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Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products 

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your 
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of 
these circuits, software, or information. 

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or 
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this 
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 
others. 

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, 
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. 

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any 
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for 
each Renesas Electronics product depends on the product’s quality grade, as indicated below. 
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home 

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. 
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key 

financial terminal systems; safety control equipment; etc. 
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to 
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; 
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims 
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is 
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics 
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not 
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS 
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING 
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, 
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND 
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT 
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE 
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. 

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for 
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by 
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas 
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such 
specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific 
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability 
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products 
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, 
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety 
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging 
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are 
responsible for evaluating the safety of the final products or systems manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of 
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these 
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance 
with applicable laws and regulations. 

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is 
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations 
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or 
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas 

Electronics products. 

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled 
subsidiaries. 

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
 

(Rev.5.0-1  October 2020) 
 

Corporate Headquarters  Contact information 
TOYOSU FORESIA, 3-2-24 Toyosu, 
Koto-ku, Tokyo 135-0061, Japan 

www.renesas.com 

 For further information on a product, technology, the most up-to-date 
version of a document, or your nearest sales office, please visit: 
www.renesas.com/contact/. 

Trademarks   
Renesas and the Renesas logo are trademarks of Renesas 
Electronics Corporation. All trademarks and registered trademarks 
are the property of their respective owners. 
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Regional information 

Some information contained in this document may vary from country to country. Before using any Renesas 
Electronics product in your application, please contact the Renesas Electronics office in your country to obtain a 
list of authorized representatives and distributors. They will verify: 

• Device availability 

• Ordering information 

• Product release schedule 

• Availability of related technical literature 

• Development environment specifications (for example, specifications for third-party tools and 
components, host computers, power plugs, AC supply voltages, and so forth) 

• Network requirements 

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from 
country to country. 

Visit 

http://www.renesas.com 

to get in contact with your regional representatives and distributors. 

http://www.renesas.com/
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Preface 

This manual is intended for users who want to understand the functions of the concerned 
libraries. 

This manual presents the software manual for the concerned libraries. 

Binary:   xxxx or xxxB 

Decimal:  xxxx 

Hexadecimal  xxxxH or 0x xxxx 

Representing powers of 2 (address space, memory capacity): 

K (kilo)   210 = 1024 

M (mega):  220 = 10242 = 1,048,576 

G (giga):  230 = 10243 = 1,073,741,824 

X, x = don’t care 

Block diagrams do not necessarily show the exact software flow but the functional structure. 
Timing diagrams are for functional explanation purposes only, without any relevance to the real 
hardware implementation. 

Readers 

Purpose 

Numeric 
notation 

Numeric 
prefix 

Register 

Diagrams 
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How to Use This Document 

(1) Purpose and Target Readers 

This manual is designed to provide the user with an understanding of the hardware functions and electrical 
characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A 
basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The 
manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral 
functions, and electrical characteristics; and usage notes. 

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within 
the body of the text, at the end of each section, and in the Usage Notes section. 

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to 
the text of the manual for details. 

(2) Related documents 

Document number Description 

R01US0061EDxxxx Data Flash Access Library Type T02 (Tiny), European 
Release 

 

(3) List of Abbreviations and Acronyms 

Abbreviation Full form 
API Application Programming Interface 
Code Flash Embedded Flash where the application code or 

constant data is stored. 
Data Flash Embedded Flash where mainly the data of the 

EEPROM emulation are stored. 
Data Set Instance of data written to the Flash by the EEPROM 

Emulation Library (EEL), identified by the Data Set ID 
DS Short for Data Set 
Dual Operation Dual operation is the capability to access flash memory 

during reprogramming another flash memory range. 
Dual operation is available between Code Flash and 
Data Flash. 
Between different Code Flash macros dual operation 
depends on the device implementation. 

ECC Error Correction Code 
EEL EEPROM Emulation Library 
EEPROM Electrically erasable programmable read-only memory 
EEPROM emulation In distinction to a real EEPROM the EEPROM 

emulation uses some portion of the flash memory to 
emulate the EEPROM behavior. To gain a similar 
behavior some side parameters have to be taken in 
account. 

FAL Flash Access Library (Flash access layer) 
FCL Code Flash Library (Code Flash access layer) 
FDL Data Flash Library (Data Flash access layer) 
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Abbreviation Full form 
Firmware The Firmware is a piece of software that is located in a 

hidden area of the device, handling the interfacing to 
the flash. 

Flash Electrically erasable and programmable nonvolatile 
memory. The difference to ROM is, that this type of 
memory can be re-programmed several times. 

Flash Area Area of Flash consists of several coherent Flash Blocks 
Flash Block A flash block is the smallest erasable unit of the flash 

memory. 
Flash Macro A certain number of Flash blocks is grouped together in 

a Flash macro. 
FW Firmware 
ID Identifier of a Data Set instance in the Renesas 

EEPROM Emulation 
MF3 Name of the Flash technology used in RL78 devices. 
NVM Non-volatile memory. All memories that hold the value, 

even when the power is cut off. E.g. Flash memory, 
EEPROM, MRAM... 

RAM Random access memory. Volatile memory with random 
access 

REE Renesas Electronics Europe GmbH 
REL Renesas Electronics Japan 
ROM Read only memory. Non-volatile memory. The content 

of that memory cannot be changed. 
Segment / Section Segment of Flash is a part of the flash that might 

consist of several blocks. Important is, that this 
segment can be protected against manipulation. 

Self-Programming Capability to reprogram the embedded flash without 
external programming tool only via control code running 
on the microcontroller. 

Serial programming The onboard programming mode is used to program 
the device with an external programmer tool. 

 
All trademarks and registered trademarks are the property of their respective owners. 
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Chapter 1 Introduction 

This user manual describes the internal structure, the functionality and the application programming 
interface (API) of the Renesas RL78 EEPROM Emulation Library (EEL) Type 02, designed for RL78 flash 
devices with Data Flash based on the MF3 flash technology. 

While many RL78 devices are equipped with Data flash, a direct usage of this non-volatile memory can 
be more complex than the usage of classical electrically erasable programmable read-only memory 
(EEPROM), as erases of flash memory can only be performed block-wise, i.e. on rather large continuous 
address ranges. Furthermore, the number of program-erase cycles for each flash block is finite and 
demands for effective data management and wear-leveling techniques. 

The EEPROM Emulation Library described in this document addresses these challenges by providing a 
simple-to-use software interface to the developers, encapsulating the detailed flash management with a 
framework based on emulated variables. The developer can access (read and write) these variables 
independently in an EEPROM-like manner. This way, the developer can concentrate on the actual 
functionality of the application rather than spending time on tedious details of Data Flash access 
sequences. 

The Renesas RL78 EEPROM Emulation Library Type 02 (from here on referred to as Tiny EEL) provides 
APIs for the C and assembly language of the CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL and LLVM 
tool chains. (APIs for the assembly language are provided by the CA78K0R and CC-RL tool chains only.) 
The Tiny EEL for IAR V2.xx tool chain (except linker sample file) can also be used with the IAR V3.xx or 
later version tool chains. 

In contrast to the also available EEL Type 01 for RL78 devices, the Tiny EEL was especially designed for 
reduced resource consumption (in terms of Code Flash, Data Flash and RAM) in order to bring EEPROM 
emulation also to small RL78 devices. As a result, the number of features and the maximum manageable 
data has been reduced in this library (see Section 1.2 for details). 

The EEPROM emulation library, the latest version of this user manual and other device dependent 
information can be downloaded from the following URL:  

https://www.renesas.com/us/en/software-tool/data-flash-libraries. 

Please ensure to always use the latest release of the library in order to take advantage of improvements 
and bug fixes. 

The Tiny EEL requires the corresponding RL78 Data Flash Access Library (FDL) Type 02 (Tiny FDL) for 
operation. It can be obtained from the same URL as the Tiny EEL. Please ensure to always use the 
correct release of the FDL which is specified inside the EEL release in order to avoid incompatibilities 
between the two libraries. 

Note: 
Please read all chapters of this user manual carefully. Much attention has been put to proper description 
of usage conditions and limitations. Anyhow, it can never be completely ensured that all incorrect ways of 
integrating the library into the user application are explicitly forbidden. So, please follow the given 
sequences and recommendations in this document exactly in order to make full use of the library 
functionality and features and in order to avoid malfunctions caused by library misuse. 

1.1 Flash Infrastructure 

The flash technology which is utilized in RL78 devices is called MF3. Besides the Code Flash, many 
devices of the RL78 microcontroller family are equipped with a separate flash area—the Data Flash. This 
flash area is meant to be used exclusively for data. It cannot be used for instruction execution (code 
fetching). 

1.1.1 Dual Operation 

Common for all Flash implementations is, that during Flash modification operations (Erase/Write) a 
certain amount of Flash memory is not accessible for any read operation (e.g. program execution or data 
read). 

https://www.renesas.com/us/en/software-tool/data-flash-libraries
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This does not only concern the modified Flash range, but a certain part of the complete Flash system. 
The amount of not accessible Flash depends on the device architecture. 

A standard architectural approach is the separation of the Flash into Code Flash and Data Flash. By that, 
it is possible to fetch instruction code from the Code Flash (to execute program) while data are read or 
written into Data Flash. This allows implementation of EEPROM emulation concepts running quasi in 
parallel to the application software without significant impact on its execution timing. 

If not mentioned otherwise in the device user’s manuals, RL78 devices with Data Flash are designed 
according to this standard approach. 

Note: 
It is not possible to modify Code Flash and Data Flash in parallel. 

1.1.2 Flash Granularity 

The MF3 Data Flash of RL78 devices is separated into blocks of 1024 byte. While erase operations can 
only be performed on complete blocks, reading and writing of data can be done on a granularity of bytes 
or byte sequences. Reading from an erased MF3 flash byte will return the value 0xFF. The number of 
available Data Flash blocks varies between the different RL78 devices. Please refer to the corresponding 
user’s manual of your device for detailed information. 

1.2 Feature Overview 

The Tiny EEL offers easy-to-use EEPROM-like access to user-defined variable sets stored in the non-
volatile Data Flash memory of RL78 microcontrollers. Aiming at low resource consumption, the Tiny EEL 
offers a basic function set to designers covering the following features: 

• Up to 64 independent variables 

• Configurable variable sizes between 1 and 255 byte 

• Polling operation mode 

• Minimized storage consumption for administrative data (10 bytes per flash block and 2 bytes per 
variable instance) 

• Reset resistance 

• Block rotation (balanced data flash usage) 

• Applicability in operating systems 

• Standby functionality for energy savings (via Tiny FDL) 

• Resistance against aborted block erasures (via Tiny FDL) 

Besides the Tiny EEL, which is the subject of this documentation, Renesas offers another EEL, the 
EEPROM Emulation Library Type 01. Compared to this more resource intensive library, the Tiny EEL 
offers a reduced set of features and functions (for more details on these features, please refer to the EEL 
Type 01 user manual R01US0128EDxxxx): 

• No enforced and timing mode 

• Only one EEL flash block is utilized for storing data at a time resulting in a limited number and size of 
variables 

• No background maintenance process (i.e. refreshing of the EEL pool needs to be directly triggered 
from the user application) 

• The variable ID is predefined by the order within the descriptor and cannot be selected arbitrarily 

• No automatic checksums on data content 

If you are unsure which EEL is the best choice for your project, please contact the Renesas support team 
at application_support.flash-eu@lm.renesas.com. 

 

mailto:application_support.flash-eu@lm.renesas.com?subject=RL78%20EEL%20T02%20(Tiny)
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Chapter 2 Architecture 

This chapter introduces the basic software architecture of the Tiny EEL and provides the necessary 
background for application designers to understand and effectively use the Tiny EEL. Please read this 
chapter carefully before moving on to the details of the API description. 

2.1 Layered Software Architecture 

The EEPROM emulation system is built up from several hierarchical functional blocks. This user manual 
concentrates on the functionality and usage of the EEL. However, a short description of all involved 
functional blocks and their relationship is important for the general understanding of the concepts and 
usage of the EEL. 

As depicted in Figure 2-1, the software architecture of the EEPROM emulation system is built up of 
several layers: 

• Physical flash layer: The Data Flash is a separate memory that can be accessed independent of the 
Code Flash memory. This allows background access to data stored in the Data Flash during program 
execution from the code flash. 

• Flash access layer: The Data Flash access layer is represented by the Data Flash Access Library 
(FDL) provided by Renesas. It offers an easy-to-use API to access and manage the Data Flash by 
encapsulating and abstracting tedious timing and flash access sequence details. 

• EEPROM layer: The EEPROM layer allows read/write access to the Data Flash on an abstract level. 
It is represented by a Renesas EEL (as described in this document) or alternatively any other, user 
specific implementation. 

• Application layer: The application layer covers the user's application software which has access to 
the Data Flash by using functions and commands of the lower layers. 

 

 
The EEL does not directly access the Data Flash. The Data Flash is always accessed via the Data Flash 
Library (FDL). This way, the designer can use both FDL and EEL simultaneously to access the Data 
Flash. Of course this does not mean that the multiple accesses are handled in parallel. However, the 
libraries are particularly designed to not to interfere with each other and are robust against interleaved 
mixed Data Flash accesses via the opposite library. 

 
Figure 2-1: Layers of the EEPROM emulation system 
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A parallel usage of FDL and EEL is strongly encouraged. Depending on the data to be stored, each 
library has its advantages and disadvantages. While the FDL enables an efficient way to store data which 
is changed very seldom (e.g. configuration parameters or constant identification numbers) and offers the 
designer full freedom how to manage the data, the EEL provides a comfortable way to handle frequently 
changing data sets at the cost of a mean resource overhead. 

2.2 Data Flash Pool Structure 

The decision for using FDL or EEL as Data Flash access mechanism is usually driven by characteristics 
of the data, in particular how often the data needs to be updated, reset robustness and the application 
overhead to access and manage the data. As a result it is often desirable to use both libraries within the 
same application. Consequently, the Data Flash is separated into two individual pools: The FDL pool and 
the EEL pool. 

This separation is also necessary as the EEL stores additional administrative data in the blocks of the 
EEL pool for managing the blocks and the instances of variables. In order to avoid FDL handling errors 
which might corrupt the EEL data structures, the API structure and the sanity checks of both libraries 
ensure that the user application has only access to each pool via the corresponding library as shown in 
Figure 2-2. The EEL uses dedicated subroutines of the FDL which are hidden from the user and 
exclusively reserved for the EEL. 

 

 
The distribution of the available Data Flash to EEL and FDL pool can be configured at compile time in the 
descriptor of the FDL (see the RL78 FDL T02 user manual for details of the Tiny FDL configuration 
options). Please note that the assignment of Data Flash memory to FDL and EEL pool can only be done 
on a flash-block basis. The EEL pool always maps to the Data Flash blocks with the lower addresses in 
the device memory map. 

  

   Data Flash

FDL pool

EEL pool

0xF1000

0xF1FFF

access by
EEL only

access by 
application only

 
Figure 2-2: Logical fragmentation of Data Flash in FDL and EEL pool  

(example for 4 KB Data Flash) 
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2.2.1 FDL pool 

The FDL pool allocates the Data Flash blocks that are directly managed by the user application via the 
Tiny FDL. It can be used to simply store constants or to even build up an own user EEPROM emulation. 
Please note however, that it is the designers duty to take care of reset and failure scenarios himself when 
using the FDL, e.g. by a proper failure mode and effects analysis. 

2.2.1.1 Direct Data Flash Access through Address Virtualization 

In order to simplify the flash content handling, the physical addresses used by the flash hardware were 
transformed into a linear 16-bit index addressing (8-bit units) inside the FDL pool. By this measure, the 
FDL pool can be treated as a simple array of words. To address the array elements (read/write access), 
word-indexes starting at 0x0000 can be used. The maximum range of the word-index depends on the 
pool configuration, i.e. the number of flash blocks reserved for the FDL pool. 

2.2.2 EEL Pool 

The EEL pool allocates the Data Flash blocks that are used by the EEPROM emulation to store user 
content and administrative data. The handling of the flash blocks is completely encapsulated in the EEL 
and abstracted through the EEL API. The direct access to this pool via the FDL is not possible. 

2.2.2.1 Automated Data Flash Management through Variable Virtualization 

While the data stored in the FDL pool needs to be managed completely by the user application, the usage 
of the EEL pool is greatly simplified by variable virtualization. The user defines a set of variables with 
individual sizes at compile time. These Variables can be read and written via dedicated commands of the 
EEL API during runtime. Pool handling and reset-safe variable update processes help the developer to 
concentrate on the actual functionality of the application rather than detailed flash-access sequences. 

2.3 EEL Management 

While the simple usage of the Tiny EEL via its API hides many complex management issues from the 
developer, it is still mandatory to understand the management mechanisms of the library in order to use it 
efficiently. Therefore, the EEL management is introduced in the following by first specifying the structures 
of the EEL pool, blocks and variables. Afterwards, the transitions, sequences and processes within the 
EEL are highlighted briefly. 

2.3.1 EEL Pool Structure 

In the Tiny EEL, the EEL pool is separated into blocks of 1 KB size, which match the physical block 
separation of the Data Flash. Each block has a status which indicates the current usage of the block. The 
status of an EEL block is one of the following: 

• Active: Due to the strong resource limitations applied for the Tiny EEL, only one EEL block is active 
at a time and stores values for the defined EEL variables (assuming normal operation). During 
lifetime, the currently active block rotates through the Data Flash blocks assigned to the EEL pool. 

• Invalid: Invalid blocks do not store any EEL variable values. Blocks are either actively marked as 
invalid by the library or are invalid due to unstructured content (e.g. in case of an erased block). 

• Excluded: Whenever functional operations on a block fail too often indicating a damaged Data Flash, 
the EEL actively excludes the corresponding block and does not use this block for EEPROM 
emulation anymore. 

Figure 2-3 shows an exemplary pool configuration for a device with 8 KB Data Flash, where three blocks 
are assigned to the FDL pool and the EEL operates on 5 blocks. 

Whenever the active block (block 1 in the example) is full and cannot store additional data (i.e. a write 
command fails), a new active block is selected in a cyclic manner and the current valid data set is copied 
to this new active block. This process is referred to as refresh. The former active block is invalidated 
during a refresh, so that there is only one active block at a time. Excluded blocks (like block 4 in the 
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example) are ignored during this process and not considered as candidates for the selection of the next 
active block. 

 

Note: 
Although only one block is active in the Tiny EEL at a time, it makes sense to assign several blocks to the 
EEL pool. This way, hot spots on one block are reduced and wear leveling is improved. On the one hand, 
this means that the number of erases for one block is effectively reduced increasing the lifetime of the 
device. On the other hand, it enables a larger number of variable updates (writes) during the device life 
cycle. 

The overall life cycle of a block in the EEL pool is shown in Figure 2-4. During normal operation, the block 
switches between active and invalid status. In case of a repeated error during block accessing, the 
affected flash block is considered to be defect and is marked as excluded. This block will not enter the 
lifecycle again. However, the user can try to reanimate the block by a format of the complete pool-which 
also erases all existing variable content (see Section 4.3.4 for details of the format command). 

 

 
Figure 2-3: Exemplary EEL pool constellation 
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Figure 2-4: Life cycle of an EEL block 
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Not only the status of each EEL block is classified. There are also four different statuses of the overall 
EEL pool that can be distinguished: 

• Pool operational: This is the usual case during EEL operation. All commands are available and can 
be executed. 

• Pool full: The current active block is full and does not have enough space left to perform a write. This 
is a usual situation during library operation and indicates that a refresh needs to be executed. (There 
is a correlation with the size of the variable to be written.) 

• Pool exhausted: Too many blocks have been excluded for full operation of the library. (The Tiny EEL 
requires at least two non-excluded blocks for operation.) Reading variables and verification of the 
active block is still possible, however writing variables and a refresh cannot be executed anymore. A 
reanimation of the library can only be attempted by a format of the pool. 

• Pool inconsistent: The pool is not consistent, i.e. the data structures found in the EEL blocks do not 
match the expected structures of EEL blocks. Typically, this is the case when the pool has not yet 
been formatted with the Tiny EEL or when the pool content has been corrupted by flashing the 
device. 

2.3.2 EEL Block Structure 

The detailed block structure used by the Tiny EEL is depicted in Figure 2-5. In general, an EEL block is 
divided into three utilized areas: the block header, the reference area and the data area. 

 
The individual purpose of each area is given in the following: 

• Block header: The block header contains all block status information needed for the block 
management within the EEL-pool. It has a fixed size of 8 bytes. 

 
Figure 2-5: EEL block structure 
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• Reference area: The reference area contains reference entries which are required for the 
management of EEL variables. It grows in direction of larger indexes whenever a variable is written. 

• Data area: The data area contains the pure data values of the defined EEL variables. It grows in 
direction of smaller indexes whenever a variable is written. 

Between reference and data area, there is an erased area of not-written flash cells (erased flash cells in 
MF3 have a value of 0xFF). With each EEL variable update (i.e. the variable is written), this area is 
reduced successively. However, at least two bytes of space always remain between reference and data 
area for management and separation of these areas. This is indicated by the separator in Figure 2-5. 

The EEL block header is detailed in the following, while the structure of variable instances stored in the 
reference and data area are described in Section 2.3.3. 

2.3.2.1 EEL Block Header 

The block header is a small area at the top of each flash block belonging to the EEL pool. It contains all 
information necessary for block management during EEL operation. The structure of the block header is 
depicted in Figure 2-6. It is composed of eight bytes, four of which are reserved for future use. 

 
Inside the header area, a set of status flags is used to code the block status in a reset-resistant manner. 
Each of the four flags has a size of one byte and fulfills the following purpose: 

• A and B flag: The A and B flag are used to indicate the activation of a block. In case of an active 
block, the value of A falls in the range between 0x01 and 0x03, while the B flag contains the binary 
complement of A. In case of any other A/B-flag combination, the block is treated as invalid. Table 2-1 
shows the possible A/B-flag combinations together with the corresponding block status. 

Table 2-1: Valid pattern combinations of the activation flags A and B 

A(x) B(x) Block x status Comment 
0x01 0xFE active 0x01 is always older than 0x02 
0x02 0xFD active 0x02 is always older than 0x03 
0x03 0xFC active 0x03 is always older than 0x01 

other combination invalid other values are irregular 
 

• I flag: By means of the I flag, a block can be actively marked as invalid. The I flag is treated as a 
destructive flag, meaning that any value different from 0xFF (value of an erased cell) indicates an 
invalid block. The I flag overrules any status information of the A/B flag. 
Several processes of the EEL use this mechanism of active invalidation in order to achieve a 
consistent pool constellation. 

• X flag: The X flag is a destructive flag used to exclude blocks from the block management. Any value 
different from 0xFF indicates an excluded block. The X flag overrules all other block flags. The only 
one way to reactivate a once excluded block is to format the whole EEL pool. 

 
Figure 2-6: Structure of each EEL block header 
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2.3.3 Structure of Variable Instances 

By means of the so-called EEL descriptor, the developer can configure a set of variables to be used 
within the EEL. Each variable is referred to by an identification number (ID) and can have a size between 
1 and 255 byte. (The exact specification of the format of the EEL descriptor can be found in Section 
5.4.3.) 

Whenever a variable content is updated, i.e. the variable is written, a new instance of the variable is 
written to the active block. This means that there can be multiple instances of a variable at a time. 
However, only the newest instance is considered and referred to when reading the variable. 

A variable instance is composed of three parts: the start-of-record (SoR) field the end-of-record (EoR) 
field and the data field. SoR and EoR build up the so-called reference which is required for the 
management of the variable instance. The reference entry and data values are stored in different sections 
of the active block, namely the reference area and the data area, respectively. 

 

 
The overall structure of a variable instance is abstracted in Figure 2-7. A more precise description of the 
three different fields of an instance is given in the following: 

• SoR field: The 1-byte SoR field contains the ID code of the corresponding EEL variable. It indicates 
the start of a write sequence as described later in this section. The IDs 0x00 and 0xFF are never used 
and illegal in order to avoid patterns of erased cells. 

• EoR filed: The 1-byte EoR field contains the binary inversion of ID code. It indicates the successful 
end of a write sequence. When not completely written—e.g. due to a reset of the device—the 
corresponding instance is ignored by the EEL. 

• Data field: The data field contains the net data of the EEL variable. The size of the data filed matches 
the size of the corresponding variable and ranges from 1 to 255 bytes. Lower variable indices (in case 
of multi-byte variables) are stored at lower addresses in the data section of the active block. 

Note 1: 
The total size of the reference consumed by each variable instance is 2 bytes. This should be considered 
when evaluating the free space in a block before writing the variable through the EEL_GetSpace function 
(see Section 4.2.7). 

Note 2: 
Due to strict resource limitations applied for the Tiny EEL, the data filed is not protected automatically by 
any checksum. If required, the developer can integrate such checksums in the net data of the variable 
manually. 

  

 
Figure 2-7: Structure of an EEL variable instance 
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2.3.4 EEL Block Overview 

Putting together the information of the previous sections, Figure 2-8 shows a detailed example of an 
active EEL block containing several variable instances. The following variables are declared in this 
example: 

• ID 0x01 with size = 0x04, 

• ID 0x02 with size = 0x01, 

• ID 0x03 is defined but not written here, 

• ID 0x04 with size = 0x02. 

The variables have been written in the sequence ID 0x01 → ID 0x04 → ID 0x02. In this example, the 
variable with ID 0x03 has not been written yet. 
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Figure 2-8: Exemplary detailed content of an active EEL block 
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Chapter 3 EEL Operation 

This chapter introduces the operation of the Tiny EEL. Thereby, the focus is put on the concepts and flows 
required for a proper usage of the library. The exact specification of the API can be found in Chapter 4. 

3.1 Functions and Commands 

For a better understanding of the flows and mechanisms required for an EEL usage, the basic functions 
of the Tiny EEL are introduced in the following. The API of the Tiny EEL is thereby on the one hand based 
on functions used to manage the operation of the library itself. On the other hand it offers so-called 
commands to access and control the content of the EEL pool and the EEL variables. 

3.1.1 EEL Functions 

The following functions are provided to control the Tiny EEL: 

• EEL_Init: This function is used to initialize the internal data structures of the Tiny EEL. It is mandatory 
to call EEL_Init before any utilization of the library. 

• EEL_Open: EEL_Open activates the library operation. 

• EEL_Close: The library can be deactivated again via EEL_Close. 

• EEL_Execute: By means of the EEL_Execute function, the user can issue commands to access and 
manage the EEL variables. It is one of the main functions for utilizing the EEL. However, please note 
that issued commands are not completed directly but rather require to be processed with calls to 
EEL_Handler. 

• EEL_Handler: The EEL_Handler needs to be called regularly to drive pending commands and 
observe their progress. 

• EEL_GetDriverStatus: This function opens a way to check the internal status of the EEL driver 
before placing a request. 

• EEL_GetSpace: By means of this function, the developer can check the remaining free space in the 
current active block, thereby aiding the decision when a refresh (i.e. transition to a new active block) 
is required. 

• EEL_GetVersionString: This function provides library version information at runtime. 

3.1.2 EEL Commands 

Commands are used to manage the EEL pool and to access the EEL variable set. The actual EEL 
variable set is defined by the designer at compile time and can be configured in terms of number and size 
of variables. 

Commands are initiated via EEL_Execute and processed stepwise by consecutive calls of EEL_Handler. 
This way, the execution of each EEL command is separated into several steps processed by an EEL-
internal state machine. The following commands are offered by the Tiny EEL: 

Pool-oriented Commands 

• Startup: The startup command analyses the current EEL pool and needs to be executed before EEL 
variables can be accessed. 

• Shutdown: Shutdown is the counterpart to the startup command and required for a controlled ending 
of the EEL operation. 

• Format: By means of the format command, an initial empty EEL pool structure is created. All existing 
EEL variable content is lost during this step. 
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• Refresh: The refresh command triggers the activation of a new EEL block. Thereby the old active 
block is invalidated and all current variable instances are copied to the new block. A refresh needs to 
be performed whenever the current active block does not provide enough space to update a variable 
via a write command. 

• Verify: The verify command provides a way to check for full data retention of the flash cells in the 
active EEL block. 

Variable-oriented Commands 

• Write: The write command is used to update the content of an EEL variable. 

• Read: The read command provides read access to EEL variables. 

3.1.3 Request-Response-oriented Dialog 

The Tiny EEL utilizes a request-response architecture to initiate the commands. This means any 
"requester" (any tasks in the user application) has to prepare a request variable as a kind of "request form 
sheet" and pass it by reference to the Tiny EEL driver using its EEL_Execute function. The Tiny EEL 
interprets the content of the request variable, checks its plausibility and initiates the execution. The 
feedback is reflected immediately to the requester via the status member of the same request variable. 
The completion of an accepted request/command is done by calling EEL_Handler periodically as long the 
request remains "busy". 

 
The biggest advantage of the request-response architecture is the constant and narrow parameter 
interface. It allows steady parameter passing and is therefore independent from the used compiler and its 
memory models. An additional advantage is the possibility to isolate the dialog between several 
requesters and the driver in multi-tasking systems. Thereby, multiple request variables can be used from 
different tasks. 

The details on the request variable structure and its members are given later in Section 4.1.5. Please also 
note that not all structure members are required for all commands. The individual command descriptions 
in Section 4.3 provide the corresponding detailed information. 

3.1.4 Handler-oriented Command Execution 

In order to satisfy the operation in concurrent or distributed systems, the command execution is divided 
into two steps: 

1. Initiation of the command execution using EEL_Execute. 

 
Figure 3-1: Schematic usage of the request variable 
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identifier_u08

status_enu

Tiny EEL

requester

command_enu
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2. Processing of the requested command state by state using EEL_Handler. 

This approach comes with one important advantage: Command processing can be done centrally at one 
place in the target system (normally the idle-loop or the scheduler loop), while the status of the requests 
can be polled locally within the requesting tasks. 

Please note that EEL_Execute only initiates the command execution and returns immediately with the 
request-status "busy" after execution of the first internal state (or an error in case the request cannot be 
accepted). The further command execution is performed in the EEL_Handler, where the internal 
sequences of the command are executed state by state. Together with the background-operation feature 
of the Tiny FDL, this enables to design complex applications utilizing the computational resources of the 
processor efficiently, i.e. to perform other tasks on the CPU while flash operations are running in parallel. 
 

 

 
Figure 3-2: Schematic illustration of the polling operation mode 
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This way of controlling the EEL is also referred to as polling mode. Figure 3-2 illustrates the schematic 
flow of this operation mode. 

Note 1: 
While no command is being processed, EEL_Handler consumes a few CPU cycles only. The polling 
mode avoids blocking by the EEL. 

Note 2: 
In order to minimize the code size and resource consumption of the library, the Tiny EEL only supports 
the polling mode. Other operation modes like the enforced and timeout mode known from the RL78 EEL 
Type T01 have been omitted in the Tiny EEL. 

Note 3: 
As the first state of the EEL command is already executed by the call of EEL_Execute, there are 
commands which can finish their operation immediately after EEL_Execute and do not require to call the 
EEL_Handler. Please see the individual command description for details. 
From perspective of the user application, the safest way to deal with the execution of commands is to 
always follow the above mentioned procedure and check the status after each call of EEL_Execute and 
EEL_Handler. 

3.2 Basic Workflow 

The basic workflow for utilizing the Tiny EEL is shown in Figure 3-3. The internal states of the EEL are 
depicted in ellipses with the state name printed in bold letters. Along with the internal state, the driver 
status is given, which can be retrieved any time via the EEL_GetDriverStatus function. This driver status 
can be one of the following: 

• PASSIVE: The EEL is not started up completely. It is not possible to issue EEL commands (except 
startup and format in opened state). 

• BUSY: The EEL is currently processing a command and cannot accept a new one for execution. 

• IDLE: The EEL has currently no running tasks and is accepting new commands. 

States and transitions depicted in bold lines indicate normal library operation, while the states and 
transitions in thin lines indicate exceptional operation. The detailed flow is described in the following. 

After powering up the device, the Tiny FDL needs to be initialized and opened. This must be done before 
any EEL function is executed. EEL_Open and EEL_Close can then be used to activate and deactivate the 
EEL, i.e. to switch between closed and opened state. 

When the user application is started for the very first time, it is usually necessary to format the EEL pool 
before any EEL variable can be written. In order not to process random data during startup, it is 
necessary to perform this initial format from the opened state. 

If the EEL pool contains valid data already, it is necessary to perform a startup command from the opened 
state, which processes the current pool structure and builds up internal lookup tables for fast read/write 
access to the EEL variables. Thereby, the library is driven into the started-up state—in case no error 
occurs. 

From the started-up state, the commands for usual operation can be executed (i.e. read, write, refresh 
and verify). 

Problems during startup can either indicate an inconsistent pool (e.g. not formatted before first usage) or 
an exhaustive pool (i.e. there are not sufficient non-excluded blocks left for library operation). While the 
library returns into the opened state in the former case, it moves to the exhausted state in the latter. From 
the exhausted state, only read and verify commands can be executed. Writing and refreshing is not 
possible. 

Please note that an exhausted-pool scenario can also occur during a refresh command. Therefore, a 
transition from the full-access execution state to the exhausted state is possible. 
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Note 1: 
Figure 3-3 shows only the basic workflow. Few other transitions are possible and not blocked by the EEL, 
however the developer is strongly advised to use only the depicted transitions as long as there is no 
urgent reason to deviate from the proposed flow. Other possible state transitions are listed in the 
following: 

• EEL_Close and EEL_Init can be called from every state. Please note however, that this interrupts any 
EEL processing and can lead to unpredictable behavior. 

• The format command can be triggered also from the started-up state. However, the library will always 
return to the opened state after completion of the command. 

• The startup command can be triggered also from the started-up state. The library will perform a 
complete startup procedure and then return to the started-up state (as long as no error occurs). 
During normal operation however, such processing is not meaningful. 

• A power-off transition can happen in any state and leads to state “not powered”. 

 
Figure 3-3: Basic Tiny EEL workflow 
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• When the Tiny EEL is busy, the library cannot accept new commands and a request will be 
terminated with status “rejected”. 

Note 2: 
Once the format command is started, it must be finished before the Tiny EEL can be used again. 
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Chapter 4 Application Programming Interface (API) 

This chapter provides the formal description of the application programming interface of the EEPROM 
Emulation Library Type T02 (Tiny EEL). It is strongly advised to read and understand the previous 
chapters presenting the concepts and structures of the library before continuing with the API details. 

4.1 Data Types 

This section describes all data definitions used and offered by the EEL. In order to reduce the probability 
of type mismatches in the user application, please make strict usage of the provided types and avoid 
using standard data types instead. 

C API 

All types are defined in the header file eel_types.h, which is part of the library installation package. It 
contains simple type definitions as well as library specific enumeration types and structs. 

Assembler API 

While there are no structs and enumeration types available in assembler, only constant definitions 
according to the C enumeration types are provided in eel_types.inc. Please derive the order and size of 
struct members from the C type definitions. 

 

4.1.1 Library-specific Simple-Type Definitions 

Type 
definition:  

typedef unsigned char      eel_u08; 
typedef unsigned int       eel_u16; 
typedef unsigned long int  eel_u32; 

Description: These simple types are used throughout the complete library API for passing of integer 
parameters. 
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4.1.2 eel_command_t 

Type 
definition:  

typedef enum 
{ 
    EEL_CMD_UNDEFINED         = (0x00 | 0x00), 
    EEL_CMD_STARTUP           = (0x00 | 0x01), 
    EEL_CMD_WRITE             = (0x00 | 0x02), 
    EEL_CMD_READ              = (0x00 | 0x03), 
    EEL_CMD_REFRESH           = (0x00 | 0x04), 
    EEL_CMD_VERIFY            = (0x00 | 0x05), 
    EEL_CMD_FORMAT            = (0x00 | 0x06), 
    EEL_CMD_SHUTDOWN          = (0x00 | 0x07) 
} eel_command_t; 

 
Description: The enumeration type eel_command_t defines all allowed codes used to specify library 

commands. This type is used within the structure eel_request_t (see Section 4.1.5) in 
order to specify which command shall be executed via the function EEL_Execute. A 
detailed description of each command can be found in Section 4.3. 

Please note that due to the fact that the library has been implemented in Assembler, it is 
mandatory that the enumeration type eel_command_t has a size of exactly 1 byte. 

Note: 
The GNU and LLVM compilers use 16-bit enumeration types by default. Therefore, for 
GNU and LLVM compilers, the declaration of the enumeration type has to be extended 
with an attribute in order to be compiled to 1 byte: “__attribute__ ((__packed__))”. 

 
Member / 

Value:  

 

Member / Value Description 
EEL_CMD_UNDEFINED undefined command 
EEL_CMD_STARTUP plausibility check of the EEL data and driver 
EEL_CMD_WRITE creates a new instance of an EEL variable 
EEL_CMD_READ reads latest instance of an EEL variable 

EEL_CMD_REFRESH copy the latest instance of each variable into a new 
active block 

EEL_CMD_VERIFY verify the active block byte by byte to check for full data 
retention 

EEL_CMD_FORMAT format the EEL pool, all instances are lost 
EEL_CMD_SHUTDOWN deactivates the EEL and drives it into a secure state 
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4.1.3 eel_driver_status_t 

Type 
definition:  

typedef enum 
{ 
    EEL_DRIVER_PASSIVE        = (0x00 | 0x00), 
    EEL_DRIVER_IDLE           = (0x30 | 0x01), 
    EEL_DRIVER_BUSY           = (0x30 | 0x02) 
} eel_driver_status_t; 

Description: The enumeration type eel_driver_status_t defines all codes of available driver operation 
statuses. 
This type is used in the function EEL_GetDriverStatus (see Section 4.2.6) providing 
access to the driver status of the library. 

Please note that due to the fact that the library has been implemented in Assembler, it is 
mandatory that the enumeration type eel_driver_status_t has a size of exactly 1 byte. 

Note: 
The GNU and LLVM compilers use 16-bit enumeration types by default. Therefore, for 
GNU and LLVM compilers, the declaration of the enumeration type has to be extended 
with an attribute in order to be compiled to 1 byte: “__attribute__ ((__packed__))”. 

Member / 
Value:  

 

Member / Value Description 
EEL_DRIVER_PASSIVE library is not yet started up completely 

EEL_DRIVER_IDLE no command is being executed, new commands can be 
accepted 

EEL_DRIVER_BUSY a command is just being executed, new commands 
cannot be accepted 
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4.1.4 eel_status_t 

Type 
definition:  

typedef enum 
{ 
    EEL_OK                    = (0x00 | 0x00), 
    EEL_BUSY                  = (0x00 | 0x01), 
    EEL_ERR_CONFIGURATION     = (0x80 | 0x02), 
    EEL_ERR_INITIALIZATION    = (0x80 | 0x03), 
    EEL_ERR_ACCESS_LOCKED     = (0x80 | 0x04), 
    EEL_ERR_PARAMETER         = (0x80 | 0x05), 
    EEL_ERR_VERIFY            = (0x80 | 0x06), 
    EEL_ERR_REJECTED          = (0x80 | 0x07), 
    EEL_ERR_NO_INSTANCE       = (0x80 | 0x08), 
    EEL_ERR_POOL_FULL         = (0x80 | 0x09), 
    EEL_ERR_POOL_INCONSISTENT = (0x80 | 0x0A), 
    EEL_ERR_POOL_EXHAUSTED    = (0x80 | 0x0B), 
    EEL_ERR_INTERNAL          = (0x80 | 0x0C) 
} eel_status_t; 

Description: The enumeration type eel_status_t defines all codes of function and command statuses 
and errors. On the one hand, it is used as return type of the functions EEL_Init (see 
Section 0) and EEL_GetSpace (see Section 4.2.7). On the other hand it is used within the 
structure eel_request_t (see Section 4.1.5) in order to capture the processing of currently 
running command. Thereby, the possible error codes are command specific and 
described in detail in Section 4.3 along with the commands. 

Please note that due to the fact that the library has been implemented in Assembler, it is 
mandatory that the enumeration type eel_status_t has a size of exactly 1 byte. 

Note: 
The GNU and LLVM compilers use 16-bit enumeration types by default. Therefore, for 
GNU and LLVM compilers, the declaration of the enumeration type has to be extended 
with an attribute in order to be compiled to 1 byte: “__attribute__ ((__packed__))”. 
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Member / 
Value:  

 

Member / Value Description 
EEL_OK no error occurred 
EEL_BUSY request is under processing 
EEL_ERR_CONFIGURATION bad FDL/EEL configuration or combination 
EEL_ERR_INITIALIZATION call to EEL_Init(), EEL_Open() missing 
EEL_ERR_ACCESS_LOCKED execution of startup command missing 
EEL_ERR_PARAMETER wrong parameter (wrong command or identifier) 

EEL_ERR_VERIFY at least one byte in the active block does not 
provide the full data retention 

EEL_ERR_REJECTED request rejected as another request is already 
being processed 

EEL_ERR_NO_INSTANCE no instance found (variable never written) 
EEL_ERR_POOL_FULL not enough space for writing data 
EEL_ERR_POOL_INCONSISTENT EEL pool is inconsistent 
EEL_ERR_POOL_EXHAUSTED EEL pool is too small for write/refresh operation 

EEL_ERR_INTERNAL internal error (should never occur), please contact 
support 
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4.1.5 eel_request_t 

Type 
definition:  

typedef struct 
{ 
    __near eel_u08*       address_pu08; 
           eel_u08        identifier_u08; 
           eel_command_t  command_enu; 
           eel_status_t   status_enu; 
} eel_request_t; 

Description: The structured type eel_request_t defines the structure of EEL request variables. It is the 
central type for the request-response-oriented dialog for the execution of commands (see 
Section 3.1.3). Not every element of this structure is required for each command. 
However, all members of the request variable must be initialized once before usage. 
Please refer to Section 4.3 for a more detailed description and the command-specific 
usage of the structure elements. 

Please note that any variable of the type eel_request_t needs to be located at an even 
address. 

Note: 
The GNU compiler does not require the “__near” keyword to declare near pointers. All 
pointers are near by default as long as the “__far” keyword is not used. 

Member / 
Value:  

 

Member / Value Description 
address_pu08 source/destination RAM-address 
identifier_u08 variable identifier 
command_enu command to be processed (see Section 4.1.2) 

status_enu status/error code after command execution (see 
Section 4.1.4) 
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4.1.6 eel_descriptor 

Definition:  

__far const eel_u08 eel_descriptor[EEL_VAR_NO+2] = 
{ 
    (eel_u08)(EEL_VAR_NO),      /* variable count   */  \ 
    (eel_u08)(sizeof(type_A)),  /* id = 1           */  \ 
    (eel_u08)(sizeof(type_B)),  /* id = 2           */  \ 
    ... 
    (eel_u08)(sizeof(type_Z)),  /* id = EEL_VAR_NO  */  \ 
    (eel_u08)(0x00),            /* zero terminator  */  \ 
}; 

Description: The variable eel_descriptor is actually not a type. Nevertheless, it is included in the list of 
data types here, because its definition is mandatory for the operation of the EEL. The 
eel_descriptor specifies the EEL variable set by means of a constant byte array. 

An exemplary descriptor can be found in eel_descriptor.c and needs to be adapted 
according to the application requirements. The first element of the array represents the 
number of defined variables. This element is followed by the size of each variable which 
may be between 1 and 255 bytes. Thereby, the index within the array matches the 
corresponding variable ID. The variable list needs to be zero terminated in the last 
element. 

Further information on how to configure the variable set can be found in Section 5.4.3. 
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4.2 Functions 

Due to the request-oriented interface of the Tiny EEL, the functional interface is very narrow. Beside the 
initialization and some administrative functions, the access to the EEL pool concentrates on two functions 
only: EEL_Execute and EEL_Handler. 

All Tiny EEL interface functions are prototyped in the header file eel.h. 

Note: 
The register naming conventions defined by the GNU Compiler differs from the standard one provided by 
CA78K0R. The mapping of registers used by this library is as follows:  

Table 4-1: Register naming conventions (GNU Compiler vs. standard) 

CA78K0R GNU Compiler 
X (Register bank 1) R8 
A (Register bank 1) R9 
C (Register bank 1) R10 
B (Register bank 1) R11 
 

4.2.1 EEL_Init 

Outline: EEL_Init has to be called before any EEL usage. The function initializes all internal data 
and variables and performs a plausibility check of the configuration. 

 

Interface: C Interface for CA78K0R Compiler 

eel_status_t __far EEL_Init(void); 

 C Interface for IAR V1.xx Compiler 

__far_func eel_status_t EEL_Init(void);  

 C Interface for IAR V2.xx Compiler 

__far_func eel_status_t EEL_Init(void); 

 C Interface for GNU Compiler 

eel_status_t EEL_Init(void) __attribute__ ((section ("EEL_CODE"))); 

 C Interface for CC-RL Compiler 

eel_status_t __far EEL_Init(void); 

 C Interface for LLVM Compiler 

eel_status_t __far EEL_Init(void)       
     __attribute__ ((section ("EEL_CODE"))); 
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 ASM function label 

EEL_Init 

Arguments: Parameters 

 none 
 

 Return value 

 

Type 
Passed via 

CA78K0R IAR  
V1.xx 

IAR  
V2.xx GNU CC-RL LLVM 

eel_status_t C A A R8 
(X bank 1) A A 

Status of the function execution. Can be one of the following: 
• EEL_OK:  initialization done without problems 
• EEL_ERR_CONFIGURATION:  pool configuration error (EEL descriptor not 

plausible) or wrong FDL linked to the project 
 

 

 Destructed registers 

 

Tool chain Destructed registers 
CA78K0R none 
IAR V1.xx none 
IAR V2.xx X, BC, D, HL 
GNU none 
CC-RL X, BC, D, HL 
LLVM X, BC, D, HL 

 

 

Pre-
conditions: 

The Tiny FDL must be initialized and opened successfully before EEL_Init can be 
executed. 

 

Post-
conditions: 

none 
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Description: EEL_Init has to be called before any EEL usage. The function initializes all internal data 
structures and variables and performs a plausibility check of the configuration (EEL 
descriptor). 

First, the signature of the used FDL is checked to ensure that the right FDL (Type T02) is 
the counterpart of the EEL. 

After that, the plausibility of the EEL descriptor is checked by this function. Thereby the 
following properties are evaluated: 

• the number of defined EEL variables (at least 1, maximum 64), 
• the variable count matches the number of entries in the eel_descriptor array (see 

eel_descriptor.c), 
• the zero-termination of eel_descriptor array (see eel_descriptor.c), and 
• the total size of all defined variables is small enough to keep library operational (i.e. 

when all variables are instantiated once in the active block, the remaining free space 
is sufficient to write the largest variable at least once). 

Please note that the plausibility checks only aim at checks for operability. Still, the 
developer can create configurations which are not efficient (e.g. require to trigger frequent 
refreshes in case of very large EEL variable sets). 

 
Example:  

eel_status_t    my_eel_status; 
 
my_eel_status = EEL_Init(); 
if (my_eel_status != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
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4.2.2 EEL_Open 

Outline: This function opens the EEL logically. 
 

Interface: C Interface for CA78K0R Compiler 

void __far EEL_Open(void); 

 C Interface for IAR V1.xx Compiler 

__far_func void EEL_Open(void); 

 C Interface for IAR V2.xx Compiler 

__far_func void EEL_Open(void); 

 C Interface for GNU Compiler 

void EEL_Open(void) __attribute__ ((section ("EEL_CODE"))); 

 C Interface for CC-RL Compiler 

void __far EEL_Open(void); 

 C Interface for LLVM Compiler 

void __far EEL_Open(void) __attribute__ ((section ("EEL_CODE"))); 

 ASM function label 

EEL_Open 

Arguments: Parameters 

 none 
 

 Return value 

 none 
 

 Destructed registers 

 none 
 

Pre-
conditions: 

EEL_Init has to be executed successfully before. (This implies that the Tiny FDL has 
been initialized and opened beforehand.) 
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Post-
conditions: 

none 

 

Description: By means of the EEL_Open function, the Tiny EEL can be opened logically for usage. 
Please note that this does not activate the data flash. Enabling the data flash has to be 
done via the Tiny FDL by the corresponding FDL_Open function. 

 

Example:  

EEL_Open(); 
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4.2.3 EEL_Close 

Outline: This function closes the EEL logically. 
 

Interface: C Interface for CA78K0R Compiler 

void __far EEL_Close(void); 

 C Interface for IAR V1.xx Compiler 

__far_func void EEL_Close(void); 

 C Interface for IAR V2.xx Compiler 

__far_func void EEL_Close(void); 

 C Interface for GNU Compiler 

void EEL_Close(void) __attribute__ ((section ("EEL_CODE"))); 

 C Interface for CC-RL Compiler 

void __far EEL_Close(void); 

 C Interface for LLVM Compiler 

void __far EEL_Close(void) __attribute__ ((section ("EEL_CODE"))); 

 ASM function label 

EEL_Close 

Arguments: Parameters 

 none 
 

 Return value 

 none 
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 Destructed registers 

 

Tool chain Destructed registers 
CA78K0R none 
IAR V1.xx none 
IAR V2.xx A 
GNU none 
CC-RL A 
LLVM A 

 

 

Pre-
conditions: 

none 

 

Post-
conditions: 

none 

 

Description: By means of the EEL_Close function, the Tiny EEL can be closed logically. Please note 
that this does not deactivate the data flash. Disabling the data flash has to be done via 
the Tiny FDL by the corresponding FDL_Close function. 

 

Example:  

EEL_Close(); 
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4.2.4 EEL_Execute 

Outline: This function initiates the execution of an EEL command. 
 

Interface: C Interface for CA78K0R Compiler 

void __far EEL_Execute(__near eel_request_t* request_pstr); 

 C Interface for IAR V1.xx Compiler 

__far_func void EEL_Execute(__near eel_request_t __near* request_pstr); 

 C Interface for IAR V2.xx Compiler 

__far_func void EEL_Execute(eel_request_t __near * request_pstr); 

 C Interface for GNU Compiler 

void EEL_Execute(eel_request_t* request_pstr) 
                                __attribute__ ((section ("EEL_CODE"))); 

 C Interface for CC-RL Compiler 

void __far EEL_Execute(__near eel_request_t* request_pstr); 

 C Interface for LLVM Compiler 

void __far EEL_Execute(__near eel_request_t* request_pstr)   
     __attribute__ ((section ("EEL_CODE"))); 

 ASM function label 

EEL_Execute 

Arguments: Parameters 

 

Argument Access 
request_pstr rw 

Type 
Passed via 

CA78K0R IAR  
V1.xx 

IAR  
V2.xx GNU CC-RL LLVM 

eel_request_t*  (near) AX AX AX stack AX AX 
This argument points to a request structure defining the command the EEL should 
execute. The request structure is used for bidirectional information exchange between EEL 
and application during command execution. 
A detailed description of the eel_request_t structure can be found in Section 4.1.5. 
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 Return value 

 none 
 

 Destructed registers 

 

Tool chain Destructed registers 

CA78K0R AX 
IAR V1.xx AX 
IAR V2.xx AX, BC, DE, HL 
GNU none 
CC-RL AX, BC, DE, HL 
LLVM AX, BC, DE, HL 

 

 

Pre-
conditions: 

EEL_Init must be executed successfully before. 

EEL_Open must be executed before. 
 

Post-
conditions: 

none 

 

Description: By means of the EEL_Execute function, the execution of EEL commands can be initiated. 
The type and parameters of the command to be executed are collected in the request 
structure pointed to by request_pstr (see also Section 4.1.5). 

The underlying request-response concept is introduced in Section 3.1.3. 

A detailed description of all available commands can be found in Section 4.3. Please note 
that the meaning of the different request structure elements depends on the command. 
Before execution, the request structure is checked for plausibility. However, the error 
codes (returned as a member of the request structure) are command-specific as well. 
Please have a look at the command description. 

EEL_Execute only initiates the command execution. Please be aware that it is necessary 
for (almost) all commands to complete the command execution by EEL_Handler calls as 
introduced in Section 3.1.4. However, depending on the command it is possible that the 
EEL_Handler is executed implicitly by EEL_Execute. Therefore, commands may finish 
directly after the EEL_Execute call, indicated by an update of the status member of the 
request variable. 

One advantage of the request-response oriented command execution is that multiple 
independent request structures can be used. Thereby, different commands can be 
prepared and monitored in parallel, although a real parallel execution is not possible. 
Especially in case of operating systems, tasks can use their own request variables in 
order to decouple the EEL accesses between the tasks. 

Note 1:  
Although there are commands that do not require all request structure elements to be 
specified, the whole structure needs to be initialized before calling EEL_Execute. 
Otherwise, a RAM parity/ECC error may cause a reset of the device. For details, please 
refer to the document “User's Manual: Hardware” of your RL78 product. 

Note 2:  
The request structure used for execution has to be word-aligned, i.e. located at an even 
memory address. 

 
Example: Code examples for the execution of commands can be found in Section 4.3.8. 
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4.2.5 EEL_Handler 

Outline: This function needs to be called in order to drive pending commands and observe their 
progress. 

 

Interface: C Interface for CA78K0R Compiler 

void __far EEL_Handler(void); 

 C Interface for IAR V1.xx Compiler 

__far_func void EEL_Handler(void); 

 C Interface for IAR V2.xx Compiler 

__far_func void EEL_Handler(void); 

 C Interface for GNU Compiler 

void EEL_Handler(void) __attribute__ ((section ("EEL_CODE"))); 

 C Interface for CC-RL Compiler 

void __far EEL_Handler(void); 

 C Interface for LLVM Compiler 

void __far EEL_Handler(void) __attribute__ ((section ("EEL_CODE"))); 

 ASM function label 

EEL_Handler 

Arguments: Parameters 

 none 
 

 Return value 

 none 
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 Destructed registers 

 

Tool chain Destructed registers 

CA78K0R none 
IAR V1.xx none 
IAR V2.xx AX, BC, DE, HL 
GNU none 
CC-RL AX, BC, DE, HL 
LLVM AX, BC, DE, HL 

 

 

Pre-
conditions: 

EEL_Init must be executed successfully before. 

 

Post-
conditions: 

The status of a pending EEL or FDL command may be updated, i.e. the status_enu 
member of the corresponding request structure is written. 

 

Description: The function EEL_Handler needs to be called regularly in order to drive pending 
commands and observe their progress. Thereby, the command execution is performed 
state by state. When a command execution is finished, the request status variable 
(structural element status_enu of eel_request_t) is updated and contains the status/error 
code of the corresponding command execution. Please have a look at Section 3.1.4 for a 
more detailed description of the principles of the handler-oriented command execution. 

Please be aware that the EEL_Handler may implicitly call the FDL_Handler and therefore 
finish pending FDL commands. However, the EEL_Handler shall not be used instead of 
the FDL_Handler to finish FDL commands, as it is not guaranteed that the EEL_Handler 
invokes the FDL_Handler always. 

Note:  
When no command is being processed, EEL_Handler consumes a few CPU cycles only. 

 

Example:  

while (true) 
{ 
    EEL_Handler(); 
    User_Task_A(); 
    User_Task_B(); 
    User_Task_C(); 
    User_Task_D(); 
} 
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4.2.6 EEL_GetDriverStatus 

Outline: This function opens a way to check the internal status of the EEL driver before placing a 
request. 

 

Interface: C Interface for CA78K0R Compiler 

void __far EEL_GetDriverStatus(__near eel_driver_status_t*  
                                                eel_driver_status_penu); 

 C Interface for IAR V1.xx Compiler 

__far_func void EEL_GetDriverStatus(__near eel_driver_status_t __near*  
                                                eel_driver_status_penu); 

 C Interface for IAR V2.xx Compiler 

__far_func void EEL_GetDriverStatus(eel_driver_status_t __near *   
         eel_driver_status_penu); 

 C Interface for GNU Compiler 

void EEL_GetDriverStatus(eel_driver_status_t* eel_driver_status_penu)  
                                 __attribute__ ((section ("EEL_CODE"))); 

 C Interface for CC-RL Compiler 

void __far EEL_GetDriverStatus(__near eel_driver_status_t*  
                                                eel_driver_status_penu); 

 C Interface for LLVM Compiler 

void __far EEL_GetDriverStatus(__near eel_driver_status_t*   
    eel_driver_status_penu) __attribute__ ((section ("EEL_CODE"))); 

 ASM function label 

EEL_GetDriverStatus 
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 Return value 

 none 
 

 Destructed registers 

 

Tool chain Destructed registers 
CA78K0R AX 
IAR V1.xx AX 
IAR V2.xx A, BC, D, HL 
GNU None 
CC-RL A, BC, D, HL 
LLVM A, BC, D, HL 
 

 
 

Pre-
conditions: 

none 

 

Post-
conditions: 

none 

 

Description: The EEL_GetDriverStatus function opens a way to check the internal status of the EEL 
driver before placing a request. The returned status can be one of the following: 

• EEL_DRIVER_PASSIVE: 
The EEL is not started up completely. It is not possible to issue EEL commands 
(except startup and format when the library is initialized and opened). An access to 
the EEL data is not possible. 

• EEL_DRIVER_BUSY: 
The EEL is currently processing a command and cannot accept a new one for 
execution. 

• EEL_DRIVER_IDLE: 
The library has been initialized, opened and started up (see Section 4.3.1) 
successfully. The EEL has currently no running tasks and is accepting new 
commands. 

 

A more detailed correlation between driver status and the EEL workflow is given in Figure 
3-3 (Section 3.2). 

 

Arguments: Parameters 

 

Argument Access 
eel_driver_status_penu w 

Type 
Passed via 

CA78K0R IAR  
V1.xx 

IAR  
V2.xx GNU CC-RL LLVM 

eel_driver_status_t*  
(near) AX AX AX stack AX AX 

Pointer to the driver status variable which is updated by the EEL_GetDriverStatus 
function, which is one of the following: 
• EEL_DRIVER_PASSIVE: driver passive, EEL not started up correctly 
• EEL_DRIVER_BUSY: driver busy, EEL cannot accept new commands 
• EEL_DRIVER_IDLE: driver idle, EEL awaits new commands 
The eel_driver_status_t enumeration type is defined in Section 0. 
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Example:  

eel_driver_status_t    my_eel_driver_status; 
 
 
EEL_GetDriverStatus((__near eel_driver_status_t*)&my_eel_driver_status); 
 
if (my_eel_driver_status == EEL_DRIVER_PASSIVE) 
{ 
    /* initialize EEL and execute the STARTUP command */ 
} 
else 
{ 
    /* ensure that the EEL driver is idle before issuing request */ 
    while (my_eel_driver_status == EEL_DRIVER_BUSY) 
    { 
        EEL_Handler(); 
        EEL_GetDriverStatus((__near eel_driver_status_t*)&my_eel_driver_status); 
    } 
} 
 
/* the user can place requests here */ 
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4.2.7 EEL_GetSpace 

Outline: By means of this function, the developer can check the remaining free space in the 
current active block, thereby aiding the decision when a refresh (i.e. transition to a new 
active block) is required. 

 

Interface: C Interface for CA78K0R Compiler 

eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16); 

 C Interface for IAR V1.xx Compiler 

__far_func eel_status_t EEL_GetSpace(__near eel_u16 __near* space_pu16); 

 C Interface for IAR V2.xx Compiler 

__far_func eel_status_t EEL_GetSpace(eel_u16 __near * space_pu16); 

 C Interface for GNU Compiler 

eel_status_t EEL_GetSpace(eel_u16* space_pu16) 
                                 __attribute__ ((section ("EEL_CODE"))); 

 C Interface for CC-RL Compiler 

eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16); 

 C Interface for LLVM Compiler 

eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16)  
      __attribute__ ((section ("EEL_CODE"))); 

 ASM function label 

EEL_GetSpace 

Arguments: Parameters 

 

Argument Access 
space_pu16 w 

Type 
Passed via 

CA78K0R IAR  
V1.xx 

IAR  
V2.xx GNU CC-RL LLVM 

eel_u16* (near) AX AX AX stack AX AX 
Address of the space information variable which is updated during function execution. 
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 Return value 

 

Type 
Passed via 

CA78K0R IAR  
V1.xx 

IAR  
V2.xx GNU CC-RL LLVM 

eel_status_t C A A R8  
(X bank 1) A A 

Status/error code of the execution of EEL_GetSpace. Can be one of the following: 
• EEL_OK: space value has been computed correctly 
• EEL_ERR_INITIALIZATION: EEL not initialized, space cannot be computed 
• EEL_ERR_ACCESS_LOCKED: EEL has not been started up, space cannot be 

computed 
• EEL_ERR_REJECTED: an EEL command is running, space cannot be computed 

 

 

 
 
Destructed registers 

 

Tool chain Destructed registers 
CA78K0R AX 
IAR V1.xx AX 
IAR V2.xx X, C, HL 
GNU none 
CC-RL X, C, HL 
LLVM X, C, HL 

 

 

Pre-
conditions: 

The Tiny EEL must be initialized, opened and started up before the free space in the 
active block can be calculated. 

 

Post-
conditions: 

none 

 

Description: By means of this function, the developer can check the remaining free space in the 
current active block, thereby aiding the decision when a refresh (i.e. transition to a new 
active block) is required. 

It is important to note that each instance of a variable consists of a reference entry of 2 
bytes and the actual data section (see Section 2.3.3). Therefore, writing a variable of size 
n requires n+2 bytes of free space. 

Note 1:  
In case the EEL pool is exhausted, the returned free space will always be 0. 

Note 2:  
In case of an error return value, the space parameter is not changed. 

Note 3:  
In case of interrupted write sequences (e.g. due to reset), the EEL_GetSpace function 
might return a free space of '0' after startup, indicating a necessary refresh. 
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Example:  

eel_status_t    my_eel_status_enu; 
eel_u16         my_eel_space_u16; 
 
/* execute the function */ 
my_eel_status_enu = EEL_GetSpace((__near eel_u16*)&my_eel_space_u16); 
 
if (my_eel_status_enu != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
else 
{ 
    /* my_eel_space_u16 is valid */ 
    /* do something */ 
} 
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4.2.8 EEL_GetVersionString 

Outline: This function provides library version information at runtime. 
 

Interface: C Interface for CA78K0R Compiler 

__far eel_u08* __far EEL_GetVersionString(void); 

 C Interface for IAR V1.xx Compiler 

__far_func eel_u08 __far* EEL_GetVersionString(void); 

 C Interface for IAR V2.xx Compiler 

__far_func eel_u08 __far * EEL_GetVersionString(void); 

 C Interface for GNU Compiler 

eel_u08 __far* EEL_GetVersionString(void) 
                                 __attribute__ ((section ("EEL_CODE")));  

 C Interface for CC-RL Compiler 

__far eel_u08* __far EEL_GetVersionString(void); 

 C Interface for LLVM Compiler 

__far eel_u08* __far EEL_GetVersionString(void)     
     __attribute__ ((section ("EEL_CODE"))); 

 ASM function label 

EEL_GetVersionString 

Arguments: Parameters 

 none 
 

 Return value 

 

Type 
Passed via 

CA78K0R IAR  
V1.xx 

IAR  
V2.xx GNU CC-RL LLVM 

eel_u08* (far) BC (low), 
DE (high) 

HL (low),  
A (high) 

DE (low),  
A (high) 

R8-R11  
(AX, BC 
bank 1) 

DE (low),  
A (high) 

DE (low),  
A (high) 

Far (24 bit) address of the zero-terminated EEL version string. 
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 Destructed registers 

 none 
 

Pre-
conditions: 

none 

 

Post-
conditions: 

none 

 

Description: For version control at runtime the developer can use this function to find the starting 
character of the library version string (ASCII format). 

The version string is a zero-terminated string constant that covers library-specific 
information and is based on the following structure: NMMMMTTTCCCCCGVVV..V, 
where: 

• N   : library type specifier (here ‘E’ for EEL) 
• MMMM  : series name of microcontroller (here ‘RL78’) 
• TTT  : type number (here ‘T02’) 
• CCCCC  : compiler information  

• ‘Rxyy_’  for CA78K0R compiler version x.yy 
• ‘Ixyy_’ for IAR V1.xx compiler version x.yy 
• ‘Uxxyy’ for GNU compiler version xx.yy 
• ‘Lxyyz’ for CC-RL compiler version x.yy.0z 

Note: The version string of IAR V2.xx and LLVM indicates that the supported 
compiler is CC-RL because the library files for IAR V2.xx and LLVM are 
identical to the one for CC-RL. 

• G  : all memory models (here ‘G’ for general) 
• VVV..V : library version 

• ‘Vxyy’ for release version x.yy 
• ‘Exyyy’  for engineering version x.yyy 

 

Examples: 

The version string of the Tiny EEL V1.00 for the CA78K0R compiler version 1.10 is:  
"ERL78T02R110_GV100" 

The version string of the Tiny EEL V1.00 for the IAR V1.xx compiler version 1.20 is:  
"ERL78T02I120_GV100" 

The version string of the Tiny EEL V1.01 for the GNU compiler version 13.02 is:  
"ERL78T02U1302GV101" 

The version string of the Tiny EEL V1.01 for the CC-RL compiler version 1.23.04 is:  
"ERL78T02L1234GV101" 

  

Example:  

__far  eel_u08*   my_version_string_pu08; 
 
my_version_string_pu08 = EEL_GetVersionString(); 
 
PrintMyVersion(my_version_string_pu08); 
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4.3 Commands 

Commands are used to manage the EEL pool and to access the EEL variable set (see also Section 
3.1.2). They are initiated via EEL_Execute and processed stepwise by consecutive calls of EEL_Handler. 
All EEL commands have to be initiated by passing a completed EEL-request structure (see Section 4.1.5) 
as parameter of EEL_Execute. As depicted in Figure 4-1, the three structure elements command_enu, 
identifier_u08 and address_pu08 need to be specified by the user while status_enu is set by the library. 

 

 
 

While the mandatory element command_enu specifies which command is to be executed, the usage of 
the elements identifier_u08 and address_pu08 depends on the command. Therefore these parameters 
and the possible return statuses are described individually for each command in the subsequent sections. 

An overview of all available command codes including the usage of request variable members is listed in 
Table 4-2. 
 

Table 4-2: Command codes and usage of request variable members 

Command identifier value address_pu08 identifier_u08 Comment 
EEL_CMD_STARTUP 0x01 unused unused startup the library 
EEL_CMD_SHUTDOWN 0x07 unused unused shutdown the library 
EEL_CMD_VERIFY 0x05 unused unused verify the current active block 
EEL_CMD_REFRESH 0x04 unused unused copy latest instances to new block 
EEL_CMD_FORMAT 0x06 unused unused format the EEL pool 
EEL_CMD_READ 0x03 used used read variable content 
EEL_CMD_WRITE 0x02 used used update variable content 
 
 
Note: 
Although it depends on the command which members of the request structure are necessary for the 
execution, all members of the request variable must be initialized once (for instance directly after variable 
declaration). Thereby, unused members in the request variable can be to set arbitrary values. 

 
Figure 4-1: Schematic usage of the request variable (reprise of Figure 3-1) 

address_pu08

identifier_u08

status_enu

Tiny EEL

requester

command_enu

request variable
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In general, all EEL commands can be handled in the same way as illustrated in Figure 4-2 (a 
corresponding code example can be found in Section 4.3.8): 

1. The requester fills up the private request variable my_request (command definition) 

2. The requester tries to initiate the command execution by EEL_Execute(&my_request) 

3. In case of a command rejection, the requester has to call the EEL_Handler first to proceed the 
processing of the already pending request and can retry by continuing with step 2. 

4. The requester has to call EEL_Handler to proceed the EEL command execution as long the request 
is being processed (i.e. my_request.status_enu == EEL_BUSY). 

5. After finishing the command (i.e. my_request.status_enu != EEL_BUSY) the requester has to analyze 
the status to detect potential errors. 

Not all commands can/should be executed from every library state. For details, please have a look at the 
basic workflow shown in Figure 3-3, Section 3.2. 

 

 

 
Figure 4-2: Generic command execution flow 
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The detailed command descriptions given in the subsequent sections include a classification of the 
corresponding returned statuses according to their severity: 

• normal: normal operation status by the application has to handle at runtime, 

• light: wrong handling that can be corrected by the application at runtime, 

• heavy: wrong handling that can be corrected by redesign of the application, 

• fatal: cannot be corrected without loss of data. 
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4.3.1 Startup 

One main task of the startup command is to check the consistency of the EEL-pool. Especially the 
structure and consistency of the active block is checked (see also Section 2.3). Thereby, scenarios of 
reset-caused incomplete command executions are detected. Pool data structures of incomplete write and 
refresh commands are ignored and the previous data set is treated as valid. 

Furthermore, during startup a reference table with indices of the effective instances of all EEL variables is 
built up in the RAM for fast access to the variable content. 

Besides these two main tasks, the startup command also checks important parts of the active EEL block 
for full data retention (c.f. internal-verify command of Tiny FDL). If it is detected that the full data retention 
is not given, this is indicated by the error code EEL_ERR_VERIFY. In this case, the user should consider 
invoking a refresh command. 

A successfully executed startup command enables read and write access to the EEL variables. 
 

Table 4-3: Request variable usage for startup command 

command_enu address_pu08 identifier_u08 
EEL_CMD_STARTUP unused unused 

 

Table 4-4: Statuses returned by the startup command 

Status Class Status meaning and handling 

EEL_ERR_INITIALIZATION heavy 
meaning EEL or FDL not initialized or not opened 
reason wrong handling on user side 
remedy initialize and open EEL before using it 

EEL_ERR_INTERNAL heavy 

meaning error occurred but cannot be categorized 

reason 
FDL might have been reinitialized with a 
different descriptor or an unexpected internal 
error occurred 

remedy check/adjust the configured FDL descriptor and 
re-initialize all libraries. 

EEL_ERR_PARAMETER light 
meaning invalid command code 
reason unknown command code used in request 
remedy use command identifiers of eel_command_t 

EEL_ERR_VERIFY light 

meaning 
found data without full data retention in the 
block header or the last written variable 
instance 

reason long period of time since last refresh, 
interrupted write sequence (e.g. by reset) 

remedy execute a refresh command 

EEL_ERR_POOL_INCONSISTENT heavy 

meaning pool structure not usable 

reason EEL-pool is inconsistent and cannot be 
recovered 

remedy format the EEL pool 

EEL_ERR_POOL_EXHAUSTED fatal 
meaning 

EEL pool size is smaller than 2 blocks, 
write and refresh is not possible,  
reading existing variables is still possible 

reason too many blocks excluded 
remedy try to perform a format or just read existing data 
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Status Class Status meaning and handling 

EEL_ERR_REJECTED normal 
meaning EEL cannot accept the request 
reason EEL is busy with another request 
remedy call EEL_Handler and retry 

EEL_BUSY normal 
meaning request is being processed 
reason request checked and accepted 
remedy call EEL_Handler until status changes 

EEL_OK normal 
meaning request was finished regularly 
reason no problems during command execution 
remedy nothing 

 

Note: 
A code example how to use the startup command can be found in Section 4.3.8.1. 
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4.3.2 Verify 

The verify command performs the verification of the active block in the EEL pool, i.e. checks if all bytes in 
the active block provide full data retention. The user can execute the verify command after the library has 
been started up in order to ensure that no weak data were produced by a reset during writing. The 
developer can also execute the verify command before a shutdown in order to ensure that the EEL data 
will remain stable for the full data retention time after ending the EEL operation. 
 

Table 4-5: Request variable usage for verify command 

command_enu address_pu08 identifier_u08 
EEL_CMD_VERIFY unused unused 

 

Table 4-6: Statuses returned by the verify command 

Status Class Status meaning and handling 

EEL_ERR_INITIALIZATION heavy 
meaning EEL or FDL not initialized or not opened 
reason wrong handling on user side 
remedy initialize and open EEL before using it 

EEL_ERR_INTERNAL heavy 

meaning error occurred but cannot be categorized 

reason 
FDL might have been reinitialized with a 
different descriptor or an unexpected internal 
error occurred 

remedy check/adjust the configured FDL descriptor and 
re-initialize all libraries. 

EEL_ERR_PARAMETER light 
meaning invalid command code 
reason unknown command code used in request 
remedy use command identifiers of eel_command_t 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason startup not executed or not successful 
remedy execute startup command 

EEL_ERR_VERIFY heavy 

meaning found data without full data retention in the 
active block 

reason long period of time since last refresh, 
interrupted write sequence (e.g. by reset) 

remedy execute refresh soon 

EEL_ERR_REJECTED normal 
meaning EEL cannot accept the request 
reason EEL is busy with another request 
remedy call EEL_Handler and retry 

EEL_BUSY normal 
meaning request is being processed 
reason request checked and accepted 
remedy call EEL_Handler until status changes 

EEL_OK normal 
meaning request was finished regularly 
reason no problems during command execution 
remedy nothing 

 

Note: 
A code example how to use the verify command can be found in Section 4.3.8.4. 
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4.3.3 Shutdown 

The shutdown command locks the logical access to the EEL data. To ensure full data retention time for all 
data in the active block, it is recommended to execute the verify command and—in case of an error—to 
perform a refresh before shutting down the library. 

Note: 
The shutdown command is the only command which has single processing state and hence finishes with 
EEL_Execute directly (i.e. without additional EEL_Handler call, c.f. Figure 3-3 in Section 3.2). However, 
the developer is advised to follow the common command flow proposed in Figure 4-2 also for the 
shutdown command. 
 

Table 4-7: Request variable usage for startup command 

command_enu address_pu08 identifier_u08 
EEL_CMD_SHUTDOWN unused unused 

 

Table 4-8: Statuses returned by the shutdown command 

Status Class Status meaning and handling 

EEL_ERR_INITIALIZATION heavy 
meaning EEL or FDL not initialized or not opened 
reason wrong handling on user side 
remedy initialize and open EEL before using it 

EEL_ERR_PARAMETER light 
meaning invalid command code 
reason unknown command code used in request 
remedy use command identifiers of eel_command_t 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason startup not executed or not successful 
remedy execute startup command 

EEL_ERR_REJECTED normal 
meaning EEL cannot accept the request 
reason EEL is busy with another request 
remedy call EEL_Handler and retry 

EEL_BUSY normal 
meaning request is being processed 
reason request checked and accepted 
remedy call EEL_Handler until status changes 

EEL_OK normal 
meaning request was finished regularly 
reason no problems during command execution 
remedy nothing 

 

Note: 
A code example how to use the startup command can be found in Section 4.3.8.4. 
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4.3.4 Format 

The format command destroys all EEL variable content and creates an empty EEL pool with one active 
block. All remaining blocks are erased, independently of their block status. This means that also excluded 
blocks are tried to be erased, offering the developer a way to try to reanimate these blocks. However, in 
case of repeated erase problems, the format command excludes blocks automatically. 

Typically, the format command is executed before the library is started up. However, it is also possible to 
execute the format command when the library has been started up already. In any case, the library needs 
to be started up again after a successful format. 

In contrast to all other Tiny EEL commands, the format command is not robust against resets. In case a 
reset occurs during a format, there is a chance that the EEL pool is coincidentally valid and will be 
accepted during the next startup. Please ensure to always finish a once started format command. 

Please note that this ostensible limitation is not severe in the typical use case as a format command 
destroys all EEL variable content and is therefore usually executed once at the beginning of a product 
lifetime. 

Note: 
When executing a format command, all EEL variable data will be lost immediately. 

Caution 1: 
It is imperative to finish a once started format command. The format command is not robust against 
resets. Unfinished format commands may not be detected and can lead to unpredictable behavior (i.e. 
data sets) during the next startup. 

Caution 2: 
When changing the FDL descriptor, an EEL format command must be executed successfully before the 
EEL can be started up and used again. 

 
 

Table 4-9: Request variable usage for format command 

command_enu address_pu08 identifier_u08 
EEL_CMD_FORMAT unused unused 

 

 

Table 4-10: Statuses returned by the format command 

Status Class Status meaning and handling 

EEL_ERR_INITIALIZATION heavy 
meaning EEL or FDL not initialized or not opened 
reason wrong handling on user side 
remedy initialize and open EEL before using it 

EEL_ERR_INTERNAL heavy 

meaning error occurred but cannot be categorized 

reason 
FDL might have been reinitialized with a 
different descriptor or an unexpected internal 
error occurred 

remedy check/adjust the configured FDL descriptor and 
re-initialize all libraries. 

EEL_ERR_PARAMETER light 
meaning invalid command code 
reason unknown command code used in request 
remedy use command identifiers of eel_command_t 
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Status Class Status meaning and handling 

EEL_ERR_POOL_EXHAUSTED fatal 
meaning 

EEL pool size is smaller than 2 blocks, 
write and refresh is not possible,  
reading existing variables is still possible 

reason too many blocks excluded 
remedy try to perform a format or just read existing data 

EEL_ERR_REJECTED normal 
meaning EEL cannot accept the request 
reason EEL is busy with another request 
remedy call EEL_Handler and retry  

EEL_BUSY normal 
meaning request is being processed 
reason request checked and accepted 
remedy call EEL_Handler until status changes 

EEL_OK normal 
meaning request was finished regularly 
reason no problems during command execution 
remedy nothing 

 

Note: 
A code example how to use the format command can be found in Section 4.3.8.2 
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4.3.5 Refresh 

The refresh command copies the latest instance of each variable from the active block (source block) to 
the next block (destination block) in the EEL pool ring counting clockwise (see Section 2.3.1). Thereby, 
the destination block becomes the new active block. 

By means of the refresh command, new free space is created which can be used to write (i.e. update) 
variable contents. Another reason for executing a refresh could be to ensure full data retention of all 
variables for instance before powering down the device. 

The refresh sequence is designed in a way that a valid data set is available at any time. Therefore, the 
refresh command is robust against reset scenarios. The proper variable set will be reconstructed during 
the next startup. 

Note: 
Before a refresh command can be executed, the library needs to be started up successfully. 

 
 

Table 4-11: Request variable usage for refresh command 

command_enu address_pu08 identifier_u08 
EEL_CMD_REFRESH unused unused 

 

 

Table 4-12: Statuses returned by the refresh command 

Status Class Status meaning and handling 

EEL_ERR_INITIALIZATION heavy 
meaning EEL or FDL not initialized or not opened 
reason wrong handling on user side 
remedy initialize and open EEL before using it 

EEL_ERR_INTERNAL heavy 

meaning error occurred but cannot be categorized 

reason 
FDL might have been reinitialized with a 
different descriptor or an unexpected internal 
error occurred 

remedy check/adjust the configured FDL descriptor and 
re-initialize all libraries. 

EEL_ERR_PARAMETER light 
meaning invalid command code 
reason unknown command code used in request 
remedy use command identifiers of eel_command_t 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason startup not executed or not successful 
remedy execute startup command 

EEL_ERR_POOL_EXHAUSTED fatal 
meaning 

EEL pool size is smaller than 2 blocks, 
write and refresh is not possible,  
reading existing variables is still possible 

reason too many blocks excluded 
remedy try to perform a format or just read existing data 

EEL_ERR_REJECTED normal 
meaning EEL cannot accept the request 
reason EEL is busy with another request 
remedy call EEL_Handler and retry  
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Status Class Status meaning and handling 

EEL_BUSY normal 
meaning request is being processed 
reason request checked and accepted 
remedy call EEL_Handler until status changes 

EEL_OK normal 
meaning request was finished regularly 
reason no problems during command execution 
remedy nothing 

 

Note: 
A code example how to use the refresh command can be found in Section 4.3.8.3. 
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4.3.6 Write 

The write command writes a new value to an EEL variable. The variable to be updated is specified via the 
identifier element of the request structure. The data to be written is copied from a buffer pointed to by the 
address element. 

In case of insufficient free space in the active block, the write command returns EEL_ERR_POOL_FULL. 
In this case the developer needs to execute a refresh and then try to write the variable again. 

In time critical scenarios it is also possible to check the remaining free space in the active block 
beforehand by means of the EEL_GetSpace function (see Section 4.2.7). This enables to detect when 
free space is getting scarce and issue a refresh already early when there is enough processing time. 
When evaluating the free space returned by EEL_GetSpace, please recall that a variable instance always 
requires two administrative bytes of data besides the actual variable contend. 

The write sequence is designed in a way that a valid data set is available at any time. Therefore, the write 
command is robust against reset scenarios. The proper variable content will be reconstructed during the 
next startup. 

Note 1: 
Please ensure that the size of the data buffer used for writing the variable is at least as large as the size 
of the variable to be written and that all relevant buffer elements are initialized. 

Note 2: 
Before a write command can be executed, the library needs to be started up successfully. 
 

Table 4-13: Request variable usage for write command 

command_enu address_pu08 identifier_u08 
EEL_CMD_WRITE pointer to data buffer identifier of variable to be written 

 

Table 4-14: Statuses returned by the write command 

Status Class Status meaning and handling 

EEL_ERR_INITIALIZATION heavy 
meaning EEL or FDL not initialized or not opened 
reason wrong handling on user side 
remedy initialize and open EEL before using it 

EEL_ERR_INTERNAL heavy 

meaning error occurred but cannot be categorized 

reason 
FDL might have been reinitialized with a 
different descriptor or an unexpected internal 
error occurred 

remedy check/adjust the configured FDL descriptor and 
re-initialize all libraries. 

EEL_ERR_PARAMETER light 
meaning invalid command code 
reason unknown command code used in request 
remedy use command identifiers of eel_command_t 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason startup not executed or not successful 
remedy execute startup command 

EEL_ERR_POOL_EXHAUSTED fatal 
meaning 

EEL pool size is smaller than 2 blocks, 
write and refresh is not possible,  
reading existing variables is still possible 

reason too many blocks excluded 
remedy try to perform a format or just read existing data 
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Status Class Status meaning and handling 

EEL_ERR_POOL_FULL normal 

meaning not enough space in active block to write the 
variable instance 

reason 

• space was consumed by previous write 
commands 

• flash error occurred during writing data 
• the active block contains an invalid 

reference (space consumed by previous 
startup command in case of invalid 
reference) 

• the active block has weak data (previous 
startup command returned 
EEL_ERR_VERIFY error) 

remedy execute a refresh and write again 

EEL_ERR_REJECTED normal 
meaning EEL cannot accept the request 
reason EEL is busy with another request 
remedy call EEL_Handler and retry 

EEL_BUSY normal 
meaning request is being processed 
reason request checked and accepted 
remedy call EEL_Handler until status changes 

EEL_OK normal 
meaning request was finished regularly 
reason no problems during command execution 
remedy nothing 

 

Note: 
A code example how to use the refresh command can be found in Section 4.3.8.3. 
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4.3.7 Read 

The read command reads the current value of an EEL variable. The variable to be read is specified via 
the identifier element of the request structure. The data is copied to a buffer pointed to by the address 
element. 

Note 1: 
Please ensure that the size of the data buffer used for reading the variable is at least as large as the size 
of the variable. 

Note 2: 
Before a read command can be executed, the library needs to be started up successfully. 

 
 

Table 4-15: Request variable usage for read command 

command_enu address_pu08 identifier_u08 
EEL_CMD_READ pointer to data buffer identifier of variable to be read 

 

 

Table 4-16: Statuses returned by the read command 

Status Class Status meaning and handling 

EEL_ERR_INITIALIZATION heavy 
meaning EEL or FDL not initialized or not opened 
reason wrong handling on user side 
remedy initialize and open EEL before using it 

EEL_ERR_INTERNAL heavy 

meaning error occurred but cannot be categorized 

reason 
FDL might have been reinitialized with a 
different descriptor or an unexpected internal 
error occurred 

remedy check/adjust the configured FDL descriptor and 
re-initialize all libraries. 

EEL_ERR_PARAMETER light 
meaning invalid command code 
reason unknown command code used in request 
remedy use command identifiers of eel_command_t 

EEL_ERR_ACCESS_LOCKED light 
meaning no access to EEL pool 
reason startup not executed or not successful 
remedy execute startup command 

EEL_ERR_NO_INSTANCE light 

meaning no instance of the variable with the specified 
identifier found 

reason no initial value written 

remedy write an initial value of the variable via the write 
command 

EEL_ERR_REJECTED normal 
meaning EEL cannot accept the request 
reason EEL is busy with another request 
remedy call EEL_Handler and retry 

EEL_BUSY normal 
meaning request is being processed 
reason request checked and accepted 
remedy call EEL_Handler until status changes 
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Status Class Status meaning and handling 

EEL_OK normal 
meaning request was finished regularly 
reason no problems during command execution 
remedy nothing 

 

Note: 
A code example how to use the refresh command can be found in Section 4.3.8.3. 
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4.3.8 Code examples 

In the following, some code examples are given how to initiate and execute EEL commands. 

4.3.8.1 Library Startup 

eel_status_t    my_eel_status; 
eel_request_t   my_eel_request_str; 
 
... 
 
/* It is assumed at this point, that the FDL has been initialized and opnened 
correctly. */ 
 
my_eel_status = EEL_Init(); 
if (my_eel_status != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
EEL_Open(); 
 
/* Ensure initialized request structure ------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_UNDEFINED; 
my_eel_request_str.identifier_u08   = 0; 
my_eel_request_str.address_pu08     = NULL; 
my_eel_request_str.status_enu       = EEL_ERR_PARAMETER; 
 
/* Initiate STARTUP command ------------------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_STARTUP; 
 
/* command cannot be rejected here as the library has just been opened */ 
EEL_Execute(&my_eel_request_str); 
 
while (my_eel_request_str.status_enu == EEL_BUSY) 
{ 
    EEL_Handler(); 
} 
 
if (my_eel_request_str.status_enu != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
 
/* Library is started up now and should accept accesses to the EEL variables */ 
 
/* Initiate READ command ------------------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_READ; 
my_eel_request_str.address_pu08     = (__near eel_u08*)&A[0]; 
my_eel_request_str.identifier_u08   = 1; 
 
do 
{ 
    EEL_Handler(); 
    EEL_Execute(&my_eel_request_str); 
} 
while (my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
while (my_eel_request_str.status_enu == EEL_BUSY) 
{ 
    EEL_Handler(); 
} 
 
if (my_eel_request_str.status_enu != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
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4.3.8.2 EEL Pool Format 

eel_status_t    my_eel_status; 
eel_request_t   my_eel_request_str; 
 
/* Ensure initialized request structure ------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_UNDEFINED; 
my_eel_request_str.identifier_u08   = 0; 
my_eel_request_str.address_pu08     = NULL; 
my_eel_request_str.status_enu       = EEL_ERR_PARAMETER; 
 
... 
 
 
/* It is assumed at this point, that the FDL has been initialized and opnened 
correctly. */ 
 
my_eel_status = EEL_Init(); 
if (my_eel_status != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
EEL_Open(); 
 
 
/* Initiate FORMAT comamnd ------------------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_FORMAT; 
 
/* command cannot be rejected here as the library has just been opened */ 
EEL_Execute(&my_eel_request_str); 
 
while (my_eel_request_str.status_enu == EEL_BUSY) 
{ 
    EEL_Handler(); 
} 
 
if (my_eel_request_str.status_enu != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
 
/* EEL pool is formatted now, all previous variable content is lost */ 
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4.3.8.3 Variable Access 

eel_status_t    my_eel_status; 
eel_request_t   my_eel_request_str; 
eel_request_t   my_refr_eel_request_str; 
 
/* Ensure initialized request structure ------------------------------- */ 
my_eel_request_str.command_enu          = EEL_CMD_UNDEFINED; 
my_eel_request_str.identifier_u08       = 0; 
my_eel_request_str.address_pu08         = NULL; 
my_eel_request_str.status_enu           = EEL_ERR_PARAMETER; 
 
my_refr_eel_request_str.command_enu     = EEL_CMD_REFRESH; 
my_refr_eel_request_str.identifier_u08  = 0; 
my_refr_eel_request_str.address_pu08    = NULL; 
my_refr_eel_request_str.status_enu      = EEL_ERR_PARAMETER; 
 
... 
 
/* It is assumed at this point, that the EEL has been initialized, opnened and 
started up correctly. */ 
 
 
/* Initiate READ command --------------------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_READ; 
my_eel_request_str.address_pu08     = (__near eel_u08*)&A[0]; 
my_eel_request_str.identifier_u08   = 2; 
 
do 
{ 
    EEL_Handler(); 
    EEL_Execute(&my_eel_request_str); 
} 
while (my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
while (my_eel_request_str.status_enu == EEL_BUSY) 
{ 
    EEL_Handler(); 
} 
 
if (my_eel_request_str.status_enu != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
 
 
/* Initiate WRITE command ------------------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_WRITE; 
my_eel_request_str.address_pu08     = (__near eel_u08*)&B[0]; 
my_eel_request_str.identifier_u08   = 1; 
 
do 
{ 
    do 
    { 
        EEL_Handler(); 
        EEL_Execute(&my_eel_request_str); 
    } 
    while (my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
    while (my_eel_request_str.status_enu == EEL_BUSY) 
    { 
        EEL_Handler(); 
    } 
 
    if (my_eel_request_str.status_enu == EEL_ERR_POOL_FULL) 
    { 
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        /* in case of a full pool, a refresh needs to be executed  
        in order to free space */ 
 
        /* please note that a different request variable is used for the  
        refresh so that the result of the write command can be checked in the 
        outer loop */ 
  
        do 
        { 
            EEL_Handler(); 
            EEL_Execute(&my_refr_eel_request_str); 
        } 
        while (my_refr_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
        while (my_refr_eel_request_str.status_enu == EEL_BUSY) 
        { 
            EEL_Handler(); 
        } 
 
        if (my_refr_eel_request_str.status_enu != EEL_OK) 
        { 
            MyErrorHandler(); 
        } 
    } 
    else if (my_eel_request_str.status_enu != EEL_OK) 
    { 
        MyErrorHandler(); 
    } 
} 
while (my_eel_request_str.status_enu == EEL_ERR_POOL_FULL); 
 

 

4.3.8.4 Library Shutdown 

eel_status_t    my_eel_status; 
eel_request_t   my_eel_request_str; 
 
/* Ensure initialized request structure ------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_UNDEFINED; 
my_eel_request_str.identifier_u08   = 0; 
my_eel_request_str.address_pu08     = NULL; 
my_eel_request_str.status_enu       = EEL_ERR_PARAMETER; 
 
... 
 
/* It is assumed at this point, that the library has been initialized, opnened 
and started up correctly. */ 
 
/* Initiate VREIFY comamnd ------------------------------------------- */ 
my_eel_request_str.command_enu      = EEL_CMD_VERIFY; 
 
do 
{ 
    EEL_Handler(); 
    EEL_Execute(&my_eel_request_str); 
} 
while (my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
while (my_eel_request_str.status_enu == EEL_BUSY) 
{ 
    EEL_Handler(); 
} 
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/* Check if a refresh is required for full data retention before device is 
powered down. */ 
my_do_refresh = false; 
if (my_eel_request_str.status_enu == EEL_ERR_VERIFY) 
{ 
    my_do_refresh = true; 
} 
else if (my_eel_request_str.status_enu != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
 
if (my_do_refresh) 
{ 
    /* Initiate REFRESH comamnd --------------------------------------- */ 
    my_eel_request_str.command_enu      = EEL_CMD_REFRESH; 
    do 
    { 
        EEL_Handler(); 
        EEL_Execute(&my_eel_request_str); 
    } 
    while (my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
     
    while (my_eel_request_str.status_enu == EEL_BUSY) 
    { 
        EEL_Handler(); 
    } 
 
    if (my_eel_request_str.status_enu != EEL_OK) 
    { 
        MyErrorHandler(); 
    } 
} 
 
/* Initiate SHUTDOWN command ------------------------------------------ */ 
my_eel_request_str.command_enu      = EEL_CMD_SHUTDOWN; 
 
do 
{ 
    EEL_Handler(); 
    EEL_Execute(&my_eel_request_str); 
} 
while (my_eel_request_str.status_enu == EEL_ERR_REJECTED); 
 
while (my_eel_request_str.status_enu == EEL_BUSY) 
{ 
    EEL_Handler(); 
} 
 
if (my_eel_request_str.status_enu != EEL_OK) 
{ 
    MyErrorHandler(); 
} 
 
EEL_Close(); 
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Chapter 5 Library Setup and Usage 

This chapter contains important information about how to put the Tiny EEL into operation and how to 
integrate it into your application. Please read this chapter carefully—and also especially Chapter 6 
“Cautions”—in order to avoid problems and misbehavior of the library. Before integrating the library into 
your project however, please make sure that you have read and understood how the Tiny EEL works and 
which basic concepts are used (see Chapter 2 and Chapter 3). 

5.1 Obtaining the Library 

The Tiny EEL is provided by means of an installer via the Renesas homepage at 
https://www.renesas.com/us/en/software-tool/data-flash-libraries. Please follow the instructions of the 
installer carefully and read the user manual which is also available there. For operation, the Tiny EEL 
requires the corresponding FDL (RL78 FDL Type T02, Tiny FDL). Please ensure to always work on the 
latest version of both libraries. 

5.2 File Structure 

The Tiny EEL is delivered as precompiled library for the CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL 
and LLVM compilers. The library and its header files are stored in the lib subdirectory inside the 
installation folder. The Sample directory contains sample setups which are no integral part of the library 
itself and should be modified according to the project needs. The structure of the files in each tool chain is 
shown in the table. 
 

Table 5-1: Common files of the Tiny EEL 

File Description 
<installation folder> 
Release.txt contains release-specific information about the installed library 
support.txt library support information 
 
 
Table 5-2: File structure of the Tiny EEL for CA78K0R tool chain 

<installation folder>/CA78K0R_xxx/EEL/lib 
eel.h EEL header file, EEL interface definition 
eel_types.h EEL header file, EEL types definition 
eel.inc EEL assembler include file with interface definition 
eel_types.inc EEL assembler include file with EEL types definition 
eel.lib precompiled library file 
<installation folder>/CA78K0R_xxx/EEL/Sample/C 
eel_descriptor.c user defined EEL-variable descriptor 
eel_descriptor.h EEL configuration part 
eel_user_types.h sample user types for EEL variables 
eel_sample_linker_file.dr linker sample file 
<installation folder>/CA78K0R_xxx/EEL/Sample/asm 
eel_descriptor.asm user defined EEL-variable descriptor and sample user types 
eel_descriptor.inc EEL configuration part 
eel_sample_linker_file.dr linker sample file 
 
 

https://www.renesas.com/us/en/software-tool/data-flash-libraries
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Table 5-3: File structure of the Tiny EEL for IAR V1.xx tool chain 

<installation folder>/IAR_1xx/EEL/lib 
eel.h EEL header file, EEL interface definition 
eel_types.h EEL header file, EEL types definition 
eel.r87 precompiled library file 
<installation folder>/IAR_1xx/EEL/Sample/C 
eel_descriptor.c user defined EEL-variable descriptor 
eel_descriptor.h EEL configuration part 
eel_user_types.h sample user types for EEL variables 
eel_sample_linker_file.xcl linker sample file 
 
 
 
Table 5-4: File structure of the Tiny EEL for IAR V2.xx tool chain 

<installation folder>/IAR_2xx/EEL/lib 
eel.h EEL header file, EEL interface definition 
eel_types.h EEL header file, EEL types definition 
eel.a precompiled library file 
<installation folder>/IAR_2xx/EEL/Sample/C 
eel_descriptor.c user defined EEL-variable descriptor 
eel_descriptor.h EEL configuration part 
eel_user_types.h sample user types for EEL variables 
eel_sample_linker_file.icf linker sample file 
 
 
 
Table 5-5: File structure of the Tiny EEL for GNU tool chain 

<installation folder>/GNU_xxxx/EEL/lib 
eel.h EEL header file, EEL interface definition 
eel_types.h EEL header file, EEL types definition 
eel.a precompiled library file 
<installation folder>/GNU_xxxx/EEL/Sample/C 
eel_descriptor.c user defined EEL-variable descriptor 
eel_descriptor.h EEL configuration part 
eel_user_types.h sample user types for EEL variables 
eel_sample_linker_file.ld linker sample file 
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Table 5-6: File structure of the Tiny EEL for CC-RL tool chain 

<installation folder>/CCRL_xxx/EEL/lib 
eel.h EEL header file, EEL interface definition 
eel_types.h EEL header file, EEL types definition 
eel.inc EEL assembler include file with interface definition 
eel_types.inc EEL assembler include file with EEL types definition 
eel.lib precompiled library file 
<installation folder>/CCRL_xxx/EEL/Sample/C 
eel_descriptor.c user defined EEL-variable descriptor 
eel_descriptor.h EEL configuration part 
eel_user_types.h sample user types for EEL variables 
eel_sample_linker_file.sub linker sample file 
<installation folder>/CCRL_xxx/EEL/Sample/asm 
eel_descriptor.asm user defined EEL-variable descriptor and sample user types 
eel_descriptor.inc EEL configuration part 
eel_sample_linker_file.sub linker sample file 
 
Table 5-7: File structure of the Tiny EEL for LLVM tool chain 

<installation folder>/LLVM_xxxxxx/EEL/lib 
eel.h EEL header file, EEL interface definition 
eel_types.h EEL header file, EEL types definition 
libeel.a precompiled library file 
<installation folder>/LLVM_xxxxxx/EEL/Sample/C 
eel_descriptor.c user defined EEL-variable descriptor 
eel_descriptor.h EEL configuration part 
eel_user_types.h sample user types for EEL variables 
eel_sample_linker_file.ld linker sample file 
 

5.3 Library Resources 

In the subsequent sections, the resources utilized by the library are described in detail. 

5.3.1 Resource Consumption 

The Tiny EEL is allocated together with the program in the user area, occupying an area equal to the size 
of the library. Furthermore, the library itself uses the CPU, the stack, internal data and data buffers (for 
read/write access to the EEL variables). 

Detailed information about the required software resources is listed in Table 5-8. All resource 
consumption numbers are based on the Tiny EEL V1.00. Please note, that the Tiny EEL requires the Tiny 
FDL (Type T02) for operation. The resource consumption of the Tiny FDL can be found in the associated 
user manual. It is not possible to use the Tiny EEL with any other FDL than the Tiny FDL (Type T02), i.e. 
FDL and EEL have always to be used as a bundle (RL78 FDL T01 with RL78 EEL T01, and RL78 FDL 
T02 with RL78 EEL T02). 
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Table 5-8: Resource consumption of the Tiny EEL V1.00 

Resource CA78K0R 
Compiler 

IAR V1.xx 
Compiler 

IAR V2xx 
Compiler 

GNU 
Compiler 

CC-RL 
Compiler 

LLVM 
Compiler 

maximum code size 
(code flash) 

2746 bytes 2768 bytes 2721 bytes 2769 bytes 2721 bytes 2721 bytes 

constants  
(code flash) 

<EEL 
variable 

count> + 4 
bytes 

< EEL 
variable 

count > + 4 
bytes 

< EEL 
variable 

count > + 4 
bytes 

< EEL 
variable 

count > + 4 
bytes 

< EEL 
variable 

count > + 4 
bytes 

< EEL 
variable 

count > + 4 
bytes 

internal data (RAM,  
short address area) 

1 byte Note 1 byte Note 1 byte Note 1 byte Note 1 byte Note 1 byte Note 

maximum stack 
usage (including 
FDL) 

80 bytes 80 bytes 64 bytes 92 bytes 64 bytes 64 bytes 

Note: 
Depending on the used device, the Tiny EEL may use a fraction of the user RAM as working area. Size 
and location of this area is strictly device dependent, see Section 5.3.3 for more details. 

5.3.2 Linker Sections 

The following sections are related to the Tiny EEL and need to be defined in the linker file (please see 
eel_sample_linker_file.dr or eel_sample_linker_file.xcl for an example): 

• FDL_CODE: Segment containing the code of the Tiny FDL. 

• FDL_SDAT: Data segment of the Tiny FDL containing all FDL-internal variables. Needs to be placed 
in the short address area of the RAM. 

• FDL_CNST: Segment for Tiny FDL constants. 

• EEL_CODE: Segment containing the code of the Tiny EEL. 

• EEL_SDAT: Data segment of the Tiny EEL containing all EEL-internal variables. Needs to be placed 
in the short address area of the RAM. 

• EEL_CNST: Segment containing EEL constants. 

Note 1:  
The FDL_CODE and FDL_CNST as well as the EEL_CODE and EEL_CNST segments can be located 
anywhere inside the code flash, but must be inside the same 64 KB page. 

Note 2:  
The FDL_SDAT and EEL_SDAT segments must be located in the short address area of the RAM. 

Note 3:  
Not all library functions are linked. Unused functions are not included in the linked executable. 
For the CA78K0R assembler, linking can be reduced to a subset of the library functions by deleting 
unnecessary functions from the include file. 

5.3.3 Prohibited RAM Area 

The Tiny EEL may use a fraction of the user RAM as working area, referred as prohibited RAM area. The 
size and position of this area is strictly device dependent (many devices do not even have this area) and 
vary between the different RL78 products. For details, please refer to the document “User's Manual: 
Hardware” of your RL78 product. 

If a prohibited RAM area is specified for the utilized device, it is not allowed to access this area while the 
Tiny EEL is active. Whenever EEL functions are called, the data in the prohibited area may be rewritten. 
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5.3.4 Stack and Data Buffer 

The Tiny EEL has to handle some rather complex tasks in order to manage the EEL variables. As this 
management is run directly on the CPU, the library utilizes the same stack as specified in the user 
application. It is the developer’s duty to reserve enough free stack for the operation of both, user 
application and EEL. 

The data buffer used by the Tiny EEL refers to the RAM area in which data is located that is to be written 
into the data flash and where data is to be copied to when an EEL variable is read. These buffers need to 
be allocated and managed by the user. 

Note:  
In order to allocate the stack and data buffer to a user-specified address, please utilize the link directives 
of your framework. 

Caution: 
In contrast to the internal EEL data (EEL_SDAT segment), both stack and data buffer may not be 
allocated in the short address range from 0xFFE20 to 0xFFEFF—and also not in the prohibited RAM 
area, if it exists in the target device. 
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5.3.5 Register Usage 

The CA78K0R, IAR V1.xx, IAR V2.xx, CC-RL and LLVM releases of the Tiny EEL use the registers of the 
currently selected register bank. No implicit register bank switch is performed by the library. 

For the GNU release of the Tiny EEL, it is mandatory that register bank 0 is active on function entry. No 
implicit register bank switch is performed by the library. Return values are placed in register bank 1. For 
details on GNU calling conventions, please refer to the GNU documentation for RL78 devices. 

Note:  
A detailed description of the registers used for parameter passing and return values can be found in 
Section 0 along with the detailed function descriptions. 

5.3.6 Library Timings 

In the following, certain timing characteristics of the Tiny EEL are specified. As the Tiny EEL accesses the 
Tiny FDL directly, the FDL timings affect also those of the EEL. All timing specifications are based on the 
following library versions: 

• Tiny EEL: V1.00 

• Tiny FDL: V1.01 

Please note that there might be deviations from the specified timings in case you are using other library 
versions than the ones mentioned. 

5.3.6.1 Maximum Function Execution Times 

The maximum function execution times are listed in Table 5-9. These timings can be seen as worst case 
durations of the specific EEL function calls and therefore can aid the developer for time critical 
considerations, e.g. when setting up the watchdog timer. Please note however, that the typical and 
minimum function execution times can be much shorter. Especially the EEL_Handler consumes only a 
few clock cycles when the EEL driver is in idle state. 

Please note that the Tiny EEL function execution times are independent of the operation mode of the 
device (full speed or wide voltage). Also, these timings do not contain any frequency-independent part 
and are therefore specified in terms of numbers of cycles. 

Table 5-9: Maximum function execution times of the Tiny EEL V1.00 (using Tiny FDL V1.01) 

Function name Maximum function execution time [cycles] 
EEL_Init 708 + 40 per EEL variable 
EEL_Open 14 
EEL_Close 17 
EEL_Execute 320 
EEL_Handler 4582 
EEL_GetDriverStatus 245 
EEL_GetSpace 47 
EEL_GetVersionString 14 
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5.3.6.2 Typical Command Execution Times 

The EEL command execution times can depend on several factors as for instance the system clock 
frequency, the flash memory programming mode (full speed or wide voltage), the current pool 
constellation, the number and size of the utilized EEL variables and the period between the handler calls. 
The typical command execution time examples listed in Table 5-10 have been measured based on the 
following scenario: 

• The EEL_Handler is called continuously after issuing the command via EEL_Execute until it is 
completed. 

• The system clock frequency is 20 MHz. 

• The flash memory programming mode operates in full speed mode. 

• All measurements have been performed with the same EEL descriptor (variable set) as it is used in 
the example descriptor provided with the library. Descriptor properties which have an influence on the 
execution time are mentioned in the column “Command-specific condition” in the table. 

• All commands are finished successfully. 

• Further command-specific conditions are listed in the table. 
 

Table 5-10: Typical command execution time examples of the Tiny EEL V1.00 

Command Command-specific condition Typical command 
execution time [µs] 

Format 3 EEL blocks, all non-blank 19100 
Startup 3 EEL blocks, last block active and almost full, 8 EEL variables. 1245 
Shutdown - 12 

Refresh 3 EEL blocks, no excluded blocks, 8 variables (all written) with a 
total size of 305 bytes (example descriptor) 41057 

Verify The internal verify (see FDL) passes for the whole active block 4073 

Write 

variable size 2 bytes (type_A from example descriptor),  
variable has been written before 760 

variable size 4 bytes (type_C from example descriptor),  
variable has been written before 865 

variable size 10 bytes (type_F from example descriptor),  
variable has been written before 1179 

variable size 255 bytes (type_Z from example descriptor),  
variable has been written before 14028 

Read 

variable size 2 bytes (type_A from example descriptor),  
variable has been written before 38 

variable size 4 bytes (type_C from example descriptor),  
variable has been written before 39 

variable size 10 bytes (type_F from example descriptor),  
variable has been written before 43 

variable size 255 bytes (type_Z from example descriptor), 
variable has been written before 215 

 
Note: 
The timings listed in Table 5-10 are only example measurements and no specification. Deviations have to 
be expected based on the target setup and situation. 
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5.4 Library Setup 

The Tiny EEL can be configured and adapted to a certain degree in order to fit the requirements of the 
user application. Most important to mention here is the possibility to configure an application-specific set 
of variables of different sizes. The details how to perform this setup are described in the following 
sections. 

5.4.1 EEL Pool Configuration 

As already described in Section 2.2, the Data Flash can be separated in an FDL and an EEL pool which 
coexist and can be used independently. The actual number of blocks assigned to EEL and FDL can be 
configured in the descriptor of the FDL. Please have a look at the user manual of the Tiny FDL (FDL type 
T02) for details. 

Please note that the minimum number of EEL blocks required for operation is 2. 

Increasing the number of available EEL blocks does not increase the capacity of the variable set that can 
be used with the Tiny EEL (see also Section 5.4.3). However, it makes sense to assign more than two 
blocks to the EEL pool. This way, hot spots on one block are reduced and wear leveling is improved. On 
the one hand, this means that the number of erases for one block is effectively reduced increasing the 
lifetime of the device. On the other hand, it enables a larger number of variable updates (writes) during 
the device life cycle. 

Deriving the actual number of required EEL blocks for a certain scenario (application and required device 
lifetime) is a nontrivial task, which is directly related to the endurance of Data Flash and detailed in the 
following section. 

In this context of flash endurance, please recall that whenever the number of non-excluded blocks falls 
below 2 (i.e. there is only one non-excluded block left), write access and refresh is not possible anymore. 
However, read access can still be performed (c.f. Section 2.3.1). A reanimation of the library can only be 
attempted by a format of the pool (see Section 4.3.4). 

5.4.2 Endurance Calculation 

Every write operation of a new EEL variable instance occupies space in the Data Flash. Whenever the 
active block is full, the current variable set needs to be copied to a new block by means of the refresh 
operation during which the target block is erased (see also Section 2.3.1). 

This process is repeated many times over the device lifetime. However, the endurance of the Data Flash 
blocks regarding the number of erase cycles is limited. Hence, it is necessary to calculate the application-
specific number of erase cycles required over the device lifetime and to ensure that the specified Data 
Flash endurance is not exceeded. 

Renesas provides an endurance calculation sheet which can be filled with the different data sets sizes 
and the required write cycles. The sheet can estimate the expected number of Flash erase cycles and 
indicate an exceedance of the Data Flash specification. Thereby, the number of available EEL blocks has 
a major impact the overall endurance of the pool. By using varying numbers of EEL blocks for the 
calculation, the required number of EEL blocks can be derived for the target application scenario. 

Note: 
The endurance calculation sheet is a very helpful tool. However, please note that the result is only an 
estimate and the sheet cannot produce absolutely accurate numbers. The exact endurance depends on 
additional constraints—like for instance the write sequence of the variables—which are not captured by 
the sheet. Therefore, any result of the endurance calculation sheet must be confirmed in the actual user 
application. 

The calculation sheet can be obtained from the Renesas Flash support, which can be contacted via Email 
at the following address: application_support.flash-eu@lm.renesas.com. 
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5.4.3 EEL Variable Configuration 

The characteristics of the precompiled EEL can be configured by the user in two source files: 
eel_descriptor.h and eel_descriptor.c (eel_descriptor.inc and eel_descriptor.asm for assembler). 

In the header file eel_descriptor.h, the developer has to set the number of EEL variables to be handled by 
the library by means of the constant EEL_VAR_NO. Any integer value from 1 to 64 is allowed. If this 
maximum number of variables is not sufficient in your case, please contact the Renesas support in order 
to find the proper solution for your application scenario at application_support.flash-eu@lm.renesas.com. 
 

#define   EEL_VAR_NO                    8 

The actual set of variables is defined in eel_descriptor.c by means of the constant array eel_descriptor. 
The first element of the array represents the number of defined variables. This element is followed by the 
size of each variable which may be between 1 and 255 bytes. Thereby the index within the array matches 
the corresponding variable ID. As a result the first EEL variable ID is always ‘1’. A user-specified ID as it 
is featured in the EEL Type T01 is not supported by the Tiny EEL. The variable list needs to be zero 
terminated in the last element. 

 
 

__far const eel_u08 eel_descriptor[EEL_VAR_NO+2] = 
{ 
  (eel_u08)(EEL_VAR_NO),      /* variable count   */  \ 
  (eel_u08)(sizeof(type_A)),  /* id=1             */  \ 
  (eel_u08)(sizeof(type_B)),  /* id=2             */  \ 
  (eel_u08)(sizeof(type_C)),  /* id=3             */  \ 
  (eel_u08)(sizeof(type_D)),  /* id=4             */  \ 
  (eel_u08)(sizeof(type_E)),  /* id=5             */  \ 
  (eel_u08)(sizeof(type_F)),  /* id=6             */  \ 
  (eel_u08)(sizeof(type_X)),  /* id=7             */  \ 
  (eel_u08)(sizeof(type_Z)),  /* id=8             */  \ 
  (eel_u08)(0x00),            /* zero terminator  */  \ 
}; 

Clearly, the overall consumption of the variable instances may not exceed the available space in the 
active block. Hence the defined variable set needs to fulfill the following relation in order to maintain 
operational: 

 2(N+1) + ∑s(i) + MAX(s(i)) ≤ 1014    , 

where N is the number of variables and s(i) is the size of variable i. However, it is strongly recommended 
not to exhaust the space as this leads to very frequent and costly refreshing of the pool (in the worst case 
after each variable write). As a rule of thumb, the variable set should fulfill the following relation: 

 2(N+1)+∑s(i) ≤ 507    . 

If the variable setup is exceeding this limit, it can be considered to move seldom changed data from the 
EEL to the FDL pool (where it has to be managed by the developer). Depending on the scenario, the EEL 
type T01 might also be an alternative as it can handle a larger amount of data. In case of any doubts 
which library suits your application scenario best, please contact the Renesas support at 
application_support.flash-eu@lm.renesas.com. 

Note: 
In case the variable setup is changed, it is imperative to format the EEL pool before continuing the 
operation on the pool (i.e. before startup). 
The only exception to this rule is that appending variables to the existing list is allowed as this does not 
change the ID and size of the existing variables. 

mailto:application_support.flash-eu@lm.renesas.com?subject=RL78%20EEL%20T02%20(Tiny)
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5.4.4 EEL Variable Initialization 

Before being able to regularly use the Data Flash for EEPROM emulation, the EEL pool must be 
formatted and—depending on the application—be filled with initial values for the EEL variables. This can 
be done using different approaches. Two very common ways are presented in the following: 

• The application itself executes the format operation and then writes initial instances of the variables. 
As the format operation deletes all data, it needs to be carefully considered in this scenario how to 
prevent accidental pool formatting by the application. 

• A serial programming tool (e.g. PG-FP5) or debugger is used to program the Data Flash in the same 
flow that also programs the Code Flash. 

For the later approach (using a programming tool or a debugger), a hex file is required which contains the 
Data Flash content (i.e. the complete EEL pool in raw format). This content can be gained by 

• dumping the content of the Data Flash with an already formatted EEL pool into a hex file using a 
serial programming tool or the debugger, or by 

• using a tool chain of Data Flash Converter and/or Data Flash Editor to convert EEL variable values 
into a hex file. 

Please note that the Tiny EEL is supported only by the Data Flash Converter since version V6.00 and by 
Data Flash Editor versions V4.00 or higher. 

5.4.5 Distributing Data between FDL and EEL 

As already described in Section 2.2, the Data Flash can be separated in an FDL and an EEL pool which 
coexist and can be used independently. As a consequence, the developer has the freedom to choose for 
each set of data whether to manage it himself in the FDL pool or to assign it to an EEL variable. 

In general, data which is constant over the lifetime of the device (or is updated very seldom), is placed 
best in the FDL pool. This enables early access after power up (before the EEL is started up). However, 
the developer has to take care himself of data management and reset robustness. The overall size of the 
utilizable FDL pool is thereby manly limited by the number of blocks in the Data Flash. 

Data which is updated frequently is usually managed best in the EEL pool. A variable-oriented update of 
data is provided in a way that wear-leveling and reset-robustness considered. However, the utilizable 
space is limited (only one active block). 

5.4.6 Building Efficient EEL Variable Sets 

Whenever defining variables to be used with the EEL, the following two main characteristics should be 
considered: 

• A variable instance always creates additional administrative usage of the active block by means of a 
reference entry of two bytes. As a consequence, many small variables lead to a reduction of space 
utilizable for data. 

• When updating a variable (write), the whole data of the variable needs to be written in the empty 
space of the active block. Hence, it is inefficient to assemble several small variables which are 
updated independently into a larger single variable. 

Therefore, variables which are typically updated concurrently (like for instance data and checksum) 
should be assembled in a single EEL variable. 

5.5 Practical Aspects of Library Usage 

The following sections collect assorted aspects of practical usage of the Tiny EEL. 
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5.5.1 When to use EEL_Handler and FDL_Handler 

One of the most typical usage scenarios for the Tiny EEL is that also the Tiny FDL is used with its own 
assigned flash pool. Both libraries provide a handler to drive pending commands and update the status of 
the corresponding request structure. On top of that, the EEL_Handler might even execute the 
FDL_Handler, when the EEL has issued an FDL command on its own and is waiting for the result. 
However, it is not guaranteed that every EEL_Handler call also results in an FDL_Handler call. Therefore, 
it is not sufficient to only call the EEL_Handler in a mixed FDL/EEL application. 

Nevertheless, both FDL and EEL are robust against calls of the opposite handler which could only lead to 
a completion of the currently running command. Therefore, the application designer should stick to a very 
simple rule: 

 When issuing a command from a scope, always call the handler corresponding to the issued  
 command from that scope in order to finish the command. 

Thereby, it can be guaranteed that commands do finish, although EEL commands can be interrupted by 
FDL commands and EEL commands drive running FDL commands by means of the EEL_Handler. 

5.5.2 EEL_Handler Calls 

Once initiated EEL commands need to be driven forward by successive handler calls. The frequency of 
these handler calls does have an impact on the EEL operation performance and needs to be adapted to 
the target application. 

In the following, different approaches for calling the EEL_Handler are compared with respect to their 
advantages and disadvantages: 

• Calling EEL_Handler repeatedly after issuing a command execution: This approach is also 
utilized in most of the code examples you can find in this manual. Typically realized in a loop waiting 
for the operation status not to be busy anymore, this approach results in the best EEL operation 
performance. However, the CPU is fully loaded and blocked for other tasks as long as the EEL 
command is being executed. This approach can also be seen as using the library with a blocking 
function-oriented interface. 

• Calling EEL_Handler in a timed task: By calling the EEL_Handler periodically, EEL commands 
can be driven forward while other tasks are processed by the CPU. The period between the handler 
calls can have significant impact on the EEL operation performance. Shorter calling intervals result 
in better EEL performance, but also increase the CPU load by the EEL. Due to this tradeoff, a 
general advice for the calling interval cannot be given. It needs to be analyzed and tailored 
individually for each target application. 
However, selecting a calling interval shorter than the typical command execution time for a single-
byte FDL write command (see the documentation of RL78 FDL T02) does not improve the EEL 
performance significantly and should be avoided. 

• Calling EEL_Handler in the idle task: If it is ensured that the idle task is called often enough, this 
method might result in a good EEL performance, as the handler can be called continuously. 
However, this approach is not deterministic in case of a high CPU load by the application itself. 

Due to the individual requirements of each application, a general advice for selecting a strategy to call the 
EEL_Handler cannot be given. Please also consider that mixtures of the above mentioned approaches 
can be meaningful depending on the target scenario. 

Note 1: 
When evaluating concepts for calling the EEL_Handler, please be aware that all FDL/EEL functions are 
not re-entrant. That means it is not allowed to call FDL/EEL functions from interrupt service routines while 
any FDL/EEL function is already running. 

Note 2: 
In contrast to the RL78 EEL T01, the Tiny EEL does not have any background processing for pool 
maintenance. Hence, it is only mandatory to call the EEL_Handler as long as there is an unfinished EEL 
command. It is not necessary to call the EEL_Handler regularly for pool maintenance. However, in case 
there is nothing to process, the EEL_Handler consumes a few clock cycles only and does no harm. 
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5.5.3 When to issue a Refresh 

In general, there are two strategies a developer can follow with respect to the ever reoccurring EEL 
refresh: 

• Refresh on error during write: Whenever a write command results in an EEL_ERR_POOL_FULL 
error, issue a refresh and restart the write command. Thereby, the EEL pool is used in an efficient 
way with respect to keeping the number of erase cycles low. The drawback of this approach is the 
fact that writing an EEL variable can require a time consuming flash block erase which can be a 
problem in time-critical scenarios. 

• Pre-emptive refresh based on free-space analysis: By means of the function EEL_GetSpace, the 
developer can regularly monitor the current free space in the active block and issue the refresh when 
the library space is getting short and there is sufficient processing time for it (including the erase of 
the new active block). Thereby, it can be guaranteed that a write does not result in a time-consuming 
refresh (i.e. block erase). The drawbacks of this approach are on the one hand an increased 
administrative effort in the user application, and on the other hand a more frequent occurrence of 
block erasures which can result in a reduction of the overall lifetime of the device. 

The developer should analyze his application carefully to choose one of these two methods. Even a 
mixture of both approaches in a single application could be considered. 

5.5.4 Using the Standby and Abort Feature of the Tiny FDL 

The Tiny FDL offers a standby/wakeup feature in order to temporarily turn off the data flash (e.g. for 
energy savings). This mechanism is transparent for the usage of the EEL, meaning that it is allowed to 
even interrupt running EEL commands temporarily by calling FDL_StandBy. 

Please note however, that setting the FDL into standby will prevent also EEL command execution. 
However, new commands will not be rejected but simply not completed in this case. This means that it is 
not possible to check through the EEL API whether the FDL has been sent to standby. The developer has 
to use FDL functions in order to do this. 

After the execution of FDL_WakeUp, the EEL will continue the pending command executions with the 
next EEL_Handler call. 

Note: 
Please read the Tiny FDL user manual for a more detailed description of the standby/wakeup feature and 
its usage. 

Similarly, the abort feature of the Tiny FDL can be used transparently when the EEL is used. In case the 
EEL has issued an FDL erase command (e.g. during refresh), it is not forbidden to abort this command 
via FDL_Abort. In that case the EEL will resume the erase the next time the EEL_Handler is called. 
Considering also the reset robustness of the Tiny EEL, it is explicitly allowed to use FDL_Abort in 
emergency situations (e.g. in case of a voltage drop) in order to ensure a fast saving of important data. 
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5.5.5 Using the Tiny EEL in Operating Systems 

As many time-consuming flash operations are performed in the background and only their progress is 
only checked by means of a request-response mechanism, the Tiny FDL and EEL can be efficiently used 
inside an operating system. 

Note: 
Please read the cautions for the EEL described in Chapter 6 and also the cautions chapter of the Tiny 
FDL manual carefully before utilizing the Tiny FDL and Tiny EEL in an operating system. 

 
Figure 5-1 illustrates a schematic example how to integrate the Tiny EEL into an operating system. 
Please note that this is only an abstract example to show the principle of the mechanism. 

Three different types of tasks have to be distinguished: 

• Requesting tasks: Requesting tasks issue any FDL or EEL command via FDL_Execute and 
EEL_Execute, respectively, assuming that that the command execution will be finished by the IDLE 
task. In the example, task 1 issues an FDL command, while an EEL command is started from task 2. 

• IDLE task: The IDLE task (task 4 in the example) is used to finish any running FDL or EEL command 
by means of FDL_Handler and EEL_Handler calls. (It is assumed here that the idle task is executed 
whenever no other task is running.) Please note that it is necessary to call both handlers form such a 
function in order to ensure the completion of both types of commands. 

• Emergency task: This task is triggered in an emergency situation as for instance in case of a voltage 
drop in order to save important data before the device is powered off. In the shown example, task 3 is 
the emergency task. In such a task it is important to complete the issued command as fast as 
possible by repeated handler calls. Please note that the example uses the FDL for writing emergency 
data. It is recommended to do so as the processing time for a write command is less compared to the 
EEL and contingent and time-consuming refresh can be avoided. 

Note: 
For emergency tasks, it can be a good idea to take advantage of the abort feature of the Tiny FDL in 
order to avoid lengthy erase processes in such a situation. Please see Section 5.5.4 and the Tiny FDL 
user manual for details. 

     Task 1 (each 50 ms)
if (fdl_req.status != FDL_BUSY)
{
  FDL_Execute(&fdl_req);
}

    Task 2 (each 300 ms)
if (eel_req.status != EEL_BUSY)
{
  EEL_Execute(&eel_req);
}

Task 4 (idle)

FDL_Handler();
EEL_Handler();

      Task 3 (emergency)
do
{ 
  FDL_Execute(&fdl_req);
  FDL_Handler();
}
while (fdl_req.status 
             == FDL_ERR_REJECTED);

while (fdl_req.status == FDL_BUSY)
{
  FDL_Handler();
}

operating system

 
Figure 5-1: Schematic illustration of Tiny EEL integration into an operating system 
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5.5.6 Reset Robustness Considerations 

In general, the sequences of EEL commands modifying the EEL pool have been designed in a way that 
incomplete command executions are detected during the next startup and one valid set of EEL data can 
always be restored. 

Hence, during normal operation, there will be no loss of EEL data due to reset. Nevertheless, please be 
aware that depending on the progress of the interrupted last command, the old or the new variable set will 
be active after restarting the library. 

There is one exception to this rule: The format command is not robust against resets. In case a reset 
occurs during a format, there is a chance that the EEL pool is coincidentally valid and will be accepted 
during the next startup. In order to minimize this risk, all blocks are invalidated as a first step during a pool 
format. However, please ensure to always finish a once started format command. 

Please note that this limitation is not severe in the typical use case as a format command destroys all EEL 
variable content and is therefore usually executed once at the beginning of a product lifetime. 

5.5.7 Pitfalls with Request Variables declared in a local Scope 

The request-response oriented command execution of the Tiny EEL enables a comfortable way of issuing 
different commands quasi independently from different scopes of the user application. The developer 
should thereby always be aware that the request data structure is updated later by the library via handler 
calls. Therefore, it is imperative to ensure the existence of the data structure as long as the command is 
being processed. 

This is of special importance when using local C request variables which are placed in the stack. When 
the application leaves the scope of such a local variable, the reserved space on the stack is deallocated 
and probably reused for other variables or return addresses. When an EEL command is finished in such a 
situation, this new data is overwritten, leading to unpredictable behavior of the application. Such situations 
are often hard to detect and debug. Hence, the developer should always be pay special attention to the 
scope of the used request variables. 
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Chapter 6 Cautions 

Before starting the development of an application using the Tiny EEL, please carefully read and 
understand the following cautions: 

• The library code and constants must be located completely in the same 64KB flash page. 

• For CA78K0R compiler, the library takes care in the code to define these sections with 
UNIT64KP relocation attribute. 

• For IAR V1.xx and IAR V2.xx compiler, the user has to ensure that the linker file specifies the 
Flash page size equal to 64KB when defining FDL_CODE, FDL_CNST, EEL_CODE and 
EEL_CNST sections. 

• For GNU and LLVM compilers, the user shall take care that FDL_CODE, FDL_CNST, 
EEL_CODE and EEL_CNST sections are not mapped across any boundary of 64KB Flash 
page. 

• For CC-RL compiler, the library takes care in the code to define these sections with 
TEXTF_UNIT64KP relocation attribute. 

• The FDL library initialization by means of FDL_Init must be performed before the execution of 
FDL_Open, FDL_Close, FDL_Handler, FDL_Execute, FDL_Abort, FDL_StandBy, FDL_WakeUp and 
all EEL functions. 

• The EEL library initialization by means of EEL_Init must be performed before the execution of 
EEL_Open, EEL_Close, EEL_Execute, EEL_Handler, EEL_GetDriverStatus, EEL_GetSpace. 

• It is not allowed to read the data flash directly (meaning without FDL) during a command execution of 
the FDL/EEL. 

• Do not execute the STOP or HALT instruction during the execution of the Tiny FDL/EEL without 
driving the library into standby first. 

• The watchdog timer does not stop during the execution of the Tiny FDL/EEL. 

• Each request variable must be located at an even address. 

• Before executing any command, all members of the request variable must be initialized once. If there 
are any unused members in the request variable, please set arbitrary values to these members. 
Otherwise, a RAM parity error may cause a reset of the device. For details, please refer to the 
document “User's Manual: Hardware” of your RL78 product. 

• All functions are not re-entrant. That means it is not allowed to call FDL/EEL functions from interrupt 
service routines while any FDL/EEL function is already running. 

• Task switches, context changes and synchronization between FDL functions: 

• All FDL/EEL functions depend on FDL/EEL global available information and are able to modify 
this information. In order to avoid synchronization problems, it is necessary that at any time only 
one FDL/EEL function is executed. So, it is not allowed to start an FDL/EEL function, then switch 
to another task context and execute another FDL/EEL function while the other one is not yet 
finished. 

• Example for a forbidden sequence: 

1. Task 1: Start an FDL/EEL operation with FDL_Execute/EEL_Execute. 

2. Interrupt the execution and switch to task 2, executing FDL_Handler/EEL_Handler. 

3. Return to task 1 and finish the FDL_Execute/EEL_Execute function. 

• After the execution of FDL_Close/EEL_Close, all requested/running commands will be aborted and 
cannot be resumed. The user has to take care that all running commands are finished before calling 
FDL_Close/EEL_Close. 

• It is not possible to modify the Data Flash in parallel to a modification of the Code Flash. 

• The internal high-speed oscillator must be started before using the FDL/EEL. 
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• Do not locate any function arguments, data buffers or stack to the short address area from 0xFFE20 
to 0xFFEFF. 

• When the Data Transfer Controller (DTC) is used during control of data flash, do not locate the RAM 
area for the DTC to the short address area from 0xFFE20 to 0xFFEFF. 

• Do not use the RAM area used by the Tiny FDL/EEL (including the prohibited RAM area) before both 
libraries have been closed. 

• The reset robustness of each written EEL instance is inherently provided by the Tiny EEL. However, 
the data itself is not secured directly by any checksum. In case the user application destroys the data 
buffer during the write process or by any other accident, the EEL will not be able to detect this and will 
return wrong data values when reading this instance. If your scenario requires such type of data 
protection, please assemble each eel instance from data and checksum and perform consistency 
checks after each read access manually. 

• In case of an accidental write to the eel pool (e.g. due to stack runaway, misuse of FDL etc.) the 
following scenarios may occur: 

• In case of damaged block flags the whole eel pool could become inconsistent. As a result, all 
valid instances could be lost. 

• In case of damaged instance entry  

• all or only a part of instances could become invalid. 

• old instances could become valid.  

• It is not allowed to continue the execution of the EEL in case the FDL or EEL descriptor has been 
changed. In such a situation, the initialization of the FDL and EEL shall be performed as well as the 
EEL pool format via the EEL_CMD_FORMAT command. 

• Do not destroy the request structure (eel_request_t) during command execution. 

• Do not operate the data flash control register (DFLCTL) during execution of the EEL. 

• When using an assembler of the CC-RL compiler from Renesas Electronics, the hexadecimal prefix 
representation (0x..) cannot be mixed together with the suffix representation (..H). Specify the 
representation method by editing the symbol definition in eel_types.inc to match the user environment. 

eel_types.inc 
 ; __EEL_TYPES_INC_BASE_NUMBER_SUFFIX .SET 1  

When symbol "__EEL_TYPES_INC_BASE_NUMBER_SUFFIX" is not defined (initial state), the 
prefix representation will be selected. 

eel_types.inc 
 __EEL_TYPES_INC_BASE_NUMBER_SUFFIX .SET 1  

When symbol "__EEL_TYPES_INC_BASE_NUMBER_SUFFIX" is defined, the suffix 
representation will be selected. 

• Additional cautions on using the Tiny EEL for IAR V2.xx. 

• Library code and constants must be located completely in the same 32KB memory range. 

• The version string provided by the flash library includes the information on the supported 
compiler. The string indicates that the supported compiler is CC-RL because the library file for 
IAR V2.xx is identical to the one for CC-RL. 

• If you wish to use a linker configuration file included in the IAR V2.2x compiler (instead of a 
sample linker configuration file in the flash library package), specify flash libraries sections with 
special names for Renesas objects (R_TEXTF_UNIT64KP, R_SBSS) in the linker configuration 
file. 

e.g.) 
ro section FDL_CODE -> ro code R_TEXTF_UNIT64KP section FDL_CODE 
ro section EEL_CODE -> ro code R_TEXTF_UNIT64KP section EEL_CODE 
rw section FDL_SDAT -> rw data R_SBSS section FDL_SDAT 
rw section EEL_SDAT -> rw data R_SBSS section EEL_SDAT  
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Note: 
Sections FDL_CNST and EEL_CNST do not require special names for Renesas objects since 
these sections are generated from the sample source files (eel_descriptor.c, fdl_descriptor.c).  
Simply declare these flash libraries sections in a linker configuration file as if they are normal 
sections. 
e.g.) 
ro section FDL_CNST 
ro section EEL_CNST 

• Additional caution on using the Tiny EEL for LLVM. 

• The version string provided by the flash library includes the information on the supported 
compiler. The string indicates that the supported compiler is CC-RL because the library file for 
LLVM is identical to the one for CC-RL. 
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