
Version 2.3
February 2003

6024 Silver Creek Valley Road, San Jose, California 95138
Telephone: (800) 345-7015 • (408) 284-8200 • FAX: (408) 284-2775

Printed in U.S.A.
©2005 Integrated Device Technology, Inc

IDT/sim
User/Developer’s Manual

DISCLAIMER
Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance
and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The
Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

Boards that fail to function should be returned to IDT for replacement. Credit will not be given for the failed boards nor will a
Failure Analysis be performed.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to
such intended use is executed between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform,
when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device
or system, or to affect its safety or effectiveness.

The IDT logo, Dualsync, Dualasnyc and ZBT are registered trademarks of Integrated Device Technology, Inc. IDT, QDR, RISController, RISCore, RC3041, RC3051, RC3052, RC3081, RC32134, RC32332,
RC32333, RC32334, RC32355, RC32364, RC32438, RC36100, RC4700, RC4640, RC64145, RC4650, RC5000, RC64474, RC64475, SARAM, Smart ZBT, SuperSync, SwitchStar, Terasync,Teraclock, are trade-
marks of Integrated Device Technology, Inc.

Powering What's Next and Enabling A Digitally Connected World are service marks of Integrated Device Technology, Inc. Q, QSI, SynchroSwitch and Turboclock are registered trademarks of Quality Semiconduc-
tor, a wholly-owned subsidiary of Integrated Device Technology, Inc.

Notes

IDT/sim User/Develope

Table of Contents
1 IDT/sim Debug Monitor
Overview

Introduction ..1-1
What Does IDT/sim Do?...1-1
Who Should Read This Manual?..1-1

Revision History...1-2

2 Developing IDT/sim
Introduction ..2-1
IDT/sim Source Code Installation ..2-1

Compiler Installation...2-1
Compiler Test Runs ..2-1
Cross-compiling Issues ..2-1

Building IDT/sim...2-2
Testing the IDT/sim Executable ...2-2
IDT/sim or Micromonitor ..2-3

3 Minimum IDT/sim
Start-up File

Overview of IDT/sim Source Files ...3-1
Directory Structure...3-1
 Creating a Minimum Version of IDT/sim ...3-2

Modifying Start-up File csu_idt.S..3-2
Subroutine ‘initmem’...3-3
Initialize Device Table...3-3
Initialize IDT/sim to Known State..3-3
Initialize Command Table ...3-4
Clear Breakpoints...3-4

Makefile ...3-4

4 Flowcharts
Introduction ..4-1
Reading Flow Charts ...4-1

5 Minimum IDT/sim
User Commands

Command Table...5-1
Commands not Required for Minimal IDT/sim Versions ..5-1
r’s Manual i February 3, 2003

Table of Contents

IDT/sim User/Develope

Notes
 6 Adding & Deleting
User Commands

Introduction ..6-1
Command Table Structure ...6-1
Command Table Entries ..6-1

7 Adding & Deleting IDT/sim Device Drivers
Introduction ..7-1
Device Switch Table...7-1
Device Initialization Table ..7-1
Actual Device Switch Table..7-2
 Actual Device Initialization Table ..7-2

8 Using Micromonitor
Introduction ..8-1
Using Micromonitor..8-1
User Commands..8-1

Store...8-1
Load ...8-2
Jump ..8-3
Dump..8-3
Fill...8-3
Increment Fill..8-3
Compare ..8-4
Increment Compare ...8-4
Transfer ..8-4
Scope Loops ..8-4
Set Segment Default ..8-5
Print Stack ..8-5
Memory Check ...8-5

Porting to New Hardware...8-6
Recommended Debug Technique..8-6
Exception Handling ..8-7

9 Using the Systems
Diagnostics Command

Introduction ..9-1
Tests Common to all IDT Boards ...9-1

Memory Test...9-1
Cache Memory Test ...9-2
System Test..9-2
 DRAM Test ..9-2
DMA Test..9-2
Timers Test...9-2
Interrupt Test ..9-2
Set Options ..9-3

Tests Specific to RC3233x Based Boards ...9-3
PCI Test..9-3
r’s Manual ii February 3, 2003

Table of Contents

IDT/sim User/Develope

Notes
 SPI Test ..9-3
Test Specific to RC32355 Based Boards...9-3

I2C Test ..9-3
Tests Specific to RC32438 Based Boards ...9-3

PCI Test..9-3
SPI Test ..9-3
I2C Test ..9-3

Test Specific to EB438 and RP355 Boards ...9-3
Flash Test ...9-3

10 IDT/sim PROM Entry Points
General Description and Use...10-1

11 IDT/sim User Commands
Overview.. 11-1
Issuing Commands .. 11-1

Command Format .. 11-1
Documentation Conventions .. 11-1
Command Specifications ... 11-1
Command Categories .. 11-2

Communication/Host Interface Commands ... 11-2
Debug - GDB and Algorithmics Compiler sde4.0c or Later.. 11-2
 Download Program from Host to Board .. 11-3
Set Baud Rate of tty Port ... 11-4
Terminal Emulator .. 11-4

Execution Control Commands ... 11-5
Set or Display Breakpoint... 11-5
Call a Subroutine.. 11-5
Continue Execution .. 11-5
Go (Run Program).. 11-5
GoTill .. 11-6
Next (step over subroutine) .. 11-6
Single Step... 11-6
Unbreakpoint .. 11-6

Memory/Register and Assembly/Disassembly commands.. 11-6
Assembler .. 11-7
 Cache Flush .. 11-8
Compare Block... 11-8
Disassemble Contents Of Memory... 11-8
Dump Cache .. 11-9
Dump Memory.. 11-9
Dump Registers ... 11-10
 Fill Memory.. 11-10
Flash Programming.. 11-11
Fill Register .. 11-11
Lock Cache .. 11-11
Move Block... 11-11
Read Cache Memory ... 11-12
Search Memory .. 11-12
r’s Manual iii February 3, 2003

Table of Contents

IDT/sim User/Develope

Notes
 Substitute Memory ... 11-13
 Set-up and Environment Commands.. 11-13

Checksum .. 11-13
Help Command .. 11-14
History Command .. 11-14
Initialize .. 11-14
Register Set Select .. 11-14
Set Default Radix ... 11-14
Set Default Segment .. 11-14

TLB Commands... 11-14
TLB Dump .. 11-14
TLB Flush ... 11-15
TLB Map... 11-15
TLB Process ID .. 11-15
TLB Search For Physical Address Map ... 11-15

Trace Commands .. 11-16
Trace Command... 11-16
Trace Stop Command .. 11-17
Trace Conditionally Command ... 11-18
Trace Dump Command .. 11-19
Trace Exclude Command... 11-19
Trace Command Examples.. 11-20

Network Related Commands... 11-20
Download and Execute Binary File (boot) .. 11-20
Ping a Host... 11-21

Board Specific Commands .. 11-21
Set / Display Date .. 11-21
Set / Display Time .. 11-21
Display Settings of Environment Variables... 11-21
Set Environment Variable Values ... 11-21
Delete (unset) Environment Variable.. 11-22
Delete (unset) all Environment Variable ... 11-22
General Purpose Commands... 11-22
 caus... 11-22
clcs ... 11-22
clsr.. 11-22
cmpr ... 11-22
creg .. 11-22
gmsk... 11-22
 smsk.. 11-22

12 IDT/sim User Command
Summary

Quick Reference ..12-1
IDT/sim User Commands...12-1

13 Motorola S-record Format

14 Register Numbers and Names
r’s Manual iv February 3, 2003

Notes

IDT/sim User/Develope

List of Figures
Figure 4.1 Example of IDT/sim Function..4-1
Figure 4.2 Boot Sequence of IDT/sim 10.4.2...4-2
Figure 4.3 Network Interface Initialization for RC3233x Based Evaluation Boards4-3
Figure 4.4 Initialization of PCI Buses, Bridges, and Devices in RC3233x Based

Evaluation Boards...4-4
Figure 4.5 Initialization of PCI Device Functions in RC3233x Based Evaluation Boards4-5
Figure 4.6 Initialization of Device Drivers in RC3233x Based Evaluation Boards4-6
Figure 4.7 Device Driver Attachment in RC3233x Based Evaluation Boards....................................4-7
r’s Manual 1 February 3, 2003

IDT/sim User/Develope

Notes
r’s Manual 2 February 3, 2003

Notes

IDT/sim User/Develope

List of Tables
Table 5.1 Commands Not Required for Minimal IDT/sim Versions ..5-1
Table 8.1 Micromonitor’s UART Functions ...8-6
Table 10.1 PROM Function Entry Points..10-1
r’s Manual 3 February 3, 2003

IDT/sim User/Develope
r’s Manual 4 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 1 - 1 Febr
Chapter 1
IDT/sim Debug Monitor
Overview
Introduction
IDT System Integration Manager (IDT/sim) is a software/firmware product that facilitates convenient

download of programs to IDT evaluation boards and execution as well as debug of such programs. IDT/sim
is available in two forms:

◆ Executable code programmed in EPROM or Flash: In this form, IDT/sim is present in the read-
only-memory of IDT’s evaluation boards and performs as the operating system, the low-level
debugger, and the run-time environment from ‘C’/assembler code. A command line interface over a
serial port is also available for user interaction with the hardware.

◆ Software source code on CD-ROM or at IDT’s FTP site: IDT/sim is also available as software
source code written in ‘C’ and assembler. In this form, modifications or enhancements can be made
to IDT/sim functionality through a user configurable "command table". This feature allows the user
to simply link and load the enhanced functions into memory and enter the entry point into the com-
mand table. Some special entry points for supporting stand-alone systems are also available.
IDT/sim source code CD-ROMs are shipped with a majority of IDT evaluation board kits. Instruc-
tions regarding obtaining source code from IDT’s FTP site can be obtained by emailing
rischelp@idt.com.

What Does IDT/sim Do?
IDT/sim performs several functions. On start-up, the monitor automatically determines the cache and

main memory sizes. It then performs as the operating system for the evaluation board on which it is
installed. It manages the hardware resources of the board, provides the user with a command line interface;
offers low-level debugging capabilities, and provides an interface for remote high-level debuggers (GDB
stub).

IDT/sim is equipped with a built-in assembler, disassembler, entry points for user-defined commands,
interrupt handlers, a ROM resident ‘C’ library, and I/O interface for a variety of devices that include serial,
ethernet, PCI, I2C, SPI, and much more.

Who Should Read This Manual?
This manual addresses the needs of both users and developers. To use this manual effectively and to

obtain information most relevant to your needs, it is important for you to identify the scope of your task. You
are primarily a user of IDT/sim if you fall into one of the following categories:

◆ do not intend to change the available functions of IDT/sim
◆ are not interested in how IDT evaluation boards work but are only interested in learning the operat-

ing system commands for the boards
◆ are interested in evaluating an IDT Integrated Communication Processor (ICP), using one of the

IDT evaluation boards as a vehicle for executing benchmarks
◆ have already decided to use an IDT ICP for your application and are now evaluating whether one of

IDT’s existing evaluation boards—possibly with some modifications—will satisfy your needs or
should a completely new board be designed

◆ want to develop system-independent application code (written in standard ‘C’ or assembler) to run
on IDT evaluation boards while your custom designed board, based on an IDT ICP, is under devel-
opment.

You are primarily a developer of IDT/sim if you:
◆ want to understand how IDT/sim works
◆ want to evaluate the IDT/sim source code for portability
uary 3, 2003

IDT/sim Debug Monitor Overview Revision History

IDT/sim User/Develope
◆ want to gain an understanding of IDT ICP behavior and/or IDT evaluation boards; both ICP and
board documentation are good but not adequate and you want to verify documentation and experi-
ment more

◆ want to use an IDT evaluation board but do not want to use all of the IDT/sim features; you want to
reduce the IDT/sim code size and use the memory space made available for some other purpose

◆ want to modify or enhance the functions of IDT/sim in IDT evaluation boards
◆ want to “port” IDT/sim to your custom designed board.

Chapters 2 through 8 of this manual contain information of interest to "developers". Chapters 9 through
14 contain references to IDT/sim commands and are intended for all IDT/sim "users".

Revision History
March 1997: Initial publication.
July 28, 1999: Version 2.0 update.
July 8, 2002: Version 2.1 update.
September, 12, 2002: Version 2.2 adds support for the RC32333 and RC32438.
February 3, 2003: In Chapter 6, revised the command table. In Chapter 9, added Flash Test under Intro-

duction and added Test Specific to EB438 and RP355 Boards section. In Chapter 11, revised Download
Program from Host to Board, Dump Registers, and Fill Memory sections. In Chapter 12, revised dr
command and added fb and -n commands.
r’s Manual 1 - 2 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 2 - 1 Febr
Chapter 2
Developing IDT/sim
Introduction
Before starting any IDT/sim software development project, the IDT/sim Release Notes should be

reviewed. A copy of the release notes is included with the IDT/sim source code and provides installation
instructions, a list of bug-fixes and enhancements, build procedures, and technical assistance contact infor-
mation.

IDT/sim Source Code Installation
IDT/sim source code can be installed on one of the following development platforms: Solaris 2.5.1,

SunOS 5.6, and Windows 95/98/ME/2000/XP. The types of platforms supported is limited only by the plat-
forms upon which the compiler needed to compile the IDT/sim source code is currently supported. This
compiler is "Algorithmics sde4.0c" (at the time of creation of this manual) and is provided by IDT. IDT/sim
source code installation is simple and will take approximately 20 minutes to complete.

Note: With some modifications to the Makefiles, compilers other than those from IDT or Algorith-
mics may be able to build IDT/sim; however, none have been used or tested by IDT.

Code for Sun machines is supplied on a CD-ROM in tar/gzip format. The file name could be something
similar to: sim1042sun.tar.gz. To install the code, (1) create a new directory on your hard disk, (2) extract
the file using gzip utility, followed by the tar command, into the newly created directory.

 Code for Windows is also supplied on the same CD-ROM as a zip file. The file name could be some-
thing similar to: sim1042dos.zip. To install the code, (1) create a new directory on your hard disk, (2) Unzip
the file into the newly created directory. Follow the installation instructions provided in the IDT/sim Release
Notes.

Compiler Installation
Install the C cross compiler (Algorithmics sde 4.0c, at the time of creation of this manual) on the devel-

opment platform of your choice.
In a majority of the tool-chains, during the compilation process, the target microprocessor is specified by

the developer with a compile-time switch (-mcpu=RC32364 or -mcpu=r4k if you are using the Algorithmics
compiler). To verify that your target processor is supported by your tool-chain, review the compiler docu-
mentation.

Compiler Test Runs
To test the basic functionality of the newly installed compiler, compile one or more ‘C’ programs. The

majority of tool-chains provide some sample code for this purpose. For example, Algorithmics Compiler has
a few sample source files that can be tried immediately after installation of the compiler. All of the batch or
makefiles required to compile the code are provided.

Cross-compiling Issues
The compiler you use for IDT/sim development will typically be a cross compiler. This means that the

machine code generated by the compiler/assembler/linker will be for a target processor quite different from
the native processor of your development platform; therefore, it is important to use the correct compiler.

 During the initial phases of a project, because the commands used for native and cross compilation are
very similar, a common mistake is to use the native compiler—or some part of the native tool-chain—for
cross development, resulting in strange error messages during compilation. If two or more cross-compilers
are installed on the same machine, complicated errors can occur.
uary 3, 2003

Developing IDT/sim Building IDT/sim

IDT/sim User/Develope
However, in a single-user Windows environment for example, operating conditions are relatively easy to
manage by creating a unique batch file that establishes the correct environment for each cross compiler.
Once this has been done, any cross-compiler can be used by first running the appropriate batch file.
Creation of the batch file is a one-time task usually completed after installation of a new tool-chain.

In the UNIX environment, it is the system administrator’s responsibility to educate users on all compiler
set-ups and to correctly install each cross-compiler so that operating environments do not conflict.

Building IDT/sim
To build a working version of IDT/sim, you will need some knowledge of IDT’s source code. The actual

process of building executable IDT/sim code can be as simple as running the ‘make’ utility on a specific
“makefile.” There are several ‘makefiles’ available that support a variety of evaluation boards and both endi-
anness. Selection of the appropriate ‘makefile’ must be based on the evaluation board you will be working
with.

 There are several subdirectories below the root of installation level:’MAKE’,’S334’,’S355’,
‘’S438’,common’, ‘drivers’, ‘header’, ‘net’, and ’pci’. Depending on the board you are using, change to the
appropriate sub-directory under the MAKE directory and you will find makefiles and linker scripts to build
IDT/sim.

 After locating the correct ‘makefile,’ review it. Verify that the declarations made in the file (such as paths
and filenames) are applicable to your installation and modify them, if needed. Any necessary changes will
be made within the first few lines, so studying the entire ‘makefile’ is usually not necessary.

Next, run the ‘make’ utility and fix any errors seen during the ‘make’ process. At the end of a successful
‘make,’ depending on your evaluation board, either one or four files with the extension ‘.sre’ or ‘.prm’ will
have been created. These are the Motorola standard S-record files that can be downloaded to your
EPROM/FLASH programmer or ROM emulator. The number of S-record files created is equal to the
number of IDT/sim EPROMs/FLASHes on your evaluation board.

Testing the IDT/sim Executable
Now that the executable version of IDT/sim has been created, test it by using the S-record files you

created to program a set of EPROMs/FLASHes and replace the existing ones in your evaluation board1.
When the board is powered up, the IDT/sim sign-on message should appear on the terminal connected to
the first serial port on the evaluation board (port labeled TTY0 or UART A on IDT Boards).

If the sign-on message does not appear—and if your evaluation board has IDT/sim split into four
EPROMs/FLASHes—try reversing the order in which you placed the EPROMs/FLASHes. The correct
EPROM/FLASH order can be derived from your knowledge of (a) endianness of the evaluation board and
(b) the “-b” switch parameter used in the makefile while creating the S-record files; however, it is quicker
just to reverse the board’s EPROM/FLASH order. If you are using a ROM emulator, reversing the pod order
is even easier because it simply takes a command to the emulator.

Once the sign-on message appears, try some simple commands. Detailed knowledge of IDT/sim
commands is not necessary at this point. Simply enter “help” or “?” and try commands such as “dump
memory” or “run diagnostics.”

If the IDT/sim created on your development platform does not function properly, review the information
in this chapter and look for simple clues to errors such as:

◆ Check the length of the S-record files. If they are not in tens or hundreds of Kilobytes, an error might
have occurred during the process of creating the S-record files.

◆ Check the length of the executable file from which the S-record files were generated. The name of

1. To avoid programming errors for each IDT/sim revision during the development cycle, consider
purchasing a ROM emulator. If you have access to one, download the newly created S-record files to
the ROM emulator. With the pods plugged into the evaluation board, the IDT/sim sign-on message will
appear on the terminal that is connected to the evaluation board’s first serial port (port labeled TTY0).
r’s Manual 2 - 2 February 3, 2003

Developing IDT/sim IDT/sim or Micromonitor

IDT/sim User/Develope
the executable file can be found in the makefile you used to create the current version of IDT/sim. If
the length of this executable file is not in tens or hundreds of Kilobytes, the file was not created
properly.

◆ Verify that all of the object files were created. Object files have an extension of ‘.o’. The number of
object files created must match the number of files listed in the makefile. See if any of the object
files have a zero length.

Most of the errors mentioned above will be detected during the ‘make’ process itself; but it is possible to
have not made a clean start through your several iterations of ‘make.’ In the early stages of your develop-
ment efforts, it is a good practice to begin with a ‘make clean’ command, before actually running ‘make’ to
build the IDT/sim executable. If additional assistance is needed, call the IDT RISC hotline or email
rischelp@idt.com.

IDT/sim or Micromonitor
Micromonitor is provided in source code form along with the IDT/sim source code. This product is

intended to assist hardware engineers in bringing up and debugging their board-level products. Micromon-
itor is written in assembler language and needs minimal hardware to function. If your board has a func-
tioning CPU, a UART interface, and an EPROM/FLASH interface, you may port the Micromonitor code to
your hardware and begin using it (information on using Micromonitor is available in Chapter 8).

When working with a newly designed board, it is advisable to begin by porting the Micromonitor. Once
the Micromonitor is functioning properly, you may want to begin working with the IDT/sim in a “one step at a
time” manner: begin with minimum sim functions and add features as hardware confidence grows. A new
developer should decide early whether to begin with the Micromonitor or with IDT/sim.

When working with a modification of a working board or design, you may want to begin porting IDT/sim
right away. Under most circumstances, it is advisable to begin working with a version of IDT/sim that has
minimal functionality. Guidelines on how to create a stripped down version of IDT/sim and how to progres-
sively add features to it are provided in this manual.
r’s Manual 2 - 3 February 3, 2003

Developing IDT/sim IDT/sim or Micromonitor

IDT/sim User/Develope
r’s Manual 2 - 4 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 3 - 1 Febr
Chapter 3
Minimum IDT/sim
Start-up File
Overview of IDT/sim Source Files
Before you begin porting IDT/sim, a basic understanding of the source code organization will be helpful.
The IDT/sim source code that is used for all evaluation boards is organized into a single directory struc-

ture. Variations for different boards and processors are created by using different directories, aided by
different ‘Makefiles’ and conditionally compiled source code.

There are several files common to all IDT/sim variants. Majority of the code in these files is common to
all ICPs and all boards. Where there are ICP-specific and/or board specific pieces of code within these files,
appropriate use of conditional compiling using “#if defined()” or “#ifdef” directives is made.

There are also files that have similar names but exist in different directories. These particular files
contain code that performs similar tasks but for different target boards or processors. The implementations
are so different that the simplicity of source code management achieved by conditional compiling would not
justify the potential confusion while reading the code.

Finally, there are also source files unique to a single specific board. These files contain no conditional
compile statements, no equivalent files in any other directory exist, and are called only for building IDT/sim
for that specific board.

Directory Structure
Note the following definitions used in this manual:

RC3233x includes the RC32332, RC32333, and RC32334.
RC323xx includes the above 3 devices plus the RC32355.
RC32xxx Include all the previous devices plus the RC32438.

The common/, header/, S334, S355/, S438/, net/, pci/ and drivers/ directories are located at the top level
of the IDT/sim source code installation.

common/: This subdirectory contains some “C” and “assembler” files that are common to all variants of
IDT/sim. Some of these files contain conditional compile directives for different boards or ICPs. For
example, “#ifdef RP355” indicates code specific to the IDT79RP355 board.

header/: This subdirectory contains header files common to all targets
S334/: This directory contains the code for IDT79RC3233x specific initialization.
S355/: This directory contains the code for the IDT79RC32355 specific initialization.
S438/: This directory contains the code for the IDT79RC32438 specific initialization.
 net/: This directory contains UDP/IP stack and ethernet drivers that are specific to IDT79RC32xxx-

based evaluation boards.
 drivers/: This directory contains various tested and untested device drivers.
 pci/: This directory contains PCI initialization code for all RC32xxx-‘based evaluation boards except the

RC32355.
 Make/: This directory contains various board-specific Makefiles and linker script files. Depending on the

target, you can change to the appropriate sub-directory and build IDT/sim images for that target.
uary 3, 2003

Minimum IDT/sim Start-up File Creating a Minimum Version of IDT/sim

IDT/sim User/Develope
 Creating a Minimum Version of IDT/sim
Porting the entire IDT/sim to a new board can be an overwhelming task, especially if the new board is

significantly different from IDT’s existing evaluation boards. For example, in many cases the functions of a
new board design may be similar to an existing board from IDT, but the new board’s I/O interface hardware
may be different from the IDT design. In some cases, functions may have been removed from IDT’s design
to create a new board design. In other cases, functions may have been added.

In general, it is best to begin by creating a version of IDT/sim that validates only the most basic features
of the newly designed board. For example, at the start of a project, although it is not critical to port and
verify the ethernet connections on the new board, it is crucial that the target CPU registers be set-up
correctly. Also, although at first it is not important for the mechanism to automatically detect the size of
available non-volatile memory (SRAM/SDRAM), it is very important that the memory interface be correctly
programmed and fully functional in order to facilitate loading code into the memory space.

Assuming that the new board’s EPROM/FLASH and Serial I/O interfaces are both working (which can
be tested with the Micromonitor), a good place to begin the porting process is to identify an IDT eval board
design that is closest to the new board’s design and to locate the ‘Makefile’1 that is related to this IDT eval-
uation board.

Modifying Start-up File csu_idt.S
The first piece of code in IDT/sim is located in the start-up file called ‘csu_idt.S’. This is an assembler file

located in "S334/", "S355/", or "S438/" directory depending on whether the target CPU is RC3233x,
RC32355, or RC32438 respectively. When a board is powered up or reset, this is the code that is executed
first as it is placed at the reset vector. As one would expect, the file ‘csu_idt.S’ contains a majority of the
code, or subroutine calls to the code, which performs the initial configuration of the target CPU and board-
specific hardware devices.

Additionally, the start-up file contains code to perform many other tasks which are not necessarily
required in a bare minimum IDT/sim. The following sections contain a review of the start-up files S334/
csu_idt.S, S355/csu_idt.S, and S438/csu_idt.S and show how bare-minimum versions of these files can be
generated.

csu_idt.S
 The first subroutine in the file is start. At the beginning of start, there are a series of 128 jump instruc-

tions. This is a PROM entry point table, which provides entry points into IDT/sim code that pertains to many
standard C language functions such as open, close, printf, read, write, gets, puts, etc. Some IDT-specific
functions are also accessible through this jump table. This jump table is provided so that a user program
running out of RAM can simply use these entry points instead of linking run-time library code, which may
occupy large amounts of RAM space.

Linking C functions through the PROM entry point table will result in slower code because the entry
points and the actual functions are programmed into PROM and will execute from the PROM as well.
However, where compactness of user code is more important than speed, this entry point table is made
available to the user. The functions that the prom entry point table points to, are not required for basic func-
tionality of IDT/sim, and these functions may be removed or commented out after replacing the existing
target for jump instructions with a "not_implemented" target for jump.

The csu idt.S file contains a number of #ifdef statements. A majority of these statements reflect condi-
tional compile directives that are specific to a particular IDT evaluation board. If your board is based on one
of IDT’s evaluation boards, you may leave code pertaining only to that board in the csu_idt.S file and delete
the code that is specific to other boards. Leaving the unrelated code is harmless, but deleting it will improve
source code readability.

1. The process of locating a particular “Makefile’ is discussed in Chapter 2.
r’s Manual 3 - 2 February 3, 2003

Minimum IDT/sim Start-up File Creating a Minimum Version of IDT/sim

IDT/sim User/Develope
As an example, if your board is not based on the S334A board, you may safely delete all lines of code
between and including the lines #ifdef S334A and the corresponding occurrence of the line #else or #endif
(if no corresponding #else was present). If #else was present and you deleted it, remember to delete the
corresponding #endif. It is critically important to delete all corresponding occurrences of these directives,
especially in cases where there are nested #ifdef statements.

The next step in the start-up code deals with initializing specific registers. Not all registers are present in
all IDT parts. Remove parts of the code that are not applicable to your IDT part for clarity of code.

Clear Interrupts
The next step in the sequence of initialization is to clear all the software interrupts that might have

occurred before the board was reset.

Cache/Device Controller Setup
The next step is to program the cache mode. We can choose between write back cache for the

RC323xx, write through cache, or uncached mode.
The device controller can now be programmed to assign various chip selects to various devices on the

board. The device controller provides a glueless interface to SRAM’s, ROM’s, dual port memories, IO
devices, and many other peripheral devices.

 RAM Setup
Memory is initialized depending on the type of memory being used (e.g., SRAM/SDRAM/DDR-SDRAM).

You may need to refer to the data sheet of the memory device to understand more regarding the specific
steps needed to initialize the memory. Once setup is completed, a simple test is performed to see if the
memory is accessible. If this test fails, it is because RAM is not properly accessible and the current version
of IDT/sim simply hangs in an infinite loop (search for the string ‘memory not’ in the file ‘csu_idt.S’ for the
location of this infinite loop). It may be useful to have an LED/LCD display indicate that a RAM error has
occurred.

However, if this first test is passed, a second test is performed with the data pattern of -1. After it has
been determined that RAM is accessible, a number of important tasks are then performed.

Subroutine ‘initmem’
A stack pointer is set up and the entire stack is set to zero for IDT/sim execution. Leave this portion of

the code untouched. The default size of the stack is defined in P_STACKSIZE, which is set to 8 Kb (16Kb if
ethernet support is present) in the file ‘header/idtmon.h.’

Next, a certain amount of cache configuration is performed. First the sizes of both data and instruction
caches are stored in variables for future reference (dcache_size, icache_size).

Following cache configuration and sizing, caches are flushed by the subroutine ‘flush_cache’. Leave this
code untouched.

Initialize Device Table
The subroutine ‘init_dev_tab’ moves the I/O device handling table from ROM to RAM for faster access.

By default, only two serial I/O devices, ‘tty0’ and ‘tty1’, are installed at this stage (some IDT79S334A boards
also have two additional (external) serial I/O devices called ‘ity0’ and ‘ity1’). If your board does not have the
second serial I/O port ‘tty1’, you may delete it from the table. The table is defined as ‘device_init[]’ in the file
‘common/idtconf.c’. It should be verified that the I/O base address declared in the table matches the
address on your board. The definition of the ‘init_dev_tab’ function is located in the same file.

Initialize IDT/sim to Known State
To initialize some of the remaining hardware, the next step is to assign known legitimate values to some

of the system variables that are used by IDT/sim. This is done in the call to the function "initialize".
r’s Manual 3 - 3 February 3, 2003

Minimum IDT/sim Start-up File Makefile

IDT/sim User/Develope
A call is made to subroutine ‘init_memory’. The first step in this subroutine is to invalidate the TLB. The
rest of the code uses a couple of techniques to determine the size of available RAM. If you already know
the size of the RAM, hard code it in the variable ‘mem_size’ in the subroutine ‘init_memory,’ which is
defined in the file ‘common/excepth.c’.

 The next few lines, enclosed within the pair of #ifdef INET - #endif initialize the board’s ethernet ports
and PCI controller, and are not necessary for a minimal version of IDT/sim to address ethernet interface
issues. Remove the define for INET from Makefile to compile out these lines.

Initialize Command Table
The call to subroutine ‘init_cmd_tab’ copies the command table from ROM space to RAM space for

faster access. This command table is the data structure that the IDT/sim command line interpreter uses as
a look-up mechanism for translating user commands into actions.

IDT/sim currently supports a large number of user commands. In the minimal version, a majority of
these commands may be disabled to reduce the size of IDT/sim (Chapter 4 discusses which commands to
disable). At this point, leave the call to ‘init_cmd_tab’ as it is.

Clear Breakpoints
Leave this call untouched. During the testing phase, even a minimal version of IDT/sim may need low

level debugging facilities of IDT/sim.

Makefile
Makefiles are used to build IDT/sim monitor code. The makefiles are specific to boards. Please choose

the makefile according to the board you plan to use. The makefiles contain various options specified as -D
definitions. Here is a brief explanation of the various options.

1. TARGET - Specifies the target for which you wish to build IDT/sim.
2. EIGHT_BIT_FLASH - Specifies whether 8, 16, or 32 bit FLASH is used to program IDT/sim.
3. CPU_R32364 - Includes code common to both RC32334/2 and RC32355 targets.
4. CPU_R32438 - Includes code specific to the RC32438.
5. DEFCON - Specifies the default console port.
6. MIPSEL - Specifies little endian mode for code build. Switch settings on the board must be the same.
7. INET - Specifies whether you wish to include ethernet support or not.
8. MEMCFG - Specifies the type of memory on the board.
9. DRAMSZ - Specifies the size of the nonvolatile memory.
10. EPRMPRTWD - Specifies the port width.
11. MHZ - Specifies the frequency of the crystal on the target.
12. PCIHOST - Distinguishes between PCI Host and Satellite modes.
13. NVRAM_RTC - Use RTC for storing environment variables. Otherwise, use I2C-based EEPROM for

environment variables.
r’s Manual 3 - 4 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 4 - 1 Febr
Chapter 4
Flowcharts
Introduction
This chapter includes some of the flow charts which will aid in understanding the IDT/sim initialization

code flow. It also includes the PCI initialization flowcharts for RC3233x based boards.

Reading Flow Charts
1. When a function is in the form xyz() and is followed by a file name xyz.c, it means that the function

xyz can be found in this file xyz.c. In the example shown in Figure 4.1 below, initmem is a function in
csu_idt.S.

2. When a function is in the form uvw() and is followed by a file name uvw.c in Italics, it means that this
function is called within the above function. In the example below, both init_tlb_local and config_cache
are called within function initmem.

3. When a function is underlined and the block is shaded, it means it is expanded further and has a flow
chart of its own.

Figure 4.1 Example of IDT/sim Function
uary 3, 2003

Flowcharts Reading Flow Charts

IDT/sim User/Develope
Figure 4.2 Boot Sequence of IDT/sim 10.4.2
r’s Manual 4 - 2 February 3, 2003

Flowcharts Reading Flow Charts

IDT/sim User/Develope
Figure 4.3 Network Interface Initialization for RC3233x Based Evaluation Boards
r’s Manual 4 - 3 February 3, 2003

Flowcharts Reading Flow Charts

IDT/sim User/Develope
Figure 4.4 Initialization of PCI Buses, Bridges, and Devices in RC3233x Based Evaluation Boards
r’s Manual 4 - 4 February 3, 2003

Flowcharts Reading Flow Charts

IDT/sim User/Develope
Figure 4.5 Initialization of PCI Device Functions in RC3233x Based Evaluation Boards
r’s Manual 4 - 5 February 3, 2003

Flowcharts Reading Flow Charts

IDT/sim User/Develope
Figure 4.6 Initialization of Device Drivers in RC3233x Based Evaluation Boards
r’s Manual 4 - 6 February 3, 2003

Flowcharts Reading Flow Charts

IDT/sim User/Develope
Figure 4.7 Device Driver Attachment in RC3233x Based Evaluation Boards
r’s Manual 4 - 7 February 3, 2003

Flowcharts Reading Flow Charts

IDT/sim User/Develope
r’s Manual 4 - 8 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 5 - 1 Febr
Chapter 5
Minimum IDT/sim
User Commands
Command Table
The size of IDT/sim code largely depends upon the number of user commands it supports. As shown

earlier, ‘csu_idt.S’ is the start-up file first loaded when linking IDT/sim. The ‘start’ subroutine—explained in
Chapter 3—performs all system initializations and jumps to the function ‘main.’

The function ‘main’ is defined in the ‘common/imain.c’ file. When an IDT evaluation board is powered up,
the function ‘main’ displays the sign-on message and calls a command line interpreter function named ‘cli,’
which accepts keyboard commands at the ‘<IDT>’ prompt through one of the ‘tty’ ports.

Once a user command is received, a command table is looked up. If the command is located in the
table, it is executed based on the action that is specified in the table entry for that command. The command
table is defined as a structure called ‘command_tab[]’ in the file ‘imain.c.’ Begin with this table when creating
a minimal version of IDT/sim.

Commands not Required for Minimal IDT/sim Versions
Table 5.1 contains a list of user commands that do not require support during the initial port of IDT/sim,

and you may delete these command entries from ‘command_tab[]’. In general, code that supporting a
single command is contained in a single file. Consequently, once you delete a command from the table, you
may also remove the line(s) that correspond to compiling and linking of this file in the related ‘Makefile’ used
to build the minimal version of IDT/sim.

The list in the table below includes command names (alternate command names are in parentheses) in
the first column and file names which support the command in the second column. There are cases where
one file contains support for more than one command. In such cases, the relevant function name is also
listed in the last column. Modifications to these particular files should only be done to the extent of removing
these specifically listed functions.

If there is no function name listed in the third column, you may delete the entire file. Also, please do not
forget to delete the ‘extern’ declarations of the functions that you are deleting from the file ‘common/
imain.c’. For networking commands such as ‘boot’, where many files in ‘net/’ are involved, it is easier to just
modify the ‘Makefile’ by simply removing the occurrence of the definition ‘-DINET’ from the ‘Makefile’.

Command File Name Function

asm common/idtcmds1.c asm_cmd()

boot net/*.* delete ‘-DINET’ from Makefile

call (ca) common/idtcmds2.c callcmd()

common/except.S do_call()

dbgint (di) common/idtcmds2.c ri_sel()

debug (db) common/idtdebug.c

disable common/idtfio.c

dt common/idtbrk.c dump_trace()

env common/p4000cmd.c

Table 5.1 Commands Not Required for Minimal IDT/sim Versions (Page 1 of 2)
uary 3, 2003

Minimum IDT/sim User Commands Commands not Required for Minimal IDT/sim Versions

IDT/sim User/Develope
gotill (gt) common/idtbrk.c gotill()

history (h) common/icli.c linebuf[], hist_init(), history()

ping net/*.* delete ‘-DINET’ from Makefile

setenv (set) p4000cmd.c purgeenv()

term (te) common/idtcmds1.c em(), to_transpar(), from_transpar()

t common/idtbrk.c trace_cmd()

tc common/idtbrk.c cond_trace_cmd()

tex common/idtbrk.c excl_cmd(), exc_init()

ts common/idtbrk.c stop_trace()

unsetenv p4000cmd.c

Command File Name Function

Table 5.1 Commands Not Required for Minimal IDT/sim Versions (Page 2 of 2)
r’s Manual 5 - 2 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 6 - 1 Febr
Chapter 6
Adding & Deleting
User Commands
Introduction
The command table is in the source file ‘common/imain.c’. All commands are decoded through this

table. To add or delete a command, the user must either add or remove an entry to/from this table. When
adding a command, the user will have to supply the implementation code for the command which may be in
a separate file.

Note: If a new file is created, the “Makefile” affected by this new file must be modified to include
compiler and linker commands for this new file.

Command Table Structure
struct command_tab {

char *cmdt_name; /* command name */
char *cmdt_abrv_str; /* cmd. name abbreviation */
int (*cmdt_routine)(); /* implementing function */
int (*cmdt_init_rt)(); /* cmd. init function */
char *cmdt_usage; /* help string/usage */

};

In the above structure:
cmdt_name is a null terminated string that contains the unabbreviated command name.
cmdt_abrv_str is a null terminated string that corresponds to an abbreviated form of the command name

(a second form of entering the command).
cmdt_routine is a pointer to the function that implements the command. The command line interpreter

tokenizes the entire command line then places the null-terminated strings into the argv array and sets argc
to the count of arguments. Delimiters used by the tokenizer are:

space ' '
comma ,
tab \t
left parenthesis (
right parenthesis)

Each string is an argument from the command line; the command name is in argv[0]. The function
pointed to by cmdt_routine in the command table is called with the following arguments:

cmdt_routine(argc, argv, cmd_table)
int argc; char **argv;
struct command_tab *cmd_table;

cmdt_init_rt - is a pointer to an initialization routine that is called on at power-up to initialize the
command (such as to set up default values).

cmdt_usage - is a pointer to a null terminated string that specifies the usage or syntax of the command.
In actuality, this string may be anything the user wants. It is used by the help function (see help).

Command Table Entries
Here is a listing of the complete command table currently implemented in IDT/sim.

static CONST struct command_tab command_tab[] = {
 { "asm", "", asm_cmd, NULL, "assemble:\tasm ADDR" },
 { "benchmark", "bm", benchmark, NULL, "benchmark:\tbenchmark|bm <? for help>"},
uary 3, 2003

Adding & Deleting User Commands Command Table Entries

IDT/sim User/Develope
 { "brk", "b", brk_command,NULL, "set breakpoint:\tbrk|b [ADDRLIST]" },
#ifdef INET
 { "boot", "", boot_cmd, NULL, "boot via tftp:\tboot [-n] [[HOST:]FILE]" },
#endif
 { "cacheflush", "cf", cacheflush, NULL, "cacheflush:\tcacheflush|cf [-i|-d|-n]" },
 { "call", "ca", callcmd, NULL, "call:\t\tcall|ca ADDR [ARGLIST]" },
 { "caus", "", intr_caus, NULL, "display Cause Register:\tcaus|caus" },
 { "checksum", "cs", chk_sum, NULL, "checksum:\tchecksum|cs [startaddr byte_count]" },
 { "clcs", "clcs", intr_clcs, NULL, "clear Cause Register:\tclcs|clcs" },
 { "clsr", "clsr", intr_clsr, NULL, "clear Status Register:\tclsr|clsr" },
 { "compare", "cp", compare_cmd,NULL, "compare memory:\tcompare|cp [-w|-h|-b] RANGE desti-
nation" },
 { "cmpr", "", tmr_cmpr, NULL, "compare register (timer) test:\t\tcmpr|cmpr" },
 { "cont", "c", cont, NULL, "continue:\tcont|c" },
#if MEMCFG == SDRAM_ONLY || MEMCFG == SRAM_N_SDRAM || MEMCFG ==
SDRAM_N_SRAM
 { "creg", "creg", dram_creg, NULL, "modify SDRAM ctrl reg:\t\tcreg|creg" },
#endif
#if defined(EB332) || (defined(S355) && !defined(RP355) && !defined(RP351)) || defined(EB438)
 { "date", "", com_date, NULL, "get/set date:\tdate [mm/dd/[yy]yy]"},
 { "time", "", com_time, NULL, "get/set time:\ttime [hh:mm[:ss]]"},
#endif
 { "env", "", com_env, NULL, "env display:\tenv"},
#if !defined(NO_NVRAM) && !defined(PRETEND_NVRAM)
 { "setenv", "set", com_setenv, NULL, "set or display variable in NVRAM:\tsetenv|set [VAR

[VALUE]]"},
 { "unsetenv", "unset",com_unsetenv,NULL,"remove variable from NVRAM:\tunsetenv|unset VAR"},
 { "purgeenv", "purge",com_purgeenv,NULL,"purge NVRAM:\tpurgeenv|purge"},
#endif
 { "dbgint", "di", ri_sel, NULL, "debug int.:\tdbgint|di [-e|-d][DEVICE|Int. Line]"},
 { "debug", "db", idebug, NULL, "debug (remote):\tdebug|db [DEVICE]"},
 { "diag", "dg", do_diag, NULL, "diagnostics:\tdiag|dg"},
 { "dis", "", _disass, NULL, "disassemble:\tdis [RANGE]" },
 { "dc", "", disp_tag, NULL, "dump cache:\tdc [-i|-d] RANGE"},
 { "dr", "", dump_regs, NULL, "dump regs:\tdr [reg#|reg_name|reg_group|-u]"},
 { "dt", "", dump_trace, NULL, "dump trace:\tdt"},
#if __mips > 2
 { "dump", "d", dump, NULL, "dump:\t\tdump|d [-d|-w|-h|-b] [RANGE]" },
#else
 { "dump", "d", dump, NULL, "dump:\t\tdump|d [-w|-h|-b] [RANGE]" },
r’s Manual 6 - 2 February 3, 2003

Adding & Deleting User Commands Command Table Entries

IDT/sim User/Develope
#endif
#if __mips > 2
 { "fill", "f", fill, NULL, "fill:\t\tfill|f [-d|-w|-h|-b|-l|-r] RANGE [value_list]"},
#else
 { "fill", "f", fill, NULL, "fill:\t\tfill|f [-w|-h|-b|-l|-r] RANGE [value_list]"},
#endif
#if defined(FLASH)
 { "fb", "", flashburn, NULL, "flash burn:\tfb [[-f flash] [-e entry]] [-n] [[HOST:]FILE]"},
#endif
 { "fr", "", fill_reg, NULL, "fill regs:\tfr <reg#|reg_name><value>"},
 { "go", "g", go, NULL, "go:\t\tgo [-n] [INITIAL_PC]" },
 { "gotill", "gt", gotill, NULL, "go untill:\tgotill|gt <brk addr>" },
#ifdef GREEN
 { "ghd", "", ghdebug, NULL, "greenhills debugger:\tghd -G -B <baud-rate> [DEVICE]" },
#endif
 { "gmsk", "gmsk", intr_gmsk, NULL, "get status register mask bits:\tgmsk|gmsk" },
 { "help", "?", help, NULL, "help:\t\thelp|? [COMMAND(S)]" },
 { "history", "h", history, hist_init, "history:\thistory|h" },
 { "init", "i", prominit, NULL, "initialize:\tinit|i" },
#ifdef INET
#if defined(FLASH)
 { "load", "l", load, NULL, "download code:\t\tload|l [-t][-b][-s][-a][-n] DEVICE|FILE" },
#else
 { "load", "l", load, NULL, "download code:\t\tload|l [-t][-b][-s][-a] DEVICE|FILE" },
#endif
#else
#if defined(FLASH)
 { "load", "l", load, NULL, "download code:\t\tload|l [-b][-s][-a][-n] DEVICE|FILE" },
#else
 { "load", "l", load, NULL, "download code:\t\tload|l [-b][-s][-a] DEVICE" },
#endif
#endif
 { "move", "m", movecmd, NULL, "move:\t\tmove memory|m [-w|-h|-b] RANGE destination" },
 { "next", "n", next, NULL, "next:\t\tnext|n [COUNT]" },
#ifdef INET
 { "ping", "", ping_cmd, NULL, "ping net host:\tping [-Rdnqrv] [-c count] [-i wait] [-s size] HOST"
},
#endif
 { "rad", "", select_base, s_b_init, "select radix:\trad [-o|-d|-h]"},
r’s Manual 6 - 3 February 3, 2003

Adding & Deleting User Commands Command Table Entries

IDT/sim User/Develope
 { "regsel", "rs", rs_sel, NULL, "reg set select:\tregsel|rs [-c|-h]"},
 { "setbaud", "sb", setbaud, NULL, "set baud rate of serial port:\tsetbaud|sb [CHAR_DEVICE]" },
 { "search", "sr", search_cmd, NULL, "search in memory:\t\tsearch|sr [-w|-h|-b] RANGE value
[MSK]" },
 { "seg", "", select_seg, s_s_init, "select segment:\tseg [-0|-1|-s|-3|-u]"},
 { "smsk", "", intr_smsk, NULL, "set mask and enable bits in Status Register:\tsmsk|smsk" },
#ifdef VALID
#if MEMCFG != SRAM_ONLY
 { "basic", "", dram_basic, NULL, "basic:\t\tbasic|basic" },
 { "page", "", dram_page, NULL, "page:\t\tpage|page" },
 { "freq", "", dram_freq, NULL, "freq:\t\tfreq|freq" },
#if MEMCFG == SDRAM_ONLY || MEMCFG == SRAM_N_SDRAM || MEMCFG ==
SDRAM_N_SRAM
 { "late", "", dram_late, NULL, "late:\t\tlate|late" },
 { "toggle", "", dram_toggle,NULL, "toggle:\t\ttoggle|toggle" },
 { "probe", "", dram_probe, NULL, "probe:\t\tprobe|probe" },
 { "fast", "", dram_fast, NULL, "fast:\t\tfast|fast" },
#endif /* MEMCFG == SDRAM_ONLY || MEMCFG == SRAM_N_SDRAM || MEMCFG ==
SDRAM_N_SRAM */
#endif /* MEMCFG != SRAM_ONLY */
 { "m2io", "", dma_m2io, NULL, "m2io:\t\tm2io|m2io" },
 { "seti", "", intr_seti, NULL, "seti:\t\tseti|seti" },
 { "wrtst", "", iuart_wrtst,NULL, "wrtst:\t\twrtst|wrtst" },
#if DEFCON == EXTU
 { "intlp", "", iuart_intlp,NULL, "intlp:\t\tintlp|intlp" },
#endif
 { "cross", "", iuart_cross,NULL, "cross:\t\tcross|cross" },
 { "echo", "", iuart_echo, NULL, "echo:\t\techo|echo" },
 { "fifo", "", iuart_fifo, NULL, "fifo:\t\tfifo|fifo" },
 { "flip", "", iuart_flip, NULL, "flip:\t\tflip|flip" },
 { "sstr", "", dma_sstr, NULL, "sstr:\t\tsstr|sstr" },
 { "mstr", "", dma_mstr, NULL, "mstr:\t\tmstr|mstr [DMA_TST_TYPE]" },
#endif
 { "step", "s", single_step,NULL, "single step debugger:\t\tstep|s [COUNT]" },
 { "sub", "", subst, NULL, "substitute memory:\t\tsub [-w|-h|-b|-l|-r] ADDRESS"},
 { "term", "te", em, NULL, "terminal emul.:\tterm|te"},
 { "tlbdump", "td", tlbdump, NULL, "display TLB:\ttlbdump|td [RANGE]" },
 { "tlbflush", "tf", tlbflush, NULL, "flush TLB:\ttlbflush|tf [RANGE]" },
 { "tlbmap", "tm", tlbmap, NULL, "tlbmap:\t\ttlbmap|tm [-i INX] [-(v/d/g)[01]] [-p PAGESIZE] [-c
CACHEALG] VADDR PADDR [PADDR]" },
r’s Manual 6 - 4 February 3, 2003

Adding & Deleting User Commands Command Table Entries

IDT/sim User/Develope
 { "tlbpid", "ti", tlbpid, NULL, "tlbpid:\t\ttlbpid|ti [PID]" },
 { "tlbptov", "tp", tlbptov, NULL, "tlbptov:\ttlbptov|tp ADDR" },
 { "t", "", trace_cmd , NULL, "trace:\t\tt [-a/-o/-e/-d/-r RANGE/-w RANGE/-c RANGE/-i INS/-m

MSK]" },
 { "tc", "", cond_trace_cmd,NULL,"trace cond.:\ttc [-e BPNUM][-d BPNUM]"},
 { "tex", "", excl_cmd, exc_init,"trace exclude:\ttex [RANGE]"},
 { "ts", "", stop_trace, NULL, "trc stop cond.:\tts [-b/-f/-o/-r RANGE/-w RANGE/-i INS/-m MSK]"},
 { "unbrk", "ub", unbrk, NULL,"remove breakpoints:\t\tunbrk|ub BPNUMLIST|ALL" },
 { 0, 0, 0, 0, "" }
};
r’s Manual 6 - 5 February 3, 2003

Adding & Deleting User Commands Command Table Entries

IDT/sim User/Develope
r’s Manual 6 - 6 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 7 - 1 Febr
Chapter 7
Adding & Deleting IDT/sim
Device Drivers
Introduction
The tables that link the file functions to the hardware device driver are contained in the source module

common/idtconf.c. The file functions are: open, close, read, write, ioctl and strategy. There are two tables:
the Device Switch Table and the Device Initialization Table. To add a device driver, a new entry must be
made in the ‘device switch table’.

 A single device driver may control several devices. For example, a driver named ‘tty’ controls two
devices named ‘tty0’ and ‘tty1.’ There must be an entry for each device in the Device Initialization Table.
Currently, IDT/sim is set up for a maximum of 8 device drivers and 16 devices. This is arbitrary and may be
changed by the developer. To reduce the number of drivers and devices, change the sizes of arrays
‘work_dev_tab[]’ and ‘work_init_tab[]’ in the module common/idtconf.c’.

Note: There is no protection for overrunning the Device Switch Table and Device Initialization
Table. Developers must not install more than 8 drivers and 16 devices. If more than 8 and 16 are
required, the arrays ‘work_dev_tab[]’ and ‘work_init_tab[]’ must be expanded.

Device Switch Table
The format of Device Switch Table is shown below:

struct dev_sw_tab {
int (*d_open)(); /* open routine */
int (*d_close)(); /* close routine */
int (*d_read)(); /* read routine */
int (*d_write)(); /* write routine */
int (*d_init)(); /* initialization routine */
int (*d_strategy)(); /* io strategy routine */
int (*d_ioctl)(); /* io control routine */
char *d_driver_name; /* pointer to driver name */

};

Each of the members in the above structure points to implementation routines that are supplied by the
device driver. Currently, there are only two device drivers built into IDT/sim. These are the ‘tty’ and the ‘ity’
(only for the S334/S355 boards) drivers, both of which are serial I/O drivers. Source code for these drivers
can be found in one of the subdirectories of “drivers/” directory, based on the serial I/O device used on the
specific board under consideration. If the device that the driver is written for does not require a particular
function (e.g. strategy), then that member should contain a pointer to a routine that does nothing (see
example below for ‘null device’ routine). There is one entry in the Device Switch Table for each driver in the
system.

Device Initialization Table
The structure shown below is an entry in the Device Initialization Table.

 struct dev_init_tab {
char *dev_name; /* device name */
char *dev_descrip; /* device description */
char *dev_drv_name; /* driver name */
int dev_cntl; /* device controller number */
int dev_unit; /* unit number */
int dev_part; /* partition number */
int dev_io_addr; /* device I/O base address */

};
uary 3, 2003

Adding & Deleting IDT/sim Device Drivers Actual Device Switch Table

IDT/sim User/Develope
The tables currently present in IDT/sim are shown below. The Device Switch Table must be terminated
with a null entry. For the ‘tty’ driver, the implemented functions are: open, read, write, init, and ioctl. There is
no hardware action necessary to close the ‘tty’ devices, so this entry in the table points to the nulldev. There
is also no need for a strategy routine.

Actual Device Switch Table
CONST struct dev_sw_tab device_table[] = {

{

ttyopen, /* device open routine */

nulldev, /* device close routine */

ttyread, /* devive read routine */

ttywrite, /* device write routine */

ttyinit, /* device init routine */

nulldev, /* device strategy routine */

ttyioctl, /* device ioctl routine */

"tty" /* device driver name */

},

#if defined(S134) || defined(S355)

{

ityopen, /* device open routine */

nulldev, /* device close routine */

ityread, /* devive read routine */

itywrite, /* device write routine */

ityinit, /* device init routine */

nulldev, /* device strategy routine */

ityioctl, /* device ioctl routine */

"ity" /* device driver name */

},

#endif

{ 0,0,0,0,0,0,0,0 } /* null entry to mark end of table */

};

In the above table, the entry nulldev points to a routine that just returns zero.

 int
nulldev()
{

return(0);
}

The Device Initialization Table has an entry for each device in the system. IDT/sim supports both chan-
nels of DUART so there are two entries in this table, the first for ‘tty0’ and the second for ‘tty1.’ The same is
true for ity0 and ity1 in the 79S134/S355 board.

 Actual Device Initialization Table
CONST struct dev_init_tab device_init[] = {

{

"tty0", /* name of device */

"console", /* dev. description */
r’s Manual 7 - 2 February 3, 2003

Adding & Deleting IDT/sim Device Drivers Actual Device Initialization Table

IDT/sim User/Develope
 "tty", /* driver name */

 0, /* controller number */

 0, /* unit number */

 0, /* partition */

 0x1fe00000 /* io base address */

},

{

"tty1", /* name of device */

"", /* dev description */

"tty", /* driver name */

0, /* controller number */

1, /* unit number */

0, /* partition number */

 0x1fe00000 /* io base address */

},

#if defined(S334) || defined(S355)

{

 "ity0", /* name of device */

 "", /* dev. description */

 "ity", /* driver name */

 0, /* controller number */

 0, /* unit number */

 0, /* partition */

 0x18000800 /* io base address */

},

{

"ity1", /* name of device */

"", /* dev description */

"ity", /* driver name */

0, /* controller number */

1, /* unit number */

0, /* partition number */

0x18000820 /* io base address */

},

#endif

{ 0,0,0,0,0,0,0 }

}; /* end device_init */

The device description for ‘tty0’ is console. Other devices have no description. The names of drivers are
‘tty’ and ‘ity’ and provide the link between device name and driver. These drivers do not embody the
concept of controller, so all of these devices are assigned to controller zero. ‘tty0’, for example, is unit zero
(0) and tty1 is unit one (1). There is no partition. The I/O in the MIPS architecture is memory mapped, and
the final entry points to the base I/O address for the DUART.
r’s Manual 7 - 3 February 3, 2003

Adding & Deleting IDT/sim Device Drivers Actual Device Initialization Table

IDT/sim User/Develope
r’s Manual 7 - 4 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 8 - 1 Febr
Chapter 8
Using Micromonitor
Introduction
Micromonitor is a small monitor written in assembly language for hardware engineers to begin debug-

ging hardware design features such as DRAM and other I/O devices. The CPU, the EPROM and the UART
are the only hardware parts required to run the Micromonitor.

The monitor has two small stacks of three words each, an ‘operand’ stack and a ‘return’ stack. These
stacks are stored in registers. The operand stack is used by the monitor commands. For example, all ‘load’s
and ‘store’s are between the stack and memory. The return stack is used by the routines that implement the
commands.

All execution control instructions used in the monitor are relative branches. In this way, the code is posi-
tion independent and can be moved to any location and executed using the ‘transfer’ and ‘jump’
commands.

Using Micromonitor
At the Micromonitor prompt ('$'), users can enter only two types of entities, hexadecimal numbers or

commands in lower case. All numbers must begin with a digit between 0 and 9; therefore, hex numbers that
start with 'a' through 'f' must be prefixed by the digit 0. When a number is terminated by an <Enter> key, it is
pushed on the stack. There is no limit to the number of digits entered, only the last eight before the return
and after the prompt '|' for 32-bits and the last 16 for 64-bits will be parsed by the Micromonitor.

Commands are entered as single lower case hex digits. As soon as the monitor recognizes the
command, it will perform the function. It will only echo characters that are appropriate at that point; all others
will be ignored.

There is a default segment address that is ORed into address parameters of all commands that refer-
ence memory. This makes it unnecessary for users to type entire addresses and prevents UTLB excep-
tions. The default segment address can be changed by using the ‘segment’ command.

User Commands

Store
This command performs word, half word, and byte stores. It stores the value that is on top of the stack to

the memory address that is in the slot next to the top of the stack. When the store command is executed,
the address of the store—incremented by the size of the store—becomes the value on the top of the stack.

The monitor performs one store of the appropriate size (sw, sh, or sb). For example, to store the value
"1234" at location "0f10000":

Stack Before s# Enter Command Stack After s#

 xxxxxx s2
0f10000 <Enter>

 0f10000 s2

 yyyyyy s1 xxxxxx s1

 Stack Before

 xxxxxx S2

 yyyyyy S1
uary 3, 2003

Using Micromonitor User Commands

IDT/sim User/Develope
User enters:

0f10000 <Enter>

1234 <Enter>

sw

Further values can be stored simply by entering a number <Enter> and 'sw' without entering a new
address because the incremented address is left on the stack. The following commands store the respec-
tive sized values:

sb -Store a byte

sh -Store a half word

sw -Store a word

Load
The ‘load’ command performs word, half word, and byte ‘load’s. It loads from the location pointed to by

the contents of the top of the stack. When the load command is executed, the address incremented by the
size of the datum loaded is left on the stack. The value is displayed on the terminal but not placed on the
stack. The monitor uses the load opcode for the appropriate size (lw, lh, or lb). For example, to view the
value at location "0f10000":

User enters:
0f10000 <Enter>

lw

 Stack During

 1234 S2

 f10000 S1

 Stack After

 f10004 S2

 f10000 S1

 Stack Before

 xxxxxx S2

 yyyyyy S1

 Stack During

 f10000 S2

 xxxxxx S1
r’s Manual 8 - 2 February 3, 2003

Using Micromonitor User Commands

IDT/sim User/Develope
Further values can be viewed simply by entering 'lw' without entering a new address because the incre-
mented address is left on the stack.

The following commands load the respective sized values:
lb - Load a byte

lh - Load a half word

lw - Load a word

Jump
The ‘jump’ command branches execution to the address on the top of the stack. To transfer control to

location '1000', enter:
1000 <Enter>

j

Dump
The ‘dump’ command displays a range of memory locations in word format on the terminal. To use the

command, first enter the starting address and then the end address. A ^s or 's' will stop the display and the
monitor will prompt to continue or quit. Here is a typical example which will display all locations from 0x1000
to 0x2000:

1000 <Enter>

2000 <Enter>

d

The addresses are modified to the default segment address and forced on word boundaries.

Fill
The ‘fill’ command stores a word data pattern in a range of word memory locations. A typical example

follows which will fill all locations from 0x1000 to 0x2000 with the value 0x12345678:
1000 <Enter>

2000 <Enter>

12345678 <Enter>

f

The addresses are modified to the default segment address and forced on word boundaries.

Increment Fill
The ‘increment fill’ is similar to the ’fill’ command but increments the filled data by ’0x1’ for every sequen-

tial location. A typical example follows which will fill all locations from 0x1000 to 0x2000 starting with the
value 0x12345678 and incrementing the next location filled to 0x12345679 and so on.

1000 <Enter>

2000 <Enter>

12345678 <Enter>

iw

The following commands fill respective sized values and increment respective sized address:
ib - Fill a byte, increment the byte, point to the next byte address and fill again and so on.

 Stack After

 f10004 S2

 xxxxxx S1
r’s Manual 8 - 3 February 3, 2003

Using Micromonitor User Commands

IDT/sim User/Develope
ih - Fill a half-word, increment the half-word, point to the next half-word address and fill again
and so on.

iw - Fill a word, increment the word, point to the next word address and fill again and so on.

Compare
The ‘compare’ command compares a byte/half-word/word data pattern with all data in a range of

memory locations. A typical example follows which will compare all locations from 0x1000 to 0x2000 with
the value 0x12345678:

1000 <Enter>

2000 <Enter>

12345678 <Enter>

c

If the value 0x12345678 is not present in any one of the word wide memory locations, the monitor will
display the address and the value found at that address. This command can be used to verify a fill. Another
use is to clear all of memory (with fill), do one store, and then check to see that one and only one location
was modified. The addresses on the stack are modified to conform to the default segment address and
forced to be on word boundaries.

Increment Compare
The ‘increment compare’ command compares a incrementing data pattern with the bytes/half-words/

words in a range of memory locations. A typical example follows which will compare all locations from
0x1000 to 0x2000. The first location 0x1000 will be compared with the value 0x12345678 and the next loca-
tion 0x1004 with 0x12345679 and so on:

1000 <Enter>

2000 <Enter>

12345678 <Enter>

nw

If the incremental pattern is not present in any one of the word wide memory locations, the monitor will
display the address and the value found at that address. This command can be used to verify a increment
fill. The addresses on the stack are modified to conform to the default segment address and forced to be on
word boundaries. The possible commands are nb (byte-wide), nh (half-word-wide), and nw (word wide).

Transfer
The transfer command moves a block of words from the range specified on the stack to a destination

pointed to by an address on the stack. A typical example follows which will transfer contents of all locations
in the range of 0x1000 and 0x2000 to locations starting at 0x3000:

1000 <Enter>

2000 <Enter>

3000 <Enter>

t

This command can be used to move the monitor itself from one location in memory to another location in
memory such that executing from different parts of memory can be tested. Further testing can be accom-
plished with the monitor memory test when the monitor is running from within Kseg0.

Scope Loops
The ‘scope loop’ commands transfer control to tight 2-instruction loops which are composed of a ‘load’

or a ‘store’ instruction and a ‘branch.’ The scope loop can read or write a word, half word, or byte as speci-
fied by the command. For example, to loop on reading bytes from the location'1000' type the following:

1000 <Enter>
r’s Manual 8 - 4 February 3, 2003

Using Micromonitor User Commands

IDT/sim User/Develope
rb

To write word value 12345678 to the location '1000' type the following:
12345678 <Enter>

1000 <Enter>

wb

The following is a summary of the available scope loop commands:
rb - Load a byte and loop

rh - Load a half word and loop

rw - Load a word and loop

wb - Store a byte and loop

wh - Store a half word and loop

ww - Store a word and loop

Set Segment Default
The ‘segment’ commands set the default segment address which is ORed into the addresses used to

access memory. This avoids having to type the full address (8 digits) and having unexpected UTLB excep-
tions. The following two commands are used to set the default segment address:

k0 - Set default to 0x80000000

k1 - Set default to 0xa0000000

Print Stack
The stack can be viewed by entering '.' This will show the contents of the top of the stack first and the

next-to-top value last on the line.

Memory Check
There are two basic memory checks that can be performed. The first check writes to each location and

reads/compares it before continuing to the next location. This identifies faults immediately, which is very
useful when combined with a logic analyzer to locate and observe refresh arbitration faults. The command
is implemented using word-wide loads and stores only. Error reporting can be turned off with the 'mq'
command. The memory check command is invoked by entering the following (start value first, termination
value last):

1000 <Enter>

2000 <Enter>

x

Alternating '-' and '|' will be displayed on the terminal to indicate each pass through the address range.
The second memory check is more effective at testing things, such as address line validity. In this test, a

pattern of ascending values is first written to memory across the entire specified address range. Then and
only then, the monitor reads/compares the range to verify that the values are present. The range is then
written to again, but starting with the next larger value such that all locations will eventually receive all
values possible. This command is invoked to check byte memory by entering the following (start value first,
termination value last):

1000 <Enter>

2000 <Enter>

mb

The following is a summary of the available memory check commands which write the entire address
range first before read/comparing:

mb - Check memory as bytes

mh - Check memory as half words
r’s Manual 8 - 5 February 3, 2003

Using Micromonitor Porting to New Hardware

IDT/sim User/Develope
mw - Check memory as words

mq - Turns off error reporting

Both memory checks can be terminated by typing ^s or 's', at which point the monitor prompts the user
to either continue or terminate the memory check.

Porting to New Hardware
The hardware designer must verify that the EPROM and the UART work, before using the Micromonitor.

Next the UART code must be modified to match the addressing and control of the UART. There are four
routines in the monitor that involve the UART, as shown below in Table 8.1:

 These routines can be found at the end of the Micromonitor source. It is recommended that a stand-
alone copy of these routines be assembled into a set of EPROMS and tested separately before using the
monitor.

All temporary variables are kept in registers. There are two stacks implemented using these registers:
the ‘operand’ stack and ‘return’ stack. The operand stack uses registers S2, S1, and S7. The stack is oper-
ated on and used by the monitor commands.

For example, all loads and stores are between the stack and memory. The return stack is used by code
which implements the commands. Registers k0 and k1 along with ra are used as the return stack. In this
way, there can be two levels of subroutine calling. Macros (‘save’ & ‘return’) are provided to facilitate the
handling of the return stack.

The code before the ‘start:’ and ‘memerror:’ labels and at the end of the file is used to get the addresses
of these locations at run time. The positional relationship of the code before the labels and the label must be
maintained.

Recommended Debug Technique
When using the Micromonitor to debug a fresh design, the following sequence is recommended to catch

various memory system errors before moving onto the IDT/sim monitor:
1. Use store word, byte, and halfword with the dump command to test the simple ability of the memory

system to store data.
2. If a fundamental error occurs, use the scope loop commands rb, rh, rw, wb,... to focus on the timing

of read/write cycles using an oscilloscope.
3. Use the 'x' memory check command to test for refresh arbitration error problems (if DRAM). Trigger

on the 'Main Memory Trigger Point' address with the logic analyzer to observe timing and state
machine faults if an error occurs. If multiport memory is involved, then run the memory test on the
other port at the same the time as a final check for this step before proceeding.

4. Use the 'm' memory check command to test for refresh and addressing problems (if DRAM). Trigger
on the 'Main Memory Trigger Point' address with the logic analyzer to observe timing and state
machine faults if error occurs. If multiport memory is involved, then run the memory test on the other
port at the same the time as a final check for this step before proceeding.

5. Move the monitor to memory; repeat the memory tests; then use the jump command to start
executing from memory. This will further exercise the DRAM memory system.

6. Change the default segment to'k0' by entering 'k0' and jump to the monitor in memory. Next, run the
memory check test (words, bytes, and half words) in the'k1' address space. This will saturate the read/
write data bus and buffers in order to catch possible state machine problems.

init_uart Initializes the UART
conin Returns a character from the console in v0
constat Returns non-zero if character entered at keyboard
conout Outputs a character in the register a0 to the terminal
echo_test Endless loop to test console by echoing whatever is typed on keyboard

Table 8.1 Micromonitor’s UART Functions
r’s Manual 8 - 6 February 3, 2003

Using Micromonitor Porting to New Hardware

IDT/sim User/Develope
7. Install the IDT/sim monitor in the same EPROM with the Micromonitor. Put the IDT/sim first and
Micromonitor second (the opposite is possible but this order makes run time support for downloaded
code possible). Run debug command and try system tests.

Exception Handling
When an exception is encountered, the monitor jumps to location 0xbfc00100 or 0xbfc00180, and the

monitor stores the EPC, Status, and Cause registers to the memory location specified by EPC_LOC
(usually 0xa0000000), in successive words respectively. In this way, if a logic analyzer is to trigger at loca-
tion 0xbfc00180, it will capture the values as they are put on the memory/cache bus. If the monitor and
UART are functioning, the monitor will print the EPC and Cause registers on the terminal.
r’s Manual 8 - 7 February 3, 2003

Using Micromonitor Porting to New Hardware

IDT/sim User/Develope
r’s Manual 8 - 8 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 9 - 1 Febr
Chapter 9
Using the Systems
Diagnostics Command
Introduction
 The ’diag’ command enables the user to perform a variety of low-level hardware diagnostic tests. Upon

entering the command at the IDT/sim prompt, a secondary menu listing the various available tests is
presented.

Because the use of the ‘diag’ command is different from the other user commands, a separate explana-
tion is provided in this chapter. Details of the other IDT/sim user commands are provided in Chapter 11.
This chapter also includes some specific tests for the IDT 79S134 board.

Following is a list of tests and actions that the user may select. These tests are generally available on all
IDT evaluation boards.

◆ Run All Tests
◆ Memory Test
◆ Cache Test
◆ System Test
◆ DRAM Test
◆ DMA Test
◆ Timer Test
◆ Interrupt Test
◆ Set Options
◆ History
◆ Loop On All Tests
◆ Help
◆ Quit

The following additional test is offered for the RC32334/2 based target boards depending on its config-
uration:

◆ PCI Test

The Following additional test is offered on the RC32355 based target boards depending on its config-
uration:

◆ I2C Test

The following additional test is offered on the EB438 and RP355 boards if flash support is enabled.
◆ Flash Test

Tests Common to all IDT Boards

Memory Test
The Memory Test checks the main memory and isolates all open/shorts and stuck-at faults for both

address and data lines. The memory range over which to run the test can be defined. It defaults to the
entire available address space less the low memory required by IDT/sim.
uary 3, 2003

Using the Systems Diagnostics Command Tests Common to all IDT Boards

IDT/sim User/Develope
Cache Memory Test
This verifies that the cache memory, both instruction and data, pass the memory test by isolating the

respective cache and running the memory test on each. It also verifies that instructions run cached and that
they execute at one instruction per cycle. The cache tags are also tested for both instruction and data
caches. Each cache is, in turn, isolated. Incrementing tag/cache addresses are written and then read with a
check to make sure that there was a cache hit for all valid tags.

System Test
The System Test performs a memory test running in cached mode with varying data patterns. Full word,

half word, and byte accesses are performed to verify proper state machine functionality. Write-through and
read-back are verified for all cache conditions (valid-hit/miss and not valid). This test executes cached, if
possible.

 DRAM Test
A pattern is written to each memory location and read back. This test is performed across the entire

DRAM address space which can be several MegaBytes. An informative message is displayed at the end of
reading or writing each MegaByte of data. If the first message does not get displayed within the first few
seconds of the test, one can conclude that a malfunction has occurred. At the end of the entire test (write,
read, compare across the whole address space of available DRAM), a final message “Passed” or “Failed” is
displayed. This test may take several minutes depending on the DRAM available.

DMA Test
The DMA can transfer data between:
1. memory and memory
2. memory and I/O device
3. memory and PCI device (RC32334/2 only)
4. PCI device and I/O device(RC32334/2 only)
5. PCI device and PCI device(RC32334/2 only)
6. I/O device and I/O device
Not all of the above combinations are tested. In fact, at the present time, only two types of tests are

performed.
Single Configuration: A small (16 bytes) block of data is transferred from location 0xA0009000 to

0xA0009500 using memory to memory transfer capability. The transfer is verified and a "Passed" or
"Failed" status is reported.

Multiple Configuration: This is a more comprehensive memory to memory test. Several features of the
DMA is exercised in this test. "Passed" or "Failed" status is reported.

Timers Test
There are various timers on the RC323XX processors. The Timer Test does some minimal testing on the

three general purpose timers which are on the chip.
The timers are tested by verifying that each timer increments and then rolls over. Each timer is polled

until the current reading is less than the previous reading. Since the timers only count up (from lower value
to higher value), this polling technique insures that the timer roll over is detected.

Interrupt Test
This is a simple test of whether or not the interrupt handler is reached on an interrupt. On-chip timer #0

is used to generate an interrupt upon roll-over. A message indicating success is displayed when the inter-
rupt occurs and the handler is reached.
r’s Manual 9 - 2 February 3, 2003

Using the Systems Diagnostics Command Tests Specific to RC3233x Based Boards

IDT/sim User/Develope
Set Options
The ‘Set Options’ command allows the user to specify global specifications which will affect activities

undertaken by some of the other commands. For example, the user will be allowed to set the memory range
to be tested.

Tests Specific to RC3233x Based Boards

PCI Test
This test scans the PCI bus and detects any PCI devices that are present on the board. If it detects a

known PCI device, it displays which PCI card/device was found on the PCI bus.

SPI Test
This test performs read/write operations to the EEPROM on the board through the SPI interface.

Test Specific to RC32355 Based Boards

I2C Test

This test performs read/write operations to the NVRAM on the board through the I2C Interface. In this
process, the I2C functionality and the NVRAM are tested.

Tests Specific to RC32438 Based Boards

PCI Test
This test scans the PCI bus and detects any PCI devices that are present on the board. If it detects a

known PCI device, it displays which PCI card/device was found on the PCI bus.

SPI Test
This test performs read/write operations to the EEPROM on the board through the SPI interface.

I2C Test

This test performs read/write operations to the NVRAM on the board through the I2C Interface. In this
process, the I2C functionality and the NVRAM are tested.

Test Specific to EB438 and RP355 Boards

Flash Test
This test performs erase/program/read operations to the flash memory on the board. This test is

destructive and will erase the contents of flash memory.
r’s Manual 9 - 3 February 3, 2003

Using the Systems Diagnostics Command Test Specific to EB438 and RP355 Boards

IDT/sim User/Develope
r’s Manual 9 - 4 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 10 - 1 Febr
Chapter 10
IDT/sim PROM Entry Points
General Description and Use
IDT/sim supplies a set of entry points to the functions inside the PROM code. Application programmers

may access these functions by name.
 A call to a function in IDT/sim PROM will cause a jump to a fixed absolute address at the beginning of

the monitor from which, in turn, a jump will occur to the actual implementing routine within the monitor.
Table 10.1 contains a comprehensive list of all entry points in IDT/sim.

Entry # Name Description

0 idtstart enter the monitor
1 n/i
2 promexit back to monitor code
3 prominit reinit then cmd loop
4 n/i not implemented
5 n/i not implemented
6 open open device
7 read read device
8 write write device
9 ioctl i/o control
10 close close device
11 getchar get character from console
12 putchar put char to con
13 showchar show char
14 gets get string
15 puts put string
16 printf formatted print
17 promexit return to cmd loop
18-27 n/i not implemented
28 flush_cache flush all caches completely
29 clear_cache flush portion of a cache
30 setjmp32 save stack state
31 longjmp32 restore stack state
32 n/i not implemented
33 n/i not implemented
34 sprintf sprintf
35 atob ASCII to bin
36 strcmp string comp
37 strlen string length
38 strcpy string copy

Table 10.1 PROM Function Entry Points (Page 1 of 2)
uary 3, 2003

IDT/sim PROM Entry Points General Description and Use

IDT/sim User/Develope
39 strcat string concat
40 cli command line interpreter
41 get_range parse - range
42 tokenize tokenizer
43 help show help menu
44 timer_start(RC32355) start timer
45 timer_stop(RC32355) stop timer & return time
46 n/i not implemented
47 n/i not implemented
48 n/i not implemented
49 printf32 formatted print for 32-bit code for R4xxx
50 iInitLcd(RC32355) Init lcd on board
51 lcd_print(RC32355) print lcd message
52-54 n/i not implemented
55 get_mem_conf Get memory configuration
56 set_mem_conf Set memory configuration
57-63 n/i not implemented
64 exc_tlb_code TLB exc boot vector
65 install_new_dev user installed driver rt.
66 install_immediate_int user in. handler hook - fast response
67 install_normal_int user int.handler hook - normal response
68 install_command user installed command
for ethernet support:
69 tftpopen open TFTP file
70 tftpclose close TFTP file
71 tftpread read TFTP file
72 tftpwrite write TFTP file
73 tftplseek seek TFTP file
74 soc_syscall Indirect socket "system call"
75-95 n/i not implemented
96 exc_cache_code cache error exception
97-111 n/i not implemented
112 exc_norm_code general exc boot v.
113-127 n/i not implemented
128 exc_norm_code

Entry # Name Description

Table 10.1 PROM Function Entry Points (Page 2 of 2)
r’s Manual 10 - 2 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 11 - 1 Febr
Chapter 11
IDT/sim User Commands
Overview
This chapter describes the implementation of the IDT/sim User Commands. All commands, with the

exception of the system diagnostics command ‘diag | dg’, are covered. The ‘diag | dg’ command is
described in Chapter 9.

A majority of the user commands enable the user to monitor both the system hardware and software. It
is for this reason that IDT/sim is sometimes referred to as a ‘monitor.’

Facilities provided include operating the CPU under controlled conditions, examining and altering the
contents of memory, manipulating and controlling resources for the CPU (such as cache, TLB and copro-
cessors), loading programs from host machines and controlling the execution path of these programs.

Issuing Commands
All commands to the monitor are entered on the command line when the cursor is at the input prompt

<IDT>. The command line can be edited by using the following special characters.

Command Format
The general command format is as follows:
 command [options] [argument 1] [argument 2]... [argument n]

All options are entered as a minus sign (-) followed by an alphanumeric character (e.g., -w -b).
Arguments may be such items as a device name, address or count. Later in this chapter, the description

of each command will specify the options and arguments required or accepted by that command.

Documentation Conventions
Conventions used in this document to show the commands and their arguments are as follows:
< > - An option or argument surrounded by these symbols is ‘required’.
[] - An option or argument surrounded by these symbols is ‘optional’.
| - When options or arguments within brackets are separated by the ‘or’ (|) symbol, it means that only

one of the options or arguments may be specified.
/ - When options or arguments within brackets are separated by the (/) symbol it means that one or more

of the options or arguments may be specified.

Command Specifications
◆ To explicitly specify the radix when entering a number, the following convention must be used:

^c (control-c) Terminates current input/output and/or command in progress
^h (control-h) Backspaces and deletes the previous character
^p (control-p) Brings up the previous command on the command line
^u (control-u) Deletes the entire line
Break key If debug interrupt is enabled, returns control to <IDT> prompt
uary 3, 2003

IDT/sim User Commands Communication/Host Interface Commands

IDT/sim User/Develope
The user command for selecting a default radix is provided in section Set Default Radix later in this
chapter.

◆ RANGE - When a command specifies a RANGE to be entered, it can be entered in one of the fol-
lowing three ways:

– start_address-end_address
– start_address/count
– start_address

Ranges cannot contain embedded blanks. Numbers entered by a user, unless explicitly specified, will be
assumed to be the selected default radix. One exception to this is the ‘count’ which is always in decimal. If
no ‘end_address’ or ‘count’ is entered, then a count of 20 is assumed.

◆ When entering an ‘address’ as an argument of a command, there is also the concept of a default
segment. In the context of RC323xx, users may be referring to one of four memory segments
(kuseg, kseg0, kseg1 or kseg2). Users may select a default segment such that all addresses
entered will be modified appropriately (e.g. default seg = kseg1 and the address entered = 0x1000
would result in an address 0xa0001000). To override the default segment, users must enter all 8
nibbles for the 32 bit address.

◆ The command line interpreter will provide some shorthand methods to reenter commands. To
repeat a command just entered, enter !c...; where ‘c...’ are the first few characters of the previ-
ously entered command. Only enough characters need be entered to uniquely identify the previ-
ously entered command. There is also a ‘history’ command which allows users to repeat a
command by entering: !# where ‘#’ is the number of the command from the history list which is dis-
played when the ‘history’ command is entered.

Command Categories
Commands accepted by the IDT/sim monitor are outlined below and are divided into eight groups for

clarity. The groups are:
◆ Communication/Host interface commands
◆ Execution control commands
◆ Memory/Register and Assembly/Disassembly commands
◆ Setup and Environment commands
◆ TLB commands
◆ Trace commands
◆ Network related commands
◆ Board specific commands

Communication/Host Interface Commands

Debug - GDB and Algorithmics Compiler sde4.0c or Later
Users don’t need to enter any commands at the IDT/sim monitor prompt to begin source level debug-

ging using the debugger GDB, which is a part of Algorithmics Compiler sde4.0c and later versions. GDB
running on the host computer will do all the necessary work, including initialization over the serial connec-
tion. Description of GDB is beyond the scope of this user manual. Please refer to the documentation on
Algorithmics Compiler sde4.0c or later.

Hexadecimal 0xnnnnnnnn

Octal 0onnnnnnnn

Decimal 0dnnnnnnnn

Default radix nnnnnnnn
r’s Manual 11 - 2 February 3, 2003

IDT/sim User Commands Communication/Host Interface Commands

IDT/sim User/Develope
Note: GDB works only on the ‘tty0’ port of the target board; the serial link to host must be at ‘tty0’
of the target board.

Debug Remotely
debug|db [DEVICE]
Initialize remote debugging through port defined by ‘DEVICE’ (e.g. tty0, tty1). This command is obsolete

if you are using the GDB remote debugger which came with Algorithmics complier sde4.0c or later.

Debug Interrupt
dbgint|di [-e|-d] [DEVICE | Int. Line]
Enable or disable the debug interrupt. The debug interrupt allows a user to interrupt an application

program's execution and return to the monitor. Users may specify a DEVICE or a specific interrupt line to
generate the external interrupt. The monitor on many of the IDT development boards takes advantage of
the fact that the DUART interrupt is connected to external interrupt line 5 on the RC323xx. When the argu-
ment to the '-e' option is cons, tty0, or tty1, the duart is programmed so that when the 'break' key is
depressed an interrupt will be generated that will return control to the monitor. An example is shown below.

<IDT>dbgint -e cons OR <IDT>di -e cons

The '-e' specifies that the console interrupt is to be enabled. The second argument for this command
may be the special name 'cons' or one of the recognized device names (tty0 or tty1).

When the user specifies 'cons', the interrupt is enabled immediately. When the user specifies a 'device
name', the enabling of the external interrupt only takes place when the user enters the remote debug mode.
To disable the debug interrupt, use the '-d' option.

If the user enters dbgint without any arguments, IDT/sim will display one of the following messages:
If the debug interrupt is disabled -
<IDT>di
Debug int. disabled
<IDT>
If the debug interrupt is enabled -
<IDT>di
Debug int. enabled
Interrupt line n (Where n is 0-5)

<IDT>
If the user specifies an interrupt line number from 0-5, the monitor just enables the interrupt line speci-

fied and it is up to the user to provide a source for the interrupt (i.e., a switch).

 Download Program from Host to Board
load|l [-a][-s][n] <device> (serial or parallel port based download)
load|l [-t][n] <FILE>(ethernet based download)
This command inputs Motorola S-records from the device specified on the command line. For the

EB438 and RP355 boards, if flash programming support is enabled and if the address extracted from the S-
record is in flash memory address space, then flash memory will be programmed. The devices supported
depend on the drivers linked or installed with IDT/sim. IDT/sim contains a serial driver that supports two
serial devices (tty0 and tty1). The RC323XX based boards also provide the ethernet driver.

Currently, Motorola S-record is the only supported file format supported. The monitor expects to see 'S2
or S3' type records until a final 'S7' record is received from the host. Currently the serial channel defaults to
9600 baud, 8 bits, one stop bit and no parity. The RTS, CTS, DSR, and DTR hand shake signals on the
UART are not used.
r’s Manual 11 - 3 February 3, 2003

IDT/sim User Commands Communication/Host Interface Commands

IDT/sim User/Develope
The command line options have the following effect:
-a : turns off handshake. Does not send ACK/NAK after receiving each s-record.
-s : silent mode. Does not echo periods (.) to console. Makes the download execute a little faster.
-n : no update. This switch exists only if flash programming support is enabled. The switch will prevent

entry point updating in the environment variable step.
-t : download file using TFTP (ethernet). If the filename contains a non-alphanumeric character, the

file is automatically downloaded via TFTP even if "-t" is not used. The entire path of the file including the
internet address of the host needs to be specified in the load command. For example:

load -t 89.0.3.4:/usr/people/myhome/myfile.sre

This command will download a file called myfile.sre from directory /usr/people/myhome on a machine
which has the internet address 89.0.3.4. If you define the environment variable $tftphost, you do not need to
specify the host internet address. If the file is in the directory /tftpboot on the host, you do not need to
specify the entire path.

Typically, you can set an environment variable to remember the entire address+path+filename and
simply include that variable in the load command as follows:

setenv f1 89.0.3.4:/usr/people/myhome/myfile.sre

l -t $f1

Remember that you need to issue the ‘setenv’ command only once as the environment variables are
stored in the non-volatile RAM even if you power off your board.

Set Baud Rate of tty Port
setbaud|sb <DEVICE>
This command allows the user to select the baud rate for the device specified by DEV. DEV may be

either tty0 or tty1. This command is interactive in the sense that the user enters the command and then the
monitor will display a baud rate on the next line. If this is the desired baud rate, the user must press the
carriage return key. If it is not, then the user must press the space bar repeatedly until the desired baud rate
is displayed and then press the carriage return key.

<IDT>setbaud tty1

19200

The choices of baud rates wrap around, so if you hit the space bar too many times, continue hitting it
until the desired baud rate is displayed again. There is also a “no change” entry that can be selected if you
wish to return without changing the baud rate.

Terminal Emulator
te
The ‘te’ command puts IDT/sim in a "transparent" mode and connects the console port straight through

to another serial port which may be connected to a host computer’s serial port or modem. If it is connected
to a modem, a remote host may be dialed up and connected to. The port connected to the host is tty1.

Once in the terminal emulation mode the escape character is ^z (control-z). To exit the terminal emula-
tion mode, the user should enter a ^z followed by the letter 'q'. Downloading a program to the target from a
remote host using the terminal emulation mode can be accomplished as follows. On the target, get into
emulation mode by entering the command:

<IDT> te

This will logically connect the host to tty1 port of the box. If tty1 is physically connected to a host, the
user will need to login. After logging on to the host, the user may use the standard UNIX copy command
(cp) to copy a program to the target. On the host enter the following command - but do not press the
carriage return key:

cp program.srec /dev/tty3
r’s Manual 11 - 4 February 3, 2003

IDT/sim User Commands Execution Control Commands

IDT/sim User/Develope
It is assumed that host port ‘tty3’ is hooked up to the board port ‘tty1’.
To start the download, enter the escape character (^z) followed by the letter 'l'.
UNIX "cat" command will work as well. In place of the "cp" command above, use the following

command:
cat program.srec

Do not hit the carriage return. Use ^zl as explained above. Once the download is complete, the user
should exit the emulation mode by entering the escape character (^z) followed by the letter 'q'. This will
return the user to the IDT/sim prompt. At this point, the user may start execution of the downloaded
program.

Execution Control Commands

Set or Display Breakpoint
brk|b [address list]
The ‘brk’ command will display all of the currently set breakpoints if no address list is supplied. If an

address list is supplied, breakpoints are set at each of the addresses in the list. There can only be up to 16
breakpoints set at any one time. It is also important to note that breakpoints are segment-specific. If the
code to be executed is to run in kseg0, then it is necessary to set the breakpoint in kseg0. For example, if
the program starts executing at address 0x80014000 (0x14000 in kseg0) and a breakpoint is desired at
address 0x14008, the following sequence of commands ought be executed:

<IDT>seg -0

<IDT>b 14008

This assumes the default radix is hexadecimal. Once the default segment has been set, it will remain in
force until changed by the user or until the board is reset. Setting breakpoints at the same address in both
kseg0 and kseg1 is not permitted.

Call a Subroutine
call|ca <address> [arg1 arg2... arg8]
This command invokes a subroutine under the monitor environment. It will perform a jump and link to

‘address’ passing any arguments (up to 8) while still in monitor mode. The arguments must be integers and
will be placed in the appropriate registers according to the MIPS calling convention.

When a client program is started by executing a 'go' command, a client environment is established
which includes all registers, a stack and a set of global data. When a 'call' command from the monitor mode
is made, this client environment is maintained (i.e., the client's stack and register contents are left
unchanged). The 'gp' register is initialized to the value of the client's 'gp' prior to invoking the jump and link.
Any effect that the called procedure has on the client’s global data will persist after the call.

Continue Execution
cont|c
This command continues execution of the client process from where it last halted execution as a result

of a ‘brk’, ‘next’, ‘step’, or ‘gotill’ command.

Go (Run Program)
go|g [-n] [address]
r’s Manual 11 - 5 February 3, 2003

IDT/sim User Commands Memory/Register and Assembly/Disassembly commands

IDT/sim User/Develope
The ‘go’ command will begin execution at ‘address’ if entered, or at the address contained in the copro-
cessor zero (CP0) exception program counter (EPC). This command should be used to start the initial
execution of a program downloaded to the board. The ‘go’ command clears the client general purpose
registers, so it should not be used to continue execution once execution has been started. The ‘-n’ option is
used to set the next user PC to be executed at ‘address’ without starting execution. If the user then
executes a ‘step’ command, program execution will begin at the address specified by ‘address’.

GoTill
gotill|gt <address>
The ‘gotill’ command will continue execution from the current value of the user program counter. The

program will stop execution just prior to the execution of the instruction pointed to by ‘address’. This
command actually installs a breakpoint at ‘address’. This breakpoint will continue to remain active as if it
were set by the ‘brk’ command. To get a listing of the currently active breakpoints, the ‘brk|b’ command may
be used.

Next (step over subroutine)
next|n [count]
The ‘next’ command is similar to the 'step' command, except that when a jal or bal instruction is encoun-

tered, all of the instructions of the subroutine are executed until the subroutine returns to the instruction
following the jal or bal. In other words, ‘next’ skips over the subroutines as far as single stepping is
concerned.

Single Step
step|s [count]
The ‘step’ command executes a single step (if count is not specified) or 'count' number of steps.
The ‘step’ command treats branch instructions and the following instruction in the branch delay slot as

atomic and a single step executes both instructions.

Unbreakpoint
unbrk|ub <bpnumlist|ALL>
This command will remove all of the breakpoints listed in <bpnumlist>. These are the ordinal numbers of

the breakpoints and can be obtained by doing a 'brk' command.
<IDT>ub 2 4 5

The above command will remove breakpoints 2, 4, and 5.
<IDT> ub ALL

This command will remove all of the currently set breakpoints.

Memory/Register and Assembly/Disassembly
commands

The Memory/Register access commands handle the changing, displaying, and moving of data. Each of
these commands can be entered with an option to specify the data size and the range (not optional) of loca-
tions affected. The size options have the following meaning:

-d DoubleWord access
-w Word access
-h Halfword access
-b Byte access
r’s Manual 11 - 6 February 3, 2003

IDT/sim User Commands Memory/Register and Assembly/Disassembly commands

IDT/sim User/Develope
The default access type is ‘word’(32-bits). This is true for all commands that allow size types. Word
accesses may be directed to non-word-aligned addresses (i.e., fill memory with words starting at address
offset 1). To handle non-word-aligned writes, the monitor will use the swl and swr instructions.

This will allow the user to debug software utilizing data structures that are not word aligned. In the
‘RANGE’ specification, the ‘count’ is the number of words, halfwords, or bytes to store (i.e., if the option is ‘-
w’ and ‘RANGE = 1000/256’, then 256 words would be affected). Note that the ‘count’ is always a decimal
number independent of default radix.

Assembler
asm <addr>
This command allows the user to examine and change the memory interactively, using standard assem-

bler mnemonics. When the user enters this command, on the next line the monitor will output the address
specified by ‘addr’ followed by the contents of this address in hexadecimal and a disassembly of the
contents.

At this point, the user may enter a new instruction mnemonic, a carriage-return or a period(.).
If the user enters a new instruction, the current contents at the address are replaced by the instruction,

and the monitor outputs the next sequential address and its contents to the next line on the screen and
waits for the next user input.

If the user presses the ‘Enter’ key, the monitor will not alter the contents of address and will just output
the next sequential address and its contents to the next line on the screen. This sequence can be repeated
over and over until the user enters a period (.). This terminates the ‘asm’ command and the monitor will
output the standard command prompt (<IDT>) and wait for the next command to be entered.

Examples: assume, seg=kseg1 and rad=hexadecimal.

Memory starting at 0xa0005000 contains:

0xa0005000: 24090001 li t1,1

0xa0005004: 00000000 nop

0xa0005008: 240a0002 li t2,2

0xa000500c: 0c001400 jal ra,0xa0005000

0xa0005010: 00000000 nop

User input is underlined in the following listing.
<IDT>asm 5000

0xa0005000: 24090001 li t1,1

 add t1,t1,t2

0xa0005004: 00000000 nop

 move t3,t1

0xa0005008: 240a0002 li t2,2

 nop

0xa000500c: 0c001400 jal ra,0xa0005000

 b -3

0xa0005010: 00000000 nop

 .

<IDT>

The above sequence would leave the following pattern in memory:
0xa0005000: 012a4820 add t1,t1,t2

-l Tribyte left access
-r Tribyte right access
r’s Manual 11 - 7 February 3, 2003

IDT/sim User Commands Memory/Register and Assembly/Disassembly commands

IDT/sim User/Develope
0xa0005004: 01205821 move t3,t1

0xa0005008: 00000000 nop

0xa000500c: 1000fffc b 0xa0005000

0xa0005010: 00000000 nop

The assembler only accepts native instructions. For example, to enter:
la v0,0x80014000

the user must enter:
lui v0,0x8001

ori v0,v0,0x4000

It should also be noted that the radix should be explicitly specified. Shift amounts and signed and
unsigned immediate values are assumed to be decimal. Target values are assumed to be hexadecimal.

 Cache Flush
cacheflush/cf [-i|-d|-n]
For the RC323xx CPU, the cache flush command invalidates both the I-cache and the D-cache, if no

option is specified. To flush only one cache, the optional argument may be entered. For example:
To flush both the I and D caches, enter:

<IDT>cf

To flush only the i cache, enter:
<IDT>cf -i

 Normally, any dirty lines in the cache will be written out before the cache line is invalidated. If the ‘-n’
option is specified, the caches are simply flushed; any unwritten data in the cache will be discarded. If no
options are given or only the ‘-n’ option is used, all three caches will be modified.

Compare Block
compare|cp [-w|-b|-h] <RANGE> <destination>
This command compares the block of memory specified by ‘RANGE’ to the block of memory that starts

at ‘destination’. Overlapping blocks will be allowed. However, they probably do not make much sense. The
comparison will continue until a mismatch is found. The monitor will then output the address, the 'should be'
value, the destination address, and the 'is' value. The user may either enter a carriage return to continue the
comparison or enter a period (.) to terminate the comparison.

Examples:
<IDT>cp 4000/128 5000

Compares 128 words of data, starting at location 0xa0004000, to a 128 word block of data starting at
location 0xa0005000.

Disassemble Contents Of Memory
dis <RANGE>
This command disassembles the contents of memory specified by a range. If ‘RANGE’ consists only of

a beginning address, then enough locations following the beginning address are disassembled to fill one
screen. To view disassembly of long pieces of code, the ‘RANGE’ needs to be specified only the first time.
Subsequent ‘dis’ commands without any ‘RANGE’ will continue to display subsequent pages of disas-
sembly.

If ‘dis’ is used immediately after a ‘load’ command, ‘dis’ without a ‘RANGE’ will automatically display
disassembly starting at the beginning of the downloaded code. The names used for the registers depend on
the register set selected (compiler/hardware) with the 'regsel' command.
r’s Manual 11 - 8 February 3, 2003

IDT/sim User Commands Memory/Register and Assembly/Disassembly commands

IDT/sim User/Develope
Dump Cache
dc [-i|-d] [RANGE]
This command displays the instruction or data cache contents and the tag values if the cache location is

valid. If no option is entered, the data cache is dumped. ‘RANGE’ is always assumed to be in the range of
zero(0) to the size of the cache. If the addresses are larger than the cache size entered, they are treated as
modulo cache-size.

The display format for the data cache is shown below. For this example, cache location 0x5004 is valid
and the tag value is 0x00030000 and the data is 0x12345678. Cache location 0x500c is also valid with a
tag of 0x00030000. However, there is an inconsistency between cache contents and main memory (cache
contains 0x00000000 and main memory contains 0x55555555).

<IDT>dc 5000/4

Tag/Invalid 0x00005000 Data/00000000

Tag/0x00030000 0x00005004 Data/12345678

Tag/Invalid 0x00005008 Data/00000000

Tag/0x00030000 0x0000500c ***000000000x55555555

The display format for the instruction cache is shown below. For this example, a program was executed
in kseg0 starting at 0x80014000. Location 0xa0014008 was purposely written to force an inconsistency
between main memory and the 'i' cache after the program was executed.

<IDT> dc -i 4000/8

Tag/0x00010000 0x00004000 0x24090001 li t1,1

Tag/0x00010000 0x00004004 0x240a0002 li t2,2

Tag/0x00010000 0x00004008 ***0x00000000 0x12345678

Tag/0x00010000 0x0000400c 0x240b0003 li t3,3

Tag/0x00010000 0x00004010 0x012a6020 add t4,t1,t2

Tag/0x00010000 0x00004014 0x3c028001 lui v0,0x8001

Tag/0x00010000 0x00004018 0x34426000 ori v0,v0,0x6000

Tag/0x00010000 0x0000401c 0xac4c0100 sw t4,0x100(v0)

Dump Memory
dump|d [-d|-w|-h|-b] <RANGE>
The ‘dump’ command displays the memory specified by ‘RANGE’ to the display screen. The start and

end addresses of the range are rounded down modulo 16 and up modulo 16 respectively (i.e., if the range
requested was 24 to 53, then addresses 16 through 63 will be displayed to the screen). The memory
contents are dumped in the default radix. The options have the following meaning:

-d - Doubleword access.

-w - Word access

-h - Halfword access.

-b - Byte access

The format of the memory dump is shown below. Each line will show 4 items of data either in word
format (32 bits) or halfword (16 bits) format, 2 items in doubleword format (64 bits), or 8 items in byte format
(8 bits). The right-hand portion of the display will show the items of data as ASCII characters. If the data is a
non-printing character, an apostrophe (’) will be shown in its place.

Examples:
assume: seg.=kseg1 and rad=hexadecimal.

<IDT>d 200/4

a0000200: 41424344 31003220 45464739 01020304 *ABCD1'2 EFG9''''*

<IDT>dump -h 200/4
r’s Manual 11 - 9 February 3, 2003

IDT/sim User Commands Memory/Register and Assembly/Disassembly commands

IDT/sim User/Develope
a0000200: 4142 4344 3100 3220 4546 4739 0102 0304 *ABCD1'2 EFG9''''*

The default access type is ‘word’.

Dump Registers
dr [reg#|name|reg_group]
This command will print out the current contents of registers. It should be noted that the register

contents are meaningful only after running (single stepping) or after encountering a breakpoint in a client
program. To obtain acutal values from the CP0 or general purpose register, use the -u switch to manually
update the register image. After IDT/sim is first started, all registers are cleared, the cache is cleared, and
the TLB is invalidated. If the user requests a specific register from the group of CPU registers (r0-r31, hi, lo
or pc), then that particular register is displayed in the default radix. If the user requests a dump of a partic-
ular coprocessor register, then that register is dumped in a special format for ease of reading.

To dump all of the coprocessor zero registers, enter the following command:
<IDT>dr cp0

All coprocessor zero registers may be dumped individually and will be displayed with the individual fields
separated, for easy identification by the user. For example, the user could enter the following command:

<IDT>dr sr

The contents of the status register would be displayed in a field by field display as follows:
sr: cu nbl re dl il bev sr ch ce de imsk um erl exl ie
 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

 Fill Memory
fill|f [-d|-w|-h|-b|-l|-r] <RANGE> [value_list]
The ‘fill’ command fills memory specified by ‘RANGE’ with the contents of ‘value_list’. ‘Value_list’ is a list

of 0 to 8 blank-separated values that will be repeated until the amount of memory specified by RANGE is
exhausted. If ‘RANGE’ is smaller than the number of values, only enough values, starting at the beginning
of the list will be used. If ‘value_list’ is empty, memory specified by ‘RANGE’ will be filled with the address
pattern.

Examples:
assume: seg.=kseg1 and rad=hexadecimal.

<IDT>fill 0x80060000-0x80060100 0x12345678 0xabcdef00

The above command fills memory inclusive between 0x80060000 and 0x80060100 with the repeating
pattern 0x12345678,0xabcdef00.

<IDT>f -h 50000/256 aaaa 5555 0000 ffff

The above command fills memory inclusive between 0xa0050000 and 0xa00050200 with a repeating
pattern 0xaaaa5555 0x0000ffff.

<IDT>f 50001/64 22334455

The above command fills memory as shown below:
a0050000: 00223344

a0050004: 55223344

a0050008: 55223344

: :

: :

a00500fc: 55223344

a0050100: 55000000

<IDT> f 50000 /64
r’s Manual 11 - 10 February 3, 2003

IDT/sim User Commands Memory/Register and Assembly/Disassembly commands

IDT/sim User/Develope
The above command fills memory as shown below:

a0050000: a0050000

a0050004: a0050004

: :

a00500fc: a00500fc

Flash Programming
fb [[-f flash][-e entry][-n][[HOST;]FILE]
This command downloads the binary file via TFTP and programs flash memory on the board. Currently,

this command is supported on the EB438 and RP355 boards.
The ‘fb’ command recognizes MIPS ECOFF and ELF format files. The file to be downloaded is specified

by the HOST:FILE argument. The HOST section is the internet address of the remote TFTP server in
internet dot notation. If the HOST section is not specified, a default value is obtained from the ‘bootaddr’
environment variable. The FILE section is a filename in a suitable format for the remote file server. If the
FILE section is not specified, a default value is obtained from the ‘bootfile’ environment variable.

If the file format is RAW binary, the user must use -f flash to specify the starting address in flash memory
to begin programming. If the -e entry switch is given, the environmental variable $ep is updated in NVRAM
with the value given by entry.

Using the -n switch will suppress the updating of $ep. If the $ep variable is set, the user must press any
key during the IDT/sim boot process, otherwise the program will jump to the Location address stored in $ep.

Fill Register
fr [-s|-d] <reg#|name> <value>
This command puts ‘value’ into the register specified by ‘reg#|name’. However, an exception is made for

double precision floating point registers. In case of double precision, the registers must be accessed as "dn"
where "n" is an even number. To fill register r3 with the value ox12345678, the user may enter either of the
commands below:

<IDT>fr r3 0x12345678

<IDT>fr v1 0x12345678

 As a convenience, the special name ‘pc’ is used for the current program counter. In the MIPS architec-
ture, the current program counter is not contained in any register. The name ‘pc’, as far as the IDT monitor
is concerned, refers to the contents of the exception program counter (EPC) register in coprocessor zero
(CP0).

When the execution control commands (go, continue, gotill) are used, execution will continue from the
contents of the EPC. The names ‘pc’ and ‘co_epc’ are identical internally. The command sequence shown
below would start execution at location 0xa0020000. In that the ‘fill register’ command does not assume
that an address is being entered, it should be noted that the entire 32 bit virtual address needs to be
entered.

<IDT>fr pc 0xa0020000

<IDT>go

Lock Cache
lc -[i|d]
This command “locks” the Instruction cache or the Data cache on RISControllers which support the

cache locking feature.

Move Block
move|m [-w|-b|-h] <RANGE> <destination>
r’s Manual 11 - 11 February 3, 2003

IDT/sim User Commands Memory/Register and Assembly/Disassembly commands

IDT/sim User/Develope
Moves the block of memory specified by RANGE to the address specified by ‘destination’. The destina-
tion address may be before, after, or within the block of memory to be moved, and the ‘move’ algorithm will
move through the block forward or backward so as not to destroy any data. The second example shows the
case of overlapped source and destination regions as specified by the addresses.

Examples:
 assume: seg.=kseg1 and rad=hexadecimal.

<IDT>m 5000/128 5800

The above command moves 128 words of data, starting at location 0xa0005000 to a 128 word block of
data starting at location 0xa0005800.

<IDT>move 5000-5fff 5800

The above command moves the block data between addresses 0xa0005000 and 0xa0005fff to the block
of data between addresses 0xa0005800 and 0xa00067ff. The ‘move’ algorithm is such that this will not
result in destroying the original data between addresses 0xa0005800 and 0xa0005fff.

Read Cache Memory
rc [-i] [-w|-b|-h] <RANGE>
Addresses are automatically set to Kseg0 and the caches are isolated. Memory contents are read

starting at ‘start_addr’ until ‘end_addr’ is reached. If a ‘count’ was specified instead of an end address then
memory is read from ‘start_addr’ to ‘start_addr+count’.

The options have the following meaning:
-i - Select the instruction cache.

-w - Word access.

-b - Byte access.

-h - Halfword access.

The default access type is ‘word’ and the default cache is the ‘data’ cache.

Search Memory
search|sr [-w|-b|-h] <RANGE> <value> [mask]
This command will search the area of memory specified by ‘RANGE’ for the ‘value’. Prior to the check,

each memory location and value will be 'anded' with the mask, if specified. When a match is found, the
address is displayed and the user may enter a carriage return to continue searching or a period (.) to termi-
nate the search operation. User input is underlined below.

Examples:
assume: seg.=kseg1 and rad=hexadecimal.

<IDT>sr 5000/128 12345678

Match: a0005010=12345678

<IDT>

The above command searches 128 words of data, starting at location 0xa0005000, for the word
containing the value 0x12345678. A match is found at location 0xa0005010. Only one match was found and
the monitor then returned to the command line displaying the command line prompt when the search
completed.

<IDT>sr 4000/128 12345678 00ffff00

The above command searches 128 words of data, starting at location 0xa0004000, for a word
containing the value xx3456xx, where ‘x’ can be any hex value from ‘0’ to ‘f’. Halfword access use only the
least significant 16 bits of the mask and byte accesses use only the least significant 8 bits of the mask.
r’s Manual 11 - 12 February 3, 2003

IDT/sim User Commands Set-up and Environment Commands

IDT/sim User/Develope
Substitute Memory
sub [-w|-h|-b|-l|-r] <address>
The ‘sub’ command allows the user to examine and change memory interactively. When the user enters

the ‘sub’ command, the ‘address’ followed by the contents of memory at the address are displayed on the
next line. At this point the user may enter a new value or a carriage return (‘Enter’ key) or a period (.).

If the user enters a new value, the current contents of memory at ‘address’ are replaced by the new
value. The monitor then displays the next sequential address and its contents on the next line of the
console and waits for the next user input.

If the user presses the carriage return or Enter key, the monitor will not alter the contents of memory at
‘address’ and will just display the next sequential address and its contents on the next line.

This sequence can be repeated until the user enters a period (.) which terminates the ‘sub’ command
and the monitor will return to the standard command prompt ‘<IDT>’ and wait for the next command.

Examples:
assume: seg=kseg0 and rad=hexadecimal. User input is underlined.

Memory starting at 0x80005000 contains:

0x80032001 0x32402200 0x00230444 0x3309765.

<IDT>sub 4000

80005000: 80032001 12345678

80005004: 32402200 aaaa5555

80005008: 00230444 <Enter>

8000500c: 33809765.

<IDT>

The above sequence would leave the following pattern in memory starting at 0x80005000: 0x12345678
0xaaaa5555 0x00230444 0x33809765

<IDT>sub -h 5000

80005000: 1234 8765

80005002: 5678 4321

80005004: aaaa <Enter>

80005006: 5555 9999

80005008: 0023 <Enter>

8000500a: 0444.

<IDT>

The above sequence would leave the following pattern in memory starting at 0x80005000:
 0x87654321

 0xaaaa9999

 0x00230444

Set-up and Environment Commands

Checksum
checksum|cs [start_addr num_bytes]
This command calculates the checksums for each of the EPROMs on the target board and displays the

results on the console. If the optional arguments are entered, the checksums for the area of memory speci-
fied are calculated. By default, it is assumed that the EPROMs begin at address 0xbfc00000 and are
0x20000 bytes deep. The two forms of the command below would do the same operation.

<IDT>cs
r’s Manual 11 - 13 February 3, 2003

IDT/sim User Commands TLB Commands

IDT/sim User/Develope
<IDT>cs 0xbfc00000 0x20000

Help Command
help|? [commandlist]
This command will print out the list of commands available in IDT/sim. If a command list is supplied, only

the syntax for the commands in the list is displayed.

History Command
history|h
This command will display the last 16 commands entered with identifying numbers so that the user may

re-execute one of those commands by entering ‘!#’ where ‘#’ is the command number from the list. This is a
circular list, meaning that at any time the latest 16 commands are available.

Initialize
init|i
This command is a ‘warm reset’ and is analogous to pressing the hardware reset switch. The ‘init’

command will initialize the 'bss' area and stack designated by IDT/sim. It also clears the breakpoint table,
but does not clear the user memory space.

Register Set Select
regsel|rs [-c|-h]
This command allows the user to select the format of the register names. There are two formats for the

register names, ‘compiler’ names or ‘hardware’ names. The ‘compiler’ names are: a0, t1, s0, etc. The ‘hard-
ware’ names are: r0, r1,..., r31. The default selection when the monitor first powers up is ‘compiler’ names.

Set Default Radix
rad [-o|-d|-h]
Set the default radix to the requested base.

-o - Octal

-d - Decimal

-h - Hexadecimal

If no argument is supplied, the radix in force at the time is displayed.

Set Default Segment
seg [-0|-1|-2|-s|-3|-u]
The ‘seg’ command sets the default segment to the requested segment.

-0 - Kseg0 0x80000000

-1 - Kseg1 0xA0000000

-u - Kuseg 0x00000000

When the user enters an address and does not specify all 8 nibbles of the 32 bit address, the address
entered is ‘or’-ed with the default segment value. If no argument is supplied with the ‘seg’ command, the
segment in force at the time is displayed.

TLB Commands

TLB Dump
tlbdump|td [RANGE]
r’s Manual 11 - 14 February 3, 2003

IDT/sim User Commands TLB Commands

IDT/sim User/Develope
This command displays the contents of the Translation Lookaside Buffer (TLB). If a ‘RANGE’ is speci-
fied, just the contents within the ‘RANGE’ are dumped, otherwise the entire buffer is dumped.

TLB Flush
tlbflush|tf [RANGE]
This command flushes the contents of the TLB. If a ‘RANGE’ is specified, just the contents of the

‘RANGE’ are flushed, otherwise the entire buffer is flushed.

TLB Map
For RC323xx CPU:
tlbmap|tm [-i index] [-cdgv] [-p pagesize] [-c cachealg] <vaddress> <paddress>
The ‘tlbmap’ command establishes a virtual to physical mapping in the TLB. A particular entry may be

specified with the -i option; if no TLB entry is specified, a random entry is selected between 8 and 63. The -
n, -d, -g and -v options cause the corresponding bits in the TLB entry to be set to 1, otherwise they are set
to 0. The default segment is not applied to these addresses.

 The ‘tlbmap’ command establishes a virtual to physical mapping in the TLB. A particular entry may be
specified with the -i option;

These switches may optionally be followed by ‘0’ or ‘1’ to specify an individual TLB low entry. By default,
both TLB low entries are affected. The -p switch allows the TLB page size to be set. It may take one of the
following values:

0x00001000 4 kbyte page

0x00004000 16 kbyte page

0x00010000 64 kbyte page

0x00040000 256 kbyte page

0x00100000 1 Mbyte page

0x00400000 4 Mbyte page

0x01000000 16 Mbyte page

The -c switch allows the TLB cache algorithm to be set. It may take one of the following values:
0- Cacheable, noncoherent, write-through, no write allocate

1- Cacheable, noncoherent, write-thourgh, write allocate

2- Uncached

3- Cacheable, noncoherent, write-back

4- Reserved

5- Reserved

6- Reserved

7- Reserved

 If two physical addresses are supplied, the two ‘tlblo’ entries are set to use them. If one physical
address is supplied, ‘tlblo0’ entry is set to the physical address and ‘tlblo1’ entry is set to the physical
address plus the selected page size.

TLB Process ID
tlbpid|ti [pid]
The ‘tlbpid’ command without argument displays the current process identifier in the system copro-

cessor register 'tlbhi'. If an argument is supplied, the current process identifier in 'tlbhi' is set to ‘pid’.

TLB Search For Physical Address Map
tlbptov|tp <physaddr>
r’s Manual 11 - 15 February 3, 2003

IDT/sim User Commands Trace Commands

IDT/sim User/Develope
This command searches the TLB for translations which map to ‘physaddr’. Any translations found, valid
or invalid, are displayed. The default segment is not applied to ‘physaddr’.

Trace Commands
The trace commands allow the user to trace memory accesses of a user program. Such things as the

path of execution, writes/reads to a specific address or range of addresses, execution of a specific instruc-
tion and/or all calls may be traced. The trace occurs in a non-real-time execution mode. There is a trace
mode that allows real-time execution for all but a specified range or set of ranges of program execution. For
example, to accommodate programs which call ROM-based code, an address range not to be traced can
be specified. Calls to the excluded address range will be executed real-time.

Trace Command
t [-a/-o/-e/-d/-r RANGE/-w RANGE/-c RANGE/-i INS/-m MSK]
The ‘trace’ command defines the ‘trace equation’ and/or enables/disables tracing. The options are

explained below:
-a - trace all instructions executed.

-o - turn off all previously selected trace conditions.

-e - enable tracing.

-d - disable tracing

-r RANGE - trace all reads from address range 'RANGE'

-w RANGE - trace all writes to address range 'RANGE'

-c RANGE - trace all calls to address range 'RANGE'

-i INS - trace all execution of instruction 'INS'

-m MSK - Mask value for tracing a specific instruction

Options may be specified in any combination and are interpreted in the order that they appear on the
command line. An example of setting up trace conditions to trace ‘all’ memory accesses and ‘enable’
tracing is shown below:

<IDT>t -a -e

To trace all writes to a particular area of memory (for example, the user stack) the following command
may be used:

<IDT>t -w 0x800fe000-0x800ffffc -e

If the stack is in the area of 0x800fe000-0x800ffffc, the above command will capture all writes to the
stack. It also enables tracing.

The command shown below will trace all reads and writes to an area:
<IDT>t -r 0x800fe000-0x800ffffc -w 0x800fe000-0x800ffffc -e

To see the current trace selection the user enters the ‘trace’ command with no arguments (user input
underlined below):

<IDT>t -o

<IDT>t -e -r bfe00000-bfe0003f -w 50000-60000

<IDT>t

Trace reads - bfe00000-bfe0003f

Trace writes - a0050000-a0060000

Trace enabled

Note that the range specification uses the default radix and segment. All of the trace commands interact
with each other. The trace buffer size is set to 512 entries. The ‘ts’ (trace stop condition) command is used
to determine when to stop tracing. The tc (trace conditionally) command will allow switching from real-time
mode to trace mode automatically. An example of how to trace a specific instruction is shown below:
r’s Manual 11 - 16 February 3, 2003

IDT/sim User Commands Trace Commands

IDT/sim User/Develope
<IDT>t -i "mfc0 t0,sr"

The above command will trace every occurrence of the instruction 'mfc0 t0,sr'. Note that the instruction
is entered with the same syntax that is used for the incremental assembler. The entered instruction must be
enclosed in quote marks.

Breakpoints will not halt execution with trace enabled unless the ‘trace stop’ condition is set to stop on
breakpoint. The trace may be disabled without erasing the trace equation. With the trace disabled, break-
points work normally. Using the ‘trace conditionally’ command with breakpoints, will automatically toggle
trace enable.

By specifying a mask (-m MSK), the user can trace classes of instructions. For example, to trace all
'mfc0' instructions regardless of the registers involved, use the following trace command:

<IDT>t -i "mfc0 t0,sr" -m 0xffe007ff -e

The mask is applied to the values before the test for equality is made. It masks out the 'rt' and 'rd' values
for the 'mfc0' instructions.

<IDT>t -i "mfc0 t0,sr" -m 0xffff07ff -e

The above command would cause all "move from coprocessor zero status register" instructions to be
traced. Below are tables of useful masks for some of the instructions:

Obviously, some combinations do not make sense. Example:
<IDT>t -o -d -a -r 0xa0010000/10

The -o disables tracing, so the -d is superfluous. The trace conditions are ‘and’-ed, so the -a will trace
everything including the trace conditions specified by the -r option.

Trace Stop Command
ts [-b|-f|-o|-r RANGE|-w RANGE|-i INS|-m MSK]
The ‘ts’ command defines the conditions necessary to halt execution of the client program and return to

monitor mode, allowing the user to examine the trace buffer. The trace buffer wraps so that, when execution
stops, only the last 512 or less events are available. The options are explained below:

-b - Stop on occurrence of a breakpoint

-f - Stop on trace buffer full

-o - Cancel all trace stop conditions

-r RANGE - Stop on reads from address range 'RANGE'

-w RANGE - Stop on writes to address range'RANGE'

Store to memory/Load from memory

Any register 0xffe0ffff

Any base 0xfc1fffff

Any offset 0xffff0000

Add,Addu,And,Nor,Or,Sllv,Slt,Sltu,Sub,Subu,Xor

Any destination 0xffff07ff

Any operands/specific destination 0xfc00ffff

Any operands/destination 0xfc0007ff

Mfcz,Mtcz,Cfcz,Ctcz Where 'z' is 0 - 3

Any coprocessor reg.ister 0xffff07ff

Any general reg.ister 0xffe0ffff
r’s Manual 11 - 17 February 3, 2003

IDT/sim User Commands Trace Commands

IDT/sim User/Develope
-i INS - Stop on execution of instruction 'INS'

-m MSK - Mask value for instruction to stop tracing

Any or all options may be specified. Execution will stop on the first condition to be satisfied. Entering the
'ts' command without arguments will display the trace conditions. This is the same as the 't' command.

Examples:
<IDT>ts -f

The above command will continue tracing until the trace buffer is full.
<IDT> ts -f -b -i "mfc0 t1,sr" -m 0xffe0ffff

The above command will trace until the buffer is full or a breakpoint is encountered or a 'mfc0' instruction
moves any general register to 'sr'.

Trace Conditionally Command
tc [-e BPNUM] [-d BPNUM]
This command defines the limits of tracing. By placing breakpoints at the start of a code segment and at

the end and using the trace conditionally command, a user may specify a section of code to trace. The user
should use the ‘trace’ (t) command to define the items traced and the ‘trace stop’ (ts) command to specify
when to halt execution.

Typically, the client program would be started with trace disabled. When the enabling breakpoint is
reached, tracing will commence and continue until the disabling breakpoint is reached. Except for the time
that tracing is enabled, the program will execute in real time. An example of how to use this command is
shown below (user input underlined):

<IDT>t -a -d

<IDT>ts -f

<IDT>b 40100 40188

<IDT>b

bp 0= 0x80040100:24090000li t1,0x0

bp 1= 0x80040188:03e00008jr ra

<IDT>tc -e 0 -d 1

<IDT>t

Trace all

Stop on buffer full

Trace disabled

bp 0= 0x80040100:24090000 li t1,0x0 Start Trace

bp 1= 0x80040188:03e00008 jr ra Stop Trace

<IDT>

The ‘tc’ command specifies to enable tracing when breakpoint 0 (-e 0) is reached and to disable tracing
when breakpoint 1 (-d 1) is reached. Up to 16 breakpoints may be specified, and the ‘trace conditionally’
command may be used to set enable/disable tracing on any or all of the breakpoints. It is not legal nor does
it make any sense to try to enable and disable tracing on the same breakpoint.

<IDT>t -a -d

<IDT>ts -f

<IDT>ub all

<IDT>b 40100 40188 40200 40214

<IDT>b

bp 0= 0x80040100:24090000 li t1,0x0

bp 1= 0x80040188:03e00008 jr ra
r’s Manual 11 - 18 February 3, 2003

IDT/sim User Commands Trace Commands

IDT/sim User/Develope
bp 2= 0x80040200:240c0000 li t4,0x4

bp 3= 0x80040214:03e00008 jr ra

<IDT>tc -e 0 -e 2 -d 1 -d 3

<IDT>t

Trace all

Stop on buffer full

Trace disabled

bp 0= 0x80040100:24090000 li t1,0x0 Start Trace

bp 1= 0x80040188:03e00008 jr ra Stop Trace

bp 2= 0x80040200:240c0000 li t4,0x4 Start Trace

bp 3= 0x80040214:03e00008 jr ra Trace Stop

<IDT>

The above sequence specifies a couple of ranges to trace. If the enabling breakpoint is never reached,
then no information will be placed in the trace buffer. Even if the breakpoint is reached and after the trace is
enabled no conditions for capturing trace information are satisfied, no information will be placed in the trace
buffer.

Trace Dump Command
dt
The ‘dump trace’ command displays the contents of the trace buffer. The format is shown below:

<IDT>dt

Dump Trace Buffer - 512 entries

<line#> <virtual addr> <disassembled instr> <register contents>

 : : : :

 : : : :

<line#> <virtual addr> <disassembled instr> <register contents>

<up(u) down(space) line #(l nnnn) search addr(s addr) next(n) quit(q)>

When the user has captured a buffer full of trace data and enters the ‘dt’ command, the contents of the
buffer will be displayed to the console 21 lines at a time in the format shown above. The last line of the
display prompts the user to enter either an 'u' to scroll up or a 'space' to scroll down, or the letter 'l' followed
by a line number from 0-511, or search the trace buffer starting at line 0 for an address, or next(n) to search
for the next occurrence of address, or to quit(q).

In case of specifying a line number, the contents of the trace buffer starting at the line number and
continuing for 21 entries will be displayed. If ‘search for address’ is used and the specified address is found
in the trace buffer then 10 entries before and 10 entries after are displayed with the found line marked with
(****). If the specified address is not found, the next page of trace buffer contents is displayed.

Trace Exclude Command
tex [RANGE]
The trace exclude command allows the user to specify an address area, the calls to which will not be

traced. The main reason for this is to prevent calls to library or ROM space from being traced. Trying to
trace calls to ROM space will not work.

This command is very useful if the user is linking with IDT/sim's library functions (i.e. printf, string rts,
etc.). Tracing is done by actually single-stepping and examining the instruction being executed and its oper-
ands. If the instruction is a branch-and-link or a jump-and-link, the target address is calculated and tested to
see if it falls in the excluded area. If it does, the branch or jump is executed real time with a breakpoint
inserted at the return address, where tracing will continue normally.
r’s Manual 11 - 19 February 3, 2003

IDT/sim User Commands Network Related Commands

IDT/sim User/Develope
Examples:

<IDT>tex 45110-47000

Any calls to the area 45110-47000 would be stepped over (similar to executing a 'next' command
on the 'jal' instruction).

<IDT>tex

Exclude a0045110-a004700

The "tex" command entered without any arguments will display the currently excluded area. On power
up, the default excluded area is 0xbfc00000-0xbffffffc. The default segment and radix are applied to the
address specification at the time the tex command is entered. Changing the segment or radix later does not
effect the current exclusion area.

Trace Command Examples
Assume a client program with a kernel running in real time and starting at location 0x80020000. There is

a subroutine starting at location 0x80040000 and ending at 0x80040120 that gets called infrequently. The
user would like to trace this subroutine. The following command sequence could be used (user input under-
lined):

<IDT>seg -0

<IDT>t -a

<IDT>ts -f

<IDT>b 40000 40120

<IDT>tc -e 0 -d 1

<IDT>t

Trace all

Stop on buffer full

Trace disabled

bp 0= 0x80040000:24090000 li t1,0x0 Start Trace

bp 1= 0x80040120:03e00008 jr ra Stop Trace

<IDT>

The above sequence sets the default segment to kseg0, trace all, stop tracing on buffer full, bracket the
subroutine with breakpoints at locations 0x80040000 and 0x80040120, start tracing when breakpoint
zero(0) is encountered, and trace all until breakpoint one(1) is encountered.

To see the trace conditions that are set, the ‘trace’(t) command with no arguments is entered. With the
trace conditions set, the user may start the program and it will run real time, except for the portion of time
that it is executing in the range of 0x80040000- 0x80040120.

Network Related Commands
Network related commands assume that an ethernet device driver has been installed on the board and

the required hardware is also present.

Download and Execute Binary File (boot)
boot [-n] [[HOST:]FILE]
The ‘boot’ command downloads and executes an executable binary file via TFTP. If the -n option is

given, the file is simply downloaded ready for execution by the ‘go’ command.
r’s Manual 11 - 20 February 3, 2003

IDT/sim User Commands Board Specific Commands

IDT/sim User/Develope
The ‘boot’ command recognizes MIPS ECOFF and ELF format files. The file to be downloaded is speci-
fied by the HOST:FILE argument. The HOST section is the internet address of the remote TFTP server in
internet dot notation. If the HOST section is not specified, a default value is obtained from the ‘bootaddr’
environment variable. The FILE section is a filename in a suitable format for the remote file server. If the
FILE section is not specified, a default value is obtained from the ‘bootfile’ environment variable.

Ping a Host
ping [-lnqrv] [-c COUNT] [-i WAIT] [-s SIZE] HOST
This command allows a remote host to be ‘pinged’ to see if it is available. ICMP echo packets are sent to

the host and the reply packets are displayed showing the round-trip time.
The HOST argument selects the host to be ‘ping’ed. It is given in internet dot notation.
The -c option allows a specified number of packets to be sent. By default "ping" will send packets contin-

uously until it is interrupted by typing control-c.
The -l option allows a specified number of packets to be sent before timing commences. This allows the

network load to reach a steady state.
The -n option forces internet addresses to be printed out in dot notation (this is the default behavior).
The -q option stops "ping" from displaying the results of each packet sent.
The -r option prevents the low level network code from routing packets.
The -v option enables verbose messages when unexpected packets are received.
The -s option allows you to specify a different packet size (maximum 1432, default 56).

Board Specific Commands
The following commands will work on boards with real-time capability and non-volatile memory.

Set / Display Date
date [[[mm]/dd]/yyyy]
The Set / display date command is used to display and set the date in a real time clock. With no argu-

ments, the current date is displayed. The optional argument allows the date to be set. Each section of the
string consists of two digits: yyyy - the year, you can give the entire 4 digits or the last two digits, mm - the
month (01-12), dd - the day (01-31). Any unspecified field defaults to the current value.

Set / Display Time
time [[[hh]:mm]:ss]
The Set / display time command is used to display and set the time (and not the date) portion of a real

time clock. With no arguments, the current time is simply displayed. The optional argument allows the time
to be set. Each section of the string consists of two digits: hh - the hour (0-23), mm - the minutes (0-59) and
ss - the seconds (0-59). Any unspecified field defaults to the current value.

Display Settings of Environment Variables
env
Displays the environment strings set in the NVRAM.

Set Environment Variable Values
setenv <VAR> <VALUE>
Sets the environment variable ‘VAR’ to ‘VALUE’. The environment is stored in NVRAM and is preserved

when the power is off. Spaces may be included in the ‘VALUE’ string by encompassing them inside quote
marks.
r’s Manual 11 - 21 February 3, 2003

IDT/sim User Commands Board Specific Commands

IDT/sim User/Develope
For example:
<IDT> setenv cmd "load -b -a tty1"

<IDT> $cmd

Environment variables is a great way of saving repetitious typing at the sim command line.

Delete (unset) Environment Variable
unsetenv <VAR>
Deletes the environment variable ‘VAR’ from the NVRAM environment.

Delete (unset) all Environment Variable
purge

Deletes all the environment variable from the NVRAM environment.
 For Example:
 <IDT>purge

General Purpose Commands

 caus
caus
This command reads and displays the cause register.

clcs
clcs
This command clears (sets to zero) the cause register bits.

clsr
clsr
This command clears (sets to zero) the status register bits.

cmpr
cmpr
This command runs a simple timer test.

creg
creg
This command allows the user to interactively set individual fields of the SDRAM control register.

gmsk
gmsk
This command is the retrieving counterpart of the smsk command explained below; it “gets” the status

register to show the interrupt mask.

 smsk
smsk
This command allows the user to set ‘interrupt enable’ and ‘mask’ bits. It asks the user to enter status

register’s interrupt mask and ‘enable’ bit values as hexadecimal numbers.
r’s Manual 11 - 22 February 3, 2003

IDT/sim User Commands Board Specific Commands

IDT/sim User/Develope
r’s Manual 11 - 23 February 3, 2003

IDT/sim User Commands Board Specific Commands

IDT/sim User/Develope
r’s Manual 11 - 24 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 12 - 1 Febr
Chapter 12
IDT/sim User Command
Summary
Quick Reference

IDT/sim User Commands

asm <addr>
Allows the user to interactively examine and change memory, using standard assembler mnemonics.

benchmark|bm
Before issuing this command, the code to be benchmarked should be downloaded to the target board.

This command returns the total elapsed time for executing the entire downloaded code, in microseconds.
The time is displayed on the monitor.

brk|b [address list]
Displays all of the currently set breakpoints, if an address list is not supplied. If an address list is

supplied, breakpoints are set at each of the addresses in the list.

boot [-n] [[HOST:]FILE]
Downloads a binary file via ethernet and executes it on the target board. ‘-n’ prevents execution.

cacheflush|cf [-i|-d|-n]
Flushes both the i-cache and the d-cache, if no option is specified. If the user wants to just flush one or

the other, the optional argument may be entered. In the R4xxx, ‘-n’ prevents write-back.

call|ca <address> [arg1 arg2 ... arg8]
Invokes a sub-procedure under the monitor environment. Executes a jump-and-link to the address

passing up to eight arguments while still in monitor mode.

caus
Displays cause register.

checksum|cs [start_addr num_bytes]
Displays the checksum for each of the IDT/sim EPROMS.

clcs
Clears cause register.

clsr
Clears status register.

compare|cp [-w|-b|-h] <RANGE> <destination>
Compares the block of memory specified by RANGE to the block of memory that starts at destination.

cont|c
Continues execution of the client process from where it last halted execution.

cmpr
Timer test.
uary 3, 2003

IDT/sim User Command Summary Quick Reference

IDT/sim User/Develope
creg
Sets individual fields of the SDRAM control register.

date [[[mm]dd]yyyy]
Displays and sets date and time. Available on boards with NVRAM only.

dbgint|di [-e|-d] [DEVICE | Int. Line]
Enables or disables the facility that allows the user to interrupt an application program’s execution and

return to the monitor.

dc [-i|-d] RANGE
Displays the instruction or data cache contents and the tag values, if the cache location is valid.

debug|db [DEV]
Enters remote debug mode. ‘DEV’ can be ‘tty0’ or ‘tty1’.

diag|dg
Runs low-level system diagnostics.

dis <RANGE>
Dis-assembles the contents of memory specified by RANGE. If RANGE consists only of a beginning

address, enough locations following the beginning address are disassembled to fill one page.

dr [reg#|name|reg_group|-u]
Prints out the current contents of register(s).

dt
Displays the contents of the trace buffer.

dump|d [-d|-w|-h|-b] <RANGE>
Displays the contents of memory specified by RANGE.

env
Displays the environment variable string settings in boards with NVRAM.

fill|f [-d|-w|-h|-b|-l|-r] <RANGE> [value_list]
Fills memory specified by RANGE with ‘value_list’.

fb [[-f flash][-e entry]][-n][[HOST:]FILE]
Downloads a binary file via ethernet and programs the flash memory on the target board.

fr [-s|-d] <reg#|name> <value>
Puts <value> into the register specified by <reg#|name>.

 go|g [-n] <address>
Begins execution at address <address>.

gotill|gt <address>
Continues execution from the current value of the program counter. The program will stop execution just

prior to the execution of the instruction pointed to by ‘address’.
r’s Manual 12 - 2 February 3, 2003

IDT/sim User Command Summary Quick Reference

IDT/sim User/Develope
help|? [command list]
Prints out a list of commands available in the monitor. If a command list is supplied, only the syntax for

the commands in the list is displayed.

history|h
Displays the last eight commands entered with identifying numbers so that the user may re-execute the

command by entering ‘!#’, where ‘#’ is the command number.

init|i
Initializes prom monitor (warm reset).

isrt
Tests the interrupt handling of 79S134 board.

load|l [-b|-a|-s|-t] <device>
Input S-records from ‘device’.
-b: binary download; needs the program ‘bdl’.
-a: turns off handshake protocol which indicates end of each S-record.
-s: silent mode; no dots are printed on screen.
-t: download via ethernet; needs entire ip address and filename following ‘-t’.
-n: suppress update of $ep variable if flash is programmed.

lockcache|lc [-i|-d]
Locks i-cache or d-cache in RISControllers capable of doing so.

move|m [-w|-b|-h] <RANGE> <destination>
Moves the block of memory specified by RANGE to the address specified by destination.

next|n [count]
Similar to the 'step' command except that when a jal or bal instruction is encountered, all instructions of

the sub-procedure are executed until the sub-procedure returns to the instruction following the jal or bal.

ping [-lnqrv] [-c COUNT] [-i WAIT] [-s SIZE] HOST
Sends ICMP echo packages to remote host to check if the host is available.

purge
 Clears the contents of the NVRAM.

rad [-o|-d|-h]
Sets the default radix to the requested base (Octal / Decimal / Hexadecimal).

rc [-i] [-w|-b|-h] <RANGE>
Reads the cache memory specified by RANGE. Addresses are automatically set to Kseg0 and the

caches are isolated.

regsel|rs [-c|-h]
Selects either the compiler names or the hardware names for registers.

search|sr [-w|-b|-h] <RANGE> <value> [mask]
Searches the area of memory specified by RANGE for ‘value’.
r’s Manual 12 - 3 February 3, 2003

IDT/sim User Command Summary Quick Reference

IDT/sim User/Develope
seg [-0|-1|-2|-s|-3|-u]
Set the default segment to the requested k-segment.

setbaud|sb DEV
Allows user to select the baud rate for the device specified by DEV which may be either ‘tty0’ or ‘tty1’.

setenv VAR VALUE
Allows the user to set environment variables in NVRAM.

smsk
Sets interrupt mask.

step|s [count]
Executes a single step or if <count> is supplied then 'count' number of steps.

sub [-w|-h|-b|-l|-r] <address>
Allows user to examine and change memory interactively.

t [-a/-o/-e/-d/-r RANGE/-w RANGE/-c RANGE/-i INS/-m MSK]
Defines the trace equation and/or enables/disables tracing.

tc [-e BPNUM] [-d BPNUM]
This command defines the limits of tracing. By placing breakpoints at the beginning and end of a code

segment and using the ‘trace conditionally’ command a user may specify the section of code to trace.

te
Puts IDT/sim in a transparent mode and connects the console port straight through to another serial

port.

tex [RANGE]
Excludes a memory range from being traced.

time [[[hh]:mm]:ss]
Displays and sets time. Available on boards with NVRAM only.

tlbdump|td [RANGE]
Dumps the contents of the translation look aside buffer. If a range is specified, just the range is dumped,

otherwise the entire buffer is dumped.

tlbflush|tf [RANGE]
This command flushes the contents of the translation buffer. If a range is specified, just the range is

flushed, otherwise the entire buffer is flushed.

 tlbmap|tm [-i INX} [-(v|d|g)[0\1]] [-g] [-p PAGESIZE] [-c CACHEALG] VADDR PADDR
[PADDR]

Establishes a virtual-to-physical mapping in the translation buffer.

tlbpid|ti [pid]
Without arguments, this command displays the current process identifier in the system coprocessor

register 'tlbhi'. If an argument is supplied, then the current process identifier in 'tlbhi' is set to < pid >.
r’s Manual 12 - 4 February 3, 2003

IDT/sim User Command Summary Quick Reference

IDT/sim User/Develope
tlbptov|tp <physaddr>
This command searches the translation buffer looking for translations which map to <physaddr>. Any

translations found, valid or invalid, are displayed. The default segment is not applied to <physaddr>.

ts [-b|-f|-o|-r RANGE|-w RANGE|-i INS|-m MSK]
Defines the conditions necessary to halt execution while tracing of the client program and to return to

monitor mode so the user may examine the trace buffer.

unbrk|ub <bpnumlist>
Uninstalls all of the breakpoints listed in <bpnumlist>. These are the ordinal numbers of the breakpoints

and can be obtained using the 'brk' command.

unsetenv VAR
This command allows the user to delete environment variables from NVRAM.
r’s Manual 12 - 5 February 3, 2003

IDT/sim User Command Summary Quick Reference

IDT/sim User/Develope
r’s Manual 12 - 6 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 13 - 1 Febr
Chapter 13
Motorola S-record Format
Each S-record is made up of 6 fields in the following format:

The specifications for each S-record field are as follows:
S - ASCII character 'S' (\0123 octal). Signal the start of the S-record.
type - Record type of one of the digits 0, 1, 2, 3, 5, 7, 8, 9 with the following meaning:

 length - One half of the total number of characters in the address, data, and checksum fields. This
number is encoded as two characters representing the number in hexadecimal (one-byte quantity). Valid
hexadecimal numbers are 0-9 and A-F.

address - Address at which the data portion of the record is to be stored in memory.
data - Actual data, each byte represented as a pair of hex digits in ASCII.
checksum - Computed over the length, address, and data fields. All bytes (represented as hex char-

acter pairs) from these fields are added together, one's complement of the result is taken and the least
significant byte represented by 2 ASCII hex digits is put into checksum field.

Field S type length address data checksum

Characters 1 1 2 4, 6 or 8 var 2

 0 - Header record. Address field is 2 bytes long and zero. Data field may contain any identifying
information (or be omitted completely).

 1 - Data. Address field is 2 bytes (4 chars) long.

 2 - Data. Address field is 3 bytes (6 chars) long.

 3 - Data. Address field is 4 bytes (8 chars) long. IDT SDS 2.0 uses this data format.

 5 - Address field contains count of type 1, 2 and 3 records in a group. Data field is omitted.

 7 - Terminating record - signals the end of block of type 3 records. The address field (4 bytes - 8
chars) may contain transfer address.

 8 - Terminating record - signals the end of block of type 2 records. The address field (3 bytes - 6
chars) may contain transfer address.

 9 - Terminating record - signals the end of block of type 1 records. The address field (2 bytes - 4
chars) may contain transfer address.
uary 3, 2003

Motorola S-record Format

IDT/sim User/Develope
r’s Manual 13 - 2 February 3, 2003

Notes

IDT/sim User/Developer’s Manual 14 - 1 Febr
Chapter 14
Register Numbers and
Names
Register # Name(s) Use

0 r0, zero wired to zero

1 r1, at assembler temp

2 r2, v0 return value

3 r3, v1 return value

4 r4, a0 argument 0

5 r5, a1 argument 1

6 r6, a2 argument 2

7 r7, a3 argument 3

8 r8, t0 Temporary, not preserved across calls

9 r9, t1 "

10 r10, t2 "

11 r11, t3 "

12 r12, t4 "

13 r13. t5 "

14 r14, t6 "

15 r15, t7 "

16 r16, s0 Must be saved on entry to subroutine, if used, Must be guaranteed
across calls

17 r17, s1 "

18 r18, s2 "

19 r19, s3 "

20 r20, s4 "

21 r21, s5 "

22 r22, s6 "

23 r23, s7 "

24 r24, t8 Temporary, not preserved across calls

25 r25, t9 "

26 r26, k0 kernel temporary

27 r27, k1 kernel temporary

28 r28, gp global pointer

29 r29, sp stack pointer

30 r30, fp/S8 frame pointer

31 r31, ra return address
uary 3, 2003

Register Numbers and Names

IDT/sim User/Develope
The following are the coprocessor-0 (CP0)registers (they are defined in the file “header/idtcpu.h”):

0 C0_INX tlb index

1 C0_RAND tlb random

2 C0_TLBLO low half of TLB entry for even virtual page

3 C0_TLBLO1 low half of TLB entry for odd virtual page

4 C0_CTXT Pointer to kernel virtual page table entry

5 C0_PAGEMASK TLB Page mask to support variable page size

6 C0_WIRED Number of wired TLB entries

8 C0_BADVADDR Bad Virtual Address

9 C0_COUNT Timer Count

10 C0_TLBHI Holds high-order of bits of a TLB entry

11 C0_COMPAREr Timer compare

12 C0_STATUS,sr Status Register

13 C0_CAUSE,cr exception cause

14 C0_EPC,pc exception pc

15 C0_PRID revision number

16 C0_CONFIG Configuration Register

18 C0_IWATCH Instruction Breakpoint Virtual address

19 C0_DWATCH Data Breakpoint Virtual address

22 C0_IEPC Imprecise Exception Program counter

23 C0_DEPC Debug Exception Program Counter

24 C0_DEBUG Debug control/status register

26 C0_ECC Primary Cache Parity

27 C0_CACHEERR Cache Error and Status Register

28 C0_TAGLO Cache tag register

30 C0_ERRPC parity error pc

Register # Name(s) Use
r’s Manual 14 - 2 February 3, 2003

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	IDT/sim User/Developer’s Manual
	1 IDT/sim Debug Monitor Overview
	2 Developing IDT/sim
	3 Minimum IDT/sim Start-up File
	4 Flowcharts
	5 Minimum IDT/sim User Commands
	6 Adding & Deleting User Commands
	7 Adding & Deleting IDT/sim Device Drivers
	8 Using Micromonitor
	9 Using the Systems Diagnostics Command
	10 IDT/sim PROM Entry Points
	11 IDT/sim User Commands
	12 IDT/sim User Command Summary
	13 Motorola S-record Format
	14 Register Numbers and Names
	IDT/sim Debug Monitor Overview
	Introduction
	What Does IDT/sim Do?
	Who Should Read This Manual?

	Revision History

	Developing IDT/sim
	Introduction
	IDT/sim Source Code Installation
	Compiler Installation
	Compiler Test Runs
	Cross-compiling Issues

	Building IDT/sim
	Testing the IDT/sim Executable
	IDT/sim or Micromonitor

	Minimum IDT/sim Start-up File
	Overview of IDT/sim Source Files
	Directory Structure
	Creating a Minimum Version of IDT/sim
	Modifying Start-up File csu_idt.S
	Subroutine ‘initmem’
	Initialize Device Table
	Initialize IDT/sim to Known State
	Initialize Command Table
	Clear Breakpoints

	Makefile

	Flowcharts
	Introduction
	Reading Flow Charts

	Minimum IDT/sim User Commands
	Command Table
	Commands not Required for Minimal IDT/sim Versions

	Adding & Deleting User Commands
	Introduction
	Command Table Structure
	Command Table Entries

	Adding & Deleting IDT/sim Device Drivers
	Introduction
	Device Switch Table
	Device Initialization Table
	Actual Device Switch Table
	Actual Device Initialization Table

	Using Micromonitor
	Introduction
	Using Micromonitor
	User Commands
	Store
	Load
	Jump
	Dump
	Fill
	Increment Fill
	Compare
	Increment Compare
	Transfer
	Scope Loops
	Set Segment Default
	Print Stack
	Memory Check

	Porting to New Hardware
	Recommended Debug Technique
	Exception Handling

	Using the Systems Diagnostics Command
	Introduction
	Tests Common to all IDT Boards
	Memory Test
	Cache Memory Test
	System Test
	DRAM Test
	DMA Test
	Timers Test
	Interrupt Test
	Set Options

	Tests Specific to RC3233x Based Boards
	PCI Test
	SPI Test

	Test Specific to RC32355 Based Boards
	I2C Test

	Tests Specific to RC32438 Based Boards
	PCI Test
	SPI Test
	I2C Test

	Test Specific to EB438 and RP355 Boards
	Flash Test

	IDT/sim PROM Entry Points
	General Description and Use

	IDT/sim User Commands
	Overview
	Issuing Commands
	Command Format
	Documentation Conventions
	Command Specifications
	Command Categories

	Communication/Host Interface Commands
	Debug - GDB and Algorithmics Compiler sde4.0c or Later
	Download Program from Host to Board
	Set Baud Rate of tty Port
	Terminal Emulator

	Execution Control Commands
	Set or Display Breakpoint
	Call a Subroutine
	Continue Execution
	Go (Run Program)
	GoTill
	Next (step over subroutine)
	Single Step
	Unbreakpoint

	Memory/Register and Assembly/Disassembly commands
	Assembler
	Cache Flush
	Compare Block
	Disassemble Contents Of Memory
	Dump Cache
	Dump Memory
	Dump Registers
	Fill Memory
	Flash Programming
	Fill Register
	Lock Cache
	Move Block
	Read Cache Memory
	Search Memory
	Substitute Memory

	Set-up and Environment Commands
	Checksum
	Help Command
	History Command
	Initialize
	Register Set Select
	Set Default Radix
	Set Default Segment

	TLB Commands
	TLB Dump
	TLB Flush
	TLB Map
	TLB Process ID
	TLB Search For Physical Address Map

	Trace Commands
	Trace Command
	Trace Stop Command
	Trace Conditionally Command
	Trace Dump Command
	Trace Exclude Command
	Trace Command Examples

	Network Related Commands
	Download and Execute Binary File (boot)
	Ping a Host

	Board Specific Commands
	Set / Display Date
	Set / Display Time
	Display Settings of Environment Variables
	Set Environment Variable Values
	Delete (unset) Environment Variable
	Delete (unset) all Environment Variable
	General Purpose Commands
	caus
	clcs
	clsr
	cmpr
	creg
	gmsk
	smsk

	IDT/sim User Command Summary
	Quick Reference
	IDT/sim User Commands

	Motorola S-record Format
	Register Numbers and Names

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

