To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Eleetronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquity.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in thisdocument, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liabilityawhatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality gfades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product.depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any applicati omeategorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Reriesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arisiig from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product ismotintended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or databooks, etc.

“Standard”: Computers; office equipment; communications equi pment; test and measurement equipment; audio and visual
equipment; home el ectronic appliafices, machine tools, personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (aut@mobiles; trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace eguipment; submersible repesaters; nuclear reactor control systems; medical equipment or
systems for life supporti(e.gdartificial life support devices or systems), surgical implantations, or healthcare
intervention (e/@. exeision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect tothe mieximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installationand other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and mal function prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software aloneis very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with al applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “RenesasElectronics’ asused in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

and power devices.

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

LENESAS

N
@)
=~
S
)
-
®
<
)
-
-
=

7751 Series

Software Manual

MITSUBISHI 16-BIT SINGLE-CHIP
MICROCOMPUTER
7700 FAMILY

—
O

Renesas Electronics])
WWW.renesas.com New pUbllcathn, 1996.07

keep safety first in your circuit designs !

e Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

e These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

e Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.

e All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

e Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

e The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.

e If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
Japan and/or the country of destination is prohibited.

e Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

REVISION DESCRIPTION LIST

7751 Series Software Manual

Rev. Revision Description Rev.
No. date
1.00 | First Edition 970728
1.01 | Thumbnails are created for all pages. 980731

(1/2)

Preface

This manual describes the software of the Mitsubishi
CMOS 16-bit microcomputers 7751 SERIES. After
reading this manual, the users will be able to
understand the instruction set and the features, so
that they can utilize their capabilities fully. This manual
shows detailed descriptions of the instructions and
the addressing modes for 7751 SERIES.

For details concerning the hardware and the
development support tools (assembler, debugger, and
others) of each product of 7751 series, refer to the
respective user's manual.

Table of contents

Table of contents

CHAPTER 1. DESCRIPTION

[CHAPTER 2. CENTRAL PROCESSING UNIT (CPU)]

. ENTral PrOCESSING UNIT J.uniiineiiiii e ee e e et e e e e et e e e e e e eaa e e e eaeessaneeennneees 2-2
.11 ACCUMUIATOE (A CCI «.uiuininiiieiie it et e et e e e e e e e e e ea e e ea e eaeasanearenearensenenrenenrenearenranenns 2-3
A LT [Y L1 =T 0 2-3
2 d 0 A TSR 2-3
BT STaCK DOINIET (SN -vvvveeeresseesesseeseeesesseeeseeses sttt 2-4
E.1.5 Program counter (PCY.......cccooiiiiiiiiiiie e 2-5
P.1.6 Program bank reqisSter (PG ...t e 2-5
P 1.7 Data bank regiSter (DTcuvoeiiiiiiiiiii e e et e e e e e a e e e e e e e e e e e e e enaaan e eeas 2-6
P.1.8 Direct page reqister (DPRY . ..o 2-6
B-1.0 ProCesSs0r StAtUs TEGISTEr (PS) .. ouierereereeeeseseeseseeseesessieesesieeseneesenessesessesesnesesnesseneneas 2-8
A XV TR T=Y = ot =X U T a T A 2-10
0 O TV Z=YRVIT=XY:Y [T T T U U T OO SO URR T ORRRORR ORI 2-10
2.2.2 Functions of bus interface unit gBIU] .. 2-12
E.Z.E 5perat|on of bus Interface unit iBlU] .. 2-15
|QHAPT§R 3. ADDRESSING MODES|
[3.1_AdAressing MOUES |cooiviiiiiiiiiiiie ittt 3-2
B2 Explanation of addressing MOGES | ..ivovoveieeeeeeeeeeeeeeeeeseeeeeseseneseeseseee e s s e s sesasesesenenas 3-2
ICHAPTER 4, INSTRUCTIONSI
A LTS Ao A o T 4-2
E.1.1 Data transfer INSIUCLIONG.........ccocuviiiiriiiiiie it 4-2
A.1.2 ArithmetiC INSTIUCTIONT ...ovun i e e e e e e e et e e e e e e e e e eaanas 4-4
... 4-5
T2 Flag manipulation INSTIUCTIONTv.oeeeeeeceeeeeeeeeeeeee e e s e es et 4-5
E.1l.5 Branch and return INSIIUCHIONS]........ccuvuuiiiiiiiiiii it 4-5
TT.6 D (Dreak INSTIUCTION N ...vvveneeeieeiie et ee e e e e e e e e e 4-6
.. 4-6
9 IO T A=Y AR Ta TS TAVTox1 o a [FUURR OO 4-6
... 4-7
B NOTES TOT DIOGIAMIING J......ccooooveeeeesseeesesecceeeseeeeeesesesseseeeecessseeeees e ceemsseeeesee e 4-133
|CHAPTER 5. NUMBER OF INSTRUCTION CYCLESl
|5.l Description | ... 5-2
EIE QEQ INSTrUCtioN eXeCUtioN SEQUENCE].........cceeiuereiiritieetee sttt 5-2
SRS ETT VAo 5-3
SV e TTaY e T AV T=XV T PP UO SR PUPPP 5-5
E.Z.l USING INEEINAL BIEF .. o eveeetreeitieieitie ittt e e rtee e st e e e sbe e e sbe e e sabe e e s sbeeesbee e e sbbeeaabbeeaanbeeesnneeaas 5-8

7751 SERIES SOFTWARE MANUAL i

Table of contents
ICHAPTER 6. CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE]|

l1Appendix 1. /7/51 series machine instructions 7-2

[Appendix 2. 7751 series instruction code table]ccccooiiiiiiiiie

7751 SERIES SOFTWARE MANUAL

CRAPRPTER 1
DESCRIPTION

DESCRIPTION

The 7751 series software offers the following features :

e The m and x flags to select between word and byte operation make it possible to execute each of most
instructions with 1-byte operation code, so that the ROM size for application will be reduced.

e Powerful addressing modes, and a fast and compact instruction set are included.

e Direct page mapping function and memory oriented software system by direct paging are included.

e The entire 16 Mbytes of addressable memory space can be programed as a program memory without
consideration of a 64-Kbyte boundary.

e A data memory can be accessed with a linear or a bank.

e Bit manipulation instructions and bit test and branch instructions can be used for memory accessing of
the entire 16 Mbytes of addressable memory space.

e Block transfer instructions handling blocks up to 64 Kbytes are available.

e Decimal arithmetic instruction execution requires no software correction.

e Upward compatibility for the 7700 series is retained.

e A Repeat MultiPly and Accumulate, RMPA, instruction is available.

1-2 7751 SERIES SOFTWARE MANUAL

CHAPTER 2
CENTRAL
PROCESSING UNIT
(CPU)

2.1 Central processing unit
2.2 Bus interface unit

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1 Central processing unit
The CPU (Central Processing Unit) has ten registers as shown in Figure 2.1.1.

-

Accumulator A (A)

Accumulator B (B)

Index register X (X)

Index register Y (Y)

Stack pointer (S)

Data bank register (DT)

Program counter (PC)

Direct page register (DPR)

Processor status register (PS)

b15 b8 b7 b0
AH AL
b15 b8 b7 b0
BH BL
b15 b8 b7 b0
XH XL
b15 b8 b7 b0
YH YL
b15 b8 b7 b0
SH SL
b7 b0
DT
b23 b16 bl5 b8 b7 b0
PG PCH PCL
b7 § bo
B bbbl 4 NG ARl Program bank register (PG)
b15 b8 b7 b0
DPRH DPRL
b15 b8 b7 b0
PSH PSL
b15 "~ b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bO|
0 0|]0|O IPL N[VIm|[x|[D|I]| Z|C

Carry flag
Zero flag

Interrupt disable flag

Decimal mode flag

Index register length flag

Data length flag

Overflow flag

Negative flag

Processor interrupt priority level

Fig. 2.1.1 CPU registers structure

2-2

7751 SERIES SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1.1 Accumulator (Acc)
Accumulators A and B are available.

(1) Accumulator A (A)
Accumulator A is the main register of the microcomputer. The transaction of data such as calculation,
data transfer, and input/output are performed mainly through accumulator A. It consists of 16 bits, and
the low-order 8 bits can also be used separately. The data length flag (m) determines whether the
register is used as a 16-bit register or as an 8-bit register. Flag m is a part of the processor status
register which is described later. When an 8-bit register is selected, only the low-order 8 bits of
accumulator A are used and the contents of the high-order 8 bits is unchanged.

(2) Accumulator B (B)
Accumulator B is a 16-bit register with the same function as accumulator A. Accumulator B can be
used instead of accumulator A. The use of accumulator B, however except for some instructions,
requires more instruction bytes and execution cycles than that of accumulator A. Accumulator B is also
controlled by the data length flag (m) just as in accumulator A.

2.1.2 Index register X (X)

Index register X consists of 16 bits and the low-order 8 bits can also be used separately. The index register
length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag x
is a part of the processor status register which is described later. When an 8-bit register is selected, only
the low-order 8 bits of index register X are used and the contents of the high-order 8 bits is unchanged.
In an addressing mode in which index register X is used as an index register, the address obtained by
adding the contents of this register to the operand’s contents is accessed.

In the MVP or MVN instruction, a block transfer instruction, the contents of index register X indicates the
low-order 16 bits of the source address. The third byte of the instruction is the high-order 8 bits of the
source address.

In the RMPA instruction, a Repeat MultiPly and Accumulate instruction, the contents of index register X
indicate the low-order 16 bits of address in which multiplicands are stored.

Note: Refer to “CHAPTER 3. ADDRESSING MODES” for addressing modes.

2.1.3 Index register Y (Y)

Index register Y is a 16-bit register with the same function as index register X. Just as in index register
X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an
8-bit register.

In the MVP or MVN instruction, a block transfer instruction, the contents of index register Y indicates the
low-order 16 bits of the destination address. The second byte of the instruction is the high-order 8 bits of
the destination address.

In the RMPA instruction, a Repeat MultiPly and Accumulate instruction, the contents of index register Y
indicate the low-order 16 bits of address in which multipliers are stored.

7751 SERIES SOFTWARE MANUAL 2-3

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1.4 Stack pointer (S)

The stack pointer (S) is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used when
addressing modes using the stack are executed. The contents of S indicate an address (stack area) for
storing registers during subroutine calls and interrupts. Bank 016 is specified for the stack area. (Refer to
“2.1.6 Program bank register (PG)".)

When an interrupt request is accepted, the microcomputer stores the contents of the program bank register
(PG) at the address indicated by the contents of S and decrements the contents of S by 1. Then the
contents of the program counter (PC) and the processor status register (PS) are stored. The contents of
S after accepting an interrupt request is equal to the contents of S decremented by 5 before the accepting
of the interrupt request. (Refer to Figure 2.1.2.)

When completing the process in the interrupt routine and returning to the original routine, the contents of
registers stored in the stack area are restored into the original registers in the reverse sequence (PS-PC - PG)
by executing the RTI instruction. The contents of S is returned to the state before accepting an interrupt
request.

The same operation is performed during a subroutine call, however, the contents of PS is not automatically
stored. (The contents of PG may not be stored. This depends on the addressing mode.)

You should store registers other than those described above with software when you need them during
interrupts or subroutine calls.

Additionally, initialize S at the beginning of the program because its contents are undefined at reset. The
stack area changes when subroutines are nested or when multiple interrupt requests are accepted. There-
fore, make sure of the subroutine’s nesting depth not to destroy the necessary data.

Note: Refer to “CHAPTER 3. ADDRESSING MODES” for addressing modes.

Stack area
Address

S-5

S—4 | Processor status register’s low-order byte (PSL)

S—3 | Processor status register’s high-order byte (PSH)

S—2 Program counter’s low-order byte (PCL)
S—-1 Program counter’s high-order byte (PCH)
S Program bank register (PG)

M

e “S” is the initial address that the stack pointer (S)
indicates at accepting an interrupt request.
The S’s contents become “S-5" after storing the
above registers.

Fig. 2.1.2 Contents of the stack area after accepting interrupt request

2-4 7751 SERIES SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1.5 Program counter (PC)

The program counter is a 16-bit counter that indicates the low-order 16 bits of the address (24 bits) at
which an instruction to be executed next (in other words, an instruction to be read out from an instruction
gueue buffer next) is stored. The contents of the high-order program counter (PCH) become “FF16,” and
the low-order program counter (PCL) becomes “FE16" at reset. The contents of the program counter
becomes the contents of the reset’s vector address (addresses FFFE16, FFFF16) just after reset.

Figure 2.1.3 shows the program counter and the program bank register.

(b23) (b16)
b7 b0 b15 b8 b7 bo

PG PCH PCL

Fig. 2.1.3 Program counter and program bank register

2.1.6 Program bank register (PG)

The program bank register is an 8-bit register that indicates the high-order 8 bits of the address (24 bits)
at which an instruction to be executed next (in other words, an instruction to be read out from an instruction
queue buffer next) is stored. These 8 bits are called bank.

When a carry occurs after adding the contents of the program counter or adding the offset value to the
contents of the program counter in the branch instruction and others, the contents of the program bank
register is automatically incremented by 1. When a borrow occurs after subtracting the contents of the
program counter, the contents of the program bank register is automatically decremented by 1. Accord-
ingly, there is no need to consider bank boundaries in programming, usually.

In single-chip mode, make sure to prevent the program bank register from being set to a value other than
“0016" by executing the branch instructions and others. It is because only the internal area, within bank 01s,
can be accessed in single-chip mode.

This register is cleared to “0016” at reset.

7751 SERIES SOFTWARE MANUAL 2-5

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1.7 Data bank register (DT)
The data bank register is an 8-bit register. In the following addressing modes using the data bank register,
the contents of this register is used as the high-order 8 bits (bank) of a 24-bit address to be accessed.

In single-chip mode, make sure to fix this register to “0016.” It is because only the internal area, within bank
016, can be accessed in single-chip mode.
This register is cleared to “0016” at reset.

e Addressing modes using data bank register
*Direct indirect
*Direct indexed X indirect
eDirect indirect indexed Y
*Absolute
*Absolute bit
*Absolute indexed X
*Absolute indexed Y
*Absolute bit relative
*Stack pointer relative indirect indexed Y
*Multiplied accumulation

2.1.8 Direct page register (DPR)

The direct page register is a 16-bit register. The contents of this register indicate the direct page area
which is allocated in bank 016 or in the space across banks 016 and 116. The following addressing modes
use the direct page register.

The contents of the direct page register indicates the base address (the lowest address) of the direct page
area. The space which extends to 256 bytes above that address is specified as a direct page.

The direct page register can contain a value from 000016 to FFFF16. When it contains a value equal to or
more than “FF0116,” the direct page area spans the space across banks 016 and 116.

When the contents of low-order 8 bits of the direct page register is “0016,” the number of cycles required
to generate an address is 1 cycle smaller than the number when its contents are not “0016.” Accordingly,
the access efficiency can be enhanced in this case.

This register is cleared to “000016” at reset.

Figure 2.1.4 shows a setting example of the direct page area.

e Addressing modes using direct page register
*Direct
*Direct bit
*Direct indexed X
*Direct indexed Y
*Direct indirect
*Direct indexed X indirect
eDirect indirect indexed Y
eDirect indirect long
eDirect indirect long indexed Y
*Direct bit relative

2-6 7751 SERIES SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

— O16 016
Direct page area when DPR = “000016"
______________________________________ FFis __|
""""""""""""""""""""""" 12316 |
Direct page area when DPR = “012316"
Bank 026 (| 22216 __| (Note 1)
""""""""""""""""""" FF1016
L FFFF16 Direct page area when DPR = “FF1016”
|_ 1000016 (Note 2)
______________________________________ 1000F16
Bank 116
I

Notes 1: The number of cycles required to generate an address is 1 cycle smaller when the
low-order 8 bits of the DPR are “0016.”
2: The direct page area spans the space across banks 016 and 116 when the DPR is
“FFO116” or more.

Fig. 2.1.4 Setting example of direct page area

7751 SERIES SOFTWARE MANUAL 2-7

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

2.1.9 Processor status register (PS)

The

processor status register is an 11-bit register.

Figure 2.1.5 shows the structure of the processor status register.

b15 bl4 bl3 bl12 bll b10 b9 b8 b7 b6 b5 bd b3 b2 bl b0
Processor staus

Note: Fix each of bits 15-11 to “0".

Fig. 2.1.5 Processor status register structure

(1)

(2)

(3)

(4)

®)

Bit 0: Carry flag (C)

It retains a carry or a borrow generated in the arithmetic and logic unit (ALU) during an arithmetic
operation. This flag is also affected by shift and rotate instructions. When the BCC or BCS instruction
is executed, this flag’s contents determine whether the program causes a branch or not.

Use the SEC or SEP instruction to set this flag to “1”, and use the CLC or CLP instruction to clear
it to “0".

Bit 1. Zero flag (2)

It is set to “1” when the result of an arithmetic operation or data transfer is “0,” and cleared to “0” when
otherwise. When the BNE or BEQ instruction is executed, this flag’s contents determine whether the
program causes a branch or not.

Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.”

Note: This flag is invalid in the decimal mode addition (the ADC instruction).

Bit 2: Interrupt disable flag (I)

It disables all maskable interrupts (interrupts other than watchdog timer, the BRK instruction, and zero
division). Interrupts are disabled when this flag is “1.” When an interrupt request is accepted, this flag
is automatically set to “1” to avoid multiple interrupts. Use the SEI or SEP instruction to set this flag
to “1,” and use the CLI or CLP instruction to clear it to “0.” This flag is set to “1” at reset.

Bit 3: Decimal mode flag (D)

It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic
is performed when this flag is “0.” When it is “1,” decimal arithmetic is performed with each word
treated as two or four digits decimal (determined by the data length flag). Decimal adjust is automati-
cally performed. Decimal operation is possible only with the ADC and SBC instructions. Use the SEP
instruction to set this flag to “1,” and use the CLP instruction to clear it to “0.” This flag is cleared to
“0” at reset.

Bit 4: Index register length flag (x)

It determines whether each of index register X and index register Y is used as a 16-bit register or an
8-bit register. That register is used as a 16-bit register when this flag is “0,” and as an 8-bit register
when it is “1.” Use the SEP instruction to set this flag to “1,” and use the CLP instruction to clear it
to “0.” This flag is cleared to “0” at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA, TYA, TXB, TYB, and TXS
instructions. Refer to “CHAPTER 4. INSTRUCTIONS” for details.

7751 SERIES SOFTWARE MANUAL

(6)

(1)

(8)

(9)

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit

Bit 5: Data length flag (m)

It determines whether to use data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit
when this flag is “0,” and as an 8-bit unit when it is “1.”

Use the SEM or SEP instruction to set this flag to “1,” and use the CLM or CLP instruction to clear
it to “0.” This flag is cleared to “0" at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred
with the length of the destination register, but except for the TXA, TYA, TXB, TYB, and TXS
instructions. Refer to “CHAPTER 4. INSTRUCTIONS” for details.

Bit 6: Overflow flag (V)

It is used when adding or subtracting with a word regarded as signed binary. When the data length
flag (m) is “0,” the overflow flag is set to “1” when the result of addition or subtraction exceeds the
range between —32768 and +32767, and cleared to “0” in all other cases. When the data length flag
(m) is “1,” the overflow flag is set to “1” when the result of addition or subtraction exceeds the range
between —128 and +127, and cleared to “0” in all other cases.

The overflow flag is also set to “1” when the result of division exceeds the register length to be stored
in the DIV or DIVS instruction, a division instruction with signed or unsigned; and when the result of
addition exceeds the range between —-2147483648 and +2147483647 in the RMPA instruction, a
Repeat MultiPly and Accumulate instruction.

When the BVC or BVS instruction is executed, this flag’'s contents determine whether the program
causes a branch or not. Use the SEP instruction to set this flag to “1,” and use the CLV or CLP
instruction to clear it to “0.”

Note: This flag is invalid in the decimal mode.

Bit 7: Negative flag (N)

It is set to “1” when the result of arithmetic operation or data transfer is negative. (Bit 15 of the result
is “1” when the data length flag (m) is “0,” or bit 7 of the result is “1” when the data length flag (m)
is “1.”) It is cleared to “0” in all other cases. When the BPL or BMI instruction is executed, this flag
determines whether the program causes a branch or not. Use the SEP instruction to set this flag to
“1,” and use the CLP instruction to clear it to “0.”

Note: This flag is invalid in the decimal mode.

Bits 10 to 8: Processor interrupt priority level (IPL)

These three bits can determine the processor interrupt priority level to one of levels 0 to 7. The
interrupt is enabled when the interrupt priority level of a required interrupt, which is set in each
interrupt control register, is higher than IPL. When an interrupt request is accepted, IPL is stored in
the stack area, and IPL is replaced by the interrupt priority level of the accepted interrupt request.
There are no instruction to directly set or clear the bits of IPL. IPL can be changed by storing the new
IPL into the stack area and updating the processor status register with the PUL or PLP instruction.
The contents of IPL is cleared to “0002" at reset.

7751 SERIES SOFTWARE MANUAL 2-9

CENTRAL PROCESSING UNIT (CPU)

2.2 Bus interface unit

2.2 Bus interface unit

A bus interface unit (BIU) is built-in between the central processing unit (CPU) and memory+l/O devices.
BIU’s function and operation are described below.

2.2.1 Overview
Transfer operation between the CPU and memoryl/O devices is always performed via the BIU.
Figure 2.2.1 shows the bus and bus interface unit (BIU).

0 The BIU reads an instruction from the memory before the CPU executes it.

O When the CPU reads data from the memory ¢ 1/0O device, the CPU first specifies the address from which
data is read to the BIU. The BIU reads data from the specified address and passes it to the CPU.

0 When the CPU writes data to the memory ¢ I/O device, the CPU first specifies the address to which data
is written to the BIU and write data. The BIU writes the data to the specified address.

O To perform the above operations [0 to [, the BIU inputs and outputs the control signals, and control the
bus.

2-10 7751 SERIES SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.2 Bus interface unit

92IN3p
leulaix3

*13y1oue auo Jo 1uapuadapul are sng [eUISIXS pue ‘SN([eulalul ‘sng NdD 8yl : 910N

Ja1sIBay uonoun e1oads : Y4s

[eubis jonuo)

0Q/9TY 0) LQ/s2y

8Q)/8y 01 STQ/STY

<
<
<
<

0y 0} 2y 1

sNnq [eula1x3

AN

AN

UN2UI0
UOISISAUOD
sng

(4ds)
92INap
[esayduad
reusalu|

Aowaw
reusalu|

[eubls |01U0D [eusa| V

snq [eusaiu|

0V 01 €2y SN([eulaju|

0@ 01 . shq [euJaiu|

8] 0] ST SN([eulalu|

(ni1g)

uun
aoepaUI
sng

" sng ndo

(nd2)

uun
Buissasoud
[enuad

._GHDQEOUO._O_E SallsSs TG/ /

Fig. 2.2.1 Bus and bus interface unit (BIU)

2-11

7751 SERIES SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.2 Bus interface unit

2.2.2 Functions of bus interface unit (BIU)
The bus interface unit (BIU) consists of four registers shown in Figure 2.2.2. Table 2.2.1 shows the
functions of each register.

b23 b0
PA | Program address register

|
I

Q1 ~ - -Instruction queue buffer
1
Q2 |---
b23 b0
| DA | Data address register
b15 b0
[pBy | DBL | Data buffer

IEig. 2.2.2 -Register structure of bus interface unit (BIU)

Table 2.2.1 Functions of each register
Name Functions
Program address register | Indicates the storage address for the instruction which is next taken into the
instruction queue buffer.
Instruction queue buffer Temporarily stores the instruction which has been taken in.
Data address register Indicates the address for the data which is next read from or written to.
Data buffer Temporarily stores the data which is read from the memoryl/O device by the
BIU or which is written to the memory+l/O device by the CPU.

2-12 7751 SERIES SOFTWARE MANUAL

The

CENTRAL PROCESSING UNIT (CPU)

2.2 Bus interface unit

CPU and the bus send or receive data via BIU because each operates based on different clocks

(Note). The BIU allows the CPU to operate at high speed without waiting for access to the memory « /O
devices that require a long access time.

The

BlIU’s functions are described bellow.

Note: The CPU operates based on ¢gcpu. The period of ¢gcpu is normally the same as that of the internal

1)

(2)

clock @ The internal bus operates based on the signal E. The period of the signal E is normally twice
that of the internal clock @ at a minimum.

Reading out instruction (Instruction prefetch)

When the CPU does not require to read or write data, that is, when the bus is not in use, the BIU reads
instructions from the memory and stores them in the instruction queue buffer. This is called instruction
prefetch.

The CPU reads instructions from the instruction queue buffer and executes them, so that the CPU can
operate at high speed without waiting for access to the memory which requires a long access time.
When the instruction queue buffer becomes empty or contains only 1 byte of an instruction, the BIU
performs instruction prefetch. The instruction queue buffer can store instructions up to 3 bytes.
The contents of the instruction queue buffer is initialized when a branch or jump instruction is executed,
and the BIU reads a new instruction from the destination address.

When instructions in the instruction queue buffer are insufficient for the CPU’s needs, the BIU extends
the pulse duration of clock ¢gcpu in order to keep the CPU waiting until the BIU fetches required
number of instructions or more.

Reading data from memoryl/O device

The CPU specifies the storage address of data to be read to the BIU’s data address register, and
requires data. The CPU waits until data is ready in the BIU.

The BIU outputs the address received from the CPU onto the address bus, reads contents at the
specified address, and takes it into the data buffer.

The CPU continues processing, using data in the data buffer.

However, if the BIU uses the bus for instruction prefetch when the CPU requires to read data, the BIU
keeps the CPU waiting.

7751 SERIES SOFTWARE MANUAL 2-13

CENTRAL PROCESSING UNIT (CPU)

2.2 Bus interface unit

(3) Writing data to memory+l/O device
The CPU specifies the address of data to be written to the BIU’'s data address register. Then, the CPU
writes data into the data buffer. The BIU outputs the address received from the CPU onto the address
bus and writes data in the data buffer into the specified address.
The CPU advances to the next processing without waiting for completion of BIU’s write operation.
However, if the BIU uses the bus for instruction prefetch when the CPU requires to write data, the BIU
keeps the CPU waiting.

(4) Bus control
To perform the above operations (1) to (3), the BIU inputs and outputs the control signals, and controls
the address bus and the data bus. The cycle which the BIU controls the bus and accesses the
memoryel/O device is called the bus cycle. Table 2.2.2 shows the bus cycle at accessing the internal
area.

Table 2.2.2 Bus cycle at accessing internal area

In low-speed running In high-speed running
RAM 1 bus cycle = 2¢ 1 bus cycle = 2¢

e o LI LT

Internal address bus Internal address bus

Internal data bus >< Data Internal data bus >< Data

ROM 11 bus cycle =3 ¢\
o | LI LI LI

. i s

SFR
Internal address bus 3< Address ><

Internal data bus >< Data

2-14 7751 SERIES SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.2 Bus interface unit

2.2.3 Operation of bus interface unit (BIU)
Figure 2.2.3 shows the basic operating waveforms of the bus interface unit (BIU).

(1) When fetching instructions into the instruction queue buffer
O When the instruction which is next fetched is located at an even address, the BIU fetches 2 bytes
of the instruction at a time with the timing of waveform (a).
However, when accessing an external device which is connected with the 8-bit external data bus
width (BYTE = “H"), only 1 byte of the instruction is fetched.

O When the instruction which is next fetched is located at an odd address, the BIU fetches only 1 byte
of the instruction with the timing of waveform (a). The data at the even address is not taken into
the data buffer.

(2) When reading or writing data to and from the memory«l/O device
O When accessing a 16-bit data which begins at an even address, waveform (a) is applied. The 16
bits of data are accessed at a time.

0 When accessing a 16-bit data which begins at an odd address, waveform (b) is applied. The 16 bits
of data are accessed separately in 2 operations, 8 bits at a time. Invalid data is not fetched into
the data buffer.

0 When accessing an 8-bit data at an even address, waveform (a) is applied. The data at the odd
address is not fetched into the data buffer.

O When accessing an 8-bit data at an odd address, waveform (a) is applied. The data at the even
address is not fetched into the data buffer.

For instructions that are affected by the data length flag (m) and the index register length flag (x),
operation O or O is applied when flag m or x = “0”; operation 0 or O is applied when flag m or x =
“q

7751 SERIES SOFTWARE MANUAL 2-15

CENTRAL PROCESSING UNIT (CPU)

2.2 Bus interface unit

(@)

E

Internal address bus (Ao t0 A23)

Internal data bus (Do t0 D7)

Internal data bus (Ds tO Dis)

(b)

mi

Internal address bus (Ao tO A23)

Internal data bus (Do t0 D7)

Internal data bus (Ds t0 Dis)

—
N e X

>< Data (Even address)

>< Data (Odd address)

I VAREA S SRy

>< Address (Odd address) X Address (Even address) X
>< Invalid data >< Data (Even address)
>< Data (Odd address) >< Invalid data

Fig. 2.2.3 Basic operating waveforms of bus‘interface unit (BIV)

2-16

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

CHRHAPRPTER 3
ADDRESSING
MODES

3.1 Addressing modes
3.2 Explanation of addressing
modes

ADDRESSING MODES

3.1 Addressing modes 3.2 Explanation of addressing modes

3.1 Addressing modes

To execute an instruction, when the data required for arithmetic operation is retrieved from a memory or the
result of arithmetic operation is stored to it, it is necessary to specify the address of the memory location
in advance. Address specification is also necessary when the control is to jump to a certain memory address
during program execution. Addressing refers to the method of specifying the memory address.

The memory access of the 7751 series microcomputers is reinforced with 29 different addressing modes.

3.2 Explanation of addressing modes
Each of the 29 addressing modes is explained on the pages indicated below:

Implied addressing MOTEooviiiiiiiiie e 3-3
Immediate addressing MOUEoooiiiiiiiiiiiiiie e 3-4
Accumulator addresSsing MOAE........ccccuvviiiiiiiiireeee e 3-6
Direct addresSsing MOAEeeeiiiiiiiiiiiiee e 3-7
Direct bit addressSing MOUEoooiiiiiiiiie e 3-9
Direct indexed X addressing MOdec.euveeiieiiiiiiiiiiee e 3-11
Direct indexed Y addressing MOdeoevvvieiiiiiiiiieie it 3-14
Direct indirect addressing mModeoooiiiiiiiiiiiiiiieeee e 3-15
Direct indexed X indirect addressing modeccccceeeiiiiiiiiiiieeee e 3-17
Direct indirect indexed Y addressing modeccoceeriiiniiiieieeeenenine 3-20
Direct indirect long addressing modecccooeiiiiiiiiiiiieiiiiieeeeeeeeee 3-23
Direct indirect long indexed Y addressing Modecccccovvvvvviieeeeneennnnn 3-25
Absolute addressing MOAEueeiiiiiiie i 3-28
Absolute bit addressing Modeccccvveiiiiriiiiieee 3-31
Absolute indexed X addressing MOccoeviiiiiiiiiiei i 3-33
Absolute indexed Y addressing Modeccoocciiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 3-36
Absolute long addressing Modecccveveeeiiiiiieieeeee e 3-39
Absolute long indexed X addressing mode..........ccccccovviiiiiieiiieniniinne 3-41
Absolute indirect addressing MOAEccoevieeiieiiiiiiiiieeeeeee 3-43
Absolute indirect long addressing MOdeevvveeeeeeeiieieeeiieiiieieeeeeeeenn, 3-44
Absolute indexed X indirect addressing mode...........ccoooccviiiiiieennnnnnne. 3-45
Stack addresSing MOUEoooiiiiiiiiiie e 3-46
Relative addressing MOde........covvvveeiiiiiiiiciieee e 3-49
Direct bit relative addressing modecooeiiiiiiiiiieein e 3-50
Absolute bit relative addressing modeccccccuvviiiiiiiiiiiiiiiiieeeeeeeee, 3-52
Stack pointer relative addressing modeoooovevvieiicicciins 3-54
Stack pointer relative indirect indexed Y addressing mode 3-55
Block transfer addressing modeccoooeviiiiiiiiciiie e 3-58
Multiplied accumulation addressing Modeccccevvviiiiieeeeiiiiiiiieeeeeens 3-60

7751 SERIES SOFTWARE MANUAL

Implied

Mode : Implied addressing mode
Function Registers and others are worked with one instruction.

Instruction : BRK, CLC, CLlI, CLM, CLV, DEX, DEY, INX, INY, NOP, RTI, RTL,
RTS, SEC, SEI, SEM, STP, TAD, TAS, TAX, TAY, TBD, TBS, TBX,
TBY, TDA, TDB, TSA, TSB, TSX, TXA, TXB, TXS, TXY, TYA, TYB,
TYX, WIT, XAB

ex. : Mnemonic Machine code
CLC 1816
C flag
ps L L LT[(2222212222]2]2 |
ps L P Il 0222?2l??]PPPPPPlo]|
ex. : Mnemonic Machine code
TXA 8A16
(M="1", x="1")
| DATAL i

x| ‘\\
The high-order byte is¢

not changed.

A | ¥ DATAL |
ex. : Mnemonic Machine code

TXA 8A16

(M="0", x="0")

x| DATAx | DATAL |

A DATAH | DATAL |

7751 SERIES SOFTWARE MANUAL

Immediate

Mode
Function
boundary.
Instruction : ADC, AND,
LDY, MPY,

ex. : Mnemonic
ADC A, #0A5H
(m:Lilﬂ)

Immediate addressing mode

CLP, CMP, CPX, CPY,
MPYS, ORA, RLA, SBC,
Machine code
6916 AS516

Memory

DIV,
SEP

PG

Op Code (691s)

A«— A+C+

Ab16|«—

Operand (A51s)

ex. : Mnemonic
ADC A, #0A5B7H
(m="0")

Machine code
6916 B716 Abis

PG

PG

Op Code (6916)

A« A+C+| A51s! B716

Operand (B71s)

ex. : Mnemonic
LDX #0A5H
(X:“l”)

Operand (A5ze)

Machine code
A216 Abis

PG

PG

Op Code (A216)

X —

«—

AS16 Operand (A516)

PG

A portion of the instruction is an actual data. Such instruction code can cross over the bank

DIVS, EOR, LDA, LDT, LDX,
000015 |
EBank PG
FFFF1 |
000016 |
EBank PG
FFFFi |
000016 |
EBank PG
FFFFis |

3-4

7751 SERIES SOFTWARE MANUAL

ex. : Mnemonic
LDX #0A5B7H
(X:“O”)

Xe— A516§ B716

Immediate

Machine code
A216 B716 Abis

Memory
PG
Op Code (A216)
Operand (B71s)
Operand (Abis)
___________________________ PG

000016 |

Bank PG

FFFFis |

7751 SERIES SOFTWARE MANUAL

3-5

Mode

Function

Accumulator

Accumulator addressing mode

The contents of accumulator are an actual data.

Instruction : ASL, ASR, DEC, EXTS, EXTZ, INC, LSR, ROL, ROR
ex. : Mnemonic Machine code
ROL A 2A16
(m="1")
L b7 boJ
Carry flag Accumulator A
ex. : Mnemonic Machine code
ROL A 2A16
(m:“o”)
L b15 b0
Carry flag Accumulator A

7751 SERIES SOFTWARE MANUAL

Direct

Mode . Direct addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s second byte to the contents of the direct page register. When,
however, the result of adding of the instruction’s second byte to the direct page register’'s contents

exceeds bank 016 range, the memory location in bank 116 is specfied.

Instruction : ADC, AND, ASL, ASR, CMP, CPX, CPY, DEC, DIV, DIVS, EOR,
LDA, LDM, LDX, LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC,

STX, STY
ex. : Mnemonic Machine code
ADC A, 02H 6516 0216
(m="1")
Memory
000016 ' Bank O1e
A «A+C+ | DATA |« DATA 12361 <+
____________________________ FFFFis ...
Direct page
Op Code (6519) register
Operand (021s) + 123416 | = 123616
ex. : Mnemonic Machine code
ADC A, 02H 6516 0216
(m=“0") Memory
000016 Bank O1s
T DATAL 123616 :
A« A+C+ |DATAH: DATAL| «— :
: DATAH 123716 :
____________________________ FFFFi ...
Direct page
Op Code (651s) register
Operand (0216) + 1123416 | = 123616

INC,

STA,

7751 SERIES SOFTWARE MANUAL

3-7

ex. : Mnemonic

Direct

Machine code

LDX 02H A6i1s 0216
(X:“l”)
Memory
0000:6 : Bank 016
X+—| DATA | « DATA 123616 <
FFFFis .
Direct page
Op Code (A616) register
Operand (0216) + 1123416 | = 123616
ex. : Mnemonic Machine code
LDX 02H Ab61s 0216
(=0")
Memory
000016 : Bank 016
. DATAL 123616 ‘—'_
X «— |DATAH:DATAL| «— :
* DATAH :
____________________________ FFFFis
Direct page
Op Code (A61s) register
Operand (021s) + 1123416 | = 123616

7751 SERIES SOFTWARE MANUAL

Direct Bit

Mode . Direct bit addressing mode

Function : Specifies the memory location in bank 016 by the result of adding the instruction’s second byte to
the direct page register’'s contents, and specifies the positions of multiple bits in the memory
location by the bit pattern in the third and fourth bytes of the instruction (when the m flag is “1”,
the third byte only). When, however, the result of adding of the instruction’s second byte to the
direct page register’s contents exceeds bank 016 range, the memory location in bank 116 is
specified.

Instruction : CLB, SEB

ex. : Mnemonic Machine code
CLB #5AH, 04H 1416 0416 5A16
(m="1")

(Before the instruction execution)

Memory

000016 iBankOm

2|2|2 |2]2 |22 |2 [123816 <=
FFFFis
Direct page
Op Code (141s) register
Operand (041s) + 1123416 | = 123816

Operand (5A1s)

|

(After the instruction execution)

Memory

000016

?210(?]|0|0[?2]|0]| ?]|1238: ' Bank O1s

FFFFi6

[A

7751 SERIES SOFTWARE MANUAL 3-9

Direct Bit

ex. : Mnemonic Machine code
CLB #5AA5H, 04H 1416 0416 AS516 5A1s
(M=0")

(Before the instruction execution)

Memory

000015 Bank Ois

2|2[2[2]2|2 |2 |2 |12381 <

2[2(2[2 (2|2 |2 |? [1239:

FFFF .

Direct page
Op Code (141) register
Operand (041s) + 123416 | = 123816

Operand (Ab5zs)

Operand (5Azs)

|

(After the instruction execution)

Memory

000016 ;

o|2|o|?]|?|0]|? |0 [1238.

' Bank O1s
?7(017?[010]?[0]?]1239:

FFFF1e

3-10 7751 SERIES SOFTWARE MANUAL

Direct Indexed X

My

Mode Direct indexed X addressing mode
Function The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s second byte, the direct page register’'s contents and the index
register X's contents. When, however, the result of adding the instruction’s second byte, the direct
page register’s contents and the index register X's contents exceeds bank 016 or bank 116 range,
the memory location in bank 116 or bank 216 is specified.
Instruction : ADC, AND, ASL, ASR, CMP, DEC, DIV, DIVS, EOR, INC, LDA, LD
LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC, STA, STY
ex. : Mnemonic Machine code
ADC A, 1EH, X 7516 1Ezs
(M=“1", x=“1") Memory
000016 ; Bank 016
A«—A+C+| DATA | — DATA 133816 =
FFFF. |
Direct page Index
Op Code (75:6) register register X
Operand (1Es) +| 12345 | + | E6us | = 1338
ex. : Mnemonic Machine code
ADC A, 1EH, X 7516 1E1se
(M=0", x=1") Memory
000016 : Bank Ois
v DATAL 133816 ;
A«—A+C+|DATAH: DATAL| +— :
' DATAw 13395 !
____________________________ FFFFi
Direct page Index
Op Code (751) register register X
Operand (LEzo) + 123416 | + | E61 | = 13381

7751 SERIES SOFTWARE MANUAL

3-11

ex.

ex.

Direct Indexed X

: Mnemonic Machine code
ADC A, 1EH, X 7516 1E1e
(m:lllﬂ, X:((O”)
Memory
000016 - Bank O1e
A« A+C+| DATA | DATA 433815 =<
FFFFie __J:
Direct page Index
Op Code (7516) register register X
Operand (1Eis) +|123416| +|30E61s| = 433816
: Mnemonic Machine code
ADC A, 1EH, X 7516 1E16
(m="0", x="0") Memory
000016 : Bank O1s
. DATAL 43381 =<
A «—A+C+ |DATAH: DATAL| «— ;
' DATAH 433915
____________________________ FFFFi
Direct page Index
Op Code (751) register register X
Operand (1Ezis) + | 123416 | +| 30E6G16| = 433816

3-12

7751 SERIES SOFTWARE MANUAL

Direct Indexed X

ex. : Mnemonic Machine code
LDY 1EH, X B4is 1Eis
(x="17) Memory
000015 - Bank Oue
Y+—| DATA | DATA 133816
FFFFis |
Direct page Index
Op Code (B4:s) register register X
Operand (1Ez¢) +|1234:6 | + | E6w | = 13381
ex. : Mnemonic Machine code
LDY 1EH, X B4is 1Eis
(x="0") Memory
000016 ' Bank O1s
. DATAL 43381 ~—
Y «— |DATAH: DATA| +— :
' DATAH 433915
____________________________ FFFFi |
Direct page Index
Op Code (B41s) register register X
Operand (1Ezs) + 1123416 | + |30E616| = 433816

7751 SERIES SOFTWARE MANUAL 3-13

Direct Indexed Y

Mode . Direct indexed Y addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by
the result of adding the instruction’s second byte, the direct page register’s contents and the index
register Y’'s contents. When, however, the result of adding of the instruction’s second byte, the
direct page register's contents and the index register Y’s contents exceeds bank 016 or bank 116
range, the memory location in bank 116 or bank 216 is specified.

Instruction : LDX, STX

ex. : Mnemonic Machine code
LDX 02H, Y B61s 0216
(x="1")
Memory
000056 ! Bank O
X+—|DATA | DATA 131C1s <
FFFFi |
Direct page Index
Op Code (B61s) register register Y
Operand (021) +| 123416 + | E61s | =131Cw
ex. : Mnemonic Machine code
LDX 02H,Y B61s 0216
(x="0) Memory
000016 Bank O1s
. DATAL 131Cus
X +— |DATAH: DATAL| +— ;
' DATAH 131D |
____________________________ FFFFi |
Direct page Index
Op Code (B61s) register register Y
Operand (021s) + 123416 | + |0O0EG1s| = 131Cus

3-14 7751 SERIES SOFTWARE MANUAL

Direct Indirect

Mode . Direct indirect addressing mode

Function Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register’s contents. The contents of the memory location specified by these
2 bytes in bank DT (DT is the data bank register’s contents) are an actual data. When, however,
the result of adding the instruction’s second byte to the direct page register’'s contents exceeds
bank 016 range, the memory location in bank 116 is specified.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic Machine code
ADC A, (1EH) 7216 1E1s6
(m:llln)
Memory
000015 ' Bank O16
> 12521 AD. (0116) 7 :
125316 ADw (1216) J :
____________________________ FFFFis |
Direct page
register Op Code (721s)
123416 | + Operand (1Ezs)
1
125215 :
---------------------------- Data bank
register
A— A+C+ | DATA |+ DATA DT | 12011 <

7751 SERIES SOFTWARE MANUAL 3-15

ex. : Mnemonic

Direct Indirect

Machine code

ADC A, (1EH) 7216 1Eas6
(M="0")
Memory
000015 E Bank 016
>125216 AD. (011s) —| :
125316 ADw (1216) J 5
____________________________ FFFFi
Direct page
register Op Code (721)
123446 | + Operand (1Ezs)
1
——125216 ! :
--------------------------- Data bank
register
: DATAL DT | 12016~
A«—A+C+| DATAH: DATAL | «—
' DATA DT | 12021

3-16

7751 SERIES SOFTWARE MANUAL

Direct Indexed X Indirect

Mode . Direct indexed X indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s second
byte, the direct page register’s contents and the index register X’'s contents. The contents of the
memory location specified by these bytes in bank DT (DT is the data bank register’s contents) are
an actual data. When, however, the result of adding the instruction’s second byte, the direct page
register's contents and the index register X's contents exceeds bank 016 or bank 116 range, the
memory location in bank 116 or bank 216 is specified.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic Machine code
ADC A, (1EH, X) 6116 1Es
(m:Hl”, X:“l”)
Memory
0000:6 Bank O1e
’7 ADL (00zs) 133816 <«—
L ADw (1416) 1339 |
___________________________ FFFFis |
Direct page Index
Op Code (6116) register register X
Operand (1Ew.) | + [123416 | + \ E6us | = 13381
--------------------------- Data bank
\ register
A«—A+C+ | DATA | — DATA DT | 140016

7751 SERIES SOFTWARE MANUAL 3-17

Direct Indexed X Indirect

ex. : Mnemonic Machine code
ADC A, (1EH, X) 6115 1Eus
(mzuoly’ X:uln) Memory
000015 Bank 016
r ADL (001s) 133816 .
L ADw (1415) 1339 |
___________________________ FFFFi |
Direct page Index
Op Code (6116) register register X
Operand (1Ezs) +|123416| + \ E6u | = 13381
--------------------------- Data bank
register
DATAL DT | 140016
A«—A+C+| DATAH! DATAL |— DATAH DT | 140116
ex. : Mnemonic Machine code
ADC A, (1EH X) 611 1E1s
(m:uln‘ X:“O”) Memory
1000015 : Bank 1is
r ADL (001s) 1033816 <
L ADw (1415) 103391 |
___________________________ 1FFFF1s |
Direct page Index
Op Code (611¢) register register X
Operand (1Eus) + | 123416| +|FOE616| = 1033816
--------------------------- Data bank
\ register
A«—A+C+ | DATA |« DATA DT | 14001s

3-18 7751 SERIES SOFTWARE MANUAL

Direct Indexed X Indirect

ex. : Mnemonic

ADC A,

(1EH, X)

(M="0", x="0")

A— A+C+

Machine code
6115 1E16

r ADL (0015)

1033816

DATAH: DATAL

L ADw (1416)

1033916

Op Code (611s)

Direct

1000016

1FFFF15 |

register register X

: Bank 116

A

page Index

Operand (1Ezs)

+ 1123416 | + |FOE61s|] = 1033816

---------------------------- Data bank
register

DATAL DT | 140016

— DATAH DT | 140116

7751 SERIES SOFTWARE MANUAL

3-19

Direct Indirect Indexed Y

Mode . Direct indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register's contents. The following is an actual data: the contents of the
memory location specified by the result of adding the contents of these 2 bytes to the index register
Y’s contents and the contents of the data bank register. When, however, the result of adding the
instruction’s second byte to the direct page register’s contents exceeds bank 016 range, the
memory location in bank 116 is specified. Additionally, if the addition of the memory’s contents and
the index register Y’s contents generates a carry, the bank which is 1 larger than the contents of
the data bank register is used.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic Machine code
ADC A, (1EH) Y 7116 1Ess
(m="1", x="1")
Memory
E Bank 016 Index
' register Y
125216 AD. (0116) “ : [
v + i E616 | = 12E 716
125316 ADw (121) J :
Direct page
register Op Code (7116)
123416 | + Operand (1Eze)
1
———125216
--------------------------- Data bank
register
A«—A+C+| DATA | «— DATA DT |12E7:6

3-20 7751 SERIES SOFTWARE MANUAL

Direct Indirect Indexed Y

ex. : Mnemonic Machine code
ADC A, (1EH), Y 7116 1E1s
(M="0", x="1") Memory
Bank O1s Index
: register Y
12521 AD¢ (0116) : i
: + : E61s | = 12E 716
125316 ADw (1216) J :
Direct page
register Op Code (711s)
123416 | + Operand (1Ezs)
I
125216
--------------------------- Data bank
register
T DATAL DT | 12E 716
A «— A+C+ | DATAH: DATAL| «—
' DATAH DT | 12E8
ex. : Mnemonic Machine code
716 1E
ADC A, (1EH), Y 16 1E16 Mefhory
(m:uln’ X:uOH) _____ N
i Bank O
: Index
_ ¢ ; register Y
125215 ADL (0116) :
; +|FOE61s| = 102E 716
125316 ADw (1216) J :
Direct page
register Op Code (7116)
123416 | + Operand (1Eze)
I
125216
"""""""""""""""" Data bank
register
A —A+C+ | DATA |«— DATA DT |+1 O02E716 <—
L 1
Bank

7751 SERIES SOFTWARE MANUAL 3-21

Direct Indirect Indexed Y

ex. : Mnemonic

Machine code

ADC A, (1EH),Y 7116 1E1s
(m:‘loﬂ, X:“O”) Memory
. Bank 01 Index
; register Y
>125216 ADv (0116) '
: +|FOE61s| =102
125316 ADw (1215) J 5
Direct page
register Op Code (711)
123416 | + Operand (1Eas)
1
125216
____________________________ Data bank
register
: DATAL DT |+1 O02E7i6 =—
A — A+C+ |DATAH: DATAL| «—
' DATAH DT [+1 02E8s
L |
Bank

3-22

7751 SERIES SOFTWARE MANUAL

Direct Indirect Long

Mode . Direct indirect long addressing mode

Function Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register's contents. The contents at the address specified by the contents
of these 3 bytes are an actual data. When, however, the result of adding the instruction’s second
byte to the direct page register's contents exceeds bank 016, the memory location in bank 116 is

specified. A sequence of 3-byte memory can cross over the bank boundary.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA,

Bank 01e

ex. : Mnemonic Machine code
ADCL A, (1EH) 6715 1Eis
(m="1")
Memory
125216 AD. (EFs)
125316 ADw (0116)
125416 ADH (1216)
Direct page
register Op Code (6716)
123416 | + Operand (1Es)
1l
—— 125216
A — A+C+ | DATA | «— DATA

1201ERe~<~—

STA

7751 SERIES SOFTWARE MANUAL

3-23

ex. : Mnemonic
ADCL A, (1EH)

(m="0")

A — A+C+

Direct Indirect Long

Machine code

6716 1E16
Memory
i Bank Ois
> 125216 AD. (EF1s) \| i
125316 ADw (0116) §
125416 ADH (1215) J
Direct page
register Op Code (671)
123416 + Operand (1Ezs)
1
125216
H DATAL 1201ERs <~
DATA +: DATAL| «—
' DATA 1201FOss

3-24

7751 SERIES SOFTWARE MANUAL

Direct Indirect Long Indexed Y

Mode . Direct indirect long indexed Y addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction’s second
byte to the direct page register’s contents. The contents at the address specified by the result of
adding the contents of these 3 bytes to the index register Y's contents are an actual data. When,
however, the result of adding the instruction’s second byte to the direct page register's contents
exceeds bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte
memory can cross over the bank boundary.

Instruction : ADC,

ex. : Mnemonic

ADCL A, (1EH) Y

(M="1", x="1")

Machine code

AND, CMP, DIV, DIVS, EOR, LDA,

7716 1E1se

Memory

>125216 ADL (EF16)

125316 ADw (0116)

125416 ADH (1216)

Direct page
register Op Code (771s)
123416 + Operand (1E:ze)
I
—— 125216
A — A+C+| DATA | «— DATA

MPY, MPYS, ORA, SBC, STA

12021016

+ Bank Os

Index
register Y

: 2116 |= 1202101

7751 SERIES SOFTWARE MANUAL

3-25

Direct Indirect Long Indexed Y

ex. : Mnemonic Machine code
ADCL A, (1EH), Y 7716 1Eis
(m="0", x="1") Memory
Index
125216 AD (EF1s) register Y
125316 ADw (0115) P 211 |= 1202101
125416 ADw (1215)
Direct page
register Op Code (7716)
1234416 | + Operand (1Ezs)
1

— 125216

' DATAL 1202106 @~
A«—A+C+ |DATAH: DATAL| «—
' DATAx 1202111
ex. : Mnemonic Machine code
ADCL A, (1EH), Y 7716 1E1e M
(Mm="1", x="0") cEOY
1 Bank Os
Index
12521 ADL (EFs) register Y
125316 ADw (0116) + |E521s| = 12E7101s
125446 ADH (1216)
Direct page
register Op Code (7716)
123416 + Operand (1Ezs)
I
— 125216
A — A+C+| DATA | «— DATA 12E71016

3-26 7751 SERIES SOFTWARE MANUAL

ex. : Mnemonic

Direct Indirect Long Indexed Y

Machine code

ADCL A, (1EH) Y 7716 1Ezs
(m:lioﬂ, X:“O”) Memory
125216 AD. (EFs)
125316 ADw (0116)
125416 ADH (1216)
Direct page
register Op Code (771s)
123446 | + Operand (1Eus)
1

125216

A — A+C+ |DATAH: DATAL| +—

DATAL

DATAH

' Bank O1s

Index
register Y

+ |E52116

= 12E710s

12E71016

12E71116

7751 SERIES SOFTWARE MANUAL

3-27

Absolute

Mode : Absolute addressing mode

Function The following is an actual data: the contents of the memory location specified by the instruction’s
second and third bytes and the contents of the data bank register. Note that, in the cases of the
JMP and JSR instructions, the instructions’ second and third bytes are transferred to the program

counter.

Instruction : ADC, AND,
JMP, ISR,
SBC, STA,

ex.: Mnemonic
ADC A, 0AD12H
(m:“l”)

ASL,

LDA,
STX,

Machine code
6Di16 1216 AD1s

A — A+C+ |DATA| «—

ex. : Mnemonic
ADC A, 0AD12H
(m:“O")

Machine code
6D16 1216 AD1s

A+— A+C+ |DATAH: DATAL

ASR, CMP, CPX, CPY, DEC,
LDM, LDX, LDY, LSR,
STY
Memory
Op Code (6D1s)
Operand (121s) —|
Operand (AD1s) J
"""""""""""""" Data bank
register
DATA DT| AD1216<—
Memory
Op Code (6D1s)
Operand (1216) ‘|
Operand (ADzse) J
"""""""""""""" Data bank
register
DATAL DT| AD1216~—
DATAH DT| AD131s

3-28

7751 SERIES SOFTWARE MANUAL

MPY, MPYS, ORA,

Absolute

ex. : Mnemonic Machine code
LDX OAC14H AE1s 1416 ACi1s
(x="1")
Memory

Op Code (AEzs)
Operand (1416) —‘

Operand (ACus) J

Data bank
register

X « |DATA| DATA DT| AC14 <—

ex. : Mnemonic Machine code
LDX OAC14H AE1s 1416 ACis
(x="07) Memory

Op Code (AEzs)
Operand (141s) —‘

Operand (ACus) J

--------------------------- Data bank
register
: DATA . DT| AC14: =~
X «—|DATA+ i DATAL [+
H DATA - DT| AC151

7751 SERIES SOFTWARE MANUAL

3-29

ex. : Mnemonic

Absolute

Machine code

JMP 0AC14H 4C16 1416 ACis

Memory
PG | 000016
Op Code (4Cais)
Operand (141s) T
Operand (ACis) J
Program

bank register

Address to be
executed next

PG

PG

AC1416

FFFFie

~—

 BankPG

[

Program bank register’s

contents are not affected.

Note : Note the branch destination bank when a JMP or a JSR instruction

is located near a bank boundary.

= Refer to the description of a JMP instruction (Page 4-50).
Refer to the description of a JSR instruction (Page 4-51).

3-30

7751 SERIES SOFTWARE MANUAL

Absolute Bit

Mode . Absolute bit addressing mode

Function : Specifies the memory location by the instruction’s second and third bytes and the contents of the
data bank register; specifies the multiple bit positions in that memory by a bit pattern of the
instruction’s fourth and fifth bytes (when the m flag is “1”, the fourth byte only).

Instruction : CLB, SEB

ex. : Mnemonic Machine code
CLB #5AH, 1234H 1Ci6 3416 1216 5A16
(m:Hl”)
Memory

Op Code (1Cas)
Operand (341s) —‘

Operand (1216) J
Operand (5Aa1s)

Data bank
register

212|222 ?|?|?]|]| DT | 12341, =<

Data bank
register

?10]?2]0|0f?[0Of? DT | 123416

7751 SERIES SOFTWARE MANUAL 3-31

ex. : Mnemonic

CLB #5AA5H, 1234H
(m="0")

Absolute Bit

Machine code
1Ci6 3416 1216 AS16 5A16

Memory

Op Code (1Cais)

Operand (341s)

Operand (121s6)

Operand (A5zs)

Operand (5Au1s)

Data bank
register

DT | 123416 =<

DT | 123516

Data bank
register

DT | 123416

DT | 123516

3-32

7751 SERIES SOFTWARE MANUAL

Absolute Indexed X

Mode : Absolute indexed X addressing mode

Function The following is an actual data: the contents of the memory location specified by the result of
adding a 16-bit length numerical value expressed with the instruction’s second and third bytes to
the index register X’'s contents, and the contents of the data bank register. If, however, the addition
of the numerical value expressed with the instruction’s second and third bytes, and the index
register X's contents generates a carry; the bank which is 1 larger than the contents of the data
bank register is used.

Instruction : ADC, AND, ASL, ASR, CMP, DEC, DIV, DIVS, EOR, INC, LDA, LDM,
LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC, STA

ex. : Mnemonic Machine code
ADC A, OAD12H, X 7D16 1216 AD1e
(M=1", x="1") Memory
Op Code (7Dzs) Index
register X
Operand (1216) 7
+ i} EEws |= AEO0Os
Operand (ADzs) .
A «— A+C+| DATA |« DATA DT | AEO0Qis <—
ex. : Mnemonic Machine code
ADC A, 0AD12H, X 7D1s 1216 AD1s
(m=107, x="17) Memory
Op Code (7D1s) Index
register X
Operand (1216) [
+ i EEis | = AEOOus
Operand (ADzs) :
--------------------------- Index
register X
T DATAL DT | AEOOis <~
A «— A+C+| DATAH: DATAL |«—
* DATAH DT | AEO1l1s

7751 SERIES SOFTWARE MANUAL 3-33

Absolute Indexed X

ex. : Mnemonic Machine code
ADC A, 0AD12H, X 7D1s 1216 AD1s
(m="1", x="0")
Memory
Op Code (7Da1s) Index

register X

Operand (1216)

+ |10EEws | = BEOO1s

Operand (ADa1e)

"""""""""""""" Data bank
register
A — A+C+| DATA | «— DATA DT | BEOOis <—
ex. : Mnemonic Machine code
ADC A, 0AD12H, X 7D16 1216 AD1s
m:iion7 XZHOH
() Memory
Op Code (7D1s) Index
register X

Operand (1216)

+ |10EEis| = BEOO1s

Operand (ADais)

--------------------------- Data bank
register
. DATAL DT | BEOO:s
A «— A+C+| DATAH : DATAL | +—
. DATAH DT | BEO11s

3-34 7751 SERIES SOFTWARE MANUAL

Absolute Indexed X

ex. : Mnemonic Machine code
LDY 0BC12H, X BCis 1216 BCuis
(="1)
Memory
Op Code (BCais) Index
register X
Operand (121s) r
+ i EE1s |= BDOOs
Operand (BCis) :
"""""""""""""" Data bank
register
Y — | DATA | «+— DATA DT | BD0Oig =—
ex. : Mnemonic Machine code
LDY OBC12H, X BCis 1216 BCis
(=07) Memory
Op Code (BCazs) Index
register X

Operand (121s)

+ |10EEss| = CDO0O1s

Operand (BCis)

"""""""""""""" Data bank
register
' DATAL DT | CD001s <
Y — | DATA+H : DATAL | «—
: DATAH DT | CDO11s

7751 SERIES SOFTWARE MANUAL 3-35

Absolute Indexed Y

Mode . Absolute indexed Y addressing mode

Function The following is an actual data: the contents of the memory location specified by the result of
adding a 16-bit length numerical value expressed with the instruction’s second and third bytes to
the index register Y’s contents, and the contents of the data bank register. If, however, the addition
of the numerical value expressed with the instruction’s second and third bytes to the the index

register Y's contents generates a carry, the bank which is 1 larger than the contents of the data
bank register is used.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, LDX, MPY, MPYS, ORA, SBC,

STA
ex. : Mnemonic Machine code
ADC A, OADI12H, Y 7916 1216 AD1s
m="1", x="1"

() Memory

Op Code (79:16) Index
register Y
Operand (1216) [
+ : EEws |= AEO0O1s
Operand (ADze) .
"""""""""""""" Data bank
register
A «— A+C+ | DATA | «— DATA DT | AEQQ1s <—
ex. : Mnemonic Machine code
ADC A, 0AD12H, Y 7916 1216 AD1s
(m:ulﬂ’ X:uon)
Memory
Op Code (7916) Index
register Y
Operand (1216)
+ |10EEs| = BEOOs
Operand (ADzs)
--------------------------- Data bank
register
A «— A+C+ | DATA | DATA DT | BEOOis <

3-36 7751 SERIES SOFTWARE MANUAL

Absolute Indexed Y

ex. : Mnemonic Machine code
ADC A, 0AD12H, Y 7916 1216 AD1s
(m="0", x="1")
Memory
Op Code (7916) Index
register Y
Operand (121s) [
+ i EEws |= AEOQO1s
Operand (AD1s) :
------------------------- Data bank
register
v DATAL DT | AEOOis <——
A «— A+C+ |DATAH:! DATAL| «—
' DATA K DT | AEOLss
ex. : Mnemonic Machine code
ADC A, 0AD12H, Y 7916 1216 ADzs
(M="0", x="0") Memory
Op Code (7916) Index
register Y

Operand (121s)

+ |10EEws| = BEO0O1s

Operand (ADais)

"""""""""""""" Data bank
register
H DATAL DT | BEOO:s B —
A «— A+C+ |DATAH: DATAL| «—
' DATA DT | BEO11s

7751 SERIES SOFTWARE MANUAL 3-37

ex. : Mnemonic
LDX OBC12H, Y
(X:“]_")

ex. : Mnemonic

LDX OBC12H, Y
(x=0")

Absolute Indexed Y

Machine code

BEis 1216 BCuis

Memory
Op Code (BEzs) Index
register Y
Operand (1216) :
+ i EEis |= BDOOws
Operand (BCis) '
--------------------------- Data bank
register
X «— | DATA | DATA DT | BDOOw <
Machine code
BEis 1216 BCie
Memory
Op Code (BEzs) Index
register Y
Operand (1216)
+ |10EE1s| = CDO0O1s
Operand (BCue)
--------------------------- Data bank
register
: DATA L DT | CDO00zs
DATAH: DATAL | ¢
; DATA 1 DT | CDO1is

3-38

7751 SERIES SOFTWARE MANUAL

ex. : Mnemonic
ADC A, 123456H
(m="0")

Absolute Long

Mode Absolute long addressing mode
Function
to the program bank register.
Instruction : ADC, AND, CMP, DIV, DIVS,
SBC, STA
ex. : Mnemonic Machine code
ADC A, 123456H 6F16 5616 3416 1216
(m=1)
Memory
Op Code (6F1s)
Operand (56:6)
Operand (3416)
Operand (1216)
A — A+C+ | DATA DATA

Machine code
6F16 5616 3416 1216

A «— A+C+

DATAH: DATAL

Memory

Op Code (6F1s)

Operand (5616)

Operand (341s)

Operand (1216)

DATAL

DATA H

The contents of the memory location specified by the instruction’s second, third and fourth bytes
are an actual data. Note that, in the cases of the JMP and JSR instructions, the instruction’s
second and third bytes are transferred to the program counter and the fourth byte is transferred

EOR, JMP, JSR,

MPYS, ORA,

L |

12345616 <

L |

12345616 =<

12345716

7751 SERIES SOFTWARE MANUAL

Absolute Long

ex. : Mnemonic Machine code
JMPL 123456H 5Ci16 5616 3416 1216

Op Code (5Cis)

Operand (5616)

Operand (341s)

L |

Operand (121s6)

Program bank
register

Address to be
1216
executed next

345616 <

Program bank register’s contents
are replaced by the third operand.

3-40 7751 SERIES SOFTWARE MANUAL

Absolute Long Indexed X

Mode . Absolute long indexed X addressing mode
Function : The following is an actual data: the contents of the memory location specified by the result of
adding a numerical value expressed with the instruction’s second, third and forth bytes to the index

register X's contents.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic Machine code
ADC A, 123456H, X 7F16 5616 3416 1216
(M=*1", x="1") Memory
Op Code (7F1s)
Index
Operand (561s) register X
Operand (341) + ! Elis |= 1235371
Operand (121s)
A «— A+C+ | DATA | «— DATA 12353716
ex. : Mnemonic Machine code
ADC A, 123456H, X 7F16 5616 3416 1216
(m="0, x="1") Memory
Op Code (7F1s)
Index
Operand (56:6) register X
Operand (3415) + } Elis |= 1235371

Operand (121s)

T DATAL 12353716
A «— A+C+ |DATAH ! DATAL| —

DATAH 12353816

7751 SERIES SOFTWARE MANUAL 3-41

Absolute Long Indexed X

ex. : Mnemonic
ADC A, 123456H, X

Machine code

(M="1", x="0")

A «— A+C+

ex. : Mnemonic

ADC A, 123456H, X
(M="0", X

A «— A+C+

7F16 5616 3416 1216

Op Code (7F1s)

Operand (5616)

Operand (341s)

Operand (1216)

DATA

DATA

Machine code

=0")

DATA ! DATAL

7F16 5616 3416 1216

Op Code (7Fis)

Operand (5616)

Operand (341s)

Operand (121s)

DATAL

DATAH

Index
register X

+ |EEE11s

1323371 <

Index
register X

+ |EEE11s

13233716

13233816

= 13233716

= 13233716

3-42

7751 SERIES SOFTWARE MANUAL

Absolute Indirect

Mode : Absolute indirect addressing mode

Function A sequence of 2-byte memory is specified by the instruction’s second and third bytes. The contents
of these bytes specify the address within the same program bank to which a jump is to be made.

Instruction : JMP
ex. : Mnemonic Machine code
JMP (1400H) 6C16 0016 1416

Op Code (6Caus) :
’7 Operand (001s)
L Operand (141s) :

: Bank PG
ADL (FFais) PG 140016 '

ADw (1Ezs) :

Address to be PG | 1EFFL, < :
executed next .

Note : Note the reference/branch destination bank when a JMP instruction
or a reference destination is located near a bank boundary.
= Refer to the description of a JMP instruction (Page 4-50).

7751 SERIES SOFTWARE MANUAL 3-43

Absolute Indirect Long

Mode Absolute indirect long addressing mode
Function A sequence of 3-byte memory is specified by the instruction’s second and third bytes. The contents
of these 3 bytes specify the address to which a jump is to be made.
Instruction : JMP
ex. : Mnemonic Machine code

JMPL (1234H) DCis 3416 1216

Op Code (DCas)

’7 Operand (341e) .
L Operand (1216)

Program bank 5 Bank PG
register

AD. (1216) PG
ADw (B41s)
AD+ (Alis) J

123416

Program bank
register

Address to be
executed next

Alis | B412is <

ADw is loaded in the
program bank register.

Note : Note the reference destination bank when a JMP instruction
is located near a bank boundary.
= Refer to the description of a JMP instruction (Page 4-50).

3-44

7751 SERIES SOFTWARE MANUAL

Absolute Indexed X Indirect

Mode

Function

Instruction :

Absolute indexed X indirect addressing mode

A sequence of 2-byte memory is specified by the result of adding a numerical value expressed with
the instruction’s second and third bytes to the index register X's contents. The contents of these
bytes specify the address to which a jump is to be made.

JMP, JSR

ex. : Mnemonic
JMP (1234H,X)

(x=17)

Address to be
executed next

Machine code
7C16 3416 1216

Op Code (7Cas)

Operand (341s)

Operand (121s)

ADL (1216)

ADM (BCas)

124616

124716

Program bank

Index
register X

<

register

PG

BC121s <

Note : Note the reference/branch destination bank in the case of a JMP or a
JSR instruction when the instruction or the branch destination address
is located near a boundary.
= Refer to the description of a JMP instruction (Page 4-50).

Refer to the description of a JSR instruction (Page 4-51).

: Bank PG

7751 SERIES SOFTWARE MANUAL

3-45

Stack addressing mode

Stack

by the stack pointer. The stack register is set in bank 016.

Mode

Function

Instruction PEA, PEl,
PLB, PLD,

ex. : Mnemonic
PHA
(mzﬂlﬂ)

ex. : Mnemonic
PHA
(M="0")

ex. : Mnemonic
PHD

PER, PHA, PHB, PHD, PHG, PHP, PHT,
PLP, PLT, PLX, PLY, PSH, PUL
Machine code
4816
Memory
Stack pointer
S-1 00| Sw: St
S AL
Machine code
4816
Memory
Stack pointer
S-2 00| sSu: S
S-1 Al
S AH
Machine code
0B
e Memory
Stack pointer
S-2 00| Sui St
S—1 DPRL
s DPRH

PHX,

PHY,

Bank O1s

Bank O1s

Bank O1e

The contents of a register or others are stored to or restored from the memory location specified

PLA,

3-46

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

Stack

ex. : Mnemonic Machine code
PEA #1234H F416 3416 1216
Memory
Stack pointer
S-2 00| SH: SL
S—l 3416
IS 1216
Op Code (F416)
Operand (341s)
Operand (121s)
ex. : Mnemonic Machine code
PEI #12H D416 1216
Meémory.
DATAL 341216
DATA 341316
S-2 00| Su:i Su
S-1 DATAL
S DATAH

Op Code (D416)

Direct page

register

Stack pointer

Operand (121s)

340016

= 341216

Bank 016

Bank O1e

7751 SERIES SOFTWARE MANUAL

3-47

suzuki_tadahiro

ex.

: Mnemonic

PER #1234H

S-2

S-1

Stack

Machine code
6216 3416 1216

' Bank Ous

Memory
Stack pointer :
00| Sw: St
ACie
6816

Program bank

register
Op Code (6216) PG | 567616
Operand (341g)
Operand(12is) +| 567816 | = 68ACis

Program counter

Bank PG

3-48

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

Relative

Mode : Relative addressing mode

Function Branches to the address specified by the result of adding the program counter’s contents to the
instruction’s second byte. In the case of a long branch with the BRA instruction, the instruction’s
second and third bytes are added to the program counter’s contents as a 15-hit signed numerical
value. If the addition generates a carry or a borrow, 1 is added to or subtracted from the program
bank register.

Instruction : BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS

ex. : Mnemonic Machine code
BCC O0-12 9016 F416
Memory Memory
Address to be 12
executed next.
Branch Op Code (901s)
Op Code (90:6) Operand (F41s)
Operand (F4is) Address to be 0
executed next
O
Branches to the address 0 -12 Advances to the address O
when the carry flag (C) is “0". when the carry flag (C) is “1".
ex. : Mnemonic Machine code
BRAL 1234H 8216 3416 1216
Memory
Op Code (8216)
Operand (341s) Bank PG
Operand (1216)
PG | FF1216 :
PG |11461s : Bank PG + 1
Address to be :
executed next :

7751 SERIES SOFTWARE MANUAL 3-49

Mode

Function

Direct Bit Relative

Direct bit relative addressing mode

memory location in bank 116 is specified.

Instruction : BBC, BBS

ex. : Mnemonic

BBS #5AH, 04H, OF6H
(m="1")

(Branch)

Memory

Machine code
2416 0416 5A16 F616

o
=
=
=
[
o
=
=

00123815 <

Program
bank register

Address to be
executed next

1116

Op Code (2416)

Direct page
register

FFFD1s

Branch
Operand (041s)

+ | 123416

= 12381

Operand (5Az6)

Operand (F616)

1216

Program
bank register

000715 Address to be
executed next

(Not branch)

Memory

00123815 <

Specifies the memory location in bank 016 by the result of adding the instruction’s second byte to
the direct page register’s contents; specifies the multiple bit positions in that memory by the bit
pattern of the instruction’s third and fourth bytes (when the m flag is “1”, the third byte only). Then,
when the specified bits all satisfy the branching conditions, branches to the address specified by
the result of adding the instruction’s fifth byte (or when the m flag is “1”, the forth byte) as a signed
numerical value to the program counter’'s contents. When, however, the result of adding the
instruction’s second byte to the direct page register’s contents exceeds bank 016 range, the

Operand (F616)

Direct page
Op Code (2416) register
Operand (0416) | +| 123416 = 123816
Operand (5Aus)
Program

bank register

1216 | 000716

3-50

7751 SERIES SOFTWARE MANUAL

ex. : Mnemonic

BBS #5AA5H, 04H, OF6H

(m=0")

(Branch)

Memory

Direct Bit Relative

Machine code

2416 0416 A516 5A16 FB16

00123816 <

(Not branch)

Memory

00123816 <

, Bank Ois
0[1{0[1(1]0[1{1]001239:6 011]0{1]1|0|1{1]0012391s :
Address to be 1110 | FEFEL
executed next
Direct page Direct page
Op Code (2416) register Op Code (241s) register
Branch Operand (041s) | +| 123416 | = 123816 Operand (0416) | +] 123416 | = 123816
Operand (A516) Operand (A516)
Operand (5A16) Operand (5A16)
Program Program
Operand (F61s) | bank register Operand (F61s) | bank register
— 1216 | 000816 Address to be 1215 | 00081
executed next
3-51

7751 SERIES SOFTWARE MANUAL

Absolute Bit Relative

Mode

Function

Absolute bit relative addressing mode

Specifies the memory location by the instruction’s second and third bytes and the contents of the
data bank register; specifies the multiple bit positions in that memory by a bit pattern of the
instruction’s fourth and fifth bytes (when the m flag is “1”, the fourth byte only). Then, when the
specified bits all satisfy the branching conditions, branches to the address specified by the result
of adding the instruction’s sixth byte (or when the m flag is “1”, the fifth byte) as a signed numerical

value to the program counter’s contents.

Instruction :

ex. : Mnemonic

(m="1)

Address to be
executed next

Branch

1116 | FFFD1s
/
Op Code (2Cas) Op Code (2Cus)
Operand (341s) _I Operand (341s) —‘
Operand (1216) J Operand (1216) J
Operand (5A1s) Operand (5A1s6)
Program Progrgm
Operand (F61s) bank register Operand (F61s) | bank register
Address
— 1216 | 000716 to be 1216 | 000716
executed
---------------------- next
Data bank Data bank
register register
0{1(1|1{1|0[1(0] | DT |12341 <— olo[1]|1|1]|o|1|0] | DT |12341 <

BBC,

BBS

Machine code
BBS #5AH, 1234H, OF6H 2Cis 3416 1216 5A16 F616

(Branch)
Memory

Program
bank register

(Not branch)

Memory

3-52

7751 SERIES SOFTWARE MANUAL

Absolute Bit Relative

ex. : Mnemonic
BBS #5AA5H, 1234H, OF6H 2Ci6 3416 1216 AS16 5A16 F616

(m="0")

Address to be
executed next

Branch

(Branch)

Memory

Machine code

Program
bank register

Operand (F616)

1116 | FFFD1s
Op Code (2Cais)
Operand (3416) —‘
Operand (1216) J
Operand (A5as)
Operand (5Au1s)
Program

bank register

1216 | 000716

Data bank
register

DT | 123416

DT | 123516

=

Address
to be
executed
next

(Not branch)
Memory

Op Code (2Cais)

Operand (3416)

Operand (1216)

Operand (A5as)

Operand (5Aus)

Operand (F61s)

-
|

Program
bank register

1216 | 000716

Data bank
register

DT | 123416

DT | 123516

<

7751 SERIES SOFTWARE MANUAL

3-53

Stack Pointer Relative

Mode : Stack pointer relative addressing mode

Function The contents of the memory location in bank 016 are an actual data. This memory is specified by
the result of adding the instruction’s second byte to the stack pointer's contents. When, however,
the result of adding the instruction’s second byte to the stack pointer’'s contents exceeds bank 016
range, the memory location in bank 116 is specified.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic Machine code
ADC A, 02H, S 6316 0216
(m="17) Memory
: Bank O1s
A «—A+C+| DATA | +— DATA 123615 <—+——
Op Code (6316) Stack pointer
Operand (021s) + 1123416 | = 123616
ex. : Mnemonic Machine code
ADC A, 02H, S 6316 0216
(m="0") Memory
Bank 016
; DATAL 123616 <—+——
A —A+C+ |DATAH: DATAL| «— !
' DATAH 123716 !
Op Code (6316) Stack pointer
Operand (0216) + 1123416 = 123616

3-54 7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

Mode . Stack pointer relative indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory by the result of adding the instruction’s second byte to the
stack pointer's contents. The following is an actual data: the contents of the memory location
specified by the result of adding the contents of these bytes to the index register Y’s contents, and
the data bank register’'s contents. If, however, the result of adding the contents of that sequence
of 2-byte memory to the index register Y's contents generates a carry, the bank which is 1 larger
than the contents of the data bank register is used.

Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic Machine code
ADC A, (1EH,S), Y 7316 1Ezs6
(m:(llﬂ, X:Hl”)
' Bank Oz Index
: register Y
—> 125216 ADv. (011s6) ; :
' + : E616 | = 12E7s
125316 ADw (1216) J j

Stack pointer Op Code (7316)

123416 | + Operand (1Ezs)

—— 125216 [ro-mmmmmmmmmmmmmmmmneeeees
--------------------------- Data bank
register
A — A+C+ | DATA |« DATA DT | 12E76 <

7751 SERIES SOFTWARE MANUAL 3-55

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic Machine code
ADC A, (1EH,S), Y 7316 1E1s
(m:uOn‘ X:ulﬂ) Memory
Bank 016 Index
' register Y
—> 125216 ADv. (011s) ' :
. + . E616 | = 12E 716
125316 ADw (1216) J ;
Stack pointer Op Code (7316)
123416 | + Operand (1Eas)
I
125216 f----eeieemeemie e
L Data bank
register
: DATAL DT | 12E 716
A «—A+C+ |DATAH:; DATAL| «—
' DATAH
ex. : Mnemonic Machine code
ADC A, (1EH,S), Y 7316 1E6
(m="1", x="0") Memory
1 Bank Oz
. Index
: register Y
12521 ADt (0116) :
+|FOEGs| = 102E 716
125316 ADw (1216) J ; T
Stack pointer Op Code (73:¢)
123416 | + Operand (1Ezs)
I
125216 from-mmmmmmm e
--------------------------- Data bank
register
A+« A+C+ | DATA | DATA DT |+1 O02E71. <—
— |
Bank

3-56 7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH,S), Y

(M=*0", x="0")

Machine code

Stack pointer

Index

Op Code (7316)

123416 | +

Operand (1Ezs)

— 125216

A — A+C+ |DATA i DATAL| «—

1
=

7316 1E16
Memory
: Bank O1s
—> 125216 AD. (0116)
125316 ADw (1216)

—I : register Y
J ' + | FOF616 2E716

---------------------------- Data bank
register
DATAL DT |+1 O02E7is <—
= 1
DATAH Bank

7751 SERIES SOFTWARE MANUAL 3-57

Mode

Function

Instruction :

ex.:

Block Transfer

Block transfer addressing mode

Specifies the transfer-to data bank by the instruction’s second byte, and specifies the transfer-to

address whithin the data bank by the index register Y’s contents. Specifies the transfer-from data
bank by the instruction’s third byte, and specifies the address of transfer data within the data bank
by the index register X’'s contents. The accumulator A’s contents are the number of bytes to be
transferred. At termination of transfer, the data bank register’'s contents specify the transfer-to data
bank. The MVN instruction is used for transfer toward lower addresses. In this case, the contents
of the index registers X and Y are incremented each time data is transferred. The MVP instruction
is used for transfer toward higher addresses. In this case, the contents of the index registers X
and Y are decremented each time data is transferred. The transfer data can cross over the bank

boundary.

MVN, MVP

Mnemonic

MVN OE2H ,0E5H
(m:“0”, X:HOH)

{Before transfer)

Machine code
5416 E216 E516

Bank E21s
Op Code (541s) 000316
Operand (E216) 123416
Operand (E516) 567816
______________________________ DT| ?
DATA | E5123416
DATATI E5123556 | Bank E51s
DATAI E512361 |

Second

(After transfer)
__________ Memory ...
DATA | E2567816 |
DATA I E25679 | Bank E21s
> DATATI E2567As |
Op Code (5416) A| FFFFs
Operand (E 216) X| 123716
Operand (E5i6) Y| 567Bis
.............................. DT| E216
First [~
r DATA | E5123456
L DATA I E 5123516 éBank Eb516
DATAII E5123616

3-58

7751 SERIES SOFTWARE MANUAL

ex. : Mnemonic

MVP OE5H,0E2H

Block Transfer

Machine code
4416 E516 E216

(m:“O”Y X:llon)
{Before transfer)
Memory
DATA 1 E 2567816
DATA T E 256796 Bank E216
DATATI E2567Aw6
Op Code (4416) A| 000316
Operand (E51s) X| 567A1s
Operand (E216) Y| 123616
______________________________ DT| ?
i Bank E51s

{ After transfer)
Memory
Second DATA | E 2567816
First DATAT E2567%6 | Bank E2ie
DATAII E2567Aws
Op Code (4416) A| FFFFie
Operand (E5i16) X| 567716
Operand (E216) Y| 123316
______________________________ DT| E516
> DATA [E5123416 |
DATA TI E 5123556 ;Bank ES516
DATATI E5123616

Note : For block transfer instructions, the number of bytes to be transferred and the range of transfer
source/destination address change with the state of the m and x flags. However, the transfer
unit is unaffected. The transfer unit is word (16 bits). However, only 1 byte is transferred when

transferring the last byte at odd bytes transfer.

7751 SERIES SOFTWARE MANUAL

3-59

Multiplied accumulation

Mode : Multiplied accumulation addressing mode

Function : The following is a multiplicand and a multiplier: the contents of the memory location specified by
the contents of index registers X and Y, and the data bank register’s contents. The instruction’s
third byte is the repeat number of arithmetic operation. The contents of index registers X and Y
are incremented each time the addition of the contents of accumulators B and A to the
multiplication result finishes. Accordingly, the contents of index registers X and Y specify the next
address where the multiplicand and the multiplier are read at last.
Allocate a multiplicand and a multiplier within the same bank and do not cross them over the bank
boundary.
Set the index register length flag to “0” before executing this instruction.

Instruction : RMPA
ex. : Mnemonic Machine code
Memory
RMPA #03H 8916 E216 0316 [ttt
(m="0", x="0")

Op Code (8916)
Op Code (E216)
Operand (0316)

| Data bank Index
N i register register X
First L | DT| | X | (at start)
--------- DATA | ---------- '
H
Second L
""""" DATA -
H
Third
--------- DATA III----------
: : B | DT| | X+6 | (at end)
B, A« B, A+ |DATAH: DATAL] O | DATAH: DATAL b :
Index Bank DT
. register Y H
First L DT Y (at start)
--------- DATAL ----------
H
Second L
""""" DATA2 ===
H
Third L
--------- DATA3 ----=-=---
DT Y+6 (at end)

3-60 7751 SERIES SOFTWARE MANUAL

ex.

: Mnemonic

RMPA #03H
(m:lllll’ X:HO”)

B, A+—B, A+

Multiplied accumulation

Machine code
8916 E216 0316

Memory

Op Code (891s)

Op Code (E216)

Operand (0316)

------------------- Data bank Index
register register X
Ei
Irst DATA | DT X
Second
DATAQ
Third DATA II
DT X+3
DATA | O | DATA| "7 ooirmmmmmmmmmmnmmeos
---------------------------- Index
register Y
First
DATAL DT Y
Second DATA2
Third DATA3
______________________________ DT Y+3

(at start)

(at end)

(at start)

i Bank DT

(at end)

7751 SERIES SOFTWARE MANUAL

3-61

Multiplied accumulation

MEMO

3-62 7751 SERIES SOFTWARE MANUAL

CRAPTER 4
INSTRUCTIONS

4.1 Instruction set
4.2 Description of each instruction
4.3 Notes for programming

INSTRUCTIONS

4.1 Instruction set

4.1 Instruction set
The 7751 series CPU uses the instruction set with 109 instructions.

4.1.1 Data transfer instructions

The data transfer instructions move data between data and registers, between a register and a memory,
between registers or between memories.

The following table shows the available instructions for data transfer.

Category |[Instruction Description

Load LDA Loads the contents of memory into the accumulator.
LDM Loads an immediate value into the memory.
LDT Loads an immediate value into the data bank register.
LDX Loads the contents of memory into the index register X.
LDY Loads the contents of memory into the index register Y.

Store STA Stores the contents of the accumulator in the memory.
STX Stores the contents of the index register X in the memory.
STY Stores the contents of the index register Y in the memory.

Transfer TAX Transfers the contents of the accumulator A to the index register X.
TXA Transfers the contents of the index register X to the accumulator A.
TAY Transfers the contents of the accumulator A to the index register Y.
TYA Transfers the contents of the index register Y to the accumulator A.
TSX Transfers the contents of the stack pointer to the index register X.
TXS Transfers the contents of the index register X to the stack pointer.
TAD Transfers the contents of the accumulator A to the direct page register.
TDA Transfers the contents of the direct page register to the accumulator A.
TAS Transfers the contents of the accumulator A to the stack pointer.
TSA Transfers the contents of the stack pointer to the accumulator A.
TBD Transfers the contents of the accumulator B to the direct page register.
TDB Transfers the contents of the direct page register to the accumulator B.
TBS Transfers the contents of the accumulator B to the stack pointer.
TSB Transfers the contents of the stack pointer to the accumulator B.
TBX Transfers the contents of the accumulator B to the index register X.
TXB Transfers the contents of the index register X to the accumulator B.
TBY Transfers the contents of the accumulator B to the index register Y.
TYB Transfers the contents of the index register Y to the accumulator B.
TXY Transfers the contents of the index register X to the index register Y.
TYX Transfers the contents of the index register Y to the index register X.
MVN Transfers a block of data from the lower addresses.
MVP Transfers a block of data from the higher addresses.

4-2 7751 SERIES SOFTWARE MANUAL

INSTRUCTIONS

4.1 Instruction set

Category | Instruction Description

Stack PSH Pushes the contents of the specified register to the stack.

operation PUL Restores the contents of stack to the specified register.
PHA Pushes the contents of the accumulator A to the stack.
PLA Restores the contents of stack to the accumulator A.
PHP Pushes the contents of the processor status register to the stack.
PLP Restores the contents of stack to the processor status register.
PHB Pushes the contents of the accumulator B to the stack.
PLB Restores the contents of stack to the accumulator B.
PHD Pushes the contents of the direct page register to the stack.
PLD Restores the contents of stack to the direct page register.
PHT Pushes the contents of the data bank register to the stack.
PLT Restores the contents of stack to the data bank register.
PHX Pushes the contents of the index register X to the stack.
PLX Restores the contents of stack to the index register X.
PHY Pushes the contents of the index register Y to the stack.
PLY Restores the contents of stack to the index register Y.
PHG Pushes the contents of the program bank register to the stack.
PEA Pushes a numerical value of 2 bytes to the stack.
PEI Pushes the contents of a sequence of 2 bytes in the direct page area to the stack.
PER Pushes the result of adding a 16-bit numerical value to the program counter’s contents

to the stack.
Exchange XAB Exchanges the contents of the accumulator A for the contents of the accumulator B.

7751 SERIES SOFTWARE MANUAL 4-3

INSTRUCTIONS

4.1 Instruction set

4.1.2 Arithmetic instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, multiplied accumulation,
logical operation, comparison, rotation, shift and sign/zero extension of register and memory contents.
The following table shows the available instructions for arithmetic operation.

Category |Instruction Description
Addition, ADC Adds the contents of the accumulator, the contents of a memory and the contents of the
Subtraction, carry flag.
Multiplica- SBC Subtracts the contents of memory and the complement of the carry flag from the con-
tion tents of the accumulator.
Division INC Increments the accumulator or a memory contents by 1.
DEC Decrements the accumulator or a memory contents by 1.
INX Increments the contents of the index register X by 1.
DEX Decrements the contents of the index register X by 1.
INY Increments the contents of the index register Y by 1.
DEY Decrements the contents of the index register Y by 1.
MPY Multiples the contents of the accumulator A and the contents of a memory.
MPYS Multiples the contents of the accumulator A and the contents of a memory with sign.
DIV Divides the numerical value whose low order is the contents of the accumulator A and
high order is the contents of the accumulator B by the contents of a memory.
DIVS Divides the numerical value whose low order is the contents of the accumulator A and
high order is the contents of the accumulator B by the contents of a memory with sign.
Multiplied| RMPA Multiples the contents of a memory and another one, and adds the result to the contents
accumulation of the accumulator. Repeats these operations by specified times.
Logical op- AND Performs logical AND between the contents of the accumulator and a memory.
eration ORA Performs logical OR between the contents of the accumulator and a memory.
EOR Performs logical exclusive-OR between the contents of the accumulator and a memory.
Comparison CMP Compares the contents of the accumulator with the contents of a memory.
CPX Compares the contents of the index register X with the contents of a memory.
CPY Compares the contents of the index register Y with the contents of a memory.
Shift, ASL Shifts the contents of the accumulator or a memory to the left by 1 bit.
Rotation ASR Shifts the contents of the accumulator or a memory holding sign to the right by 1 bit.
LSR Shifts the contents of the accumulator or a memory to the right by 1 bit.
ROL Links the contents of the accumulator or a memory with the carry flag, and rotates the
result to the left by 1 bit.
ROR Links the contents of the accumulator or a memory with the carry flag, and rotates the
result to the right by 1 bit.
RLA Rotates the contents of the accumulator A to the left by the specified number of bits.
Extension EXTS Extends the low-order 8 bits of the accumulator to 16 bits by sign extension.
with sign /
zero EXTZ Extends the low-order 8 bits of the accumulator to 16 bits by zero extension.

7751 SERIES SOFTWARE MANUAL

INSTRUCTIONS

4.1 Instruction set

4.1.3 Bit manipulation instructions
The bit manipulation instructions set the specified bits of the processor status register or a memory to “1”

or non.

The following table shows the available instructions for bit manipulation.

Category | Instruction Description
Bit manipu- CLB Clears the specified bit of a memory to “0”".
lation SEB Sets the specified bit of a memory to “1”".
CLP Clears the specified bit of the processor status register’s low-order byte (PSL) to “0”.
SEP Sets the specified bit of the processor status register’s low-order byte (PSL) to “1”".

4.1.4 Flag manipulation instructions
The flag manipulation instructions set the flag, which is the C, I, m or V flag; to “1” or “0".
The following table shows the available instructions for flag manipulation.

Category |Instruction Description

Flag mani- CLC Clears the contents of the carry flag to “0”".

pulation SEC Sets the contents of the carry flag to “1”.
CLM Clears the contents of the data length select flag to “0”".
SEM Sets the contents of the data length select flag to “1".
CLI Clears the contents of the interrupt disable flag to “0”.
SEI Sets the contents of the interrupt disable flag to “1”.
CLV Clears the contents of the overflow flag to “0”.

4.1.5 Branch and return instructions
The branch and return instructions enable changing program execution sequence.
The following table shows the available instructions for branch and return.

Category |Instruction Description
Jump JMP Sets a new address in the program counter and jumps to the new address.
BRA Jumps to the address obtained by adding an offset value to the contents of the program
counter.
JSR Pushes the contents of the program counter to the stack and then jumps to the new

address.

7751 SERIES SOFTWARE MANUAL 4-5

INSTRUCTIONS

4.1 Instruction set

Category |Instruction Description

Branch BBC Branches when the specified bits of a memory are all “0”".
BBS Branches when the specified bits of a memory are all “1”".
BCC Branches when the carry flag is “0”".
BCS Branches when the carry flag is “1”".
BNE Branches when the zero flag is “0".
BEQ Branches when the zero flag is “1".
BPL Branches when the negative flag is “0".
BMI Branches when the negative flag is “1".
BVC Branches when the overflow flag is “0”".
BVS Branches when the overflow flag is “1”".

Return RTI Returns from an interrupt routine to the original routine.
RTS Returns from a subroutine to the original routine. The program bank register’s contents

are not restored.

RTL Returns from a subroutine to the original routine. The program bank register’s contents

are also restored.

4.1.6 Interrupt instruction (break instruction)
The interrupt instruction executes a software interrupt.

Category

Instruction

Description

Break

BRK

Executes a software interrupt.

4.1.7 Special instructions
The special instructions showed by the following table control the clock generating circuit.

Category |Instruction Description
Special WIT Stops the internal clock.
STP Stops the oscillator’s oscillation.
4.1.8 Other instruction
Category |Instruction Description
Other NOP Only advances the program counter and performs nothing else.

7751 SERIES SOFTWARE MANUAL

INSTRUCTIONS

4.2 Description of each instruction

4.2 Description of each instruction

This section describes each instruction of the 7751 series. Each instruction is described using one page per
one instruction as a general rule. The description page is headed by the instruction mnemonic, and the
pages are arranged in alphabetical order of the mnemonics. For each instruction, its operation and description
(Notes 1, 2), status flag change and a list sorted by addressing modes of the assembler coding format (Note
3), the machine code, the byte number and the minimum cycle number (Note 4) are presented.

Note 1: In the description of each instruction operation, the operation regarding the PC (program counter)
is described only for instructions affecting the processing.

When an instruction is executed, its instruction bytes are added to the contents of the PC and the
PC contains the address of the memory location of the next instruction to be executed. When a
carry occurs at this addition, the PG (program bank register) is incremented by 1.

Note 2: [Operation] in the description of each instruction shows the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitted.

Note 3: The assembler coding formats shown are general examples, and they may differ from the actual
formats for the assembler used. Make sure that refer to the mnemaenic coding description in the
manual for the assembler actually used for programming.

Note 4: The cycle number shown is the minimum possible, and they dependron the following conditions:
*Value of direct page register’s low-order byte
The cycle number shown is a number when the direct page register’s low-order byte (DPRL)
is 0016. When using an addressing mode that uses the,direct page register in the condition of
DPRL # “0016", the cycle number which is obtained bytadding 1 to the shown number is an actual
number.

*Number of bytes that have been loaded in theginstriction queue buffer

Whether the address of the memory read/write IS even or odd

eAccessing of an external memory are in/theycondition of BYTE = 1 (using 8-bit external bus)
*Bus cycle.

7751 SERIES SOFTWARE MANUAL 4-7

suzuki_tadahiro

INSTRUCTIONS

4.2 Description of each instruction

The following table shows the symbols that are used in instructions’ description and the lists of this section,
and each instruction is described bellow.

Symbol Description
C Carry flag
Z Zero flag
I Interrupt disable flag
D Decimal mode flag
X Index register length flag
m Data length flag
\ Overflow flag
N Negative flag
IPL Processor interrupt priority level
+ Addition
- Subtraction
X Multiplication
/ Division
A Logical AND
\ Logical OR
a Exclusive OR
o Negation
- Movement toward the arrow direction
- Movement toward the arrow direction
b Movement toward the arrow direction
Acc Accumulator
AccH Accumulator’s high-order 8 bits
AccL Accumulator’s low-order 8 bits
A Accumulator A
AH Accumulator A’s high-order 8 bits
AL Accumulator A’s low-order 8 bits
B Accumulator B
BH Accumulator B’s high-order 8 bits
BL Accumulator B’s low-order 8 bits
X Index register X
XH Index register X's high-order 8 bits
XL Index register X's low-order 8 bits
Y Index register Y
YH Index register Y’'s high-order 8 bits
YL Index register Y’s low-order 8 bits
S Stack pointer
PC Program counter
PCH Program counter’s high-order 8 bits
PCL Program counter’s low-order 8 bits
REL Relative address
PG Program bank register
DT Data bank register

4-8 7751 SERIES SOFTWARE MANUAL

INSTRUCTIONS

4.2 Description of each instruction

Symbol Description

DPR Direct page register

DPRH Direct page register’s high-order 8 bits

DPRL Direct page register’s low-order 8 bits

PS Processor status register

PSH Processor status register’s high-order 8 bits

PSL Processor status register’s low-order 8 bits

PSLn Bits of processor status register’s low-order 8 bits

M Memory contents

M(n) Contents of memory location specified by operand (1-byte data)

M(n+1,n) Contents of memory location specified by operand (1-word data)

M(m to n) Contents of memory location specified by operand (plural-byte data)

M(S) Contents of memory at address indicated by stack pointer

Mb Bits of memory

ADDR Low-order 16 bits (A15 to Ao) of 24-bit address

BANK High-order 8 bits (A23 to A16)

IMM Immediate data

IMM16 16-bit immediate data

IMMH High-order 8 bits of 16-bit immediate data

IMML Low-order 8 bits of 16-bit immediate data

IMM8 8-bit immediate data

bn n-th bit of data

dd Displacement for the DPR (8 hits)

i Number of transfer bytes or rotation

i1, i2 Number of registers pushed or pulled

imm 8-bit immediate value

immHimmL 16-bit immediate value (immH represents the high-order 8 bits, and immL
represents the low-order 8 bits)

mmll 16-bit address value (mm represents the high-order 8 bits, and Il represents
the low-order 8 bits)

hhmmll 24-bit address value (hh represents the high-order 8 bits, mm represents
the middle-order 8 bit, and Il represents the low-order 8 bits)

nn Displacement for the S (8 bits)

rr Displacement for the PC (signed 8 bits)

rrHITL Displacement for the PC (signed 16 bits)

hh1, hh2 Bank specification (2 types of 8-bit data)

7751 SERIES SOFTWARE MANUAL 4-9

ADC

ADd with Carry AD C

Function

Operation

Description

Status flags

IPL:

N — O X 3

Addition with carry

Acc « Acc+ M+ C

When m = “0”
Acc Acc M(n+1,n) C
I e A I b R N

When m = “1”

AccL AccL M(n) C

-+

Adds the contents of the accumulator, memory and carry flag, and places the result in the
accumulator.

Executed as binary addition when the decimal mode flag is “0%
Executed as decimal addition when the decimal mode flagyis “1".

Not affected.

Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”. Meaninglesssfer ‘decimal addition.

Set to “1” when binary addition of signed data results in a value outside the range of —32768
to +32767 (-128 to +127 when/the,data length flag is “1”). Otherwise, cleared to “0".
Meaningless for decimal additien.

Not affected.
Not affected.
Not affected.
Not affected.

Set to “1” when the result of the operation is “0". Otherwise, cleared to “0”. Meaningless for
decimalddition:

Set to“L” when the result of binary addition as unsigned data exceeds +65535 (when the data
length flagfis “1”, it does +255). Otherwise, cleared to “0”".

Set to “1” when the result of decimal addition as unsigned data exceeds +9999 (when the data
length flag is “1”, it does +99). Otherwise, cleared to “0".

4-10

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

ADC ADd with Carry ADC

Addressing mode Syntax Machine code Bytes | Cycles
Immediate ADC A, #imm 6916, Imm 2 2
Direct ADC A, dd 6516, dd 2 4
Direct indexed X ADC A, dd, X 7516, dd 2 5
Direct indirect ADC A, (dd) 7216, dd 2 6
Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7
Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8
Direct indirect long ADCL A, (dd) 6716, dd 2 8
Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 10
Absolute ADC A, mmll 6Dz1s, I, mm 3 4
Absolute indexed X ADC A, mmill, X 7Da1s, I, mm 3 6
Absolute indexed Y ADC A, mmil, Y 7916, II, mm 3 6
Absolute long ADC A, hhmmll 6F1s, Il, mm, hh 4 6
Absolute long indexed X ADC A, hhmmll, X 7F1s, I, mm, hh 4 7
Stack pointer relative ADC A, nn,S 6316, NN 2 5
Stack pointer relative ADC A, (nn, S), Y 7316, NN 2 8
indirect indexed Y

Notes 1. This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216" is added at the beginning.of thesmachine code, the byte number
increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mede in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL 4-11

suzuki_tadahiro

AND

logical AND AN D

Function

Operation

Description

Status flags

o x 3 < Z

N —

Logical AND

Acc <« Acc A M

When m = “0”
Acc Acc M(n+1,n)
I N T
When m = “1”
AccL AccL M(n)
I

Performs logical AND between the contents of the accumulator and the contents of a memory,
and places the result in the accumulator.

Not affected.

Set to “1” when bit 15 (or bit 7 when the data lengthflag is “1”) of the operation result is “1”.
Otherwise, cleared to “0".

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to “1” when the result ofithe operation is “0". Otherwise, cleared to “0".
Not affected.

4-12

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

AN D logical AND AN D

Addressing mode Syntax Machine code Bytes |Cycles
Immediate AND A, #imm 2916, imm 2 2
Direct AND A, dd 2516, dd 2 4
Direct indexed X AND A, dd, X 3516, dd 2 5
Direct indirect AND A, (dd) 3216, dd 2 6
Direct indexed X indirect AND A, (dd, X) 2116, dd 2 7
Direct indirect indexed Y AND A, (dd), Y 3116, dd 2 8
Direct indirect long ANDL A, (dd) 2716, dd 2 8
Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2 10
Absolute AND A, mmll 2Dzs, Il, mm 3 4
Absolute indexed X AND A, mmll, X 3Dis, I, mm 3 6
Absolute indexed Y AND A, mmll, Y 3916, Il, mm 3 6
Absolute long AND A, hhmmll 2F1s, Il, mm, hh 4 6
Absolute long indexed X AND A, hhmmll, X 3F1s, Il, mm, hh 4 7
Stack pointer relative AND A, nn, S 2316, NN 2 5
Stack pointer relative AND A, (nn, S), Y 3316, NN 2 8
indirect indexed Y

Notes 1: This table applies when using the accumulator A. When usingsthe aecumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addresSing-mode in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL 4-13

suzuki_tadahiro

ASL

Arithmetic Shift Left

ASL

Function . Arithmetic shift left

Operation . C Acc or M

|L1bn§muomﬁLo

When m = “0”
C 15

Acc or M(n+1,n)

RIEE

rrd
LT

L4

When m = “1”

b7

AccL or M(n)

: + +

Cc
HEE!

o e e

Description : Shifts all bits of the accumulator or a memory to the one bit left. Its bit O is loaded with 0. The
carry flag is loaded from bit 15 (or bit 7 when the data length flag is “1") of the data before

the shift.

Status flags

IPL: Not affected.
Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.

Otherwise, cleared to “0".

N

V Not affected.
m Not affected.
X Not affected.
D Not affected.

Not affected.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C : Setto“1”when bit 15 (or bit 7 when the data length flag is “1”) of the accumulator or a memory
before the operation is “1”. Otherwise, cleared to “0".

Addressing mode Syntax Machine code Bytes Cycles
Accumulator ASL A OA16 1 2
Direct ASL dd 0616, dd 2 7
Direct indexed X ASL dd, X 1616, dd 2 7
Absolute ASL mmll OEzs, Il, mm 3 7
Absolute indexed X ASL mmll, X 1Ez1s, Il, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

4-14

7751 SERIES SOFTWARE MANUAL

ASR

Arithmetic Shift Right

ASR

Function

Operation

Description

Status flags
IPL :

ON — O X 3 <

Arithmetic shift right

Acc or M C
I:l 1 bit shift to Right l
MSB
When m = “0”
b15 Acc or M(n+1,n)
[I I I [I I I I
E rrrTo TTTT
When m = “1”

b7 AccL or M(n)

b0

-

[T

DI T
LI TTT

Shifts all bits of the accumulator or a memory to the one bit right. Its bit 15 (or bit 7 when the
data length flag is “1") is loaded with the value before the shift. The carry flag is loaded from

bit 0 of the data before the shift.

Not affected.

Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0".

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".
Set to “1” when bit 0 before the operation is “1”. Otherwise, cleared to “0".

Addressing mode Syntax Machine code ytes Cycles
Accumulator ASR A 8916, 0816 2 4
Accumulator ASR B 4216, 0816 2 4
Direct ASR dd 8916, 0616, dd 3 9
Direct indexed X ASR dd, X 8916,1616, dd 3 9
Absolute ASR mmll 8916, OEss, Il, mm 4 9
Absolute indexed X ASR mmll, X 8916, 1E1s, Il, mm 4 10

7751 SERIES SOFTWARE MANUAL

4-15

BBC

Branch on Bit Clear B BC

Function

Operation

Description

Status flags

Branch on condition

Mb = 0 ? (b is the specified bits)

When M A IMM = 0 (True) PC -« PC+ntREL
When M A IMM # 0 (False) PC~ PC+n
O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG + 1
« if borrow occurs in PC: PG - PG -1
0 IMM is an immediate value indicating the bit to be tested with “1”.
O n is the number of instruction bytes in each addressing mode of the BBC instruction
O REL is a relative value (—128 to +127) indicated by the last byte of the instruction
When m = “0”

M(n+1,n) IMM16

I .
When m = “1”

M(n) IMM8

Al

Tests the specified bits, which may be specified simultaneously, of a memory. The instruction
causes a branch to the specified address when the specified bits are all “0”. The branch
address is specified by a relative address.

When the specified bits are nothing, that is, IMM is all “0”, a branch is caused.

Not affected.

Addressing mode Syntax Machine code Bytes Qycles
Direct bit relative BBC #imm, dd, rr 3416, dd, imm, rr 4 7
Absolute bit relative BBC #imm, mmll, rr 3Czs, Il, mm, imm, rr 5 8

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag

= Q.

4-16

7751 SERIES SOFTWARE MANUAL

BBS

Branch on Bit Set B BS

Function

Operation

Description

Status flags

Branch on condition

Mb =1 ? (b is the specified bits)

When M A IMM = 0 (True) PC « PC+n*REL
When M A IMM = 0 (False) PC—~ PC+n
O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG + 1
« if borrow occurs in PC: PG - PG -1
O IMM is an immediate value indicating the bit to be tested with “1”.
O n is the number of instruction bytes in each addressing mode of the BBS instruction
O REL is a relative value (-128 to +127) indicated by the last byte of the instruction
When m = “0”

M(n+1,n) IMM16

Lo a]
When m = “1"

M(n) IMMS8

LAl

Tests the specified bits, which may be specified simultaneously, of a memory. The instruction
causes a branch to the specified address when the specified bits are all “1”. The branch
address is specified by a relative address.

When the specified bits are nothing, that is, IMM is all “0”, a branch is caused.

Not affected.

Addressing mode Byntax Machine code Bytes Cycles
Direct bit relative BBS #imm, dd, rr 2416, dd, imm, rr 4 7
Absolute bit relative BBS #imm, mmll, rr 2Cas, Il, mm, imm, rr 5 8

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag

7751 SERIES SOFTWARE MANUAL 4-17

BCC Branch on Carry Clear BCC

Function . Branch on condition

Operation . C=07?
When C =0 (True) PC - PC+ 2+ REL
When C =1 (False) PC -« PC+2

O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG « PG -1

O 2 is the number of instruction bytes of the BCC instruction
O REL is a relative value (—128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag is “0”, the BCC instruction causes a branch to the specified address. The
branch address is specified by a relative address.
When the carry flag is “1”, the program advances to next step without any action.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cyrles
Relative BCC rr 9016, IT 2 4

4-18 7751 SERIES SOFTWARE MANUAL

BCS Branch on Carry Set BCS

Function . Branch on condition

Operation . C=17?
When C =1 (True) PC -« PC+ 2+ REL
When C = 0 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1

« if borrow occurs in PC: PG - PG -1
O 2 is the number of instruction bytes of the BCS instruction
O REL is a relative value (=128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag is “1”, the BCS instruction causes a branch to the specified address. The
branch address is specified by a relative address.

When the carry flag is “0”, the program advances to next step without any action.

Status flags . Not affected.
Addressing mode Syntax achine code Bytes Cygles
Relative BCS rr BOus, rr 2 4

7751 SERIES SOFTWARE MANUAL 4-19

B EQ Branch on EQual B EQ

Function . Branch on condition

Operation . Z=17
When Z =1 (True) PC -« PC+2+REL
When Z = 0 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG - PG -1

O 2 is the number of instruction bytes of the BEQ instruction
O REL is a relative value (—128 to +127) indicated by the 2nd byte of the instruction

Description : When the zero flag is “1”, the BEQ instruction causes a branch to the specified address. The
branch address is specified by a relative address.
When the zero flag is “0”, the program advances to next step without any action.

Status flags . Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Relative BEQ rr FOue, Ir 2 4

4-20 7751 SERIES SOFTWARE MANUAL

B M I Branch on result Minus B M I

Function . Branch on condition

Operation . N=17?
When N =1 (True) PC -« PC+ 2+ REL
When N = 0 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1
* if borrow occurs in PC: PG - PG -1

O 2 is the number of instruction bytes of the BMI instruction
O REL is a relative value (=128 to +127) indicated by the 2nd byte of the instruction

Description . When the negative flag is “1”, the BMI instruction causes a branch to the specified address.
The branch address is specified by a relative address.

When the negative flag is “0”, the program advances to next step without any action.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Relative BMI rr 3016, IT 2 4

7751 SERIES SOFTWARE MANUAL 4-21

B N E Branch on Not Equal B N E

Function

Operation

Branch on condition

Z=07

When Z =0 (True) PC -« PC+2+REL
When Z =1 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG -~ PG -1

O 2 is the number of instruction bytes of the BNE instruction
O REL is a relative value (—128 to +127) indicated by the 2nd byte of the instruction

Description . When the zero flag is “0”, the BNE instruction causes a branch to the specified address. The

branch address is specified by a relative address.
When the zero flag is “1”, the program advances to next step without any action.

Status flags . Not affected.

o)

Addressing mode Syntax Machine code ytes Cycles

Relative BNE rr DOazs, Ir 2 4

4-22

7751 SERIES SOFTWARE MANUAL

BPL

Branch on result PLus

BPL

Function . Branch on condition

Operation : N=07?

When N =0 (True)
When N =1 (False)

PC - PC+ 2 *REL
PC - PC+ 2

O PG changes according to the result of the above PC operation

O 2 is the number of instruction bytes of the BPL instruction

« if carry occurs in PC
« if borrow occurs in PC: PG - PG -1

PG -« PG +1

O REL is a relative value (=128 to +127) indicated by the 2nd byte of the instruction

Description

When the negative flag is “0”, the BPL instruction causes a branch to the specified address.
The branch address is specified by a relative address.

When the negative flag is “1”, the program advances to next step without any action.

Status flags

Not affected.

Addressing mode

Syntax

achine code

ytes

Cy

cles

Relative

BPL rr

101s, 11

7751 SERIES SOFTWARE MANUAL

4-23

B RA BRanch Always B RA

Function . Branch always

Operation . PC « branch address (relative)

PC - PC+n = REL

O PG changes according to the result of the above PC operation
O n is the number of instruction bytes in each addressing mode of the BRA instruction
O REL is a relative value (-128 to +127) indicated by the last 1-byte or last 2-byte of the
instruction
Branch area : For short relative —128 to +127

For long relative —-32768 to +32767

Description . The BRA instruction causes a branch to the specified address. The branch address is specified
by a relative address.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Relative BRA rr 801s, I 2 3
BRAL rrHrre 821s, ITL, ITH 3 3

4-24 7751 SERIES SOFTWARE MANUAL

BRK

force BReaK B R K

Function

Operation

Description

Status flags

Software interrupt

Stack « PG, PC, PS
I <1
PG, PC ~ 00, Contents of BRK interrupt vector

PC ~ PC+2 Stack
M(S to S—4) — PG, PC, PS (S) just after instruction execution

PSL
S -~ S-5 PSH
' <1 PCL
PG ~ 00 PCH
PC . M(FFEBis,FFFA) (S) just before instruction execution PG

O 2 is the number of instruction bytes of the BRK instruction, and PC+2 is the address where
the next instruction is stored

When the BRK instruction is executed, the CPU first saves the address where the next
instruction is stored, and then saves the contents of the processor status register in the stack.
The CPU causes a branch to the address in bank 016 of which low-order address is the
contents of FFFA1s in bank O and high-order address is the contents of FFFBis in bank 0.

IPL: Not affected.

N Not affected.

V Not affected.

m Not affected.

X Not affected.

D Not affected.

I Set to “1”.

z Not affected.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Implied BRK #imn 0016, EA16 2 15

Note: The instruction’s second byte is ignored, so that any value is available.

7751 SERIES SOFTWARE MANUAL 4-25

BVC

Branch on oVerflow Clear

BVC

Function

Operation

Description

Status flags

Branch on condition

V=07

When V =0 (True)
When V = 1 (False)
O PG changes according to the result of the above PC operation

O 2 is the number of instruction bytes of the BVC instruction

« if carry occurs in PC
* if borrow occurs in PC: PG « PG -1

PC - PC+ 2+ REL
PC -« PC+ 2

PG « PG +1

O REL is a relative value (=128 to +127) indicated by the 2nd byte of the instruction

When the overflow flag is “0”, the BVC instruction causes a branch to the specified address.

The branch address is specified by a relative address.

When the overflow flag is “1”, the program advances to next step without any action.

Not affected.

Addressing mode

Syntax

achine code

ytes

C)

cles

Relative

BVC rr

5016, IT

4-26

7751 SERIES SOFTWARE MANUAL

BVS Branch on oVerflow Set BVS

Function . Branch on condition

Operation o v=17?
When V =1 (True) PC -« PC+ 2+ REL
When V = 0 (False) PC -« PC+2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1
* if borrow occurs in PC: PG - PG -1

O 2 is the number of instruction bytes of the BVS instruction
O REL is a relative value (-128 to +127) indicated by the 2nd byte of the instruction

Description : When the overflow flag is “1”, the BVS instruction causes a branch to the specified address.
The branch address is specified by a relative address.
When the overflow flag is “0”, the program advances to next step without any action.

Status flags : Not affected.
Addressing mode Byntax achine code Bytes Cycles
Relative BVS rr 7018, Ir 2 4

7751 SERIES SOFTWARE MANUAL 4-27

CLB

ClLear Bit C L B

Function

Operation

Description

Status flags

Bit manipulation

Mb ~ 0 (b is the specified bits)

When m = “0”
M(n+1,n) M(n+1,n) IMM16
I N T
When m = “1"
M(n) M(n) IMMS8
L - Al]

O IMM is an immediate value indicating the bit to be cleared with a “1”. It is specified by the
last 1 or 2 bytes of the instruction.

The CLB instruction clears the specified memory bits to “0”. Multiple bits to be cleared can be
specified at the same time.

Not affected.

Addressing mode Syntax Machine code Bytes Cjcles
Direct bit CLB #imm, dd 1416, dd, imm 3 8
Absolute bit CLB #imm, mmll 1Czis, Il, mm, imm 4 9

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag

= 0",

4-28

7751 SERIES SOFTWARE MANUAL

CLC

ClLear Carry flag

CLC

Function

Operation

Description

Status flags

Flag manipulation

C -0

Clears the contents of carry flag to “0”".

IPL: Not affected.

N Not affected.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Not affected.

C Cleared to “0".
Addressing mode $yntax Machine code ytes Cycles
Implied CLC 1816 1 2

7751 SERIES SOFTWARE MANUAL

4-29

C LI CLear Interrupt disable status C LI

Function : Flag manipulation
Operation 1«0
Description . Clears the interrupt disable flag to “0”".

Status flags

IPL: Not affected.

N Not affected.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Cleared to “0".

Z Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied CLI 5816 1 2

4-30 7751 SERIES SOFTWARE MANUAL

CLM

ClLear M flag

CLM

Function

Operation

Description

Status flags

Flag manipulation

m 0

Clears the data length flag to “0”.

IPL: Not affected.

N Not affected.

\% Not affected.

m Cleared to “0".

X Not affected.

D Not affected.

I Not affected.

z Not affected.

C Not affected.
Addressing mode Syntax Machine code ytes Cycles
Implied CLM D816 1 2

7751 SERIES SOFTWARE MANUAL

4-31

C L P ClLear Processor status C L P

Function . Flag manipulation

Operation . PSLb «~ 0 (b is the specified flags)
PSL « PSL A IMM8

O IMM is a 1-byte immediate value indicating the flag to be cleared with a “1”. It is
specified by the second byte of the instruction.

b7 b6 b5 b4 b3 b2 bl b0
IN[V[m[x D] 1]Z[C|PSL

Description . Clears the processor status flags specified by the bit pattern in the second byte of the
instruction to “0".

Status flags . The specified status flags are cleared to “0”. IPL is not affected.
Addressing mode Syntax Machine code Bytes Cycles
Immediate CLP #imm C216, imm 2 4

4-32 7751 SERIES SOFTWARE MANUAL

CLV

ClLear oVerflow flag

CLV

Function

Operation

Description

Status flags

Flag manipulation

V 0

Clears the overflow flag to “0".

IPL: Not affected.

N Not affected.

\% Cleared to “0".

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Not affected.

C Not affected.
Addressing mode Syntax Machine code ytes Cycles
Implied CLV B8is 1 2

7751 SERIES SOFTWARE MANUAL

4-33

CMP

CoMPare C M P

Function

Operation

Description

Status flags

Compare

Acc — M
When m = “0”
Acc M(n+1,n)

When m = “1”
AccL M(n)

Subtracts the contents of a memory from the contents of the accumulator. The result is not
stored anywhere. The contents of the accumulator and a memory are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”".

C Set to “1” when the result of the operation as unsigned data is “0” or larger. Otherwise, cleared

to “0”.
Addressing mode yntax Machine code Bytes Cycles
Immediate CMP A, #imm C916, imm 2 2
Direct CMP A, dd Cb516, dd 2 4
Direct indexed X CMP A, dd, X D516, dd 2 5
Direct indirect CMP A, (dd) D216, dd 2 6
Direct indexed X indirect CMP A, (dd, X) Clis, dd 2 7
Direct indirect indexed Y CMP A, (dd), Y D11s, dd 2 8
Direct indirect long CMPL A, (dd) C71s6, dd 2 8
Direct indirect long indexed Y| CMPL A, (dd), Y D716, dd 2 10
Absolute CMP A, mmll CDzs, Il, mm 3 4
Absolute indexed X CMP A, mmll, X DDus, Il, mm 3 6
Absolute indexed Y CMP A, mmll, Y D916, Il, mm 3 6
Absolute long CMP A, hhmmll CFais, I, mm, hh 4 6
Absolute long indexed X CMP A, hhmmll, X DFis, Il, mm, hh 4 7
Stack pointer relative CMP A, nn, S C316, NN 2 5
Stack pointer relative CMP A, (nn, S), Y D316, NN 2 8
indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

4-34

7751 SERIES SOFTWARE MANUAL

CPX ComPare memory and index register X CPX
Function Compare
Operation X-M

When x = “0”

X M(n+1,n)
When x = “1"
XL M(n)

Description Subtracts the contents of a memory from the contents of the index register X. The result is not

Status flags

IPL:

N

- O *x 3 <

O N

stored anywhere. The contents of the index register X and a memory are not changed.

Not affected.

Set to “1” when bit 15 (or bit 7 when the index registemlength flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0".

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to “1” when the result of/the,operation is “0”. Otherwise, cleared to “0”.

Set to “1” when the resultof,the operation as unsigned data is “0” or larger. Otherwise, cleared
to “0".

Addressing mode Syntax Machine code Bytes | Cycles
Immediate CPX #imm EOz6, imm 2 2
Direct CPX dd E41e, dd 2 4
Absolute CPX mmll ECis, I, mm 3 4

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the index register

length flag = “0".

7751 SERIES SOFTWARE MANUAL

4-35

suzuki_tadahiro

CPY

ComPare memory and index register Y CPY

Function

Operation

Description

Status flags

Compare
Y - M
When x = “0”
Y M(n+1,n)
-
When x = “1”
YL M(n)

Subtracts the contents of a memory from the contents of the index register Y. The result is not
stored anywhere. The contents of the index register Y and a memory contents are not
changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register 1ength flag is “1”) of the operation result
is “1". Otherwise, cleared to “0".
Y, Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z Set to “1” when the result,of'the operation is “0”. Otherwise, cleared to “0".
C Set to “1” when the result of the operation as unsigned data is “0” or larger. Otherwise, cleared
to “0".
Addressing mode Syntax Machine code Bytes [Cycles
Immediate CPY #imm CO016, imm 2 2
Direct CPY dd C41e, dd 2 4
Absolute CPY mmll CCais, Il, mm 3 4

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the index register
length flag = “0".

4-36

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

D EC DECrement by one

Function . Decrement
Operation . Acc -« Acc—-1 or M- M-1
When m = “0”
Acc M(n+1,n)
I A R
or
M(n+1,n) M(n+1,n)
I
When m = “1”
AccL AccL
-]
or
M(n) M(n)
L - -1
Description . Subtracts 1 from the contents of the accumulator or a memory.
Status flags
IPL: Not affected.
N : Setto “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.

Otherwise, cleared to “0”".
Y Not affected.
m : Not affected.
X Not affected.
D : Not affected.
I : Not affected.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

Cc : Not affected.

Addressing mode Syntax Machine code ytes Cycles
Accumulator DEC A 1A16 1 2
Direct DEC dd Cb61s, dd 2 7
Direct indexed X DEC dd, X D61s, dd 2 7
Absolute DEC mmll CEus, Il, mm 3 7
Absolute indexed X DEC mmll, X DEzis, Il, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “421¢” is added at the beginning of the machine code, the byte number

increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL

D EX DEcrement index register X by one D EX

Function . Decrement
Operation X e X=-1
When x = “0”
X X
I e N
When x = “1”
XL XL
L - J-t
Description : Subtracts 1 from the contents of the index register X.

Status flags
IPL: Not affected.

N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”".

C Not affected.
Addressing mode Pyntax Machine code Bytes Cycles
Implied DEX CAus 1 2

4-38 7751 SERIES SOFTWARE MANUAL

DEY

DEcrement index register Y by one D EY

Function

Operation

Description

Status flags

Decrement

Y «Y-1
When x = “0”
Y Y

A I e A A

When x = “1”

YL YL
C-[-

Subtracts 1 from the contents of the index register Y.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1". Otherwise, cleared to “0".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to “1” when the result of the operation is “0". Otherwise, cleared to “0”.

C Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Implied DEY 8816 1 2

7751 SERIES SOFTWARE MANUAL 4-39

DIV

DIvide DIV

Function

Operation

Description

Status flags

IPL
N

O X 3

Division (Unsigned)

A(quotient), B(remainder) — (B, A) /M

When m = “0”
A B B A M(n+1,n)
| Quo:tient || Rema:linder | - | | Divit?lend | | + | Divlisor |
When m = “1”
AL BL BL AL M(n)
|Quotiem| , |Remainder| - | Divi(:iend | - |Divisor|

When the data length flag is “0”, a 32-bit data stored in the accumulator B, which indicates its
higher 16 bits, and A , which indicates its lower 16 bits, is divided by a 16-bit data in a memory.
The quotient is placed in the accumulator A, and the remainder is placed in the accumulator
B.

When the data length flag is “1", a 16-bit data is are divided by a 8-bit data in a memory. The
lower 8 bits of the accumulator B indicate the higher 8 bits of the 16-bit data, and the lower
8 bits of the accumulator A indicate the lower 8 bits of thel6-bit data. The quotient is placed
in the lower 8 bits of the accumulator A, and the remainder is placed in the lower 8 bits of the
accumulator B.

If an overflow occurs as a result of the operation, the overflow flag is set to “1” and the contents
of the accumulators A and B become undefined.

When the divisor is “0”, the zero divide interrupt is generated. In that case, the contents of the
program bank register, program counter, and processor status register are saved on the stack
and a branch is generated to the address in bank 0 which is specified by the zero divide
interrupt vector. The contents of the accumulators A and B are not changed.

Not affected.

Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation quotient is
“1”. Otherwise, cleared to “0".

O When an overflow occurs as a result of the operation or the divisor is “0”, N flag is not affected.
Cleared to “0".

O Set to “1” when an overflow occurs

O Not affected when the divisor is “0”

Not affected.

Not affected.

Not affected.

Not affected.

O Set to “1" when the divisor is “0”

Set to “1” when the quotient of the operation is “0”. Otherwise, cleared to “0".

O When an overflow occurs as a result of the operation or the divisor is “0”, Z flag is not affected.
Cleared to “0".

0 Set to “1” when an overflow occurs

O Not affected when the divisor is “0”

4-40

7751 SERIES SOFTWARE MANUAL

DIV DIvide DIV

Addressing mode Syntax Machine code Bytes Cycles
Immediate DIV #imm 8916, 2916, imm 3 21
Direct DIV dd 8916, 2516, dd 3 23
Direct indexed X DIV dd, X 8916, 3516, dd 3 24
Direct indirect DIV (dd) 8916, 3216, dd 3 25
Direct indexed X indirect DIV (dd, X) 8916, 2116, dd 3 26
Direct indirect indexed Y DIV (dd), Y 8916, 3116, dd 3 27
Direct indirect long DIVL (dd) 8916, 2716, dd 3 27
Direct indirect long indexed Y | DIVL (dd), Y 8916, 3716, dd 3 29
Absolute DIV mmll 8916, 2D1s, II, mm 4 23
Absolute indexed X DIV mmll, X 8916, 3D1s, Il ,mm 4 25
Absolute indexed Y DIV mmll, Y 8916, 3916, || ,mm 4 25
Absolute long DIV hhmmll 8916, 2F16, Il, mm, hh 5 25
Absolute long indexed X DIV hhmmll, X 8916, 3F1s, Il, mm, hh 5 26
Stack pointer relative DIV nn, S 8916, 2316, NN 3 24
Stack pointer relative DIV (nn, S), Y 8916, 3316, NN 3 27
indirect indexed Y

Notes 1. When treating a 16-bit data in the immediate addressing mode in the condition of the data length

flag = “0”, the byte number increases by 1.

2: The cycle number in this table applies in the case of 16-bit + 8-bit operations. In the case of 32-
bit + 16-bit operations, the cycle number increases by 8.

3: The cycle number in this table and Note 2 is the number when the operation is completed normally
(no interrupt has been generated). If a zero divide interrupt is generated, its cycle number is the
number which is decremented by 3 from in the above table regardless of the operation’s data
length.

7751 SERIES SOFTWARE MANUAL 4-41

DIVS

DIVide with Sign D IVS

Function

Operation

Description

Status flags

IPL
N

O X 3

Division (Signed)

A(quotient), B(remainder) — (B, A) /M

When m = “0”
A B B A M(n+1,n)
Is Quo:tient |!$ Rema:linder | - Is | Divit?lend | | + Is Divlisor |
When m = “1”
AL BL BL AL M(n)
|§uotient| , |§emainder| - |S Diviollend | + LDM

O s means a sign bit that is the most significant bit of the data

When the data length flag is “0”, a signed 32-bit data stored in the accumulator B, which
indicates its higher 16 bits, and A, which indicates its lower 16 bits, is divided by a signed 16-
bit data in a memory. The quotient is placed in the accumulator A, and the remainder is placed
in the accumulator B. Each of them is a signed 16-bit data.

When the data length flag is “1”, a signed 16-bit data is are divided by a signed 8-bit data in
a memory. The lower 8 bits of the accumulator B indicate the higher 8 bits of the 16-bit data,
and the lower 8 bits of the accumulator A indicate the lower 8 bits of thel6-bit data. The
quotient is placed in the lower 8 bits of the accumulator A, and the remainder is placed in the
lower 8 bits of the accumulator B. Each of them is a signed 8-bit data.

The sign of remainder becomes same as that of dividend.

If an overflow occurs as a result of the operation, in other words, the quotient exceeds the
range —32767 to +32767 when m = “0”, or =127 to +127 when m = “1”; the operation finishes
halfway and the overflow flag is set to “1”. Additionally, the contents of the accumulators A and
B become undefined.

When the divisor is “0”, the zero divide interrupt is generated. In that case, the contents of the
program bank register, program counter, and processor status register are saved on the stack
and a branch is generated to the address in bank 0 which is specified by the zero divide
interrupt vector. The contents of the accumulators A and B are not changed.

Not affected.

Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation quotient is
“1". Otherwise, cleared to “0".

O When an overflow occurs as a result of the operation or the divisor is “0”, N flag is not affected.
Cleared to “0".

0 Set to “1” when an overflow occurs

O Not affected when the divisor is “0”

Not affected.

Not affected.

Not affected.

Not affected.

O Set to “1” when the divisor is “0”

4-42

7751 SERIES SOFTWARE MANUAL

D IVS DIVide with Sign D IVS

4 . Set to “1” when the quotient of the operation is “0”. Otherwise, cleared to “0”.

O When an overflow occurs as a result of the operation or the divisor is “0”, Z flag is not affected.

C . Cleared to “0".
O Set to “1” when an overflow occurs
O Not affected when the divisor is “0”

Addressing mode Syntax Machine code Bytes Cycles
Immediate DIVS #imm 8916, A916, imm 3 23
Direct DIVS dd 8916, Ab1s, dd 3 25
Direct indexed X DIVS dd, X 8916, B516, dd 3 26
Direct indirect DIVS (dd) 8916, B21s6, dd 3 27
Direct indexed X indirect DIVS (dd, X) 8916, Alis, dd 3 28
Direct indirect indexed Y DIVS (dd), Y 8916, Blis, dd 3 29
Direct indirect long DIVSL (dd) 8916, A716, dd 3 29
Direct indirect long indexed Y | DIVSL (dd), Y 8916, B716, dd 3 31
Absolute DIVS mmll 8916, ADzs, Il, mm 4 25
Absolute indexed X DIVS mmll, X 8916, BDa1s, Il ,mm 4 27
Absolute indexed Y DIVS mmll, Y 8916, B91s, | ,mm 4 27
Absolute long DIVS hhmmll 8916, AF1s, Il, mm, hh 5 27
Absolute long indexed X DIVS hhmmll, X 8916, BF1s, Il, mm, hh 5 28
Stack pointer relative DIVS nn, S 8916, A316, NN 3 26
Stack pointer relative DIVS (nn, S), Y 8916, B316, NN 3 29
indirect indexed Y

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length

flag = “0”, the byte number increases by 1.

2: The cycle number in this table applies in the case of 16-bit + 8-bit operations. In the case of 32-
bit + 16-bit operations, the cycles nhumber increases by 8.

3: The cycle number in this table and Note 2 is the number when the operation completes normally
(no interrupt has been generated). If a zero divide interrupt is generated, its cycle number is the
number which is decremented by 5 from in the above table regardless of the operation’s data
length.

7751 SERIES SOFTWARE MANUAL

4-43

EOR

Exclusive OR memory with accumulator EO R

Function

Operation

Description

Status flags

Logical EXCLUSIVE OR

Acc —« AccO M

When m = “0”
Acc Acc M(n+1,n)
- e
When m = “1”
AccL AccL M(n)

N

Performs the logical EXCLUSIVE OR between the contents of the accumulator and the
contents of a memory by each bit, and places the result in the accumulator.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length*flagis “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

y4 Set to “1” when the result of'theyoperation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate EOR A, #imm 4916, IMmm 2 2
Direct EOR A, dd 4516, dd 2 4
Direct indexed X EOR A, dd, X 5516, dd 2 5
Direct indirect EOR A, (dd) 5216, dd 2 6
Direct indexed X indirect EOR A, (dd, X) 4116, dd 2 7
Direct indirect indexed Y EOR A, (dd), Y 5116, dd 2 8
Direct indirect long EORL A, (dd) 4716, dd 2 8
Direct indirect long indexed Y | EORL A, (dd), Y 5716, dd 2 10
Absolute EOR A, mmlil 4Dzs, I, mm 3 4
Absolute indexed X EOR A, mmll, X 5D1s, Il, mm 3 6
Absolute indexed Y EOR A, mmll, Y 5916, I, mm 3 6
Absolute long EOR A, hhmmll 4F16, ll, mm, hh 4 6
Absolute long indexed X EOR A, hhmmll, X 5Fzis, Il, mm, hh 4 7
Stack pointer relative EOR A, nn, S 4316, NN 2 5
Stack pointer relative EOR A, (nn, S), Y 5316, Nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “421¢" is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

4-44

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

EXTS

EXTension Sign EXTS

Function

Operation

Description

Status flags

- O X 3< 2

O N

Extension sign

AccH ~ 0016 or FFie6
When bit 7 of AccL = “0”
AccH — 0016

AcCH AccL AcCH AccL
00000000 0XXXXXXX| - | ? OXXXXXXX

When bit 7 of AccL = “1”
AccH — FF1e

AcCH AccL AcCH AccL
11111111 1XXXXXXX| - | ? IXXXXXXX

O The high-order byte of Acc changes regardless of the data length flag

This instruction is used to extend a signed 8-bit data stored in the low-order byte of the
accumulator to a 16-bit data.

When bit 7 of the accumulator is “0”, bits 8 to 15 become “0”. When bit 7 of the accumulator
is “1”, bits 8 to 15 become “1".

With this instruction, the high-order byte of accumulator changes regardless of the data length
flag. However, the content of the data length flag is unchanged.

Not affected.

Set to “1”, when bit 15 of the operation result is “1”. Otherwise, cleared to “0".
Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".
Not affected.

Addressing mode Syntax Machine code ytes Cycles
Accumulator EXTS A 8916, 8B16 2 4
Accumulator EXTS B 4216, 8B16 2 4

7751 SERIES SOFTWARE MANUAL

4-45

EXTZ

EXTension Zero EXTZ

Function

Operation

Description

Status flags

Extension zero
AccH — 0016

AcCH AccL AccCH AccL
0016 | - | ?

O The high-order byte of Acc changes regardless of the m flag

This instruction is used to extend a 8-bit data stored in the low-order byte of the accumulator
to a 16-bit data.

Bits 8 to 15 of the accumulator become “0".

With this instruction, the high-order byte of accumulator changes regardless of the data length
flag. However, the content of the data length flag is unchanged.

IPL: Not affected.

N Set to “0".

\Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Accumulator EXTZ A 8916, AB16 2 4
Accumulator EXTZ B 4216, AB16 2 4

4-46

7751 SERIES SOFTWARE MANUAL

I N C INCrement by one I N C

Function : Increment
Operation . Acc -« Acc+lorM -« M+1
When m = “0”
Acc Acc
I
or
M(n+1,n) M(n+1,n)
I e
When m = “1”
AccL AccL
L - =
or
M(n) M(n)
L -l]+
Description : Adds 1 to the contents of the accumulator or a memory.

Status flags
IPL: Not affected.

N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1".
Otherwise, cleared to “0".
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".
C : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Accumulator INC A 3Az16 1 2
Direct INC dd E61s, dd 2 7
Direct indexed X INC dd, X F616, dd 2 7
Absolute INC mmll EEzs, Il, mm 3 7
Absolute indexed X INC mmll, X FEzus, I, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216" is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL 4-47

I NX INcrement index register X by one I NX

Function : Increment
Operation X e X+1
When x = “0”
X X
I e
When x = “1”
XL XL
s A
Description : Adds 1 to the contents of the index register X.

Status flags
IPL: Not affected.

N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”".

C Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Implied INX E816 1 2

4-48 7751 SERIES SOFTWARE MANUAL

INY

INcrement index register Y by one

INY

Function

Operation

Description

Status flags

IPL :

2

O N — O X 3 <

Increment

Y « Y+1

When x = “0”

Y

| < |

When x = “1”

YL YL
(-1

Adds 1 to the contents of the index register Y.

Not affected.

Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result

is “1”. Otherwise, cleared to “0".

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

INY

C8i6

7751 SERIES SOFTWARE MANUAL

4-49

JMP Jump JMP

Function Jump always
Operation [PG], PC - specified address (absolute or indirect)
When the addressing mode is ...
absolute addressing mode,
PC —~ ADDR
absolute long addressing mode,
PC -~ ADDR
PG ~ BANK
absolute indirect addressing mode,
PC — M(ADDR+1, ADDR)
absolute indirect long addressing mode,
PC —~ M(ADDR+1, ADDR)
PG - M(ADDR+2)
absolute indexed X indirect addressing mode,
PC —~ M(ADDR+X+1, ADDR+X)
0 ADDR indicates the low-order 16 bits of a 24-bit address which is specified by the 2nd and
3rd bytes of the instruction.
0 BANK indicates the high-order 8 bits of a 24-bit address which is specified by the 4th byte
of the instruction.

Description . The JMP instruction causes a jump to the address specified by each addressing mode.
When this instruction is used in addressing modes other than absolute long, the contents of
the program bank register is incremented by 1 and the branch destination becomes the next
bank if the last byte of the instruction is at the highest address (XXFFFF16) of a bank or if the
instruction crosses banks.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Absolute JMP mmll 4Cais, Il, mm 3 2
Absolute long JMPL hhmmll 5Cis, Il, mm, hh 4 4
Absolute indirect JMP (mmll) 6Czs, Il, mm 3 4
Absolute indirect long JMPL (mmll) DCuss, Il, mm 3 6
Absolute indexed X indirect | JMP (mmll, X) 7Czs, Il, mm 3 6

4-50

7751 SERIES SOFTWARE MANUAL

JSR

Jump to SubRoutine

JSR

Function

Operation

Description

Status flags

Jump to subroutine

Stack ~ [PG], PC
[PG], PC ~ specified address (absolute or indirect)
When the addressing mode is ...
absolute addressing mode,
PC ~ PC+3
M(S,5-1) - PC
S ~S-2
PC -~ ADDR

absolute long addressing mode,
PC - PC+4
M(S to S-2) ~ PG, PC

S ~S-3
PC - ADDR
PG < BANK

absolute indexed X indirect addressing maode,
PC -~ PC+3
M(S,5-1) -~ PC
S «S-2
PC « M(ADDR+X+1,ADDR+X)

(S) just after instruction execution

(S) just before instruction execution

(S) just after instruction execution

(S) just before instruction execution

(S) just after instruction execution

(S) just before instruction execution

Stack

PCL

PCH

Stack

PCL

PCH

PG

Stack

PCL

PCH

0 ADDR indicates the low-order 16 bits of a 24-bit address which is specified by the 2nd and

3rd bytes of the instruction.

O BANK indicates the high-order 8 bits of a 24-bit address which is specified by the 4th byte

of the instruction.

The contents of the program counter (or the program bank register and the program counter
in absolute long addressing mode) are first saved on the stack. After that, a jump is caused

to the address specified by each addressing mode.

When this instruction is used in addressing modes other than absolute long, the content of the
program bank register is incremented by 1 and the branch destination becomes the next bank
if the last byte of the instruction is at the highest address (XXFFFF16) of a bank or if the

instruction crosses banks.

Not affected.

Addressing mode Syntax Nachine code ytes Clycles
Absolute JSR mmll 201s, Il, mm 3 6
Absolute long JSRL hhmmll 2216, Il, mm, hh 4 8
Absolute indexed X indirect | JSR (mmll, X) FCis, Il, mm 3 8

7751 SERIES SOFTWARE MANUAL

4-51

LDA

LoaD Accumulator from memory

Function . Load
Operation Acc « M
When m = “0”
Acc
L]
When m = “1”
AccL M(n)
L -]
Description

Status flags

IPL : Not affected.

N : Setto “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.

Otherwise, cleared to “0”".

\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z

C : Not affected.

Loads the contents of a memory into the accumulator.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”".

Addressing mode Syntax Machine code Bytes Cycles
Immediate LDA A, #imm A916, imm 2 2
Direct LDA A, dd Abss6, dd 2 4
Direct indexed X LDA A, dd, X B516, dd 2 5
Direct indirect LDA A, (dd) B21s, dd 2 6
Direct indexed X indirect LDA A, (dd, X) Alis, dd 2 7
Direct indirect indexed Y LDA A, (dd), Y Blis, dd 2 8
Direct indirect long LDAL A, (dd) A71s, dd 2 8
Direct indirect long indexed Y | LDAL A, (dd), Y B716, dd 2 10
Absolute LDA A, mmll ADzs, Il, mm 3 4
Absolute indexed X LDA A, mmll, X BDzs, II, mm 3 6
Absolute indexed Y LDA A, mmll, Y B91s, I, mm 3 6
Absolute long LDA A, hhmmll AFis, I, mm, hh 4 6
Absolute long indexed X LDA A, hhmmll, X BFis, Il, mm, hh 4 7
Stack pointer relative LDA A, nn, S A316, Nn 2 5
Stack pointer relative LDA A, (nn, S), Y B31s, Nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “421¢" is added at the beginning of the machine code, the byte number

increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

4-52

7751 SERIES SOFTWARE MANUAL

LDM

Function . Load
Operation M <« IMM
When m = “0”

M(n+1, n)

LoaD immediate to Memory

|:|j ~ IMM16

When m = “1”
M(n)

D < IMM8

Description : Loads an immediate value into a memory.

Status flags . Not affected.

LDM

Addressing mode Syntax Machine code tes Cycles
Direct LDM #imm, dd 6416, dd, imm 3 4
Direct indexed X LDM #imm, dd, X 7416, dd, imm 3 5
Absolute LDM #imm, mmll 9Cis, Il, mm, imm 4 5
Absolute indexed X LDM #imm, mmll, X 9Ess, I, mm, imm 4 6

Note: When treating a 16-bit data in the condition of the data length flag = “0”, the byte number increases

by 1.

7751 SERIES SOFTWARE MANUAL

4-53

LDT LoaD immediate to daTa bank register L DT

Function . Load

Operation . DT <« IMM8

DT
D < IMM8

Description . Loads an immediate value into the data bank register.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Immediate LDT #imm 8916, C216, imm 3 5

4-54 7751 SERIES SOFTWARE MANUAL

L DX LoaD index register X from memory LDX
Function Load
Operation X «M

When x = “0”

X M(n+1, n)
When x = “1”
XL M(n)

Description Loads the contents of a memory into the index register X.

Status flags

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0".
Vv Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Set to “1” when the result of the¢operation is “0”. Otherwise, cleared to “0".
C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate DX #imm A216, imm 2 2
Direct LDX dd A61s, dd 2 4
Direct indexed Y LDX dd, Y B61s, dd 2 5
Absolute LDX mmll AEzs, Il, mm 3 4
Absolute indexed Y LDX mmll, Y BEzis, Il, mm 3 6

Note: When treating a 16-bit data in the immediate addressing mode in the condition of the index register

length flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL 4-55

suzuki_tadahiro

LDY LoaD index register Y from memory LDY
Function Load
Operation Y « M
When x = 0"
Y M(n+1, n)
-
When x = 1"
YL M(n)
L -1
Description Loads the contents of a memory into the index register Y.

Status flags

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1". Otherwise, cleared to “0".
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Set to “1” when the result of the¢operation is “0”". Otherwise, cleared to “0”.
C Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Immediate EDY #imm AO16, imm 2 2
Direct LDY dd Adis, dd 2 4
Direct indexed X LDY dd, X B4is, dd 2 5
Absolute LDY mmll ACis, Il, mm 3 4
Absolute indexed X LDY mmll, X BCis, Il, mm 3 6

Note: When treating a 16-bit data in the immediate addressing mode in the condition of the index register

length flag = “0”, the byte number increases by 1.

4-56

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

LS R Logical Shift Right LS R

Function . Logical shift right

Operation : Acc or M C
0 L. 1 bit shift to Right % |

When m = 0"
b15 Acc or M(n+1,n) b0 C

oL T L L L LT L LIl
T T I L ID
When m = “1”

b7 AccL or M(n) bo C

oL L L L L L I, L1
I I I I

Description . Shifts all bits of the accumulator or a memory to the one bit right. Its bit 15 (or bit 7 when the
data length flag is “1”) of the accumulator or a memory is loaded with “0”".
The carry flag is loaded from bit 0 of the data before the shift.

Status flags
IPL: Not affected.

N Cleared to “0".

Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

4 Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Set to “1” when bit 0 of the accumlator or a memory before the operation is “1”. Otherwise,

cleared to “0".

Addressing mode Syntax Machine code Bytes Cycles
Accumulator LSR A 4A16 1 2
Direct LSR dd 4616, dd 2 7
Direct indexed X LSR dd, X 5616, dd 2 7
Absolute LSR mmll 4Ez1s, Il, mm 3 7
Absolute indexed X LSR mmill, X 5Ez1s, Il, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL 4-57

MPY

MUIGPIY MPY

Function

Operation

Description

Status flags

IPL :

N

O N — O X 3 <

Multiplication (Unsigned)

B,A -« AxM
When m = “0”
B A A M(n+1,n)
| | Proc:juct | | - |Multip:licand| X | Multiplier |
When m = “1”
BL AL AL M(n)
| Pro%iuct | - Niultiplicar:md X I}/Iultiplie:r

When the data length flag is “0”, the contents of the accumulator A are multiplied by the
contents of a memory. Multiplication is performed as 16-bit x 16-bit, and the result becomes
a 32-bit data of which higher is placed in the accumulator B and lower is placed in the
accumulator A.

When the data length flag is “1”, the low-order 8 bits of the accumulator A are multiplied by
the contents of a memory. Multiplication is performed as 8-bit x 8-bit, and the result becomes
a 16-bit data of which high-order 8 bits are placed in the accumulator B's low-order 8 bits and
lower 8 bits are placed in the accumulator A’s low-order 8 bits.

Not affected.

Set to “1” when bit 31 of the operation result, the accumulator B’s bit 15, (or bit 15 of the
operation result, the accumulator B’s bit 7, when the data length flag is “1") of the operation
result is “1”. Otherwise, cleared to “0”.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.
Cleared to “0".

4-58

7751 SERIES SOFTWARE MANUAL

MPY MUIGPIY MPY

Addressing mode Syntax Machine code Bytes Cycles
Immediate MPY #imm 8916, 0916, imm 3 8

Direct MPY dd 8916, 0516, dd 3 10
Direct indexed X MPY dd, X 8916, 1516, dd 3 11
Direct indirect MPY (dd) 8916, 1216, dd 3 12
Direct indexed X indirect MPY (dd, X) 8916, 0116, dd 3 13
Direct indirect indexed Y MPY (dd), Y 8916, 1116, dd 3 14
Direct indirect long MPYL (dd) 8916, 0716, dd 3 14
Direct indirect long indexed Y | MPYL (dd), Y 8916, 1716, dd 3 16
Absolute MPY mmll 8916, 0D1s, Il, mm 4 10
Absolute indexed X MPY mmll, X 8916, 1D1s, Il, mm 4 12
Absolute indexed Y MPY mmll, Y 8916, 1916, I, mm 4 12
Absolute long MPY hhmmll 8916, OF1s, Il, mm, hh 5 12
Absolute long indexed X MPY hhmmll, X 8916, 1F1s, Il, mm, hh 5 13
Stack pointer relative MPY nn, S 8916, 0316, NN 3 11
Stack pointer relative MPY (nn, S), Y 8916, 1316, NN 3 14

indirect indexed Y

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

2: The cycle number in this table applies in the case of 8-bit x 8-bit operations. In the case of 16-hit
X 16-bit operations, the cycle number increases by 4.

7751 SERIES SOFTWARE MANUAL 4-59

MPYS

MultiPlY with Sign M PYS

Function

Operation

Description

Status flags

IPL:

N

O X 3 <

Multiplication (Signed)

B,A - AxM
When m = “0”
B A A M(n+1,n)
| | Pr0(:1uct | | - |Mu|tip:licand| x| Multi:plier |
S S S
When m = “1”
BL AL AL M(n)

| Product - Niultiplicaﬁd x Multiplie'r
S S| S|

0 s means a sign bit that is the most significant bit of the data.

When the data length flag is “0”, the contents of the accumulator A are multiplied by the
contents of a memory as a signed data. Multiplication is performed as 16-bit x 16-bit, and the
result becomes a 32-bit data of which higher is placed.in‘the accumulator B and lower is
placed in the accumulator A. Then, the accumulator Bisébit 15 is a sign bit.

When the data length flag is “1”, the low-order contents of the accumulator A are multiplied
by the contents of a memory as a signed data. Multiplication is performed as 8-bit x 8-bit, and
the result becomes a 16-bit data of which high-order 8 bits are placed in the accumulator B’s
low-order 8 bits and lower 8 bits are placed in the'accumulator A’s low-order 8 bits. Then, the
accumulator B’s bit 7 is a sign bit.

Not affected.

Set to “1” when bit 31 of the oeperation result, the accumulator B’s bit 15, (or bit 15 of the
operation result, the accumulator B’s bit 7, when the data length flag is “1"”) of the operation
result is “1". Otherwise, cleared to “0”.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to “1” when the result of the operation is “0". Otherwise, cleared to “0”.
Cleared to “0".

7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

MPYS MUIGPIY with Sign MPYS

Addressing mode Syntax Machine code Bytes Cycles
Immediate MPYS #imm 8916, 8916, Imm 3 8

Direct MPYS dd 8916, 8516, dd 3 10
Direct indexed X MPYS dd, X 8916, 9516, dd 3 11
Direct indirect MPYS (dd) 8916, 9216, dd 3 12
Direct indexed X indirect MPYS (dd, X) 8916, 8116, dd 3 13
Direct indirect indexed Y MPYS (dd), Y 8916, 9116, dd 3 14
Direct indirect long MPYSL (dd) 8916, 8716, dd 3 14
Direct indirect long indexed Y | MPYSL (dd), Y 8916, 9716, dd 3 16
Absolute MPYS mmll 8916, 8D1s, Il, mm 4 10
Absolute indexed X MPYS mmll, X 8916, 9D1s, Il, mm 4 12
Absolute indexed Y MPYS mmll, Y 8916, 9916, Il, mm 4 12
Absolute long MPYS hhmmll 8916, 8F1s, II, mm, hh 5 12
Absolute long indexed X MPYS hhmmll, X 8916, 9F16, II, mm, hh 5 13
Stack pointer relative MPYS nn, S 8916, 8316, NN 3 11
Stack pointer relative MPYS (nn, S), Y 8916, 9316, NN 3 14

indirect indexed Y

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.
2: The cycle number in this table applies in the case of 8-bit X 8-bit operations. In the case of 16-bit

x 16-bit operations, the cycle number increases by 4.

7751 SERIES SOFTWARE MANUAL 4-61

MVN MoVe Negative MVN

Function . Move
Operation : M(nton+i) « M(mtom +i)
— o n Transfer
A=07% — = || Transfer direction |destination
When A = “0” n+i area
Instruction execution complete i i
whn | |
When A # “0” | m Transfer
Repeat operation L |1 Transfer direction |source
M(DTd: Y) —« M(DTs: X) m+i area
X « X+2
Y « Y+2
A-A-2

O DTd indicates the transfer destination bank which is specified by the 2nd byte of the
instruction.

O DTs indicates the transfer source bank which is specified by the 3rd byte of the
instruction.

O Values set in register before transfer
A: Transfer byte number

When m = “0” The value 0 to 65535 can be set
When m = “1” The value 0 to 255 can be set

X: Transfer source area beginning (lowermost) address
When x = “0” The value 0 to 65535 can be set
When x = 1" The value 0 to 255 can be set (Note)

Y: Transfer destination area beginning (lowermost) address
When x = 0" The value 0 to 65535 can be set
When x = “1" The value 0 to 255 can be set (Note)

O Contents of register after transfer
A: FFFF16

X: Transfer source area end (highermost) address + 1
Y: Transfer destination area end (highermost) address + 1
DT:Bank number of transfer destination

O Transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus,
the transfer time is shortened when transfer start addresses are even than when they
are odd.

Note: This instruction is recommended to use in the condition of the x="0". In the
condition of the x = “1”, data in the area between XX0016 and XXFF16 can be only
used because the higher bytes of index registers X and Y are not changed.

x: Index register length flag

4-62 7751 SERIES SOFTWARE MANUAL

MVN

MoVe Negative

MVN

Description

Normally, a block of data is transferred from higher addresses to lower addresses. The transfer

is performed in the ascending address order of the block being transferred. The destination
bank is specified by the instruction’s second byte, and the address within its bank is specified
by the contents of the index register Y. The source bank is specified by the instruction’s third
byte, and the address within its bank is specified by the contents of the index register X. The
accumulator A is loaded with the bytes number of the data to be transferred. As each 1 byte
of data is transferred, the index registers X and Y are incremented, so that the index register
X will become a value equal to 1 larger than the source address of the last byte transferred
and the index register Y will become a value equal to 1 larger than the destination address
of the last byte received. The data bank register will become the destination bank number, and

the accumulator A will become FFFFs.

Status flags

Not affected.

Addressing mode

Syntax

)

lachine code

tes

cles

Block transfer

MVN hhz, hh2

5416, hh1, hh2

3

5+(i/2)x7

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even
number. When i is an odd number, the cycle number is obtained as follows:

5+ (i+2)07+6.

Note that (i + 2) expresses the integer part of the result of dividing i by 2.

7751 SERIES SOFTWARE MANUAL

4-63

M V P MoVe Positive

MVP

Function . Move
Operation : M(n—-iton) « Mm—-itom)
- 0o m—i Transfer
A=07 — | 1t Transfer direction |source
When A = “0” m area
Instruction execution complete i i
WA | |
When A # "0" . n—i Transfer
Repeat operation L~ |1 Transfer direction |destination
X X =1 n area
Y cY-1
M(DTd: Y) — M(DTs: X)
X « X=1
Y «Y-1
A A-2

O DTd indicates the transfer destination bank which is specified by the 2nd byte of the
instruction.

O DTs indicates the transfer source bank which is specified by the 3rd byte of the
instruction.

O Values set in register before transfer

A:

Transfer byte number

When m = “0” The value 0 to 65535 can be set
When m = “1” The value 0 to 255 can be set
Transfer source area beginning (highermost) address
When x = “0” The value 0 to 65535 can be set
When x = “1” The value 0 to 255 can be set
Transfer destination area beginning (highermost) address
When x = “0” The value 0 to 65535 can be set
When x = 1" The value 0 to 255 can be set

O Contents of register after transfer

A:
X:
Y:

FFFF16
Transfer source area end (lowermost) address — 1
Transfer destination area end (lowermost) address — 1

DT:Bank number of transfer destination

O Transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus,
the transfer time is shortened when transfer start addresses are odd than when they
are even.

Note: This instruction is recommended to use in the condition of the x="“0". In the

condition of the x = “1", data in the area between XX0016 and XXFF16 can be only
used because the higher bytes of index registers X and Y are not changed.

x: Index register length flag

4-64

7751 SERIES SOFTWARE MANUAL

MVP

MoVe Positive MVP

Description

Status flags

Normally, a block of data is transferred from lower addresses to higher addresses. The
transfer is performed in the descending address order of the block being transferred. The
destination bank is specified by the instruction’s second byte, and the address within its
bank is specified by the contents of the index register Y. The source bank is specified
by the instruction’s third byte, and the address within its bank is specified by the contents
of the index register X. The accumulator A is loaded with the byte humber of the data
to be transferred. As each 1 byte of data is transferred, the index registers X and Y are
decremented, so that the index register X will become a value equal to 1 smaller than
the source address of the last byte transferred and the index register Y will become a
value equal to 1 smaller than the destination address of the last byte received. The data
bank register will become the destination bank number, and the accumulator A will
become FFFFas.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVP hhi, hh2 4416, hh1, hh2 3 9+(i/2)x7

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even

number. When i is an odd number, the cycle number is obtained as follows:
9+ (i+2)07+8.
Note that (i + 2) expresses the integer part of the result of dividing i by 2.

7751 SERIES SOFTWARE MANUAL 4-65

N O P No OPeration N O P

Function . No operation

Operation : PC «PC+1
O PG also changes depending on the result of the above operation on PC.
If a carry occurs in PC: PG ~ PG + 1

Description : This instruction only makes the program counter increment by 1 and nothing else.
Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles

Implied NOP EA1e 1 2

4-66 7751 SERIES SOFTWARE MANUAL

ORA

OR memory with Accumulator O RA

Function

Operation

Description

Status flags

Logical OR

Acc -« AccV M

When m = “0”
Acc A M(n+1,n)
- v]
When m = “1”
AccL AccL M(n)

- Y,
L YL
Performs the logical OR between the contents of the accumulator and the contents of a
memory, and places the result in the accumulator.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”".

Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode yntax Machine code Bytes Cylcles
Immediate ORA A, #imm 0916, imm 2 2
Direct ORA A, dd 0516, dd 2 4
Direct indexed X ORA A, dd, X 1516, dd 2 5
Direct indirect ORA A, (dd) 1216, dd 2 6
Direct indexed X indirect ORA A, (dd, X) 0lis, dd 2 7
Direct indirect indexed Y ORA A, (dd), Y 1116, dd 2 8
Direct indirect long ORAL A, (dd) 0716, dd 2 8
Direct indirect long indexed Y | ORAL A, (dd), Y 1716, dd 2 10
Absolute ORA A, mmll ODzs, Il, mm 3 4
Absolute indexed X ORA A, mmll, X 1Dz1s, Il, mm 3 6
Absolute indexed Y ORA A, mmll, Y 1916, Il, mm 3 6
Absolute long ORA A, hhmmll OF1s, Il, mm, hh 4 6
Absolute long indexed X ORA A, hhmmll, X 1F1s, Il, mm, hh 4 7
Stack pointer relative ORA A, nn, S 0316, NN 2 5
Stack pointer relative ORA A, (Nn, S), Y 1316, Nn 2 8

indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with

“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL 4-67

P EA Push Effective Address P EA

Function . Stack manipulation (Push)
Operation : Stack « IMM16 Stack
(S) just after instruction execution
IMML
:I(S'SS 12) - IMM16 (S) just before instruction execution| IMMH

O IMM16 is an immediate value. IMMH indicates its high-order byte and IMML indicates its low-

order byte.
Description : The instruction’s third and second bytes are saved on the stack in this order.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PEA #immu immL F416, immcL, immH 3 5

4-68 7751 SERIES SOFTWARE MANUAL

PEI

Push Effective Indirect address

PEI

Function . Stack manipulation (Push)

Operation . Stack « M(DPR + IMM8 + 1, DPR + IMMS8)

M(S, S - 1) —« M(DPR + IMM8 + 1, DPR + IMM8)

S-S-2

(S) just after instruction execution

(S) just before instruction execution

Stack

M(DPR+IMMB8)

MDPR+MMB8+1)

O IMM8 is an 8-bit immediate value and is used as an displacement from DPR.

Description

Saves the contents of the consecutive 2 bytes in the direct page specified by the sum of the

contents of the direct page register and the instruction’s second byte on the stack in the order
of higher address first and lower address second.

Status flags Not affected.

Addressing mode

Syntax

I‘

Mlachine code

ytes

Cy

cles

Stack

PEI #imm

D416, Imm

7751 SERIES SOFTWARE MANUAL

4-69

P E R Push Effective program counter Relative address P E R

Function . Stack manipulation (Push)
Operation : Stack —« PC + IMM16 Stack
(S) just after instruction execution
EARL
EAR ~ PC + IMM16 (S) just before instruction execution| EARH
M(S, S - 1) « EAR
S~-S-2

O IMM16 is a 16-bit immediate value.

O EAR is an execution address which is the result of adding PC to IMM16. EARH indicates
its high-order byte and EARL indicates its low-order byte.

Description : Saves the result of adding a 16-bit data consisting of the instruction’s third byte as the higher
byte and the instruction’s second byte as the lower byte to the contents of the program counter
on the stack in the order of the result's higher byte first and lower byte second.

Status flags : Not affected.
Addressing mode Byntax Machine code Bytes Cpycles
Stack PER #immu immc 6216, immL, immH 3 5

4-70 7751 SERIES SOFTWARE MANUAL

PHA

PusH accumulator A on stack

PHA

Function : Stack manipulation (Push)
Operation . Stack « A
When m = “0”
M(S,S-1) « A
() Stack
S~8-2 (S) just after instruction execution
AL
(S) just before instruction execution An
When m = “1”
M(S) « AL Stack
S<S-1 (S) just after instruction execution
(S) just before instruction execution A
Description . Saves the contents of the accumulator A to the address specified by the stack pointer. When

the data length flag is “0”, the accumulator A’s higher byte is saved on the stack first and then
the lower byte. When the data length flag is “1”, only the accumulator A’s lower byte is saved

on the stack.

Status flags Not affected.

Addressing mode

Syntax

N

lachine code

ytes Cy

cles

Stack

PHA

4816

7751 SERIES SOFTWARE MANUAL

4-71

PHB

Function

Operation

Description

Status flags

Stack manipulation (Push)

PusH accumulator B on stack

Stack - B

When m = “0”
M(S,S-1) « B
S-S-2

When m = “1”
M(S) « BL
S-S-1

Saves the contents of the accumulator B to the address specified by the stack pointer. When
the data length flag is “0”, the accumulator B’s higher byte is saved on the stack first and then
the lower byte. When the data length flag is “1”, only the accumulator B’s lower byte is saved

on the stack.

Not affected.

(S) just after instruction execution

(S) just before instruction execution

(S) just after instruction execution
(S) just before instruction execution

Stack

BL

BH

Stack

BL

Addressing mode

q

4

byntax

achine code

os]

ytes Cy

cles

Stack

PHB

4216, 4816

4-72

7751 SERIES SOFTWARE MANUAL

P H D PusH Direct page register on stack P H D
Function . Stack manipulation (Push)
Operation . Stack - DPR
Stack
M(S, S — 1) — DPR (S) just after instruction execution -
L
S-S-2 (S) just before instruction execution| DPRH
Description . Saves the contents of the direct page register to the address specified by the stack pointer
in the order of higher byte first and then lower byte.
Status flags : Not affected.
Addressing mode Syntax Machine code ytes Cycles
Stack PHD OB1s 1 4

7751 SERIES SOFTWARE MANUAL

4-73

P H G PusH proGram bank register on stack P H G

Function . Stack manipulation (Push)
Operation . Stack - PG
Stack
M(S) — PG (S) just after instruction execution
(S) just before instruction execution PG
S~-S-1
Description . Saves the contents of the program bank register to the address specified by the stack pointer.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PHG 4B1e 1 3

4-74 7751 SERIES SOFTWARE MANUAL

P H P PusH Processor status on stack

PHP

Function : Stack manipulation (Push)
Operation . Stack - PS
Stack
M(S, S — 1) « PS (S) just after instruction execution
PSL
S-S5-2 (S) just before instruction execution PSH
Description . Saves the contents of the processor status register to the address specified by the stack
pointer in the order of higher byte and then lower byte.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PHP 0816 1 4

7751 SERIES SOFTWARE MANUAL

4-75

PHT

PusH daTa bank register on stack

PHT

Stack manipulation (Push)

Function

Operation Stack — DT
M(S) — DT
S-S-1

Description

Status flags . Not affected.

(S) just after instruction execution
(S) just before instruction execution

Stack

DT

Saves the contents of the data bank register to the address specified by the stack pointer.

Addressing mode

Syntax

Machine code

By

tes Cylcles

Stack

PHT

8B1s

4-76

7751 SERIES SOFTWARE MANUAL

P HX PusH index register X on stack P HX

Function : Stack manipulation (Push)
Operation . Stack « X
When x = “0” Stack
M(S, S —1) « X (S) just after instruction execution
S.Ss-2 Xt
(S) just before instruction execution XH
When X = “1” Stack
M(S) ~ XL (S) just after instruction execution
S.S—-1 (S) just before instruction execution Xu
Description . Saves the contents of the index register X to the address specified by the stack pointer. When

the index register length flag is “0”, the contents are saved in the order of higher byte and then
lower byte. When the index register length flag is “1”, only the lower byte is saved on the stack.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PHX DAu1s 1 4

7751 SERIES SOFTWARE MANUAL 4-77

PHY

Stack manipulation (Push)

PusH index register Y on stack

Function
Operation Stack ~ Y
When x = “0”
MS,S-1) « Y
S-S-2
When x = “1”
M(S) « YL
S-S-1
Description

Status flags

Not affected.

(S) just after instruction execution

(S) just before instruction execution

(S) just after instruction execution
(S) just before instruction execution

Stack

Yo

YH

Stack

Yi

Saves the contents of the index register Y to the address specified by the stack pointer. When
the index register length flag is “0”, the contents are saved in the order of higher byte and then
lower byte. When the index register length flag is “1”, only the lower byte is saved on the stack.

Addressing mode

Syntax

Machine code

o]

ytes Cy

cles

Stack

PHY

5A16

4-78

7751 SERIES SOFTWARE MANUAL

PLA

PuLl accumulator A from stack P LA

Function

Operation

Description

Status flags

Stack manipulation (Pull)

A ~ Stack
When m = “0” AH AL

A < M(S+2, S+1) Stack | | |
S.S+2 (S) just before instruction execution

(S) just after instruction execution

When m = “1” AL

AL « M(S+1) Stack |:|

S<S+1 (S) just before instruction execution
(S) just after instruction execution

Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to accumulator A. When the data length flag is “0”, 2 bytes are restored. When the data
length flag is “1”, only 1 byte is restored to the lower byte of the accumulator A.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to “1” when the result of the operation is “0". Otherwise, cleared to “0”.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLA 6816 1 5

7751 SERIES SOFTWARE MANUAL 4-79

PLB

PuLl accumulator B from stack P LB

Function

Operation

Description

Status flags

Stack manipulation (Pull)

B ~ Stack
When m = “0” BH BL
B « M(S+2, S+1) Stack | | | |
S_S+2 (S) just before instruction execution T
(S) just after instruction execution
When m = “1” BL

BL « M(S+1) Stack
S . S+1 (S) just before instruction execution

(S) just after instruction execution

Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the accumulator B. When the data length flag is “0”, 2 bytes are restored. When the
data length flag is “1”, only 1 byte is restored to the lower byte of the accumulator B.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode Syntax Machine code Bytes Cpycles
Stack PLB 4216, 6816 2 7

4-80

7751 SERIES SOFTWARE MANUAL

P L D PuLl Direct page register from stack P L D

Function : Stack manipulation (Pull)
Operation . DPR ~ Stack
DPR
DPR « M(S+2, S+1) Stack | |
S . S+2 (S) just before instruction execution

(S) just after instruction execution

Increments the stack pointer, and then restores the data at the address specified by the stack

Description
pointer to the direct page register.
Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLD 2B1s 1 5

7751 SERIES SOFTWARE MANUAL 4-81

PLP

Function . Stack manipulation (Pull)

Operation . PS < Stack

PS « M(S+2, S+1)
S -« S+2

Description

PuLl Processor status from stack

Stack

PSH

(S) just before instruction execution

(S) just after instruction execution

pointer to the processor status register.

Status flags . Changes to the values restored from the stack.

Increments the stack pointer, and then restores the data at the address specified by the stack

Addressing mode

Syntax

Machine code

ytes

C

ycles

Stack

PLP

2816

4-82

7751 SERIES SOFTWARE MANUAL

PLT

PuLl daTa bank register from stack

PLT

Function . Stack manipulation (Pull)
Operation : DT « Stack
P DT
Stack
DT « M(S+1) (S) just before instruction execution
S-S+1 (S) just after instruction execution
Description : Increments the stack pointer, and then restores the data at the address specified by the stack

pointer to the data bank register.

Status flags
IPL: Not affected.

N

\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z

C : Not affected.

Set to “1” when bit 7 of the operation result is “1”. Otherwise, cleared to “0”".

Set to “1” when the result of the operation is¥0".*Otherwise, cleared to “0”.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PLT

ABi1s

7751 SERIES SOFTWARE MANUAL

4-83

suzuki_tadahiro

PLX

PuLl index register X from stack P LX

Function

Operation

Description

Status flags

Stack manipulation (Pull)

X « Stack
When x = “0”
X « M(S+2, S+1) XH XL

S _S+2 Stack | | |
(S) just before instruction execution

(S) just after instruction execution

When x = “1”
XL « M(S+1) XL

SS+1 Stack

(S) just before instruction execution
(S) just after instruction execution

Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the index register X. When the index register length flag is “0”, 2 bytes are restored.
When the index register length flag is “1”, only 1 byte is restored to the lower byte of the index
register X.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1") of the operation result
is “1”. Otherwise, cleared to “0”".

\Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

4 Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLX FAz1s 1 5

4-84

7751 SERIES SOFTWARE MANUAL

PLY

PuLl index register Y from stack P LY

Function

Operation

Description

Status flags

Stack manipulation (Pull)

Y ~ Stack
When x = “0”
Y M(S+2, S+1) YH YL

S-S+2 Stack | | |
(S) just before instruction execution

(S) just after instruction execution

When x = “1”
YL« M(S+1) vL
S-S+1 Stack

(S) just before instruction execution
(S) just after instruction execution

Increments the stack pointer, and then restores the data at the address specified by the stack
pointer to the index register Y. When the index register length flag is “0”, 2 bytes are restored.
When the index register length flag is “1”, only 1 byte is restored to the lower byte of the index
register Y.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1") of the operation result
is “1". Otherwise, cleared to “0".

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLY TA16 1 5

7751 SERIES SOFTWARE MANUAL 4-85

PSH

PuSH PS H

Function

Operation

Description

Status flags

Stack manipulation (Push)

Stack ~ Specified register of A, B, X, Y, DPR, DT, PG, PS

MStoS—-i) « A, B, X, Y, DPR,DT, PG, PS
ordertosave @ @ ® ® ©® ® @
S-S-i-1

O The immediate value in the second byte of the instruction is used to specify the registers
to be saved.

O Among the registers being saved, the following registers are affected by the flags just before
the instruction is executed.

e A, B registers
When m = “0” : The high-order and low-order bytes of the register are saved.
When m = “1" : The low-order byte of the register is saved.
e X, Y registers
When x= “0" : The high-order and low-order bytes of the register is saved.
When x= “1" : The low-order byte of the register is saved.
O i indicates the number of data bytes to be saved.

This instruction’s second byte specifies the registers to be saved. The registers corresponding
to the bits in the second byte that are 1 are saved on the stack. The bit and register
correspondence is as follows:

b7 b0
| PS | PG | DT | DPR | 7 | X | B | A |
~ Direction to save on the stack

When saving the registers to stack, registers A and B are affected by the m flag, and registers
X and Y are affected by the x flag.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack

PSH #imm EB16, imm 2 11+2001+i2

Note: To the cycle number shown above, the number shown below are added depending on the registers

being saved. The number is 11 cycles when no registers are saved. i1 in above table expresses the
number of registers to be saved of A, B, X, Y, DPR and PS; and i2 expesses it of DT and PG.

Register type| PS PG DT DPR Y X B

Cycle number 2 1 1 2 2 2 2 2

4-86

7751 SERIES SOFTWARE MANUAL

PSH

PSH
et >
NO
m=07?
M(S,S1) A M(S) +— AL
S« S-2 S«S-1
NO
<
M(S,S-1)+—B M(S) «—BL
S «—S-2 S«—S-1
NO
<L
M(S,S5-1) « X M(S) +— XL
S+ S-2 S+S-1
o
<>
M(S,S-1)«—Y M(S) «— YL
S «S-2 S« S-1
|

PuSH

i

M(S,S—1)«—DPR
S«—S-2

i

M(S)«— DT
S«S-1

1

M(S) «— PG
S+« S-1

i

M(S,S-1) «— PS
S—S-2

L

at the value.

0 IMM8 is an immediate value in 1-byte and
inside of () indicates the content of the bit

PSH

7751 SERIES SOFTWARE MANUAL

4-87

PUL PULI PUL

Function . Stack manipulation (Pull)
Operation . Specified register of A, B, X, Y, DPR, DT, PG, PS ~ Stack

A, B, X, Y, DPR,DT, PS « M(S+1tS+i
®©@ ® ® @ ® @ @© ordertorestore
S « S+

O The immediate value in the second byte of the instruction is used to specify the registers
to be restored.

0 Among the registers being restored, the following registers are affected by the flags in the
restored PS or the flags just before the instruction is executed.

e A, B registers
When m = “0” : The high-order and low-order bytes of the register are restored.
When m = “1" : The low-order byte of the register is restored.
e X, Y registers
When x = “0” : The high-order and low-order bytes of the register are restored.
When x = “1” : The low-order byte of the register is restored.
O i indicates the number of data bytes to be restored.

Description . This instruction’s second byte specifies the registers to be restored. The contents of the stack
are restored to the registers corresponding to the bits in the second byte that are 1. The bit
and register correspondence is as follows:

b7 b0
| PS | | DT | DPR | 7 | X | B | A |
Direction to restore from the stack —

When restoring from stack, registers A and B are affected by the m flag in restored PS, and
registers X and Y are affected by the x flag in restored PS. When PS is not restored, the
registers are affected by the value of these flags just before instruction execution.

Status flags : When bit 7 of the instruction’s second byte is “1”, and PS is to be restored, the status flags
become restored values. Otherwise, the status flags are not affected.

Addressing mode Syntax Machine code Bytes Cygles
Stack PUL #imm FBis, imm 2 12+30i1+40i2

Note: To the cycle number shown above, the number shown below are added depending on the registers
being saved. The number is 12 cycles when no registers are saved. i1 in above table expresses the
number of registers to be saved of A, B, X, Y, DT and PS. When restoring DPR, i2 becomes 1 and
When not restoring it, iz becomes 0.

Register type| PS DT DPR Y X B A
Cycle number 3 3 4 3 3 3 3

4-88 7751 SERIES SOFTWARE MANUAL

PUL

PULI

PUL

PUL

¢

PS «— M(S+2,5+1)
S «+—S+2

1

DT — M(S+1)

S« S+1

i

DPR — M(S+2,S+1)

S «— S+2

G

NO
Y «—M(S+2,5+1) YL — M(S+1)
S «+—S+2 S« S+1
-l

P>
<>

X M(S+2,S+1)

S «—S+2

XL — M(S+1)
S —S+1

o >
<>

B+ M(S+2,S+1)

S «— S+2

BL — M(S+1)
S «— S+l

ta
<>

A M(S+2,5+1)
S «— S+2

AL — M(S+1)
S «— S+1

SN

\/

0 IMM8 is an immediate value in 1-byte and
inside of () indicates the content of the bit
at the value.

7751 SERIES SOFTWARE MANUAL

4-89

R LA Rotate Left accumulator A R LA

Function . i bits rotate to left
Operation : =
t A
|> i bits rotate to left +—
When m = “0”
b15 A b0 i bits rotate to left
- L L I Oi=0t065535
L | | | l | | | | | |
When m = “1”
b7 AL b0 i bits rotate to left
SN I N N Oi=0to 255

4-90 7751 SERIES SOFTWARE MANUAL

RLA

Rotate Left accumulator A

RLA

Description . The contents of the accumulator A are rotated to the left by i bits. The value of i is specified
by the instruction’s third byte (or the third and fourth bytes when the data length flag is “0").

Status flags . Not affected.

Addressing mode

Syntax

Machine code

Blytes Cycles

Immediate

RLA #imm

8916, 4916, IMmM

3 6+i

Note: When the data length flag is “0”, the byte number increases by 1.

i: Number of rotation

7751 SERIES SOFTWARE MANUAL

4-91

RMPA

Repeat MultiPly and Accumulate R M PA

Function

Operation

Description

Repeat multiply and accumulation

B A B A MOTX+,DT:X)M(DT:Y+L,DT:V)| | | BL A BL A M(DT:X) M(DT:Y)
s ! | : |<— s i | : | + s Multiplicands [0 s Multiplier N | |<— s | | + Multiplicands 0 s Multiplier | :
[P |
Xe—=X+2 P Xe=X+1
YeY+2 P Y=Y+1

s indicates the sign bit and is the topmost bit of the data to be operated on.

i, which is a positive number from 0 to 255, indicates the number of repeated operations. It
is specified by the third byte of the instruction.

Execute this instruction in the condition of index register length flag = “0”".

Allocate multipliers and multiplicands in the same bank. Do not allocate each of them across
other banks.

When the data length flag is “0”, performs signed multiplication of the 16-bit data in the
memory specified by index register X and data bank register, and the 16-bit data in the
memory specified by index register Y and data bank register. The multiplication result is added
as binary addition to the 32-bit data of which high-order is the contents of accumulator B, and
of which low-order is the contents of accumulator A. The high-order 16 bits of the addition
result are stored in accumulator B, and the low-order 16 bits are stored in accumulator A
again. After the addition, each of the contents of index register X and index register Y is
incremented by 2. Additionally, the number of repeated operations is decremented by 1, and
when the result is “0”, this instruction execution is finished. When the result is not “0”, the
above multiplication and addition are repeated.

When the data length flag (m) is “1”, performs signed multiplication of the 8-bit data in the
memory specified by index register X and data bank register, and the 8-bit data in the memory
specified by index register Y and data bank register. The multiplication result is added as
binary addition to the 16-bit data of which high-order is the contents of accumulator BL, and
of which low-order is the contents of accumulator AL. The high-order 8 bits of the addition
result are stored in accumulator BL, and the low-order 8 bits are stored in accumulator AL
again. After the addition, each of the contents of index register X and index register Y is
incremented by 1. Additionally, the number of repeated operations is decremented by 1, and
when the result is “0”, this instruction execution is finished. When the result is not “0”, the
above multiplication and addition are repeated.

e After finishing the instruction execution, index registers X, Y specify the next address of the
address where a multiplier and a multiplicand are read last.

e When an overflow occurs at addition, the overflow flag becomes “1” and the instruction
execution is finished then. When an overflow occurs, accumulators A and B become
undefined. Index registers X, Y specify the next address of the address where a multiplier
and a multiplicand are read last.

e When specifying “0” as the number of repeated operations, the instruction execution is
finished without multiplication and addition. The contents of accumulators A, B, and index
registers X, Y are not affected.

4-92

7751 SERIES SOFTWARE MANUAL

RMPA

Repeat MultiPly and Accumulate R M PA

Status flags

IPL :

N

N — O X 3

Not affected.

Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When bit 31 of the addition result, in other words, bit 15 in accumulator
B (when the data length flag (m) = “1”, bit 15 of the addition result, in other words, bit 7 in
accumulator B) is “1", set to 1. Otherwise, cleared to 0. Accordingly, the N flag after finishing
the instruction execution is specified by the result of the last addition.

Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When the result is outside range of —2147483648 to +2147483647 (when
the data length flag (m) = “1”, outside range of —32768 to +32767), set to “1". Otherwise,
cleared to O.

e When an overflow occurs at addition, the instruction execution is finished then. Accordingly,
the V flag after finishing the instruction execution is cleared to “0” with normal finish, and set
to “1” with an overflow.

Not affected.
Not affected.
Not affected.
Not affected.

Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When the addition result is “0”, set to 1. Otherwise, cleared to 0.
Accordingly, Z flag after finishing the instruction execution is specified by the result of the last
addition.

Checked each time performing addition of the contents of accumulators B, A, and the
multiplication result. When the addition result exceeds +4294967295 as not signed data (when
the data length flag (m) = “1", exceeds +65536), set to “1". Otherwise, cleared to 0.

Addressing mode Syntax

=

lachine code Bytes Cycles

Multiplied accumulation RMPA #imm 8916, E216, Iimm 3 6+ 16 0n

Note: Cycles show the numbers of cycle in the case of data length flag = “1". It becomes 6 + 20 O n cycles in the
case of data length flag = “0”.

7751 SERIES SOFTWARE MANUAL 4-93

ROL

ROL

ROtate one bit Left

Function

Operation

Description

Status flags

IPL :

O x 3 <

N —

Rotate to left

Acc or M CJ
|

1 bit rotate to left .

When m = “0”
b15 Acc or M(n+1,n) b c
[I I I L T I I I 1
Y T N T
When m = “1”
b7 AccL or M(n) bo c
[I I I I I I I 1 [
Y YT Y Y T

The carry flag is linked to the accumulator or a memory, and the combined contents are
rotated to the 1 bit left.

Bit 0 of the accumulator or a memory is loaded with the content of the carry flag before
execution of this instruction. The carry flag is loaded with the content of bit 15 (or bit 7 when
the data length flag is “1”) of the accumulator or a memory before execution of this instruction.

Not affected.

Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”".

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

Set to “1” when bit 15 (or bit 7 when the data length flag is “1") before execution of the
instruction is “1”. Otherwise, cleared to “0".

Addressing mode Syntax Machine code Bytes Cycles
Accumulator ROL A 2A16 1 2
Direct ROL dd 2616, dd 2 7
Direct indexed X ROL dd, X 3616, dd 2 7
Absolute ROL mmll 2E1s, Il, mm 3 7
Absolute indexed x ROL mmll, X 3E1se, I, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “421¢” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

4-94

7751 SERIES SOFTWARE MANUAL

RO R ROtate one bit Right RO R

Function . Rotate to right

Operation : =
L C Acc or M

[; ; |
T 1 bit rotate to right -

When m = “0”

=

b15 Acc or M(n+1,n) bo
T T

[I
- - -
L | 1

l
l
l

I I I 1
- o o o
| | | |

When m = “1”

Description : The carry flag is linked to the accumulator or a memory, and the combined contents are
rotated to the 1 bit right.
Bit 15 (or bit 7 when the data length flag is “1”) of the accumulator or a memory is loaded with
the content of the carry flag. The carry flag is loaded with the content of bit 0 of the
accumulator or a memory before execution of this instruction.

7751 SERIES SOFTWARE MANUAL 4-95

ROR

ROtate one bit Right

ROR

Status flags

IPL: Not affected.

N : Setto “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

V4 Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C : Setto “1” when bit O before execution of the instruction is “1”. Otherwise, cleared to “0".

Addressing mode Syntax Machine code ytes Cycles
Accumulator ROR A 6A16 1 2
Direct ROR dd 6616, dd 2 7
Direct indexed X ROR dd, X 7616, dd 2 7
Absolute ROR mmll 6Ez1s, Il, mm 3 7
Absolute indexed X ROR mmll, X 7Ezs, Il, mm 3 8

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

4-96

7751 SERIES SOFTWARE MANUAL

RTI ReTurn from Interrupt RTI

Function : Return from interrupt
Operation . PG, PC, PS ~ Stack (Saved content when interrupt is caused)

PS < M(S+2, S+1)
PC « M(S+4, S+3)
PG M(S+5) PSH PSL

S<S5+5 Stack | | |
(S) just before instruction execution

(S) just after instruction execution —l
[| | |

PG PCH PCL

Description . The contents of the processor status register, program counter, and program bank register,
which were saved on the stack when the interrupt request was accepted, are restored to these
registers.

The state becomes the same as that before the acceptance of the interrupt request.

Status flags . Changes to the values that had been on the stack.
Addressing mode Syntax Machine code Bytes Cycles
Implied RTI 4016 1 9

7751 SERIES SOFTWARE MANUAL 4-97

RTL

ReTurn from subroutine Long RTL

Function Return from subroutine long
Operation PG, PC ~ Stack (Subroutine long return address)

PC —~ M(S+2, S+1)

PG —~ M(S+3)

S~ S+3 Stack

(S) just after instruction execution
(S) just before instruction execution ﬂ
| | | |
PG PCH PCL
Description The contents of the stack are restored to the program counter and program bank register.
Status flags . Not affected.
Addressing mode Syntax achine code Bytes Cycles

Implied RTL 6B16 1

4-98

7751 SERIES SOFTWARE MANUAL

RTS ReTurn from Subroutine RTS

Function . Return from subroutine

Operation . PC ~ Stack (Subroutine return address)

PC « M(S+2, S+1)

Stack
S~ S+2 (S) just before instruction execution
(S) just after instruction execution ﬂ
| | |
PCH PCL
Description . The contents of the stack are restored to the program counter.

The contents of program bank register is incremented by 1 when this instruction is allocated
at the highest address (XXFFFF16) of a bank.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied RTS 6016 1 5

7751 SERIES SOFTWARE MANUAL 4-99

SBC

SuBtract with Carry S B C

Function

Operation

Description

Status flags

IPL :

N

N — O X 3

Subtract with carry

Acc « Acc-M-C

When m = “0”
Acc Acc M(n+1,n) C
L= - I

When m = “1”

AccL AccL M(n) C
L - -0 -0

Subtracts the contents of a memory and the complement of the carry flag from the contents
of the accumulator, and places the result in the accumulator. Performed as a binary subtraction
when the decimal mode flag is “0”. Performed as a decimal subtraction when the decimal
mode flag is “1".

Not affected.

Set to “1” when bit 15 (or bit 7 when the data length flag is “1") of the operation result is “1”.
Otherwise, cleared to “0”. Meaningless for a decimal subtraction.

Set to “1” when a binary subtraction of signed data results in a value exceeding the range of
—32768 to +32767 (—128 to +127 when the data length flag is “1"). Otherwise, cleared to “0".
Meaningless for a decimal subtraction.

Not affected.
Not affected.
Not affected.
Not affected.
Set to “1” when the operation result is “0". Otherwise, cleared to “0”".

Set to “1” when the operation result is equal to or larger than “0”. Otherwise, cleared to “0”,
and a borrow is indicated.

4-100

7751 SERIES SOFTWARE MANUAL

S B C SuBtract with Carry S B C

Addressing mode Syntax Machine code Bytes Cycles
Immediate SBC A, #imm E916, imm 2 2
Direct SBC A, dd E516, dd 2 4
Direct indexed X SBC A,dd, X F516, dd 2 5
Direct indirect SBC A, (dd) F216, dd 2 6
Direct indexed X indirect SBC A,(dd, X) Elis, dd 2 7
Direct indirect indexed Y SBC A,(dd), Y Flie6, dd 2 8
Direct indirect long SBCL A, (dd) E716, dd 2 8
Direct indirect long indexed Y | SBCL A, (dd), Y F716, dd 2 10
Absolute SBC A,mmll EDzs,ll,mm 3 4
Absolute indexed X SBC A, mmll, X FDus, II, mm 3 6
Absolute indexed Y SBC A, mmll, Y F91s, Il, mm 3 6
Absolute long SBC A, hhmmll EFis, Il, mm, hh 4 6
Absolute long indexed X SBC A, hhmmll, X FFis, Il, mm, hh 4 7
Stack pointer relative SBC A, nn, S E316, NN 2 5
Stack pointer relative SBC A, (nn, S), Y F316, Nn 2 8
indirect indexed Y

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace “A” with
“B” in the syntax. In this case, “4216” is added at the beginning of the machine code, the byte
number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length
flag = “0”, the byte number increases by 1.

7751 SERIES SOFTWARE MANUAL 4-101

SEB

SEt Bit SEB

Function

Operation

Description

Status flags

Bit manipulation

Mb — 1 (b is the specified bits)

When m = “0”
M(n+1, n) M(n+1,n) IMM16
L - v L
When m = “1"
M(n) M(n) IMM8
- vl]

O IMM is an immediate value indicating the bits to be set with a “1”. The bits are specified by
the last 1 or 2 bytes of the instruction.

The SEB instruction sets the specified memory bits to “1”. Multiple bits to be set can be
specified at the same time.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Direct bit SEB #imm, dd 0416, dd, imm 3 8
Absolute bit SEB #imm, mmill 0Cis, Il, mm, imm 4 9

Note: When treating a 16-bit data in the condition of the data length flag = “0”, the byte number increases

by 1.

4-102

7751 SERIES SOFTWARE MANUAL

SEC

SEt Carry flag

SEC

Function Flag manipulation
Operation . C <1
Description Sets the carry flag to “1”.

Status flags

%
-

ON — 0O X 3 < 2Z

Set to “1".

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Addressing mode

Syntax

N

lachine code

ytes

Cy

cles

Implied

SEC

3816

7751 SERIES SOFTWARE MANUAL

4-103

S EI SEt Interrupt disable status S EI

Function : Flag manipulation
Operation Dol <1
Description : Sets the interrupt disable flag to “1".

Status flags

IPL: Not affected.

N Not affected.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Set to “1”.

z Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied SEI 7816 1 2

4-104 7751 SERIES SOFTWARE MANUAL

SEM

SEt M flag

SEM

Function . Flag manipulation
Operation oom <1
Description Sets the data length flag to “1".

Status flags

%
-

Set to “1".

ON — 0O X 3 < 2Z

Not affected.
Not affected.
Not affected.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Addressing mode

Syntax

Machine code

ytes

Cy

cles

Implied

SEM

F816

7751 SERIES SOFTWARE MANUAL

4-105

S E P SEt Processor status S E P

Function Flag manipulation
Operation PSLb ~ 1 (b is the specified flags)
PSL -~ PSL V IMMS8
O IMMS8 is an 1-byte, immediate value indicating the bits to be set with a “1”. The bits
are specified by the last 1 or 2 bytes of the instruction.
b7 b6 b5 b4 b3 b2 bl b0
IN|[V|m[x|D| I]Z|C|PSL
Description . Sets the processor status flags specified by the bit pattern in the second byte of the instruction
to “1”.
Status flags . The specified status flags are set to “1”. IPL is not affected.
Addressing mode $yntax Machine code Bytes Cycles
Immediate SEP #imm E216, imm 2 3

4-106

7751 SERIES SOFTWARE MANUAL

STA STore Accumulator in memory STA

Function . Store
Operation . M < Acc
When m = “0”
M(n+1,n) Acc
When m = “1”
M(n) AccL
Description . Stores the contents of the accumulator into a memory.

The contents of the accumulator are not changed.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Direct STA A, dd 8516, dd 2 4
Direct indexed X STA A, dd, X 9516, dd 2 5
Direct indirect STA A, (dd) 9216, dd 2 7
Direct indexed X indirect STA A, (dd, X) 8116, dd 2 7
Direct indirect indexed Y STA A, (dd), Y 9116, dd 2 7
Direct indirect long STAL A, (dd) 8716, dd 2 9
Direct indirect long indexed Y | STAL A, (dd), Y 9716, dd 2 9
Absolute STA A, mmll 8D1s, I, mm 3 5
Absolute indexed X STA A, mmll, X 9Da1s, Il, mm 3 5
Absolute indexed Y STA A, mmll, Y 9916, II, mm 3 5
Absolute long STA A, hhmmll 8F1s, II, mm, hh 4 6
Absolute long indexed X STA A, hhmmll, X 9F16, Il, mm, hh 4 7
Stack pointer relative STA A, nn, S 8316, NN 2 5
Stack pointer relative STA A, (nn, S), Y 9316, NN 2 8
indirect indexed Y

Note: This table applies when using the accumulator A. When using the accumulator B, replace “A” with “B”
in the syntax. In this case, “421¢6” is added at the beginning of the machine code, the byte number
increases by 1 and the cycle number increases by 2.

7751 SERIES SOFTWARE MANUAL 4-107

STP SToP STP

Function : Oscillation control
Operation . Stop the oscillation
Description . Resets the oscillator controlling flip-flop to inhibit the oscillation of the oscillation circuit. To

restart the oscillator, either an interrupt or reset must be performed.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Implied STP DBz1e 1 3

4-108 7751 SERIES SOFTWARE MANUAL

suzuki_tadahiro

STX STore index register X in memory STX

Function . Store
Operation M« X
When x = “0”
M(n+1,n) X
When x = “1”
M(n) Xi
Description . Stores the contents of the index register X into a memory. The contents of the index register

X are not changed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Direct STX dd 8616, dd 2 4
Direct indexed Y STX dd, Y 9616, dd 2 5
Absolute STX mmll 8Eus, I, mm 3 5

7751 SERIES SOFTWARE MANUAL 4-109

STY STore index register Y in memory STY

Function . Store

Operation M <Y
When x = “0”
M(n+1,n) Y

When x = “1”
M(n) Yo

-0

Description . Stores the contents of the index register Y into a memory. The contents of the index register
Y are not changed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Direct STY dd 8416, dd 2 4
Direct indexed X STY dd, X 9416, dd 2 5
Absolute STY mmll 8Cis, Il, mm 3 5

4-110 7751 SERIES SOFTWARE MANUAL

TAD Transfer accumulator A to Direct page register TAD

Function . Transfer
Operation . DPR « A
DPR A
Description . Loads the direct page register with the contents of the accumulator A. Data is transferred as
a 16-bit data regardless of the data length flag. The contents of the accumulator A are not
changed.
Status flags . Not affected.
Addressing mode Byntax Machine code Bytes Cyrles
Implied TAD 5B1s 1 2

7751 SERIES SOFTWARE MANUAL 4-111

TAS Transfer accumulator A to Stack pointer TAS

Function . Transfer
Operation . S <A
S A
Description . Loads the stack pointer with the contents of the accumulator A. Data is transferred as a 16-

bit data regardless of the data length flag. The contents of the accumulator A are not changed.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TAS 1B1e 1 2

4-112 7751 SERIES SOFTWARE MANUAL

TAX Transfer accumulator A to index register X TAX
Function Transfer
Operation X <« A

When x = “0”

X A
When x = “1”
XL AL

Description Loads the index register X with the contents of the accumulator A. The contents of the

Status flags

accumulator A are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0".

Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TAX AAis 1 2

7751 SERIES SOFTWARE MANUAL 4-113

TAY Transfer accumulator A to index register Y TAY
Function Transfer
Operation Y « A

When x = “0”

Y A
When x = “1”
YL AL

Description Loads the index register Y with the contents of the accumulator A. The contents of the

Status flags

accumulator A are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1") of the operation result
is “1”. Otherwise, cleared to “0".

\Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TAY A816 1 2

4-114

7751 SERIES SOFTWARE MANUAL

TB D Transfer accumulator B to Direct page register TB D

Function . Transfer
Operation . DPR - B
DPR B
Description . Loads the direct page register with the contents of the accumulator B. Data is transferred as
a 16-bit data regardless of the data length flag. The contents of the accumulator B are not
changed.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cygles
Implied TBD 4216, 5B16 2 4

7751 SERIES SOFTWARE MANUAL 4-115

TBS Transfer accumulator B to Stack pointer TBS

Function . Transfer
Operation . S B
S B
Description . Loads the stack pointer with the contents of the accumulator B. Data is transferred as a 16-

bit data regardless of the data length flag. The contents of the accumulator B are not changed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TBS 4216, 1B16 2 4

4-116 7751 SERIES SOFTWARE MANUAL

TBX Transfer accumulator B to index register X TBX
Function Transfer
Operation X <« B

When x = “0”

X B
When x = “1”
XL BL

Description Loads the index register X with the contents of the accumulator B. The contents of the

Status flags

accumulator B are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1". Otherwise, cleared to “0".

Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TBX 4216, AA1s 2 4

7751 SERIES SOFTWARE MANUAL 4-117

TBY Transfer accumulator B to index register Y TBY
Function Transfer
Operation Y - B

When x = “0”

Y B
When x = “1”
YL BL

Description Loads the index register Y with the contents of the accumulator B. The contents of the

Status flags

accumulator B are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1") of the operation result
is “1”. Otherwise, cleared to “0".

\Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode tyntax Machine code Bytes Cyrles
Implied TBY 4216, A816 2 4

4-118

7751 SERIES SOFTWARE MANUAL

TDA

Transfer Direct page register to accumulator A TDA

Function

Operation

Description

Status flags

Transfer
A - DPR
When m = “0”
A DPR
I e
When m = “1”
AL DPRL

-]

Loads the accumulator A with the contents of the direct page register. The contents of the
direct page register are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”".
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".
Not affected.
Addressing mode yntax Machine code Bytes Cyrles
Implied TDA 7B16 1 2

7751 SERIES SOFTWARE MANUAL 4-119

TDB

Transfer Direct page register to accumulator B TD B

Function

Operation

Description

Status flags

Transfer
B - DPR
When m = “0”
B DPR
L -]
When m = “1"
BL DPRL

-0

Loads the accumulator B with the contents of the direct page register. The contents of the
direct page register are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1".
Otherwise, cleared to “0".

\Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TDB 4216, 7B16 2 4

4-120

7751 SERIES SOFTWARE MANUAL

TSA

Transfer Stack pointer to accumulator A TSA

Function

Operation

Description

Status flags

Transfer
A~ S
When m = “0”
A S
I
When m = “1”

Ore

Loads the accumulator A with the contents of the stack pointer. The contents of the stack
pointer are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”".
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".
Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TSA 3B16 1 2

7751 SERIES SOFTWARE MANUAL 4-121

TSB

Transfer Stack pointer to accumulator B TS B

Function

Operation

Description

Status flags

Transfer
B - S
When m = “0”
B S
-
When m = “1"

e

Loads the accumulator B with the contents of the stack pointer. The contents of the stack
pointer are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1".
Otherwise, cleared to “0".

\Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TSB 4216, 3B1s 2 4

4-122

7751 SERIES SOFTWARE MANUAL

TSX

Transfer Stack pointer to index register X TSX

Function

Operation

Description

Status flags

Transfer
X S
When x = “0”
X S
I
When x = “1”

0

Loads the index register X with the contents of the stack pointer. The contents of the stack
pointer are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1") of the operation result
is “1”. Otherwise, cleared to “0".
Y, Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".
Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TSX BA16 1 2

7751 SERIES SOFTWARE MANUAL 4-123

TXA Transfer index register X to accumulator A TXA
Function Transfer
Operation A« X
When m = “0” and x = “0”
A X
When m = “0” and x = “1”
A XL
00 -
(0] |- |
O Under this condition, 0016 is transferred to AH regardless of XH.
When m = “1”
AL XL
Description Loads the accumulator A with the contents of the index register X. The contents of the index

Status flags

register X are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0".

Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Implied TXA 8A16 1 2

4-124

7751 SERIES SOFTWARE MANUAL

TXB Transfer index register X to accumulator B TXB
Function Transfer
Operation B - X
When m = “0” and x = “0”
B X
When m = “0” and x = “1”
B XL
(o] |-
O Under this condition, 0016 is transferred to AH regardless of XH.
When m = “1”
BL XL
Description Loads the accumulator B with the contents of the index register X. The contents of the index

Status flags

register X are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0”".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode Byntax Machine code Bytes Cygles
Implied TXB 4216, 8A16 2 4

7751 SERIES SOFTWARE MANUAL 4-125

TXS Transfer index register X to Stack pointer TXS

Function . Transfer
Operation . S X
When x = “0”
S X
L -
When x =*“1"
S XL
(oo | J-F] |

O Under this condition, 0016 is transferred to SH regardless of XH.

Description . Loads the stack pointer with the contents of the index register X. The contents of the index
register X are not changed.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TXS 9A16 1 2

4-126 7751 SERIES SOFTWARE MANUAL

XY

Transfer index register X to Y TXY

Function

Operation

Description

Status flags

Transfer
Y « X
When x = “0”
Y X
-]
When x = “1”

O

Loads the index register Y with the contents of the index register X. The contents of the index
register X are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0".
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”".
Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TXY 9B16 1 2

7751 SERIES SOFTWARE MANUAL 4-127

TYA Transfer index register Y to accumulator A TYA

Function . Transfer
Operation A <Y
When m = “0” and x = “0”
A Y

When m = “0” and x = “1”
A YL
(0] |- |
O Under this condition, 0016 is transferred to AH regardless of YH.

When m = “1”
AL Yo

-0

Description . Loads the accumulator A with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags
IPL: Not affected.

N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1".
Otherwise, cleared to “0".

\Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TYA 9816 1 2

4-128 7751 SERIES SOFTWARE MANUAL

TYB Transfer index register Y to accumulator B TYB
Function Transfer
Operation B ~Y
When m = “0” and x = “0”
B Y
When m = “0” and x = “1”
B YL
(0] |- |
O Under this condition, 0016 is transferred to BH regardless of YH.
When m = “1”
BL Yo
Description Loads the accumulator B with the contents of the index register Y. The contents of the index

Status flags

register Y are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the data length flag is “1”) of the operation result is “1”.
Otherwise, cleared to “0".

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0".

C Not affected.
Addressing mode Syntax Machine code Bytes Cytles
Implied TYB 4216, 9816 2 4

7751 SERIES SOFTWARE MANUAL 4-129

TYX

Transfer index register Y to X TYX

Function

Operation

Description

Status flags

Transfer
X <Y
When x = “0”
X Y
-]
When x = “1”

XL Yo
Loads the index register X with the contents of the index register Y. The contents of the index
register Y are not changed.

IPL: Not affected.
N Set to “1” when bit 15 (or bit 7 when the index register length flag is “1”) of the operation result
is “1”. Otherwise, cleared to “0”".
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z Set to “1” when the result of the operation is “0”. Otherwise, cleared to “0”.
Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TYX BBis 1 2

4-130

7751 SERIES SOFTWARE MANUAL

WIT Warr WIT

Function . Clock control
Operation . Stop the CPU clock
Description : The WIT instruction stops the internal clock. However, the oscillation of the oscillation circuit

is not stopped. To restart the internal clock, either an interrupt or reset must be performed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied WIT CBas 1 3

7751 SERIES SOFTWARE MANUAL 4-131

XAB eXchange accumulator A and B XAB

Function . Exchange
Operation . AT B
When m = “0”
A B
When m = “1”
AL BL
Description . Swaps the contents of the accumulators A and B.

Status flags
IPL: Not affected.

N : Setto “1” when bit 15 (or bit 7 when the data length flag is “1”) of the accumulator A after the
operation is “1”. Otherwise, cleared to “0".

Y, Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z . Setto “1” when the contents of the accumulator A after the operation is “0”. Otherwise, cleared
to “0".
C : Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied XAB 8916, 2816 2 5

4-132 7751 SERIES SOFTWARE MANUAL

INSTRUCTIONS

4.3 Notes for programming

4.3 Notes for programming
Make sure of the following when programming.

(1) Set an initial value to the stack pointer because it is undefined immediately after removing reset.

Example) LDX #27FH
TXS

(2) Do not set a value other than “0016” to the program bank register and the data bank register. It is because
they are invalid in the single-chip mode.

(3) When performing a decimal operation, in the condition of the decimal mode flag = “1" :

With ADC instruction

Only the carry flag is valid.
The zero, negative, and overflow flags are invalid.

With SBC instruction

Only the carry and zero flags are valid.
The negative and overflow flags are invalid.

Note: Decimal operation can be done only with the ADC and the SBC instructions.

(4) Using a 16-bit immediate data in the condition of the data length flag = “1” (data length : 8 bits), or using an
8-bit immediate data in the condition of the data length flag = “0” (data length : 16 bits) will cause the program
runaway. The same rule is applied to the index register length flag. Accordingly, take care of the condition
of these flags when programming.

(5) The 7751 series can prefetch the instructions using the 3-byte instruction queue buffer. Make sure that when
creating a timer with the software, the cycle number shown in the list of machine instructions is the minimum.
(Refer to Chapter 5.)

(6) When setting a value other than “0016” into the low-order 8 bits of the direct page register (DPRL), the
processing time needs 1 machine cycle longer than when setting “0016”".

(7) The processing speed will deteriorate when a 16-bit data is accessed from an odd address. Allocate a 16-
bit data from an even address when the processing speed is important.

(8) By execution of the PLA instruction, the zero and negative flags will change. When the only accumulator A
is restored by execution of the PUL instruction, the contents of the processor status register will not change.

(9) The PSH instruction can save the program bank register on the stack by setting “1” in bit 6 of the operand.
However, the PUL instruction cannot restore the program bank register.

(10) Any code in the second byte of the BRK instruction will not affect to the CPU.

7751 SERIES SOFTWARE MANUAL 4-133

INSTRUCTIONS

4.3 Notes for programming

MEMO

4-134 7751 SERIES SOFTWARE MANUAL

CHRHAPRPTER &
NUMBER OF
INSTRUCTION CYCLES

5.1 Description
5.2 Points of view

NUMBER OF INSTRUCTION CYCLES

5.1 Description

5.1 Description

The number of instruction cycles shows instruction execution time with the cycle number of @
The number of instruction cycles for execution time of one instruction can be shown as the following:

*Execution time of one instruction (s) :LD Instruction cycle number of one instruction
@

The number of instruction cycles changes depending on the instruction execution condition even when the
same instruction is executed in the same addressing mode.
This paragraph explains change factors of the number of instruction cycles.

5.1.1 CPU instruction execution sequence

The number of cycles which is necessary so that the central processing unit (CPU) can execute an
instruction is shown in Chapter 6 CPU instruction execution sequence for each addressing mode. It is the
number of cycles of ¢cpu.

Those numbers of cycles are the ideal values; it is assumed to be possible to supply the bus interface unit
(BIU) with the instructions and the data of a necessary number of bytes which the CPU requires then.
Actually, the CPU standby cycle, which is explained in the next paragraph, is generated because the supply
capability of BIU is limited.

With part of instructions or addressing modes, the cycle number of gcPu which is necessary so that the
CPU can execute the instruction changes owing to the factors shown in Table 5.1.1.

Figure 5.1.1 shows an example of the change of the CPU instruction execution sequence.

Table 5.1.1 Change factors of CPU instruction execution sequence

Factor Instruction/Addressing mode
Value of direct page register’'s low-order byte (DPRL) | Addressing mode using direct page register
Value of data length flag (m) instructions DIV, DIVS, MPY, MPYS
1 02
<+——> B —

AH(cpPu) X PG X PG X PG X PG XOOlGX 00-1.6-0I' 0l X PG X:

AmALcru) X PC X PC+1f PC+1X PC+2 XoPRedd) DPR+dd X PC+3X:
DATAcru) :XOp CodeX Not usedX Op CodeX Opz:jandXNot USEdX DnDL X:: : : Not used XO[’J\lg)gdeX
RAW(CPU) H o

01 This cycle is shortened when DPRL = “0016".
This cycle is valid when DPRL # “0016".

02 This term is 25 cycles when m = “0".
This term is 17 cycles when m = “1".

Note : This is not observed externally because this is the internal operation of the CPU.

Fig. 5.1.1 Example of change of the CPU instruction execution sequence (in DIV instruction and direct addressing mode)

5-2 7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.1 Description

5.1.2 CPU standby cycle

In the case of Table 5.1.2, the BIU makes the CPU stand by owing to extending the duration at the “L”

level of pcpu (Refer to 2.2 Bus interface unit”).

In this case, the number of instruction cycles becomes the following:

*Cycle number of ¢gcpu which is necessary so that the CPU can execute the instruction + Cycle number

of CPU standby.

Timing that the BIU makes the CPU stand by and the cycle number of the CPU standby change by the
change of the memory access frequency and the memory access time shown in Table 5.1.3.
As a rule, the more memory access time and the more memory access frequency, the more the CPU

standby cycle increases.

Table 5.1.2 When BIU makes CPU stand by

Item

Standby duration

Being short of instructions in the instruction queue
buffer when the CPU requires them.

Standby until BIU places required or more instructions
into the instruction queue buffer.

BIU reading data.

Standby until the reading is completed.

BIU using bus to prefetch instructions or write data
when the CPU requires data read or data write.

Standby until to prefetch instructions or write data is
completed.

7751 SERIES SOFTWARE MANUAL

5-3

NUMBER OF INSTRUCTION CYCLES

5.1 Description

Table 5.1.3 Change factor of cycle number of CPU standby
Factor Change of memory access time and memory access frequency
Bus cycle The longer bus cycle, the more time of memory access
Input level of BYTE pin e Access frequency of 16-bit data from an even address at the external area (Note 1)
(External data bus width) “L": Once
“H": Twice
e Prefetch unit (frequency) of instructions at the external area

“L". 2-byte unit (a few of prefetch frequency)
“H”: 1-byte unit (a lot of prefetch frequency)

Access address e Access frequency of 16-bit data in the case of data bus width = 16 bits (Note 1)
(Beginning address) Even: Once
Odd: Twice
e Prefetch unit (frequency) of instructions in the case of data bus width = 16 bits
“L”: 2-byte unit

“H": 1-byte unit (Note 2)

Number of instructions in| The fewer instructions in the instruction queue buifer, the more prefetch frequency.
the instruction queue buffer
when beginning to execute
an instruction

Notes 1: In the instruction affected by the data length flag (m) and index register length flag (x), in the
condition of m(x) flag = “0".

2: An instruction is prefetched by one byte when the address accessed first at such as branches of
the program is only an odd address. After that, the instruction is prefetched by two bytes from an
even address during executing instructions continuously.

3: 0 bytes when beginning to execute the program and a branch.

Otherwise, the user cannot select it because it is changed depending on the state of the previous
instruction completion.

3 bytes or less in the case of when the input level of BYTE pin is “L”, 2 bytes or less in the case
of when it is “H".

5-4 7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

5.2 Points of view

When thinking about the number of instruction cycles as calculation, it is required to concurrently think about
the operation of the CPU and BIU taking the factors of above-mentioned Tables 5.1.1 to 5.1.3 in consideration.
The idea examples of the number of instruction cycles are shown using Figures 5.2.1 — 5.2.3.

Figure 5.2.1 shows a CPU instruction execution sequence (in ASL instruction and direct addressing mode).
Figures 5.2.2 and 5.2.3 show the operation of the CPU and BIU of Figure 5.2.1 with based on ¢

When instructions are executed continuously, the number of the following instruction cycles is affected by
the state of the instruction queue buffer and the bus at the previous instruction’s completion.
Accordingly, examine instructions of that routine continuously in order of execution when you calculate
execution time of one routine.

<+——>

b cru L L L L L T
Ancpu) X Pe Y Pe Yoo X oomoroms Y Pe X
AuALcru) X pc X Ppcri X DPRedd W pcr2)
DATAcru) XOp Code Y Operand x Not used>< DHDL) Not used Y New DHDLY Oggﬁdex
RWicru) T

O This cycle is shortened when DPRL = “0016".
This cycle is valid when DPRL # “0016".

Fig. 5.2.1 CPU instruction execution sequence (in ASL instruction and direct addressing mode)

7751 SERIES SOFTWARE MANUAL 5-5

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Instruction execution condition

*High-speed running, using internal area (The bus cycle is 3¢ cycles when accessing ROM and 2 ¢
cycles when accessing RAM.)

*Data read/write to RAM

«Start address of access: Even address to ROM or RAM

*Number of instructions in the instruction queue buffer at beginning to execute an instruction: 2 bytes

Thinking number of instruction cycles

[J The CPU fetches an op code in the instruction queue

buffer. The number of instructions in the instruction

queue buffer becomes 1 byte.
[J The CPU fetches an operand in the
instruction queue buffer. The number
of instructions in the instruction
queue buffer becomes 0 byte.

[J The CPU fetches an op code of next instruction prefetched
in the instruction queue buffer while the BIU writes the data.
After that, next instructions are executed. (Writing is performed
[J The CPU does not use bus. until the 9th cycle. The ASL instruction is completed with 8
cycles.

[J wait until instruction prefetch is completed,
that is, bus can be used, because next
operation is data read.

2 3 4 5 6 7 8 9
¢
\ N N
O 0 O 0 0
O cpu
: O d (o] d L (0] d
CPU operation ?efcoh © ?;?1” c':d?:glrgsiin Data read Operation | | Data write ?ef(?h ©

Number of instructions
in the instruction queue

buffer _ /

.,

)

Data write

0

N
=

- -

Nothing

i Instruction prefetch Dat d
BIU operation p ata rea done

E

[[0

/ 715 AN

[The CPU does not use bus. However, The
BIU does not prefetch instructions because
the number of instructions in the instruction
queue buffer is 2 bytes.

[0 The BIU prefetches instructions because the
number of instructions in the instruction queue
buffer become 1 byte at the first cycle.

2 bytes instructions are prefetched at one access
because the start address of access is an even.
The instructions are read from the ROM, so that 1
bus cycle becomes 3 ¢.

[0 write data. The CPU transfers the data to the BIU and
specifies the write address.

The BIU writes it once with 1 bus cycle =2 ¢ as well as
reading.

[Read the data.
16-bit data is read once because the start address
of access is an even. The data is read from the
RAM, so that 1 bus cycle becomes 2 ¢.

Fig. 5.2.2 Idea example of number of instruction cycles (1)

5-6 7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

‘Buipeai se jjom 'sa1Aq z s Jayng ananb
se ¢ g =912A0 snq T pue d2IM) YIM Il SBILIM NIF YL uoNoONASUI 8y} Ul SUONANJISUI JO Jaquinu 8yl
"SSaIppe 2}IM BU) Saloads asnedaq suononasul yaiayaid 1ou saop Nig

pue Nig 8y} 0} elep sy} s1sjsuell NdD SYL "elep 8UM [J syl ‘JsAsMOH "Snq 8sn Jou s30p NdD 8yl []

‘USAS UE S| SS9IIE JO SSIIPPE HElS ay}
asNeda[SS3298 JUO Je paydlayaid ale suononIsul Salkq g
*31Ag 0 ! Jayng ananb UORINIISUI BY} Ul SUOKONASUI
4O Jaquinu 3y} asNeISY SuondNISUl saydleyeld Nig dyL
'Sng asN 10U $80p NdD YL []

* ¢’'g SaW023(9|94
sng T ey} 0s ‘WOY dY} WOl peal ale suonanisul
3y "Ppo UE S| SS399E JO SSaIPPE Mels au} asnesaq
SS3908 8U0 Je paydieyald S| uononisul Aq T
‘uondNAsUl 1SY
0 uonndaxa alojaq 8J9A2 sy} Je alAq T SI Jaynq
ananb uononsul 8y} Ul sUOONJISUI JO Jagquinu

ay1 asneoaq suononasul saydajald Nig ayL [

\

uonaNIISUI 1xau Jo 8pod do Ue saydley NdD dYL]

ue S8Ya18) NdD 3y} ‘1ayng ananb uononisul ayy ut paseld
a.e SUONINIISUl UBYM "93Aq 0 SI Jayng ananb uononisul
By Ul SUONONISUI JO Jaquinu 8y} asnedaq Ag spuels NdD 8yL]

Naw \ \ m
suop eal ele d d
1M ereq BUILION P a yojeya.d uononisu| yoa1eja.d uononisu| uonelsado Nig
layng
T 4 0 T 0 \ T ananb uononisul ays ul
suonanJsul Jo lsquinN
U9} uole|nojed d Yooy

ap02 do M ere(| | uonelsado peal ereq SS2I0pY yale} puesado opoa do co_um_wn_o ndo
ndo ¢

O O | g |

__ | __
o

ST T €T 4" T 0T 6 8 L 9 S 14 € 4
‘peal si uopesado
XU asnedaq ‘pasn aq ued snq ‘sl jeyy
‘pare|dwiod si yaeyeld uondnasul [puN e [
*$9J9A2 ZT Yyum paye|dwod si uonanisul 1Sy ayL "0 g s8w023q 8joAd snq T eyl 0s ‘Y dul
*919A0 YIGT a8y [nun pawiopad s| Bunupn) “pendexs wioJ} peal Sl elep ayL "ppo Ue S| SSad9e JO Ssalppe
9Je suonINIIsUI IXau ‘fey} 1a)y "erep ay} salm Nig Jels 8y} 8snedaq 9dIM) yim peal sl eyep 11g-9T *91Aq 0 sawo2aq Jayng ananb uoponAsuUI 8Y} Ul SUORONASUL
ay} ajiym Jayng ananb uononusul ay ul payaiajaid “ejep ay) peay [] 10 Jaguinu 8y “Jayng ananb uononisul ayy u puesado

*31Aq 0 S8Wo093(q Jayng ananb
UOIIONISUl 8Y) Ul SUONDONJISUL JO JBGWINU 8y “Jagng
ananb uononnsul ay) ul 8pod do ue saydIa) NdD dYL]

$3]0A2 uononAsul Jo Jaquinu Bupuiy L

81Ag T :uonoNJIsuUl ue aNdaxa 0} BuluuiBag Je Jayng ananb UORONIISUI BY) Ul SUORONASUI JO JBGUINNe

NVY 10 INOY 01 SSaIppe ppO :SS929k JO SSAIPpe LelSs
VY 0} Slum/peal ereqs
(‘Y Buissadoe uaym sajohd

b z pue INOY Buissaode uaym sajaAkd ¢ € s1 91942 snqg ay L) eate feusayul Buisn ‘Buiuuni paads-ybiHe

UORIPUOD UONNJ3Xa UORINASU|

Fig. 5.2.3 Idea example of number of instruction cycles (2)

5-7

7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

5.2.1 Using internal area

Tables 5.2.1 — 5.2.8 show the number of instruction cycles for each instruction when using the internal
area.

That value of the table is calculated by almost matching the number of instructions in the instruction queue
buffer at beginning to execute the instruction to that at its completion. Accordingly, execution cycles of the
routine can be estimated by adding the number of instruction cycles of each instruction.

However, evaluate it with an actual system when an accurate value is necessary because it is a rough
estimate.

The

(1)

()

instruction execution condition of Tables 5.2.1 — 5.2.8 is described as the following.

Instruction execution condition of Tables 5.2.1 — 5.2.4

e Low-order byte of the direct page register (DPRL) = “0016"

e Low-speed running (The bus cycle is 2¢ when the ROM is accessed or when the RAM is done)

e Data read/write to the RAM

e Start address of access: Even address to the ROM or the RAM

e The number of instructions in the instruction queue buffer at beginning to execute an instruction: 1 byte
(However, add “time required to place the first byte of next instruction — 1 cycle” to it when the
instruction execution is completed at the state where there are no instructions in the instruction
gueue buffer.

Instruction execution condition of Tables 5.2.5 — 5.2.8

e Low-order byte of the direct page register (DPRL) = “0016”

e High-speed running (The bus cycle is 3pwhen the ROM is accessed, and 2¢ when the RAM is done)

e Data read/write to the RAM

e Start address of access: Even address to the ROM or the RAM

e The number of instructions in the instruction queue buffer at beginning to execute an instruction: 1 byte
(However, add “time required to place the first byte of next instruction — 1 cycle” to it when the
instruction execution is completed at the state where there are no instructions in the instruction
gueue buffer.

7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Table 5.2.1 Number of instruction cycles in low-speed running (1)

Addressin = o g
mOde_E m‘i%%&\g:@:m%%%qX.ﬁ)\g%x—l_nédm:xf;
Instruction 22{5@EEE%%Q%E%%%%EEg%G%@«Mma;
Ayl e e S P A A = b1 =a| (£ |s
symbol D ~ Ol< s
ADC Accumulator A | | 3] |4] 16| 16888105 |6]6/6)8] 1691
Accumulator B 5 7 7 91910/|11/12|7 919|919 7110
AND AccumulatorA | 13| |4 |6| |6/8/8/8/105| |6/6|6)8] 16.9]
Accumulator B 5 7 7 9/910|11|12|7 9/9/9|9 7110
ASL Accumulator A 1217, 18] 17].]8.
Accumulator B 4
ASR |AccumulatorA | | 4|9 |9/ J10) 1
Accumulator B 4
BBC Branch 911
No branch lglol | | |
BBS Branch IS 0 I S O
No branch 8|9
BCC Branch 5
No branch lal
BCS Branch A
No branch 4
BEQ Branch 151
No branch 4
BMI Branch A
No branch 4
BNE Branch 15
No branch 4
BPL Branch 5]
No branch 4
BRA 4
BRK 16
BVC Branch 5
No branch 4
BVS Branch 5]
No branch 4
CLB 9 9
CLC 2
CLI 2
CLM 2
CLP 4
CLV 2
CMP AccumulatorA | | 3| |4| |6]| |6/8/8/8|10/5 | |6 6|68 16]9
Accumulator B 5 7 7 919110]11}12|7 9191919 719
CPX 3 4 5
CPY 3 4 5
DEC Accumulator A 1207 18] 178
Accumulator B 4
DEX 2
DEY 2
DIV m=0" |30].|32] |32| |34]34/3536/37|32| |34/34/34/34 132139 | .
m =*“1" 22| (24| |24] |26[26|27/28/29(24| |26|26(26|26 24| 27

7751 SERIES SOFTWARE MANUAL

5-9

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Table 5.2.2 Number of instruction cycles in low-speed running (2)

Addressin —_ > 1o 4 2
modgo_§ g:'c’,><_>',a?><-,>iﬁ_?f~'w%x->—._lX—agx-!—'i‘dg::x%
Instruct =E<0E L0z 28882228 hEyy k.
nstruction 0| a=2 9 T8 V<< N <S T < Ty 0®E
symbol ~ ~ Ol < H
DIvS [m=0" 32 [34 [34] |36]36]37|3830/34] [36/36/36/36 3437
m ="1" 24| |26| |26 |28|28/29/30/31|26| |28(28|28/28 26|29
EOR AccumulatorA | | 3| |4| |6/ |6/8/8/8/10/5 |6/6/6/ 8 6/9] .
Accumulator B 5| |7 7 9| 9/10[11/22| 7] [9/9]9]|9 7110
EXTS |AccumulatorA | | | 4]
Accumulator B 4
EXTZ Accumulator A 4l
Accumulator B 4
INC Accumulator A 1217].]8 178
Accumulator B 4
INX 2
INY 2
JMP 3 5 5|77
JSR 8 9| | 9
LDA Accumulator A | |3/ |4 |6| |6|8 8 8105 |6 6 6| 8| 619 | .
Accumulator B 5 7 7 9]9]10(11/12] 7 9/9/9|9 7110
LDM 5 7 7 [/
LDT 5
LDX 3 4 6 5 6
LDY 4 6 5 6
LSR Accumulator A 207 8 7 8
AccumulatorB | | |4 | |
MPY m='0" |13 |15| |15 |17/17)1819|20|15/17| |17|17(17|17| | | | | | |15[18 |
m ="“1" 8 11| [11] |23|13[14|15|16|11[13| |13|13|13|13 11/14
MPYS |m='0" |13 |15 |15 |171171819201517| |17|17|17]17| | | | | | |15/18 |
m =*“1" 8 11| |11 |13|13|14|15|16|11|13| |13|13|13|13 11/14
MVN O byte transfer | 5
1byte transfer | A
2 or more even bytes transfer |0
3 or more odd bytes transfer 02
MVP| O byte transfer 5
1byte transfer | ALy
2 or more even bytes ransfer| | 83
3 or more odd bytes transfer 04
NOP 2
ORA Accumulator A | |3/ |4 |6| |6|8 8 8105 |6 6|6 8| 619 | .
Accumulator B 5 7 7 9] 9|10/11|12| 7 9/9/9/9 7110
PEA 5
PEI 7

01:5+ % 07 (i = number of transfer bytes)

i—1
2

02:11 + 07 (i = number of transfer bytes)

03:9+ % 07 (i = number of transfer bytes)

04:17 + '_21 07 (i = number of transfer bytes)

5-10 7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Table 5.2.3 Number of instruction cycles in low-speed running (3)

symbol

Addressing
mode

Instruction

IMP

IMM
A

DIR
DIR, b
DIR, X

DIR, Y

(DIR)
(DIR,X)
(DIR),Y

L(DIR)
L(DIR), Y

ABS
ABS, b

ABS, X
ABS, Y

ABL
ABL, X

(ABS)

L(ABS)
(ABS, X)

STK

REL
DIR, b, R

ABS, b, R

SR
(SR), Y

BLK
Multiplied accumulation

PER

PHA

PHB

PHD

PHG

PHP

PHT

PHX

PHY

PLA

PLB

PLD

PLP

PLT

PLX

PLY

ajo oo 0N Wwdwibdo~ O

PSH

]
=

PUL

O
N

RMPA

03
04

RLA

s

ROL

Accumulator B

ROR

Accumulator A

Accumulator B

NN

RTI

10

RTL

RTS

SBC

Accumulator A

Accumulator B

SEB

10

110},

10

SEC

SEI

N

SEM

SEP

STA

Accumulator A

Accumulator B

6

7

8
9

T

10

9

11

9
12

8

5

8

3
8

]

8

7

9l .

10

O1l:11+2i1+i2
(iz = number of registers saved among A, B, X, Y, DPR and PS; i2 = number of registers saved of DT and PG)

02:12+3i1+41i2
(i1 = number of registers restored among A, B, X, Y, DT and PS; i2 = 1 when restoring DPR and 0 when not doing)

03:6+20i
04:6+16i

O05:7+ i

(i = number of rotations)

(i = number of repeated operations)
(i = number of repeated operations)

7751 SERIES SOFTWARE MANUAL

5-11

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Table 5.2.4 Number of instruction cycles in low-speed running (4)

Addressing

mode
<

IMP
IMM
DIR

DIR, b
DIR, X
DIR, Y
(DIR)
(DIR,X)
(DIR),Y
L(DIR)

L(DIR), Y

ABS
ABS, b
ABS, X
ABS, Y

ABL
ABL, X

(ABS)
L(ABS)
(ABS, X)

Instruction
symbol

REL

STK
DIR, b, R
ABS, b, R

SR

(SR), Y

BLK

Multiplied accumulation

STP -

STX 5 5 5

STY 5 5 5

TAD

TAS

TAX

TAY

TBD

TBS

TBX

TBY

TDA

TDB

TSA

TSB

TSX

TXA

TXB

TXS

XY

TYA

TYB

NIEINININDNIBERININIARINIAIN|IABAABDNDDNDDN

TYX

WIT

XAB

ol

5-12 7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Table 5.2.5 Number of instruction cycles in high-speed running (1

Addressin — 1o 4 2
modgg_§ m%%%gxhi?l_?:ng.%_ux_@gx-x_lidn::x§
Instruction §§<aﬂ—:o—igﬁggegggc@"ﬂ)ggégi‘,%%gn{ﬁmmag
oloo=2 8 T8 T« < <= T =l |2 |2
symbol — ~ 0| < s
ADC Accumulator A | | 5| |5| 8| |710/109|12/7 | |88 |8 |11 811
Accumulator B 6 8 8 10/10|11/12|13| 8 111111 |11 811
AND Accumulator A | | 5| |5| 8| |7[10/10/9(12/7 | |88 |8 |11| [.8/11)
Accumulator B 6 8 8 10/10]11/12/13| 8 11111211 811
ASL Accumulator A 209 10 9 10
‘Accumulator B Tal || |
ASR Accumulator A 410/ |10 12| 13
Accumulator B 4
BBC | Branch |13[16]
No branch 10|12
BBS Branch 13116
No branch 1012
BCC Branch 8
‘Nobranch 15
BCS Branch 8
‘Nobranch sl
BEQ Branch 181
No branch 5
BMI Branch 18]
No branch 5
BNE Branch 18l
No branch 5
BPL Branch 8
‘Nobranch 5|
BRA 8
BRK 18
BVC Branch 18]
No branch 5
BVS Branch 18]
No branch 5
CLB 12 12
CLC 2
CLI 2
CLM 2
CLP 5
CLV 2
CMP Accumulator A | 15| 15| /8| |710/10/9]12/7 | 8188 A1 | | | | | | |8 11| |
Accumulator B 6 8 8 10/10/11/12]13| 8 111111 (11 8 |11
CPX 5 5 7
CPY 5 5 7
DEC Accumulator A _ 12090 J20) Lo O]
Accumulator B 4
DEX 2
DEY 2
DIV m=0_ |31 [33] |33 |35[35/36/37/3833 |36/36|36/36 | | | | | | [3336] |
m ="*1 23| |25| |25 |27|27|28/29|30|25| |28/28|28(28 25|28

7751 SERIES SOFTWARE MANUAL

5-13

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Table 5.2.6 Number of instruction cycles in high-speed running (2)

Addressing a x> > 27 lalx|> %Az < o) | é
B e R e e e P P]
Instruction - DDDVQQ—'% << < | < Tlg 5 @ =
symbol < E
DIVS m="0"_____ |33] |35 |35 |37|37|3839]|40[35| 38/38/38/38 | | | | | | [3538] |
m ="1" 25 27| 27| 129/29/30/31/32|27] |30[30|30|30
EOR Accumulator A | | 5| |5| |8] |7/10/10 912 7| |8/8|8(11 | | | | | | |8/11 |
Accumulator B 6 8 8 10/10/11/12/13| 8 11111111
EXTS Accumulator A 4l
Accumulator B 4
EXTZ Accumulator A Al
Accumulator B 4
INC Accumulator A 1219]. /10 1.9] .]10
Accumulator B 4
INX 2
INY 2
JMP 5 8 7111
JSR 10 12
LDA AccumulatorA | | 5| |5 |8 |7/10110 9/12/7| 8|8 (811 | | | | | | |8]1
Accumulator B 6 8 8 10/10|11 12 |13| 8 11111/1111 8
LDM 7 10 10 10
LDT 5
LDX 5 5 8 | 7 8
LDY 5| |s| |8 7 |8
LSR Accumulator A | | 12/9| 110) | | |\ 190 1100 Lo L
Accumulator B 4
MPY m="0"___ |14) |16| |16] [18|18/19/20|21/16| [19(19/19)19 | | | | | | [16/19] |
m =*"1" 10 12 12 14|14 /15|16|17|12 15|15 (15|15
MPYS |m="0" |14 |16| |16 1818|19/20/21/16| |19/19|19/19 | | | | | | |16/19] |
m ="1" 10| |12| |12| |14|14|15|16|17|12| |15]15|15|15
MVN| O byte transfer
1byte transfer |
2 or more even bytes transfer
3 or more odd bytes transfer
Mvp| O byte transfer | |
1byte transfer |
2 or more even bytes transfer
3 or more odd bytes transfer
NOP 2
ORA Accumulator A | | 5| |5| 8| |7/10/109]12|7 | |8|8 |8 11| | | | | | |]8]|1
Accumulator B 6 8 8 10/10|11]12|13| 8 11]11)11]11 8
PEA
PEI

01:6 +%D 7 (i = number of transfer bytes)

i—1
2

02:12 + 07 (i =number of transfer bytes)

03:10 + % 07 (i = number of transfer bytes)

i—1
2

04:18 + 07 (i =number of transfer bytes)

5-14 7751 SERIES SOFTWARE MANUAL

NUMBER OF INSTRUCTION CYCLES

5.2 Points of view

Table 5.2.7 Number of instruction cycles in high-speed running (3)

symbol

Addressing
mode

Instruction

IMP

IMM

DIR
DIR, b

DIR, X
DIR, Y
(DIR)
(DIR,X)

(DIR),Y
L(DIR)

L(DIR), Y
ABS
ABS, b

ABS, X
ABS, Y
ABL

ABL, X

(ABS)

L(ABS)
(ABS, X)

STK
REL

DIR, b, R

ABS, b, R

SR
(SR), Y

BLK

Multiplied accumulation

PER

PHA

PHB

PHD

PHG

PHP

PHT

PHX

PHY

PLA

PLB

PLD

PLP

PLT

PLX

PLY

o lo|o oo oo s DD DD D[N (N

PSH

O
oy

PUL

[}
N

RMPA

|8

04

RLA

05

ROL

Accumulator B

ROR

Accumulator A

Accumulator B

NN

|0 Sl S R 01 S S U A O A O O O

RTI

11

RTL

RTS

SBC

Accumulator A

Accumulator B

11

8| |101011|12/13] 8| |11]11/11

11

FE B

SEB

12

12

SEC

SEl

N

SEM

SEP

STA

Accumulator A

Accumulator B

7

L7 17 1911019 1111) 7| | 7] 7110

7 10/10{11]12|13/]10/ 110/10/10

10

7
7

11 |

11

O1:12+2i1+1i2
(i1 = number of registers saved among A, B, X, Y, DPR and PS; i2 = number of registers saved of DT and PG)

02:14+3i1+41i2
(i1 = number of registers restored among A, B, X, Y, DT and PS; i2 = 1 when restoring DPR and 0 when not doing)

03:6+20i
04:6+161

O05:8+ i

(1= number of repeated operations)
(i =number of repeated operations)

(i = number of rotations)

7751 SERIES SOFTWARE MANUAL

5-15

NUMBER OF

5.2 Points of view

INSTRUCTION CYCLES

Table 5.2.8 Number of instruction cycles in high-speed running (4)

Addressing
mode

Instruction
symbol

IMP
IMM

DIR
DIR, b

DIR, X
DIR, Y
(DIR)
(DIR,X)

(DIR),Y
L(DIR)

L(DIR), Y
ABS
ABS, b
ABS, X
ABS, Y

ABL
ABL, X

(ABS)

L(ABS)
(ABS, X)

STK

REL
DIR, b, R

ABS, b, R

SR
(SR), Y

BLK

Multiplied accumulation

STP

STX

~
~

STY

TAD

TAS

TAX

TAY

TBD

TBS

TBX

TBY

TDA

TDB

TSA

TSB

TSX

TXA

TXB

XS

XY

TYA

TYB

TYX

NIMINININIAININIBARINIBRDNMDBDIABDBDDNDIDNDNININ

WIT

XAB

(&)]

5-16

7751 SERIES SOFTWARE MANUAL

CHRHAPRPTER ©
CPU INSTRUCTION
EXECUTION SE-
QUENCE FOR EACH
ADDRESSING MODE

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODE

The following are the CPU instruction execution sequences for each addressing mode. The execution
sequences shown here describe the internal operation of the CPU. Accordingly, the signals are all CPU
internal signals, and cannot be observed from outside. The CPU internal operation, the actual execution
time, and the relation between signals that can be externally checked are described in “Chapter 5 NUMBER
OF INSTRUCTION CYCLES".

The accumulator used in the instructions in the CPU instruction execution sequence is accumulator A. When
accumulator B is used, the execution cycle has the two @ceu more of a “42i16” that indicates accumulator B,
and an internal processing cycle added at the front. (Refer to the figure on page 6-4.)

In the cases of instructions ASR, EXTS and EXTZ, however, the number of cycles using accumulator B is
the same.

The number of geru cycles differs in the addressing mode that uses the direct page register, according to
whether the low-order 8 bits (DPRL) are “0016” or others. The number of cycles when DPRL = “0016" is 1
@cru cycle (address calculation cycle) less than that when DPR. # “0016”.

The number of cycles differs in the PSH and PUL instructions according to the number and type of registers
stored in (restored from) the stack.

The number of cycles differs in the block transfer instructions (MVN, MVP), according to the number of a
transfer data. The following table shows the signals and the symbols indicating the contents.

6-2 7751 SERIES SOFTWARE MANUAL

CPU INSTRUCTION EXECUTION SEQUENCE FOR

EACH ADDRESSING MODE

Symbol Description

O cpu CPU basic cycle

Ancru) High-order 8 bits of the CPU internal address bus.

AmALcru) [Low-order 16 bits of the CPU internal address bus.

DATAcru) |[The CPU internal data bus.

R/W(cpu) R/W signal to the bus interface unit.

PG Contents of program bank register just before the instruction is executed.

PC Contents of program counter just before the instruction is executed.

DT Contents of data bank register just before the instruction is executed.

DPR Contents of direct page register just before the instruction is executed.

DPRL Contents of the low-order 8 bits of direct page register just before the instruction is executed.

S Contents of stack pointer just before the instruction is executed.

A Contents of accumulator A just before the instruction is executed. Its data length is determined
by the m flag.

B Contents of accumulator B just before the instruction is executed. Its data length is determined
by the m flag.

X Contents of index register X just before the instruction is executed. Its data length is determined
by the x flag.

Y Contents of index register Y just before the instruction is executed. Its data length is determined
by the x flag.

PS Contents of processer status register just before the instruction is executed.

m Contents of the data length flag just before the instruction is executed.

X Contents of the index register length flag just before the instruction is executed.

ADn The valid address high-order 8 bits at indirect addressing modes.

ADmMADL The valid address low-order 16 bits at indirect addressing modes.

DATA 8 bits or 16 bits data. The data length is determined by the m flag or x flag.

New DATA|The data, which is read, modified.

DuDL 16 bits data

DL 8 bits data

imm 8 bits or 16 bits immediate value

dd Displacement to DPR (8 bits)

rre Displacement to PC (signed 8 bits)

FrHrre Displacement to PC (signed 16 bits)

nn Displacement to S (8 bits)

hh The high-order 8 bits address indicated by operand direcly.

mmll The low-order 16 bits address indicated by operand direcly.

7751 SERIES SOFTWARE MANUAL

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODE

Variation of execution cycles according to used accumulator

¢~ ADC instruction ; Immediate addressing mode N
<<Using accumulator A>>
Mnemonic : ADC A#1234H Machine code : 6916 3416 1216
0 cpu I
|
|
AH(CPU) | PG >< PG >< PG ><
|
|
|
AMAL(CPU) < PC >< PC+1 >< PC+3 ><
|
---1
|
DATA(cPU) < 6916 >< 123416 >< >
|
I Op Code Operand
<<Using accumulator B>>
Mnemonic : ADC B,#1234H Machine code : 4216 6916 3416 1216
:4— 20 CPU—>:
1 1
0 cpu
I
1
AH(CPU) < PG >< PG X PG >< PG >< PG ><
1
1
1
AMAL(CPU) < PC >< PC+1 X PC+1 >< PC+2 >< PC+4 ><
1
L-=-9
1
DATA (cpPu) < 4216 >< Not usedX 6916 >< 123416 >< >
1
Op Code I Op Code Operand
\ Y,

6—4 7751 SERIES SOFTWARE MANUAL

Implied

Instructions

Timing :

¢ cpPU

AH(CPU)

AMAL(CPU)

CLC, CLl, CLM, CLV, DEX, DEY,
SEC, SEl, SEM, TAD, TAS, TAX,

TSX, TXA, TXS, TXY, TYA, TYX

GO =X
(PC XPC+1 XPC+1X

DATA(cPU) X Op Code X Not used X OF')\] Eﬁtde >

R/W(CPU)

Instructions

Timing :

dcPu

AH(CPU)

AMAL(CPU)

DATA(cPU)

R/W(CPU)

“yr

appe

TBD, TBS, TBX, TBY, TDB, TSB,

INX,
TAY,

TXB,

INY, NOP,
TDA, TSA,
TYB

(s X re X re X pe X e

A

EDEHEDCEIE

Next
Op Code

)

X Op Code X Not used X Op Code X Not used X

7751 SERIES SOFTWARE MANUAL

6-5

Implied

Instructions : XAB

Timing :

¢ CPU |

AH(CPU) < PG X PG X PG X PG X PG X

AMAL(CPU) < PC X PC+1 X PC+1 X PC+2 X PC+2 X
Next

DATA(cPU) Op Code Not used Op Code Not used Not used Op Code

o

R/W(CPU)

Instructions : STP, WIT

Timing :

¢ cpu |

AH(CPU) < PG x PG X PG
AMAL(CPU) < PC X PC+1 X PC+1
DATA(CPU) X Op Code X Not used X Not used

“H

R/W(CPU)

6—6 7751 SERIES SOFTWARE MANUAL

Implied

Instructions

Timing

O cPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

Instructions

Timing

o cpu

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

“H

quv

RTS

(

2 G €9 D

(= X e

X S+1 X ADMADL X

Next
X Op Code X Not used X Not used X ADMADL X Op Code >

RTL

PG X PG X 0016

o X

|
(
(

PC X PC+1

X S+1 X S+3 XADMADLX

X Op Code X Not usedX Not used X ADMADL X ADH X

Next
Op Code

)

7751 SERIES SOFTWARE MANUAL

6-7

Instructions

Timing

0 cpu

AH(CPU)

AMAL(CPU)

RTI

Implied

e

o X

0016

=)

e

PC+1 X S+1 X S+3 X S+5 XADMADLX

)

Next
DATA(cPL) XOp Code XNot used X Not used X DHDL X ADMADLX ADH X op g)c()de

R/W(CPU)

“H

6-8

7751 SERIES SOFTWARE MANUAL

Implied

Instructions : BRK

Timing

O cpPu |

AH(CPU) < PG X PG X 0016 X
AMAL(CPU) < PC X PC+1 X FFFF16 X FFFE16 X FFFC16 X S X
DATA(cPU) X Op Code X Operand X Not used X Not used X Not used X Not used X Not usedX PG X

R/W(CPU)

X 0016 X 0016 x 0016 x
X S-2 X S-4 >< FFFA16 X ADmADLX
PC+2 PS Not used ADMADL Next
Op Code

Note: The operand which is fetched at the 2nd cycle is 1 byte. Whatever it contains is available.

7751 SERIES SOFTWARE MANUAL 6—9

Immediate

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
m=Q"
o cpu

AH(CPU) < PG X PG X PG X

AMAL(CPU) < PC X PC+1 X PC+3(2)X
Operand Next

DATA(CPU) X Op Code X m X Op Code >

e
R/W(CPU)
Notes 1: The operand which is fetched at the 2nd cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2: “()" shows the case of m="1".
Instructions : LDX, LDY, CPX, CPY
Timing
x="0"
¢ cpu |

AH(CPU) < PG X PG X PG X

AMAL(CPU) < PC X PC+1 X PC+3(2)X
Operand Next

DATA(cPU) X Op Code X i X Op Code >

o

R/W(CPU)

Notes 1: The operand which is fetched at the 2nd cycle is as follows:
When x="0", 2 bytes

When x="1", 1 byte
2: “()" shows the case of x="1".

6-10 7751 SERIES SOFTWARE MANUAL

Immediate

Instructions : LDT

Timing

o cpPU |

AH(CPU) < PG X PG X PG X PG X imm X PG X

AMAL(CPU) < PC X PC+1 X PC+1 X PC+2 X PC+3 X
Operand Next

DATA(cPU) Op Code Not used Op Code imm Not used Op Code

“H
R/W(CPU)
Note: The operand at the 4th cycle is 1 byte.
Instructions : RLA
Timing
m="0 - -
o cpu |

AH(CPU) < PG x PGX PG X PG X PG X

AMAL(CPU) (PC X PC+1 X PC+1 X PC+2 X imm X imm—lXPC+4(3)X
Operand Next

DATA(CPU) XOp CodeX Not usedXOp CodeX - XNot usedXNot usedX Not usedX op Code)

“qr

R/W(cPu)

Notes 1: This figure is an example shifted by 1 bit.
When 2 or more bits are shifted, the cycle “ 4 " is repeated by each shift times.
When 0 bit is shifted (not shifted), the cycle “-»" is shortened.

2: The operand which is fetched at the 4th cycle is as follows:
When m="0", 2 bytes

When m="1", 1 byte
3: “()" shows the case of m="1".

7751 SERIES SOFTWARE MANUAL 6-11

Immediate

Instructions : SEP

Timing

0 cpu |

AH(CPU) < PG X PG X PG X

AMAL(CPU) < PC X PC+1 X PC+2 X
Operand Next

DATA(CPU) Op Code imm Not used Op Code

Sy
R/W(CPU)
Note: The operand at the 2nd cycle is 1 byte.
Instructions : CLP
Timing
o cpu

AH(CPU) (PG >< PG X PG X

AMAL(CPU) < PC X PC+1 X ? X PC+2 X
Next

DATA(CPU) X Op CodeX Opi;rr:nd X Not used X Not usedX Op g)c()de >

g

R/V_V(CPU)

Note: The operand at the 2nd cycle is 1 byte.

6-12 7751 SERIES SOFTWARE MANUAL

Immediate

Instructions

Timing

O cpu

AH(CPU)

AMAL(CPU)

DATA(cPu)

R/W(CPU)

DIV, DIVS, MPY, MPYS

m=“0"

|] |
=) ST =)

P o = = = e =~

PC X PC+1 X PC+1 X PC+2 PC+ 2 pC+4(3)X
Operand Next
XOp CodeXNot usedXOp CodeX o Not used op Code)

Notes 1: The operand which is fetched at the 4th cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2: “()" shows the case of m="1".
3: The cycle number during “O" is shown as the following table:

Cycle number (¢ cru)
Instruction
m= “0” m ="“1"
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

» The contents of AMAL(cPU) during “O" with DIVS are undefined.
« When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL

6-13

Immediate

Instructions DIV, DIVS (case of zero division)
Timing
m="0"
¢ cPu
AH(CPU) (PG X PG X PG X PG X PG X
AMAL(CPU) (PC XPC+ 1X PC+ 1XPC+ 2X PC+ 2 XFFFFleX FFFE16 X
DATA(cPU) ~ Op CodeXNot usedXOp CodeXOﬁ)rirr:ndXNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX
R/\N(CPU) |
X 0016 X 0016 X 0016 N
X s X s-2 X S—4 X S—4 XFFFCleXADMADLx
PC Next
X PG X +4(3)X PS XNot usedXADMADXOp Code)
Notes 1: The operand which is fetched at the 4th cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2: “()" shows the case of m="1".
6-14 7751 SERIES SOFTWARE MANUAL

Accumulator

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing

¢ cpu |

AH(CPU) < PG X PG X PG X

AMAL(CPU) < PC X PC+1 X PC+1 X
Next

DATA(CPU) X Op CodeX Not UsedX Op Code>

“ye

R/W(CPU)

Instructions : ASR, EXTS, EXTZ

Timing

¢ cpu |

AH(CPU) < PG X PG X PG X PG X PG X

AMAL(CPU) < PC X PC+1 X PC+1 X PC+2 X PC+2 X
Next

DATA(cPU) X Op Code X Not used X Op Code X Not used X Op Code >

o

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6—15

Direct

Instructions : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC
Timing

- —u " R :
DPRL #“0016" When DPRL="001¢", this cycle is shortened.

0 cpu

AH(CPU) < PG X PG X 0016 XOOlG or OllBX PG X

AMAL(CPU) < PC X PC+1 X DPR+dd XPC+2 X
Operand Next

DATA(CPU) X Op Code X dd X Not used X DATA X Op Code >

_ H
R/W(cPu)
Instructions : LDM
Timing
m="0", DPRL # “0016" ~4—» \When DPRL="0016", this cycle is shortened.
0 cpu |

AH(CPU) < PG X PG X PG X 0016 XOOIG or OlusX PG X

AMAL(CPU) < PC X PC+1 X PC+2 X ? X DPR+dd X PC+4(3) X
Operand Operand . Next

DATA(CPU) X Op Code X dd X - X Not used X imm X Op Code >

“Hr

R/W(CPU)

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 5th cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2.)" shows the case of m="1".

6-16 7751 SERIES SOFTWARE MANUAL

Direct

Instructions : STA, STX, STY
Timing
DPRL # “0016" <—>When DPRL="0016", this cycle is shortened.
¢ cpu |

AH(CPU) < PG X PG X 0016 X 0016 or 0116 X PG X
AMAL(CPU) < PC X PC+1 X DPR+dd X PC+2 X

(@] d Next
DATA(CPU) X Op Code X erdan X Not used X Not used X AX)(Y) X Op Code >

o
R/W(cPU)
Instructions : ASL, DEC, INC, LSR, ROL, ROR
Timing
DPRL #*0016" —~4——® \When DPRL="0016", this cycle is shortened.
0 cpu

AH(CPU) < PG X PG X 0016 X 0016 or 0116 X PG X

AMAL(CPU) < PC X PC+1 X DPR+dd X PC+2 X
Operand New Next

DATA (CPU) X Op Code X dd X Not used X DATA X Not used X DATA X Op Code >

o

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6-17

Direct

Instructions : ASR
Timing
DPRL #“0016” ™" When DPRL=0016", this cycle is shortened.
0 crPu

AH(CPU)

AMAL(CPU) (PC+2 X DPR+dd X PC+3 x
DATA OP i nd DATA JNotused] New Y Next
(CPU) Op Codej Not used A Op Code Not used DATA] Op Code

o

2000 RN E
==

RM(CPU)

6-18 7751 SERIES SOFTWARE MANUAL

Direct

Instructions : DIV, DIVS, MPY, MPYS
Timing

When DPRL="0016", this cycle is shortened.

l—— |t
DPRL #“0016"

- U E L L

(X X PG X PG X OOleX 0016 or 0116
AMAL(CPU) (PC XPC+1 XPC+1 X PC+2 XDF>R+ DPR+dd

AH(CPU)

dd

DATA(CPU) ~Op CodeXNot usedXOp CodeXOerdandXNot usedX DATA Not used

“q

R/W(CPU)

Note: The cycle number during “0" is shown as the following table:

Cycle number (¢ cru)

Instruction) T

m ="0 m="1
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

» The contents of AMAL(cpu) during “0" with DIVS are undefined.

* When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(CPU)
at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL 6-19

Direct

Instructions : DIV, DIVS (case of 0 division)
Timing

When DPRL="0016", this cycle is shortened.

el
DPRL #“0016"

AH(CPU) (PG X PG X PG X PG XOOlGX 0016 or 0l16 X
AMAL(CPU) (PC XPC+1 XPc+1X PC+2 X DPR+ dd XFFFF16X FFFE16 X

DATA(cPU) u Op CodeXNot usedXOp CodeXo’Jz:jandXNot usedX DATA XNot usedXNot useiiXNot usedXNot usedXNot usedXNot usedX

g

R/W(CPU)

X 0016 X 0016 X 0016 N
X S Xs-z Xs_4 [5—4 XFFFCleXADMADLx
Next

X PG X?&?:X PS XNotusedXADMADLXOpCOde)

6-20 7751 SERIES SOFTWARE MANUAL

Direct Bit

Instructions : CLB, SEB
Timing
m=0", DPRL # “0016" -4—m \When DPRL="0016", this cycle is shortened.
¢ cpu |

AH(CPU) (PG X PG X PG X 0016 X 0016 or Ol16 X PG X

AMAL(CPU) (PC X PC+1 X PC+2 X ? X DPR+dd X PC+4(3) X
Operand Y Operand New Next

DATA(CPU) XOp CodeX dd X i X Not usedX DATA XNot usedX DATA XOp Code)

R/W(CPU)

Notes 1: The operand which is fetched at thei8rd €ycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2. %)” shows the case of m=1".

7751 SERIES SOFTWARE MANUAL 6-21

suzuki_tadahiro

Direct Indexed X

Instructions : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing

DPRL #“0016" ~4—® \When DPRL="0016", this cycle is shortened.

0 cpu
A 0016, 0116
H(CPU) PG PG 0016 0016 or 0116 or 02 16 PG
AMAL(CPU) < PC X PC+1 XDPR+dd+X X PC+2 X
Next
DATA(cPU) XOp Code X Opz;and X Not usedX Not usedX DATA Xop C)c()de >

Timing

wh
R/W(CPU)
Instructions : LDM
~——P \When DPRL="0016", this cycle is shortened.
m="0", DPRL #“0016"
¢ cpu

AH(CPU) < PG X PG X PG X 0016 X0016 or Oll(X 001s, 0116X PG X
or 0216
AMAL(CPU) < PC X PC+1 X PC+2 X ? X ? XDPR+dd+X X PC+4(3) X
. Next
DATA (cpu) XOp Code X Opzrdand X O?Er;nd X Not used X Not usedX imm X Op Code>

“Hr

R/W(CPU)

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 6th cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2.)" shows the case of m="1".

7751 SERIES SOFTWARE MANUAL

Direct Indexed X

Instructions : STA, STY
Timing
~4—® \\hen DPRL="0016", this cycle is shortened.
DPRL #“0016"
O crpu

AH(CPU) < PG X PG X 0016 Xoole or ollex 0016, 0116 or 0216 X PG X

AMAL(CPU) < PC X PC+1 X DPR+dd+X X PC+2 X
Next

DATA(CPU) X Op CodeX Opz:jand X Not usedX Not usedX Not usedX A(Y) X op Code>

e
RAW(CPU)
Instructions : ASL, DEC, INC, LSR, ROL, ROR
Timing
~4—»\When DPRL="0016", this cycle is shortened.
DPRL #“0016"
¢ cpu

AH(CPU) (PG X PG X 0016 X001eor0116X 0016, 0116 or 0216 X PG X
AMAL(CPU) (PC X PC+1 X DPR+dd+X X PC+2 X

Operand New Next
DATA (cpu) XOP COdEX dd XNot usedX Not usedX DATA XNot usedX DATA Xop Code)

o

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6-23

Direct Indexed X

Instructions ; ASR
Timing
DPRL £0016” ~— \When DPRL="0016", this cycle is shortened.
0 cpu

AMAL(CPU) PC+2

e —

AH(CPU) (PG X PG X PG X PG X 0016 Xogllifrx 0016, 0116 or 0216 X PG n
PC XPC+1 PC+1 X X DPR+dd + X XPC+3 ”
Operand New Next
DATA (cpu) N Op CodeXNot usedXOp COdeX pdd XNot usedXNot usedn DATA X\Iot usedX DATA Xop Code)

oy

R/W(CPU)

6-24

7751 SERIES SOFTWARE MANUAL

Direct Indexed X

Timing

Instructions : DIv, DIVS, MPY, MPYS
When DPRL="0016", this cycle is shortened.
DPRL # “0016” “* B o

- U UL THL

=

DPR+
PC+1 I PC+1 PC+2 dd+x DPR+ dd+ X

AH(CPU) PG PG PG PG | oo J 00160r 0016 , 0116 Or 0216
Olie

AMAL(CPU) (PC

—~ M

PC+3

DATA (cpu)

Next
Op Code

———

n Oop CodeXNot usedXOp CodeXOpZLa”dXNot usedXNot usedX DATA Not used

“

RIW(CPU)

Note: The cycle number during “0" is shown as the following table:

Instruction Cycle number (¢ cpu)
m =“0" m="1"
DIV 25 1174
DIVS 27 19
MPY 8 4
MPYS 8 4

« The contents of AMAL(cPu) during “0” with DIVS are undefined.

« When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(cPu)

at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL

6-25

Direct Indexed X

Instructions : DIV, DIVS (case of O division)
Timing
When DPRL="0016", this cycle is shortened.
g
DPRL #“0016"
0 cpu ||||||||||||||||||||||||||

PG PG

AH(CPU) 0016, 0116 or 0216 X

L= X
P e e o)

PC+1 A PC+1 PC+2

PG PG) 001) 000"
Olie

DATA(cPU)

Op CodeXNot USEdXOp COdeXOF’Z[ﬁandXNOt usedXNot usedX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX

RM(CPU) |

gipipipipipip
= R0

X S Xs—z Xs-4 Xs—4 XFFFClGXADMADLx
X PG XPC+3X PS XNotusedXADMADLXOF')\‘%;e)

6—-26 7751 SERIES SOFTWARE MANUAL

Direct Indexed Y

Instructions : LDX
Timing
DPRL #“0016" - ® \When DPRL="0016", this cycle is shortened.
0 cPU

AH(CPU) PG PG 0016 0016 or 0116} 2018 0116 PG
or 02 16
AMAL(CPU) < PC X PC+1 XDPR+dd+Y X PC+2 X
Operand Next
DATA (cpu) X Op Code X ad X Not used X Not used X DATA X Op Code >

B “‘H
R/W(cpPu)
Instructions ; STX
Timing
DPRL #“0016” " \\hen DPRL="0016", this cycle is shortened.
¢ cpu

AH(CPU) < PG X PG X 0016 Xoole or 0116X 0016, 0116 or 0216 X PG X

AMAL(CPU) < PC X PC+1 X DPR+dd+Y X PC+2 X

DATA Op Code Operand Not used Not used Not used X Next
(cPY) P dd Op Code

“H

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 627

Direct Indirect

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
DPRL £“0016” ™ When DPRL="0016", this cycle is shortened.
® cPu

AH(CPU) < PG X PG X 0016 X0016 or 0116 DT X PG X
AMAL(CPU) < PC X PC+1 XDPR+dd X ADMADLX

Operand Next
DATA (cpPu) X Op Code X dd X Not used X ADMADL X DATA X Op Code >

"
RIW(CPU)
Instructions : STA
Timing
DPRL #“0016" ~®—® \When DPRL="0016", this cycle is shortened.
0 cpu

AH(CPU) < PG X PG X 0016 X0016 or omX DT X PG X
AMAL(CPU) < PC X PC+1 X DPR+dd X ADMADL X PC+2 X
Operand Next
ADMAD
DATA (cPu) X Op Code X dd X Not used X MADL X Not used X A X Op Code >

“H

R/W(cpPu)

6-28 7751 SERIES SOFTWARE MANUAL

Direct Indirect

Instructions : DIV, DIVS, MPY, MPYS
Timing

When DPRL="0016", this cycle is shortened.
- - O

-

DPRL #“0016”

¢ cpu

AH(CPU) (PG X PG X PG X PG X 0016 XOgllelé)rX oT

AMAL(CPU) (PC XPC+1 X PC+1 X PC+2 XDZ'Z* XADMADL}‘ ADMADL

PC+3

DATA (cpPu) u Op CodeXNot usedXOp CodeX Opz:jandXNot usedXADMADLX DATA Not used

Next
Op Code

——

aH -
R/W(cpu)

Note: The cycle number during “[1" is shown as the following table:

Instruction m S}g,:,le b (q)mC:Ei)"
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

 The contents of AMAL(cpU) during “0" with DIVS are undefined.

*When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(cPU)

at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL

6-29

Direct Indirect

Instructions : DIV, DIVS (case of 0 division)
Timing

When DPRL="0016", this cycle is shortened.
>
DPRL #"0016"

¢ cpu ||||||||||||||||||||||||||
(PG X PG X PG X PG X 0015 X0016 orX DT X
0l1e
AMAL(CPU) (PC X XPC+1X PC+2 Xoglﬁgrx ADMADL XFFFF16X FFFE1s X
DATA (cpu) :XOD CodeXNot usedXOp CodeXOpZLandXNot usedXADMADLX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX

“yr |

X 0016 X 0016 X 0016 x
X < X <o X s X sS4 XFFFClGXADMAD‘x
X PG X PC+3 X PS XNot USEdXADMADLXo;;\‘thde)

AH(CPU)

PC+1

R/W(CPU)

6-30 7751 SERIES SOFTWARE MANUAL

Direct Indexed X Indirect

Instructions) ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
DPRL £40016” ~*———" When DPRL="0016", this cycle is shortened.
0 cpu

AH(CPU) PG PG 0016 0016 or 0116 0016, 0116
or 02 16
AMAL(CPU) < PC X PC+1 DPR+dd+X X ADMADL X PC+2 X
Operand Next
DATA (cpu) X Op CodeX P X Not used X Not used X ADMADLX DATA X Op Code >

“y
R/W(CPU)
Instructions : STA
Timing
DPRL #“0016" “ ® When DPRL="0016", this cycle is shortened.
o cpu

0016,0116
00 01 !
AH(CPU) (PG X PG X 0016 X 16 Or 1X or 0216 X DT X PG X
AMAL(CPU) (PC X PC+1 XDPf;ddX ADMADL X PC+2 X
Operand Next
ADMAD
DATA (cpPu) XOp CodeX dd XNot usedXNot usedX MADL X Not usedX A XOp Code)

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6-31

Instructions

Direct Indexed X Indirect

Timing

DIV, DIVS, MPY, MPYS
When DPRL="0016", this cycle is shortened.
DPRL #“0016" - U
AH(CPU) PG PG PG PG 001 0016 or' Y og:6, 0116 DT
0Ole or 0216
AMAL(CPU) (PC XPC+1 XPC+1 X PC+2 XDPR+ XADMADL} ADMADL

DATA (cPU) n Op CodeXNot usedXOp Code Operand

“yr
R/W(cPu)

Note: The cycle number during “0" is shown as the following table:

Instruction o S}gfle number (¢mC:P:Jl)"
DIV 25 17
DIVS 27 19
MPY 4
MPYS 8 4

* The contents of AMAL(cPu) during “O0" with DIVS are undefined.

XNot usedXNot usedX/-\DMADLX DATA * Not used

« When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL

Direct Indexed X Indirect

Instructions : DIV, DIVS (case of 0O division)
Timing

When DPRL="0016", this cycle is shortened.

g — -~
DPRL #“0016”

PG PG 0016 0016 or ¥ 0016, 011 DT
Olie or 0216
DPR
AMAL(CPU) PC PC+2 +dd ADMADL FFFF16 FFFE16
+X
e

PG PG

AH(CPU)

PC+1 A PC+1

DATA (cpu)

Op COdeXNot usedXOp CodeXOerdandXNot usedXNot usedXADMADX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX

R/W(cpu) |

pipipigipipiy
O §

X s Xs—z Xs—4 Xs—4 XFFFClGXADMADLn
X PG XPC+3X PS XNmusedXADMADLXO[;\‘Sfde)

7751 SERIES SOFTWARE MANUAL 6-33

Direct Indirect Indexed Y

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
" \\When DPRL=

DPRL #“0016" “0016”, this cycle is shortened.

0 crPu

AH(CPU) < PG X PG X 0016 XOOlG or OlleX DT XDT or DT+1X PG X

AMAL(CPU) < PC X PC+1 X DPR+dd XADMADL+YX PC+2 X
Operand Next

DATA (cpPu) X Op Code X d4d X Not used X ADMADL X Not used X DATA X Op Code >

“H
R/W(cPU)
Instructions : STA
Timing
DPRL #“0016" - ® When DPRL="0016", this cycle is shortened.
¢ cpu

AH(CPU) (PG X PG X 0016 X 0016 or 0116X DT X DT or DT+1 X PG X
AMAL(CPU) (PC X PC+1 X DPR+dd X ADMADL+Y X PC+2 X
DATA (cpu) XOp Code X Opzrdand X Not used X ADMADLX Not used X Not used X A X O[;\lcel)gde)

“pr

R/W(CPU)

6-34 7751 SERIES SOFTWARE MANUAL

Direct Indirect Indexed Y

Instructions : DIV, DIVS, MPY, MPYS
Timing

When DPRL="0016", this cycle is shortened.
> e

DPRL #“0016"

AH(CPU) (PG X PG X PG X PG XOOlG Xo%llﬁ OX DT X DT or DT+1
16
ADM\
PC+1 IPC+1 PC+2 DPR+dd ADL} ADMADL+Y
+Y
x o d ADM N
DATA (cpu) Op CodeXNot usedXOp CodeX pz:jan XNot usedX ADLXNot usecXDATA Not used op (e:);tde)

“Hr

AMAL(CPU) PC

1

R/VV(CPU)

Note: The cycle number during “0" is shown as the following table:

Cycle number (¢ cpu)

Instruction o Pr

m="0 m="1
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

 The contents of AMAL(cPu) during “0" with DIVS are undefined.
* When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)
at the last 3 of ¢ cpu during “0” are undefined.

7751 SERIES SOFTWARE MANUAL 6-35

Direct Indirect Indexed Y

Instructions : DIV, DIVS (case of 0 division)
Timing

When DPRL="0016", this cycle is shortened.
———
DPRL #“0016”

¢CPU |_|—|_|—|—|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|—|_|_|_|—|_|_
0016 or
(X PG X PG X PG X 0016X 0116X DT X DT or DT+1 X
AMAL(CPU) (PC X ch+1X PC+2 X DPR+dd X ADMADL+ Y XFFFF16X FFFE16 X
apyr

o
®

AH(CPU)

PC+1

DATA (cPu)

Op CodeXNot usedXOp COdEXOp‘Z?ndX’\‘0t UsedXADMADXNot usedX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX

R/W(CPU) |

X 0016 X 0016 X 0016 N
X S X sS-2 Xs_4 XS_4 XFFFCmXADMADLN
X PG X PC+3 X PS XNot usedXADMADXOr’J\‘g)gde)

6-36 7751 SERIES SOFTWARE MANUAL

Direct Indirect Long

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing

—l———— i " . .
DPRL #“0016" When DPRL="0016", this cycle is shortened.

0 cpu

AH(CPU) (PG X PG X 0016 X0016 or 011X0016 or OllX ADH X PG X
DPR+dd
AMAL(CPU) (PC X PC+1 XDPR+dd X +2 X ADMADLX PC+2 X
DATA (CPU) Op Code | OPeaNd X N6t used | ADmADL ADH DATA Next
dd Op Code

o
R/W(CPU)
Instructions : STA
Timing
DPRL #“0016" - : When DPRL="0016", this cycle is shortened.
0 cpu

AH(CPU) (PG X PG X 0016 XOOle or 0116X 0016 or 0116X ADH X PG X
DPR+dd
AMAL(CPU) (PC X PC+1 XDPR’fdd X +2 X ADMADL X PC+2 X
Next
DATA (cPU) Xop CodeXOle:.nd X Not usedX ADMADL X ADH XNO’[usedX A Xop Code)

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6-37

Direct Indirect Long

Instructions : DIV, DIVS, MPY, MPYS
Timing

When DPRL="0016", this cycle is shortened.
- (el O

DPRL #“0016"

0 cpu |||||||||||||||||||
(PG X PG X PG X PG Xoolexoglﬁgrxo%lfl‘;rx ADH
oPR \[ADw \
DPR
pc Ypc+1 YPc+1 PC+2
AMAL(CPU) (X X X X’“dd +dd ADL|

2

AH(CPU)

ADMADL

AD
DATA (cpPu) nop CodeXNot usecXOp CodeXOpz:jandXNot usecX ASALX ADH XDATA Not used

ar -

p—— —

RIW(CPU)

Note: The cycle number during “0” is shown as the following table:

Instruction - :C“:é/,lee number (ri)(:j?)
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

* The contents of AMAL(cPU) during “0" with DIVS are undefined.
» When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of ¢ cpu during “0” are undefined.

6-38 7751 SERIES SOFTWARE MANUAL

Direct Indirect Long

Instructions : DIV, DIVS (case of 0O division)
Timing

When DPRL="0016", this cycle is shortened.
el —
DPRL #“0016"

¢ crPu ||||||||||||||||||||||||||||
AH(CPU) PG PG PG PG | oowe) 006 or) 0016 or ADH

0lie 0lie

DPR DPR
AMAL(CPU) PC RPC+1 pAPC+1 PC+2 +dd +dd ADMADL FFFF16 FFFE1s

+
DATA (cPu) xop cOdeXNot usedXop cOdeXOPELa"dXNot usedXADMADX ADH X DATA XNot usedXNot userNot usedXNot usedXNot usedXNot usedX
oy .

R/VV(CPU) |

X 0016 X 0016 X 0016 x
X S XS—2 XS—4 XS—4 XFFFCleXADMADLl
Next

X PG XPC+3X PS XNot usedXADMADLXOp Code)

7751 SERIES SOFTWARE MANUAL 6-39

Direct Indirect Long Indexed Y

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
DPRL #“0016” ™™ When DPRL="0016", this cycle is shortened.
¢ cPU

ADH or
AH(CPU) (PG X PG X 0016 X 0016 or 0116X 0016 or 0116X ADH X ADH+1 X PG X
AMAL(CPU) (PC X PC+1 XDPR+dd X DPR+dd+2 X AD&ADLX PC+2 X
DATA (CPU 00 Code | P Y ot used | ADwADL ADH | Notused] DATA Next
(CPU) p dd u Op Code

- H
R/W(cpPu)
Instructions ; STA
Timing
DPRL #“0016” T When DPRL="0016", this cycle is shortened.
¢ cpu

0016 or | 0016 or
AH(CPUL) (PG X PG X 0016 X 0116 X 0116 X ADH X ADH or ADH+1 X PG X
AMAL(CPU) (PC X PC+1 XDPR+dd X DPR+dd+2 X ADMADL+Y X PC+2 X
DATA Operand X' Notused | ADwADL] AD Not used A Next
(CPU) Op Code dd ot use M, L H Not used ot use Op Code

“Hr ——

R/W(CPU)

6-40 7751 SERIES SOFTWARE MANUAL

Direct Indirect Long Indexed Y

Instructions : DIV, DIVS, MPY, MPYS

Timing

When DPRL="0016", this cycle is shortened.
el

DPRL #“0016"

- UL AL

=

AH(CPU) (PG X PG X PG X PG X 0016X°%1f1§’X0%1f12rXADHX ADH or ADH+1

——
T
®

r 17

DPR
AMAL(CPU) PC Jpc+1fPC+1] PC+2 DPR +dd ADM ADMADL+Y PC+3
+dd +2 +Y
DATA (cPu) NOp CodeXNot use(XOp CodeXOerdandXNot use(X AESAL X ADHXNot usedXDATA Not used Xog\lgﬁde)
—
R/W(CPU)

“Hr - -

Note: The cycle number during “0" is shown as the following table:

_ Cycle number (¢ cpu)
Instruction
m="0" Ty
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

* The contents of AMAL(cPU) during “O" with DIVS are undefined.

» When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(cPU)

at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL

6-41

Direct Indirect Long Indexed Y

Instru

ctions

Timing

0 cpu

AH(CPU)

AMAL(CPU)

DATA (cpu) ~OP CodeXNot IJSEdXOp CodeXoPELa”dXNot usedXADMADLX ADH XNot usedX DATA XNot usedXNot usedXNot usedXNot usedXNot usedX Not useoX
P

RIW(CPU)

DIV, DIVS (case of 0 division)

When DPRL=“0016", this cycle is shortened.
el —
DPRL #“0016”

JERSRERR SRR ANEuAEE

0016 or{f 0016 or
(PG X PG X PG X PG X 0016X 0116X 0116X ADHX

ADH or ADH+1 X

DPR
(PC XPC+1XPC+1X PC+2 X+ddX DPR+dd +2 X

ADMADL+Y

XFFFFleX FFFE16 X

uuuuy
= =0
oan ==
o Yoo e o)

FFFC16XADMAD

6-42

7751 SERIES SOFTWARE MANUAL

Absolute

Instructions : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC
Timing
o cpu |

AH(CPU) < PG X PG X DT X PG X

AMAL(CPU) < PC X PC+1 X mmll X PC+3 X
Operand DATA Next

DATA (cpu) X Op CodeX mmll X Op Code

ar
R/W(CPU)
Instructions : LDM
Timing
m="0’
o cPU |

AMAL(CPU)

AH(CPU) < PG >< PG X PG X DT X PG X
< PC X PC+1 X PC+3 X mmll X PC+5(4)X
Operand Operand : Next

DATA (CPU) XOp Code X il X m X Imm X Op Code

oy

R/W(CPU)

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 4th cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2. “()" shows the case of m="1".

7751 SERIES SOFTWARE MANUAL 6-43

Absolute

Instructions : STA, STX, STY

Timing

¢ cpu |

AH(CPU) < PG X PG X DT X PG X

AMAL(CPU) < PC X PC+1 X mmll X PC+3 X
Operand Next

DATA (cPU) X Op CodeX mmil X Not used X AMX)(Y) X Op Code >

oy

R/W(CPU)

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing

¢ cpu |

AH(CPU) < PG X PG X DT X PG X

AMAL(CPU) < PC X PC+1 X mmil X PC+3 X
Operand New Next

DATA (cpPu) X Op CodeX mmil X DATA X Not used X DATA X Op Code >

“H

R/W(CPU)

6—-44 7751 SERIES SOFTWARE MANUAL

Absolute

Instructions

Timing

¢ cpu

AH(CPU)

AMAL(CPU)

Operand New Next
DATA (CPU) X Op CodeX Not usedX Op CodeX ol X DATA X Not usedX DATA Op Code
wy

R/W(CPU)

ASR

(pGXpGXpG

PG

- \ =)

(PC X PC+1 PC+1 XPC+2

x
= =]

7751 SERIES SOFTWARE MANUAL

6—-45

Absolute

Instructions DIv, DIVS, MPY, MPYS
Timing
-t]
0 cru | J |
AH(CPU) (PG X PG X PG X PG X DT (PG X
AMAL(CPU) (PC X PC+1 X PC+1 X PC+2 X mmil X mmll (PC+4 X
Operand Next
DATA (cPy) XOp CodeXNot usedXOp CodeX il X DATA Not used op Code)
— “H” o
R/W(cpPu)

Note: The cycle number during “0" is shown as the following table:

Instruction

Cycle number (¢ cpu)

m ="“0" m="1"
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

» The contents of AMAL(cPU) during “0" with DIVS are undefined.
» When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)
at the last 3 of ¢ cpu during “0" are undefined.

6—-46

7751 SERIES SOFTWARE MANUAL

Absolute

Instructions : DIV, DIVS (case of 0 division)

Timing

0 cpu |
AH(CPU) (PG X PG X PG X PG X DT X
(PC XPC+1XPC+1XPC+2X mmll XFFFF16X FFFE16 X
DATA Operand
(CPU) Op Code ANot used AOp Codef ~ " R DATA R Not used | Not used § Not used A Not used | Not used A Not used
S

RM(CPU) |

AMAL(CPU)

X 0016 X 0016 N 0016 x
X S X S-2 X S-4 X sS4 XFFFClGXADMAD"
Next

X PG XPC+4X PS XNot usedXADMADXOp Code)

7751 SERIES SOFTWARE MANUAL 6-47

Absolute

Instructions : JMP

Timing

¢ cpu |

AH(CPU) < PG X PG X PG X

AMAL(CPU) < PC X PC+1 X mmil X
Operand Next

DATA (cpPu) XOp Code X mmil X Op Code >

“pr

R/W(cPU)

Instructions : JSR

Timing

¢ crPu

AH(CPU) (PG X PG X 0016 X PG X
< PC X PC+1 X S-1 X mmill X
DATA (cPu Op Code Operand Not used PC+3 Next
(CPU) P mmll Op Code

oy

AMAL(CPU)

R/W(CPU)

6-48 7751 SERIES SOFTWARE MANUAL

Absolute Bit

Instructions : CLB, SEB
Timing
m="0"
o cry |

AH(CPU) < PG X PG X PG X DT X PG X

AMAL(CPU) < PC X PC+1 X PC+3 X mmll X PC+5@) X
Operand Operand New Next

DATA (cPu) X Op Code X il X imm X DATA x Not usedX DATA X Op Code >

“py

R/W(CPU)

Notes 1: The operand which is fetched at the 3rd cycle is as follows:
When m=“0", 2 bytes
When m=“1", 1 byte
2: “()" shows the case of m="1".

7751 SERIES SOFTWARE MANUAL 6-49

Absolute Indexed X

Instructions : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing

¢ cpu |

AH(CPU) < PG X PG X DT XDT or DT+1X PG X

AMAL(CPU) < PC X PC+1 X mmli+X X PC+3 X
Operand Next

DATA (cpu) X Op Code X ol X Not used X DATA X Op Code

Timing

wpn
R/W(cpu)
Instructions : LDM
m="0"
0 cpu

AH(CPU) < PG X PG X PG X DT XDT or DT+1X PG X

AMAL(CPU) < PC X PC+1 X PC+3 X mmll+X X PC+5(4) X

DATA (cPu) Op Code Operand Operand Not used imm Next
mmll imm Op Code

oy

RATV(CPU)

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 5th cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2: “()" shows the case of m="1".

7751 SERIES SOFTWARE MANUAL

Absolute Indexed X

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing

o cpu |

AH(CPU) < PG X PG X DT X DTorDT+1 X PG X

AMAL(CPU) < PC X PC+1 X mmll+X X PC+3 X
Operand New Next

DATA (cpPu) X Op Code X . X Not used X DATA X Not used X DATA X op Code>

oy

RAW/(CPU)

Instructions : ASR

Timing

¢ cpu ||||||||||||||||||||

(PG [PGX PG X PG X DT X DT or DT+1 X PG X:
AMAL(CPU) (PC XPC+1 XPC+1 X PC+2 X mmll+X ch+4 X:
DATA (CPU) :XOp CodeXNot usedXOp CodeXO?:rrTirdXNot usedX DATA XNot usedX DI\I:TV\A Xog\lgﬁtde)

“H”

AH(CPU)

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6-51

Absolute Indexed X
Absolute Indexed Y

Instructions : DIV, DIVS, MPY, MPYS

Timing

-~ TUUHUU UL
XPGXPGXPGXDTX
AMAL(CPU) (PC XPC+1X X PC+2 Xm)f(‘ﬂ‘)“ X r-n;ﬁII+X(Y)

DATA (cpu) Op CodeXNot usedXOp CodeXOpe"’}l"dXNot usedX DATA Not used
>< mm

o -
R/W(cpPu)

AH(CPU) (PG DT orDT+1

PC+1

Note: The cycle number during “0" is shown as the following table:

Cycle number (¢ cru)
Instruction
m="0 e
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

» The contents of AMAL(cPU) during “0" with DIVS are undefined.
» When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(cPU)
at the last 3 of ¢ cpu during “0" are undefined.

6-52 7751 SERIES SOFTWARE MANUAL

Absolute Indexed X
Absolute Indexed Y

Instructions

Timing

¢ cpu

AH(CPU)

AMAL(CPU)

DATA (cpPu)

R/W(CPU)

DIV, DIVS (case of 0 division)

oo

(P X P X - X - X o7 X - X

(PC XPC+1XPC+1X PC+2 X mmil+X(Y) XFFFFleX FFFE16 X

used

Op CodeXNot usedXOp CodeXOpeerXNot usedX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot
>< mm
“yr

X 0016 X 0016 X 80P x
X S X S-2 X sS4 X s-4 XFFFclsXADMADLx
X PG XPC+iX PS XNot usedXADMAD"Xo;lg)(()tde)

7751 SERIES SOFTWARE MANUAL

6-53

Instructions

Timing

O cpu

AH(CPU)

AMAL(CPU)

DATA (cpu)

R/W(CPU)

“yr

Absolute Indexed X
Absolute Indexed Y

STA

< PG X PG X DT X DTorDT+1 X PG

X

< PC X PC+1 X mmil+X (Y) X PC+3 X

Next
Op Code

)

Operand
Op Code mmil Not used Not used A

6-54

7751 SERIES SOFTWARE MANUAL

Absolute Indexed Y

Instructions : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC

Timing

o cPU |

AH(CPU) < PG X PG X DT XDT or DT+1X PG X

AMAL(CPU) < PC X PC+1 X mmll+Y X PC+3 X
Operand Next

DATA (cpPu) X Op Code X e X Not used X DATA X Op Code >

“r

R/VV(CPU)

7751 SERIES SOFTWARE MANUAL 6-55

Absolute Long

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

¢ cpu |

AH(CPU) < PG X PG X PG X hh X PG X

AMAL(CPU) < PC X PC+1 X PC+3 X mmll X PC+4 X
Operand Operand Next

DATA (cpu) X Op CodeX il X X DATA X Op Code >

o

R/W(CPU)

Instructions : STA

Timing

o cpu |

AH(CPU) < PG x PG X PG X hh X PG X

AMAL(CPU) < PC X PC+1 X PC+3 X mmill X PC+4 X
Operand Operand Next

DATA (cpPu) X Op Code X mmil X X Not used X X Op Code >

R/W(CPU)

6-56 7751 SERIES SOFTWARE MANUAL

Absolute Long

Instructions : DIV, DIVS, MPY, MPYS

Timing

o cpu

|
v (Yo)) ; e
L e fee

AMAL(CPU) PC PC+1 } PC+1 } PC+2 XPC+4X mmll mmll PC+5

—~

DATA (cpU uo Code Y Not usedf op code § ©PerandY Operand Not used Next
¢) P X X P X mmll hh DATA Op Code

“r
R/W(cPu)

———

Note: The cycle number during “0" is shown as the following table:

) Cycle number (¢ cpu)
Instruction
m="0" e
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

 The contents of AMAL(cPU) during “0" with DIVS are undefined.
* When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)
at the last 3 of ¢ cpu during “0” are undefined.

7751 SERIES SOFTWARE MANUAL 6-57

Absolute Long

Instructions : DIV, DIVS (case of O division)

Timing

D000 5 E—
APy (XCXCX e | - e X

DATA (cpPu) “ Op CodeXNot usedXOp CodeXO';i;TdXOpiLandX DATA XNot usedXNot usedX Not usedX Not usedX Not usedX Not usedX

o
R/W(cpPu) |

X 0016 X 0016 X 0016 n
X S X S-2 X sS4 X s-4 XFFFC16XADMADL~
X PG XPC+5X PS XNotusedXADMADl_Xog\‘gfde)

AH(CPU) PG

Pc+2 | PC+4

6-58 7751 SERIES SOFTWARE MANUAL

Absolute Long

Instructions

Timing

o cpPu

AH(CPU)

AMAL(CPU)

DATA (cpu)

R/W(cpu)

Instructions

Timing

0 cPU

AH(CPU)

AMAL(CPU)

DATA (cPu)

R/W(CPU)

JMP

< PG X PG X PG X hh X
< PC X PC+1 X PC+3 X mmll X
Operand Operand Next
X Op Code X mmil X hh X Op Code

“H?
JSR
(PG x PG X PG X 0016 X hh X
< PC X PC+1 X PC+3 X S X S-2 X mmll X
Operand Operand Next
XOpCodeX] X hh X PG X PC+4 XOpCode>
P

7751 SERIES SOFTWARE MANUAL 6-59

Absolute Long Indexed X

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

¢ cpu |

AH(CPU) < PG X PG X PG X hh Xhh or hh+1X PG X

AMAL(CPU) < PC X PC+1 X PC+3 X mmll+X X PC+4 X
Operand Operand Next

DATA (cPU) X Op Code X ol X X Not used X DATA X Op Code

R/VV(CPU)

Instructions : STA

Timing

o cpu |

AH(CPU) < PG X PG X PG X hh X hh or hh+1 X PG X

AMAL(CPU) < PC X PC+1 X PC+3 X mmll+X X PC+4 X

DATA (cPu) Op Code Operand Operand Not used Not used Next
mmll Op Code

R/W(CPU)

6—60 7751 SERIES SOFTWARE MANUAL

Absolute Long Indexed X

Instructions : DIV, DIVS, MPY, MPYS

Timing

~ o uyL UL
300 3 63 1 3 ST £
L

Operandy Operand Next
DATA (cpu) n Op CodeXNot usedXOp CodeX ol o XNot usedX DATA Not used Op Code

PC+1 XPC+2 X PC+4 XmmII+X mmil+X PC+5
g £ -

=

@

1]

AH(CPU) PG PG

AMAL(CPU) PC PC+1

—~—

R/W(CPU)

Note: The cycle number during “0" is shown as the following table:

nstruction Cycle number (¢ cpu)
m ="“0" m="“1"
DIv 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

 The contents of AMAL(cpu) during “0" with DIVS are undefined.
* When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)
at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL 6-61

Absolute Long Indexed X

Instructions : DIV, DIVS (case of 0 division)

Timing

¢ cpu ||||||||||||||||||||||||||
(X X PG X PG X PG X hh X hh or hh+1 X
AMAL(CPU) (PC XPC+1XPC+1X X PC+4 X mmil+X XFFFFlGX FFFE16 X
o

PG PG

AH(CPU)

PC+2

DATA (cpu)

Op CodeXNot usedXOp COdeXOFr):rﬁFdXOPELaHdXNm usedX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX

R/W(CPU) |

X 0016 X 0016 N 0016 “
X S X sS-—2 X sS4 X S-4 XFFFClGNADmADLu
X PG XPC+5 X PS XNotusedXADMADXO;\‘(e;gde)

6—62 7751 SERIES SOFTWARE MANUAL

Absolute Indirect

Instructions : JMP

Timing

o cpu |

AH(CPU) < PG X PG X PG X PG X

AMAL(CPU) < PC X PC+1 X mmll XADMADLX
Operand Next

DATA(cPU) X Op Code X il X ADMADL X Op Code >

“H

R/\TV(CPU)

7751 SERIES SOFTWARE MANUAL 6—63

Absolute Indirect Long

Instructions : JMP

Timing

0 cpu

AH(CPU) < PG X PG X PG XPG or PG+1X ADH X

AMAL(CPU) < PC X PC+1 X mmll X mmll+2 X ADMADLX
Operand Next

DATA (cPU) X op CodeX ol X ADMADL X ADH X Op Code >

o

R/W(CPU)

6—-64

7751 SERIES SOFTWARE MANUAL

Absolute Indexed X Indirect

Instructions

Timing

o cpu

AH(CPU)

AMAL(CPU)

JMP

< PG X PG X PG XPG or PG+1X PG or PG+1X
< PC X PC+1 X mmll+X XADMADLX

Operand Next
DATA(CPU) X Op CodeX rr)nmll X Not usedX ADMADLX op Code>

R/W(CPU)

Instructions
Timing

0 cpPu

AH(CPU)

AMAL(CPU)

DATA(cPu)

R/VV(CPU)

e

JSR

< e X PG X PG XPG or PG+1X 0016 X PG X
< PC X PC+1 X mmlli+X X S-1 X ADMADL X
Operand Next

X Op Code X il X Not used X ADMADL X PC+3 X Op Code >

o

7751 SERIES SOFTWARE MANUAL 6—65

Stack

Instructions

Timing

¢ cpPu

AH(CPU)

AMAL(CPU)

DATA(cPU)

S
R/W(cpPu)

Instructions

Timing

¢ cpPU

AH(CPU)

AMAL(CPU)

DATA (cpPu)

e

RIW(CPU)

PEA

< PG X PG X 0016 X PG X
(e X en X o Yoo ¥
Operand . Next
X Op COdeX imm X Not used X imm X Op Code

Note: Each of the operand at the 2nd cycle and the data at the 4th cycle is 2 bytes.

PEI

< PG X PG X 0016 XOOlGOI’OllEX 0016 X PG X

< PC X PC+1 XDPR+immX s1 X PC+2 X
Operand Next
X Op Code X . X Not used X DHDL X DHDL X Op Code >

Note: The operand at the 2nd cycle is 1 byte.

6—-66

7751 SERIES SOFTWARE MANUAL

Stack

Instructions : PER

Timing

o cpu |

AH(CPU) < PG X PG X 0016 X PG X

AMAL(CPU) < PC X PC+1 X S-1 X PC+3 X
Operand : Next

DATA (cPU) X Op Code X i X Not used X Not used XPC+3+'mmX Op Code >

e
R/W(CPU)
Note: Each of the operand at the 2nd cycle and the data at the 5th cycle is 2 bytes.
Instructions : PHA, PHD, PHP, PHX, PHY
Timing
o cpu |

AH(CPU) < PG X PG X 0016 X PG X

AMAL(CPU) < PC X PC+1 X S-1 X PC+1 X

DATA(cPU) Op Code X Notused X Notused (Note) Next
p ot use Op Code

“H

RIW(CPU)

Note: A(DPR)(PS)(X)(Y)

7751 SERIES SOFTWARE MANUAL 6—67

Instructions

Timing

0 cPu

AH(CPU)

AMAL(CPU)

DATA(cPU)

R/W(CPU)

Instructions

Timing

0 cpu

AH(CPU)

AMAL(CPU)

DATA(cPU)

R/W(CPU)

o

“Hy

Stack

PHB

EDEDED P

X

< PC X PC+1 X PC+1 X PC+2

o) e X

)

X Op Code X Not used X Op Code X Not used X Not used X B X Og\l(e;)((,tde

PHG, PHT

e Y X X

(e Xper X s X per X

)

X Op CodeX Not used X PG(DT) X Org\lg)(()tde

6-68

7751 SERIES SOFTWARE MANUAL

Stack

Instructions : PLA, PLD, PLX, PLY

Timing

o cpu |

AH(CPU) < PG X PG X 0016 X PG X

AMAL(CPU) < PC X PC+1 X S+1 X PC+1 X

DATA (cPu) Op Code Not used Not used DATA Next
Op Code

a
R/W(cpPu)
Note: The data at the 4th cycle is 2 bytes with PLD.
Instructions : PLB
Timing
¢ cpu |

AH(CPU) < PG X PG X PG X PG X 0016 X PG X
AMAL(CPU) < PC X PC+1 X PC+1 X PC+2 X S+1 X PC+2 X
Next
DATA(cPU
(CPL) XOp Code X Not used XOp Code X Not usedX Not usedX DATA X Op Co de)

“r
R/W(cPu)

7751 SERIES SOFTWARE MANUAL 6—69

Instructions

Timing

¢ cPU

AH(CPU)

AMAL(CPU)

DATA(CPU)

R/W(CPU)

Instructions

Timing

¢ cpu

AH(CPU)

AMAL(CPU)

DATA (cpu)

R/W(CPU)

Stack

PLP

< PG X PG X 0016 X PG X
< PC X PC+1 X S+1 X PC+1 X
b Cod d X Notused X DD Not used Next

p Code Not use ot use HDL Op Code

o

PLT

< PG x PG X 0016 X DL X PG X

< PC X PC+1 X S+1 X PC+1 X
Next

X Op Code X Not used X Not used X DL X Not used X Op Code >

“qr

6-70

7751 SERIES SOFTWARE MANUAL

Stack

Instructions : PSH
Timing

r—B— - X r—

- MU U LUy
Y ENEN BN SED S e
(I A

pC X PC+1 X S) S5 Xs—e s—6 | s—7 X s-8 X
DATA(CPU) Op COdeXOPerandXNOIUSEdXNOt used ANot usedX A Not usedfNot usedX B Not used fNot usedX X XNol used NotusedX Y Not usecX
>< imm *

oy

—

L

AH(CPU)

AMAL(CPU)

—

—
n

S-1 Is-2 S-2 XS—3 } S-4)(S-4

R/W(cPU)

PG e PS—w

0016 0016 X 0016X PG X
S-8 X S-9 JS-10JS-10 [S-11] S-11)(S—lZ)(S—lZ XS—13 XPC+2X
DT JANotusedd PG | INotusedkNot usedX PS Xog‘g?de)

Notes 1: This figure is an example when executing PSH to all registers.
When some of them are not to be done, the cycle “<—" corresponding to its register is shortened.
2: The operand at the 2nd cycle is 1 byte.

Not usedX DPR JNot used

7751 SERIES SOFTWARE MANUAL 6—71

Stack

Instructions : PUL
Timing

(p— PS—p ttf— DT — |e—— DPR——p»

- [UUUUOUHULHL OHHE L
D S 1 2 & RS

AMAL(CPU) (PC X PC+1 XS+1 S+1 X S+2 I S+3 XS+3 S+3 XS+3 S+4 XS+5 XS+5 S+6 X

AH(CPU)

B “qr
R/W(cpPu)

— Y — |t X ———J |-—— B— N |—— A\——

U O AU
Bl el el e O

S+6 XS+7 S+8 | S+8 XS+9 S+10 | S+10 Xs+11 S+12 | S+12 XS+13 S+14XPC+2X
DATAXNot usedf Not used DATAXNot usedfNot used DATAXNot used fNot used DATAXNOL used I Not usedXO;‘gztde)

Notes 1: This figure is an example when executing PUL to all registers.
When some of them are not to be done, the cycle “ <" corresponding to its register is shortened.
2: The operand at the 2nd cycle is 1 byte.

6-72 7751 SERIES SOFTWARE MANUAL

Relative

Instructions : BRA

Timing

0 cpu |

AH(CPU) < PG X PG XPG or PGﬂX
A case of a short branch
When a long branch, PC+3+rrurre
AMAL(CPU) < PC X PC+1 X PC+2+Arr/X
Operand Next
DATA(CPU) Op Code o Not used Op Code

g

R/W(CPU)

Note: The operand at the 2nd cycle is 1 byte in the case of a short relative,
and 2 bytes (rrurrL) in the case of a long relative.

Instructions : BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS
Timing
Branching
0 cpU
When no branch, PG

AH(CPU) < PG X PG XPG or PG?X
When no branch, PG+2
AMAL(CPU) < PC X PC+1 X PC+2+4er
Operand Next
DATA(cPU) X Op Code X o X Not used X Not usedX Op Code >

g

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6-73

Direct Bit Relative

Instructions : BBC, BBS

Timing

Branching, DPRL #70016", m="0" g g \When DPRL="001¢", this cycle is shortened.

o cpPu

AH(CPU) PG PG 0016 0016 or 0116 PG PG PG or
PG+l
AMAL(CPU) < PC X PC+1 XDPR+dd X PC+2 X PC+4(3) X :C:S(ix

When no branch, PC+5(4)

Operand Operand Operand Next
DATA(CPU) XOP Code X dd X Not used X DATA X o " Not used Op Code

“qr

R/VV(CPU)

Notes 1: The operand which is fetched at the 5th cycle is as follows:
When m=“0", 2 bytes
When m="1", 1 byte
2: “()" shows the case of m="1".

6-74

7751 SERIES SOFTWARE MANUAL

Absolute Bit Relative

Instructions : BBC, BBS
Timing

Branching, m="0"

o CPU
PG or

AH(CPU) < PG X PG X DT X PG X PG X PG+1X

AMAL(CPU) < PC X PC+1 X mmll X PC+3 X PC+5(4) XE?B(S)\X

When no branch, PC+6(5)

Operand Operand Operand Next
DATA (cPU) XOpCodeX i X DATA X imm X o Not used Op Code

o
R/W(CPU)

Notes 1: The operand which is fetched at the 4th cycle is as follows:
When m="0", 2 bytes
When m="1", 1 byte
2.)” shows the case of m="1".

7751 SERIES SOFTWARE MANUAL 6—75

Stack Pointer Relative

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

o cPU |

AH(CPU) < PG X PG X 0016 X0016 or 011&X PG X

AMAL(CPU) < PC X PC+1 X S+nn X PC+2 X
Operand Next

DATA(cPU) X Op Code X an X Not usedX DATA X Op Code >

e

R/W(CPU)

Instructions : STA

Timing

o cpPu |

AH(CPU) < PG X PG X 0016 X 0016 or 0116 X PG X

AMAL(CPU) < PC X PC+1 X S+nn X PC+2 X

DATA Op Cod Operand ¥\t used X Not used A Next
(CPU) p Code n ot use ot use Op Code

oy

R/W(CPU)

6-76 7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative

Instructions

Timing

o cPu

AH(CPU)

AMAL(CPU)

DATA(cPu)

R/VV(CPU)

DIV, DIVS, MPY, MPYS

U u uyt

B E

PC+2 S+nn S+nn

X PG X 0016 X 0016 or 0116
(PC XPC+1 PC+1X X

Operand
x Op CodeXNot usedXOp CodeX pnn XNot usedX DATA Not used

“qr

Note: The cycle number during “0" is shown as the following table:

) Cycle number (¢ cru)
Instruction
R p—
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

¢ The contents of AMAL(cPU) during “O0" with DIVS are undefined.

* When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)

at the last 3 of ¢ cpu during “0" are undefined.

7751 SERIES SOFTWARE MANUAL

6-77

Stack Pointer Relative

Instructions : DIV, DIVS (case of 0 division)

Timing

o cpu |

X X PG X PG X 0016 X 0016 or 0116 X

X X PC+1 X PC+2 X S+nn XFFFFleX FFFE16 X

Oop CodeXNot usedXOp CodeXOpirnandXNot usedX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX

R/W(CPU) |

X 0016 X 0016X 0016 u
X S X S-2 X s—4 X sS4 XFFFcleXADMADLN
X PG XPC+3xPS XNot usedXADmADLXOF')\IS)gde)

AH(CPU) PG PG

PC+1

DATA(cPU)

AMAL(CPU) (PC
e

6—-78 7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

0 cPu |
AH(CPU) < PG X PG X 0016 XOOlGorOlmX DT XDTorDT+1X PG X

AMAL(CPU) < PC X PC+1 X S+nn XADMADL+YX PC+2 X
Next
DATA(cPU) X Op Code X Op(:]rnand X Not used X ADMADL X Not used X DATA X Op Code>

“H

R/W(CPU)

Instructions : STA

Timing

o cPU |

AH(CPU) (PG X PG X 0016 XOOle or 0116X DT X DT orDT+1 X PG X
AMAL(CPU) (PC X PC+1 X S+nn X ADMADL+Y X PC+2 X
Operand Next
ADMAD
DATA(cPU) XOP CodeX nn XNot usedX MADL XNot usedXNot usedX A XOp Code)

R/W(CPU)

7751 SERIES SOFTWARE MANUAL 6—79

Stack Pointer Relative Indirect Indexed Y

Instructions : DIV,

Timing

O cpu ||||||||||||||||

DIVS, MPY, MPYS

AH(CPU) (PG

PG

PG X PG X 0016 X0016 orX DT X

DT or DT+1

ADM
AMAL(CPU) (PC XPc+1 XPC+1 X PC+2 X S+nn X ADL
+Y

"

ADMADL+Y

DATA(cPU) N op CodeXNot usedXOp Code

XOperandXNot usedXADMADXNot usedX DATA Not used

e
R/W(CPU)

Note: The cycle number during “0” is shown as the following table:

i Cycle number (¢ cpu)
Instruction
m="0" m="1"
DIV 25 17
DIVS 27 19
MPY 8 4
MPYS 8 4

¢ The contents of AMAL(cPU) during “0" with DIVS are undefined.

« When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU)
at the last 3 of ¢ cpu during “0" are undefined.

6—-80

7751 SERIES SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

Instructions : DIV, DIVS (case of O division)

Timing
AH(CPU) (PG X PG X PG X PG X 0016 Xogi:fx DT X DT or DT+1 X
AMAL(CPU) (PC X PC+L X PC+1 X PC+2 X S+nn X ADMADL+Y XFFFFleX FFFE16 X
DATA(CPU) :Xop CodeXNot usedXOp CodeXOpirna”dXNot usedXADMADLXNOt usedX DATA XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX

R/W(CPU) |

X 0016 0016 0016 n
X S X s-2 X s—4 X s-4 FFFCle ADMD*
X PG XPC+3X PS XT)tusedXADMADuopgod)

7751 SERIES SOFTWARE MANUAL 6—81

Instructions

Timing

b cpu

AH(CPU)

AMAL(CPU)

DATA(CPU) nOp CodeX hh1 XNot usedX hh2 XNot used] Not usedX DHDL XNot usedXNot usedX DHDL XNot used

R/W(CPU)

Note:

g

Block Transfer

MVN (transfer of even bytes)

This cycle repeated

UuuuuuduoyL

S

(PGX PGXhth PGX PGX hh2X hh2 X
(Source Bank)

hhi

(Destination Bank)

==

hh1 after seco

nd time

Lo fre el)

X

PC+3

1]

Next
Op Code

—

(Destination Bank) (Source Bank)

This figure is an example when transferring 2-byte data.
When transferring 3 or more bytes data, the cycle “««—" is repeated at each 2-byte data.

The CPU instruction execution sequence is identical regardless of even address or odd address
which the transferring start address is.

6—-82

7751 SERIES SOFTWARE MANUAL

Block Transfer

Instructions : MVN (transfer of odd bytes)
Timing

This cycle repeated

- TUUUUUUUUUULL

AH(CPU) PG PG hh1 PG PG] hh2 hh2 hh1
[N (Source Bank) (Destination Bank)
A hh1 after second time
AMAL(CPU) (PC X PC+1 XPC+2X ? X X X Y X

Not Not Not Not Not Not
DATA(cPU) ~0p CodeX hhi X used X hh2 X used used XDHDLXused X oy XDHDLX used

(Destination Bank) (Source Bank)

B o
R/W(cPu)

(Source Bank) (Destination Bank)

X X+2 X Y+2
Not Next
x DL X usgd X DL X Op Code)

Note: This figure is an example when transferring 3-byte data.
When transferring 4 or more bytes data, the cycle “<«— " is repeated at each 2-byte data.
The CPU instruction execution sequence is identical regardless of even address or odd address
which the transferring start address is.
The transfer of the last 1 byte is performed by reading 2 bytes and writing 1 byte.

7751 SERIES SOFTWARE MANUAL 6—83

6—-84

Block Transfer

Instructions MVP (transfer of even bytes)
Timing
This cycle repeated
o cpu
AH(CPU) (PG X PGX hh1X PGX PG X X hh1 X
AMAL(CPU) (PC X PC+1 XPC+2X ? X ? X ? X ? X X-1 X
Not Not Not Not Not Not Not Not
DATA(CPY) op Code hhi X used X hh2 X used X used X used X used X used DHDLX used X used)
(Destination Bank) (Source Bank)
— “H”
R/W(cpu)

Note: This figure is an example when transferring 2-byte data.
When transferring 3 or more bytes data, the cycle “«—»

" is repeated at each 2-byte data.
The CPU instruction execution sequence is identical regardless of even address or odd address
which the transferring start address is

7751 SERIES SOFTWARE MANUAL

Block Transfer

Instructions

Timing

¢ cpu

AH(CPU)

AMAL(CPU)

DATA(cPU)

R/W(CPU)

MVP (transfer of odd bytes)

This cycle repeated

(PG X PGX th PGX PG X hh2 X hh1 X hh2 X
(PC X PC+1 XPC+2X ? X ? X ? X ? X ? X-1 X
Not Not Not Not Not Not Not Not

xOp CodeX hh1 X used X hh2 X used X used X used X used Xused DHDLX used X used)

(Destination Bank) (Source Bank)

“

Not Not Not Not Not Not Not Next
XDHDL >< used X used used X used X used X DL X used X DL X used XOP Code)

Note: This figure is an example when transferring 3-byte data.
When transferring 4 or more bytes data, the cycle “ «—» " is repeated at each 2-byte data.

The CPU instruction execution sequence is identical regardless of even address or odd address
which the transferring start address is.

7751 SERIES SOFTWARE MANUAL 6—85

Multiplied Accumulation

Instructions : RMPA
Timing
This cycle repeated 02

: wrn - P Normal finish

imm #“0 —_—
b cru
AH(CPU) (PG X PG X PG X PG X imm
AMAL(CPU) (PC X PC+1 X PC+2
DATA(CPU) op COdeX Not Xop CodeXOperandX Not X Not

used imm used used
— “H“ T
R/W(cpPu)
Notes 1: This figure is an example when performing multiply and accumulate operations once.
When doing them 1 or more times, the cycle “«—»" is repeated by the times.
2: The cycle number during “01” is 13 cycles of ¢ cpu in the case of m=“0", and 9 cycles of
¢ cpu in the case of m=“1".
U2 Occurrence of overflow
by addition

imm=“0" i ——

¢ cpu ||||||||||||||| ||||||

AH(CPU)

Ce el el N L X~
s () 7 | e Yoo ﬁ =

-2

DATA(CPU, Not Operand) Not Not Next Not Next
() Op CodeX used Op Code imm used used Op Code DHDL used Op Code,

“qr

R/W(CPU)

6—86 7751 SERIES SOFTWARE MANUAL

APRPENDIX

Appendix 1. 7751 series machine instructions
Appendix 2. 7751 series instruction code table

APPENDIX

Appendix 1. 7751 series machine instructions

Appendix 1. 7751 series machine instructions

7751 SERIES MACHINE INSTRUCTIONS

Symbol

Function

Details

Addressing mode

IMP

DIRb | DIRX | DIRY

(DIR,X)

(DIR),Y

L(DIR)

opin | #foplni#opin|#

op[n

#]op

n|#

op]n #

ADC
(Note 1,2)

AcC, C—Acc+M+C

Adds the carry, the accumulator
and the memory contents. The re-
sult is entered into the accumula-
tor. When the D flag is “0", binary
additions is done, and when the D
flag is “1”, decimal addition is
done.

w512

—
6

6117
-
8

2ln

812

enele

|

8.

21713
75

4219
61

n

4211013
67

AND
{Note 1,2}

AcC—ACCAM

Obtains the logical product of the
contents of the accumulator and
the contents of the memory. The
result is entered into the accumula-
tor.

29

~
[N

25

o

=]

217

o]

211812

42
29

>

42
25

-3

429
2

3142101 3

3

2

ASL
(Note 1)

m=0

[€) « [Bis]-Tbal - 0

m=1
(G« [br[-Tbo] - 0

Shifts the accumulator or the
memory contents one bit to the left.
“0" is entered into bit 0 of the accu-
mulator or the memory. The con-
tents of bit 15 (bit 7 when the m
flag is “1") of the accumulator or
memory before shift is entered into
the C flag.

42
0A

ASR
(Note 1)

m=0

b1 Tbo] —[C]

m=1

pl-d -l

Shifts the accumulator or the
memory contents one bit to the
right. The bit 0 of the accumulator
or memory is entered into the C
flag. The contents of bit 15 (bit 7
when the m flag is “1") of the accu-
mulator or memory before shift is
entered into bit 15 (bit 7).

1

BBC
(Note 4)

Mb=0?

Tests the specified bit of the
memaory. Branches when all the
contents of the specified bit is *0”.

BBS
(Note 4)

Mb=1?

Tests the specified bit of the
memory. Branches when all the
contents of the specified bit is “1".

BCC

C=0?

Branches when the contents of the
C flag is “0".

B8CS

C=1?

Branches when the contents of the
C flag is “1".

BEQ

Z=1?

Branches when the contents of the
Zflag is “1".

BMI

N=17?

Branches when the contents of the
N flag is “1".

BNE

Z=07

Branches when the contents of the
Z flag is “0".

BPL

N=0?

Branches when the contents of the
N flag is “0".

7-2

7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register
LDIRLY] ABS |ABS,b[ABSX|ABS,Y| ABL |ABLX | (ABS}|L(ABS)|(ABSX)| STK | REL [DIRb,R|ABSHR| SR |(SR),Y| BLK ?"mk";:ﬁﬁ,g’mlgla 7|6(5[4]|3]2]1]0
opn#upn#opn#opn#opn#opn#opn#opnkopn#opn#op]n#opndon#opn#opln#opn#odn# n| #] IPL IN|V|m{x|[D|I|Z|C
71j10| 2 feo{ 4| 3 (6| 3l9i6|3ler|6fafrFi7ia sals|2l73s] 2 T TNV T zlc
- - L - -
1" _41 7 7 7 9 6 _9-‘
4212 3142|614 421814]42) 8l 414218 5]142[9(5 42| 7] 3|42/10[3
mn 60 0 79 6F TF 63 73
— - — | —
i | [s o | o | [o] | [n ol | [
37|110) 2 |20|4 | 3 30| 6| 3|39 6(3f2F|6[4[3F7|4 2[5 2433182 e leN]efe]etfe]-|2]>
. '
e 11
421234564 42|18|4142(8]414218)5]4219]|5 421713142101 3
kY 20 30| 39 2F 3F 23 k!
13 6 9 ? 9 il —81 ;
OE{7]3 1E[8] 3)] ele e INlstee]] {ZlC
8 9
89|94 89|10| 4 el |«[Nfefete]]||ZlC
0F 1E
9 1
ul7l4l3cisls eleloleloafele] ol e]ele
8 9
2|7]4f2l8]5 ool ofe]e]o]o] o] ofe]e
8 9
%042
4
B0l 412
4
Fol4] 2
—1
4
W42
4
0oj4|2
4
101412 ol ool oto]e]
4

7751 SERIES SOFTWARE MANUAL 7-3

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode
Symbol Function Details IMP | IMM | A DIR | DIR,b | DIRX { DIR,Y | (DIR) | (DIRX)| (DIR),Y | L(DIR)
opini#fopini#fopln|#lopini#iopni#jopin|#jopin|#jopin|éjopin|#{opjn|#iopinik
BRA PC¢«PCtoffset Jumps to the address indicated by
{Note 3) PGPG+1 the program counter plus the offset
(carry occurred) value.
PGPG-1
(borrow occurred)
BRK PC—PC+2 Executes software interruption. 00[151 2
M(S)ePG
SeS-1
M(S)«PCH
SeS-1 ’
M(S)«-PCL
SeS~1
M(S)«-PSH -
SeS-1 15
M(S)«PSL
SeS-1
le1
PCL<~ADL
PCHe-ADM
PGe0016
BVC V=0? Branches when the contents of the
V flag is “0".
BVS V=17 Branches when the contents of the
Vflagis “1".
CcLB Mbe0 Makes the contents of the speci- 1418 13
(Note 4) fied bit in the memory “0". 9]
CcLC Ce0 Makes the contents of the C flag |18]2 | 1
uon' *2—‘
CLi l<0 Makes the contents of the | flag 582 |1
"0"- ?
CLM me0 Makes the contents of the m fiag (082} 1
“0". 7
CLP PSbe0 Specifies the bit position in the pro- C2[4 |2
cessor status register by the bit
pattern of the second byte in the n
instruction, and sets “0" in that bit.
CLVv Ve0 Makes the contents of the V flag B3j2 |1
ag. n
CcMpP Acc-M Compares the contents of the ac- C8f2 12 054 12 D5|5 |2 D216 {2]C17 20118]2[C7i8 |2
(Note 1,2) cumulator with the contents of the 2] n 51 DERORERORED
memory.
42]4 |3 4216 | 3 42|17 |3 42|18 [3 |42]9 | 3{42]10{ 3 J42103
9, 0505 ey 20 el P T
CPX X-M Compares the contents of the in- €022 E4i4)2
{Note 11} dex register X with the contents of L— -
the memory. 2 4
CPY Y-M Compares the contents of the in- C0j2 |2 C4l4 |2
(Note 11) dex register Y with the contents of _— I
the memory. 2 4
DEC AcCe-Acc-1 Decrements the contents of the ac- Aj2{1]0817(2 D6} 7 |2
(Note 11) or cumulator or memory by 1. o] n "8"
MeM-1 w42
||
W
DEX XeX-1 Decrements the contents of the in- [CA[2 |1
dex register X by 1. n

7-4 7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register
LDIRLY] ABS |ABS,bjABSX|ABS,Y| ABL |ABLX| (ABS)|L(ABS)|(ABSX)] STK | REL |DIRbR|ABSbR|] SR }(SR),Y| BLK 771(19'8 716]15(4(3]2{1}0
op|n | # Jop[n |# |opin | #]opin | #|opin |#Jop{n|#]op[n|#]|opin|#fopin |#fop|n|#fop|n|#]op|n|#)opin |#fop|n|#]op{n|#]op|n]#]|op[n|a#fop|ni®]| IPL |NIV[m|x|D|I|Z|C
80132 elodolofofela]lelo]e]-
3
82313
3
500412
4
70042
4
10{9 |4 efefo]ofolofofofe]e]s
1
efe bofelefe]af=le]slO
elefolofe]e{e]|lO]
efe fofo e fQoiofefels
« |* | | Specified flag be-
comes “0".
oo folalOlefololofo]-
D710[2 JCD) 4 | 3 DO[6]3]D9|6|3|CFl6|4|DF714 Qls5|2|m8)2 fe]IN}-]-|<]] [Z|C
— 1 —1 et — — —— —
1 4 7 7 7 k] 6]
4211213 42{6 { 4 42181 442(8(4]4218|5({421915 4217 3]42i10] 3
— - —d —— — —
Tl s gl [®s] {7l 1™ SORRD
ECl4 |3 el NIl el el sl sl ZlC
n
Ccj4 |3 el -INf]l -1 -] - 2lC
4]
CE|7 (3 DEI8 |3 sl foINJefefefetelz]e
8 9
efe {sINf=eleleisiZ]-

7751 SERIES SOFTWARE MANUAL 7-5

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode

Symbol Function Details IMP | IMM A DIR | DIR,b | DIR,X | DIR,Y | (DIR) | (DIR.X)| (DIR).Y| L(DIR)
op{n | #fop|n|#Jop|n|#op|n|#]fop|n|#fop{n|#fop|n|#]op|n]éjfopin|#op{n|#]op|n|#
DEY YeY-1 Decrements the contents of the in- |82 | |
dex register Y by 1. n
DIV A(quotient)«B, A+M The numeral that places the con- 89|21 3 89[23| 3 891241 3 89125(3]8926| 3 | 89|27 3 |89]271 3
(Note 2,9,13) | B(remainder) tents of accumulator B to the 29 25, 3 32 2 3 27
higher order and the contents of
accumulator A to the lower order is
divided by the cqnter)ts of the 21 23 a 2% a ;8“ E‘
memory. The quotient is entered
into accumulator A and the remain-
der into accumulator B.
DIVS A(quotient)«B, A+M The numeral with sign that places 89/2313 89{25| 3 8326 3 89127/ 3 |89;28) 3 [89129] 3 {89]29| 3
(Note 2,9,14) (with sign) | the contents of accumulator B to A9 AS) B B2 A Bl A7)
B(remainder) the higher order and the contents
of accumulator A to the lower order }_
is divided by the contents of the ™ 05| }— 7] ol ool
A : 23 25| 27 27 29 kil 29
memory. The quotient is entered
into accumulator A and the remain-
der into accumulator B.
EOR ACC—ACCYM Logical exclusive sum is obtained 492)2 45412 95 |2 21612147 21518 2478 |2
(Note 1,2) of the contents of the accumulator 2 n [‘6‘ 5 ’? ’; s
and the contents of the memory.
The result is placed into the accu- 4214 |3 426 | 3 273 4218 |3 1429 | 3 4210} 3 [42r0{3
mulator. Iy P /5] SR inREmB
EXTS Bit 7 of AcC=1 The signed 8-bit data stored in the 89[4]2
(Note 1) bis b7 bo low-order byte of the accumulator 88
VI] | s extended to a 16-bit data. 4
Bit 7 of Acc=0 42042
b1s b7 bo a8
000000000 | 4
EXTZ Acc The 8-bit data stored in the low-or- 891412
(Note 1) bis bs b7 bo der byte of the accumulator is ex- A8 4
00000000 tended to a 16-bit data. Bits 8 to 15 2l
of the accumulator are set to “0". Aal“
4
INC ACC—ACC+1 Increments the contents of the ac- M2|1|Ef 72 Fe 7|2
(Note 1) or cumulator or memory by 1. 21 N n
Me—M+1
2412
o
INX Xe=X+1 Increments the contents of the in- |E8[2 | 1
dex register X by 1. 2
INY YeY41 Increments the contents of the in- |08 ﬂ 1
dex register Y by 1. 2
JMP ABS Places a new address into the pro-
PCL<ADL gram counter and jumps to that
PCH«ADM new address.
ABL
PCL<ADL
PCH«ADM
PG«ADH
(ABS)
PCL«(ADM, ADL)
PCHe(ADM, ADL+1)
L(ABS)
PCL«(ADM, ADL)
PCH«(ADM, ADL+1)
PG« (ADM, ADL+2)
(ABS, X)
PCL&(ADM, ADL+X)
PCHe(ADM, ADL+X+1)

7—6 7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register
ABS,b{ABS,X|ABS,Y| ABL |ABLX|(ABS) L{ABS)[(ABS.X} STK | REL [DIRpR|ABSHRI SR |(SR)Y] BLK mgﬁdg[a 71615|4|3{2|1]0
op{n | #opin | ¥ fop|n |#op|n|#Jopin|# opin|#jopin|#iopin|#]op|n|#jfopin|#jfopin]|#]op|n|#]op|n|#]opin|#]on{n|#fopin]#] IPL [N|VIm|x|D|I|Z|C
el e [Ntele]efe] [2]-
89 8925459}25489255&9265 89124 318927} 3 sl o INJV]-l-]|-]*]|Z]|C
20 30, 39 % ¥ 23 B
1 — — —
% 5 | |2 | [#] %1 7 | (=]
89271 4 169]27 4 189(271 5 [89128 5 89/26] 3 89/29| § efe [+ IN[Viej-}-]+]Z]|C
BD| B9 AF| BF A3 ;<]
B a | [a] | [| [% EREE
4 50/6 | 3}59)6 | 3 |4F|B {4 5FI7)4 43525352 olo [o[Nfofe]ofe]elzle
—] — —t - — b i
4 1 7 7 g 6]
6 421814 1428 |4 1421815014219 |5 4217 {3 142]10{ 3
—6—1 gl et 1*1st 1 Lnlsm
els] o|Nfefsls]e] <z
efe]ejOletefotel tz]s
fElg | 3 olo] oIN| ol o] o]t slzZ] -
9
eleINTo]e o elzle
ol oNfeletolololzle
561414 iscl4{3ocie]alrciel s el fafofefotolafefete
5| ORROREH

7751 SERIES SOFTWARE MANUAL 7-7

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode
Symbol Function Details IMP | IMM | A DIR] DIR,b | DIR,X | DIR,Y | (DIR) | (DIRX)| (DIR),Y| L(DIR)

op|n | #fopint#fop|n|#jopjn|#jfop|ni#jop|n|#{op|n |#fop{n|#]fopin|#]op|n|#jop|n|#
JSR ABS Saves the contents of the program
M(S)«PCH counter (also the contents of the
S¢S-1 program bank register for ABL)
M(S)—PCL into the stack, and jumps to the
SeS-1 new address.
PCLeADL
PCH«—ADM
ABL
M(S)—PG
SeS-1
M(S)—PCH
SeS-1
M(S)PCL
SeS-1
PCLADL
PCH<ADM
PGeADH
(ABS, X)
M(S)—PCH
SS5-1
M(S)PCL
S¢S-1
PCL«(ADM, ADL+X)
PCHe(ADM, ADL+X+1)
LDA Acce—M Enters the contents of the memory A9l 2|2 5[4 |2 B3} 5 (2 Bl6)2]a1l7 (2|88 |2]A7)8 |2
(Note 1,2) into the accumulator. 2] n 0 n N n 8]
21413 42{6 |3 42713 42834293421034210?
Agw A5G B5g 2051 Mol Bl Ve
LOM Me-IMM Enters the immediate value into B4 _u 3 74* i‘ 3
(Note 4) the memory. 5 6
LDT DTeIMM Enters the immediate value into 89(5(3
the data bank register. C2?
LDX XM Enters the contents of the memory Af2]2 Asja2 8|52
{Note 11) into index register X. 2] n 0
LDY YeM Enters the contents of the memory Ao 2|2 Midl2 B4 5|2
(Note 11) into index register Y. 2] n n
LSR m=0 Shifts the contents of the accumu- N2 1]4g 72 5672
(Note 1) 0 - [b1s[-Ibo]» € lator or the contents of the memory | - |
one bit to the right. The bit 0 of the 2 8 8
m=1 accumulator or the memory is en- 22
0 - b7 Ibg—C tered into the C flag. “0” is entered
into bit 15 (bit 7 when the m flag is MT
ugn)
MPY B, Ac-AxM Multiplies the contents of accumu- 8983 89/10{ 3 891113 89121 3 169113| 3189|14| 389{14} 3
(Note 2,10) lator A and the contents of the 09 05 1§ 12 01 1 07
memory. The higher order of the || || | |
result of operation are entered into 8 10 2] 2l | [l | [m
accumulator B, and the lower order
into accumulator A.
MPYS B, AAxM (with sign) The content of the accumulator A 8983 891101 3 89[11]3 89[12(3 189|13| 3 |89)14| 3 |89[14| 3
(Note 2,10) is multiplied by the content of 89 85 95 92 81 91 87
memory as signed data. The result
is a 32-bit data which is placed in I— — — — —
the accumulators B (upper 16 bits 8 10 2 12 " 1 W
of the result) and A (lower 16 bits
of the result).
MVN M(Y +K)e—M(X+k) Transmits the data block. The
(Note 7) k=0 to i~1 transmission is done from the
lower order address of the block.

7-8 7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register
LOIR)LY| ABS |ABS,b|ABSX|ABS,Y| ABL |ABLX| (ABS) |L(ABS)|(ABS,X)| STK | REL |DIRpR]ABSHR| SR |(SR),Y| BLK ?‘m?',',‘;’,ﬁgg‘m[ﬂa 7|elslal3{2]|1]0
opin1 | # Jopin | #{op{n | #Jopin|#fopin|#fopin|#Jopini#iopin|#jopn #opn#opnﬁop!n#opn#upn#opn #lopin|&jopinjd#iopini#] IPL INIVIm|x|D|I|Z|C
20/6 |3 22|18 | 4 FCi8]3 efefolo]efolo]alele]e
H B B
871101 2 JAD[41 3 leojc | afeol6 | afarie|aler|7]e A3 5] 2183812 ofe VoINS laefete]2z]-
m 4 71 7 71] 1 5] | 9]
42&34264 42|18 |4 |42|8 | 4 }42|8 ([5]42|19 |5 42| 713 |42]10(3
UER&D Bs) 1®ls] |¥[e] 0 Ml B
9Ci5 14 9E| 6| 4 oo
6 8
AE(4|3 BEl6 3 . Nl T]Z]
4 7
ACl4 13 BCI6 |3 e o INJelotedolelz}s
L L]
4 7
4E|713 5E1813 e lelo]e d.lzle
0 B
189/18] 3 189101 4 89112| 4189;12) 4 189/12! 5189113/ 5 891111 3189114 3 efe |2 INIsisleleieiZI0
17 00) 10 19 OF IF 03 1
| [l ERRCRBERRE 2 | s
89(16] 3 |89]10] 4 89)12] 4 189[12] 4 189112 5 |89]13] 5 89|11) 3189(14] 3 slefeNjefef=te1+1Z]|0
97 80) % 9 & 9F 83 93
7l | il cRECRECREC 2 | [
54(513
R
%x7
5
M
X
20

7751 SERIES SOFTWARE MANUAL 7-9

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode
Symbol Function Details IMP | IMM | A | DIR | DIRb|DIRX|DIRY| (DIR) | (DIRX)| (DIR),Y| LIDIR)
opin | #Jop|n|#opin|#fopin |#Jop|n|#]Jop|n|#lop[n |#]op{n{#]|op|n|#|op|n|#op{n|#
MVP M(Y-K)e-M(X—k) Transmits the data block. Trans-
(Note 8) k=0~i-1 mission is done form the higher or-
der address of the data block.
NOP PC—PC+1 Advances the program counter, |EA 2|1
but performs nothing else. 2]
ORA AcceAccVM Logical sum per bit of the contents 09212 0] 42 155)2 12|6]2|01]7]2]n i 2|o7)8 12
(Note 1,2) of the accumulator and the con- 3 4] 5 -6— 3 9 (8]
tents of the memory is obtained.
The result is entered into the accu- 243 42163 421713 428 3“‘2 9|3 42103 j42/1013
mulator. 09y %[ED 281 Rl "] o
PEA M(S)e—IMM2 The 3rd and the 2nd bytes of the
SeS-1 instruction are saved into the
M(S)eIMM1 stack, in this order.
SeS-1
PEI M(S)—M((DPR)+IMM+1) | Specifies 2 sequential bytes in the
Se-S~1 direct page in the 2nd byte of the
M(S)e—M((DPR)+IMM) instruction, and saves the contents
S¢&S-1 into the stack.
PER EAR«PC+IMM2, IMM1 | Regards the 2nd and 3rd bytes of
M(S)EARH the instruction as 16-bit numerals,
SeS-1 adds them to the program counter,
M(S)—EARL and saves the result into the stack.
SeS-1
PHA m=0 Saves the contents of accumulator
M(S)e—AH A into the stack.
SeS-1
M(S)AL
SS-1
m=1
M(S)AL
SeS-1
PHB m=0 Saves the contents of accumulator
M(S)«BH B into the stack.
SeS-1
M(S)«BL
SeS-1
m=1
M(S)BL
SeS8-1
PHD M(S)«-DPRH Saves the contents of the direct
SeS-1 page register into the stack.
M(S)<DPRL
S¢S-1
PHG M(S)PG Saves the contents of the program
SeS-1 bank register into the stack.
PHP M(S)—PSH Saves the contents of the program
SeS-1 status register into the stack.
M(S)PSL
Se-S-1
PHT M(S)eDT Saves the contents of the data
Se5-1 bank register into the stack.

7-10

7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register
LDIRLY] ABS |ABS,b[ABSX|ABS,Y| ABL | ABLX | (ABS) [L(ABS){(ABS X)| STK | REL |DIRbR|ABSHR[SR [(SR)Y| BLK [Mulipled 10{9[5 7(6(5(4(3{2{1]0
op|n | # Jopin | #jop[n |# Jop|n|#|op{n]#]op|n!|#]Jop|n|#] op|n|#]fopin|#fop[n|#fop|n|# op|n|#]op{n|#]op[n|#Jop|n|#&fop|n|#op[n|&lopint#&] IPL INIV|m|[xiD[lI|[Z|C
44(9(3
i+
?x7
H
LR 2
%x7
1710} 2 |oo 4| 3 10{6|3]19|6{3for[6]4ftF|7]4 03{5]2}13)812 e TN T T T 02T
a I L
m | 7 7 71 | [l 's] | [o]
42112 3 142|6 | 4 428442&442854295 421713 14210 3
1713 006 1D9 199 lf_g‘ ‘F-l—l‘ 03[? 13?
Fal5]3 efefole|etafalafefjo]e
7]
m&z efo fofefofefolo]e]e]s
7
162|513 . efete|elefe]e]-]
6]
48] 4|1
n
42612
48
O
0841
-
4
48]3 1 1
3
f08{4 11 oo . efle]e] o]
n
8813] 1
B

7751 SERIES SOFTWARE MANUAL 7-11

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode

Symbol Function Details IMP | IMM | A | DIR |DIRb]|DIRX|DIRY| (DIR) |{DIRX)| (DIR)Y] L(DIR)

op{n | #Jop|n|#fop{n|#]op|n|#]op|n|#|opfn|#]Jop|n|#]op|n|#Jop|n]#fopfn]#]fop|n|#

PHX x=0 Saves the contents of the index
M(S)eXH register X into the stack.

SeS-1
M(S)eXL
SeS-1

Xx=1
M(S) XL
SeS-1

PHY =0 Saves the contents of the index
M(S)eYH register Y into the stack.

S«S-1
M(S)eYL
SeS-1

Xa=1
M(S)eYL
SeS-1

PLA m=0 Restores the contents of the stack
SeS+1 on the accumulator A.

AL—M(S)
SeS+1
AH—M(S)

m=1
SeS+1
AL<M(S)

PLB m=0 Restores the contents of the stack
Se-S+1 on the accumulator B.

BL<M(S)
SeS+1
BHM(S)

M=1
SeS+1
BL—M(S)

PLD SeS+1 Restores the contents of the stack
DPRL<M(S) on the direct page register.
SeS+1
DPRH<M(S)

PLP Se-S+1 Restores the contents of the stack
PSLM(S) on the processor status register.
SeS+1
PSH«M(S)

PLT SeS+1 Restores the contents of the stack
DT«M(S) on the data bank register.

PLX x=0 Restores the contents of the stack
SeS+1 on the index register X.

XL—M(S)
S-S+t
XH—M(S)

x=1
SeS+1
Xie—M(S)

PLY x=0 Restores the contents of the stack
SeS+1 on the index register Y.

YLe—M(S)
SeS+1
YH—M(S)

x=1
SeS+1
YL—M(S)

7-12 7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode ' Processor status register
LOIRLY| ABS |ABSb|ABSX|ABS,Y] ABL |ABLX|(ABS) |LABS)|(aBSX)| STK | REL [DIRpR|ABSHR| SR [(sR)Y| BLK ,’f,g,',ﬂ',,’,“&;hg{gls 7i6|slal3|2{1]0
op[n | # Jop[n | # [op|n | # Jop(n|#opin|#]op|n|#[op|n|#op|n|#]Jop|n|#fopin|#]op|n|#]op|n|#fop|n|# opin|#jop[n|#]fop|n{#]op|n|#]|opin]|#} IPL IN|VIm{x|D|I|Z|C

DA 4 | 1 elelooo]e]ofolelals
n
sAl 4] 1 o fe oo ofele .
n
6815 1 efe|eINfo]e]o]e)e]2]-
B
42712 elo |oIN]eete]e]e]Zl~
68,

7]
28[5 | 1
5]
2816} 1 Value saved in stack.

5|
AB|6 | 1 e [INT- T - T 1-12]-
8
FA[S 11 efe [oINJete]e]- Z
s
TAI511 ofe Lo [Ns o] lel ezt
5|

7751 SERIES SOFTWARE MANUAL 7-13

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode
Symbol Function Details IMP | IMM | A I DIR | DIRb | DIR,X Dln,vl (DIR) | (DIR,X)| (DIR).Y| L(DIR)
op[n | #Jop|n | #Jop|n #Iopn #lop|n|#opn|#]|op|n llopn #{op[n[#{opin|#}op[n|8

PSH M(S)A, B, X:- Saves the registers among accu-
(Note 5) mulator, index register, direct page
register, data bank register, pro-
gram bank register, or processor
-status register, specified by the bit
pattern of the second byte of the
instruction into the stack.

PUL A, B, X...e~M(S) Restores the contents of the stack
(Note 6) to the registers among accumula-
tor, index register, direct page reg-
ister, data bank register, or proces-
sor status register, specified by the
bit pattern of the second byte of
the instruction.

RLA m=0 Rotates the contents of the accu- 6(3
(Note 12) i bit rotate left mulator A, i bits to the left. 49 +
i
« EIEHEE J
M1 €
i bit rotate left +
i

- ErTBg

RMPA m=0 Performs signed muiltiplication of
(Note 15) Repeat the data in the memory specified
B, AB, A+M(DT, X)x | by index register X and data bank

M(DT, Y)(with sign) | register, and the data in the

XeX+2 memory specified by index register
YeY42 Y and data bank register. The mul-
i—i-1 tiplication result is added as binary
Until i=0 addition to the data of which high-
order is the contents of accumula-

m=1 tor B, and of which low-order is the
Repeat contents of accumulator A. The

BLAL—BLAL+M(DTX)x | high-order result is stored in accu-
M(DT, Y)(with sign) | mulator B, and the low-order result

XeX+1 is stored in accumulator A again.
YeY+1 After the addition, when the data
ie—i-1 length flag (m) is “0”, each of the
Until i=0 contents of index register X and in-

dex register Y is incremented by 2.
Additionally, the number of muitipli-
cation and addition is decremented
by 1. When the data length flag (m)
is “1", each of the contents of index
register X and index register Y is
incremented by 1. Additionally, the
number of multiplication and addi-
tion is decremented by 1. The
above multiplication and addition
are repeated until the number of
multiplication and addition is “0".

ROL m=0 Links the accumulator or the 2612 [1]2617 |2 %72
(Note 1) memory to C flag, and rotates re- | ||]
- @d sult 1o the left by 1 bit. 2| | [8 8
mat 4214 |2
2A.—
C [o7]-Too) <—:| 2
ROR m=0 Links the accumulator or the BA2 [T f66| 7 [2 7|2
(Note 2) |] memory to C flag, and rotates re- I — -
€~ ~ | sultto the right by 1 bit. 2 8 8
Mmai g i 2
{Cl-[brlTbo] — 4

7-14 7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register
uoiR.Y] ABs |ABsb|aBs.x|ass,v| aBL |aBLx](aBs)[uas)mesx)| sTk | Re [oires]aesoR] sr [sRr)y] Bk [isiedhigolal7[6[5]4[a]2]1]0
op| n | # Jop|n | # Jopin | # op{ni#|op|n|#fopn|#jop|n|#{op|n|#fop|n|#]op[n]|#fop|ni#lopin|#fop|ni#]op{n]#jop{n}#jop{ni#fop|n|#lopin|#] IPL |N|VIm|xID}I1lZ|C

EB” 2 ol o|loefef o] o] o] ¢ e} o
+
2+ g
1
+
5o+ B
(a
FBl12{2 If restored the contents
+ of PS, it becomes its
%+ 4ip value. And the other
‘E case is no change.
+
3is + di
89(6]3)]| [NIV]- ol <1 Z|C
+
iox 16*
5|
+
i x 16
EE 3(8[3 TNzl
]
b B
6E{7 (3 TE[8(3 el N[l ol lZiC
0 B

7751 SERIES SOFTWARE MANUAL 7-15

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode
Symbol Function Details IMP | IMM [A | DIR | DIRb|DIRX|DIRY| (DIR) | (DIRX)|(DIR),Y{ L(DIR)
op|n [#Joptn|#Jop|n|#]op|n|#fop|n|#fop{n|#|op|n|#|op|n|#]op|n|#]opin|#]op[n|#
RTI SeS+1 Returns from the interruption rou- [40]9|1
PSLM(S) tine.
SeS+1
PSHeM(S)
SeS+1 |]
PCLM(S) 9
SeS+1
PCHeM(S)
SeS+1
PG«M(S)
RTL SS+1 Returns from the subroutine. The [68|7 | 1
PCLM(S) contents of the program bank reg-
SeS+1 ister are also restored.
PCHeM(S) 7
SeS+1 |
PG—M(S)
RTS SeS+1 Returns from the subroutine. The {60[5 |1
PCL—M(S) contents of the program bank reg- ||
SeS+1 ister are not restored. 5
PCH—M(S)
SBC Acc, CeAcc-M-C Subtracts the contents of the E9j 2|2 5412 5[5 |2 F16 1 2E1[7(2|F1|8|2|E7(8]2
(Note 1, 2) memory and the borrow from the R n }_6— n Fg‘ h‘ 0
contents the accumulator.
42L413 42163 42|73 426342&34210342103
E94 55?1 F58 F23 EI,0 F111 E7‘I‘01
SEB Mb 1 Makes the contents of the speci- 04183
(Note 4) fied bit in the memory “1". 0
SEC Ce1 Makes the contents of the C flag |38(2 | !
g ;
SEI le1 Makes the contents of the | flag 782
uyn, E
SEM me1 Makes the contents of the m flag |F8| 2|1
..1--. F
SEP PSbe-1 Set the specified bit of the proces- E23]2
sor status register’s lower byte -
(PSL) to “1". 3
STA MeAcC Stores the contents of the accumu- 8542 91512 9|7 (2817)2]9117 (287|192
(Note 1) lator into the memory. 5] "ﬂ 8] n N m
42163 42(7 |3 4293429342ﬂ3&m3
857 957 92% 8110 9110 87‘2
STP Stops the oscillation of the oscilla- |08{—| !
tor. I~
STX MeX Stores the contents of the index 412 9|52
register X into the memory. 51 51
STY MeY Stores the contents of the index 84)4)2 |5 |2
register Y into the memory. 5| 5]
TAD DPReA Transmits the contents of the ac- [58]2 | 1
cumulator A to the direct page reg- | ||
ister. 2
TAS S<A Transmits the contents of the ac- {182 |1
cumulator A to the stack pointer. 7]

7-16 7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register
LDIRLY| ABS |ABSb|ABSX|ABS,Y| ABL |ABLX|(ABS)]L(ABS)|(ABSX)| STK | REL |DIRbR|ABShR] SR |(SR)Y| BLK MQ‘,“?,,“HO{QIG 7l6|5]4|3]2|1]0
opin | # fopin | # lop|n | #fop|n | #Jopin | #fopin | #fop|n |# fopin (#fopin |#Jop{n|#fopin|#|fop|n|#]op|n|# opin|#]|op{n|#Jopini#]op|n|&]op|n|#] 1PL [N|VIm|x|D]|I|Z[C
Value saved in stack.
F7110{ 2JEDI4 | 3 FD|6|31FOI6 | 3]EF|6 4]FFi7]a E3|5{2{rlat2 sle [eIN{VIe]-fe11Z]C
1" 4 7 7 |7 9 6 3‘
42112 314216 1 4 428442ii442854295 42{7 | 3 142{101 3
F713 ED‘Gj F09 Fgg EFQ l‘F11 EST F3"
00|90 | 4
1
oo ofefotetolelelelt
efs fefedoitlofoafals
{| *| Specified flag be-
comes “1".
97|19 280|513 0f5|3]o0l5|a]eF|6|aloFl7|4 83l5]2 03[]2
i — | — —— — b
10 6 5 5 8 9 5 I—Q‘
42{11] 3 427 | 4 42|7 |4 |42|7 4421851421915 42:—342103
imil e sl s ¥l foF ol 83171 |90
8E[513 ede feladodofefolatlets
6
8Ci513 efo folefodelolo]ele]-
6

7751 SERIES SOFTWARE MANUAL 7-17

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode
Symbol Function Details IMP | IMM DIR | DIRb | DIRX | DIR,Y | (DIR) |{DIR,X)| {(DIR).Y| LIDIR)
opinj#jopinik opjn opin|#fopjn|#jop|n|#jopjn|¥jopin|#]op|n|éfopini#
TAX XeA Transmits the contents of the ac- [A|2
cumuiator A to the index register X. | [
TAY YeA Transmits the contents of the ac- |A8{2
cumulator A to the index register Y. | [
TBD DPR«B Transmits the contents of the ac- 42[4 {2
cumulator B to the direct page reg- |%| |
ister. 4
TBS S«B Transmits the contents of the ac- [42{4 |2
cumulator B to the stack pointer. |8/
TBX XB Transmits the contents of the ac- 42 L 2
cumulator B to the index register X. [M[7
TBY Y<B Transmits the contents of the ac- }42/4 |2
cumulator B to the index register Y. |8 ﬂ
TDA A<DPR Transmits the contents of the di- |78{2
rect page register to the accumula- | |
tor A. 2
TDB B«DPR Transmits the contents of the di- |42{4 |2
rect page register to the accumuta- |78
tor B. 4
TSA A<S Transmits the contents of the stack {382
pointer to the accumulator A. 21
TSB BeS Transmits the contents of the stack {42|4 |2
pointer to the accumutator B. B
TSX XS Transmits the contents of the stack [BA|2
pointer to the index register X. ry
TXA AeX Transmits the contents of the index [8A[2 | 1
register X to the accumulator A. 2
TXB BeX Transmits the contents of the index |42]4 12
register X to the accumulator B. IBAT
TXS SeX Transmits the contents of the index {94|2
register X to the stack pointer. ry
TXY YeX Transmits the contents of the index |%|2
register X to the index register Y. 2
TYA AeY Transmits the contents of the index 9|2
register Y to the accumulator A. 3
TYB BeY Transmits the contents of the index [42/4
register Y to the accumulator B. %F‘
TYX XY Transmits the contents of the index [88}2
register Y to the index register X. 2
wWIT Stops the ¢CPU, ¢BIU. CBi—
XAB A=B Exchanges the contents of the ac- |89|§
cumulator A and the contents of |28/
the accumulator B.

7-18

7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Addressing mode Processor status register

LDIRLY| ABS |ABS,b ABS,X[ABS,V ABL | ABL,X| (ABS) |[L(ABS)|(ABSX)| STK | REL |DIRbR|ABSb,R] SR |(SR)Y| BLK IQ”“I,,_"‘gﬁﬂmlgle 7|6|5]|4|3{2{1]0
opin | # Jopin | # jop|n|# fop|n Olopn #lopini#iopin|#topin|#fopin|#jopin|#jopin|#jopin|tiopini#iopin|#]op|n|#]opin|#iop{n]|#fopin|#] IPL INIVImIxID|I|{ZIC
e [INTe Lot o] el2]e

7751 SERIES SOFTWARE MANUAL 7-19

APPENDIX

Appendix 1. 7751 series machine instructions

Notes for machine instructions table

A number of cycles on the upper row is the number when fetching
instructions at 2 ¢ access in low-speed running under the condition
of f (XIN) S 25 MHz. A number of cycles on the lower row is the num-
ber when fetching instructions at 3 ¢ access in high-speed running
under the condition of 25 MHz < f (XIN) S 40 MHz.

The cycles’ number of addressing modes concerning DPR is the
number of the case of DPR="“0". When DPR = “0", the number of
cycles is incremented by 1.

The number of cycles shown in the table differs according to the
bytes fetched into the instruction queue buffer, or according to
whether the memory accessed is odd address or even address. It
also differs when the external area is accessed by BYTE="H". This
table shows the fastest number of cycles for each instruction.

Note 1. The operation code at the upper row is used for accumulator A, and
the operation at the lower row is used for accumulator B.

Note 2. When setting flag m=0 to handle the data as 16-bit data in the im-
mediate addressing mode, the number of bytes increments by 1.

Note 3. The operation code on the upper row is used for branching in the
range of —128 to +127, and the operation code on the lower row is
used for branching in the range of —-32768 to +32767.

Note 4. When handling 16-bit data with flag m=0, the byte in the table is
incremented by 1.

Note 5.

Type of register A B X Y |OPR| OT | PG | PS
Number of cycles 2 2 2 2 12 1 1 2

The number of cycles corresponding to the register to be pushed are
added. The number of cycles when no pushing is done is 11. i1 indicates
the number of registers among A, B, X, Y, DPR, and PS to be saved. i2
indicates the number of registers among DT and PG to be saved.

Note 6.

Type of register A B X Y |DPR} DT | PS
Number of cycles 3 3 3 3 4 3 3

The number of cycles carresponding to the register to be pulled are
added. The number of cycles when no pulling is done is 12. i1 indicates
the number of registers among A, B, X, Y, DT, and PS to be restored.
i2=1 when DPR is to be restored, and i2=0 when DPR is not to be re-
stored.

Note 7. The number of cycles is the case when the number of bytes to be
transferred is even.
When the number of bytes to be transferred is odd, the number is
calculated as;
5+(i/2)x7+6
Note that, (i/2) shows the integer part when i is divided by 2.

Note 8. The number of cycles is the case when the number of bytes to be
transfered is even.
When the number of bytes to be transfered is odd, the number is
calculated as;
9+(i/2)x7+8
Note that, (i/2) shows the integer part when i is divided by 2.

Note 8. The number of cycles is the case in the 16-bit + 8-bit operation. The
number of cycles is incremented by 8 for 32-bit + 16-bit operation.

Note 10. The number of cycles is the case in the 8-bit x 8-bit operation. The
number of cycles is incremented by 4 for 16-bit x 16-bit operation.

Note 11. When setting flag x=0 to handle the data as 16-bit data in the imme-
diate addressing mode, the number of bytes increments by 1.

Note 12. When flag m is 0, the byte in the table is incremented by 1.

Note 13. When a zero division interrupt occurs, the number of cycles is the
number when it does not occur decremented by 3. It is regardless
of the data length.

Note 14. When a zero division interrupt occurs, the number of cycles is the
number when it does not occur decremented by 5. It is regardiess
of the data length.

Note 15. The number of cycles is the case when flag m is 1.
When flag m=0, the number is calculated as;
6+20 xi

7-20

7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 1. 7751 series machine instructions

Symbols in machine instructions table

Symbol Description Symbol Description
iIMP Implied addressing mode ¥ Exclusive OR
IMM Immediate addressing mode — Negation
A Accumulator addressing mode « Movement to the arrow direction
DIR Direct addressing mode -
DIR,b Direct bit addressing mode =
DIR, X Direct indexed X addressing mode Acc Accumulator
DIR, Y Direct indexed Y addressing mode A Accumulator A
(DIR) Direct indirect addressing mode AH Accumulator A's upper 8 bits
(DIR, X) Direct indexed X indirect addressing mode AL Accumulator A’s lower 8 bits
(DIR), Y Direct indirect indexed Y addressing mode B Accumulator B
L (DIR) Direct indirect long addressing mode BH Accumulator B’s upper 8 bits
L(DIR),Y Direct indirect long indexed Y addressing mode BL Accumulator B’s lower 8 bits
ABS Absolute addressing mode X Index register X
ABS, b Absolute bit addressing mode XH Index register X's upper 8 bits
ABS, X Absolute indexed X addressing mode XL Index register X’s lower 8 bits
ABS,Y Absolute indexed Y addressing mode Y Index register Y
ABL Absolute long addressing mode YH index register Y’s upper 8 bits
ABL, X Absolute long indexed X addressing mode YL Index register Y’s lower 8 bits
(ABS) Absolute indirect addressing mode S Stack pointer
L (ABS) Absolute indirect long addressing mode PC Program counter
(ABS, X) Absolute indexed X indirect addressing mode PCH Program counter’s upper 8 bits
STK Stack addressing mode PCL Program counter’s lower 8 bits
REL Relative addressing mode PG Program bank register
DIR,bR Direct bit relative addressing mode DT Data bank register
ABS, b, R Absolute bit relative addressing mode DPR Direct page register
SR Stack pointer relative addressing mode DPRH Direct page register’s upper 8 bits
(SR), Y Stack pointer relative indirect indexed Y DPRL Direct page register’s lower 8 bits
addressing mode PS Processor status register
BLK Block transfer addressing mode PSH Processor status register’s upper 8 bits
Multiplied Multiply and accumulate addressing mode PSL Processor status register's lower 8 bits
accumulation PSb Bit in processor status register
op Operation code M Memory
n Number of cycle M(S) Contents of memory at address indicated by
Number of byte stack pointer
C Carry flag Mb Bit in memory location
z Zero flag ADH Value of 24-bit address’s upper 8-bit (A23-A16)
| Interrupt disable flag ADM Value of 24-bit address’s middle 8-bit (A15-Ag)
D Decimal operation mode flag ADL Value of 24-bit address’s lower 8-bit (A7-A0)
X Index register length selection flag IMM Immediate value
m Data length selection flag EAR Executed address (16 bits)
\ Overflow flag EARH Upper 8-bit address executed
N Negative flag EARL Lower 8-bit address executed
IPL Processor interrupt priority level bn Bit position of accumulator or memory indicated
+ Addition by n
- Subtraction i Number of transfer byte, rotation or repeated
X Multiplication operation
+ Division i1, 12 Number of registers pushed or pulled
A Logical AND
V Logical OR

7751 SERIES SOFTWARE MANUAL

7-21

APPENDIX

Appendix 2. 7751 series instruction code table

Appendix 2. 7751 series instruction code table

7751 SERIES INSTRUCTION CODE TABLE-1

D3-Do | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 [0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecimal

D7-D4 notation] 0 1 2 3 4 5 6 7 8 9 A B c D E F
ORA ORA | SEB | ORA | ASL | ORA ORA | ASL SEB | ORA | ASL | ORA

0000 0 | BRK PHP PHD
A(DIR,X) ASR | DIRb { ADIR | DIR [AL(DIR) A.IMM A ABSb | AABS | ABS | AABL
ORA | ORA | ORA | CLB | ORA | AsL | ORA ORA | DEC CLB | ORA | ASL | ORA

0001 1] BRL cLe TAS
A,(DIR),Y| A(DIR) [A(SR).Y| DIRb [ADIRX | DIR,X |ALDIALY AABSY| A ABS,b [AABS X| ABS,X [AABLX
JSR | AND | JSR | AND [BBS | AND | ROL | AND AND | ROL BBS | AND | ROL | AND

0010 2 PLP PLD
ABS [A(DIRX)| ABL | ASR |DIRbR | ADIR | DIR |AL(DIR) AIMM | A ABSDR|AABS| ABS |AABL
AND | AND | AND | BBC | AND | ROL | AND AND | INC BBC | AND | ROL | AND

0011 3 | Bmi SEC TSA
A(DIR).Y| A(DIR) [A(SR).Y|DIRbA |ADIRX | DIRX ALIDIR)Y AABSY| A ABSb,R|AABSX| ABS X | AABLX
EOR EOR EOR | LSR | EOR EOR | LSR JMP [EOR | LSR | EOR

0100 4 | A Note 1 MVP PHA PHG
A,(DIR,X) ASR ADIR | DIR |AL(DIR) AIMM| A ABS |AABS| ABS |AABL
EOR | EOR | EOR EOR | LSR | EOR EOR JMP | EOR | LSR | EOR

0101 5 | BvC MVN cu PHY | TAD
A(DIR),Y| A,(DIR) |A,(SR).Y ADIRX | DIRX |AL(DIR)Y AABSY ABL |AABSX| ABS,X |AABLX
ADC ADC | LDM | ADC | ROR | ADC ADC | ROR JMP | ADC | ROR | ADC

0110 6 | RTS PER PLA RTL
A,(DIR,X) ASR | DIR |ADIR| DIR |AL(DIR) AIMM| A (ABS) | AABS| ABS |AABL
ADC | ADC | ADC | LDM | ADC | ROR | ADC ADC JMP | ADC | ROR | ADC

0111 7 | 8vs SE! PLY | TDA
A{DIR),Y| A(DIR) [A(SR).Y] DIRX [ADIRX | DIR,X |ALDIR)Y AABS,Y (ABS,X) | AABS,X | ABS X |AABLX
BRA | STA | BRA [STA | sTy | sTA | sTx | sTA STY | STA | ST | sTA

1000 8 DEY |Note2| TXA | PHT
REL [A(DIRX)| REL | ASR | DIR |ADIR| DIR |ALDIR) ABS [AABS| ABS {AABL
STA | STA | STA | STY | STA | sTX | STA STA LDM | STA | LDM | STA

1001 9 | BCC TYA XS | TXY
A(DIR),Y| A(DIR) [A(SR).Y| DIR.X [ADIRX [DIR,Y (ALDIR)Y AABSY ABS |AABSX|ABS,X |AABLX
DY [DA | DX | DA | DY | DA | LDX | LDA LDA oY | LDA | DX | LDA

1010 A TAY TAX | PLT
IMM |A(DIRX)| IMM | ASA | DIR |ADIR [DIR [AL(DIR) AJIMM ABS |AABS| ABS |A.ABL
oA | DA | oa [1oy | DA | tDx | LDA LDA LOY | LDA | DX | LDA

1011 B | BCS cLv TSX | TYx
A,(DIR),Y| A(DIR) [A(SR).Y| DIR.X [ADIRX | DIR,Y ALIDIR)Y AABSY ABS,X |AABS X| ABS.Y | AABLX
CPY | CMP | CLP | CMP | CPY | CMP | DEC | CMP CcMP CPY | CMP | DEC | CMP

1100 c INY DEX | wIT
IMM A(DIRX)| IMM | ASR | DIR |ADIR| DIR |AL(DIR) AIMM ABS [AABS| ABS |AABL
CMP | cMP | CMP CMP | DEC | cMP CMP JMP | cMP | DEC | CMP

1101 D | BNE PEI CM PHX | STP
A,(DIR).Y| A(DIR) |A,(SR),Y ADIRX | DIR,X [ALIDIR)Y, AABS)Y L(ABS) [AABS X | ABS,X [AABLX
cPx [sec | Ssep | seCc | cPx | sBC | INC | sBC SBC CPX | SBC | INC | SBC

1110 E INX NOP | PSH
IMM_[A(DIRX)| IMM | ASR | DIR |ADIR| DIR [AL(DIR) AIMM ABS |AABS| ABS |AABL
SBC | sBC | sBC seC | INC | sBC SBC JSR | SBC | INC | SBC

111 F | BEQ PEA SEM PLX | PUL
A(DIR).Y| A(DIR) [A(SR)Y ADIRX | DIR,X {AL(DIR)Y AABS)Y {ABSX) [AABS X | ABS X | AABLX

Notes 1. 4218 specifies the contents of the INSTRUCTION CODE TABLE-2. About the second word's codes, refer to the INSTRUCTION
CODE TABLE-2.
2. 8916 spacifies the contents of the INSTRUCTION CODE TABLE-3. About the second word's codes, refer to the INSTRUCTION
CODE TABLE-3.

7-22

7751 SERIES SOFTWARE MANUAL

APPENDIX

Appendix 2. 7751 series instruction code table

7751 SERIES INSTRUCTION CODE TABLE-2(The first word’s code of each instruction is 4216.)

D3-Do| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1014 | 1100 | 1101 | 1110 | 1111
Hexadecimal
D7-D4 notation| © 1 2 3 4 5 6 7 8 9 A B c D E F

0000 . ORA ORA ORA ORA | ASR | ORA | AsL ORA ORA

B,(DIRX) B,SR B.DIR sLuoR)| B |BIMM| B B,ABS B,ABL

ORA | ORA | ORA ORA ORA ORA | DEC ORA ORA
0001 1 TBS

B,(DIR),Y| B,(DIR) |B,(SR).Y B,0IRX B.LOIR)Y BABSY| B B,ABSX BABLX

AND AND AND AND AND | ROL AND AND
0010 2

B,(DIR,X) B,SR B,DIR BL(DIR) BIMM| B B.ABS B,ABL

AND | AND | AND AND AND AND | INC AND AND
0011 3 TsB

B,(DIR)Y| B,(DIR) |B,(SR),Y B,DIRX BLIDIA)Y| gABSY| B 8,ABS,X B,ABLX

EOR EOR EOR EOR EOR [LSR EOR EOR
0100 4 PHB

B,(DIRX) B.SR B.DIR BL(DIR) B/MM| B B,ABS B.ABL

EOR | EOR | EOR EOR EOR EOR EOR EOR
0101 5 TBD

B,(DIR),Y| B(DIR) |B,{SR).Y BOIRX BLL(DIR).Y| B,ABS,Y B,ABS X B,ABLX

ADC ADC ADC ADC ADC | ROR ADC ADC
0110 6 PLB

B,(DIR.X) B,SR B.DIR BL(DIR) BMM| B B.ABS B8,ABL

ADC | ADC | ADC ADC ADC ADC ADC ADC
0111 7 TDB

B,(DIR),Y| B(DIR) {B,(SA),Y B,DIRX B.LDIR)Y, B,ABS,Y B,ABS X BABLX

STA STA STA STA EXTS STA STA
1000 8 B

B,(DIRX) 8,SAR 8,01R BL(DIR) 8 B8,ABS 8,ABL

STA | STA | STA STA STA STA STA STA
1001 9 TYB

B,(DIR),Y| B,(DIR) |B,(SR)LY BDIRX B.L{DIR)Y BABSY B,ABS X BABLX

LDA LDA LDA LDA LDA EXTZ LDA LDA
1010 A TBY TBX

B,(DIRX) B,SR B,0IR B.L(DIR) B,IMM B B,ABS B,ABL

LDA | LDA | LDA LDA LDA LDA LDA LDA
1011 B

B,(DIR),Y| B,(DIR) |B,(SR)Y B,DIRX BLL(OIR).Y) BABS,Y B,ABS X B,ABL.X

CMP CMP CMP CMP CcMP i CMP CcMP
1100 c

B,(DIR,X) B.SR B,DIR BL(DIR) B,IMM B.ABS B.ABL
o1 CcMP | cMmP [cmP CcMP CMP CMP cMP CMP
1 D

B,(DIR),Y| B,(DIR) |B,(SA).Y B,0IRX B.LOIR).Y] BABSY B,ABS,X B8,ABLX

SBC SBC SBC SBC SBC SBC SBC
1110 E

B,(DIRX) B,SR B.OIR BLL(DIR) B,IMM B.ABS B,ABL

SBC | sBC | sBC SBC SBC SsBC SBC SBC
114 F

B,(DIR).Y| B,(DIR) |B,(SR).Y B.DIRX BLLDIR.Y, B,ABS,Y B,ABS X BABLX

7751 SERIES SOFTWARE MANUAL 7-23

APPENDIX

Appendix 2. 7751 series instruction code table

7751 SERIES INSTRUCTION CODE TABLE-3(The first word’s code of each instruction is 8916.)

Ds-Doj 0000 | 0001 | 010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 [1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecimal
D7-D4 notation] © 1 2 3 4 5 8 7 8 9 A B c D E F
MPY MPY MPY | ASR | MPY | ASR | MPY MPY | ASR | MPY
0000 o
(DIRX) SR DIR | DIR [LOIR)| A | IMM ABS | ABS | ABL
o001 . MPY | MPY | MPY MPY | ASR | MPY MPY MPY | ASR | MPY
(DIR).Y] (DIR) |(SR).Y DIR.X | DIRX |L{DIR).Y ABSY ABS X | ABS.X | ABL X
DIv DIV DIy DIV DIV o o
0010 2 XAB
(DIR.X) SR DIR L(DIR) IMM ABS ABL
o011 s oiv | DV | DIV o DIV oV oIV oIV
(DIR)Y| (DIR) |(SR).Y DIR.X LDIR).Y ABS,Y ABS,X ABLX
ALA
0100 4
A, IMM
0101 5
0110 6
0111 7
MPYS MPYS MPYS MPYS MPYS EXTS MPYS MPYS
1000 8
(DIRX) SR DIR L(DIR) IMM A ABS ABL
MPYS | MPYS | MPYS MPYS MPYS MPYS MPYS MPYS
1001 9 ,
(DIR)Y| (DIR) {(SR).Y DIR.X L(OIR).Y ABS.Y ABS X ABLX
DIVS DIVS DIvS DIVS DIVS EXTZ DIvVS DIVS
1010 A
(DIR,X) SR DIR L(DIR) IMM A ABS ABL
DIVS | DIVS | DIVS DIVS DIVS DIvS DIvS DIvVS
1011 B
(DIR)LY| (DIR) |(SR).Y DIR.X L{DIR)Y ABSY ABS X ABLX
Lot
1100 c
IMM
1101 D
AMPA
1110 E | tptied
Yon
1 F

7-24

7751 SERIES SOFTWARE MANUAL

MITSUBISHI SEMICONDUCTORS
SOFTWARE MANUAL
7751 Series

Jul. First Edition 1996

Editioned by
Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1996 MITSUBISHI ELECTRIC CORPORATION

7751 Group
User’s Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

	7751 Series Software Manual
	Table of contents
	1. DESCRIPTION
	2. CENTRAL PROCESSING UNIT (CPU)
	3. ADDRESSING MODES
	4. INSTRUCTIONS
	5. NUMBER OF INSTRUCTION CYCLES
	6. CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE
	APPENDIX

	1 DESCRIPTION
	2 CENTRAL PROCESSING UNIT (CPU)
	2.1 Central processing unit
	2.1.1 Accumulator (Acc)
	2.1.2 Index register X (X)
	2.1.3 Index register Y (Y)
	2.1.4 Stack pointer (S)
	2.1.5 Program counter (PC)
	2.1.6 Program bank register (PG)
	2.1.7 Data bank register (DT)
	2.1.8 Direct page register (DPR)
	2.1.9 Processor status register (PS)

	2.2 Bus interface unit
	2.2.1 Overview
	2.2.2 Functions of bus interface unit (BIU)
	2.2.3 Operation of bus interface unit (BIU)

	3 ADDRESSING MODES
	3.1 Addressing modes
	3.2 Explanation of addressing modes

	4 INSTRUCTIONS
	4.1 Instruction set
	4.1.1 Data transfer instructions
	4.1.2 Arithmetic instructions
	4.1.3 Bit manipulation instructions
	4.1.4 Flag manipulation instructions
	4.1.5 Branch and return instructions
	4.1.6 Interrupt instruction (break instruction)
	4.1.7 Special instructions
	4.1.8 Other instruction

	4.2 Description of each instruction
	4.3 Notes for programming

	5 NUMBER OF INSTRUCTION CYCLES
	5.1 Description
	5.1.1 CPU instruction execution sequence
	5.1.2 CPU standby cycle

	5.2 Points of view
	5.2.1 Using internal area

	6 CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE
	APPENDIX
	Appendix 1. 7751 series machine instructions
	Appendix 2. 7751 series instruction code table

