugOPP A
CUo |V T

Table 3.9 PSW Register Contents (1/2)

Value after
Bit Name Description R/W Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit indicates that the CPU is in user mode (in UM mode). R/W 0
0: Supervisor mode
1: User mode

2910 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2to CUO These bits indicate the coprocessor use permissions. When the bit R/W 000
corresponding to the coprocessor is 0, a coprocessor unusable exception
occurs if an instruction for the coprocessor is executed or a coprocessor
resource (system register) is accessed.
CU2 bit 18: (Reserved for future expansion. Be sure to set to 0.)
CU1 bit 17: (Reserved for future expansion. Be sure to set to 0.)
CUO bit 16: FPU

15 EBV This bit indicates the reset vector and exception vector operation. For R/W 0
details, see (17) RBASE — Reset vector base address and (18) EBASE
— Exception handler vector address.

14 t0 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

1M1to9 Debug This bit is used for the debug function for the development tool. Always set — — 0
this bit to 0.

8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit disables the acknowledgement of FE level exception. When an FE R/W 0
level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of El level and FE level exceptions. As for the exceptions
which the NP bit disables the acknowledgment, see Table 4.1, Exception
Cause List.
0: The acknowledgement of FE level exception is enabled.
1: The acknowledgement of FE level exception is disabled.

6 EP This bit indicates that an exception other than an interrupt is being serviced. R/W 0
It is set to 1 when the corresponding exception occurs. This bit does not
affect acknowledging an exception request even when it is set to 1.
0: An exception other than an interrupt is not being serviced.
1: An exception other than an interrupt is being serviced.

5 ID This bit disables the acknowledgement of El level exception. When an El R/W 1
level or FE level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of El level exception. As for the exceptions which the ID
bit disables the acknowledgment, see Table 4.1, Exception Cause List. This
bit is also used to disable El level exceptions from being acknowledged as a
critical section while an ordinary program or interrupt is being serviced. It is
set to 1 when the Dl instruction is executed, and cleared to 0 when the El
instruction is executed.

The change of the ID bit by the El or ID instruction will be enabled from the
next instruction.

0: The acknowledgement of El level exception is enabled.

1: The acknowledgement of El level exception is disabled.

4 SAT*! This bit indicates that the operation result is saturated because the resultofa R/W 0
saturated operation instruction operation has overflowed. This is a
cumulative flag, so when the operation result of the saturated operation
instruction becomes saturated, this bit is set to 1, but it is not later cleared to
0 when the operation result for a subsequent instruction is not saturated.
This bit is cleared to 0 by the LDSR instruction. This bit is neither set to 1 nor
cleared to 0 when an arithmetic operation instruction is executed.
0: Not saturated
1: Saturated

RO1US0165EJ0120 Rev.1.20 ENESAS Page 45 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

Table 3.9 PSW Register Contents (2/2)

Value after
Bit Name Description R/W Reset
3 CY This bit indicates whether a carry or borrow has occurred in the operation R/W 0
result.
0: Carry and borrow have not occurred.
1: Carry or borrow has occurred.
2 oV This bit indicates whether or not an overflow has occurred during an R/W 0
operation.
0: Overflow has not occurred.
1: Overflow has occurred.
1 S+ This bit indicates whether or not the result of an operation is negative. R/W 0
0: Result of operation is positive or 0.
1: Result of operation is negative.
0 A This bit indicates whether or not the result of an operation is 0. R/W 0

0: Result of operation is not 0.
1: Result of operation is 0.

Note 1. The operation result of the saturation processing is determined in accordance with the contents of the OV
flag and S flag during a saturated operation. When only the OV flag is set to 1 during a saturated operation,
the SAT flag is set to 1.

FERSEEE Operation Result after
Operation Result Status SAT ov S Saturation Processing
Exceeded positive maximum value 1 1 0 7FFF FFFFy
Exceeded negative maximum value 1 1 1 8000 0000y
Positive (maximum value not exceeded) Value prior to 0 0 Operation result itself

- - operation is -
Negative (maximum value not exceeded) . 1
retained.

(6) EIIC — EI level exception cause

The EIIC register retains the cause of any EI level exception that occurs. The value retained in this
register is an exception code corresponding to a specific exception cause (see Table 4.1, Exception

Cause List).
31 0
rrrrrrrrrrrrrrrrrrrr Tt 111 T T T 1 1 17 T T T 1T T T
Value after reset
ElIC EIIC31 to EIICO 0000 0000},
Table 3.10 ElIC Register Contents
Value after
Bit Name Description R/IW Reset
31t00 EIIC31 to These bits store the exception cause code when an El level exception R/W 0
EICO occurs.
The EIIC15-0 field stores the exception cause codes shown in Table 4.1.
The EIIC31-16 field stores detailed exception cause codes defined
individually for each exception. If there is no particular definition, these bits
are set to 0.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 46 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

(7) FEIC — FE level exception cause

The FEIC register retains the cause of any FE level exception that occurs. The value retained in this

register is an exception code corresponding to a specific exception cause (see Table 4.1, Exception

Cause List).
31 0
rrrrrrrrrrrrrrrrrrrrr 1Tt T T T T 1T T T T/
Value after reset
FEIC FEIC31 to FEICO 0000 0000,
Table 3.11 FEIC Register Contents
Value after
Bit Name Description R/W Reset
31t00 FEIC31 to These bits store the exception cause code when an FE level exception R/W 0
FEICO occurs.
The FEIC15-0 field stores the exception cause codes shown in Table 4.1.
The FEIC31-16 field stores detailed exception cause codes defined
individually for each exception. If there is no particular definition, these bits
are setto 0.
(8) CTPC — Status save register when executing CALLT
When a CALLT instruction is executed, the address of the next instruction after the CALLT instruction
is saved to CTPC.
Be sure to set an even-numbered address to the CTPC register. An odd-numbered address must not be
specified.
31 0
rrrrrrrrrrrrrrrrrrrr T T T T T T 1T T T T/
Value after reset
CTPC CTPC31 to CTPCO Undefined
Table 3.12 CTPC Register Contents
Value after
Bit Name Description R/IW Reset
31to1 CTPC31 to These bits indicate the PC of the instruction after the CALLT instruction. R/W Undefined
CTPC1
0 CTPCO This bit indicates the PC of the instruction after the CALLT instruction. R/W Undefined
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the CTRET instruction is executed is 0.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 47 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(9) CTPSW — Status save register when executing CALLT

When a CALLT instruction is executed, some of the PSW (program status word) settings are saved to

CTPSW.
31 543210
ctrsw|olo|ofo|o|o|o|o|olo|olo]olo]o|o]o|ofo|ofo]ofo]olo]ola]R|$|Q|s]|z]| Valueafer reset
'_‘F Y|V 0000 0000y
Table 3.13 CTPSW Register Contents
Value after
Bit Name Description R/IW Reset
31t05 — (Reserved for future expansion. Be sure to set to 0.) R 0
4 SAT This bit stores the PSW.SAT bit setting when the CALLT instruction is R/W 0
executed.
3 CY This bit stores the PSW.CY bit setting when the CALLT instruction is R/W 0
executed.
2 ov This bit stores the PSW.OV bit setting when the CALLT instruction is R/W 0
executed.
1 S This bit stores the PSW.S bit setting when the CALLT instruction is executed. R/W 0
0 4 This bit stores the PSW.Z bit setting when the CALLT instruction is executed. R/W 0

(10) CTBP — CALLT base pointer

The CTBP register is used to specify table addresses of the CALLT instruction and generate target
addresses.

Be sure to set the CTBP register to a halfword address.

rrrrrrrrrtrrrrrt 77t rr1t > T T 1" 1 17T 7T "7T"7T°"7"T°"T T 1T"T"1
Value after reset
CTBP CTBP31 to CTBPO Undefined

Table 3.14 CTBP Register Contents

Value after
Bit Name Description R/IW Reset
31to1 CTBP31 to These bits indicate the base pointer address of the CALLT instruction. R/W Undefined
CTBP1 These bits indicate the start address of the table used by the CALLT

instruction.

0 CTBPO This bit indicates the base pointer address of the CALLT instruction. R 0
These bits indicate the start address of the table used by the CALLT
instruction.
Always set this bit to 0.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 48 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

(11) ASID — Address space ID

This is the address space ID. This is used to identify the address space provided by the memory

management function.

31

10 9 0
T T T T
Value after reset
ASID|o|o|ofo|o|o|o|o|o|o|o|0|0f0|0|0|0|0O|O|0O|O]|O ASID Undefined
Table 3.15 ASID Register Contents
Value after
Bit Name Description R/IW Reset
311010 — (Reserved for future expansion. Be sure to set to 0.) R 0
9to 0 ASID This is the address space ID. R/W Undefined
(12) EIWR — El level exception working register
The EIWR register is used as a working register when an EI level exception has occurred.
31 0
rrrrrrrrrrrrrrrrrrrr T T T T T T 1T T T T/
Val ft t
EIWR EIWR31 to EIWRO e s
Table 3.16 EIWR Register Contents
Value after
Bit Name Description R/IW Reset
31t00 EIWR31 to These bits constitute a working register that can be used for any purpose R/W Undefined
EIWRO during the processing of an El level exception. Use this register for purposes
such as storing the values of general-purpose registers.
(13) FEWR — FE level exception working register
The FEWR register is used as a working register when an FE level exception has occurred.
31 0
rrrrrrrrrrrrrrrrrrrr T T T T T T 1T T T T/
Value after reset
FEWR FEWR31 to FEWRO0 Undefined
Table 3.17 FEWR Register Contents
Value after
Bit Name Description R/IW Reset
31t00 FEWRS31 to These bits constitute a working register that can be used for any purpose R/W Undefined
FEWRO during the processing of an FE level exception. Use this register for
purposes such as storing the values of general-purpose registers.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 49 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(14) HTCFGO — Thread configuration register

31 1918 161514 0
[
HTCFGO|0|0O|0O|0O|O|O|O|O|O|O|O|O|O| PEID |[1|0|0O|O|O|O|O|O|OfO|O|0O|O|0O|0O]|O

Value after reset

Undefined
Table 3.18 HTCFGO Register Contents

Value after
Bit Name Description R/W Reset
31t019 — (Reserved for future expansion. Be sure to set to 0.) R 0
18 to 16 PEID These bits indicate the processor element number. R *1
15 — (Reserved for future expansion. Be sure to set to 1.) R 1
14100 — (Reserved for future expansion. Be sure to set to 0.) R 0

Note 1. When these bits are read, the CPU processor identifier defined in the product specifications is read. These
bits cannot be written. For details, see the hardware manual of the product used.

(15) MEA — Memory error address register

31 0
rrrrrrrrrrrrrrrrrrrr T T T T T T 1T T T T/
Value after reset
MEA MEA Undefined
Table 3.19 MEA Register Contents
Value after
Bit Name Description R/IW Reset
31t00 MEA These bits store the violation address when an MAE (misaligned) or MPU R/W Undefined
occurs.
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 50 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(16) MEI — Memory error information register

This register is used to store information about the instruction that caused the exception when a
misaligned (MAE) or memory protection (MDP) exception occurs.

31 2120 16 15 11109 8 7 6 5 0
L | L
R| Value after reset
MEIf0o|O|O|0O|0O|0O|OfO|0O|O0O]|O REG 0o|0|0|0|O| DS |U|OfO ITYPE W Undefined
Table 3.20 MEI Register Contents
Value after
Bit Name Description R/W Reset
31to 21 — (Reserved for future expansion. Be sure to set to 0.) R 0
20 to 16 REG These bits indicate the number of the source or destination register R/W Undefined
accessed by the instruction that caused the exception.
For details, see Table 3.21
15 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0
10,9 DS These bits indicate the type of data handled by the instruction that caused R/W Undefined
the exception.*1
0: Byte (8 bits)
1: Halfword (16 bits)
2: Word (32 bits)
3: Double-word (64 bits)
For details, see Table 3.21
8 u This bit indicates the sign extension method of the instruction that caused R/W Undefined
the exception.
0: Signed
1: Unsigned
For details, see Table 3.21
7,6 — (Reserved for future expansion. Be sure to set to 0.) R 0
5t01 ITYPE These bits indicate the instruction that caused the exception. R/W Undefined
For details, see Table 3.21
0 RwW This bit indicates whether the operation of the instruction that caused the R/W Undefined

exception was read (Load-memory) or write (Store-memory).
0: Read (Load-memory)
1: Write (Store-memory)

For details, see Table 3.21

Note 1. Even if the data is divided and access is made several times due to the specifications of the hardware, the
original data type indicated by the instruction is stored.

Table 3.21 Instructions Causing Exceptions and Values of MEI Register (1/2)

Instruction REG DS U RW ITYPE
SLD.B dst 0 (Byte) 0 (Signed) 0 (Read) 00000b
SLD.BU dst 0 (Byte) 1 (Unsigned) 0 (Read) 00000b
SLD.H dst 1 (Half-word) 0 (Signed) 0 (Read) 00000b
SLD.HU dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00000b
SLD.W dst 2 (Word) 0 (Signed) 0 (Read) 00000b
SST.B src 0 (Byte) 0 (Signed) 1 (Write) 00000b
SST.H src 1 (Half-word) 0 (Signed) 1 (Write) 00000b
SST.W src 2 (Word) 0 (Signed) 1 (Write) 00000b
LD.B (disp16) dst 0 (Byte) 0 (Signed) 0 (Read) 00001b
LD.BU (disp16) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00001b
LD.H (disp16) dst 1 (Half-word) 0 (Signed) 0 (Read) 00001b
LD.HU (disp16) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00001b
RO1US0165EJ0120 Rev.1.20 RENESAS Page 51 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

Table 3.21 Instructions Causing Exceptions and Values of MEI Register (2/2)

Instruction REG DS U RW ITYPE

LD.W (disp16) dst 2 (Word) 0 (Signed) 0 (Read) 00001b
ST.B (disp16) src 0 (Byte) 0 (Signed) 1 (Write) 00001b
ST.H (disp16) src 1 (Half-word) 0 (Signed) 1 (Write) 00001b
ST.W (disp16) src 2 (Word) 0 (Signed) 1 (Write) 00001b
LD.B (disp23) dst 0 (Byte) 0 (Signed) 0 (Read) 00010b
LD.BU (disp23) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00010b
LD.H (disp23) dst 1 (Half-word) 0 (Signed) 0 (Read) 00010b
LD.HU (disp23) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00010b
LD.W (disp23) dst 2 (Word) 0 (Signed) 0 (Read) 00010b
ST.B (disp23) src 0 (Byte) 0 (Signed) 1 (Write) 00010b
ST.H (disp23) src 1 (Half-word) 0 (Signed) 1 (Write) 00010b
ST.W (disp23) src 2 (Word) 0 (Signed) 1 (Write) 00010b
LD.DW (disp23) dst 3 (Double-word) 0 (Signed) 0 (Read) 00010b
ST.DW (disp23) src 3 (Double-word) 0 (Signed) 1 (Write) 00010b
LDL.W dst 2 (Word) 0 (Signed) 0 (Read) 00111b
STC.W src 2 (Word) 0 (Signed) 1 (Write) 00111b
CAXI dst 2 (Word) 0 (Signed) 0 (Read)™ 01000b
SET1 0 0 (Byte) 0 (Signed) 0 (Read)" 01001b
CLR1 0 0 (Byte) 0 (Signed) 0 (Read)™ 01001b
NOT1 0 0 (Byte) 0 (Signed) 0 (Read)" 01001b
TST1 0 0 (Byte) 0 (Signed) 0 (Read) 01001b
PREPARE 0 2 (Word) 0 (Signed) 1 (Write) 01100b
DISPOSE 0 2 (Word) 0 (Signed) 0 (Read) 01100b
PUSHSP 0 2 (Word) 0 (Signed) 1 (Write) 01101b
POPSP 0 2 (Word) 0 (Signed) 0 (Read) 01101b
SWITCH 0 1 (Half-word) 0 (Signed) 0 (Read) 10000b
CALLT 0 1 (Half-word) 1 (Unsigned) 0 (Read) 10001b
SYSCALL 0 2 (Word) 0 (Signed) 0 (Read) 10010b
Interrupt (table reference method) 2 0 2 (Word) 0 (Signed) 0 (Read) 10101b

Note 1.
Note 2.
Note:

This exception occurs when the instruction executes a read access.

When the interrupt vector of the table reference method is read.

dst: Destination register number, src: Source register number

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 52 of 384

RH850G3K

H Software

Section 3 Register Set

(17) RBASE — Reset vector base address

This register indicates the reset vector address when there is a reset. If the PSW.EBV bit is 0, this

vector address is also used as the exception vector address.

31 10
Frrrrrrrrrrrr T T 1T T T T 1T 1T T/ [
RBASE RBASE31 to RBASE9 0lo|Z Value after reset
Table 3.22 RBASE Register Contents
Value after
Bit Name Description R/IW Reset
31t09 RBASE31to These bits indicate the reset vector when there is a reset. When PSW.EBV = R Note
RBASE9 0, this address is also used as the exception vector.
The RBASES8-0 bits are not assigned as names because these bits are
always 0.
8to1 — (Reserved for future expansion. Be sure to set to 0.) 0
0 RINT When the RINT bit is set, the exception handler address for interrupt R Note
processing is reduced. See Section 4.5.1 (1) Direct vector method. This bit
is valid when PSW.EBV = 0.
Note 1. The value after reset depends on the hardware specifications. For details, see the hardware manual of the
product used.
(18) EBASE — Exception handler vector address
This register indicates the exception handler vector address. This register is valid when the PSW.EBV
bit is 1.
31 9 8 0
rrrrrrrrrrrr T T 1T 1 1T T T T T 1T T T/ | value after reset
z
EBASE EBASE31 to EBASE9 o|ojofjo0|0|O 0 £ Undefined
Table 3.23 EBASE Register Contents
Value after
Bit Name Description R/W Reset
31t09 EBASE31to The exception handler routine address is changed to the address resulting R/W Undefined
EBASE9 from adding the offset address of each exception to the base address
specified for this register.
The EBASES-0 bits are not assigned as names because these bits are
always 0.
8to1 — (Reserved for future expansion. Be sure to set to 0.) R 0
0 RINT When the RINT bit is set, the exception handler address for interrupt R/W Undefined

processing is reduced. See Section 4.5.1 (1) Direct vector method.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 53 of 384

RH850G3KH Software

Section 3 Register Set

(19) INTBP — Base address of the interrupt handler address table

This register indicates the base address of the table when the table reference method is selected as the

interrupt handler address selection method.

31 0
Frrrrrrrrrrrr T T 1T T T T 1T 1T T/
Value after reset
INTBP INTBP31 to INTBP9 0|0 Undefined
Table 3.24 INTBP Register Contents
Value after
Bit Name Description R/IW Reset
31t09 INTBP31 to These bits indicate the base pointer address for an interrupt when the table R/W Undefined
INTBP9 reference method is used.

The value indicated by these bits is the first address in the table used to

determine the exception handler when the interrupt specified by the table

reference method (EIINTO to EIINT511) is acknowledged.

The INTBP8-0 bits are not assigned as names because these bits are

always 0.
8to0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 54 of 384

RH850G3KH Software

Section 3 Register Set

(20) PID — Processor ID

The PID register retains a processor identifier that is unique to the CPU. The PID register is a read-only

register.

CAUTION

The PID register indicates information used to identify the incorporated CPU core and
CPU core configuration. Usage such that the software behavior varies dynamically
according to the PID register information is not assumed.

31 0 Value after reset
1 T T T T T 1T 1 Definedforeach
PID PID processor
Table 3.25 PID Register Contents
Value after
Bit Name Description R/W Reset
31to 24 PID Architecture Identifier R *
This identifier indicates the architecture of the processor.
23t0 8 Function Identifier R *
This identifier indicates the functions of the processor.
These bits indicate whether or not functions defined per bit are implemented
(1: implemented, 0: not implemented).
Bits 23 to 10: Reserved
Bit 9: Single-precision floating-point operation function
Bit 8: Memory protection unit (MPU) function
7100 Version Identifier R *1
This identifier indicates the version of the processor.
Note 1. For details, see the hardware manual of the product used.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 55 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(21) SCCFG — SYSCALL operation setting

This register is used to set operations related to the SYSCALL instruction. Be sure to set an appropriate
value to this register before using the SYSCALL instruction.

31 8 7 0
T T T T
Value after reset
SCCFG|o|0|0|0O|0O|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O SIZE Undefined
Table 3.26 SCCFG Register Contents
Value after
Bit Name Description R/IW Reset
31t08 — (Reserved for future expansion. Be sure to set to 0.) R 0
7to0 SIZE These bits specify the maximum number of entries of a table that the R/W Undefined

SYSCALL instruction references. The maximum number of entries the
SYSCALL instruction references is 1 if SIZE is 0, and 256 if SIZE is 255. By
setting the maximum number of entries appropriately in accordance with the
number of functions branched by the SYSCALL instruction, the memory area
can be effectively used.

If a vector exceeding the maximum number of entries is specified for the
SYSCALL instruction, the first entry is selected. Place an error processing
routine at the first entry.

(22) SCBP — SYSCALL base pointer

The SCBP register is used to specify a table address of the SYSCALL instruction and generate a target
address. Be sure to set an appropriate value to this register before using the SYSCALL instruction.

Be sure to set a word address to the SCBP register.

31 0
rrrrrrrrrrrrrrtrrrrrtrrr 17T 1T 717 7T"T"1T "T"T"1T T T"1
Value after reset
SCBP SCBP31 to SCBPO Undefined
Table 3.27 SCBP Register Contents
Value after
Bit Name Description R/IW Reset
31t02 SCBP31 to These bits indicate the base pointer address of the SYSCALL instruction. R/W Undefined
SCBP2 These bits indicate the start address of the table used by the SYSCALL
instruction.
1,0 SCBP1, These bits indicate the base pointer address of the SYSCALL instruction. R 0
SCBPO These bits indicate the start address of the table used by the SYSCALL
instruction.
Always set these bits to 0.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 56 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(23) MCFG0 — Machine configuration

This register indicates the CPU configuration.

31 18 17 16 15 3210
T

sp Value after reset
MCFGO [o|o|o|o|o|o|o|ofo|o|olo|ofo| 55 |o|ofo|o|ofojojojojofojo|o|1]{0[0| Undefined

Table 3.28 MCFGO Register Contents

Value after
Bit Name Description R/IW Reset
311018 — (Reserved for future expansion. Be sure to set to 0.) R 0
17,16 SPID These bits indicate the system protection number. R/W *
For details, see the hardware manual of the product used.
15t0 3 — (Reserved for future expansion. Be sure to set to 0.) R 0
2 — (Reserved for future expansion. Be sure to setto 1.) R 1
1,0 — (Reserved for future expansion. Be sure to set to 0.) R 0

Note 1. For details, see the hardware manual of the product used.

(24) MCTL — Machine control

This register is used to control the CPU.

31 30 210
M| U| Value after reset
MCTL10OOO00OOOOOOOOOOOOOOOOOOOOOOOAé 8000 0002,
Table 3.29 MCTL Register Contents
Value after

Bit Name Description R/W Reset
31 — (Reserved for future expansion. Be sure to set to 1.) R 1
30to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0
1 MA This bit is used to control the generation of misaligned access exceptions R/W 1

(MAE) in response to the load and store instructions that handle halfwords

and words.

0: A misaligned access exception (MAE) is generated in response to
misaligned access.
1: Access proceeds and a misaligned access exception (MAE) is not
generated.

See Section 2.6.3, Data Alignment for the details.
0 uiCc This bit is used to control the interrupt enable/disable operation in user R/W 0

mode. When this bit is set to 1, executing the El and DI instructions in user

mode becomes possible.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 57 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

3.3 Interrupt Function Registers

3.31 Interrupt Function System Registers

Interrupt function system registers are read from or written to by using the LDSR and STSR
instructions and specifying the system register number, which is made up of a register number and
selection ID.

Table 3.30 Interrupt Function System Registers

Register No. Access

(reglD, sellD) Symbol Function Permission

SR7,1 FPIPR FPI exception interrupt priority setting SV

SR10, 2 ISPR Priority of interrupt being serviced SV

SR11, 2 PMR Interrupt priority masking SV

SR12, 2 ICSR Interrupt control status SV

SR13, 2 INTCFG Interrupt function setting SV

RO1US0165EJ0120 Rev.1.20 RENESAS Page 58 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(1) FPIPR — FPI exception interrupt priority setting

This register is used to specify the interrupt priority of FPI exceptions.

31 5 4 0

FriPR (0] o| o] olololololo]o|olololo]olo]o|olololo]o]o]o|ololo| Frpr | VAlue after reset

0000 0000y
Table 3.31 FPIPR Register Contents
Value after
Bit Name Description R/W Reset
31to5 — (Reserved for future expansion. Be sure to set to 0.) R 0
4t00 FPIPR These bits are used to specify the interrupt priority of floating-point operation R/W 0
exceptions (imprecise) (FPI). Specify values from 0 to 16. Specifying 17 or
greater is prohibited.
FPI exceptions are handled using the specified interrupt priority. If an FPI
exception occurs at the same time as an interrupt that has the same priority,
the FPI exception is prioritized.
CAUTION
If 17 or greater is specified, it is handled as 16.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 59 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

(2) ISPR — Priority of interrupt being serviced

This register holds the priority of the EIINT# interrupt being serviced. This priority value is then used
to perform priority ceiling processing when multiple interrupts are generated.

31

16 15

ISPR{0|0|0|0O

0ojojojojojo0|0OfO|OfO]|O ISP15 to ISPO

Table 3.32

ISPR Register Contents

Value after reset
0000 0000y

Bit Name

Description

R/IW

Value after
Reset

31to 16 —

(Reserved for future expansion. Be sure to set to 0.) R

0

15t00 ISP15 to
ISPO

These bits indicate the acknowledgment status of an EIINTn interrupt with a R™
priority*1 that corresponds to the relevant bit position.
0: An interrupt request for an interrupt whose priority corresponds to the
relevant bit position has not been acknowledged.
1: An interrupt request for an interrupt whose priority corresponds to the
relevant position is being serviced by the CPU core.

The bit positions correspond to the following priority levels:

Bit Priority
0 Priority O (highest)

1 Priority 1

14 Priority 14
15 Priority 15

When an interrupt request (EIINTn) is acknowledged, the bit corresponding
to the acknowledged interrupt request is automatically set to 1. If PSW.EP is
0 when the EIRET instruction is executed, the bit with the highest priority
arr210ng the ISP15-0 bits that are set (0 is the highest priority) is cleared to
0*“.

While a bit in this register is set to 1, same or lower priority interrupts
(ElINTn) and the FPI exception*3 are masked. Priority level judgment is
therefore not performed when the system is determining whether to
acknowledge an exception, meaning that exceptions will not be
acknowledged.

For details, see Section 4.1.5, Interrupt Exception Priority and Priority
Masking.

When performing software-based priority control using the PMR register, be
sure to clear this register by using the INTCFG.ISPC bit.

0

Note 1.
Note 2.

Note 3.

Note 4.

For details, see Section 4.1.5, Interrupt Exception Priority and Priority Masking.

Interrupt acknowledgment and auto-updating of values when the EIRET instruction is executed are disabled
by setting (1) the INTCFG.ISPC bit. It is recommended to enable auto-updating of values, so in normal

cases, the INTCFG.ISPC bit should be cleared to 0.

The FPI exception has the same priority level as an interrupt (EIINTn), so it is affected by the setting of the
ISPR register in the same way as an interrupt. The priority level of the FPI exception is specified by the

FPIPR register.

This is R or R/W, depending on the setting of the INTCFG.ISPC bit. It is recommended to use this register

as a read-only (R) register.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 60 of 384

RH850G3KH Software Section 3 Register Set

(3) PMR — Interrupt priority masking

This register is used to mask the specified interrupt priority.

31 16 15 0
T rr T T T T T T 1T T
Value after reset
PMR|0O|0|O|0O|O|0O|O|O|O|0O|O|O|0O|O|O]|O PM15 to PMRO 0000 0000},
Table 3.33 PMR Register Contents
Value after
Bit Name Description R/W Reset
31to 16 — (Reserved for future expansion. Be sure to set to 0.) R 0
15t0 0 PM15 to PMO These bits mask an interrupt request with a priority level that corresponds to R/W 0

the relevant bit position.
0: Servicing of an interrupt request with a priority that corresponds to the
relevant bit position is enabled.
1: Servicing of an interrupt request with a priority that corresponds to the
relevant bit position is disabled.

The bit positions correspond to the following priority levels:

Bit Priority

0 Priority O (highest)

1 Priority 1

14 Priority 14

15 Priority 15 and priority 16
(lowest)

While a bit in this register is set to 1, interrupts (EIINTn) with the priority
corresponding to that bit and the FPI exception*1 are masked. Priority level
judgment is therefore not performed when the system is determining whether
to acknowledge an exception, meaning that exceptions will not be
acknowledged*2.

Note 1. The FPI exception has the same priority level as an interrupt (EIINTn), so it is affected by the setting of the
PMR register in the same way as an interrupt. The priority level of the FPI exception is specified by the
FPIPR register.

Note 2. Specify the masks by setting the bits to 1 in order from the lowest-priority bit. For example, FF00 can be
set, but FOFOy or 00FFy cannot.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 61 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(4) ICSR — Interrupt control status

This register indicates the interrupt control status in the CPU.

31 210
n_ —
| w| Value after reset
ICSR00OOOOOOOOOOOOOOOOOOOOOOOOOOOOEE 0000 0000},
Table 3.34 ICSR Register Contents
Value after
Bit Name Description R/W Reset
31to2 — (Reserved for future expansion. Be sure to set to 0.) R 0
1 PMFP This bit indicates that an FPI exception with the priority level masked by the R 0
PMR register exists.
0 PMEI This bit indicates that an interrupt (EIINTn) with the priority level masked by R 0

the PMR register exists.

(5) INTCFG — Interrupt function setting

This register is used to specify settings related to the CPU’s internal interrupt function.

31 1

Value after reset

INTCFG|o|o0|j0|lO|O|O|O|O|O|O|OfO|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O 0000 0000

ISPC | =

Table 3.35 INTCFG Register Contents

Value after
Bit Name Description R/W Reset

31to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 ISPC This bit changes how the ISPR register is written. R/W 0
0: The ISPR register is automatically updated. Updates triggered by the
program (via execution of LDSR instruction) are ignored.
1: The ISPR register is not automatically updated. Updates triggered by the
program (via execution of LDSR instruction) are performed.

If this bit is cleared to 0, the bits of the ISPR register are automatically set to
1 when an interrupt (EIINTn) is acknowledged, and cleared to 0 when the
EIRET instruction is executed. In this case, the bits are not updated by an
LDSR instruction executed by the program.

If this bit is set to 1, the bits of the ISPR register are not updated by the
acknowledgement of an interrupt (EIINTn) or by execution of the EIRET
instruction. In this case, the bits can be updated by an LDSR instruction
executed by the program.

In normal cases, the ISPC bit should be cleared. When performing software-
based priority control, however, set this bit (1) and perform priority control by
using the PMR register.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 62 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

3.4 FPU Function Registers

3.41 Floating-Point Registers

The FPU uses the CPU general-purpose registers (r0 to r31). There are no register files used only for
floating-point operations.

e Single-precision floating-point instruction:
Thirty-two 32-bit registers can be specified. These general-purpose registers correspond to 10 to
r31.

3.4.2 Floating-Point Function System Registers

The FPU can use the following system registers to control floating-point operations. Floating-point
function system registers are read from or written to by using the LDSR and STSR instructions and
specifying the system register number, which is made up of a register number and selection ID.

o FPSR: This register is used to control and monitor exceptions. It also holds the result of compare
operations, and sets the FPU operation mode. Its bits are used to set condition code, exception
mode, subnormal number flush enable, rounding mode control, cause, exception enable, and
preservation.

o FPEPC: This register stores the program counter value for the instruction where a floating-point
operation exception has occurred.

o FPST: This register reflects the contents of the FPSR register bits related to the operation status.
o FPCC: This register reflects the contents of the FPSR.CC (7:0) bits.

o FPCFG: This register reflects the contents of the FPSR register bits related to the operation
settings.

e FPEC: This register controls checking and canceling the pending status of the FPI exception.

Table 3.36 FPU System Registers

Register No.

(regID, sellD) Symbol Function Access Permission

SR6, 0 FPSR Floating-point operation configuration/status CUO and SV

SR7,0 FPEPC Floating-point operation exception program counter CUO and SV

SR8, 0 FPST Floating point operation status Ccuo

SR9, 0 FPCC Floating-point operation comparison result cuo

SR10, 0 FPCFG Floating-point operation configuration Ccuo

SR11,0 FPEC Floating-point exception control CUO and SV
RO1US0165EJ0120 Rev.1.20 RENESAS Page 63 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

FPSR

(1) FPSR — Floating-point configuration/status

31

This register indicates the execution status of floating-point operations and any exceptions that occur.

For details about exception, see Section 6.1.5, Floating-Point Operation Exceptions.

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

CC7

CCeo

CC5

CC4

CC3

CC2

CC1

CCo

FN

IF

PEM

0

|
RM

FS

0

15

14

12

11

8

7

6

5

4

3

2

1

13

0

E

Cause bits (XC)

[v]2

" Enable bits (XE)
o|u

o‘u|| v|z o‘u

v‘z

Preservation bits (XP)

Note 1.

Table 3.37

See the descriptions of each bit.

FPSR Register Contents (1/2)

Value after reset

*1

Bit

Name

Description

Value after
Reset

31to 24

CC(7:0)

These are the CC (condition) bits. They store the results of floating-point
comparison instructions. The CC7-0 bits are not affected by any instructions
except the comparison instruction and LDSR instruction.

0: Comparison result is false

1: Comparison result is true

R/W

Undefined

23

FN

This bit enables flush-to-nearest mode. When the FN bit is set to 1, if the
rounding mode is RN and the operation result is a subnormal number, the
number is flushed to the nearest number. For details, see Section 6.1.11,
Flush to Nearest.

R/W

22

This bit accumulates and indicates information about the flushing of input
operands. For details about flushing subnormal numbers, see Section 6.1.9,
Flushing Subnormal Numbers.

R/wW

21

PEM

This bit specifies whether to handle an exception as a precise exception.
If the PEM bit is 1, exceptions that are caused by the execution of a floating-
point operation instruction are handled as precise exceptions.

R/W

20

(Reserved for future expansion. Be sure to set to 0.)

19, 18

RM

These are the rounding mode control bits. The RM bits define the rounding
mode that the FPU uses for all floating-point instructions.

RM Bits
19 18
0 0

Mnemonic Description

RN Rounds the result to the nearest representable
value. If the value is exactly in-between the two
nearest representable values, the result is
rounded toward the value whose least significant

bitis 0.

Rz Rounds the result toward 0. The result is the
nearest to the value that does not exceed the

absolute value of the result with infinite accuracy.

RP Rounds the result toward +«. The result is
nearest to a value greater than the accurate

result with infinite accuracy.

RM Rounds the result toward —~. The result is
nearest to a value less than the accurate result

with infinite accuracy.

R/W

00

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 64 of 384

RH850G3KH Software

Section 3 Register Set

Table 3.37 FPSR Register Contents (2/2)
Value after
Bit Name Description R/W Reset
17 FS This bit enables values that could not be normalized (subnormal numbers)to R/W 1
be flushed. If the FS bit is set, input operands and operation results that are
subnormal numbers are flushed without causing an unimplemented
operation exception (E). An input operand that is a subnormal number is
flushed to O with the same sign. Operation results that are subnormal
numbers either become 0 or the minimum.
Rounding mode and value after flushing
Operation result that is a
subnormal number RN*! RZ RP RM
Positive +0 +0 4+oEmin +0
Negative -0 -0 -0 —2Emin
Note 1. If the rounding mode is RN and the FPSR.FN bit is set, flushing
will occur in the direction of higher accuracy. For details, see
Section 6.1.11, Flush to Nearest.
16 — (Reserved for future expansion. Be sure to set to 0.) R 0
15to 10 XC (E,V,Z,0, These are the cause bits. For details, see Section 3.4.2 (1) (a), Cause bits R/W Undefined
U,) (XC).
9to 5 XE (V,Z,0, These are the enable bits. For details, see Section 3.4.2 (1) (b), Enable bits R/W 0
U, (XE).
4t00 XP (V, Z, O, These are the preservation bits. For details, see Section 3.4.2 (1) (c), R/W Undefined
U,) Preservation bits (XP).
RO1US0165EJ0120 Rev.1.20 -IENESAS Page 65 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(a) Cause bits (XC)

Bits 15 to 10 in the FPSR register are cause bits, which indicate the occurrence and cause of a floating-
point operation exception. If an exception defined by IEEE754 is generated, when an enable bit is set to
1 corresponding to the exception, a cause bit is set, and the exception then occurs. When two or more
exceptions occur during a single instruction, each corresponding bit is set to 1.

If two or more exceptions are detected, as long as the enable bit corresponding to one of the exceptions
is set to 1, the exception occurs. In this case, the cause bits of all the detected exceptions, including
exceptions whose enable bits are cleared to 0, are set to 1.

The cause bits are rewritten by a floating-point instruction (except the TRFSR instruction) where the
floating-point operation exception occurred. The E bit is set to 1 when software emulation is required,
otherwise it is cleared to 0. Other bits are set to 1 or cleared to 0 depending on whether or not an
IEEE754-defined exception has occurred.

When a floating-point operation exception has occurred, the operation result is not stored, and only the
cause bits are affected.

When the cause bits are set to 1 by an LDSR instruction, a floating-point operation exception does not
occur.

(b) Enable bits (XE)

Bits 9 to 5 in the FPSR register are the enable bits, which enable floating-point operation exceptions.
When an IEEE754-defined exception occurs, a floating-point operation exception occurs if the enable
bit corresponding to the exception has been set to 1.

There are no enable bits corresponding to an unimplemented operation exception (E). An
unimplemented operation exception (E) always occurs as a floating-point operation exception.

If the corresponding enable bit has not been set to 1, no exception occurs and the default result defined
by IEEE754 is stored.

(c) Preservation bits (XP)

Bits 4 to 0 in the FPSR register are preservation bits. These bits store and indicate the detected
exception after reset. An exception defined by IEEE754 occurs, and if a floating-point operation
exception is not generated, the preservation bit is set to 1, otherwise it does not change. The
preservation bits are not cleared to 0 by the floating-point operation. However, these bits can be set and
cleared by software when an LDSR instruction is used to write a new value to the FPSR register.

There are no preservation bits corresponding to unimplemented operation exceptions (E). An
unimplemented operation exception (E) always occurs as a floating-point operation exception.

NOTE

For details about the exception types and how they relate to particular bits, see Figure 6.5,
Cause, Enable, and Preservation Bits of FPSR Register.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 66 of 384
Dec 22, 2016

RH850G3KH

Software

Section 3 Register Set

(2) FPEPC — Floating-point exception program counter

When an exception that is enabled by an enable bit occurs, the program counter (PC) of the instruction

that caused the exception is stored.

31 0
rrrrrrrrrrrtrrr -t rr T T T T
Value after reset
FPEPC FPEPC31to 0 Undefined
Table 3.38 FPEPC Register Contents
Value after
Bit Name Description R/IW Reset
31to1 FPEPC31to These bits store the program counter (PC) of the floating-point instruction R/W Undefined
FPEPCA1 that caused the exception when a floating-point operation exception that is
enabled by an enable bit occurs.
0 FPEPCO This bit stores the program counter (PC) of the floating-point instruction that R 0
caused the exception when a floating-point operation exception that is
enabled by an enable bit occurs.
Always set this bit to 0.
(3) FPST — Floating-point operation status
This register reflects the contents of the FPSR register bits related to the operation status.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FPST| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Cause bits (XC) Preservation bits (XP) Value after reset
1% e v]z|oJu] v |21 "]v]z]o]u| 1| Undefed
Table 3.39 FPST Register Contents
Value after
Bit Name Description R/IW Reset
31t0 14 — (Reserved for future expansion. Be sure to set to 0.) R 0
13t0 8 XC (E, V, Z, These are cause bits. For details, see Section 3.4.2 (1) (a), Cause bits R/W Undefined
o,u,) (XC). Values written to these bits are reflected in FPSR.XC bits.
7,6 — (Reserved for future expansion. Be sure to set to 0.) R 0
5 IF This bit accumulates and indicates information about the flushing of input R/W 0
operands. For details about flushing subnormal numbers, see Section 6.1.9,
Flushing Subnormal Numbers. The value written to this bit is reflected in
FPSR.IF bit.
4t00 XP (V, Z, O, These are preservation bits. For details, see Section 3.4.2 (1) (c), R/W Undefined
U, Preservation bits (XP). Values written to these bits are reflected in
FPSR.XP bits.
RO1US0165EJ0120 Rev.1.20 -IENESAS Page 67 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

(4) FPCC — Floating-point operation comparison result
This register reflects the contents of the FPSR.CC(7:0) bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FPCC| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value after reset
0 0 0 0 0 0 0 0 |CC7|CC6|CC5|CC4|CC3|CC2|cCC1]|cCco Undefined
Table 3.40 FPCC Register Contents
Value after
Bit Name Description R/W Reset
31t08 — (Reserved for future expansion. Be sure to set to 0.) 0
7t00 CC (7:0) These are CC (condition) bits. They store the result of a floating-point R/W Undefined
comparison instruction. The CC(7:0) bits are not affected by any instructions
except the comparison instruction and LDSR instruction. Values written to
these bits are reflected in the CC(7:0) bits of FPSR.
0: Comparison result is false
1: Comparison result is true
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 68 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(5) FPCFG — Floating-point operation configuration

This register reflects the contents of the FPSR register bits related to the operation settings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPCFG| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

! Enable bits (XE)

Value after reset

O e I I RM S N VA ‘ 0 | u ‘ I | 0000 0000,
Table 3.41 FPCFG Register Contents
Value after
Bit Name Description R/W Reset
31t0 10 — (Reserved for future expansion. Be sure to set to 0.) R 0
9,8 RM These are rounding mode control bits. The RM bits define the rounding R/W 0
mode that the FPU uses for all floating-point instructions. Values written to
these bits are reflected in RM bits of FPSR.
RM Bits
9 8 Mnemonic Description
0 0 RN Rounds the result to the nearest representable
value. If the value is exactly in-between the two
representable values, the result is rounded
toward the value whose least significant bit is 0.
0 1 Rz Rounds the result toward 0. The result is the
nearest to the value that does not exceed the
absolute value of the result with infinite accuracy.
1 0 RP Rounds the result toward +«. The result is
nearest to a value greater than the accurate
result with infinite accuracy.
1 1 RM Rounds the result toward -~. The result is
nearest to a value less than the accurate result
with infinite accuracy.
7to5 — (Reserved for future expansion. Be sure to set to 0.) R 0
4t00 XE These are the enable bits. For details, see Section 3.4.2 (1) (b), Enable bits R/W 0

M, Z,0,U,) (XE). Values written to these bits are reflected in the FPSR.XE bits.

RO1US0165EJ0120 Rev.1.20 ENESAS
Dec 22, 2016

Page 69 of 384

RH850G3KH Software

Section 3 Register Set

(6) FPEC — Floating-point exception control

This register controls the floating-point operation exception.

CAUTION

For how to handle the FPEC register, see Section 4.4, Exception Management.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FPEC| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FPI [Value after reset
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VD 0000 0000},
Table 3.42 FPEC Register Contents
Value after
Bit Name Description R/IW Reset
31to1 — (Reserved for future expansion. Be sure to set to 0.) R 0
0 FPIVD*! This bit indicates the status of reporting the FPI exception. R/wW 0
If this bit is set to 1, the FPI exception is reported to the CPU but is not
acknowledged. It is automatically cleared to 0 when the CPU acknowledges
the FPI exception.
While this bit is set to 1, all the floating-point instructions are invalidated.
Report of the FPI exception can be canceled by clearing (0) this bit by the
LDSR instruction while it is set to 1. When report of the FPI exception is
canceld, the CPU does not acknowledge the FPI exception.
0: FPI exception is not reported.
1: FPI exception is reported.
Note 1. The FPIVD bit can only be cleared to 0 by the write operation of the LDSR instruction. It cannot be set to 1.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 70 of 384

RH850G3KH Software Section 3 Register Set

3.5 MPU Function Registers

3.5.1 MPU Function System Registers

MPU function system registers are read from or written to by using the LDSR and STSR instructions
and specifying the system register number, which is made up of a register number and selection ID.

Table 3.43 MPU Function System Registers (1/2)

Register No.

(regID, sellD) Symbol Function Access Permission
SRO, 5 MPM Memory protection operation mode setting SV
SR1, 5 MPRC MPU region control SV
SR4, 5 MPBRGN MPU base region number SV
SR5, 5 MPTRGN MPU end region number SV
SR8, 5 MCA Memory protection setting check address SV
SR9, 5 MCS Memory protection setting check size SV
SR10, 5 MCC Memory protection setting check SV

command
SR11, 5 MCR Memory protection setting check result SV
SRO, 6 MPLAO Protection area minimum address SV
SR1, 6 MPUAO Protection area maximum address SV
SR2, 6 MPATO Protection area attribute SV
SR4, 6 MPLA1 Protection area minimum address SV
SR5, 6 MPUA1 Protection area maximum address SV
SR6, 6 MPAT1 Protection area attribute SV
SR8, 6 MPLA2 Lower address of the protection area SV
SR9, 6 MPUA2 Protection area maximum address SV
SR10, 6 MPAT2 Protection area attribute SV
SR12, 6 MPLA3 Protection area minimum address SV
SR13,6 MPUA3 Protection area maximum address SV
SR14, 6 MPAT3 Protection area attribute SV
SR16, 6 MPLA4 Protection area minimum address SV
SR17, 6 MPUA4 Protection area maximum address SV
SR18, 6 MPAT4 Protection area attribute SV
SR20, 6 MPLAS5 Protection area minimum address SV
SR21, 6 MPUAS Protection area maximum address SV
SR22, 6 MPAT5 Protection area attribute SV
SR24, 6 MPLAG Protection area minimum address SV
SR25, 6 MPUAG Protection area maximum address SV
SR26, 6 MPAT6 Protection area attribute SV
SR28, 6 MLUA7 Protection area minimum address SV
SR29, 6 MPUA7 Protection area maximum address SV
SR30, 6 MPAT7 Protection area attribute SV
SRO, 7 MPLA8 Protection area minimum address SV
SR1,7 MPUAS8 Protection area maximum address SV
SR2,7 MPAT8 Protection area attribute SV
SR4,7 MPLA9 Protection area minimum address SV
SR5, 7 MPUA9 Protection area maximum address SV
RO1US0165EJ0120 Rev.1.20 RENESAS Page 71 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

Table 3.43 MPU Function System Registers (2/2)

Register No.

(regID, sellD) Symbol Function Access Permission
SRe6, 7 MPAT9 Protection area attribute SV
SR8, 7 MPLA10 Protection area minimum address SV
SR9, 7 MPUA10 Protection area maximum address SV
SR10, 7 MPAT10 Protection area attribute SV
SR12,7 MPLA11 Protection area minimum address SV
SR13,7 MPUA11 Protection area maximum address SV
SR14,7 MPAT 11 Protection area attribute SV
SR16, 7 MPLA12 Protection area minimum address SV
SR17,7 MPUA12 Protection area maximum address SV
SR18, 7 MPAT12 Protection area attribute SV
SR20, 7 MPLA13 Protection area minimum address SV
SR21,7 MPUA13 Protection area maximum address SV
SR22, 7 MPAT13 Protection area attribute SV
SR24,7 MPLA14 Protection area minimum address SV
SR25, 7 MPUA14 Protection area maximum address SV
SR26, 7 MPAT14 Protection area attribute SV
SR28, 7 MPLA15 Protection area minimum address SV
SR29, 7 MPUA15 Protection area maximum address SV
SR30, 7 MPAT15 Protection area attribute SV

Note: The number of incorporated MPLAn, MPUARN, and MPATn (n = 0 to 15) registers depends on the hardware
specifications. For details, see the hardware manual of the product used.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 72 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(1) MPM — Memory protection operation mode

The memory protection mode register is used to define the basic operating state of the memory
protection function.

31 1110 9 8 7 3 2

DID|ID
X|WR

Value after reset

MPM]O|0fl0O|O|O|O|OflOfO|O|O|O|OfO|O|O|O|O|OfO]|O 0000 0000,

0/0|0|0|0|0

muZ|o

o<nm |-

Table 3.44 MPM Register Contents

Value after
Bit Name Description R/IW Reset

31to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

10 DX This bit specifies the default operation when an instruction is executed atan R 0
address that does not exist in a protection area. “0” is fixed for this bit in this
CPU. Default operation is prohibited. Be sure to set to 0.
0: Disable executing an instruction at an address that does not exist in a
protection area.
1: Enable executing an instruction at an address that does not exist in a
protection area.
The setting of this bit affects the access operation when the protection areas
overlap. For details, see Section 5.1.4, Caution Points for Protection Area
Setup.

9 DW This bit specifies the default operation when writing to an address that does R 0
not exist in a protection area. “0” is fixed for this bit in this CPU. Default
operation is prohibited. Be sure to set to 0.
0: Disable writing to an address that does not exist in a protection area.
1: Enable writing to an address that does not exist in a protection area.
The setting of this bit affects the access operation when the protection areas
overlap. For details, see Section 5.1.4, Caution Points for Protection Area
Setup.

8 DR This bit specifies the default operation when reading from an address that R 0
does not exist in a protection area. “0” is fixed for this bit in this CPU. Default
operation is prohibited. Be sure to set to 0.
0: Disable reading from an address that does not exist in a protection area.
1: Enable reading from an address that does not exist in a protection area.
The setting of this bit affects the access operation when the protection areas
overlap. For details, see Section 5.1.4, Caution Points for Protection Area
Setup.

7to2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 SVP In SV mode (when PSW.UM = 0), this bit is used to specify whether to R/W 0
restrict access according to the SX, SW, and SR bits of the MPAT register for
each protection area.*"
0: As usual, implicitly enable all access in SV mode.
1: Restrigt access according to the SX, SW, and SR bits even in SV
mode.

0 MPE This bit is used to specify whether to enable or disable MPU function. R/W 0
0: Disable
1: Enable

Note 1. When the SVP bit is set to 1, access is restricted according to the setting of each protection area even in
SV mode. Therefore, specify protection areas before setting the SVP bit to prevent the access of the
program itself from being restricted.

Note 2. If access is restricted in SV mode, execution of MDP exceptions or the MIP exception handling itself might
not be possible depending on the settings. Be careful to specify settings so that access to the memory area
necessary for the exception handler and exception handling is permitted.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 73 of 384
Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(2) MPRC — MPU region control

Bits used to perform special memory protection function operations are located in this register.

31 1615141312110 9 8 7 6 56 4 3 2 1 0
E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E| Value after reset
MPRC1010)010/0/0/010]010]0/0]00]0/0|1513/1312(11|10{9|8|7|6|5|4|3[2|1[0| 00000000,
Table 3.45 MPRC Register Contents
Value after
Bit Name Description R/IW Reset
311016 — (Reserved for future expansion. Be sure to set to 0.) R 0
15t00 E15to EO These are the enable bits for each protection area. Bit En is a copy of bit R/W 0
MPATn.E (where n = 15 to 0).
For the number of protection areas, see the hardware manual of the product
used.
(3) MPBRGN — MPU base region number
This register indicates the minimum usable MPU area number.
31 5 4 0

Value after reset
MPBRGN |0|0|0O|0O|O|O|O|0O|0O|O|O|O|O|0O|0O|O|O|O|0O|0O|O|O|O|O|0O|0|0O| MPBRGN 0000 0000,

Table 3.46 MPBRGN Register Contents

Value after
Bit Name Description R/IW Reset
31to5 — (Reserved for future expansion. Be sure to set to 0.) R 0
4t00 MPBRGN These bits indicate the smallest number of an MPU area. R 0

These bits always indicate 0.

(4) MPTRGN — MPU end region number

This register indicates the maximum usable MPU area number + 1.

31 5 4 0

Value after reset
MPTRGN|0O|0O|0O|O|O|0O|0O|O|O|O|O|0O|O|O|OfO|O|O|O|O|O|O|0O|0O|0O|O|O| MPTRGN 0000 0000y

Table 3.47 MPTRGN Register Contents

Value after

Bit Name Description R/W Reset
31to5 — (Reserved for future expansion. Be sure to set to 0.) R 0
4t00 MPTRGN These bits indicate the largest number of an MPU area + 1. R *1

These bits indicate the maximum number of MPU areas incorporated into

the hardware.

Note 1. For details, see the hardware manual of the product used.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 74 of 384

Dec 22, 2016

RH850G3KH Software

Section 3 Register Set

(5) MCA — Memory protection setting check address

This register is used to specify the base address of the area for which a memory protection setting

check is to be performed.

31 0
rrrrrrrrrrrtrrr -t rr T T T T
MCA MCA31 to MCAO Va'l‘ﬁj:f?r:ézset
Table 3.48 MCA Register Contents
Value after
Bit Name Description R/W Reset
31t00 MCA31 to These bits are used to specify the starting address of the memory area which R/W Undefined
MCAO subjects to a memory protection setting check in bytes.
(6) MCS — Memory protection setting check size
This register is used to specify the size of the area for which a memory protection setting check is to be
performed.
31 0
rrrrrrrrrrrrrrrrrrrr Tt 111 T T T 1 1 17 T T T 1T T T
Val
MCS MCS31 to MCS0 a llji:;t;r: éjset
Table 3.49 MCS Register Contents
Value after
Bit Name Description R/W Reset
31t00 MCS31 to These bits are used to specify the size of the memory area which subjects to R/W Undefined
MCSO0 a memory protection setting check and the size of the target area in bytes.
Because the specified size is assumed to represent an unsigned integer, it is
not possible to check an area in the direction in which the address value
decreases relative to the MCA register value.
Do not specify 0000 0000y for the MCS register.
(7) MCC — Memory protection setting check command
This command register is used to start a memory protection setting check.
31 0
rrrrrrrrrrrrtrrrtrrr T T T T T T T T T T P
Initial Val
MCC MCC31 to MCCO 0%'38 o;ol(J)eH
Table 3.50 MCC Register Contents
Value after
Bit Name Description R/W Reset
31t00 MCC31 to When any value is written to the MCC register, a memory protection setting R/W 0

MCCO check starts. By setting up the MCA / MCS register and then writing to the
MCC register, results are stored in MCR.

Because the check is started by any written value, a check can be started by
using r0 as the source register without using any unnecessary registers.
Note that, for the check, the results are applied according to each area
setting regardless of the state of the PSW.UM bit.

When the MCC register is read, value 0000 0000 is always returned.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 75 of 384

RH850G3KH Software Section 3 Register Set

(8) MCR — Memory protection setting check result

This register is used to store the results of a memory protection setting check.

Be sure to clear bits 31 to 9, 7, and 6.

CAUTIONS

1.

If the specified area to be checked crosses 0000 0000 or 7FFF FFFF, it is judged
as an area setting error, and the MCR.OV bit is set to 1. This means that the
MCR.OV bit must be checked to access the check results. Do not use the check
result until it is confirmed that the result is not invalid (OV = 0).

2. When the default set (MPM.DX, DW, DR) is set to 1, it disables sometimes to get
the correct result. If enabling the specified default operation, do not use the
memory protection setting check function.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MCR| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value after reset
0 0 0 0 0 0 0 ov 0 0 | SXE | SWE | SRE | UXE | UWE | URE Undefined
Table 3.51 MCC Register Contents
Value after
Bit Name Description R/IW Reset
31t09 — (Reserved for future expansion. Be sure to set to 0.) R 0
8 ov If the specified area includes 0000 0000 or 7FFF FFFFy, 1 is stored in this R/W Undefined
bit. In other cases, 0 is stored in this bit.
7,6 — (Reserved for future expansion. Be sure to set to 0.) R 0
5 SXE If the specified area is contained within one protection area and executionis R/W Undefined
permitted for that area in supervisor mode, 1 is stored in this bit. In other
cases, 0 is stored in this bit.
4 SWE If the specified area is contained within one protection area and writing to R/W Undefined
that area is permitted in supervisor mode, 1 is stored in this bit. In other
cases, 0 is stored in this bit.
3 SRE If the specified area is contained within one protection area and reading from R/W Undefined
that area is permitted in supervisor mode, 1 is stored in this bit. In other
cases, 0 is stored in this bit.
2 UXE If the specified area is contained within one protection area and executionis R/W Undefined
permitted for that area in user mode, 1 is stored in this bit. In other cases, 0
is stored in this bit.
1 UWE If the specified area is contained within one protection area and writing to R/W Undefined
that area is permitted in user mode, 1 is stored in this bit. In other cases, 0 is
stored in this bit.
0 URE If the specified area is contained within one protection area and reading from R/W Undefined
that area is permitted in user mode, 1 is stored in this bit. In other cases, 0 is
stored in this bit.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 76 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(9) MPLANn — Protection area minimum address

These registers indicate the minimum address of area n (where n = 0 to 15). The number of protection
area n depends on the hardware specifications. For details, see the hardware manual of the product

used.
31 210
rrrrrrrrrrrrrrrrrrrr T 1T T T T T T T T 1T T/
Value after reset
MPLAN MPLAN 0101 Undefined
Table 3.52 MPLAnN Register Contents
Value after
Bit Name Description R/W Reset
31to2 MPLA31 to These bits indicate the minimum address of area n. R/W Undefined
MPLA2 The MPLAN.MPLA1-0 bits are used implicitly set to 0.
1,0 — (Reserved for future expansion. Be sure to set to 0.) R 0

(10) MPUAN — Protection area maximum address

These registers indicate the maximum address of area n (where n = 0 to 15). The number of protection
area n depends on the hardware specifications. For details, see the hardware manual of the product

used.
31 210
rrrrrrrrrrrrtt1rrrrrtt T 11T 1 T T 1T 17T 1T T T"71T"
Value after reset
MPUAN MPUAN 0101 " Undefined
Table 3.53 MPUAnN Register Contents
Value after
Bit Name Description R/W Reset
31to2 MPUA31 to These bits indicate the maximum address of area n. R/W Undefined
MPUA2 The MPUANn.MPUA1-0 bits are used implicitly set to 1.
1,0 — (Reserved for future expansion. Be sure to set to 0.) R 0
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 77 of 384

Dec 22, 2016

RH850G3KH Software Section 3 Register Set

(11) MPATn — Protection area attribute

These registers indicate the attributes of area n (where n =0 to 15). The number of protection area n
depends on the hardware specifications. For details, see the hardware manual of the product used.

31 26 25 16 15 87 6 543210
T T T T 1T T1 .
sis|s|ululu Initial Value
MPATn|[0[0|0|0|0|O ASID 0|/0{0(0|0|0|0|0|E|G|X|WIRIXIWIR Undefined
Table 3.54 MPATnN Register Contents
Value after
Bit Name Description R/IW Reset
311026 — (Reserved for future expansion. Be sure to set to 0.) R 0
2510 16 ASID These bits indicate the ASID value to be used as the area match condition. R/W Undefined
15t08 — (Reserved for future expansion. Be sure to set to 0.) R 0
7 E This bit indicates whether area n is enabled or disabled. R/W 0
0: Area n is disabled.
1: Area n is enabled.
6 G 0: ASID match is used as the condition. R/W Undefined
1: ASID match is not used as the condition.
If this bit is 0, MPATNn.ASID = ASID.ASID is used as the area match
condition.
If this bit is 1, the values of MPATNn.ASID and ASID.ASID are not used as the
area match condition.
5 SX This bit indicates the execution privilege for the supervisor mode. | R/W Undefined
0: Execution is disabled.
1: Execution is enabled.
4 SW This bit indicates the write permission for the supervisor mode. | R/W Undefined
0: Writing is disabled.
1: Writing is enabled.
3 SR This bit indicates the read permission for the supervisor mode.*1 R/W Undefined
0: Reading is disabled.
1: Reading is enabled.
2 UX This bit indicates the execution privilege for the user mode. R/W Undefined
0: Execution is disabled.
1: Execution is enabled.
1 uw This bit indicates the write permission for the user mode. R/W Undefined
0: Writing is disabled.
1: Writing is enabled.
0 UR This bit indicates the read permission for the user mode. R/W Undefined

0: Reading is disabled.
1: Reading is enabled

Note 1. If access is restricted in SV mode, execution of MDP exceptions or the MIP exception handling itself might
not be possible depending on the settings. Be careful to specify settings so that access to the memory area
necessary for the exception handler and exception handling is permitted.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 78 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

Section 4 Exceptions and Interrupts

An exception is an unusual event that forces a branch operation from the current program to another
program, due to certain causes.

A program at the branch destination of each exception is called an “exception handler”.

CAUTION

This CPU handles interrupts as types of exceptions.

41 Outline of Exceptions

This section describes the elements that assign properties to exceptions, and shows how exceptions
work.

4.1.1 Exception Cause List

RO1US0165EJ0120 Rev.1.20 ENESAS Page 79 of 384
Dec 22, 2016

Section 4 Exceptions and Interrupts

RH850G3KH Software

uononsul Nd

uondaoxa uonesado

s 1 s 1 0 X X ; i Hyz SOA |3 e|qewnsay Ue Jo uonnoax3g juiod-Buiyeolq dd4d
uofje[oIA (eba)iIAlud ssad0ke)
uonoajoid uondaoxa
s 1 L 1 0 X X ; i Hig SOA 34 9|qewnsay Kowa| uonosjold Alowas dan
90U8.11N200
sseooe uondeoxa
s l 3 3 0 X X ¥ 13 H0o SOA 34 9jqewnssy paubiesiiy juswubiesipy VN
UON}E|OIA
uoissiwiad
sse00e
Juononyjsul
pabajiaud uondaoxa
s 1 L 1 0 X X 9 oL Hov SOA 34 9|qewnsay e JO uonnoexg uononyisul abs|iAlg 34
uolne|oIA
uoissiwiad
ss8008
Juonon.sul
108$90014d02 uondaoxa
s 1 L 1 0 X X [oL - Hzg-Hog SOA 34 9|qewnsay ©JO Uojnoax3 ajgesnun 10sse201do) dodon
uoponysul
paniasal uopndaoxa
s 1 L 1 0 X X ¥ oL Hoo SOA 34 9|qewnsay e JO uonlnoexy uononsul panlesay N
ox UOI®
uoljonJysul buunp
S l L L 0 X X € (o] e Hy-HoL ON 34 djqewnsay indur Joug Jous wayshs HIISAS
uole|[oIA (abaj1aud uonnoaxa)
uoloayjoud uondaoxa
s 1 L 1 0 X X 1 oL Hoe SOA 34 9|qewnsay Kowa| uonosjold Alowas dIN
g«Joll0nU0D
S 0 S A 0 0 0 b ¥ g«M4d11-H0001 SOA 3 Bugeulws ydnusju) ydnusjui sesn - LLG-01INIIF
ON :uopnelo}say uononisul Nd4 (es1o0a1dwi)
s 1 s 1 0 0 0 - b Hz, ‘SOA (UINjeY 13 Bupeuiwis] ue jo uopnoex3 uondeoxe Nd4 1dd
g«Jollou00
S 0 L L 0 0 X € € Hod SOA 34 Bugeuwis ydnusiu ydnusyur INI34 IN[EE]
mu:&:_
s L L 1 0 X X 4 [e« FdL-H0L ON 34 Buneuiwss] Jole WelsAg Jo118 Wa)sAg HYISAS
gA0ll013u00
s 0 3 A 0 X X 3 € HO3 ON 34 Buneuws) wdnusjul ydnusjur NN INN34
0 0 0 L 0 X X — l SUON — — Buneuuwusy gandur josay josey 13834
Ag3 d3 dN ai WN dN alr Auoud I19A97 ¢, 9pOD asned uoljel0}say 99IN0SIAY ,» 9dAL ?oinog awepN uondaoxgy
Kuoud uondaoxgy Juin}ay panes
(Msd) s1epdn (Msd) uontpuod . 19pIo Apiond
juawbpajmouroy
(z/1) 3s17 @snep uondaoxy L'y @l1qeL

Page 80 of 384

RENESAS

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

Section 4 Exceptions and Interrupts

RH850G3KH Software

‘AleAnoadsal {(znD 01 0ND) uoissiwliad asn Jossao01doo ayj 0) puodsaliod Hzg oy Hog g 810N
‘lona] Ajuoud awes ayy uiyym Aylolid ou S| 81ay] "uolNdaXad UOHONIISUl 0} 8NP 1IN0 Ady} asnedaq AJ9AISN|OXa Jnd20 suoldaoxa 8say] ‘g 9JON
*SUOI}ONJIsUI JO JapJo uoiesado ayj uo spuadap siyl / 9J0N
‘l]auueyd ay} 0} Buipiodoe pajoslas ale (L1G 0} 0 sjpuueyd) H441L o3 Hopol "9 @1oN
‘uonouny ay} jo uonduosap ay) ul payoads asimiayio ssajun Hopoo aJe sjiq asay
‘uondaoxa yoea Jo} paulap apod PajIe}ap ay) Uleluod apod asned uo)daoxa ay} Jo siig 91 Jaybiy ayl ‘umoys ale apod asned uoidaoxa ay} Jo sHg 9| Jamo| 8yl ‘G 9JON
‘Bupyse Ayiond pue Ajuold uondaoxg ydniidjul ‘G L'y Uo1}0ag 99s ‘s|iejap 104
"Bumes Je)sibal ay) uo Buipuadep Aten |44 pue LLGINIIF 0} OLNIIF jo senuoud 8yl ¢ 8JoN
‘pasn jonpoud 8y} Jo [enuew alempiey ay) 998s ‘S|iejep J04 ‘g SJON
19paQ Ajuold pue suonipuo) Juswbpajmouysy uondasx3y ‘p’L 'y UoI}dag 99s ‘s|iejap Jo4
‘Auoud Jaybiy e sey anjea Jajjews y ‘Ajuond usy) pue ‘[aas] Ayoud ay) Aq paxoayo si suoiidaoxa oy Ajuoud juswbpaimousoe a8yl ‘g 810N
‘suondaox3 jo sadA] ‘g’L'y uoljoag 99s ‘s|iejep Jo4 ‘| SJON
UoIlIPUOD JusWwBpa|MOUOE UB JON X ‘paulelay 'S :3)ON
uoljonJsul
dvdl
S l S 3 0 X X g* cl Hig-Hog SOA El Buipusd auyj Jo uonnoexy | deny j9A9] |3 ldvdl
uoljonJsul
dvdl
S l S 3 0 X X g* cl Hip-Hot SOA El Buipusd auyj Jo uonnoexy 0 desy joAs) |3 0dvdl
uolonJsul
dvdl34d
S l 3 3 0 X X g* cl Hig-Hig SOA 34 Buipusd auyj Jo uonnoexy dely [oAs] 34 dvd1l3d
uoljonJisul
TIVOSAS
S l S 3 0 X X g* cl H4408-H0008 SOA El Buipusd auyj Jo uonnoexy I1eo wiayshs TIVOSAS
Ag3 d3 dN ail N dN al fuoud I19Ae7 ¢, 8pOD Bsnen uoljeI0}SdY 99IN0SAY L+ adAL 9@21nog aweN uopdaoxgy

Kuoud uondaosxy Juinyay paAesg

(Msd) @1epdn (MSd) uonipuod ., 19piQ Auoud
jJuswbpajmouyoy

(z/2) ¥s17 @sne9 uondaoxy L'y @l1qeL

Page 81 of 384

RENESAS

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.1.2 Overview of Exception Causes

(1)

()

©)

(4)

(5)

(6)

(7)

(8)

(9)

The following is an overview of the exception causes handled in this CPU.

RESET

These are signals generated when inputting a reset. For details, see Section 8, Reset.

FENMI, FEINT, and EIINT

These are interrupt signals that are input from the interrupt controller to activate a certain program. For
details about the interrupt functions, sece Section 3.3, Interrupt Function Registers and the
specifications of the interrupt controller incorporated in your product.

SYSERR

This is a system error exception. This exception occurs when an error defined by the hardware
specifications is detected. An error that occurs at an instruction fetch access is reported as a resumable-
type SYSERR exception. Other errors are reported as a terminating-type SYSERR exception.

CAUTION

The cause of an SYSERR exception is determined according to the hardware
functions. For details, see the hardware manual of the product used.

FPl and FPP

These are exceptions that occur when a floating-point instruction is being executed. For details, see
Section 6.1, Floating-Point Operation.

MIP and MDP

These are exceptions that occur when the MPU detects a violation. Detecting an exception is performed
when the address at which the instruction will access the memory is calculated. For details, see
Section 5.1, Memory Protection Unit (MPU).

RIE

This is a reserved instruction exception. This exception occurs when an attempt is made to execute the
opcode of an instruction other than an instruction whose operation is defined. The operation is the same
as a RIE instruction whose operation is defined. For details, see 7.1.3, Reserved Instructions in
Section 7, Instruction.

PIE

This is a privilege instruction exception. This exception occurs when an attempt is made to execute an
instruction that does not have the required privilege. For details, see Section 2.1.3, CPU Operating
Modes and Privileges, Section 2.2, Instruction Execution, and Section 2.5.2, (1) LDSR
and STSR.

UCPOP

This is an exception that occurs when an attempt is made to execute a coprocessor instruction when the
coprocessor in question is not usable. For details, see Section 2.4, Coprocessors.
MAE

This is an exception that occurs when the result of address calculation is a misaligned address. For
details, see Section 2.6.3, Data Alignment.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 82 of 384

Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

(10) TRAP, FETRAP, and SYSCALL

These are exceptions that occur according to the result of instruction execution. For details, see
Section 7, Instruction.

41.3 Types of Exceptions
This CPU divides exceptions into the following three types according how they are executed.
e Terminating exceptions
e Resumable exceptions

e Pending exceptions

(1) Terminating exceptions

This is an exception acknowledged by interrupting an instruction before its operation is executed.
These exceptions include interrupts and imprecise exceptions.

These interrupts do not occur as a result of executing the current instruction and are not related to the
instruction. When an interrupt occurs, the PSW.EP bit is cleared to 0, unlike other exceptions.
Consequently, termination of the exception handler routine is reported to the external interrupt
controller when the return instruction is executed. Be sure to execute an instruction that returns
execution from an interrupt while the PSW.EP bit is cleared to 0.

CAUTION

The PSW.EP bit is cleared to 0 only when an interrupt (INTO to INT511, FEINT, or FENMI)
is acknowledged. It is set to 1 when any other exception occurs.

If an instruction to return execution from the exception handler routine that has been
started by generation of an interrupt is executed while the PSW.EP bit is set to 1, the
resources on the external interrupt controller might not be released, causing
malfunctioning.

If the result of executing the instruction before the interrupted instruction was invalid, there is a delay,
and then an imprecise exception occurs. For an imprecise exception, because instructions following the
instruction that caused the exception might have already finished executing, resulting in the CPU state
at the time of the exception cause not being saved, it is not possible to restore the original processing
for re-execution after the processing of this kind of exception.

The return PC of a terminating exception is the PC of the terminated instruction (current PC).

(2) Resumable exceptions

This is an exception acknowledged during the execution of instruction operation before the execution
is finished. Because this kind of an exception is correctly acknowledged without executing the next
instruction, it is also called a precise exception. General-purpose registers and system registers are not
updated due to the occurrence of an exception of this type. The PC value on return from the exception
continues to point to the instruction where the exception occurred, so execution can be restarted from
the state of before the exception occurred.

The return PC of a resumable exception is the PC of the instruction which caused the exception
(current PC).

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 83 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

(3) Pending exceptions

This is an exception acknowledged after the execution of an instruction finishes as a result of executing
the instruction operation. Pending exceptions include software exceptions. Because pending exceptions
occur as a result of normal instruction execution, the processing resumes with the instruction following
the instruction that caused the pending exceptions when processing control is returned. The original
processing can be normally continued after the exception handling.

The return PC of a pending exception is the PC of the next instruction (next PC).

4.1.4 Exception Acknowledgment Conditions and Priority Order

The CPU acknowledges only one exception at specific timing based on the exception acknowledgment
conditions and priority order. The exception to be acknowledged is determined based on the exception
acknowledgment conditions and priority order, as shown in Figure 4.1 below.

Mask by h
. Mask function defined acknowledgment Priority 1
—»
Exception request for each function conditionNote
. J

. . . Selection by
. . . priorityNete
. / N\
Mask by h
Exceti " Mask function defined acknowledgment Priority x Priority level 1
xeeption reques for each function conditionNete ortly leve
J
Selection by
priority levelNete | Exception
(Priority 1) acknowledged
Priority level n
N

Mask by h
Exception request Mask function defined acknowledgment Priority 1
xeeptl au for each function conditionNete

J

Selection by
priorityNete

Mask by h
Exception request Mask function defined acknowledgment Priority y N
P q for each function conditionNote

J

Note 1. See Table 4.1

Figure 4.1 Exception Acknowledgment Conditions and Priority Order

In Table 4.1, an exception with “0” in the acknowledgment condition column can be acknowledged
when the corresponding bit is “0”. For this kind of exception, acknowledgment is held pending when
the corresponding bit is “1”. When it changes to “0” and the acknowledgment conditions are met,
acknowledgment of the exception becomes possible. If no value is specified for a bit, it is not an
acknowledgment condition. If multiple bits are specified as conditions, all the conditions must be met
simultaneously.

If more than two exceptions satisfy the acknowledgment conditions simultaneously, one exception is
selected according to the priority order. The priority order is determined in multiple stages; priority
level, and then priority. A smaller number has a higher priority.

When a terminating exception is not acknowledged, it is held pending. If it occurs at the time of a reset,
it is not held pending. For details, sce Section 4.2.1, Special Operations.

For details about acknowledgment conditions, priority level, and priority, see Table 4.1, Exception
Cause List.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 84 of 384
Dec 22, 2016

RH850G3KH Software

Section 4 Exceptions and Interrupts

41.5 Interrupt Exception Priority and Priority Masking

An interrupt (EIINT#) and an imprecise floating-point operation exception (FPI) can be masked for
each exception priority or interrupt priority by setting registers. This function allows the software

implementation of an interrupt ceiling with a more flexible software structure and no maintenance.

CAUTION

In VB850E2 products, the ISPR, PMR, and ICSR registers were defined as functions of
the interrupt controller. In this CPU, they are defined as functions of the CPU, but their
functions are basically equivalent. Note that there are some differences in

functionality.

Figure 4.2 shows an overview of the functions of interrupt exception priority and priority masking.

Mask

[+

Request flag

Interrupt request =D—

Mask

[+

Request flag

Interrupt request ——ﬂ—

Setting for each channel

Setting for each channel Interrupt
controllerNote!

Priority

judgment

Interrupt request
to the CPU core

FPEC.FPIVD

. Note 2
FPI exception cause e 4)[}

Note 1. For details about the interrupt controller, see the hardware manual of the product used.

Note 2. An FPI exception cause might occur if it is allowed by the FPU and if imprecise exceptions are specified.
For details, see Section 6.1.5, Floating-Point Operation Exceptions and Section 6.1.7, Precise
Exceptions and Imprecise Exceptions.

Note 3. The PMEI and PMFP bits in the ICSR register show EIINTn or FPI masked by PMR. If EIINTn or FPI is
masked by the ISPR register or the masking specification of another function before masked by the PMR
register, the PMEI and PMFP bits are not affected.

(FPI exception priority specification)

Priority Mask by Mask by To exception
judgment ISPR PMR priority order
of EIINTn judgment
if not masked
A
If masked by PMRNote 3
ICSR. ICSR.
PMEI PMFP

FPIPR

Figure 4.2 Interrupt Exception Priority and Priority Masking

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 85 of 384

RH850G3KH Software

Section 4 Exceptions and Interrupts

(1) Interrupt priority

For an interrupt (EIINT#) and an imprecise floating-point exception (FPI), the exception priority can be

changed by setting registers. EIINT#z and FPI are defined with the same priority level, and you can control

the priority relationship between EIINT# and FPI by changing their exception priorities.

The priority relationship between EIINT# and FPI is shown in Figure 4.3. If they have the same priority,
FPI has precedence. The priority of FPI can be set by using the FPIPR register.

4
High priority

Low priority

FPI Priority O
EIINTn Priority O

FPI Priority 1

EIINTn Priority 1
FPI Priority 2

EIINTn Priority 2

EIINTn Priority 13
FPI Priority 14

EIINTn Priority 14
FPI Priority 15

EIINTn Priority 15
FPI Priority 16

Figure 4.3

Priority Relationship between EIINTn and FPI

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 86 of 384

RH850G3KH Software Section 4 Exceptions and Interrupts

(2) Interrupt priority mask

EIINT# and FPI might be masked at different priorities by the ISPR register and PMR register. These
registers should be used as follows.

For the ISPR register, the bit corresponding to the priority is set (1) when the hardware acknowledges
an interrupt, and interrupts with the same or lower priority are masked. When the EIRET instruction
corresponding to the interrupt is executed, the corresponding bit of the ISPR register is cleared (0) to
clear the mask.

This automatic interrupt ceiling makes multiplexed interrupt servicing easy without using software
control.

The PMR register allows you to mask specific interrupt priorities with software. Use it to raise the level
of the interrupt ceiling temporarily in a program. The mask setting specified by the ISPR register and
the mask setting of PMR might overlap, and an interrupt is masked if it is masked with one or the other
of them. Normally, use the PMR register to raise the ceiling value from the ceiling value of the ISPR
register.

The function of the INTCFG register allows you to disable auto update of the ISPR register upon
acknowledgment of and return from an interrupt. To perform interrupt ceiling control by using software
without using the function of the ISPR register, set (1) the ISPC bit of the INTCFG register, clear the
ISPR register, and then control the ceiling value with software by using the PMR register.

Also, when you are using the PMR register, you can check if any interrupt is masked with the PMR
register by using the ICSR register.

(3) Differences in operation between EIINTn and FPI

EIINT# and FPI behave in the same way up to acknowledgment of an exception. However, their
operations partly differ after acknowledgment.

For acknowledgment of an FPI exception, the ISPR register is not updated. As a result, multiple
interrupts with a lower priority than the FPI exception might occur when the PSW.ID bit is cleared (0)
by the EI instruction during FPI exception handling, releasing the interrupt disabled state.

Generally, an FPI exception is used by setting a higher priority than programs using the FPU. As a
result, when an interrupt with a lower priority is acknowledged during an FPI exception, another FPI
exception might occur before the FPI exception handling is complete. Therefore, interrupt priority
masking must be specified properly by using the PMR register before releasing the interrupt disabled
state during an FPI exception.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 87 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

41.6 Return and Restoration

When exception handling has been performed, it might affect the original program that was interrupted
by the acknowledged exception. This effect is indicated from two perspectives: “Return” and
“Restoration”.

e Return: Indicates whether or not the original program can be re-executed from where it was
interrupted.

e Restoration: Indicates whether or not the processor statuses (status of processor resources such as
general-purpose registers and system registers) can be restored as they were when the original
program was interrupted.

An exception that cannot be returned or restored from (“No” in Table 4.1) might cause the return PC
to be lost, making it impossible to return from the exception to the original processing by using a return
instruction. An exception whose trigger cannot be selected is an unreturnable or unrestorable
exception.

For an unrestorable exception, it is possible to return to the original program flow. However, because
the state before the occurrence of the exception cannot be restored at that point, care must be taken in
continuing subsequent program operation.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 88 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.1.7 Context Saving

To save the current program sequence when an exception occurs, appropriately save the following
resources according to the function definitions.

e Program counter (PC)
e Program status word (PSW)
e Exception cause code (EIIC, FEIC)
o Work system register (EIWR, FEWR)
The resource to use as the saving destination is determined according to the exception type. Saved
resource determination is described below.
(1) Context saving

Exceptions with certain acknowledgment conditions might not be acknowledged at the start of
exception handling, based on the pending bits (PSW.ID and NP bits) that are automatically set when
another exception is acknowledged.

To enable processing of multiple exceptions of the same level that can be acknowledged again, certain
information about the corresponding return registers and exception causes must be saved, such as to a
stack. This information that must be saved is called the “context”.

In principle, before saving the context, caution is needed to avoid the occurrence of exceptions at the
same level.

The work system registers that can be used for work to save the context, and the system registers that
must be at least saved to enable multiple exception handling are called basic context registers. These
basic context registers are provided for each level.

Table 4.2 Basic Context Registers

Exception Level Basic Context Registers
El level EIPC, EIPSW, EIIC, EIWR
FE level FEPC, FEPSW, FEIC, FEWR
RO1US0165EJ0120 Rev.1.20 RENESAS Page 89 of 384

Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.2 Operation When Acknowledging an Exception

Check whether each exception that is reported during instruction execution is acknowledged according
to the priority. The procedure for exception-specific acknowledgment operation is shown below.

(1) Check whether the acknowledgment conditions are satisfied and whether exceptions are

acknowledged according to their priority.
(2) Calculate the exception handler address according to the current PSW value*",
(3) For FE level exceptions, the following processing is performed.
e Saving the PC to FEPC
e Saving the PSW to FEPSW
e Storing the exception cause code in FEIC
e Updating the PSW*2

o Store the exception handler address calculated in (2) in the PC, and then pass control to the

exception handler.
(4) For El level exceptions, the following processing is performed.
e Saving the PC to EIPC
e Saving the PSW to EIPSW
e Storing the exception cause code in EIIC
e Updating the PSW*2

o Store the exception handler address calculated in (2) in the PC, and then pass control to the

exception handler.
Note 1. For details, see Section 4.5, Exception Handler Address.
Note 2. For the values to be updated, see Table 4.1, Exception Cause List.

The following figure shows steps (1) to (4).

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 90 of 384
Dec 22, 2016

RH850G3KH Software

Section 4 Exceptions and Interrupts

(An exception occurs.)

No Are the PSW.NP
acknowledgment conditions
atisfied?
No Are the PSW.ID

acknowledgment conditions
satisfied?

Yes

Calculate the exception
handler address.

!

Is this an FE level No
exception?
Yes
Y

FEPC ~—PC EIPC ~—PC
FEPSW —PSW EIPSW —PSW
FEIC «Exception cause code| |[EIIC —Exception cause code
Update PSW. Update PSW.

Y

PC«—Exception handler address

A

A\
(Pending exception handling) (

Exception handling)

Figure 4.4

Operation When Acknowledging an Exception

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 91 of 384

RH850G3KH Software Section 4 Exceptions and Interrupts

4.2.1 Special Operations

(1) EP bit of PSW register

If an interrupt is acknowledged, the PSW.EP bit is cleared to 0. If an exception other than an interrupt is
acknowledged, the PSW.EP bitis setto 1.

Depending on the EP bit setting, the operation changes when the EIRET or FERET instruction is
executed. If the EP bit is cleared to 0, the bit with the highest priority (0 is the highest) among the bits
set to 1 in ISPR.ISP15 to ISPR.ISPO is cleared to 0. Also, the end of the exception handling routine is
reported to the external interrupt controller. This function is necessary for correctly controlling
resources, such as a request flag, on the interrupt controller when an interrupt is acknowledged or when
execution returns from the interrupt.

To return from an interrupt, be sure to execute the return instruction with the EP bit cleared to 0.

(2) Coprocessor unusable exception

For coprocessor unusable exceptions, the exception occurrence opcode corresponding to the status of
the CU bit of the PSW register differs according to the specifications of each product.

For coprocessor instructions and defined opcodes, if an attempt is made to execute a coprocessor
instruction that is not included in the product or for which the operation state prevents use, or an LDSR
or STSR instruction attempts to access a coprocessor system register, a coprocessor unusable exception
(UCPOP) immediately occurs.

For details, see Section 2.4.3, Coprocessor Unusable Exceptions.

(3) Reserved instruction exception

If an opcode that is reserved for future function extension and for which no instruction is defined is
executed, a reserved instruction exception (RIE) occurs.

However, which of the following two types of operations each opcode is to perform might be defined
by the hardware specifications.

e Reserved instruction exception occurs.
e Operates as a defined instruction.

An opcode for which a reserved instruction exception occurs is always defined as an RIE instruction.

(4) Reset

Reset is performed in the same way as exception handling, but it is not regarded as EI level exception
or FE level exception. The reset operation is the same that of an exception without acknowledgment
conditions, but the value of each register is changed to the value after reset. In addition, execution does
not return from the reset status.

All exceptions that have occurred at the same time as CPU initialization are canceled and not
acknowledged even after CPU initialization.

For details, see Section 8, Reset.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 92 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.3 Return from Exception Handling

To return from exception handling, execute the return instruction (EIRET or FERET) corresponding to
the relevant exception level.

When a context has been saved, such as to a stack, the context must be restored before executing the
return instruction. When execution is returned from an irrecoverable exception, the status before the
exception occurs in the original program cannot be restored. Consequently, the execution result might
differ from that when the exception does not occur.

The EIRET instruction is used to return from EI level exception handling and the FERET instruction is
used to return from FE level exception handling.

When the EIRET or FERET instruction is executed, the CPU performs the following processing and
then passes control to the return PC address.

(1) When the EIRET instruction is executed, return PC and PSW are loaded from the EIPC and
EIPSW registers.
When the FERET instruction is executed, return PC and PSW are loaded from the FEPC and
FEPSW registers.

(2) Control is passed to the address indicated by the return PC that were loaded.

(3) When the EIRET instruction is executed while EP = 0 and INTCFG.ISPC = 0, the CPU updates
the ISPR register.
When the FERET instruction is executed, the CPU does not update the ISPR register.

The flow for returning from exception handling using the EIRET or FERET instruction is shown
below.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 93 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

C xXRET instructionNetet)

A 4

PC —xxPCNote2
PSW —xxPSVyNote3

l

(PSW.EP = 0) &&
(INTCFG.ISPC = 0)?2

Update the ISPR registerNote

y
(Execute the return destination>
instruction.

Note 1. Itis the EIRET instruction when returning from an El level exception, or the FERET instruction when
returning from an FE level exception.
Note 2. Itis EIPC when returning from an El level exception, or FEPC when returning from an FE level exception.

Note 3. Itis EIPSW when returning from an El level exception, or FEPSW when returning from an FE level
exception.

Note 4. Only for the EIRET instruction.

Figure 4.5 Return Instruction-Based Exception Return Flow
RO1US0165EJ0120 Rev.1.20 ENESAS Page 94 of 384

Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.4 Exception Management

This CPU has the following functions to manage exceptions in order to prevent mutual interference
between programs during multi-programming.

e Exception synchronization instruction (SYNCE)
¢ Function to check pending exception
o Function to cancel pending exception

This CPU defines imprecise exceptions that have a delay time until the exception handling is started
after the cause of the exception has been generated.

This CPU has an exception management function to wait for all exceptions caused by a program before
the program is changed or terminated, so that the exceptions are sequentially processed. This prevents
the influence of illegal processing of a certain program from reaching the other programs. It also
prevents termination processing of a program from being completed without the exceptions being
processed.

441 Exception Synchronization Instruction

Imprecise exceptions can be synchronized using the SYNCE instruction. In this CPU, this is equivalent
to an imprecise floating-point operation exception (FPI). To acknowledge imprecise exceptions at any
time, perform the following procedure.

(1) Mask the acknowledgment conditions of the imprecise exception to be acknowledged (by
clearing PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this point, all the imprecise
exceptions that are generated by the instructions preceding the SYNCE instruction have always
been reported to the CPU. However, acknowledging an exception might be masked by the
acknowledgment condition set in (1) and the exception might have been held pending.

(3) Asaresult of (2), an exception that is not masked is acknowledged. If there are two or more
sources of exceptions, the exceptions are sequentially acknowledged in accordance with their
priority.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 95 of 384

Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.4.2 Checking and Canceling Pending Exception

To check if there is an exception that is held pending, follow this procedure.

(M

2

3)

4

Set a mask so that the acknowledgment conditions of the imprecise exception to be checked are
not satisfied (by setting PSW.ID and NP).

Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise
exceptions that are generated by the instructions preceding the SYNCE instruction have always
been reported to the CPU. The exception to be checked is not acknowledged but held pending
because of the mask set in (1). However, the other exceptions might be acknowledged.

Read the exception report bit of the exception to be checked. If the bit is 1, the exception has been
held pending.

Clear the mask set in (1) as necessary.

To not acknowledge but cancel a pending exception without executing exception handling, follow this

procedure.

(1) Set a mask so that the acknowledgment conditions of the imprecise exception to be canceled are
not satisfied (by setting PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise
exceptions that are generated by the instructions preceding the SYNCE instruction have always
been reported to the CPU. The exception to be canceled is not acknowledged but held pending
because of the mask set in (1). However, the other exceptions might be acknowledged.

(3) Clear the exception report bit of the exception to be canceled.

(4) When cancellation has been completed, clear the mask set in (1) as necessary.

The function to cancel each exception is provided by the following registers.

Table 4.3 Checking and Canceling Pending Exception

Exception Cause Canceling Bit Remark
FPI FPU The FPIVD bit in the FPEC Clearing the FPIVD bit ends notification of an FPI
exception instruction register exception and cancels disabling of the succeeding

FPU instructions. See Section 3.4.2, Floating-
Point Function System Registers (6) FPEC —
Floating-point exception control for the details.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 96 of 384

Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.5 Exception Handler Address

For this CPU, the exception handler address used for execution during reset input, exception
acknowledgment, or interrupt acknowledgment can be changed according to the settings.

451 Resets, Exceptions, and Interrupts

The exception handler address for resets and exceptions is determined by using the direct vector
method, in which the reference point of the exception handler address can be changed by using the
PSW.EBV bit, RBASE register, and EBASE register. For interrupts, the direct vector method and table
reference method can be selected for each channel. If the table reference method is selected, execution
can branch to the address indicated by the exception handler table allocated in the memory.

CAUTION

The exception handler address of EIINTn selected using the direct vector method
differs from that of V850E2 products. In V850E2 products, a different exception handler
address is individually assigned to each interrupt channel (EIINTh). In this CPU, one
exception handler address is assigned to each interrupt priority. Consequently,
interrupts that have the same priority level branch to the same exception handler.

(1) Direct vector method

The CPU uses the result of adding the exception cause offset shown in Table 4.4, Selection of Base
Register/Offset Address to the base address indicated by the RBASE or EBASE register as the
exception handler address.

Whether to use the RBASE or EBASE register as the base address is selected according to the
PSW.EBV bit*". If the PSW.EBV bit is set to 1, the EBASE register value is used as the base address.
If the bit is cleared to 0, the RBASE register value is used as the base address.

However, reset input and some exceptions*2 always refer to the RBASE register.

In addition, user interrupts refer to the RINT bit of the corresponding base register, and reduce the
offset address according to the bit status. If the RBASE.RINT bit or EBASE.RINT bit is set to 1, all
user interrupts are handled using an offset of 100y. If the bit is cleared to 0, the offset address is
determined according to Table 4.4, Selection of Base Register/Offset Address.

Note 1. Exception acknowledgment itself sometimes updates the status of the PSW.EBV bit. In this
case, the base register is selected based on the new bit value. For details, see Section 4.5,
Exception Handler Address.

Note 2. The exceptions that always reference RBASE are determined according to the hardware
specifications.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 97 of 384
Dec 22, 2016

RH850G3KH Software

Section 4 Exceptions and Interrupts

RBASE=EBASE —p;

(1) Example of use when RBASE = EBASE

Address space

INTPR15
INTPR14

FETRAP

(Empty)

SYSERR
RESET

(2) Example of use when RBASE # EBASE

EBASE

RBASE

»

Address space

INTPR15

INTPR14

FETRAP

(Empty)

SYSERR

(Empty)

La

»

INTPR15

INTPR14

FETRAP

(Empty)

SYSERR

RESET

Figure 4.6

NOTE

Direct Vector Method

INTPRXx is the same as EINTn (priority x) in Table 4.4, Selection of Base Register/Offset

Address.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 98 of 384

RH850G3KH Software Section 4 Exceptions and Interrupts

The table below shows how base register selection and offset address reduction function for each
exception to determine the exception handler address. The PSW bit value determines the exception
handler, based on the value after being updated due to the acknowledgment of an exception.

Table 4.4 Selection of Base Register/Offset Address

PSW.EBV =0 PSW.EBV =1 RINT =0 RINT =1
Base Register Offset Address
RESET RBASE None*'! 0004 0004
SYSERR EBASE 0104 0104
FETRAP 0304 0304
TRAPO 0404 0404
TRAP1 0504 0504
RIE 060y 060y
FPP/FPI 0704 0704
UCPOP 080y 080y
MIP/MDP 0904 0904
PIE 0AOy 0AOy
Debug*? 0BOy 0BOy
MAE 0COy 0COy
(R.F.U.) 0DOy 0DOy
FENMI OEOy OEOy
FEINT OF Oy OFO0y
EIINTn (priority 0) 1004 1004
EIINTn (priority 1) 1104
EIINTn (priority 2) 1204
EIINTn (priority 3) 130y
EIINTn (priority 4) 140y
EIINTn (priority 5) 150y
EIINTn (priority 6) 1604
EIINTn (priority 7) 170y
EIINTn (priority 8) 1804
EIINTn (priority 9) 190y
EIINTh (priority 10) 1A0y
EIINTn (priority 11) 1BOy
EIINTn (priority 12) 1C0y
EIINTn (priority 13) 1D0y
EIINTn (priority 14) 1EO4
EIINTn (priority 15) 1FOy4

Note 1. An exception generated to update EBV to 0.
Note 2. The exception for debug function.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 99 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

(2)

Base register selection is used to execute the exception handling for resets and some hardware errors by
using programs in a relatively reliable area such as ROM instead of areas that are easily affected by soft
errors such as RAM and cache areas. The user interrupt offset address reduction function is used to
reduce the memory size required by the exception handler for specific system-internal operating
modes. The main purpose of this is to minimize the amount of memory consumed in operating modes
that use only the minimum functionality, which are used, for example, during system maintenance and
diagnosis.

Table reference method

In the direct vector method, there is one user-interrupt exception handler for each interrupt priority
level, and interrupt channels that indicate multiple interrupts with the same priority branch to the same
interrupt handler, but some users might want to use code areas that differ from the start time for each
interrupt handler.

When using the table reference method, if the table reference method is specified as the interrupt
channel vector selection method for the interrupt controller, the method for determining the exception
handler address when an interrupt request corresponding to that interrupt channel is acknowledged
differs as follows.

(1) In any of the following cases, the exception handler address is determined by using the direct
vector method.

e When PSWEBV =0 and RBASE.RINT = 1
e When PSW.EBV = | and EBASE.RINT = 1
e When the interrupt channel setting is not the table reference method

(2) In cases other than (1), calculate the table reference position.
Exception handler address read position = INTBP register + channel number x 4 bytes

(3) Read word data starting at the interrupt handler address read position calculated in (2).

(4) Use the word data read in (3) as the exception handler address.

CAUTION

For details about the interrupt channel settings, see the hardware manual of the
product used.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 100 of 384

Dec 22, 2016

RH850G3KH Software

Section 4 Exceptions and Interrupts

A table of exception handler address read positions corresponding to interrupt channels and an

overview of the placement in memory are shown below.

Table 4.5 Exception Handler Address Expansion
Type Exception Handler Address Read Position
EIINT interrupt channel 0 INTBP +0 x4
EIINT interrupt channel 1 INTBP + 1 x4

EIINT interrupt channel 510

INTBP + 510 x 4

EIINT interrupt channel 511

INTBP + 511 x 4

INTBP

RBASE = EBASE

Address space

Handler INT1

Handler INTO

INT511 | INT510|INT509]INT508

INT507 [INT506{INT505|INT504

INTA

INT7 | INT6 | INTS

INT3 [INT2 | INT1 [HNTO

INTPR15

INTPR14

FETRAP

(Empty)

SYSERR

»

RESET

Lt

Reference the
absolute address in
the table, and then
branch to the handler.

If not using the table
is specified (for each
channel), branch to
the fixed address
handler according to
the interrupt priority
level.

Figure 4.7

For details about the exception handler address selection method settings for each interrupt channel,

see the hardware manual of the product used.

Overview of Using the Table Reference Method

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 101 of 384

RH850G3KH Software Section 4 Exceptions and Interrupts

4.5.2 System Calls

For system call exceptions, the referenced table entry is selected according to the value of the vector
specified based on the opcode and the value of the SCCFG.SIZE bit, and the exception handler address
is calculated according to the contents of the table entry and the SCBP register value.

As an example, if table size n is specified by SCCFG.SIZE, the table entry is selected as shown below.
Note that if the vector specified by the SYSCALL instruction (vector 8) is greater than table size n, the
table entry referenced by vector n + 1 to 255 is table entry 0.

Table 4.6 System Calls

Vector Exception Cause Code Referenced Table Entry
0 0000 8000y Table entry O

1 0000 8001H Table entry 1

2 0000 8002 Table entry 2

n-1 0000 8000y + (n— 1)y Table entry n — 1

n 0000 8000y + ny Table entry n

n+1 0000 8000H + (n + 1)y Table entry 0

254 0000 80FEy Table entry O

255 0000 80FFy Table entry 0

CAUTION

Because table entry 0 is selected even if a vector that exceeds n, which is specified for
SCCFG.SIZE, is specified, allocate the error processing routine.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 102 of 384
Dec 22, 2016

RH850G3KH Software Section 4 Exceptions and Interrupts

4.5.3 Models for Application

The following describes the relations among the RBASE, EBASE, and PSW.EBV bit, and the models
intended for application. Principally, in cases where a reset occurs and there is no main code in the
address space, this main code is first expanded into the address space (which is often in DRAM) by
bootstrapping to enable execution, or it is used to when inserting an instruction cache into an exception
handling routine.

Immediately after a reset, when PSW.EBV = 0, operations use the ROM area where the minimum
maintenance code was placed as specified in RBASE. After bootstrapping, and after the required code
has been expanded in RAM, the code position in the RAM is set to the EBASE register and the
PSB.EBV bit is set to 1*.

Normally, this is the mode of software operations. As for exceptions or interrupts in the range of
normal operations, because they are acknowledged when PSW.EBV = 1, the code operates in the RAM
area indicated by EBASE, but in cases where phenomena (such as RAM errors or cache errors) occur
that would indicate the RAM code itself has not remained correct, an exception is triggered to clear to
0 the PSB.EBV bit*2. In such cases, there is a possibility that the exception handler itself might not be
executed correctly using the code at the position indicated by EBASE, so control is moved to the
exception handler in the ROM code indicated by RBASE and the PSW.EBV bit is cleared to 0.

Once the PSW.EBV bit is cleared to 0, even if an ordinary exception were to occur while in this mode,
the status of the PSW.EBV bit is handed over, so that a mode enabling correct execution of RAM code
is maintained, and operation uses code in the ROM area indicated by RBASE until the PSW.EBV bit is
set to 1 by the maintenance code.

Note 1. Normally, an EIRET or FERET instruction should be used to set the PSW.EBV bit to 1.

Note 2. The hardware specifications determine which exception has which cause, and whether or not
an exception is needed to clear PSW.EBV to 0.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 103 of 384
Dec 22, 2016

RH850G3KH Software

Section 4 Exceptions and Interrupts

Reset

l

PSW.EBV =0
RBASE = ROM area

EBASE = ROM area

Initialization complete

PSW.EBV = W

Maintenance complete

e

RBASE = ROM area
EBASE = RAM areaJ

Ordinary exception

Exception when execution
in RAM cannot be continued

Normal status

EBASE = RAM area

{RBASE = ROM area

PSW.EBV =0

Ordinary exception

Maintenance status

Figure 4.8

Example of Model for Application (Operation Flow)

(1) Status when booted

Address space

INTPR15

INTPR14

FETRAP

(Empty)

SYSERR

RBASE = EBASE —» RESEN

DRAM/cache
area, etc.

EBASE

Flash ROM, etc.

RBASE

(2) Status after RAM setup

Address space

INTPR15

INTPR14

DRAM/cache

FETRAP area, etc.

Empty)

SYSERR

(Empty)

INTPR15

INTPR14

Boot ROM, etc.

FETRAP

(Empty)

SYSERR

RESET

Figure 4.9

Example of Model for Application (Address Map)

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 104 of 384

RH850G3KH Software Section 5 Memory Management

Section5 Memory Management

This CPU provides the following functions for managing the memory.

e Memory protection unit (MPU)
e Mutual exclusion function

e Synchronization function

5.1 Memory Protection Unit (MPU)

Memory protection functions are provided in an MPU (memory protection unit) to maintain a smooth

system by detecting and preventing unauthorized use of system resources by unreliable programs,

runaway events, etc.

511 Features

(1) Memory access control

Multiple protection areas can be assigned to the address space. Consequently, unauthorized program

execution or data manipulation by user programs can be detected and prevented. The upper and lower

limit addresses of each area can be specified so that the address space can be used precisely and

efficiently.

(2) Access management for each CPU operation mode

In this CPU, several status bits are used to control access to resources, and these bits are used in

combination to perform protection that is appropriate, according to each program's level of reliability.

The initial settings are set as appropriate values in the MPM register. Always use the MPE bit to
validate the MPU. The SVP bit should be set to 1 only when protection is also being performed by a

supervisor such as an OS.

RO1US0165EJ0120 Rev.1.20 ENESAS
Dec 22, 2016

Page 105 of 384

RH850G3KH Software Section 5 Memory Management

5.1.2 MPU Operation Settings

Before using a protection area, set up operation of the MPU function in supervisor mode. Normally, it
is assumed that this setting is performed by management software, such as the OS.

Settings in supervisor mode fall into three types: initial settings, settings to change programs, and
settings that are changed when handling exceptions. The processing flow is illustrated below.

@upervisor mode \(User mode)
1N Initial setting
(MPM setting)

l

Change programs | o Task switch occurs
(protection area setup)

A 4

Switch to user mode

A
Application
_ Exception
When handling occurs
exceptions <
(protection area setup)

- I\ J

Figure 5.1 Example of MPU Processing Flow

The initial settings are set as appropriate values in the MPM register. Always use the MPE bit to
validate the MPU. The SVP bit should be set to 1 only when protection is also being performed by a
supervisor such as an OS.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 106 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

CAUTION

Perform the following procedures in advance only when the SVP bit will be set to 1.

o Before setting (to 1) the SR, SW, or SX bit in the protection area, correctly set up
the MPUAN and MPLAN registers in the same protection area.

e No procedures are necessary if the SR, SW, and SX bits will not be set to 1.

¢ Note with caution that when the SVP bit is set to 1, the management program (OS,
etc.) that sets the SVP itself cannot be executed. If a setting error is made,
continued execution might become impossible due to recursive occurrence of MIP
or MDP exceptions.

When switching programs, the protection area for the target program might need to be set up. For
details about protection area settings, sce Section 5.1.3, Protection Area Settings.

During exception handling, unlike processing that sets a recovery as part of ordinary error processing, a
management program determines whether or not the address where the exception occurred can be used
and, when demand paging is performed to continue execution, the protection area might be changed.

As when programs are switched, protection area settings are changed, as described in Section 5.1.3,
Protection Area Settings below.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 107 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

51.3 Protection Area Settings

(1) Protection area settings

Set the respective protection areas appropriately. For details about registers, see Section 3, Register
Set.

Some additional description is provided below regarding certain caution points.
(a) E bit

This sets the target protection area setup as enabled or disabled. When disabled, all settings are
disabled. Make sure valid setting values have been stored for other protection areas (MPUA, MPLA,
and MPAT) at the time when this bit is set to 1.

(b) UX, UR, and UW bits
These bits indicate the access privileges for the target protection area during user mode.
(c) SX, SR, and SW bits

These bits indicate the access privileges for the target protection area during supervisor mode. These
bits are valid only when the MPM.SVP bit has been set to 1. If the MPM.SVP bit has been cleared to 0,
protection is not performed while in supervisor mode, regardless of the values of the SX, SR, and SW
bits, and the entire address space becomes access-enabled.

(d) G bit and ASID field

These are the G (Global) bit and the ASID field for comparison. When the G bit is cleared to 0, the
values in the ASID register are compared to those in the MPAT.ASID field, and protection area settings
are applied to determine accessibility only when these values match. When the G bit is set to 1,
protection area settings are applied regardless of the ASID values.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 108 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

51.4 Caution Points for Protection Area Setup

(1) Crossing protection area boundaries

When the specified protection areas overlap, the access control settings for the overlapping parts differ
depending on the MPM.DX, DW, and DR bits. If access to the protection area is disabled by default,
access is enabled by priority; if access to the protection area is enabled by default, access is prohibited
by priority.

In other words, when access to protection areas is disabled by default and multiple protection areas
have been specified, if access is enabled for either of the protection areas, access is judged to be
enabled. If access to the protection area is enabled by default and access is prohibited for either of the
protection areas, access is judged to be prohibited.

In addition, the bits for MPM.DX, DW, and DR in this CPU are fixed to 0, and default operation is
prohibited.

(2) Invalid protection area settings
Protection area settings are invalid in the following case.

o When value set to lower-limit address is larger than value set to upper-limit address

CAUTION

Note, however, that addresses are handled as unsigned integers (04 to FFFF FFFFR).

(3) Memory access spanning contiguous areas to which access is enabled by the MPU

Access to load values from or store values in areas that may be under protection by the MPU should be
handled entirely in single areas. Even if access is enabled in contiguous areas for access control by the
MPU, access spanning the access-control areas is prohibited. In the case of this CPU, memory access
spanning areas under access control only possible in response to double-word access by the 1d.dw or
st.dw instruction. The prepare, dispose, pushsp, and popsp instructions are handled as repeated rounds
of word access, so access by these instructions that spans areas for access control by the MPU is
permitted.

In the case of prefetching, when a whole instruction spans MPU access-control areas and the MPU is
enabling access for the area containing the entry point, memory protection allows the access to fetch
the instruction.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 109 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.1.5 Access Control

In this CPU, accesses are controlled appropriately according to the settings specified as of the step
described in Section 5.1.3, Protection Area Settings. In any of the cases listed below, the CPU
ensures logical integrity by limiting actual access, detecting violations before instruction execution is
completed, and setting up exceptions.

e When about to execute an instruction that includes opcode, at an address outside the executable
range

e When about to execute an instruction that reads from an address outside the read-accessible range
e When about to execute an instruction that writes to an address outside the write-accessible range

The specifics of access control vary depending on the hardware specifications, but all have the

following points in common.
e When the access result is a prohibit judgment, it is not reflected in memory or I/O devices.

e When the access result is an enabled judgment, it is reflected in memory or I/O devices.

CAUTIONS

1. Even when access is enabled, there might be cases where access is blocked by
another function that prohibits it.

2. In some cases, access judged to be prohibited may be executed for a memory or
1/0 device. The cases are as listed below.

¢ Reading local RAM

¢ Reading of code flash memory by an instruction prefetched from the
instruction cache
Since execution in response to exceptions due to instructions that read from the
local RAM or execute the results of prefetching and so on is inhibited, such
access does not affect the execution of instructions. However, when a debugger is
monitoring access to local RAM or code flash memory, it may observe access
judged to be prohibited.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 110 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.1.6 Violations and Exceptions
In this CPU, violations are detected during instruction fetch access or operand access according to the
protection area settings, and an exception is generated.
e Execution protection violation (during instruction access)
e Data protection violation (during operand access)
(1) Execution protection violation (MIP exception)
This violation is detected when an instruction is executed. An execution protection violation such as
this is detected when attempting to execute an instruction that has been placed in a non-executable area
within the program area.
When an execution protection violation is detected, an MIP exception always occurs.
(2) Data protection violation (MDP exception)
This violation is detected during data access by an instruction. A data protection violation such as this
is detected when a memory access instruction attempts to access data from an access-prohibited part of
the data area.
When a data protection violation is detected, an MDP exception always occurs.
(3) Exception cause code and exception address
When an instruction protection violation or data protection violation has been detected, the exception
cause code is determined as shown in Table 5.1. The determined exception cause code is set to the
FEIC register.
The MEA register is used to store either the PC of the instruction that detected the instruction
protection violation or the access address used when the data protection violation occurred. The MEA
register is shared in order to prevent simultaneous occurrence of MIP and MDP exceptions. Also, when
a data protection violation occurs, the information of the instruction that caused the violation is stored
in the MEI register.
Table 5.1 Exception Cause Code of Memory Protection Violation
Bit Number and Bit Name
Operation Mode “5 5594 23 22 21 20 19 18 17 16 15t00
When Violation
Exception Occurred — MS BL RMW SX SW SR uXx uw UR —
MIP User mode 0 0 0 0 — — — — — — 90
Supervisor mode 0 0 0 0 — — — — — — 90y
MDP User mode 0 *5 *4 *3 0 0 0 0 *2 “ 91y
Supervisor mode 0 0 *2 + 0 0 0 91y
Note 1. When a read violation is caused by an instruction that includes a read operation, either the SR or UR bit is
setto 1.
Note 2. When a write violation is caused by an instruction that includes a write operation, either the SW or UW bit
is setto 1.
Note 3. This bit is set to 1 when a violation is caused by the SET1, NOT1, CLR1, or CAXI instruction.
Note 4. This bit is set to 1 when a violation is caused by the PREPARE, DISPOSE, PUSHSP, or POPSP instruction.
Note 5. This bit is set to 1 when the instruction causing the violation performs a misaligned access.
Note: UR: A violation is detected during a read operation in user mode (PSW.UM = 1).
UW: A violation is detected during a write operation in user mode (PSW.UM = 1).
UX: A violation is detected during instruction execution in user mode (PSW.UM = 1).
SR: A violation is detected during a read operation in supervisor mode (PSW.UM = 0).
SW: A violation is detected during a write operation in supervisor mode (PSW.UM = 0).
SX: A violation is detected during instruction execution in supervisor mode (PSW.UM = 0).
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 111 of 384

Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.1.7

RMW: Set to 1 when the instruction causing the violation contains a read-modify-write operation (SET1,
NOT1, CLR1, or CAXI).

BL: Set to 1 when the instruction causing the violation performs a block transfer (PREPARE, DISPOSE,
PUSHSP, or POPSP).

MS: Set to 1 when the instruction causing the violation performs a misaligned access.

Memory Protection Setting Check Function

When configuring programs that provide a service for the OS (etc.), this CPU provides a memory
protection setting check function to enable implementation of a service protection function that checks
in advance whether or not the data area to be used for the requested operations is within an area that is
accessible by the source that called the service. The OS can use this function to verify the suitability of
parameters set for system services provided by the user. Also, this verification processing can be
completed quickly when compared to software-based area setting read and comparison operations.

(1) Procedure

Set the base address (lower limit) of the target address range to the MCA register and the size of the
target range to the MCS register, then use the LDSR instruction (r0 specification is recommended) to
access the MCC register and execute a check. The results can be read from the MCR register by the
STSR instruction.

CAUTIONS

1. If the specified area to be checked crosses 0000 0000, or 7FFF FFFF, it is judged
as an area setting error, and the MCR.OV bit is set to 1. This means that the
MCR.OV bit must be checked to access the check results. Do not use the check
result until it is confirmed that the result is not invalid (OV = 0).

2. If the default operations specified by using the MPM.DX, DW, and DR bits are
enabled (1), the correct result might not be able to be obtained. If enabling the

specified default operation, do not use the memory protection setting check
function.

(2) Sample code

It is assumed that the memory protection setting check function will be used for the following

operations.
_service protection:
ori 0x1000, r0, rl2
mov ADDRESS, rl0 // Store the start address of the area to be checked to rl0
mov SIZE, rll // Store the size of the area to be checked to rll
di
ldsr rl0, sr8, 5 // Set the address to MCA
ldsr rll, sr9, 5 // Set the size to MCS
ldsr r0, srl0, 5 // Start checking with MCC
stsr srll, rl2, 5 // Get the results from MCR
el
andi 0x0100, rl2, rO
bnz _overflow // Processing of invalid input when OV = 1
br _result check // Otherwise, result is determined
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 112 of 384

Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.2 Cache

This CPU does not have a cache.

5.21 Execution Privilege of the CACHE/PREF Instruction

Execution of the CACHE instruction and the PREF instruction is allowed with the user privilege.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 113 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.3 Mutual Exclusion

This CPU provides instructions that enable shared resources to be controlled mutually exclusively from
multiple programs when the system is operating in a multi-processor environment.

When using mutual exclusion, mutual exclusion variables have to be defined in the memory and all
programs must operate in accordance with the appropriate instruction flow.

CAUTION

Embedded CPUs in a single-processor configuration use a programming model in
which data coherence is maintained by disabling the acknowledgment of maskable
interrupts. This is a very easy and sure method of maintaining data coherence, but
naturally in a multi-processor, multiple programs might be executing and attempting to
use the data at the same time. In this case it is not possible to maintain data coherence
simply by disabling maskable interrupt acknowledgment.

5.3.1 Shared Data that does not Require Mutual Exclusion Processing

This CPU maintains data access coherence even in a multi-processor environment by enabling the
following types of access.

e Access in which the data is aligned to the size that matches the data type (aligned access)

— LD, ST, SLD, SST, LDL, and STC instructions
e Access by using a bit manipulation instruction (SET1, CLR1, or NOT1) (read-modify-write)
e Access by using the CAXI instruction (read-modify-write)

With some exceptions, mutual exclusion is achieved by using these types of data access. In other
words, it is guaranteed that while one CPU is executing the instructions that perform the above data
accesses, another CPU is not accessing the data in question. This is known as an instruction being
executed atomically or an instruction providing an atomic guarantee.

Note that the atomic execution of an instruction means that a data access bus transaction completes
with no disruption; it does not necessarily mean that a series of transactions has been completed.

CAUTION

The extent to which coherency is guaranteed might be limited, depending on the
hardware specifications. For example, for some memories, coherency might not be
preserved even if aligned access is used. For details, see the hardware manual of the
product used.

RO1US0165EJ0120 Rev.1.20 ENESAS Page 114 of 384
Dec 22, 2016

RH850G3KH Software

5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions

(1)

The LDL.W and STC.W instructions can be used to perform mutual exclusion over multiple data

arrays.

When acquiring a lock by using the LDL.W and STC.W instructions in a pair, first a link is created by
using the LDL.W instruction and then the STC.W instruction is executed.

At this time, if data is written to the address at which the link was created before the STC.W instruction
is executed, the link is immediately deleted, the subsequent execution of the STC.W instruction fails,
and a lock fails to be acquired.

Link

Each link (LLbit) includes information on the address at which it was created, which is used to control
whether the STC instruction executes successfully or fails, and whether the link is deleted.

A link is created when the LDL.W instruction is executed. If the LDL.W instruction is executed again
after a link has been created, another link is created, which overwrites the first link. In other words,
only one link exists at a time, and that link contains the address information of the LDL.W executed
last.

Links are deleted when certain event or address conditions are satisfied. Table 5.2 shows the link
deletion conditions. A link is deleted if any of the conditions shown in Table 5.2 are satisfied.

Table 5.2 Link Deletion Conditions

Target Link

Event Condition Remark

All links in the system If a write operation occurs in a 32-byte-aligned ST, SST, and STC instructions
(including those in other CPU cores) address range that includes the address of the SET1, NOT1, CLR1, and CAXI

Section 5 Memory Management

link in question instructions
PREPARE and PUSHSP instructions
CPU core link Execution of STC.W instruction The link is deleted whether the instruction
executes successfully or fails
Execution of CLL instruction Use a CLL instruction to clear a link in a
function explicitly
(abortion of an atomic operation).
Exception acknowledgment
Execution of return instruction Does not include CTRET instruction
CAUTION
Links that are deleted by a write operation are deleted in 32-byte units. Therefore, the
best way to prevent execution of the STC.W instruction from failing in this case is to
allocate only one mutual exclusion variable per 32 bytes of memory. If more than one
mutual exclusion variable is allocated in a 32-byte range, thrashing might occur when
an attempt is made to acquire a lock on a mutual exclusion variable.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 115 of 384

Dec 22, 2016

RH850G3KH Software

Section 5 Memory Management

(2) Sample code

The sample code of a spinlock executed by using the LDL.W and STC.W instructions is shown below.

Lock acquisition

mov lock adr, r20
Lock: 1d1. [r20], r21
cmp r0, r2l
bnz Lock_wait
mov 1, rz21
stc. r21l, [r20]
cmp r0, r21
bnz Lock_success
Lock wait:
snooze
br Lock
Lock success:
Lock release
st.w r0, 0[r20]
RO1US0165EJ0120 Rev.1.20 RENESAS Page 116 of 384

Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction

The SET1 instruction can be used to perform mutual exclusion over multiple data arrays. By executing
the SET1 instruction on the same bit in the memory and then checking the PSW.Z flag, which indicates
the execution result, it can be determined whether lock acquisition succeeded or failed.

CAUTIONS

1. Depending on the hardware specifications, the system performance might drop if
exclusive control is executed frequently by using the SET1 instruction, because
this causes the bus to be occupied for a long time. It is therefore recommended to
execute exclusive control by using the LDL/STC instructions as much as
possible.

2. When performing mutual exclusion by using the SET1 instruction, to prevent the
problem of excessive bus occupancy described in Caution 1 above, execute the
snooze instruction before attempting to acquire a lock again after lock acquisition
has failed, and adjust the lock acquisition loop execution interval.

(1) Sample code

The sample code of a spinlock executed by using the SET1 instruction is shown below.

Lock acquisition

mov lock adr, r20
Lock: setl 0, 0[r20]
bz Lock success
snooze
br Lock
Lock success:

Lock release

clrl 0, 0[r20]

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 117 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.34 Performing Mutual Exclusion by Using the CAXI Instruction

The CAXT instruction can be used to perform mutual exclusion over multiple data arrays. By executing
the CAXI instruction on the same word in the memory and then checking the destination register, it can
be determined whether lock acquisition succeeded or failed.

CAUTIONS

1. Depending on the hardware specifications, the system performance might drop if
exclusive control is executed frequently by using the CAXI instruction, because
this causes the bus to be occupied for a long time. It is therefore recommended to
execute exclusive control by using the LDL/STC instructions as much as
possible.

2. When performing mutual exclusion by using the CAXI instruction, to prevent the
problem of excessive bus occupancy described in Caution 1 above, execute the
snooze instruction before attempting to acquire a lock again after lock acquisition
has failed, and adjust the lock acquisition loop execution interval.

(1) Sample code

The sample code of a spinlock executed by using the CAXI instruction is shown below.

Lock acquisition

mov lock adr, r20
Lock: mov 1, rz21

caxi [r20], r0, r21

bz Lock_success

snooze

br Lock
Lock_success:

Lock release

st.w r0, 0[r20]

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 118 of 384
Dec 22, 2016

RH850G3KH Software Section 5 Memory Management

5.4 Synchronization Function

In order to improve the processing performance, this CPU executes subsequent instructions before the
operation of the preceding instruction is completed, when there is no dependency between the
instructions. For this reason, when the subsequent instructions need to wait for the completion of the
operation of the preceding instruction, the synchronization procedure is required. This CPU provides
the following four special instructions for the synchronization.

The SYNCP instruction is the special instruction, which synchronizes the pipeline to reflect the result
of the preceding instructions to the subsequent instructions. The SYNCP instruction waits for the result
of load instructions (until the loaded data is stored in a register), but does not wait for the result of store
instructions (until the destination memory or memory-mapped control register is updated). Therefore,
when the result of store instruction needs to be reflected to the subsequent instructions, perform a
dummy read of the destination memory or control register of the store instruction, and then execute the
SYNCEP instruction.

The SYNCM instruction is the special instruction, which synchronizes memory accesses. The SYNCM
instruction waits for the result of all preceding load instructions (until the loaded data is stored in a
register) and the result of all preceding store instructions (until the destination memory or memory-
mapped control register is updated). However, the SYNCM instruction may not guarantee the
completion of updating of the memory or control register if it is attached to the bus-system or
peripheral device, which completes store operation speculatively (i.e., updating of the memory or
control register is delayed). When the result of updating of such memory or control register needs to be
reflected to the subsequent instructions, perform a dummy read of the destination memory or control
register of the store instruction, and then execute the SYNCP instruction.

The SYNCI instruction is the special instruction, which synchronizes instruction fetches. The SYNCI
instruction discards unexecuted instructions in the pipeline, and re-fetches the subsequent instructions.
The SYNCT instruction is used to reflect the result of the preceding instructions to the instruction fetch
of the subsequent instructions. When the result of the store instruction needs to be reflected to the
instruction fetch of the subsequent instruction (e.g., when updating memory to realize self-
programming program or updating the control register to switch the code flash memory area), perform
a dummy read of the destination of the store instruction, execute the SYNCP instruction, and then
execute the SYNCI instruction.

The SYNCE instruction is the special instruction, which synchronizes all preceding imprecise
exceptions (FPI exceptions). Execute the SYNCE instruction when all preceding FPI exceptions need
to be accepted. The SYNCE instruction can be used to guarantee completion of exception handling by
the preceding task before a task is changed or terminated in a multi-processing environment.

Table 5.3 shows the effect of the synchronization instructions.

For the hazard resolution procedure for system registers, see APPENDIX A., Hazard Resolution
Procedure for System Registers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 119 of 384
Dec 22, 2016

RH850G3KH Software

Section 5 Memory Management

Table 5.3 Effect of Synchronization Instructions
Synchronization Guaranteed by the SYNC Instruction
Synchronization of Instruction Fetch Synchronization of Execution of the Preceding Instruction
Cache Instruction/
Instruction to
Re-fetch of Update Cache
SYNC Subsequent Operation Function | Calculation Load Store
Instruction | Instructions Register*> Instruction Instruction Instruction FPI Exception
SYNCP — — Completion of Completion of — —
execution execution*’
SYNCM — — Completion of Completion of Completion of —
execution execution*’ execution*?
SYNCI Re-fetch after Completion of Completion of — — —
synchronization execution execution
of execution of
the preceding
instruction
SYNCE — — — — — Acceptance of
exception
Remark: “—”: Not guaranteed
Note 1. The SYNC instruction waits until the loaded data is stored in a register.
Note 2. The SYNC instruction waits until the destination memory or control register is updated.
However, there may exist destinations, whose update cannot be guaranteed by the SYNC instruction.
For details, see the hardware manual of the product used.
Note 3. The cache instruction is handled as the NOP instruction.

This CPU does not have the cache operation function registers.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 120 of 384

RH850G3KH Software Section 6 Coprocessor

Section 6

Coprocessor

6.1 Floating-Point Operation

The floating-point unit (FPU) operates as the CPU coprocessor, and executes floating-point

instructions.

Either single-precision (32-bit) data can be used. In addition, the conversion between a floating point

value and an integer value is possible.

The FPU of this CPU conforms to ANSI/IEEE standard 754-2008 (IEEE Standard for Floating-Point
Arithmetic).

(1) Floating-point instructions

Supports the instructions that operates the maximum value and the minimum value.
MAXEF.S, MINFE.S

Supports the flag transfer instruction which transfers the floating-point configuration/status
register’s condition bits to the Z flag of the PSW register.
TRFSR

Supports the conditional move instruction.
CMOVE.S

Supports unsigned conversion instructions which efficiently execute format conversions with
unsigned integers.

Supports the CEIL and FLOOR instructions, which efficiently execute conversion of the format to
the nearest integer.

Supports fused-multiply-add instructions that execute multiply-add operations with high accuracy.
Supports half-precision floating-point format conversion instructions for storing data efficiently.
Supports condition bits (8 bits) for storing floating-point comparison results.

Supports two FPU execution modes: precise mode and imprecise mode

(2) Register set

Floating-point operation registers:
Uses general-purpose registers (not special-purpose register for floating-point operations)

Floating-point system registers:

FPSR — Floating-point configuration/status

FPEPC — Floating-point exception program counter
FPST — Floating-point status

FPCC — Floating-point comparison result

FPCFG — Floating-point configuration

FPEC — Floating-point exception control

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 121 of 384

Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

6.1.1 Configuration of Floating-Point Operation Function

(1) Not implemented

If the floating-point operation function is not implemented, all the floating-point instructions cannot be
used. If an attempt is made to execute such an instruction, a coprocessor unusable exception occurs. In
addition, the operation of all the floating-point system registers is undefined. Therefore, do not
manipulate these registers by LDSR and STSR.

(2) Implemented

If the floating-point operation function is implemented, single-precision floating-point instruction can
be used.

All the floating-point system registers supply the function described in Section 3.4, FPU Function
Registers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 122 of 384
Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

6.1.2 Data Types

(1) Floating-point format

The FPU supports 32-bit (single precision) IEEE754 floating-point operations.

The single-precision floating-point format consists of a 24-bit signed fraction (s + f) and an 8-bit
exponent (e), as shown in Figure 6.1.

31 30 23 22 22 0
S e f
Sign Exponent Fraction
1 8 23
Figure 6.1 Single-precision Floating-point Format

A numerical value in the floating-point format includes the following three areas.
e Signbit: s
e Exponent: e = E + bias value
e Fraction: f = .byb,...bp_; (value lower than the first decimal place)

The bias value for the single-precision format is 127.

The range of the exponent value E when unbiased covers all integers from Emin to Emax, along with
two reserved values, Emin —1 (+0 or subnormal number), and Emax +1 (£00 or NaN: not-a-number). A
numeric value other than 0 is represented in one format.

The numeric value (v) represented in this format can be calculated by the expression shown in Table
6.1.

Table 6.1 Calculation Expression of Floating-Point Value

Type Calculation Expression

NaN (not-a-number) IfE=Emax+1andf#0 then v = NaN regardless of s

+e0 (infinite number) IfE=Emax+1andf=0 then v = (=1)5«

Normalized number If Emin < E < Emax thenv = (—1)32E (1.9

Subnormal number IfE=Emin—1andf#0 then v = (=1)52EMin (0 1)

+0 (zero) IfE=Emin—-1andf=0 then v = (=1)°0
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 123 of 384

Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

e NaN (not-a-number)

IEEE754 defines a floating-point value called NaN (not-a-number). Because this value is not a
numerical value, it does not have any “greater than” or “less than” relationships to other values.

If v is NaN in all of the floating-point formats, it might be either SignalingNaN (S-NaN) or QuietNaN
(Q-NaN), depending on the value of the most significant bit of f. If the most significant bit of f is set, v
is QuietNaN; if the most significant bit is cleared, it is SignalingNaN.

Table 6.2 shows the value of each parameter defined in the floating-point format.

Table 6.2 Floating-Point Format and Parameter Values
Format
Parameter Single Precision
Emax +127
Emin -126
Bias value of exponent +127
Length of exponent (number of bits) 8
Integer bits Cannot be seen
Length of fraction (number of bits) 23
Length of format (number of bits) 32

Table 6.3 shows the minimum and maximum values that can be represented in floating-point formats.

Table 6.3 Floating-Point Minimum and Maximum Values
Type Value
Minimum value of single-precision floating point 1.40129846e — 45
Minimum value of single-precision floating point (normal) 1.17549435e — 38
Maximum value of single-precision floating point 3.40282347e + 38
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 124 of 384

Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

(2) Fixed-point formats

The value of a fixed point is held in the format of 2’s complement. Figure 6.2 shows a 32-bit fixed-
point format and Figure 6.3 shows a 64-bit fixed-point format. No signed bits exist in the unsigned
fixed-point format, and all bits represent the integer value.

31 30 0
s i
Sign Integer
1 31

Figure 6.2 32-bit Fixed-Point Format

63 62 0
S i
Sign Integer
1 63

Figure 6.3 64-bit Fixed-Point Format

(3) Expanded floating-point format

This CPU supports the 16-bit (half-precision) IEEE754 floating-point format as a floating-point format
for storing data. The half-precision floating-point format is used to decrease the amount of data; it is
not supported for arithmetic operations. Instructions are available for converting single-precision
floating-point format data into half-precision floating-point data and vice-versa. The half-precision
floating-point format consists of an 11-bit signed fraction (s + f) and a 5-bit exponent (), as shown in

Figure 6.4.
15 14 10 9 0
s e f
Sign Exponent Fraction
1 5 10
Figure 6.4 Half-Precision Floating-Point Format
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 125 of 384

Dec 22, 2016

RH850G3KH Software

Section 6 Coprocessor

Like other floating-point formats, the numeric values represented in this format can be calculated by

using the expressions shown in Table 6.1. The values of the parameters defined by the half-precision

floating-point format are shown in Table 6.4.

Table 6.4 Half-Precision Floating-Point Format and Parameter Values
Parameter Half Precision
Emax +15
Emin -14
Bias value of exponent +15
Length of exponent (number of bits) 5

Integer bits Cannot be seen
Length of fraction (number of bits) 10
Length of format (number of bits) 16

Table 6.5 shows the minimum and maximum values that can be represented in the half-precision

floating-point format.

Table 6.5 Half-Precision Floating-Point Minimum and Maximum Values
Type Value
Minimum value of half-precision floating point 5.96046¢~ 8
Maximum value of half-precision floating point (normal) 6.10352¢~°
Maximum value of half-precision floating point 65504

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 126 of 384

RH850G3KH Software Section 6 Coprocessor

6.1.3 Register Set

The FPU uses the CPU general-purpose registers (r0 to r31). There are no register files used only for
floating-point operations.

¢ Single-precision floating-point instruction:
32 registers (32 bits each) can be specified. These general-purpose registers correspond to r0 to
r31.

(1) Floating-point system registers

Six system registers can be used by the FPU.

e FPSR: This register is used to control and monitor exceptions. It also holds the result of compare
operations, and sets the FPU operation mode. Its bits are used to set condition code, exception
mode, subnormal number flush enable, rounding mode control, cause, exception enable, and
preservation.

e FPEPC: This register stores the program counter value for the instruction where a floating-point
operation exception has occurred.

e FPST: This register reflects the contents of the FPSR register bits related to the operation status.
e FPCC: This register reflects the contents of the CC(7:0) bits of the FPSR register.

o FPCFG: This register reflects the contents of the FPSR register bits related to the operation
settings.

e FPEC: This register controls checking and canceling the pending status of the FPI exception.

For details about the floating-point system registers, see Section 3.4, FPU Function Registers.

6.1.4 Floating-Point Instructions

The floating-point instruction executes an operation of single-precision floating-point operation.

For details about the floating-point instructions, see Section 7.4, Floating-Point Instructions.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 127 of 384
Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

6.1.5 Floating-Point Operation Exceptions

This section describes how the FPU processes floating-point operation exceptions.

(1) Types of exceptions

When floating-point operations or processing of operation results cannot be done using the ordinary
method, a floating-point operation exception occurs.

One of the following two operations is performed when a floating-point operation exception has
occurred.

e When exceptions are enabled
The cause bit is set in the floating-point configuration/status register (FPSR), and processing (by
software) is passed to the exception handler routine.

e When exceptions are prohibited
The preservation bit is set in the floating-point configuration/status register (FPSR), an
appropriate value (initial value) is stored in the FPU destination register, then execution is
continued.

The FPU uses cause bits, enable bits, and preservation bits (status flags) to support the following five
types of IEEE754-defined exception causes.

e Inexact operation (I)
e Overflow (O)

e Underflow (U)

e Division by zero (Z)
e Invalid operation (V)

A sixth type of exception cause is unimplemented operation (E), which causes an exception when a
floating-point operation cannot be executed. This exception requires processing by software. An
unimplemented operation exception (E) occurs when exceptions are always enabled, rather than by
using properties, enable bits, or preservation bits.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 128 of 384
Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

Figure 6.5 shows the FPSR register bits that are used to support exceptions.

Bit 15 14 13 12 11 10
E \Y z (¢} u |
Cause bit (XC)
Bit 9 8 7 6 5
\Y z (e} u | .
Enable bit (XE)
Bit 4 3 2 1 0
\% z |
© v Preservation bit (XP)

Inexact operation

Underflow

Overflow
Division by zero

Invalid operation
Unimplemented operation

Figure 6.5 Cause, Enable, and Preservation Bits of FPSR Register

The five exceptions (V, Z, O, U, and I) defined by IEEE754 are enabled when the corresponding enable
bits are set. When an exception occurs, if the corresponding enable bit has been set, the FPU sets the
corresponding cause bit. If the exception can be acknowledged, processing is passed to the exception
handler routine. If exceptions are prohibited, the exception corresponding preservation bit is set, and

processing is not passed to the exception handler routine.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 129 of 384
Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

(2) Exception handling

When a floating-point operation exception occurs, the cause bits of the FPSR register indicate the cause
of the floating-point operation exception.

(a) Status flag

A corresponding preservation bit is available for each IEEE754-defined exception. The preservation bit
is set when the corresponding exception is prohibited but the exception condition has been detected.
The preservation bit is set or reset whenever new values are written to the FPSR register by the LDSR
instruction.

If an exception is prohibited by an enable bit, predetermined processing is performed by the FPU. This
processing provides an initial value as the result, rather than a floating-point operation result. This
initial value is determined according to the type of exception. For an overflow exception or underflow
exception, the initial value also differs depending on the current rounding mode. Table 6.6 shows the
initial values provided for each of the FPU IEEE754-defined exceptions.

Table 6.6 FPU Initial Values for IEEE754-Defined Exceptions

Area Description Rounding Mode Initial Value
\Y Invalid operation — Quiet not-a-number (Q-NaN)
z Division by zero — Correctly signed «
(0] Overflow RN « with sign of intermediate result
Rz Maximum normalized number with sign of intermediate
result
RP Negative overflow: Maximum negative normalized number

Positive overflow: +«

RM Positive overflow: Maximum positive normalized number
Negative overflow: —
U Underflow*' RN*2 0 with sign of intermediate result
Rz 0 with sign of intermediate result
RP Positive underflow: Minimum positive normalized number
Negative underflow: 0
RM Negative underflow: Minimum negative normalized number
Positive underflow: 0
| Inexact — Rounded result
operation

Note 1. If the FPSR.FS bit is cleared, an unimplemented operation exception (E) will occur if an underflow occurs
in the rounded result; an underflow exception (U) will not occur. If the FS bit of the FPSR register is set, the
flushed result is used as the default value

Note 2. If the rounding mode is RN and the FN bit of the FPSR register is set, flushing will occur in the direction of
higher accuracy. For details, see Section 6.1.11, Flush to Nearest.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 130 of 384
Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

6.1.6 Exception Details

The following describes the conditions under which each of the FPU exceptions occurs and the FPU
responses.

(1) Inexact exception (1)
In the following cases, the FPU detects an inexact exception.
e When the precision of the rounded result is dropped
e When the rounded result overflows while overflow exceptions are prohibited
e When the rounded result underflows while underflow exceptions are prohibited

e When the operand that is a subnormal number is flushed, neither an invalid operation exception
(V) nor a division by zero exception (Z) is detected, and the other operands are not Q-NaN

CAUTION

If the FS bit of the FPSR register is cleared and the operation result underflows, an
unimplemented operation exception (E) occurs. In such cases, the underflow
exception is not detected, so the inexact exception is not detected either.

(a) If exception is enabled
The contents of the destination register are not changed, contents of the source register are saved,
and an inexact exception occurs.

(b) If exception is not enabled

If no other exception occurs, the rounded result or the result that underflows or overflows is stored
in the destination register.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 131 of 384
Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

(2) Invalid operation exception (V)

An invalid operation exception occurs when one of both of the operands is invalid.

Arithmetic operation with S-NaN included in operands. The conditional move instruction
(CMOV), absolute value (ABS), and arithmetic negation (NEG) are not handled as arithmetic
operations, but minimum value (MIN) and maximum value (MAX) are handled as arithmetic
operations.

Multiplication: £0 X #o0 or +oo x +0
Fused-multiply-add: (0 X fo0) + ¢ or (£o0 % £0) + ¢. But only if ¢ is not Q-NaN.

Addition/subtraction or multiply-add operation*1 :
Addition of infinite values with different signs or subtraction of infinite values with the same sign

Division: +0 + 0 or foo + 400
Square root: When operand is less than 0
Conversion to integer when source is outside of integer range.

Comparison: With condition codes 8 to 15, if the operand is unordered (see Table 7.8,
Definitions of Condition Code Bits and Their Logical Inversions)

Note 1. When the multiplication result is infinite or when adding or subtracting between infinities

(@)

(b)

If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved,
and an invalid operation exception occurs.

If exception is not enabled

If no other exception occurs, and the destination is a floating-point format, Q-NaN is stored in the
destination register. If the destination has an integer format, see the operation result description of
each instruction for the value to be stored in the destination register.

(3) Division by zero exception (Z)

A division by zero exception occurs when a divisor is 0 and a dividend is a finite number other than 0.

(@)

If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved,
and a division by zero exception occurs.

If exception is not enabled

If no other exception occurs, a correctly signed infinite number (o) is stored in the destination
register.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 132 of 384

Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

(4)

(5)

Overflow exception (O)

An overflow exception is detected if the exponent range is infinite and if the result of the rounded
floating point is greater than maximum finite number in the destination format.

(a) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are
saved, and an overflow exception occurs.

(b) If exception is not enabled
If no other exception occurs, the initial value that is determined by the rounding mode and the sign
of the intermediate result is stored in the destination register (see Table 6.6, FPU Initial Values
for IEEE754-Defined Exceptions).

Underflow exception (U)

If the operation result is —2F™" to +2EM" (byt not zero), an underflow exception is detected.

Although IEEE754 defines several methods for detecting an underflow, the same method should be
used to detect underflows, regardless of the processing to be performed.

The following two methods can be used to detect an underflow for binary floating point numbers.
e The result calculated after rounding and using an infinite exponent range is not zero and is within
izEmin
e The result calculated before rounding and using an infinite exponent range and precision is not
zero and is within +£2Emin,
In this CPU, an underflow is detected before rounding.

Or the rounded result is one of the following, an inexact result is detected.

e When a given result differs from the result calculated when the exponent range and precision are
infinite)

In this CPU, the behavior when an inexact result is detected differs as follows depending on whether
underflow exceptions are enabled or disabled:
(a) If exception is enabled

When the FS bit of the FPSR register has been set, if exceptions are enabled, an underflow
exception (U) occurs. When the FS bit of the FPSR register has been set, if exceptions are not
enabled but inexact exceptions are enabled, an inexact exception (I) occurs.

(b) If exception is not enabled

If the FS bit of the FPSR register has been set, the initial value determined according to the
rounding mode and intermediate result value is stored in the destination register (see Table 6.6,
FPU Initial Values for IEEE754-Defined Exceptions).

CAUTION

If the FS bit of the FPSR register has not been set, an unimplemented operation
exception (E) occurs regardless of whether or not exceptions are enabled. Because an
unimplemented operation exception (E) must occur, an underflow exception (U) does
not occur.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 133 of 384

Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

(6) Unimplemented operation exception (E)

The E bit is set and an unimplemented operation exception (E) occurs when an abnormal operand or
abnormal result that cannot be correctly processed by hardware has been detected. The operand and
destination register contents do not change.

If the FS bit of the FPSR register has been set, an unimplemented operation exception (E) will not

occur.

If the FS bit of the FPSR register has been cleared, an unimplemented operation exception (E) will
occur under the following conditions (except for CMOVE.S, CMPE.S, ABSFE.S, MAXF.S, MINE.S,
NEGE.S and CVTE.HS instructions).

e When the operand is a subnormal number

e When the operation result is a subnormal number, or an underflow has occurred

CAUTIONS

1. For details about the processing when an unimplemented operation exception (E)
occurs, see Section 6.1.10, Selection of Floating-Point Operation Model.

2. If the FS bit of the FPSR register is set to 1, an unimplemented operation
exception (E) will not occur under any circumstances.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 134 of 384
Dec 22, 2016

RH850G3KH Software

6.1.7 Precise Exceptions and Imprecise Exceptions

(1)

()

Each floating-point operation exception can be specified as an exception that occurs precisely (precise
exception) or imprecisely (imprecise exception).

The default setting is that imprecise exceptions occur. To generate precise exceptions, the exception
mode must be changed.

This CPU specifies precise exception mode by setting the PEM bit of the FPSR register.

Precise exceptions

When a precise exception is specified, the CPU does not start execution of any subsequent instructions
until the already started floating-point instruction has been completed. Consequently, when an
exception occurs, the program can continue after emulation by software.

The program counter for the instruction where a floating-point operation exception has occurred is
stored in the EIPC register and FPEPC register. When returning from emulation processing, an EIRET
instruction is executed. Any floating-point operation exception that has occurred during precise
exception mode is acknowledged immediately, regardless of the status of the ID bit or the NP bit of
PSW.

Imprecise exceptions

When an imprecise exception is specified, the CPU is able to start execution of subsequent instructions
even before the already started floating-point instruction has been completed. Consequently, when an
exception occurs, the subsequent instructions are executed speculatively, so if an exception occurs,
emulation becomes difficult but the throughput of instruction execution can be greatly increased.

When a floating-point operation exception occurs for a floating-point instruction executed in imprecise
exception mode, the results of subsequent floating-point instructions (except for a TRFSR instruction)
are not reflected in the general-purpose register after the exception is acknowledged and until
processing of the exception handler routine starts, and no other floating-point operation exceptions
occur. This is called an “invalidating instruction”.

To acknowledge an imprecise floating-point instruction before executing subsequent instructions, the
subsequent instructions can be held until the instruction where the exception has occurred is completed
by the SYNCE instruction.

The program counter for the instruction where a floating-point operation exception has occurred is
stored in the FPEPC register, and the program counter for an instruction that is interrupted when an
exception is acknowledged is stored in the EIPC register.

A floating-point operation exception that has occurred in imprecise exception mode is held pending
when the ID bit of PSW =1 or when the NP bit = 1. In such cases, when an LDSR instruction is used to
set the NP and ID bits of the PSW register as “0”, the pending exception is acknowledged.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 135 of 384

Dec 22, 2016

Section 6 Coprocessor

RH850G3KH Software

6.1.8 Saving and Returning Status

When a floating-point operation exception occurs, the PC and PSW are saved to the EIPC and EIPSW
registers respectively, and the exception code is saved to the EIIC register.

A floating-point operation exception code is 71y for a precise exception and 72y for an imprecise
exception.

When an EI level exception is acknowledged while processing a floating-point operation exception, an
EIPC register override occurs, which prevents the returning to the instruction that caused the floating-
point operation exception to occur. When acknowledgment of EI level exceptions is required, the
contents of the EIPC, EIPSW, and EIIC registers must be saved, such as to a stack.

When a floating-point instruction is used in a floating-point operation exception handler routine, the
FPSR and FPEPC registers will be overridden if another floating-point operation exception occurs. In
such cases, the FPSR and FPEPC registers should be saved at the start of the floating-point operation
exception handler processing, and should be returned at the end of the handler processing.

The cause bits of the FPSR register hold the results from only one enabled exception. In any case, the
previous results are held until the next enabled exception occurs.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 136 of 384

Dec 22, 2016

Section 6 Coprocessor

RH850G3KH Software Section 6 Coprocessor

6.1.9 Flushing Subnormal Numbers

(1)

This CPU can process subnormal numbers—very small numbers that are lower than the minimum
normalized number—in one of the following two ways:

e Normalize the operand or operation result and continue executing arithmetic processing
¢ Generate an unimplemented operation exception (E) and execute exception handling

Executing software-based exception handling will obtain a more accurate result, but the amount of time
required to obtain the result will vary depending on the input value. In control systems that require a
real-time performance, therefore, this is usually unacceptable. In this case, it is important to obtain the
result within a certain amount time rather than focus on accuracy.

Normalize the subnormal numbers and continue executing arithmetic processing

By setting the FS bit of the FPSR register to 1, this CPU can normalize the operand or operation result
to a specific value and continue executing arithmetic processing if a subnormal number is input as the
operand or obtained as the operation result. At this time, extremely small differences in values might
not appear in the operation result.

For the operand and operation result, the values to which subnormal numbers are flushed when the FS
bit is set (1) are shown in Table 6.7 and Table 6.8 below.

Table 6.7 Rounding Mode and Flush Value of Input Operand

Rounding Mode and Value to Which Input Operand Is

Flushed
Sign of Subnormal Operand RN RZ RP RM
+ +0
— -0

Table 6.8 Rounding Mode and Flush Value of Operation Result

Rounding Mode and Value to Which Operation Result

Is Flushed
Sign of Subnormal Operation Result RNNote RZ RP RM
+ +0 +0 +2Emin +0
— -0 -0 -0 _pEmin

Note 1. If the rounding mode is RN and the FN bit of the FPSR register is set, flushing will occur in the direction of
higher accuracy. For details, see Section 6.1.11, Flush to Nearest.

Whether an input operand that is a subnormal number has been flushed or not can be checked by
referencing the IF bit of the FPSR register. Whether an operation result that is a subnormal number has
been flushed or not can be checked by referencing the U bit of the FPSR register.

CAUTIONS

1. In control systems that require a real-time performance, it is recommended to
always set the FS bit to 1.

2. If the FS bit of the FPSR register is set (1), an unimplemented operation exception
(E) will not occur under any circumstances.

3. Whether the operation result is a subnormal number is judged by using the value
before rounding.

4. The IF bit of the FPSR register also accumulates and indicates information about
flushing instructions that have caused a floating-point operation exception.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 137 of 384

Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

(2) Generate an unimplemented operation exception (E) and execute exception handling

By clearing the FS bit of the FPSR register to 0, an unimplemented operation exception (E) will occur
if a subnormal number is input as the operand or obtained as the operation result. When an
unimplemented operation exception occurs, software-based progressive underflow processing is
performed in the floating-point operation exception handling routine, enabling a more accurate result to
be obtained. In this case, however, a real-time processing performance might not be realized due to the
software processing load.

CAUTION

To obtain an accurate result when using software processing, floating-point operation
exceptions must be able to be acknowledged when an unimplemented operation
exception occurs. Be sure, therefore, to set the PEM bit of the FPSR register to 1 to
enable the correct acknowledgment of floating-point operation exceptions.

(3) Instructions that can handle subnormal numbers

The following instructions can be executed without causing an unimplemented operation exception
even if an operand that is a subnormal number is input while the FS bit of the FPSR register is 0.

¢ Conditional move instruction (CMOYV), absolute value (ABS), arithmetic negation (NEG)
e Minimum value (MIN), maximum value (MAX), compare (CMPF)

o Conversion from half-precision to single-precision (CVTF.HS)

(4) Instructions that are not affected by flushing subnormal numbers

For the following instructions, flushing does not occur even an operand that is a subnormal number is
input while the FS bit of the FPSR register is 1.

e (Conditional move instruction (CMOYV), absolute value (ABS), arithmetic negation (NEG)
e Minimum value (MIN), maximum value (MAX), compare (CMPF)

e Conversion from half-precision to single-precision (CVTF.HS)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 138 of 384
Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

6.1.10 Selection of Floating-Point Operation Model

(1)

()

This CPU has three recommended floating-point operation models that can be selected according to
whether you want to process floating-point operations focusing on speed or accuracy.

If you want to focus on processing speed, select the do not generate exceptions model, in which
processing performance is prioritized by minimizing the occurrence of exceptions during the execution
of floating point operations. By using this model, the emulation processing overhead generated by
exception handling can be removed, making it ideal for applications that require a real-time
performance, but that do not require such a high level of accuracy.

It is also possible to select an imprecise exception model, in which high-speed processing is executed
as long as no exceptions occur, but which switches to exception handling when an exception does
occur. If you anticipate using this model in applications such as those mentioned above that require
high-speed processing, debugging can be made easier by designing the software so that exceptions are
detected and processed early, thus preserving an internal status close to the status of when the event that
caused the exception occurred.

For applications that require a high level of accuracy and that you want to manage by using software,
select the precise exception model, in which the system shifts to exception handling as soon as a
floating-point operation exception is detected. This model uses software-based processing to generate
more accurate operation results.

Do not generate exceptions model

If you want to use this model, which prioritizes processing speed and minimizes the occurrence of
exceptions, specify the following settings:

o C(lear the enable bit of the FPSR register to 0 to suppress the occurrence of floating-point
operation exceptions.

o Set the FS bit of the FPSR register to 1 to flush subnormal numbers.

e Use the single-precision floating-point format for processing that does not require a high level of
accuracy.

By disabling the generation of floating-point operation exceptions that can be ignored during
arithmetic processing, arithmetic processing can continue to be executed using default values. Also, if
progressive underflows can be ignored when flushing subnormal numbers, arithmetic processing can
continue to be executed using flushed values. The use of single-precision instructions also generally
reduces the number of execution clock cycles (latency) required to complete the processing.

Detect exception events that occur during arithmetic processing by explicitly referencing cause flags
set by using a separate software program.
Imprecise exception model

If you want to use this model, which prioritizes speed but also allows exceptions to be generated,
specify the following settings.

o Set the enable bit of the FPSR register to an appropriate value according to the necessity of
exception handling

o Set the FS bit of the FPSR register to 1 to flush subnormal numbers.
o C(Clear the PEM bit of the FPSR register to 0 to specify the imprecise exception mode.

By disabling the generation of floating-point operation exceptions that can be ignored during
arithmetic processing, arithmetic processing can continue to be executed using default values. Also, if

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 139 of 384

Dec 22, 2016

RH850G3KH Software Section 6 Coprocessor

progressive underflows can be ignored when flushing subnormal numbers, arithmetic processing can
continue to be executed using flushed values. The use of single-precision instructions also generally
reduces the number of execution clock cycles (latency) required to complete the processing. The
processing throughput in imprecise exception mode is therefore higher than that in precise exception
mode.

(3) Precise exception model

If you want to use this model, which allows exceptions to be processed as soon as they occur so that the
processing accuracy can be managed by using software, specify the following settings:

o Set the enable bit of the FPSR register to an appropriate value according to the necessity of
exception handling

o Clear the FS bit of the FPSR register to 0 to generate an exception if a subnormal number exists.

o Set the PEM bit of the FPSR register to 1 to specify the precise exception mode.

Specifying these settings enables exceptions to be acknowledged immediately, at the instruction that
caused the exception. Subsequent instructions are not executed and the processor status of before the
exception-causing instruction was executed is retained. This enables software-based emulation in cases
where extremely accurate arithmetic operations are required. If an IEEE754 exception is triggered by
the emulated operation, also emulate that exception.

The exception handler determines the followings by searching an instruction with the FPEPC register.
e The instruction being executed

e The destination format

To obtain an accurately rounded result when an overflow exception, underflow exception (except one
caused by a conversion instruction), or inexact exception occurs, include program code that searches
for the source register and emulates the instruction in the exception handler routine.

To obtain an accurate result when an invalid operation exception or division by zero exception occurs,
or an overflow or underflow exception occurs during floating-point conversion, include program code
in the exception handler routine that searches for the instruction's source register and obtains the
operand value.

In the IEEE754 standard, it is recommended to prioritize overflow and underflow exceptions over
inexact exceptions. The exception priority can be specified by using software. Be sure to set the
hardware enable bits of the overflow, underflow, and inexact exceptions.

Note that if an attempt is made to execute an instruction with an invalid data format in the FPU, or if an
operand input or operation result is a subnormal number while the FS bit of the FPSR register is cleared
(0), an unimplemented operation exception (E) will occur (except for some instructions). In this case,
neither the operand nor the contents of the destination register will be changed.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 140 of 384
Dec 22, 2016

RH850G3KH Software

6.1.11

Flush to Nearest

This CPU provides flush-to-nearest mode, a feature for flushing to the nearest number with higher
accuracy when a flushing operation results subnormal number. Flush-to-nearest mode is enabled when
the rounding mode is RN and the FN bit of the FPSR register is set (1). When this mode is used, the
FPU determines the value to which to flush the subnormal number based on the number of the
operation result and not just the sign. However, the result is flushed to +2Emin \which is different from
the value shown in Table 6.9, when the operation result of the subtract operation by SUBF, FMSF,
FNMSF instructions and the add operation of a negative value by ADDF, FMAF, FNMAF instructions
becomes +2(Fmin-2),

This feature has no effect in rounding modes other than RN or on the result of flushing an input

Section 6 Coprocessor

operand.
Table 6.9 Rounding Mode and Value to Which Operation Result is Flushed
Rounding Mode and Value to Which Operation Result Is Flushed

Value of Subnormal Operation B
Result FN=1 FN=0 RZ RP RM
+2Emin-1 < Operation result < +2EMin 4pEmin +0 +0 +2Emin +0
+0 < Operation result < +2Emin-1 +0
—2Emin-1 < Operation result < -0 -0 -0 -0 -0 —2Emin
—2Bmin < Operation result < —2EMin-1 _Emin

CAUTION

Whether the operation result is a subnormal number is judged by using the value before rounding.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 141 of 384

RH850G3KH Software Section 7 Instruction

Section 7

Instruction

71 Opcodes and Instruction Formats

This CPU has two types of instructions: CPU instructions, which are defined as basic instructions, and
coprocessor instructions, which are defined according to the application.

711 CPU Instructions

(1)

Instructions classified as CPU instructions are allocated in the opcode area other than the area used in
the format of the coprocessor instructions shown in Section 7.1.2, Coprocessor Instructions.

CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several
instructions that use option data to add bits, enabling the configuration of 48-bit and 64-bit instructions.
For details, see the opcode of the relevant instruction in Section 7.2.2, Basic Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions are
reserved for future function expansion and cannot be used. For details, see Section 7.1.3, Reserved
Instructions.

reg-reg instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general-purpose register
specification fields.

(2)

imm-reg instruction (Format Il)

A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a general-
purpose register specification field.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 142 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

(3) Conditional branch instruction (Format Ill)

A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an 8-bit
displacement field.

(4) 16-bit load/store instruction (Format IV)

A 16-bit instruction format consists of a 4-bit opcode field, a general-purpose register specification
field, and a 7-bit displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

reg2 opcode disp

L disp/sub-opcode

In addition, a 16-bit instruction format consists of a 7-bit opcode field, a general-purpose register
specification field, and a 4-bit displacement field.

(5) Jump instruction (Format V)

A 32-bit instruction format consists of a 5-bit opcode field, a general-purpose register specification
field, and a 22-bit displacement field.

15 11 10 6 5 0 3 17 16
T T
reg2 opcode disp 0
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 143 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

(6) 3-operand instruction (Format VI)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification
fields, and a 16-bit immediate field.

15 110 5 4 0 3 16
I I

reg2

(7) 32-bit load/store instruction (Format VII)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification
fields, and a 16-bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

17_16

I I

=

disp/sub-opcode

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit
specification field, a general-purpose register specification field, and a 16-bit displacement field.

15 14 13

1

10

T
sub

T
bit #

(9) Extended instruction format 1 (Format 1X)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register
specification fields, and handles the other bits as a sub-opcode field.

CAUTION

Extended instruction format 1 might use part of the general-purpose register
specification field or the sub-opcode field as a system register number field, condition
code field, immediate field, or displacement field. For details, see the description of
each instruction in Section 7.2.2, Basic Instruction Set.

15 110 5 4 0 31
I I

sub-opcode 0

reg2

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 144 of 384

RH850G3KH Software

Section 7 Instruction

(10) Extended instruction format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub-opcode
field.

CAUTION

Extended instruction format 2 might use part of the general-purpose register
specification field or the sub-opcode field as a system register number field, condition
code field, immediate field, or displacement field. For details, see the description of
each instruction in Section 7.2.2, Basic Instruction Set.

15 1110 5 4 0 31 17 _16
I I I I I I I I I ‘suH—opéodeV I I I I I I I I I I I I I I
sub-opcode opcode imm/vector sub-opcode 0
(11) Extended instruction format 3 (Format XI)
This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose register
specification fields, and uses the other bits as a sub-opcode field.
CAUTION
Extended instruction format 3 might use part of the general-purpose register
specification field or the sub-opcode field as a system register number field, condition
code field, immediate field, or displacement field. For details, see the description of
each instruction in Section 7.2.2, Basic Instruction Set.
15 1110 5 4 0 31 27 26 17 _16
I I
reg2 opcode reg1 reg3 sub-opcode 0
(12) Extended instruction format 4 (Format Xill)
This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register
specification fields, and uses the other bits as a sub-opcode field.
CAUTION
Extended instruction format 4 might use part of the general-purpose register
specification field or the sub-opcode field as a system register number field, condition
code field, immediate field, or displacement field. For details, see the description of
each instruction in Section 7.2.2, Basic Instruction Set.
15 1110 5 4 0 31 27 26 17_16
I I
reg2 opcode sub-opcode reg3 sub-opcode 0
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 145 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

(13)

Stack manipulation instruction format (Format XIlil)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate ficld, 12-bit register list
field, 5-bit sub-opcode field, and one general-purpose register specification field (or 5-bit sub-opcode
field).

The general-purpose register specification field is used as a sub-opcode filed, depending on the format
of the instruction.

15 11 10 6 5 1 0 31 21 20 16
T T 1 T T T T T 1 T T T T T T T T T 1 T T T
sub-opcode opcode imm list reg2
(14) Load/store instruction 48-bit format (Format XIV)
This is a 48-bit instruction format that has a 6-bit opcode field, two general-purpose register
specification fields, and a 23-bit displacement field, and uses the other bits as a sub-opcode field.
15 11 10 5 4 0 31 27 26 20 19 16
T T 1 T T T 1 T T T T T 1 T T T T T T 1
sub-opcode opcode reg1 reg3 disp(low) sub-opcode
47 32
— T T T T T T T T T T T T T 1T
disp(high)
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 146 of 384

Dec 22, 2016

RH850G3KH Software

Section 7

Instruction

71.2

Instructions in the following format are defined as coprocessor instructions.

Coprocessor Instructions

1 10 9 8 7 6 5 4 0 31

27 26 25

I I I
reg2

T
1

1

1

1

1

1

I I I I I I

reg3

T

1

L opcode or reg1

Coprocessor instructions define the functions of each coprocessor.

(1) Coprocessor unusable exception

If an attempt is made to execute a coprocessor instruction defined by an opcode that refers to a
nonexistent coprocessor or a coprocessor that cannot be used due to the operational status of the device,
a coprocessor unusable exception (UCPOP) immediately occurs.

For details, see Section 2.4.3, Coprocessor Unusable Exceptions.

7.1.3 Reserved Instructions

An opcode reserved for future function extension and for which no instruction is defined is defined as a
reserved instruction. It is defined by the hardware specifications that either of the following two types
of operations is performed on the opcode of a reserved instruction.

e A reserved instruction exception occurs

e The reserved instruction is executed as an instruction

In this CPU, the following opcodes define the RIE instruction, which always causes a reserved

instruction exception to occur.

- RIE instruction (16 bits)

15 11 10 5 4 0 31 16
1 T 1 1 T T 1 T 1 1 1 1 1 1 1
X x x x x{1t 1 1 1 1 11 x x x x|0 0 0 0o 0 0 0o 00O OO O O 0O
(x=Don’ tcare, either0or1)
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 147 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

7.2 Basic Instructions

7.21 Overview of Basic Instructions

(1) Load instructions

Execute data transfer from memory to register. The following instructions (mnemonics) are provided.

(a) LD instructions
e LD.B: Load byte
e LD.BU: Load byte unsigned
e LD.DW: Load double word
e LD.H: Load halfword
e LD.HU: Load halfword unsigned
e LD.W: Load word
(b) SLD instructions
e SLD.B: Short format load byte
e SLD.BU: Short format load byte unsigned
e SLD.H: Short format load halfword
e SLD.HU: Short format load halfword unsigned
e SLD.W: Short format load word

(2) Store instructions

Execute data transfer from register to memory. The following instructions (mnemonics) are provided.

(a) ST instructions
e ST.B: Store byte
e ST.DW: Store double word
e ST.H: Store halfword
e ST.W: Store word
(b) SST instructions
e SST.B: Short format store byte
e SST.H: Short format store halfword

e SST.W: Short format store word

(3) Multiply instructions

Execute multiplication in one clock cycle with the on-chip hardware multiplier. The following

instructions (mnemonics) are provided.
e MUL: Multiply word
e MULH: Multiply halfword
e MULHI: Multiply halfword immediate
e MULU: Multiply word unsigned

RO1US0165EJ0120 Rev.1.20 ENESAS
Dec 22, 2016

Page 148 of 384

RH850G3KH Software Section 7 Instruction

(4) Multiply-accumulate instructions

After a multiplication operation, a value is added to the result. The following instructions (mnemonics)
are available.

e MAC: Multiply and add word
e MACU: Multiply and add word unsigned

(5) Arithmetic instructions

Add, subtract, transfer, or compare data between registers. The following instructions (mnemonics) are
provided.

e ADD: Add

e ADDI: Add immediate

e CMP: Compare

e MOV: Move

e MOVEA: Move effective address
e MOVHI: Move high halfword

e SUB: Subtract

e SUBR: Subtract reverse

(6) Conditional arithmetic instructions

Add and subtract operations are performed under specified conditions. The following instructions
(mnemonics) are available.

e ADF: Add on condition flag

e SBF: Subtract on condition flag

(7) Saturated operation instructions

Execute saturated addition and subtraction. If the operation result exceeds the maximum positive value
(7FFF FFFFy), 7FFF FFFFy returns. If the operation result exceeds the maximum negative value
(8000 0000¢), 8000 0000y returns. The following instructions (mnemonics) are provided.

e SATADD: Saturated add
e SATSUB: Saturated subtract
e SATSUBI: Saturated subtract immediate

e SATSUBR: Saturated subtract reverse

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 149 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

(8) Logical instructions
Include logical operation instructions. The following instructions (mnemonics) are provided.
e AND: AND
e ANDI: AND immediate
e NOT: NOT
e OR:OR
e ORI: OR immediate
o TST: Test
e XOR: Exclusive OR

e XORI: Exclusive OR immediate

(9) Data manipulation instructions

Include data manipulation instructions and shift instructions with arithmetic shift and logical shift.
Operands can be shifted by multiple bits in one clock cycle through the on-chip barrel shifter. The
following instructions (mnemonics) are provided.

o BINS: Bitfield insert

e BSH: Byte swap halfword

e BSW: Byte swap word

e CMOYV: Conditional move

e HSH: Halfword swap halfword
e HSW: Halfword swap word

e ROTL: Rotate left

e SAR: Shift arithmetic right

e SASF: Shift and set flag condition
e SETF: Set flag condition

e SHL: Shift logical left

e SHR: Shift logical right

e SXB: Sign-extend byte

e SXH: Sign-extend halfword

e ZXB: Zero-extend byte

e ZXH: Zero-extend halfword

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 150 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

(10)

(11)

(12)

(13)

(14)

(15)

Bit search instructions

The specified bit values are searched among data stored in registers.
e SCHOL: Search zero from left
e SCHOR: Search zero from right
e SCHIL: Search one from left

e SCHIR: Search one from right

Divide instructions

Execute division operations. Regardless of values stored in a register, the operation can be performed
using a constant number of steps. The following instructions (mnemonics) are provided.

e DIV: Divide word
e DIVH: Divide halfword
e DIVHU: Divide halfword unsigned

e DIVU: Divide word unsigned

High-speed divide instructions

These instructions perform division operations. The number of valid digits in the quotient is
determined in advanced from values stored in a register, so the operation can be performed using a
minimum number of steps. The following instructions (mnemonics) are provided.

e DIVQ: Divide word quickly
e DIVQU: Divide word unsigned quickly

Branch instructions

Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch instruction
(Bcond) which accommodates the flag status to switch controls. Program control can be transferred to
the address specified by a branch instruction. The following instructions (mnemonics) are provided.

Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV, BNZ, BP,
BR, BSA, BV, BZ): Branch on condition code

JARL: Jump and register link

JMP: Jump register

JR: Jump relative

Loop instruction

e LOOP: Loop

Bit manipulation instructions

Execute logical operation on memory bit data. Only a specified bit is affected. The following
instructions (mnemonics) are provided.

e CLRI: Clear bit
e NOTI: Not bit
e SETI: Set bit

e TSTI: Test bit

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 151 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

(16) Special instructions

Include instructions not provided in the categories of instructions described above. The following
instructions (mnemonics) are provided.

e CALLT: Call with table look up

e CAXI: Compare and exchange for interlock
e CLL: Clear load link

e CTRET: Return from CALLT

e DI: Disable interrupt

e DISPOSE: Function dispose

o EI: Enable interrupt

e EIRET: Return from trap or interrupt
o FERET: Return from trap or interrupt
e FETRAP: Software trap

e HALT: Halt

e LDSR: Load system register

e LDL.W: Load linked word

e NOP: No operation

e POPSP: Pop registers from stack

o PREPARE: Function prepare

e PUSHSP: Push registers from stack

e RIE: Reserved instruction exception
e SNOOZE: Snooze

e STSR: Store system register

e STC.W: Store conditional word

e SWITCH: Jump with table look up

e SYNCE: Synchronize exceptions

e SYNCI: Synchronize memory for instruction writers
e SYNCM: Synchronize memory

e SYNCP: Synchronize pipeline

e SYSCALL: System call

e TRAP: Trap

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 152 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

Basic Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the following

items.

¢ Instruction format: Indicates how the instruction is written and its operand(s) (for symbols, see

Table 7.1).

e Operation: Indicates the function of the instruction (for symbols, see Table 7.2).

e Format: Indicates the instruction format (see Section 7.1, Opcodes and Instruction

Formats).

e Opcode: Indicates the bit field of the instruction opcode (for symbols, see Table 7.3).

e Flag: Indicates the change of flags of PSW (program status word) after the instruction execution.

“0” is to clear (reset), “1” to set, and “—” to remain unchanged.

e Description: Describes the operation of the instruction.

e Supplement: Provides supplementary information on the instruction.

e Caution: Provides precautionary notes.

Table 7.1 Conventions of Instruction Format

Symbol Meaning

reg1 General-purpose register (as source register)

reg2 General-purpose register (primarily as destination register with some as source
registers)

reg3 General-purpose register (primarily used to store the remainder of a division
result and/or the higher 32 bits of a multiplication result)

bit#3 3-bit data to specify bit number

imm x x-bit immediate data

disp x x-bit displacement data

reglD System register number

sellD System register group number

vector x Data to specify vector (x indicates the bit size)

cond Condition code (see Table 7.4 Condition Codes)

ccee 4-bit data to specify condition code (see Table 7.4 Condition Codes)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

rh-rt Indicates multiple general-purpose registers, from the general-purpose register

indicated by rh to the general-purpose register indicated by rt.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 153 of 384

RH850G3KH Software

Section 7

Instruction

Table 7.2 Conventions of Operation
Symbol Meaning
— Assignment
GR[a] Value stored in general-purpose register a
SR][a, b] Value stored in system register (RegID = a, SellD = b)
(n:m) Bit selection. Select from bit n to bit m.

zero-extend (n)

©an

Zero-extends “n” to word

sign-extend (n)

Sign-extends “n” to word

load-memory (a, b)

Reads data of size b from address a

store-memory (a, b, c)

Writes data b of size ¢ to address a

extract-bit (a, b)

Extracts value of bit b of data a

set-bit (a, b)

Sets value of bit b of data a

not-bit (a, b)

Inverts value of bit b of data a

clear-bit (a, b)

Clears value of bit b of data a

saturated (n)

Performs saturated processing of “n.”
If n > 7FFF FFFFy, n = 7FFF FFFFy.
If n <8000 0000y, n = 8000 0000,.

result Outputs results on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

== Comparison (true upon a match)
1= Comeparison (true upon a mismatch)
+ Add

- Subtract

Il Bit concatenation

x Multiply

+ Divide

% Remainder of division results
AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by

Logical left-shift

logically shift right by

Logical right-shift

arithmetically shift right by Arithmetic right-shift

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 154 of 384

RH850G3KH Software Section 7 Instruction

Table 7.3 Conventions of Opcode
Symbol Meaning
R 1-bit data of code specifying reg1 or reglD
r 1-bit data of code specifying reg2
w 1-bit data of code specifying reg3
D 1-bit data of displacement (indicates higher bits of displacement)
d 1-bit data of displacement
| 1-bit data of immediate (indicates higher bits of immediate)
i 1-bit data of immediate
\Y 1-bit data of code specifying vector (indicates higher bits of vector)
v 1-bit data of code specifying vector
ccce 4-bit data for condition code specification (See Table 7.4 Condition Codes)
bbb 3-bit data for bit number specification
1-bit data of code specifying general-purpose register in register list
1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list
1-bit data of code specifying PSW in register list
Table 7.4 Condition Codes

Condition Code (cccc)

Condition Name

Condition Formula

0000

\

ov=1

Dec 22, 2016

1000 NV ov=0

0001 C/L CYy =1

1001 NC/NL CY=0

0010 z Z=1

1010 NZ Z=0

0011 NH (CYorz)=1

1011 H (CYorz)=0

0100 SIN S=1

1100 NS/P S=0

0101 T Always (Unconditional)

1101 SA SAT =1

0110 LT (SxorQV)=1

1110 GE (SxorQV)=0

0111 LE ((S xor OV)orZz)=1

1111 GT ((Sxor0OV)orz)=0
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 155 of 384

RH850G3KH Software Section 7 Instruction

<Arithmetic instruction>

ADD

Add register/immediate

Add

[Instruction format] (1) ADD regl, reg2

(2) ADD immb5, reg2

[Operation] (1) GR[reg2] «— GR[reg2] + GR[regl]

(2) GR[reg2] « GR[reg2] + sign-extend (imm5)

[Format] (1) FormatI

(2) Format II
[Opcode]
15 0
(1) |rrrrr001110RRRRR
15 0
(2) |rrrrr010010iiiii

[Flags]

CY “1” if a carry occurs from MSB; otherwise, “0”.

oV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] (1) Adds the word data of general-purpose register regl to the word data of general-purpose
register reg2 and stores the result in general-purpose register reg2. General-purpose
register regl is not affected.

(2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of
general-purpose register reg2 and stores the result in general-purpose register reg2.
R0O1US0165EJ0120 Rev.1.20 IIENESAS Page 156 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Arithmetic instruction>

ADDI

Add immediate

Add immediate

[Instruction format] ADDI imm16, regl, reg2
[Operation] GR[reg2] < GR[regl] + sign-extend (imm16)
[Format] Format VI
[Opcode]
15 031 16

rrrrr110000RRRRR|111111111111111i1

[Flags]
CY “1” if a carry occurs from MSB; otherwise, “0”.
oV “1” if overflow occurs; otherwise, “0”.
S “1” if the operation result is negative; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise “0”.
SAT —

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-
purpose register regl and stores the result in general-purpose register reg2. General-purpose
register regl is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 157 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Conditional Operation Instructions>

ADF

Add on condition flag

Conditional add

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

ADF cccc, regl, reg2, reg3

if conditions are satisfied
then GR[reg3] «— GR[regl] + GR[reg2] +1
else GR[reg3] « GR[regl] + GR[reg2] +0

Format XI
15 031 16
rrrrr111111RRRRR wwwww011101lccccO
CY “1” if a carry occurs from MSB; otherwise, “0”.
oV “1” if overflow occurs; otherwise, “0”.
S “1” if the operation result is negative; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.
SAT —

Adds 1 to the result of adding the word data of general-purpose register regl to the word data

of general-purpose register reg2 and stores the result of addition in general-purpose register

reg3, if the condition specified as condition code “cccc” is satisfied.

If the condition specified as condition code “cccc” is not satisfied, the word data of general-

purpose register regl is added to the word data of general-purpose register reg2, and the result

is stored in general-purpose register reg3.

General-purpose registers regl and reg2 are not affected. Designate one of the condition

codes shown in the following table as [ccce]. (ccce is not equal to 1101.)

Condition Condition

Code Name Condition Formula Code Name Condition Formula

0000 \ ov=1 0100 SIN S=1

1000 NV ov=0 1100 NS/P S=0

0001 C/L Cy=1 0101 T Always
(Unconditional)

1001 NC/NL CY=0 0110 LT (SxorQV)=1

0010 z Z=1 1110 GE (SxorOV)=0

1010 NZ Z=0 0111 LE ((SxorOV)orZz)=1

0011 NH (CYorz)=1 1111 GT ((SxorOV)orz)=0

1011 H (CYorz)=0 (1101) Setting prohibited

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 158 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Logical instruction>

AND
AND
[Instruction format)] AND regl, reg2
[Operation] GR[reg2] «— GR[reg2] AND GRJregl]
[Format] Format I
[Opcode]
15 0
rrrrr001010RRRRR
[Flags]
CY —
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, “0”.
SAT —
[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register regl and stores the result in general-purpose register reg2. General-purpose register
regl is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 159 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Logical instruction>

ANDI

AND immediate

AND immediate

[Instruction format)] ANDI imml6, regl, reg2

[Operation] GR[reg2] < GR[regl] AND zero-extend (imm16)
[Format] Format VI

[Opcode] 15 031 16

rrrrr110110RRRRR [1iiiiiiiiiiiiiii

[Flags]
CcY —
ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, “0”.
SAT —

[Description] ANDs the word data of general-purpose register regl with the 16-bit immediate data, zero-
extended to word length, and stores the result in general-purpose register reg2. General-
purpose register regl is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 160 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Branch instruction>

Bcond

Branch on condition code with 9-bit displacement

Conditional branch

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

)
)

)

2)

()
2)

(1)

Bcond disp9
Bcond displ7

if conditions are satisfied
then PC «— PC + sign-extend (disp9)
if conditions are satisfied

then PC «— PC + sign-extend (disp17)

Format III

Format VII
15 0
lddddd1011dddcccc

dddddddd is the higher 8 bits of disp9.
cccc is the condition code of the condition indicated by cond (see Table 7.5, Bcond
Instructions).

@)

15 031 16

00000111111DCCCC [dddddddddddddddl

dddddddddddddddd is the higher 16 bits of disp17.
cccc is the condition code of the condition indicated by cond. (For details, see Table 7.5,
Bcond Instructions).

CY
ov

SAT

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 161 of 384

RH850G3KH Software

Section 7 Instruction

[Description] (1) Checks each PSW flag specified by the instruction and branches if a condition is met;
otherwise, executes the next instruction. The PC of branch destination is the sum of the
current PC value and the 9-bit displacement (= 8-bit immediate data shifted by 1 and
sign-extended to word length).

(2) Checks each PSW flag specified by the instruction and then adds the result of logically shifting the
16-bit immediate data 1 bit to the left and sign-extending it to word length to the current PC value
if the conditions are satisfied. Control is then transferred. If the conditions are not satisfied, the
system continues to the next instruction. BR (0101) cannot be specified as the condition code.

[Supplement] Bit 0 of the 9-bit displacement is masked to “0”. The current PC value used for calculation is

the address of the first byte of this instruction. The displacement value being “0” signifies that

the branch destination is the instruction itself.
Table 7.5 Bcond Instructions
Condition Code
Instruction (cccc) Flag Status Branch Condition

Signed BGE 1110 (SxorOV)=0 Greater than or equal to signed
integer BGT 1111 ((SxorOV)orz)=0 Greater than signed

BLE 0111 ((SxorOV)orZ) =1 Less than or equal to signed

BLT 0110 (S xor OV) =1 Less than signed
Unsigned BH 1011 (CYorz)=0 Higher (Greater than)
integer BL 0001 cY =1 Lower (Less than)

BNH 0011 (CYorz)=1 Not higher (Less than or equal)

BNL 1001 CYy=0 Not lower (Greater than or equal)
Common BE 0010 Z=1 Equal

BNE 1010 Z=0 Not equal
Others BC 0001 CY =1 Carry

BF 1010 Z=0 False

BN 0100 S= Negative

BNC 1001 CYy=0 No carry

BNV 1000 ov=0 No overflow

BNZ 1010 Z=0 Not zero

BP 1100 S=0 Positive

BR 0101 — Always (unconditional)

Cannot be specified when using
instruction format (2).

BSA 1101 SAT =1 Saturated

BT 0010 Z= True

BV 0000 oV =1 Overflow

BZ 0010 Z= Zero

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 162 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

CAUTIONS

1. The branch condition loses its meaning if a conditional branch instruction is executed on
a signed integer (BGE, BGT, BLE, or BLT) when the saturated operation instruction sets
“1” to the SAT flag. In normal operations, if an overflow occurs, the S flag is inverted (0 —
1 or 1 — 0). This is because the result is a negative value if it exceeds the maximum
positive value and it is a positive value if it exceeds the maximum negative value.
However, when a saturated operation instruction is executed, and if the result exceeds
the maximum positive value, the result is saturated with a positive value; if the result
exceeds the maximum negative value, the result is saturated with a negative value.
Unlike the normal operation, the S flag is not inverted even if an overflow occurs.

2. For Bcond disp17 (instruction format (2)), BR (0101) cannot be specified as the condition
code.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 163 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Data manipulation instruction>

BINS

Bitfield Insert

Insert bit in register|

[Instruction format]

[Operation]

[Format)]

[Opcode]

[Flags]

[Description]

[Supplement]

BINS regl, pos, width, reg2

GR[reg2] < GRJreg2] (31:width+pos) || GR[regl] (width-1:0) || GR[reg2] (pos-1:0)

Format IX

15 031 16
rrrrr111111RRRRR MMMMKOOO1001LLLO
15 031 16
rrrrr111111RRRRR MMMMKOOO1011LLLO
15 031 16
rrrrr111111RRRRR MMMMKOOO1101LLLO

msb > 16, Isb > 16)

msb > 16, Isb < 16)

msb < 16, Isb < 16)

Most significant bit of field to be updated: msb = pos+width—1
Least significant bit of field to be updated: 1sb = pos
MMMM = lower 4 bits of msb, KL.L.L: = lower 4 bits of Isb

cYy —

oV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.
VA “1” if operation result is “0”; otherwise, “0”.

SAT —

Loads the lower width bits in general-purpose register regl and stores them from the bit

position bit pos + width —1 in the specified field in general-purpose register reg2 in bit pos.

This instruction does not affect any fields in general-purpose register reg2 except the

specified field, nor does it affect general-purpose register regl.

The most significant bit (msb: bit pos + width — 1) in the field in general-purpose register reg2

to be updated and the least significant bit (Isb: bit pos) in this field are specified by using,
respectively the lower 4 bits, the MMMM and KLLL fields in the BINS instruction.
The lower 3 bits of the sub-opcode field (bits 23 to 21) differ depending on the msb and Isb

values.

The operation is undefined if msb < Isb.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 164 of 384

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

BSH

Byte swap halfword

Byte swap of halfword data

[Instruction format] BSH reg?2, reg3

[Operation] GRJ[reg3] <« GRJ[reg2] (23:16) || GR[reg2] (31:24) || GR[reg2] (7:0) || GR[reg2] (15:8)
[Format] Format XII

[Opcode] 15 031 16

rrrrr11111100000 wwwww01101000010

[Flags]

CY “1” when there is at least one byte value of zero in the lower halfword of the operation
result; otherwise; “0”.

oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” when lower halfword of operation result is “0”; otherwise, “0”.
SAT —

[Description] Executes endian swap.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 165 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

BSW

Byte swap word

Byte swap of word data

[Instruction format] BSW reg2, reg3

[Operation] GR[reg3] « GRJ[reg2] (7:0) || GR[reg2] (15:8) || GR[reg2] (23:16) || GR[reg2] (31:24)
[Format] Format XII

[Opeode] 15 031 16

rrrrr11111100000 wwwww01101000000

[Flags]

CY “1” when there is at least one byte value of zero in the word data of the operation result;
otherwise; “0”.

oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” if operation result word data is “0”; otherwise, “0”.
SAT —

[Description] Executes endian swap.

R0O1US0165EJ0120 Rev.1.20 -ZENESAS Page 166 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

CALLT

Call with table look up

Subroutine call with table look up

[Instruction format] CALLT imm6

[Operation] CTPC « PC + 2 (return PC)
CTPSW(4:0) < PSW(4:0)
adr «— CTBP + zero-extend (imm6 logically shift left by 1)*1
PC « CTBP + zero-extend (Load-memory (adr, Half-word))

Caution 1. An MDP exception might occur depending on the result of address calculation.

[Format)] Format II

Opcode
[Opcode] 5 0

[Flags]
CY —

ov —

SAT —

[Description] The following steps are taken.
(1) Transfers the contents of both return PC and PSW to CTPC and CTPSW.

(2) Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and zero-
extended to word length, to generate a 32-bit table entry address.

(3) Loads the halfword entry data of the address generated in step (2) and zero-extend to
word length.

(4) Adds the CTBP value to the data generated in step (3) to generate a 32-bit target
address.

(5) Jumps to the target address.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 167 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

CAUTIONS

1. When an exception occurs during CALLT instruction execution, the execution is aborted
after the end of the read/write cycle.

2. Memory protection is performed when executing a memory read operation to read the
CALLT instruction table. When memory protection is enabled, the data for generating a
target address from a table allocated in an area to which access from a user program is
prohibited cannot be loaded

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 168 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

CAXI

Compare and exchange for interlock

Comparison and swap

[Instruction format] CAXI [regl], reg2, reg3

[Operation] adr « GR[regl]*1
token «<— Load-memory (adr, Word)
result «— GR[reg2] — token
Ifresult==0

then Store-memory (adr, GR[reg3], Word)
GR[reg3] « token

else Store-memory (adr, token, Word)
GR[reg3] < token

Caution 1. An MAE, or MDP exception might occur depending on the result of address calculation.

[Format] Format XI

Opcode
[P] 15 031 16

rrrrr111111RRRRR wwwww00011101110

[Flags]

CcY “1” if a borrow occurs in the result operation; otherwise, “0”
ov “1” if overflow occurs in the result operation; otherwise, “0”
S “1” if result is negative; otherwise, “0”

4 “1” if result is O; otherwise, “0”

SAT —

[Description] Word data is read from the specified address and compared with the word data in general-
purpose register reg2, and the result is indicated by flags in the PSW. Comparison is
performed by subtracting the read word data from the word data in general-purpose register
reg2. If the comparison result is “0”, word data in general-purpose register reg3 is stored in
the generated address, otherwise the read word data is stored in the generated address.
Afterward, the read word data is stored in general-purpose register reg3. General-purpose
registers regl and reg2 are not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 169 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

CAUTIONS

1. This instruction provides an atomic guarantee aimed at exclusive control, and during the
period between read and write operations, the target address is not affected by access
due to any other cause.

2. The CAXI instruction is included for backward compatibility. If you are using a multi-core
system and require an atomic guarantee, use the LDL.W and STC.W instructions.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 170 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

CLL

Clear Load Link

Clear atomic manipulation link

[Instruction format] CLL

[Operation] LLbit < 0

[Format] Format X

[Opcode] 15 031 16

11111111111111111111000101100000

[Flags]
CY —
oV —
S J—
Z —
SAT —
[Description] The thread link generated by the LDL.W instruction is deleted.
For details about the link operation between the thread and core, see Section 5.3.2,
Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions.
CAUTION
In systems such as a multi-core system, how the CLL instruction operates depends on the
system configuration of the product. For details, see the hardware manual of the product used.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 171 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit manipulation instruction>

CLR1

Clear bit

Bit clear,

[Instruction format] (1) CLR1 bit#3, displ6 [regl]
(2) CLRI1 reg2, [regl]

[Operation] (1) adr < GR[regl] + sign-extend (disp16)*1
token «— Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, bit#3))
token « clear-bit (token, bit#3)
Store-memory (adr, token, Byte)

(2) adr — GR[regl]*!

token «— Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, reg2))
token « clear-bit (token, reg2)
Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII
(2) Format IX

[Opcode]
15 0 31 16

(1) |10bbbl11110RRRRR|dddddddddddddddd

15 031 16
(2) rrrrr111111RRRRR|0000000011100100

[Flags]
CcY —

ov —

z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.
SAT —

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 172 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Byte data is read from the
generated address, then the bits indicated by the 3-bit bit number are cleared (0) and the
data is written back to the original address.

(2) Reads the word data of general-purpose register regl to generate a 32-bit address. Byte
data is read from the generated address, the bits indicated by the lower three bits of reg2 are
cleared (0), and the data is written back to the original address.

[Supplement] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is
executed, and does not indicate the content of the specified bit after this instruction is
executed.

CAUTION

This instruction provides an atomic guarantee aimed at exclusive control, and during the period
between read and write operations, the target address is not affected by access due to any
other cause.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 173 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Data manipulation instruction>

CMOV

Conditional move

Conditional move

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

(1
2

(M

2)

(1)
2

(1)

@)

CY
ov

SAT

CMOV cccc, regl, reg2, reg3

CMOV cccc, immS5, reg2,

if conditions are satisfied

reg3

then GR[reg3] «— GR[regl]
else GR[reg3] « GR[reg2]

if conditions are satisfied

then GR[reg3] « sign-extended (imm5)
else GR[reg3] « GR[reg2]

Format XI
Format XII

15 0

31 16

rrrrr111111RRRRR

wwwww011001lcceccO

15 0

31 16

wwwww011000ccccO

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 174 of 384

RH850G3KH Software

Section 7 Instruction

[Description]

[Supplement]

(1) When the condition specified by condition code “cccc” is met, data in general-purpose
register regl is transferred to general-purpose register reg3. When that condition is not

met, data in general-purpose register reg?2 is transferred to general-purpose register reg3.

Specify one of the condition codes shown in the following table as “cccc”.

Condition Condition

Code Name Condition Formula Code Name Condition Formula

0000 Vv oV =1 0100 S/N S=1

1000 NV ov=0 1100 NS/P S=0

0001 C/L Cy=1 0101 T Always (unconditional)

1001 NC/NL Cy=0 1101 SA SAT =1

0010 z Z=1 0110 LT (S xor OV) =1

1010 Nz Z=0 1110 GE (SxorOV)=0

0011 NH (CYorz)=1 0111 LE ((S xor OV) or Z) = 1

1011 H (CYorz)=0 1111 GT ((SxorOV)orz)=0
(2) When the condition specified by condition code “cccc” is met, 5-bit immediate data sign-

extended to word-length is transferred to general-purpose register reg3. When that

condition is not met, the data in general-purpose register reg2 is transferred to general-

purpose register reg3. Specify one of the condition codes shown in the following table as

“ccec”.
Condition Condition
Code Name Condition Formula Code Name Condition Formula
0000 \ ov=1 0100 SIN S=1
1000 NV ov=0 1100 NS/P S=0
0001 C/L Cy=1 0101 T Always (unconditional)
1001 NC/NL CY=0 1101 SA SAT =1
0010 z zZ=1 0110 LT (S xorOV) =1
1010 NZ Z=0 1110 GE (SxorOV)=0
0011 NH (CYorz)=1 0111 LE ((S xor OV)orZ) =1
1011 H (CYorz)=0 1111 GT ((SxorOV)orz)=0

See the description of the SETF instruction.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 175 of 384

RH850G3KH Software Section 7 Instruction

<Arithmetic instruction>

CMP

Compare register/immediate (5-bit)

Compare

[Instruction format] (1) CMP regl, reg2
(2) CMP immS5, reg2

[Operation] (1) result «— GR[reg2] — GR[regl]

(2) result «— GR[reg2] — sign-extend (immb5)

[Format] (1) FormatI
(2) Format II

[Opcode]
15 0

(1) |rrrrr001111RRRRR

15 0

(2) |rrrrr010011iiiii

[Flags]
CY “1” if a borrow occurs from MSB; otherwise, “0”.

oV “1” if overflow occurs; otherwise, “0”.
S “1” if the operation result is negative; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] (1) Compares the word data of general-purpose register reg2 with the word data of general-
purpose register regl and outputs the result through the PSW flags. Comparison is
performed by subtracting the regl contents from the reg2 word data. General-purpose
registers regl and reg2 are not affected.

(2) Compares the word data of general-purpose register reg2 with the 5-bit immediate data,
sign-extended to word length, and outputs the result through the PSW flags. Comparison
is performed by subtracting the sign-extended immediate data from the reg2 word data.
General-purpose register reg2 is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 176 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

CTRET

Return from CALLT

Return from subroutine call

[Instruction format] CTRET
[Operation] PC « CTPC
PSW(4:0) < CTPSW(4:0)
[Format] Format X
[Opcode] 15 031 16

0000011111100000(0000000101000100

[Flags]
CY Value read from CTPSW is set.
ov Value read from CTPSW is set.
S Value read from CTPSW is set.
4 Value read from CTPSW is set.
SAT Value read from CTPSW is set.
[Description] Loads the return PC and PSW (the lower 5 bits) from the appropriate system register and
returns from a routine under CALLT instruction. The following steps are taken:
(1) The return PC and the return PSW (the lower 5 bits) are loaded from the CTPC and
CTPSW.
(2) The values are restored in PC and PSW (the lower 5 bits) and the control is transferred to
the return address.
CAUTION
When the CTRET instruction is executed, only the lower 5 bits of the PSW register are
updated; the higher 27 bits retain their previous values.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 177 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

DI

Disable interrupt

Disable El level maskable exception

[Instruction format] DI

[Operation] PSW.ID « 1 (Disables EI level maskable interrupt)
[Format] Format X

[Opeode] 15 031 16

0000011111100000|0000000101100000

[Flags]

[Description] Sets “1” to the ID flag of the PSW to disable the acknowledgement of EI level maskable
exceptions after the execution of this instruction.

[Supplement] Overwrite of flags in the PSW by this instruction becomes valid as of the next instruction.
If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-level instruction.
If the MCTL.UIC bit has been set to 1, this instruction can always be executed.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 178 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

DISPOSE

Function dispose

Stack frame deletion

[Instruction format] (1) DISPOSE immb5, list12
(2) DISPOSE immb5, list12, [regl]

[Operation] (1) tmp « sp + zero-extend (imm5 logically shift by 2)

foreach (all regs in list12) {

adr «— tmp*1’ *2

GR[reg in list12] «— Load-memory (adr, Word)
tmp < tmp + 4
}
Sp «— tmp
(2) tmp < sp + zero-extend (imm5 logically shift by 2)

foreach (all regs in list12) {

adr « tmp*1’ *2

GRJreg in list12] « Load-memory (adr, Word)
tmp < tmp + 4

H

PC < GRJregl]

Sp «— tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. When loading to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode]
15 0 31 16

(1) 0000011001iiiiiL|(LLLLLLLLLLLOO0OOO

15 0 31 16
(2) 00000110011iiiiL|LLLLLLLLLLLRRRRR

RRRRR # 00000 (Do not specify r0 for regl.)

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list
“list12” (for example, the “L” at bit 21 of the opcode corresponds to the value of bit21 in list12).
list12 is a 32-bit register list, defined as follows.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 179 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Flags]

[Description]

[Supplement]

3 30 29 28 27 26 25 24 23 22 21 20...1 0
r24 | r25 | r26 | r27 | r20 | r21 | r22 | r23 | r28 | r29 | r31 — r30

Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to 1r31), so that when any
of these bits is set (1), it specifies a corresponding register operation as a processing target.
For example, when r20 and r30 are specified, the values in list12 appear as shown below
(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

e When all of the register’s non-corresponding bits are “0”: 0800 0001

e When all of the register’s non-corresponding bits are “1”: 081F FFFFy

CY —
ov —

SAT —

(1) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word
length, to sp; returns to general-purpose registers listed in list12 by loading the data from
the address specified by sp and adds 4 to sp.

(2) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word
length, to sp; returns to general-purpose registers listed in list12 by loading the data from
the address specified by sp and adds 4 to sp; and transfers the control to the address
specified by general-purpose register regl.

General-purpose registers in list12 are loaded in descending order (r31, r30, ... r20). The
immb5 restores a stack frame for automatic variables and temporary data. The lower 2 bits of
the address specified by sp is always masked to “0” and aligned to the word boundary.

CAUTIONS

1. If an exception occurs while this instruction is being executed, execution of the instruction
might be stopped after the read/write cycle and the register value write operation are
completed, but sp will retain its original value from before the start of execution. The
instruction will be executed again later, after a return from the exception.

2. Forinstruction format (2) DISPOSE immb5, list12, [reg1], do not specify r0 for reg1.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 180 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Divide instruction>

DIV

Divide word

Division of (signed) word data

[Instruction format] DIV regl, reg2, reg3

[Operation] GR[reg2] < GR[reg2] + GR[regl]
GR[reg3] <« GR[reg2] % GR[regl]

[Format] Format XI

Opcod
[Opcode] 15 031 16

rrrrr111111RRRRR wwwww01011000000

[Flags]
CY —

oV “1” if overflow occurs; otherwise, “0”

S “1” if the operation result quotient is negative; otherwise, “0”.
Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose
register regl and stores the quotient to general-purpose register reg2 with the remainder set to
general-purpose register reg3. General-purpose register regl is not affected. When division by
zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Supplement] Overflow occurs when the maximum negative value (8000 0000y) is divided by —1 with the
quotient = 8000 0000y and when the data is divided by 0 with quotient being undefined.
If reg2 and reg3 are the same register, the remainder is stored in that register.
When an exception occurs during the DIV instruction execution, the execution is aborted to
process the exception. The execution resumes at the original instruction address upon
returning from the exception. General-purpose register regl and general-purpose register reg2
retain their values prior to execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 181 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Divide instruction>

DIVH

Divide halfword

Division of (signed) halfword data

[Instruction format] (1) DIVH regl, reg2
(2) DIVH regl, reg2, reg3

[Operation] (1) GR[reg2] « GR[reg2] + sign-extend (GR[regl] (15:0))

(2) GR[reg2] « GR[reg2] + sign-extend (GR[regl] (15:0))
GR[reg3] <« GR[reg2] % sign-extend (GR[regl] (15:0))

[Format] (1) Format I

(2) Format XI

[Opcode]
15 0

(1) |rrrrr000010RRRRR

RRRRR # 00000 (Do not specify r0 for regl.)

rrrrr # 00000 (Do not specify r0 for reg2.)

15 0 31 16
(2) rrrrrl111111RRRRR|wwwww01010000000

[Flags]
CY —

oV “1” if overflow occurs; otherwise, “0”.
S “1” if the operation result quotient is negative; otherwise, “0”.
z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] (1) Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register regl and stores the quotient to general-purpose register reg2.
General-purpose register regl is not affected. When division by zero occurs, an overflow
results and all operation results except for the OV flag are undefined.

(2) Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register regl and stores the quotient to general-purpose register reg2
with the remainder set to general-purpose register reg3. General-purpose register regl is
not affected. When division by zero occurs, an overflow results and all operation results
except for the OV flag are undefined.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 182 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Supplement]

)

)

The remainder is not stored. Overflow occurs when the maximum negative value
(8000 0000yy) is divided by —1 with the quotient = 8000 0000y and when the data is
divided by 0 with quotient being undefined.

When an exception occurs during the DIVH instruction execution, the execution is
aborted to process the exception. General-purpose register regl and general-purpose
register reg2 retain their values prior to execution of this instruction.

Overflow occurs when the maximum negative value (8000 0000y) is divided by —1 with
the quotient = 8000 0000y and when the data is divided by 0 with quotient being
undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVH instruction execution, the execution is
aborted to process the exception. The execution resumes at the original instruction
address upon returning from the exception. General-purpose register regl and general-
purpose register reg2 retain their values prior to execution of this instruction.

CAUTIONS

1.

2.

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

Do not specify r0 as reg1 and reg2 for DIVH reg1 and reg?2 in instruction format (1).

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 183 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Divide instruction>

DIVHU

Divide halfword unsigned

Division of (unsigned) halfword data

[Instruction format] DIVHU regl, reg2, reg3

[Operation] GR[reg2] <« GRJreg2] + zero-extend (GR[regl] (15:0))
GR[reg3] <« GR[reg2] % zero-extend (GR[regl] (15:0))

[Format] Format XI

Opcod
[Opcode] 15 031 16

rrrrr111111RRRRR wwwww01010000010

[Flags]
CY —

oV “1” if overflow occurs; otherwise, “0”.
S “1” when the operation result quotient word data is “1”; otherwise, “0”
Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] Divides the word data of general-purpose register reg2 by the lower halfword data of general-
purpose register regl and stores the quotient to general-purpose register reg2 with the
remainder set to general-purpose register reg3. General-purpose register regl is not affected.
When division by zero occurs, an overflow results and all operation results except for the OV
flag are undefined.

[Supplement] Overflow occurs by division by zero (with the operation result being undefined).
If reg2 and reg3 are the same register, the remainder is stored in that register.
When an exception occurs during the DIVHU instruction execution, the execution is aborted
to process the exception. The execution resumes at the original instruction address upon
returning from the exception. General-purpose register regl and general-purpose register reg2
retain their values prior to execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 184 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<High-speed divide instructions>

DIVQ

Divide word quickly

Division of (signed) word data (variable steps)

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

[Supplement]

DIVQ regl, reg2, reg3

GR[reg2] «— GR[reg2] + GR[regl]
GR[reg3] «— GR[reg2] % GR[regl]

Format XI

15

031 16

rrrrr111111RRRRR wwwww01011111100

CY
ov

SAT

“1” when overflow occurs; otherwise, “0”.
“1” when operation result quotient is a negative value; otherwise, “0”.

“1” when operation result quotient is a “0”; otherwise, “0”.

Divides the word data in general-purpose register reg2 by the word data in general-purpose

register regl, stores the quotient in reg2, and stores the remainder in general-purpose register

reg3. General-purpose register regl is not affected.

The minimum number of steps required for division is determined from the values in regl and

reg2, then this operation is executed. When division by zero occurs, an overflow results and

all operation results except for the OV flag are undefined.

)

@)

Overflow occurs when the maximum negative value (8000 0000g) is divided by —1 (with
the quotient = 8000 0000y;) and when the data is divided by 0 with the quotient being
undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted.
After exception handling is completed, the execution resumes at the original instruction
address when returning from the exception. General-purpose register regl and general-
purpose register reg2 retain their values prior to execution of this instruction.

The smaller the difference in the number of valid bits between regl and reg2, the smaller
the number of execution cycles. In most cases, the number of instruction cycles is
smaller than that of the ordinary division instruction. If data of 16-bit integer type is
divided by another 16-bit integer type data, the difference in the number of valid bits is
15 or less, and the operation is completed within 20 cycles.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS Page 185 of 384

RH850G3KH Software Section 7 Instruction

CAUTIONS
1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.
2. For the accurate number of execution cycles, see the appendix.

3. If the number of execution cycles must always be constant to guarantee real-time
features, use the ordinary division instruction.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 186 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<High-speed divide instructions>

DIVQU

Divide word unsigned quickly

Division of (unsigned) word data (variable steps)

[Instruction format] DIVQU regl, reg2, reg3

[Operation] GR[reg2] < GR[reg2] + GR[regl]
GR[reg3] <« GR[reg2] % GR[regl]

[Format] Format XI

Opcode
[P] 15 031 16

rrrrr111111RRRRR wwwww01011111110

[Flags]
CY -
oV “1” when overflow occurs; otherwise, “0”.
S “1” when operation result quotient is a negative value; otherwise, “0”.
z “1” when operation result quotient is a “0”; otherwise, “0”.
SAT —

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose
register regl, stores the quotient in reg2, and stores the remainder in general-purpose register
reg3. General-purpose register regl is not affected.

The minimum number of steps required for division is determined from the values in regl and
reg2, then this operation is executed.

When division by zero occurs, an overflow results and all operation results except for the OV
flag are undefined.

[Supplement] (1) An overflow occurs when there is division by zero (the operation result is undefined).
If reg2 and reg3 are the same register, the remainder is stored in that register.
When an exception occurs during execution of this instruction, the execution is aborted.
After exception handling is completed, using the return address as this instruction’s start
address, the execution resumes when returning from the exception. General-purpose
register regl and general-purpose register reg2 retain their values prior to execution of
this instruction.

(2) The smaller the difference in the number of valid bits between regl and reg2, the smaller
the number of execution cycles. In most cases, the number of instruction cycles is
smaller than that of the ordinary division instruction. If data of 16-bit integer type is
divided by another 16-bit integer type data, the difference in the number of valid bits is
15 or less, and the operation is completed within 20 cycles.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 187 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

CAUTIONS
1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.
2. For the accurate number of execution cycles, see the appendix.

3. If the number of execution cycles must always be constant to guarantee real-time
features, use the ordinary division instruction.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 188 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Divide instruction>

DIVU

Divide word unsigned

Division of (unsigned) word data

[Instruction format)] DIVU regl, reg2, reg3

[Operation] GR[reg2] < GR[reg2] + GR[regl]
GR[reg3] <« GR[reg2] % GR[regl]

[Format] Format XI

Opcod
[Opcode] 15 031 16

rrrrr111111RRRRR wwwww01011000010

[Flags]
CY —

oV “1” if overflow occurs; otherwise, “0”.

S “1” when operation result quotient word data MSB is “1”; otherwise, “0”.
Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose
register regl and stores the quotient to general-purpose register reg2 with the remainder set to
general-purpose register reg3. General-purpose register regl is not affected.

When division by zero occurs, an overflow results and all operation results except for the OV
flag are undefined.

[Supplement] When an exception occurs during the DIVU instruction execution, the execution is aborted to
process the exception.
If reg2 and reg3 are the same register, the remainder is stored in that register.
The execution resumes at the original instruction address upon returning from the exception.
General-purpose register regl and general-purpose register reg2 retain their values prior to
execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 189 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

El

Enable interrupt

Enable El level maskable exception

[Instruction format] El

[Operation] PSW.ID « 0 (enables EI level maskable exception)
[Format] Format X

[Opcode] 15 031 16

10000111111000000000000101100000

[Flags]
CcY —
oV —
S J—
Z —_
SAT —
ID 0
[Description] Clears the ID flag of the PSW to “0” and enables the acknowledgement of maskable
exceptions starting the next instruction.
[Supplement] If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-level instruction.
If the MCTL.UIC bit has been set to 1, this instruction can always be executed.
R01US0165EJ0120 Rev.1.20 -IENESAS Page 190 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

EIRET

Return from trap or interrupt

Return from EL level exception

[Instruction format] EIRET
[Operation] PC «— EIPC
PSW « EIPSW
[Format] Format X
[Opcode] 15 031 16

0000011111100000(0000000101001000

[Flags]
CcY Value read from EIPSW is set
ov Value read from EIPSW is set
S Value read from EIPSW is set
4 Value read from EIPSW is set
SAT Value read from EIPSW is set
[Description] Returns execution from an EI level exception. The return PC and PSW are loaded from the
EIPC and EIPSW registers and set in the PC and PSW, and control is passed.
IfEP =0, it means that interrupt (EIINT#) processing has finished, so the corresponding bit of
the ISPR register is cleared.
[Supplement] This instruction is a supervisor-level instruction.
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 191 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

FERET

Return from trap or interrupt

Return from FE level exception

[Instruction format] FERET
[Operation] PC «— FEPC
PSW «— FEPSW
[Format] Format X
[Opcode] 15 031 16

0000011111100000(0000000101001010

[Flags]
CcY Value read from FEPSW is set
ov Value read from FEPSW is set
S Value read from FEPSW is set
4 Value read from FEPSW is set
SAT Value read from FEPSW is set
[Description] Returns execution from an FE level exception. The return PC and PSW are loaded from the
FEPC and FEPSW registers and set in the PC and PSW, and control is passed.
[Supplement] This instruction is a supervisor-level instruction.
CAUTION
The FERET instruction can also be used as a hazard barrier instruction when the CPU’s
operating status (PSW) is changed by a control program such as the OS. Use the FERET
instruction to clarify the program blocks on which to effect the hardware function associated
with the UM bit in the PSW when these bits are changed to accord with the mounted CPU. The
hardware function that operates in accordance with the PSW value updated by the FERET
instruction is guaranteed to be effected from the instruction indicated by the return address of
the FERET instruction.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 192 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Special instruction>

FETRAP

FE-level Trap

FE level software exception

[Instruction format]

FETRAP vectord4

[Operation] FEPC « PC + 2 (return PC)
FEPSW «— PSW
FEIC « exception cause code*’
PSW.UM < 0
PSW.NP « 1
PSW.EP « 1
PSW.ID « 1
PC « exception handler address*?
Note 1. See Table 4.1, Exception Cause List.
Note 2. See Section 4.5, Exception Handler Address.
[Format] Format I
Opcode
[Opcode] .5 0
0vvvv00001000000
Where vvvv is vectord.
Do not set O to vector4 (vvvv # 0000).
[Flags]
CY —
oV —
S J—
V4 i
SAT —
R0O1US0165EJ0120 Rev.1.20 IIENESAS Page 193 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] Saves the contents of the return PC (address of the instruction next to the FETRAP
instruction) and the current contents of the PSW to FEPC and FEPSW, respectively, stores the
exception cause code in the FEIC register, and updates the PSW according to the exception
causes listed in Table 4.1. Execution then branches to the exception handler address and
exception handling is started.

Table 7.6 shows the correspondence between vector4 and exception cause codes and
exception handler address offset. Exception handler addresses are calculated based on the
offset addresses listed in Table 7.6. For details, see Section 4.5, Exception Handler

Address.
Table 7.6 Correspondence between vector4 and Exception Cause Codes
and Exception Handler Address Offset

vector4 Exception Cause Code Offset Address

Oy Not specifiable

1y 0000 0031, 304

2y 0000 0032,

Fy 0000 003Fy

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 194 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

Halt
HALT
Halt
[Instruction format] HALT
[Operation] Places the CPU core in the HALT state.
[Format] Format X
[Opcode] 15 031 16

0000011111100000|0000000100100000

[Flags]
CY —
ov —
S J—
V4 —
SAT —
[Description] Places the CPU core that executed the HALT instruction in the HALT state.
Occurrence of the HALT state release request will return the system to normal execution
status.
If an exception is acknowledged while the system is in HALT state, the return PC of that
exception is the PC of the instruction that follows the HALT instruction.
The HALT state is released under the following condition.
e A terminating exception occurs
Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID
or NP value), as long as a HALT mode release request exists, HALT state is released (for
example, even if PSW.ID = 1, HALT state is released when INTO occurs).
Note, however, that the HALT mode will not be released if terminating exceptions are masked
by the following mask settings, which are defined individually for each function:
e Terminating exceptions are masked by an interrupt channel mask setting specified by the
interrupt controller*™.
e Terminating exceptions are masked by a mask setting specified by using the floating-
point operation exception enable bit.
e Terminating exceptions are masked by a mask setting defined by a hardware function
other than the above.
Note 1. This does not include masking specified by the ISPR and PMR registers.
[Supplement] This instruction is a supervisor-level instruction.
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 195 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instructions>

HSH

Halfword swap halfword

Halfword swap of halfword data

[Instruction format] HSH reg2, reg3

[Operation] GR[reg3] <« GR[reg?]

[Format] Format XII

[Opcode] 15 031 16

rrrrr11111100000 wwwww01101000110

[Flags]
CY “1” if the lower halfword of the operation result is “0”; otherwise, “0”.
ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
Z “1” if the lower halfword of the operation result is “0”; otherwise, “0”.
SAT —

[Description] Stores the content of general-purpose register reg2 in general-purpose register reg3, and stores

the flag judgment result in PSW.
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 196 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instructions>

HSW

Halfword swap word

Halfword swap of word data

[Instruction format] HSW reg2, reg3

[Operation] GRJreg3] <« GRJ[reg2] (15:0) || GR[reg2] (31:16)
[Format] Format XII

[Opcode] 15 031 16

rrrrr11111100000 wwwww01101000100

[Flags]

CY “1” when there is at least one halfword of zero in the word data of the operation result;
otherwise; “0”.

oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” if operation result word data is “0”; otherwise, “0”.
SAT —

[Description] Executes endian swap.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 197 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Branch instruction>

JARL

Jump and register link

Branch and register link

[Instruction format]

[Operation]

[Format)]

[Opcode]

)
2
)

)

2)

)

(1)

)
)

(1)

JARL disp22, reg2
JARL disp32, regl
JARL [regl], reg3

GR[reg2] < PC+4
PC « PC + sign-extend (disp22)

GR[regl] —PC+6
PC « PC + disp32

GR[reg3] — PC+4
PC < GRJregl]

Format V
Format VI

Format XI

15 0 31 16
rrrrrl11110dddddd|dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

rrrrr # 00000 (Do not specify r0 for reg2.)

@)

15 0 31 16 47 32
00000010111RRRRR|dddddddddddddddo|{DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

RRRRR # 00000 (Do not specify r0 for regl.)

®)

15 0 31 16

11000111111RRRRR|WWWWW00101100000

WWWWW # 00000 (Do not specify r0 for reg3.)

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS Page 198 of 384

RH850G3KH Software

Section 7 Instruction

[Flags]

[Description]

[Supplement]

CcYy —
ov —

SAT —

(1) Saves the current PC value + 4 in general-purpose register reg2, adds the 22-bit
displacement data, sign-extended to word length, to PC; stores the value in and transfers
the control to PC. Bit 0 of the 22-bit displacement is masked to “0”.

(2) Saves the current PC value + 6 in general-purpose register regl, adds the 32-bit
displacement data to PC and stores the value in and transfers the control to PC. Bit 0 of
the 32-bit displacement is masked to “0”.

(3) Stores the current PC value + 4 in reg3, specifies the contents of regl for the PC value,
and then transfers the control.

The current PC value used for calculation is the address of the first byte of this instruction
itself. The jump destination is this instruction with the displacement value = 0. JARL
instruction corresponds to the call function of the subroutine control instruction, and saves the
return PC address in either regl or reg2. JMP instruction corresponds to the return function of
the subroutine control instruction, and can be used to specify general-purpose register
containing the return address as regl to the return PC.

CAUTION

Do not specify r0 for the general-purpose register reg2 in the instruction format (1) JARL
disp22, reg2.

Do not specify r0 for the general-purpose register reg1 in the instruction format (2) JARL
disp32, reg1.

Do not specify r0 for the general-purpose register reg3 in the instruction format (3) JARL
[reg1], reg3.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 199 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Branch instruction>

JMP

Jump register

Unconditional branch (register relative)

[Instruction format] (1) JMP [regl]
(2) JMP disp32 [regl]

[Operation] (1) PC «— GR[regl]
(2) PC « GRJregl] + disp32

[Format] (1) Format I
(2) Format VI

[Opcode]
15 0
(1) |00000000011RRRRR
15 0 31 16 47 32
(2) [00000110111RRRRR|dddddddddddddddo|DDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.
[Flags]
CcY —
ov —
S J—
Z J—
SAT —
[Description] (1) Transfers the control to the address specified by general-purpose register regl. Bit 0 of
the address is masked to “0”.
(2) Adds the 32-bit displacement to general-purpose register regl, and transfers the control
to the resulting address. Bit 0 of the address is masked to “0”.
[Supplement] Using this instruction as the subroutine control instruction requires the return PC to be
specified by general-purpose register regl.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 200 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Branch instruction>

JR

Jump relative

Unconditional branch (PC relative)

[Instruction format] (1) JR disp22
(2) JR disp32

[Operation] (1) PC « PC + sign-extend (disp22)
(2) PC « PC + disp32

[Format] (1) Format V
(2) Format VI

[Opcode]
15 0 31 16

(1) 0000011110d4ddddd|dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

15 031 16 47 32
(2) |0000001011100000|dddddddddddddddo|DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags]
CY —

ov —

SAT —

[Description] (1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC and
stores the value in and transfers the control to PC. Bit 0 of the 22-bit displacement is
masked to “0”.

(2) Adds the 32-bit displacement data to the current PC and stores the value in PC and
transfers the control to PC. Bit 0 of the 32-bit displacement is masked to “0”.

[Supplement] The current PC value used for calculation is the address of the first byte of this instruction
itself. The displacement value being “0” signifies that the branch destination is the instruction
itself.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 201 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

LD.B

Load byte

Load of (signed) byte data

[Instruction format] (1) LD.B displ6 [regl], reg2
(2) LD.B disp23 [regl], reg3

[Operation] (1) adr « GR[regl] + sign-extend (disp16)*1
GR[reg2] « sign-extend (Load-memory (adr, Byte))

(2) adr « GRJregl] + sign-extend (disp23)*1
GR[reg3] « sign-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII
(2) Format XIV

[Opcode]
15 031 16

(1) |rrrrrl111000RRRRR|dddddddddddddddd

15 031 16 47 32

(2) |00000111100RRRRR|wwwwwddddddd0101|DDDDDDDDDDDDDDDD

Where RRRRR =regl, wwwww = reg3.
ddddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]
CY —

ov —

SAT —

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Byte data is read from the generated
address, sign-extended to word length, and stored in general-purpose register reg2.

(2) Adds the word data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Byte data is read from the generated
address, sign-extended to word length, and stored in general-purpose register reg3.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 202 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

LD.BU

Load byte unsigned

Load of (unsigned) byte data

[Instruction format] (1) LD.BU displ6 [regl], reg2
(2) LD.BU disp23 [regl], reg3

[Operation] (1) adr « GR[regl] + sign-extend (disp16)*1
GR[reg2] « zero-extend (Load-memory (adr, Byte))

(2) adr « GRJregl] + sign-extend (disp23)*1
GR[reg3] « zero-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII
(2) Format XIV

[Opcode]
15 031 16

(1) |rrrrrl11110bRRRRR|dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16, and b is bit 0 of disp16.
rrrrr # 00000 (Do not specify 10 for reg2.)

15 0 31 16 47 32
(2) 00000111101RRRRR|wwwwwddddddd0101|DDDDDDDDDDDDDDDD

Where RRRRR =regl, wwwww = reg3.
ddddddd is the lower 7 bits of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]
CY —

ov —

SAT —

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 203 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Byte data is read from the
generated address, zero-extended to word length, and stored in general-purpose register
reg?.

(2) Adds the word data of general-purpose register regl to the 23-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Byte data is read from the
generated address, zero-extended to word length, and stored in general-purpose register
reg3.

CAUTION

Do not specify r0 for reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 204 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

LD.DW

Load Double Word

Load of doubleword data

[Instruction format] LD.DW disp23[regl], reg3

[Operation] adr «— GR[regl] + sign-extend (disp23)*1
data <« Load-memory (adr, Double-word)
GR[reg3 + 1] || GR[reg3] < data

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format XIV

[Opcode]
15 031 16 47 32

00000111101RRRRR|{wwwwwdddddd01001|DDDDDDDDDDDDDDDD

Where RRRRRR =regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]
CY —
ov —
S J—
V4 —
SAT —

[Description] Generates a 32-bit address by adding a 23-bit displacement value sign-extended to word
length to the word data of general-purpose register regl. Doubleword data is read from the
generated 32-bit address and the lower 32 bits are stored in general-purpose register reg3, and
the higher 32 bits in reg3 + 1.

[Supplement] reg3 must be an even-numbered register.

CAUTION
If the result of address calculation is at the word boundary, no misaligned access exception
occurs.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 205 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

LD.H

Load halfword

Load of (unsigned) halfword data

[Instruction format] (1) LD.H displ6 [regl], reg2
(2) LD.H disp23 [regl], reg3

[Operation] (1) adr « GR[regl] + sign-extend (disp16)*1
GR[reg2] « sign-extend (Load-memory (adr, Halfword))

(2) adr « GRJregl] + sign-extend (disp23)*1
GR[reg3] « sign-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII
(2) Format XIV

[Opcode]
15 0 31 16
(1) |rrrrrl11l001RRRRR|dddddddddddddddo
Where ddddddddddddddd is the higher 15 bits of disp16.
15 0 31 16 47 32
(2) |00000111100RRRRR|wwwwwdddddd00111|DDDDDDDDDDDDDDDD
Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.
[Flags]
CY —
ov —
S J—
Z J—
SAT —
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 206 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Halfword data is read from
this 32-bit address, sign-extended to word length, and stored in general-purpose register
reg2.

(2) Adds the word data of general-purpose register regl to the 23-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Halfword data is read from
this 32-bit address, sign-extended to word length, and stored in general-purpose register
reg3.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 207 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Load instruction>

LD.HU

Load halfword unsigned

Load of (signed) halfword data

[Instruction format]

(1) LD.HU displ6 [regl], reg2
(2) LD.HU disp23 [regl], reg3

[Operation] (1) adr « GR[regl] + sign-extend (disp16)*1
GR[reg2] « zero-extend (Load-memory (adr, Halfword))
(2) adr « GRJregl] + sign-extend (disp23)*1
GR[reg3] « zero-extend (Load-memory (adr, Halfword))
Note 1. An MAE or MDP exception might occur depending on the result of address calculation.
[Format] (1) Format VII
(2) Format XIV
[Opcode]
15 031 16
(1) |rrrrr111111RRRRR|dddddddddddddddl
Where ddddddddddddddd is the higher 15 bits of disp16.
rrrrr # 00000 (Do not specify r0 for reg2.)
15 031 16 47 32
(2) [00000111101RRRRR|wwwwwdddddd00111|DDDDDDDDDDDDDDDD
Where RRRRR =regl, wwwww = reg3.
dddddd is the lower side bits 6 tol of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.
[Flags]
CY —
oV —
S _
Z J—
SAT —
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 208 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Halfword data is read from
this 32-bit address, zero-extended to word length, and stored in general-purpose register
reg?.

(2) Adds the word data of general-purpose register regl to the 23-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Halfword data is read from
this address, zero-extended to word length, and stored in general-purpose register reg3.

CAUTION

Do not specify r0 for reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 209 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Load instruction>

LD.W

Load word

Load of word data

[Instruction format] (1) LD.W displ6 [regl], reg2
(2) LD.W disp23 [regl], reg3

[Operation] (1) adr « GR[regl] + sign-extend (disp16)*1
GR[reg2] « Load-memory (adr, Word)

(2) adr <« GR[regl] + sign-extend (disp23)*1
GR[reg3] < Load-memory (adr, Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII
(2) Format XIV

[Opcode]
15 0 31 16
(1) |rrrrrl11l001RRRRR|dddddddddddddddl
Where ddddddddddddddd is the higher 15 bits of disp16.
15 0 31 16 47 32
(2) |00000111100RRRRR|wwwwwdddddd01001|DDDDDDDDDDDDDDDD
Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.
[Flags]
CY —
ov —
S —
Z J—
SAT —
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 210 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Word data is read from this
32-bit address, and stored in general-purpose register reg2.

(2) Adds the word data of general-purpose register regl to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Word data is read from this
address, and stored in general-purpose register reg3.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 211 of 384

RH850G3KH Software Section 7 Instruction

<Special instruction>

LDL.W

Load Linked

Load to start atomic word data manipulation

[Instruction format] LDL.W [regl], reg3

[Operation] adr « GR[regl]*1
GR[reg3] < Load-memory (adr, Word)
LLbit «— 172

Note 1. An MAE, MDP, or DTLBE exception might occur depending on the result of address
calculation.

Note 2. The result of an interrupt or exception, or the execution of a CLL, EIRET, or FERET
instruction is LLbit «<— 0.

[Format] Format VII

[Opcode]
15 031 16

00000111111RRRRR|wwwww(01101111000

[Flags]
CcY —
ov —
S —
Z J—
SAT —

[Description] In order to perform an atomic read-modify-write operation, word data is read from the
memory and stored in general-purpose register reg3. A link is then generated corresponding
to the address range that includes the specified address.

Subsequently, if a specific condition is satisfied before an STC.W instruction is executed for
this LDL.W instruction, the link will be deleted. If an STC.W instruction is executed after the
link has been deleted, STC.W execution will fail.

If an STC.W instruction is executed while the link is still available, STC.W execution will
succeed. The link is also deleted in this case.

The LDL.W and STC.W instructions can be used to accurately update the memory in a multi-
core system.

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic
guarantee is required when updating the memory in a multi-core system.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 212 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

LDSR

Load to system register

Load to system register

[Instruction format)] LDSR reg2, regID, sellD
LDSR reg2, regID

[Operation] SR[reglD, sellD] « GR[regZ]*1

Note 1. An exception might occur depending on the access permission. For details, see Section
2.5.3, Register Updating.

[Format)] Format IX

[Opcode]
15 031 16

rrrrr111111RRRRR|(sssss00000100000

rrrrr:reglD, sssss: sellD, RRRRR: reg2

[Flags]
CY —

ov —

SAT —

[Description] Loads the word data of general-purpose register reg2 to the system register specified by the
system register number and group number (regID, sellD). General-purpose register reg?2 is not
affected. If selID is omitted, it is assumed that selID is 0.

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending
on the combination of CPU operating mode and system register to be accessed. For details,
see Section 2.5.3, Register Updating.

CAUTIONS

1. In this instruction, general-purpose register reg2 is used as the source register, but, for
mnemonic description convenience, the general-purpose register reg1 field is used in the
opcode. The meanings of the register specifications in the mnemonic descriptions and
opcode therefore differ from those of other instructions.

2. The system register number or group number is a unique number used to identify each
system register. How to access undefined registers is described in Section 2.5.4,
Accessing Undefined Registers, but accessing undefined registers is not
recommended.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 213 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction
<Loop instruction>
Loop
Loop
[Instruction format] LOOP regl,displ6
[Operation] GR[regl] «— GR[regl] + (—l)*1

if (GR[regl] !=0)
then
PC « PC — zero-extend (disp16)

Note 1. -1 (OXxFFFFFFFF) is added. The carry flag is updated in the same way as when the ADD
instruction is executed.

[Format] Format VII

[Opcode]
15 031 16

00000110111RRRRR|dddddddddddddddl

Where ddddddddddddddd is the higher 15 bits of disp16.

[Flags]
CY “1” if a carry occurs from MSB in the reg1 operation; otherwise, “0”.
ov “1” if an overflow occurs in the reg1 operation; otherwise, “0”.
S “1”if reg1 is negative; otherwise, “0”.
4 “1” if reg1 is O; otherwise, “0”.
SAT —

[Description] Updates the general-purpose register regl by adding —1 from its contents. If the contents after
this update are not 0, the following processing is performed. If the contents are 0, the system
continues to the next instruction.

e The result of logically shifting the 15-bit immediate data 1 bit to the left and zero-

extending it to word length is subtracted from the current PC value, and then the control
is transferred.

e —1 (OxFFFFFFFF) is added to general-purpose register regl. The carry flag is updated in
the same way as when the ADD instruction, not the SUB instruction, is executed.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 214 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Supplement] “0” is implicitly used for bit 0 of the 16-bit displacement. Note that, because the current PC
value used for calculation is the address of the first byte of this instruction, if the displacement
value is 0, the branch destination is this instruction.

CAUTION

Do not specify r0 for reg1.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 215 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Multiply-accumulate instruction>

MAC

Multiply and add word

Multiply-accumulate for (signed) word data

[Instruction format] MAC regl, reg2, reg3, regd
[Operation] GR[regd+1] || GR[regd4] < GR[reg2] x GR[regl] + GR[reg3+1] || GR[reg3]
[Format] Format XI
[Opcode]
15 0 31 16

rrrrr111111RRRRR|{wwww001111O0mmmmO

[Flags]
CcY —
ov —
S J—
Z J—
SAT —

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose
register regl, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of
general-purpose register reg3 and the data in general-purpose register reg3+1 (for example,
this would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result
(64-bit data), the higher 32 bits are stored in general-purpose register regd+1 and the lower 32
bits are stored in general-purpose register reg4.

The contents of general-purpose registers regl and reg2 are handled as 32-bit signed integers.
This has no effect on general-purpose register regl, reg2, reg3, or reg3+1.
CAUTION
General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered
register (r0, r2, r4, ..., r30). The result is undefined if an odd-numbered register (r1, r3, ..., r31)
is specified.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 216 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Multiply-accumulate instruction>

MACU

Multiply and add word unsigned

Multiply-accumulate for (unsigned) word data

[Instruction format] MACU regl, reg2, reg3, reg4
[Operation] GR[regd+1] || GR[regd4] < GR[reg2] x GR[regl] + GR[reg3+1] || GR[reg3]
[Format] Format XI
[Opcode]
15 0 31 16

rrrrr111111RRRRR|{wwww001111IlmmmmO

[Flags]
CcY —
ov —
S J—
Z J—
SAT —

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose
register regl, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of
general-purpose register reg3 and the data in general-purpose register reg3+1 (for example,
this would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result
(64-bit data), the higher 32 bits are stored in general-purpose register regd+1 and the lower 32
bits are stored in general-purpose register reg4.

The contents of general-purpose registers regl and reg2 are handled as 32-bit signed integers.
This has no effect on general-purpose register regl, reg2, reg3, or reg3+1.
CAUTION
General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered
register (r0, r2, r4, ..., r30). The result is undefined if an odd-numbered register (r1, r3, ..., r31)
is specified.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 217 of 384

Dec 22, 2016

RH850G3KH Software

Section 7

Instruction

<Arithmetic instruction>

MOV

Move register/immediate (5-bit) /immediate (32-bit)

Data transfer

[Instruction format]

[Operation]

[Format)]

[Opcode]

[Flags]

(1) MOV regl, reg2
(2) MOV immbS, reg2
(3) MOV imm32, regl

(1) GR[reg2] «— GR[regl]
(2) GR[reg2] « sign-extend (immb5)
(3) GR[regl] « imm32

(1) FormatI

(2) Format II
(3) Format VI

15 0

(1) |rrrrr000000RRRRR

rrrrr # 00000 (Do not specify r0 for reg2.)

15 0

(2) |rrrrr010000iiiii

rrrrr # 00000 (Do not specify r0 for reg2.)

15 031 16 47 32

(3) |00000110001RRRRR|111i114414144i4444|IITIIITIIITIIIIII

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.

T (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

ov —

SAT —

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 218 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Description]

(1) Copies and transfers the word data of general-purpose register regl to general-purpose
register reg2. General-purpose register regl is not affected.

(2) Copies and transfers the 5-bit immediate data, sign-extended to word length, to general-
purpose register reg2.

(3) Copies and transfers the 32-bit immediate data to general-purpose register regl.

CAUTION

Do not specify r0 as reg2 in MOV reg1, reg2 for instruction format (1) or in MOV immb5, reg2 for
instruction format (2).

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 219 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Arithmetic instruction>

MOVEA

Move effective address

Effective address transfer

[Instruction format] MOVEA imml6, regl, reg2
[Operation] GR[reg2] < GRJregl] + sign-extend (imm16)
[Format] Format VI
[Opcode]
15 0 31 16

rrrrr110001RRRRR|1iiiiiiiiiiiiiiid

rrrrr # 00000 (Do not specify r0 for reg2.)

[Flags]
CcY —
ov —
S —
Z J—
SAT —

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-
purpose register regl and stores the result in general-purpose register reg2. Neither general-
purpose register regl nor the flags is affected.

[Supplement] This instruction is to execute a 32-bit address calculation with the PSW flag value unchanged.
CAUTION
Do not specify r0 for reg2.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 220 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Arithmetic instruction>

MOVHI

Move high halfword

Higher halfword transfer

[Instruction format] MOVHI imm16, regl, reg2
[Operation] GR[reg2] « GR[regl] + (imm16 || 0'6)
[Format] Format VI
[Opcode]
15 0 31 16

rrrrr110010RRRRR|iiiiiiiiiiiiiiid

rrrrr # 00000 (Do not specify r0 for reg2.)

[Flags]
CcY —
ov —
S —
Z J—
SAT —_

[Description] Adds the word data with its higher 16 bits specified as the 16-bit immediate data and the
lower 16 bits being “0” to the word data of general-purpose register regl and stores the result
in general-purpose register reg2. Neither general-purpose register regl nor the flags is
affected.

[Supplement] This instruction is to generate the higher 16 bits of a 32-bit address.

CAUTION
Do not specify r0 for reg2.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 221 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Multiply instruction>

MUL

Multiply word by register/immediate (9-bit)

Multiplication of (signed) word data

[Instruction format] (1) MUL regl, reg2, reg3
(2) MUL imm9, reg2, reg3

[Operation] (1) GR[reg3] || GR[reg2] « GR[reg2] x GR[regl]
(2) GR[reg3] || GR[reg2] « GR[reg2] x sign-extend (imm9)

[Format] (1) Format XI
(2) Format XII

[Opcode]
15 0 31 16

(1) |rrrrrl11l1l111RRRRR|wwwww01000100000

15 031 16

(2) |rrrrr1111114iiiidi|wwwww01l001IIIIOO

IIIT are the higher 4 bits of 9-bit immediate data.

[Flags]

ov —

SAT —

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-
purpose register regl, then stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2.

The contents of general-purpose registers regl and reg2 are handled as 32-bit signed
integers. General-purpose register regl is not affected.

(2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data,
extended to word length, then stores the higher 32 bits of the result (64-bit data) in
general-purpose register reg3 and the lower 32 bits in general-purpose register reg?2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register,
only the higher 32 bits of the multiplication result are stored in the register.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 222 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Multiply instruction>

MULH

Multiply halfword by register/immediate (5-bit)

Multiplication of (signed) halfword data

[Instruction format] (1) MULH regl, reg2
(2) MULH immb5, reg2

[Operation] (1) GR[reg2] <« GR[reg2] (15:0) x GR[regl] (15:0)
(2) GR[reg2] « GR[reg2] x sign-extend (imm5)

[Format] (1) FormatI
(2) Format II

[Opcode]
15 0

(1) |rrrrr000111RRRRR

rrrrr # 00000 (Do not specify r0 for reg2.)

15 0
(2) |rrrrroioli1iiidiii

rrrrr # 00000 (Do not specify r0 for reg2.)

[Flags]
CY —

ov —

SAT —

[Description] (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data
of general-purpose register regl and stores the result in general-purpose register reg2.
General-purpose register regl is not affected.

(2) Multiplies the lower halfword data of general-purpose register reg2 by the 5-bit
immediate data, sign-extended to halfword length, and stores the result in general-
purpose register reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 223 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Supplement] In the case of a multiplier or a multiplicand, the higher 16 bits of general-purpose registers
regl and reg? are ignored.

CAUTION

Do not specify r0 for reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 224 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Multiply instruction>

MULHI

Multiply halfword by immediate (16-bit)

Multiplication of (signed) halfword immediate data

[Instruction format]

MULHI imml6, regl, reg2

[Operation] GR[reg2] <« GRJregl] (15:0) x imm16

[Format] Format VI

[Opcode]

15 0 31 16
rrrrrl110111RRRRR|iiiiiiiiiiiiiiid
rrrrr # 00000 (Do not specify r0 for reg2.)

[Flags]

CcY —
ov —
S —
Z J—
SAT —

[Description] Multiplies the lower halfword data of general-purpose register regl by the 16-bit immediate
data and stores the result in general-purpose register reg2. General-purpose register regl is
not affected.

[Supplement] In the case of a multiplicand, the higher 16 bits of general-purpose register regl are ignored.
CAUTION
Do not specify r0 for reg2.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 225 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Multiply instruction>

MULU

Multiply word unsigned by register/immediate (9-bit)

Multiplication of (unsigned) word data

[Instruction format] (1) MULU regl, reg2, reg3
(2) MULU imm9, reg2, reg3

[Operation] (1) GRJreg3] || GR[reg2] «— GR[reg2] x GR[regl]
(2) GR[reg3] || GR[reg2] « GR[reg2] x zero-extend (imm9)

[Format] (1) Format XI
(2) Format XII

[Opcode]
15 0 31 16

(1) |rrrrrl11l1l111RRRRR|wwwww01000100010

15 031 16

(2) |rrrrr1111114iiiidi|wwwww01l001IIII10

IIIT are the higher 4 bits of 9-bit immediate data.

[Flags]

ov —

SAT —

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-
purpose register regl, then stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2.
General-purpose register regl is not affected.

(2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, zero-
extended to word length, then stores the higher 32 bits of the result (64-bit data) in
general-purpose register reg3 and the lower 32 bits in general-purpose register reg2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register,
only the higher 32 bits of the multiplication result are stored in the register.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 226 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

NOP

No operation

No operation

[Instruction format] NOP

[Operation] No operation is performed.

[Format] Format I

[Opcode]
15 0
0000000000000000

[Flags]
CY —
(6)Y] —
S J—
Z J—
SAT —

[Description] Performs no processing and executes the next instruction.

[Supplement] The opcode is the same as that of MOV r0, r0.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 227 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Logical instruction>

NOT

NOT

Logical negation (1’'s complement)

[Instruction format] NOT regl, reg2
[Operation] GR[reg2] < NOT (GR[regl])
[Format] Format I
[Opcode]
15 0
rrrrr000001RRRRR
[Flags]
CcY —
ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.
SAT —

[Description] Logically negates the word data of general-purpose register regl using 1’s complement and
stores the result in general-purpose register reg2. General-purpose register regl is not
affected.

R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 228 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit manipulation instruction>

NOT1

NOT bit

NOT bit

[Instruction format] (1) NOT1 bit#3, displ6 [regl]
(2) NOTI1 reg2, [regl]

[Operation] (1) adr « GRJregl] + sign-extend (disp16)*1
token «<— Load-memory (adr, Byte)
Z flag «— Not (extract-bit (token, bit#3))
token « not-bit (token, bit#3)
Store-memory (adr, token, Byte)

(2) adr — GR[regl]"

token «— Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, reg2))
token « not-bit (token, reg2)
Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII
(2) Format IX

[Opcode]
15 031 16

(1) |01bbb111110RRRRR|dddddddddddddddd

15 0 31 16

(2) |rrrrri11111RRRRR[0000000011100010

[Flags]
CY —

ov —

z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”".
SAT —

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 229 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Description]

[Supplement]

)

)

Adds the word data of general-purpose register regl to the 16-bit displacement data,
sign-extended to word length, to generate a 32-bit address. Byte data is read from the
generated address, then the bits indicated by the 3-bit bit number are inverted (0 — 1, 1
— 0) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified
bit is “1”, the Z flag is cleared to “0”.

Reads the word data of general-purpose register regl to generate a 32-bit address. Byte
data is read from the generated address, then the bits specified by lower 3 bits of general-
purpose register reg2 are inverted (0 — 1, 1 — 0) and the data is written back to the
original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified
bit is “1”, the Z flag is cleared to “0”.

The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is
executed and does not indicate the content of the specified bit resulting from the instruction

execution.

CAUTION

This instruction provides an atomic guarantee aimed at exclusive control, and during the period
between read and write operations, the target address is not affected by access due to any
other cause.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 230 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Logical instruction>

OR
OR
[Instruction format] OR regl, reg2
[Operation] GR[reg2] < GR[reg2] OR GRJregl]
[Format] Format I
[Opcode]
15 0
rrrrr001000RRRRR
[Flags]
CcY —
(6)Y] 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.
SAT —
[Description] ORs the word data of general-purpose register reg2 with the word data of general-purpose

register regl and stores the result in general-purpose register reg2. General-purpose register
regl is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 231 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Logical instruction>

ORI

OR immediate (16-bit)

OR immediate

[Instruction format] ORI imml6, regl, reg2
[Operation] GRJ[reg2] < GRJregl] OR zero-extend (imm16)
[Format] Format VI
[Opcode]
15 0 31 16

rrrrr110100RRRRR|1iiiiiiiiiiiiiiid

[Flags]
CcY —
ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.
SAT —

[Description] ORs the word data of general-purpose register regl with the 16-bit immediate data, zero-
extended to word length, and stores the result in general-purpose register reg2. General-
purpose register regl is not affected.

R0O1US0165EJ0120 Rev.1.20 REN ESNS Page 232 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

POPSP

Pop registers from Stack

POP from the stack

[Instruction format] POPSP rh-rt

[Operation] if th<rt
then cur « rt
end < rh
tmp « sp
while (cur > end) {
adr «— tmp*1 "2
GR[cur] « Load-memory (adr, Word)

cur < cur— 1

tmp «— tmp + 4

Sp < tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode]
15 031 16

01100111111RRRRR|wwwww00101100000

RRRRR indicates rh.
wwwww indicates rt.

[Flags]
CY —
ov —
S J—
Z J—
SAT —
[Description] Loads general-purpose register rt to rh from the stack in descending order (rt, rt -1, rt—2, ...,
rh). After all the registers down to the specified register have been loaded, sp is updated
(incremented).
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 233 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Supplement] The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and
exception handling is executed with the start address of this instruction used as the return
address. The POPSP instruction is then executed again. (The sp value from before the
exception handling is saved.)
CAUTION
If a register that includes sp(r3) is specified as the restore register (rh = 3 to 31), the value read
from the memory is not stored in sp(r3). This allows the POPSP instruction to be correctly re-
executed after execution has been halted.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 234 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

PREPARE

Function prepare

Create stack frame

[Instruction format] (1) PREPARE list12, imm5
(2) PREPARE list12, imm5, sp/imm '

Note 1. The sp/imm values are specified by bits 19 and 20 of the sub-opcode.

[Operation] (1) tmp «sp

foreach (all regs in list12) {

tmp <« tmp — 4
adr « tmp*1’ 2

Store-memory (adr, GR[reg in list12], Word)

H
sp « tmp — zero-extend (immb5 logically shift left by 2)

(2) tmp <« sp

foreach (all regs in list12) {

tmp «— tmp — 4

adr «— tmp*1’ 2

Store-memory (adr, GR[reg in list12], Word)

H
sp « tmp — zero-extend (immb5 logically shift left by 2)

case

ff=00: ep < sp

ff=01: ep « sign-extend (imm16)

ff=10: ep «— imm16 logically shift left by 16
ff=11: ep « imm32

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XIII

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 235 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Opcode]

[Flags]

15 031 16
(1) |0000011110i11iiiL|LLLLLLLLLLLO0001L

15 031 16 Option (47-32 or 63-32)

(2) [0000011110ii11iiL|LLLLLLLLLLLEFO11| immlé6/imm32

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32 and
bits 63 to 48 are the higher 16 bits of imm32.

ff = 00: sp is loaded to ep

ff=01: Sign-extended 16-bit immediate data (bits 47 to 32) is loaded to ep

ff=10: 16-bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep
ff=11: 32-bit immediate data (bits 63 to 32) is loaded to ep

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list
“list12” (for example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in
list12).

list12 is a 32-bit register list, defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20...1 0

r24 | r25 | r26 | r27 | r20 | r21 | r22 | r23 | r28 | r29 | r31 - r30

Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any
of these bits is set (1), it specifies a corresponding register operation as a processing target.
For example, when r20 and r30 are specified, the values in list12 appear as shown below
(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

e When all of the register’s non-corresponding bits are “0”: 0800 0001y

e When all of the register’s non-corresponding bits are “1”: 081F FFFFy

ov —

SAT —

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 236 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and
the data is stored in that address). Next, subtracts 5-bit immediate data, logically left-
shifted by 2 bits and zero-extended to word length, from sp.

(2) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and
the data is stored in that address). Next, subtracts 5-bit immediate data, logically left-
shifted by 2 bits and zero-extended to word length, from sp.

Then, loads the data specified by the third operand (sp/imm) to ep.

[Supplement] list12 general-purpose registers are saved in ascending order (120, 121, ..., r31).
immS5 is used to create a stack frame that is used for auto variables and temporary data.
The lower two bits of the address specified by sp are masked to 0 and aligned to the word
boundary.

CAUTION

If an exception occurs while this instruction is being executed, execution of the instruction
might be stopped after the write cycle and the register value write operation are completed, but
sp will retain its original value from before the start of execution. The instruction will be
executed again later, after a return from the exception.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 237 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Special instruction>

PUSHSP

Push registers to Stack

Push registers to Stack

[Instruction format] PUSHSP rh-rt
[Operation] if th<rt
then cur « rh
end «rt
tmp « sp

while (cur < end) {
tmp «— tmp — 4
adr «— tmp*1’ 2

Store-memory (adr, GR[cur], Word)

cur «— cur + 1

}

Sp < tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode]
15 031 16
01000111111RRRRR|wwwww00101100000

RRRRR indicates rh.
wwwww indicates rt.

[Flags]
CY
ov
S
z
SAT
[Description]

Stores general-purpose register rh to rt in the stack in ascending order (th, th+1,th+2, ...,

rt). After all the specified registers have been stored, sp is updated (decremented).

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 238 of 384

RH850G3KH Software Section 7 Instruction

[Supplement] The lower two bits of the address specified by sp are masked by 0.
If an exception is acknowledged before sp is updated, instruction execution is halted and
exception handling is executed with the start address of this instruction used as the return
address. The PUSHSP instruction is then executed again. (The sp value from before the
exception handling is saved.)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 239 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Special instruction>

RIE

Reserved instruction exception

Reserved instruction exception

[Instruction format]

(1) RIE
(2) RIE imm5, imm4

[Operation] FEPC « PC (return PC)
FEPSW «— PSW
FEIC « exception cause code (0000 0060y;)
PSW.UM « 0
PSWANP « 1
PSW.EP « 1
PSW.ID « 1
PC « exception handler address (offset address 60yy)
[Format] (1) Format I
(2) Format X
Opcode
[Op] 15 0
(1) [oo00000001000000
15 031 16
(2) [£i11i1111111IIII|0000000000000000
Where 1iiii=imm5, IIIT =imm4.
[Flags]
CcY —
ov —
S —
Z _
SAT —
[Description] Saves the contents of the return PC (address of the RIE instruction) and the current contents of
the PSW to FEPC and FEPSW, respectively, stores the exception cause code in the FEIC
register, and updates the PSW according to the exception causes listed in Table 4.1.
Execution then branches to the exception handler address and exception handling is started.
Exception handler addresses are calculated based on the offset address 60. For details, see
Section 4.5, Exception Handler Address.
RO1US0165EJ0120 Rev.1.20 RENESAS Page 240 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Data manipulation instruction>

ROTL

Rotate Left

Rotate

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

(M
)

)
2

ROTL immS5, reg2, reg3
ROTL regl, reg2, reg3

GR[reg3] < GR[reg2] rotate left by zero-extend (imm5)
GR[reg3] <« GR[reg2] rotate left by GR[regl]

Format VII

(1)

)

CcYy
ov

SAT

(1)

2)

15 0 31 16

rrrrr11111111111{wwwww00011000100

15 0 31 16

rrrrrl111111RRRRR|{wwwww00011000110

“1” if operation result bit 0 is “1”; otherwise “0”, including if the rotate amount is “0”.
0
“1” if the operation result is negative; otherwise, “0”.

“1” if the operation result is “0”; otherwise, “0”.

Rotates the word data of general-purpose register reg2 to the left by the specified shift
amount, which is indicated by a 5-bit immediate value zero-extended to word length. The
result is written to general-purpose register reg3. General-purpose register reg2 is not
affected.

Rotates the word data of general-purpose register reg?2 to the left by the specified shift
amount indicated by the lower 5 bits of general-purpose register regl. The result is
written to general-purpose register reg3. General-purpose registers regl and reg2 are not
affected.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS Page 241 of 384

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

SAR

Shift arithmetic right by register/immediate (5-bit)

Arithmetic right shift

[Instruction format] (1) SAR regl, reg2
(2) SAR immS5, reg2
(3) SAR regl, reg2, reg3

[Operation] (1) GR[reg2] «— GR[reg2] arithmetically shift right by GR[regl]
(2) GR[reg2] <« GR[reg2] arithmetically shift right by zero-extend (imm5)
(3) GR[reg3] < GR[reg2] arithmetically shift right by GR[regl]

[Format] (1) Format IX
(2) Format II
(3) Format XI

[Opcode]
15 031 16
(1) rrrrr111111RRRRR{0000000010100000
15 0
(2) |rrrrro010101iiiii
15 031 16
(8) |rrrrr111111RRRRR|wwwww00010100010
[Flags]
CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.
ov 0
S “1” if the operation result is negative; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, “0”.
SAT —
R0O1US0165EJ0120 Rev.1.20 -IEN ESAS Page 242 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Description])

2

3)

Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to
+31), the position specified by the lower 5 bits of general-purpose register regl, by
copying the pre-shift MSB value to the post-shift MSB. The result is written to general-
purpose register reg2. General-purpose register regl is not affected.

Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to
+31), the position specified by the 5-bit immediate data, zero-extended to word length,
by copying the pre-shift MSB value to the post-shift MSB. The result is written to
general-purpose register reg2.

Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to
+31), the position specified by the lower 5 bits of general-purpose register regl, by
copying the pre-shift MSB value to the post-shift MSB. The result is written to general-
purpose register reg3. General-purpose registers regl and reg2 are not affected.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 243 of 384

RH850G3KH Software

Section 7 Instruction

<Data manipulation instruction>

SASF

Shift and set flag condition

Shift and flag condition setting

[Instruction format]

SASF cccc, reg2

[Operation] if conditions are satisfied
then GR[reg2] «<— (GR[reg2] Logically shift left by 1) OR 0000 0001y
else GR[reg2] < (GR[reg2] Logically shift left by 1) OR 0000 0000y

[Format)] Format IX

[Opcode]

15 031 16
rrrrr1111110cccc|{0000001000000000

[Flags]

CY —
ov —
S —
V4 —
SAT —

[Description] When the condition specified by condition code “cccc” is met, logically left-shifts data of
general-purpose register reg2 by 1 bit, and sets (1) the least significant bit (LSB). If a
condition is not met, logically left-shifts data of reg2 and clears the LSB.

Designate one of the condition codes shown in the following table as [cccc].
Condition Condition
Code Name Condition Formula Code Name Condition Formula
0000 Vv oV =1 0100 S/N S=1
1000 NV ov=0 1100 NS/P S=0
0001 C/L Cy=1 0101 T Always (unconditional)
1001 NC/NL Cy=0 1101 SA SAT =1
0010 z Z=1 0110 LT (S xor OV) =1
1010 Nz Z=0 1110 GE (SxorOV)=0
0011 NH (CYorz)=1 0111 LE ((S xor OV) or Z) = 1
1011 H (CYorz)=0 1111 GT ((S xor OV) orz) =0

[Supplement] See the SETF instruction.

R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 244 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Saturated operation instructions>

SATADD

Saturated add register/immediate (5-bit)

Saturated addition

[Instruction format]

[Operation]

[Format)]

[Opcode]

[Flags]

(1
)
)

)
2
)

(1)

@)
)

(1)

SATADD regl, reg2
SATADD immb5, reg2

SATADD regl, reg2, reg3

GR[reg2] « saturated (GR[reg2] + GR[regl])

GR[reg2] « saturated (GR[reg2] + sign-extend (imm5))

GR[reg3] « saturated (GR[reg2] + GR[regl])

Format I

Format I1

Format XI
15 0
rrrrr000110RRRRR

rrrrr # 00000 (Do not specify r0 for reg2.)

)

15 0

rrrrr # 00000 (Do not specify r0 for reg2.)

®)

CcYy
ov

SAT

15 0

31 16

rrrrr111111RRRRR

wwwww01110111010

“1” if a carry occurs from MSB; otherwise, “0”.

“1” if overflow occurs; otherwise, “0”.

“1” if saturated operation result is negative; otherwise, “0”.

“1” if saturated operation result is “0”; otherwise, “0”.

“1” if OV = 1; otherwise, does not change.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 245 of 384

RH850G3KH Software Section 7 Instruction

[Description] (1) Adds the word data of general-purpose register regl to the word data of general-purpose
register reg2, and stores the result in general-purpose register reg2. However, when the
result exceeds the maximum positive value 7FFF FFFFy, 7FFF FFFFy is stored in reg2,
and when it exceeds the maximum negative value 8000 0000y, 8000 0000y is stored in
reg2; then the SAT flag is set (1). General-purpose register regl is not affected.

(2) Adds the 5-bit immediate data, sign-extended to the word length, to the word data of
general-purpose register reg2, and stores the result in general-purpose register reg2.
However, when the result exceeds the maximum positive value 7FFF FFFF,
7FFF FFFFy is stored in reg2, and when it exceeds the maximum negative value
8000 0000y, 8000 0000y is stored in reg2; then the SAT flag is set (1).

(3) Adds the word data of general-purpose register regl to the word data of general-purpose
register reg2, and stores the result in general-purpose register reg3. However, when the
result exceeds the maximum positive value 7FFF FFFFy, 7FFF FFFFy is stored in reg3,
and when it exceeds the maximum negative value 8000 0000y, 8000 0000y is stored in
reg3; then the SAT flag is set (1). General-purpose registers regl and reg2 are not
affected.

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1”” and will not be
cleared to “0” even if the result of the subsequent operation is not saturated. The saturated
operation instruction is executed normally, even with the SAT flag set to “1”".

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 as reg?2 in instruction format (1) SATADD reg1, reg2 and in instruction
format (2) SATADD imm5, reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 246 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Saturated operation instructions>

SATSUB

Saturated subtract

Saturated subtraction

[Instruction format] (1) SATSUB regl, reg2
(2) SATSUB regl, reg2, reg3

[Operation] (1) GRJreg2] « saturated (GR[reg2] — GR[regl1])
(2) GR[reg3] « saturated (GR[reg2] — GR[regl])

[Format] (1) FormatI
(2) Format XI

Opcod
[Opcode] 5 0

(1) Jrrrrr000101RRRRR

rrrrr # 00000 (Do not specify r0 for reg2.)

15 031 16

(2) |rrrrrl111111RRRRR wwwww01110011010

[Flags]

CY “1” if a borrow occurs from MSB; otherwise, “0”.

ov “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.
z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1”if OV = 1; otherwise, does not change.

[Description] (1) Subtracts the word data of general-purpose register regl from the word data of general-
purpose register reg2 and stores the result in general-purpose register reg2. If the result
exceeds the maximum positive value 7FFF FFFFy, 7FFF FFFFy is stored in reg2; if the
result exceeds the maximum negative value 8000 0000y, 8000 0000y is stored in reg2.
The SAT flag is set to “1”. General-purpose register regl is not affected.

(2) Subtracts the word data of general-purpose register regl from the word data of general-
purpose register reg2, and stores the result in general-purpose register reg3. However,
when the result exceeds the maximum positive value 7FFF FFFFy, 7FFF FFFFy; is
stored in reg3, and when it exceeds the maximum negative value 8000 0000y,

8000 0000y is stored in reg3; then the SAT flag is set (1). General-purpose registers regl
and reg?2 are not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 247 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1”” and will not be
cleared to “0” even if the result of the subsequent operation is not saturated. The saturated
operation instruction is executed normally, even with the SAT flag set to “1”".

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
2. Do not specify r0 as reg?2 in instruction format (1) SATSUB reg1, reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 248 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Saturated operation instructions>

SATSUBI

Saturated subtract immediate

Saturated subtraction

[Instruction format] SATSUBI imm16, regl, reg2
[Operation] GR[reg2] « saturated (GR[regl] — sign-extend (imm16))
[Format] Format VI
[Opcode]
15 0 31 16

rrrrr11l0011RRRRR|111111131113111111

rrrrr # 00000 (Do not specify r0 for reg2.)

[Flags]
CcYy “1” if a borrow occurs from MSB; otherwise, “0”.
ov “1” if overflow occurs; otherwise, “0”.
S “1” if saturated operation result is negative; otherwise, “0”.
z “1” if saturated operation result is “0”; otherwise, “0”.
SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of
general-purpose register regl and stores the result in general-purpose register reg2. If the
result exceeds the maximum positive value 7FFF FFFFy, 7FFF FFFFy is stored in reg2; if the
result exceeds the maximum negative value 8000 0000y, 8000 0000y is stored in reg2. The
SAT flag is set to “1”. General-purpose register regl is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1”” and will not be
cleared to “0” even if the result of the subsequent operation is not saturated. The saturated
operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS
1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
2. Do not specify r0O for reg2.
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 249 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Saturated operation instructions>

SATSUBR

Saturated subtract reverse

Saturated reverse subtraction

[Instruction format] SATSUBR regl, reg2
[Operation] GR[reg2] « saturated (GR[regl] — GR[reg2])
[Format] Format I
[Opcode]
15 0
rrrrr000100RRRRR

rrrrr # 00000 (Do not specify r0 for reg2.)

[Flags]
CcY “1” if a borrow occurs from MSB; otherwise, “0”.
ov “1” if overflow occurs; otherwise, “0”.
S “1” if saturated operation result is negative; otherwise, “0”.
z “1” if saturated operation result is “0”; otherwise, “0”.
SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-
purpose register regl and stores the result in general-purpose register reg2. If the result
exceeds the maximum positive value 7FFF FFFFy, 7FFF FFFFy is stored in reg2; if the result
exceeds the maximum negative value 8000 0000y, 8000 0000y is stored in reg2. The SAT
flag is set to “1”. General-purpose register regl is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1”” and will not be
cleared to “0” even if the result of the subsequent operation is not saturated. The saturated
operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS
1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
2. Do not specify r0O for reg2.
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 250 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Conditional operation instructions>

SBF

Subtract on condition flag

Conditional subtraction

[Instruction format]

SBF cccc, regl, reg2, reg3

[Operation] if conditions are satisfied
then GR[reg3] «— GR[reg2] — GR[regl] -1
else GR[reg3] « GR[reg2] — GR[regl] -0

[Format] Format XI

[Opcode]

15 0 31 16
rrrrrl111111RRRRR{wwwww011100ccccO

[Flags]

CY “1” if a borrow occurs from MSB; otherwise, “0”.
oV “1” if overflow occurs; otherwise, “0”.

S “1” if operation result is negative; otherwise, “0”.
z “1” if operation result is “0”; otherwise, “0”.

SAT —

[Description] Subtracts 1 from the result of subtracting the word data of general-purpose register regl from
the word data of general-purpose register reg2, and stores the result of subtraction in general-
purpose register reg3, if the condition specified by condition code “cccc” is satisfied.

If the condition specified by condition code “cccc” is not satisfied, subtracts the word data of
general-purpose register regl from the word data of general-purpose register reg2, and stores
the result in general-purpose register reg3.
General-purpose registers regl and register 2 are not affected.
Designate one of the condition codes shown in the following table as [cccc]. (However, ccce
cannot equal 1101.)
Condition Condition
Code Name Condition Formula Code Name Condition Formula
0000 Vv ov=1 0100 S/IN S=1
1000 NV ov=0 1100 NS/P S=0
0001 C/L CYy =1 0101 T Always (Unconditional)
1001 NC/NL CYy=0 0110 LT (S xor OV) =1
0010 z Z=1 1110 GE (SxorOV)=0
1010 NZ Z=0 0111 LE ((S xor OV) or Z) = 1
0011 NH (CYorz)=1 1111 GT ((S xor OV) orz) =0
1011 H (CYorz)=0 (1101) Setting prohibited
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 251 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit search instructions>

SCHOL

Search zero from left

Bit (0) search from MSB side

[Instruction format] SCHOL reg2, reg3
[Operation] GR[reg3] « search zero from left of GR[reg2]
[Format] Format IX
[Opcode]
15 0 31 16

rrrrr11111100000(wwwww01101100100

[Flags]
CY “1” if bit (0) is found eventually; otherwise, “0”.
oV 0
S 0
z “1” if bit (0) is not found; otherwise, “0”.
SAT —

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes
the number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-
purpose register reg3 (e.g., when bit 31 of reg2 is 0, 01y is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the
bit (0) found is the LSB, the CY flag is set (1).

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 252 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit search instructions>

SCHOR

Search zero from right

Bit (0) search from LSB side

[Instruction format] SCHOR reg2, reg3
[Operation] GR[reg3] « search zero from right of GR[reg2]
[Format] Format IX
[Opcode]
15 0 31 16

rrrrr11111100000(wwwww01101100000

[Flags]

CY “1” if bit (0) is found eventually; otherwise, “0”.
ov 0

S 0

z “1” if bit (0) is not found; otherwise, “0”.

SAT —

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes
the number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-
purpose register reg3 (e.g., when bit 0 of reg2 is 0, 01y is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the
bit (0) found is the MSB, the CY flag is set (1).
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 253 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit search instructions>

SCH1L

Search one from left

Bit (1) search from MSB side

[Instruction format] SCHIL reg2, reg3
[Operation] GR[reg3] « search one from left of GR[reg2]
[Format] Format IX
[Opcode]
15 0 31 16

rrrrr11111100000(wwwww01101100110

[Flags]
CY “1”if bit (0) is found eventually; otherwise, “0”.
ov 0
S 0
z “1” if bit (0) is not found; otherwise, “0”.
SAT —

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes
the number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-
purpose register reg3 (e.g., when bit 31 of reg2 is 1, 01y is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the
bit (1) found is the LSB, the CY flag is set (1).

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 254 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit search instructions>

SCH1R

Search one from right

Bit (1) search from LSB side

[Instruction format] SCHIR reg2, reg3
[Operation] GR[reg3] « search one from right of GR[reg2]
[Format] Format IX
[Opcode]
15 0 31 16

rrrrr11111100000(wwwww01101100010

[Flags]

CY “1” if bit (0) is found eventually; otherwise, “0”.
ov 0

S 0

z “1” if bit (0) is not found; otherwise, “0”.

SAT —

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes
the number of Os before the bit position (0 to 31) at which 1 is first found plus 1 to general-
purpose register reg3 (e.g., when bit 0 of reg2 is 1, 01y is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the
bit (1) found is the MSB, the CY flag is set (1).
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 255 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit manipulation instruction>

SET1

Set bit

Bit setting

[Instruction format] (1) SET1 bit#3, displ6 [regl]
(2) SETI reg2, [regl]

[Operation] (1) adr « GRJregl] + sign-extend (disp16)*1
token «<— Load-memory (adr, Byte)
Z flag «— Not (extract-bit (token, bit#3))
token « set-bit (token, bit#3)
Store-memory (adr, token, Byte)

(2) adr — GR[regl]"

token «— Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, reg2))
token « set-bit (token, reg2)
Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII
(2) Format IX

[Opcode]
15 031 16

(1) |00bbb111110RRRRR|dddddddddddddddd

15 0 31 16

(2) rrrrrl111111RRRRR{0000000011100000

[Flags]
CY —

ov —

z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”".
SAT —

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 256 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Adds the word data of general-purpose register regl to thel6-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Byte data is read from the generated
address, the bits indicated by the 3-bit bit number are set (1) and the data is written back
to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to ““1”, and if the specified
bit is “1”, the Z flag is cleared to “0”.

(2) Reads the word data of general-purpose register regl to generate a 32-bit address. Byte
data is read from the generated address, the lower 3 bits indicated of general-purpose
register reg2 are set (1) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to ““1”, and if the specified
bit is “1”, the Z flag is cleared to “0”.

[Supplement] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate
the content of the specified bit resulting from the instruction execution.

CAUTION

This instruction provides an atomic guarantee aimed at exclusive control, and during the period
between read and write operations, the target address is not affected by access due to any
other cause.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 257 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Data manipulation instruction>

SETF

Set flag condition

Flag condition setting

[Instruction format]

[Operation]

[Format)]

[Opcode]

[Flags]

[Description]

SETF cccc, reg2

if conditions are satisfied
then GR[reg2] <— 0000 0001y
else GR[reg2] «<— 0000 0000y

Format IX

15

0 31

16

rrrrrl1ll1l11110cccc

0000000000000000

CY
ov

SAT

When the condition specified by condition code “cccc” is met, stores “1” to general-purpose

register reg2 if a condition is met and stores “0” if a condition is not met.

Designate one of the condition codes shown in the following table as [cccc].

Condition Condition

Code Name Condition Formula Code Name Condition Formula

0000 \Y ov=1 0100 SIN S=1

1000 NV ov=0 1100 NS/P S=0

0001 C/L CYy =1 0101 T Always (Unconditional)

1001 NC/NL CY=0 1101 SA SAT =1

0010 z Z=1 0110 LT (S xorQV) =1

1010 NZ Z=0 1110 GE (SxorOV)=0

0011 NH (CYorz)=1 0111 LE ((S xor OV)orZ)=1

1011 H (CYorz)=0 1111 GT ((Sxor0OV)orz)=0
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 258 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Supplement] Examples of SETF instruction:

(1)

@)

Translation of multiple condition clauses

If A of statement if (4) in C language consists of two or greater condition clauses (ai, az,
a3, and so on), it is usually translated to a sequence of if (ai) then, if (az) then. The object
code executes “conditional branch” by checking the result of evaluation equivalent to an.
Because a pipeline operation requires more time to execute “condition judgment” +
“branch” than to execute an ordinary operation, the result of evaluating each condition
clause if (a») is stored in register Ra. By performing a logical operation to Ran after all
the condition clauses have been evaluated, the pipeline delay can be prevented.

Double-length operation

To execute a double-length operation, such as “Add with Carry”, the result of the CY
flag can be stored in general-purpose register reg2. Therefore, a carry from the lower
bits can be represented as a numeric value.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 259 of 384

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

SHL

Shift logical left by register/immediate (5-bit)

Logical left shift

[Instruction format] (1) SHL regl, reg2
(2) SHL immbS5, reg2
(3) SHL regl, reg2, reg3

[Operation] (1) GR[reg2] «— GR[reg2] logically shift left by GR[reg!]
(2) GR[reg2] <« GR[reg2] logically shift left by zero-extend (imm5)
(3) GR[reg3] < GR[reg2] logically shift left by GR[regl]

[Format] (1) Format IX
(2) Format II
(3) Format XI

[Opcode]
15 031 16
(1) rrrrr111111RRRRR{0000000011000000
15 0
(2) |rrrrro010110iiiii
15 031 16
(8) |rrrrr111111RRRRR|wwwww00011000010
[Flags]
CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.
ov 0
S “1” if the operation result is negative; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.
SAT —
R0O1US0165EJ0120 Rev.1.20 -IEN ESNS Page 260 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the lower 5 bits of general-purpose register regl, by shifting “0” to
LSB. The result is written to general-purpose register reg2. General-purpose register
regl is not affected.

(2) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the 5-bit immediate data, zero-extended to word length, by shifting
“0” to LSB. The result is written to general-purpose register reg2.

(3) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the lower 5 bits of general-purpose register regl, by shifting “0” to
LSB. The result is written to general-purpose register reg3. General-purpose registers
regl and reg2 are not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 261 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

SHR

Shift logical right by register/immediate (5-bit)

Logical right shift

[Instruction format] (1) SHR regl, reg2
(2) SHR immS5, reg2
(3) SHR regl, reg2, reg3

[Operation] (1) GR[reg2] «— GR[reg2] logically shift right by GR[regl]
(2) GR[reg2] <« GR[reg2] logically shift right by zero-extend (imm5)
(3) GR[reg3] < GR[reg2] logically shift right by GR[regl]

[Format] (1) Format IX
(2) Format II
(3) Format XI

[Opcode]
15 031 16
(1) rrrrrl111111RRRRR{0000000010000000
15 0
(2) |rrrrr010100iiiii
15 031 16
(8) |rrrrr111111RRRRR|wwwww00010000010
[Flags]
CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.
ov 0
S “1” if the operation result is negative; otherwise, “0”.
Z “1” if the operation result is “0”; otherwise, “0”.
SAT —
R0O1US0165EJ0120 Rev.1.20 -IEN ESNS Page 262 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the lower 5 bits of general-purpose register regl, by shifting “0” to
MSB. The result is written to general-purpose register reg2. General-purpose register
regl is not affected.

(2) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the 5-bit immediate data, zero-extended to word length, by shifting
“0” to MSB. The result is written to general-purpose register reg2.

(3) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the lower 5 bits of general-purpose register regl, by shifting “0” to
MSB. The result is written to general-purpose register reg3. General-purpose registers
regl and reg2 are not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 263 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

SLD.B

Short format load byte

Load of (signed) byte data

[Instruction format] SLD.B disp7 [ep], reg2

[Operation] adr « ep + zero-extend (disp7)*1
GR[reg2] « sign-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0

rrrrr0110ddddddd

[Flags]

ov —

SAT —

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to
generate a 32-bit address. Byte data is read from the generated address, sign-extended to word
length, and stored in reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 264 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

SLD.BU

Short format load byte unsigned

Load of (unsigned) byte data

[Instruction format] SLD.BU disp4 [ep], reg2

[Operation] adr « ep + zero-extend (disp4)*1
GR[reg2] « zero-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0
rrrrr0000110dddd

rrrrr # 00000 (Do not specify r0 for reg2.)

[Flags]
CY —
ov —
S J—
Z J—
SAT —

[Description] Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to
generate a 32-bit address. Byte data is read from the generated address, zero-extended to word
length, and stored in reg2.

CAUTION
Do not specify r0 for reg2.
RO1US0165EJ0120 Rev.1.20 RENESAS Page 265 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

SLD.H

Short format load halfword

Load of (signed) halfword data

[Instruction format] SLD.H disp8 [ep], reg2

[Operation] adr < ep + zero-extend (disp8)*1
GR[reg2] « sign-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0
rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.

[Flags]
CY —
ov —
S J—
Z J—
SAT —
[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to
generate a 32-bit address. Halfword data is read from this 32-bit address, sign-extended to
word length, and stored in general-purpose register reg2.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 266 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

SLD.HU

Short format load halfword unsigned

Load of (unsigned) halfword data

[Instruction format] SLD.HU disp5 [ep], reg2

[Operation] adr < ep + zero-extend (dispS)*1
GR[reg2] « zero-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0
rrrrr0000111dddd

rrrrr # 00000 (Do not specify r0 for reg2.)
dddd is the higher 4 bits of disp5.

[Flags]
CY —
ov —
S _
z —
SAT —

[Description] Adds the element pointer to the 5-bit displacement data, zero-extended to word length, to
generate a 32-bit address. Halfword data is read from this 32-bit address, zero-extended to
word length, and stored in general-purpose register reg2.

CAUTION
Do not specify r0 for reg2.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 267 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Load instruction>

SLD.W

Short format load word

Load of word data

[Instruction format] SLD.W disp8 [ep], reg2

[Operation] adr < ep + zero-extend (dispS)*1
GR[reg2] < Load-memory (adr, Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0
rrrrr1010ddddddo

dddddd is the higher 6 bits of disp8.

[Flags]
CY —

ov —

SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to
generate a 32-bit address. Word data is read from this 32-bit address, and stored in general-
purpose register reg2.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 268 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

SNOOZE

Snooze

Snooze

[Instruction format] Snooze
[Operation] Snooze while hardware-defined period
[Format] Format X
[Opcode]
15 0 31 16

0000111111100000(0000000100100000

[Flags]
CcY —

ov —

SAT —

[Description] Temporarily halts operation of the CPU core for the period defined by the hardware
specifications or when the CPU enters a specific state.
When the specified period has elapsed or the CPU exits the specified state, CPU operation
automatically resumes and instruction execution begins from the next instruction.
The SNOOZE state is released under the following conditions:

e The predefined period of time passes
e A terminating exception occurs

Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID
or NP value), as long as a SNOOZE mode release request exists, the SNOOZE state is
released (for example, even if PSW.ID = 1, the SNOOZE state is released when INTO occurs).
Note, however, that the SNOOZE mode will not be released if terminating exceptions are
masked by the following mask settings, which are defined individually for each function:

e Terminating exceptions are masked by an interrupt channel mask setting specified by the
interrupt controller*™.

e Terminating exceptions are masked by a mask setting specified by using the floating-
point operation exception enable bit.

e Terminating exceptions are masked by a mask setting defined by a hardware function
other than the above.

Note 1. This does not include masking specified by the ISPR and PMR registers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 269 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Supplement] This instruction is used to prevent the CPU performance from dropping in a multi-core system
due to bus band occupancy during a spinlock.

CAUTION

The period of the pause triggered by the SNOOZE instruction is defined
according to the hardware specifications of the CPU core. For details, see the
hardware manual of the product used.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 270 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Store instruction>

SST.B

Short format store byte

Storage of byte data

[Instruction format] SST.B reg2, disp7 [ep]

[Operation] adr « ep + zero-extend (disp7)*1
Store-memory (adr, GR[reg2], Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0

rrrrr01llddddddd

[Flags]

ov —

SAT —

[Description] Adds the element pointer to the 7-bit displacement data, zero-extended to word length, to
generate a 32-bit address and stores the data of the lowest byte of reg2 to the generated
address.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 271 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Store instruction>

SST.H

Short format store halfword

Storage of halfword data

[Instruction format] SST.H reg2, disp8 [ep]

[Operation] adr « ep + zero-extend (disp8)*1
Store-memory (adr, GR[reg2], Halfword)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0
rrrrr1001ddddddd

ddddddd is the higher 7 bits of disp8.

[Flags]
CY —

ov —

SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to
generate a 32-bit address, and stores the lower halfword data of reg2 to the generated 32-bit
address.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 272 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Store instruction>

SST.W

Short format store word

Storage of word data

[Instruction format] SST.W reg2, disp8 [ep]

[Operation] adr « ep + zero-extend (disp8)*1
Store-memory (adr, GR[reg2], Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]
15 0
rrrrr1010ddddddl

dddddd is the higher 6 bits of disp8.

[Flags]
CY —
ov —
S _
Z _
SAT —
[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to
generate a 32-bit address and stores the word data of reg?2 to the generated 32-bit address.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 273 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Store instruction>

ST.B

Store byte

Storage of byte data

[Instruction format] (1) ST.B reg2, displ6 [regl]
(2) ST.B reg3, disp23 [regl]

[Operation] (1) adr « GR[regl] + sign-extend (disp16)*1
Store-memory (adr, GR[reg2], Byte)

(2) adr <« GR[regl] + sign-extend (disp23)*1
Store-memory (adr, GR[reg3], Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII
(2) Format XIV

Opcode
[Op] 15 031 16
(1) |rrrrr111010RRRRR dddddddddddddddd
15 031 1647 32

(2) |00000111100RRRRR wwwwwddddddd1101 DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]
CY —
ov —
S _
Z J—
SAT —

[Description] (1) Adds the data of general-purpose register regl to the 16-bit displacement data, sign-
extended to word length, to generate a 32-bit address and stores the lowest byte data of
general-purpose register reg2 to the generated address.

(2) Adds the data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address and stores the lowest byte data of
general-purpose register reg3 to the generated address.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 274 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Store instruction>

ST.DW

Store Double Word

Storage of doubleword data

[Instruction format] ST.DW reg3, disp23[regl]

[Operation] adr «— GR[regl] + sign-extend (disp23)*1
data < GR[reg3+1] || GR[reg3]
Store-memory (adr, data, Double-word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format XIV

[Opcode]
15 031 1647 32

00000111101RRRRR wwwwwdddddd01111 PDDDDDDDDDDDDDDD

Where RRRRRR =regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]
CcY —

ov —

SAT —

[Description] Adds the data of general-purpose register regl to a 23-bit displacement value sign-extended to
word length to generate a 32-bit address. Doubleword data consisting of the lower 32 bits of
the word data of general-purpose register reg3 and the higher 32 bits of the word data of reg3
+ 1 is then stored at this address.

[Supplement] reg3 must be an even-numbered register.

CAUTION

If the result of address calculation is at the word boundary, no misaligned access exception
occurs.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 275 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Store instruction>

ST.H

Store halfword

Storage of halfword data

[Instruction format] (1) ST.H reg2, displ6 [regl]
(2) ST.H reg3, disp23 [regl]

[Operation] (1) adr «— GR[regl] + sign-extend (disp16)*1
Store-memory (adr, GR[reg2], Halfword)

(2) adr < GRJregl] + sign-extend (disp23)*1

Store-memory (adr, GR[reg3], Halfword)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII
(2) Format XIV

Opcode
[©Op] 15 031 16
(1) [rrrr111011RRRRR dddddddddddddddo
Where ddddddddddddddd is the higher 15 bits of disp16.
15 031 1647 32
(2) [00000111101RRRRR wwwwwdddddd01101 [DDDDDDDDDDDDDDDD
Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.
[Flags]
CY —
oV —
S I
Z —
SAT —
R01US0165EJ0120 Rev.1.20 -IENESAS Page 276 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Description] (1) Adds the data of general-purpose register regl to the 16-bit displacement data, sign-

)

extended to word length, to generate a 32-bit address and stores the lower halfword data
of general-purpose register reg2 to the generated address.

Adds the data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address and stores the lower halfword data
of general-purpose register reg3 to the generated address.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 277 of 384

RH850G3KH Software

Section 7 Instruction

<Store instruction>

ST.W

Store word

Storage of word data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

(1) ST.W reg2, displ6 [regl]
(2) ST.W reg3, disp23 [regl]

(1) adr « GR[regl] + sign-extend (disp16)*1
Store-memory (adr, GR[reg2], Word)

(2) adr < GR[regl] + sign-extend (disp23)*1
Store-memory (adr, GR[reg3], Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

(1) Format VII
(2) Format XIV

15 031 16

(1) [frrrrr111011RRRRR |dddddddddddddddl

Where ddddddddddddddd is the higher 15 bits of disp16.

15 031 1647 32

(2) |00000111100RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

Where RRRRR =regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

CcYy —
ov —

SAT —

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 278 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Adds the data of general-purpose register regl to the 16-bit displacement data, sign-
extended to word length, to generate a 32-bit address and stores the word data of general-

purpose register reg2 to the generated 32-bit address.

(2) Adds the data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address and stores the word data of general-

purpose register reg3 to the generated 32-bit address.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 279 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Store instruction>

STC.W

Conditional storage when atomic word data manipulation is complete

Store Conditional

[Instruction format] STC.W reg3, [regl]
[Operation] adr « GR[regl]*1
data «— GR[reg3]

token «— LLbit 2

if (token == 1)

then Store-memory (adr,

GR[reg3] « 1
else GR[reg3] < 0
endif
LLbit < 02

data, Word)

Note 1. An MAE, MDP exception might occur depending on the result of address calculation.

Note 2. For details about the link operation, see Section 5.3.2, Performing Mutual Exclusion by

Using the LDL.W and STC.W Instructions.

[Format] Format VII
Opcod
[peo e] 15 031 16
00000111111RRRRR wwwww01101111010
[Flags]
CcY —
oV —_
S —_
7 —
SAT —
RO1US0165EJ0120 Rev.1.20 RENESAS Page 280 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] This instruction can only be executed successfully if a link exists that corresponds to the
specified address. If a corresponding link exists, the word data of general-purpose register
reg3 is stored in the memory and an atomic read-modify-write is executed.

If the corresponding link has been lost, the data is not stored in the memory and execution of
this instruction fails.

Whether execution of the STC.W instruction has succeeded or not can be ascertained by
checking the contents of general-purpose register reg3 after the instruction has been executed.
If execution of the STC.W instruction was successful, general-purpose register reg3 will be
set (1). If execution failed, reg3 will be cleared (0).

This instruction can be used together with the LDL.W instruction to ensure accurate updating
of the memory in a multi-core system.

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic
guarantee is required when updating the memory in a multi-core system.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 281 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Store instruction>

STSR

Store contents of system register

Storage of contents of system register

[Instruction format] STSR reglID, reg2, sellD
STSR reglID, reg2

[Operation] GR[reg2] < SR[reglD, seHD]*1

Note 1. An exception might occur depending on the access permission. For details, see Section
2.5.3, Register Updating.

[Format)] Format IX

Opcode
[P] 15 031 16

rrrrr111111RRRRR [sssss00001000000

rrrrr:reg2, sssss: sellD, RRRRR: regID

[Flags]
CY —
oV —
S J—
Z J—
SAT —

[Description] Stores the system register contents specified by the system register number and group number
(regID, selID) in general-purpose register reg2. The system register is not affected. If sellD is
omitted, it is assumed that sellD is 0.

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending
on the combination of CPU operating mode and system register to be accessed. For details,
see Section 2.5.3, Register Updating.

CAUTION

The system register number or group number is a unique number used to identify each system

register. How to access undefined registers is described in Section 2.5.4, Accessing

Undefined Registers, but accessing undefined registers is not recommended.
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 282 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Arithmetic instruction>

Subtract
Subtraction
[Instruction format] SUB regl, reg2
[Operation] GR[reg2] «— GR[reg2] — GR[regl]
[Format] Format I
Opcode
[Opcode] .5 0
rrrrr001101RRRRR
[Flags]
CY “1” if a borrow occurs from MSB; otherwise, “0”.
ov “1” if overflow occurs; otherwise, “0”.
S “1” if the operation result is negative; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, “0”.
SAT —
[Description] Subtracts the word data of general-purpose register regl from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. General-purpose
register regl is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 283 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Arithmetic instruction>

SUBR

Subtract reverse

Reverse subtraction

[Instruction format] SUBR regl, reg2
[Operation] GR[reg2] «GRJregl] — GR[reg2]
[Format] Format I
Opcode
[Opcode] .5 0
rrrrr001100RRRRR
[Flags]
CY “1” if a borrow occurs from MSB; otherwise, “0”.
ov “1” if overflow occurs; otherwise, “0”.
S “1” if the operation result is negative; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, “0”.
SAT —
[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register regl and stores the result in general-purpose register reg2. General-purpose
register regl is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 284 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

SWITCH

Jump with table look up

Jump with table look up

[Instruction format] SWITCH regl

[Operation] adr < (PC + 2) + (GR[regl] logically shift left by l)*1
PC « (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format I
Opcode
[Opcode] .5 0
0O0000000010RRRRR

RRRRR # 00000 (Do not specify r0 for regl.)

[Flags]
CcY —

ov —

SAT —

[Description] The following steps are taken.

(1) Adds the start address (the one subsequent to the SWITCH instruction) to general-
purpose register regl, logically left-shifted by 1, to generate a 32-bit table entry address.

(2) Loads the halfword entry data indicated by the address generated in step (1).

(3) Adds the table start address after sign-extending the loaded halfword data and logically
left-shifting it by 1 (the one subsequent to the SWITCH instruction) to generate a 32-bit
target address.

(4) Jumps to the target address generated in step (3).

CAUTIONS

1. Do not specify r0 for reg1.

2. In the SWITCH instruction memory read operation executed in order to read the table,
memory protection is performed.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 285 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

SXB

Sign extend byte

Sign-extension of byte data

[Instruction format] SXB regl
[Operation] GRJregl] « sign-extend (GR[regl] (7:0))
[Format] Format I
Opcod
[Opcode] .5 0
00000000101RRRRR
[Flags]
CY —
ov —
S J—
Z J—
SAT —
[Description] Sign-extends the lowest byte of general-purpose register regl to word length.
RO1US0165EJ0120 Rev.1.20 RENESAS Page 286 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

SXH

Sign extend halfword

Sign-extension of halfword data

[Instruction format] SXH regl
[Operation] GR[regl] « sign-extend (GR[regl] (15:0))
[Format] Format I
Opcod
[Opcode] .5 0
00000000111RRRRR
[Flags]
CY —
ov —
S _
Z J—
SAT —
[Description] Sign-extends the lower halfword of general-purpose register regl to word length.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 287 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

SYNCE

Synchronize exceptions

Exception synchronization instruction

[Instruction format] SYNCE
[Operation] Synchronizes exceptions.
[Format] Format I
Opcode
[Opcode] .5 0
0000000000011101
[Flags]
CY —
ov —
S J—
Z J—
SAT —
[Description] Synchronizes all preceding imprecise exceptions (FPI exceptions) of this instruction.

“Imprecise exception synchronization” means that all imprecise exceptions, that are generated
by the preceding instructions, are notified to the CPU and are kept waiting until their priority
is judged. If a condition of acknowledging exceptions is satisfied when this instruction is
executed, all imprecise exceptions (FPI exceptions), that are generated by the preceding
instructions, are always acknowledged by executing the SYNCE instruction.

This instruction can be used to guarantee completion of exception handling by the preceding
task before a task is changed or terminated in a multi-processing environment.

[Supplement] For details about the synchronization function, see Section 5.4, Synchronization
Function.
RO1US0165EJ0120 Rev.1.20 RENESAS Page 288 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

SYNCI

Synchronize instruction pipeline

Instruction pipeline synchronization instruction

[Instruction format] SYNCI

[Operation] Synchronizes instruction fetches.

[Format] Format I

[Opcode]

15 0
0000000000011100
[Flags]

CcY —

(6)Y] —

S J—

Z J—

SAT —

[Description] Discards unexecuted instructions in the pipeline, and re-fetches the subsequent instructions.
The SYNCI instruction does not wait for the result of the preceding load and store
instructions.

[Supplement] For details about the synchronization function, see Section 5.4, Synchronization
Function.

R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 289 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

SYNCM

Synchronize memory

Memory synchronize instruction

[Instruction format] SYNCM
[Operation] Synchronizes memory accesses.
[Format] Format I
Opcode
[Opcode] .5 0
0000000000011110
[Flags]
CY —
ov —
S _
Z J—
SAT —
[Description] Waits for the completion of execution of all preceding instructions and all preceding memory

accesses (load and store). By executing the SYNCM instruction, the result of the preceding
memory accesses can be referenced by any master device within the system.

[Supplement] For details about the synchronization function, see Section 5.4, Synchronization
Function. The completion of a store instruction may not be guaranteed by the SYNCM
instruction depending on the destination of the store instruction. For details, see the hardware
manual of the product used.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 290 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

SYNCP

Synchronize pipeline

Pipeline synchronize instruction

[Instruction format] SYNCP
[Operation] Synchronizes pipeline.
[Format] Format I
Opcode
[Opcode] .5 0
0000000000011111
[Flags]
CY —
ov —
S J—
Z J—
SAT —
[Description] Waits for the completion of execution of preceding instructions to reflect the result of the

preceding instructions to subsequent instructions. The SYNCP instruction waits for the
completion of load instruction (until the loaded data is stored in a register), but does not wait
for the completion of store instruction (until the destination memory or register is updated).

[Supplement] For details about the synchronization function, see Section 5.4, Synchronization
Function.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 291 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Special instruction>

SYSCALL

System call

System call exception

[Instruction format] SYSCALL vector8

[Operation] EIPC «— PC + 4 (return PC)

EIPSW «— PSW

EIIC <« exception cause code’!

PSW.UM «— 0

PSW.EP « 1

PSW.ID « 1

if (vector8 <= SCCFG.SIZE) is satisfied
then adr « SCBP + zero-extend (vector8 logically shift left by 2)*2
else adr « SCBP 2

PC « SCBP + Load-memory (adr, Word)

Note 1. See Table 4.1, Exception Cause List.

Note 2. An MDP exception might occur depending on the result of address calculation.

[Format] Format X

Opcode
[P] 15 031 16

11010111111vvvvv|00VVV00101100000

Where VVV is the higher 3 bits of vector8 and vvvvv is the lower 5 bits of vector8.

[Flags]
CcY —
(6)Y] —
S J—
Z J—
SAT —
R0O1US0165EJ0120 Rev.1.20 REN ESNS Page 292 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] (1) Saves the contents of the return PC (address of the instruction next to the SYSCALL
instruction) and PSW to EIPC and EIPSW.

(2) Stores the exception cause code corresponding to vector8 in the EIIC register.
The exception cause code is the value of vector8 plus 8000y.

(3) Updates the PSW according to the exception causes listed in Table 4.1.

(4) Generates a 32-bit table entry address by adding the value of the SCBP register and
vector8 that is logically shifted 2 bits to the left and zero-extended to a word length.
If vector8 is greater than the value specified by the SIZE bit of system register SCCFG;
however, vector8 that is used for the generation of a 32-bit table entry address is handled
as 0.

(5) Loads the word of the address generated in (4).

(6) Generates a 32-bit target address by adding the value of the SCBP register to the data in
(%)

(7) Branches to the target address generated in (6).

CAUTION

In the SYSCALL instruction memory read operation executed in order to read the table,
memory protection is performed with the supervisor privilege.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 293 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Special instruction>

TRAP

Trap

Software exception

[Instruction format]

TRAP vector5

[Operation] EIPC «— PC + 4 (return PC)
EIPSW «— PSW
EIIC <« exception cause code’!
PSW.UM « 0
PSW.EP «— 1
PSWID « 1
PC « exception handler address 2
Note 1. See Table 4.1, Exception Cause List.
Note 2. See Section 4.5, Exception Handler Address.
[Format] Format X
Opcode
[P] 15 031 16
00000111111vvvvVv|0000000100000000
vVVVV = vectors
[Flags]
CY —
oV —
S —
d _
SAT —
R01US0165EJ0120 Rev.1.20 -zENESAS Page 294 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Description] Saves the contents of the return PC (address of the instruction next to the TRAP instruction)
and the current contents of the PSW to EIPC and EIPSW, respectively, stores the exception
cause code in the EIIC register, and updates the PSW according to the exception causes listed
in Table 4.1. Execution then branches to the exception handler address and exception
handling is started.

The following table shows the correspondence between vector5 and exception cause codes
and exception handler address offset. Exception handler addresses are calculated based on the
offset addresses listed in the following table. For details, see Section 4.5, Exception
Handler Address.

vector5 Exception Cause Code Offset Address
00y 0000 00404 404

01y 0000 00414

OFy 0000 004Fy

104 0000 00504 504

i 0000 0051

1Fy 0000 005Fy

R0O1US0165EJ0120 Rev.1.20 -IEN ESNS Page 295 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Logical instruction>

Test
Test

[Instruction format] TST regl, reg2

[Operation] result < GR[reg2] AND GR[regl]

[Format] Format I

Opcode

[Opcode] .5 0
rrrrr001011RRRRR

[Flags]

CY —

ov 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, 0.

SAT —

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose
register regl. The result is not stored with only the flags being changed. General-purpose
registers regl and reg2 are not affected.

R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 296 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Bit manipulation instruction>

Test bit
Bit test
[Instruction format] (1) TST1 bit#3, displ6 [regl]
(2) TSTI reg2, [regl]
[Operation] (1) adr « GRJregl] + sign-extend (displ6)*1
token < Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, bit#3))
(2) adr < GR[regl]"
token «— Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, reg2))
Note 1. An MDP exception might occur depending on the result of address calculation.
[Format] (1) Format VIII
(2) Format IX
[Opcode]
15 0 31 16
(1) |11bbb111110RRRRR|dddddddddddddddd
15 0 31 16
(2) |rrrrr111111RRRRR|(0000000011100110
[Flags]
CY —
(6)Y] —
S —
z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.
SAT —
R0O1US0165EJ0120 Rev.1.20 IIENESAS Page 297 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Description] (1)

2)

Adds the word data of general-purpose register regl to thel6-bit displacement data, sign-
extended to word length, to generate a 32-bit address; checks the bit specified by the 3-
bit bit number at the byte data location referenced by the generated address. If the
specified bit is “0”, “1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is
cleared to “0”. The byte data, including the specified bit, is not affected.

Reads the word data of general-purpose register regl to generate a 32-bit address; checks
the bit specified by the lower 3 bits of reg2 at the byte data location referenced by the
generated address. If the specified bit is “0”, “1” is set to the Z flag of PSW and if the bit
is “17, the Z flag is cleared to “0”. The byte data, including the specified bit, is not
affected.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 298 of 384

RH850G3KH Software Section 7 Instruction

<Logical instruction>

XOR

Exclusive OR

Exclusive OR

[Instruction format] XOR regl, reg2
[Operation] GR[reg2] < GR[reg2] XOR GRJregl]
[Format] Format I
Opcode
[Opcode] .5 0
rrrrr001001RRRRR
[Flags]
CY —
ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, “0”.
SAT —
[Description] Exclusively ORs the word data of general-purpose register reg2 with the word data of

general-purpose register regl and stores the result in general-purpose register reg2. General-
purpose register regl is not affected.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 299 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Logical instruction>

XORI

Exclusive OR immediate (16-bit)

Exclusive OR immediate

[Instruction format] XORI imml6, regl, reg2

[Operation] GRJ[reg2] < GRJ[regl] XOR zero-extend (imm16)
[Format] Format VI

[Opcode] 15 031 16

rrrrr110101RRRRR [iiiiiiiiiiiiiiid

[Flags]
CY —
ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”.
z “1” if the operation result is “0”; otherwise, “0”.
SAT —
[Description] Exclusively ORs the word data of general-purpose register regl with the 16-bit immediate
data, zero-extended to word length, and stores the result in general-purpose register reg2.
General-purpose register regl is not affected.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 300 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

ZXB

Zero extend byte

Zero-extension of byte data

[Instruction format] ZXB regl
[Operation] GRJregl] « zero-extend (GR[regl] (7:0))
[Format] Format I
Opcod
[Opcode] .5 0
00000000100RRRRR
[Flags]
CY —
ov —
S J—
Z J—
SAT —
[Description] Zero-extends the lowest byte of general-purpose register regl to word length.
RO1US0165EJ0120 Rev.1.20 RENESAS Page 301 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Data manipulation instruction>

ZXH

Zero extend halfword

Zero-extension of halfword data

[Instruction format] ZXH regl
[Operation] GRJregl] « zero-extend (GR[regl] (15:0))
[Format] Format I
Opcod
[Opcode] .5 0
00000000110RRRRR
[Flags]
CY —
ov —
S J—
Z J—
SAT —
[Description] Zero-extends the lower halfword of general-purpose register regl to word length.
RO1US0165EJ0120 Rev.1.20 RENESAS Page 302 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

7.3 Cache Instructions

7.3.1 Overview of Cache Instructions

This CPU does not include cache instruction.
The cache instruction includes the following instructions (mnemonics).

e CACHE:*"Cache
e PREF:*! Prefetch

Note 1. The CACHE and PREF instructions are processed as the NOP instruction.

7.3.2 Cache Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the
following items.

o Instruction format: Indicates how the instruction is written and its operand(s).

e Operation: Indicates the function of the instruction.

e Format: Indicates the instruction format.

e Opcode: Indicates the bit field of the instruction opcode.

e Description: Describes the operation of the instruction.

e Supplement: Provides supplementary information on the instruction.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 303 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Cache instruction>

CACHE

Cache

Cache operation

[Instruction format] CACHE cacheop, [regl]

[Operation] No operation is performed.

[Format] Format X

[Opcode] 15 031 16

111ppll11111RRRRR |PPPPP00101100000

ppPPPPP indicates cacheop.

[Flags]
CcY —

ov —

SAT —

[Description] In this CPU, the CACHE instruction is processed as the NOP instruction.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 304 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Cache instruction>

Prefetch
Prefetch
[Instruction format] PREF prefop, [regl]
[Operation] No operation is performed.
[Format] Format X
Opcode
[Op] 15 031 16
11011111111RRRRR PPPPP00101100000
PPPPP indicates prefop.
[Flags]
CcY —
(6)Y] —
S J—
a —
SAT —
[Description] In this CPU, the PREEF instruction is processed as the NOP instruction.
R0O1US0165EJ0120 Rev.1.20 -zENESAS Page 305 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

7.4 Floating-Point Instructions

7.4.1 Instruction formats
All floating-point instructions are in 32-bit format.
When an instruction is actually saved to memory, it is placed as shown below.
e Lower part of instruction format (including bit 0) — Lower address side

e Higher part of instruction format (including bit 15 or bit 31) — Upper address side

(1) Format F:l

The 32-bit long floating-point instruction format includes a 6-bit opcode field, 4-bit sub-
opcode field, three fields that specify general-purpose registers, a 3-bit category field, and a 2-

bit type field.
15 11 10 5 4 0 31 27 26 16
T T 1 T T T 1 T T 1 T T 1 T T T T T T 1 T
reg2 opcode reg1 reg3 sub-opcode
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 306 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

74.2 Overview of Floating-Point Instructions

Floating-point instructions supports single-precision floating-point instructions (single), and

include the following instructions (mnemonics).

(1) Basic operation instructions

ABSE.S:
ADDE.S:
DIVE.S:
MAXE.S:
MULE.S:
NEGE.S:
RECIPE.S:
RSQRTFE.S:
SQRTE.S:
SUBF.S:

Floating-point Absolute Value (Single)

Floating-point Add (Single)

Floating-point Divide (Single)

Floating-point Maximum (Single)

Floating-point Multiply (Single)

Floating-point Negate (Single)

Reciprocal of a floating-point value (Single)

Reciprocal of the square root of a floating-point value (Single)
Floating-point Square Root (Single)

Floating-point Subtract (Single)

(2) Extended basic operation instructions

FMAEF.S:

FMSE.S:

FNMAE.S:

FNMSE.S:

Floating-point fused-multiply-add (Single)
Floating-point fused-multiply-subtract (Single)
Floating-point fused-negate-multiply-add (Single)

Floating-point fused-negate-multiply-subtract (Single)

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS Page 307 of 384

RH850G3KH Software Section 7 Instruction

(3) Conversion instructions
e CEILF.SL: Floating-point Convert Single to Long, round toward positive (Single)
e CEILF.SW: Floating-point Convert Single to Word, round toward positive (Single)

e CEILF.SUL: Floating-point Convert Single to Unsigned-Long, round toward
positive (Single)

e CEILF.SUW: Floating-point Convert Single to Unsigned-Word, round toward
positive (Single)

e CVTFELS: Floating-point convert long to single (Single)
e CVTFESL: Floating-point convert single to long (Single)
e CVTFESUL: Floating-point convert single to unsigned-long (Single)
e CVTESUW: Floating-point convert single to unsigned-word (Single)
e CVTFE.SW: Floating-point convert single to word (Single)
e CVTFULS: Floating-point convert unsigned-long to single (Single)

e CVTFUWS: Floating-point convert unsigned-word to single (Single)

e CVTEWS: Floating-point convert word to single (Single)

e FLOORF.SL: Floating-point convert single to long, round toward negative (Single)
e FLOORF.SW: Floating-point convert single to word, round toward negative (Single)

e FLOORF.SUL: Floating-point convert single to unsigned-long, round toward negative
(Single)

e FLOORF.SUW: Floating-point convert single to unsigned-word, round toward
negative (Single)

e ROUNDF.SL: Floating-point Convert Single to Long, round to nearest (Single)
e ROUNDF.SW: Floating-point Convert Single to Word, round to nearest (Single)
e ROUNDEF.SUL: Floating-point Convert Single to Unsigned-Long, round to nearest

(Single)

e ROUNDEF.SUW: Floating-point Convert Single to Unsigned-Word, round to nearest
(Single)

e TRNCF.SL: Floating-point convert single to long, round toward zero (Single)

e TRNCF.SUL: Floating-point convert single to unsigned-long, round toward zero
(Single)

e TRNCE.SUW: Floating-point convert single to unsigned-word, round toward zero
(Single)

e TRNCFE.SW: Floating-point convert single to word, round toward zero (Single)

e CVTEHS: Floating-point convert half to single (Single)

e CVTFESH: Floating-point convert single to half (Single)

(4) Comparison instructions
e CMPES: Compare floating-point values (Single)

(5) Conditional move instructions

e CMOVES: Floating-point conditional move (Single)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 308 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

(6) Condition bit transfer instruction

e TRFSR:

Transfers specified CC bit to Zero flag in PSW (Single)

7.4.3 Conditions for Comparison Instructions
Floating-point comparison instructions (CMPEF.S) perform two floating-point data compare
operations. The result is determined based on the comparison condition contained in the data
and code. Table 7.7 lists the mnemonics for conditions that can be specified by comparison
instructions.
The comparison instruction result is transferred by the TRFSR instruction to the Z flag of
PSW (program status word), and when performing a conditional branch, the condition logic is
inverted and then can be used. Table 7.8 shows logic inversion based on the true/false status
of conditions. In a 4-bit condition code for a floating-point comparison instruction, the
condition is specified in the “True” column of the table. The conditional branch instruction
BT performs a branch when the comparison result is true, while BF performs a branch when
the result is false.
Table 7.7 List of Conditions for Comparison Instructions

Mnemonic Definition Inverted Logic

F Always false (T) Always true

UN Unordered (OR) Ordered

EQ Equal (NEQ) Not equal

UEQ Unordered or equal (OLG) Ordered and less than or greater than

OoLT Ordered and less than (UGE) Unordered or greater than or equal to

ULT Unordered or less than (OGE) Ordered and greater than or equal to

OLE Ordered and less than or equal to (UGT) Unordered or greater than

ULE Unordered or less than or equal to (OGT) Ordered and greater than

SF Signaling and false (ST) Signaling and true

NGLE Not greater than, not less than, and not equal to (GLE) Greater than, less than, or equal to

SEQ Signaling and equal to (SNE) Signaling and not equal to

NGL Not greater than and not less than (GL) Greater than or less than

LT Less than (NLT) Not less than

NGE Not greater than and not equal to (GE) Greater than or equal to

LE Less than or equal to (NLE) Not less than and not equal to

NGT Not greater than (GT) Greater than

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 309 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

Table 7.8

Definitions of Condition Code Bits and Their Logical Inversions

Condition Code

Bit Definition of Condition Code fcond(3:0)

Invalid operation
exception occurs

Mnemonic fcond Less than Equal to Unordered when unordered :.n:gei:ed
(True) Decimal Binary fcond(2) fcond(1) fcond(0) fcond(3) (False)
F 0 0b0000 F F F No (T)
UN 1 0b0001 F F T No (OR)
EQ 2 0b0010 F T F No (NEQ)
UEQ 3 0b0011 F T T No (OLG)
OLT 4 0b0100 T F F No (UGE)
ULT 5 0b0101 T F T No (OGE)
OLE 6 0b0110 T T F No (UGT)
ULE 7 0b0111 T T T No (OGT)
SF 8 0b1000 F F F Yes (ST)
NGLE 9 0b1001 F F T Yes (GLE)
SEQ 10 0b1010 F T F Yes (SNE)
NGL 1 0b1011 F T T Yes (GL)
LT 12 0b1100 T F F Yes (NLT)
NGE 13 0b1101 T F T Yes (GE)
LE 14 0b1110 T T F Yes (NLE)
NGT 15 0b1111 T T T Yes (GT)
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 310 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

7.4.4

Floating-Point Instruction Set

This section describes the following items in each instruction (based on alphabetical order of

instruction mnemonics).

Table 7.9

Instruction format: Indicates how the instruction is written and its operand(s)

Operation:

Format:

Opcode:

Description:

Supplement:

(symbols are listed in Table 7.9).

Indicates the function of the instruction. (symbols are listed in
Table 7.10).

Indicates the instruction format (see Section 7.4.1, Instruction
formats).

Indicates the instruction opcode in bit fields (symbols are listed in
Table 7.11).

Describes the operation of the instruction.

Provides supplementary information on the instruction.

Instruction Format

Symbol

Explanation

reg1

General-purpose register

reg2

General-purpose register

reg3

General-purpose register

reg4

General-purpose register

fcbit

Specifies the bit number of the condition bit that stores the result of a floating-
point comparison instruction.

imm x

x bit immediate data

fcond

Specifies the mnemonic or condition code of the comparison condition of a
comparison instruction (for details, see Section 7.4.3, Conditions for
Comparison Instructions).

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS Page 311 of 384

RH850G3KH Software

Section 7 Instruction

Table 7.10 Operations

Symbol Explanation

— Assignment (input for)

GR[a] Value stored in general-purpose register a

SR][a, b] Value stored in system register (RegID = a, SellD = b)

result Result is reflected in flag.

== Comparison (true upon a match)

+ Add

- Subtract

l Bit concatenation

x Multiply

+ Divide

abs Absolute value

ceil Rounding in +« direction

compare Comparison

cvt Converts type according to rounding mode

floor Rounding in — direction

max Maximum value

min Minimum value

neg Sign inversion

round Rounding to closest value

sqrt Square root

trunc Rounding in zero direction

fma(a, b, c) Result of multiplying a and b and then adding ¢

fms(a, b, c) Result of multiplying a and b and then subtracting ¢
Table 7.11 Opcodes

Symbol Explanation

R Single bit data of code specifying reg1

r Single bit data of code specifying reg2

w Single bit data of code specifying reg3

w Single bit data of code specifying reg4

| Single bit data of immediate data (indicates higher bit of immediate data)

i Single bit data of immediate data

fff 3-bit data that specifies the bit number (fcbit) of the condition bit that stores the

result of a floating-point comparison instruction
FFFF 4-bit data corresponding to the mnemonic or condition code (fcond) of the

comparison condition of a comparison instruction

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 312 of 384

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

ABSF.S

Floating-point Absolute Value (Single)

Floating-point absolute value (single precision)

[Instruction format)] ABSF.S reg2, reg3

[Operation] reg3 « abs (reg2)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16
r rr r r1 1 1 1 1 1{]0 0 0 O0 O}j]w w w w w|1|O0O O O|1 0fO0 1 0 OfO
| reg2 reg3 ‘ |category| type‘ sub-op | ‘
[Description] This instruction takes the absolute value from the single-precision floating-point format

contents of general-purpose register reg2, and stores it in general-purpose register reg3.

[Floating-point None

operation exceptions]

[Supplement]

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 313 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

ADDF.S

Floating-point Add (Single)

Floating-point add (single precision)

[Instruction format)] ADDEF.S regl, reg2, reg3
[Operation] reg3 « reg2 +regl
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr r{1 1 1 1 1 1|R RRRIR|wwWwW W ww|1llO O 0|2 1({0 O 0 O0fO

| reg2 reg1 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction adds the single-precision floating-point format contents of general-purpose
register regl with the single-precision floating-point format contents of general-purpose
register reg2, and stores the result in general-purpose register reg3. The operation is executed
as if it were of infinite accuracy, and the result is rounded in accordance with the current
rounding mode.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 314 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Operation result]

reg2(B)

reg1(A) +Normal | -Normal | +0 -0 +e0 — Q-NaN S-NaN

+Normal

—Normal

A+B —o0
+0

+o [Q-NaN[V]
—e QNaN[V]| -—=

Q-NaN

Q-NaN [V]

Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 315 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CEILF.SL

Floating-point Convert Single to Long, round toward positive (Single)

Conversion to fixed-point format (single precision)

[Instruction format)] CEILF.SL reg2, reg3
[Operation] reg3 « ceil reg? (single — long-word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r¥»vr r{1 1 1 1 1 1|0 0 0 1 Ofw w w w 0|212|0 O O|1 O0Of0 O 1 0O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register
pair specified by general-purpose register reg3.

The result is rounded in the +oo direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 283 — 1 to —2%3, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

263

e Source is a positive number or +oo: — 1 is returned.

e Source is a negative number, not-a-number, or —o: ~23 is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +eo =3 Q-NaN S-NaN
Operation A (Integer) 0 (Integer) +Max Int —Max Int [V]
result V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 316 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

CEILF.SUL

Floating-point Convert Single to Unsigned-Long, round toward positive (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[Opcode]

15

CEILF.SUL reg2, reg3

reg3 « ceil reg2 (single — unsigned long-word)

Format F:I

11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r rrvi111 1 1 1(1 0 0 1 Oflw w w w Of1(0 O O|1 OfO0O O 1 O0fO

[Description]

[Floating-point
operation exceptions]

[Operation result]

reg2 reg3 ‘ |category| type ‘ sub-op |

This instruction arithmetically converts the single-precision floating-point format contents
specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores
the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +oo direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 264 _ 1 to 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 204 _ 100, or +o0: 264 — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

Unimplemented operation exception (E)
Invalid operation exception (V)
Inexact exception (I)

reg2 (A) +Normal | —-Normal | +0 -0 +eo = Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]
result (Integer) V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 317 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CEILF.SUW

Floating-point Convert Single to Unsigned-Word, round toward positive (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format)] CEILF.SUW reg2, reg3
[Operation] reg3 « ceil reg2 (single — unsigned word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1|1 0 0 1 O}j]w w w w w|1|O0O O O|1 0fO0O O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point
format, and stores the result in general-purpose register reg3.

The result is rounded in the +oo direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 232 1 to0 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 2641100, or +o0: 232 — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +e0 =% Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]
result (Integer) V]
[exception]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 318 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CEILF.SW

Floating-point Convert Single to Word, round toward positive (Single)

Conversion to fixed-point format (single precision)

[Instruction format)] CEILF.SW reg2, reg3
[Operation] reg3 « ceil reg2 (single — word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1{]0 0 0 1 O}J]w w w w w|1|O0O O O|1 0(O0O O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-
purpose register reg3.

The result is rounded in the +oo direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 23! — 1 to —23!, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number or +oo: 231 1 is returned.

e Source is a negative number, not-a-number, or —o: ~231is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | —-Normal | +0 -0 +eo = Q-NaN S-NaN
Operation A (Integer) 0 (Integer) +Max Int —Max Int [V]
result V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 319 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point condition instruction >

CMOVF.S

Floating-point Conditional Move (Single)

Conditional move (single precision)

[Instruction format)] CMOVES fcbit, regl, reg2, reg3
[Operation] if (FPSR.CCn == 1) then
reg3 « regl
else
reg3 « reg2
endif

Note 1. n = fcbit

[Format] Format F:1

[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r¥rv¥vrri{l1 1 1 1 1 1|R R R RIR|ww ww w|1l|O0O 0 O0|O OO0 £ £ f£]|O0

reg2 reg1 regS*1 ‘ |category| type ‘ sub-op | ‘
Caution 1. reg3: wwwww! =0

wwwww # 00000 (do not set reg3 to r0)
Note: fcbit: fff

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data
from regl is stored in reg3. When these bits are false (0), the reg2 data is stored in reg3.

[Floating-point None
operation exceptions]

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.
CAUTION

Do not set reg3 to r0.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 320 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

CMPF.S

Compare floating-point values (Single)

Floating-point comparison (single precision)

[Instruction format]

CMPE.S fcond, reg2, regl, fcbit
CMPES fcond, reg2, regl

[Operation] if isNaN(regl) or isNaN(reg2) then
result.less «— 0
result.equal < 0
result.unordered «— 1
if fcond[3] == 1 then
Invalid operation exception is detected.
endif
else
result.less « reg2 <regl
result.equal < reg2 == regl
result.unordered «— 0
endif
FPSR.CCn « (fcond[2] & result.less) | (fcond[1] & result.equal) |
(fcond[0] & result.unordered)
Note 1. n: fcbit
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16
rrrr rfl 1111 1/RRRRR[0OFFFTF[1|0O0oO0[0 1|0 £ £ £|0
reg2 reg1 ‘ | category | type ‘ sub-op | ‘
Note 1. fcond: FFFF
fobit: £££
R0O1US0165EJ0120 Rev.1.20 -IENESAS Page 321 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Description] This instruction compares the single-precision floating-point format contents of general-
purpose register reg2 with the single-precision floating-point format contents of general-
purpose register regl, based on the comparison condition “fcond”, then sets the result (1 if
true, 0 if false) to the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register
specified by fcbit in the opcode. If fcbit is omitted, the result is set to the CCO bit (bit 24).
For description of the comparison condition “fcond” code, see Table 7.12, Comparison
Conditions.

If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has
been set, an IEEE754-defined invalid operation exception is detected. If invalid operation
exceptions are enabled, the comparison result is not set and processing is passed to the
exception.
If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR
register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.
When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point
instruction (including a comparison), it is regarded as an invalid operation condition. When
using only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid operation,
it is simpler to use a program in which any NaN results in an error. In other words, there is no
need to insert code that explicitly checks for Q-NaN that would result in an unordered result.
Instead, the exception handling system should perform error processing when an exception
occurs after detecting an invalid operation. The following shows a comparison that checks for
equivalence of two numerical values and triggers an error when an unordered result is
detected.
Table 7.12 Comparison Conditions
Comparison Detection of
Conditions invalid
operation
exception by
fcond | Definition Description unordered

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 =reg1 Ordered (both reg1 and reg?2 is not not-a-number) and equal No

UEQ 3 reg2 ? =reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ? <reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

OLE 6 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ? <reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg?2 is not-a-number Yes

SEQ 10 reg2 =reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ? =reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ? <reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2 <reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ? <reg Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes
Note: 7?: Unordered (invalid comparison)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 322 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

When explicitly testing Q-NaN

CMPF.S OLT, rl2, rl3, O # Check if r12 < rl4

CMPF. S UN, rl2, rl3, 1 # Check if unordered

TRFSR 0

BT L2 # If true, go to L2

TRFSR 1

BT ERROR # If true, go to error processing

Enter code for processing when neither unordered nor r12 <rl4
L2:

Enter code for processing when r12 <rl4

When using a comparison to detect Q-NaN

CMPF.S LT, rl2, rl3, 0 # Check if rl2 ?< rl4
TRFSR 0
BT L2 # If true, go to L2

Enter code for processing when not r12 <rl4
L2:

Enter code for processing when r12 <rl4

[Floating-point Invalid operation exception (V)
operation exceptions]

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 323 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Operation result] [Condition code (fcond) =0 to 7]
reg1(B)
reg2(A) +Normal |-Normal ([+0 -0 +e0 == Q-NaN S-NaN
+Normal
0 Stores result of comparison (true or false) executed under
~ the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)
]
Q-NaN Unordered
S-NaN Unordered [V]
[Condition code (fcond) = 8 to 15]
reg1(B)
reg2(A) +Normal [-Normal ([+0 -0 +e0 —c0 Q-NaN S-NaN
+Normal
0 Stores result of comparison (true or false) executed under
— the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)
]
Q-NaN
Unordered [V]
S-NaN
Note: []indicates an exception that must occur.
R0O1US0165EJ0120 Rev.1.20 -IEN ESAS Page 324 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.HS

Floating-point Convert Half to Single (Single)

Conversion to floating-point format (single precision)

[Instruction format)] CVTFEHS reg2, reg3
[Operation] reg3 « cvt reg2 (half — single)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1{]0 0 0 1 O}J]w w w w w|1|O0O O O|1 0(O0O O O 1{O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the half-precision floating-point format contents in
the lower 16 bits of general-purpose register reg2 to single-precision floating-point format,
rounding the result in accordance with the current rounding mode, and stores the result in
general-purpose register reg3.

[Floating-point Invalid operation exception (V)
operation exceptions]

[Supplement] With the exception of not-a-number values, all half-precision floating-point format values can
be accurately converted into single-precision floating-point format values. A subnormal input
will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +eo =52 Q-NaN S-NaN
Operation A (Half) +0 -0 +o0 —e0 Q-NaN Q-NaN
result Y
[exception]

Note: []indicates an exception that must occur.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 325 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.LS

Floating-point Convert Long to Single (Single)

Conversion to floating-point format (single precision)

[Instruction format)] CVTFELS reg2, reg3
[Operation] reg3 « cvt reg2 (long-word — single)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r¥» ¥ 0j]1 11 1 1 1|0 0 O0 O 1|w w w w w|1|0 O O|1 O0f0 O O 1]|O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the register
pair specified by general-purpose register reg2 to single-precision floating-point format, and
stores the result in general-purpose register reg3. The result is rounded in accordance with the
current rounding mode.

[Floating-point Inexact exception (I)
operation exceptions]

[Operation result]

reg2 (A) +Integer —Integer 0 (Integer)
Operation A (Normal) +0
result
[exception]
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 326 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.SL

Floating-point Convert Single to Long (Single)

Conversion to fixed-point format (single precision)

[Instruction format)] CVTE.SL reg2, reg3
[Operation] reg3 « cvt reg2 (single — long-word)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r¥»vr r{1 1 1 1 1 1|0 0 1 0 Ofjw w w w 0|212|0 O O|1 O0Of0 O 1 0O

| reg2 reg3 ’ |category| type ’ sub-op |

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, in accordance with the current
rounding mode, and stores the result in the register pair specified by general-purpose register
reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 283 — 1 to —2%3, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

263

e Source is a positive number or +oo: — 1 is returned.

e Source is a negative number, not-a-number, or —o: ~23 is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +e0 =52 Q-NaN S-NaN
Operation A (Integer) 0 (Integer) +Max Int —Max Int [V]
result V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 327 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.SH

Floating-point Convert Single to Half (Single)

Conversion to half-precision floating-point format (single precision)

[Instruction format)] CVTF.SH reg2, reg3
[Operation] reg3 « zero-extend (cvt reg2 (single — half))
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1{]0 0 0 1 1|]w w w w w|1|O0O O O|1 0(O0O O O 1{O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents in
general-purpose register reg2 to half-precision floating-point format, rounding the result in
accordance with the current rounding mode. The result is zero-extended to word length and
stored in general-purpose register reg3.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)
[Operation result]
reg2 (A) +Normal | -Normal | +0 -0 +e0 =52 Q-NaN S-NaN
Operation A (Half) +0 -0 +o0 —o0 Q-NaN Q-NaN
result I\
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 328 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

CVTF.SUL

Floating-point Convert Single to Unsigned-Long (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[Opcode]

15

CVTE.SUL reg2, reg3

reg3 « cvt reg2 (single — unsigned long-word)

Format F:I

11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r rrrvil111 1 1 1(1 0 1 0 Olw w w w w|(1f0O O O|1 O0f0 O 1 O0fO

[Description]

[Floating-point
operation exceptions]

[Operation result]

reg2 reg3 ‘ |category| type ‘ sub-op |

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 64-bit fixed-point format, in accordance with the
current rounding mode, and stores the result in the register pair specified by general-purpose
register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 264 _ 1 to 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 204 _ 100, or +o0: 264 — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

Unimplemented operation exception (E)
Invalid operation exception (V)
Inexact exception (I)

reg2 (A) +Normal | -Normal | +0 -0 +eo =52 Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]

result (Integer) V]

[exception]

Note 1. [] indicates an exception that must occur.
Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 329 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.SUW

Floating-point Convert Single to Unsigned-Word (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTE.SUW reg2, reg3
[Operation] reg3 « cvt reg2 (single — unsigned word)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1|1 0 1 0 O}j]w w w w w|1|O0O O O|1 0(O0O O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 232 _ 1 t0 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

264

e Source is a positive number outside the range of 2°* — 1 to 0, or +oo: 232 _ 1 is returned.

e Source is a negative number, not-a-number, or —oo: 0 is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +eo =52 Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]
result (Integer) V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 330 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.SW

Floating-point Convert Single to Word (Single)

Conversion to fixed-point format (single precision)

[Instruction format)] CVTE.SW reg2, reg3
[Operation] reg3 « cvt reg2 (single — word)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr v r r{1 1 1 1 1 1{]0 0 1 0 O]J]w w w w w|1|O0O O O|1 0(O0O O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-
purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2311 to -23!, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number or +oo: 231 1 is returned.

e Source is a negative number, not-a-number, or —o: ~231 s returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +e0 =0 ‘ Q-NaN ‘ S-NaN
Operation A (Integer) 0 (Integer) +Max Int —Max Int [V]
result vl
[exception]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 331 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.ULS

Floating-point Convert Unsigned-Long to Single (Single)

Conversion to floating-point format (single precision)

[Instruction format)] CVTFE.ULS reg2, reg3
[Operation] reg3 « cvt reg2 (unsigned long-word — single)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r¥» v 0j]1 11 1 1 1|1 0 0 0 1|w w w w w|1|0 O O|1 O0f0 O O 1|0

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the
register pair specified by general-purpose register reg2 to single-precision floating-point
format, and stores the result in general-purpose register reg3. The result is rounded in
accordance with the current rounding mode.

[Floating-point Inexact exception (I)
operation exceptions]

[Operation result]

reg2 (A) +Integer —Integer 0 (Integer)
Operation A (Normal) +0
result
[exception]
R01US0165EJ0120 Rev.1.20 RENESAS Page 332 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.UWS

Floating-point Convert Unsigned-Word to Single (Single)

Conversion to floating-point format (single precision)

[Instruction format] CVTF.UWS reg2, reg3
[Operation] reg3 « cvt reg2 (unsigned word — single)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r ri1 1 1 1 1 1|1 0 0 0 O}jJ]w w w w w|1|O0O O O|1 0fO0O O O 1{O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of
general-purpose register reg? to single-precision floating-point format, and stores the result in
general-purpose register reg3. The result is rounded in accordance with the current rounding

mode.
[Floating-point Inexact exception (I)
operation exceptions]
[Operation result]
reg2 (A) +Integer —Integer 0 (Integer)
Operation A (Normal) +0
result
[exception]
RO1US0165EJ0120 Rev.1.20 RENESAS Page 333 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

CVTF.WS

Floating-point Convert Word to Single (single)

Conversion to floating-point format (single precision)

[Instruction format)] CVTE.WS reg2, reg3
[Operation] reg3 « cvt reg2 (word — single)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1{]0 0 0 0 O}J]w w w w w|1|0O O O|1 0fO0O O O 1{O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-
purpose register reg2 to single-precision floating-point format, and stores the result in
general-purpose register reg3. The result is rounded in accordance with the current rounding

mode.
[Floating-point Inexact exception (I)
operation exceptions]
[Operation result]
reg2 (A) +Integer —Integer 0 (Integer)
Operation A (Normal) +0
result
[exception]
RO1US0165EJ0120 Rev.1.20 RENESAS Page 334 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

DIVF.S

Floating-point Divide (Single)

Floating-point division (single precision)

[Instruction format)] DIVES regl, reg2, reg3
[Operation] reg3 « reg2 +regl
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvrr{1 1 1 1 1 1|R RRRIR|wwWwW W ww|1l|O O O 1(0 1 1 1{O0

| reg2 reg1 reg3 ‘ |category| type‘ sub-op | ‘

[Description] This instruction divides the single-precision floating-point format contents of general-purpose
register reg2 by the single-precision floating-point format contents of general-purpose register
regl, and stores the result in general-purpose register reg3. The operation is executed as if it
were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode.
[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)
Overflow exception (O)
Underflow exception (U)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 335 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

[Operation result]

reg2(B)

reg1(A) Normal | -Normal | +0 -0 +o0 —c0 Q-NaN S-NaN

+Normal B+A +o0 —0

—Normal —e0 +o0

+0 t [Z] Q-NaN [V] +e0 —o0

-0 —o +o0

+o0 +0 -0 +0 -0

— > 0 > 0 Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 336 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

FLOORF.SL

Floating-point Convert Double to Long, round toward negative (Single)

Conversion to fixed-point format (single precision)

[Instruction format] FLOORF.SL reg2, reg3
[Operation] reg3 « floor reg2 (single — long-word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r¥»vr r{1 1 1 1 1 1|0 0 0 1 1|w w w w 0|212|0 0 O|1 O0Of0 O 1 O0}|O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register
pair specified by general-purpose register reg3.

The result is rounded in the —o direction, regardless of the current rounding mode.
When the source operand is infinite or not-a-number, or when the rounded result is outside the

263 _ 1 to —2%%, an IEEE754-defined invalid operation exception is detected.

range of
If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

e Source is a positive number or +oo: 263 _ 1 is returned.
e Source is a negative number, not-a-number, or —o: ~23 is returned.
[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)
[Operation result]
reg2 (A) Normal —Normal | +0 -0 +eo =52 Q-NaN S-NaN
Operation A (Integer) 0 (Integer) +Max Int —Max Int [V]
result V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 337 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

Floating-point Convert Single to Unsigned-Long, round toward negative (Single)

FLOORF.SUL

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

FLOOREF.SUL reg2, reg3

[Operation] reg3 « floor reg2 (single — unsigned long-word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16
r rr»r r r{1 11 1 1 1|1 0 0 1 1w w w w 0|12|0 O 0|1 O0Of0 O 1 0O
| reg2 reg3 ’ |category| type’ sub-op | ‘
[Description] This instruction arithmetically converts the single-precision floating-point format contents of

[Floating-point
operation exceptions]

[Operation result]

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in
the register pair specified by general-purpose register reg3.

The result is rounded in the —o direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 264
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

— 1 to 0, an IEEE754-defined invalid operation exception is

register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 264 _ 100, or +o0: 204 — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 0 is returned.

Unimplemented operation exception (E)
Invalid operation exception (V)
Inexact exception (I)

reg2 (A) Normal —Normal | +0 -0 +eo =52 Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]
result (Integer) [V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 338 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

FLOORF.SUW

Floating-point Convert Single to Unsigned-Word, round toward negative (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format] FLOORF.SUW reg2, reg3
[Operation] reg3 « floor reg2 (single — unsigned word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1|1 0 0 1 1|]w w w w w|1|O0O O O|1 0fO0O O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 232 1 to0 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 2641100, or +o0: 232 — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +eo =% Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]
result (Integer) V]
[exception]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 339 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

FLOORF.SW

Floating-point Convert Single to Word, round toward negative (Single)

Conversion to fixed-point format (single precision)

[Instruction format)] FLOORF.SW reg2, reg3
[Operation] reg3 « floor reg2 (single — word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r{1 1 1 1 1 1{]0 0 0 1 1|]w w w w w|1|O0O O O|1 0(O0O O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-
purpose register reg3.

The result is rounded in the -oo direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 23! — 1 to —23!, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number or +oo: 231 1 is returned.

e Source is a negative number, not-a-number, or —o: ~231 s returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) +Normal | -Normal | +0 -0 +e0 = Q-NaN S-NaN
Operation A (Integer) 0 (Integer) +Max Int —Max Int [V]
result V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 340 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

FMAF.S

Floating-point Fused-Multiply-add (Single)

Floating-point fused-multiply-add operation (single precision)

[Instruction format)] FMAF.S regl, reg2, reg3
[Operation] reg3 « fma (reg2, regl, reg3)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr r/{1 1 1 1 1 1|R RRRIR|wwWwW W ww|1l|O O 1|1 1({0 O 0 O0fO

| reg2 reg1 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction multiplies the single-precision floating-point format contents in general-
purpose register reg2 with the single-precision floating-point format contents in general-
purpose register regl, adds the single-precision floating-point format contents in general-
purpose register reg3, and stores the result in general-purpose register reg3. The operation is
executed as if it were of infinite accuracy. The result of the multiply operation is not rounded,
but the result of the add operation is rounded, in accordance with the current rounding mode.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 341 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction
[Operation result]
reg2(B)
reg3(C) reg1(A) + Normal |- Normal [+0 -0 +e0 =2 Q-NaN S-NaN
+Normal +o0 —o
—Normal FMA (A, B, C) —c0 +o0
+Normal 10 Q-NaN[V]
+o00 +oc0 —c0 +c0 —o0
Q-NaN[V]
—o0 —o00 +oc0 —00 +o0
+Normal +o0 _0
—Normal FMA (A, B, C) —o0 +o0
+0 +0 Q-NaN[V]
+00 +o0 —o0 +o0 —o0
Q-NaN[V]
— o0 —o00 +o0 —00 +o0
+Normal +oo Q-NaN[V]
—Normal +o0 Q-NaN[V] +e0
+o0 +0 Q-NaN[V]
+o0 +eo Q-NaN[V] +oo Q-NaN[V]
Q-NaN[V]
—c0 Q-NaN[V] +o0 Q-NaN[V] +o0
+Normal Q-NaN[V] —o0
—Normal —o0 —e0 Q-NaN[V]
—oo +0 Q-NaN[V]
+e0 Q-NaN[V] —o0 Q-NaN[V] —o0
Q-NaN[V]
—co —c0 Q-NaN[V] —c0 Q-NaN[V]
+Normal
Q-NaN +0 Q-NaN
+o0
Not S-NaN Q-NaN Q-NaN
Don’t care S-NaN
Q-NaN[V]
S-NaN Don’t care
Note 1. []indicates an exception that must occur.
Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.
[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the ADDF and MULF instructions.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 342 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

FMSF.S

Floating-point Fused-Multiply-subtract (Single)

Floating-point fused-multiply-subtract operation (single precision)

[Instruction format] FMSE.S regl, reg2, reg3
[Operation] reg3 « fms (reg2, regl, reg3)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr r/1 1 1 1 1 1|R RRRIR|wwW W wwW|1l|O0O O 1|1 1({0 O 0 1{O0

| reg2 reg1 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction multiplies the single-precision floating-point format contents in general-
purpose register reg2 with the single-precision floating-point format contents in general-
purpose register regl, subtracts the single-precision floating-point format contents in general-
purpose register reg3, and stores the result in general-purpose register reg3. The operation is
executed as if it were of infinite accuracy. The result of the multiply operation is not rounded,
but the result of the subtract operation is rounded, in accordance with the current rounding

mode.
[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)
Overflow exception (O)
Underflow exception (U)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 343 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction
[Operation result]
reg2(B)
reg3(C) reg1(A) +Normal |-Normal [+0 -0 +e0 =2 Q-NaN S-NaN
+Normal +oo —o0
—Normal FMS (A, B, C) —c0 +o0
+Normal 10 Q-NaN[V]
+oo +eo —eo Q-NaN[V] +e0 —oo
_co —oo +o0 —eo 40
+Normal +oo —e0
—Normal FMS (A, B, C) —o0 +o0
+0 +0 Q-NaN[V]
4o +o0 —eo Q-NaN[V] +e0 —
o e +e0 —eo +o0
+Normal Q-NaN[V] —o0
—Normal —o0 —o0 Q-NaN[V]
+o0 +0 Q-NaN[V]
+oo Q-NaN[V] —eo Q-NaN[V] Q-NaN[V] —oo
—c0 —co Q-NaN[V] —o0 Q-NaN[V]
+Normal +o0 Q-NaN[V]
—Normal +o0 Q-NaN[V] +o0
—o +0 Q-NaN[V]
+oo +o0 Q-NaN[V] Q-NaN[V] +o0 Q-NaN[V]
—c0 Q-NaN[V] +oo Q-NaN[V] +oo
+Normal
Q-NaN +0 Q-NaN
+o0
Not S-NaN Q-NaN Q-NaN
Don'’t care S-NaN
S-NaN Don't care Q-NaN[V]
Note 1. []indicates an exception that must occur.
Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.
[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the SUBF and MULF instructions.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 344 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

FNMAF.S

Floating-point Fused-Negate-Multiply-add (Single)

Floating-point fused-multiply-add operation (single precision)

[Instruction format] FNMAES regl, reg2, reg3
[Operation] reg3 « neg (fma (reg2, regl, reg3))
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr r/{1 1 1 1 1 1|R RRRIR|wwWwW W ww|1l|O O 1|1 1({0 0 1 O0fO

| reg2 reg1 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction multiplies the single-precision floating-point format contents in general-
purpose register reg2 with the single-precision floating-point format contents in general-
purpose register regl, adds the single-precision floating-point format contents in general-
purpose register reg3, inverts the sign, and stores the result in general-purpose register reg3.
The operation is executed as if it were of infinite accuracy. The result of the multiply
operation is not rounded, but the result of the add operation is rounded, in accordance with the
current rounding mode. The signs are reversed after rounding.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 345 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction
[Operation result]
reg2(B)
reg3(C) reg1(A) +Normal |-Normal [+0 -0 +e0 =2 Q-NaN S-NaN
+Normal —o0 +o0
—Normal FNMA (A, B, C) +oo —o0
+Normal 10 Q-NaN[V]
=+ 00 —00 +oc0 —00 =+ 00
Q-NaN[V]
—o0 +oc0 —o00 +o0 —00
+Normal —o0 +e0
—Normal FNMA (A, B, C) +o0 —o0
+0 +0 Q-NaN[V]
+o0 —o0 +oc0 —o00 +o0
Q-NaN[V]
—o00 +o00 —00 +o00 —00
+Normal —e0 Q-NaN[V]
—Normal —o0 Q-NaN[V] —o0
+o0 +0 Q-NaN[V]
+o0 —c0 Q-NaN[V] —c0 Q-NaN[V]
Q-NaN[V]
—co Q-NaN[V] —c0 Q-NaN[V] —c0
+Normal Q-NaN[V] +e0
—Normal +o0 +eo Q-NaN[V]
—oo +0 Q-NaN[V]
+e0 Q-NaN[V] +oo Q-NaN[V] Q-NaN[V] +o0
—co +eo Q-NaN[V] +oo Q-NaN[V]
+Normal
Q-NaN +0 Q-NaN
+o0
Not S-NaN Q-NaN Q-NaN
Don’t care S-NaN
Q-NaN[V]
S-NaN Don’t care
Note 1. []indicates an exception that must occur.
Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.
[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result
obtained when using a combination of the ADDF, MULF, and NEGF instructions.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 346 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

FNMSF.S

Floating-point Fused-Negate-Multiply-subtract (Single)

Floating-point fused-multiply-subtract operation (single precision)

[Instruction format)] FNMSEF.S regl, reg2, reg3
[Operation] reg3 « neg (fms (reg2, regl, reg3))
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr /1 1 1 1 1 1|R RRRIR|wwWWwWwW|1|O0O O 1|1 1(0 O 1 1{O0

| reg2 reg1 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction multiplies the single-precision floating-point format contents in general-
purpose register reg2 with the single-precision floating-point format contents in general-
purpose register regl, subtracts the single-precision floating-point format contents in general-
purpose register reg3, inverts the sign, and stores the result in general-purpose register reg3.
The operation is executed as if it were of infinite accuracy. The result of the multiply
operation is not rounded, but the result of the subtract operation is rounded, in accordance
with the current rounding mode. The signs are reversed after rounding.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 347 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction
[Operation result]
reg2(B)
reg3(C) reg1(A) +Normal |-Normal [+0 -0 +e0 =2 Q-NaN S-NaN
+Normal —o0 +o0
—Normal FNMS (A, B, C) +oo —o0
+Normal 10 Q-NaN[V]
=+ 00 —00 +oc0 —00 =+ 00
Q-NaN[V]
—o0 +o00 —o00 +oc0 —00
+Normal —wo +o0
-Normal FNMS (A, B, C) +o0 —o0
+0 +0 Q-NaN[V]
+o0 —o00 +oc0 —o00 +o0
Q-NaN[V]
—o00 + 00 —00 +o0 —00
+Normal Q-NaN[V] +o0
-Normal +e0 +eo Q-NaN[V]
+o0 +0 Q-NaN[V]
+o0 Q-NaN[V] +oo Q-NaN[V] +o0
Q-NaN[V]
—c0 +oo Q-NaN[V] +oo Q-NaN[V]
+Normal —o0 Q-NaN[V]
—Normal —o0 Q-NaN[V] —o0
—oo +0 Q-NaN[V]
+e0 —o0 Q-NaN[V] —o0 Q-NaN[V]
Q-NaN[V]
—co Q-NaN[V] —c0 Q-NaN[V] —o0
+Normal
Q-NaN +0 Q-NaN
+o0
Not S-NaN Q-NaN Q-NaN
Don'’t care S-NaN
Q-NaN[V]
S-NaN Don’t care
Note 1. []indicates an exception that must occur.
Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.
[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result
obtained when using a combination of the SUBF, MULF, and NEGF instructions.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Pag

e 348 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

MAXF.S

Floating-point Maximum (Single)

Floating-point maximum value (single precision)

[Instruction format)] MAXEF.S regl, reg2, reg3
[Operation] reg3 «— max (reg2, regl)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr rr{l1 1 1 1 1 1|R RRRIR|wwWwW W ww|1l|O O O0O|2 1(0 1 0 O0fO

| reg2 reg1 reg3 ‘ |category| type‘ sub-op | ‘

[Description] This instruction extracts the maximum value from the single-precision floating-point format
data in general-purpose registers regl and reg2, and stores it in general-purpose register reg3.
If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is
detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point Invalid operation exception (V)

operation exceptions]

[Supplement] When both regl and reg2 is either +0 or —0, it is undefined whether +0 or —0 is stored in reg3.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

reg2(B)

reg1(A) Normal —Normal | +0 -0 +o0 — Q-NaN S-NaN

+Normal

—Normal

+0

. MAX (A, B) reg1 (A)

+o00

Q-NaN reg2 (A) Q-NaN

S-NaN Q-NaN [V]
Note: []indicates an exception that must occur.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 349 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

MINF.S

Floating-point Minimum (Single)

Floating-point minimum value (single precision)

[Instruction format] MINE.S regl, reg2, reg3
[Operation] reg3 <« min (reg2, regl)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr rr{1 1 1 1 1 1|R RRRIR|wwWwW W ww|1llO O O0O|2 1(0 1 0 1{O

| reg2 reg1 reg3 ‘ |category| type‘ sub-op | ‘

[Description] This instruction extracts the minimum value from the single-precision floating-point format
data in general-purpose registers regl and reg2, and stores it in general-purpose register reg3.
If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is
detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point Invalid operation exception (V)

operation exceptions]

[Supplement] When both regl and reg? is either +0 or —0, whether +0 or —0 is stored in reg3 is undefined.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 350 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Operation result]

reg2(B)

reg1(A) Normal |-Normal | +0 -0 +o0 —c0 Q-NaN S-NaN

+Normal

—Normal

+0

5 MIN (A, B) reg1 (A)

+00

Q-NaN reg2 (B) Q-NaN

S-NaN Q-NaN [V]
Note 1. []indicates an exception that must occur.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 351 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

MULF.S

Floating-point Multiply (Single)

Floating-point multiplication (single precision)

[Instruction format] MULE.S regl, reg2, reg3
[Operation] reg3 « reg2 x regl
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rrvr rr{1 1 1 1 1 1|R R RRIR|wwWwW W ww|1l|O O O0O|2 1(0 0O 1 O0fO

| reg2 reg1 reg3 ‘ |category| type‘ sub-op | ‘

[Description] This instruction multiplies the single-precision floating-point format contents of general-
purpose register reg2 by the single-precision floating-point format contents of general-
purpose register regl, and stores the result in general-purpose register reg3.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

reg2(B)
reg1(A) Normal —Normal | +0 -0 +o0 —o0 Q-NaN S-NaN
+Normal +00 —
—Normal —wo +o0

AxB
+0
Q-NaN [V]
-0
+ 00 +oc0 —00 +oc0 —00
Q-NaN [V]

—00 —o0 +oc0 —00 +o0
Q-NaN Q-NaN
S-NaN Q-NaN [V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 352 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

NEGF.S

Floating-point Negate (Single)

Floating-point sign inversion (single precision)

[Instruction format] NEGF.S reg2, reg3
[Operation] reg3 <« neg reg2
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr v r r{1 1 1 1 1 1{]0 0 0 0 1|]w w w w w|1|O0O O O|1 0fO0 1 O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction inverts the sign of the single-precision floating-point format contents of
general-purpose register reg2, and stores the result in general-purpose register reg3.

[Floating-point None
operation exceptions]

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.
RO1US0165EJ0120 Rev.1.20 RENESAS Page 353 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

RECIPF.S

Reciprocal of a Floating-point Value (Single)

Reciprocal (single precision)

[Instruction format]

[Operation]

[Format]

[Opcode]

RECIPE.S reg2, reg3

reg3 « 1 +reg2

Format F:I

11 10 5 4 0 31

27 26 25 23 22 21 20 17 16

r r ¥r r ¥

1111 1 10 0 0 0 1

w w w w wl(l|0 O O0Of1 O

0O 1 1 1{0

[Description]

[Floating-point
operation exceptions]

[Operation result]

reg2

reg3

’ |category| type’ sub-op | ‘

This instruction approximates the reciprocal of the single-precision floating-point format

contents of general-purpose register reg2, and stores the result in general-purpose register

reg3. The result differs from the result obtained by using the DIVF instruction.

Unimplemented operation exception (E)
Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)
Underflow exception (U)

reg2 (A) Normal —Normal | +0 -0 +eo =% Q-NaN S-NaN
Operation 1/A 1] + [Z] — [Z] +0 -0 Q-NaN Q-NaN
result \Y%|
[exception]

Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 354 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

ROUNDF.SL

Floating-point Convert Single to Long, round to nearest (Single)

Conversion to fixed-point format (single precision)

[Instruction format] ROUNDEF.SL reg2, reg3
[Operation] reg3 « round reg2 (single — long-word)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r rr vil111 1 1 1{0 0 0 0 Oflw w w w Of1(0 O O|12 OfO0O O 1 O0fO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the contents of the single-precision floating-point
format in general-purpose register reg2 to 64-bit fixed-point format, and stores the result in
the register pair specified by general-purpose register reg3.

The result is rounded to the nearest value or an even value regardless of the current rounding
mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 263_1 to — 293, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs.

The return value differs as follows, according to differences among sources.
e Source is a positive number or +oo: 263 _ 1 is returned.

e Source is a negative number, not-a-number, or —oo: —263 is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) Normal —Normal | +0 -0 +e0 9 ‘ Q-NaN | S-NaN
Operation A (Integer) 0 (Integer) Max —Max Int[V]
result Int[V]
[exception]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 355 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

ROUNDF.SUL

Floating-point Convert Single to Unsigned-Long, round to nearest (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format] ROUNDEF.SUL reg2, reg3
[Operation] reg3 « round reg?2 (single — Unsigned long-word)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 1111 1 1(1 0 0 0 Ojw w w w Of1(0 O O|12 OfO0O O 1 O0fO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the contents of the single-precision floating-point
format in general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the
result in the register pair specified by general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current
rounding mode.

When the source operand is infinite, not-a-number, or a negative number, or when the
rounded result is outside the range of 2%4_1 to 0, an IEEE754-defined invalid operation
exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 264 _ 1100, or +o0: 2% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 356 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

[Operation result]

reg2 (A) Normal |-Normal | +0 -0 +oo —oo ‘ Q-NaN | S-NaN
Operation A 0[Vv] 0 (Integer) Max 0[Vv]

result (Integer) U-Int[V]

[exception]

Note 1.
Note 2.

[]indicates an exception that must occur.

When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 357 of 384

RH850G3KH Software

Section 7 Instruction

<Floating-point instructio

n>

ROUNDF.SUW

Floating-point Convert Single to Unsigned-Word, round to nearest (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[Opcode]

15

ROUNDEFE.SUW reg2, reg3

reg3 « round reg?2 (Single — Unsigned word)

Format F:I

11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r rvil111 1 1 1({1 0 0 0 OJlw w w w w|(1f0O O O|1 0|0 O O OfO

[Description]

[Floating-point
operation exceptions]

[Operation result]

reg2 reg3 ’ |category| type’ sub-op | ‘

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 232 — 1 to 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 2321100, or +o0: 232 — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 0 is returned.

Unimplemented operation exception (E)
Invalid operation exception (V)
Inexact exception (I)

reg2 (A) Normal —Normal | +0 -0 +e0 9 Q-NaN S-NaN
Operation A 0[Vv] 0 (Integer) Max 0[Vv]
result (Integer) U-Int[V]
[exception]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 358 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

ROUNDF.SW

Floating-point Convert Single to Word, round to nearest (Single)

Conversion to fixed-point format (single precision)

[Instruction format] ROUNDEF.SW reg?2, reg3
[Operation] reg3 « round reg2 (single — word)
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r rrvil111 1 1 1{0 0 0 0 Ojlw w w w w|(1lO0O O O|1 OO0 O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

The result is rounded to the nearest value regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 231 _ 1 to— 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number or +oo: 231 1 is returned.

e Source is a negative number, not-a-number, or —oo: ~231is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) Normal —Normal | +0 -0 +eo =% Q-NaN S-NaN
Operation A (Integer) 0 (Integer) Max —Max Int[V]
result Int[V]
[exception]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 359 of 384
Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

RSQRTF.S

Reciprocal of the Square Root of a Floating-point Value (Single)

Reciprocal of square root (single precision)

[Instruction format] RSQRTE.S reg2, reg3
[Operation] reg3 « 1 + (sqrt reg2)
[Format)] Format F: I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr r r1 1 1 1 1 1{]0 0 0 1 O}j]w w w w w|1|0O O O|1 0f0O 1 1 1{O

| reg2 reg3 ‘ |category| type‘ sub-op | ‘

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-
point format contents of general-purpose register reg2, then approximates the reciprocal of
this result and stores it in general-purpose register reg3. The result differs from the result
obtained when using a combination of the SQRTF and DIVF instructions.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

[Operation result]

reg2 (A) Normal —Normal | +0 -0 +e0 9 Q-NaN S-NaN
Operation 1N-A 1] Q-NaN +e0 [Z] — [Z] +0 Q-NaN Q-NaN Q-NaN
result V] V] I\
[exception]

Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 360 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

SQRTF.S

Floating-point Square Root (Single)

Square root (single precision)

[Instruction format]

SQRTE.S reg2, reg3

[Operation] reg3 « sqrt reg2
[Format] Format F:I
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16
r r¥» v r{1 1 1 1 1 1|0 0 0 0 Ofjw w w w w|1|0 O O|1 O0f0 1 1 1|0
| reg2 reg3 ’ |category| type’ sub-op | ‘
[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-

point format contents of general-purpose register reg2, and stores it in general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is

rounded in accordance with the current rounding mode. When the source operand value is -0,

the result becomes —0.

[Floating-point
operation exceptions]

Unimplemented operation exception (E)
Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal —Normal | +0 -0 +eo —o0 Q-NaN S-NaN
Operation VA Q-NaN +0 -0 +oo Q-NaN Q-NaN Q-NaN
result V] V] I\
[exception]

Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 361 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

SUBF.S

Floating-point Subtract (Single)

Floating-point subtraction (single precision)

[Instruction format] SUBE.S regl, reg2, reg3
[Operation] reg3 « reg2 —regl
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr vrr{1 1 1 1 1 1|R RRRIR|wwWWwwWwW|1l|O O O0O|2 1({0 O O 1{O

| reg2 reg1 reg3 ‘ |category| type‘ sub-op | ‘

[Description] This instruction subtracts the single-precision floating-point format contents of general-purpose register
regl from the single-precision floating-point format contents of general-purpose register reg2, and stores
the result in general-purpose register reg3. The operation is executed as if it were of infinite accuracy,
and the result is rounded in accordance with the current rounding mode.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

reg2(B)

reg1(A) Normal |-Normal | +0 -0 +e0 =2 Q-NaN S-NaN

Normal

—Normal

+0 —oo

+eo —eo Q-NaN [V]
—eo +eo Q-NaN [V]
Q-NaN Q-NaN

S-NaN Q-NaN [V]

Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 362 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

TRFSR

Transfers specified CC bit to Zero flag in PSW (Single)

Flag transfer

[Instruction format]

TRFSR fcbit

TRFSR
[Operation] PSW.Z « fcbit
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16
0000O0O0O|1 1111100 0000000 o0f1l0 0 0|0 0|0 £ £ £|0
’ | category | type ’ sub-op | ‘
Note: fcbit: £££
[Description] This instruction transfers the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR
register specified by fcbit to the Z flag in the PSW. If fcbit is omitted, this instruction transfers
the CCO bit (bit 24).
[Floating-point None
operation exceptions]
R0O1US0165EJ0120 Rev.1.20 -zEN ESAS Page 363 of 384

Dec 22, 2016

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

TRNCF.SL

Floating-point Convert Single to Long, round toward zero (Single)

Conversion to fixed-point format (single precision)

[Instruction format)] TRNCEF.SL reg2, reg3
[Operation] reg3 « trunc reg?2 (single — long-word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r ¥ r r{1 1 1 1 1 1|0 0 0 0 1w w w w O0OJ2|0 O O0O|1 Of0O O 1 O0}|O

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register
pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.
When the source operand is infinite or not-a-number, or when the rounded result is outside the

263 1 to —2%, an IEEE754-defined invalid operation exception is detected.

range of
If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

e Source is a positive number or +oo: 263 _ 1 is returned.
e Source is a negative number, not-a-number, or —o: ~23 is returned.
[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)
[Operation result]
reg2 (A) Normal —Normal | +0 -0 +eo =3 Q-NaN S-NaN
Operation A (Integer) 0 (Integer) Max Int —Max Int [V]
result vl
[exception]

Note 1.]indicates an exception that must occur.
Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 364 of 384
Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

Floating-point Convert Single to Unsigned-Long, round toward zero (Single)

TRNCF.SUL

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[Opcode]

15

TRNCF.SUL reg?2, reg3

reg3 « trunc reg2 (single — unsigned long-word)

Format F:I

11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r¥»vr r{1 1 1 1 1 1|1 0 0 0 1w w w w O0OJ2|0 O O0O|1 O0Of0 O 1 0O

[Description]

[Floating-point
operation exceptions]

[Operation result]

reg2 reg3 ’ |category| type’ sub-op | ‘

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in
the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative value, or when the rounded
result is outside the range of 264 _ 1 to 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number outside the range of 2641100, or +o0: 264 — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

Unimplemented operation exception (E)
Invalid operation exception (V)
Inexact exception (I)

reg2 (A) Normal —Normal | +0 -0 +eo =2 Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]
result (Integer) V]
[exception]
Note 1. []indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 365 of 384

Dec 22, 2016

RH850G3KH Software

Section 7 Instruction

<Floating-point instruction>

TRNCF.SUW

Floating-point Convert Single to Unsigned-Word, round toward zero (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCFE.SUW reg?2, reg3

[Operation] reg3 « trunc reg2 (single — unsigned word)

[Format] Format F:1

[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16
r r¥»vr r{1 1 1 1 1 1|1 0 0 0 1|w w w w w|/1|0 O O|1 O0f0 O O OO

| reg2

reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point number format

contents of general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

e Source is a positive number outside the range of 2321100, or +o0: 232 — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point Unimplemented operation exception (E)

operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal —Normal | +0 -0 +eo = Q-NaN S-NaN
Operation A 0[V] 0 (Integer) Max U-Int 0[V]
result (Integer) V]
[exception]
Note 1. []indicates an exception that must occur.
Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

RO1US0165EJ0120 Rev.1.20
Dec 22, 2016

RENESAS

Page 366 of 384

RH850G3KH Software Section 7 Instruction

<Floating-point instruction>

TRNCF.SW

Floating-point Convert Single to Word, round toward zero (Single)

Conversion to fixed-point format (single precision)

[Instruction format] TRNCF.SW reg2, reg3
[Operation] reg3 « trunc reg2 (single — word)
[Format] Format F:1
[Opcode]
15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r rr vr r{1 1 1 1 1 1{]0 0 0 0 1|]w w w w w|1|O0O O O|1 0fO0O O O OfO

| reg2 reg3 ’ |category| type’ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point number format
contents of general-purpose register reg2 to 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 23! — 1 to —23!, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR
register is set as an invalid operation and no exception occurs. The return value differs as
follows, according to differences among sources.

e Source is a positive number or +oo: 231 1 is returned.

e Source is a negative number, not-a-number, or —o: ~231is returned.

[Floating-point Unimplemented operation exception (E)
operation exceptions] Invalid operation exception (V)
Inexact exception (I)

[Operation result]

reg2 (A) Normal —Normal | +0 -0 +eo = Q-NaN S-NaN
Operation A (Integer) 0 (Integer) Max Int —Max Int [V]
result V]
[exception]
Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.9, Flushing Subnormal Numbers.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 367 of 384
Dec 22, 2016

RH850G3KH Software Section 8 Reset

Section 8 Reset

8.1 Status of Registers after Reset

If a reset signal is input by a method defined by the hardware specifications, the program registers and
system registers are placed in the status shown by the value after reset of each register in Section 3,
Register Set, and program execution is started. Set the contents of each register to an appropriate
value in the program.

The CPU executes a reset to start execution of a program from the reset address specified by Section
4.5, Exception Handler Address.

Note that because the PSW.ID bit is set (1) immediately after a reset, conditional EI level exceptions
will not be acknowledged. To acknowledge conditional EI level exceptions, clear (0) the PSW.ID bit.

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 368 of 384
Dec 22, 2016

RH850G3KH Software APPENDIX A. Hazard Resolution Procedure for System Registers

APPENDIX A. Hazard Resolution Procedure for System
Registers

Certain system registers require the following procedures to resolve hazards when their values are
updated by the LDSR instruction.

e Instruction fetching
When an instruction is to be fetched after updating a register covered by the description below,
after executing the instruction to update the register, only allow the instruction fetch to start after
execution of an EIRET, FERET, or SYNCI instruction.

- PSW.UM, MCFGO.SPID

When an instruction is to be fetched after updating a register covered by the description below,
execute the instruction to update the register before allowing the instruction fetch to start.

— All registers related to ASID and MPU (register number: SR*, 5 to 7)

e SYSCALL instruction
When a SYSCALL instruction is to be executed after updating the register below, execute a
SYNCP instruction after the instruction to update the register and before the SYSCALL
instruction.

— SCCFG

e Load/Store
When an instruction associated with Load/Store after updating the registers below, execute a
SYNCEP instruction after executing the instruction to update the registers before Load/Store
instruction.

— ASID, MPU protection area setting register (Register number: SR*, 6 to 7)

e Interrupt
Update the registers below when interrupt is inhibited. (PSW.ID = 1).

— PSW.EBYV, EBASE, INTBP, FPIPR, ISPR, PMR, ICSR, INTCFG

e FPU register update
After executing the instruction to update the registers below, execute the SYNCP, EIRET, or
FERET instruction.

— All FPU-related registers (Register number: SR6 to 11, 0)

e Change of FPP/FPI exception mode
When the FPP/FPI exception mode is changed, execute instructions of SYNCP and SYNCE first,
and update the register below.
To update registers, proceed “FPU register update” above also.

— FPSR.PEM

Remark: Executing instructions other than the floating-point operation instruction that generates an FPP/FPI
exception is possible among the SYNCP, SYNCE, and the instruction to update the register above.

e Coprocessor instruction
When a coprocessor instruction (floating-point operation instruction) is to be executed after
updating the register below, execute the EIRET, FERET, SYNCI, or SYNCP instruction after
executing the instruction to update the registers and before executing a coprocessor instruction.

- PSW.CUO

R0O1US0165EJ0120 Rev.1.20 RENESAS Page 369 of 384
Dec 22, 2016

RH850G3KH Software

APPENDIX B. Number of G3KH Instruction Execution Clocks

APPENDIX B. Number of G3KH Instruction Execution Clocks

(1) Basic instruction

Instruction Number of Execution Clocks
Length
(Number
Types of Instructions Mnemonics Operand of Bytes) issue repeat latency
Load instruction LD.B disp16 [reg1], reg2 4 1 1 2
disp23 [reg1], reg3 6 1 1 2"
LD.BU disp16 [reg1], reg2 4 1 1 2
disp23 [reg1], reg3 6 1 1 2"
LD.H disp16 [reg1], reg2 4 1 1 2
disp23 [reg1], reg3 6 1 1 2"
LD.HU disp16 [reg1], reg2 4 1 1 2
disp23 [reg1], reg3 6 1 1 2"
LD.W disp16 [reg1], reg2 4 1 1 2"
disp23 [reg1], reg3 6 1 1 2"
LD.DW disp23 [reg1], reg3 6 2 2 3"
ep relative SLD.B disp7 [ep], reg2 2 1 1 2"
SLD.BU disp4 [ep], reg2 2 1 1 2"
SLD.H disp8 [ep], reg2 2 1 1 2"
SLD.HU disp5 [ep], reg2 2 1 1 2
SLD.W disp8 [ep], reg2 2 1 1 2
Store instruction ST.B reg2, disp16 [reg1] 4 3™ 3™ 3"
reg3, disp23 [reg1] 6 34 3% 314
STH reg2, disp16 [reg1] 4 3 3™ 3"
reg3, disp23 [reg1] 6 34 3% 31
STW reg2, disp16 [reg1] 4 1 1 3"
reg3, disp23 [reg1] 6 1 1 3
ST.DW reg3, disp23 [reg1] 6 2 2 3"
ep relative SST.B reg2, disp7 [ep] 2 34 3% 31
SSTH reg2, disp8 [ep] 2 34 34 31
SST.W reg2, disp8 [ep] 2 1 1 171
Multiplication MUL reg1, reg2, reg3 4 2 2 4
instruction imm9, reg2, reg3 4 2 2 4
MULH reg1, reg2 2 1 1 3
imm5, reg2 2 1 1 3
MULHI imm16, reg1, reg2 4 1 1 3
MULU reg1, reg2, reg3 4 2 2 4
imm9, reg2, reg3 4 2 2 4
Multiply-accumulate MAC reg1, reg2, reg3, reg4 4 3 3 5
operation MACU reg1, reg2, reg3, reg4 4 3 3 5
R01US0165EJ0120 Rev.1.20 RENESAS Page 370 of 384

Dec 22, 2016

RH850G3KH Software

APPENDIX B. Number of G3KH Instruction Execution Clocks

Instruction Number of Execution Clocks
Length
(Number
Types of Instructions Mnemonics Operand of Bytes) issue repeat latency
Arithmetic instruction ADD reg1, reg2 2 1
immb5, reg2 2 1
ADDI imm16, reg1, reg2 4 1
CMP reg1, reg2 2 1
imm5, reg2 2 1
MOV reg1, reg2 2 1
imm5, reg2 2 1
imm32, reg1 6 1
MOVEA imm16, reg1, reg2 4 1
MOVHI imm16, reg1, reg2 4 1
SUB reg1, reg2 2 1
SUBR reg1, reg2 2 1
Operation with ADF cccc, reg1, reg2, reg3 4 1
condition SBF ccec, reg1, reg2, reg3 4 1
Saturated operation SATADD reg1, reg2 2 1
imm5, reg2 2 1
reg1, reg2, reg3 4 1
SATSUB reg1, reg2 2 1
reg1, reg2, reg3 4 1
SATSUBI imm16, reg1, reg2 4 1
SATSUBR reg1, reg2 2 1
Logical instruction AND reg1, reg2 2 1
ANDI imm16, reg1, reg2 4 1
NOT reg1, reg2 2 1
OR reg1, reg2 2 1
ORI imm16, reg1, reg2 4 1
TST reg1, reg2 2 1
XOR reg1, reg2 2 1
XORI imm16, reg1, reg2 4 1

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 371 of 384

RH850G3KH Software

APPENDIX B. Number of G3KH Instruction Execution Clocks

Instruction Number of Execution Clocks
Length
(Number
Types of Instructions Mnemonics Operand of Bytes) issue repeat latency
Data operation BINS reg1, pos, width, reg2 4 1 1 1
instruction BSH reg2, reg3 4 1 1 1
BSW reg2, reg3 4 1 1 1
CMOV ccec, reg1, reg2, reg3 4 1 1 1
ccee, immb, reg2, reg3 4 1 1 1
HSH reg2, reg3 4 1 1 1
HSW reg2, reg3 4 1 1 1
ROTL immb, reg2, reg3 4 1 1 1
reg1, reg2, reg3 4 1 1 1
SAR reg1, reg2 4 1 1 1
immb5, reg2 2 1 1 1
reg1, reg2, reg3 4 1 1 1
SASF ccec, reg2 4 1 1 1
SETF cccc, reg2 4 1 1 1
SHL reg1, reg2 4 1 1 1
imm5, reg2 2 1 1 1
reg1, reg2, reg3 4 1 1 1
SHR reg1, reg2 4 1 1 1
immb5, reg2 2 1 1 1
reg1, reg2, reg3 4 1 1 1
SXB reg1 2 1 1 1
SXH reg1 2 1 1 1
ZXB reg1 2 1 1 1
ZXH reg1 2 1 1 1
Bit search instruction SCHOL reg2, reg3 4 1 1 1
SCHOR reg2, reg3 4 1 1 1
SCH1L reg2, reg3 4 1 1 1
SCH1R reg2, reg3 4 1 1 1
Division instruction DIV reg1, reg2, reg3 4 20 20 20
DIVH reg1, reg2 2 20 20 20
reg1, reg2, reg3 4 20 20 20
DIVHU reg1, reg2, reg3 4 20 20 20
DIVU reg1, reg2, reg3 4 20 20 20
High-speed divide DIVQ reg1, reg2, reg3 4 N+4"2 N+472 N+472
operation DIVQU reg1, reg2, reg3 4 N+42 N+42 N+4°2
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 372 of 384

Dec 22, 2016

RH850G3KH Software APPENDIX B. Number of G3KH Instruction Execution Clocks

Instruction Number of Execution Clocks
Length
(Number
Types of Instructions Mnemonics Operand of Bytes) issue repeat latency
Branch instructions Bcond disp9 (When the condition is not 2 1 1 1
matched)
disp9 (When the condition is 2 3 3 3
matched)
disp17 (When the condition is not 4 1 1 1
matched)
disp17 (When the condition is 4 3 3 3
matched)
JARL disp22, reg2 4 3 3 3
disp32, reg1 6 3 4 3
[reg1], reg3 4 3 3 3
JMP [reg1] 2 3 3 3
disp32 [reg1] 6 3 4 3
JR disp22 4 2 2 2
disp32 6 2 3 2
Loop instruction LOOP reg1, disp16 (When the updated 4 2 2 2
reg1 =0)
reg1, disp16 (When the updated 4 4 4 4
reg1 #0)
Bit manipulation CLR1 bit#3, disp16 [reg1] 4 31 3" 3"
instructi v 0 ’
nsfruction reg2, [reg1] 4 3 3 3
NOT1 bit#3, disp16 [reg1] 4 31 3" 3"
reg2, [reg1] 4 3" 3" 3"
SET1 bit#3, disp16 [reg1] 4 31 3" 3"
reg2, [reg1] 4 3" 3" 3"
TST1 bit#3, disp16 [reg1] 4 3" 3" 3"
reg2, [reg1] 4 3" 3" 3"
R0O1US0165EJ0120 Rev.1.20 -IEN ESNS Page 373 of 384

Dec 22, 2016

RH850G3KH Software

APPENDIX B. Number of G3KH Instruction Execution Clocks

Instruction Number of Execution Clocks
Length
(Number
Types of Instructions Mnemonics Operand of Bytes) issue repeat latency
Special instruction
Table reference SWITCH reg1 2 6 6 6
branch
Sub routine call CALLT imm6 2 6 6 6
CTRET — 4 3 3 3
System call exception | SYSCALL vector8 4 6 6 6
Software exception FETRAP vector4 2 3 3 3
TRAP vectorb 4 3 3 3
Return from EIRET — 4 3 3 3
exception processing FERET — 4 3 3 3
El level interrupt DI — 4 1 1 1
El — 4 1 1 1
Restoration from & | DISPOSE imm5, list12 4 n2' 173 | ne2 | a3
storage on stack imms, list12, [reg1] 4 ne2 13 [a2 13 [a2 13
PREPARE list12, imm5 4 n+2 13 [pe2 13 | ne"3
list12, imm5, sp 4 n+3"18 | n+3™8 | pe3™173
list12, imm5, imm16 6 n+3 173 | neg3 | negtt3
list12, imm5, imm16<<16 6 n+3 13 | neg8 | pagtts
list12, imm5, imm32 8 n+3 173 | neg3 | neg™3
POPSP rh-rt 4 n2’ B3 e8| e
PUSHSP rh-rt 4 n+2' 173 | pe2 | a8
DISPOSE/ No reg in the list 4,60r8 1 1 1
PREPARE
POPSP/
PUSHSP
System register LDSR reg2, reglD, sellD 4 1 1 1
operation STSR regID, reg2, sellD 4 1 1 2
Exclusive control CAXI [reg1], reg2, reg3 4 4 4 51
LDL.W [reg1], reg3 6 1 1 2
STC.W reg3, [reg1] 6 1 1 2
Stop HALT — 4 Undefined | Undefined | Undefined
SNOOZE — 4 Undefined | Undefined | Undefined
Synchronization SYNCE — 2 Undefined | Undefined | Undefined
SYNCI — 2 Undefined | Undefined | Undefined
SYNCM — 2 Undefined | Undefined | Undefined
SYNCP — 2 Undefined | Undefined | Undefined
Others NOP — 2 1 1 1
RIE — 4 3 3 3

Note 1.
Note 2.

Note 3.
Note 4.

This is the case when no waiting is required.
N = int (((number of valid bits in absolute value of dividend) — (number of valid bits in absolute value of
divisor)) + 2) + 1.
If the result for N < 1, N becomes 1. Division by 0 leads to N being 0. The range of N is from 0 to 16.

n is the total number of registers specified in the list.

The values include the two added clock cycles when access is to RAM that requires ECC control.

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 374 of 384

RH850G3KH Software

APPENDIX B. Number of G3KH Instruction Execution Clocks

(2) Cache instruction

Instruction Number of Execution Clocks
Length
(Number

Type of Instructions Mnemonics Operand of Bytes) issue repeat latency

Cache operation CACHE*" cacheop, [reg1] 4 1 1 1

instruction

Pre-fetch instruction PREF*' prefop, [reg1] 4 1 1 1

Note 1. This instruction is processed as the NOP instruction.
R0O1US0165EJ0120 Rev.1.20 -IEN ESAS Page 375 of 384

Dec 22, 2016

RH850G3KH Software

APPENDIX B. Number of G3KH Instruction Execution Clocks

(3) Floating-point operation instruction (single precision)

Dec 22, 2016

Instruction Number of Execution Clocks Number of Execution Clocks
Length (Imprecise) (Precise)
(Number of
Type of Instructions Mnemonics Operand Bytes) issue repeat latency | issue repeat latency
Floating-point arithmetic ABSF.S reg2, reg3 4 1 1 5 6 6 6
operation
ADDF.S reg1, reg2, reg3 4 1 1 5 6 6 6
NEGF.S reg2, reg3 4 1 1 5 6 6 6
SUBF.S reg1, reg2, reg3 4 1 1 5 6 6 6
Floating-point multiplication MULF.S reg1, reg2, reg3 4 1 1 5 6 6 6
Multiply-accumulate/ FMAF.S reg1, reg2, reg3 4 2 2 6 7 7 7
subtract operation
FMSF.S reg1, reg2, reg3 4 2 2 6 7 7 7
FNMAF.S reg1, reg2, reg3 4 2 2 6 7 7 7
FNMSF.S reg1, reg2, reg3 4 2 2 6 7 7 7
Floating-point subtraction DIVF.S reg1, reg2, reg3 4 1471 14 18 19 19 19
Square root of a Floating RECIPF.S reg2, reg3 4 4 4 8 9 9 9
point value /Reciprocal -
RSQRTF.S reg2, reg3 4 41 4 8 9 9 9
SQRTF.S reg2, reg3 4 141 14 18 19 19 19
Conversion between floating | CVTF.HS reg2, reg3 4 1 1 5 6 6 6
point formats/ Conversion
between fixed point and CVTF.LS reg2, reg3 4 1 1 5 6 6 6
floating point formats
CVTF.SH reg2, reg3 4 1 1 5 6 6 6
CVTF.SL reg2, reg3 4 2 2 6 6 6 6
CVTF.SUL reg2, reg3 4 2 2 6 6 6 6
CVTF.SUW reg2, reg3 4 1 1 5 6 6 6
CVTF.SW reg2, reg3 4 1 1 5 6 6 6
CVTF.ULS reg2, reg3 4 1 1 5 6 6 6
CVTF.UWS reg2, reg3 4 1 1 5 6 6 6
CVTF.WS reg2, reg3 4 1 1 5 6 6 6
CEILF.SL reg2, reg3 4 2 2 6 6 7 6
CEILF.SUL reg2, reg3 4 2 2 6 6 7 6
CEILF.SUW reg2, reg3 4 1 1 5 6 6 6
CEILF.SW reg2, reg3 4 1 1 5 6 6 6
FLOORF.SL reg2, reg3 4 2 2 6 6 7 6
FLOORF.SUL reg2, reg3 4 2 2 6 6 7 6
FLOORF.SUW | reg2, reg3 4 1 1 5 6 6 6
FLOORF.SW reg2, reg3 4 1 1 5 6 6 6
TRNCF.SL reg2, reg3 4 2 2 6 6 7 6
ROUNDF.SL reg2, reg3 4 1 1 4 7 7 7
ROUNDF.SUL | reg2, reg3 4 1 1 4 7 7 7
ROUNDF.SUW | reg2, reg3 4 1 1 4 7 7 7
ROUNDF.SW reg2, reg3 4 1 1 4 7 7 7
TRNCF.SUL reg2, reg3 4 2 2 6 6 7 6
TRNCF.SUW reg2, reg3 4 1 1 5 6 6 6
TRNCF.SW reg2, reg3 4 1 1 5 6 6 6
R0O1US0165EJ0120 Rev.1.20 -IEN ESAS Page 376 of 384

RH850G3KH Software APPENDIX B. Number of G3KH Instruction Execution Clocks

Instruction Number of Execution Clocks Number of Execution Clocks
Length (Imprecise) (Precise)
(Number of
Type of Instructions Mnemonics Operand Bytes) issue repeat latency | issue repeat latency
Floating-point comparison CMPF.S cond, reg1,reg2, | 4 1 1 5 6 6 6
cc
Transfer with conditions | CMOVF.S cc, reg1, reg2, 4 1 1 5 6 6 6
reg3
Bit transfer with TRFSR cc 4 1 1 1 1 1 1
conditions
Floating-point maximum/ MAXF.S reg1, reg2, reg3 4 1 1 5 6 6 6
minimum values
MINF.S reg1, reg2, reg3 4 1 1 5 6 6 6

Note 1. 1 is issued to the subsequent instruction other than the floating-point instruction.

Note 1. Example of execution clocks

Symbol Description
issue When the other instruction is executed immediately after the execution of the current
instruction
repeat When the same instruction is repeated immediately after the execution of the current
instruction
latency When the following instruction uses the result of the current instruction
R0O1US0165EJ0120 Rev.1.20 -IEN ESNS Page 377 of 384

Dec 22, 2016

RH850G3KH Software

APPENDIX C.

Register Index

APPENDIX C. Register Index

A

ASID....ooiiii 49
C

CTBP ..o, 48
CTPC ., 47
CTPSW ..o 48
E

EBASE ... 53
EHC ..o 46
EIPC...o 40
EIPSW ..o 41
EIWR ..o 49
F

FEIC. .. 47
FEPC ..o 42
FEPSW ..o 43
FEWR 49
FPCC ..o 68
FPCFG....oo 69
FPEC . 70
FPEPC ..o 67
FPIPR 99
FPSR oo 64
FPST ..o 67
H

HTCFGO......oooie 50
I

ICSR . 62
INTBP oo, o4
INTCFG....ooii 62
ISPR...ee 60
M

MCA .. 75
MCC... 75
MCFGO ... o7
MCR...oo 76
MCS ... 75
MCTL ..o o7
RO1US0165EJ0120 Rev.1.20 RENESAS

Dec 22, 2016

Page 378 of 384

RH850G3KH Software

APPENDIX D. Instruction Index

APPENDIX D.

Instruction Index

A E N
ABSF.S. ..o, 313 Elueveoeeeeeeeeeeeeeee 190 NEGF.S ...cooooveveeeennn. 353
ADD.....cooooeveeeeeerrerines 156 EIRET....coovveeeeveerreenenn. 191 NOP ..o, 227
ADDF.Scocovvvereernnn, 314 NOT ..o, 228
ADDl....ooovoveeeeeerrrrnnns 157 NOT ..o 229
ADF ..o 158
AND oo 159 FERET ..o 192 O
ANDI....ooovovrmirerrerenan, 160 FETRAP ..o, 193
FLOORF.SL.......cccceo........ 337 OR.ooeoeeeeeeeeeeeeee 231
B FLOORF.SUL................. 338 ORl.oooveeceeeeeeeen. 232
FLOORF.SUW................ 339
BCONd ..o, 161 FLOORF.SW 340
BINS ...oooviieeeeeeeenn. 164 FMAF.Socoooivieenn. 341
BSH ..o 165 FMSF.S ..o 343 POPSP.....ccoii 233
BSW ..o 166 FNMAFS........ccooeveee.... 345 PREF.......coooiiiin, 305
FNMSF.S....ccoooverrrennen. 347 PREPAREcccccoeoi 235
C y PUSHSPoovvvevcen. 238
CACHE ..o, 304 R
CALLT ..o, 167 HALT c.ooovceee. 195
CAXI....oooovreeereeeerenne. 169 HSH....o.cooooeveceeeceren. 196 RECIPF.S............. 354,355,
CEILF.SL oo, 316 HSW..ooooioeceeeeeceean 197 356,358, 359
CEILESUL oooorerr 317 | RIE e 240
CEILFSUW ..ooooe 318 ROTL.oieiiieeeeeeeee 241
CEILF.SW.....oovveeveenne.. 319 RSQRTF.S ..cocvrin 360
o 171 JARL 198
CLRT oo, 172 jgp -------------------------------- %8?
CMOVcoooveerereene. 174 IR
CMOVE.S oo 320 | S i
CMP ..o, 176~ QiR e
CMPES 391 SATADDcoveeveeenene. 245
CTRET 177 LDBons 202 SATSUB.....ccccoverrunen. 247
CUTENS a5 LDBU.... 203 SATSUBI.....coevuevennn. 249
CUTELS, 356 LDDW..o, 205 SATSUBRcccooccue... 250
CUTESH 358 LDHo 206 SBFcooovoeeeveeeereeen. 251
QUTEQL 357 LDHU .. 208 SCHOL......coovvereerecenann. 252
CVTESGL 359 LDW.., 210 SCHOR.....cccocvvevverceen. 253
CVTESUW 330 DLW .., 212 SCHAL..ovceeveeeecen. 254
CUTESW 331 LDSR.i, 213 SCHAR....cooeveveeercen. 255
CVTEDLS 339 LOOP .., 214 SETT oo, 256
CVTELWS 333 M = S 258
CVTEWS 334 SHL oo, 260
IS e SHR.....ooveeeeereeeeenen. 262
D MAC ..o 216 SIDB....ccooveeeeeerecen. 264
MACU.....cooviieiieee 217 SILDBU ..o 265
Dl 178 MAXFS oo 349 SLD.H..oooooviivrirrrrirrrr 266
DISPOSE 179 MINF.S ... 350 SIDHU .o 267
DIV oo 181 MOV oo 218 SIDW....cooooooiririrrrrrn 268
DIVES oo 335 MOVEA ..o 220 SNOOZEoovmvirr 269
DIVH oo 182 MOVHI oo 221 SQRTF.S .o 361
DIVHU 184 MUL.....cos 222 SSTB ..o 271
DIVQ e 185 MULFS oo 352 SSTH oo 272
DIVQU oo 187 MULH s 223 SSTW oovvovevrssseecnnnieen 273
DIVU..oo oo 189 MULHI ..o 225 STB....ccocoocveeeeeeeeeenn, 274
MULU ... 226 STDW ..o 275
R0O1US0165EJ0120 Rev.1.20 RENESAS Page 379 of 384

Dec 22, 2016

RH850G3KH Software

APPENDIX D.

Instruction Index

RO1US0165EJ0120 Rev.1.20

Dec 22, 2016

RENESAS

Page 380 of 384

RH850G3KH Software REVISION HISTORY

REVISION HISTORY RH850G3KH User’s Manual: Software
Page | Description | Classification
Section 5 Memory Management
112 [5.1.7, (2) Sample code: Modified (be — bnz) | (a)
Section 6 Coprocessor
141 | 6.1.11 Flush to Nearest: Description modified | (b)

Remark: The classification in the table above means as follows.
(a): Error correction (b): Specifications added or changed (c): descriptions or notes added or changed

RO1US0165EJ0120 Rev.1.20 ENESAS
Dec 22, 2016

Page 381 of 384

RH850G3KH

Publication Date:

Published by:

User’'s Manual: Software

Rev.0.50
Rev.1.00
Rev.1.10
Rev.1.20

Apr 23, 2015
Aug 21, 2015
Jul 29, 2016

Dec 22, 2016

Renesas Electronics Corporation

1RENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

RH850G3KH

RENESAS

Renesas Electronics Corporation

R01US0165EJ0120

	Cover
	Notice
	NOTES FOR CMOS DEVICES
	How to Use This Manual
	Table of Contents
	Section 1 Overview
	1.1 Features of the RH850G3KH

	Section 2 Processor Model
	2.1 CPU Operating Modes
	2.1.1 Definition of CPU Operating Modes
	2.1.2 CPU Operating Mode Transition
	2.1.3 CPU Operating Modes and Privileges

	2.2 Instruction Execution
	2.3 Exceptions and Interrupts
	2.3.1 Types of Exceptions
	2.3.2 Exception Level

	2.4 Coprocessors
	2.4.1 Coprocessor Use Permissions
	2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors
	2.4.3 Coprocessor Unusable Exceptions
	2.4.4 System Registers

	2.5 Registers
	2.5.1 Program Registers
	2.5.2 System Registers
	2.5.3 Register Updating
	2.5.4 Accessing Undefined Registers

	2.6 Data Types
	2.6.1 Data formats
	2.6.2 Data Representation
	2.6.3 Data Alignment

	2.7 Address Space
	2.7.1 Memory Map
	2.7.2 Instruction Addressing
	2.7.3 Data Addressing

	2.8 Acquiring the CPU Number
	2.9 System Protection Identifier

	Section 3 Register Set
	3.1 Program Registers
	3.1.1 General-Purpose Registers
	3.1.2 PC — Program Counter

	3.2 Basic System Registers
	3.3 Interrupt Function Registers
	3.3.1 Interrupt Function System Registers

	3.4 FPU Function Registers
	3.4.1 Floating-Point Registers
	3.4.2 Floating-Point Function System Registers

	3.5 MPU Function Registers
	3.5.1 MPU Function System Registers

	Section 4 Exceptions and Interrupts
	4.1 Outline of Exceptions
	4.1.1 Exception Cause List
	4.1.2 Overview of Exception Causes
	4.1.3 Types of Exceptions
	4.1.4 Exception Acknowledgment Conditions and Priority Order
	4.1.5 Interrupt Exception Priority and Priority Masking
	4.1.6 Return and Restoration
	4.1.7 Context Saving

	4.2 Operation When Acknowledging an Exception
	4.2.1 Special Operations

	4.3 Return from Exception Handling
	4.4 Exception Management
	4.4.1 Exception Synchronization Instruction
	4.4.2 Checking and Canceling Pending Exception

	4.5 Exception Handler Address
	4.5.1 Resets, Exceptions, and Interrupts
	4.5.2 System Calls
	4.5.3 Models for Application

	Section 5 Memory Management
	5.1 Memory Protection Unit (MPU)
	5.1.1 Features
	5.1.2 MPU Operation Settings
	5.1.3 Protection Area Settings
	5.1.4 Caution Points for Protection Area Setup
	5.1.5 Access Control
	5.1.6 Violations and Exceptions
	5.1.7 Memory Protection Setting Check Function

	5.2 Cache
	5.2.1 Execution Privilege of the CACHE/PREF Instruction

	5.3 Mutual Exclusion
	5.3.1 Shared Data that does not Require Mutual Exclusion Processing
	5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions
	5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction
	5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction

	5.4 Synchronization Function

	Section 6 Coprocessor
	6.1 Floating-Point Operation
	6.1.1 Configuration of Floating-Point Operation Function
	6.1.2 Data Types
	6.1.3 Register Set
	6.1.4 Floating-Point Instructions
	6.1.5 Floating-Point Operation Exceptions
	6.1.6 Exception Details
	6.1.7 Precise Exceptions and Imprecise Exceptions
	6.1.8 Saving and Returning Status
	6.1.9 Flushing Subnormal Numbers
	6.1.10 Selection of Floating-Point Operation Model
	6.1.11 Flush to Nearest

	Section 7 Instruction
	7.1 Opcodes and Instruction Formats
	7.1.1 CPU Instructions
	7.1.2 Coprocessor Instructions
	7.1.3 Reserved Instructions

	7.2 Basic Instructions
	7.2.1 Overview of Basic Instructions
	7.2.2 Basic Instruction Set
	ADD
	ADDI
	ADF
	AND
	ANDI
	Bcond
	BINS
	BSH
	BSW
	CALLT
	CAXI
	CLL
	CLR1
	CMOV
	CMP
	CTRET
	DI
	DISPOSE
	DIV
	DIVH
	DIVHU
	DIVQ
	DIVQU
	DIVU
	EI
	EIRET
	FERET
	FETRAP
	HALT
	HSH
	HSW
	JARL
	JMP
	JR
	LD.B
	LD.BU
	LD.DW
	LD.H
	LD.HU
	LD.W
	LDL.W
	LDSR
	LOOP
	MAC
	MACU
	MOV
	MOVEA
	MOVHI
	MUL
	MULH
	MULHI
	MULU
	NOP
	NOT
	NOT1
	OR
	ORI
	POPSP
	PREPARE
	PUSHSP
	RIE
	ROTL
	SAR
	SASF
	SATADD
	SATSUB
	SATSUBI
	SATSUBR
	SBF
	SCH0L
	SCH0R
	SCH1L
	SCH1R
	SET1
	SETF
	SHL
	SHR
	SLD.B
	SLD.BU
	SLD.H
	SLD.HU
	SLD.W
	SNOOZE
	SST.B
	SST.H
	SST.W
	ST.B
	ST.DW
	ST.H
	ST.W
	STC.W
	STSR
	SUB
	SUBR
	SWITCH
	SXB
	SXH
	SYNCE
	SYNCI
	SYNCM
	SYNCP
	SYSCALL
	TRAP
	TST
	TST1
	XOR
	XORI
	ZXB
	ZXH

	7.3 Cache Instructions
	7.3.1 Overview of Cache Instructions
	7.3.2 Cache Instruction Set
	CACHE
	PREF

	7.4 Floating-Point Instructions
	7.4.1 Instruction formats
	7.4.2 Overview of Floating-Point Instructions
	7.4.3 Conditions for Comparison Instructions
	7.4.4 Floating-Point Instruction Set
	ABSF.S
	ADDF.S
	CEILF.SL
	CEILF.SUL
	CEILF.SUW
	CEILF.SW
	CMOVF.S
	CMPF.S
	CVTF.HS
	CVTF.LS
	CVTF.SL
	CVTF.SH
	CVTF.SUL
	CVTF.SUW
	CVTF.SW
	CVTF.ULS
	CVTF.UWS
	CVTF.WS
	DIVF.S
	FLOORF.SL
	FLOORF.SUL
	FLOORF.SUW
	FLOORF.SW
	FMAF.S
	FMSF.S
	FNMAF.S
	FNMSF.S
	MAXF.S
	MINF.S
	MULF.S
	NEGF.S
	RECIPF.S
	ROUNDF.SL
	ROUNDF.SUL
	ROUNDF.SUW
	ROUNDF.SW
	RSQRTF.S
	SQRTF.S
	SUBF.S
	TRFSR
	TRNCF.SL
	TRNCF.SUL
	TRNCF.SUW
	TRNCF.SW

	Section 8 Reset
	8.1 Status of Registers after Reset

	APPENDIX A. Hazard Resolution Procedure for System Registers
	APPENDIX B. Number of G3KH Instruction Execution Clocks
	APPENDIX C. Register Index
	APPENDIX D. Instruction Index
	REVISION HISTORY
	Colophon
	Address List
	Back Cover

