

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been

made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

 and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

7751 Series
Software Manual

16

S
oftw

are M
anual

New publication, 1996.07

MITSUBISHI 16-BIT SINGLE-CHIP
MICROCOMPUTER
7700 FAMILY

keep safety first in your circuit designs !

● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

● These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

● Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.

● All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

● Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

● The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.

● If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
Japan and/or the country of destination is prohibited.

● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Rev. Rev.

No. date

1.00 First Edition 970728

1.01 Thumbnails are created for all pages. 980731

REVISION DESCRIPTION LIST 7751 Series Software Manual

(1/1)

Revision Description

This manual describes the software of the Mitsubishi
CMOS 16-bit microcomputers 7751 SERIES. After
reading this manual, the users will be able to
understand the instruction set and the features, so
that they can utilize their capabilities fully. This manual
shows detailed descriptions of the instructions and
the addressing modes for 7751 SERIES.

For detai ls concerning the hardware and the
development support tools (assembler, debugger, and
others) of each product of 7751 series, refer to the
respective user’s manual.

Preface

7751 SERIES SOFTWARE MANUAL i

Table of contents

Table of contents
CHAPTER 1. DESCRIPTION

CHAPTER 2. CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit ... 2–2
2.1.1 Accumulator (Acc) ... 2–3
2.1.2 Index register X (X) ... 2–3
2.1.3 Index register Y (Y) ... 2–3
2.1.4 Stack pointer (S) .. 2–4
2.1.5 Program counter (PC) ... 2–5
2.1.6 Program bank register (PG) ... 2–5
2.1.7 Data bank register (DT) .. 2–6
2.1.8 Direct page register (DPR) ... 2–6
2.1.9 Processor status register (PS) ... 2–8

2.2 Bus interface unit ... 2–10
2.2.1 Overview ... 2–10
2.2.2 Functions of bus interface unit (BIU) .. 2–12
2.2.3 Operation of bus interface unit (BIU).. 2–15

CHAPTER 3. ADDRESSING MODES

3.1 Addressing modes .. 3–2
3.2 Explanation of addressing modes .. 3–2

CHAPTER 4. INSTRUCTIONS

4.1 Instruction set .. 4–2
4.1.1 Data transfer instructions.. 4–2
4.1.2 Arithmetic instructions ... 4–4
4.1.3 Bit manipulation instructions... 4–5
4.1.4 Flag manipulation instructions .. 4–5
4.1.5 Branch and return instructions ... 4–5
4.1.6 Interrupt instruction (break instruction) ... 4–6
4.1.7 Special instructions.. 4–6
4.1.8 Other instruction .. 4–6

4.2 Description of each instruction ... 4–7
4.3 Notes for programming ... 4–133

CHAPTER 5. NUMBER OF INSTRUCTION CYCLES

5.1 Description ... 5–2
5.1.1 CPU instruction execution sequence .. 5–2
5.1.2 CPU standby cycle .. 5–3

5.2 Points of view .. 5–5
5.2.1 Using internal area .. 5–8

7751 SERIES SOFTWARE MANUAL

Table of contents

ii

CHAPTER 6. CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE

APPENDIX

Appendix 1. 7751 series machine instructions ...7–2
Appendix 2. 7751 series instruction code table ... 7–22

CHAPTER 1
DESCRIPTION

7751 SERIES SOFTWARE MANUAL

DESCRIPTION

1–2

The 7751 series software offers the following features :

●The m and x flags to select between word and byte operation make it possible to execute each of most
instructions with 1-byte operation code, so that the ROM size for application will be reduced.

●Powerful addressing modes, and a fast and compact instruction set are included.
●Direct page mapping function and memory oriented software system by direct paging are included.
●The entire 16 Mbytes of addressable memory space can be programed as a program memory without

consideration of a 64-Kbyte boundary.
●A data memory can be accessed with a linear or a bank.
●Bit manipulation instructions and bit test and branch instructions can be used for memory accessing of

the entire 16 Mbytes of addressable memory space.
●Block transfer instructions handling blocks up to 64 Kbytes are available.
●Decimal arithmetic instruction execution requires no software correction.
●Upward compatibility for the 7700 series is retained.
●A Repeat MultiPly and Accumulate, RMPA, instruction is available.

CHAPTER 2
CENTRAL

PROCESSING UNIT
(CPU)

2.1 Central processing unit
2.2 Bus interface unit

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit

2–2 7751 SERIES SOFTWARE MANUAL

2.1 Central processing unit
The CPU (Central Processing Unit) has ten registers as shown in Figure 2.1.1.

Fig. 2.1.1 CPU registers structure

b0b7b8b15

AH AL

b0b7b8b15

BH BL

b0b7b8b15

XH XL

b0b7b8b15

YH YL

b0b7b8b15

SH SL

b0b7b8b15

b7 b0

b8b23 b16 b15 b7 b0

PCH PCLPG

b0b7

DT

b0b7b8b15

b0b1b2b3b4b5b6b7b8b10

0 0 0 0 0 CZIDxmVNIPL

Accumulator A (A)

Accumulator B (B)

Index register X (X)

Index register Y (Y)

Stack pointer (S)

Data bank register (DT)

Program counter (PC)

Program bank register (PG)

Direct page register (DPR)

Processor status register (PS)

Processor interrupt priority level

Carry flag
Zero flag

Interrupt disable flag

Index register length flag

Decimal mode flag

Data length flag
Overflow flag

Negative flag

DPRLDPRH

PSLPSH

b9b15

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–37751 SERIES SOFTWARE MANUAL

2.1.1 Accumulator (Acc)
Accumulators A and B are available.

(1) Accumulator A (A)
Accumulator A is the main register of the microcomputer. The transaction of data such as calculation,
data transfer, and input/output are performed mainly through accumulator A. It consists of 16 bits, and
the low-order 8 bits can also be used separately. The data length flag (m) determines whether the
register is used as a 16-bit register or as an 8-bit register. Flag m is a part of the processor status
register which is described later. When an 8-bit register is selected, only the low-order 8 bits of
accumulator A are used and the contents of the high-order 8 bits is unchanged.

(2) Accumulator B (B)
Accumulator B is a 16-bit register with the same function as accumulator A. Accumulator B can be
used instead of accumulator A. The use of accumulator B, however except for some instructions,
requires more instruction bytes and execution cycles than that of accumulator A. Accumulator B is also
controlled by the data length flag (m) just as in accumulator A.

2.1.2 Index register X (X)
Index register X consists of 16 bits and the low-order 8 bits can also be used separately. The index register
length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag x
is a part of the processor status register which is described later. When an 8-bit register is selected, only
the low-order 8 bits of index register X are used and the contents of the high-order 8 bits is unchanged.
In an addressing mode in which index register X is used as an index register, the address obtained by
adding the contents of this register to the operand’s contents is accessed.

In the MVP or MVN instruction, a block transfer instruction, the contents of index register X indicates the
low-order 16 bits of the source address. The third byte of the instruction is the high-order 8 bits of the
source address.
In the RMPA instruction, a Repeat MultiPly and Accumulate instruction, the contents of index register X
indicate the low-order 16 bits of address in which multiplicands are stored.

Note: Refer to “CHAPTER 3. ADDRESSING MODES” for addressing modes.

2.1.3 Index register Y (Y)
Index register Y is a 16-bit register with the same function as index register X. Just as in index register
X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an
8-bit register.
In the MVP or MVN instruction, a block transfer instruction, the contents of index register Y indicates the
low-order 16 bits of the destination address. The second byte of the instruction is the high-order 8 bits of
the destination address.
In the RMPA instruction, a Repeat MultiPly and Accumulate instruction, the contents of index register Y
indicate the low-order 16 bits of address in which multipliers are stored.

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit

2–4 7751 SERIES SOFTWARE MANUAL

2.1.4 Stack pointer (S)
The stack pointer (S) is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used when
addressing modes using the stack are executed. The contents of S indicate an address (stack area) for
storing registers during subroutine calls and interrupts. Bank 016 is specified for the stack area. (Refer to
“2.1.6 Program bank register (PG)”.)
When an interrupt request is accepted, the microcomputer stores the contents of the program bank register
(PG) at the address indicated by the contents of S and decrements the contents of S by 1. Then the
contents of the program counter (PC) and the processor status register (PS) are stored. The contents of
S after accepting an interrupt request is equal to the contents of S decremented by 5 before the accepting
of the interrupt request. (Refer to Figure 2.1.2.)
When completing the process in the interrupt routine and returning to the original routine, the contents of
registers stored in the stack area are restored into the original registers in the reverse sequence (PS→PC→PG)
by executing the RTI instruction. The contents of S is returned to the state before accepting an interrupt
request.
The same operation is performed during a subroutine call, however, the contents of PS is not automatically
stored. (The contents of PG may not be stored. This depends on the addressing mode.)
You should store registers other than those described above with software when you need them during
interrupts or subroutine calls.
Additionally, initialize S at the beginning of the program because its contents are undefined at reset. The
stack area changes when subroutines are nested or when multiple interrupt requests are accepted. There-
fore, make sure of the subroutine’s nesting depth not to destroy the necessary data.

Note: Refer to “CHAPTER 3. ADDRESSING MODES” for addressing modes.

Fig. 2.1.2 Contents of the stack area after accepting interrupt request

● “S” is the initial address that the stack pointer (S)
indicates at accepting an interrupt request.
The S’s contents become “S–5” after storing the
above registers.

Address

S–4

S–3

S–2

S–1

S

Stack area

S–5

Processor status register’s low-order byte (PSL)

Processor status register’s high-order byte (PSH)

Program counter’s low-order byte (PCL)

Program counter’s high-order byte (PCH)

Program bank register (PG)

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–57751 SERIES SOFTWARE MANUAL

2.1.5 Program counter (PC)
The program counter is a 16-bit counter that indicates the low-order 16 bits of the address (24 bits) at
which an instruction to be executed next (in other words, an instruction to be read out from an instruction
queue buffer next) is stored. The contents of the high-order program counter (PCH) become “FF16,” and
the low-order program counter (PCL) becomes “FE16” at reset. The contents of the program counter
becomes the contents of the reset’s vector address (addresses FFFE16, FFFF16) just after reset.
Figure 2.1.3 shows the program counter and the program bank register.

Fig. 2.1.3 Program counter and program bank register

2.1.6 Program bank register (PG)
The program bank register is an 8-bit register that indicates the high-order 8 bits of the address (24 bits)
at which an instruction to be executed next (in other words, an instruction to be read out from an instruction
queue buffer next) is stored. These 8 bits are called bank.
When a carry occurs after adding the contents of the program counter or adding the offset value to the
contents of the program counter in the branch instruction and others, the contents of the program bank
register is automatically incremented by 1. When a borrow occurs after subtracting the contents of the
program counter, the contents of the program bank register is automatically decremented by 1. Accord-
ingly, there is no need to consider bank boundaries in programming, usually.

In single-chip mode, make sure to prevent the program bank register from being set to a value other than
“0016” by executing the branch instructions and others. It is because only the internal area, within bank 016,
can be accessed in single-chip mode.
This register is cleared to “0016” at reset.

PCH PCL

b7 b0 b15 b8 b7 b0
(b16)

PG

(b23)

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit

2–6 7751 SERIES SOFTWARE MANUAL

2.1.7 Data bank register (DT)
The data bank register is an 8-bit register. In the following addressing modes using the data bank register,
the contents of this register is used as the high-order 8 bits (bank) of a 24-bit address to be accessed.

In single-chip mode, make sure to fix this register to “0016.” It is because only the internal area, within bank
016, can be accessed in single-chip mode.
This register is cleared to “0016” at reset.

●Addressing modes using data bank register
•Direct indirect
•Direct indexed X indirect
•Direct indirect indexed Y
•Absolute
•Absolute bit
•Absolute indexed X
•Absolute indexed Y
•Absolute bit relative
•Stack pointer relative indirect indexed Y
•Multiplied accumulation

2.1.8 Direct page register (DPR)
The direct page register is a 16-bit register. The contents of this register indicate the direct page area
which is allocated in bank 016 or in the space across banks 016 and 116. The following addressing modes
use the direct page register.
The contents of the direct page register indicates the base address (the lowest address) of the direct page
area. The space which extends to 256 bytes above that address is specified as a direct page.
The direct page register can contain a value from 000016 to FFFF16. When it contains a value equal to or
more than “FF0116,” the direct page area spans the space across banks 016 and 116.
When the contents of low-order 8 bits of the direct page register is “0016,” the number of cycles required
to generate an address is 1 cycle smaller than the number when its contents are not “0016.” Accordingly,
the access efficiency can be enhanced in this case.
This register is cleared to “000016” at reset.
Figure 2.1.4 shows a setting example of the direct page area.

●Addressing modes using direct page register
•Direct
•Direct bit
•Direct indexed X
•Direct indexed Y
•Direct indirect
•Direct indexed X indirect
•Direct indirect indexed Y
•Direct indirect long
•Direct indirect long indexed Y
•Direct bit relative

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–77751 SERIES SOFTWARE MANUAL

Direct page area when DPR = “000016”

Direct page area when DPR = “012316”
(Note 1)

Direct page area when DPR = “FF1016”
(Note 2)

Bank 016

Bank 116

016

FF16

12316

22216

FF1016

1000F16

016

FFFF16

1000016

Notes 1 : The number of cycles required to generate an address is 1 cycle smaller when the
low-order 8 bits of the DPR are “0016.”

2 : The direct page area spans the space across banks 016 and 116 when the DPR is
“FF0116” or more.

Fig. 2.1.4 Setting example of direct page area

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit

2–8 7751 SERIES SOFTWARE MANUAL

2.1.9 Processor status register (PS)
The processor status register is an 11-bit register.
Figure 2.1.5 shows the structure of the processor status register.

Note : Fix each of bits 15–11 to “0”.

b15 b8 b7 b0b1b2b3b4b5b6b14 b9b10b11b12b13

0 N CZIDxmV0 IPL000
Processor staus
register (PS)

Fig. 2.1.5 Processor status register structure

(1) Bit 0: Carry flag (C)
It retains a carry or a borrow generated in the arithmetic and logic unit (ALU) during an arithmetic
operation. This flag is also affected by shift and rotate instructions. When the BCC or BCS instruction
is executed, this flag’s contents determine whether the program causes a branch or not.
Use the SEC or SEP instruction to set this flag to “1”, and use the CLC or CLP instruction to clear
it to “0”.

(2) Bit 1: Zero flag (Z)
It is set to “1” when the result of an arithmetic operation or data transfer is “0,” and cleared to “0” when
otherwise. When the BNE or BEQ instruction is executed, this flag’s contents determine whether the
program causes a branch or not.
Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.”
Note: This flag is invalid in the decimal mode addition (the ADC instruction).

(3) Bit 2: Interrupt disable flag (I)
It disables all maskable interrupts (interrupts other than watchdog timer, the BRK instruction, and zero
division). Interrupts are disabled when this flag is “1.” When an interrupt request is accepted, this flag
is automatically set to “1” to avoid multiple interrupts. Use the SEI or SEP instruction to set this flag
to “1,” and use the CLI or CLP instruction to clear it to “0.” This flag is set to “1” at reset.

(4) Bit 3: Decimal mode flag (D)
It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic
is performed when this flag is “0.” When it is “1,” decimal arithmetic is performed with each word
treated as two or four digits decimal (determined by the data length flag). Decimal adjust is automati-
cally performed. Decimal operation is possible only with the ADC and SBC instructions. Use the SEP
instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.” This flag is cleared to
“0” at reset.

(5) Bit 4: Index register length flag (x)
It determines whether each of index register X and index register Y is used as a 16-bit register or an
8-bit register. That register is used as a 16-bit register when this flag is “0,” and as an 8-bit register
when it is “1.” Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it
to “0.” This flag is cleared to “0” at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA , TYA , TXB , TYB , and TXS
instructions. Refer to “CHAPTER 4. INSTRUCTIONS” for details.

2.1 Central processing unit

CENTRAL PROCESSING UNIT (CPU)

2–97751 SERIES SOFTWARE MANUAL

(6) Bit 5: Data length flag (m)
It determines whether to use data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit
when this flag is “0,” and as an 8-bit unit when it is “1.”
Use the SEM or SEP instruction to set this flag to “1,” and use the CLM or CLP instruction to clear
it to “0.” This flag is cleared to “0” at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA , TYA , TXB , TYB , and TXS
instructions. Refer to “CHAPTER 4. INSTRUCTIONS” for details.

(7) Bit 6: Overflow flag (V)
It is used when adding or subtracting with a word regarded as signed binary. When the data length
flag (m) is “0,” the overflow flag is set to “1” when the result of addition or subtraction exceeds the
range between –32768 and +32767, and cleared to “0” in all other cases. When the data length flag
(m) is “1,” the overflow flag is set to “1” when the result of addition or subtraction exceeds the range
between –128 and +127, and cleared to “0” in all other cases.
The overflow flag is also set to “1” when the result of division exceeds the register length to be stored
in the DIV or DIVS instruction, a division instruction with signed or unsigned; and when the result of
addition exceeds the range between –2147483648 and +2147483647 in the RMPA instruction, a
Repeat MultiPly and Accumulate instruction.
When the BVC or BVS instruction is executed, this flag’s contents determine whether the program
causes a branch or not. Use the SEP instruction to set this flag to “1,” and use the CLV or CLP
instruction to clear it to “0.”
Note: This flag is invalid in the decimal mode.

(8) Bit 7: Negative flag (N)
It is set to “1” when the result of arithmetic operation or data transfer is negative. (Bit 15 of the result
is “1” when the data length flag (m) is “0,” or bit 7 of the result is “1” when the data length flag (m)
is “1.”) It is cleared to “0” in all other cases. When the BPL or BMI instruction is executed, this flag
determines whether the program causes a branch or not. Use the SEP instruction to set this flag to
“1,” and use the CLP instruction to clear it to “0.”
Note: This flag is invalid in the decimal mode.

(9) Bits 10 to 8: Processor interrupt priority level (IPL)
These three bits can determine the processor interrupt priority level to one of levels 0 to 7. The
interrupt is enabled when the interrupt priority level of a required interrupt, which is set in each
interrupt control register, is higher than IPL. When an interrupt request is accepted, IPL is stored in
the stack area, and IPL is replaced by the interrupt priority level of the accepted interrupt request.
There are no instruction to directly set or clear the bits of IPL. IPL can be changed by storing the new
IPL into the stack area and updating the processor status register with the PUL or PLP instruction.
The contents of IPL is cleared to “0002” at reset.

CENTRAL PROCESSING UNIT (CPU)

7751 SERIES SOFTWARE MANUAL2–10

2.2 Bus interface unit

2.2 Bus interface unit
A bus interface unit (BIU) is built-in between the central processing unit (CPU) and memory•I/O devices.
BIU’s function and operation are described below.

2.2.1 Overview
Transfer operation between the CPU and memory•I/O devices is always performed via the BIU.
Figure 2.2.1 shows the bus and bus interface unit (BIU).

➀ The BIU reads an instruction from the memory before the CPU executes it.

➁ When the CPU reads data from the memory • I/O device, the CPU first specifies the address from which
data is read to the BIU. The BIU reads data from the specified address and passes it to the CPU.

➂ When the CPU writes data to the memory • I/O device, the CPU first specifies the address to which data
is written to the BIU and write data. The BIU writes the data to the specified address.

➃ To perform the above operations ➀ to ➂, the BIU inputs and outputs the control signals, and control the
bus.

CENTRAL PROCESSING UNIT (CPU)

7751 SERIES SOFTWARE MANUAL 2–11

2.2 Bus interface unit

Fig. 2.2.1 Bus and bus interface unit (BIU)

77
51

 s
er

ie
s

m
ic

ro
co

m
pu

te
r

In
te

rn
al

 b
us

 D
15

 to
 D

8
C

en
tr

al

pr
oc

es
si

ng

un
it

(C
P

U
)

S
F

R
 :

S
pe

ci
al

 F
un

ct
io

n
R

eg
is

te
r

N
ot

e
:

T
he

 C
P

U
 b

us
, i

nt
er

na
l b

us
, a

nd
 e

xt
er

na
l b

us
 a

re
 in

de
pe

nd
en

t o
f o

ne
 a

no
th

er
.

In
te

rn
al

 b
us

 A
23

 to
 A

0

E
xt

er
na

l
de

vi
ce

In
te

rn
al

 c
on

tr
ol

 s
ig

na
l

C
P

U
 b

us
In

te
rn

al
 b

us

In
te

rn
al

 b
us

 D
7

to
 D

0

In
te

rn
al

m

em
or

y

In
te

rn
al

pe

rip
he

ra
l

de
vi

ce
(S

F
R

)

E
xt

er
na

l b
us

A
7

to
 A

0

A
15

/D
15

 to
 A

8/
D

8

C
on

tr
ol

 s
ig

na
l

B
us

in

te
rf

ac
e

un
it

(B
IU

)

B
us

co
nv

er
si

on

ci
rc

ui
t

A
23

/D
7

to
 A

16
/D

0

CENTRAL PROCESSING UNIT (CPU)

7751 SERIES SOFTWARE MANUAL2–12

2.2 Bus interface unit

2.2.2 Functions of bus interface unit (BIU)
The bus interface unit (BIU) consists of four registers shown in Figure 2.2.2. Table 2.2.1 shows the
functions of each register.

Program address register

Instruction queue buffer

Data address register

Data buffer

PA

DA

Q0

Q1

Q2

DBH DBL

b23 b0

b0

b0

b0

b23

b15

b7

Fig. 2.2.2 Register structure of bus interface unit (BIU)

Table 2.2.1 Functions of each register

Functions

Indicates the storage address for the instruction which is next taken into the

instruction queue buffer.

Temporarily stores the instruction which has been taken in.

Indicates the address for the data which is next read from or written to.

Temporarily stores the data which is read from the memory•I/O device by the

BIU or which is written to the memory•I/O device by the CPU.

Name

Program address register

Instruction queue buffer

Data address register

Data buffer

CENTRAL PROCESSING UNIT (CPU)

7751 SERIES SOFTWARE MANUAL 2–13

2.2 Bus interface unit

The CPU and the bus send or receive data via BIU because each operates based on different clocks
(Note). The BIU allows the CPU to operate at high speed without waiting for access to the memory • I/O
devices that require a long access time.
The BIU’s functions are described bellow.

Note: The CPU operates based on φCPU. The period of φCPU is normally the same as that of the internal
_ _

clock φ. The internal bus operates based on the signal E. The period of the signal E is normally twice
that of the internal clock φ at a minimum.

(1) Reading out instruction (Instruction prefetch)
When the CPU does not require to read or write data, that is, when the bus is not in use, the BIU reads
instructions from the memory and stores them in the instruction queue buffer. This is called instruction
prefetch.
The CPU reads instructions from the instruction queue buffer and executes them, so that the CPU can
operate at high speed without waiting for access to the memory which requires a long access time.
When the instruction queue buffer becomes empty or contains only 1 byte of an instruction, the BIU
performs instruction prefetch. The instruction queue buffer can store instructions up to 3 bytes.
The contents of the instruction queue buffer is initialized when a branch or jump instruction is executed,
and the BIU reads a new instruction from the destination address.
When instructions in the instruction queue buffer are insufficient for the CPU’s needs, the BIU extends
the pulse duration of clock φCPU in order to keep the CPU waiting until the BIU fetches required
number of instructions or more.

(2) Reading data from memory•I/O device
The CPU specifies the storage address of data to be read to the BIU’s data address register, and
requires data. The CPU waits until data is ready in the BIU.
The BIU outputs the address received from the CPU onto the address bus, reads contents at the
specified address, and takes it into the data buffer.
The CPU continues processing, using data in the data buffer.
However, if the BIU uses the bus for instruction prefetch when the CPU requires to read data, the BIU
keeps the CPU waiting.

CENTRAL PROCESSING UNIT (CPU)

7751 SERIES SOFTWARE MANUAL2–14

2.2 Bus interface unit

(3) Writing data to memory•I/O device
The CPU specifies the address of data to be written to the BIU’s data address register. Then, the CPU
writes data into the data buffer. The BIU outputs the address received from the CPU onto the address
bus and writes data in the data buffer into the specified address.
The CPU advances to the next processing without waiting for completion of BIU’s write operation.
However, if the BIU uses the bus for instruction prefetch when the CPU requires to write data, the BIU
keeps the CPU waiting.

(4) Bus control
To perform the above operations (1) to (3), the BIU inputs and outputs the control signals, and controls
the address bus and the data bus. The cycle which the BIU controls the bus and accesses the
memory•I/O device is called the bus cycle. Table 2.2.2 shows the bus cycle at accessing the internal
area.

Table 2.2.2 Bus cycle at accessing internal area

RAM

ROM

SFR

1 bus cycle = 2

In low-speed running In high-speed running

Address

E

Internal address bus

Internal data bus Data

E

Internal address bus

Internal data bus

1 bus cycle = 2

E

Internal address bus

Internal data bus

Address

Data

Address

Data

1 bus cycle = 3

CENTRAL PROCESSING UNIT (CPU)

7751 SERIES SOFTWARE MANUAL 2–15

2.2 Bus interface unit

2.2.3 Operation of bus interface unit (BIU)
Figure 2.2.3 shows the basic operating waveforms of the bus interface unit (BIU).

(1) When fetching instructions into the instruction queue buffer
➀ When the instruction which is next fetched is located at an even address, the BIU fetches 2 bytes

of the instruction at a time with the timing of waveform (a).
However, when accessing an external device which is connected with the 8-bit external data bus
width (BYTE = “H”), only 1 byte of the instruction is fetched.

➁ When the instruction which is next fetched is located at an odd address, the BIU fetches only 1 byte
of the instruction with the timing of waveform (a). The data at the even address is not taken into
the data buffer.

(2) When reading or writing data to and from the memory•I/O device
➀ When accessing a 16-bit data which begins at an even address, waveform (a) is applied. The 16

bits of data are accessed at a time.

➁ When accessing a 16-bit data which begins at an odd address, waveform (b) is applied. The 16 bits
of data are accessed separately in 2 operations, 8 bits at a time. Invalid data is not fetched into
the data buffer.

➂ When accessing an 8-bit data at an even address, waveform (a) is applied. The data at the odd
address is not fetched into the data buffer.

➃ When accessing an 8-bit data at an odd address, waveform (a) is applied. The data at the even
address is not fetched into the data buffer.

For instructions that are affected by the data length flag (m) and the index register length flag (x),
operation ➀ or ➁ is applied when flag m or x = “0”; operation ➂ or ➃ is applied when flag m or x =
“1.”

CENTRAL PROCESSING UNIT (CPU)

7751 SERIES SOFTWARE MANUAL2–16

2.2 Bus interface unit

Address

(a)

Data (Even address)

Data (Odd address)

 E

Internal address bus (A0 to A23)

Internal data bus (D0 to D7)

Internal data bus (D8 to D15)

(b)

Address (Odd address) Address (Even address)

Data (Even address)

Data (Odd address)

Invalid data

Invalid data

 E

Internal address bus (A0 to A23)

Internal data bus (D0 to D7)

Internal data bus (D8 to D15)

Fig. 2.2.3 Basic operating waveforms of bus interface unit (BIU)

suzuki_tadahiro

CHAPTER 3
ADDRESSING

MODES

3.1 Addressing modes
3.2 Explanation of addressing

modes

7751 SERIES SOFTWARE MANUAL3–2

ADDRESSING MODES
3.1 Addressing modes 3.2 Explanation of addressing modes

3.1 Addressing modes
To execute an instruction, when the data required for arithmetic operation is retrieved from a memory or the
result of arithmetic operation is stored to it, it is necessary to specify the address of the memory location
in advance. Address specification is also necessary when the control is to jump to a certain memory address
during program execution. Addressing refers to the method of specifying the memory address.
The memory access of the 7751 series microcomputers is reinforced with 29 different addressing modes.

3.2 Explanation of addressing modes
Each of the 29 addressing modes is explained on the pages indicated below:

Implied addressing mode .. 3-3

Immediate addressing mode ... 3-4

Accumulator addressing mode.. 3-6

Direct addressing mode .. 3-7

Direct bit addressing mode ... 3-9

Direct indexed X addressing mode .. 3-11

Direct indexed Y addressing mode .. 3-14

Direct indirect addressing mode ... 3-15

Direct indexed X indirect addressing mode ... 3-17

Direct indirect indexed Y addressing mode ... 3-20

Direct indirect long addressing mode ... 3-23

Direct indirect long indexed Y addressing mode 3-25

Absolute addressing mode .. 3-28

Absolute bit addressing mode .. 3-31

Absolute indexed X addressing mode .. 3-33

Absolute indexed Y addressing mode .. 3-36

Absolute long addressing mode ... 3-39

Absolute long indexed X addressing mode.. 3-41

Absolute indirect addressing mode ... 3-43

Absolute indirect long addressing mode .. 3-44

Absolute indexed X indirect addressing mode 3-45

Stack addressing mode... 3-46

Relative addressing mode... 3-49

Direct bit relative addressing mode .. 3-50

Absolute bit relative addressing mode ... 3-52

Stack pointer relative addressing mode ... 3-54

Stack pointer relative indirect indexed Y addressing mode 3-55

Block transfer addressing mode ... 3-58

Multiplied accumulation addressing mode .. 3-60

7751 SERIES SOFTWARE MANUAL 3–3

Implied

Mode : Implied addressing mode

Function : Registers and others are worked with one instruction.

Instruction : BRK, CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP, RTI, RTL,
RTS, SEC, SEI, SEM, STP, TAD, TAS, TAX, TAY, TBD, TBS, TBX,
TBY, TDA, TDB, TSA, TSB, TSX, TXA, TXB, TXS, TXY, TYA, TYB,
TYX, WIT, XAB

ex. : Mnemonic
CLC

Machine code

1816

PS

PS

C flag

ex. : Mnemonic
TXA
(m=“1”, x=“1”)

Machine code

X

A

The high-order byte is
 not changed.

ex. : Mnemonic
TXA
(m=“0”, x=“0”)

Machine code
8A16

X

A

? ? ? ? ? ? ? ? ? ? ?

DATAL

8A16 DATAL

DATAH DATAL

DATAH

8A16

? ? ? ? ? ? ? ? ? ? 0

DATAL

7751 SERIES SOFTWARE MANUAL3–4

 Immediate

Mode : Immediate addressing mode

Function : A portion of the instruction is an actual data. Such instruction code can cross over the bank
boundary.

Instruction : ADC, AND, CLP, CMP, CPX, CPY, DIV, DIVS, EOR, LDA, LDT, LDX,
LDY, MPY, MPYS, ORA, RLA, SBC, SEP

ex. : Mnemonic
ADC A, #0A5H
 (m=“1”)

Machine code
6916 A516

A A+C+ A516

Op Code (6916)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PG

ex. : Mnemonic
ADC A, #0A5B7H
 (m=“0”)

Machine code
6916 B716 A516

Op Code (6916)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PGOperand (B716)
A A+C+ A516 B716

ex. : Mnemonic
LDX #0A5H
 (x=“1”)

Machine code
A216 A516

A516

Op Code (A216)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PG
X

7751 SERIES SOFTWARE MANUAL 3–5

 Immediate

ex. : Mnemonic
LDX #0A5B7H
 (x=“0”)

Machine code
A216 B716 A516

Op Code (A216)

Operand (A516)

Memory

PG

PG

000016

FFFF16

Bank PG
Operand (B716)

X A516 B716

7751 SERIES SOFTWARE MANUAL3–6

Accumulator

Mode : Accumulator addressing mode

Function : The contents of accumulator are an actual data.

Instruction : ASL, ASR, DEC, EXTS, EXTZ, INC, LSR, ROL, ROR

ex. : Mnemonic
ROL A
 (m=“0”)

Machine code

2A16

b15 b0

Carry flag Accumulator A

ex. : Mnemonic

ROL A

 (m=“1”)

Machine code

2A16

b7 b0

Carry flag Accumulator A

7751 SERIES SOFTWARE MANUAL 3–7

Direct

Mode : Direct addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s second byte to the contents of the direct page register. When,
however, the result of adding of the instruction’s second byte to the direct page register’s contents
exceeds bank 016 range, the memory location in bank 116 is specfied.

Instruction : ADC, AND, ASL, ASR, CMP, CPX, CPY, DEC, DIV, DIVS, EOR, INC,
LDA, LDM, LDX, LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC, STA,
STX, STY

ex. : Mnemonic
ADC A, 02H
 (m=“1”)

Machine code
6516 0216

Op Code (6516)

Memory

000016

FFFF16

Bank 016

Operand (0216)

A A+C+ DATA DATA 123616

+ 123416 = 123616

Direct page
 register

ex. : Mnemonic
ADC A, 02H
 (m=“0”)

Machine code
6516 0216

Op Code (6516)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 123616

+ 123416 = 123616

Direct page
 register

DATAH 123716

A A+C+ DATAH DATAL

7751 SERIES SOFTWARE MANUAL3–8

Direct

ex. : Mnemonic

LDX 02H
 (x=“1”)

Machine code
A616 0216

Op Code (A616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

X DATA DATA 123616

+ 123416 = 123616

Direct page
 register

ex. : Mnemonic

LDX 02H
 (x=“0”)

Machine code
A616 0216

Op Code (A616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 123616

+ 123416 = 123616

Direct page
 register

DATAH

X DATAH DATAL

7751 SERIES SOFTWARE MANUAL 3–9

Direct Bit

Mode : Direct bit addressing mode

Function : Specifies the memory location in bank 016 by the result of adding the instruction’s second byte to
the direct page register’s contents, and specifies the positions of multiple bits in the memory
location by the bit pattern in the third and fourth bytes of the instruction (when the m flag is “1”,
the third byte only). When, however, the result of adding of the instruction’s second byte to the
direct page register’s contents exceeds bank 016 range, the memory location in bank 116 is
specified.

Instruction : CLB, SEB

ex. : Mnemonic

CLB #5AH , 04H
 (m=“1”)

Machine code

1416 0416 5A16

Op Code (1416)

Operand (0416) + 123416 = 123816

Direct page
 register

(Before the instruction execution)

(After the instruction execution)

Memory

000016

FFFF16

Bank 016

123816? ? ? ? ? ? ? ?

Operand (5A16)

Memory

000016

FFFF16

Bank 016123816? 0 ? 0 0 ? 0 ?

7751 SERIES SOFTWARE MANUAL3–10

Direct Bit

ex. : Mnemonic

CLB #5AA5H, 04H
 (m=“0”)

Machine code

1416 0416 A516 5A16

Op Code (1416)

Operand (0416) + 123416 = 123816

Direct page
 register

(Before the instruction execution)

Memory

000016

FFFF16

Bank 016

123816

(After the instruction execution)

Memory

000016

FFFF16

Bank 016

123816

? ? ? ? ? ? ? ?

Operand (A516)

Operand (5A16)

123916

0 ? 0 ? ? 0 ? 0

? 0 ? 0 0 ? 0 ? 123916

? ? ? ? ? ? ? ?

7751 SERIES SOFTWARE MANUAL 3–11

Direct Indexed X

Mode : Direct indexed X addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s second byte, the direct page register’s contents and the index
register X’s contents. When, however, the result of adding the instruction’s second byte, the direct
page register’s contents and the index register X’s contents exceeds bank 016 or bank 116 range,
the memory location in bank 116 or bank 216 is specified.

Instruction : ADC, AND, ASL, ASR, CMP, DEC, DIV, DIVS, EOR, INC, LDA, LDM,
LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC, STA, STY

ex. : Mnemonic

ADC A, 1EH, X
 (m=“1”, x=“1”)

Machine code

7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

A A+C+ DATA DATA 133816

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register X

ex. : Mnemonic

ADC A, 1EH, X
 (m=“0”, x=“1”)

Machine code

7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 133816

+ 123416 +

Direct page
 register

DATAH

A A+C+ DATAH

E616 = 133816

 Index
register X

133916

 DATAL

7751 SERIES SOFTWARE MANUAL3–12

Direct Indexed X

ex. : Mnemonic
ADC A, 1EH , X
 (m=“1”, x=“0”)

Machine code
7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

A A+C+ DATA DATA 433816

+ 123416 +

Direct page
 register

30E616 = 433816

 Index
register X

ex. : Mnemonic

ADC A, 1EH , X
 (m=“0”, x=“0”)

Machine code

7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 433816

+ 123416 +

Direct page
 register

DATAH

A A+C+ DATAH

30E616 = 433816

 Index
register X

433916

DATAL

7751 SERIES SOFTWARE MANUAL 3–13

Direct Indexed X

ex. : Mnemonic

LDY 1EH , X
(x=“0”)

Machine code
B416 1E16

Op Code (B416)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 433816

+ 123416 +

Direct page
 register

DATAH

Y DATAH

30E616 = 433816

 Index
register X

433916

ex. : Mnemonic
LDY 1EH , X
(x=“1”)

Machine code
B416 1E16

Op Code (B416)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

Y DATA DATA 133816

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register X

DATAL

7751 SERIES SOFTWARE MANUAL3–14

Direct Indexed Y

Mode : Direct indexed Y addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s second byte, the direct page register’s contents and the index
register Y’s contents. When, however, the result of adding of the instruction’s second byte, the
direct page register’s contents and the index register Y’s contents exceeds bank 016 or bank 116

range, the memory location in bank 116 or bank 216 is specified.

Instruction : LDX, STX

ex. : Mnemonic

LDX 02H , Y
 (x=“0”)

Machine code
B616 0216

Op Code (B616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 131C16

+ 123416 +

Direct page
 register

DATAH

X DATAH

00E616 = 131C16

 Index
register Y

131D16

ex. : Mnemonic
LDX 02H , Y
 (x=“1”)

Machine code
B616 0216

Op Code (B616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

X DATA DATA 131C16

+ 123416 +

Direct page
 register

E616 = 131C16

 Index
register Y

DATAL

7751 SERIES SOFTWARE MANUAL 3–15

Direct Indirect

Mode : Direct indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register’s contents. The contents of the memory location specified by these
2 bytes in bank DT (DT is the data bank register’s contents) are an actual data. When, however,
the result of adding the instruction’s second byte to the direct page register’s contents exceeds
bank 016 range, the memory location in bank 116 is specified.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic

ADC A, (1EH)
(m=“1”)

Machine code
7216 1E16

Op Code (7216)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

A A+C+ DATA

125216

125316

125216

DATA DT 120116

Data bank
 register

=

ADM (1216)

7751 SERIES SOFTWARE MANUAL3–16

Direct Indirect

ex. : Mnemonic

ADC A, (1EH)
(m=“0”)

Machine code
7216 1E16

Op Code (7216)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

ADM (1216)

125216

125316

125216

DATA L DT 120116

Data bank
 register

=

DATA H

A A+C+ DATA H DATA L

DT 120216

7751 SERIES SOFTWARE MANUAL 3–17

Direct Indexed X Indirect

Mode : Direct indexed X indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s second
byte, the direct page register’s contents and the index register X’s contents. The contents of the
memory location specified by these bytes in bank DT (DT is the data bank register’s contents) are
an actual data. When, however, the result of adding the instruction’s second byte, the direct page
register’s contents and the index register X’s contents exceeds bank 016 or bank 116 range, the
memory location in bank 116 or bank 216 is specified.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic

ADC A, (1EH, X)
(m=“1”, x=“1”)

Machine code

6116 1E16

Op Code (6116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0016)

ADM (1416)

A A+C+ DATA DATA DT 140016

Data bank
 register

133816

133916

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register X

7751 SERIES SOFTWARE MANUAL3–18

Direct Indexed X Indirect

ex. : Mnemonic
ADC A, (1EH, X)
(m=“0”, X=“1”)

Machine code
6116 1E16

Op Code (6116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

ADL (0016)

ADM (1416)

DATA L DT 140016

Data bank
 register

DATA HA A+C+ DATA H DATA L DT 140116

+ 123416 +

Direct page
 register

E616 = 133816

 Index
register X

133816

133916

ex. : Mnemonic
ADC A, (1EH , X)
(m=“1”, x=“0”)

Machine code
6116 1E16

Op Code (6116)

Memory

1FFFF16

Bank 116

Operand (1E16)

ADL (0016)

ADM (1416)

A A+C+ DATA DATA DT 140016

Data bank
 register

1033816

1033916

+ 123416 +

Direct page
 register

F0E616 = 1033816

 Index
register X

1000016

7751 SERIES SOFTWARE MANUAL 3–19

Direct Indexed X Indirect

ex. : Mnemonic
ADC A, (1EH, X)
 (m=“0”, x=“0”)

Machine code
6116 1E16

Op Code (6116)

Memory

1FFFF16

Bank 116

Operand (1E16)

ADL (0016)

ADM (1416)

1033816

1033916

+ 123416 +

Direct page
 register

F0E616 = 1033816

 Index
register X

1000016

DATA L DT 140016

Data bank
 register

DATA HA A+C+ DATA H DATA L DT 140116

7751 SERIES SOFTWARE MANUAL3–20

Mode : Direct indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register’s contents. The following is an actual data: the contents of the
memory location specified by the result of adding the contents of these 2 bytes to the index register
Y’s contents and the contents of the data bank register. When, however, the result of adding the
instruction’s second byte to the direct page register’s contents exceeds bank 016 range, the
memory location in bank 116 is specified. Additionally, if the addition of the memory’s contents and
the index register Y’s contents generates a carry, the bank which is 1 larger than the contents of
the data bank register is used.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic
ADC A, (1EH), Y
 (m=“1”, x=“1”)

Machine code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=

DATA DT 12E716

Data bank
 register

ADM (1216)
E616 = 12E716

 Index
register Y

+

A A+C+ DATA

Direct Indirect Indexed Y

7751 SERIES SOFTWARE MANUAL 3–21

Direct Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH), Y
 (m=“0”, x=“1”)

Machine code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=
DATAL DT 12E716

Data bank
 register

ADM (1216)
E616 = 12E716

 Index
register Y

+

DATAH

A A+C+ DATAH DATAL

DT 12E816

ex. : Mnemonic

ADC A, (1EH), Y
 (m=“1”, x=“0”)

Machine code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=

A A+C+ DATA DATA DT + 1 02E716

Data bank
 register

ADM (1216)
F0E616 = 102E716

 Index
register Y

+

Bank

7751 SERIES SOFTWARE MANUAL3–22

Direct Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH), Y
 (m=“0”, x=“0”)

Machine code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Direct page
 register

125216

125316

125216

=

DATAL DT + 1 02E716

Data bank
 register

ADM (1216)

DATAH

A A+C+ DATAH DATAL

DT + 1 02E816

F0E616 = 102E716

 Index
register Y

+

Bank

7751 SERIES SOFTWARE MANUAL 3–23

Direct Indirect Long

Mode : Direct indirect long addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register’s contents. The contents at the address specified by the contents
of these 3 bytes are an actual data. When, however, the result of adding the instruction’s second
byte to the direct page register’s contents exceeds bank 016, the memory location in bank 116 is
specified. A sequence of 3-byte memory can cross over the bank boundary.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic

ADCL A, (1EH)
 (m=“1”)

Machine code
6716 1E16

Memory

Bank 016

ADL (EF16)125216

125316 ADM (0116)

A A+C+ DATA

Op Code (6716)

Operand (1E16)123416 +

Direct page
 register

125216

=

DATA 1201EF16

ADH (1216)125416

7751 SERIES SOFTWARE MANUAL3–24

Direct Indirect Long

ex. : Mnemonic

ADCL A, (1EH)
 (m=“0”)

Machine code
6716 1E16

Memory

Bank 016

ADL (EF16)125216

125316 ADM (0116)

ADH (1216)125416

A A+C+ DATA H

Op Code (6716)

Operand (1E16)123416 +

Direct page
 register

125216

=

DATA L 1201EF16

DATA H 1201F016

DATA L

7751 SERIES SOFTWARE MANUAL 3–25

Direct Indirect Long Indexed Y

Mode : Direct indirect long indexed Y addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register’s contents. The contents at the address specified by the result of
adding the contents of these 3 bytes to the index register Y’s contents are an actual data. When,
however, the result of adding the instruction’s second byte to the direct page register’s contents
exceeds bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte
memory can cross over the bank boundary.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=“1”, x=“1”)

Machine code
7716 1E16

Memory

Bank 016

ADL (EF16)125216

125316 ADM (0116)

A A+C+ DATA

Op Code (7716)

Operand (1E16)123416 +

Direct page
 register

125216

=

DATA 12021016

ADH (1216)125416

2116 = 12021016

 Index
register Y

+

7751 SERIES SOFTWARE MANUAL3–26

Direct Indirect Long Indexed Y

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=“0”, x=“1”)

Machine code
7716 1E16

Op Code (7716)

Memory

Bank 016

Operand (1E16)

ADL (EF16)

123416 +

Direct page
 register

125216

125316

125216

=

DATAL 12021016

ADM (0116) 2116 = 12021016

 Index
register Y

+

DATAH

A A+C+ DATAH DATAL

12021116

125416 ADH (1216)

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=“1”, x=“0”)

Machine code
7716 1E16

Op Code (7716)

Memory

Bank 016

Operand (1E16)

ADL (EF16)

123416 +

Direct page
 register

125216

125316

125216

=

DATA 12E71016

ADM (0116)

A A+C+ DATA

125416 ADH (1216)

+ E52116 = 12E71016

 Index
register Y

7751 SERIES SOFTWARE MANUAL 3–27

Direct Indirect Long Indexed Y

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=“0”, x=“0”)

Machine code
7716 1E16

Op Code (7716)

Memory

Bank 016

Operand (1E16)

ADL (EF16)

123416 +

Direct page
 register

125216

125316

125216
=

12E71016

ADM (0116)

125416 ADH (1216)

+ E52116 = 12E71016

 Index
register Y

DATA L

DATA H 12E71116

A A+C+ DATA H DATA L

7751 SERIES SOFTWARE MANUAL3–28

Absolute

Mode : Absolute addressing mode

Function : The following is an actual data: the contents of the memory location specified by the instruction’s
second and third bytes and the contents of the data bank register. Note that, in the cases of the
JMP and JSR instructions, the instructions’ second and third bytes are transferred to the program
counter.

Instruction : ADC, AND, ASL, ASR, CMP, CPX, CPY, DEC, DIV, DIVS, EOR, INC,
JMP, JSR, LDA, LDM, LDX, LDY, LSR, MPY, MPYS, ORA, ROL, ROR,
SBC, STA, STX, STY

DT

ex.: Mnemonic
ADC A, 0AD12H
 (m=“1”)

Machine code
6D16 1216 AD16

Op Code (6D16)

Operand (AD16)

Memory

Operand (1216)

DATAA A+C+ DATA AD1216

Data bank
 register

A A+C+ DATAH
DT

ex. : Mnemonic
ADC A, 0AD12H
 (m=“0”)

Machine code
6D16 1216 AD16

Op Code (6D16)

Operand (AD16)

Memory

Operand (1216)

DATAL AD1216

Data bank
 register

DATAH DT AD1316
 DATAL

7751 SERIES SOFTWARE MANUAL 3–29

Absolute

DT

ex. : Mnemonic
LDX 0AC14H
 (x=“1”)

Machine code
AE16 1416 AC16

Op Code (AE16)

Operand (AC16)

Memory

Operand (1416)

DATAX DATA AC1416

Data bank
 register

X DATA H DATA L

DT

ex. : Mnemonic
LDX 0AC14H
 (x=“0”)

Machine code
AE16 1416 AC16

Op Code (AE16)

Operand (AC16)

Memory

Operand (1416)

DATA L AC1416

Data bank
 register

DATA H DT AC1516

7751 SERIES SOFTWARE MANUAL3–30

Absolute

ex. : Mnemonic
JMP 0AC14H

Machine code
4C16 1416 AC16

Op Code (4C16)

Operand (AC16)

Memory

PG 000016

PG FFFF16

Bank PG

Operand (1416)

Address to be
executed next

PG AC1416

Program
bank register

Program bank register’s
contents are not affected.

Note the branch destination bank when a JMP or a JSR instruction
is located near a bank boundary.

Refer to the description of a JMP instruction (Page 4-50).
Refer to the description of a JSR instruction (Page 4-51).

Note :

7751 SERIES SOFTWARE MANUAL 3–31

Absolute Bit

Mode : Absolute bit addressing mode

Function : Specifies the memory location by the instruction’s second and third bytes and the contents of the
data bank register; specifies the multiple bit positions in that memory by a bit pattern of the
instruction’s fourth and fifth bytes (when the m flag is “1”, the fourth byte only).

Instruction : CLB, SEB

? 0 ? 0 0 ? 0 ? DT 123416

Data bank
 register

Memory

ex. : Mnemonic

CLB #5AH , 1234H
 (m=“1”)

Machine code

1C16 3416 1216 5A16

Op Code (1C16)

Operand (1216)

Memory

Operand (3416)

DT 123416

Data bank
 register

Operand (5A16)

? ? ? ? ? ? ? ?

7751 SERIES SOFTWARE MANUAL3–32

Absolute Bit

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

ex. : Mnemonic

CLB #5AA5H, 1234H
 (m=“0”)

Machine code

1C16 3416 1216 A516 5A16

Op Code (1C16)

Operand (1216)

Memory

Operand (3416)

DT 123416

Data bank
 register

Operand (A516)

0 ? 0 ? ? 0 ? 0 DT 123416

Data bank
 register

Memory

Operand (5A16)

DT 123516

? 0 ? 0 0 ? 0 ? DT 123516

7751 SERIES SOFTWARE MANUAL 3–33

Absolute Indexed X

Mode : Absolute indexed X addressing mode

Function : The following is an actual data: the contents of the memory location specified by the result of
adding a 16-bit length numerical value expressed with the instruction’s second and third bytes to
the index register X’s contents, and the contents of the data bank register. If, however, the addition
of the numerical value expressed with the instruction’s second and third bytes, and the index
register X’s contents generates a carry; the bank which is 1 larger than the contents of the data
bank register is used.

Instruction : ADC, AND, ASL, ASR, CMP, DEC, DIV, DIVS, EOR, INC, LDA, LDM,
LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC, STA

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=“1”, x=“1”)

Machine code

7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATAA A+C+ DATA AE0016

+ EE16 = AE0016

 Index
register X

A A+C+ DATA H DATA L

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=“0”, x=“1”)

Machine code
7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATA L AE0016

 Index
register X

DATA H DT AE0116

+ EE16 = AE0016

 Index
register X

7751 SERIES SOFTWARE MANUAL3–34

Absolute Indexed X

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=“1”, x=“0”)

Machine code

7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATAA A+C+ DATA BE0016

+ 10EE16 = BE0016

 Index
register X

A A+C+ DATAH DATAL

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=“0”, x=“0”)

Machine code
7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATAL BE0016

Data bank
 register

DATAH DT BE0116

+

Data bank
 register

+ 10EE16 = BE0016

 Index
register X

7751 SERIES SOFTWARE MANUAL 3–35

Absolute Indexed X

DT

ex. : Mnemonic
LDY 0BC12H, X
 (x=“1”)

Machine code

BC16 1216 BC16

Op Code (BC16)

Operand (BC16)

Memory

Operand (1216)

DATAY DATA BD0016

Y DATA H DATA L

DT

ex. : Mnemonic
LDY 0BC12H, X
 (x=“0”)

Machine code
BC16 1216 BC16

Op Code (BC16)

Operand (BC16)

Memory

Operand (1216)

DATA L CD0016

Data bank
 register

DATA H DT CD0116

+

Data bank
 register

+ 10EE16 = CD0016

 Index
register X

+ EE16 = BD0016

 Index
register X

7751 SERIES SOFTWARE MANUAL3–36

Absolute Indexed Y

Mode : Absolute indexed Y addressing mode

Function : The following is an actual data: the contents of the memory location specified by the result of
adding a 16-bit length numerical value expressed with the instruction’s second and third bytes to
the index register Y’s contents, and the contents of the data bank register. If, however, the addition
of the numerical value expressed with the instruction’s second and third bytes to the the index
register Y’s contents generates a carry, the bank which is 1 larger than the contents of the data
bank register is used.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, LDX, MPY, MPYS, ORA, SBC,
STA

DT

ex. : Mnemonic
ADC A, 0AD12H , Y
 (m=“1”, x=“1”)

Machine code

7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATAA A+C+ DATA AE0016

DT

ex. : Mnemonic

ADC A, 0AD12H , Y
 (m=“1”, x=“0”)

Machine code

7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATA BE0016

Data bank
 register

+

Data bank
 register

+ 10EE16 = BE0016

 Index
register Y

+ EE16 = AE0016

 Index
register Y

A A+C+ DATA

7751 SERIES SOFTWARE MANUAL 3–37

Absolute Indexed Y

ex. : Mnemonic
ADC A, 0AD12H , Y
 (m=“0”, x=“1”)

Machine code

7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATA L DT AE0016

Data bank
 register

+ EE16 = AE0016

 Index
register Y

DATA H DT AE0116

A A+C+ DATA H DATA L

ex. : Mnemonic
ADC A, 0AD12H , Y
 (m=“0”, x=“0”)

Machine code
7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATA L

++ 10EE16 = BE0016

 Index
register Y

DT BE0016

Data bank
 register

DT BE0116

A A+C+ DATA H DATA L

DATA H

7751 SERIES SOFTWARE MANUAL3–38

Absolute Indexed Y

ex. : Mnemonic
LDX 0BC12H, Y
 (x=“1”)

Machine code

BE16 1216 BC16

Op Code (BE16)

Operand (BC16)

Memory

Operand (1216)

DATA DT BD0016

Data bank
 register

+ EE16 = BD0016

 Index
register Y

X DATA

ex. : Mnemonic

LDX 0BC12H, Y
 (x=“0”)

Machine code

BE16 1216 BC16

Op Code (BE16)

Operand (BC16)

Memory

Operand (1216)

DATA L

++ 10EE16 = CD0016

 Index
register Y

DT CD0016

Data bank
 register

DT CD0116

X DATA H DATA L

DATA H

7751 SERIES SOFTWARE MANUAL 3–39

Absolute Long

Mode : Absolute long addressing mode

Function : The contents of the memory location specified by the instruction’s second, third and fourth bytes
are an actual data. Note that, in the cases of the JMP and JSR instructions, the instruction’s
second and third bytes are transferred to the program counter and the fourth byte is transferred
to the program bank register.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, JMP, JSR, LDA, MPY, MPYS, ORA,
SBC, STA

ex. : Mnemonic
ADC A, 123456H
 (m=“1”)

Machine code

6F16 5616 3416 1216

Op Code (6F16)

Operand (3416)

Memory

Operand (5616)

DATA 12345616A A+C+ DATA

Operand (1216)

ex. : Mnemonic
ADC A, 123456H
 (m=“0”)

Machine code
6F16 5616 3416 1216

Op Code (6F16)

Operand (3416)

Memory

Operand (5616)

DATA L 12345616

12345716

A A+C+ DATA H DATA L

DATA H

Operand (1216)

7751 SERIES SOFTWARE MANUAL3–40

Absolute Long

ex. : Mnemonic
JMPL 123456H

Machine code

5C16 5616 3416 1216

Op Code (5C16)

Operand (3416)

Memory

Operand (5616)

345616

Operand (1216)

Address to be
executed next

Program bank
 register

1216

Program bank register’s contents
are replaced by the third operand.

7751 SERIES SOFTWARE MANUAL 3–41

Absolute Long Indexed X

Mode : Absolute long indexed X addressing mode

Function : The following is an actual data: the contents of the memory location specified by the result of
adding a numerical value expressed with the instruction’s second, third and forth bytes to the index
register X’s contents.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

+ E116 = 12353716

 Index
register X

ex. : Mnemonic Machine code

7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATA 12353716A A+C+ DATA

ex. : Mnemonic
ADC A, 123456H , X
 (m=“0”, x=“1”)

Machine code
7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATA L 12353716

12353816

A A+C+ DATA H DATA L

DATA H

Operand (1216)

Operand (1216)

+ E116 = 12353716

 Index
register X

ADC A, 123456H , X
 (m=“1”, x=“1”)

7751 SERIES SOFTWARE MANUAL3–42

Absolute Long Indexed X

ex. : Mnemonic
ADC A, 123456H , X
 (m=“1”, x=“0”)

Machine code

7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATA 13233716A A+C+ DATA

ex. : Mnemonic

ADC A, 123456H , X
 (m=“0”, x=“0”)

Machine code

7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATA L 13233716

13233816

A A+C+ DATA H
DATA H

Operand (1216)

Operand (1216)

+

+ EEE116 = 13233716

 Index
register X

EEE116 = 13233716

 Index
register X

DATA L

7751 SERIES SOFTWARE MANUAL 3–43

Absolute Indirect

Mode : Absolute indirect addressing mode

Function : A sequence of 2-byte memory is specified by the instruction’s second and third bytes. The contents
of these bytes specify the address within the same program bank to which a jump is to be made.

Instruction : JMP

ex. : Mnemonic

JMP (1400H)
Machine code

6C16 0016 1416

Op Code (6C16)

Operand (1416)

Memory

Operand (0016)

ADL (FF16) PG 140016

ADM (1E16)

1EFF16
Address to be
executed next

PG

Bank PG

Note the reference/branch destination bank when a JMP instruction
or a reference destination is located near a bank boundary.
 Refer to the description of a JMP instruction (Page 4-50).

Note :

7751 SERIES SOFTWARE MANUAL3–44

Absolute Indirect Long

Mode : Absolute indirect long addressing mode

Function : A sequence of 3-byte memory is specified by the instruction’s second and third bytes. The contents
of these 3 bytes specify the address to which a jump is to be made.

Instruction : JMP

ex. : Mnemonic
JMPL (1234H)

Machine code
DC16 3416 1216

Op Code (DC16)

Operand (1216)

Memory

Operand (3416)

ADL (1216) PG 123416

ADM (B416)

B41216
Address to be
executed next A116

Bank PG

ADH (A116)

Program bank
 register

ADH is loaded in the
program bank register.

Program bank
 register

Note the reference destination bank when a JMP instruction
is located near a bank boundary.
 Refer to the description of a JMP instruction (Page 4-50).

Note :

7751 SERIES SOFTWARE MANUAL 3–45

Absolute Indexed X Indirect

Mode : Absolute indexed X indirect addressing mode

Function : A sequence of 2-byte memory is specified by the result of adding a numerical value expressed with
the instruction’s second and third bytes to the index register X’s contents. The contents of these
bytes specify the address to which a jump is to be made.

Instruction : JMP, JSR

ex. : Mnemonic
JMP (1234H , X)
(x=“1”)

Machine code
7C16 3416 1216

Op Code (7C16)

Operand (3416)

Operand (1216)

ADL (1216)

Memory

ADM (BC16)

124616

124716

+ 1216

 Index
register X

= 124616

Address to be
executed next

Program bank
 register

PG BC1216

Bank PG

Note the reference/branch destination bank in the case of a JMP or a
JSR instruction when the instruction or the branch destination address
is located near a boundary.
 Refer to the description of a JMP instruction (Page 4-50).
 Refer to the description of a JSR instruction (Page 4-51).

Note :

7751 SERIES SOFTWARE MANUAL3–46

Stack

Mode : Stack addressing mode

Function : The contents of a register or others are stored to or restored from the memory location specified
by the stack pointer. The stack register is set in bank 016.

Instruction : PEA, PEI, PER, PHA, PHB, PHD, PHG, PHP, PHT, PHX, PHY, PLA,
PLB, PLD, PLP, PLT, PLX, PLY, PSH, PUL

ex. : Mnemonic
PHA
 (m=“1”)

Machine code

4816

Memory

Bank 016

AL

S–1

S

00 SH SL

Stack pointer

ex. : Mnemonic

PHA
 (m=“0”)

Machine code

4816

Memory

Bank 016
AL

S–2

S

00 SH SL

Stack pointer

S–1

AH

ex. : Mnemonic

PHD

Machine code

0B16
Memory

Bank 016
DPRL

S–2

S

00 SH SL

Stack pointer

S–1

DPRH

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 3–47

Stack

ex. : Mnemonic
PEA #1234H

Machine code

F416 3416 1216

Memory

Bank 016
3416

S–2

S

00 SH SL

Stack pointer

S–1

1216

Op Code (F416)

Operand (3416)

Operand (1216)

ex. : Mnemonic
PEI #12H

Machine code

D416 1216

Memory

Bank 016

00 SH SL

Stack pointer

S–2

S

S–1

DATA L

DATA H

DATA L

Op Code (D416)

Operand (1216)

341216

341316

Direct page
 register

+ 340016 = 341216

DATA H

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL3–48

Stack

ex. : Mnemonic
PER #1234H

Machine code

6216 3416 1216

Memory

Bank 016

AC16

S–2

S

00 SH SL

Stack pointer

S–1

6816

Op Code (6216)

Operand (3416)

Operand (1216)

PG 567616

Program bank
 register

Program counter

+ 567816 = 68AC16

Bank PG

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 3–49

Relative

Mode : Relative addressing mode

Function : Branches to the address specified by the result of adding the program counter’s contents to the
instruction’s second byte. In the case of a long branch with the BRA instruction, the instruction’s
second and third bytes are added to the program counter’s contents as a 15-bit signed numerical
value. If the addition generates a carry or a borrow, 1 is added to or subtracted from the program
bank register.

Instruction : BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS

ex. : Mnemonic

BCC ✽ –12

Machine code

9016 F416

Memory

Op Code (9016)

Operand (F416)

Address to be
executed next.

 ✽–12

Branch

 ✽

Branches to the address ✽ –12
when the carry flag (C) is “0”.

Memory

Op Code (9016)

Operand (F416)

Address to be
executed next

 ✽

Advances to the address ✽
when the carry flag (C) is “1”.

ex. : Mnemonic

BRAL 1234H

Machine code

8216 3416 1216

Memory

Op Code (8216)

Operand (3416)

Address to be
executed next

Operand (1216)

PG

PG 114616

FF1216

Bank PG

Bank PG + 1

7751 SERIES SOFTWARE MANUAL3–50

Direct Bit Relative

Mode : Direct bit relative addressing mode

Function : Specifies the memory location in bank 016 by the result of adding the instruction’s second byte to
the direct page register’s contents; specifies the multiple bit positions in that memory by the bit
pattern of the instruction’s third and fourth bytes (when the m flag is “1”, the third byte only). Then,
when the specified bits all satisfy the branching conditions, branches to the address specified by
the result of adding the instruction’s fifth byte (or when the m flag is “1”, the forth byte) as a signed
numerical value to the program counter’s contents. When, however, the result of adding the
instruction’s second byte to the direct page register’s contents exceeds bank 016 range, the
memory location in bank 116 is specified.

Instruction : BBC, BBS

ex. : Mnemonic

BBS #5AH, 04H, 0F6H
 (m=“1”)

Machine code

2416 0416 5A16 F616

Bank 016

Memory

Op Code (2416)

Operand (0416)

Operand (5A16)

Direct page
 register

+ 123416 = 123816

(Branch)

Operand (F616)

Address to be
executed next

00123816

 Program
bank register

1116 FFFD16

 Program
bank register

1216 000716

Memory

Op Code (2416)

Operand (0416)

Operand (5A16)

Direct page
 register

+ 123416 = 123816

(Not branch)

Operand (F616)

Address to be
executed next

00123816

 Program
bank register

1216 000716

 0

Branch

 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1

7751 SERIES SOFTWARE MANUAL 3–51

Direct Bit Relative

ex. : Mnemonic

BBS #5AA5H, 04H , 0F6H
 (m=“0”)

Machine code

2416 0416 A516 5A16 F616

(Branch) (Not branch)

Memory

Op Code (2416)

Operand (0416)

Operand (A516)

Direct page
 register

+ 123416 = 123816

 1

Operand (5A16)

Address to be
executed next

Branch

00123816

1116 FFFE16

 Program
bank register

1216 000816

00123916

Operand (F616)

Memory

Op Code (2416)

Operand (0416)

Operand (A516)

Direct page
 register

+ 123416 = 123816

Operand (5A16)

Address to be
executed next

00123816

 Program
bank register

1216 000816

00123916

Operand (F616)

Bank 016

 0

 1

 1

 1

 0

 0

 1

 0

 1

 1

 0

 1

 1

 1

 1

 1

 0

 1

 1

 1

 0

 0

 1

 0

 1

 1

 0

 1

 1

 1

 1

7751 SERIES SOFTWARE MANUAL3–52

Absolute Bit Relative

Mode : Absolute bit relative addressing mode

Function : Specifies the memory location by the instruction’s second and third bytes and the contents of the
data bank register; specifies the multiple bit positions in that memory by a bit pattern of the
instruction’s fourth and fifth bytes (when the m flag is “1”, the fourth byte only). Then, when the
specified bits all satisfy the branching conditions, branches to the address specified by the result
of adding the instruction’s sixth byte (or when the m flag is “1”, the fifth byte) as a signed numerical
value to the program counter’s contents.

Instruction : BBC, BBS

ex. : Mnemonic
BBS #5AH , 1234H , 0F6H
 (m=“1”)

Machine code

2C16 3416 1216 5A16 F616

Memory

Op Code (2C16)

Operand (3416)

Operand (1216)

(Branch)

Operand (5A16)

Address to be
executed next

Branch

 Program
bank register

1116 FFFD16

Data bank
 register

DT 123416

(Not branch)

Operand (F616)
 Program
bank register

1216 000716

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand (5A16)

Address
to be
executed
next

Data bank
 register

DT 123416

Operand (F616)
 Program
bank register

1216 000716

Memory

 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0

7751 SERIES SOFTWARE MANUAL 3–53

Absolute Bit Relative

ex. : Mnemonic
BBS #5AA5H, 1234H , 0F6H
 (m=“0”)

Machine code
2C16 3416 1216 A516 5A16 F616

(Branch) (Not branch)

Memory

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand (A516)

Address to be
executed next

Branch

 Program
bank register

1216 000716

Operand (5A16)

Memory

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand (A516)

Address
to be
executed
next

 Program
bank register

1216 000716

Operand (5A16)

 1

Operand (F616)

1116 FFFD16

 Program
bank register

DT 123416

DT 123516

Data bank
 register

Data bank
 register

DT 123416

DT 123516

Operand (F616)

 1

 0

 1

 1

 0

 1

 1

 0

 1

 1

 1

 0

 1

 1

 0

 0

 1

 0

 1

 1

 0

 1

 1

 0

 1

 1

 1

 0

 1

 1

 0

7751 SERIES SOFTWARE MANUAL3–54

Stack Pointer Relative

Mode : Stack pointer relative addressing mode

Function : The contents of the memory location in bank 016 are an actual data. This memory is specified by
the result of adding the instruction’s second byte to the stack pointer’s contents. When, however,
the result of adding the instruction’s second byte to the stack pointer’s contents exceeds bank 016

range, the memory location in bank 116 is specified.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic

ADC A, 02H, S
 (m=“1”)

Machine code
6316 0216

Op Code (6316)

Memory

Bank 016

Operand (0216)

DATAA A+C+ DATA

 = 123616

Stack pointer

+ 123416

123616

ex. : Mnemonic

ADC A, 02H , S
 (m=“0”)

Machine code
6316 0216

Op Code (6316)

Memory

Bank 016

Operand (0216)

DATA L

A A+C+ DATA H DATA L

 = 123616

Stack pointer

+ 123416

123616

DATA H 123716

7751 SERIES SOFTWARE MANUAL 3–55

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory by the result of adding the instruction’s second byte to the
stack pointer’s contents. The following is an actual data: the contents of the memory location
specified by the result of adding the contents of these bytes to the index register Y’s contents, and
the data bank register’s contents. If, however, the result of adding the contents of that sequence
of 2-byte memory to the index register Y’s contents generates a carry, the bank which is 1 larger
than the contents of the data bank register is used.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

E616 = 12E716

 Index
register Y

+

ex. : Mnemonic

ADC A, (1EH, S), Y
 (m=“1”, x=“1”)

Machine code
7316 1E16

Op Code (7316)

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack pointer

125216

125316

125216

=

DATA DT 12E716

Data bank
 register

ADM (1216)

 A A+C+ DATA

7751 SERIES SOFTWARE MANUAL3–56

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH, S), Y
 (m=“0”, x=“1”)

Machine code
7316 1E16

Op Code (7316)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack pointer

125216

125316

125216

=

DATA L DT 12E716

Data bank
 register

ADM (1216)
E616 = 12E716

 Index
register Y

+

DATA H

A A+C+ DATA H

ex. : Mnemonic

ADC A, (1EH , S), Y
 (m=“1”, x=“0”)

Machine code
7316 1E16

Op Code (7316)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack pointer

125216

125316

125216

=

 A A+C+ DATA DATA DT + 1 02E716

Data bank
 register

ADM (1216)
 = 102E716

 Index
register Y

+ F0E616

DATA L

Bank

7751 SERIES SOFTWARE MANUAL 3–57

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH , S), Y
 (m=“0”, x=“0”)

Machine code
7316 1E16

Op Code (7316)

Memory

Bank 016

Operand (1E16)

ADL (0116)

123416 +

Stack poin�er

125216

125316

125216

=

DATA L DT + 1 02E716

Data bank
 register

ADM (1216)

DATA H

A A+C+ DATA H

 = 102E716

 Index
register Y

+ F0F616

DATA L

Bank

t

7751 SERIES SOFTWARE MANUAL3–58

Block Transfer

Mode : Block transfer addressing mode

Function : Specifies the transfer-to data bank by the instruction’s second byte, and specifies the transfer-to
address whithin the data bank by the index register Y’s contents. Specifies the transfer-from data
bank by the instruction’s third byte, and specifies the address of transfer data within the data bank
by the index register X’s contents. The accumulator A’s contents are the number of bytes to be
transferred. At termination of transfer, the data bank register’s contents specify the transfer-to data
bank. The MVN instruction is used for transfer toward lower addresses. In this case, the contents
of the index registers X and Y are incremented each time data is transferred. The MVP instruction
is used for transfer toward higher addresses. In this case, the contents of the index registers X
and Y are decremented each time data is transferred. The transfer data can cross over the bank
boundary.

Instruction : MVN, MVP

Op Code (5416)

Operand (E216)

Operand (E516)

DATA

DATA

DATA

E5123416

E5123516

E5123616

Bank E516

Bank E216

000316

123416

567816

A

X

Y

?DT

Memory

Before transfer

ex. : Mnemonic

MVN 0E2H , 0E5H
(m=“0”, x=“0”)

5416 E216 E516

Machine code

Op Code (5416)

Operand (E216)

Operand (E516)

DATA

DATA

DATA

E5123416

E5123516

E5123616

Bank E516

FFFF16

123716

567B16

A

X

Y

DT

Memory

DATA

DATA

DATA

E2567816

E2567916

E2567A16

Bank E216

E216

First

Second

After transfer

7751 SERIES SOFTWARE MANUAL 3–59

Block Transfer

Operand (E516)

Op Code (4416)

Operand (E216)

Bank E516

Bank E216

000316

567A16

123616

A

X

Y

?DT

Memory

Before transfer

ex. : Mnemonic

MVP 0E5H , 0E2H
(m=“0”, x=“0”)

4416 E516 E216

Machine code

Op Code (4416)

Operand (E516)

Operand (E216)

DATA

DATA

DATA

E5123416

E5123516

E5123616

Bank E516

FFFF16

567716

123316

A

X

Y

DT

Memory

DATA

DATA

DATA

E2567816

E2567916

E2567A16

Bank E216

E516

DATA

DATA

DATA

E2567816

E2567916

E2567A16

First

Second

For block transfer instructions, the number of bytes to be transferred and the range of transfer
source/destination address change with the state of the m and x flags. However, the transfer
unit is unaffected. The transfer unit is word (16 bits). However, only 1 byte is transferred when
transferring the last byte at odd bytes transfer.

After transfer

Note :

7751 SERIES SOFTWARE MANUAL3–60

Mode : Multiplied accumulation addressing mode

Function : The following is a multiplicand and a multiplier: the contents of the memory location specified by
the contents of index registers X and Y, and the data bank register’s contents. The instruction’s
third byte is the repeat number of arithmetic operation. The contents of index registers X and Y
are incremented each time the addition of the contents of accumulators B and A to the
multiplication result finishes. Accordingly, the contents of index registers X and Y specify the next
address where the multiplicand and the multiplier are read at last.
Allocate a multiplicand and a multiplier within the same bank and do not cross them over the bank
boundary.
Set the index register length flag to “0” before executing this instruction.

Instruction : RMPA

Multiplied accumulation

ex. : Mnemonic

RMPA #03H
(m=“0”, x=“0”)

8916 E216 0316

Machine code

DATA

DATA

DATA

(at start)DT X

H

Memory

Op Code (8916)

Operand (0316)

Op Code (E216)

First L

Data bank
 register

 Index
register X

H

L

H

L

DT X+6

Second

Third

DATA1

DATA3

DATA2

H

First L

H

L

H

L

Second

Third

B, A B, A+ DATAH DATAL ✕ DATAH DATAL
(at end)

(at start)DT Y

 Index
register Y

DT Y+6 (at end)

Bank DT

7751 SERIES SOFTWARE MANUAL 3–61

Multiplied accumulation

ex. : Mnemonic

RMPA #03H
(m=“1”, x=“0”)

8916 E216 0316

Machine code

DATA

DATA

DATA

(at start)DT X

Memory

Op Code (8916)

Operand (0316)

Op Code (E216)

First

Data bank
 register

 Index
register X

DT X+3

Second

Third

DATA1

DATA3

DATA2

First

Second

Third

B, A B, A+ DATA ✕ DATA
(at end)

(at start)DT Y

 Index
register Y

DT Y+3 (at end)

Bank DT

7751 SERIES SOFTWARE MANUAL3–62

Multiplied accumulation

MEMO

CHAPTER 4
INSTRUCTIONS

4.1 Instruction set
4.2 Description of each instruction
4.3 Notes for programming

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL4–2

4.1 Instruction set
The 7751 series CPU uses the instruction set with 109 instructions.

4.1.1 Data transfer instructions
The data transfer instructions move data between data and registers, between a register and a memory,
between registers or between memories.
The following table shows the available instructions for data transfer.

4.1 Instruction set

Description

Loads the contents of memory into the accumulator.

Loads an immediate value into the memory.

Loads an immediate value into the data bank register.

Loads the contents of memory into the index register X.

Loads the contents of memory into the index register Y.

Stores the contents of the accumulator in the memory.

Stores the contents of the index register X in the memory.

Stores the contents of the index register Y in the memory.

Transfers the contents of the accumulator A to the index register X.

Transfers the contents of the index register X to the accumulator A.

Transfers the contents of the accumulator A to the index register Y.

Transfers the contents of the index register Y to the accumulator A.

Transfers the contents of the stack pointer to the index register X.

Transfers the contents of the index register X to the stack pointer.

Transfers the contents of the accumulator A to the direct page register.

Transfers the contents of the direct page register to the accumulator A.

Transfers the contents of the accumulator A to the stack pointer.

Transfers the contents of the stack pointer to the accumulator A.

Transfers the contents of the accumulator B to the direct page register.

Transfers the contents of the direct page register to the accumulator B.

Transfers the contents of the accumulator B to the stack pointer.

Transfers the contents of the stack pointer to the accumulator B.

Transfers the contents of the accumulator B to the index register X.

Transfers the contents of the index register X to the accumulator B.

Transfers the contents of the accumulator B to the index register Y.

Transfers the contents of the index register Y to the accumulator B.

Transfers the contents of the index register X to the index register Y.

Transfers the contents of the index register Y to the index register X.

Transfers a block of data from the lower addresses.

Transfers a block of data from the higher addresses.

Category

Load

Store

Transfer

Instruction

LDA

LDM

LDT

LDX

LDY

STA

STX

STY

TAX

TXA

TAY

TYA

TSX

TXS

TAD

TDA

TAS

TSA

TBD

TDB

TBS

TSB

TBX

TXB

TBY

TYB

TXY

TYX

MVN

MVP

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL 4–3

Description

Pushes the contents of the specified register to the stack.

Restores the contents of stack to the specified register.

Pushes the contents of the accumulator A to the stack.

Restores the contents of stack to the accumulator A.

Pushes the contents of the processor status register to the stack.

Restores the contents of stack to the processor status register.

Pushes the contents of the accumulator B to the stack.

Restores the contents of stack to the accumulator B.

Pushes the contents of the direct page register to the stack.

Restores the contents of stack to the direct page register.

Pushes the contents of the data bank register to the stack.

Restores the contents of stack to the data bank register.

Pushes the contents of the index register X to the stack.

Restores the contents of stack to the index register X.

Pushes the contents of the index register Y to the stack.

Restores the contents of stack to the index register Y.

Pushes the contents of the program bank register to the stack.

Pushes a numerical value of 2 bytes to the stack.

Pushes the contents of a sequence of 2 bytes in the direct page area to the stack.

Pushes the result of adding a 16-bit numerical value to the program counter’s contents
to the stack.

Exchanges the contents of the accumulator A for the contents of the accumulator B.

Instruction

PSH

PUL

PHA

PLA

PHP

PLP

PHB

PLB

PHD

PLD

PHT

PLT

PHX

PLX

PHY

PLY

PHG

PEA

PEI

PER

XAB

Category

Stack

operation

Exchange

4.1 Instruction set

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL4–4

Instruction

ADC

SBC

INC

DEC

INX

DEX

INY

DEY

MPY

MPYS

DIV

DIVS

RMPA

AND

ORA

EOR

CMP

CPX

CPY

ASL

ASR

LSR

ROL

ROR

RLA

EXTS

EXTZ

4.1.2 Arithmetic instructions
The arithmetic instructions perform addition, subtraction, multiplication, division, multiplied accumulation,
logical operation, comparison, rotation, shift and sign/zero extension of register and memory contents.
The following table shows the available instructions for arithmetic operation.

4.1 Instruction set

Category

Addition,

Subtraction,

Mult ipl ica-
tion,

Division

Description

Adds the contents of the accumulator, the contents of a memory and the contents of the
carry flag.

Subtracts the contents of memory and the complement of the carry flag from the con-
tents of the accumulator.

Increments the accumulator or a memory contents by 1.

Decrements the accumulator or a memory contents by 1.

Increments the contents of the index register X by 1.

Decrements the contents of the index register X by 1.

Increments the contents of the index register Y by 1.

Decrements the contents of the index register Y by 1.

Multiples the contents of the accumulator A and the contents of a memory.

Multiples the contents of the accumulator A and the contents of a memory with sign.

Divides the numerical value whose low order is the contents of the accumulator A and
high order is the contents of the accumulator B by the contents of a memory.

Divides the numerical value whose low order is the contents of the accumulator A and
high order is the contents of the accumulator B by the contents of a memory with sign.

Multiples the contents of a memory and another one, and adds the result to the contents
of the accumulator. Repeats these operations by specified times.

Performs logical AND between the contents of the accumulator and a memory.

Performs logical OR between the contents of the accumulator and a memory.

Performs logical exclusive-OR between the contents of the accumulator and a memory.

Compares the contents of the accumulator with the contents of a memory.

Compares the contents of the index register X with the contents of a memory.

Compares the contents of the index register Y with the contents of a memory.

Shifts the contents of the accumulator or a memory to the left by 1 bit.

Shifts the contents of the accumulator or a memory holding sign to the right by 1 bit.

Shifts the contents of the accumulator or a memory to the right by 1 bit.

Links the contents of the accumulator or a memory with the carry flag, and rotates the
result to the left by 1 bit.

Links the contents of the accumulator or a memory with the carry flag, and rotates the
result to the right by 1 bit.

Rotates the contents of the accumulator A to the left by the specified number of bits.

Extends the low-order 8 bits of the accumulator to 16 bits by sign extension.

Extends the low-order 8 bits of the accumulator to 16 bits by zero extension.

Mu l t i p l i ed
accumulation

Logical op-
eration

Comparison

Shift,

Rotation

Extension
with sign /
zero

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL 4–5

4.1.3 Bit manipulation instructions
The bit manipulation instructions set the specified bits of the processor status register or a memory to “1”
or “0”.
The following table shows the available instructions for bit manipulation.

4.1 Instruction set

Category

Bit manipu-
lation

Description

Clears the specified bit of a memory to “0”.

Sets the specified bit of a memory to “1”.

Clears the specified bit of the processor status register’s low-order byte (PSL) to “0”.

Sets the specified bit of the processor status register’s low-order byte (PSL) to “1”.

Instruction

CLB

SEB

CLP

SEP

4.1.4 Flag manipulation instructions
The flag manipulation instructions set the flag, which is the C, I, m or V flag; to “1” or “0”.
The following table shows the available instructions for flag manipulation.

Category

Flag mani-
pulation

Instruction

CLC

SEC

CLM

SEM

CLI

SEI

CLV

Description

Clears the contents of the carry flag to “0”.

Sets the contents of the carry flag to “1”.

Clears the contents of the data length select flag to “0”.

Sets the contents of the data length select flag to “1”.

Clears the contents of the interrupt disable flag to “0”.

Sets the contents of the interrupt disable flag to “1”.

Clears the contents of the overflow flag to “0”.

4.1.5 Branch and return instructions
The branch and return instructions enable changing program execution sequence.
The following table shows the available instructions for branch and return.

Category

Jump

Instruction

JMP

BRA

JSR

Description

Sets a new address in the program counter and jumps to the new address.

Jumps to the address obtained by adding an offset value to the contents of the program
counter.

Pushes the contents of the program counter to the stack and then jumps to the new
address.

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL4–6

Category

Branch

Instruction

BBC

BBS

BCC

BCS

BNE

BEQ

BPL

BMI

BVC

BVS

RTI

RTS

RTL

Description

Branches when the specified bits of a memory are all “0”.

Branches when the specified bits of a memory are all “1”.

Branches when the carry flag is “0”.

Branches when the carry flag is “1”.

Branches when the zero flag is “0”.

Branches when the zero flag is “1”.

Branches when the negative flag is “0”.

Branches when the negative flag is “1”.

Branches when the overflow flag is “0”.

Branches when the overflow flag is “1”.

Returns from an interrupt routine to the original routine.

Returns from a subroutine to the original routine. The program bank register’s contents
are not restored.

Returns from a subroutine to the original routine. The program bank register’s contents
are also restored.

Return

4.1 Instruction set

4.1.6 Interrupt instruction (break instruction)
The interrupt instruction executes a software interrupt.

4.1.7 Special instructions
The special instructions showed by the following table control the clock generating circuit.

4.1.8 Other instruction

Category

Other

Instruction

NOP

Description

Only advances the program counter and performs nothing else.

Category

Break

Instruction

BRK

Description

Executes a software interrupt.

Category

Special

Instruction

WIT

STP

Description

Stops the internal clock.

Stops the oscillator’s oscillation.

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL 4–7

4.2 Description of each instruction
This section describes each instruction of the 7751 series. Each instruction is described using one page per
one instruction as a general rule. The description page is headed by the instruction mnemonic, and the
pages are arranged in alphabetical order of the mnemonics. For each instruction, its operation and description
(Notes 1, 2), status flag change and a list sorted by addressing modes of the assembler coding format (Note
3), the machine code, the byte number and the minimum cycle number (Note 4) are presented.

Note 1: In the description of each instruction operation, the operation regarding the PC (program counter)
is described only for instructions affecting the processing.
When an instruction is executed, its instruction bytes are added to the contents of the PC and the
PC contains the address of the memory location of the next instruction to be executed. When a
carry occurs at this addition, the PG (program bank register) is incremented by 1.

Note 2: [Operation] in the description of each instruction shows the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitted.

Note 3: The assembler coding formats shown are general examples, and they may differ from the actual
formats for the assembler used. Make sure that refer to the mnemonic coding description in the
manual for the assembler actually used for programming.

Note 4: The cycle number shown is the minimum possible, and they depend on the following conditions:
•Value of direct page register’s low-order byte
The cycle number shown is a number when the direct page register’s low-order byte (DPRL)
is 0016. When using an addressing mode that uses the direct page register in the condition of
DPR L “0016”, the cycle number which is obtained by adding 1 to the shown number is an actual
number.

•Number of bytes that have been loaded in the instruction queue buffer
•Whether the address of the memory read/write is even or odd
•Accessing of an external memory are in the condition of BYTE = 1 (using 8-bit external bus)
•Bus cycle.

4.2 Description of each instruction

suzuki_tadahiro

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL4–8

The following table shows the symbols that are used in instructions’ description and the lists of this section,
and each instruction is described bellow.

Description

Carry flag

Zero flag

Interrupt disable flag

Decimal mode flag

Index register length flag

Data length flag

Overflow flag

Negative flag

Processor interrupt priority level

Addition

Subtraction

Multiplication

Division

Logical AND

Logical OR

Exclusive OR

Negation

Movement toward the arrow direction

Movement toward the arrow direction

Movement toward the arrow direction

Accumulator

Accumulator’s high-order 8 bits

Accumulator’s low-order 8 bits

Accumulator A

Accumulator A’s high-order 8 bits

Accumulator A’s low-order 8 bits

Accumulator B

Accumulator B’s high-order 8 bits

Accumulator B’s low-order 8 bits

Index register X

Index register X’s high-order 8 bits

Index register X’s low-order 8 bits

Index register Y

Index register Y’s high-order 8 bits

Index register Y’s low-order 8 bits

Stack pointer

Program counter

Program counter’s high-order 8 bits

Program counter’s low-order 8 bits

Relative address

Program bank register

Data bank register

←
→

V

Symbol

C

Z

I

D

x

m

V

N

IPL

+

–

×
/

V

∀

←
→

Acc

AccH

AccL

A

AH

AL

B

BH

BL

X

XH

XL

Y

YH

YL

S

PC

PCH

PCL

REL

PG

DT

4.2 Description of each instruction

INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL 4–9

Symbol

DPR

DPRH

DPRL

PS

PSH

PSL

PSLn

M

M(n)

M(n+1,n)

M(m to n)

M(S)

Mb

ADDR

BANK

IMM

IMM16

IMMH

IMML

IMM8

bn

dd

i

i1, i2

imm

immHimmL

mmll

hhmmll

nn

rr

rrHrrL

hh1, hh2

Description

Direct page register

Direct page register’s high-order 8 bits

Direct page register’s low-order 8 bits

Processor status register

Processor status register’s high-order 8 bits

Processor status register’s low-order 8 bits

Bits of processor status register’s low-order 8 bits

Memory contents

Contents of memory location specified by operand (1-byte data)

Contents of memory location specified by operand (1-word data)

Contents of memory location specified by operand (plural-byte data)

Contents of memory at address indicated by stack pointer

Bits of memory
Low-order 16 bits (A15 to A0) of 24-bit address

High-order 8 bits (A23 to A16)

Immediate data

16-bit immediate data

High-order 8 bits of 16-bit immediate data

Low-order 8 bits of 16-bit immediate data

8-bit immediate data

n-th bit of data

Displacement for the DPR (8 bits)

Number of transfer bytes or rotation

Number of registers pushed or pulled

8-bit immediate value

16-bit immediate value (immH represents the high-order 8 bits, and immL

represents the low-order 8 bits)

16-bit address value (mm represents the high-order 8 bits, and ll represents
the low-order 8 bits)

24-bit address value (hh represents the high-order 8 bits, mm represents
the middle-order 8 bit, and ll represents the low-order 8 bits)

Displacement for the S (8 bits)

Displacement for the PC (signed 8 bits)

Displacement for the PC (signed 16 bits)

Bank specification (2 types of 8-bit data)

4.2 Description of each instruction

7751 SERIES SOFTWARE MANUAL4–10

Function : Addition with carry

Operation : Acc ← Acc + M + C

When m = “0”

Acc Acc M(n+1,n) C

← + +

When m = “1”

AccL AccL M(n) C

← + +

Description : Adds the contents of the accumulator, memory and carry flag, and places the result in the
accumulator.

Executed as binary addition when the decimal mode flag is “0”.

Executed as decimal addition when the decimal mode flag is “1”.

Status flags

IPL: Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”. Meaningless for decimal addition.

V : Set to “1” when binary addition of signed data results in a value outside the range of –32768
to +32767 (–128 to +127 when the data length flag is “1”). Otherwise, cleared to “0”.
Meaningless for decimal addition.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”. Meaningless for
decimal addition.

C : Set to “1” when the result of binary addition as unsigned data exceeds +65535 (when the data
length flag is “1”, it does +255). Otherwise, cleared to “0”.

Set to “1” when the result of decimal addition as unsigned data exceeds +9999 (when the data
length flag is “1”, it does +99). Otherwise, cleared to “0”.

ADC ADd with Carry ADC

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 4–11

Addressing mode Syntax Machine code Bytes Cycles

Immediate ADC A, #imm 6916, imm 2 2
Direct ADC A, dd 6516, dd 2 4

Direct indexed X ADC A, dd, X 7516, dd 2 5

Direct indirect ADC A, (dd) 7216, dd 2 6

Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7

Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8

Direct indirect long ADCL A, (dd) 6716, dd 2 8

Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 10

Absolute ADC A, mmll 6D16, ll, mm 3 4

Absolute indexed X ADC A, mmll, X 7D16, ll, mm 3 6

Absolute indexed Y ADC A, mmll, Y 7916, ll, mm 3 6
Absolute long ADC A, hhmmll 6F16, ll, mm, hh 4 6

Absolute long indexed X ADC A, hhmmll, X 7F16, ll, mm, hh 4 7

Stack pointer relative ADC A, nn,S 6316, nn 2 5

Stack pointer relative ADC A, (nn, S), Y 7316, nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

 2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

ADC ADd with Carry ADC

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL4–12

AND logical AND AND

V

V

V

Function : Logical AND

Operation : Acc ← Acc M
When m = “0”

Acc Acc M(n+1,n)

←

When m = “1”

AccL AccL M(n)

←

Description : Performs logical AND between the contents of the accumulator and the contents of a memory,
and places the result in the accumulator.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 4–13

Addressing mode Syntax Machine code Bytes Cycles

Immediate AND A, #imm 2916, imm 2 2

Direct AND A, dd 2516, dd 2 4

Direct indexed X AND A, dd, X 3516, dd 2 5

Direct indirect AND A, (dd) 3216, dd 2 6
Direct indexed X indirect AND A, (dd, X) 2116, dd 2 7

Direct indirect indexed Y AND A, (dd), Y 3116, dd 2 8

Direct indirect long ANDL A, (dd) 2716, dd 2 8

Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2 10

Absolute AND A, mmll 2D16, ll, mm 3 4

Absolute indexed X AND A, mmll, X 3D16, ll, mm 3 6

Absolute indexed Y AND A, mmll, Y 3916, ll, mm 3 6

Absolute long AND A, hhmmll 2F16, ll, mm, hh 4 6

Absolute long indexed X AND A, hhmmll, X 3F16, ll, mm, hh 4 7

Stack pointer relative AND A, nn, S 2316, nn 2 5
Stack pointer relative AND A, (nn, S), Y 3316, nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

 2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

AND logical AND AND

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL4–14

Function : Arithmetic shift left

Operation : C Acc or M
 1 bit shift to left 0

When m = “0”

C b15 Acc or M(n+1,n) b0

 0

When m = “1”

C b7 AccL or M(n) b0

 0

Description : Shifts all bits of the accumulator or a memory to the one bit left. Its bit 0 is loaded with 0. The
carry flag is loaded from bit 15 (or bit 7 when the data length flag is “1”) of the data before
the shift.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the accumulator or a memory
before the operation is “1”. Otherwise, cleared to “0”.

ASL Arithmetic Shift Left ASL

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ASL A 0A16 1 2

Direct ASL dd 0616, dd 2 7

Direct indexed X ASL dd, X 1616, dd 2 7

Absolute ASL mmll 0E16, ll, mm 3 7

Absolute indexed X ASL mmll, X 1E16, ll, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

← ← ← ← ← ← ← ← ← ←

← ← ← ← ← ← ← ← ←

← ←

7751 SERIES SOFTWARE MANUAL 4–15

Function : Arithmetic shift right

Operation : Acc or M C
→ 1 bit shift to Right →

MSB

When m = “0”

b15 Acc or M(n+1,n) b0 C

→ → → → → → → → → →

When m = “1”

b7 AccL or M(n) b0 C

→ → → → → → → → →

Description : Shifts all bits of the accumulator or a memory to the one bit right. Its bit 15 (or bit 7 when the
data length flag is “1”) is loaded with the value before the shift. The carry flag is loaded from
bit 0 of the data before the shift.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when bit 0 before the operation is “1”. Otherwise, cleared to “0”.

ASR Arithmetic Shift Right ASR

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ASR A 8916, 0816 2 4

Accumulator ASR B 4216, 0816 2 4

Direct ASR dd 8916, 0616, dd 3 9

Direct indexed X ASR dd, X 8916,1616, dd 3 9
Absolute ASR mmll 8916, 0E16, ll, mm 4 9

Absolute indexed X ASR mmll, X 8916, 1E16, ll, mm 4 10

7751 SERIES SOFTWARE MANUAL4–16

BBC Branch on Bit Clear BBC

Function : Branch on condition

Operation : Mb = 0 ? (b is the specified bits)

When M IMM = 0 (True) PC ← PC + n ± REL

When M IMM 0 (False) PC ← PC + n

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ IMM is an immediate value indicating the bit to be tested with “1”.

❊ n is the number of instruction bytes in each addressing mode of the BBC instruction

❊ REL is a relative value (–128 to +127) indicated by the last byte of the instruction

When m = “0”

M(n+1,n) IMM16

When m = “1”

M(n) IMM8

Description : Tests the specified bits, which may be specified simultaneously, of a memory. The instruction
causes a branch to the specified address when the specified bits are all “0”. The branch
address is specified by a relative address.
When the specified bits are nothing, that is, IMM is all “0”, a branch is caused.

Status flags : Not affected.

V

V

Addressing mode Syntax Machine code Bytes Cycles

Direct bit relative BBC #imm, dd, rr 3416, dd, imm, rr 4 7

Absolute bit relative BBC #imm, mmll, rr 3C16, ll, mm, imm, rr 5 8

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag
= “0”.

V

V

7751 SERIES SOFTWARE MANUAL 4–17

Function : Branch on condition

Operation : Mb = 1 ? (b is the specified bits)

When M IMM = 0 (True) PC ← PC + n ± REL

When M IMM 0 (False) PC ← PC + n

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ IMM is an immediate value indicating the bit to be tested with “1”.

❊ n is the number of instruction bytes in each addressing mode of the BBS instruction

❊ REL is a relative value (–128 to +127) indicated by the last byte of the instruction

When m = “0”

M(n+1,n) IMM16

When m = “1”

M(n) IMM8

Description : Tests the specified bits, which may be specified simultaneously, of a memory. The instruction
causes a branch to the specified address when the specified bits are all “1”. The branch
address is specified by a relative address.
When the specified bits are nothing, that is, IMM is all “0”, a branch is caused.

Status flags : Not affected.

BBS Branch on Bit Set BBS

Addressing mode Syntax Machine code Bytes Cycles

Direct bit relative BBS #imm, dd, rr 2416, dd, imm, rr 4 7
Absolute bit relative BBS #imm, mmll, rr 2C16, ll, mm, imm, rr 5 8

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag
= “0”.

V

V

V

V

7751 SERIES SOFTWARE MANUAL4–18

BCC Branch on Carry Clear BCC

Function : Branch on condition

Operation : C = 0 ?

When C = 0 (True) PC ← PC + 2 ± REL

When C = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BCC instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag is “0”, the BCC instruction causes a branch to the specified address. The
branch address is specified by a relative address.
When the carry flag is “1”, the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BCC rr 9016, rr 2 4

7751 SERIES SOFTWARE MANUAL 4–19

BCS Branch on Carry Set BCS

Function : Branch on condition

Operation : C = 1 ?

When C = 1 (True) PC ← PC + 2 ± REL

When C = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BCS instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag is “1”, the BCS instruction causes a branch to the specified address. The
branch address is specified by a relative address.
When the carry flag is “0”, the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BCS rr B016, rr 2 4

7751 SERIES SOFTWARE MANUAL4–20

BEQ Branch on EQual BEQ

Function : Branch on condition

Operation : Z = 1 ?

When Z = 1 (True) PC ← PC + 2 ± REL

When Z = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BEQ instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the zero flag is “1”, the BEQ instruction causes a branch to the specified address. The
branch address is specified by a relative address.
When the zero flag is “0”, the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BEQ rr F016, rr 2 4

7751 SERIES SOFTWARE MANUAL 4–21

BMI Branch on result MInus BMI

Function : Branch on condition

Operation : N = 1 ?

When N = 1 (True) PC ← PC + 2 ± REL

When N = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BMI instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the negative flag is “1”, the BMI instruction causes a branch to the specified address.
The branch address is specified by a relative address.
When the negative flag is “0”, the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BMI rr 3016, rr 2 4

7751 SERIES SOFTWARE MANUAL4–22

BNE Branch on Not Equal BNE

Function : Branch on condition

Operation : Z = 0 ?

When Z = 0 (True) PC ← PC + 2 ± REL

When Z = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BNE instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the zero flag is “0”, the BNE instruction causes a branch to the specified address. The
branch address is specified by a relative address.
When the zero flag is “1”, the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BNE rr D016, rr 2 4

7751 SERIES SOFTWARE MANUAL 4–23

BPL Branch on result PLus BPL

Function : Branch on condition

Operation : N = 0 ?

When N = 0 (True) PC ← PC + 2 ± REL

When N = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BPL instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the negative flag is “0”, the BPL instruction causes a branch to the specified address.
The branch address is specified by a relative address.
When the negative flag is “1”, the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BPL rr 1016, rr 2 4

7751 SERIES SOFTWARE MANUAL4–24

BRA BRanch Always BRA

Function : Branch always

Operation : PC ← branch address (relative)

PC ← PC + n ± REL

❊ PG changes according to the result of the above PC operation
❊ n is the number of instruction bytes in each addressing mode of the BRA instruction
❊ REL is a relative value (–128 to +127) indicated by the last 1-byte or last 2-byte of the

instruction
Branch area : For short relative –128 to +127

For long relative –32768 to +32767

Description : The BRA instruction causes a branch to the specified address. The branch address is specified
by a relative address.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BRA rr 8016, rr 2 3
BRAL rrHrrL 8216, rrL, rrH 3 3

7751 SERIES SOFTWARE MANUAL 4–25

BRK force BReaK BRK

Function : Software interrupt

Operation : Stack ← PG, PC, PS

I ← 1

PG, PC ← 00, Contents of BRK interrupt vector

PC ← PC + 2

M(S to S–4) ← PG, PC, PS

S ← S – 5

I ← 1

PG ← 0016

PC ← M(FFFB16,FFFA16)

❊ 2 is the number of instruction bytes of the BRK instruction, and PC+2 is the address where
the next instruction is stored

Description : When the BRK instruction is executed, the CPU first saves the address where the next
instruction is stored, and then saves the contents of the processor status register in the stack.
The CPU causes a branch to the address in bank 016 of which low-order address is the
contents of FFFA16 in bank 0 and high-order address is the contents of FFFB16 in bank 0.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Set to “1”.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied BRK #imn 0016, EA16 2 15

Note: The instruction’s second byte is ignored, so that any value is available.

Stack

PSL

PSH

PCL

PCH

PG

(S) just after instruction execution

(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL4–26

Addressing mode Syntax Machine code Bytes Cycles

Relative BVC rr 5016, rr 2 4

BVC Branch on oVerflow Clear BVC

Function : Branch on condition

Operation : V = 0 ?

When V = 0 (True) PC ← PC + 2 ± REL

When V = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BVC instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the overflow flag is “0”, the BVC instruction causes a branch to the specified address.
The branch address is specified by a relative address.
When the overflow flag is “1”, the program advances to next step without any action.

Status flags : Not affected.

7751 SERIES SOFTWARE MANUAL 4–27

BVS Branch on oVerflow Set BVS

Function : Branch on condition

Operation : V = 1 ?

When V = 1 (True) PC ← PC + 2 ± REL

When V = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BVS instruction

❊ REL is a relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the overflow flag is “1”, the BVS instruction causes a branch to the specified address.
The branch address is specified by a relative address.
When the overflow flag is “0”, the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BVS rr 7016, rr 2 4

7751 SERIES SOFTWARE MANUAL4–28

CLB CLear Bit CLB

Function : Bit manipulation

Operation : Mb ← 0 (b is the specified bits)
When m = “0”

M(n+1,n) M(n+1,n) IMM16

←

When m = “1”

M(n) M(n) IMM8

←

❊ IMM is an immediate value indicating the bit to be cleared with a “1”. It is specified by the
last 1 or 2 bytes of the instruction.

Description : The CLB instruction clears the specified memory bits to “0”. Multiple bits to be cleared can be
specified at the same time.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct bit CLB #imm, dd 1416, dd, imm 3 8

Absolute bit CLB #imm, mmll 1C16, ll, mm, imm 4 9

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag
= “0”.

V

V

7751 SERIES SOFTWARE MANUAL 4–29

CLC CLear Carry flag CLC

Function : Flag manipulation

Operation : C ← 0

Description : Clears the contents of carry flag to “0”.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Cleared to “0”.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLC 1816 1 2

7751 SERIES SOFTWARE MANUAL4–30

CLI CLear Interrupt disable status CLI

Function : Flag manipulation

Operation : I ← 0

Description : Clears the interrupt disable flag to “0”.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Cleared to “0”.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLI 5816 1 2

7751 SERIES SOFTWARE MANUAL 4–31

CLM CLear M flag CLM

Function : Flag manipulation

Operation : m ← 0

Description : Clears the data length flag to “0”.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Cleared to “0”.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLM D816 1 2

7751 SERIES SOFTWARE MANUAL4–32

CLP CLear Processor status CLP

Function : Flag manipulation

Operation : PSLb ← 0 (b is the specified flags)

PSL ← PSL IMM8

❊ IMM is a 1-byte immediate value indicating the flag to be cleared with a “1”. It is
specified by the second byte of the instruction.

b7 b6 b5 b4 b3 b2 b1 b0
N V m x D I Z C PSL

Description : Clears the processor status flags specified by the bit pattern in the second byte of the
instruction to “0”.

Status flags : The specified status flags are cleared to “0”. IPL is not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CLP #imm C216, imm 2 4

V

7751 SERIES SOFTWARE MANUAL 4–33

CLV CLear oVerflow flag CLV

Function : Flag manipulation

Operation : V ← 0

Description : Clears the overflow flag to “0”.

Status flags

IPL : Not affected.

N : Not affected.

V : Cleared to “0”.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLV B816 1 2

7751 SERIES SOFTWARE MANUAL4–34

CMP CoMPare CMP

Function : Compare

Operation : Acc – M

When m = “0”

Acc M(n+1,n)

–

When m = “1”

AccL M(n)

–

Description : Subtracts the contents of a memory from the contents of the accumulator. The result is not
stored anywhere. The contents of the accumulator and a memory are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when the result of the operation as unsigned data is “0” or larger. Otherwise, cleared
to “0”.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CMP A, #imm C916, imm 2 2
Direct CMP A, dd C516, dd 2 4
Direct indexed X CMP A, dd, X D516, dd 2 5
Direct indirect CMP A, (dd) D216, dd 2 6
Direct indexed X indirect CMP A, (dd, X) C116, dd 2 7
Direct indirect indexed Y CMP A, (dd), Y D116, dd 2 8
Direct indirect long CMPL A, (dd) C716, dd 2 8
Direct indirect long indexed Y CMPL A, (dd), Y D716, dd 2 10
Absolute CMP A, mmll CD16, ll, mm 3 4
Absolute indexed X CMP A, mmll, X DD16, ll, mm 3 6
Absolute indexed Y CMP A, mmll, Y D916, ll, mm 3 6
Absolute long CMP A, hhmmll CF16, ll, mm, hh 4 6
Absolute long indexed X CMP A, hhmmll, X DF16, ll, mm, hh 4 7
Stack pointer relative CMP A, nn, S C316, nn 2 5
Stack pointer relative CMP A, (nn, S), Y D316, nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL 4–35

CPX ComPare memory and index register X CPX

Function : Compare

Operation :

When x = “0”

X M(n+1,n)

–

When x = “1”

XL M(n)

–

Description : Subtracts the contents of a memory from the contents of the index register X. The result is not
stored anywhere. The contents of the index register X and a memory are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when the result of the operation as unsigned data is “0” or larger. Otherwise, cleared
to “0”.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CPX #imm E016, imm 2 2
Direct CPX dd E416, dd 2 4
Absolute CPX mmll EC16, ll, mm 3 4

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the index register
flag = “0”.

X – M

length

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL4–36

CPY ComPare memory and index register Y CPY

Function : Compare

Operation :

When x = “0”

Y M(n+1,n)

–

When x = “1”

YL M(n)

–

Description : Subtracts the contents of a memory from the contents of the index register Y. The result is not
stored anywhere. The contents of the index register Y and a memory contents are not
changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when the result of the operation as unsigned data is “0” or larger. Otherwise, cleared
to “0”.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CPY #imm C016, imm 2 2
Direct CPY dd C416, dd 2 4
Absolute CPY mmll CC16, ll, mm 3 4

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the index register
flag = “0”.

Y – M

length

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 4–37

Function : Decrement

Operation : Acc ← Acc – 1 or M ← M – 1

When m = “0”

Acc M(n+1,n)

← – 1

or
M(n+1,n) M(n+1,n)

← – 1

When m = “1”

AccL AccL

← – 1

or
M(n) M(n)

← – 1

Description : Subtracts 1 from the contents of the accumulator or a memory.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

DEC DECrement by one DEC

Addressing mode Syntax Machine code Bytes Cycles

Accumulator DEC A 1A16 1 2
Direct DEC dd C616, dd 2 7
Direct indexed X DEC dd, X D616, dd 2 7
Absolute DEC mmll CE16, ll, mm 3 7
Absolute indexed X DEC mmll, X DE16, ll, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL4–38

DEX DEcrement index register X by one DEX

Function : Decrement

Operation : X ← X – 1

When x = “0”

X X

← – 1

When x = “1”

XL XL

← – 1

Description : Subtracts 1 from the contents of the index register X.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied DEX CA16 1 2

7751 SERIES SOFTWARE MANUAL 4–39

DEY DEcrement index register Y by one DEY

Function : Decrement

Operation : Y ← Y – 1

When x = “0”

Y Y

← – 1

When x = “1”

YL YL

← – 1

Description : Subtracts 1 from the contents of the index register Y.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied DEY 8816 1 2

7751 SERIES SOFTWARE MANUAL4–40

DIV DIVide DIV

Function : Division (Unsigned)

Operation : A(quotient), B(remainder) ← (B, A) / M

When m = “0”

A B B A M(n+1,n)

Quotient , Remainder ← Dividend ÷ Divisor

When m = “1”

AL BL BL AL M(n)

Quotient , Remainder ← Dividend ÷ Divisor

Description : When the data length flag is “0”, a 32-bit data stored in the accumulator B, which indicates its
higher 16 bits, and A , which indicates its lower 16 bits, is divided by a 16-bit data in a memory.
The quotient is placed in the accumulator A, and the remainder is placed in the accumulator
B.

When the data length flag is “1”, a 16-bit data is are divided by a 8-bit data in a memory. The
lower 8 bits of the accumulator B indicate the higher 8 bits of the 16-bit data, and the lower
8 bits of the accumulator A indicate the lower 8 bits of the16-bit data. The quotient is placed
in the lower 8 bits of the accumulator A, and the remainder is placed in the lower 8 bits of the
accumulator B.

If an overflow occurs as a result of the operation, the overflow flag is set to “1” and the contents
of the accumulators A and B become undefined.

When the divisor is “0”, the zero divide interrupt is generated. In that case, the contents of the
program bank register, program counter, and processor status register are saved on the stack
and a branch is generated to the address in bank 0 which is specified by the zero divide
interrupt vector. The contents of the accumulators A and B are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation quotient is
“1”. Otherwise, cleared to “0”.

❊ When an overflow occurs as a result of the operation or the divisor is “0”, N flag is not affected.

V : Cleared to “0”.

❊ Set to “1” when an overflow occurs

❊ Not affected when the divisor is “0”

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

❊ Set to “1” when the divisor is “0”

Z : Set to “1” when the quotient of the operation is “0”. Otherwise, cleared to “0”.

❊ When an overflow occurs as a result of the operation or the divisor is “0”, Z flag is not affected.

C : Cleared to “0”.

❊ Set to “1” when an overflow occurs

❊ Not affected when the divisor is “0”

7751 SERIES SOFTWARE MANUAL 4–41

DIV DIVide DIV

Addressing mode Syntax Machine code Bytes Cycles

Immediate DIV #imm 8916, 2916, imm 3 21
Direct DIV dd 8916, 2516, dd 3 23
Direct indexed X DIV dd, X 8916, 3516, dd 3 24
Direct indirect DIV (dd) 8916, 3216, dd 3 25
Direct indexed X indirect DIV (dd, X) 8916, 2116, dd 3 26
Direct indirect indexed Y DIV (dd), Y 8916, 3116, dd 3 27
Direct indirect long DIVL (dd) 8916, 2716, dd 3 27
Direct indirect long indexed Y DIVL (dd), Y 8916, 3716, dd 3 29
Absolute DIV mmll 8916, 2D16, ll, mm 4 23
Absolute indexed X DIV mmll, X 8916, 3D16, ll ,mm 4 25
Absolute indexed Y DIV mmll, Y 8916, 3916, ll ,mm 4 25
Absolute long DIV hhmmll 8916, 2F16, ll, mm, hh 5 25
Absolute long indexed X DIV hhmmll, X 8916, 3F16, ll, mm, hh 5 26
Stack pointer relative DIV nn, S 8916, 2316, nn 3 24
Stack pointer relative DIV (nn, S), Y 8916, 3316, nn 3 27

indirect indexed Y

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

2: The cycle number in this table applies in the case of 16-bit ÷ 8-bit operations. In the case of 32-
bit ÷ 16-bit operations, the cycle number increases by 8.

3: The cycle number in this table and Note 2 is the number when the operation is completed normally
(no interrupt has been generated). If a zero divide interrupt is generated, its cycle number is the
number which is decremented by 3 from in the above table regardless of the operation’s data
length.

7751 SERIES SOFTWARE MANUAL4–42

Function : Division (Signed)

Operation : A(quotient), B(remainder) ← (B, A) / M

When m = “0”

A B B A M(n+1,n)

Quotient , Remainder ← Dividend ÷ Divisor

DIVS DIVide with Sign DIVS

s s s s

When m = “1”

AL BL BL AL M(n)

Quotient , Remainder ← Dividend ÷ Divisor
s s s s

❊ s means a sign bit that is the most significant bit of the data

Description : When the data length flag is “0”, a signed 32-bit data stored in the accumulator B, which
indicates its higher 16 bits, and A, which indicates its lower 16 bits, is divided by a signed 16-
bit data in a memory. The quotient is placed in the accumulator A, and the remainder is placed
in the accumulator B. Each of them is a signed 16-bit data.

When the data length flag is “1”, a signed 16-bit data is are divided by a signed 8-bit data in
a memory. The lower 8 bits of the accumulator B indicate the higher 8 bits of the 16-bit data,
and the lower 8 bits of the accumulator A indicate the lower 8 bits of the16-bit data. The
quotient is placed in the lower 8 bits of the accumulator A, and the remainder is placed in the
lower 8 bits of the accumulator B. Each of them is a signed 8-bit data.

The sign of remainder becomes same as that of dividend.

If an overflow occurs as a result of the operation, in other words, the quotient exceeds the
range –32767 to +32767 when m = “0”, or –127 to +127 when m = “1”; the operation finishes
halfway and the overflow flag is set to “1”. Additionally, the contents of the accumulators A and
B become undefined.

When the divisor is “0”, the zero divide interrupt is generated. In that case, the contents of the
program bank register, program counter, and processor status register are saved on the stack
and a branch is generated to the address in bank 0 which is specified by the zero divide
interrupt vector. The contents of the accumulators A and B are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation quotient is
“1”. Otherwise, cleared to “0”.

❊ When an overflow occurs as a result of the operation or the divisor is “0”, N flag is not affected.

V : Cleared to “0”.

❊ Set to “1” when an overflow occurs

❊ Not affected when the divisor is “0”

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

❊ Set to “1” when the divisor is “0”

7751 SERIES SOFTWARE MANUAL 4–43

DIVS DIVide with Sign DIVS

Z : Set to “1” when the quotient of the operation is “0”. Otherwise, cleared to “0”.

❊ When an overflow occurs as a result of the operation or the divisor is “0”, Z flag is not affected.

C : Cleared to “0”.

❊ Set to “1” when an overflow occurs

❊ Not affected when the divisor is “0”

Addressing mode Syntax Machine code Bytes Cycles

Immediate DIVS #imm 8916, A916, imm 3 23
Direct DIVS dd 8916, A516, dd 3 25
Direct indexed X DIVS dd, X 8916, B516, dd 3 26
Direct indirect DIVS (dd) 8916, B216, dd 3 27
Direct indexed X indirect DIVS (dd, X) 8916, A116, dd 3 28
Direct indirect indexed Y DIVS (dd), Y 8916, B116, dd 3 29
Direct indirect long DIVSL (dd) 8916, A716, dd 3 29
Direct indirect long indexed Y DIVSL (dd), Y 8916, B716, dd 3 31
Absolute DIVS mmll 8916, AD16, ll, mm 4 25
Absolute indexed X DIVS mmll, X 8916, BD16, ll ,mm 4 27
Absolute indexed Y DIVS mmll, Y 8916, B916, ll ,mm 4 27
Absolute long DIVS hhmmll 8916, AF16, ll, mm, hh 5 27
Absolute long indexed X DIVS hhmmll, X 8916, BF16, ll, mm, hh 5 28
Stack pointer relative DIVS nn, S 8916, A316, nn 3 26
Stack pointer relative DIVS (nn, S), Y 8916, B316, nn 3 29

indirect indexed Y

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

2: The cycle number in this table applies in the case of 16-bit ÷ 8-bit operations. In the case of 32-
bit ÷ 16-bit operations, the cycles number increases by 8.

3: The cycle number in this table and Note 2 is the number when the operation completes normally
(no interrupt has been generated). If a zero divide interrupt is generated, its cycle number is the
number which is decremented by 5 from in the above table regardless of the operation’s data
length.

7751 SERIES SOFTWARE MANUAL4–44

Function : Logical EXCLUSIVE OR

Operation : Acc ← Acc ∀ M

When m = “0”

Acc

← ∀

When m = “1”

AccL AccL M(n)

← ∀

Description : Performs the logical EXCLUSIVE OR between the contents of the accumulator and the
contents of a memory by each bit, and places the result in the accumulator.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

EOR Exclusive OR memory with accumulator EOR

Addressing mode Syntax Machine code Bytes Cycles

Immediate EOR A, #imm 4916, imm 2 2
Direct EOR A, dd 4516, dd 2 4
Direct indexed X EOR A, dd, X 5516, dd 2 5
Direct indirect EOR A, (dd) 5216, dd 2 6
Direct indexed X indirect EOR A, (dd, X) 4116, dd 2 7
Direct indirect indexed Y EOR A, (dd), Y 5116, dd 2 8
Direct indirect long EORL A, (dd) 4716, dd 2 8
Direct indirect long indexed Y EORL A, (dd), Y 5716, dd 2 10
Absolute EOR A, mmll 4D16, ll, mm 3 4
Absolute indexed X EOR A, mmll, X 5D16, ll, mm 3 6
Absolute indexed Y EOR A, mmll, Y 5916, ll, mm 3 6
Absolute long EOR A, hhmmll 4F16, ll, mm, hh 4 6
Absolute long indexed X EOR A, hhmmll, X 5F16, ll, mm, hh 4 7
Stack pointer relative EOR A, nn, S 4316, nn 2 5
Stack pointer relative EOR A, (nn, S), Y 5316, nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

 2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

M(n+1,n)Acc

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 4–45

EXTS EXTension Sign EXTS

Addressing mode Syntax Machine code Bytes Cycles

Accumulator EXTS A 8916, 8B16 2 4
Accumulator EXTS B 4216, 8B16 2 4

Function : Extension sign

Operation : AccH ← 0016 or FF16

When bit 7 of AccL = “0”

AccH ← 0016

AccH AccL AccH AccL

00000000 0XXXXXXX ← ? 0XXXXXXX

When bit 7 of AccL = “1”

AccH ← FF16

AccH AccL AccH AccL

11111111 1XXXXXXX ← ? 1XXXXXXX

❊ The high-order byte of Acc changes regardless of the data length flag

Description : This instruction is used to extend a signed 8-bit data stored in the low-order byte of the
accumulator to a 16-bit data.

When bit 7 of the accumulator is “0”, bits 8 to 15 become “0”. When bit 7 of the accumulator
is “1”, bits 8 to 15 become “1”.

With this instruction, the high-order byte of accumulator changes regardless of the data length
flag. However, the content of the data length flag is unchanged.

Status flags

IPL : Not affected.

N : Set to “1”, when bit 15 of the operation result is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

7751 SERIES SOFTWARE MANUAL4–46

Function : Extension zero

Operation : AccH ← 0016

AccH AccL AccH AccL

0016 ← ?

❊ The high-order byte of Acc changes regardless of the m flag

Description : This instruction is used to extend a 8-bit data stored in the low-order byte of the accumulator
to a 16-bit data.

Bits 8 to 15 of the accumulator become “0”.

With this instruction, the high-order byte of accumulator changes regardless of the data length
flag. However, the content of the data length flag is unchanged.

Status flags

IPL : Not affected.

N : Set to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

EXTZ EXTension Zero EXTZ

Addressing mode Syntax Machine code Bytes Cycles

Accumulator EXTZ A 8916, AB16 2 4
Accumulator EXTZ B 4216, AB16 2 4

7751 SERIES SOFTWARE MANUAL 4–47

Function : Increment

Operation : Acc ← Acc + 1 or M ← M + 1

When m = “0”

Acc Acc

← + 1

or
M(n+1,n) M(n+1,n)

← + 1

When m = “1”

AccL AccL

← +1

or
M(n) M(n)

← +1

Description : Adds 1 to the contents of the accumulator or a memory.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

INC INCrement by one INC

Addressing mode Syntax Machine code Bytes Cycles

Accumulator INC A 3A16 1 2
Direct INC dd E616, dd 2 7
Direct indexed X INC dd, X F616, dd 2 7
Absolute INC mmll EE16, ll, mm 3 7
Absolute indexed X INC mmll, X FE16, ll, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL4–48

INX INcrement index register X by one INX

Function : Increment

Operation : X ← X + 1

When x = “0”

X X

← + 1

When x = “1”

XL XL

← + 1

Description : Adds 1 to the contents of the index register X.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied INX E816 1 2

7751 SERIES SOFTWARE MANUAL 4–49

INY INcrement index register Y by one INY

Function : Increment

Operation : Y ← Y + 1

When x = “0”

Y Y

← + 1

When x = “1”

YL YL

← + 1

Description : Adds 1 to the contents of the index register Y.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied INY C816 1 2

7751 SERIES SOFTWARE MANUAL4–50

JMP JuMP JMP

Function : Jump always

Operation : [PG], PC ← specified address (absolute or indirect)

When the addressing mode is ...

absolute addressing mode,

PC ← ADDR

absolute long addressing mode,

PC ← ADDR

PG ← BANK

absolute indirect addressing mode,

PC ← M(ADDR+1, ADDR)

absolute indirect long addressing mode,

PC ← M(ADDR+1, ADDR)

PG ← M(ADDR+2)

absolute indexed X indirect addressing mode,

PC ← M(ADDR+X+1, ADDR+X)

❊ ADDR indicates the low-order 16 bits of a 24-bit address which is specified by the 2nd and
3rd bytes of the instruction.

❊ BANK indicates the high-order 8 bits of a 24-bit address which is specified by the 4th byte
of the instruction.

Description : The JMP instruction causes a jump to the address specified by each addressing mode.
When this instruction is used in addressing modes other than absolute long, the contents of
the program bank register is incremented by 1 and the branch destination becomes the next
bank if the last byte of the instruction is at the highest address (XXFFFF16) of a bank or if the
instruction crosses banks.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Absolute JMP mmll 4C16, ll, mm 3 2
Absolute long JMPL hhmmll 5C16, ll, mm, hh 4 4
Absolute indirect JMP (mmll) 6C16, ll, mm 3 4
Absolute indirect long JMPL (mmll) DC16, ll, mm 3 6
Absolute indexed X indirect JMP (mmll, X) 7C16, ll, mm 3 6

7751 SERIES SOFTWARE MANUAL 4–51

JSR Jump to SubRoutine JSR

Function : Jump to subroutine

Operation : Stack ← [PG], PC

[PG], PC ← specified address (absolute or indirect)

When the addressing mode is ...

absolute addressing mode,

PC ← PC + 3

M(S,S–1) ← PC

S ← S – 2

PC ← ADDR

absolute long addressing mode,

PC ← PC + 4

M(S to S–2) ← PG, PC

S ← S – 3

PC ← ADDR

PG ← BANK

absolute indexed X indirect addressing mode,

PC ← PC + 3

M(S,S–1) ← PC

S ← S – 2

PC ← M(ADDR+X+1,ADDR+X)

❊ ADDR indicates the low-order 16 bits of a 24-bit address which is specified by the 2nd and
3rd bytes of the instruction.

❊ BANK indicates the high-order 8 bits of a 24-bit address which is specified by the 4th byte
of the instruction.

Description : The contents of the program counter (or the program bank register and the program counter
in absolute long addressing mode) are first saved on the stack. After that, a jump is caused
to the address specified by each addressing mode.

When this instruction is used in addressing modes other than absolute long, the content of the
program bank register is incremented by 1 and the branch destination becomes the next bank
if the last byte of the instruction is at the highest address (XXFFFF16) of a bank or if the
instruction crosses banks.

Status flags : Not affected.

Stack

PCL

PCH

(S) just after instruction execution

(S) just before instruction execution

Stack

PCL

PCH

PG

(S) just after instruction execution

(S) just before instruction execution

Stack

PCL

PCH

(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Absolute JSR mmll 2016, ll, mm 3 6
Absolute long JSRL hhmmll 2216, ll, mm, hh 4 8
Absolute indexed X indirect JSR (mmll, X) FC16, ll, mm 3 8

7751 SERIES SOFTWARE MANUAL4–52

LDA LoaD Accumulator from memory LDA

Function : Load

Operation : Acc ← M

When m = “0”

Acc M(n+1, n)

←

When m = “1”

AccL M(n)

←

Description : Loads the contents of a memory into the accumulator.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDA A, #imm A916, imm 2 2

Direct LDA A, dd A516, dd 2 4

Direct indexed X LDA A, dd, X B516, dd 2 5

Direct indirect LDA A, (dd) B216, dd 2 6

Direct indexed X indirect LDA A, (dd, X) A116, dd 2 7

Direct indirect indexed Y LDA A, (dd), Y B116, dd 2 8

Direct indirect long LDAL A, (dd) A716, dd 2 8
Direct indirect long indexed Y LDAL A, (dd), Y B716, dd 2 10

Absolute LDA A, mmll AD16, ll, mm 3 4

Absolute indexed X LDA A, mmll, X BD16, ll, mm 3 6

Absolute indexed Y LDA A, mmll, Y B916, ll, mm 3 6

Absolute long LDA A, hhmmll AF16, ll, mm, hh 4 6

Absolute long indexed X LDA A, hhmmll, X BF16, ll, mm, hh 4 7

Stack pointer relative LDA A, nn, S A316, nn 2 5

Stack pointer relative LDA A, (nn, S), Y B316, nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL 4–53

Function : Load

Operation : M ← IMM

When m = “0”

M(n+1, n)

← IMM16

When m = “1”

M(n)

← IMM8

Description : Loads an immediate value into a memory.

Status flags : Not affected.

LDM LoaD immediate to Memory LDM

Addressing mode Syntax Machine code Bytes Cycles

Direct LDM #imm, dd 6416, dd, imm 3 4
Direct indexed X LDM #imm, dd, X 7416, dd, imm 3 5
Absolute LDM #imm, mmll 9C16, ll, mm, imm 4 5
Absolute indexed X LDM #imm, mmll, X 9E16, ll, mm, imm 4 6

Note: When treating a 16-bit data in the condition of the data length flag = “0”, the byte number increases
by 1.

7751 SERIES SOFTWARE MANUAL4–54

LDT LoaD immediate to daTa bank register LDT

Function : Load

Operation : DT ← IMM8

DT

← IMM8

Description : Loads an immediate value into the data bank register.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDT #imm 8916, C216, imm 3 5

7751 SERIES SOFTWARE MANUAL 4–55

LDX LoaD index register X from memory LDX

Function : Load

Operation : X ← M

When x = “0”

X M(n+1, n)

←

When x = “1”

XL M(n)

←

Description : Loads the contents of a memory into the index register X.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDX #imm A216, imm 2 2
Direct LDX dd A616, dd 2 4
Direct indexed Y LDX dd, Y B616, dd 2 5
Absolute LDX mmll AE16, ll, mm 3 4
Absolute indexed Y LDX mmll, Y BE16, ll, mm 3 6

Note: When treating a 16-bit data in the immediate addressing mode in the condition of the index register
flag = “0”, the byte number increases by 1.length

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL4–56

LDY LoaD index register Y from memory LDY

Function : Load

Operation : Y ← M

When x = “0”

Y M(n+1, n)

←

When x = “1”

YL M(n)

←

Description : Loads the contents of a memory into the index register Y.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Immediate LDY #imm A016, imm 2 2
Direct LDY dd A416, dd 2 4
Direct indexed X LDY dd, X B416, dd 2 5
Absolute LDY mmll AC16, ll, mm 3 4
Absolute indexed X LDY mmll, X BC16, ll, mm 3 6

Note: When treating a 16-bit data in the immediate addressing mode in the condition of the index register
flag = “0”, the byte number increases by 1.length

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 4–57

LSR Logical Shift Right LSR

Function : Logical shift right

Operation : Acc or M C
0 → 1 bit shift to Right →
When m = “0”

b15 Acc or M(n+1,n) b0 C

0 → → → → → → → → → →

When m = “1”

b7 AccL or M(n) b0 C

0 → → → → → → → → →

Description : Shifts all bits of the accumulator or a memory to the one bit right. Its bit 15 (or bit 7 when the
data length flag is “1”) of the accumulator or a memory is loaded with “0”.
The carry flag is loaded from bit 0 of the data before the shift.

Status flags

IPL : Not affected.

N : Cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when bit 0 of the accumlator or a memory before the operation is “1”. Otherwise,
cleared to “0”.

Addressing mode Syntax Machine code Bytes Cycles

Accumulator LSR A 4A16 1 2

Direct LSR dd 4616, dd 2 7
Direct indexed X LSR dd, X 5616, dd 2 7

Absolute LSR mmll 4E16, ll, mm 3 7

Absolute indexed X LSR mmll, X 5E16, ll, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL4–58

Function : Multiplication (Unsigned)

Operation : B, A ← A × M

When m = “0”

B A A M(n+1,n)

Product ← Multiplicand × Multiplier

When m = “1”

BL AL AL M(n)

Product ← Multiplicand × Multiplier

Description : When the data length flag is “0”, the contents of the accumulator A are multiplied by the
contents of a memory. Multiplication is performed as 16-bit × 16-bit, and the result becomes
a 32-bit data of which higher is placed in the accumulator B and lower is placed in the
accumulator A.
When the data length flag is “1”, the low-order 8 bits of the accumulator A are multiplied by
the contents of a memory. Multiplication is performed as 8-bit × 8-bit, and the result becomes
a 16-bit data of which high-order 8 bits are placed in the accumulator B’s low-order 8 bits and
lower 8 bits are placed in the accumulator A’s low-order 8 bits.

Status flags

IPL : Not affected.

N : Set to “1” when bit 31 of the operation result, the accumulator B’s bit 15, (or bit 15 of the
operation result, the accumulator B’s bit 7, when the data length flag is “1”) of the operation
result is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Cleared to “0”.

MPY MultiPlY MPY

7751 SERIES SOFTWARE MANUAL 4–59

MPY MultiPlY MPY

Addressing mode Syntax Machine code Bytes Cycles

Immediate MPY #imm 8916, 0916, imm 3 8
Direct MPY dd 8916, 0516, dd 3 10
Direct indexed X MPY dd, X 8916, 1516, dd 3 11
Direct indirect MPY (dd) 8916, 1216, dd 3 12
Direct indexed X indirect MPY (dd, X) 8916, 0116, dd 3 13
Direct indirect indexed Y MPY (dd), Y 8916, 1116, dd 3 14
Direct indirect long MPYL (dd) 8916, 0716, dd 3 14
Direct indirect long indexed Y MPYL (dd), Y 8916, 1716, dd 3 16
Absolute MPY mmll 8916, 0D16, ll, mm 4 10
Absolute indexed X MPY mmll, X 8916, 1D16, ll, mm 4 12
Absolute indexed Y MPY mmll, Y 8916, 1916, ll, mm 4 12
Absolute long MPY hhmmll 8916, 0F16, ll, mm, hh 5 12
Absolute long indexed X MPY hhmmll, X 8916, 1F16, ll, mm, hh 5 13
Stack pointer relative MPY nn, S 8916, 0316, nn 3 11
Stack pointer relative MPY (nn, S), Y 8916, 1316, nn 3 14

indirect indexed Y

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

2: The cycle number in this table applies in the case of 8-bit × 8-bit operations. In the case of 16-bit
× 16-bit operations, the cycle number increases by 4.

7751 SERIES SOFTWARE MANUAL4–60

Function : Multiplication (Signed)

Operation : B, A ← A × M

When m = “0”

B A A M(n+1,n)

Product ← Multiplicand × Multiplier

MPYS MultiPlY with Sign MPYS

s

When m = “1”

BL AL AL M(n)

Product ← Multiplicand × Multiplier
s s s

❊ s means a sign bit that is the most significant bit of the data.

Description : When the data length flag is “0”, the contents of the accumulator A are multiplied by the
contents of a memory as a signed data. Multiplication is performed as 16-bit × 16-bit, and the
result becomes a 32-bit data of which higher is placed in the accumulator B and lower is
placed in the accumulator A. Then, the accumulator B’s bit 15 is a sign bit.
When the data length flag is “1”, the low-order contents of the accumulator A are multiplied
by the contents of a memory as a signed data. Multiplication is performed as 8-bit × 8-bit, and
the result becomes a 16-bit data of which high-order 8 bits are placed in the accumulator B’s
low-order 8 bits and lower 8 bits are placed in the accumulator A’s low-order 8 bits. Then, the
accumulator B’s bit 7 is a sign bit.

Status flags

IPL : Not affected.

N : Set to “1” when bit 31 of the operation result, the accumulator B’s bit 15, (or bit 15 of the
operation result, the accumulator B’s bit 7, when the data length flag is “1”) of the operation
result is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Cleared to “0”.

s s

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 4–61

MPYS MultiPlY with Sign MPYS

Addressing mode Syntax Machine code Bytes Cycles

Immediate MPYS #imm 8916, 8916, imm 3 8
Direct MPYS dd 8916, 8516, dd 3 10
Direct indexed X MPYS dd, X 8916, 9516, dd 3 11
Direct indirect MPYS (dd) 8916, 9216, dd 3 12
Direct indexed X indirect MPYS (dd, X) 8916, 8116, dd 3 13
Direct indirect indexed Y MPYS (dd), Y 8916, 9116, dd 3 14
Direct indirect long MPYSL (dd) 8916, 8716, dd 3 14
Direct indirect long indexed Y MPYSL (dd), Y 8916, 9716, dd 3 16
Absolute MPYS mmll 8916, 8D16, ll, mm 4 10
Absolute indexed X MPYS mmll, X 8916, 9D16, ll, mm 4 12
Absolute indexed Y MPYS mmll, Y 8916, 9916, ll, mm 4 12
Absolute long MPYS hhmmll 8916, 8F16, ll, mm, hh 5 12
Absolute long indexed X MPYS hhmmll, X 8916, 9F16, ll, mm, hh 5 13
Stack pointer relative MPYS nn, S 8916, 8316, nn 3 11
Stack pointer relative MPYS (nn, S), Y 8916, 9316, nn 3 14

indirect indexed Y

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

2: The cycle number in this table applies in the case of 8-bit × 8-bit operations. In the case of 16-bit
× 16-bit operations, the cycle number increases by 4.

7751 SERIES SOFTWARE MANUAL4–62

Function : Move

Operation : M(n to n + i) ← M(m to m + i)

A = 0 ?

When A = “0”

Instruction execution complete

When A ≠ “0”

Repeat operation

M(DTd: Y) ← M(DTs: X)

X ← X + 2

Y ← Y + 2

A ← A – 2

❊ DTd indicates the transfer destination bank which is specified by the 2nd byte of the
instruction.

❊ DTs indicates the transfer source bank which is specified by the 3rd byte of the
instruction.

❊ Values set in register before transfer

A: Transfer byte number

When m = “0” The value 0 to 65535 can be set

When m = “1” The value 0 to 255 can be set

X: Transfer source area beginning (lowermost) address

When x = “0” The value 0 to 65535 can be set

When x = “1” The value 0 to 255 can be set (Note)

Y: Transfer destination area beginning (lowermost) address

When x = “0” The value 0 to 65535 can be set

When x = “1” The value 0 to 255 can be set (Note)

❊ Contents of register after transfer

A: FFFF16

X: Transfer source area end (highermost) address + 1

Y: Transfer destination area end (highermost) address + 1

DT:Bank number of transfer destination

❊ Transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus,
the transfer time is shortened when transfer start addresses are even than when they
are odd.

Note: This instruction is recommended to use in the condition of the x=“0”. In the
condition of the x = “1”, data in the area between XX0016 and XXFF16 can be only
used because the higher bytes of index registers X and Y are not changed.

x: Index register length flag

MVN MoVe Negative MVN

n Transfer
↓ Transfer direction destination

n + i area

m Transfer
↓ Transfer direction source

m + i area

7751 SERIES SOFTWARE MANUAL 4–63

MVN MoVe Negative MVN

Description : Normally, a block of data is transferred from higher addresses to lower addresses. The transfer
is performed in the ascending address order of the block being transferred. The destination
bank is specified by the instruction’s second byte, and the address within its bank is specified
by the contents of the index register Y. The source bank is specified by the instruction’s third
byte, and the address within its bank is specified by the contents of the index register X. The
accumulator A is loaded with the bytes number of the data to be transferred. As each 1 byte
of data is transferred, the index registers X and Y are incremented, so that the index register
X will become a value equal to 1 larger than the source address of the last byte transferred
and the index register Y will become a value equal to 1 larger than the destination address
of the last byte received. The data bank register will become the destination bank number, and
the accumulator A will become FFFF16.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVN hh1, hh2 5416, hh1, hh2 3 5+(i/2)×7

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even
number. When i is an odd number, the cycle number is obtained as follows:

5 + (i ÷ 2) ✕ 7 + 6.
Note that (i ÷ 2) expresses the integer part of the result of dividing i by 2.

7751 SERIES SOFTWARE MANUAL4–64

MVP MoVe Positive MVP

Function : Move

Operation : M(n – i to n) ← M(m – i to m)

A = 0 ?

When A = “0”

Instruction execution complete

When A ≠ “0”

Repeat operation

X ← X – 1

Y ← Y – 1

M(DTd: Y) ← M(DTs: X)

X ← X – 1

Y ← Y – 1

A ← A – 2

❊ DTd indicates the transfer destination bank which is specified by the 2nd byte of the
instruction.

❊ DTs indicates the transfer source bank which is specified by the 3rd byte of the
instruction.

❊ Values set in register before transfer

A: Transfer byte number

When m = “0” The value 0 to 65535 can be set

When m = “1” The value 0 to 255 can be set

X: Transfer source area beginning (highermost) address

When x = “0” The value 0 to 65535 can be set

When x = “1” The value 0 to 255 can be set

Y: Transfer destination area beginning (highermost) address

When x = “0” The value 0 to 65535 can be set

When x = “1” The value 0 to 255 can be set

❊ Contents of register after transfer

A: FFFF16

X: Transfer source area end (lowermost) address – 1

Y: Transfer destination area end (lowermost) address – 1

DT:Bank number of transfer destination

❊ Transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus,
the transfer time is shortened when transfer start addresses are odd than when they
are even.

Note: This instruction is recommended to use in the condition of the x=“0”. In the
condition of the x = “1”, data in the area between XX0016 and XXFF16 can be only
used because the higher bytes of index registers X and Y are not changed.

x: Index register length flag

m – i Transfer
↑ Transfer direction source

m area

n – i Transfer
↑ Transfer direction destination

n area

7751 SERIES SOFTWARE MANUAL 4–65

MVP MoVe Positive MVP

Description : Normally, a block of data is transferred from lower addresses to higher addresses. The
transfer is performed in the descending address order of the block being transferred. The
destination bank is specified by the instruction’s second byte, and the address within its
bank is specified by the contents of the index register Y. The source bank is specified
by the instruction’s third byte, and the address within its bank is specified by the contents
of the index register X. The accumulator A is loaded with the byte number of the data
to be transferred. As each 1 byte of data is transferred, the index registers X and Y are
decremented, so that the index register X will become a value equal to 1 smaller than
the source address of the last byte transferred and the index register Y will become a
value equal to 1 smaller than the destination address of the last byte received. The data
bank register will become the destination bank number, and the accumulator A will
become FFFF16.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVP hh1, hh2 4416, hh1, hh2 3 9+(i/2)×7

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even
number. When i is an odd number, the cycle number is obtained as follows:

9 + (i ÷ 2) ✕ 7 + 8.
Note that (i ÷ 2) expresses the integer part of the result of dividing i by 2.

7751 SERIES SOFTWARE MANUAL4–66

NOP No OPeration NOP

Function : No operation

Operation : PC ← PC + 1

❊ PG also changes depending on the result of the above operation on PC.

If a carry occurs in PC: PG ← PG + 1

Description : This instruction only makes the program counter increment by 1 and nothing else.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied NOP EA16 1 2

7751 SERIES SOFTWARE MANUAL 4–67

ORA OR memory with Accumulator ORA

Function : Logical OR

Operation : Acc ← Acc V M

When m = “0”

Acc A M(n+1,n)

← V

When m = “1”

AccL AccL M(n)

← V

Description : Performs the logical OR between the contents of the accumulator and the contents of a
memory, and places the result in the accumulator.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate ORA A, #imm 0916, imm 2 2

Direct ORA A, dd 0516, dd 2 4

Direct indexed X ORA A, dd, X 1516, dd 2 5

Direct indirect ORA A, (dd) 1216, dd 2 6

Direct indexed X indirect ORA A, (dd, X) 0116, dd 2 7
Direct indirect indexed Y ORA A, (dd), Y 1116, dd 2 8

Direct indirect long ORAL A, (dd) 0716, dd 2 8

Direct indirect long indexed Y ORAL A, (dd), Y 1716, dd 2 10

Absolute ORA A, mmll 0D16, ll, mm 3 4

Absolute indexed X ORA A, mmll, X 1D16, ll, mm 3 6

Absolute indexed Y ORA A, mmll, Y 1916, ll, mm 3 6

Absolute long ORA A, hhmmll 0F16, ll, mm, hh 4 6

Absolute long indexed X ORA A, hhmmll, X 1F16, ll, mm, hh 4 7

Stack pointer relative ORA A, nn, S 0316, nn 2 5

Stack pointer relative ORA A, (nn, S), Y 1316, nn 2 8
indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL4–68

PEA Push Effective Address PEA

Function : Stack manipulation (Push)

Operation : Stack ← IMM16

M(S,S – 1) ← IMM16

S ← S – 2

❊ IMM16 is an immediate value. IMMH indicates its high-order byte and IMML indicates its low-
order byte.

Description : The instruction’s third and second bytes are saved on the stack in this order.

Status flags : Not affected.

Stack

IMML

IMMH

Addressing mode Syntax Machine code Bytes Cycles

Stack PEA #immH immL F416, immL, immH 3 5

(S) just after instruction execution

(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL 4–69

PEI Push Effective Indirect address PEI

Function : Stack manipulation (Push)

Operation : Stack ← M(DPR + IMM8 + 1, DPR + IMM8)

M(S, S – 1) ← M(DPR + IMM8 + 1, DPR + IMM8)

S ← S – 2

❊ IMM8 is an 8-bit immediate value and is used as an displacement from DPR.

Description : Saves the contents of the consecutive 2 bytes in the direct page specified by the sum of the
contents of the direct page register and the instruction’s second byte on the stack in the order
of higher address first and lower address second.

Status flags : Not affected.

Stack

M(DPR+IMM8)
M(DPR+IMM8+1)

(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PEI #imm D416, imm 2 6

7751 SERIES SOFTWARE MANUAL4–70

PER Push Effective program counter Relative address PER

Function : Stack manipulation (Push)

Operation : Stack ← PC + IMM16

EAR ← PC + IMM16

M(S, S – 1) ← EAR

S ← S – 2

❊ IMM16 is a 16-bit immediate value.

❊ EAR is an execution address which is the result of adding PC to IMM16. EARH indicates
its high-order byte and EARL indicates its low-order byte.

Description : Saves the result of adding a 16-bit data consisting of the instruction’s third byte as the higher
byte and the instruction’s second byte as the lower byte to the contents of the program counter
on the stack in the order of the result’s higher byte first and lower byte second.

Status flags : Not affected.

Stack

EARL

EARH

(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PER #immH immL 6216, immL, immH 3 5

7751 SERIES SOFTWARE MANUAL 4–71

PHA PusH accumulator A on stack PHA

Function : Stack manipulation (Push)

Operation : Stack ← A

When m = “0”

M(S, S – 1) ← A

S ← S – 2

When m = “1”

M(S) ← AL

S ← S – 1

Description : Saves the contents of the accumulator A to the address specified by the stack pointer. When
the data length flag is “0”, the accumulator A’s higher byte is saved on the stack first and then
the lower byte. When the data length flag is “1”, only the accumulator A’s lower byte is saved
on the stack.

Status flags : Not affected.

Stack

AL

AH

(S) just after instruction execution

(S) just before instruction execution

Stack

AL

(S) just after instruction execution
(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHA 4816 1 4

7751 SERIES SOFTWARE MANUAL4–72

PHB PusH accumulator B on stack PHB

Function : Stack manipulation (Push)

Operation : Stack ← B

When m = “0”

M(S, S – 1) ← B

S ← S – 2

When m = “1”

M(S) ← BL

S ← S – 1

Description : Saves the contents of the accumulator B to the address specified by the stack pointer. When
the data length flag is “0”, the accumulator B’s higher byte is saved on the stack first and then
the lower byte. When the data length flag is “1”, only the accumulator B’s lower byte is saved
on the stack.

Status flags : Not affected.

Stack

BL

BH

(S) just after instruction execution

(S) just before instruction execution

Stack

BL

(S) just after instruction execution
(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHB 4216, 4816 2 6

7751 SERIES SOFTWARE MANUAL 4–73

PHD PusH Direct page register on stack PHD

Function : Stack manipulation (Push)

Operation : Stack ← DPR

M(S, S – 1) ← DPR

S ← S – 2

Description : Saves the contents of the direct page register to the address specified by the stack pointer
in the order of higher byte first and then lower byte.

Status flags : Not affected.

Stack

DPRL

DPRH

(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHD 0B16 1 4

7751 SERIES SOFTWARE MANUAL4–74

PHG PusH proGram bank register on stack PHG

Function : Stack manipulation (Push)

Operation : Stack ← PG

M(S) ← PG

S ← S – 1

Description : Saves the contents of the program bank register to the address specified by the stack pointer.

Status flags : Not affected.

Stack

PG
(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHG 4B16 1 3

7751 SERIES SOFTWARE MANUAL 4–75

Stack

PSL

PSH

PHP PusH Processor status on stack PHP

Function : Stack manipulation (Push)

Operation : Stack ← PS

M(S, S – 1) ← PS

S ← S – 2

Description : Saves the contents of the processor status register to the address specified by the stack
pointer in the order of higher byte and then lower byte.

Status flags : Not affected.

(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHP 0816 1 4

7751 SERIES SOFTWARE MANUAL4–76

PHT PusH daTa bank register on stack PHT

Function : Stack manipulation (Push)

Operation : Stack ← DT

M(S) ← DT

S ← S – 1

Description : Saves the contents of the data bank register to the address specified by the stack pointer.

Status flags : Not affected.

Stack

DT
(S) just after instruction execution

(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHT 8B16 1 3

7751 SERIES SOFTWARE MANUAL 4–77

PHX PusH index register X on stack PHX

Function : Stack manipulation (Push)

Operation : Stack ← X

When x = “0”

M(S, S – 1) ← X

S ← S – 2

When x = “1”

M(S) ← XL

S ← S – 1

Description : Saves the contents of the index register X to the address specified by the stack pointer. When
the index register length flag is “0”, the contents are saved in the order of higher byte and then
lower byte. When the index register length flag is “1”, only the lower byte is saved on the stack.

Status flags : Not affected.

Stack

XL

XH

(S) just after instruction execution

(S) just before instruction execution

Stack

XL

(S) just after instruction execution
(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHX DA16 1 4

7751 SERIES SOFTWARE MANUAL4–78

PHY PusH index register Y on stack PHY

Function : Stack manipulation (Push)

Operation : Stack ← Y

When x = “0”

M(S, S – 1) ← Y

S ← S – 2

When x = “1”

M(S) ← YL

S ← S – 1

Description : Saves the contents of the index register Y to the address specified by the stack pointer. When
the index register length flag is “0”, the contents are saved in the order of higher byte and then
lower byte. When the index register length flag is “1”, only the lower byte is saved on the stack.

Status flags : Not affected.

Stack

YL

YH

(S) just after instruction execution

(S) just before instruction execution

Stack

YL

(S) just after instruction execution
(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHY 5A16 1 4

7751 SERIES SOFTWARE MANUAL 4–79

PLA PuLl accumulator A from stack PLA

Function : Stack manipulation (Pull)

Operation : A ← Stack

When m = “0”

A ← M(S+2, S+1)

S ← S + 2

When m = “1”

AL ← M(S+1)

S ← S + 1

Description : Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to accumulator A. When the data length flag is “0”, 2 bytes are restored. When the data
length flag is “1”, only 1 byte is restored to the lower byte of the accumulator A.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Stack
(S) just before instruction execution

(S) just after instruction execution

Stack

AH AL

AL

(S) just after instruction execution
(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PLA 6816 1 5

7751 SERIES SOFTWARE MANUAL4–80

PLB PuLl accumulator B from stack PLB

Function : Stack manipulation (Pull)

Operation : B ← Stack

When m = “0”

B ← M(S+2, S+1)

S ← S + 2

When m = “1”

BL ← M(S+1)

S ← S + 1

Description : Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the accumulator B. When the data length flag is “0”, 2 bytes are restored. When the
data length flag is “1”, only 1 byte is restored to the lower byte of the accumulator B.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Stack

Stack

BH BL

BL

(S) just after instruction execution

(S) just before instruction execution

(S) just after instruction execution
(S) just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PLB 4216, 6816 2 7

7751 SERIES SOFTWARE MANUAL 4–81

PLD PuLl Direct page register from stack PLD

Function : Stack manipulation (Pull)

Operation : DPR ← Stack

DPR ← M(S+2, S+1)

S ← S + 2

Description : Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the direct page register.

Status flags : Not affected.

Stack
DPR

Addressing mode Syntax Machine code Bytes Cycles

Stack PLD 2B16 1 5

(S) just after instruction execution

(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL4–82

PLP PuLl Processor status from stack PLP

Function : Stack manipulation (Pull)

Operation : PS ← Stack

PS ← M(S+2, S+1)

S ← S + 2

Description : Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the processor status register.

Status flags : Changes to the values restored from the stack.

Stack
PSH PSL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLP 2816 1 6

(S) just after instruction execution

(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL 4–83

PLT PuLl daTa bank register from stack PLT

Function : Stack manipulation (Pull)

Operation : DT ← Stack

DT ← M(S+1)

S ← S + 1

Description : Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the data bank register.

Status flags

IPL : Not affected.

N : Set to “1” when bit 7 of the operation result is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Stack
DT

Addressing mode Syntax Machine code Bytes Cycles

Stack PLT AB16 1 6

(S) just after instruction execution
(S) just before instruction execution

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL4–84

PLX PuLl index register X from stack PLX

Function : Stack manipulation (Pull)

Operation : X ← Stack

When x = “0”

X ← M(S+2, S+1)

S ← S + 2

When x = “1”

XL ← M(S+1)

S ← S + 1

Description : Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the index register X. When the index register length flag is “0”, 2 bytes are restored.
When the index register length flag is “1”, only 1 byte is restored to the lower byte of the index
register X.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Stack

Stack

XH XL

XL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLX FA16 1 5

(S) just after instruction execution

(S) just before instruction execution

(S) just after instruction execution
(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL 4–85

PLY PuLl index register Y from stack PLY

Function : Stack manipulation (Pull)

Operation : Y ← Stack

When x = “0”

Y ← M(S+2, S+1)

S ← S + 2

When x = “1”

YL ← M(S+1)

S ← S + 1

Description : Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the index register Y. When the index register length flag is “0”, 2 bytes are restored.
When the index register length flag is “1”, only 1 byte is restored to the lower byte of the index
register Y.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Stack

Stack

YH YL

YL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLY 7A16 1 5

(S) just after instruction execution

(S) just before instruction execution

(S) just after instruction execution
(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL4–86

PSH PuSH PSH

Note: To the cycle number shown above, the number shown below are added depending on the registers
being saved. The number is 11 cycles when no registers are saved. i1 in above table expresses the
number of registers to be saved of A, B, X, Y, DPR and PS; and i2 expesses it of DT and PG.

Register type PS PG DT DPR Y X B A

Cycle number 2 1 1 2 2 2 2 2

Function : Stack manipulation (Push)

Operation : Stack ← Specified register of A, B, X, Y, DPR, DT, PG, PS

M(S to S – i) ← A, B, X, Y, DPR, DT, PG, PS
order to save

S ← S – i – 1

❊ The immediate value in the second byte of the instruction is used to specify the registers
to be saved.

❊ Among the registers being saved, the following registers are affected by the flags just before
the instruction is executed.

● A, B registers

When m = “0” : The high-order and low-order bytes of the register are saved.

When m = “1” : The low-order byte of the register is saved.

● X, Y registers

When x= “0” : The high-order and low-order bytes of the register is saved.

When x= “1” : The low-order byte of the register is saved.

❊ i indicates the number of data bytes to be saved.

Description : This instruction’s second byte specifies the registers to be saved. The registers corresponding
to the bits in the second byte that are 1 are saved on the stack. The bit and register
correspondence is as follows:

b7 b0
PS PG DT DPR Y X B A

← Direction to save on the stack

When saving the registers to stack, registers A and B are affected by the m flag, and registers
X and Y are affected by the x flag.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PSH #imm EB16, imm 2 11+2✕i1+i2

7751 SERIES SOFTWARE MANUAL 4–87

PSH PuSH PSH

PSH

NO
IMM8(0) = 1 ?

m = 0 ?

M(S,S1) A
S S–2

M(S) AL
S S–1

NO

IMM8(1) = 1 ?

m = 0 ?
NO

NO

M(S,S-1) B
S S–2

M(S) BL
S S–1

IMM8(2) = 1 ?

x = 0 ? NO

NO

M(S,S–1) X
S S–2

M(S) XL
S S–1

IMM8(3) = 1 ?

x = 0 ?
NO

NO

M(S,S–1) Y
S S–2

M(S) YL
S S–1

IMM8(4) = 1 ?

M(S,S–1) DPR
S S–2

M(S) DT
S S–1

IMM8(5) = 1 ?

M(S) PG
S S–1

IMM8(6) = 1 ?

IMM8(7) = 1 ?

M(S,S–1) PS
S S–2

NO

NO

NO

NO

❊ IMM8 is an immediate value in 1-byte and
 inside of () indicates the content of the bit
 at the value.

7751 SERIES SOFTWARE MANUAL4–88

PUL PULl PUL

Function : Stack manipulation (Pull)

Operation : Specified register of A, B, X, Y, DPR, DT, PG, PS ← Stack

A, B, X, Y, DPR, DT, PS ← M(S + 1 to S + i)
order to restore

S ← S + i

❊ The immediate value in the second byte of the instruction is used to specify the registers
to be restored.

❊ Among the registers being restored, the following registers are affected by the flags in the
restored PS or the flags just before the instruction is executed.

● A, B registers

When m = “0” : The high-order and low-order bytes of the register are restored.

When m = “1” : The low-order byte of the register is restored.

● X, Y registers

When x = “0” : The high-order and low-order bytes of the register are restored.

When x = “1” : The low-order byte of the register is restored.

❊ i indicates the number of data bytes to be restored.

Description : This instruction’s second byte specifies the registers to be restored. The contents of the stack
are restored to the registers corresponding to the bits in the second byte that are 1. The bit
and register correspondence is as follows:

b7 b0
PS DT DPR Y X B A
Direction to restore from the stack →

When restoring from stack, registers A and B are affected by the m flag in restored PS, and
registers X and Y are affected by the x flag in restored PS. When PS is not restored, the
registers are affected by the value of these flags just before instruction execution.

Status flags : When bit 7 of the instruction’s second byte is “1”, and PS is to be restored, the status flags
become restored values. Otherwise, the status flags are not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PUL #imm FB16, imm 2 12+3✕i1+4✕i2

Note: To the cycle number shown above, the number shown below are added depending on the registers
being saved. The number is 12 cycles when no registers are saved. i1 in above table expresses the
number of registers to be saved of A, B, X, Y, DT and PS. When restoring DPR, i2 becomes 1 and
When not restoring it, i2 becomes 0.

Register type PS DT DPR Y X B A
Cycle number 3 3 4 3 3 3 3

7751 SERIES SOFTWARE MANUAL 4–89

PUL PULl PUL

PUL

NO
IMM8(7) = 1 ?

x = 0 ?

PS M(S+2,S+1)
S S+2

XL M(S+1)
S S+1

NO

IMM8(5) = 1 ?
NO

X M(S+2,S+1)
S S+2

IMM8(1) = 1 ?

m = 0 ?
NO

NO

B M(S+2,S+1)
S S+2

BL M(S+1)
S S+1

IMM8(3) = 1 ?

x = 0 ? NO

NO

S S+2
YL M(S+1)

S S+1

NO
IMM8(4) = 1 ?

DPR M(S+2,S+1)
S S+2

NO
IMM8(2) = 1 ?

IMM8(0) = 1 ?

m = 0 ?
NO

NO

A M(S+2,S+1)
S S+2

AL M(S+1)
S S+1

Y M(S+2,S+1)

DT M(S+1)
S S+1

❊ IMM8 is an immediate value in 1-byte and
 inside of () indicates the content of the bit
 at the value.

7751 SERIES SOFTWARE MANUAL4–90

RLA Rotate Left accumulator A RLA

Function : i bits rotate to left

Operation : →
A

← i bits rotate to left ←

When m = “0”

→
b15 A b0 i bits rotate to left

← ❊ i = 0 to 65535

When m = “1”

→
b7 AL b0 i bits rotate to left

← ❊ i = 0 to 255

7751 SERIES SOFTWARE MANUAL 4–91

RLA Rotate Left accumulator A RLA

Description : The contents of the accumulator A are rotated to the left by i bits. The value of i is specified
by the instruction’s third byte (or the third and fourth bytes when the data length flag is “0”).

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate RLA #imm 8916, 4916, imm 3 6+i

i: Number of rotation

Note: When the data length flag is “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL4–92

RMPA Repeat MultiPly and Accumulate RMPA

Function : Repeat multiply and accumulation

Operation :

❊ s indicates the sign bit and is the topmost bit of the data to be operated on.

❊ i, which is a positive number from 0 to 255, indicates the number of repeated operations. It
is specified by the third byte of the instruction.

❊ Execute this instruction in the condition of index register length flag = “0”.

❊ Allocate multipliers and multiplicands in the same bank. Do not allocate each of them across
other banks.

Description : When the data length flag is “0”, performs signed multiplication of the 16-bit data in the
memory specified by index register X and data bank register, and the 16-bit data in the
memory specified by index register Y and data bank register. The multiplication result is added
as binary addition to the 32-bit data of which high-order is the contents of accumulator B, and
of which low-order is the contents of accumulator A. The high-order 16 bits of the addition
result are stored in accumulator B, and the low-order 16 bits are stored in accumulator A
again. After the addition, each of the contents of index register X and index register Y is
incremented by 2. Additionally, the number of repeated operations is decremented by 1, and
when the result is “0”, this instruction execution is finished. When the result is not “0”, the
above multiplication and addition are repeated.

When the data length flag (m) is “1”, performs signed multiplication of the 8-bit data in the
memory specified by index register X and data bank register, and the 8-bit data in the memory
specified by index register Y and data bank register. The multiplication result is added as
binary addition to the 16-bit data of which high-order is the contents of accumulator BL, and
of which low-order is the contents of accumulator AL. The high-order 8 bits of the addition
result are stored in accumulator BL, and the low-order 8 bits are stored in accumulator AL
again. After the addition, each of the contents of index register X and index register Y is
incremented by 1. Additionally, the number of repeated operations is decremented by 1, and
when the result is “0”, this instruction execution is finished. When the result is not “0”, the
above multiplication and addition are repeated.

● After finishing the instruction execution, index registers X, Y specify the next address of the
address where a multiplier and a multiplicand are read last.

● When an overflow occurs at addition, the overflow flag becomes “1” and the instruction
execution is finished then. When an overflow occurs, accumulators A and B become
undefined. Index registers X, Y specify the next address of the address where a multiplier
and a multiplicand are read last.

● When specifying “0” as the number of repeated operations, the instruction execution is
finished without multiplication and addition. The contents of accumulators A, B, and index
registers X, Y are not affected.

s

B A

s

B A M(DT:X+1,DT:X)M (DT:Y+1, DT:Y)

X X + 2
Y Y + 2

i = i – 1

RMPA

i = 0 ?

s

BL AL

s

BL AL M(DT:X) M(DT:Y)

s Multiplier

=0

≠ 0 Finish
Next instruction

● m = 0 ● m = 1

+ s Multiplicands s Multiplier+ ✕

X X + 1
Y Y + 1

✕s Multiplicands

7751 SERIES SOFTWARE MANUAL 4–93

Status flags :

IPL : Not affected.

N : Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When bit 31 of the addition result, in other words, bit 15 in accumulator
B (when the data length flag (m) = “1”, bit 15 of the addition result, in other words, bit 7 in
accumulator B) is “1”, set to 1. Otherwise, cleared to 0. Accordingly, the N flag after finishing
the instruction execution is specified by the result of the last addition.

V : Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When the result is outside range of –2147483648 to +2147483647 (when
the data length flag (m) = “1”, outside range of –32768 to +32767), set to “1”. Otherwise,
cleared to 0.

● When an overflow occurs at addition, the instruction execution is finished then. Accordingly,
the V flag after finishing the instruction execution is cleared to “0” with normal finish, and set
to “1” with an overflow.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When the addition result is “0”, set to 1. Otherwise, cleared to 0.
Accordingly, Z flag after finishing the instruction execution is specified by the result of the last
addition.

C : Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When the addition result exceeds +4294967295 as not signed data (when
the data length flag (m) = “1”, exceeds +65536), set to “1”. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Multiplied accumulation RMPA #imm 8916, E216, imm 3 6 + 16 ✕ n

Note: Cycles show the numbers of cycle in the case of data length flag = “1”. It becomes 6 + 20 ✕ n cycles in the
case of data length flag = “0”.

RMPA Repeat MultiPly and Accumulate RMPA

7751 SERIES SOFTWARE MANUAL4–94

ROL ROtate one bit Left ROL

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ROL A 2A16 1 2
Direct ROL dd 2616, dd 2 7
Direct indexed X ROL dd, X 3616, dd 2 7
Absolute ROL mmll 2E16, ll, mm 3 7
Absolute indexed x ROL mmll, X 3E16, ll, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

Function : Rotate to left

Operation : →
Acc or M C

← 1 bit rotate to left ← ←

When m = “0”

→
b15 Acc or M(n+1,n) b0 C

← ← ← ← ← ← ← ← ← ← ←

When m = “1”

→
b7 AccL or M(n) b0 C

← ← ← ← ← ← ← ← ← ←

Description : The carry flag is linked to the accumulator or a memory, and the combined contents are
rotated to the 1 bit left.
Bit 0 of the accumulator or a memory is loaded with the content of the carry flag before
execution of this instruction. The carry flag is loaded with the content of bit 15 (or bit 7 when
the data length flag is “1”) of the accumulator or a memory before execution of this instruction.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) before execution of the
instruction is “1”. Otherwise, cleared to “0”.

7751 SERIES SOFTWARE MANUAL 4–95

ROR ROtate one bit Right ROR

Function : Rotate to right

Operation : ←
C Acc or M

→ → 1 bit rotate to right →
When m = “0”

←
C b15 Acc or M(n+1,n) b0

→ → → → → → → → → → →

When m = “1”

←
C b7 AccL or M(n) b0

→ → → → → → → → → →

Description : The carry flag is linked to the accumulator or a memory, and the combined contents are
rotated to the 1 bit right.
Bit 15 (or bit 7 when the data length flag is “1”) of the accumulator or a memory is loaded with
the content of the carry flag. The carry flag is loaded with the content of bit 0 of the
accumulator or a memory before execution of this instruction.

7751 SERIES SOFTWARE MANUAL4–96

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Set to “1” when bit 0 before execution of the instruction is “1”. Otherwise, cleared to “0”.

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ROR A 6A16 1 2
Direct ROR dd 6616, dd 2 7
Direct indexed X ROR dd, X 7616, dd 2 7
Absolute ROR mmll 6E16, ll, mm 3 7
Absolute indexed X ROR mmll, X 7E16, ll, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

ROR ROtate one bit Right ROR

7751 SERIES SOFTWARE MANUAL 4–97

Function : Return from interrupt

Operation : PG, PC, PS ← Stack (Saved content when interrupt is caused)

PS ← M(S+2, S+1)

PC ← M(S+4, S+3)

PG ← M(S+5)

S ← S + 5

Description : The contents of the processor status register, program counter, and program bank register,
which were saved on the stack when the interrupt request was accepted, are restored to these
registers.
The state becomes the same as that before the acceptance of the interrupt request.

Status flags : Changes to the values that had been on the stack.

RTI ReTurn from Interrupt RTI

Addressing mode Syntax Machine code Bytes Cycles

Implied RTI 4016 1 9

PSH PSL

Stack

PG PCH PCL

(S) just after instruction execution

(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL4–98

RTL ReTurn from subroutine Long RTL

Function : Return from subroutine long

Operation : PG, PC ← Stack (Subroutine long return address)

PC ← M(S+2, S+1)

PG ← M(S+3)

S ← S + 3

Description : The contents of the stack are restored to the program counter and program bank register.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied RTL 6B16 1 7

(S) just before instruction execution

PG PCH PCL

Stack
(S) just after instruction execution

7751 SERIES SOFTWARE MANUAL 4–99

RTS ReTurn from Subroutine RTS

Function : Return from subroutine

Operation : PC ← Stack (Subroutine return address)

PC ← M(S+2, S+1)

S ← S + 2

Description : The contents of the stack are restored to the program counter.
The contents of program bank register is incremented by 1 when this instruction is allocated
at the highest address (XXFFFF16) of a bank.

Status flags : Not affected.

PCH PCL

Stack

Addressing mode Syntax Machine code Bytes Cycles

Implied RTS 6016 1 5

(S) just after instruction execution

(S) just before instruction execution

7751 SERIES SOFTWARE MANUAL4–100

Function : Subtract with carry

Operation : Acc ← Acc – M – C

When m = “0”

Acc Acc M(n+1,n) C

← – –

When m = “1”

AccL AccL M(n) C

← – –

Description : Subtracts the contents of a memory and the complement of the carry flag from the contents
of the accumulator, and places the result in the accumulator. Performed as a binary subtraction
when the decimal mode flag is “0”. Performed as a decimal subtraction when the decimal
mode flag is “1”.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”. Meaningless for a decimal subtraction.

V : Set to “1” when a binary subtraction of signed data results in a value exceeding the range of
–32768 to +32767 (–128 to +127 when the data length flag is “1”). Otherwise, cleared to “0”.
Meaningless for a decimal subtraction.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the operation result is “0”. Otherwise, cleared to “0”.

C : Set to “1” when the operation result is equal to or larger than “0”. Otherwise, cleared to “0”,
and a borrow is indicated.

SBC SuBtract with Carry SBC

7751 SERIES SOFTWARE MANUAL 4–101

SBC SuBtract with Carry SBC

Addressing mode Syntax Machine code Bytes Cycles

Immediate SBC A, #imm E916, imm 2 2

Direct SBC A, dd E516, dd 2 4

Direct indexed X SBC A,dd, X F516, dd 2 5

Direct indirect SBC A, (dd) F216, dd 2 6

Direct indexed X indirect SBC A,(dd, X) E116, dd 2 7

Direct indirect indexed Y SBC A,(dd), Y F116, dd 2 8

Direct indirect long SBCL A, (dd) E716, dd 2 8

Direct indirect long indexed Y SBCL A, (dd), Y F716, dd 2 10

Absolute SBC A,mmll ED16,ll,mm 3 4

Absolute indexed X SBC A, mmll, X FD16, ll, mm 3 6

Absolute indexed Y SBC A, mmll, Y F916, ll, mm 3 6

Absolute long SBC A, hhmmll EF16, ll, mm, hh 4 6

Absolute long indexed X SBC A, hhmmll, X FF16, ll, mm, hh 4 7

Stack pointer relative SBC A, nn, S E316, nn 2 5

Stack pointer relative SBC A, (nn, S), Y F316, nn 2 8
indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

 2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL4–102

Function : Bit manipulation

Operation : Mb ← 1 (b is the specified bits)

When m = “0”

M(n+1, n) M(n+1,n) IMM16

← V

When m = “1”

M(n) M(n) IMM8

← V

❊ IMM is an immediate value indicating the bits to be set with a “1”. The bits are specified by
the last 1 or 2 bytes of the instruction.

Description : The SEB instruction sets the specified memory bits to “1”. Multiple bits to be set can be
specified at the same time.

Status flags : Not affected.

SEB SEt Bit SEB

Addressing mode Syntax Machine code Bytes Cycles

Direct bit SEB #imm, dd 0416, dd, imm 3 8
Absolute bit SEB #imm, mmll 0C16, ll, mm, imm 4 9

Note: When treating a 16-bit data in the condition of the data length flag = “0”, the byte number increases
by 1.

7751 SERIES SOFTWARE MANUAL 4–103

SEC SEt Carry flag SEC

Function : Flag manipulation

Operation : C ← 1

Description : Sets the carry flag to “1”.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Set to “1”.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEC 3816 1 2

7751 SERIES SOFTWARE MANUAL4–104

SEI SEt Interrupt disable status SEI

Function : Flag manipulation

Operation : I ← 1

Description : Sets the interrupt disable flag to “1”.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Set to “1”.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEI 7816 1 2

7751 SERIES SOFTWARE MANUAL 4–105

SEM SEt M flag SEM

Function : Flag manipulation

Operation : m ← 1

Description : Sets the data length flag to “1”.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Set to “1”.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEM F816 1 2

7751 SERIES SOFTWARE MANUAL4–106

SEP SEt Processor status SEP

Function : Flag manipulation

Operation : PSLb ← 1 (b is the specified flags)

PSL ← PSL V IMM8

❊ IMM8 is an 1-byte, immediate value indicating the bits to be set with a “1”. The bits
are specified by the last 1 or 2 bytes of the instruction.

b7 b6 b5 b4 b3 b2 b1 b0

N V m x D I Z C PSL

Description : Sets the processor status flags specified by the bit pattern in the second byte of the instruction
to “1”.

Status flags : The specified status flags are set to “1”. IPL is not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate SEP #imm E216, imm 2 3

7751 SERIES SOFTWARE MANUAL 4–107

STA STore Accumulator in memory STA

Function : Store

Operation : M ← Acc

When m = “0”

M(n+1,n) Acc

←

When m = “1”

M(n) AccL

←

Description : Stores the contents of the accumulator into a memory.

The contents of the accumulator are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STA A, dd 8516, dd 2 4
Direct indexed X STA A, dd, X 9516, dd 2 5

Direct indirect STA A, (dd) 9216, dd 2 7

Direct indexed X indirect STA A, (dd, X) 8116, dd 2 7

Direct indirect indexed Y STA A, (dd), Y 9116, dd 2 7

Direct indirect long STAL A, (dd) 8716, dd 2 9

Direct indirect long indexed Y STAL A, (dd), Y 9716, dd 2 9

Absolute STA A, mmll 8D16, ll, mm 3 5

Absolute indexed X STA A, mmll, X 9D16, ll, mm 3 5

Absolute indexed Y STA A, mmll, Y 9916, ll, mm 3 5

Absolute long STA A, hhmmll 8F16, ll, mm, hh 4 6

Absolute long indexed X STA A, hhmmll, X 9F16, ll, mm, hh 4 7
Stack pointer relative STA A, nn, S 8316, nn 2 5

Stack pointer relative STA A, (nn, S), Y 9316, nn 2 8

indirect indexed Y

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL4–108

STP SToP STP

Function : Oscillation control

Operation : Stop the oscillation

Description : Resets the oscillator controlling flip-flop to inhibit the oscillation of the oscillation circuit. To
restart the oscillator, either an interrupt or reset must be performed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied STP DB16 1 3

suzuki_tadahiro

7751 SERIES SOFTWARE MANUAL 4–109

STX STore index register X in memory STX

Function : Store

Operation : M ← X

When x = “0”

M(n+1,n) X

←

When x = “1”

M(n) XL

←

Description : Stores the contents of the index register X into a memory. The contents of the index register
X are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STX dd 8616, dd 2 4
Direct indexed Y STX dd, Y 9616, dd 2 5
Absolute STX mmll 8E16, ll, mm 3 5

7751 SERIES SOFTWARE MANUAL4–110

STY STore index register Y in memory STY

Function : Store

Operation : M ← Y

When x = “0”

M(n+1,n) Y

←

When x = “1”

M(n) YL

←

Description : Stores the contents of the index register Y into a memory. The contents of the index register
Y are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STY dd 8416, dd 2 4
Direct indexed X STY dd, X 9416, dd 2 5
Absolute STY mmll 8C16, ll, mm 3 5

7751 SERIES SOFTWARE MANUAL 4–111

TAD Transfer accumulator A to Direct page register TAD

Function : Transfer

Operation : DPR ← A

DPR A

←

Description : Loads the direct page register with the contents of the accumulator A. Data is transferred as
a 16-bit data regardless of the data length flag. The contents of the accumulator A are not
changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAD 5B16 1 2

7751 SERIES SOFTWARE MANUAL4–112

TAS Transfer accumulator A to Stack pointer TAS

Function : Transfer

Operation : S ← A

S A

←

Description : Loads the stack pointer with the contents of the accumulator A. Data is transferred as a 16-
bit data regardless of the data length flag. The contents of the accumulator A are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAS 1B16 1 2

7751 SERIES SOFTWARE MANUAL 4–113

TAX Transfer accumulator A to index register X TAX

Function : Transfer

Operation : X ← A

When x = “0”

X A

←

When x = “1”

XL AL

←

Description : Loads the index register X with the contents of the accumulator A. The contents of the
accumulator A are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAX AA16 1 2

7751 SERIES SOFTWARE MANUAL4–114

TAY Transfer accumulator A to index register Y TAY

Function : Transfer

Operation : Y ← A

When x = “0”

Y A

←

When x = “1”

YL AL

←

Description : Loads the index register Y with the contents of the accumulator A. The contents of the
accumulator A are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAY A816 1 2

7751 SERIES SOFTWARE MANUAL 4–115

TBD Transfer accumulator B to Direct page register TBD

Function : Transfer

Operation : DPR ← B

DPR B
←

Description : Loads the direct page register with the contents of the accumulator B. Data is transferred as
a 16-bit data regardless of the data length flag. The contents of the accumulator B are not
changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBD 4216, 5B16 2 4

7751 SERIES SOFTWARE MANUAL4–116

TBS Transfer accumulator B to Stack pointer TBS

Function : Transfer

Operation : S ← B

S B

←

Description : Loads the stack pointer with the contents of the accumulator B. Data is transferred as a 16-
bit data regardless of the data length flag. The contents of the accumulator B are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBS 4216, 1B16 2 4

7751 SERIES SOFTWARE MANUAL 4–117

TBX Transfer accumulator B to index register X TBX

Function : Transfer

Operation : X ← B

When x = “0”

X B

←

When x = “1”

XL BL

←

Description : Loads the index register X with the contents of the accumulator B. The contents of the
accumulator B are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBX 4216, AA16 2 4

7751 SERIES SOFTWARE MANUAL4–118

TBY Transfer accumulator B to index register Y TBY

Function : Transfer

Operation : Y ← B

When x = “0”

Y B

←

When x = “1”

YL BL

←

Description : Loads the index register Y with the contents of the accumulator B. The contents of the
accumulator B are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBY 4216, A816 2 4

7751 SERIES SOFTWARE MANUAL 4–119

TDA Transfer Direct page register to accumulator A TDA

Function : Transfer

Operation : A ← DPR

When m = “0”

A DPR

←

When m = “1”

AL DPRL

←

Description : Loads the accumulator A with the contents of the direct page register. The contents of the
direct page register are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TDA 7B16 1 2

7751 SERIES SOFTWARE MANUAL4–120

TDB Transfer Direct page register to accumulator B TDB

Function : Transfer

Operation : B ← DPR

When m = “0”

B DPR

←

When m = “1”

BL DPRL

←

Description : Loads the accumulator B with the contents of the direct page register. The contents of the
direct page register are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TDB 4216, 7B16 2 4

7751 SERIES SOFTWARE MANUAL 4–121

TSA Transfer Stack pointer to accumulator A TSA

Function : Transfer

Operation : A ← S

When m = “0”

A S

←

When m = “1”

AL SL

←

Description : Loads the accumulator A with the contents of the stack pointer. The contents of the stack
pointer are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSA 3B16 1 2

7751 SERIES SOFTWARE MANUAL4–122

TSB Transfer Stack pointer to accumulator B TSB

Function : Transfer

Operation : B ← S

When m = “0”

B S

←

When m = “1”

BL SL

←

Description : Loads the accumulator B with the contents of the stack pointer. The contents of the stack
pointer are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSB 4216, 3B16 2 4

7751 SERIES SOFTWARE MANUAL 4–123

TSX Transfer Stack pointer to index register X TSX

Function : Transfer

Operation : X ← S

When x = “0”

X S

←

When x = “1”

XL SL

←

Description : Loads the index register X with the contents of the stack pointer. The contents of the stack
pointer are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSX BA16 1 2

7751 SERIES SOFTWARE MANUAL4–124

TXA Transfer index register X to accumulator A TXA

Function : Transfer

Operation : A ← X

When m = “0” and x = “0”

A X

←

When m = “0” and x = “1”

A XL

00 ←
❊ Under this condition, 0016 is transferred to AH regardless of XH.

When m = “1”

AL XL

←

Description : Loads the accumulator A with the contents of the index register X. The contents of the index
register X are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXA 8A16 1 2

7751 SERIES SOFTWARE MANUAL 4–125

TXB Transfer index register X to accumulator B TXB

Function : Transfer

Operation : B ← X

When m = “0” and x = “0”

B X

←

When m = “0” and x = “1”

B XL

00 ←
❊ Under this condition, 0016 is transferred to AH regardless of XH.

When m = “1”

BL XL

←

Description : Loads the accumulator B with the contents of the index register X. The contents of the index
register X are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXB 4216, 8A16 2 4

7751 SERIES SOFTWARE MANUAL4–126

TXS Transfer index register X to Stack pointer TXS

Addressing mode Syntax Machine code Bytes Cycles

Implied TXS 9A16 1 2

Function : Transfer

Operation : S ← X

When x = “0”

S X

←

When x = “1”

S XL

00 ←
❊ Under this condition, 0016 is transferred to SH regardless of XH.

Description : Loads the stack pointer with the contents of the index register X. The contents of the index
register X are not changed.

Status flags : Not affected.

7751 SERIES SOFTWARE MANUAL 4–127

TXY Transfer index register X to Y TXY

Function : Transfer

Operation : Y ← X

When x = “0”

Y X

←

When x = “1”

YL XL

←

Description : Loads the index register Y with the contents of the index register X. The contents of the index
register X are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXY 9B16 1 2

7751 SERIES SOFTWARE MANUAL4–128

TYA Transfer index register Y to accumulator A TYA

Function : Transfer

Operation : A ← Y

When m = “0” and x = “0”

A Y

←

When m = “0” and x = “1”

A YL

00 ←
❊ Under this condition, 0016 is transferred to AH regardless of YH.

When m = “1”

AL YL

←

Description : Loads the accumulator A with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYA 9816 1 2

7751 SERIES SOFTWARE MANUAL 4–129

TYB Transfer index register Y to accumulator B TYB

Function : Transfer

Operation : B ← Y

When m = “0” and x = “0”

B Y

←

When m = “0” and x = “1”

B YL

00 ←
❊ Under this condition, 0016 is transferred to BH regardless of YH.

When m = “1”

BL YL

←

Description : Loads the accumulator B with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYB 4216, 9816 2 4

7751 SERIES SOFTWARE MANUAL4–130

TYX Transfer index register Y to X TYX

Function : Transfer

Operation : X ← Y

When x = “0”

X Y

←

When x = “1”

XL YL

←

Description : Loads the index register X with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYX BB16 1 2

7751 SERIES SOFTWARE MANUAL 4–131

WIT WaIT WIT

Function : Clock control

Operation : Stop the CPU clock

Description : The WIT instruction stops the internal clock. However, the oscillation of the oscillation circuit
is not stopped. To restart the internal clock, either an interrupt or reset must be performed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied WIT CB16 1 3

7751 SERIES SOFTWARE MANUAL4–132

Function : Exchange

Operation : A B

When m = “0”

A B

←

When m = “1”

AL BL

←

Description : Swaps the contents of the accumulators A and B.

Status flags

IPL : Not affected.

N : Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the accumulator A after the
operation is “1”. Otherwise, cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to “1” when the contents of the accumulator A after the operation is “0”. Otherwise, cleared
to “0”.

C : Not affected.

XAB eXchange accumulator A and B XAB

Addressing mode Syntax Machine code Bytes Cycles

Implied XAB 8916, 2816 2 5

→

→

→←

7751 SERIES SOFTWARE MANUAL 4–133

4.3 Notes for programming

Make sure of the following when programming.

(1) Set an initial value to the stack pointer because it is undefined immediately after removing reset.

Example) LDX #27FH
TXS

(2) Do not set a value other than “0016” to the program bank register and the data bank register. It is because
they are invalid in the single-chip mode.

(3) When performing a decimal operation, in the condition of the decimal mode flag = “1” :

With ADC instruction

Only the carry flag is valid.
The zero, negative, and overflow flags are invalid.

With SBC instruction

Only the carry and zero flags are valid.
The negative and overflow flags are invalid.

Note: Decimal operation can be done only with the ADC and the SBC instructions.

(4) Using a 16-bit immediate data in the condition of the data length flag = “1” (data length : 8 bits), or using an
8-bit immediate data in the condition of the data length flag = “0” (data length : 16 bits) will cause the program
runaway. The same rule is applied to the index register length flag. Accordingly, take care of the condition
of these flags when programming.

(5) The 7751 series can prefetch the instructions using the 3-byte instruction queue buffer. Make sure that when
creating a timer with the software, the cycle number shown in the list of machine instructions is the minimum.
(Refer to Chapter 5.)

(6) When setting a value other than “0016” into the low-order 8 bits of the direct page register (DPRL), the
processing time needs 1 machine cycle longer than when setting “0016”.

(7) The processing speed will deteriorate when a 16-bit data is accessed from an odd address. Allocate a 16-
bit data from an even address when the processing speed is important.

(8) By execution of the PLA instruction, the zero and negative flags will change. When the only accumulator A
is restored by execution of the PUL instruction, the contents of the processor status register will not change.

(9) The PSH instruction can save the program bank register on the stack by setting “1” in bit 6 of the operand.
However, the PUL instruction cannot restore the program bank register.

(10) Any code in the second byte of the BRK instruction will not affect to the CPU.

INSTRUCTIONS
4.3 Notes for programming

7751 SERIES SOFTWARE MANUAL4–134

INSTRUCTIONS
4.3 Notes for programming

MEMO

CHAPTER 5
NUMBER OF

INSTRUCTION CYCLES

5.1 Description
5.2 Points of view

NUMBER OF INSTRUCTION CYCLES

5–2 7751 SERIES SOFTWARE MANUAL

Factor Instruction/Addressing mode

Value of direct page register’s low-order byte (DPRL) Addressing mode using direct page register

Value of data length flag (m) Instructions DIV, DIVS, MPY, MPYS

5.1 Description

5.1 Description
The number of instruction cycles shows instruction execution time with the cycle number of φ.
The number of instruction cycles for execution time of one instruction can be shown as the following:

•Execution time of one instruction (s) = ✕ Instruction cycle number of one instruction

The number of instruction cycles changes depending on the instruction execution condition even when the
same instruction is executed in the same addressing mode.
This paragraph explains change factors of the number of instruction cycles.

5.1.1 CPU instruction execution sequence
The number of cycles which is necessary so that the central processing unit (CPU) can execute an
instruction is shown in Chapter 6 CPU instruction execution sequence for each addressing mode. It is the
number of cycles of φCPU.
Those numbers of cycles are the ideal values; it is assumed to be possible to supply the bus interface unit
(BIU) with the instructions and the data of a necessary number of bytes which the CPU requires then.
Actually, the CPU standby cycle, which is explained in the next paragraph, is generated because the supply
capability of BIU is limited.
With part of instructions or addressing modes, the cycle number of φCPU which is necessary so that the
CPU can execute the instruction changes owing to the factors shown in Table 5.1.1.
Figure 5.1.1 shows an example of the change of the CPU instruction execution sequence.

Table 5.1.1 Change factors of CPU instruction execution sequence

1
φ

DHDL

DPR+ddPC+1

Next
Op Code

Operand
ddNot used Op CodeOp Code Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)
“H”

PG PG PG PG 0016 PG

PC PC+1 PC+2 DPR+dd PC+3

✽1 ✽2

Not used

✽1 This cycle is shortened when DPRL = “0016”.
This cycle is valid when DPRL ≠ “0016”.

✽2 This term is 25 cycles when m = “0”.
This term is 17 cycles when m = “1”.

Note : This is not observed externally because this is the internal operation of the CPU.

0016 or 0116

Fig. 5.1.1 Example of change of the CPU instruction execution sequence (in DIV instruction and direct addressing mode)

NUMBER OF INSTRUCTION CYCLES

5–37751 SERIES SOFTWARE MANUAL

5.1 Description

5.1.2 CPU standby cycle
In the case of Table 5.1.2, the BIU makes the CPU stand by owing to extending the duration at the “L”
level of φ CPU (Refer to 2.2 Bus interface unit”).
In this case, the number of instruction cycles becomes the following:

•Cycle number of φCPU which is necessary so that the CPU can execute the instruction + Cycle number
of CPU standby.

Timing that the BIU makes the CPU stand by and the cycle number of the CPU standby change by the
change of the memory access frequency and the memory access time shown in Table 5.1.3.
As a rule, the more memory access time and the more memory access frequency, the more the CPU
standby cycle increases.

Table 5.1.2 When BIU makes CPU stand by

Standby duration

Standby until BIU places required or more instructions

into the instruction queue buffer.

Standby until the reading is completed.

Standby until to prefetch instructions or write data is

completed.

Item

Being short of instructions in the instruction queue

buffer when the CPU requires them.

BIU reading data.

BIU using bus to prefetch instructions or write data

when the CPU requires data read or data write.

NUMBER OF INSTRUCTION CYCLES

5–4 7751 SERIES SOFTWARE MANUAL

Table 5.1.3 Change factor of cycle number of CPU standby

Number of instructions in

the instruction queue buffer

when beginning to execute

an instruction

The fewer instructions in the instruction queue buffer, the more prefetch frequency.

Notes 1: In the instruction affected by the data length flag (m) and index register length flag (x), in the
condition of m(x) flag = “0”.

2: An instruction is prefetched by one byte when the address accessed first at such as branches of
the program is only an odd address. After that, the instruction is prefetched by two bytes from an
even address during executing instructions continuously.

3: 0 bytes when beginning to execute the program and a branch.
Otherwise, the user cannot select it because it is changed depending on the state of the previous
instruction completion.
3 bytes or less in the case of when the input level of BYTE pin is “L”, 2 bytes or less in the case
of when it is “H”.

Factor Change of memory access time and memory access frequency

Bus cycle The longer bus cycle, the more time of memory access

Input level of BYTE pin ●Access frequency of 16-bit data from an even address at the external area (Note 1)

(External data bus width) “L”: Once

“H”: Twice

●Prefetch unit (frequency) of instructions at the external area

“L”: 2-byte unit (a few of prefetch frequency)

“H”: 1-byte unit (a lot of prefetch frequency)

Access address ●Access frequency of 16-bit data in the case of data bus width = 16 bits (Note 1)

(Beginning address) Even: Once

Odd: Twice

●Prefetch unit (frequency) of instructions in the case of data bus width = 16 bits

“L”: 2-byte unit

“H”: 1-byte unit (Note 2)

5.1 Description

5–5

NUMBER OF INSTRUCTION CYCLES

7751 SERIES SOFTWARE MANUAL

5.2 Points of view

5.2 Points of view
When thinking about the number of instruction cycles as calculation, it is required to concurrently think about
the operation of the CPU and BIU taking the factors of above-mentioned Tables 5.1.1 to 5.1.3 in consideration.
The idea examples of the number of instruction cycles are shown using Figures 5.2.1 – 5.2.3.
Figure 5.2.1 shows a CPU instruction execution sequence (in ASL instruction and direct addressing mode).
Figures 5.2.2 and 5.2.3 show the operation of the CPU and BIU of Figure 5.2.1 with based on φ.

When instructions are executed continuously, the number of the following instruction cycles is affected by
the state of the instruction queue buffer and the bus at the previous instruction’s completion.
Accordingly, examine instructions of that routine continuously in order of execution when you calculate
execution time of one routine.

Fig. 5.2.1 CPU instruction execution sequence (in ASL instruction and direct addressing mode)

PC+2

Operand
dd

Op Code

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

PG PG 0016 0016 or 0116 PG

PC PC+1 DPR+dd

DHDL New DHDL

✽

Not used Next
Op Code

Not used

✽ This cycle is shortened when DPRL = “0016”.
This cycle is valid when DPRL ≠ “0016”.

NUMBER OF INSTRUCTION CYCLES

5–6 7751 SERIES SOFTWARE MANUAL

5.2 Points of view

Fig. 5.2.2 Idea example of number of instruction cycles (1)

CPU

E

Instruction execution condition
•High-speed running, using internal area (The bus cycle is 3 cycles when accessing ROM and 2
cycles when accessing RAM.)

•Data read/write to RAM
•Start address of access: Even address to ROM or RAM
•Number of instructions in the instruction queue buffer at beginning to execute an instruction: 2 bytes

Thinking number of instruction cycles

➀ The CPU fetches an op code in the instruction queue
 buffer. The number of instructions in the instruction
 queue buffer becomes 1 byte.

➁ The CPU fetches an operand in the
 instruction queue buffer. The number
 of instructions in the instruction
 queue buffer becomes 0 byte.

➃ The CPU does not use bus.

➄ Wait until instruction prefetch is completed,
 that is, bus can be used, because next
 operation is data read.

➈ The CPU fetches an op code of next instruction prefetched
 in the instruction queue buffer while the BIU writes the data.
 After that, next instructions are executed. (Writing is performed
 until the 9th cycle. The ASL instruction is completed with 8
 cycles.

1 2 3 4 5 6 7 8 9

➂ The BIU prefetches instructions because the
 number of instructions in the instruction queue
 buffer become 1 byte at the first cycle.

 2 bytes instructions are prefetched at one access
 because the start address of access is an even.
 The instructions are read from the ROM, so that 1
 bus cycle becomes 3 .

➅ Read the data.
 16-bit data is read once because the start address
 of access is an even. The data is read from the
 RAM, so that 1 bus cycle becomes 2 .

➆ The CPU does not use bus. However, The
 BIU does not prefetch instructions because
 the number of instructions in the instruction
 queue buffer is 2 bytes.

➇ Write data. The CPU transfers the data to the BIU and
 specifies the write address.

 The BIU writes it once with 1 bus cycle = 2 as well as
 reading.

CPU operation

Number of instructions
 in the instruction queue
buffer

BIU operation

Op code
fetch

Operand
fetch

Address
calculation Data read Operation Data write

Op code
fetch

12 0 2 1

➈➄➃➁➀

➇➆➅➂

Instruction prefetch Data read Nothing
done

Data write

5–7

NUMBER OF INSTRUCTION CYCLES

7751 SERIES SOFTWARE MANUAL

5.2 Points of view

Fig. 5.2.3 Idea example of number of instruction cycles (2)

In
st

ru
ct

io
n

ex
ec

ut
io

n
co

nd
iti

on
•H

ig
h-

sp
ee

d
ru

nn
in

g,
 u

si
ng

 in
te

rn
al

 a
re

a
(T

he
 b

us
 c

yc
le

 is
 3

 c
yc

le
s

w
he

n
ac

ce
ss

in
g

R
O

M
 a

nd
 2

cy

cl
es

 w
he

n
ac

ce
ss

in
g

R
A

M
.)

•D

at
a

re
ad

/w
rit

e
to

 R
A

M
•S

ta
rt

 a
dd

re
ss

 o
f a

cc
es

s:
 O

dd
 a

dd
re

ss
 to

 R
O

M
 o

r
R

A
M

•N
um

be
r

of
 in

st
ru

ct
io

ns
 in

 th
e

in
st

ru
ct

io
n

qu
eu

e
bu

ffe
r

at
 b

eg
in

ni
ng

 to
 e

xe
cu

te
 a

n
in

st
ru

ct
io

n:
 1

 b
yt

e

T
hi

nk
in

g
nu

m
be

r
of

 in
st

ru
ct

io
n

cy
cl

es

➀
 T

he
 C

P
U

 fe
tc

he
s

an
 o

p
co

de
 in

 th
e

in
st

ru
ct

io
n

qu
eu

e

 b

uf
fe

r.
 T

he
 n

um
be

r
of

 i
ns

tr
uc

tio
ns

 in
 th

e
in

st
ru

ct
io

n

 q
ue

ue
 b

uf
fe

r
be

co
m

es
 0

 b
yt

e.

➂
 T

he
 C

P
U

 s
ta

nd
s

by
 b

ec
au

se
 th

e
nu

m
be

r
of

 i
ns

tr
uc

tio
ns

 in
 th

e

 i

ns
tr

uc
tio

n
qu

eu
e

bu
ffe

r
is

 0
 b

yt
e.

 W
he

n
in

st
ru

ct
io

ns
 a

re

 p

la
ce

d
in

 th
e

in
st

ru
ct

io
n

qu
eu

e
bu

ffe
r,

 th
e

C
P

U
 fe

tc
he

s
an

 o
pe

ra
nd

 in
 th

e
in

st
ru

ct
io

n
qu

eu
e

bu
ffe

r.
 T

he
 n

um
be

r
of

 i
ns

tr
uc

tio
ns

 in
 th

e
in

st
ru

ct
io

n
qu

eu
e

bu
ffe

r
be

co
m

es
 0

 b
yt

e.

➁
 T

he
 B

IU
 p

re
fe

tc
he

s
in

st
ru

ct
io

ns
 b

ec
au

se
 th

e

 n

um
be

r
of

 in
st

ru
ct

io
ns

 in
 th

e
in

st
ru

ct
io

n
qu

eu
e

 b
uf

fe
r

is
 1

 b
yt

e
at

 th
e

cy
cl

e
be

fo
re

 e
xe

cu
tio

n
of

 A
S

L
in

st
ru

ct
io

n.
 1

 b
yt

e
in

st
ru

ct
io

n
is

 p
re

fe
tc

he
d

at
 o

ne
 a

cc
es

s

 b
ec

au
se

 th
e

st
ar

t a
dd

re
ss

 o
f a

cc
es

s
is

 a
n

od
d.

 T
he

 in

st
ru

ct
io

ns
 a

re
 r

ea
d

fr
om

 th
e

R
O

M
, s

o
th

at
 1

 b
us

 c

yc
le

 b
ec

om
es

 3

.
.

➅
 R

ea
d

th
e

da
ta

.
 1

6-
bi

t d
at

a
is

 r
ea

d
w

ith
 tw

ic
e

be
ca

us
e

th
e

st
ar

t
 a

dd
re

ss
 o

f a
cc

es
s

is
 a

n
od

d.
 T

he
 d

at
a

is
 r

ea
d

fr
om

 th
e

R
A

M
, s

o
th

at
 1

 b
us

 c
yc

le
 b

ec
om

es
 2

.

➆
 T

he
 C

P
U

 d
oe

s
no

t u
se

 b
us

. H
ow

ev
er

, T
he

 B
IU

 d
oe

s
no

t p
re

fe
tc

h
in

st
ru

ct
io

ns
 b

ec
au

se

 t

he
 n

um
be

r
of

 in
st

ru
ct

io
ns

 in
 th

e
in

st
ru

ct
io

n

 q
ue

ue
 b

uf
fe

r
is

 2
 b

yt
es

.
➃

 T
he

 C
P

U
 d

oe
s

no
t u

se
 b

us
.

 T
he

 B
IU

 p
re

fe
tc

he
s

in
st

ru
ct

io
ns

 b
ec

au
se

 th
e

nu
m

be
r

of

 in
st

ru
ct

io
ns

 in
 th

e
in

st
ru

ct
io

n
qu

eu
e

bu
ffe

r
is

 0
 b

yt
e.

 2
 b

yt
es

 in
st

ru
ct

io
ns

 a
re

 p
re

fe
tc

he
d

at
 o

ne
 a

cc
es

s
be

ca
us

e
 th

e
st

ar
t a

dd
re

ss
 o

f a
cc

es
s

is
 a

n
ev

en
.

➇
 W

rit
e

da
ta

. T
he

 C
P

U
 tr

an
sf

er
s

th
e

da
ta

 to
 th

e
B

IU
 a

nd

 s

pe
ci

fie
s

th
e

w
rit

e
ad

dr
es

s.
 T

he
 B

IU
 w

rit
es

 it
 w

ith
 tw

ic
e

an
d

1
bu

s
cy

cl
e

=
 2

 a
s

 w

el
l a

s
re

ad
in

g.

➄
 W

ai
t u

nt
il

in
st

ru
ct

io
n

pr
ef

et
ch

 is
 c

om
pl

et
ed

,

 t
ha

t i
s,

 b
us

 c
an

 b
e

us
ed

, b
ec

au
se

 n
ex

t

 o
pe

ra
tio

n
is

 r
ea

d.

➈
 T

he
 C

P
U

 fe
tc

he
s

an
 o

p
co

de
 o

f n
ex

t i
ns

tr
uc

tio
n

 p
re

fe
tc

he
d

in
 th

e
in

st
ru

ct
io

n
qu

eu
e

bu
ffe

r
w

hi
le

 th
e

 B

IU
 w

rit
es

 th
e

da
ta

. A
fte

r
th

at
, n

ex
t i

ns
tr

uc
tio

ns
 a

re

 e
xe

cu
te

d.
 (

W
rit

in
g

is
 p

er
fo

rm
ed

 u
nt

il
th

e
15

th
 c

yc
le

.
 T

he
 A

S
L

in
st

ru
ct

io
n

is
 c

om
pl

et
ed

 w
ith

 1
2

cy
cl

es
.

C
P

U

EC
P

U
 o

pe
ra

tio
n

N
um

be
r o

f i
ns

tru
ct

io
ns

 in
 th

e
in

st
ru

ct
io

n
qu

eu
e

bu
ffe

r

B
IU

 o
pe

ra
tio

n

O
p

co
de

fe

tc
h

O
pe

ra
nd

 fe
tc

h
D

at
a

re
ad

O
pe

ra
tio

n
D

at
a

w
rit

e
O

p
co

de

fe
tc

h

➈
➄

➃
➁

➀

➇
➆

➅
➂

In
st

ru
ct

io
n

pr
ef

et
ch

A
dd

re
ss

ca

lc
ul

at
io

n In
st

ru
ct

io
n

pr
ef

et
ch

D

at
a

re
ad

N
ot

hi
ng

do

ne
D

at
a

w
rit

e

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

1
1

0
0

2
1

NUMBER OF INSTRUCTION CYCLES

5–8 7751 SERIES SOFTWARE MANUAL

5.2 Points of view

5.2.1 Using internal area
Tables 5.2.1 – 5.2.8 show the number of instruction cycles for each instruction when using the internal
area.
That value of the table is calculated by almost matching the number of instructions in the instruction queue
buffer at beginning to execute the instruction to that at its completion. Accordingly, execution cycles of the
routine can be estimated by adding the number of instruction cycles of each instruction.
However, evaluate it with an actual system when an accurate value is necessary because it is a rough
estimate.
The instruction execution condition of Tables 5.2.1 – 5.2.8 is described as the following.

(1) Instruction execution condition of Tables 5.2.1 – 5.2.4
●Low-order byte of the direct page register (DPRL) = “0016”
●Low-speed running (The bus cycle is 2φ when the ROM is accessed or when the RAM is done)
●Data read/write to the RAM
●Start address of access: Even address to the ROM or the RAM
●The number of instructions in the instruction queue buffer at beginning to execute an instruction: 1 byte

(However, add “time required to place the first byte of next instruction – 1 cycle” to it when the
instruction execution is completed at the state where there are no instructions in the instruction
queue buffer.

(2) Instruction execution condition of Tables 5.2.5 – 5.2.8
●Low-order byte of the direct page register (DPRL) = “0016”
●High-speed running (The bus cycle is 3φ when the ROM is accessed, and 2φ when the RAM is done)
●Data read/write to the RAM
●Start address of access: Even address to the ROM or the RAM
●The number of instructions in the instruction queue buffer at beginning to execute an instruction: 1 byte

(However, add “time required to place the first byte of next instruction – 1 cycle” to it when the
instruction execution is completed at the state where there are no instructions in the instruction
queue buffer.

5–9

NUMBER OF INSTRUCTION CYCLES

7751 SERIES SOFTWARE MANUAL

5.2 Points of view

IM
P

IM
M A D
IR

D
IR

, b
D

IR
, X

D
IR

, Y
(D

IR
)

(D
IR

,X
)

(D
IR

),
Y

L(
D

IR
)

L(
D

IR
),
 Y

A
B

S
A

B
S

, b
A

B
S

, X
A

B
S

, Y
A

B
L

A
B

L,
 X

(A
B

S
)

L(
A

B
S

)
(A

B
S

, X
)

S
T

K
R

E
L

D
IR

, b
, R

A
B

S
, b

, R
S

R
(S

R
),

Y
B

LK B
LK

(S
R

),
Y

S
R

Addressing
mode

ADC

AND

ASL

ASR

BBC

BBS

BCC

BCS

BEQ

BMI

BNE

BPL

BRA
BRK
BVC

BVS

CLB
CLC
CLI
CLM
CLP
CLV
CMP

CPX
CPY
DEC

DEX
DEY
DIV m = “0”

3 4 6 6 8
12
108 8 5 6 6 6 8

5 7 7 9 9 10

3 4 6 6 8
12
108 8 5 6 6 6 8

5 7 7 9 9 10

7 8 7 82
4

9 9 10 114

4

6 9
7 10

6 9
7 10

9 11
8 9
9 11
8 9

5
4
5
4

5
4
5
4

5
4
5
4
4

5
4
5
4

16

9 9
2
2
2

4
2

3 4 6 6 8 8 8 10 5 6 6 6 8
5 7 7 9 9 10 11 12 7 9 9 9 9 9

3 4 5
3 4 5

2 7 78 8

4
2
2

30
22

32
24

32
24

34
26

34
26

35
27

36
28

37
29

32
24

34
26

34
26

34
26

34
26

32
24

35
27

Instruction
symbol M

ul
tip

lie
d

ac
cu

m
ul

at
io

n

Accumulator A
Accumulator B
Accumulator A
Accumulator B

Accumulator A
Accumulator B
Accumulator A
Accumulator B

Branch
No branch

Branch
No branch
Branch
No branch

Branch
No branch

Branch

No branch

Branch
No branch

Branch

No branch
Branch
No branch

Branch
No branch

Branch
No branch

Accumulator A
Accumulator B

Accumulator A
Accumulator B

m = “1”

Table 5.2.1 Number of instruction cycles in low-speed running (1)

11 7 9 9 9 9

9 9 9 911 7

6 9

7

NUMBER OF INSTRUCTION CYCLES

5–10 7751 SERIES SOFTWARE MANUAL

5.2 Points of view

34
26

37
29

6
7

9

10

3 5 5 7 7
8 9 9

3
5

4
7

6
7

6
9

8
9

8
10

8
11

10
12

5
7

6 6
9

6
9

8
9

6
7

9
10

32
24

34
26

34
26

36
28

36
28

37
29

38
30

39
31

34
26

36
28

36
28

36
28

36
28

3
5

4
7

6
7

6
9

8
9

8
10

8
11

10

12
5
7

6
9

6
9

6
9

8
9

4
4
4

4
2 7 8 7 8

2
2

4

9
5 7 7 7

5
3 4 6 5 6

3 4 6 5 6
7 8 7 82

4

IM
P

IM
M A D
IR

D
IR

, b
D

IR
, X

D
IR

, Y
(D

IR
)

(D
IR

,X
)

(D
IR

),
Y

L(
D

IR
)

L(
D

IR
),

 Y
A

B
S

A
B

S
, b

A
B

S
, X

A
B

S
, Y

A
B

L
A

B
L,

 X
(A

B
S

)
L(

A
B

S
)

(A
B

S
, X

)
S

T
K

R
E

L
D

IR
, b

, R
A

B
S

, b
, R

S
R

(S
R

),
Y

B
LK B
LK

(S
R

),
Y

S
R

DIVS

EOR

EXTS

EXTZ

INC

INX
INY
JMP
JSR
LDA

LDM
LDT
LDX
LDY
LSR

MPY

MPYS

MVN

MVP

NOP
ORA

PEA
PEI

m = “0”

9

5

11

5

11

13 15 15 17 17 18 19 20 15 17 17 17 15 1817
8 11 11 13 13 14 15 16 11 13 13 13 11 1413

13 15 15 17 17 18 19 20 15 17 17 17 15 1817
8 11 11 13 13 14 15 16 11 13 13 13 11 1413

17
13
17
13

2

3
5

4
7

6
7

6
9

8
9

8
10

8
11

10
12

5
7

6 6
9

6
9

8
9

6
7

9
109

5
7

M
ul

tip
lie

d
ac

cu
m

ul
at

io
n

m = “1”

Addressing
mode

Instruction
symbol

Table 5.2.2 Number of instruction cycles in low-speed running (2)

Accumulator A
Accumulator B
Accumulator A

Accumulator B
Accumulator A
Accumulator B
Accumulator A

Accumulator B

Accumulator A
Accumulator B

Accumulator A
Accumulator B

m = “0”
m = “1”
m = “0”
m = “1”

0 byte transfer

1 byte transfer
2 or more even bytes transfer

3 or more odd bytes transfer

0 byte transfer

1 byte transfer
2 or more even bytes transfer

3 or more odd bytes transfer

Accumulator A
Accumulator B

✽1

✽2

✽3

✽4

✽ 1: 5 + ✕ 7 (i = number of transfer bytes)
i
2

✽ 2: 11 + ✕ 7 (i = number of transfer bytes)
i – 1

2

✽ 3: 9 + ✕ 7 (i = number of transfer bytes)
i
2

✽ 4: 17 + ✕ 7 (i = number of transfer bytes)i – 1
2

5–11

NUMBER OF INSTRUCTION CYCLES

7751 SERIES SOFTWARE MANUAL

5.2 Points of view

IM
P

IM
M A D
IR

D
IR

, b
D

IR
, X

D
IR

, Y
(D

IR
)

(D
IR

,X
)

(D
IR

),
Y

L(
D

IR
)

L(
D

IR
),

 Y
A

B
S

A
B

S
, b

A
B

S
, X

A
B

S
, Y

A
B

L
A

B
L,

 X
(A

B
S

)
L(

A
B

S
)

(A
B

S
, X

)
S

T
K

R
E

L
D

IR
, b

, R
A

B
S

, b
, R

B
LK

(S
R

),
 Y

S
R

PHG
PHP
PHT
PHX
PHY
PLA
PLB
PLD
PLP
PLT
PLX
PLY
PSH
PUL
RMPA

RLA
ROL

ROR

RTI
RTL
RTS

SBC

SEB
SEC
SEI
SEM
SEP
STA

PER
PHA
PHB
PHD

5
4
6
4
3
4
3
4
4
5
7
5
6
6
5
5

2 7 8 7 8
4
2 7 8 7 8
4

10
8
6

3 4 6 6 8 8 8 10 5 6 6 6 8 6 9
5 7 7 9 9 10 11 12 7 9 9 9 9 7 10

99
2
2
2

3
5 5 7 8 7 9 9 5 5 5 7 7 5 9
6 7 9 9 10 11 12 8 8 8 8 9 7 10

m = “0”
m = “1”

Addressing
mode

Instruction
symbol

Table 5.2.3 Number of instruction cycles in low-speed running (3)

M
ul

tip
lie

d
ac

cu
m

ul
at

io
n

✽4

✽ 1: 11 + 2 i1 + i2
(i1 = number of registers saved among A, B, X, Y, DPR and PS; i2 = number of registers saved of DT and PG)

✽3

✽2

✽1

✽5

Accumulator A
Accumulator B
Accumulator A
Accumulator B

Accumulator A
Accumulator B

Accumulator A

Accumulator B

✽ 2: 12 + 3 i1 + 4 i2
(= number of registers restored among A, B, X, Y, DT and PS; i2 = 1 when restoring DPR and 0 when not doing)

✽ 3: 6 + 20 i (i = number of repeated operations)

✽ 4: 6 + 16 i (i = number of repeated operations)

✽ 5: 7 + i (i = number of rotations)

i1

NUMBER OF INSTRUCTION CYCLES

5–12 7751 SERIES SOFTWARE MANUAL

5.2 Points of view

IM
P

IM
M A D
IR

D
IR

, b
D

IR
, X

D
IR

, Y
(D

IR
)

(D
IR

,X
)

(D
IR

),
Y

L(
D

IR
)

L(
D

IR
),

 Y
A

B
S

A
B

S
, b

A
B

S
, X

A
B

S
, Y

A
B

L
A

B
L,
 X

(A
B

S
)

L(
A

B
S

)
(A

B
S

, X
)

S
T

K
R

E
L

D
IR

, b
, R

A
B

S
, b

,
R

S
R

(S
R

),
Y

B
LK B
LK

(S
R

),
Y

S
R

TAD
TAS
TAX
TAY
TBD
TBS
TBX
TBY
TDA
TDB
TSA
TSB
TSX
TXA
TXB
TXS
TXY
TYA
TYB
TYX
WIT
XAB

STP
STX
STY

–
5
5

5
5

5
5

2
2
2
2
4
4
4
4
2
4
2
4
2
2
4
2
2
2
4
2

5

Addressing
mode

Instruction
symbol M

ul
tip

lie
d

ac
cu

m
ul

at
io

n

Table 5.2.4 Number of instruction cycles in low-speed running (4)

–

5–13

NUMBER OF INSTRUCTION CYCLES

7751 SERIES SOFTWARE MANUAL

5.2 Points of view

IM
P

IM
M A D

IR
D

IR
, b

D
IR

, X
D

IR
, Y

(D
IR

)
(D

IR
,X

)
(D

IR
),

Y
L(

D
IR

)
L(

D
IR

),
 Y

A
B

S
A

B
S

, b
A

B
S

, X
A

B
S

, Y
A

B
L

A
B

L,
 X

(A
B

S
)

L(
A

B
S

)
(A

B
S

, X
)

S
T

K
R

E
L

D
IR

, b
, R

A
B

S
, b

, R

B
LK

(S
R

),
 Y

S
R

ADC

AND

ASL

ASR

BBC

BBS

BCC

BCS

BEQ

BMI

BNE

BPL

BRA
BRK

BVC

BVS

CLB
CLC
CLI
CLM
CLP
CLV
CMP

CPX
CPY
DEC

DEX
DEY

DIV

5 5 8 7 10

13

1210 9 7 8 8 8 11 8 11

6 8 8 10 10 11 12 8 11 11 11 11 8 11

5 5 8 7 10
13
1210 9 7 8 8 8 11 8 11

6 8 8 10 10 11 12 8 11 11 11 11 8 11
9 10 9 102

4
10 10 12 134

4
13 16
10 12

13 16
10 12

8
5

8
5

8
5

8
5

8
5

8
5

8
5

8
5

18

12

8

12
2
2
2

5
2

5 5 8 7 10
13
1210 9 7 8 8 8 11 8 11

6 8 8 10 10 11 12 8 11 11 11 11

31 33 33 35 35

30

3836 37 33 36 36 36 36 33 36

23 25 25 27 27 28 29 25 28 28 28 28 28

5 5 7
5 5 7

9 10 9 102
4

2
2

M
ul

tip
lie

d
ac

cu
m

ul
at

io
n

Addressing
mode

Instruction
symbol

Accumulator A
Accumulator B

Accumulator A
Accumulator B
Accumulator A
Accumulator B
Accumulator A

Accumulator B
Branch
No branch

Branch
No branch

Branch

No branch

Table 5.2.5 Number of instruction cycles in high-speed running (1)

Branch
No branch

Branch
No branch
Branch
No branch

Branch
No branch
Branch
No branch

Branch
No branch

Branch
No branch

m = “0”

Accumulator A
Accumulator B

Accumulator A
Accumulator B

m = “1”

8 11

25

NUMBER OF INSTRUCTION CYCLES

5–14 7751 SERIES SOFTWARE MANUAL

5.2 Points of view

IM
P

IM
M A D

IR
D

IR
, b

D
IR

, X
D

IR
, Y

(D
IR

)
(D

IR
,X

)
(D

IR
),

Y
L(

D
IR

)
L(

D
IR

),
 Y

A
B

S
A

B
S

, b
A

B
S

, X
A

B
S

, Y
A

B
L

A
B

L,
 X

(A
B

S
)

L(
A

B
S

)
(A

B
S

, X
)

S
T

K
R

E
L

D
IR

, b
, R

A
B

S
, b

, R

B
LK

(S
R

),
Y

S
R

DIVS

EOR

EXTS

EXTZ

INC

INX
INY
JMP
JSR

LDA

LDM
LDT
LDX
LDY
LSR

MPY

MPYS

MVN

MVP

NOP
ORA

PEA
PEI

6
12

6
12

35 35 37 37

32

4038 39 35 38 38 38 35 38
27 27 29 29 30 31 27 30 30 30 30 27 30

33
25
5 5 8 7 10

13
1210 9 7 8 8 8 11

6 8 8 10 10 11 12 8 11 11 11 11
8 11
8 11

4
4

4
4

9 10 9 102

4
2
2

5 8 7 11 10
10 12 12

5 5 8 7 10
13
1210 9 7 8 8 8 11

6 8 8 10 10 11 12 8 11 11 11 11
8 11
8 11

7 10 10 10
5
5 5 8 7 8

5 5 8 7 8
2 9 10 9 10

4
14 16 16 18 18

17
2119 20 16 19 19 19 19

10 12 12 14 14 15 16 12 15 15 15 15
16 19
12 15

14 16 16 18 18
17
2119 20 16 19 19 19 19

10 12 12 14 14 15 16 12 15 15 15 15
16 19
12 15

2

5 5 8 7 10
13
1210 9 7 8 8 8 11

6 8 8 10 10 11 12 8 11 11 11 11
8 11
8 11

7
9

M
ul

tip
lie

d
ac

cu
m

ul
at

io
n

Table 5.2.6 Number of instruction cycles in high-speed running (2)

m = “0”
m = “1”

Addressing
mode

Instruction
symbol

Accumulator A
Accumulator B
Accumulator A
Accumulator B

Accumulator A
Accumulator B
Accumulator A
Accumulator B

Accumulator A
Accumulator B

Accumulator A
Accumulator B

m = “0”
m = “1”
m = “0”
m = “1”

0 byte transfer
1 byte transfer

2 or more even bytes transfer

3 or more odd bytes transfer

0 byte transfer
1 byte transfer

2 or more even bytes transfer
3 or more odd bytes transfer

Accumulator A
Accumulator B

✽1

✽2

✽3

✽4

✽ 1: 6 + ✕ 7 (i = number of transfer bytes)
i
2

✽ 2: 12 + ✕ 7 (i = number of transfer bytes)
i – 1
2

✽ 3: 10 + ✕ 7 (i = number of transfer bytes)
i
2

✽ 4: 18 + ✕ 7 (i = number of transfer bytes)
i – 1
2

38

5–15

NUMBER OF INSTRUCTION CYCLES

7751 SERIES SOFTWARE MANUAL

5.2 Points of view

IM
P

IM
M A D
IR

D
IR

, b
D

IR
, X

D
IR

, Y
(D

IR
)

(D
IR

,X
)

(D
IR

),
Y

L(
D

IR
)

L(
D

IR
),

 Y
A

B
S

A
B

S
, b

A
B

S
, X

A
B

S
, Y

A
B

L
A

B
L,

 X
(A

B
S

)
L(

A
B

S
)

(A
B

S
, X

)
S

T
K

R
E

L
D

IR
, b

, R
A

B
S

, b
, R

B
LK

(S
R

),
Y

S
R

PHG
PHP
PHT
PHX
PHY
PLA
PLB
PLD
PLP
PLT
PLX
PLY
PSH
PUL
RMPA

RLA
ROL

ROR

RTI
RTL
RTS
SBC

SEB
SEC
SEI
SEM
SEP
STA

PER
PHA
PHB
PHD

7
4
7
4
4
4
4
4
4
5
8
5
6
6
5
5

9 10 9 102
4

9 109 102
4

11
9
7

5 5 8 7 10
13
1210 9 7 8 8 8 11 8 11

6 8 8 10 10 12 8 11 11 11 11 8 11

12 12
2
2
2

4
7 7 9 10

13
119 11 7 7 7 10 10 7 11

7 7 10 10 11 12 10 10 10 10 10 7 11

Table 5.2.7 Number of instruction cycles in high-speed running (3)

M
ul

tip
lie

d
ac

cu
m

ul
at

io
n

m = “0”
m = “1”

Addressing
mode

Instruction
symbol

Accumulator A
Accumulator B
Accumulator A
Accumulator B

Accumulator A

Accumulator B

Accumulator A
Accumulator B

✽4

✽3

✽2

✽1

✽5

✽ 1: 12 + 2 i1 + i2
(i 1 = number of registers saved among A, B, X, Y, DPR and PS; i2 = number of registers saved of DT and PG)

✽ 2: 14 + 3 i1 + 4 i2
(i 1 = number of registers restored among A, B, X, Y, DT and PS; i2 = 1 when restoring DPR and 0 when not doing)

✽ 3: 6 + 20 i (i = number of repeated operations)
✽ 4: 6 + 16 i (i = number of repeated operations)

✽ 5: 8 + i (i = number of rotations)

11

NUMBER OF INSTRUCTION CYCLES

5–16 7751 SERIES SOFTWARE MANUAL

5.2 Points of view

IM
P

IM
M A D
IR

D
IR

, b
D

IR
, X

D
IR

, Y
(D

IR
)

(D
IR

,X
)

(D
IR

),
Y

L(
D

IR
)

L(
D

IR
),

 Y
A

B
S

A
B

S
, b

A
B

S
, X

A
B

S
, Y

A
B

L
A

B
L,

 X
(A

B
S

)
L(

A
B

S
)

(A
B

S
, X

)
S

TK
R

E
L

D
IR

, b
, R

A
B

S
, b

, R
S

R
(S

R
),

Y
B

LK B
LK

(S
R

),
Y

S
R

TAD
TAS
TAX
TAY
TBD
TBS
TBX
TBY
TDA
TDB
TSA
TSB
TSX
TXA
TXB
TXS
TXY
TYA
TYB
TYX
WIT
XAB

STP
STX
STY

–

7
7

7
7

7
7

2

2
2
2

4
4
4
4
2
4
2
4
2
2
4
2
2
2
4
2
–

5

Table 5.2.8 Number of instruction cycles in high-speed running (4)

M
ul

tip
lie

d
ac

cu
m

ul
at

io
n

Addressing
mode

Instruction
symbol

CHAPTER 6
CPU INSTRUCTION
E X E C U T I O N S E -
QUENCE FOR EACH
ADDRESSING MODE

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODE

7751 SERIES SOFTWARE MANUAL6–2

The following are the CPU instruction execution sequences for each addressing mode. The execution
sequences shown here describe the internal operation of the CPU. Accordingly, the signals are all CPU
internal signals, and cannot be observed from outside. The CPU internal operation, the actual execution
time, and the relation between signals that can be externally checked are described in “Chapter 5 NUMBER
OF INSTRUCTION CYCLES”.
The accumulator used in the instructions in the CPU instruction execution sequence is accumulator A. When
accumulator B is used, the execution cycle has the two φCPU more of a “4216” that indicates accumulator B,
and an internal processing cycle added at the front. (Refer to the figure on page 6–4.)
In the cases of instructions ASR, EXTS and EXTZ, however, the number of cycles using accumulator B is
the same.
The number of φCPU cycles differs in the addressing mode that uses the direct page register, according to
whether the low-order 8 bits (DPRL) are “0016” or others. The number of cycles when DPRL = “0016” is 1
φCPU cycle (address calculation cycle) less than that when DPRL “0016”.
The number of cycles differs in the PSH and PUL instructions according to the number and type of registers
stored in (restored from) the stack.
The number of cycles differs in the block transfer instructions (MVN, MVP), according to the number of a
transfer data. The following table shows the signals and the symbols indicating the contents.

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODE

7751 SERIES SOFTWARE MANUAL 6–3

Symbol

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

PG

PC

DT

DPR

DPRL

S

A

B

X

Y

PS

m

x

ADH

ADMADL

DATA

New DATA

DHDL

DL

imm

dd

rr

rrHrrL

nn

hh

mmll

Description

CPU basic cycle

High-order 8 bits of the CPU internal address bus.

Low-order 16 bits of the CPU internal address bus.

The CPU internal data bus.
__

R/W signal to the bus interface unit.

Contents of program bank register just before the instruction is executed.

Contents of program counter just before the instruction is executed.

Contents of data bank register just before the instruction is executed.

Contents of direct page register just before the instruction is executed.

Contents of the low-order 8 bits of direct page register just before the instruction is executed.

Contents of stack pointer just before the instruction is executed.

Contents of accumulator A just before the instruction is executed. Its data length is determined

by the m flag.

Contents of accumulator B just before the instruction is executed. Its data length is determined

by the m flag.

Contents of index register X just before the instruction is executed. Its data length is determined

by the x flag.

Contents of index register Y just before the instruction is executed. Its data length is determined

by the x flag.

Contents of processer status register just before the instruction is executed.

Contents of the data length flag just before the instruction is executed.

Contents of the index register length flag just before the instruction is executed.

The valid address high-order 8 bits at indirect addressing modes.

The valid address low-order 16 bits at indirect addressing modes.

8 bits or 16 bits data. The data length is determined by the m flag or x flag.

The data, which is read, modified.

16 bits data

8 bits data

8 bits or 16 bits immediate value

Displacement to DPR (8 bits)

Displacement to PC (signed 8 bits)

Displacement to PC (signed 16 bits)

Displacement to S (8 bits)

The high-order 8 bits address indicated by operand direcly.

The low-order 16 bits address indicated by operand direcly.

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODE

7751 SERIES SOFTWARE MANUAL6–4

Variation of execution cycles according to used accumulator

ADC instruction ; Immediate addressing mode

<<Using accumulator A>>
Mnemonic : ADC A,#1234H Machine code : 6916 3416 1216

 <<Using accumulator B>>
Mnemonic : ADC B,#1234H Machine code : 4216 6916 3416 1216

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

PG PG PG

PC+3PC+1PC

6916 123416

Op Code Operand

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

PG PG PG

PC+1PC+1PC

4216

PG PG

PC+2 PC+4

6916 123416

Op Code Op Code Operand

 2 CPU

Not used

7751 SERIES SOFTWARE MANUAL 6–5

Implied

Instructions : TBD, TBS, TBX, TBY, TDB, TSB, TXB, TYB

Timing :

“H”

PG PG PG

PC+1PC+1PC

Op Code

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

Not used
Next

Op Code

Instructions : CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP,
SEC, SEI, SEM, TAD, TAS, TAX, TAY, TDA, TSA,
TSX, TXA, TXS, TXY, TYA, TYX

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC+1PC

PG PG

PC+2 PC+2

Next
Op Code

Not usedOp CodeNot usedOp Code

7751 SERIES SOFTWARE MANUAL6–6

Implied

Instructions : XAB

Timing :

Instructions : STP, WIT

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC+1PC

Op Code Not used Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC+1PC

PG

PC+2PC+2

PG

Op Code Not used Op Code Not used Not used
Next

Op Code

7751 SERIES SOFTWARE MANUAL 6–7

Implied

Instructions : RTS

Timing :

Instructions : RTL

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 PG

S+1 ADMADL

ADMADLOp Code Not used Next
Op Code

Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016

ADMADLS+1

ADMADL

ADH

ADH

S+3

Op Code Not used Not used Next
Op Code

7751 SERIES SOFTWARE MANUAL6–8

Implied

Instructions : RTI

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016

S+1 S+3 ADMADL

ADHDHDL ADMADL

ADH

Op Code Not used Not used
Next

Op Code

S+5

7751 SERIES SOFTWARE MANUAL 6–9

Implied

Instructions : BRK

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

PG PG

PC+1PC FFFE16FFFF16 FFFC16 S

PG

0016

S–2

0016

FFFA16S–4 ADMADL

PC+2 PS ADMADL

0016 0016

Not used
Next

Op Code

Not usedNot usedNot usedNot usedNot usedOperandOp Code

Note: The operand which is fetched at the 2nd cycle is 1 byte. Whatever it contains is available.

7751 SERIES SOFTWARE MANUAL6–10

Immediate

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : LDX, LDY, CPX, CPY

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+3(2)PC+1PC

Operand
imm

m=“0”

Op Code
Next

Op Code

Notes 1: The operand which is fetched at the 2nd cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1” .

“H”

PG PG PG

PC+3(2)PC+1PC

Operand
imm

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

Op Code Next
Op Code

Notes 1: The operand which is fetched at the 2nd cycle is as follows:
 When x=“0”, 2 bytes
 When x=“1”, 1 byte
 2: “()” shows the case of x=“1”.

x=“0”

7751 SERIES SOFTWARE MANUAL 6–11

Immediate

Instructions : LDT

Timing :

Instructions : RLA

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+2

Operand
imm

PG

PC+3

PG

PC+1

imm

Op Code

Note: The operand at the 4th cycle is 1 byte.

Op Code
Next

Op CodeNot used Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG PG

PC+2

Operand
imm

PC+1

PG

imm

Notes 1: This figure is an example shifted by 1 bit.
 When 2 or more bits are shifted, the cycle “ ” is repeated by each shift times.
 When 0 bit is shifted (not shifted), the cycle “ ” is shortened.
 2: The operand which is fetched at the 4th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 3: “()” shows the case of m=“1”.

m=“0”

Op Code Next
Op Code

Not used Op Code Not used Not used Not used

imm–1 PC+4(3)

7751 SERIES SOFTWARE MANUAL6–12

Immediate

Instructions : SEP

Timing :

Instructions : CLP

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+2

Note: The operand at the 2nd cycle is 1 byte.

Operand
immOp Code

Next
Op CodeNot used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+2?

Operand
imm

Op Code
Next

Op Code

Note: The operand at the 2nd cycle is 1 byte.

Not used Not used

7751 SERIES SOFTWARE MANUAL 6–13

Immediate

Instructions : DIV, DIVS, MPY, MPYS

Timing :

(CPU)

m= “0” m = “1”

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+ 2

PGPG

PC+1

PG

PC+4(3)PC+2

Operand
imm

Op Code Next
Op Code

Notes 1: The operand which is fetched at the 4th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.
 3: The cycle number during “✽” is shown as the following table:

Op CodeNot used Not used

Cycle number
Instruction

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

m=“0” ✽

7751 SERIES SOFTWARE MANUAL6–14

Instructions : DIV, DIVS (case of zero division)

Timing :

Immediate

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+ 1PC PC+ 1

PG PGPG

PC+ 2PC+ 2 FFFF16 FFFE16

0016

S

0016

FFFC16S–2 S–4

0016

S–4

PG
PC
+4(3) PS

m=“0”

Operand
imm

Op Code

Next
Op Code

Notes 1: The operand which is fetched at the 4th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

Not used Op Code Not used Not usedNot used Not used Not used Not used

Not used ADMADL

ADMADL

7751 SERIES SOFTWARE MANUAL 6–15

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Instructions : ASR, EXTS, EXTZ

Timing :

Accumulator

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC PC+1

Op Code
Next

Op CodeNot used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC PC+2

PG PG

PC+1 PC+2

Op Code
Next

Op CodeNot usedNot usedOp Code

7751 SERIES SOFTWARE MANUAL6–16

Instructions : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC

Timing :

Instructions : LDM

Timing :

Direct

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116 PG

DPR+dd PC+2

DATA

0016

DPRL “0016”
When DPRL=“0016”, this cycle is shortened.

Operand
dd

Op Code Next
Op Code

Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116

DPR+dd

imm

PC+4(3)

PG 0016 PG

PC+2 ?

When DPRL=“0016”, this cycle is shortened.

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 5th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

m=“0”, DPRL “0016”

Operand
dd

Op Code Next
Op Code

Not usedOperand
imm

7751 SERIES SOFTWARE MANUAL 6–17

Instructions : STA, STX, STY

Timing :

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Direct

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+2

0016 PG

DPR+dd

0016 or 0116

DATA

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Operand
dd

Op Code
Next

Op CodeNot used Not used
New

DATA

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

A(X)(Y)

PC+2

0016 PG

DPR+dd

0016 or 0116

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Operand
dd

Op Code Next
Op Code

Not used Not used

6–18 7751 SERIES SOFTWARE MANUAL

Instructions : ASR

Timing :

Direct

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+3PC+1

PG

DPR+dd

0016 or 0116PG 0016

PC+2

DATA

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Operand
ddOp Code

Next
Op CodeNot used Op Code Not used Not used New

DATA

6–197751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Direct

(CPU)
m =“0” m =“1”

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG 0016 or 0116

PC+1PC DPR+dd

PGPG

PC+1

PG

PC+3

PG 0016

PC+2

DATA

DPR+
dd

Operand
dd

Op Code Next
Op Code

Note: The cycle number during “✽” is shown as the following table:

Op CodeNot used Not used

Cycle number
Instruction

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used

✽

6–20 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Direct

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+1

PG 0016 or 0116PG

DPR+ ddPC+2 FFFF16 FFFE16

0016

DATAOperand
dd

Op Code Not used Not used

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not usedOp Code Not used Not used Not used Not used Not used

Next
Op CodeNot used

6–217751 SERIES SOFTWARE MANUAL

Instructions : CLB, SEB

Timing :

Direct Bit

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC DPR+dd

DATA

PG

PC+2

0016 or 0116

PC+4(3)

PG0016

?

When DPRL=“0016”, this cycle is shortened.

Notes 1: The operand which is fetched at the 3rd cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

m=“0”, DPRL “0016”

Operand
dd

Op Code Next
Op CodeNot used

Operand
imm

Not used New
DATA

suzuki_tadahiro

6–22 7751 SERIES SOFTWARE MANUAL

Instructions : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing :

Instructions : LDM

Timing :

Direct Indexed X

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116
0016, 0116
or 02 16

DPR+dd+X

DATA

0016 PG

PC+2

When DPRL=“0016”, this cycle is shortened.DPRL “0016”

Operand
dd

Op Code
Next

Op CodeNot used Not used

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

imm

PC+4(3)

PG PG0016 or 01160016

PC+2 ?

0016, 0116
or 0216

DPR+dd+X?

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 6th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

Operand
dd

Op Code
Next

Op CodeNot used
Operand

imm
Not used

m=“0”, DPRL “0016”
When DPRL=“0016”, this cycle is shortened.

6–237751 SERIES SOFTWARE MANUAL

Instructions : STA, STY

Timing :

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Direct Indexed X

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC DPR+dd+X

DATA

0016

PC+1

0016, 0116 or 0216

PC+2

PG0016 or 0116

Operand
dd

Op Code Next
Op CodeNot used Not used Not used

New
DATA

DPRL “0016”
When DPRL=“0016”, this cycle is shortened.

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

PG PG

PC

A(Y)

PC+2

0016 PG0016 or 0116

PC+1

0016, 0116 or 0216

DPR+dd+X

When DPRL=“0016”, this cycle is shortened.
DPRL “0016”

Operand
dd

Op Code
Next

Op CodeNot used Not used Not used

“H”

6–24 7751 SERIES SOFTWARE MANUAL

Instructions : ASR

Timing :

Direct Indexed X

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

PG PG

PC+1PC

PG

PC+3PC+1

PG

DPR+dd + X

0016, 0116 or 0216PG 0016

PC+2

DATA

0016 or
0116

When DPRL=“0016”, this cycle is shortened.
 DPRL “0016”

Operand
dd

Op Code
Next

Op CodeNot used Op Code Not used Not used Not used
New

DATA

“H”

6–257751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Direct Indexed X

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG 0016 , 0116 or 0216

PC+1PC DPR+
dd+X

PGPG

PC+1

PG

PC+3

PG 0016

PC+2

DATA

0016 or
0116

DPR+ dd+ X

m =“0” m = “1”

Operand
dd

Op Code
Next

Op CodeOp CodeNot used Not used

Instruction

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used Not used

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

6–26 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Direct Indexed X

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

FFFF16 FFFE16

PG PG

PC+1PC PC+1

PG 0016, 0116 or 0216PG

DPR+ dd + XPC+2

0016

DATA

0016 or
0116

Operand
dd

Op Code Op CodeNot used Not used

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used Not used Not used Not used Not usedNot usedNot used

Not used
Next

Op code

“H”

6–277751 SERIES SOFTWARE MANUAL

Instructions : LDX

Timing :

Instructions : STX

Timing :

Direct Indexed Y

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116
0016, 0116
or 02 16

DPR+dd+Y

DATA

0016 PG

PC+2

Operand
dd

Op Code
Next

Op CodeNot usedNot used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

PG PG

PC

X

PC+2

0016 PG0016 or 0116

PC+1

0016, 0116 or 0216

DPR+dd+Y

Operand
dd

Op Code Next
Op Code

Not usedNot used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used

“H”

6–28 7751 SERIES SOFTWARE MANUAL

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

Direct Indirect

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116 DT

ADMADL

DATA

PG

PC+2

ADMADL

DPR+dd

Operand
dd

Op Code Next
Op Code

Not used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

0016

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC

A

PC+2

0016 PG0016 or 0116

PC+1

DT

ADMADL

ADMADL

DPR+dd

Operand
dd

Op Code Next
Op Code

Not used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used

AH(CPU)

6–297751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Direct Indirect

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG 0016 or
0116

PC+1PC DPR+
dd

PGPG

PC+1

PG

PC+3

PG 0016

PC+2

DATAADMADL

DT

ADMADL ADMADL

m = “0” m = “1”

Operand
dd

Op Code
Next

Op CodeOp CodeNot used Not used

Instruction

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

• The contents of AMAL(CPU) during “ ” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(CPU)
at the last 3 of CPU during “✽” are undefined.

✽

6–30 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Direct Indirect

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG DTPG

ADMADLPC+ 2

0016

DATA

0016 or
0116

0016 or
0116

ADMADLOperand
dd

Op Code Op CodeNot used Not used

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used

Next
Op Code

Not used

Not used Not used Not used Not used Not used

6–317751 SERIES SOFTWARE MANUAL

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

Direct Indexed X Indirect

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116
0016, 0116
or 02 16

DPR+dd+X

ADMADL

0016 PG

PC+2

DT

ADMADL

DATAOperand
dd

Op Code
Next

Op CodeNot used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC

ADMADL

0016

PC+1

DT

PC+2

PG0016 or 0116

A

0016,0116
or 0216

ADMADL
DPR+dd

+X

Operand
dd

Next
Op Code

Op Code Not usedNot used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used

6–32 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Direct Indexed X Indirect

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG DT

PC+1PC ADMADL

PGPG

PC+1

PG

PC+3

PG 0016

PC+2

DATA

0016 or
0116

DPR+
dd+X

ADMADL

ADMADL

m = “0” m = “1”

Operand
dd

Op Code Next
Op Code

Op CodeNot used Not used

Instruction

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used Not used

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

0016, 0116
or 0216

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

6–337751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Direct Indexed X Indirect

0016

S

0016

S–2 S–4

0016

ADMADLFFFC16S–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG DTPG

ADMADLPC+2

0016

DATA

0016 or
0116

ADMADL

0016, 0116

or 0216

+dd
DPR

+X

Operand
dd

Op Code Op CodeNot used Not used

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used Not used Not usedNot used Not used Not used Not used

Not used
Next

Op Code

6–34 7751 SERIES SOFTWARE MANUAL

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

Direct Indirect Indexed Y

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116 DT

DPR+dd

0016 PG

PC+2

ADMADL

DT or DT+1

ADMADL+Y

DATA
Operand

dd
Op Code Next

Op Code
Not used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC

0016

PC+1

DT or DT+1

PC+2

PG0016 or 0116

ADMADL A

DT

ADMADL+YDPR+dd

Operand
dd

Op Code Next
Op Code

Not used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used Not used

6–357751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Direct Indirect Indexed Y

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG

PC+1PC

PGPG

PC+1

PG 0016

PC+2

DATA

0016 or
 0116

PC+3

PG

ADM

ADL

DT or DT+1

DPR+dd

DT

+Y

ADM

ADL ADMADL+Y

m =“0” m =“1”

Operand
dd

Op Code
Next

Op CodeOp CodeNot used Not used

Instruction

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used Not used

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

6–36 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Direct Indirect Indexed Y

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG DT or DT+1PG

ADMADL+ YPC+ 2

0016
0016 or

0116

DATA

DT

DPR+ dd

ADMADL
Operand

dd
Op Code Op CodeNot used Not used

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used

Next
Op CodeNot used

Not used Not used Not usedNot used Not used Not used

6–377751 SERIES SOFTWARE MANUAL

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

Direct Indirect Long

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC

0016

PC+1

0016 or 0116

ADH

PC+2

PG0016 or 0116

ADMADL DATA

DPR+dd ADMADL
DPR+dd

+2

ADH

Operand
dd

Op Code Next
Op Code

Not used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

PG PG

PC

0016

PC+1

ADH

ADH

PC+2

PG0016 or 0116

ADMADL

ADMADLDPR+dd

0016 or 0116

DPR+dd
+2

AOp Code
Next

Op CodeNot used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used
Operand

dd

“H”

6–38 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Direct Indirect Long

DIV

DIVS

MPY

M PYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG

PC+1PC

PGPG

PC+1

PG 0016

PC+2

DATA

0016 or
0116

PC+3

PG

ADM

ADL

ADH

DPR
+dd +dd

DPR

+2

ADH

ADM

ADL
ADMADL

m =“0” m = “1”

Operand
dd

Op Code
Next

Op CodeOp CodeNot used Not used

Instruction

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

0016 or
 0116

6–397751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Direct Indirect Long

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+ 1PC PC+ 1

PG ADHPG

ADMADLPC+ 2

0016 0016 or
0116

ADMADL

+dd
DPR

+2

DPR
+ dd

ADH DATAOperand
dd

Op Code Op CodeNot used Not used

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used

Next
Op CodeNot used

Not used Not used Not used Not used Not used

0016 or
0116

6–40 7751 SERIES SOFTWARE MANUAL

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

Direct Indirect Long Indexed Y

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG 0016
0016 or

0116
ADH ADH or ADH+1 PG

PC PC+1 DPR+dd DPR+dd+2 ADMADL+Y PC+2

AADHADMADLOperand
dd

Op Code
Next

Op CodeNot used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used Not used

0016 or
0116

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC

0016

PC+1

ADH

PC+2

PG0016 or 0116

ADMADL

DPR+dd DPR+dd+2

ADH or
ADH+10016 or 0116 ADH

DATA

ADMADL

+Y

Operand
dd

Op Code
Next

Op Code
Not used

DPRL “0016” When DPRL=“0016”, this cycle is shortened.

Not used

6–417751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Direct Indirect Long Indexed Y

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

PC+3

PGPG

PC+1PC

PGPG

PC+1

PG 0016

PC+2

DATA

0016 or
 0116

ADM

ADL

ADH or ADH+1

DPR
+dd

0016 or
 0116

+dd
DPR

+2

ADH

ADH

ADL
ADM

+Y
ADMADL+Y

“H”

m =“0” m = “1”

Operand
dd

Op Code
Next

Op CodeOp CodeNot used Not used

Instruction

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not usedNot used

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

✽

6–42 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Direct Indirect Long Indexed Y

0016

S FFFC16S–2 S–4 ADMADLS–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG ADH or ADH+1PG

ADMADL+YPC+ 2

0016
0016 or

0116

ADMADL

DPR
+ dd

ADH

ADH

DPR+ dd + 2

DATAOperand
dd

Op Code Op CodeNot used Not used

DPRL “0016”

When DPRL=“0016”, this cycle is shortened.

Not used Not used Not usedNot used Not used Not usedNot used

Not used Next
Op Code

0016 or
0116

0016 0016

6–437751 SERIES SOFTWARE MANUAL

Instructions : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC

Timing :

Instructions : LDM

Timing :

Absolute

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

mmll PC+3

DATA

DT

Operand
mmll

Op Code
Next

Op Code

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

DT

mmll

imm

PC+5(4)

PG PG

PC+3

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 4th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

m=“0”

Operand
mmll

Op Code
Next

Op Code
Operand

imm

6–44 7751 SERIES SOFTWARE MANUAL

Instructions : STA, STX, STY

Timing :

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Absolute

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

mmll PC+3

A(X)(Y)

DT

Operand
mmllOp Code

Next
Op Code

Not used

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+3�

DT PG

mmll

DATA
Operand

mmll
Op Code

Next
Op CodeNot used

New
DATA

6–457751 SERIES SOFTWARE MANUAL

Instructions : ASR

Timing :

Absolute

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

DT PG

mmll PC+4PC+1

PG

DATA

PC+2

PG

Operand
mmll

Next
Op Code

Not usedOp Code Op Code Not used New
DATA

6–46 7751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Absolute

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG DT

PC+1PC mmll

PGPG

PC+2

PG

PC+4

PG

PC+1

DATA

mmll

Operand
mmll

Op Code
Next

Op CodeNot used Op Code Not used

m = “0” m = “1”
Instruction

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

6–477751 SERIES SOFTWARE MANUAL

Instructions : DIV, DIVS (case of 0 division)

Timing :

Absolute

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+4 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

PG PG

PC+1PC PC+1

PG DTPG

mmll

DATA

PC+2

Operand
mmllOp Code

Next
Op Code

Op CodeNot used Not used Not used Not used Not used Not used Not used

Not used

“H”

6–48 7751 SERIES SOFTWARE MANUAL

Absolute

Instructions : JMP

Timing :

Instructions : JSR

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

mmll

Operand
mmll

Op Code
Next

Op Code

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016

S–1

PC+3

mmll

PG

Op Code Not used Next
Op Code

Operand
mmll

6–497751 SERIES SOFTWARE MANUAL

Absolute Bit

Instructions : CLB, SEB

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+3

PG

PC+5(4)mmll

DATA

DT

Notes 1: The operand which is fetched at the 3rd cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

m=“0”

Operand
mmllOp Code

Next
Op Code

Operand
imm

New
DATANot used

6–50 7751 SERIES SOFTWARE MANUAL

Absolute Indexed X

Instructions : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing :

Instructions : LDM

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

DT

PC+3

DT or DT+1 PG

mmll+X

DATA
Operand

mmll
Op Code Next

Op Code
Not used

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+3PC

DT

mmll+X

imm

PC+5(4)

PGPG DT or DT+1

PC+1

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 5th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

m=“0”

Operand
mmll

Op Code Next
Op Code

Not used
Operand

imm

6–517751 SERIES SOFTWARE MANUAL

Absolute Indexed X

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Instructions : ASR

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

DT

PC+3

DT or DT+1 PG

mmll+X

DATA
Operand

mmll
Op Code Next

Op Code
Not used Not used New

DATA

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

DT or DT+1 PG

PC+2 PC+4PC+1

PG

DATA

mmll+X

PG DT

Operand
mmll

Op Code
Next

Op CodeNot used Not usedOp Code Not used
New

DATA

7751 SERIES SOFTWARE MANUAL6–52

Absolute Indexed X
Absolute Indexed Y

Instructions : DIV, DIVS, MPY, MPYS

Timing :

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG DT or DT+1

PC+1PC mmll+
X(Y)

PGPG

PC+1

PG

PC+4

PG DT

PC+2

DATA

mmll+X(Y)

m =“0” m =“1”

Operand
mmll

Op Code Next
Op Code

Op CodeNot used Not used

Instruction

Not used

(CPU)

Note: The cycle number during “✽” is shown as the following table:

Cycle number

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of A�MAL(CPU)

at the last 3 of CPU during “✽” are undefined.

6–537751 SERIES SOFTWARE MANUAL

Absolute Indexed X
Absolute Indexed Y

Instructions : DIV, DIVS (case of 0 division)

Timing :

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+4 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG DT or DT+1PG

mmll+X(Y)

DATA

PC+2

DT

Operand
mmll

Op Code

Next
Op Code

Op CodeNot used Not used

Not used

Not used Not used Not used Not used Not used Not used

7751 SERIES SOFTWARE MANUAL6–54

Absolute Indexed X
Absolute Indexed Y

Instructions : STA

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

DT

PC+3

DT or DT+1 PG

mmll+X (Y)

A
Operand

mmll
Next

Op CodeOp Code Not usedNot used

6–557751 SERIES SOFTWARE MANUAL

Absolute Indexed Y

Instructions : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

DT

PC+3

DT or DT+1 PG

mmll+Y

DATA
Operand

mmll
Op Code

Next
Op CodeNot used

7751 SERIES SOFTWARE MANUAL6–56

Absolute Long

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+4

hh PG

mmll

DATA

PC+3

Operand
mmll

Next
Op CodeOp Code

Operand
hh

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

mmllPC PC+3

A

PC+4

PGhhPG

PC+1

Operand
mmll

Next
Op Code

Op Code
Operand

hh
Not used

6–577751 SERIES SOFTWARE MANUAL

Absolute Long

Instructions : DIV, DIVS, MPY, MPYS

Timing :

DIV

DIVS

MPY

M PYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG hh

PC+1PC mmll

PGPG

PC+1

PG

PC+5

PG PG

PC+2

DATA

PC+4 mmll

(CPU)

m = “0” m = “1”

Operand
mmll

Op Code Next
Op Code

Note: The cycle number during “✽” is shown as the following table:

Op CodeNot used

Cycle number
Instruction

Not usedOperand
hh

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

7751 SERIES SOFTWARE MANUAL6–58

Absolute Long

Instructions : DIV , DIVS (case of 0 division)

Timing :

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+5 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG hhPG

mmll

DATA

PC+4

PG

PC+2

Operand
mmll

Op Code

Next
Op Code

Op CodeNot used Not usedOperand
hh

Not used Not used Not used Not used Not used

Not used

7751 SERIES SOFTWARE MANUAL 6–59

Absolute Long

Instructions : JMP

Timing :

Instructions : JSR

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG hh

mmllPC+3

Operand
mmll

Op Code
Next

Op Code
Operand

hh

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

SPC PC+3

PC+4

mmll

hh

PG

0016PG

PC+1 S–2

Op Code
Next

Op Code
Operand

mmll
Operand

hh

6–60 7751 SERIES SOFTWARE MANUAL

Absolute Long Indexed X

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+4

hh PG

DATA

PC+3 mmll+X

hh or hh+1

Operand
hh

Op Code
Next

Op CodeNot used
Operand

mmll

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

mmll+XPC PC+3

A

PC+4

PGhh or hh+1PG

PC+1

hh

Op Code Not used Next
Op Code

Operand
hh

Operand
mmll

Not used

7751 SERIES SOFTWARE MANUAL 6–61

Absolute Long Indexed X

Instructions : DIV, DIVS, MPY, MPYS

Timing :

Instruction

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

✽

“H”

PG hh or hh+1

PC+1PC mmll+X

PGPG

PC+1

PG

PC+5

PG PG

PC+2

DATA

PC+4

hh

mmll+X

(CPU)
m = “0” m = “1”

Operand
mmll

Op Code Next
Op Code

Note: The cycle number during “✽” is shown as the following table:

Op CodeNot used

Cycle number

Not usedOperand
hh Not used

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

6–62 7751 SERIES SOFTWARE MANUAL

Absolute Long Indexed X

Instructions : DIV, DIVS (case of 0 division)

Timing :

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+5 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG hh or hh+1PG

mmll+X

DATA

PC+4

PG

PC+2

hh

Operand
mmll

Op Code

Next
Op Code

Op CodeNot used Operand
hh

Not used Not used Not used Not usedNot used Not used Not used

Not used

7751 SERIES SOFTWARE MANUAL 6–63

Absolute Indirect

Instructions : JMP

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG PG

ADMADLmmll

ADMADL
Operand

mmll
Op Code Next

Op Code

6–64 7751 SERIES SOFTWARE MANUAL

Absolute Indirect Long

Instructions : JMP

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG ADH

ADMADLmmll

ADH

PG or PG+1

mmll+2

ADMADLOp Code
Next

Op Code
Operand

mmll

7751 SERIES SOFTWARE MANUAL 6–65

Absolute Indexed X Indirect

Instructions : JMP

Timing :

Instructions : JSR

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG PG or PG+1

mmll+X

PG or PG+1

ADMADL

ADMADL
Operand

mmll
Op Code

Next
Op CodeNot used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

mmll+XPC ADMADL

PG

ADMADL

PG

PC+1 S–1

PC+3

0016PG or PG+1

Operand
mmll

Op Code
Next

Op CodeNot used

7751 SERIES SOFTWARE MANUAL6–66

Stack

Instructions : PEA

Timing :

Instructions : PEI

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 PG

PC+3S–1

immOp Code
Next

Op Code

Note: Each of the operand at the 2nd cycle and the data at the 4th cycle is 2 bytes.

Not used
Operand

imm

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

DPR+immPC PC+2

PG

DHDL

0016

PC+1 S–1

DHDL

00160016 or 0116

Op Code Next
Op CodeNot used

Operand
imm

Note: The operand at the 2nd cycle is 1 byte.

7751 SERIES SOFTWARE MANUAL 6–67

Stack

Instructions : PER

Timing :

Instructions : PHA, PHD, PHP, PHX, PHY

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 PG

PC+3S–1

PC+3+immOp Code
Next

Op Code

Note: Each of the operand at the 2nd cycle and the data at the 5th cycle is 2 bytes.

Not used
Operand

imm
Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC PC+1

PG

PC+1 S–1

0016

Op Code
Next

Op Code

Note: A(DPR)(PS)(X)(Y)

Not used Not used (Note)

7751 SERIES SOFTWARE MANUAL6–68

Stack

Instructions : PHB

Timing :

Instructions : PHG, PHT

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+2PC

0016 PG

PC+2S–1

B

PG PG

PC+1 PC+1

Op Code
Next

Op CodeNot used Op Code Not used Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC PC+1

PG

PG(DT)

PC+1 S

0016

Next
Op Code

Op Code Not used

7751 SERIES SOFTWARE MANUAL 6–69

Stack

Instructions : PLA, PLD, PLX, PLY

Timing :

Instructions : PLB

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 PG

PC+1S+1

DATA Next
Op Code

Note: The data at the 4th cycle is 2 bytes with PLD.

Not usedOp Code Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+2PC PC+2

PGPG

PC+1 S+1

DATA

0016PG

PC+1

Next
Op CodeNot usedOp Code Not usedOp Code Not used

7751 SERIES SOFTWARE MANUAL6–70

Stack

Instructions : PLP

Timing :

Instructions : PLT

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 PG

PC+1S+1

DHDLOp Code
Next

Op CodeNot used Not used Not used

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PG DL

S+1PC PC+1

PG

DL

0016PG

PC+1

Op Code
Next

Op CodeNot used Not used Not used

7751 SERIES SOFTWARE MANUAL 6–71

Stack

Instructions : PSH

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG 0016

PC PC+1 S S S–1 S–2 S–2 S–3

BA

0016

X

S–4 S–4 S–6 S–7S–5

Y

0016 0016

S–8

A B X Y

Notes 1: This figure is an example when executing PSH to all registers.
 When some of them are not to be done, the cycle “ ” corresponding to its register is shortened.
 2: The operand at the 2nd cycle is 1 byte.

0016

DPR

S–8 S–9

PG

S–10 S–11 S–11 S–12 S–12 S–13 PC+2

0016 0016 PG

DT PS

DPR PS

0016 0016

Operand
imm

Op Code

Not used Not used Not used

Not used Not used Not used Not used Not used Not usedNot usedNot usedNot usedNot used

Not used Not used
Next

Op Code

DT PG

S–6

S–10

7751 SERIES SOFTWARE MANUAL6–72

Stack

Instructions : PUL

Timing :

S+13

DATA DATADATADATA

S+8 S+9

0016

S+11

0016 00160016

S+8 S+10 S+12

PG

Y X B A

S+6 S+7

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG 0016

PC PC+1 S+1 S+2

0016

S+4 S+5 S+5

DHDLDLDHDL

DPRDTPS

S+1

0016

S+3 S+3 S+4

DL

Notes 1: This figure is an example when executing PUL to all registers.
 When some of them are not to be done, the cycle “ ” corresponding to its register is shortened.
 2: The operand at the 2nd cycle is 1 byte.

Operand
imm

Next
Op Code

Op Code Not used Not used Not used Not used Not used Not used Not used Not used Not used Not used

Not usedNot usedNot usedNot usedNot usedNot usedNot usedNot used

S+3 S+3 S+6

S+10 PC+2S+14S+12

7751 SERIES SOFTWARE MANUAL 6–73

Relative

Instructions : BRA

Timing :

Instructions : BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)
“H”

PG PG

PC+1PC

PG or PG±1

PC+2+rr

Op Code
Next

Op Code

Note: The operand at the 2nd cycle is 1 byte in the case of a short relative,
 and 2 bytes (rrHrrL) in the case of a long relative.

Not usedOperand
rr

A case of a short branch
When a long branch, PC+3+rrHrrL

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG

PC PC+2+rr

PG or PG+1

PC+1

PG

Op Code Next
Op CodeNot usedOperand

rr
Not used

Branching

When no branch, PG

When no branch, PG+2

7751 SERIES SOFTWARE MANUAL6–74

Direct Bit Relative

Instructions : BBC, BBS

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PC PC+1 DPR+dd PC+2 PC+4(3)

PG or
PG±1

DATA

PG PG 0016 or 0116 PG0016 PG

PC+5(4)
+rr

Notes 1: The operand which is fetched at the 5th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

Operand
dd

Op Code Next
Op Code

When DPRL=“0016”, this cycle is shortened.Branching, DPRL “0016”, m=“0”

Not used
Operand

imm
Operand

rr
Not used

 When no branch, PC+5(4)

7751 SERIES SOFTWARE MANUAL 6–75

Absolute Bit Relative

Instructions : BBC, BBS

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA (CPU)

R/W(CPU)

“H”

PC PC+1

PG or
PG±1

DATA

PG PG PGDT PG

PC+5(4)mmll PC+3
PC+6(5)
+rr

Notes 1: The operand which is fetched at the 4th cycle is as follows:
 When m=“0”, 2 bytes
 When m=“1”, 1 byte
 2: “()” shows the case of m=“1”.

Operand
mmll

Op Code Next
Op Code

Branching, m=“0”

Operand
imm

Operand
rr

Not used

When no branch, PC+6(5)

6–76 7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116 PG

PC+2

DATA

0016

S+nn

Op Code
Next

Op Code
Operand

nn
Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG

PC PC+2PC+1

PGPG

A

0016 0016 or 0116

S+nn

Op Code Next
Op Code

Operand
nn

Not used Not used

7751 SERIES SOFTWARE MANUAL 6–77

Stack Pointer Relative

Instructions : DIV, DIVS, MPY, MPYS

Timing :

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

✽

“H”

PG 0016 or 0116

PC+1PC S+nn

PGPG

PC+1

PG

PC+3

PG

DATA

PC+2

0016

S+nn

(CPU)

m = “0” m = “1”

Operand
nnOp Code

Next
Op Code

Note: The cycle number during “✽” is shown as the following table:

Op CodeNot used Not used

Cycle number
Instruction

Not used

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

6–78 7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative

Instructions : DIV, DIVS (case of 0 division)

Timing :

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+3 PS

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG 0016 or 0116

S+nn

DATA

PC+2

PG 0016

Operand
nn

Op Code

Next
Op Code

Op CodeNot used Not used Not used Not used Not used Not used Not used Not used

Not used ADMADL

7751 SERIES SOFTWARE MANUAL 6–79

Stack Pointer Relative Indirect Indexed Y

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : STA

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

0016 or 0116 DT

S+nn

0016 PG

PC+2

ADMADL

DT or DT+1

ADMADL+Y

DATAOperand
nn

Op Code
Next

Op CodeNot used Not used

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC

0016

PC+1

DT or DT+1

PC+2

PG0016 or 0116

ADMADL A

DT

ADMADL+YS+nn

Operand
nn

Op Code Next
Op Code

Not used Not used Not used

6–80 7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

Instructions : DIV, DIVS, MPY, MPYS

Timing :

DIV

DIVS

MPY

MPYS

17

19

4

4

25

27

8

8

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

✽

“H”

PG DT or DT+1

PC+1PC ADMADL+Y

PGPG

PC+1

PG

PC+3

PG 0016

PC+2

DATA

0016 or
0116

DT

S+nn

ADMADL

+Y

ADM
ADL

(CPU)
m =“0” m =“1”

Operand
nn

Op Code
Next

Op Code

Note: The cycle number during “✽” is shown as the following table:

Op CodeNot used Not used

Cycle number
Instruction

Not used Not used

• The contents of AMAL(CPU) during “✽” with DIVS are undefined.
• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of CPU during “✽” are undefined.

7751 SERIES SOFTWARE MANUAL 6–81

Stack Pointer Relative Indirect Indexed Y

Instructions : DIV , DIVS (case of 0 division)

Timing :

0016

S

0016

FFFC16S–2 S–4

0016

ADMADLS–4

PG PC+3 PS ADMADL

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

FFFF16 FFFE16

“H”

PG PG

PC+1PC PC+1

PG DT or DT+1

ADMADL+Y

DATA

PC+2

PG 0016

ADMADL

S+nn

0016 or
0116

DT

Operand
nn

Op Code

Next
Op Code

Op CodeNot used Not used Not used Not used Not used Not usedNot used Not used Not used

Not used

6–82 7751 SERIES SOFTWARE MANUAL

Block Transfer

Instructions : MVN (transfer of even bytes)

Timing :

Note: This figure is an example when transferring 2-byte data.
 When transferring 3 or more bytes data, the cycle “ ” is repeated at each 2-byte data.
 The CPU instruction execution sequence is identical regardless of even address or odd address
 which the transferring start address is.

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG PG

PC PC+1 PC+2 X

hh1 DHDLhh2

PG

PC+3

hh1 hh2 hh2

DHDL

Y

hh1

?

Op Code
Next

Op Code
Not used

This cycle repeated

hh1 after second time

(Source Bank)

(Source Bank)

(Destination Bank)

(Destination Bank)

Not used Not used Not used Not used Not used

7751 SERIES SOFTWARE MANUAL 6–83

Block Transfer

Instructions : MVN (transfer of odd bytes)

Timing :

Note: This figure is an example when transferring 3-byte data.
 When transferring 4 or more bytes data, the cycle “ ” is repeated at each 2-byte data.
 The CPU instruction execution sequence is identical regardless of even address or odd address
 which the transferring start address is.
 The transfer of the last 1 byte is performed by reading 2 bytes and writing 1 byte.

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG PG

PC PC+1 PC+2 X

hh1 DHDLhh2

hh1 hh2 hh2

DHDL

hh1

Y?

PC+3X+2

DL

hh2

DL

hh1

Y+2

PG

Op Code

Next
Op Code

Not
used

This cycle repeated

hh1 after second time

(Source Bank)

(Source Bank)

(Destination Bank)

(Destination Bank)

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Last 1-byte transfer

(Source Bank) (Destination Bank)

6–84 7751 SERIES SOFTWARE MANUAL

Block Transfer

Instructions : MVP (transfer of even bytes)

Timing :

Note: This figure is an example when transferring 2-byte data.
 When transferring 3 or more bytes data, the cycle “ ” is repeated at each 2-byte data.
 The CPU instruction execution sequence is identical regardless of even address or odd address
 which the transferring start address is.

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC PC+1 PC+2

hh1 hh2

hh1 hh2

DHDL

hh1

? ? ? ? ?

hh2

X–1

PG

PC+3

DHDL

hh1 PG

Y–1

Op Code

Next
Op Code

Not
used

This cycle repeated

(Source Bank)(Destination Bank)

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

7751 SERIES SOFTWARE MANUAL 6–85

Block Transfer

Instructions : MVP (transfer of odd bytes)

Timing :

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC PC+1 PC+2

hh1 hh2

hh1 hh2

DHDL

hh1

? ? ? ? ?

hh2

X–1

PG

Note: This figure is an example when transferring 3-byte data.
 When transferring 4 or more bytes data, the cycle “ ” is repeated at each 2-byte data.
 The CPU instruction execution sequence is identical regardless of even address or odd address
 which the transferring start address is.

PC+3

DHDL

hh1 PG

Y–1

hh2

X–3 Y–3

hh2hh1

X–2

DL

Y–2

hh1

DL

Op Code

Next
Op Code

Not
used

This cycle repeated

(Source Bank)(Destination Bank)

Not
used

Not
used

Not
used

Not
used

Not
used

Last 1-byte transfer

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

6–86 7751 SERIES SOFTWARE MANUAL

Instructions : RMPA

Timing :

Multiplied Accumulation

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC PC+1 PC+2 X

DHDL

DT

PC+3

DHDL

Y

PG imm DT DT

?

PG

DT

X PC+3

PG

DHDL

CPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC PC+1 PC+2

PG imm

PC+3

PG

Notes 1: This figure is an example when performing multiply and accumulate operations once.
 When doing them 1 or more times, the cycle “ ” is repeated by the times.
 2: The cycle number during “✽1” is 13 cycles of CPU in the case of m= “0”, and 9 cycles of
 CPU in the case of m= “1”.

Op Code

Next
Op Code

Not
used

This cycle repeated

Not
used

Not
used

imm “0”
Normal finish

imm=“0”

Op Code Operand
imm

Not
used

Not
used

Not
used

Not
used

Not
used

Next
Op Code

Occurrence of overflow
by addition

Next
Op Code

Not
used

Operand
imm

Op Code Not
used

Op Code

✽1

✽2

✽2

APPENDIX

Appendix 1. 7751 series machine instructions
Appendix 2. 7751 series instruction code table

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–2

Appendix 1. 7751 series machine instructions

Appendix 1. 7751 series machine instructions

7751 SERIES MACHINE INSTRUCTIONS

7751 SERIES SOFTWARE MANUAL 7–3

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–4

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–5

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–6

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–7

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–8

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–9

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–10

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–11

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–12

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–13

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–14

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–15

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–16

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–17

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–18

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–19

Appendix 1. 7751 series machine instructions

APPENDIX

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–20

Appendix 1. 7751 series machine instructions

7751 SERIES SOFTWARE MANUAL 7–21

Appendix 1. 7751 series machine instructions

APPENDIX

Symbols in machine instructions table

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–22

Appendix 2. 7751 series instruction code table

Appendix 2. 7751 series instruction code table

7751 SERIES INSTRUCTION CODE TABLE-1

7751 SERIES SOFTWARE MANUAL 7–23

Appendix 2. 7751 series instruction code table

APPENDIX

7751 SERIES INSTRUCTION CODE TABLE-2(The first word’s code of each instruction is 4216 .)

7751 SERIES SOFTWARE MANUAL

APPENDIX

7–24

Appendix 2. 7751 series instruction code table

7751 SERIES INSTRUCTION CODE TABLE-3(The first word’s code of each instruction is 8916.)

MITSUBISHI SEMICONDUCTORS
SOFTWARE MANUAL
7751 Series

Jul. First Edition 1996

Editioned by
Committee of editing of Mitsubishi Semiconductor USER’S MANUAL

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1996 MITSUBISHI ELECTRIC CORPORATION

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

7751 Group
User’s Manual

	7751 Series Software Manual
	Table of contents
	1. DESCRIPTION
	2. CENTRAL PROCESSING UNIT (CPU)
	3. ADDRESSING MODES
	4. INSTRUCTIONS
	5. NUMBER OF INSTRUCTION CYCLES
	6. CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE
	APPENDIX

	1 DESCRIPTION
	2 CENTRAL PROCESSING UNIT (CPU)
	2.1 Central processing unit
	2.1.1 Accumulator (Acc)
	2.1.2 Index register X (X)
	2.1.3 Index register Y (Y)
	2.1.4 Stack pointer (S)
	2.1.5 Program counter (PC)
	2.1.6 Program bank register (PG)
	2.1.7 Data bank register (DT)
	2.1.8 Direct page register (DPR)
	2.1.9 Processor status register (PS)

	2.2 Bus interface unit
	2.2.1 Overview
	2.2.2 Functions of bus interface unit (BIU)
	2.2.3 Operation of bus interface unit (BIU)

	3 ADDRESSING MODES
	3.1 Addressing modes
	3.2 Explanation of addressing modes

	4 INSTRUCTIONS
	4.1 Instruction set
	4.1.1 Data transfer instructions
	4.1.2 Arithmetic instructions
	4.1.3 Bit manipulation instructions
	4.1.4 Flag manipulation instructions
	4.1.5 Branch and return instructions
	4.1.6 Interrupt instruction (break instruction)
	4.1.7 Special instructions
	4.1.8 Other instruction

	4.2 Description of each instruction
	4.3 Notes for programming

	5 NUMBER OF INSTRUCTION CYCLES
	5.1 Description
	5.1.1 CPU instruction execution sequence
	5.1.2 CPU standby cycle

	5.2 Points of view
	5.2.1 Using internal area

	6 CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE
	APPENDIX
	Appendix 1. 7751 series machine instructions
	Appendix 2. 7751 series instruction code table

