Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010

Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

16

7751 Series

Software Manual MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER 7700 FAMILY

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

7751 Series Software Manual

Rev.	Revision Description	Rev. date
1.00	First Edition	970728
1.01	Thumbnails are created for all pages.	980731
1.01		980731

Preface

This manual describes the software of the Mitsubishi CMOS 16-bit microcomputers 7751 SERIES. After reading this manual, the users will be able to understand the instruction set and the features, so that they can utilize their capabilities fully. This manual shows detailed descriptions of the instructions and the addressing modes for 7751 SERIES.

For details concerning the hardware and the development support tools (assembler, debugger, and others) of each product of 7751 series, refer to the respective user's manual.

Table of contents

CHAPTER 1. DESCRIPTION

CHAPTER 2. CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit	
2.1.1 Accumulator (Acc)	
2.1.2 Index register X (X)	
2.1.3 Index register Y (Y)	
2.1.4 Stack pointer (S)	
2.1.5 Program counter (PC)	
2.1.6 Program bank register (PG)	
2.1.7 Data bank register (DT)	
2.1.8 Direct page register (DPR)	
2.1.9 Processor status register (PS)	
2.2 Bus interface unit	
2.2.1 Overview	
2.2.2 Functions of bus interface unit (BIU)	
2.2.3 Operation of bus interface unit (BIU)	

CHAPTER 3. ADDRESSING MODES

3.1 Addressing modes	 	
3.2 Explanation of addressing modes	 _	

CHAPTER 4. INSTRUCTIONS

4.1 Instruction set	
4.1.1 Data transfer instructions	
4.1.2 Arithmetic instructions	
4.1.3 Bit manipulation instructions	
4.1.4 Flag manipulation instructions	
4.1.5 Branch and return instructions	
4.1.6 Interrupt instruction (break instruction)	
4.1.7 Special instructions	
4.1.8 Other instruction	
4.2 Description of each instruction	
4.3 Notes for programming	

CHAPTER 5. NUMBER OF INSTRUCTION CYCLES

5.1 Description	5–2
5.1.1 CPU instruction execution sequence	
5.1.2 CPU standby cycle	5–3
5.2 Points of view	5–5
5.2.1 Using internal area	5–8

CHAPTER 6. CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE

APPENDIX

Appendix 1. 7	7751 serie	s machine inst	ructions	7-	-2
Appendix 2. 7	7751 serie	s instruction c	ode table		22

DESCRIPTION

The 7751 series software offers the following features :

- •The m and x flags to select between word and byte operation make it possible to execute each of most instructions with 1-byte operation code, so that the ROM size for application will be reduced.
- •Powerful addressing modes, and a fast and compact instruction set are included.
- •Direct page mapping function and memory oriented software system by direct paging are included.
- •The entire 16 Mbytes of addressable memory space can be programed as a program memory without consideration of a 64-Kbyte boundary.
- •A data memory can be accessed with a linear or a bank.
- •Bit manipulation instructions and bit test and branch instructions can be used for memory accessing of the entire 16 Mbytes of addressable memory space.

G

- •Block transfer instructions handling blocks up to 64 Kbytes are available.
- •Decimal arithmetic instruction execution requires no software correction.
- •Upward compatibility for the 7700 series is retained.
- •A Repeat MultiPly and Accumulate, **RMPA**, instruction is available.

7751 SERIES SOFTWARE MANUAL

CHAPTER 2 CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit2.2 Bus interface unit

2.1 Central processing unit

2.1 Central processing unit

The CPU (Central Processing Unit) has ten registers as shown in Figure 2.1.1.

Fig. 2.1.1 CPU registers structure

2.1.1 Accumulator (Acc)

Accumulators A and B are available.

(1) Accumulator A (A)

Accumulator A is the main register of the microcomputer. The transaction of data such as calculation, data transfer, and input/output are performed mainly through accumulator A. It consists of 16 bits, and the low-order 8 bits can also be used separately. The data length flag (m) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag m is a part of the processor status register which is described later. When an 8-bit register is selected, only the low-order 8 bits of accumulator A are used and the contents of the high-order 8 bits is unchanged.

(2) Accumulator B (B)

Accumulator B is a 16-bit register with the same function as accumulator A. Accumulator B can be used instead of accumulator A. The use of accumulator B, however except for some instructions, requires more instruction bytes and execution cycles than that of accumulator A. Accumulator B is also controlled by the data length flag (m) just as in accumulator A.

2.1.2 Index register X (X)

Index register X consists of 16 bits and the low-order 8 bits can also be used separately. The index register length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag x is a part of the processor status register which is described later. When an 8-bit register is selected, only the low-order 8 bits of index register X are used and the contents of the high-order 8 bits is unchanged. In an addressing mode in which index register X is used as an index register, the address obtained by adding the contents of this register to the operand's contents is accessed.

In the **MVP** or **MVN** instruction, a block transfer instruction, the contents of index register X indicates the low-order 16 bits of the source address. The third byte of the instruction is the high-order 8 bits of the source address.

In the **RMPA** instruction, a Repeat MultiPly and Accumulate instruction, the contents of index register X indicate the low-order 16 bits of address in which multiplicands are stored.

Note: Refer to "CHAPTER 3. ADDRESSING MODES" for addressing modes.

2.1.3 Index register Y (Y)

Index register Y is a 16-bit register with the same function as index register X. Just as in index register X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an 8-bit register.

In the **MVP** or **MVN** instruction, a block transfer instruction, the contents of index register Y indicates the low-order 16 bits of the destination address. The second byte of the instruction is the high-order 8 bits of the destination address.

In the **RMPA** instruction, a Repeat MultiPly and Accumulate instruction, the contents of index register Y indicate the low-order 16 bits of address in which multipliers are stored.

2.1 Central processing unit

2.1.4 Stack pointer (S)

The stack pointer (S) is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used when addressing modes using the stack are executed. The contents of S indicate an address (stack area) for storing registers during subroutine calls and interrupts. Bank 016 is specified for the stack area. (Refer to "2.1.6 Program bank register (PG)".)

When an interrupt request is accepted, the microcomputer stores the contents of the program bank register (PG) at the address indicated by the contents of S and decrements the contents of S by 1. Then the contents of the program counter (PC) and the processor status register (PS) are stored. The contents of S after accepting an interrupt request is equal to the contents of S decremented by 5 before the accepting of the interrupt request. (Refer to Figure 2.1.2.)

When completing the process in the interrupt routine and returning to the original routine, the contents of registers stored in the stack area are restored into the original registers in the reverse sequence (PS \rightarrow PC \rightarrow PG) by executing the RTI instruction. The contents of S is returned to the state before accepting an interrupt request.

The same operation is performed during a subroutine call, however, the contents of PS is not automatically stored. (The contents of PG may not be stored. This depends on the addressing mode.)

You should store registers other than those described above with software when you need them during interrupts or subroutine calls.

Additionally, initialize S at the beginning of the program because its contents are undefined at reset. The stack area changes when subroutines are nested or when multiple interrupt requests are accepted. Therefore, make sure of the subroutine's nesting depth not to destroy the necessary data.

Note: Refer to "CHAPTER 3. ADDRESSING MODES" for addressing modes.

Fig. 2.1.2 Contents of the stack area after accepting interrupt request

2.1 Central processing unit

2.1.5 Program counter (PC)

The program counter is a 16-bit counter that indicates the low-order 16 bits of the address (24 bits) at which an instruction to be executed next (in other words, an instruction to be read out from an instruction queue buffer next) is stored. The contents of the high-order program counter (PCH) become "FF16," and the low-order program counter (PCL) becomes "FE16" at reset. The contents of the program counter becomes the contents of the reset's vector address (addresses FFFE16, FFFF16) just after reset. Figure 2.1.3 shows the program counter and the program bank register.

2.1.6 Program bank register (PG)

The program bank register is an 8-bit register that indicates the high-order 8 bits of the address (24 bits) at which an instruction to be executed next (in other words, an instruction to be read out from an instruction queue buffer next) is stored. These 8 bits are called bank.

When a carry occurs after adding the contents of the program counter or adding the offset value to the contents of the program counter in the branch instruction and others, the contents of the program bank register is automatically incremented by 1. When a borrow occurs after subtracting the contents of the program counter, the contents of the program bank register is automatically decremented by 1. Accordingly, there is no need to consider bank boundaries in programming, usually.

In single-chip mode, make sure to prevent the program bank register from being set to a value other than "0016" by executing the branch instructions and others. It is because only the internal area, within bank 016, can be accessed in single-chip mode.

This register is cleared to "0016" at reset.

2.1 Central processing unit

2.1.7 Data bank register (DT)

The data bank register is an 8-bit register. In the following addressing modes using the data bank register, the contents of this register is used as the high-order 8 bits (bank) of a 24-bit address to be accessed.

In single-chip mode, make sure to fix this register to "0016." It is because only the internal area, within bank 016, can be accessed in single-chip mode. This register is cleared to "0016" at reset.

•Addressing modes using data bank register

- •Direct indirect
- •Direct indexed X indirect
- •Direct indirect indexed Y
- Absolute
- Absolute bit
- •Absolute indexed X
- •Absolute indexed Y
- Absolute bit relative
- •Stack pointer relative indirect indexed Y
- •Multiplied accumulation

2.1.8 Direct page register (DPR)

ents of this register indicate the

The direct page register is a 16-bit register. The contents of this register indicate the direct page area which is allocated in bank 016 or in the space across banks 016 and 116. The following addressing modes use the direct page register.

The contents of the direct page register indicates the base address (the lowest address) of the direct page area. The space which extends to 256 bytes above that address is specified as a direct page.

The direct page register can contain a value from 000016 to FFFF16. When it contains a value equal to or more than "FF0116," the direct page area spans the space across banks 016 and 116.

When the contents of low-order 8 bits of the direct page register is "0016," the number of cycles required to generate an address is 1 cycle smaller than the number when its contents are not "0016." Accordingly, the access efficiency can be enhanced in this case.

This register is cleared to "000016" at reset.

Figure 2.1.4 shows a setting example of the direct page area.

- •Addressing modes using direct page register
 - Direct
 - •Direct bit
 - •Direct indexed X
 - Direct indexed Y
 - •Direct indirect
 - •Direct indexed X indirect
 - •Direct indirect indexed Y
 - •Direct indirect long
 - •Direct indirect long indexed Y
 - •Direct bit relative

2.1 Central processing unit

2.1 Central processing unit

2.1.9 Processor status register (PS)

The processor status register is an 11-bit register.

Figure 2.1.5 shows the structure of the processor status register.

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	Dracasar staus
0	0	0	0	0		IPL		Ν	V	m	х	D	Ι	Z	С	register (PS)
Note:	Fix	each	ofb	oits 1	5–11	to "	0".									0 ()

(1) Bit 0: Carry flag (C)

It retains a carry or a borrow generated in the arithmetic and logic unit (ALU) during an arithmetic operation. This flag is also affected by shift and rotate instructions. When the **BCC** or **BCS** instruction is executed, this flag's contents determine whether the program causes a branch or not. Use the **SEC** or **SEP** instruction to set this flag to "1", and use the **CLC** or **CLP** instruction to clear

it to "0".

(2) Bit 1: Zero flag (Z)

It is set to "1" when the result of an arithmetic operation or data transfer is "0," and cleared to "0" when otherwise. When the **BNE** or **BEQ** instruction is executed, this flag's contents determine whether the program causes a branch or not.

Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." **Note:** This flag is invalid in the decimal mode addition (the **ADC** instruction).

(3) Bit 2: Interrupt disable flag (I)

It disables all maskable interrupts (interrupts other than watchdog timer, the **BRK** instruction, and zero division). Interrupts are disabled when this flag is "1." When an interrupt request is accepted, this flag is automatically set to "1" to avoid multiple interrupts. Use the **SEI** or **SEP** instruction to set this flag to "1," and use the **CLI** or **CLP** instruction to clear it to "0." This flag is set to "1" at reset.

(4) Bit 3: Decimal mode flag (D)

It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic is performed when this flag is "0." When it is "1," decimal arithmetic is performed with each word treated as two or four digits decimal (determined by the data length flag). Decimal adjust is automatically performed. Decimal operation is possible only with the **ADC** and **SBC** instructions. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

(5) Bit 4: Index register length flag (x)

It determines whether each of index register X and index register Y is used as a 16-bit register or an 8-bit register. That register is used as a 16-bit register when this flag is "0," and as an 8-bit register when it is "1." Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred with the length of the destination register, but except for the **TXA**, **TYA**, **TXB**, **TYB**, and **TXS** instructions. Refer to "CHAPTER 4. INSTRUCTIONS" for details.

2.1 Central processing unit

(6) Bit 5: Data length flag (m)

It determines whether to use data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit when this flag is "0," and as an 8-bit unit when it is "1."

Use the **SEM** or **SEP** instruction to set this flag to "1," and use the **CLM** or **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred with the length of the destination register, but except for the **TXA**, **TYA**, **TXB**, **TYB**, and **TXS** instructions. Refer to "CHAPTER 4. INSTRUCTIONS" for details.

(7) Bit 6: Overflow flag (V)

It is used when adding or subtracting with a word regarded as signed binary. When the data length flag (m) is "0," the overflow flag is set to "1" when the result of addition or subtraction exceeds the range between -32768 and +32767, and cleared to "0" in all other cases. When the data length flag (m) is "1," the overflow flag is set to "1" when the result of addition or subtraction exceeds the range between -128 and +127, and cleared to "0" in all other cases.

The overflow flag is also set to "1" when the result of division exceeds the register length to be stored in the **DIV** or **DIVS** instruction, a division instruction with signed or unsigned; and when the result of addition exceeds the range between -2147483648 and +2147483647 in the **RMPA** instruction, a Repeat MultiPly and Accumulate instruction.

When the **BVC** or **BVS** instruction is executed, this flag's contents determine whether the program causes a branch or not. Use the **SEP** instruction to set this flag to "1," and use the **CLV** or **CLP** instruction to clear it to "0."

Note: This flag is invalid in the decimal mode.

(8) Bit 7: Negative flag (N)

It is set to "1" when the result of arithmetic operation or data transfer is negative. (Bit 15 of the result is "1" when the data length flag (m) is "0," or bit 7 of the result is "1" when the data length flag (m) is "1.") It is cleared to "0" in all other cases. When the **BPL** or **BMI** instruction is executed, this flag determines whether the program causes a branch or not. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0."

Note: This flag is invalid in the decimal mode.

(9) Bits 10 to 8: Processor interrupt priority level (IPL)

These three bits can determine the processor interrupt priority level to one of levels 0 to 7. The interrupt is enabled when the interrupt priority level of a required interrupt, which is set in each interrupt control register, is higher than IPL. When an interrupt request is accepted, IPL is stored in the stack area, and IPL is replaced by the interrupt priority level of the accepted interrupt request. There are no instruction to directly set or clear the bits of IPL. IPL can be changed by storing the new IPL into the stack area and updating the processor status register with the **PUL** or **PLP** instruction. The contents of IPL is cleared to "0002" at reset.

2.2 Bus interface unit

2.2 Bus interface unit

A bus interface unit (BIU) is built-in between the central processing unit (CPU) and memory•I/O devices. BIU's function and operation are described below.

2.2.1 Overview

Transfer operation between the CPU and memory•I/O devices is always performed via the BIU. Figure 2.2.1 shows the bus and bus interface unit (BIU).

① The BIU reads an instruction from the memory before the CPU executes it.

3

- 2 When the CPU reads data from the memory I/O device, the CPU first specifies the address from which data is read to the BIU. The BIU reads data from the specified address and passes it to the CPU.
- 3 When the CPU writes data to the memory I/O device, the CPU first specifies the address to which data is written to the BIU and write data. The BIU writes the data to the specified address.
- ④ To perform the above operations ① to ③, the BIU inputs and outputs the control signals, and control the bus.

2.2 Bus interface unit

2.2 Bus interface unit

2.2.2 Functions of bus interface unit (BIU)

The bus interface unit (BIU) consists of four registers shown in Figure 2.2.2. Table 2.2.1 shows the functions of each register.

Fig. 2.2.2 Register structure of bus interface unit (BIU)

Table	2.2.1	Functions	of	each	register
10010		i anotiono	v .	04011	regiotor

Name	Functions					
Program address register	Indicates the storage address for the instruction which is next taken into the					
	instruction queue buffer.					
Instruction queue buffer	Temporarily stores the instruction which has been taken in.					
Data address register	Indicates the address for the data which is next read from or written to.					
Data buffer	Temporarily stores the data which is read from the memory-I/O device by the					
	BIU or which is written to the memory•I/O device by the CPU.					

2.2 Bus interface unit

The CPU and the bus send or receive data via BIU because each operates based on different clocks (Note). The BIU allows the CPU to operate at high speed without waiting for access to the memory \bullet I/O devices that require a long access time.

The BIU's functions are described bellow.

Note: The CPU operates based on ϕ_{CPU} . The period of ϕ_{CPU} is normally the same as that of the internal clock ϕ . The internal bus operates based on the signal \overline{E} . The period of the signal \overline{E} is normally twice that of the internal clock ϕ at a minimum.

(1) Reading out instruction (Instruction prefetch)

When the CPU does not require to read or write data, that is, when the bus is not in use, the BIU reads instructions from the memory and stores them in the instruction queue buffer. This is called instruction prefetch.

The CPU reads instructions from the instruction queue buffer and executes them, so that the CPU can operate at high speed without waiting for access to the memory which requires a long access time. When the instruction queue buffer becomes empty or contains only 1 byte of an instruction, the BIU performs instruction prefetch. The instruction queue buffer can store instructions up to 3 bytes.

The contents of the instruction queue buffer is initialized when a branch or jump instruction is executed, and the BIU reads a new instruction from the destination address.

When instructions in the instruction queue buffer are insufficient for the CPU's needs, the BIU extends the pulse duration of clock ϕ CPU in order to keep the CPU waiting until the BIU fetches required number of instructions or more.

(2) Reading data from memory•I/O device

The CPU specifies the storage address of data to be read to the BIU's data address register, and requires data. The CPU waits until data is ready in the BIU.

The BIU outputs the address received from the CPU onto the address bus, reads contents at the specified address, and takes it into the data buffer.

The CPU continues processing, using data in the data buffer.

However, if the BIU uses the bus for instruction prefetch when the CPU requires to read data, the BIU keeps the CPU waiting.

2.2 Bus interface unit

(3) Writing data to memory•I/O device

The CPU specifies the address of data to be written to the BIU's data address register. Then, the CPU writes data into the data buffer. The BIU outputs the address received from the CPU onto the address bus and writes data in the data buffer into the specified address.

The CPU advances to the next processing without waiting for completion of BIU's write operation. However, if the BIU uses the bus for instruction prefetch when the CPU requires to write data, the BIU keeps the CPU waiting.

(4) Bus control

To perform the above operations (1) to (3), the BIU inputs and outputs the control signals, and controls the address bus and the data bus. The cycle which the BIU controls the bus and accesses the memory•I/O device is called the bus cycle. Table 2.2.2 shows the bus cycle at accessing the internal area.

Table 2.2.2 Bus cycle at accessing internal area

2.2.3 Operation of bus interface unit (BIU)

Figure 2.2.3 shows the basic operating waveforms of the bus interface unit (BIU).

(1) When fetching instructions into the instruction queue buffer

- ① When the instruction which is next fetched is located at an even address, the BIU fetches 2 bytes of the instruction at a time with the timing of waveform (a).
 However, when accessing an external device which is connected with the 8-bit external data bus width (BYTE = "H"), only 1 byte of the instruction is fetched.
- ② When the instruction which is next fetched is located at an odd address, the BIU fetches only 1 byte of the instruction with the timing of waveform (a). The data at the even address is not taken into the data buffer.

(2) When reading or writing data to and from the memory•I/O device

- ① When accessing a 16-bit data which begins at an even address, waveform (a) is applied. The 16 bits of data are accessed at a time.
- ⁽²⁾ When accessing a 16-bit data which begins at an odd address, waveform (b) is applied. The 16 bits of data are accessed separately in 2 operations, 8 bits at a time. Invalid data is not fetched into the data buffer.
- ⁽³⁾ When accessing an 8-bit data at an even address, waveform (a) is applied. The data at the odd address is not fetched into the data buffer.
- ④ When accessing an 8-bit data at an odd address, waveform (a) is applied. The data at the even address is not fetched into the data buffer.

For instructions that are affected by the data length flag (m) and the index register length flag (x), operation ① or ② is applied when flag m or x = "0"; operation ③ or ④ is applied when flag m or x = "1."

2.2 Bus interface unit

Fig. 2.2.3 Basic operating waveforms of bus interface unit (BIU)

CHAPTER 3 ADDRESSING MODES

- 3.1 Addressing modes
- 3.2 Explanation of addressing modes

ADDRESSING MODES

3.1 Addressing modes 3.2 Explanation of addressing modes

3.1 Addressing modes

To execute an instruction, when the data required for arithmetic operation is retrieved from a memory or the result of arithmetic operation is stored to it, it is necessary to specify the address of the memory location in advance. Address specification is also necessary when the control is to jump to a certain memory address during program execution. Addressing refers to the method of specifying the memory address. The memory access of the 7751 series microcomputers is reinforced with 29 different addressing modes.

3.2 Explanation of addressing modes

Each of the 29 addressing modes is explained on the pages indicated below:

Implied addressing mode 3-3
Immediate addressing mode
Accumulator addressing mode 3-6
Direct addressing mode
Direct bit addressing mode 3-9
Direct indexed X addressing mode
Direct indexed Y addressing mode
Direct indirect addressing mode
Direct indexed X indirect addressing mode
Direct indirect indexed Y addressing mode
Direct indirect long addressing mode
Direct indirect long indexed Y addressing mode
Absolute addressing mode 3-28
Absolute bit addressing mode
Absolute indexed X addressing mode
Absolute indexed Y addressing mode
Absolute long addressing mode 3-39
Absolute long indexed X addressing mode
Absolute indirect addressing mode
Absolute indirect long addressing mode 3-44
Absolute indexed X indirect addressing mode
Stack addressing mode
Relative addressing mode
Direct bit relative addressing mode 3-50
Absolute bit relative addressing mode 3-52
Stack pointer relative addressing mode 3-54
Stack pointer relative indirect indexed Y addressing mode
Block transfer addressing mode 3-58
Multiplied accumulation addressing mode 3-60

Implied

Immediate

Immediate

Accumulator

- Mode : Direct addressing mode
- **Function** : The contents of a memory in bank 016 are an actual data. This memory location is specified by the result of adding the instruction's second byte to the contents of the direct page register. When, however, the result of adding of the instruction's second byte to the direct page register's contents exceeds bank 016 range, the memory location in bank 116 is specified.
- Instruction : ADC, AND, ASL, ASR, CMP, CPX, CPY, DEC, DIV, DIVS, EOR, INC, MPYS, ORA, STA, LDA, LDM, LDX, LDY, LSR, MPY, ROL, ROR, SBC, STX. STY

Direct

Direct Bit

Mode : Direct bit addressing mode

Function : Specifies the memory location in bank 016 by the result of adding the instruction's second byte to the direct page register's contents, and specifies the positions of multiple bits in the memory location by the bit pattern in the third and fourth bytes of the instruction (when the m flag is "1", the third byte only). When, however, the result of adding of the instruction's second byte to the direct page register's contents exceeds bank 016 range, the memory location in bank 116 is specified.

Instruction : CLB, SEB

Direct Bit

Mode : Direct indexed X addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by the result of adding the instruction's second byte, the direct page register's contents and the index register X's contents. When, however, the result of adding the instruction's second byte, the direct page register's contents and the index register X's contents exceeds bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

Instruction :	ADC,	AND,	ASL,	ASR,	CMP,	DEC,	DIV,	DIVS,	EOR,	INC,	LDA,	LDM,
	LDY,	LSR,	MPY,	MPYS,	ORA,	ROL,	ROR,	SBC,	STA,	STY		

Direct Indexed Y

Mode : Direct indexed Y addressing mode

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by the result of adding the instruction's second byte, the direct page register's contents and the index register Y's contents. When, however, the result of adding of the instruction's second byte, the direct page register's contents and the index register Y's contents exceeds bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

Instruction : LDX, STX

Mode : Direct indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's second byte to the direct page register's contents. The contents of the memory location specified by these 2 bytes in bank DT (DT is the data bank register's contents) are an actual data. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds bank 016 range, the memory location in bank 116 is specified.

Instruction: ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

Direct Indexed X Indirect

Mode : Direct indexed X indirect addressing mode

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's second byte, the direct page register's contents and the index register X's contents. The contents of the memory location specified by these bytes in bank DT (DT is the data bank register's contents) are an actual data. When, however, the result of adding the instruction's second byte, the direct page register's contents and the index register X's contents exceeds bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

Instruction :	ADC,	AND,	CMP,	DIV,	DIVS,	EOR,	LDA,	MPY,	MPYS, ORA,	SBC,	STA
---------------	------	------	------	------	-------	------	------	------	------------	------	-----

Direct Indirect Indexed Y

- Mode : Direct indirect indexed Y addressing mode
- **Function** : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's second byte to the direct page register's contents. The following is an actual data: the contents of the memory location specified by the result of adding the contents of these 2 bytes to the index register Y's contents and the contents of the data bank register. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds bank 016 range, the memory location in bank 116 is specified. Additionally, if the addition of the memory's contents and the index register Y's contents generates a carry, the bank which is 1 larger than the contents of the data bank register is used.

Instruction :	ADC,	AND,	CMP,	DIV,	DIVS,	EOR,	LDA,	MPY,	MPYS, ORA,	SBC,	STA
	· · · • • ,	· _ ,	••••••	,	,	,	,	,			• • • •

Direct Indirect Indexed Y

Direct Indirect Long

- Mode : Direct indirect long addressing mode
- **Function** : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction's second byte to the direct page register's contents. The contents at the address specified by the contents of these 3 bytes are an actual data. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds bank 016, the memory location in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

Instruction :	ADC,	AND,	CMP,	DIV,	DIVS,	EOR,	LDA,	MPY,	MPYS, ORA,	SBC,	STA
---------------	------	------	------	------	-------	------	------	------	------------	------	-----

Direct Indirect Long Indexed Y

Mode : Direct indirect long indexed Y addressing mode

Function : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction's second byte to the direct page register's contents. The contents at the address specified by the result of adding the contents of these 3 bytes to the index register Y's contents are an actual data. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

Instruction :	ADC,	AND,	CMP,	DIV,	DIVS,	EOR,	LDA,	MPY,	MPYS, ORA,	SBC,	STA
---------------	------	------	------	------	-------	------	------	------	------------	------	-----

- Mode : Absolute addressing mode
- **Function** : The following is an actual data: the contents of the memory location specified by the instruction's second and third bytes and the contents of the data bank register. Note that, in the cases of the JMP and JSR instructions, the instructions' second and third bytes are transferred to the program counter.
- DEC, Instruction : ADC, AND, ASL, ASR, CMP, CPX, CPY, DIV, DIVS, EOR, INC, JMP. JSR, LDA, LDM, LDX, LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC. STA, STX. STY

Absolute

ex. : Mnemonic JMP 0AC14H Machine code 4C₁₆ 14₁₆ AC₁₆

- **Note :** Note the branch destination bank when a JMP or a JSR instruction is located near a bank boundary.
 - \Rightarrow Refer to the description of a JMP instruction (Page 4-50).
 - Refer to the description of a JSR instruction (Page 4-51).

Absolute Bit

Mode : Absolute bit addressing mode

Function : Specifies the memory location by the instruction's second and third bytes and the contents of the data bank register; specifies the multiple bit positions in that memory by a bit pattern of the instruction's fourth and fifth bytes (when the m flag is "1", the fourth byte only).

Instruction: CLB, SEB

- Mode : Absolute indexed X addressing mode
- **Function** : The following is an actual data: the contents of the memory location specified by the result of adding a 16-bit length numerical value expressed with the instruction's second and third bytes to the index register X's contents, and the contents of the data bank register. If, however, the addition of the numerical value expressed with the instruction's second and third bytes, and the index register X's contents generates a carry; the bank which is 1 larger than the contents of the data bank register is used.
- Instruction : ADC, ASR, CMP, DIV, DIVS, EOR, INC, LDA, LDM, AND, ASL, DEC, STA LDY, LSR, MPY, MPYS, ORA, ROL, ROR, SBC,

Absolute Indexed Y

Mode : Absolute indexed Y addressing mode

- **Function** : The following is an actual data: the contents of the memory location specified by the result of adding a 16-bit length numerical value expressed with the instruction's second and third bytes to the index register Y's contents, and the contents of the data bank register. If, however, the addition of the numerical value expressed with the instruction's second and third bytes to the the index register Y's contents generates a carry, the bank which is 1 larger than the contents of the data bank register is used.
- Instruction : ADC, AND, CMP, DIV, DIVS, EOR, LDA, LDX, MPY, MPYS, ORA, SBC, STA

Absolute Long

Mode : Absolute long addressing mode

- **Function** : The contents of the memory location specified by the instruction's second, third and fourth bytes are an actual data. Note that, in the cases of the JMP and JSR instructions, the instruction's second and third bytes are transferred to the program counter and the fourth byte is transferred to the program bank register.
- Instruction : ADC, AND, CMP, DIV, DIVS, EOR, JMP, JSR, LDA, MPY, MPYS, ORA, SBC, STA

ex. : Mnemonic JMPL 123456H Machine code 5C16 5616 3416 1216

Absolute Long Indexed X

Mode : Absolute long indexed X addressing mode

Function : The following is an actual data: the contents of the memory location specified by the result of adding a numerical value expressed with the instruction's second, third and forth bytes to the index register X's contents.

Instruction: ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

Absolute Indirect

Mode : Absolute indirect addressing mode

Function : A sequence of 2-byte memory is specified by the instruction's second and third bytes. The contents of these bytes specify the address within the same program bank to which a jump is to be made.

Instruction : JMP

ex. : Mnemonic JMP (1400H) Machine code 6C₁₆ 00₁₆ 14₁₆

Note : Note the reference/branch destination bank when a JMP instruction or a reference destination is located near a bank boundary.
⇒ Refer to the description of a JMP instruction (Page 4-50).

Absolute Indirect Long

Mode : Absolute indirect long addressing mode

Function : A sequence of 3-byte memory is specified by the instruction's second and third bytes. The contents of these 3 bytes specify the address to which a jump is to be made.

Instruction : JMP

ex. : Mnemonic JMPL (1234H) Machine code DC₁₆ 34₁₆ 12₁₆

Note : Note the reference destination bank when a JMP instruction is located near a bank boundary.

 \Rightarrow Refer to the description of a JMP instruction (Page 4-50).

Absolute Indexed X Indirect

- Mode : Absolute indexed X indirect addressing mode
- **Function** : A sequence of 2-byte memory is specified by the result of adding a numerical value expressed with the instruction's second and third bytes to the index register X's contents. The contents of these bytes specify the address to which a jump is to be made.
- Instruction: JMP, JSR

- JSR instruction when the instruction or the branch destination address is located near a boundary.
 - \Rightarrow Refer to the description of a JMP instruction (Page 4-50).
 - Refer to the description of a JSR instruction (Page 4-51).
Mode : Stack addressing mode

Function : The contents of a register or others are stored to or restored from the memory location specified by the stack pointer. The stack register is set in bank 016.

Instruction :	PEA,	PEI,	PER,	PHA,	PHB,	PHD,	PHG,	PHP,	PHT,	PHX,	PHY,	PLA,
	PLB,	PLD,	PLP,	PLT,	PLX,	PLY,	PSH,	PUL				

ex. : Mnemonic PER #1234H Machine code 62₁₆ 34₁₆ 12₁₆

Relative

Mode : Relative addressing mode

Function : Branches to the address specified by the result of adding the program counter's contents to the instruction's second byte. In the case of a long branch with the BRA instruction, the instruction's second and third bytes are added to the program counter's contents as a 15-bit signed numerical value. If the addition generates a carry or a borrow, 1 is added to or subtracted from the program bank register.

Direct Bit Relative

- Mode : Direct bit relative addressing mode
- **Function** : Specifies the memory location in bank 016 by the result of adding the instruction's second byte to the direct page register's contents; specifies the multiple bit positions in that memory by the bit pattern of the instruction's third and fourth bytes (when the m flag is "1", the third byte only). Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's fifth byte (or when the m flag is "1", the forth byte) as a signed numerical value to the program counter's contents. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds bank 016 range, the memory location in bank 116 is specified.

Absolute Bit Relative

Mode : Absolute bit relative addressing mode

Function : Specifies the memory location by the instruction's second and third bytes and the contents of the data bank register; specifies the multiple bit positions in that memory by a bit pattern of the instruction's fourth and fifth bytes (when the m flag is "1", the fourth byte only). Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's sixth byte (or when the m flag is "1", the fifth byte) as a signed numerical value to the program counter's contents.

Instruction: BBC, BBS

Absolute Bit Relative

Stack Pointer Relative

- Mode : Stack pointer relative addressing mode
- **Function** : The contents of the memory location in bank 016 are an actual data. This memory is specified by the result of adding the instruction's second byte to the stack pointer's contents. When, however, the result of adding the instruction's second byte to the stack pointer's contents exceeds bank 016 range, the memory location in bank 116 is specified.

Instruction: ADC, AND, CMP, DIV, DIVS, EOR, LDA, MPY, MPYS, ORA, SBC, STA

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode

Function : Specifies a sequence of 2-byte memory by the result of adding the instruction's second byte to the stack pointer's contents. The following is an actual data: the contents of the memory location specified by the result of adding the contents of these bytes to the index register Y's contents, and the data bank register's contents. If, however, the result of adding the contents of that sequence of 2-byte memory to the index register Y's contents generates a carry, the bank which is 1 larger than the contents of the data bank register is used.

Instruction :	ADC,	AND,	CMP,	DIV,	DIVS,	EOR,	LDA,	MPY,	MPYS, ORA,	SBC,	STA
---------------	------	------	------	------	-------	------	------	------	------------	------	-----

Stack Pointer Relative Indirect Indexed Y

Stack Pointer Relative Indirect Indexed Y

Block Transfer

Mode : Block transfer addressing mode

Function : Specifies the transfer-to data bank by the instruction's second byte, and specifies the transfer-to address whithin the data bank by the index register Y's contents. Specifies the transfer-from data bank by the instruction's third byte, and specifies the address of transfer data within the data bank by the index register X's contents. The accumulator A's contents are the number of bytes to be transferred. At termination of transfer, the data bank register's contents specify the transfer-to data bank. The MVN instruction is used for transfer toward lower addresses. In this case, the contents of the index registers X and Y are incremented each time data is transferred. The MVP instruction is used for transfer addresses. In this case, the contents of the index registers X and Y are incremented each time data is transferred ata can cross over the bank boundary.

Instruction : MVN, MVP

Note : For block transfer instructions, the number of bytes to be transferred and the range of transfer source/destination address change with the state of the m and x flags. However, the transfer unit is unaffected. The transfer unit is word (16 bits). However, only 1 byte is transferred when transferring the last byte at odd bytes transfer.

Multiplied accumulation

- Mode : Multiplied accumulation addressing mode
- Function : The following is a multiplicand and a multiplier: the contents of the memory location specified by the contents of index registers X and Y, and the data bank register's contents. The instruction's third byte is the repeat number of arithmetic operation. The contents of index registers X and Y are incremented each time the addition of the contents of accumulators B and A to the multiplication result finishes. Accordingly, the contents of index registers X and Y specify the next address where the multiplicand and the multiplier are read at last. Allocate a multiplicand and a multiplier within the same bank and do not cross them over the bank boundary.

Set the index register length flag to "0" before executing this instruction.

Instruction : RMPA

Multiplied accumulation

Multiplied accumulation

MEMO

toto announced

CHAPTER 4 INSTRUCTIONS

- 4.1 Instruction set
- 4.2 Description of each instruction
- 4.3 Notes for programming

4.1 Instruction set

4.1 Instruction set

The 7751 series CPU uses the instruction set with 109 instructions.

4.1.1 Data transfer instructions

The data transfer instructions move data between data and registers, between a register and a memory, between registers or between memories.

The following table shows the available instructions for data transfer.

Category	Instruction	Description
Load	LDA	Loads the contents of memory into the accumulator.
	LDM	Loads an immediate value into the memory.
	LDT	Loads an immediate value into the data bank register.
	LDX	Loads the contents of memory into the index register X.
	LDY	Loads the contents of memory into the index register Y.
Store	STA	Stores the contents of the accumulator in the memory.
	STX	Stores the contents of the index register X in the memory.
	STY	Stores the contents of the index register Y in the memory.
Transfer	ТАХ	Transfers the contents of the accumulator A to the index register X.
	ТХА	Transfers the contents of the index register X to the accumulator A.
	TAY	Transfers the contents of the accumulator A to the index register Y.
	TYA	Transfers the contents of the index register Y to the accumulator A.
	TSX	Transfers the contents of the stack pointer to the index register X.
	TXS	Transfers the contents of the index register X to the stack pointer.
	TAD	Transfers the contents of the accumulator A to the direct page register.
	TDA	Transfers the contents of the direct page register to the accumulator A.
	TAS	Transfers the contents of the accumulator A to the stack pointer.
	TSA	Transfers the contents of the stack pointer to the accumulator A.
	TBD	Transfers the contents of the accumulator B to the direct page register.
	TDB	Transfers the contents of the direct page register to the accumulator B.
	TBS	Transfers the contents of the accumulator B to the stack pointer.
	TSB	Transfers the contents of the stack pointer to the accumulator B.
	ТВХ	Transfers the contents of the accumulator B to the index register X.
	ТХВ	Transfers the contents of the index register X to the accumulator B.
	TBY	Transfers the contents of the accumulator B to the index register Y.
	TYB	Transfers the contents of the index register Y to the accumulator B.
	TXY	Transfers the contents of the index register X to the index register Y.
	TYX	Transfers the contents of the index register Y to the index register X.
	MVN	Transfers a block of data from the lower addresses.
	MVP	Transfers a block of data from the higher addresses.

4.1 Instruction set

Category	Instruction	Description
Stack	PSH	Pushes the contents of the specified register to the stack.
operation	PUL	Restores the contents of stack to the specified register.
	PHA	Pushes the contents of the accumulator A to the stack.
	PLA	Restores the contents of stack to the accumulator A.
	PHP	Pushes the contents of the processor status register to the stack.
	PLP	Restores the contents of stack to the processor status register.
	PHB	Pushes the contents of the accumulator B to the stack.
	PLB	Restores the contents of stack to the accumulator B.
	PHD	Pushes the contents of the direct page register to the stack.
	PLD	Restores the contents of stack to the direct page register.
	PHT	Pushes the contents of the data bank register to the stack.
	PLT	Restores the contents of stack to the data bank register.
	PHX	Pushes the contents of the index register X to the stack.
	PLX	Restores the contents of stack to the index register X.
	PHY	Pushes the contents of the index register Y to the stack.
	PLY	Restores the contents of stack to the index register Y.
	PHG	Pushes the contents of the program bank register to the stack.
	PEA	Pushes a numerical value of 2 bytes to the stack.
	PEI	Pushes the contents of a sequence of 2 bytes in the direct page area to the stack.
	PER	Pushes the result of adding a 16-bit numerical value to the program counter's contents to the stack.
Exchange	XAB	Exchanges the contents of the accumulator A for the contents of the accumulator B.
	-	

4.1 Instruction set

4.1.2 Arithmetic instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, multiplied accumulation, logical operation, comparison, rotation, shift and sign/zero extension of register and memory contents. The following table shows the available instructions for arithmetic operation.

Category	Instruction	Description
Addition,	ADC	Adds the contents of the accumulator, the contents of a memory and the contents of the carry flag.
Multiplica-	SBC	Subtracts the contents of memory and the complement of the carry flag from the con- tents of the accumulator.
Division	INC	Increments the accumulator or a memory contents by 1.
Difficient	DEC	Decrements the accumulator or a memory contents by 1.
	INX	Increments the contents of the index register X by 1.
	DEX	Decrements the contents of the index register X by 1.
	INY	Increments the contents of the index register Y by 1.
	DEY	Decrements the contents of the index register Y by 1.
	MPY	Multiples the contents of the accumulator A and the contents of a memory.
	MPYS	Multiples the contents of the accumulator A and the contents of a memory with sign.
	DIV	Divides the numerical value whose low order is the contents of the accumulator A and high order is the contents of the accumulator B by the contents of a memory.
	DIVS	Divides the numerical value whose low order is the contents of the accumulator A and high order is the contents of the accumulator B by the contents of a memory with sign.
Multiplied	RMPA	Multiples the contents of a memory and another one, and adds the result to the contents of the accumulator. Repeats these operations by specified times.
Logical op-	AND	Performs logical AND between the contents of the accumulator and a memory.
eration	ORA	Performs logical OR between the contents of the accumulator and a memory.
	EOR	Performs logical exclusive-OR between the contents of the accumulator and a memory.
Comparison	CMP	Compares the contents of the accumulator with the contents of a memory.
	СРХ	Compares the contents of the index register X with the contents of a memory.
	CPY	Compares the contents of the index register Y with the contents of a memory.
Shift,	ASL	Shifts the contents of the accumulator or a memory to the left by 1 bit.
Rotation	ASR	Shifts the contents of the accumulator or a memory holding sign to the right by 1 bit.
	LSR	Shifts the contents of the accumulator or a memory to the right by 1 bit.
	ROL	Links the contents of the accumulator or a memory with the carry flag, and rotates the result to the left by 1 bit.
	ROR	Links the contents of the accumulator or a memory with the carry flag, and rotates the result to the right by 1 bit.
	RLA	Rotates the contents of the accumulator A to the left by the specified number of bits.
Extension	EXTS	Extends the low-order 8 bits of the accumulator to 16 bits by sign extension.
zero	EXTZ	Extends the low-order 8 bits of the accumulator to 16 bits by zero extension.

4.1 Instruction set

4.1.3 Bit manipulation instructions

The bit manipulation instructions set the specified bits of the processor status register or a memory to "1" or "0".

The following table shows the available instructions for bit manipulation.

Category	Instruction	Description
Bit manipu-	CLB	Clears the specified bit of a memory to "0".
lation	SEB	Sets the specified bit of a memory to "1".
	CLP	Clears the specified bit of the processor status register's low-order byte (PSL) to "0".
	SEP	Sets the specified bit of the processor status register's low-order byte (PSL) to "1".

4.1.4 Flag manipulation instructions

The flag manipulation instructions set the flag, which is the C, I, m or V flag; to "1" or "0". The following table shows the available instructions for flag manipulation.

Category	Instruction	Description
Flag mani-	CLC	Clears the contents of the carry flag to "0".
pulation	SEC	Sets the contents of the carry flag to "1".
	CLM	Clears the contents of the data length select flag to "0".
	SEM	Sets the contents of the data length select flag to "1".
	CLI	Clears the contents of the interrupt disable flag to "0".
	SEI	Sets the contents of the interrupt disable flag to "1".
	CLV	Clears the contents of the overflow flag to "0".

4.1.5 Branch and return instructions

The branch and return instructions enable changing program execution sequence. The following table shows the available instructions for branch and return.

Category	Instruction	Description
Jump	JMP	Sets a new address in the program counter and jumps to the new address.
	BRA	Jumps to the address obtained by adding an offset value to the contents of the program counter.
	JSR	Pushes the contents of the program counter to the stack and then jumps to the new address.

4.1 Instruction set

Category	Instruction	Description
Branch	BBC	Branches when the specified bits of a memory are all "0".
	BBS	Branches when the specified bits of a memory are all "1".
	BCC	Branches when the carry flag is "0".
	BCS	Branches when the carry flag is "1".
	BNE	Branches when the zero flag is "0".
	BEQ	Branches when the zero flag is "1".
	BPL	Branches when the negative flag is "0".
	BMI	Branches when the negative flag is "1".
	BVC	Branches when the overflow flag is "0".
	BVS	Branches when the overflow flag is "1".
Return	RTI	Returns from an interrupt routine to the original routine.
	RTS	Returns from a subroutine to the original routine. The program bank register's contents are not restored.
	RTL	Returns from a subroutine to the original routine. The program bank register's contents are also restored.

4.1.6 Interrupt instruction (break instruction)

The interrupt instruction executes a software interrupt.

Category	Instruction		Description
Break	BRK	Executes a software interrupt.	

4.1.7 Special instructions

The special instructions showed by the following table control the clock generating circuit.

Category	Instruction	Description
Special	WIT	Stops the internal clock.
	STP	Stops the oscillator's oscillation.

4.1.8 Other instruction

Category	Instruction	Description
Other	NOP	Only advances the program counter and performs nothing else.

4.2 Description of each instruction

4.2 Description of each instruction

This section describes each instruction of the 7751 series. Each instruction is described using one page per one instruction as a general rule. The description page is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruction, its operation and description (Notes 1, 2), status flag change and a list sorted by addressing modes of the assembler coding format (Note 3), the machine code, the byte number and the minimum cycle number (Note 4) are presented.

- Note 1: In the description of each instruction operation, the operation regarding the PC (program counter) is described only for instructions affecting the processing. When an instruction is executed, its instruction bytes are added to the contents of the PC and the PC contains the address of the memory location of the next instruction to be executed. When a carry occurs at this addition, the PG (program bank register) is incremented by 1.
- **Note 2:** [**Operation**] in the description of each instruction shows the contents of each register and memory after executing the instruction. The detailed operation sequence is omitted.
- **Note 3:** The assembler coding formats shown are general examples, and they may differ from the actual formats for the assembler used. Make sure that refer to the mnemonic coding description in the manual for the assembler actually used for programming.
- Note 4: The cycle number shown is the minimum possible, and they depend on the following conditions: •Value of direct page register's low-order byte

The cycle number shown is a number when the direct page register's low-order byte (DPRL) is 0016. When using an addressing mode that uses the direct page register in the condition of DPRL \neq "0016", the cycle number which is obtained by adding 1 to the shown number is an actual number.

•Number of bytes that have been loaded in the instruction queue buffer

•Whether the address of the memory read/write is even or odd

Accessing of an external memory are in the condition of BYTE = 1 (using 8-bit external bus)
Bus cycle.

4.2 Description of each instruction

The following table shows the symbols that are used in instructions' description and the lists of this section, and each instruction is described bellow.

Symbol	Description
С	Carry flag
Z	Zero flag
I	Interrupt disable flag
D	Decimal mode flag
x	Index register length flag
m	Data length flag
V	Overflow flag
N	Negative flag
IPL	Processor interrupt priority level
+	Addition
-	Subtraction
×	Multiplication
/	Division
^	Logical AND
V	Logical OR
Υ	Exclusive OR
_	Negation
\leftarrow	Movement toward the arrow direction
\rightarrow	Movement toward the arrow direction
$\stackrel{\leftarrow}{\rightarrow}$	Movement toward the arrow direction
Acc	Accumulator
Ассн	Accumulator's high-order 8 bits
Accl	Accumulator's low-order 8 bits
A	Accumulator A
Ан	Accumulator A's high-order 8 bits
AL	Accumulator A's low-order 8 bits
в	Accumulator B
Вн	Accumulator B's high-order 8 bits
BL	Accumulator B's low-order 8 bits
X	Index register X
Хн	Index register X's high-order 8 bits
XL	Index register X's low-order 8 bits
Y	Index register Y
Үн	Index register Y's high-order 8 bits
YL	Index register Y's low-order 8 bits
S	Stack pointer
PC	Program counter
РСн	Program counter's high-order 8 bits
PCL	Program counter's low-order 8 bits
REL	Relative address
PG	Program bank register
DT	Data bank register

4.2 Description of each instruction

Symbol	Description
DPR	Direct page register
DPRH	Direct page register's high-order 8 bits
DPRL	Direct page register's low-order 8 bits
PS	Processor status register
РSн	Processor status register's high-order 8 bits
PSL	Processor status register's low-order 8 bits
PS∟n	Bits of processor status register's low-order 8 bits
Μ	Memory contents
M(n)	Contents of memory location specified by operand (1-byte data)
M(n+1,n)	Contents of memory location specified by operand (1-word data)
M(m to n)	Contents of memory location specified by operand (plural-byte data)
M(S)	Contents of memory at address indicated by stack pointer
Mb	Bits of memory
ADDR	Low-order 16 bits (A15 to A0) of 24-bit address
BANK	High-order 8 bits (A23 to A16)
IMM	Immediate data
IMM16	16-bit immediate data
ІММн	High-order 8 bits of 16-bit immediate data
IMML	Low-order 8 bits of 16-bit immediate data
IMM8	8-bit immediate data
bn	n-th bit of data
dd	Displacement for the DPR (8 bits)
i	Number of transfer bytes or rotation
i1, i2	Number of registers pushed or pulled
imm	8-bit immediate value
immHimm∟	16-bit immediate value (imm⊢ represents the high-order 8 bits, and imm∟ represents the low-order 8 bits)
mmll	16-bit address value (mm represents the high-order 8 bits, and II represents the low-order 8 bits)
hhmmll	24-bit address value (hh represents the high-order 8 bits, mm represents the middle-order 8 bit, and II represents the low-order 8 bits)
nn	Displacement for the S (8 bits)
rr	Displacement for the PC (signed 8 bits)
rrHrr∟	Displacement for the PC (signed 16 bits)
hh1, hh2	Bank specification (2 types of 8-bit data)

ADC

Description : Adds the contents of the accumulator, memory and carry flag, and places the result in the accumulator.

Executed as binary addition when the decimal mode flag is "0". Executed as decimal addition when the decimal mode flag is "1".

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0". Meaningless for decimal addition.
- V : Set to "1" when binary addition of signed data results in a value outside the range of -32768 to +32767 (-128 to +127 when the data length flag is "1"). Otherwise, cleared to "0". Meaningless for decimal addition.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0". Meaningless for decimal addition.
- C : Set to "1" when the result of binary addition as unsigned data exceeds +65535 (when the data length flag is "1", it does +255). Otherwise, cleared to "0".

Set to "1" when the result of decimal addition as unsigned data exceeds +9999 (when the data length flag is "1", it does +99). Otherwise, cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	ADC A, #imm	6916, imm	2	2
Direct	ADC A, dd	6516, dd	2	4
Direct indexed X	ADC A, dd, X	7516, dd	2	5
Direct indirect	ADC A, (dd)	7216, dd	2	6
Direct indexed X indirect	ADC A, (dd, X)	6116, dd	2	7
Direct indirect indexed Y	ADC A, (dd), Y	7116, dd	2	8
Direct indirect long	ADCL A, (dd)	6716, dd	2	8
Direct indirect long indexed Y	ADCL A, (dd), Y	7716, dd	2	10
Absolute	ADC A, mmll	6D16, II, mm	3	4
Absolute indexed X	ADC A, mmll, X	7D16, II, mm	3	6
Absolute indexed Y	ADC A, mmll, Y	7916, II, mm	3	6
Absolute long	ADC A, hhmmll	6F16, II, mm, hh	4	6
Absolute long indexed X	ADC A, hhmmll, X	7F16, II, mm, hh	4	7
Stack pointer relative	ADC A, nn,S	6316, nn	2	5
Stack pointer relative	ADC A, (nn, S), Y	7316, nn	2	8
indirect indexed Y				

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

AND

Function	:	Logical AND
Operation	:	$\begin{array}{c} Acc \leftarrow Acc \land M \\ \underline{When \ m = "0"} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
		$\frac{\text{When } m = "1"}{\text{AccL}} \text{AccL} M(n)$ $\square \leftarrow \square \land \square$

Description : Performs logical AND between the contents of the accumulator and the contents of a memory, and places the result in the accumulator.

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	AND A, #imm	2916, imm	2	2
Direct	AND A, dd	2516, dd	2	4
Direct indexed X	AND A, dd, X	3516, dd	2	5
Direct indirect	AND A, (dd)	3216, dd	2	6
Direct indexed X indirect	AND A, (dd, X)	2116, dd	2	7
Direct indirect indexed Y	AND A, (dd), Y	3116, dd	2	8
Direct indirect long	ANDL A, (dd)	2716, dd	2	8
Direct indirect long indexed Y	ANDL A, (dd), Y	3716, dd	2	10
Absolute	AND A, mmll	2D16, II, mm	3	4
Absolute indexed X	AND A, mmll, X	3D16, II, mm	3	6
Absolute indexed Y	AND A, mmll, Y	3916, II, mm	3	6
Absolute long	AND A, hhmmll	2F16, II, mm, hh	4	6
Absolute long indexed X	AND A, hhmmll, X	3F16, II, mm, hh	4	7
Stack pointer relative	AND A, nn, S	2316, nn 🔺	2	5
Stack pointer relative	AND A, (nn, S), Y	3316, nn	2	8
indirect indexed Y				

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

Function	:	Arithmetic shift left
Operation	:	C Acc or M $(-1 bit shift to left - 0)$ $When m = "0"$ $C b15 Acc or M(n+1,n) b0$ $(-1 + 1 + 1,n) b0$ $(-1 + 1 + 1,n) b0$
		$\frac{\text{When } \text{m} = \text{``1''}}{\text{C} \text{b7} \text{AccL or } M(n) \text{b0}}$
Description	:	Shifts all bits of the accumulator or a memory to the one bit left. Its bit 0 is loaded with 0. The carry flag is loaded from bit 15 (or bit 7 when the data length flag is "1") of the data before the shift.
Status flags		
IP	L :	Not affected.
Ν	:	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
V	:	Not affected.
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
I	:	Not affected.
Z	:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
С	:	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the accumulator or a memory before the operation is "1". Otherwise, cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	ASL A	0A16	1	2
Direct	ASL dd	0616, dd	2	7
Direct indexed X	ASL dd, X	1616, dd	2	7
Absolute	ASL mmll	0E16, II, mm	3	7
Absolute indexed X	ASL mmll, X	1E16, II, mm	3	8

Note: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

ASR

	ı :	Arithmetic shift	right			
Operatio	n :	Acc or M 1 bit shift to R MSB	c ight \downarrow			
		<u>vvnen m = "0"</u> b15	Acc or M(n+1,n)	b0 C → →		
		$\frac{\text{When } m = "1"}{b7}$	AccL or M(n) b0 C			
Descripti	ion :	Shifts all bits of data length flag bit 0 of the data	the accumulator or a r is "1") is loaded with t a before the shift.	memory to the one bit right he value before the shift. T	. Its bit 15 (he carry fla	or bit 7 v ig is loa
Status fla	ags					
	IPL :	Not affected.		\sim		
	N :	Set to "1" when Otherwise, clea	bit 15 (or bit 7 when t red to "0".	he data length flag is "1") o	of the opera	ition res
	V :	Not affected.				
		Not affected.				
	m :					
	m : x :	Not affected.	* O - '			
	m : x : D :	Not affected. Not affected.	.0.			
	m : x : D : I :	Not affected. Not affected. Not affected.				
	m : x : D : I : Z :	Not affected. Not affected. Not affected. Set to "1" when	the result of the oper	ation is "0". Otherwise, cle	eared to "0".	
	m : x : D : I : Z : C :	Not affected. Not affected. Not affected. Set to "1" when Set to "1" when	the result of the oper bit 0 before the opera	ation is "0". Otherwise, cle ation is "1". Otherwise, cle	eared to "0". ared to "0".	
[m : x : D : I : Z : C :	Not affected. Not affected. Not affected. Set to "1" when Set to "1" when	the result of the oper bit 0 before the opera	ration is "0". Otherwise, cle ation is "1". Otherwise, cle Machine code	eared to "0". ared to "0". Bytes	Cycles
[m : X : D : I : Z : C : Address	Not affected. Not affected. Not affected. Set to "1" when Set to "1" when	the result of the oper bit 0 before the opera	ration is "0". Otherwise, cle ation is "1". Otherwise, cle Machine code 8916, 0816	eared to "0". ared to "0". Bytes 2	Cycles
	m : x : D : I : Z : C : Address Accumul	Not affected. Not affected. Not affected. Set to "1" when Set to "1" when	the result of the oper bit 0 before the opera Syntax ASR A ASR B	ration is "0". Otherwise, cle ation is "1". Otherwise, cle Machine code 89 ₁₆ , 08 ₁₆ 42 ₁₆ , 08 ₁₆	eared to "0". ared to "0". Bytes 2 2	Cycles 4 4
	m : x : D : I : Z : C : Address Accumul Accumul Direct	Not affected. Not affected. Not affected. Set to "1" when Set to "1" when sing mode ator ator	the result of the oper bit 0 before the opera Syntax ASR A ASR B ASR dd	Tation is "0". Otherwise, cle ation is "1". Otherwise, cle Machine code 8916, 0816 4216, 0816 8916, 0616, dd	eared to "0". ared to "0". Bytes 2 2 3	Cycles 4 9
	m : x : D : I : Z : C : Address Accumul Accumul Direct Direct in	Not affected. Not affected. Not affected. Set to "1" when Set to "1" when sing mode ator ator ator	the result of the oper bit 0 before the opera Syntax ASR A ASR B ASR dd ASR dd, X	ration is "0". Otherwise, cle ation is "1". Otherwise, cle Machine code 8916, 0816 4216, 0816 8916, 0616, dd 8916,1616, dd	eared to "0". ared to "0". Bytes 2 2 3 3 3	Cycles 4 4 9 9

address is specified by a relative address.

When the specified bits are nothing, that is, IMM is all "0", a branch is caused.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct bit relative	BBC #imm, dd, rr	3416, dd, imm, rr	4	7
Absolute bit relative	BBC #imm, mmll, rr	3C16, II, mm, imm, rr	5	8

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag = "0".

BBS

When the specified bits are nothing, that is, IMM is all "0", a branch is caused.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct bit relative	BBS #imm, dd, rr	2416, dd, imm, rr	4	7
Absolute bit relative	BBS #imm, mmll, rr	2C16, II, mm, imm, rr	5	8

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag = "0".

Function	:	Branch on condition
Operation	:	C = 0 ?
		When $C = 0$ (True) $PC \leftarrow PC + 2 \pm REL$
		When $C = 1$ (False) $PC \leftarrow PC + 2$
		* PG changes according to the result of the above PC operation
		• if carry occurs in PC $: PG \leftarrow PG + 1$
		• if borrow occurs in PC : PG \leftarrow PG – 1
		* 2 is the number of instruction bytes of the BCC instruction
		* REL is a relative value (-128 to +127) indicated by the 2nd byte of the instruction
Description	:	When the carry flag is "0", the BCC instruction causes a branch to the specified address. The branch address is specified by a relative address. When the carry flag is "1", the program advances to next step without any action.
Status flags	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BCC rr	9016, rr	2	4

- Or an

Function	:	Branch on condition		
Operation	:	C = 1 ?		
		When $C = 1$ (True) $PC \leftarrow PC + 2 \pm REL$ When $C = 0$ (False) $PC \leftarrow PC + 2$ * PG changes according to the result of the above PC operation• if carry occurs in PC : $PG \leftarrow PG + 1$ • if borrow occurs in PC : $PG \leftarrow PG - 1$ * 2 is the number of instruction bytes of the BCS instruction* PEL is a rolative value (128 to 1127) indicated by the 2nd byte of the instruction		
Description	:	When the carry flag is "1", the BCS instruction causes a branch to the specified address. The branch address is specified by a relative address. When the carry flag is "0", the program advances to next step without any action.		
Status flags	:	Not affected.		

Addressing mode	Syntax 🧷	Machine code	Bytes	Cycles
Relative	BCS rr	B016, rr	2	4
BEQ

Function	:	Branch on condition	
Operation	:	Z = 1 ?	
		When Z = 1 (True)	$PC \leftarrow PC + 2 \pm REL$
		When $Z = 0$ (False)	$PC \leftarrow PC + 2$
		* PG changes according to th	e result of the above PC operation
		• if carry occurs in PC : F	$PG \leftarrow PG + 1$
		• if borrow occurs in PC : F	$PG \leftarrow PG - 1$
		# 2 is the number of instructio	n bytes of the BEQ instruction
		% REL is a relative value (-12)	8 to +127) indicated by the 2nd byte of the instruction
Description	:	When the zero flag is "1", the BEQ in branch address is specified by a rel When the zero flag is "0", the progr	nstruction causes a branch to the specified address. The ative address. am advances to next step without any action.

Status flags : Not affected.

lags : Not affected.		Cer		
Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BEQ rr	F016, rr	2	4

-O-ann

BMI

BMI

Function	:	Branch on condition
Operation	:	N = 1 ?
		When N = 1 (True) $PC \leftarrow PC + 2 \pm REL$ When N = 0 (False) $PC \leftarrow PC + 2$ * PG changes according to the result of the above PC operation • if carry occurs in PC : PG \leftarrow PG + 1 • if borrow occurs in PC : PG \leftarrow PG - 1* 2 is the number of instruction bytes of the BMI instruction * REL is a relative value (-128 to +127) indicated by the 2nd byte of the instruction
Description	:	When the negative flag is "1", the BMI instruction causes a branch to the specified address. The branch address is specified by a relative address. When the negative flag is "0", the program advances to next step without any action.
Status flags	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Relative	BMI rr 🧲	3016, rr	2	4	

BNE

BNE

Function	:	Branch on condition
Operation	:	Z = 0 ?
		When $Z = 0$ (True)PC \leftarrow PC + 2 ± RELWhen $Z = 1$ (False)PC \leftarrow PC + 2
		 * PG changes according to the result of the above PC operation • if carry occurs in PC : PG ← PG + 1 • if borrow occurs in PC : PG ← PG - 1
		* 2 is the number of instruction bytes of the BNE instruction
		* REL is a relative value (-128 to +127) indicated by the 2nd byte of the instruction
Description	:	When the zero flag is "0", the BNE instruction causes a branch to the specified address. The branch address is specified by a relative address. When the zero flag is "1", the program advances to next step without any action.
Status flags	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Relative	BNE rr	D016, rr	2	4	

BPL

Function	:	Branch on condition	
Operation	:	N = 0 ?	
		When $N = 0$ (True)	$PC \leftarrow PC + 2 \pm REL$
		When N = 1 (False)	$PC \leftarrow PC + 2$
		 * PG changes according to the res • if carry occurs in PC : PG ← • if borrow occurs in PC : PG ← 	ult of the above PC operation PG + 1 PG – 1
		* 2 is the number of instruction by	tes of the BPL instruction
		* REL is a relative value (-128 to	+127) indicated by the 2nd byte of the instruction
Description	:	When the negative flag is "0", the BPL in The branch address is specified by a rel When the negative flag is "1", the progra	struction causes a branch to the specified address. ative address. am advances to next step without any action.

Status flags : Not affected.

ags : Not affected.		ncer		
Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BPL rr	10 ₁₆ , rr	2	4

col-an-

BRA

BRA

Function	:	Branch always
Operation	:	$PC \leftarrow branch address (relative)$
		$PC \leftarrow PC + n \pm REL$
		 * PG changes according to the result of the above PC operation * n is the number of instruction bytes in each addressing mode of the BRA instruction * REL is a relative value (-128 to +127) indicated by the last 1-byte or last 2-byte of the instruction Branch area : For short relative -128 to +127
		For long relative -32768 to +32767
Description		The BRA instruction causes a branch to the specified address. The branch address is specified

Description : The BRA instruction causes a branch to the specified address. The branch address is specified by a relative address.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BRA rr	8016, rr	2	3
	BRAL rrнrr∟	8216, rr∟, rrн	3	3

01-31.

BRK

Function	:	Software interrupt		
Operation	:	Stack \leftarrow PG, PC, PSI \leftarrow 1PG, PC \leftarrow 00, Contents of BRK interrupt vector		
		$\begin{array}{llllllllllllllllllllllllllllllllllll$	on execution PSL PSH PCL PCH tion execution PG	
		* 2 is the number of instruction bytes of the BRK instruction, an the next instruction is stored	d PC+2 is the address when	re
Description	:	When the BRK instruction is executed, the CPU first saves instruction is stored, and then saves the contents of the process The CPU causes a branch to the address in bank 016 of whi contents of FFFA ₁₆ in bank 0 and high-order address is the co	the address where the ne or status register in the stac ich low-order address is th ntents of FFFB ₁₆ in bank 0.	xt k. 1e
Status flags				
IP	L:	Not affected.		
Ν	:	Not affected.		
V	:	Not affected.		
m	:	Not affected.		
Х	:	Not affected.		
D	:	Not affected.		
I	:	Set to "1".		
Z	:	Not affected.		
C	:	Not affected.		

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Implied	BRK #imn	0016, EA16	2	15	

Note: The instruction's second byte is ignored, so that any value is available.

Function	:	Branch on condition				
Operation	:	V = 0 ?				
		When $V = 0$ (True)	$PC \leftarrow PC + 2 \pm REL$			
		When $V = 1$ (False)	$PC \leftarrow PC + 2$			
		 * PG changes according to • if carry occurs in PC • if borrow occurs in PC 	the result of the above PC operation : PG \leftarrow PG + 1 : PG \leftarrow PG - 1			
		* 2 is the number of instruc	tion bytes of the BVC instruction			
		* REL is a relative value (-	128 to +127) indicated by the 2nd byte of the instruction			
Description	:	When the overflow flag is "0", the	BVC instruction causes a branch to the specified address			

Description : When the overflow flag is "0", the BVC instruction causes a branch to the specified address The branch address is specified by a relative address. When the overflow flag is "1", the program advances to next step without any action.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BVC rr	5016, rr	2	4

2-21

Function	:	Branch on condition			
Operation	:	V = 1 ?			
		When V = 1 (True)	$PC \leftarrow PC + 2 \pm REL$		
		When $V = 0$ (False)	$PC \leftarrow PC + 2$		
		 * PG changes according to the res • if carry occurs in PC : PG ← • if borrow occurs in PC : PG ← 	ult of the above PC operation PG + 1 PG – 1		
		* 2 is the number of instruction byt	es of the BVS instruction		
		* REL is a relative value (-128 to -	+127) indicated by the 2nd byte of the instruction		
Description	:	When the overflow flag is "1", the BVS in The branch address is specified by a rela When the overflow flag is "0", the progra	struction causes a branch to the specified address. ative address. m advances to next step without any action.		

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Relative	BVS rr	7016, rr	2	4

21-21-

CLB

Function : Bit manipulation

Operation : Mb \leftarrow 0 (b is the specified bits) When m = "0"

<u>When m = "1"</u>

M(n)		M(n)		IMM8
	\leftarrow		٨	

- * IMM is an immediate value indicating the bit to be cleared with a "1". It is specified by the last 1 or 2 bytes of the instruction.
- **Description** : The CLB instruction clears the specified memory bits to "0". Multiple bits to be cleared can be specified at the same time.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct bit	CLB #imm, dd	1416, dd, imm	3	8
Absolute bit	CLB #imm, mmll	1C16, II, mm, imm	4	9

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the data length flag = "0".

CLC

Function	:	Flag manipulation
		- ·

Operation : $C \leftarrow 0$

Description : Clears the contents of carry flag to "0".

Status flags

IPL :	Not affected.
N :	Not affected.

- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Not affected.
- C : Cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	CLC	1816	1	2

CLI

Function	:	Flag manipulation
Operation	:	$I \leftarrow 0$

Description Clears the interrupt disable flag to "0". :

Status flags

IPL :	Not	affected.

- Ν : Not affected.
- Not affected. V :
- : Not affected. m
- Not affected. х :
- D Not affected. : Т
- Cleared to "0". ÷
- Ζ : Not affected.
- С : Not affected.

	2	
10 Y N		

Syntax	Machine code	Bytes	Cycles
CLI	5816	1	2
3-25	no		
	Syntax CLI	Syntax Machine code CLI 5816	Syntax Machine code Bytes CLI 5816 1

CLM

Function : Flag manipulation	
------------------------------	--

Description : Clears the data length flag to "0".

Status flags

IPL :	Not	affected.

- N : Not affected.
- V : Not affected.
- m : Cleared to "0".
- x : Not affected.
- D : Not affected. I : Not affected.
- Z : Not affected.
- C : Not affected.

		200		
Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	CLM	D816	1	2

CLP

Function : Flag manipulation

- - * IMM is a 1-byte immediate value indicating the flag to be cleared with a "1". It is specified by the second byte of the instruction.

Description : Clears the processor status flags specified by the bit pattern in the second byte of the instruction to "0".

Status flags : The specified status flags are cleared to "0". IPL is not affected.

5

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	CLP #imm	C216, imm	2	4

CLV

Function : Flag manipulation

Operation : $V \leftarrow 0$

Description : Clears the overflow flag to "0".

Status flags

- IPL : Not affected. N : Not affected.
- V : Cleared to "0".
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Not affected.
- C : Not affected.

-		

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	CLV	B816	1	2

CMP

 Function
 : Compare

 Operation
 : Acc - M

 When m = "0"

 Acc
 M(n+1,n)

 Men m = "1"

 Men m = "1"

 AccL
 M(n)

 Image: Compare method

Description : Subtracts the contents of a memory from the contents of the accumulator. The result is not stored anywhere. The contents of the accumulator and a memory are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Set to "1" when the result of the operation as unsigned data is "0" or larger. Otherwise, cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	CMP A, #imm	C916, imm	2	2
Direct	CMP A, dd	C516, dd	2	4
Direct indexed X	CMP A, dd, X	D516, dd	2	5
Direct indirect	CMP A, (dd)	D216, dd	2	6
Direct indexed X indirect	CMP A, (dd, X)	C116, dd	2	7
Direct indirect indexed Y	CMP A, (dd), Y	D116, dd	2	8
Direct indirect long	CMPL A, (dd)	C716, dd	2	8
Direct indirect long indexed Y	CMPL A, (dd), Y	D716, dd	2	10
Absolute	CMP A, mmll	CD16, II, mm	3	4
Absolute indexed X	CMP A, mmll, X	DD16, II, mm	3	6
Absolute indexed Y	CMP A, mmll, Y	D916, II, mm	3	6
Absolute long	CMP A, hhmmll	CF16, II, mm, hh	4	6
Absolute long indexed X	CMP A, hhmmll, X	DF16, II, mm, hh	4	7
Stack pointer relative	CMP A, nn, S	C316, nn	2	5
Stack pointer relative	CMP A, (nn, S), Y	D316, nn	2	8
indirect indexed Y				

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

СРХ

Function : Compare

Operation : X – M

Description : Subtracts the contents of a memory from the contents of the index register X. The result is not stored anywhere. The contents of the index register X and a memory are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Set to "1" when the result of the operation as unsigned data is "0" or larger. Otherwise, cleared to "0".

Addressing mode		Syntax	Machine code	Bytes	Cycles
Immediate		CPX #imm	E016, imm	2	2
Direct 🧹		CPX dd	E416, dd	2	4
Absolute		CPX mmll	EC16, II, mm	3	4

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the index register length flag = "0".

CPY

Function:CompareOperation:Y - M $\underline{When \ x = "0"}$ Y M(n+1,n) $\underline{Y} M(n+1,n)$ $\underline{When \ x = "1"}$ $\underline{When \ x = "1"}$ $\underline{When \ x = "1"}$

Description : Subtracts the contents of a memory from the contents of the index register Y. The result is not stored anywhere. The contents of the index register Y and a memory contents are not changed.

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Set to "1" when the result of the operation as unsigned data is "0" or larger. Otherwise, cleared to "0".

Addressing mod	le	Syntax	Machine code	Bytes	Cycles
Immediate		CPY #imm	C016, imm	2	2
Direct	V	CPY dd	C416, dd	2	4
Absolute		CPY mmll	CC16, II, mm	3	4

Note: The byte number increases by 1 when treating on 16-bit data in the condition of the index register length flag = "0".

DEC

DEC

- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	DEC A	1A ₁₆	1	2
Direct	DEC dd	C616, dd	2	7
Direct indexed X	DEC dd, X	D616, dd	2	7
Absolute	DEC mmll	CE16, II, mm	3	7
Absolute indexed X	DEC mmll, X	DE16, II, mm	3	8

Note: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

DEX

 Function
 : Decrement

 Operation
 : $X \leftarrow X - 1$
 $\underline{When \ x = "0"}$ X

 X X

 X X

 $Mhen \ x = "1"$

 XL XL

 XL XL

Description

Subtracts 1 from the contents of the index register X.

Status flags

IPL : Not affected.

:

- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	DEX	CA16	1	2

DEY

Function	:	Decrement
Operation	:	$Y \leftarrow Y - 1$ $\underline{When \ x = "0"}$ $Y \qquad Y$ $\Box \qquad \qquad$
		$\frac{\text{When } x = \text{``1''}}{\text{YL}}$ $\frac{\text{YL}}{\text{\Box}} \leftarrow \boxed{\text{I}} - 1$

Description

Subtracts 1 from the contents of the index register Y.

Status flags

IPL : Not affected.

- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	DEY	8816	1	2

DIV

Function Division (Unsigned) : Operation A(quotient), B(remainder) \leftarrow (B, A) / M : When m = "0"А В В M(n+1,n)Α Quotient Remainder Dividend Divisor <u>When m = "1"</u> AL AL ΒL BL M(n) Dividend Divisor Quotient Remainder 4 ÷

Description

When the data length flag is "0", a 32-bit data stored in the accumulator B, which indicates its higher 16 bits, and A, which indicates its lower 16 bits, is divided by a 16-bit data in a memory. The quotient is placed in the accumulator A, and the remainder is placed in the accumulator B.

When the data length flag is "1", a 16-bit data is are divided by a 8-bit data in a memory. The lower 8 bits of the accumulator B indicate the higher 8 bits of the 16-bit data, and the lower 8 bits of the accumulator A indicate the lower 8 bits of the16-bit data. The quotient is placed in the lower 8 bits of the accumulator A, and the remainder is placed in the lower 8 bits of the accumulator B.

If an overflow occurs as a result of the operation, the overflow flag is set to "1" and the contents of the accumulators A and B become undefined.

When the divisor is "0", the zero divide interrupt is generated. In that case, the contents of the program bank register, program counter, and processor status register are saved on the stack and a branch is generated to the address in bank 0 which is specified by the zero divide interrupt vector. The contents of the accumulators A and B are not changed.

Status flags

IPL	:	Not affected.
N	:	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation quotient is "1". Otherwise, cleared to "0".
		* When an overflow occurs as a result of the operation or the divisor is "0", N flag is not affected.
V	:	Cleared to "0".
		* Set to "1" when an overflow occurs
		* Not affected when the divisor is "0"
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
I	:	Not affected.
		* Set to "1" when the divisor is "0"
Z	:	Set to "1" when the quotient of the operation is "0". Otherwise, cleared to "0".
		* When an overflow occurs as a result of the operation or the divisor is "0", Z flag is not affected.
С	:	Cleared to "0".
		* Set to "1" when an overflow occurs
		* Not affected when the divisor is "0"

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	DIV #imm	8916, 2916, imm	3	21
Direct	DIV dd	8916, 2516, dd	3	23
Direct indexed X	DIV dd, X	8916, 3516, dd	3	24
Direct indirect	DIV (dd)	8916, 3216, dd	3	25
Direct indexed X indirect	DIV (dd, X)	8916, 2116, dd	3	26
Direct indirect indexed Y	DIV (dd), Y	8916, 3116, dd	3	27
Direct indirect long	DIVL (dd)	8916, 2716, dd	3	27
Direct indirect long indexed Y	DIVL (dd), Y	8916, 3716, dd	3	29
Absolute	DIV mmll	8916, 2D16, II, mm	4	23
Absolute indexed X	DIV mmll, X	8916, 3D16, II ,mm	4	25
Absolute indexed Y	DIV mmll, Y	8916, 3916, II ,mm	4	25
Absolute long	DIV hhmmll	8916, 2F16, II, mm, hh	5	25
Absolute long indexed X	DIV hhmmll, X	8916, 3F16, II, mm, hh	5	26
Stack pointer relative	DIV nn, S	8916, 2316, nn	3	24
Stack pointer relative	DIV (nn, S), Y	8916, 3316, nn	3	27
indirect indexed Y				

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

- 2: The cycle number in this table applies in the case of 16-bit ÷ 8-bit operations. In the case of 32bit ÷ 16-bit operations, the cycle number increases by 8.
- **3:** The cycle number in this table and Note 2 is the number when the operation is completed normally (no interrupt has been generated). If a zero divide interrupt is generated, its cycle number is the number which is decremented by 3 from in the above table regardless of the operation's data length.

DIVS

Function : Division (Signed)

Operation:A(quotient), B(remainder) \leftarrow (B, A) / M $\underbrace{When \ m = "0"}_{A \ S \ Quotient}$, $\begin{bmatrix} A \ B \ B \ A \ M(n+1,n) \\ \hline S \ Quotient \ S \ M(n+1,n) \\ \hline S \$

<u>When m = "1"</u>

AL	ΒL		ΒL	AL		M(n)
Quotient	, Remainder s	\leftarrow	Divio s —	dend] ÷	Divisor s

* s means a sign bit that is the most significant bit of the data

Description : When the data length flag is "0", a signed 32-bit data stored in the accumulator B, which indicates its higher 16 bits, and A, which indicates its lower 16 bits, is divided by a signed 16-bit data in a memory. The quotient is placed in the accumulator A, and the remainder is placed in the accumulator B. Each of them is a signed 16-bit data.

When the data length flag is "1", a signed 16-bit data is are divided by a signed 8-bit data in a memory. The lower 8 bits of the accumulator B indicate the higher 8 bits of the 16-bit data, and the lower 8 bits of the accumulator A indicate the lower 8 bits of the16-bit data. The quotient is placed in the lower 8 bits of the accumulator A, and the remainder is placed in the lower 8 bits of the accumulator B. Each of them is a signed 8-bit data.

The sign of remainder becomes same as that of dividend.

If an overflow occurs as a result of the operation, in other words, the quotient exceeds the range -32767 to +32767 when m = "0", or -127 to +127 when m = "1"; the operation finishes halfway and the overflow flag is set to "1". Additionally, the contents of the accumulators A and B become undefined.

When the divisor is "0", the zero divide interrupt is generated. In that case, the contents of the program bank register, program counter, and processor status register are saved on the stack and a branch is generated to the address in bank 0 which is specified by the zero divide interrupt vector. The contents of the accumulators A and B are not changed.

Status flags

IPL	:	Not affected.
Ν	:	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation quotient is "1". Otherwise, cleared to "0".
		* When an overflow occurs as a result of the operation or the divisor is "0", N flag is not affected.
V	:	Cleared to "0".
		* Set to "1" when an overflow occurs
		* Not affected when the divisor is "0"
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
I	:	Not affected.
		✤ Set to "1" when the divisor is "0"

- Z : Set to "1" when the quotient of the operation is "0". Otherwise, cleared to "0".
 - * When an overflow occurs as a result of the operation or the divisor is "0", Z flag is not affected.
- C : Cleared to "0".
 - * Set to "1" when an overflow occurs
 - * Not affected when the divisor is "0"

Syntax	Machine code	Bytes	Cycles
DIVS #imm	8916, A916, imm	3	23
DIVS dd	8916, A516, dd	3	25
DIVS dd, X	8916, B516, dd	3	26
DIVS (dd)	8916, B216, dd	3	27
DIVS (dd, X)	8916, A116, dd	3	28
DIVS (dd), Y	8916, B116, dd	3	29
DIVSL (dd)	8916, A716, dd	3	29
DIVSL (dd), Y	8916, B716, dd	3	31
DIVS mmll	8916, AD16, II, mm	4	25
DIVS mmll, X	8916, BD16, II ,mm	4	27
DIVS mmll, Y	8916, B916, II ,mm	4	27
DIVS hhmmll	8916, AF16, II, mm, hh	5	27
DIVS hhmmll, X	8916, BF16, II, mm, hh	5	28
DIVS nn, S	8916, A316, nn	3	26
DIVS (nn, S), Y	8916, B316, nn	3	29
	Syntax DIVS #imm DIVS dd DIVS dd, X DIVS (dd) DIVS (dd, X) DIVS (dd), Y DIVSL (dd), Y DIVSL (dd), Y DIVSL (dd), Y DIVSL (dd), Y DIVS mmll DIVS mmll, X DIVS mmll, X DIVS hhmmll DIVS hhmmll, X DIVS nn, S DIVS (nn, S), Y	Syntax Machine code DIVS #imm 8916, A916, imm DIVS dd 8916, A516, dd DIVS dd, X 8916, B516, dd DIVS (dd) 8916, B516, dd DIVS (dd) 8916, B16, dd DIVS (dd), Y 8916, B116, dd DIVS (dd), Y 8916, B716, dd DIVSL (dd), Y 8916, B716, dd DIVSL (dd), Y 8916, B716, dd DIVS mmll 8916, B016, II, mm DIVS mmll, X 8916, B916, II, mm DIVS mmll, X 8916, B916, II, mm DIVS hhmmll 8916, B516, II, mm DIVS hhmmll 8916, B516, II, mm, hh DIVS nn, S 8916, B316, nn DIVS (nn, S), Y 8916, B316, nn	Syntax Machine code Bytes DIVS #imm 8916, A916, imm 3 DIVS dd 8916, A516, dd 3 DIVS dd, X 8916, B516, dd 3 DIVS (dd) 8916, B216, dd 3 DIVS (dd) 8916, B16, dd 3 DIVS (dd), X 8916, B16, dd 3 DIVS (dd), Y 8916, B116, dd 3 DIVS (dd), Y 8916, B716, dd 3 DIVSL (dd) 8916, B716, dd 3 DIVSL (dd), Y 8916, B716, dd 3 DIVS mmll 8916, B016, II, mm 4 DIVS mmll, X 8916, B016, II, mm 4 DIVS mmll, Y 8916, B916, II, mm 4 DIVS hhmmll 8916, B716, II, mm 4 DIVS hhmmll, X 8916, B716, II, mm, hh 5 DIVS nn, S 8916, B716, II, mm, hh 5 DIVS nn, S 8916, B716, II, mm, hh 3 DIVS nn, S 8916, B316, nn 3 DIVS (nn, S), Y 8916, B316, nn 3

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

- **2:** The cycle number in this table applies in the case of 16-bit ÷ 8-bit operations. In the case of 32-bit ÷ 16-bit operations, the cycles number increases by 8.
- **3:** The cycle number in this table and Note 2 is the number when the operation completes normally (no interrupt has been generated). If a zero divide interrupt is generated, its cycle number is the number which is decremented by 5 from in the above table regardless of the operation's data length.

EOR

Logical EXCLUSIVE OR Function : Operation $\mathsf{Acc} \leftarrow \mathsf{Acc} ~\forall~ \mathsf{M}$: When m = "0"Acc Acc M(n+1,n)4 <u>When m = "1"</u> Accl Accl M(n) Ά ←

Description : Performs the logical EXCLUSIVE OR between the contents of the accumulator and the contents of a memory by each bit, and places the result in the accumulator.

Status flags

IPL: Not affected.

- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

EOR A, #imm	4916, imm	2	2
EOR A, dd	4516, dd	2	4
EOR A, dd, X	5516, dd	2	5
EOR A, (dd)	5216, dd	2	6
EOR A, (dd, X)	4116, dd	2	7
EOR A, (dd), Y	5116, dd	2	8
EORL A, (dd)	4716, dd	2	8
EORL A, (dd), Y	5716, dd	2	10
EOR A, mmll	4D16, II, mm	3	4
EOR A, mmll, X	5D16, II, mm	3	6
EOR A, mmll, Y	5916, II, mm	3	6
EOR A, hhmmll	4F16, II, mm, hh	4	6
EOR A, hhmmll, X	5F16, II, mm, hh	4	7
EOR A, nn, S	4316, nn	2	5
EOR A, (nn, S), Y	5316, nn	2	8
	OR A, #imm OR A, dd OR A, dd, X OR A, (dd) OR A, (dd), X OR A, (dd), Y ORL A, (dd), Y ORL A, (dd), Y ORL A, (dd), Y OR A, (dd), Y OR A, mmll OR A, mmll, X OR A, hhmmll OR A, nn, S OR A, (nn, S), Y	OR A, $\#mm$ 4916, imm OR A, dd 4516, dd OR A, dd, X 5516, dd OR A, (dd) 5216, dd OR A, (dd) 5216, dd OR A, (dd), X 4116, dd OR A, (dd), Y 5116, dd OR A, (dd), Y 5116, dd ORL A, (dd), Y 5716, dd OR A, mmll 4D16, II, mm OR A, mmll, X 5D16, I, mm OR A, mmll, X 5916, II, mm OR A, hhmmll 4F16, II, mm, hh OR A, nh, S 5316, nn OR A, nn, S 5316, nn	ORA, #imm4916, imm2ORA, dd4516, dd2ORA, dd, X5516, dd2ORA, (dd)5216, dd2ORA, (dd)5216, dd2ORA, (dd), Y5116, dd2ORA, (dd), Y5116, dd2ORLA, (dd), Y5716, dd2ORLA, (dd), Y5716, dd2ORLA, (dd), Y5716, ll, mm3ORA, mmll4D16, ll, mm3ORA, mmll, X5D16, ll, mm3ORA, hhmmll4F16, ll, mm, hh4ORA, hhmmll, X5F16, ll, mm, hh4ORA, nn, S4316, nn2ORA, (nn, S), Y5316, nn2

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

EXTS

Function		: Extension sign
Operation		: Acch \leftarrow 0016 or FF16 <u>When bit 7 of AccL = "0"</u> Acch \leftarrow 0016 <u>Acch AccL Acch AccL</u> <u>00000000 0XXXXXXX \leftarrow ? 0XXXXXXX</u>
		$\frac{\text{When bit 7 of Accl} = "1"}{\text{Acch} \leftarrow FF16}$ $\frac{\text{Acch} \text{Accl} \text{Acch} \text{Accl}}{[11111111] [1XXXXXXX]} \leftarrow \boxed{?} [1XXXXXXX]$
Description	1	 * The high-order byte of Acc changes regardless of the data length flag : This instruction is used to extend a signed 8-bit data stored in the low-order byte of the accumulator to a 16 bit data.
		When bit 7 of the accumulator is "0", bits 8 to 15 become "0". When bit 7 of the accumulator is "1", bits 8 to 15 become "1". With this instruction, the high-order byte of accumulator changes regardless of the data length
		flag. However, the content of the data length flag is unchanged.
Status flag	S	
	IPL	: Not affected.
	N	: Set to "1", when bit 15 of the operation result is "1". Otherwise, cleared to "0".
	V	: Not affected.
	m	: Not affected.
	X	: Not affected.
	ט	Not affected.
	 _	: Not affected.
	Z	: Set to "" when the result of the operation is "0". Otherwise, cleared to "0".
	С	: Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	EXTS A	8916, 8B16	2	4
Accumulator	EXTS B	4216, 8B16	2	4

EXTZ

Function	:	Extension zero
Operation	:	AccH ← 0016
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Description	:	This instruction is used to extend a 8-bit data stored in the low-order byte of the accumulator to a 16-bit data. Bits 8 to 15 of the accumulator become "0".
		With this instruction, the high-order byte of accumulator changes regardless of the data length flag. However, the content of the data length flag is unchanged.
Status flags		
IPL	:	Not affected.
N	:	Set to "0".
V	:	Not affected.
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
I	:	Not affected.
Z	:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	EXTZ A	8916, AB16	2	4
Accumulator	EXTZ B	4216, AB16	2	4

INC

INC

- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	INC A	3A16	1	2
Direct	INC dd	E616, dd	2	7
Direct indexed X	INC dd, X	F616, dd	2	7
Absolute	INC mmll	EE16, II, mm	3	7
Absolute indexed X	INC mmll, X	FE16, II, mm	3	8

Note: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

INX

 Function
 : Increment

 Operation
 : $X \leftarrow X + 1$
 $\underline{When \ x = "0"}$ X

 X X

 $Mhen \ x = "1"$

 XL XL

 L L

Description

Adds 1 to the contents of the index register X.

Status flags

IPL : Not affected.

:

- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	INX	E816	1	2

INY

 Function
 : Increment

 Operation
 : $Y \leftarrow Y + 1$
 $\frac{When x = "0"}{Y}$ Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

 Y Y

Description

Adds 1 to the contents of the index register Y.

Status flags

IPL : Not affected.

- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	INY	C816	1	2

JMP

Function	:	Jump always
Operation	:	[PG], PC ← specified address (absolute or indirect) When the addressing mode is <u>absolute addressing mode,</u> PC ← ADDR
		<u>absolute long addressing mode,</u> PC ← ADDR PG ← BANK
		absolute indirect addressing mode, $PC \leftarrow M(ADDR+1, ADDR)$
		$\begin{array}{c} \underline{absolute\ indirect\ long\ addressing\ mode,}}\\ PC \leftarrow M(ADDR+1,\ ADDR)\\ PG \leftarrow M(ADDR+2) \end{array}$
		<u>absolute indexed X indirect addressing mode,</u> PC ← M(ADDR+X+1, ADDR+X)
		* ADDR indicates the low-order 16 bits of a 24-bit address which is specified by the 2nd and 3rd bytes of the instruction.
		* BANK indicates the high-order 8 bits of a 24-bit address which is specified by the 4th byte of the instruction.
Description		The JMP instruction causes a jump to the address specified by each addressing mode.

Description : The JMP instruction causes a jump to the address specified by each addressing mode. When this instruction is used in addressing modes other than absolute long, the contents of the program bank register is incremented by 1 and the branch destination becomes the next bank if the last byte of the instruction is at the highest address (XXFFFF16) of a bank or if the instruction crosses banks.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Absolute	JMP mmll	4C16, II, mm	3	2
Absolute long	JMPL hhmmll	5C16, II, mm, hh	4	4
Absolute indirect	JMP (mmll)	6C16, II, mm	3	4
Absolute indirect long	JMPL (mmll)	DC16, II, mm	3	6
Absolute indexed X indirect	JMP (mmll, X)	7C16, II, mm	3	6

JSR

Function	:	Jump to subroutine
Operation	:	$\begin{array}{c} \mbox{Stack} \leftarrow [PG], \mbox{PC} \\ \mbox{[PG], PC} \leftarrow \mbox{specified address (absolute or indirect)} \\ \mbox{When the addressing mode is} \\ \hline \mbox{absolute addressing mode,} \\ \mbox{PC} \leftarrow \mbox{PC} + 3 \\ \mbox{M(S,S-1)} \leftarrow \mbox{PC} \\ \mbox{S} \leftarrow \mbox{S} - 2 \\ \mbox{PC} \leftarrow \mbox{ADDR} \end{array} \qquad \begin{array}{c} \mbox{Stack} \\ \mbox{Stack} \\$
		absolute long addressing mode, PC \leftarrow PC + 4StackPC \leftarrow PC + 4(S) just after instruction executionM(S to S-2) \leftarrow PG, PCPCLS \leftarrow S - 3(S) just before instruction executionPC \leftarrow ADDRPGPG \leftarrow BANKPC
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Description	:	 * ADDR indicates the low-order 16 bits of a 24-bit address which is specified by the 2nd and 3rd bytes of the instruction. * BANK indicates the high-order 8 bits of a 24-bit address which is specified by the 4th byte of the instruction. The contents of the program counter (or the program bank register and the program counter in absolute long addressing mode) are first saved on the stack. After that, a jump is caused to the address specified by each addressing mode. When this instruction is used in addressing modes other than absolute long, the content of the program bank register is incremented by 1 and the branch destination becomes the next bank if the last byte of the instruction is at the highest address (XXFFFF16) of a bank or if the instruction crosses banks.
01-1		

Status	flags	:	Not affected.
--------	-------	---	---------------

Addressing mode	Syntax	Machine code	Bytes	Cycles
Absolute	JSR mmll	2016, II, mm	3	6
Absolute long	JSRL hhmmll	2216, II, mm, hh	4	8
Absolute indexed X indirect	JSR (mmll, X)	FC16, II, mm	3	8

LDA

Function	:	Load
Operation	:	Acc ← M <u>When m = "0"</u>
		$\begin{array}{ccc} Acc & M(n+1, n) \\ \hline \end{array} \leftarrow \hline \end{array}$
		When $m = "1"$
		$\begin{array}{ccc} AccL & M(n) \\ \hline & \leftarrow & \hline \end{array}$

Description

Loads the contents of a memory into the accumulator.

Status flags

IPL : Not affected.

1

- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	LDA A, #imm	A916, imm	2	2
Direct	LDA A, dd	A516, dd	2	4
Direct indexed X	LDA A, dd, X	B516, dd	2	5
Direct indirect	LDA A, (dd)	B216, dd	2	6
Direct indexed X indirect	LDA A, (dd, X)	A116, dd	2	7
Direct indirect indexed Y	LDA A, (dd), Y	B116, dd	2	8
Direct indirect long	LDAL A, (dd)	A716, dd	2	8
Direct indirect long indexed Y	LDAL A, (dd), Y	B716, dd	2	10
Absolute	LDA A, mmll	AD16, II, mm	3	4
Absolute indexed X	LDA A, mmll, X	BD16, II, mm	3	6
Absolute indexed Y	LDA A, mmll, Y	B916, II, mm	3	6
Absolute long	LDA A, hhmmll	AF16, II, mm, hh	4	6
Absolute long indexed X	LDA A, hhmmll, X	BF16, II, mm, hh	4	7
Stack pointer relative	LDA A, nn, S	A316, nn	2	5
Stack pointer relative	LDA A, (nn, S), Y	B316, nn	2	8
indirect indexed Y				

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

LDM

Function	:	Load
Operation	:	$M \leftarrow IMM$ $\underline{When \ m = "0"}$ $M(n+1, \ n)$ $\longleftarrow IMM16$
		$\frac{\text{When } m = "1"}{M(n)} \leftarrow \text{IMM8}$
Description	:	Loads an immediate value into a memory.
Status flags	:	Not affected.

		and the second se		
Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	LDM #imm, dd	6416, dd, imm	3	4
Direct indexed X	LDM #imm, dd, X	7416, dd, imm	3	5
Absolute	LDM #imm, mmll	9C16, II, mm, imm	4	5
Absolute indexed X	LDM #imm, mmll, X	9E16, II, mm, imm	4	6

Note: When treating a 16-bit data in the condition of the data length flag = "0", the byte number increases by 1.

LDT

Function	:	Load
Operation	:	$DT \leftarrow IMM8$
		DT └── IMM8
Description	:	Loads an immediate value into the data bank register.
Status flags	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	LDT #imm	8916, C216, imm	3	5

 Machine code

 8916, C216, imm

Function	:	Load
Operation	:	$\begin{array}{c} X \leftarrow M \\ \underline{When \ x = "0"} \\ \hline X & M(n+1, n) \\ \hline \end{array} \leftarrow \boxed{\end{array}$
		$\frac{\text{When } x = "1"}{\text{XL}} \qquad M(n)$
Description	:	Loads the contents of a memory into the index register X.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result unc is "1". Otherwise, cleared to "0".
- Not affected. V 1
- Not affected. m 2
- Not affected. х 2
- Not affected. D 1
- Т : Not affected.
- Set to "1" when the result of the operation is "0". Otherwise, cleared to "0". Ζ :
- С Not affected. :

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	LDX #imm	A216, imm	2	2
Direct	LDX dd	A616, dd	2	4
Direct indexed Y	LDX dd, Y	B616, dd	2	5
Absolute	LDX mmll	AE16, II, mm	3	4
Absolute indexed Y	LDX mmll, Y	BE16, II, mm	3	6

Note: When treating a 16-bit data in the immediate addressing mode in the condition of the index register length flag = "0", the byte number increases by 1.
LDY

Function	:	Load
Operation	:	$\begin{array}{c} Y \leftarrow M \\ \underline{When \ x = "0"} \\ Y & M(n+1, \ n) \\ \hline \end{array} \leftarrow \boxed{\end{array}$
		$\frac{\text{When } x = "1"}{\text{YL}}$ $\frac{\text{YL}}{\text{(n)}} \leftarrow $
Description	:	Loads the contents of a memory into the index register Y.
Status flags		

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".

JIC

- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	5	Syntax	Machine code	Bytes	Cycles
Immediate		.DY #imm	A016, imm	2	2
Direct		.DY dd	A416, dd	2	4
Direct indexed X		.DY dd, X	B416, dd	2	5
Absolute	L	.DY mmll	AC16, II, mm	3	4
Absolute indexed X	L	.DY mmll, X	BC16, II, mm	3	6

Note: When treating a 16-bit data in the immediate addressing mode in the condition of the index register length flag = "0", the byte number increases by 1.

Function Logical shift right 1

Operation

Acc or M 2 С $0 \rightarrow 1$ bit shift to Right \downarrow When m = "0"Acc or M(n+1,n) b15 С b0 0, ↓ \downarrow <u>When m = "1"</u>

b7		Ac	CL (or I	M(n)	b0	С
0	- +	→ -	→ -	- -	→ -	- -	\rightarrow	

Description Shifts all bits of the accumulator or a memory to the one bit right. Its bit 15 (or bit 7 when the 2 data length flag is "1") of the accumulator or a memory is loaded with "0". The carry flag is loaded from bit 0 of the data before the shift.

Status flags

- IPL: Not affected.
- : Cleared to "0". Ν
- V Not affected. 1
- m : Not affected.
- Not affected. 1 Х
- Not affected. D 1
- Т Not affected. •
- Set to "1" when the result of the operation is "0". Otherwise, cleared to "0". Ζ :
- С Set to "1" when bit 0 of the accumlator or a memory before the operation is "1". Otherwise, : cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	LSR A	4A16	1	2
Direct	LSR dd	4616, dd	2	7
Direct indexed X	LSR dd, X	5616, dd	2	7
Absolute	LSR mmll	4E16, II, mm	3	7
Absolute indexed X	LSR mmll, X	5E16, II, mm	3	8

Note: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "4216" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

MPY

Function Multiplication (Unsigned) : Operation B, A \leftarrow A \times M : When m = "0"В А A M(n+1,n)Product Multiplicand X Multiplier <u>When m = "1"</u> AL ΒL AL M(n) Product Multiplicand × Multiplier

Description : When the data length flag is "0", the contents of the accumulator A are multiplied by the contents of a memory. Multiplication is performed as 16-bit × 16-bit, and the result becomes a 32-bit data of which higher is placed in the accumulator B and lower is placed in the accumulator A.

When the data length flag is "1", the low-order 8 bits of the accumulator A are multiplied by the contents of a memory. Multiplication is performed as 8-bit \times 8-bit, and the result becomes a 16-bit data of which high-order 8 bits are placed in the accumulator B's low-order 8 bits and lower 8 bits are placed in the accumulator A's low-order 8 bits.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 31 of the operation result, the accumulator B's bit 15, (or bit 15 of the operation result, the accumulator B's bit 7, when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	MPY #imm	8916, 0916, imm	3	8
Direct	MPY dd	8916, 0516, dd	3	10
Direct indexed X	MPY dd, X	8916, 1516, dd	3	11
Direct indirect	MPY (dd)	8916, 1216, dd	3	12
Direct indexed X indirect	MPY (dd, X)	8916, 0116, dd	3	13
Direct indirect indexed Y	MPY (dd), Y	8916, 1116, dd	3	14
Direct indirect long	MPYL (dd)	8916, 0716, dd	3	14
Direct indirect long indexed Y	MPYL (dd), Y	8916, 1716, dd	3	16
Absolute	MPY mmll	8916, 0D16, II, mm	4	10
Absolute indexed X	MPY mmll, X	8916, 1D16, II, mm	4	12
Absolute indexed Y	MPY mmll, Y	8916, 1916, II, mm	4	12
Absolute long	MPY hhmmll	8916, 0F16, II, mm, hh	5	12
Absolute long indexed X	MPY hhmmll, X	8916, 1F16, II, mm, hh	5	13
Stack pointer relative	MPY nn, S	8916, 0316, nn	3	11
Stack pointer relative	MPY (nn, S), Y	8916, 1316, nn	3	14
indirect indexed Y				

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

5

2: The cycle number in this table applies in the case of 8-bit \times 8-bit operations. In the case of 16-bit imes 16-bit operations, the cycle number increases by 4.

7751 SERIES SOFTWARE MANUAL

MPYS

Function : Multiplication (Signed)

 $\begin{array}{c} \underline{When \ m = "1"} \\ BL \ AL \\ \hline S \ Product \\ \end{array} \leftarrow \begin{array}{c} AL \\ Multiplicand \times \end{array} \begin{array}{c} M(n) \\ \hline Multiplier \\ \end{array}$

* s means a sign bit that is the most significant bit of the data.

Description : When the data length flag is "0", the contents of the accumulator A are multiplied by the contents of a memory as a signed data. Multiplication is performed as 16-bit × 16-bit, and the result becomes a 32-bit data of which higher is placed in the accumulator B and lower is placed in the accumulator A. Then, the accumulator B's bit 15 is a sign bit. When the data length flag is "1", the low-order contents of the accumulator A are multiplied by the contents of a memory as a signed data. Multiplication is performed as 8-bit × 8-bit, and

by the contents of a memory as a signed data. Multiplication is performed as 8-bit \times 8-bit, and the result becomes a 16-bit data of which high-order 8 bits are placed in the accumulator B's low-order 8 bits and lower 8 bits are placed in the accumulator A's low-order 8 bits. Then, the accumulator B's bit 7 is a sign bit.

Status flags

- N : Set to "1" when bit 31 of the operation result, the accumulator B's bit 15, (or bit 15 of the operation result, the accumulator B's bit 7, when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	MPYS #imm	8916, 8916, imm	3	8
Direct	MPYS dd	8916, 8516, dd	3	10
Direct indexed X	MPYS dd, X	8916, 9516, dd	3	11
Direct indirect	MPYS (dd)	8916, 9216, dd	3	12
Direct indexed X indirect	MPYS (dd, X)	8916, 8116, dd	3	13
Direct indirect indexed Y	MPYS (dd), Y	8916, 9116, dd	3	14
Direct indirect long	MPYSL (dd)	8916, 8716, dd	3	14
Direct indirect long indexed Y	MPYSL (dd), Y	8916, 9716, dd	3	16
Absolute	MPYS mmll	8916, 8D16, II, mm	4	10
Absolute indexed X	MPYS mmll, X	8916, 9D16, II, mm	4	12
Absolute indexed Y	MPYS mmll, Y	8916, 9916, II, mm	4	12
Absolute long	MPYS hhmmll	8916, 8F16, II, mm, hh	5	12
Absolute long indexed X	MPYS hhmmll, X	8916, 9F16, II, mm, hh	5	13
Stack pointer relative	MPYS nn, S	8916, 8316, nn	3	11
Stack pointer relative	MPYS (nn, S), Y	8916, 9316, nn	3	14
indirect indexed Y				

Notes 1: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

3-01-1-

2: The cycle number in this table applies in the case of 8-bit \times 8-bit operations. In the case of 16-bit \times 16-bit operations, the cycle number increases by 4.

MVN

Function	:	Move
Operation	:	$M(n \text{ to } n + i) \leftarrow M(m \text{ to } m + i)$
Function Operation		Move M(n to n + i) ← M(m to m + i) A = 0 ? When A = "0" Instruction execution complete When A ± "0" Repeat operation M(DTd: Y) ← M(DTs: X) X ← X + 2 Y ← Y + 2 A ← A - 2 * DTd indicates the transfer destination bank which is specified by the 2nd byte of the instruction. * DTd indicates the transfer source bank which is specified by the 3rd byte of the instruction. * Values set in register before transfer A: Transfer byte number When M = "0" Mhen X = "0" The value 0 to 65535 can be set Winen X = "1" The value 0 to 65535 can be set When X = "0" The value 0 to 65535 can be set When X = "1" The value 0 to 65535 can be set When X = "1" The value 0 to 65535 can be set When X = "1" The value 0 to 65535 can be set When X = "1" The value 0 to 65535 can be set When X = "1" The value 0 to 65535 can be set When X = "1" The value 0 to 65535 can be set When X = "1" <tr< th=""></tr<>
		 the transfer time is shortened when transfer start addresses are even than when they are odd. Note: This instruction is recommended to use in the condition of the x="0". In the condition of the x = "1", data in the area between XX0016 and XXFF16 can be only used because the bigher butes of index registers X and X are not abanged.
		used because the higher bytes of index registers X and Y are not changed. x: Index register length flag

Description : Normally, a block of data is transferred from higher addresses to lower addresses. The transfer is performed in the ascending address order of the block being transferred. The destination bank is specified by the instruction's second byte, and the address within its bank is specified by the contents of the index register Y. The source bank is specified by the instruction's third byte, and the address within its bank is specified by the contents of the index register Y. The source bank is specified by the instruction's third byte, and the address within its bank is specified by the contents of the index register X. The accumulator A is loaded with the bytes number of the data to be transferred. As each 1 byte of data is transferred, the index registers X and Y are incremented, so that the index register X will become a value equal to 1 larger than the source address of the last byte transferred and the index register Y will become a value equal to 1 larger than the destination address of the last byte received. The data bank register will become the destination bank number, and the accumulator A will become FFFT₁₆.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Block transfer	MVN hh1, hh2	5416, hh1, hh2	3	5+(i/2)×7

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even number. When i is an odd number, the cycle number is obtained as follows:

 $5 + (i \div 2) \times 7 + 6.$

Note that (i \div 2) expresses the integer part of the result of dividing i by 2.

MVP

Function	:	Move
Operation	:	$M(n - i to n) \leftarrow M(m - i to m)$
Operation	· · · · · · · · · · · · · · · · · · ·	 M(n - i to n) ← M(m - i to m) A = 0 ? When A = "0" Instruction execution complete When A ≠ "0" Repeat operation X ← X - 1 Y ← Y - 1 M(DTd: Y) ← M(DTs: X) X ← X - 1 Y ← Y - 1 A ← A - 2 * DTd indicates the transfer destination bank which is specified by the 2nd byte of the instruction. * DTs indicates the transfer destination bank which is specified by the 2nd byte of the instruction. * DTs indicates the transfer source bank which is specified by the 2nd byte of the instruction. * Values set in register before transfer A: Transfer byte number When m = "0" The value 0 to 65535 can be set When m = "1" The value 0 to 255 can be set X: Transfer destination area beginning (highermost) address When x = "1" The value 0 to 255 can be set Y: Transfer destination area beginning (highermost) address When x = "0" The value 0 to 255 can be set Y: Transfer destination area beginning (highermost) address When x = "1" The value 0 to 255 can be set Y: Transfer destination area beginning (highermost) address When x = "1" The value 0 to 255 can be set Y: Transfer source area end (lowermost) address When x = "1" The value 0 to 255 can be set *: Transfer source area end (lowermost) address When x = "1" The value 0 to 255 can be set *: Transfer source area end (lowermost) address - 1 Y: Transfer source area end (lowermost) address - 1 Y: Transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus, the transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus, the transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus, the transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus, the transfer is normally performed by two bytes. Accordingly,
		 * Transfer is normally performed by two bytes. Accordingly, in the case of a 16-bit bus, the transfer time is shortened when transfer start addresses are odd than when they are even. Note: This instruction is recommended to use in the condition of the x="0". In the condition of the x = "1", data in the area between XX0016 and XXFF16 can be only used because the higher bytes of index registers X and Y are not changed. x: Index register length flag

Description : Normally, a block of data is transferred from lower addresses to higher addresses. The transfer is performed in the descending address order of the block being transferred. The destination bank is specified by the instruction's second byte, and the address within its bank is specified by the contents of the index register Y. The source bank is specified by the instruction's third byte, and the address within its bank is specified by the contents of the index register X. The accumulator A is loaded with the byte number of the data to be transferred. As each 1 byte of data is transferred, the index registers X and Y are decremented, so that the index register X will become a value equal to 1 smaller than the source address of the last byte transferred and the index register Y will become a value equal to 1 smaller than the destination address of the last byte received. The data bank register will become the destination bank number, and the accumulator A will become FFFF₁₆.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Block transfer	MVP hh1, hh2	4416, hh1, hh2	3	9+(i/2)×7

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even number. When i is an odd number, the cycle number is obtained as follows: $9 + (i \div 2) \times 7 + 8$.

Note that $(i \div 2)$ expresses the integer part of the result of dividing i by 2.

NOP

Function	:	No operation
Operation	:	PC ← PC + 1 * PG also changes depending on the result of the above operation on PC. If a carry occurs in PC: PG ← PG + 1

Description : This instruction only makes the program counter increment by 1 and nothing else.

Status flags : Not affected.

ORA

Function	:	Logical OR
Operation	:	$\begin{array}{c} Acc \leftarrow Acc \lor M \\ \underline{When \ m = "0"} \\ & Acc \qquad A \qquad M(n+1,n) \\ \hline & & & & \\ \hline \end{array} \leftarrow \qquad \qquad$
		$\frac{\text{When } m = "1"}{\text{AccL}} \text{AccL} M(n)$ $ \qquad \qquad$

Description : Performs the logical OR between the contents of the accumulator and the contents of a memory, and places the result in the accumulator.

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	ORA A, #imm	0916, imm	2	2
Direct	ORA A, dd	0516, dd	2	4
Direct indexed X	ORA A, dd, X	1516, dd	2	5
Direct indirect	ORA A, (dd)	1216, dd	2	6
Direct indexed X indirect	ORA A, (dd, X)	0116, dd	2	7
Direct indirect indexed Y	ORA A, (dd), Y	1116, dd	2	8
Direct indirect long	ORAL A, (dd)	0716, dd	2	8
Direct indirect long indexed Y	ORAL A, (dd), Y	1716, dd	2	10
Absolute	ORA A, mmll	0D16, II, mm	3	4
Absolute indexed X	ORA A, mmll, X	1D16, II, mm	3	6
Absolute indexed Y	ORA A, mmll, Y	1916, II, mm	3	6
Absolute long	ORA A, hhmmll	0F16, II, mm, hh	4	6
Absolute long indexed X	ORA A, hhmmll, X	1F16, II, mm, hh	4	7
Stack pointer relative	ORA A, nn, S	0316, nn	2	5
Stack pointer relative	ORA A, (nn, S), Y	1316, nn	2	8
indirect indexed Y				

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

Function	:	Stack manipulation (Push)		
Operation	:	Stack \leftarrow IMM16 M(S,S - 1) \leftarrow IMM16 S \leftarrow S - 2	(S) just after instruction execution (S) just before instruction execution	Stack IMML IMMH
		* IMM16 is an immediate value. order byte.	IMMH indicates its high-order byte and IN	/ML indicates its low-
Description	:	The instruction's third and secor	nd bytes are saved on the stack in this	order.
Status flags	:	Not affected.		

		6		
Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PEA #imm⊦ imm∟	F416, imm⊾, immн	3	5
	ol-ann			

Function	:	Stack manipulation (Push)
Operation	:	Stack \leftarrow M(DPR + IMM8 + 1, DPR + IMM8)
		$\begin{array}{l} M(S,S-1) \leftarrow M(DPR+IMM8+1,DPR+IMM8)\\ S \leftarrow S-2 & (S) \text{ just after instruction execution} & \underbrace{Stack}\\ M(DPR+IMM8)\\ M(DPR+IMM8+1) & \underbrace{M(DPR+IMM8+1)}\\ \end{array}$
		* IMM8 is an 8-bit immediate value and is used as an displacement from DPR.

Description : Saves the contents of the consecutive 2 bytes in the direct page specified by the sum of the contents of the direct page register and the instruction's second byte on the stack in the order of higher address first and lower address second.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PEI #imm	D416, imm	2	6

and the second sec

5

PER

Function	:	Stack manipulation (Push)		
Operation	:	$Stack \gets PC + IMM16$	(S) just after instruction execution	Stack
		$\begin{array}{l} EAR \leftarrow PC + IMM16 \\ M(S, S-1) \leftarrow EAR \\ S \leftarrow S-2 \end{array}$	(S) just before instruction execution	EARH
		 IMM16 is a 16-bit immediat EAR is an execution addressits high-order byte and EAF 	te value. ss which is the result of adding PC to RL indicates its low-order byte.	IMM16. EARн indicates
Description	:	Saves the result of adding a 1 byte and the instruction's seco on the stack in the order of th	6-bit data consisting of the instruction's nd byte as the lower byte to the content ne result's higher byte first and lower b	third byte as the higher s of the program counter byte second.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PER #imm⊦ imm∟	6216, imm∟, immн	3	5

01-2-

PHA

Function	:	Stack manipulation (Push)		
Operation	:	Stack ← A <u>When m = "0"</u> M(S, S − 1) ← A		Cto el la su
		$S \leftarrow S - 2$	(S) just after instruction execution	Stack
			(S) just before instruction execution	AL AH
		When $m = "1"$		
		$M(S) \leftarrow AL$	1	Stack
		$S \leftarrow S - 1$	(S) just after instruction execution	
			(S) just before instruction execution	AL

- **Description** : Saves the contents of the accumulator A to the address specified by the stack pointer. When the data length flag is "0", the accumulator A's higher byte is saved on the stack first and then the lower byte. When the data length flag is "1", only the accumulator A's lower byte is saved on the stack.
- Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	РНА	4816	1	4

5

PHB

Function	:	Stack manipulation (Push)		
Operation	:	$\begin{array}{l} \text{Stack} \leftarrow \text{B} \\ \underline{\text{When } \text{m} = "0"} \\ \text{M}(\text{S}, \ \text{S} - 1) \leftarrow \text{B} \\ \text{S} \leftarrow \text{S} - 2 \end{array}$	(S) just after instruction execution (S) just before instruction execution	Stack BL BH
		<u>When m = "1"</u> M(S) ← BL S ← S − 1	(S) just after instruction execution (S) just before instruction execution	Stack B∟
Description	:	Saves the contents of the ac	cumulator B to the address specified by	the stack p

Description : Saves the contents of the accumulator B to the address specified by the stack pointer. When the data length flag is "0", the accumulator B's higher byte is saved on the stack first and then the lower byte. When the data length flag is "1", only the accumulator B's lower byte is saved on the stack.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	РНВ	<mark>4</mark> 216, 4816	2	6

~

PHD

Function	:	Stack manipulation (Push)		
Operation	:	Stack \leftarrow DPR M(S, S - 1) \leftarrow DPR S \leftarrow S - 2	(S) just after instruction execution (S) just before instruction execution	Stack DPRL DPRH

Description Saves the contents of the direct page register to the address specified by the stack pointer : in the order of higher byte first and then lower byte.

Status flags Not affected. :

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PHD	0B16	1	4
	3-20			

0

PHG

	Stock
(S) just after instruction execution (S) just before instruction execution	PG
	(S) just after instruction execution (S) just before instruction execution

Description Saves the contents of the program bank register to the address specified by the stack pointer. :

Status flags Not affected. :

			Contraction of the	 	
Addressing mode	Syntax	Machine code		Bytes	Cycles
Stack	PHG	4B16	8	1	3

no'

ol-annov.

PHP

Function	:	Stack manipulation (Push)		
Operation	:	Stack \leftarrow PS M(S, S - 1) \leftarrow PS S \leftarrow S - 2	(S) just after instruction execution (S) just before instruction execution	Stack PS∟ PS⊦

Description : Saves the contents of the processor status register to the address specified by the stack pointer in the order of higher byte and then lower byte.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PHP	0816	1	4
	ar ar	nounce		

Function	: Stack manipulation (Push)			
Operation	: Stack \leftarrow DT		Stool	
	$\begin{array}{l} M(S) \leftarrow DT \\ S \leftarrow S - 1 \end{array}$	(S) just after instruction execution(S) just before instruction execution	DT	
oporation	$M(S) \leftarrow DT$ $S \leftarrow S - 1$	(S) just after instruction execution (S) just before instruction execution	Stack DT	,

Description Saves the contents of the data bank register to the address specified by the stack pointer. 1

Status flags Not affected. :

Addressing mode	Syntax	Machine code	0	Bytes	Cycles
Stack	PHT	8B16		1	3

20

or annow

PHX

Function	:	Stack manipulation (Push)		
Operation	:	Stack $\leftarrow X$ <u>When x = "0"</u> M(S, S - 1) $\leftarrow X$ S \leftarrow S - 2	(S) just after instruction execution (S) just before instruction execution	Stack XL XH
		$\frac{\text{When } x = \text{``1''}}{M(S) \leftarrow XL}$ $S \leftarrow S - 1$	(S) just after instruction execution(S) just before instruction execution	Stack XL
Description	:	Saves the contents of the index the index register length flag is " lower byte. When the index regis	register X to the address specified by 0", the contents are saved in the orde ster length flag is "1", only the lower by	v the stack pointer. When er of higher byte and then yte is saved on the stack.
Status flags	:	Not affected.	ACC CO	

Addressing mode	Machine code	Bytes	Cycles	
Stack	РНХ	DA ₁₆	1	4

50 · 3.

PHY

Function	:	Stack manipulation (Push)		
Operation	:	Stack \leftarrow Y <u>When x = "0"</u> M(S, S - 1) \leftarrow Y		Stack
		$S \leftarrow S - 2$	(S) just after instruction execution	V
			(S) just before instruction execution	Ун Т
		<u>When x = "1"</u>		
		$M(S) \leftarrow YL$		Stack
		S ← S − 1	(S) just after instruction execution(S) just before instruction execution	YL
Description	:	Saves the contents of the index the index register length flag is lower byte. When the index reg	x register Y to the address specified by "0", the contents are saved in the order ister length flag is "1", only the lower by	the stack pointer. When of higher byte and then te is saved on the stack.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PHY	5A16	1	4
	0		L.	
	\mathbf{O}^{*}			

PLA

Function		:	Stack manipulation (Pull)
Operation		:	$\begin{array}{c c} A \leftarrow Stack \\ \hline \underline{When \ m = "0"} & AH & AL \\ A \leftarrow M(S+2, \ S+1) & S \leftarrow S+2 & (S) \ \text{just before instruction execution} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & $
			$\begin{array}{c} \underline{When \ m = "1"} & AL \\ AL \leftarrow M(S+1) & \\ S \leftarrow S + 1 & (S) \ \text{just before instruction execution} \\ & (S) \ \text{just after instruction execution} \end{array}$
Description	1	:	Increments the stack pointer, and then restores the data at the address specified by the stack pointer to accumulator A. When the data length flag is "0", 2 bytes are restored. When the data length flag is "1", only 1 byte is restored to the lower byte of the accumulator A.
Status flag	s		
U	IPL	:	Not affected.
	N	:	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
	V	:	Not affected.
	m	:	Not affected.
	х	:	Not affected.
	D	:	Not affected.
	I	:	Not affected.
	Ζ	:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
	С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLA	6816	1	5

PLB

Function	:	Stack manipulation (Pull)				
Operation	:	$\begin{array}{l} B \leftarrow Stack \\ \underline{When m = \texttt{``0''}} \\ B \leftarrow M(S+2, S+1) \\ S \leftarrow S + 2 \end{array}$	(S) just before instruction execution (S) just after instruction execution	Stack	Вн 	BL
		$\frac{\text{When } m = "1"}{\text{BL} \leftarrow M(\text{S+1})}$ $\text{S} \leftarrow \text{S} + 1$	(S) just before instruction execution (S) just after instruction execution	Stack		BL
Description	:	Increments the stack point pointer to the accumulate data length flag is "1", o	nter, and then restores the data a or B. When the data length flag is nly 1 byte is restored to the low	at the addr s "0", 2 byte ver byte of	ess specified b es are restored the accumulat	y the stack . When the or B.
Status flags	5					
j-	IPL :	Not affected.				
l	N :	Set to "1" when bit 15 (o Otherwise, cleared to "0'	r bit 7 when the data length flag	is "1") of t	he operation re	esult is "1".
,	V :	Not affected.				
I	m :	Not affected.				
2	x :	Not affected.				
	D :	Not affected.				
	I :	Not affected.				
	Z :	Set to "1" when the resu	It of the operation is "0". Otherw	wise, clear	ed to "0".	
	C :	Not affected.				

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLB	4216, 6816	2	7

PLD

Function	:	Stack manipulation (Pull)			
Operation	:	$DPR \gets Stack$			DPR
		$\begin{array}{l} DPR \leftarrow M(S+2,S+1\\ S \leftarrow S + 2 \end{array}$) (S) just before instruction execution (S) just after instruction execution	Stack	

Description : Increments the stack pointer, and then restores the data at the address specified by the stack pointer to the direct page register.

Status flags Not affected. :

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLD	2B16	1	5
	- ann	30.		

 Function
 : Stack manipulation (Pull)

 Operation
 : $PS \leftarrow Stack$

 PS \leftarrow M(S+2, S+1)
 Stack

 S ← S + 2
 (S) just before instruction execution

 (S) just after instruction execution

Description : Increments the stack pointer, and then restores the data at the address specified by the stack pointer to the processor status register.

Status flags : Changes to the values restored from the stack.

5

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLP	2816	1	6

and and and and

Function	:	Stack manipulation (Pull)
Operation	:	DT ← Stack
		$\begin{array}{c c} DT \leftarrow M(S+1) \\ S \leftarrow S + 1 \end{array} (S) \text{ just before instruction execution} \end{array} $
Description	:	Increments the stack pointer, and then restores the data at the address specified by the stack pointer to the data bank register.
Status flags		
IP	L:	Not affected.
Ν	:	Set to "1" when bit 7 of the operation result is "1". Otherwise, cleared to "0".
V	:	Not affected.
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
I	:	Not affected.
Z	:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLT	AB ₁₆	1	6
	0			

PLX

Function	:	Stack manipulation (Pull)	
Operation	:	$X \leftarrow Stack$ <u>When x = "0"</u> $X \leftarrow M(S+2, S+1)$ XH	
		$S \leftarrow S + 2$ (S) just before instruction execution]
		(S) just after instruction execution	
		$\begin{array}{c} \underline{When \ x = "1"} \\ XL \leftarrow M(S+1) \\ S \leftarrow S + 1 \end{array} \begin{array}{c} XL \\ \hline \\ (S) \ just \ before \ instruction \ execution \\ \hline \\ (S) \ just \ after \ instruction \ execution \\ \hline \\ \hline \end{array}$]
Description	:	Increments the stack pointer, and then restores the data at the address specified by the stack pointer to the index register X. When the index register length flag is "0", 2 bytes are restored When the index register length flag is "1", only 1 byte is restored to the lower byte of the index register X.	<
Status flags			
IF	۲L :	Not affected.	
Ν	:	Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation resul is "1". Otherwise, cleared to "0".	t
V	:	Not affected.	
m	:	Not affected.	
х	:	Not affected.	
D	:	Not affected.	
I	:	Not affected.	
Z	:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".	
0			

C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLX	FA ₁₆	1	5

PLY

Function	:	Stack manipulation (Pull)
Operation	:	$\begin{array}{c} Y \leftarrow Stack \\ \underline{When \ x = "0"} \\ Y \leftarrow M(S+2, \ S+1) \\ S \leftarrow S + 2 \end{array} \begin{array}{c} YH \\ (S) \ just \ after \ instruction \ execution \\ (S) \ just \ after \ instruction \ execution \\ \end{array}$
		$ \begin{array}{c} \underline{When \ x = "1"} \\ YL \leftarrow M(S+1) \\ S \leftarrow S + 1 \end{array} \begin{array}{c} YL \\ \hline \\ (S) \ just \ before \ instruction \ execution \\ \hline \\ (S) \ just \ after \ instruction \ execution \\ \hline \\ \hline \\ \end{array} \end{array} $
Description	:	Increments the stack pointer, and then restores the data at the address specified by the stack pointer to the index register Y. When the index register length flag is "0", 2 bytes are restored. When the index register length flag is "1", only 1 byte is restored to the lower byte of the index register Y.
Status flags		
IP	'L :	Not affected.
Ν	:	Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
V	:	Not affected.
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
I	:	Not affected.
Z	:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Stack	PLY	7A ₁₆	1	5

PSH

Function	:	Stack manipulation (Push)						
Operation	:	Stack ← Specified register of A, B, X, Y, DPR, DT, PG, PS						
		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
	* The immediate value in the second byte of the instruction is used to specify the reg to be saved.							
		 Among the registers being saved, the following registers are affected by the flags just before the instruction is executed. A B registers 						
		When $m = "0$ ". The high-order and low-order bytes of the register are saved						
		When $m = 0^{\circ}$. The law order byte of the register is sound.						
		when $m = 1$: The low-order byte of the register is saved.						
		• X, Y registers						
		When x= "0" : The high-order and low-order bytes of the register is saved.						
		When x= "1" : The low-order byte of the register is saved.						
		* i indicates the number of data bytes to be saved.						
Description	:	This instruction's second byte specifies the registers to be saved. The registers corresponding to the bits in the second byte that are 1 are saved on the stack. The bit and register correspondence is as follows:						
		b7 b0						
		PS PG DT DPR Y X B A						
		$\leftarrow \text{Direction to save on the stack}$						
		When saving the registers to stack, registers A and B are affected by the m flag, and registers X and Y are affected by the x flag.						
Status flags	:	Not affected.						

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Stack	PSH #imm	EB16, imm	2	11+2Xi1+i2	

Note: To the cycle number shown above, the number shown below are added depending on the registers being saved. The number is 11 cycles when no registers are saved. in above table expresses the number of registers to be saved of A, B, X, Y, DPR and PS; and i₂ expesses it of DT and PG.

Register type	PS	PG	DT	DPR	Y	Х	В	A
Cycle number	2	1	1	2	2	2	2	2

PSH

* IMM8 is an immediate value in 1-byte and inside of () indicates the content of the bit at the value.

PUL

Function	:	Stack manipulation (Pull)							
Operation	:	Specified register of A, B, X, Y, DPR, DT, PG, PS ← Stack							
		A, B, X, Y, DPR, DT, PS \leftarrow M(S + 1 to S + i) \bigcirc 6 5 4 \bigcirc 2 1 order to restore S \leftarrow S + i							
		* The immediate value in the second byte of the instruction is used to specify the registers to be restored.							
		 Among the registers being restored, the following registers are affected by the flags in the restored PS or the flags just before the instruction is executed. A, B registers 							
		 When m = "0": The high-order and low-order bytes of the register are restored. When m = "1": The low-order byte of the register is restored. 							
		 X, Y registers When x = "0": The high-order and low-order bytes of the register are restored. When x = "1": The low-order byte of the register is restored. 							
		* i indicates the number of data bytes to be restored.							
Description	:	This instruction's second byte specifies the registers to be restored. The contents of the stack are restored to the registers corresponding to the bits in the second byte that are 1. The bit and register correspondence is as follows:							
		b7 b0 PS DT DPR Y X B A Direction to restore from the stack \rightarrow							
		When restoring from stack, registers A and B are affected by the m flag in restored PS, and registers X and Y are affected by the x flag in restored PS. When PS is not restored, the registers are affected by the value of these flags just before instruction execution.							
Status flags	:	When bit 7 of the instruction's second byte is "1", and PS is to be restored, the status flags become restored values. Otherwise, the status flags are not affected.							

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Stack	PUL #imm	FB16, imm	2	12+3Xi1+4Xi2	

Note: To the cycle number shown above, the number shown below are added depending on the registers being saved. The number is 12 cycles when no registers are saved. i1 in above table expresses the number of registers to be saved of A, B, X, Y, DT and PS. When restoring DPR, i2 becomes 1 and When not restoring it, i2 becomes 0.

Register type	PS	DT	DPR	Y	Х	В	А
Cycle number	3	3	4	3	3	3	3

* IMM8 is an immediate value in 1-byte and inside of () indicates the content of the bit at the value.

RLA

Description 2 The contents of the accumulator A are rotated to the left by i bits. The value of i is specified by the instruction's third byte (or the third and fourth bytes when the data length flag is "0").

Status flags Not affected. 1

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	RLA #imm	8916, 4916, imm	3	6+i

Note: When the data length flag is "0", the byte number increases by 1.

i: Number of rotation

Function : Repeat multiply and accumulation

Operation

- * s indicates the sign bit and is the topmost bit of the data to be operated on.
- * i, which is a positive number from 0 to 255, indicates the number of repeated operations. It is specified by the third byte of the instruction.
- * Execute this instruction in the condition of index register length flag = "0".
- * Allocate multipliers and multiplicands in the same bank. Do not allocate each of them across other banks.

Description

When the data length flag is "0", performs signed multiplication of the 16-bit data in the memory specified by index register X and data bank register, and the 16-bit data in the memory specified by index register Y and data bank register. The multiplication result is added as binary addition to the 32-bit data of which high-order is the contents of accumulator B, and of which low-order is the contents of accumulator A. The high-order 16 bits of the addition result are stored in accumulator B, and the low-order 16 bits are stored in accumulator A again. After the addition, each of the contents of index register X and index register Y is incremented by 2. Additionally, the number of repeated operations is decremented by 1, and when the result is "0", this instruction execution is finished. When the result is not "0", the above multiplication and addition are repeated.

When the data length flag (m) is "1", performs signed multiplication of the 8-bit data in the memory specified by index register X and data bank register, and the 8-bit data in the memory specified by index register Y and data bank register. The multiplication result is added as binary addition to the 16-bit data of which high-order is the contents of accumulator BL, and of which low-order is the contents of accumulator AL. The high-order 8 bits of the addition result are stored in accumulator BL, and the low-order 8 bits are stored in accumulator AL again. After the addition, each of the contents of index register X and index register Y is incremented by 1. Additionally, the number of repeated operations is decremented by 1, and when the result is "0", this instruction execution is finished. When the result is not "0", the above multiplication and addition are repeated.

- After finishing the instruction execution, index registers X, Y specify the next address of the address where a multiplier and a multiplicand are read last.
- When an overflow occurs at addition, the overflow flag becomes "1" and the instruction execution is finished then. When an overflow occurs, accumulators A and B become undefined. Index registers X, Y specify the next address of the address where a multiplier and a multiplicand are read last.
- When specifying "0" as the number of repeated operations, the instruction execution is finished without multiplication and addition. The contents of accumulators A, B, and index registers X, Y are not affected.

Status flags :

- IPL: Not affected.
- N : Checked each time performing addition of the contents of accumulators B, A, and the multiplication result. When bit 31 of the addition result, in other words, bit 15 in accumulator B (when the data length flag (m) = "1", bit 15 of the addition result, in other words, bit 7 in accumulator B) is "1", set to 1. Otherwise, cleared to 0. Accordingly, the N flag after finishing the instruction execution is specified by the result of the last addition.
- V : Checked each time performing addition of the contents of accumulators B, A, and the multiplication result. When the result is outside range of -2147483648 to +2147483647 (when the data length flag (m) = "1", outside range of -32768 to +32767), set to "1". Otherwise, cleared to 0.

• When an overflow occurs at addition, the instruction execution is finished then. Accordingly, the V flag after finishing the instruction execution is cleared to "0" with normal finish, and set to "1" with an overflow.

- m : Not affected.
- x : Not affected.
- **D** : Not affected.
- I : Not affected.

- Z : Checked each time performing addition of the contents of accumulators B, A, and the multiplication result. When the addition result is "0", set to 1. Otherwise, cleared to 0. Accordingly, Z flag after finishing the instruction execution is specified by the result of the last addition.
- **C** : Checked each time performing addition of the contents of accumulators B, A, and the multiplication result. When the addition result exceeds +4294967295 as not signed data (when the data length flag (m) = "1", exceeds +65536), set to "1". Otherwise, cleared to 0.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Multiplied accumulation	RMPA #imm	8916, E216, imm	3	6 + 16 X n

Note: Cycles show the numbers of cycle in the case of data length flag = "1". It becomes 6 + 20 X n cycles in the case of data length flag = "0".

ROL

Function : Rotate to left

.

Operation

Acc or M C - 1 bit rotate to left ←

<u>When m = "0"</u>

<u>When m = "1"</u>

Description : The carry flag is linked to the accumulator or a memory, and the combined contents are rotated to the 1 bit left.

Bit 0 of the accumulator or a memory is loaded with the content of the carry flag before execution of this instruction. The carry flag is loaded with the content of bit 15 (or bit 7 when the data length flag is "1") of the accumulator or a memory before execution of this instruction.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") before execution of the instruction is "1". Otherwise, cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	ROL A	2A16	1	2
Direct	ROL dd	2616, dd	2	7
Direct indexed X	ROL dd, X	3616, dd	2	7
Absolute	ROL mmll	2E16, II, mm	3	7
Absolute indexed x	ROL mmll, X	3E16, II, mm	3	8

Note: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

ROR

Function : Rotate to right

2

Operation

С	b7	Acc∟ or M(n) b0
	Ú	
$ \longrightarrow $		$\rightarrow \rightarrow $

Description : The carry flag is linked to the accumulator or a memory, and the combined contents are rotated to the 1 bit right.
 Bit 15 (or bit 7 when the data length flag is "1") of the accumulator or a memory is loaded with the content of the carry flag. The carry flag is loaded with the content of bit 0 of the accumulator or a memory before execution of this instruction.

7751 SERIES SOFTWARE MANUAL

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Set to "1" when bit 0 before execution of the instruction is "1". Otherwise, cleared to "0".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Accumulator	ROR A	6A16	1	2
Direct	ROR dd	6616, dd	2	7
Direct indexed X	ROR dd, X	7616, dd	2	7
Absolute	ROR mmll	6E16, II, mm	3	7
Absolute indexed X	ROR mmll, X	7E16, II, mm	3	8

Note: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

RTI

Function 1 Return from interrupt Operation PG, PC, PS \leftarrow Stack (Saved content when interrupt is caused) 1 $PS \leftarrow M(S+2, S+1)$ $PC \leftarrow M(S+4, S+3)$ $PG \leftarrow M(S+5)$ PSH PSL $S \leftarrow S + 5$ Stack (S) just before instruction execution (S) just after instruction execution PG РСн PCL Description The contents of the processor status register, program counter, and program bank register, 1

- which were saved on the stack when the interrupt request was accepted, are restored to these registers.
 - The state becomes the same as that before the acceptance of the interrupt request.
- **Status flags** : Changes to the values that had been on the stack.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	RTI	4016	1	9

RTL

Description : The contents of the stack are restored to the program counter and program bank register.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	RTL	6B16	1	7

RTS

Function : Return from subroutine

Operation : PC \leftarrow Stack (Subroutine return address)

Description : The contents of the stack are restored to the program counter. The contents of program bank register is incremented by 1 when this instruction is allocated at the highest address (XXFFFF16) of a bank.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	RTS	6016	1	5

SBC

Function Subtract with carry 2 $Acc \leftarrow Acc - M - \overline{C}$ Operation : When m = "0"Acc Acc M(n+1,n)C When m = "1"Ĉ Accl ACCL M(n)

Description : Subtracts the contents of a memory and the complement of the carry flag from the contents of the accumulator, and places the result in the accumulator. Performed as a binary subtraction when the decimal mode flag is "0". Performed as a decimal subtraction when the decimal mode flag is "1".

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0". Meaningless for a decimal subtraction.
- V : Set to "1" when a binary subtraction of signed data results in a value exceeding the range of -32768 to +32767 (-128 to +127 when the data length flag is "1"). Otherwise, cleared to "0". Meaningless for a decimal subtraction.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the operation result is "0". Otherwise, cleared to "0".
- C : Set to "1" when the operation result is equal to or larger than "0". Otherwise, cleared to "0", and a borrow is indicated.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	SBC A, #imm	E916, imm	2	2
Direct	SBC A, dd	E516, dd	2	4
Direct indexed X	SBC A,dd, X	F516, dd	2	5
Direct indirect	SBC A, (dd)	F216, dd	2	6
Direct indexed X indirect	SBC A,(dd, X)	E116, dd	2	7
Direct indirect indexed Y	SBC A,(dd), Y	F116, dd	2	8
Direct indirect long	SBCL A, (dd)	E716, dd	2	8
Direct indirect long indexed Y	SBCL A, (dd), Y	F716, dd	2	10
Absolute	SBC A,mmll	ED16,II,mm	3	4
Absolute indexed X	SBC A, mmll, X	FD16, II, mm	3	6
Absolute indexed Y	SBC A, mmll, Y	F916, II, mm	3	6
Absolute long	SBC A, hhmmll	EF16, II, mm, hh	4	6
Absolute long indexed X	SBC A, hhmmll, X	FF16, II, mm, hh	4	7
Stack pointer relative	SBC A, nn, S	E316, nn	2	5
Stack pointer relative	SBC A, (nn, S), Y	F316, nn	2	8
indirect indexed Y				

Notes 1: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

.0

2: When treating a 16-bit data in the immediate addressing mode in the condition of the data length flag = "0", the byte number increases by 1.

SEB

Function : Bit manipulation

Operation : Mb \leftarrow 1 (b is the specified bits) When m = "0"

- * IMM is an immediate value indicating the bits to be set with a "1". The bits are specified by the last 1 or 2 bytes of the instruction.
- **Description** : The SEB instruction sets the specified memory bits to "1". Multiple bits to be set can be specified at the same time.

Status flags : Not affected.

Addressing mode	Syntax 🧪	Machine code	Bytes	Cycles
Direct bit	SEB #imm, dd 👝 🔪	0416, dd, imm	3	8
Absolute bit	SEB #imm, mmll	0C16, II, mm, imm	4	9

Note: When treating a 16-bit data in the condition of the data length flag = "0", the byte number increases by 1.

SEC

Operation : $C \leftarrow 1$

Description : Sets the carry flag to "1".

Status flags

IPL	-:	Not affected.
Ν	:	Not affected.
V	:	Not affected.
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
I	:	Not affected.
Ζ	:	Not affected.
С	:	Set to "1".

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	SEC	3816	1	2

Or ann

SEI

Function :		Flag manipulation
------------	--	-------------------

Operation : $I \leftarrow 1$

Description : Sets the interrupt disable flag to "1".

Status flags

IPL	.:	Not affected.
Ν	:	Not affected.
V	:	Not affected.
m	:	Not affected.
х	:	Not affected.
D	:	Not affected.
Ι	:	Set to "1".
Ζ	:	Not affected.
С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	SEI	7816	1	2

SEM

Function	:	Flag manipulation
Function	:	Flag manipulation

Description : Sets the data length flag to "1".

Status flags

- IPL: Not affected.
- N : Not affected.
- V : Not affected.
- m : Set to "1".
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Not affected.
- C : Not affected.

4			

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	SEM	F816	1	2

SEP

Function : Flag manipulation

Operation : $PSLb \leftarrow 1$ (b is the specified flags)

 $\mathsf{PSL} \gets \mathsf{PSL} ~\mathsf{V} ~\mathsf{IMM8}$

* IMM8 is an 1-byte, immediate value indicating the bits to be set with a "1". The bits are specified by the last 1 or 2 bytes of the instruction.

 $\begin{array}{c|c} b7 \ b6 \ b5 \ b4 \ b3 \ b2 \ b1 \ b0 \\ \hline \hline N \ V \ m \ x \ D \ I \ Z \ C \ PSL \end{array}$

Description : Sets the processor status flags specified by the bit pattern in the second byte of the instruction to "1".

Status flags : The specified status flags are set to "1". IPL is not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Immediate	SEP #imm	E2 ₁₆ , imm	2	3

STA

Function	:	Store
Operation	:	$M \leftarrow Acc$ $\underline{When \ m = "0"}$ $M(n+1,n) \qquad Acc$ $\qquad \qquad $
		<u>When m = "1"</u> M(n) Acc∟ ←
Description	:	Stores the contents of the accumulator into a memory. The contents of the accumulator are not changed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	STA A, dd	8516, dd	2	4
Direct indexed X	STA A, dd, X	9516, dd	2	5
Direct indirect	STA A, (dd) 🥢	9216, dd	2	7
Direct indexed X indirect	STA A, (dd, X)	8116, dd	2	7
Direct indirect indexed Y	STA A, (dd), Y	9116, dd	2	7
Direct indirect long	STAL A, (dd)	8716, dd	2	9
Direct indirect long indexed Y	STAL A, (dd), Y	9716, dd	2	9
Absolute	STA A, mmll	8D16, II, mm	3	5
Absolute indexed X	STA A, mmll, X	9D16, II, mm	3	5
Absolute indexed Y	STA A, mmll, Y	9916, II, mm	3	5
Absolute long	STA A, hhmmll	8F16, II, mm, hh	4	6
Absolute long indexed X	STA A, hhmmll, X	9F16, II, mm, hh	4	7
Stack pointer relative	STA A, nn, S	8316, nn	2	5
Stack pointer relative	STA A, (nn, S), Y	9316, nn	2	8
indirect indexed Y				

Note: This table applies when using the accumulator A. When using the accumulator B, replace "A" with "B" in the syntax. In this case, "42₁₆" is added at the beginning of the machine code, the byte number increases by 1 and the cycle number increases by 2.

STP

Function	:	Oscillation control
Operation	:	Stop the oscillation
Description	:	Resets the oscillator controlling flip-flop to inhibit the oscillation of the oscillation circuit. To restart the oscillator, either an interrupt or reset must be performed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	STP	DB16	1	3

STX

Function	:	Store
Operation	:	$M \leftarrow X$ $\underline{When \ x = "0"}$ $M(n+1,n) \qquad X$ $\qquad \qquad $
		$\frac{\text{When } x = "1"}{M(n)} X_{L}$

Description : Stores the contents of the index register X into a memory. The contents of the index register X are not changed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	STX dd	8616, dd	2	4
Direct indexed Y	STX dd, Y	9616, dd	2	5
Absolute	STX mmll	8E16, II, mm	3	5

3-01-

STY

Function	:	Store
Operation	:	$\begin{array}{c} M \leftarrow Y \\ \underline{When x = "0"} \\ & M(n+1,n) \qquad Y \\ \hline & & & & & \\ \hline \end{array} \qquad \qquad$
		$\frac{\text{When } x = "1"}{M(n)} Y_{L}$

Description : Stores the contents of the index register Y into a memory. The contents of the index register Y are not changed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Direct	STY dd	8416, dd	2	4
Direct indexed X	STY dd, X	9416, dd	2	5
Absolute	STY mmll	8C16, II, mm	3	5

/

 \checkmark

TAD

Function	:	Transfer
Operation	:	$DPR \leftarrow A$
Description	:	DPR A DPR A DPR A Description: Loads the direct page register with the contents of the accumulator A. Data is transferred as a 16-bit data regardless of the data length flag. The contents of the accumulator A are not changed.

Status flags : Not affected.

mplied	TAD			-
		5B16	1	2
		ounce		
	20			

TAS

Function	:	Transfer
Operation	:	$S \leftarrow A$
		S A \leftarrow \Box
Description	:	Loads the stack pointer with the contents of the accumulator A. Data is transferred as a 16- bit data regardless of the data length flag. The contents of the accumulator A are not changed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TAS	1B16	1	2
	25	nounce		
	0			

ΤΑΧ

Function	:	Transfer
Operation	:	$X \leftarrow A$ $\underline{When \ x = "0"}$ $X \qquad A$ $\underline{When \ x = "1"}$ $\underline{XL} \qquad AL$ $\underline{\Box} \leftarrow \underline{\Box}$

Description : Loads the index register X with the contents of the accumulator A. The contents of the accumulator A are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТАХ	AA16	1	2

TAY

Function	:	Transfer
Operation	:	$\begin{array}{c} Y \leftarrow A \\ \underline{When \ x = "0"} \\ \hline Y & A \\ \hline \end{array} \leftarrow \boxed{\end{array}$
		$\frac{\text{When } x = "1"}{\text{YL}}$ $F_{\text{L}} \leftarrow F_{\text{L}}$

Description : Loads the index register Y with the contents of the accumulator A. The contents of the accumulator A are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	1	Syntax	Machine code	Bytes	Cycles
Implied		ТАҮ	A816	1	2

TBD

Function	:	Transfer
Operation	:	$DPR \leftarrow B$
		$DPR \qquad B \\ \frown \frown \frown \bullet \Box$
Description	:	Loads the direct page register with the contents of the accumulator B. Data is transferred as a 16-bit data regardless of the data length flag. The contents of the accumulator B are not changed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles	
Implied	TBD	4216, 5B16	2	4	
Implied		4216, 5B16	2	4	

TBS

Function	:	Transfer
Operation	:	$S \leftarrow B$
Description	:	Loads the stack pointer with the contents of the accumulator B. Data is transferred as a 16- bit data regardless of the data length flag. The contents of the accumulator B are not changed.

Status flags : Not affected.

mplied	TBS	4216, 1B16	2	4
	•			
		ounce		
	200			

ТВХ

Function	:	Transfer
Operation	:	$\begin{array}{c} X \leftarrow B \\ \underline{When \ x = "0"} \\ \hline X & B \\ \hline \Box & \leftarrow \hline \end{array} \end{array}$
		$\frac{\text{When } x = \text{``1''}}{\text{XL}} B_{\text{L}}$

Description : Loads the index register X with the contents of the accumulator B. The contents of the accumulator B are not changed.

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	твх	4216, AA16	2	4

TBY

Function	:	Transfer
Operation	:	$\begin{array}{c} Y \leftarrow B \\ \underline{When \ x = "0"} \\ Y & B \\ \hline \end{array} \\ \leftarrow \boxed{\end{array}$
		$\frac{\text{When } x = "1"}{\text{YL}}$ $F_{\text{L}} = B_{\text{L}}$

Description : Loads the index register Y with the contents of the accumulator B. The contents of the accumulator B are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТВҮ	4216, A816	2	4

TDA

Function	:	Transfer
Operation	:	$A \leftarrow DPR$ $\underline{When \ m = "0"}$ $A \qquad DPR$ $\underline{\Box} \leftarrow \underline{\Box}$ $\underline{When \ m = "1"}$ $AL \qquad DPRL$ $\underline{\Box} \leftarrow \underline{\Box}$

Description : Loads the accumulator A with the contents of the direct page register. The contents of the direct page register are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TDA	7B16	1	2

TDB

Function	:	Transfer
Operation	:	$B \leftarrow DPR$ $\underline{When \ m = "0"}$ $B \qquad DPR$ $\underline{\Box \qquad \Box} \leftarrow \underline{\Box}$ $When \ m = "1"$ $B \qquad DPP$

Description : Loads the accumulator B with the contents of the direct page register. The contents of the direct page register are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТДВ	4216, 7B16	2	4

TSA

Function	:	Transfer
Operation	:	$A \leftarrow S$ $\underline{When \ m = "0"}$ $A \qquad S$ $\Box \qquad \Box \qquad \leftarrow \Box$
		$\frac{\text{When } m = "1"}{\text{AL}} \qquad S_{\text{L}}$

Description : Loads the accumulator A with the contents of the stack pointer. The contents of the stack pointer are not changed.

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TSA	3B16	1	2

TSB

Function	:	Transfer
Operation	:	$B \leftarrow S$ $\underline{When \ m = "0"}$ $B \qquad S$ $\Box \qquad \Box \qquad \leftarrow \Box$
		$\frac{\text{When } m = "1"}{\text{BL}} \xrightarrow{\text{SL}} \leftarrow $

Description : Loads the accumulator B with the contents of the stack pointer. The contents of the stack pointer are not changed.

Status flags

- IPL: Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TSB	4216, 3B16	2	4

Transfer
$X \leftarrow S$ $\underline{When \ x = "0"}$ $X \qquad S$ $\underline{Vhen \ x = "1"}$ $XL \qquad SL$ $\underline{VL} \qquad CL$

Description : Loads the index register X with the contents of the stack pointer. The contents of the stack pointer are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TSX	BA16	1	2

TXA

2

1

Function		:	Transfer					
Operation		:	$A \leftarrow X$ $\underline{When \ m = "0" \ and} A$ \underline{A}	<u>X = "0"</u> X				
			<u>When m = "0" and</u> A ★ Under this	$\frac{1 x = "1"}{XL}$	ransferred to Ан regardless o	f Хн.		
			<u>When m = "1"</u> AL XL ←		60			
Descriptio	n	:	Loads the accumu register X are not	lator A with the con changed.	tents of the index register X. T	The conte	ents of th	e index
Status flag	gs							
-	IPL	:	Not affected.					
	Ν	:	Set to "1" when bir Otherwise, cleared	15 (or bit 7 when t to "0".	he data length flag is "1") of tl	ne opera	tion resu	lt is "1".
	V	:	Not affected.					
	m	:	Not affected.					
	х	:	Not affected.	°0-				
	D	:	Not affected.					
	Ι	:	Not affected.					
	Ζ	:	Set to "1" when th	e result of the oper	ation is "0". Otherwise, cleare	d to "0".		
	С	:	Not affected.	5				
4	Addr	essi	ng mode	Syntax	Machine code	Bytes	Cycles	

8A16

TXA

Implied

ТХВ

Function		:	Transfer
Operation		:	$B \leftarrow X$ $\underline{When \ m = "0" \ and \ x = "0"}_{B} \qquad X$ $\underline{B} \qquad X$ $\underline{When \ m = "0" \ and \ x = "1"}_{C}$
			B XL $00 \rightarrow \leftarrow$ C \times Under this condition, 0016 is transferred to AH regardless of XH.
			$\frac{\text{When } m = "1"}{\text{BL}} X_{\text{L}}$
Description	ı	:	Loads the accumulator B with the contents of the index register X. The contents of the index register X are not changed.
Status flag	s		
	IPL	.:	Not affected.
	Ν	:	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
	V	:	Not affected.
	m	:	Not affected.
	х	:	Not affected.
	D	:	Not affected.
	I	:	Not affected.
	Z	:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
	С	:	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТХВ	4216, 8A16	2	4

TXS

Function	:	Transfer
Operation	:	$S \leftarrow X$ When $x = "0"$
		When $x = "1"$
		S XL 00 ← ★ Under this condition, 0016 is transferred to SH regardless of XH.
- • .•		· · · · · · · · · · · · · · · · · · ·

Description : Loads the stack pointer with the contents of the index register X. The contents of the index register X are not changed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code		Cycles
Implied	TXS	9A16	1	2

ΤΧΥ

Function	:	Transfer
Operation	:	$\begin{array}{c} Y \leftarrow X \\ \underline{When \ x = "0"} \\ Y & X \\ \hline \end{array} \leftarrow \boxed{} \end{array}$
		$\frac{\text{When } x = "1"}{\text{YL}} \xrightarrow{\text{XL}} \leftarrow \square$
Description	:	Loads the index register Y with the contents of the index register X. The contents of the index

Status flags

IPL : Not affected.

register X are not changed.

- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТХҮ	9B16	1	2
TYA

Function :	Transfer
Operation :	$A \leftarrow Y$ $\underline{When \ m = "0" \ and \ x = "0"}}{A \qquad Y}$ $\underline{\Box \qquad } \leftarrow \underline{\Box \qquad }$
	When $m = "0"$ and $x = "1"$ AYL00 \leftarrow * Under this condition, 0016 is transferred to AH regardless of YH.
	$\frac{\text{When } m = "1"}{\text{AL}} \qquad Y_{\text{L}} \qquad $
Description :	Loads the accumulator A with the contents of the index register Y. The contents of the index register Y are not changed.
Status flags	
IPL :	Not affected.
N :	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
V :	Not affected.
m :	Not affected.
x :	Not affected.
D :	Not affected.
Ι:	Not affected.
Ζ:	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
C :	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	TYA	9816	1	2

TYB

Function :	Transfer
Operation :	$B \leftarrow Y$ $\underline{When \ m = "0" \ and \ x = "0"}_{B} \qquad Y$ $\underline{B} \qquad Y$
	When $m = "0"$ and $x = "1"$ BYL00 \leftarrow * Under this condition, 0016 is transferred to BH regardless of YH.
	$\frac{When m = "1"}{BL} Y_{L}$
Description :	Loads the accumulator B with the contents of the index register Y. The contents of the index register Y are not changed.
Status flags	
IPL :	Not affected.
N :	Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
V :	Not affected.
m :	Not affected.
x :	Not affected.
D :	Not affected.
Ι:	Not affected.
Z :	Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
C :	Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ТҮВ	4216, 9816	2	4

ΤΥΧ

Function	:	Transfer
Operation	:	$\begin{array}{c} X \leftarrow Y \\ \underline{When \ x = "0"} \\ \hline X & Y \\ \hline \end{array} \leftarrow \boxed{\end{array}$
		$\frac{\text{When } x = "1"}{\text{XL}}$ $\begin{array}{c} XL \\ \hline \end{array} \leftarrow \end{array}$

Description : Loads the index register X with the contents of the index register Y. The contents of the index register Y are not changed.

Status flags

- IPL : Not affected.
- N : Set to "1" when bit 15 (or bit 7 when the index register length flag is "1") of the operation result is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the result of the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	түх	BB16	1	2

WIT

Function	:	Clock control
Operation	:	Stop the CPU clock
Description	:	The WIT instruction stops the internal clock. However, the oscillation of the oscillation circuit is not stopped. To restart the internal clock, either an interrupt or reset must be performed.

Status flags : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	WIT	CB16	1	3
Implied				3

XAB

Function	:	Exchange
Operation	:	$\begin{array}{c} A \overleftarrow{\rightarrow} B \\ \hline \underline{When \ m = "0"} \\ A & B \\ \hline \hline \hline \hline \end{array} & \overleftarrow{\rightarrow} \end{array}$
		$\frac{\text{When } m = "1"}{\text{AL}}$ $\xrightarrow{\text{BL}}$

Description

Swaps the contents of the accumulators A and B.

Status flags

IPL : Not affected.

:

- N : Set to "1" when bit 15 (or bit 7 when the data length flag is "1") of the accumulator A after the operation is "1". Otherwise, cleared to "0".
- V : Not affected.
- m : Not affected.
- x : Not affected.
- D : Not affected.
- I : Not affected.
- Z : Set to "1" when the contents of the accumulator A after the operation is "0". Otherwise, cleared to "0".
- C : Not affected.

Addressing mode	Syntax	Machine code	Bytes	Cycles
Implied	ХАВ	8916, 2816	2	5

INSTRUCTIONS

4.3 Notes for programming

Make sure of the following when programming.

(1) Set an initial value to the stack pointer because it is undefined immediately after removing reset.

Example)	LDX	#27FH
	TXS	

- (2) Do not set a value other than "00₁₆" to the program bank register and the data bank register. It is because they are invalid in the single-chip mode.
- (3) When performing a decimal operation, in the condition of the decimal mode flag = "1" :

With ADC instruction

Only the carry flag is valid. The zero, negative, and overflow flags are invalid.

With SBC instruction

Only the carry and zero flags are valid. The negative and overflow flags are invalid.

Note: Decimal operation can be done only with the ADC and the SBC instructions.

- (4) Using a 16-bit immediate data in the condition of the data length flag = "1" (data length : 8 bits), or using an 8-bit immediate data in the condition of the data length flag = "0" (data length : 16 bits) will cause the program runaway. The same rule is applied to the index register length flag. Accordingly, take care of the condition of these flags when programming.
- (5) The 7751 series can prefetch the instructions using the 3-byte instruction queue buffer. Make sure that when creating a timer with the software, the cycle number shown in the list of machine instructions is the minimum. (Refer to Chapter 5.)
- (6) When setting a value other than "00₁₆" into the low-order 8 bits of the direct page register (DPRL), the processing time needs 1 machine cycle longer than when setting "00₁₆".
- (7) The processing speed will deteriorate when a 16-bit data is accessed from an odd address. Allocate a 16-bit data from an even address when the processing speed is important.
- (8) By execution of the PLA instruction, the zero and negative flags will change. When the only accumulator A is restored by execution of the PUL instruction, the contents of the processor status register will not change.
- (9) The PSH instruction can save the program bank register on the stack by setting "1" in bit 6 of the operand. However, the PUL instruction cannot restore the program bank register.
- (10) Any code in the second byte of the BRK instruction will not affect to the CPU.

MEMO

olannounced

CHAPTER 5 NUMBER OF INSTRUCTION CYCLES

5.1 Description5.2 Points of view

5.1 Description

5.1 Description

The number of instruction cycles shows instruction execution time with the cycle number of ϕ . The number of instruction cycles for execution time of one instruction can be shown as the following:

•Execution time of one instruction (s) = $\frac{1}{\phi}X$ Instruction cycle number of one instruction

The number of instruction cycles changes depending on the instruction execution condition even when the same instruction is executed in the same addressing mode.

This paragraph explains change factors of the number of instruction cycles.

5.1.1 CPU instruction execution sequence

The number of cycles which is necessary so that the central processing unit (CPU) can execute an instruction is shown in Chapter 6 CPU instruction execution sequence for each addressing mode. It is the number of cycles of ϕ CPU.

Those numbers of cycles are the ideal values; it is assumed to be possible to supply the bus interface unit (BIU) with the instructions and the data of a necessary number of bytes which the CPU requires then.

Actually, the CPU standby cycle, which is explained in the next paragraph, is generated because the supply capability of BIU is limited.

With part of instructions or addressing modes, the cycle number of ϕ_{CPU} which is necessary so that the CPU can execute the instruction changes owing to the factors shown in Table 5.1.1.

Figure 5.1.1 shows an example of the change of the CPU instruction execution sequence.

Factor	Instruction/Addressing mode
Value of direct page register's low-order byte (DPRL)	Addressing mode using direct page register
Value of data length flag (m)	Instructions DIV, DIVS, MPY, MPYS

Table 5.1.1	Change	factors	of	CPU	instruction	execution	sequence
-------------	--------	---------	----	-----	-------------	-----------	----------

Ф СРИ	
Ан(сри)	Y PG Y PG Y PG Y PG Y 0016 X 0016 or 0116 Y PG Y
AMAL(CPU)	PC PC+1 PC+1 PC+2 DPR+dd PC+3
DATA(CPU)	Xop Code Xot used Xot u
R/W(CPU) "H"	
	 *1 This cycle is shortened when DPRL = "0016". This cycle is valid when DPRL ≠ "0016". *2 This term is 25 cycles when m = "0". This term is 17 cycles when m = "1".
Note :	This is not observed externally because this is the internal operation of the CPU.

5.1 Description

5.1.2 CPU standby cycle

In the case of Table 5.1.2, the BIU makes the CPU stand by owing to extending the duration at the "L" level of ϕ CPU (Refer to 2.2 Bus interface unit").

In this case, the number of instruction cycles becomes the following:

3

•Cycle number of ϕ CPU which is necessary so that the CPU can execute the instruction + Cycle number of CPU standby.

Timing that the BIU makes the CPU stand by and the cycle number of the CPU standby change by the change of the memory access frequency and the memory access time shown in Table 5.1.3.

As a rule, the more memory access time and the more memory access frequency, the more the CPU standby cycle increases.

Table 5.1.2 When BIU makes CPU stand by

Item	Standby duration
Being short of instructions in the instruction queue	Standby until BIU places required or more instructions
buffer when the CPU requires them.	into the instruction queue buffer.
BIU reading data.	Standby until the reading is completed.
BIU using bus to prefetch instructions or write data	Standby until to prefetch instructions or write data is
when the CPU requires data read or data write.	completed.

5.1 Description

Table 5.1.3 Change factor of cycle number of CPU standby Factor Change of memory access time and memory access frequency Bus cycle The longer bus cycle, the more time of memory access Input level of BYTE pin •Access frequency of 16-bit data from an even address at the external area (Note 1) "L": Once (External data bus width) "H": Twice •Prefetch unit (frequency) of instructions at the external area "L": 2-byte unit (a few of prefetch frequency) "H": 1-byte unit (a lot of prefetch frequency) Access address •Access frequency of 16-bit data in the case of data bus width = 16 bits (Note 1) (Beginning address) Even: Once Odd: Twice •Prefetch unit (frequency) of instructions in the case of data bus width = 16 bits "L": 2-byte unit "H": 1-byte unit (Note 2) Number of instructions in The fewer instructions in the instruction queue buffer, the more prefetch frequency. the instruction queue buffer when beginning to execute an instruction

Notes 1: In the instruction affected by the data length flag (m) and index register length flag (x), in the condition of m(x) flag = "0".

- **2:** An instruction is prefetched by one byte when the address accessed first at such as branches of the program is only an odd address. After that, the instruction is prefetched by two bytes from an even address during executing instructions continuously.
- **3:** 0 bytes when beginning to execute the program and a branch.

Otherwise, the user cannot select it because it is changed depending on the state of the previous instruction completion.

3 bytes or less in the case of when the input level of BYTE pin is "L", 2 bytes or less in the case of when it is "H".

5.2 Points of view

When thinking about the number of instruction cycles as calculation, it is required to concurrently think about the operation of the CPU and BIU taking the factors of above-mentioned Tables 5.1.1 to 5.1.3 in consideration. The idea examples of the number of instruction cycles are shown using Figures 5.2.1 – 5.2.3.

Figure 5.2.1 shows a CPU instruction execution sequence (in ASL instruction and direct addressing mode). Figures 5.2.2 and 5.2.3 show the operation of the CPU and BIU of Figure 5.2.1 with based on ϕ .

When instructions are executed continuously, the number of the following instruction cycles is affected by the state of the instruction queue buffer and the bus at the previous instruction's completion. Accordingly, examine instructions of that routine continuously in order of execution when you calculate execution time of one routine.

Fig. 5.2.1 CPU instruction execution sequence (in ASL instruction and direct addressing mode)

5.2 Points of view

Fig. 5.2.2 Idea example of number of instruction cycles (1)

5.2 Points of view

5.2 Points of view

5.2.1 Using internal area

Tables 5.2.1 - 5.2.8 show the number of instruction cycles for each instruction when using the internal area.

That value of the table is calculated by almost matching the number of instructions in the instruction queue buffer at beginning to execute the instruction to that at its completion. Accordingly, execution cycles of the routine can be estimated by adding the number of instruction cycles of each instruction.

However, evaluate it with an actual system when an accurate value is necessary because it is a rough estimate.

The instruction execution condition of Tables 5.2.1 - 5.2.8 is described as the following.

(1) Instruction execution condition of Tables 5.2.1 - 5.2.4

- ●Low-order byte of the direct page register (DPRL) = "0016"
- •Low-speed running (The bus cycle is 2ϕ when the ROM is accessed or when the RAM is done) •Data read/write to the RAM
- •Start address of access: Even address to the ROM or the RAM
- •The number of instructions in the instruction queue buffer at beginning to execute an instruction: 1 byte (However, add "time required to place the first byte of next instruction 1 cycle" to it when the instruction execution is completed at the state where there are no instructions in the instruction queue buffer.

(2) Instruction execution condition of Tables 5.2.5 - 5.2.8

•Low-order byte of the direct page register (DPRL) = "0016"

•High-speed running (The bus cycle is 3ϕ when the ROM is accessed, and 2ϕ when the RAM is done) •Data read/write to the RAM

- •Start address of access: Even address to the ROM or the RAM
- ●The number of instructions in the instruction queue buffer at beginning to execute an instruction: 1 byte (However, add "time required to place the first byte of next instruction – 1 cycle" to it when the instruction execution is completed at the state where there are no instructions in the instruction queue buffer.

5.2 Points of view

	Addressing mode	МР	MM	A	JIR	R,b	R, X	R, ≺	OIR)	IR,X)	IR),Y	DIR)	IR), Y	BS	3S, b	3S, X	3S, ≺	\BL	3L, X	ABS)	ABS)	3S, X)	STK	REL	r, b, R	S,b, R	SR	R), Y	3LK	d accumulation
Instructio	n	=	=			Ξ	D	Δ	U	ē	D)	Ľ	L D	4	AE	AE	A	◄	AE	∀)	r(/	(AE	5	Ľ.	DIR	ABS	0,	S)	ш	Multipliec
ADC	Accumulator A		3		4		6		6	8	8	8	10	5		6	6	6	8								6	9		
	Accumulator B		5		7		7		9	9	10	11	12	7		9	9	9	9								7	10		
AND	Accumulator A		3		4		6		6	8	8	8	10	5		6	6	6	8								6	9		
	Accumulator B		5		7		7		9	9	10	11	12	7		9	9	9	9								7	10		
ASL	Accumulator A			2	7		8							7		8														
	Accumulator B			4																										
ASR	Accumulator A			4	9		9							10		11														
	Accumulator B			4	[
BBC	Branch No branch																								9 8	11 9				
BBS	Branch																								9	11				
	No branch				[2				8	9	••••			
BCC	Branch																			00			3	5						
	No branch																			K				4						
BCS	Branch																	8	1	-	-			5						
	No branch																			1				4						
BEQ	Branch															<								5						
	No branch																							4						
BMI	Branch													_										5						
	No branch														1									4						
BNF	Branch											JA.			7									5						
5.12	No branch											····												4						
RPI	Branch									\$														5						
	No branch																							4						
BRA									7	6	7													4						
BRK		16								1														-						
BVC	Branch																							5						
	No branch						N																	Δ.						
BV/S	Branch																							5						_
виз	No branch					7																		4						
CLB	[····				•	9									q															_
		2													Ŭ															
		2																												
		2																												
			4																											
		2	· ·																											
	Accumulator A		3		Δ		6		6	8	8	8	10	5		6	6	6	8								6	9		
	Accumulator R		5		7				<u>0</u>	0 0	10	11	12	7		0	0	0	<u>0</u>								7	9		
CPX			2		1		'		3	3	10		12	5		3	3	3	3									•		
CPV			2		4									5																_
	Accumulator A		5	2	7		8							7		8														
	Accumulator R			· · · ·	 .											·														
		2		+								-																		-
		2																												
	m = "0"	-	2 ∩		30		າ		۲ ۱	۲ ۷	2F	26	37	30		21	21	2/1	ک ۱								າ	25		
ייט	m – "1"		20		24		24		26	26	27	20	20	24		24	24	26	24								24	27		••••
	– 1	1		1	L74		24		20	20	21	_∠0	<u>_</u> 29	L4		<u>_</u> 20	<u>_</u> 20	20	<u>_</u> 20	1							24	۲٦		

Table 5.2.1 Number of instruction cycles in low-speed running (1)

5.2 Points of view

Table 5.2.2 Number of instruction cycles in low-speed running (2)

							<u> </u>					· ·					Ť	ŕ													_
		Addressing									0	~				م	×	<u> </u>		\times	_		$\overline{\mathbf{x}}$			۲	2		~		ulatio
		mode	٩	≥	7	≌	2	2	~	R	X	تح	R	یک ا	SS	رن س	ι Ω	í.	Ч	Ĵ	3S)	BS	6	Ľ		þ,	ف	2	<u>.</u>	Y	ccum
Instr	uctic	on 🔨	≧	≧	-		造	片	١ <u>۴</u>	9	E	間	밀		AE	ä	ğ	ğ	AE	AB	(AE	₹	ğ	လံ	R	Ř	ŝ	ပ	SR	В	lied a
syml	bol						-	-						Ľ				1					3				¥				Multip
	;	m = "0"		32		34		34		36	36	37	38	39	34		36	36	36	36								34	37	-	\neg
	•	m = "1"		24		26		26		28	28	29	30	31	26		28	28	28	28								26	29		
		Accumulator A		3		1		6		6	2	<u> </u>	8	10	5		6	6	6	<u>Q</u>								6	0		_
		Accumulator B		5		7		7		0	<u>0</u>	10	11	10	7		<u>0</u>	. <u>0</u>	0 0	. <u>.</u> .								7	10		
EVT	2	Accumulator A		5	4	1		-		5	5	10	11	12	-			3	3	3								-	10	-	-
	5	Accumulator B																													
	7	Accumulator A			4																										-
	<u><</u>	Accumulator B			.4.																										
					4	-		_							7		_														—
INC		Accumulator A			.2.			8.									8.														
		Accumulator B	•		4																										_
			2																												
INY			2																		_										_
JMP															3				5	-	5	7	7								_
JSR															8				9			2	9					\vdash			
LDA		Accumulator A		3		4		6		6	8	. 8	. 8	10	5		6	6	6	. 8								6	.9		
		Accumulator B		5		7		7		9	9	10	11	12	7		9	9	9	9								7	10		
LDM						5		7							7		7														
LDT				5																											
LDX				3		4			6					_	5		8	6													
LDY				3		4		6							5		6														
LSR		Accumulator A			2	7		8							7		8														
		Accumulator B			4																										
MPY		m = "0"		13		15		15		17	17	18	19	20	15	17		17	17	17	17							15	18		
		m = "1"		8		11		11		13	13	14	15	16	11	13		13	13	13	13							11	14		
MPY	'S	m = "0"		13		15		15	10	17	17	18	19	20	15	17		17	17	17	17							15	18		
	0	m = "1"		8		11		11		13	13	14	15	16	11	13		13	13	13	13							11	14		
MVN	0 by	/te transfer							•																					5	
	1 b	/te transfer				1		1																						11	
	2 or n	nore even bytes transfer																												*1	
	3 or r	nore odd bytes transfer	• • • •																											*2	
	0 by	/te transfer																												5	
	1 b	to transfer																												11	
	2 or n	nore even hytes transfer																										· · · ·		<u></u>	
	2 or n	nore odd bytes transfer																												**	
	3011	nore out bytes transier	~																									\square		<u> </u>	—
			2	-				-				-	-		_		-	-	-	•											_
		Accumulator P		3		4		6		6	8	8	8	10	5		6	6	6	. 8								6	9		
				5		1		7		9	9	10	11	12	7		9	9	9	9				-				1	10	+	-
																								5				$ \mid $	$ \rightarrow $	-+	_
PEI																		l -						7				.			

* 1: 5 + $\frac{i}{2}$ X 7 (i = number of transfer bytes) * 2: 11 + $\frac{i-1}{2}$ X 7 (i = number of transfer bytes) * 3: 9 + $\frac{i}{2}$ X 7 (i = number of transfer bytes) * 4: 17 + $\frac{i-1}{2}$ X 7 (i = number of transfer bytes)

5.2 Points of view

\sim	Addressing					-					•		~				,								~	r				tion
	mode	٩			R	٩	\times	Υ.	R	X	, ۲	Ŕ		ഗ	þ,	×	Υ,		X	ŝ	ŝ	×	\mathbf{x}	_	b, I	þ.	~	<u> </u>	\mathbf{x}	nmula
Instructio		ΙΞ	M	∢	B	Ц	R,	R	ā	R	IR	ē	E E	١ ک ک	BS	BS	BS	ΔB	В	AB	¥	B	S	뀓	Ŕ	Ś	S	R	Ы	d acc
symbol	"						Δ)	9	Ц Ц		Ľ		A	A	A		A)	Ξ	4	-		Δ	AB		9		ltiplie
Symbol																													_	M
PER																							5							
PHA																							4							
PHB																							6							
PHD																							4							
PHG																							3							
PHP																							4							
PHT																							3							
PHX																							4							
PHY																							4							
PLA																							5							
PLB																					2		7							
PLD																							5							
PLP																			1				6							
PLT																				1	8		6							
PLX																		5	-				5							
PLY																1	2		1				5						_	
PSH																							*1							
PUL																							*2							
RMPA	m = "0"												1																	*3
	m = "1"												8																	*4
RLA			*5																											
ROL	Accumulator A			2	7		8							7		8														
	Accumulator B			4						1																				
ROR	Accumulator A			2	7		8	4	100					7		8														
-	Accumulator B			4																										
RTI		10							-																					
RTI		8																												
RTS		6																												
SBC	Accumulator A		3		4	1	6		6	8	8	8	10	5		6	6	6	8								6	9		
	Accumulator B		5		7		7		9	9	10	11	12	7		9	9	9	9								7	10		
SEB			Ŭ	1	•	9	•		-	-	10		12		9	•	•	-	-											
SEC		2																												
SEI		2																												
SEM		2																											\neg	
SEP			3																											
STA	Accumulator A				5		5		7	8	7	9	9	5		5	5	7	7								5	9		
	Accumulator B				6		7		9	9	10		12	8		8	8	8	9									10		

Table 5.2.3 Number of instruction cycles in low-speed running (3)

***** 1: 11 + 2 i₁ + i₂

(i1 = number of registers saved among A, B, X, Y, DPR and PS; i2 = number of registers saved of DT and PG) * 2: 12 + 3i1 + 4i2

(i1 = number of registers restored among A, B, X, Y, DT and PS; i2 = 1 when restoring DPR and 0 when not doing)

***** 3: 6 + 20 i (i = number of repeated operations)

***** 4: 6 + 16 i (i = number of repeated operations)

* 5: 7 + i (i = number of rotations)

5.2 Points of view

															<u> </u>	<i>'</i>													
Addressing mode Instruction symbol	IMP	IMM	٩	DIR	DIR, b	DIR, X	DIR, Y	(DIR)	(DIR,X)	(DIR),Y	L(DIR)	L(DIR), Y	ABS	ABS, b	ABS, X	ABS, Y	ABL	ABL, X	(ABS)	L(ABS)	(ABS, X)	STK	REL	DIR, b, R	ABS, b, R	SR	(SR), Y	BLK	Multiplied accumulation
STP	-																												
STX				5			5						5																
STY				5		5							5																
TAD	2																												
TAS	2																												
TAX	2																												
TAY	2																												
TBD	4																												
TBS	4																												
ТВХ	4																												
TBY	4																												
TDA	2																			-									
TDB	4																		100	1		2							
TSA	2																		2										
TSB	4																2	1	- 1										
TSX	2																	S.											
ТХА	2																	*											
ТХВ	4																												
TXS	2																												
ТХҮ	2																												
ТҮА	2										f.			9															
ТҮВ	4									_	1																		
ТҮХ	2								3																				
WIT	_							10																					
ХАВ	5																												
								1	9																				

Table 5.2.4 Number of instruction cycles in low-speed running (4)

5.2 Points of view

	Addrosoing					<u> </u>				<u> </u>						<u> </u>	<u></u> ,									~				u
	mode		_		~	٩	\times	\succ	<u>.</u>	$\widehat{\mathbf{x}}$	≻	R	۲,	0	٩	$ \times$	≻		$ \times$	6	တြ	$ \widehat{\mathbf{x}} $			Ľ Ľ	L L L		\succ		mulat
		l≚	∣⋚	∢	ЧË	ЪĘ	ЪĽ	IR,	E	Ц,	R	E	E S	١ Щ	ŝ	လွို	S.S.	ABI	بّ	B	AB	လွိ	È	Ē	ب م	С С	SR	Ъ,	긆	d accu
symbol	n 🔪	-	-		-			Δ	<u> </u>	9	9	Ľ			P	R	₹		F	5	Ľ	E		1		AB		S		Itiplied
Gynnoor	<u> </u>		_		_				7	40	40		10	-		_	_	_	44										\vdash	ž
ADC	Accumulator A		5		5		8		1	10	10	9	12	1		8	8	8	11								8	11		
	Accumulator B		6		8		8		10	10	11	12	13	8		11	11	11	11								8	11		
AND	Accumulator A		5		5		8		7	10	10	9	12	7		8	8	8	11								8	11		
	Accumulator A		0	2	8		8		10	10	11	12	13	8		10	11	11	11								8	11		—
ASL	Accumulator B			. <u>Z</u> .	9		10							9		10													· · · · •	
ASR	Accumulator A			4	10		10							12		13														
	Accumulator B			. . 4			10																							
BBC	Branch			-																					13	16				
	No branch																								10	12				
BBS	Branch																								13	16				
	No branch																				1				10	12				
BCC	Branch																							8						
	No branch																	1			8			5						
BCS	Branch																							8					.	
	No branch																							5						_
BEQ	Branch																	<u> </u>						. 8					.	
	No branch																-							5						
BMI	Branch																							8						
	No branch											0			-									5						
BINE	No branch										. e													0 5					· · · · •	
RDI	Branch									1														8						
	No branch											••••												5						
BRA								5		2	-													8						
BRK		18							-																					
BVC	Branch																							8						
_	No branch			1																				5						
BVS	Branch																							8						
	No branch																							5						
CLB						12									12														$ \square$	
CLC		2																											⊢	
CLI		2																												
		2	_																											
		_	5																											
	A	2	-		_		0		-	40	40	_	40	-		_	0	0									~			_
CMP	Accumulator A		5		5		8		1	10	10	12	12	/		8	8	8	11								8.	11	(· · ·)	
CPX	Accumulator B		5		8		8		10	10	11	12	13	8		11	11	11	11								0			
			5		5									7																
	Accumulator A		-	2	q		10							a		10														
	Accumulator R			- . 4	9.											1.9.				••••								• • • •		
DEX		2		ŕ																										
DEY		2																												_
DIV	m = "0"		31		33		33		35	35	36	37	38	33		36	36	36	36								33	36		
	m = "1"		23		25		25		27	27	28	29	30	25		28	28	28	28								25	28		

Table 5.2.5 Number of instruction cycles in high-speed running (1)

5.2 Points of view

Table 5.2.6 Number of instruction cycles in high-speed running (2)

						-				-	•						<u> </u>													
	Addressing mode	МР	MM	A	JIR	R, b	R, X	R,≺	JR)	R,X)	R),Y	DIR)	IR), Y	BS	S, b	šS, X	S, ≺	BL	3L, X	(SB)	ABS)	S, X)	TK	EL.	, b, R	3, b, R	SR	R), Y	LK	accumulation
Instru symb	uction ol	_				Δ	Δ	Δ	U	ē	ē	Ľ	L D	A	AB	AB	AB	∢	AE	A)	/) 	(AB	S	œ	DIR	ABS		S)	В	Multiplied
DIVS	m = "0"		33		35		35 27		37	37 20	38	39 21	40 22	35		38	38 30	38 30	38								35 27	38 20		
EOR	Accumulator A		5		5		8		29 7	29 10	10	9	<u>32</u> 12	7		8	8	8	11								8	11		
	Accumulator B		6		8		8		10	10	11	12	13	8		11	11	11	11								8	11		
EXTS	Accumulator A			4																										
EXTZ	Accumulator A			4.																										
	Accumulator B			4										-		10														
INC	Accumulator A			2	9		10							9		10														
	Accumulator B			4																										
		2																		_			_							
INY		2																_				10								
JMP														5				8	-4	7	11	10								
JSR														10				12		1		12								
LDA	Accumulator A		5		5 8		8 8		7 10	10 10	10 11	9 12	12 13	7 8		8 11	8	8 11	11 11								. <u>8</u> 8	11 11		
LDM			-		7		10		-	-				10		10											-			
LDT			5													10														
LDX			5		5			8					1	7		1	8													
LDY			5		5		8						5	7		8	-													
LSR	Accumulator A		Ŭ	2	9		10							9		10														
	Accumulator B			4								<u> </u>	~																	
MPY	m = "0"		14		16		16		18	18	19	20	21	16		19	19	19	19								16	19		
	m = "1"		10		12		12		14	14	15	16	17	12		15	15	15	15								12	15		
MPYS	S m = "0"		14		16		16		18	18	19	20	21	16		19	19	19	19								16	19		
	m = "1"		10		12		12	_	14	14	15	16	17	12		15	15	15	15								12	15		
MVN	0 byte transfer 1 byte transfer																												6 12	
	2 or more even bytes transfer																												*1 *2	
	3 or more odd bytes transfer			1																									*Z	
MVP	1 byte transfer																												0	
-																													12 *2	
-	3 or more odd bytes transfer																												*3 *4	
NOP		2																												
ORA	Accumulator A		5		5		8		7	10	10	9	12	7		8	8	8	11								8	11		
	Accumulator B	+	6		8	+	8		10	10	11	12	13	8		11	11	11	11								8	11		
PEA	1										· ·												7					· ·		
PEI																							9							

* 1: $6 + \frac{i}{2} \times 7$ (i = number of transfer bytes) * 2: $12 + \frac{i-1}{2} \times 7$ (i = number of transfer bytes) * 3: $10 + \frac{i}{2} \times 7$ (i = number of transfer bytes) * 4: $18 + \frac{i-1}{2} \times 7$ (i = number of transfer bytes)

5.2 Points of view

										.9.	10					.9	(•)													_
	Addressing						$\mathbf{>}$			0	Υ		\succ			\mathbf{x}	~			_		$\widehat{\mathbf{X}}$			പ	2		<u> </u>		ulatior
	mode	⊒	Σ	~	Я	<u>بر</u>	<u>`</u>	۲,	R	X V	۲),	R	Ъ,	လ္ဆ	с С	6	ί.	님	r	3S)	BS	С,	Ϋ́	Ц	ģ	ف	പ	<u> </u>	Y	Com
Instructio	in	∣≧	N	~	Δ	造	JIR	E	ē	E	Ы	Ģ		¥	ğ	B	B	AE	M	(AE	A	ğ	S	R	Ř	S,	S	SR	Ш	ied ac
symbol	"							_		\sim	I)	-	Ľ		1	4	1			-		7			⊡	¥		Ű		Aultipl
PFR																							7							_
																							1							_
рив																							7							_
рнр																							1							_
																							4							
рнр																							4							-
рит																							4							-
рну																							4							_
																							4							_
																							4 5							_
																						_	2 8							_
																							5							_
																				1000			6							_
																						_	6							_
																		6		-			5							_
																			-				5							_
DSH																Ś							5 *1							-
PUI																		-					*2							-
	m = "0"															7							-1-2							*3
	m = "1"																													* 4
RLA			*5								1			2																
ROL	Accumulator A			2	9		10							9		10														
	Accumulator B			4																										
ROR	Accumulator A			2	9		10							9		10														
	Accumulator B			4																										
RTI		11																												
RTL		9																												
RTS		7		1																										
SBC	Accumulator A		5		5		8		7	10	10	9	12	7		8	8	8	11								8	11		
	Accumulator B		6	1	8		8		10	10	11	12	13	8		11	11	11	11								8	11		
SEB						12									12															
SEC		2																												
SEI		2																												
SEM		2																												
SEP			4																											
STA	Accumulator A				7		7		9	10	9	11	11	7		7	7	10	10								7	11		
	Accumulator B				7		7		10	10	11	12	13	10		10	10	10	10								7	11		

Table 5.2.7 Number of instruction cycles in high-speed running (3)

***** 1: 12 + 2 i₁ + i₂

(i1 = number of registers saved among A, B, X, Y, DPR and PS; i2 = number of registers saved of DT and PG) * 2: 14 + 3 i1 + 4 i2

(i1 = number of registers restored among A, B, X, Y, DT and PS; i2 = 1 when restoring DPR and 0 when not doing)

***** 3: 6 + 20 i (i = number of repeated operations)

***** 4: 6 + 16 i (i = number of repeated operations)

***** 5: 8 + i (i = number of rotations)

5.2 Points of view

	1				<u> </u>			<u> </u>	<u>.g.</u>						.9														-
Addressing mode	ЧЬ	M	∢	R	ۍ ۲	ς, X	, Υ	R)	R,X)	R),Y	JR)	R), Y	BS	S, b	S, X	S, ≺	BL	L, X	BS)	BS)	S, X)	¥		b, R	, b, R	ßR	ر) ۲	Ч	accumulation
Instruction	≤	≧			Ē	E	DI	9	ē	<u>اق</u>	Ľ	<u>[</u>]	A	AB	AB	AB	A	AB	A)	L(A	AB	ω.	R	JR.	BS	0	S R	Ш	iplied a
symbol																									∢				Mult
STP	-																												
STX				7			7						7																1
STY				7		7							7																
TAD	2																												
TAS	2																												1
ТАХ	2																												-
TAY	2																												-
TBD	4																												1
TBS	4																												-
TBX	4																			4									
ТВҮ	4																												
TDA	2																			1									1
TDB	4																	1	1										L
TSA	2																		\leq	8									
TSB	4																5	1											
TSX	2														1	1		25											
ТХА	2																												
ТХВ	4																												
TXS	2														1														
ТХҮ	2											8																	
ТҮА	2																												
ТҮВ	4																												
ТҮХ	2								5			P																	
WIT	-							10																					
XAB	5						1	1	~																				1

Table 5.2.8 Number of instruction cycles in high-speed running (4)

CHAPTER 6 CPU INSTRUCTION EXECUTION SE-QUENCE FOR EACH ADDRESSING MODE

CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE

The following are the CPU instruction execution sequences for each addressing mode. The execution sequences shown here describe the internal operation of the CPU. Accordingly, the signals are all CPU internal signals, and cannot be observed from outside. The CPU internal operation, the actual execution time, and the relation between signals that can be externally checked are described in "Chapter 5 NUMBER OF INSTRUCTION CYCLES".

The accumulator used in the instructions in the CPU instruction execution sequence is accumulator A. When accumulator B is used, the execution cycle has the two ϕ_{CPU} more of a "42₁₆" that indicates accumulator B, and an internal processing cycle added at the front. (Refer to the figure on page 6–4.)

In the cases of instructions ASR, EXTS and EXTZ, however, the number of cycles using accumulator B is the same.

The number of ϕ_{CPU} cycles differs in the addressing mode that uses the direct page register, according to whether the low-order 8 bits (DPR_L) are "00₁₆" or others. The number of cycles when DPR_L = "00₁₆" is 1 ϕ_{CPU} cycle (address calculation cycle) less than that when DPR_L \neq "00₁₆".

The number of cycles differs in the PSH and PUL instructions according to the number and type of registers stored in (restored from) the stack.

The number of cycles differs in the block transfer instructions (MVN, MVP), according to the number of a transfer data. The following table shows the signals and the symbols indicating the contents.

CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE

Symbol	Description
Ф CPU	CPU basic cycle
AH(CPU)	High-order 8 bits of the CPU internal address bus.
AMAL(CPU)	Low-order 16 bits of the CPU internal address bus.
DATA(CPU)	The CPU internal data bus.
$R/\overline{W}(CPU)$	R/W signal to the bus interface unit.
PG	Contents of program bank register just before the instruction is executed.
PC	Contents of program counter just before the instruction is executed.
DT	Contents of data bank register just before the instruction is executed.
DPR	Contents of direct page register just before the instruction is executed.
DPR∟	Contents of the low-order 8 bits of direct page register just before the instruction is executed.
S	Contents of stack pointer just before the instruction is executed.
А	Contents of accumulator A just before the instruction is executed. Its data length is determined
	by the m flag.
В	Contents of accumulator B just before the instruction is executed. Its data length is determined
	by the m flag.
Х	Contents of index register X just before the instruction is executed. Its data length is determined
	by the x flag.
Υ	Contents of index register Y just before the instruction is executed. Its data length is determined
	by the x flag.
PS	Contents of processer status register just before the instruction is executed.
m	Contents of the data length flag just before the instruction is executed.
Х	Contents of the index register length flag just before the instruction is executed.
ADн	The valid address high-order 8 bits at indirect addressing modes.
ADMADL	The valid address low-order 16 bits at indirect addressing modes.
DATA	8 bits or 16 bits data. The data length is determined by the m flag or x flag.
New DATA	The data, which is read, modified.
DHDL	16 bits data
DL	8 bits data
imm	8 bits or 16 bits immediate value
dd	Displacement to DPR (8 bits)
rr	Displacement to PC (signed 8 bits)
rr⊣rr∟	Displacement to PC (signed 16 bits)
nn	Displacement to S (8 bits)
hh 	The high-order 8 bits address indicated by operand directly.
mmll	I he low-order 16 bits address indicated by operand direcly.

CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE

Variation of execution cycles according to used accumulator

RTS Instructions 1 Timing : φ CPU PG PG PG 0016 AH(CPU) AMAL(CPU) PC PC+1 S+1 ADMADL Next Op Code Not used Not used ADMADL DATA(CPU) Op Code "H" 1 R/W(CPU) Nuor Instructions : RTL Timing 2 ф сри PG 0016 AH(CPU) ADн PG PC S+1 S+3 PC+1 ADMADL AMAL(CPU) Next Op Code ADн DATA(CPU) Not used Not used ADMADL Op Code "H" ' R/W(CPU)

Instructions	: RTI
Timing	:
φ cpu	
AH(CPU)	PG PG 0016 ADH
AmAl(CPU)	PC PC+1 S+1 S+3 S+5 ADMADL
DATA(CPU)	Op Code Not used Not used DHDL ADMADL ADH Next Op Code
R/W(CPU)	

Note: The operand which is fetched at the 2nd cycle is 1 byte. Whatever it contains is available.

- Notes 1: The operand which is fetched at the 2nd cycle is as follows: When x="0", 2 bytes When x="1", 1 byte
 - **2:** "()" shows the case of x="1".

Instructions LDT : Timing : ¢ CPU PG PG PG PG PG AH(CPU) imm РС AMAL(CPU) PC+1 PC+1 PC+2 PC+3 Operand Next Op Code Not used Op Code DATA(CPU) Not used Op Code imm "H" R/W(CPU) . Note: The operand at the 4th cycle is 1 byte. Instructions : RLA Timing : m="0" ∮ CPU PG PG AH(CPU) PG PG PG РС PC+1 PC+1 PC+2 imm PC+4(3) AMAL(CPU) imm-1 Operand Op Code Not used Op Code Not used Not used Not used DATA(CPU) imm "H" R/W(CPU) Notes 1: This figure is an example shifted by 1 bit. When 2 or more bits are shifted, the cycle " - " is repeated by each shift times. When 0 bit is shifted (not shifted), the cycle " \checkmark " is shortened. 2: The operand which is fetched at the 4th cycle is as follows: When m="0", 2 bytes When m="1", 1 byte

3: "()" shows the case of m="1".

Next

Op Code

Note: The operand at the 2nd cycle is 1 byte.

Notes 1: The operand which is fetched at the 4th cycle is as follows:

- When m="0", 2 bytes
- When m="1", 1 byte
- **2:** "()" shows the case of m="1".
- 3: The cycle number during "*" is shown as the following table:

Instruction	Cycle number (ф CPU)		
Instruction	m= "0"	m = "1"	
DIV	25	17	
DIVS	27	19	
MPY	8	4	
MPYS	8	4	

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of \$ CPU during "*" are undefined.
Immediate

- Notes 1: The operand which is fetched at the 4th cycle is as follows: When m="0", 2 bytes When m="1", 1 byte
 - **2:** "()" shows the case of m="1".

Accumulator

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 5th cycle is as follows: When m="0", 2 bytes When m="1", 1 byte

2: "()" shows the case of m="1".

Instructions	: STA, STX, STY
Timing	:
	DPRL ≠ "0016" When DPRL="0016", this cycle is shortened.
φ cpu	
AH(CPU)	PG PG 0016 0016 or 0116 PG
AMAL(CPU)	PC PC+1 DPR+dd PC+2
DATA(CPU)	Op Code Operand dd Not used Not used A(X)(Y) Next Op Code
R/W(CPU)	"Н"
Instructions Timing	: ASL, DEC, INC, LSR, ROL, ROR :
	When DPRI="0016", this cycle is shortened.
ф сри	
AH(CPU)	PG PG 0016 0016 or 0116 PG
AMAL(CPU)	PC PC+1 DPR+dd PC+2
DATA (CPU)	Op Code Operand dd Not used DATA Not used New DATA Op Code
R/W(CPU)	"H"

Instructions : DIV, DIVS, MPY, MPYS

2

Timing

Note: The cycle number during "*" is shown as the following table:

		Cycle number(¢ cpu)		
ins	Instruction	m ="0"	m ="1"	
	DIV	25	17	
	DIVS	27	19	
	MPY	8	4	
Ν	IPYS	8	4	

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Direct Bit

Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 6th cycle is as follows: When m="0", 2 bytes When m="1", 1 byte "()" shows the case of m="1".

2: "(

Instructions : STA, STY

:

Timing

Instructions : ASR

:

Timing

Note: The cycle number during "*" is shown as the following table:

	Instruction	Cycle nur	nber(¢ CPU)
		m ="0"	m ="1"
	DIV	25	17
	DIVS	27	19
	MPY	8	4
	MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Instructions LDX : Timing : When DPRL="0016", this cycle is shortened. DPRL ≠ "0016" ♦ CPU 0016, 0116 PG PG 0016 0016 or 0116 PG AH(CPU) or 02 16 PC+2 PC PC+1 DPR+dd+Y AMAL(CPU) Operand Next DATA DATA (CPU) Op Code Not used Not used Op Code dd "H" R/W(CPU) Instructions : STX Timing : DPRL ≠ "0016" When DPRL="0016", this cycle is shortened. ф сри PG PG 0016 0016, 0116 or 0216 PG AH(CPU) 0016 or 0116 PC+2 AMAL(CPU) PC PC+1 DPR+dd+Y Operand Next Op Code Not used Not used Not used Х DATA (CPU) dd Op Code "H" R/W(CPU)

Direct Indirect

Direct Indirect

Instructions : DIV, DIVS, MPY, MPYS

1

Timing

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number (
	m ="0"	m ="1"
DIV	25	17
DIVS	27	19
MPY	8	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contens of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Direct Indirect

Direct Indexed X Indirect

Direct Indexed X Indirect

Note: The cycle number during "*" is shown as the following table:

ſ	Instruction	Cycle number (
	manuction	m ="0"	m ="1"	
	DIV	25	17	
	DIVS	27	19	
	MPY	8	4	
	MPYS	8	4	

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of φ CPU during "*" are undefined.

DIVS (case of 0 division) Instructions DIV, : Timing : When DPRL="0016", this cycle is shortened. DPRL ≠"0016" ф сри 0016 or 0016, 011 PG PG PG PG 0016 DT AH(CPU) **01**16 or 0216 DPR FFFF16 FFFE16 PC+2 +dd +X AMAL(CPU) PC PC+1 PC+1 ADMADL Operand DATA (CPU) DATA Op Coo Not used ADMAD Not used Not used Not used Not used Op Code Not used Not used Not used Not use dd "H" 1° R/W(CPU) Ó 0016 0016 0016 S–2 S–4 S–4 s FFFC16 ADMAD Next Op Code PG PC+3 PS Not used ADMAD

Direct Indexed X Indirect

Direct Indirect Indexed Y

Direct Indirect Indexed Y

Instructions : DIV, DIVS, MPY, MPYS

:

Timing

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number (ф _{CPU})		
	m ="0"	m ="1"	
DIV	25	17	
DIVS	27 🌍	19	
MPY	8	4	
MPYS	8	4	

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Direct Indirect Indexed Y

Direct Indirect Long

Direct Indirect Long

Instructions : DIV, DIVS, MPY, MPYS

:

Timing

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle nur	mber(<mark>ф</mark> СРU)
Instruction	m ="0"	m ="1"
DIV	25	17
DIVS	27 🗾	19
MPY	8	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Direct Indirect Long

Direct Indirect Long Indexed Y

Direct Indirect Long Indexed Y

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number (ϕ CPU)		
Instruction	m ="0"	m = "1"	
DIV	25	17	
DIVS	27	19	
MPY	8	4	
MPYS	8	4	

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

DIV, DIVS (case of 0 division) Instructions : Timing : When DPRL="0016", this cycle is shortened. DPRL ≠"0016" ϕ_{CPU} 0016 OI 0016 or AH(CPU) PG PG PG PG 0016 ADн ADH or ADH+1 0116 0116 DPR ADMADL+Y FFFF16 FFFE16 AMAL(CPU) PC+1 PC+2 DPR+dd+2 PC PC+1 +dd DATA (CPU) Operand ADMA[ADн Not u DATA Not us Not ι Not u Not us Not Dp Cod Not Op Cod Not use Not u dd ncet "H' R/W(CPU) 0016 0016 0016 FFFC16 ADMAD S S–2 S-4 S-4 Next Op Code PG PC+3 PS Not used ADMADL

Direct Indirect Long Indexed Y

- Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 4th cycle is as follows: When m="0", 2 bytes When m="1", 1 byte "()" shows the case of m="1".

 - **2:** "(

Instructions	: STA, STX, STY
Timing	:
φ CPU	
AH(CPU)	PG PG DT PG
AMAL(CPU)	PC PC+1 mmll PC+3
DATA (CPU)	Op Code Operand Not used A(X)(Y) Next Op Code
R/W(CPU)	"Н"
	oun
Instructions	: ASL, DEC, INC, LSR, ROL, ROR
Timing	
¢ cpu	
AH(CPU)	PG PG DT PG
AMAL(CPU)	PC PC+1 mmll PC+3
DATA (CPU)	Op Code Operand DATA Not used New DATA Op Code
R/W(CPU)	"H" ————

DIV, DIVS, MPY, Instructions : MPYS Timing 2 * ¢ CPU AH(CPU) PG PG PG PG DT PG AMAL(CPU) PC PC+1 PC+2 mmll PC+1 mmll PC+4 Operand Next DATA (CPU) Op Code Not used Op Code DATA Not used Op Code mmll "H" R/W(CPU)

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle nur	mber(¢ CPU)
Instruction	m ="0"	m = "1"
DIV	25	17
DIVS	27	19
MPY	8	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Absolute Bit

Instructions SEB CLB, : Timing : m="0" ∮ CPU PG PG PG DT PG AH(CPU) PC PC+1 PC+3 PC+5(4) AMAL(CPU) mmll New Operand Operand Next DATA DATA (CPU) Op Code Not used DATA Op Code mmll imm "H" R/W(CPU) Notes 1: The operand which is fetched at the 3rd cycle is as follows: 1: The operand which is the When m="0", 2 bytes When m="1", 1 byte
2: "()" shows the case of m="1".

3
Absolute Indexed X

- Notes 1: Each of the operand which is fetched at the 3rd cycle and the data which is at the 5th cycle is as follows: When m="0", 2 bytes When m="1", 1 byte

 - 2:"()" shows the case of m="1".

Absolute Indexed X

Absolute Indexed X Absolute Indexed Y

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number (¢ cPU)	
Instruction	m ="0"	m = "1"
DIV	25	17
DIVS	27	19
MPY	8	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Absolute Indexed X Absolute Indexed Y

Instructions	: DIV, DIVS (case of 0 division)
Timing	:
φ CPU	
Ah(CPU)	PG PG PG PG DT DT or DT+1
AMAL(CPU)	PC PC+1 PC+1 PC+2 mmll+X(Y) FFFF16 FFF16 FFFE16
DATA (CPU)	Op Code Not used Op Code Operand Mot used DATA Not used
R/W(CPU)	"Н" —
	0016 0016 0016
	S S-2 S-4 FFFC16 ADMADL
	PG PC+4 PS Not used ADMADL Next Op Code

Absolute Indexed X Absolute Indexed Y

Instructions	: STA
Timing	:
φ ςρυ	
AH(CPU)	PG PG DT DT or DT+1 PG
AmAl(CPU)	PC PC+1 mmll+X (Y) PC+3
DATA (CPU)	Op Code Operand Not used Not used A Op Code
R/₩(cpu)	

Absolute Indexed Y

Instructions	: ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC
Timing	:
φ CPU	
Ah(CPU)	PG PG DT DT +1 PG
AMAL(CPU)	PC PC+1 Mmll+Y PC+3
DATA (CPU)	Op Code Operand Not used DATA Next Op Code
R/W(CPU)	"H"

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number(
Instruction	m ="0"	m = "1"
DIV	25	17
DIVS	27 🕥	19
MPY	8	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Absolute Long Indexed X

Absolute Long Indexed X

DIV, Instructions DIVS, MPY, : MPYS Timing 2 * ф сри AH(CPU) PG PG PG PG PG hh hh or hh+1 PG PC PC+2 PC+4 AMAL(CPU) mmll+X PC+1 PC+ mmll+X PC+5 Next Op Code Operand Operand Op Code Op Code Not used DATA (CPU) Not used DATA Not used mmll hh "H' R/W(CPU)

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number (¢ CPU)	
	m ="0"	m = "1"
DIV	25	17
DIVS	27 🌍	19
MPY	8	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Absolute Long Indexed X

Absolute Indirect

Instructions	: JMP
Timing	:
ф сри	
Ah(CPU)	PG PG PG PG
AMAL(CPU)	PC PC+1 Mmll ADMADL
DATA(CPU)	Op Code Operand ADMADL Op Code
R/W(CPU)	

Absolute Indirect Long

Absolute Indexed X Indirect

Note: The operand at the 2nd cycle is 1 byte.

Note: A(DPR)(PS)(X)(Y)

PSH Instructions :

:

Timing

2: The operand at the 2nd cycle is 1 byte.

Instructions : PUL

:

Timing

Notes 1: This figure is an example when executing PUL to all registers.

When some of them are not to be done, the cycle " \checkmark " corresponding to its register is shortened. 2: The operand at the 2nd cycle is 1 byte.

Relative

Direct Bit Relative

Instructions : BBC, BBS

:

Timing

Absolute Bit Relative

Stack Pointer Relative

Stack Pointer Relative

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number(� CPU)	
monuclion	m ="0"	m = "1"
DIV	25	17
DIVS	27 🧹	19
MPY	8	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Stack Pointer Relative

Stack Pointer Relative Indirect Indexed Y

Stack Pointer Relative Indirect Indexed Y

Note: The cycle number during "*" is shown as the following table:

Instruction	Cycle number(ϕ CPU)	
manuction	m ="0"	m ="1"
DIV	25	17
DIVS	27	19
MPY	8 🧳	4
MPYS	8	4

• The contents of AMAL(CPU) during "*" with DIVS are undefined.

• When each sign of a multiplier and a multiplicand with MPYS is different, the contents of AMAL(CPU) at the last 3 of ϕ CPU during "*" are undefined.

Stack Pointer Relative Indirect Indexed Y

Note: This figure is an example when transferring 2-byte data.

3

MVN (transfer of even bytes)

When transferring 3 or more bytes data, the cycle "------" is repeated at each 2-byte data. The CPU instruction execution sequence is identical regardless of even address or odd address which the transferring start address is.

Instructions

:

Note: This figure is an example when transferring 3-byte data.

When transferring 4 or more bytes data, the cycle " \checkmark " is repeated at each 2-byte data. The CPU instruction execution sequence is identical regardless of even address or odd address which the transferring start address is.

The transfer of the last 1 byte is performed by reading 2 bytes and writing 1 byte.

Note: This figure is an example when transferring 2-byte data.

When transferring 3 or more bytes data, the cycle " \checkmark " is repeated at each 2-byte data. The CPU instruction execution sequence is identical regardless of even address or odd address which the transferring start address is.

Note: This figure is an example when transferring 3-byte data.

When transferring 4 or more bytes data, the cycle " \checkmark " is repeated at each 2-byte data. The CPU instruction execution sequence is identical regardless of even address or odd address which the transferring start address is.
Multiplied Accumulation

Instructions : RMPA

:

Timing

Appendix 1. 7751 series machine instructions Appendix 2. 7751 series instruction code table

Appendix 1. 7751 series machine instructions

Appendix 1. 7751 series machine instructions

7751 SERIES MACHINE INSTRUCTIONS

														Ac	ddr	es	sir	ŋg	m	ioc	le											
Symbol	Function	Details	ĪN	ЛР		IN	IM	Τ	A		1	DIR		DI	R,b	6	DIR	,Х	6	DIR	Y,	(DIF	3)	(Dł	R,X	5)	(DIF	4),Y	L	.(DI	R)
			op	n	# (y d	ז ו	ŧ oŗ	p n	#	ор	n	#	70 I	n #	00	n	#	oç	n	#	op	n	#	op 1	n 1	# c	n qc	#	op	n	#
ADC (Note 1,2)	Acc, C←Acc+M+C	Adds the carry, the accumulator and the memory contents. The re- sult is entered into the accumula- tor. When the D flag is "0", binary additions is done, and when the D			e	59 2 1	2 2	2			65	4	2			75	5 6	2				72	6 6	2	61	7 2	2	/1 8	2	67	8	2
		flag is "1", decimal addition is done.			é	42 4 59	4	3			42 65	6 6	3			42 75	7 8	3				42 72	8 8	3	42 61	9	3 4	12 11 71	0 3	42 67	, 10 10	3
AND (Note 1,2)	Acc←Acc∧M	Obtains the logical product of the contents of the accumulator and the contents of the memory. The result is entered into the accumulator.				29 2	2 2	2			25	4	2			35	6	2				32	6	2	21	7 :	2	31 8	1 2	27	8	2
					4	42 4 29	4 3	3			42 25	6 6	3			42	8	3				42	8	3	42 21	9	3	42 10 31 1	0 3	42	210	3
ASL (Note 1)	$m=0$ $\bigcirc \leftarrow b_{15} \cdots b_{0} \leftarrow 0$ $m=1$ $\bigcirc \leftarrow b_{15} \cdots b_{0} \leftarrow 0$	Shifts the accumulator or the memory contents one bit to the left. "0" is entered into bit 0 of the accu- mulator or the memory. The con- tents of bit 15 (bit 7 when the m						0,	A 2 2	1	06	7 8	2			16	5 7 8	2														
		the C flag.						4:	2 4 A 4	2																						
ASR (Note 1)	m=0 → <u>b15…b0</u> →C m=1	Shifts the accumulator or the memory contents one bit to the right. The bit 0 of the accumulator or memory is entered into the C flag. The contents of bit 15 (bit 7 when the m flag is "it" of the accum						8	9 4 8 4	2	89 06	9 10	3			89	99	3														
		mulator or memory before shift is entered into bit 15 (bit 7).						4:	2 4 8 4	2																						
BBC (Note 4)	Mb=0?	Tests the specified bit of the memory. Branches when all the contents of the specified bit is "0".																														
BBS (Note 4)	Mb=1?	Tests the specified bit of the memory. Branches when all the contents of the specified bit is "1".																													Γ	
BCC	C=0?	Branches when the contents of the C flag is "0".																				ſ					T	Ť	Ť	T	Γ	
BCS	C=1?	Branches when the contents of the C flag is "1".																														
BEQ	Z=1?	Branches when the contents of the Z flag is "1".																														
BMI	N=1?	Branches when the contents of the N flag is "1".																														
BNE	Z=0?	Branches when the contents of the Z flag is "0".																														
BPL	N=0?	Branches when the contents of the N flag is "0".																														

																		-						Ā	bb	re	ess	sir	١g	n	10	de	,					_																				F	- rc	006	es	so	rs	sta	tu	s r	eç	jist	er
L(DI	7),Y	1	BS	\$	A	BS	,b	A	BS	,Х	ľ	B	S,`	Y	,	AB	L	I	AB	L,)	$\langle $	(A	B	S)	L	(A	BS	5)	(AE	3S	,X)		ST	ĸ	ŀ	R	E	_	D	IR,	o,R	A	BS	S,b,	R		SP	1	(SR),Y		BLI	ĸ	Mu acci	itip umul:	ied tion	10)9	8	<u>,</u>	7	6	5	4	3	2	1	0
op n	#	op	n	#	ор	n	#	ор	n	#	0	p	1	#	op	n	#		xp r	ı I	#	ор	n	#	op	p r		#	ор	n	#	9	n	1	ŧ	xp	n	#	op	n	#	0	p	n	#	op	n	#	0	n c	#	oţ	n	#	o¢	n	#		IP	L	1	N	v	m	x	D	1	z	c
77 10	2	6D	4	3				70	6 7	3	7	9 E	7	3	6F	6 7	4	1	rf 1	, , ,	4																									63	5 6	2	73	8 9	2								•		. 1	4	V	•	•	•		Z	C
42 1; 77	3	42 60	6	4			-	42 70	8	4	4; 7;	2 1	8	4	42 6F	8	5	1	12 9 7F)	5														T							Ī				42 63	7	3	42 73	2 10	3							1											
1:	8		6						9			1	2			9			1	1																											8			11																			
37 1(2	20	4	3				3D	6 7	3	3	9 e 7	3	3	2F	6 7	4		3F 1	-	4																									23	5 6	2	33	8	2							ŀ	ŀ	.	· ٢	١	•	•	•			Z	
42 12	3	42	6	4	_	-		42	8	4	4	2 8		4	42	8	5	4	12 9		5	-			$\left \right $	╀	+		-	1		┞	$\left \right $	╎	╉	+	-		-	-	-	╞	+	+	-	42	7	3	42	2 10	3	H																	
37 1:	3	2D	6					3D	9		3!	9	9		2F	9		3	BF 1	1																										23	8		3:	11																			
		0E	7 8	3				1E	8 9	3																				_																												. 	•	+	- 	v	•	•	•	•	•	Z	С
																																					5																																
		89 0E	9 10	4				89 1E	10	4																																																ŀ	ŀ		. 1	V	•	•	•	•	•	Z	c
													Ī																										34	8	4	3	C	8 9	5													ŀ	ŀ	-	•	•	•	•	•	•			•
																																							24	8	4	2	c	8 9	5													ŀ	•			•	•	•	•	•		•	
																	T	T														Ι			5	90	4	2																	T			ŀ	•		•	•	•	•	•	•		•	
																	T	T								T	T	Ì				ſ	T	I	E	30	4	2				T							T									ŀ	ŀ	Ť		•	•	•	•	•	·	•	
											t	T	T			l	t	T		T		1		-	ſ	T	+					T	ſ		ſ	0	4	2	ſ	T		t							T	t		t	ľ	ſ	t			ŀ	ŀ	t		•	•	•	•	†.	·	•	•
	-										t	t	T	-			t	t		-					ŀ		Ť					t		t	ł	30	4	2		t		t	t						t	t	ſ	t	T	ľ	t	ŀ	ſ	ŀ	t	+	•	•	•	•	ŀ	†.		•	ŀ
	-			_				-			ł	t		-	-	ŀ	+-	t	┥				_		╞	┢	+		-			ſ		╞		20	4	2				\dagger			_		\vdash				ŀ	t	╞	-	\uparrow		$\left \right $	ŧ	+	+	+	-	·	•	ŀ	+	•	•	+.
		┢						-			ſ	+		_				t							╞	ł	+							t	+	10	4	2		+		t	+									t	+				-	†.	•	+	•	•	·	•	ŀ	1		•	·

			Ĺ											Ac	dr	es	sin	gı	m	ode	Э										
Symbol	Function	Details		MF	2	IN	M		<u>A</u>			SIR		DIF	₹,b		IR,	x	D	IR,	Y	(D	IR)	(DIR,	X)	(DI	R), Y	1	.(DI	R)
			op	n	#	opI	n #	1 0	pn	#	op	n	# (n qo	#	ор	n	#	ор	n	#	op r	1 #	of	n	#	op	n #	or) n	#
BRA (Note 3)	PC←PC±offset PG←PG+1 (carry occurred) PG←PG-1 (borrow occurred)	Jumps to the address indicated by the program counter plus the offset value.																			_										
BRK	$\begin{array}{c} PC{\leftarrow}PC{+}2\\ M(S){\leftarrow}PG\\ S{\leftarrow}S{-}1\\ M(S){\leftarrow}PCH\\ S{\leftarrow}S{-}1\\ M(S){\leftarrow}PCL\\ S{\leftarrow}S{-}1\\ M(S){\leftarrow}PSH\\ S{\leftarrow}S{-}1\\ M(S){\leftarrow}PSL\\ S{\leftarrow}S{-}1\\ I{\leftarrow}1\\ PCL{\leftarrow}ADL\\ PCH{\leftarrow}ADM\\ PG{\leftarrow}0016 \end{array}$	Executes software interruption.	00	15	2																										
BVC	V=0?	Branches when the contents of the V flag is "0".															2	1				T		T			Ī	T	T	T	Π
BVS	V=1?	Branches when the contents of the V flag is "1".						T															T	T			Π		T		
CLB (Note 4)	Mb←0	Makes the contents of the speci- fied bit in the memory "0".												14 8	3								T	T				T	T		
CLC	C←0	Makes the contents of the C flag "0".	18	2 2	1						Γ		T			T								T					T	T	
CLI	0→1	Makes the contents of the I flag "0".	58	2	-								T			Γ					1		T	T			T		T	T	
CLM	m ←0	Makes the contents of the m flag "0".	D8	2	1			T							T									T					T	T	
CLP	PSb⊷0	Specifies the bit position in the pro- cessor status register by the bit pattern of the second byte in the instruction, and sets "0" in that bit.				C2 -	4 2	2																							
CLV	V ← 0	Makes the contents of the V flag "0".	B8	2 2	1			I															T	T					T	T	
CMP (Note 1,2)	Acc-M	Compares the contents of the ac- cumulator with the contents of the memory.				C9 42 C9	2 2 2 4 3 4	2			C5 42 C5	4 4 6 6	2 3			05 42 D5	5 6 7 8	2				D2 (42 (D2)	6 2 6 3 8 3	C1	7 8 9 10	2	D1 42 1 D1	8 2 9 10 3 11	1 C7	8 8 210 7 10	2
CPX (Note 11)	Х-М	Compares the contents of the in- dex register X with the contents of the memory.				EO :	2 2 2	2			E4	4	2																		
CPY (Note 11)	Y-М	Compares the contents of the in- dex register Y with the contents of the memory.				00	2 2 2	2			C4	4	2																		
DEC (Note 11)	Acc←Acc−1 or M←M−1	Decrements the contents of the ac- cumulator or memory by 1.					_	1	A 2 2 2 4 A 4	1	C6	7 8	2			D6	7 8	2										-			
DEX	X←X-1	Decrements the contents of the in- dex register X by 1.	CA	2	1	T		T			ſ		T			Γ					T	T	T	Γ				T	Τ	Γ	

													_						_			A	dd	re	ss	in	g	m	00	ie																								Ρ	oc	es	so	r s	ta	lus	re	gi	ster	r
L(DIF	1),Y	A	BS	Ľ	AB	S,b	1	B	s,>	4	AB	IS,	۷	A	B	L.	L^	BL	.,X	0	٩B	S)	L	(AE	BS)(/	٩B	S,>	()	S	TK	$\langle $	F	RE	L	DI	R,b	,R	A	BS,I	b,R		SF	7	(SR	,Υ	E	3LK	$\langle $	Muli	lipli nula	ed lion	10	9	8	7	6	5	4	3	2	1 0	0
op n	#	ор	n #	0	p n	#	9	n o	1	1	201	n	#	op	n	#	00	n	#	op	n	#	ор	n	#	0	рг	ı į	#	op	n	#	op	n	#	op	n	#	op	n	#	op	n	#	op	n	#	op	n	#	op	n	#	1	PL		N	v	m	x	D	1	z	С
				I			T	T											Γ				Γ			T	Ī		T			-	80	3	2							ſ			Γ	T								•	•	•	•	•	•	·	•	·	•	·
╟╴		+		╉	╀	+	╀	+	╉	╀	+	+			_		┝	-	┝	┝		╞	┝	$\left \right $	╀	╀	+	╉	╉	+	+	-	82	3	3				┝	┝	┝	┝	┢	╞	┢	$\left \right $			+	-		-			-+	+	+	-	-	-	+	+	╉	_
 							╞	1			-	4	_		_					L						Ļ	_	+	4	_				3								L							_															
																																																						•	•	•	•	•	•	•	•	•	•	•
			1	T	T	T	T			T			1							T						Ť	T	+					50	4	2							ľ				6			7					·	•	•	·	•	•	•	•	·	•	
				T			T		T	T	T	T	1							T		ſ	ſ		T	T	Ī		T				70	4	2							2	0			P	7			~~~				·	•	•	•	•	·	·	·	•	•	•
				10	9	4	T		T	t	+	1	1										╞		1	T	T	T	1					-										1						-				•	•	•	•	•	•	•	·	•	•	•
				T	ľ	+	t			t	+		1		-								ŀ		t	T	t			+																				_				•	•	•	·	•	·	•	•	•	• •	0
		\dagger	\uparrow	t	t	t	f	t		t	+	╡	┦									╞	┢	\vdash	+	t	╀	╉	┦	+	┥	-		1	1				-		$\left \right $	┢	┢	┢	┞	╞			-	-				·	-+	•	•	•	•	·	•	0	•	-
		+	+-	┢	┢	┢	┢			\dagger	╎	╉	┨		-					$\left \right $			┢		+	╀	╀	+	╉							-					-	┢	-		┢	\vdash				-			-	•	•	•	•	•	0	•	•	•	•	-
$\left \right $		+	╀	╎		╀	┞	+	+	+	╉	+	┥	-									┞	╞	+	┢			1	+						-		_	-	┝		┞	┝		┝		$\left \right $		-		$\left \cdot \right $	-	-	•	•	•	S	pe		ied	 fl;	ag	be	_
									-			_				_								1																																	cc	om	es	"0	".			_
D7 10				Ļ										05	_	-	2	7																		_														_		_	_	•				-						
11	-		4	L		-		7				7	-		7			9	4						-				\downarrow		_	_		_								6	6	ĺ		9	-					_		•	•			•						Ĩ
42 12 07 13	3	42 (CD	6				42 DC	9		D	9	9		42 CF	9	0	42 DF	9	5																							42 C3	8	3	42 03	10 11	3																	
		EC	4 3																																																			•	•	•	N	•	•	•	•	•	z	0
		CC 4	4 3																																							Ī												·	•	•	N	•	•	•	•	•	z	c
		CE	7 3				DE	8	3					_	-																					-							-						_	-		_		•	•	•	N	•	•	•	•	•	z	•
		-	+-	$\left \right $		-	$\left \right $			+	+																									_			-													_		•	•	•	N	•	•	•	•	•	z	•

			Γ			_				_				A	ddr	es	sir	g	m	ode	;										
Symbol	Function	Details		M	P	1	MN	A		A	Ι	DI	R	D	R,b		DIR	,Х	D	IR,۱	1	(DI	R)	(DIR,	,X)	(DI	R),1	1	_(DI	R)
			op	n	#	ор	n	#	ор	n	# Q	n	#	ор	n #	ор	n	#	ор	n	# c	n qq	#	o¢	n	#	ор	n #	t o	n c	#
DEY	Y	Decrements the contents of the in- dex register Y by 1.	88	2	1																									Ι	
DIV (Note 2,9,13)	A(quotient)←B, A+M B(remainder)	The numeral that places the con- tents of accumulator B to the higher order and the contents of accumulator A to the lower order is divided by the contents of the memory. The quotient is entered into accumulator A and the remain- der into accumulator B.				89 29	21	3			8	23	3			89	24	3			8	39 2: 32 2:	5 3	89	26	3	89 2 31	27 3	3 8	3 27 7 27	3
DIVS (Note 2,9,14)	A(quotient)←B, A+M (with sign) B(remainder)	The numeral with sign that places the contents of accumulator B to the higher order and the contents of accumulator A to the lower order is divided by the contents of the memory. The quotient is entered into accumulator A and the remain- der into accumulator B.				89 A9	23 23	3			8! A:	25	3			89 85	26	3			E	39 21 32 21	7 3	89 A1	28	3	89 2 B1	29 3	3 8 A	29	3
EOR (Note 1,2)	Acc←Acc∀M	Logical exclusive sum is obtained of the contents of the accumulator and the contents of the memory. The result is placed into the accu- mulator.				49 42 49	2 2 4 4	2 3		-	4	5 4 4 2 6 5 6	2			55 42 55	5 6 7 8	2			4	52 6 6 12 8 52 8	2	41 42 41	7 8 9 10	2	51 42 1 51	8 2 9 0 3	4	7 8 8 210 7 10	2
EXTS (Note 1)	Bit 7 of Acc=1 b15 b7 b0 [1111111] 1 1 Bit 7 of Acc=0 b15 b7 b0 [00000000]0 0 0 0	The signed 8-bit data stored in the low-order byte of the accumulator is extended to a 16-bit data.							89 88 42 88	4 4 4	2																				
EXTZ (Note 1)	Acc b15 b8 b7 b0 [00000000]	The 8-bit data stored in the low-or- der byte of the accumulator is ex- tended to a 16-bit data. Bits 8 to 15 of the accumulator are set to "0".			5				89 AB 42 AB	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2								_												
INC (Note 1)	Acc←Acc+1 or M←M+1	Increments the contents of the ac- cumulator or memory by 1.							3A 42 3A	2 2 4 4	1 E 2	6 7 8	2			FE	8	2												+	
INX	X←X+1	Increments the contents of the in- dex register X by 1.	E8	2	1						T										Ť	1		t				-	t	t	
INY	Y←Y+1	Increments the contents of the in- dex register Y by 1.	C8	2	1					T	T	T				ſ					T								T	T	Π
JMP	ABS PCL \leftarrow ADL PCH \leftarrow ADM ABL PCH \leftarrow ADM PG \leftarrow ADH (ABS) PCL \leftarrow (ADM, ADL) PCH \leftarrow (ADM, ADL+1) L(ABS) PCL \leftarrow (ADM, ADL+1) PCH \leftarrow (ADM, ADL+2) (ABS, X) PCL \leftarrow (ADM, ADL+X) PCH \leftarrow (ADM, ADL+X) PCH \leftarrow (ADM, ADL+X)	Places a new address into the pro- gram counter and jumps to that new address.																													

Г					-			_				-						_						_	Ac	bb	re	s	si	ng	, r	no	od	e			-					-				_			-	_					_							Τ	P	ro	ce	s	so	r s	ste	atu	JS	re	gi	ste	ər
L	DIF	I),Y		ABS	;	AE	3S,	b	AE	3S	,Х	1	۱B	S,	Y	ŀ	٩B	L	ŀ	٩B	L,	$\langle $	(A	B	S)	L	(A	BS	5)	(A	BS	;,X)	s	T۲	<		R	EL	1	DI	R,I	b,R	1	48	S,t),R	I	S	SR		(SF	1),`	不	8	LK	(Mil	ultip tumu	lie		0	9	8	17	7	6	5	4	1:	3];	2	1	0
0	n	#	ор	n	#	op	n	#	op	n	#	9	рп	١Ī	#	ор	n	#	0	pŢr	T	#	op	n	#	oç	n	1	#	op	n	#	d	p	n	#	op	n	1	#	op	n	#	0	xp	n	#	0	ip I	n	#	of	n	1	+	xp	n	#	ор	n	#	I	1	Ρl	_	Tr	V	1	m	x	Ī	朩	1	z	С
																																												T							-				T							ľ	·	•	•	r	1	•	•	ŀ	ŀ	·Ť	•	z	·
89 3	29	3	89 20	23	4				89 3D	25	4	8 3	9 2 9	5	4	89 2F	25	5	8	92 F	6	5						T																				82	19 2 23	24	3	8 3	92	7	3								•	•	•	N	1	V	•	•			•	z	С
	30			23						26			2	6			26			2	8																												14	25			2	B																					
89 B1	31	3	89 AD	25	4				89 3D	27	4	89 89	92	7	4	89 Af	27	5	8	92 F	8	5																										8	392	26	3	8 8	9 2	9	5								•	•	•	N	1	V	•	•	†.	.†	•	z	c
	32		40	25						28			2	8			28			3	0		-+																										2	27			3																						
42	10 11 12	2	40	4	4				12	6 7 8	3	42	2 8		4	41 ⁻ 42	6 7 8	4	4	2 9	, .	4 5	_	_						_			╞						-	_								4	2	5 6 7	2	42	2 10		3								•	•	•		4	•	•	•		•	•	Z	•
57	13		4D	6	4	_	\downarrow	ļ	50	9		59	9 9	1	_	4F	9		5	F 1	1		_	_									ļ		_	_			+	_				ļ		_		4	3-	8		53	3 1	1	4	4	_					┦	_					_	-	Ļ	+	+	_	-	_
							-																					_	_	_								+-			_															-							•	•	•			•	•	•		•	•	4	•
					-		+			_				+		_				$\left \right $			_	_	_					-																			+	_	_			-	$\left \right $							+	-	-				-	_		+	-	-	7	_
┞					+	+	+	+	-						_	-		-														-	ł			1									_	-				_						-					-														
F			EE	7	3	┥	+	+	E	8	3	ł	╀	+	+	-		┝	t	+	+	+	+	-			┢	╉	-	-	4	-	+					┝	+	+	-			╀	+	_		╀	+	-	_		+	+	+	╉	-		╞	╞	+	╉	•	•			V	•	•	.	╀	+	•	z	-
				8		_				9						_										-												-										╞	+						╏	_		-	_																
Γ								T	T			ſ			1				T	T		1										T	T	1				ľ	T				T	T				T	t			ľ	T	T	T	1				l	T	T	•	•	•	r	۷	•	•	ŀ	T	ſ	•	z	•
ſ								T				T			1						1					1	ſ		1				t						T	1	-		Ī	T				T	T					T	Ť	+				ſ		t	•	•		r	1	•	•	ŀ	†.	·†	•	z	•
			40	2	3											50	4	4					60	4	3	DC	6		3	70	6	3																															•	•	•	•		•	•			-	•	•	•
																																																						Note that the second																					

													A	ddr	es	sin	g	m	bde	e										٦
Symbol	Function	Details	IN	ИP	Ι	IMN	1	ļ	١		DIR	1	DI	R,b	C	DIR,	,Х	D	IR,	Y	(D	IR)	(0	DiR,	X)	(DIF	R),Y	ΤL	(DI	R)
			op	n #	op	n	# (n qc	#	op	n	#	op	n #	οp	n	#	ор	n	#	opl	1 #	00	n	#	opr	<u>#</u>	ор	n	#
JSR	ABS $M(S) \leftarrow PCH$ $S \leftarrow S-1$ $M(S) \leftarrow PCL$ $S \leftarrow S-1$ $PCL \leftarrow ADL$ $PCH \leftarrow ADM$ ABL $M(S) \leftarrow PG$ $S \leftarrow S-1$ $M(S) \leftarrow PCH$ $S \leftarrow S-1$ $PCL \leftarrow ADL$ $PCH \leftarrow ADM$ $PG \leftarrow ADH$ (ABS, X) $M(S) \leftarrow PCL$ $S \leftarrow S-1$ $PCH \leftarrow ADM$ $PG \leftarrow S-1$ $PCH \leftarrow ADM$ $PG \leftarrow S-1$ $PCH \leftarrow ADM$ $PG \leftarrow ADH$ (ABS, X) $M(S) \leftarrow PCL$ $S \leftarrow S-1$ $PCL \leftarrow (ADM, ADL + X)$ $PCH \leftarrow (ADM, ADL + X+1)$	Saves the contents of the program counter (also the contents of the program bank register for ABL) into the stack, and jumps to the new address.																												
LDA (Note 1,2)	Acc←M	Enters the contents of the memory into the accumulator.			AS	2	2			A5	4	2			B5	5 6	2				B2	6 2 6	A1	7 8	2	B1 8	8 2 9	A7	8 8	2
					42 A9	4	3			42 A5	6 6	3			42 B5	7	3				42 B2	8 3 8	42 A1	9 10	3	42 1(B1 1	03	42 A7	10 10	3
LDM (Note 4)	M←IMM	Enters the immediate value into the memory.						T		64	4	3		T	74	5	3					T				T	T	Γ		
LDT	DT⊷IMM	Enters the immediate value into the data bank register.		Ţ	89 C2	5	3	T						T							Ť		T			1	t	t		
LDX (Note 11)	X←M	Enters the contents of the memory into index register X.			A2	2	2			A5	4	2						86	5 6	2	T		T				1			
LDY (Note 11)	Y←M	Enters the contents of the memory into index register Y.			AC	2	2			A4	4	2			B4	5	2						T			T	+	t		
LSR (Note 1)	$m=0$ $0 \rightarrow b15 \cdots b0 \rightarrow C$ $m=1$ $0 \rightarrow b7 \cdots b0 \rightarrow C$	Shifts the contents of the accumu- lator or the contents of the memory one bit to the right. The bit 0 of the accumulator or the memory is en- tered into the C flag. "0" is entered into bit 15 (bit 7 when the m flag is "1".)					4	4A 2 2 42 4 4A 4	2	46	7 8	2			56	7 8	2			-						-				
MPY (Note 2,10)	B, A←A×M	Multiplies the contents of accumu- lator A and the contents of the memory. The higher order of the result of operation are entered into accumulator B, and the lower order into accumulator A.			89 09	8	3			89 05	10 10	3			89 15	11 12	3				89 1 12 1	2 3	89 01	13 14	3	89 14 11	4 3	89 07	14	3
MPYS (Note 2,10)	B, A←A×M (with sign)	The content of the accumulator A is multiplied by the content of memory as signed data. The result is a 32-bit data which is placed in the accumulators B (upper 16 bits of the result) and A (lower 16 bits of the result).			89 89	8	3			89 85	10	3			89 95	11	3				89 1 92	2 3	89 81	13	3	39 14 91 1!	4 3	89 87	14	3
MVN (Note 7)	M(Y+k)←M(X+k) k=0 to ⊢1	Transmits the data block. The transmission is done from the lower order address of the block.																												

Г					_			_															A	dd	Ire	es	si	ng	j r	nc	bd	e																				-	<u> </u>				7	P	ro	ce	ess	501	r s	ta	tus	s ri	egi	iste	ər
L(C	1R),	Y	AE	s	A	BS	,b	A	BS	,Х	A	B	S, ۱	1	A	BL		A	BL	,Х	(/	٩B	S)	L	(A	BS	5)	(A	BS	5,X)	s	гκ	:]	F	RE	L	C	IR	,b,F	1	AB	S,b	,R		SF	٦	(SR	1), \	1	вι	ĸ	2	Mul	tipli nula	ied tion	10	9	8	7		6	5	4	3	2	1	0
ор	n 1	# 0	p n	#	op	n	#	op	n	#	op	n	4	*	pp (n	#	ор	n	#	op	n	#	oŗ	n		#	οр	n	#	0	p	1	#	op	n	#	o¢) n	4	1	x0	n	#	ор	n	#	9	p n		i o	pn	1	# (op	n	#		IP	L	N	ı٧	1	m	x	D	1	Z	С
		2	7	3											22	9	4											FC	9	3																												•			•			•	•				
B7	0 2	2 A	D 4	3		$\left \cdot \right $	-	BD	6	3	B9	6	3		VF I	6	4	BF	7	4			-	┝	╀	+	+	_		\vdash	╀	╀	+	+	+	μ	-	┝	╀	╀	+		-	-	A3	5	2	18	3 8	+	+	+	+	╉	-	4		ŀ	ŀ	ł.	+	+	+		-	\vdash	\vdash	7	_
42	1	4	4	4			_	42	7 8	4	42	7	4		12 8	7	5	42	9	5				╞				_			-		+	4	-		-				1				42	6	3		9				+		_	-										-			
B7	3	A	6	1.				BD	9		89	9		ľ	VF _	9	4	BF	11						Ļ	1	_	_					1	\downarrow									4		A3	8	L	B	31	1								L	L			1						Ц	
	1	90	6	4				9E	6 8	4					_	4		_										_								5								_														Ŀ	ŀ	ŀ	· -	·	•	•	·			· L	·
		1	-													-			_																														-									Ŀ	·	ŀ	ŀ	·	•	•	•	·	Ľ	Ľ	·
			E 4	3							BE	6 7	3															-																														ŀ	•	ŀ	N	//·	•	·	•	•	ŀ	Z	·
		A	C 4 4	3				BC	6 7	3																				>	ľ																											•	•	•	N	1	•	•	•	•	•	Z	·
		4	E 7 8	3				5E	8 9	3																																		_														•	•	·	0		•	•	•	•	•	Z	С
89 17	6 3	8	9 10 D	4				89 1D	12	4	89 19	12	4	8	19 1)F	2	5	89 1F	13	5								_					+	+	+	_				+		-		-	89 03	11	3	8	9 14	4 3	-			╉	+	_		·	ŀ	•	N	 •	•	•	•	•	•	z	0
	7		10						13			13			1	3			15																											12			1	5																			
89 1 97	6 3 7	8	9 10 D	4				89 9D	12	4	89 99	12	4	8	19 1 1	2	5	89 9F	13	5																									89 83	11	3	8	914	4 3	3							•	•	•	N		•	•	•	•	•	z	0
																												-							-+									-	_						5	4 5 × 5 +	7	3				·	•	•	•	•	•	•	•	•	•	•	•

			Γ											Ac	dre	ess	sing	g n	no	de										
Symbol	Function	Details		IM	Ρ	11	MM	1	ŀ	٩		DIR	1	DIF	₹,b	D	IR,)	4	DIF	۹,Y	(DIR	8)	(DII	R,X)) ([)IR)	Y,	L([)IR)
		· · · · · · · · · · · · · · · · · · ·	90	n	#	ор	n	# 0	n qç	#	οp	n	# (op n	#	op	n	# 0	ip n	#	op	n	#	op r	1 #	op	, n	#	op 1	n #
MVP (Note 8)	M(Y–K)←M(X–k) k=0~i−1	Transmits the data block. Trans- mission is done form the higher or- der address of the data block.																												-
NOP	PC←PC+1	Advances the program counter, but performs nothing else.	E/	A 2 2	1					1	T			+	T			T	t		t									+
ORA (Note 1,2)	Acc←Acc∨M	Logical sum per bit of the contents of the accumulator and the con- tents of the memory is obtained. The result is entered into the accu- mulator.				09 42 09	2 2 4 4	2 3			05 42 05	4 4 6 6	2 3			15 42 15	5 6 7 8	2			12 42 12	6 6 8 8	2	01 7 42 9 01 1	7 2 8 9 3 0	11 42 11	8 9 10 11	2	07 1 42 1 07	3 2 8 0 3 10
PEA	M(S)←IMM2 S←S−1 M(S)←IMM1 S←S−1	The 3rd and the 2nd bytes of the instruction are saved into the stack, in this order.																												
PEI	$\begin{array}{l} M(S) \leftarrow M((DPR) + IMM + 1) \\ S \leftarrow S - 1 \\ M(S) \leftarrow M((DPR) + IMM) \\ S \leftarrow S - 1 \end{array}$	Specifies 2 sequential bytes in the direct page in the 2nd byte of the instruction, and saves the contents into the stack.																												
PER	EAR←PC+IMM2, IMM1 M(S)←EARH S←S−1 M(S)←EARL S←S−1	Regards the 2nd and 3rd bytes of the instruction as 16-bit numerals, adds them to the program counter, and saves the result into the stack.																												
РНА	m=0 M(S)←AH S←S-1 M(S)←AL S←S-1 m=1 M(S)←AL S←S-1	Saves the contents of accumulator A into the stack.																												
РНВ	$ \begin{array}{c} m=0 \\ M(S) \leftarrow BH \\ S \leftarrow S-1 \\ M(S) \leftarrow BL \\ S \leftarrow S-1 \\ m=1 \\ M(S) \leftarrow BL \\ S \leftarrow S-1 \end{array} $	Saves the contents of accumulator B into the stack.																												
PHD	$\begin{array}{c} M(S) \leftarrow DPRH\\ S \leftarrow S-1\\ M(S) \leftarrow DPRL\\ S \leftarrow S-1 \end{array}$	Saves the contents of the direct page register into the stack.																						-						
PHG	M(S)←PG S←S−1	Saves the contents of the program bank register into the stack.		T						-	T			1				ł			ſ			T	+-	T			+	+
РНР	M(S)←PSH S←S-1 M(S)←PSL S←S-1	Saves the contents of the program status register into the stack.																												
РНТ	M(S)←DT S←S−1	Saves the contents of the data bank register into the stack.																									Π		T	T

Γ						_		_	_			_			_	_			_			7	Ac	idi	e	ss	in	g	m	00	ie		_					-	_		-								_						_	TF	⁵ rc	ж	ess	or	st	atı	JS	re	gis	ste	r
1()IR)	Y	AE	3S	A	BS,	Ь	AB	s,	×	AE	3S	,Y	L	AB	L	Ŀ	٨B	L,)	4	<u>(A</u>	BS	5)	L(AE	BS))(/	٩B	S,)	9	5	T	$\langle $		RE	EL.	1	NR	,b,F	1	AB	S,b	,R	L	SF	2	(SR),Y	Ĺ	BL	ĸ	Mi, acc	,Itip ម្ពាប	lied	1	<u>)</u> 9	8	7	6	5	; 4	13	3 2	2	1	0
op	n	# 0	xp n	#	op	n	# 0	p	۱	#[op	n	#	ор	n	#	6	p		1 0	p	n	#	ор	n	#	9	p	1	#	эр	n	#	op	n	#	9	pn	1	۶k	xp	n	#	op	n	#	9	p n	#	of	n	#	op	n	#		IP	Ľ	N	ıν	п	n	(E	2	1Ì	z	С
																																																		44 2 2	9 × 9 + ×	3 7 1 7				ŀ	ŀ	•		•	•			•	•	•	•
																																																					Γ			ŀ	•		ſ	1	•	•	·	•	•	•	•
17	10 11	2 0	D 4	3			1	De	5 : 7	3	19	6 7	3	OF	6 7	4	1	F 7	, , ,	Ī	T			i			Γ	T								T	T		T	T				03	5	2	1	38	2				Γ			ŀ	ŀ	•	N	ŀ	•	Ī	ſ	•	•	z	•
4 2 17	12 13	3 4 0	2 6 D 6	4			4	2 8		•	42 19	8 9	4	42 0F	8	5	4	2 9	1		1						T	Ť	t	T			_			T	T	T	t	t				42 03	7	3	4:	2 10	3	t	T	Ť	ſ		ľ	1											
		t	t	t		1	t	t	ſ	1	1			-		ſ	t	t	+	t	1	1					t		+	ſ	4	5	3			l	ſ	t	╀	t	1	1					t	1	t	ſ	1	ŀ	ſ		-	ŀ	ŀ	ŀ	ŀ	ŀ	1.	ŀ	+.	•	·	+	•
																															ł	7																																			
		T	T				T	T	T	T							T			T	T						Γ	Ī		Ī	×	6	2			T	T		T	T							T									ŀ	ŀ	ŀ	ŀ	ŀ	1.	•	Ī	Ţ	•	·T	•
																																7																																			
																															2	5 6	3												2	3										ŀ		•	.					•	•	•	•
							ł		+-	1										t											\$8	4	1					t																		. 	ŀ	. 		•	.		+	-	•	•	•
																																4																																			1
		Ì																													12 18	6	2														T									†.	•	†.	†.	. 				•	•	•	•
																																6																																			
)B	4	1																							ŀ	ŀ	ŀ	1.	1.	1.		1	•	•	•	•
		T					T			T							T		T	T	T	1					I		I	ľ	ŧВ	3	1				T	T	T	T		1					T	T							Ī	ŀ	ŀ	ŀ	1.	ŀ	•	•	.†.	•	•	•	•
													-																		8	4	1					Ť									T									ŀ	†•	†.	†•	†.	+	•	.†.	•	•	•	•
	1	t	T	T			Ť	t	Ť	t	1						t	t	1	t							t	t	t	ŀ	BB	3	1			T	t	T	t	T	1			ſ		T	t	\uparrow		t			ŀ		t	ŀ	†.	†.	ţ.	ſ	·†·	·	ſ	·	•		•

		T	Γ		-			_	-		-			A	dd	es	sir	ng	m	od	e		-				_				
Symbol	Function	Details	h	MF	5	IN	им	Τ	1	۹.	Г	DIF	1	DI	R,t		DIF	,X		DIR,	Y	(C	NR		(DIF	1,X)	(D	IR),	Y	L(D	IR)
			ор	n	#	op	n i	# 0	p n	#	op	n	#	op	n i	t o	n	#	op	n	#	op	n	# 0	xp n	#	op	n	# (n qc	#
РНХ	$ \begin{array}{l} x=0 \\ M(S)\leftarrow XH \\ S\leftarrow S-1 \\ M(S)\leftarrow XL \\ S\leftarrow S-1 \\ x=1 \\ M(S)\leftarrow XL \\ S\leftarrow S-1 \end{array} $	Saves the contents of the index register X into the stack.																													
РНҮ	$\begin{array}{c} x=0\\ M(S)\leftarrow YH\\ S\leftarrow S-1\\ M(S)\leftarrow YL\\ S\leftarrow S-1\\ x=1\\ M(S)\leftarrow YL\\ S\leftarrow S-1\\ S\leftarrow S-1\end{array}$	Saves the contents of the index register Y into the stack.																													
PLA	m=0 S←S+1 AL←M(S) S←S+1 AH←M(S) m=1 S←S+1 AL←M(S)	Restores the contents of the stack on the accumulator A.																													
PLB	m=0 S←S+1 BL←M(S) S←S+1 BH←M(S) m=1 S←S+1 BL←M(S)	Restores the contents of the stack on the accumulator B.																													
PLD	S←S+1 DPRL←M(S) S←S+1 DPRH←M(S)	Restores the contents of the stack on the direct page register.													-																
PLP	S←S+1 PSL←M(S) S←S+1 PSH←M(S)	Restores the contents of the stack on the processor status register.																					-							-	
PLT	S←S+1 DT←M(S)	Restores the contents of the stack on the data bank register.						T			ľ		1			ſ	l						1	t	1	ſ			T		Π
PLX	$ \begin{array}{l} x=0\\ S\leftarrow S+1\\ X\sqcup\leftarrow M(S)\\ S\leftarrow S+1\\ XH\leftarrow M(S)\\ x=1\\ S\leftarrow S+1\\ X\sqcup\leftarrow M(S) \end{array} $	Restores the contents of the stack on the index register X.																													
PLY	x=0 S←S+1 YL←M(S) S←S+1 YH←M(S) x=1 S←S+1 YL←M(S)	Restores the contents of the stack on the index register Y.																													

Γ	-	-																_					A	dd	Ire	es	sir	ng	n	10	de	;										_	-												Т	Pr	roc	es		or s	sta	tus	s re	egi	ste	er
ī	(DII	7),Y	A	BS	1	AB	S,b	A	BS	,X	4	B	S, Υ	1	A	BL		A	ЗL	,X	ļ,	AB	S)	L	(A)	BS	S)	(AE	3S	,X)	:	ST	ĸ		RE	EL	T	DIR	,b,R	1	AB	S,b	,R		SF	1	(5	R)	Y	в	LΚ	A a	Multi Iccum	iplie ulati		10	9	8	7	6	5	4	3	2	1	0
2	p n	*	op	n #	1 0	o n	#	op	n	#	or	n	#	*	90	n	#	op	n	#	op	n	#	op	n	1	#	op	n	#	op	n	#	ор	n	#	9	p n	#	0	p	n	#	ор	n	#	op	n	#	op	1	#	op	•	#	1	PL		N	۷	m	x	D	Ц	Z	С
																															DA	4	1																							• • • • • • • • • • • • • • • • • • •	•	•	•	•	•	•	•	•	•	•
																															5A	4	1																								•	•	•	•	•		•	•	•	•
																															68	5	1																10 Mar 10							•	•	•	N	•	•	•	•	•	Z	•
																															42 68	7	2																							•	•	•	N	•	•	•	•	•	Z	•
																															28	5	1																							•	•	•	•	•	·	•	•	•	•	•
																															28	6 6	1																_							Va	alu	ie :	sav	ve	d ii	ns	ta	 ;k.	4	1
																															AB	6 6	1				T																	T		•	·	·	N	•	$ \cdot $	·	•	•	Z	•
																															FA	5	1																							•	•	•	N	•	•	•	•	•	Z	1.
																															74	5	1																							•	•	•	N	•	•	•	•	•	Z	•

			Γ	-				_					A	dd	re	ssi	ng	п	100	le									-		1
Symbol	Function	Details		MP	'	IM	M		A		D	R	D	IR,I	۰	DI	R,X	Γ	DIR	,Y	(1	DIR	0	(DI	R,X)) (0)IR)	Y.	L(C	IR)	1
PSH (Note 5)	M(S)←A, B, X…	Saves the registers among accu- mulator, index register, direct page register, data bank register, pro- gram bank register, or processor	90	n	# 0	n qo	#	op	<u>n</u>	# c	xp n	#	ор	n	# (n qi	<u> </u> #	0	p n	#	9P	n	#	op r	1 #	00	n	#	op r	#	
		pattern of the second byte of the instruction into the stack.																													
PUL (Note 6)	A, B, X←M(S)	Restores the contents of the stack to the registers among accumula- tor, index register, direct page reg- ister, data bank register, or proces- sor status register, specified by the bit pattern of the second byte of the instruction.																													
RLA (Note 12)	m=0 i bit rotate left $\leftarrow [b_{15}b_{0}] \leftarrow$ m=1 i bit rotate left $\leftarrow [b_{7}b_{0}] \leftarrow$	Rotates the contents of the accu- mulator A, i bits to the left.				39 6 19 + i 6 + i	3																								
RMPA (Note 15)	m=0 Repeat B, A←B, A+M(DT, X)× M(DT, Y)(with sign) X←X+2 Y←Y+2 i←i-1 Until i=0 m=1 Repeat BL,AL←BL,AL+M(DT,X)× M(DT, Y)(with sign) X←X+1 Y←Y+1 i←i-1 Until i=0	Performs signed multiplication of the data in the memory specified by index register X and data bank register, and the data in the memory specified by index register Y and data bank register. The mul- tiplication result is added as binary addition to the data of which high- order is the contents of accumula- tor B, and of which low-order is the contents of accumulator A. The high-order result is stored in accu- mulator B, and the low-order result is stored in accumulator A again. After the addition, when the data length flag (m) is "0", each of the contents of index register X and in- dex register Y is incremented by 2. Additionally, the number of multipli- cation and addition is decremented by 1. When the data length flag (m) is "1", each of the contents of index register X and index register Y is incremented by 1. Additionally, the number of multiplication and addi- tion is decremented by 1. The above multiplication and addition are repeated until the number of multiplication and addition is "0".																													
ROL (Note 1)	m=0 ← <u>b15</u> …b0 ← C ← m=1	Links the accumulator or the memory to C flag, and rotates result to the left by 1 bit.						2A :	2 2 4	1 2	67	2			3	67	2	Ī													
								24	4																						
ROR (Note 2)		Links the accumulator or the memory to C flag, and rotates re- sult to the right by 1 bit.						64	2 2	16	36 7 E	2			i	/6 7 {{	7 2 3														
	m=1 →C→b7…bo →							42 6A	4	2																				T	

Г	_				_										-	-	_			A	١dc	fre	ess	sing	g r	no	de					_				_										Τ	Pro	oce	ss	ors	stat	lus	reç	gist	er
4	DIR),Y	AI	BS	A	BS	,b	AE	3S,	×	AB	S,	4	AE	3L	Ľ	B	.,X	(A	BS) L	.(Al	BS) (/	BS	S,X)	5	STH	:	R	EL	DI	R,b,	R	ABS	,b,R		SR		(SF	I),Y	В	LΚ	Mu	itipi umula	ied. tion	10	8	7	6	5	4 3	3 2	2 1	0
90	n	#	opr	n #	op	n	#	op	n	# 0	pp r		# 0	n q	#	0	n	#	ор	n	# o	pln	#	or	n	#	ор	n	# (xp n	#	οp	n	# 0	xp n	#	ор	n	#	op n	#	op	n #	op	n	#	IF	2	N	V	m	×C	ו כ	z	С
																											EB 2i1 7B 3i1	11 + + + 11 + + 12 + + + 12 +	2 i2 i2 2 4i2																		If of va ca	res PS	tor S,	ed it An	the	e c cor the		ten s i	ts ts ər
-			_				_		-	4	+	\downarrow	4	+	-		1	L		-	\downarrow	\downarrow	\downarrow	\downarrow	╞	-	381	Ĥ	412	∔	\downarrow		μ	4	\downarrow	1.		\square	_	+	1	\square	÷							.		-			
																																															•		•			•	•		
																																							>					89 E2 i	6 + x	3 16 16							•	• Z	C
			2E 7	7 3			_	3E	9	3																																					•	•	• N	•	•	•	•	• 2	C
			6E 1	7 3			-	7E	9	3																																					•	•	• N		•	•	•	• 2	C

														ŀ	١d	dre	ess	sin	gı	m	bde	e										_
Symbol	Function	Details		IM	P		IMN	٨		A		D	IR	1	DIR	,b	D	IR,	х	D	IR,	Y	(D	NR)) (DIF	₹,X)	1)IR)	.Y	L(f	JIR
RTI	$\begin{array}{c} S \leftarrow S+1 \\ PSL \leftarrow M(S) \\ S \leftarrow S+1 \\ PSH \leftarrow M(S) \\ S \leftarrow S+1 \\ PCL \leftarrow M(S) \\ S \leftarrow S+1 \\ PCH \leftarrow M(S) \\ S \leftarrow S+1 \\ PG \leftarrow M(S) \end{array}$	Returns from the interruption rou- tine.	ор 40	9 9	1	o¢	n	#	op	n	# c	xpr	1	op) n	#	ор	n	#	Ŷ	n	# (op	ni	ţ	p n	#	op	n	#	op	1 4
RTL	S←S+1 PCL←M(S) S←S+1 PCH←M(S) S←S+1 PG←M(S)	Returns from the subroutine. The contents of the program bank reg- ister are also restored.	6B	7																												
RTS	S←S+1 PCL←M(S) S←S+1 PCH←M(S)	Returns from the subroutine. The contents of the program bank reg- ister are not restored.	60	5																												
SBC (Note 1, 2)	Acc, C←Acc−M−C	Subtracts the contents of the memory and the borrow from the contents the accumulator.				E9 44 E9	2 2 2 4	2 3				E5 42 E5	4 2 4 6 3		2		F5 42 F5	5 6 7 8	2				F2 42 F2	6 6 8 8	2 E 3 4 E	1 7 8 12 9	2	F1 42 F1	8 9 10	2	E7 42 E7	8 0 :
SEB (Note 4)	Mb ←1	Makes the contents of the speci- fied bit in the memory "1".				T						ţ		04	4 8 9	3								+	+	Ť	1	╞	H			Ť
SEC	C←1	Makes the contents of the C flag "1".	38	2	1																			T	T	T	T	T				Ť
SEI	←1	Makes the contents of the I flag "1".	78	2	1																											T
SEM	m←1	Makes the contents of the m flag "1".	F8	2	1																											
SEP	PSb⊷1	Set the specified bit of the processor status register's lower byte (PSL) to "1".				E2	3	2																			T					
STA (Note 1)	M—Acc	Stores the contents of the accumulator into the memory.	_		+	-					4	85 42 (85	4 2 5 6 3				95 42 95	5 5 7	2			-	92 42 92	7	2 8	1 7 8 2 9	2	91 42 91	7 8 9	2 3	87 1 42 1 87 1	2013
STP		Stops the oscillation of the oscilla- tor.	OB	-	1	┢					1		+	t				/				1		10	ł	+	1-	f	10			2
STX	M←X	Stores the contents of the index register X into the memory.									ľ	86	4 2 5		T					96	5 5	2		+	t	+	t	t				t
STY	M←Y	Stores the contents of the index register Y into the memory.									ł	34	4 2 5				94	5 5	2						T			Ī				Ì
TAD	DPR←A	Transmits the contents of the ac- cumulator A to the direct page reg- ister.	58	2	1																				I							
TAS	S←A	Transmits the contents of the ac- cumulator A to the stack pointer.	1B	2	1				I	T	T	T										T		T	T		T	Γ	Π			T

Г		_																			A	d	dre	es	sir	ng	m	10	de	,																						P	roc	es	sso	or s	tat	us	re	gis	ter
L(DIR	Y,	A	BS	A	BS	i,b	A	BS	,Х	A	35,	Y,	A	BL		AE	3L.,)	×	(A	BS)		_(A	BS	5)	(AE	3S,	,X)	5	STI	ĸ	1	RE	L	DI	R,b,	R	AB	IS,b	,R	1	SF	1	(S	R)	Y,	в	LK	A	Aulti	plied	10	9	8	7	6	5	4	3	2	0
op	n	*	op 1	n #	or	n	#	op	n	#	ор	n	#	ор	n	*	ор	n	#	0p 1	1	1 0	n qi	1	*	op	n	#	ор	n	#	ор	n	#	op	n	#	ор	n	#	ор	Π	#	ор	n	#	ορ	n	# 0	n qc	#		IPL		N,	V	m	x [ſ	D	1	ź C
				والمراجع المحافظ والمحافظة المحاجم والمراجعة لمنتخب والمراجع المحافيات والمحاج والمحافي															والموافقات والمروحة والمارية المالية والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة																																		'alu	Je	sav	vec	ni t	st	ac	k.	
																																																				•	•	•	•	•	•	•	•	•	•
																																																				ŀ	·	•	•	•	·	·	·	•	
F7	10 11	2	ED	4 3				FD	6 7	3	F9	6 7	3	EF	6 7	4	FF	7	4																						E3	5 6	2	F3	8	2		1				ŀ	·	·	Ν	V	·	·	•	•	2 C
42 F7	12 13	3	42 (ED	6 4 6				42 FD	8 9	4	42 F9	8 9	4	42 EF	8	5	42 FF	9	5																						42 E3	7 8	3	42 F3	10 11	3					+						Ì				
			T		Ø	9	4												T			T	T	T																								Ť	1	T	T	ŀ	·	·	\cdot	·	·	1	·	•	
ſ	Π	1	T		T										1				T		T	T	T	T	1	1				Γ							2											1	T	Ť	T	ŀ	$\left \cdot \right $	•	·	·	•	1	•	•	1
ſ		1			ſ														1	1	1	t		1	1												1											+	1	1	t	ŀ	$\left \cdot \right $	•	$ \cdot $	·	·	•	·	1	.†.
F			Ť	┢	t													\dagger	1			T		╋													-											╋		\dagger	+	ŀ	$\left \cdot \right $	·	·	·	1	•	•	•	·†·
																																					_															ŀ	·	•	S C	ipe om	L cifi nes	ied "1	l fla ".	ag	 De-
97	9 10	2	8D 1	5 3 6				90	5 5	3	99	5	3	8F	6 8	4	9F	7	4																						83	5	2	93	8 9	2						ŀ	ŀ	$ \cdot $	$ \cdot $	·	i	•	·	•	·
42 97	11 12	3	42 1 30	7 4	ſ			42 9D	7 8	4	42 99	7	4	42 8F	8	5	42 9F	9	5			ţ			1	1					Η										42 83	7 7	3	42 93	10 11	3		\dagger	T	Ť	t	1									
F		1	T	1	T	T																T									Π						-											-			T	ŀ	$\left \cdot \right $	·	$ \cdot $	·	•	•	·	•	-
F			BE	5 3															T	╎		\dagger		+	1						H																	+	1	+	+	ŀ	$\left \cdot \right $	·	ŀ	·	•	•	•	•	1
F			BC 1	5 3	ł								_		+	1			┨		+-	╋	-	+											-		_											+	1		+	ŀ	$\left \cdot \right $	·	$ \cdot $	•	•	•	•	•	·
																					_	T													_		-													-		ŀ	•	•	•	•	•	•	•	•	•
																	1					T			1					-																		+			+-	ŀ	ŀ	·	ŀ	•	·	•	•	•	, †•

	[I	Γ		_									A	dr	es	sir	ng	m	od	е									
Symbol	Function	Details		IMI	Р	1	MN	1	4	1	L	DIF	7	DI	R,b			,X	C	NR.	Y	((DIR)		(DIF	I,X)	(DI	R),Y	ľ	(DIR)
ТАХ	X←A	Transmits the contents of the ac-	op AA	n 2	#	op	n	# (n qx	#	ot	n 	#	ор	1 #	or	п	#	ор	n	*	op	<u>n</u>	* 10	op n	#	op	n #	op	n #
TAY	Y←A	Transmits the contents of the ac- cumulator A to the index register Y.	A8	2	1		-	┨		+-	╞						-	-	$\left \right $					╉	-		┠┼	+	┢	┠╌╂╴
TBD	DPR←B	Transmits the contents of the ac- cumulator B to the direct page reg- ister.	42 58	4	2																							T		
TBS	S←B	Transmits the contents of the ac- cumulator B to the stack pointer.	42 1B	4	2					T	T	T				Ī			ſ	T					T			1	T	
твх	Х←В	Transmits the contents of the ac- cumulator B to the index register X.	42 AA	4	2			T	T	T	T	T			T	T		ſ	ſ					1					T	
ТВҮ	Y←B	Transmits the contents of the ac- cumulator B to the index register Y.	42 A8	4	2					T	T					T		T	ſ					T			Π	1	T	
TDÀ	A←DPR	Transmits the contents of the di- rect page register to the accumula- tor A.	7B	2	1														ſ					Ţ					Ī	
TDB	B←DPR	Transmits the contents of the di- rect page register to the accumula- tor B.	42 7B	4	2																					Ī				
TSA	A←S	Transmits the contents of the stack pointer to the accumulator A.	3B	2	1				Ť	1	T	C			T				T					1		T		1	T	
TSB	B←S	Transmits the contents of the stack pointer to the accumulator B.	42 38	4	2						T	T			T	T			ſ					1				1	T	
TSX	X←S	Transmits the contents of the stack pointer to the index register X.	BA	2	1						T	T		Π	Ţ	T	Ī		Γ		ļ			Ţ		T	Π	Ť	T	
ТХА	A←X	Transmits the contents of the index register X to the accumulator A.	84	2	1				T		T	T			T	T			ſ					1		T	Π	T	T	Π
ТХВ	B⊷X	Transmits the contents of the index register X to the accumulator B.	42 8A	4	2							T				T													T	
TXS	S←X	Transmits the contents of the index register X to the stack pointer.	94	2	1																								Τ	
TXY	Y←X	Transmits the contents of the index register X to the index register Y.	98	2	1																									
ΤΥΑ	A←Y	Transmits the contents of the index register Y to the accumulator A.	98	2	1																							T	Ι	
ТҮВ	B←Y	Transmits the contents of the index register Y to the accumulator B.	42 98	4	2				I															J						
түх	X←Y	Transmits the contents of the index register Y to the index register X.	88	2	1																							T	T	
WIT		Stops the ¢CPU, ¢BIU.	CE		1					T	I					T			Γ			Γ					Π		T	Π
ХАВ	A⇔B	Exchanges the contents of the ac- cumulator A and the contents of the accumulator B.	89 28	5	2						T																Π		T	

Γ	-						_				-												_		A	d	dro	es	ss	in	g	m	0	de	, ,		-				-			-																_		1	Pro		es	sc	or :	sta	atu	IS	re	gi:	ste	r
L(D	R), \	1	AE	3S	A	BS	,b	A	BS	S,X	:	AE	35	,Υ	·	A	BL	_	1	٩B	L,	×	(A	B	S)	l	_(/	۱B	S)	(٩B	S,	X)	5	ST	κ	Ι	R	E	-	D	IR,	ь,	3	AB	S,t	,R	Γ	S	SR		(5	SR),Y	ſ	Bl	ĸ		Mul	tip) myt	lied	1	o s) {	3	7	6	5	4	3	<u>ب</u> [:	2	1	0
op	#	0	pn	#	op	n	#	ор	n	#	0	p	n	#	0	p	1	#	0	рл		#	op	n	#	0	p	n	#	0	p r	Ī	#	op	n	#	0	ρ	n	#	op	n	1	1	хр	n	#	loţ	p	n	#	op	n	#	0	pn	1	#	ор	n	#	Γ	IF	۲L	Ţ	N	٧	m	I.X	Tc	۶Ţ	ī	zŢ	С
Π		Τ	T	Ι	Ī						T				T	T			Γ		T					T	T										T	T				T		T				Γ						Γ	T	T	T					ŀ	ŀ	ŀ	•	N	•	ŀ	ŀ	1.	·T	•	z	•
$\left \right $		+-	+	T	ſ					ŀ	t				Ì	╈			l	T	+					t				ſ	+		-				1							1											T	T	t	1				ŀ	ŀ	+	•	N	•	ŀ	ŀ	ŀ	.†	•	z	•
┠┼	┢	╀	- .	+	t					┢	+				ł	+			ł	+	1				-	t	+		-	ł	╉	+	-		-	-	ł				┢	┢	┢	╉		_		┢	+		-	-	$\left \right $		t	╋	t	┨	-			ŀ	ŀ	+	\cdot	•	•	ŀ	ŀ	t	+	•	+	•
	+	╞		1	Ļ						$\left \right $					\downarrow			ļ	+	+						4						_	Ц	L	Ļ			_					+	_			Ļ	4						ļ		1						\downarrow	4	4			┞	Ļ	\downarrow	+	\downarrow	4	_
																			L	ļ					Ĺ	ļ										L																										Ľ	ŀ]	·	Ŀ	Ľ	Ľ	.	1]	<u> </u>	•
																																																														ŀ	ŀ		•	N	Ŀ	ŀ	ŀ	ŀ	ĺ	•	Z	•
																																																														ŀ	ŀ		•	N	•	ŀ	ŀ	•	·	·	Z	•
																																																														ŀ	ŀ		•	N	•	ŀ	ŀ	•	•	•	Z	•
																																																			1											•	•		•	N	ŀ	ŀ	•	•	·	•	z	•
		T	T	Τ						Γ	T								Γ		T					T				Γ	T				Γ	Γ	T						T	T				1							T	T						ŀ	ŀ	T	•	N	•	ŀ	ŀ	ŀ	ſ	-	z	•
	T	T	T	T	T					T	T				Ī	T			ſ							T				I	Ì	1	-		ſ	T	T	T					T									ſ	Ì		T	T					Ī	ŀ	·	+	•	N	•	ŀ	ŀ	ŀ	ſ	•	z	•
	Ť	t	+-	T							T				I	ľ			Ī							T		-		t	T		-		F	f	I	T				T	T					ſ	t			ſ	ſ	ſ	t	T	T					ŀ	ŀ	+	·ľ	N	ŀ	ŀ	ŀ	†•	·†	ŀ	z	•
Ħ	t	t	t	ſ	ſ				ſ	ſ	t			$\left \right $	t	ſ	ſ		ſ		t	1			F	t	-{			f	t		-		F	ſ	╉					T		1	1	-		t	1			┞		ſ	t	T		1				ŀ	t	+		N	·	ŀ	ŀ	+-	·†	•	z	•
$\left \right $	╀	t	╉	\uparrow	t						t				t	+			┢		┥	-			┢	t	1	-		t	╀	╉	-			t	1	t		-			t	┨				t	┥		_	┢		╎	\dagger	╉	$\frac{1}{1}$		-	_		ŀ	t	+	•	N	•	ŀ	ŀ	+	\cdot	+	z	•
┠┼		╎	+	╋					-	┢	╏		_	$\left \right $	ł						╎		_			t	+	-		ł		1						+					+	1				╎	+					-	╎	╎						ŀ	ŀ	÷	•	•	ŀ	ŀ	ŀ	÷	ł	+	+	•
╟┼	+	╀	╋	+	┞╴					$\left \right $	ł	+			t	+	┨		┞	+				_	╞	╎	+		5	1		+			╞	┝	╎		-			╞	+	┨		-		╞	╉	+		┢	┞		╀	╋	╁					ŀ	ŀ	+	-	N	ŀ	ŀ	ŀ	+	·†	+	z	•
╟┤	╉	╀	┼	╀	╞		-			-	$\frac{1}{1}$				$\left \right $				┞	╀	+	4			╞	╀	+			ł	+	+	-	μ	╞	╞	╀		_		┝		╀	╉				┞	╉	-		┞	╞		╀	+		-				•	+	+	•	N	•	.	ŀ	+	·	•	z	•
╟┼	╞	╀	╀	+	╞					╞	╀			-	╀					1	-			-		+	1	_		┞	╀	+	_		┞	╀	╀		_				+	+		_	-	╞							╀	+			-			 .	+	+	•	N	ŀ	ŀ	ŀ	+	+	•	z	•
┝┼	╞	╀	+	╞	┞	$\left \right $			-	-	+		_		+					-	-					+				┞	+	+	_		╞	+	+	+	_			-	+	+		_		╞	+			┞	╞		╀	+	╞			-	$\left \right $		+	╉	-	N	•	- •	ļ.	+	+	+	z	•
┞┼	-	+	-	╞					-	-	┦				$\frac{1}{1}$					-					╞	╀	+			┞	+	+	_		Ļ	Ļ	┦		_				+	+		-	L.		+			┞			\downarrow	╀	+		_			 .	+	+	-		ŀ	ŀ	<u> </u>	+	+	-	+	-
	+	1	+	+							1		-		+	+				+	4	_				4	-	_		ļ	╀		_		Ļ	Ļ		+	_			-	+	4	_	_		Ļ						╞	┦	+	\downarrow						+	+	4	NI	-	Ļ	+	+	+	-	<u>_</u>	
																																																														ľ	ľ			N I		ľ					-	•

Appendix 1. 7751 series machine instructions

Notes for machine instructions table

A number of cycles on the upper row is the number when fetching instructions at 2 ϕ access in low-speed running under the condition of f (XIN) \leq 25 MHz. A number of cycles on the lower row is the number when fetching instructions at 3 ϕ access in high-speed running under the condition of 25 MHz < f (XIN) \leq 40 MHz.

The cycles' number of addressing modes concerning DPR is the number of the case of DPR="0". When DPR \neq "0", the number of cycles is incremented by 1.

The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory accessed is odd address or even address. It also differs when the external area is accessed by BYTE="H". This table shows the fastest number of cycles for each instruction.

- Note 1. The operation code at the upper row is used for accumulator A, and the operation at the lower row is used for accumulator B.
- Note 2. When setting flag m=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.
- Note 3. The operation code on the upper row is used for branching in the range of -128 to +127, and the operation code on the lower row is used for branching in the range of -32768 to +32767.
- Note 4. When handling 16-bit data with flag m=0, the byte in the table is incremented by 1.

Note 5.

Type of register	A	В	Х	Y	DPR	DT	PG	PS
Number of cycles	2	2	2	2	2	1	1	2

The number of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done is 11. it indicates the number of registers among A, B, X, Y, DPR, and PS to be saved. iz indicates the number of registers among DT and PG to be saved.

Note 6.

Type of register	Α	В	Х	Y	DPR	DT	PS
Number of cycles	3	3	3	3	4	3	3

The number of cycles corresponding to the register to be pulled are added. The number of cycles when no pulling is done is 12. it indicates the number of registers among A, B, X, Y, DT, and PS to be restored. i2=1 when DPR is to be restored, and i2=0 when DPR is not to be restored. Note 7. The number of cycles is the case when the number of bytes to be transferred is even. When the number of bytes to be transferred is odd, the number is

calculated as; $5 + (i/2) \times 7 + 6$ Note that, (i/2) shows the integer part when i is divided by 2.

Note 8. The number of cycles is the case when the number of bytes to be transfered is even. When the number of bytes to be transfered is odd, the number is calculated as; $9 + (i/2) \times 7 + 8$

Note that, (i/2) shows the integer part when i is divided by 2.

- Note 9. The number of cycles is the case in the 16-bit + 8-bit operation. The number of cycles is incremented by 8 for 32-bit + 16-bit operation.
- Note 10. The number of cycles is the case in the 8-bit × 8-bit operation. The number of cycles is incremented by 4 for 16-bit × 16-bit operation.
- Note 11. When setting flag x=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.
- Note 12. When flag m is 0, the byte in the table is incremented by 1.
- Note 13. When a zero division interrupt occurs, the number of cycles is the number when it does not occur decremented by 3. It is regardless of the data length.
- Note 14. When a zero division interrupt occurs, the number of cycles is the number when it does not occur decremented by 5. It is regardless of the data length.
- Note 15. The number of cycles is the case when flag m is 1. When flag m=0, the number is calculated as:

6 + 20 × i

Appendix 1. 7751 series machine instructions

Symbols in machine instructions table

Symbol	Description	Symbol	Description
IMP	Implied addressing mode	¥	Exclusive OR
IMM	Immediate addressing mode	_	Negation
Α	Accumulator addressing mode	←	Movement to the arrow direction
DIR	Direct addressing mode	\rightarrow	
DIR. b	Direct bit addressing mode	⇔	
DIR. X	Direct indexed X addressing mode	Acc	Accumulator
DIR. Y	Direct indexed Y addressing mode	Α	Accumulator A
(DIR)	Direct indirect addressing mode	Ан	Accumulator A's upper 8 bits
(DIR, X)	Direct indexed X indirect addressing mode	AL	Accumulator A's lower 8 bits
(DIR), Y	Direct indirect indexed Y addressing mode	В	Accumulator B
L (DÍR)	Direct indirect long addressing mode	Вн	Accumulator B's upper 8 bits
L (DIR), Y	Direct indirect long indexed Y addressing mode	BL	Accumulator B's lower 8 bits
ABS	Absolute addressing mode	Х	Index register X
ABS, b	Absolute bit addressing mode	Хн	Index register X's upper 8 bits
ABS, X	Absolute indexed X addressing mode	XL	Index register X's lower 8 bits
ABS, Y	Absolute indexed Y addressing mode	Y	Index register Y
ABL	Absolute long addressing mode	Үн	Index register Y's upper 8 bits
ABL, X	Absolute long indexed X addressing mode	YL	Index register Y's lower 8 bits
(ABS)	Absolute indirect addressing mode	S	Stack pointer
L (ABS)	Absolute indirect long addressing mode	PC	Program counter
(ABS, X)	Absolute indexed X indirect addressing mode	РСн	Program counter's upper 8 bits
STK	Stack addressing mode	PCL	Program counter's lower 8 bits
REL	Relative addressing mode	PG	Program bank register
DIR, b R	Direct bit relative addressing mode	DT 🥖	Data bank register
ABS, b, R	Absolute bit relative addressing mode	DPR	Direct page register
SR	Stack pointer relative addressing mode	DPRH	Direct page register's upper 8 bits
(SR), Y	Stack pointer relative indirect indexed Y	DPRL	Direct page register's lower 8 bits
	addressing mode	PS	Processor status register
BLK	Block transfer addressing mode	PSH	Processor status register's upper 8 bits
Multiplied	Multiply and accumulate addressing mode	PSL	Processor status register's lower 8 bits
accumulation		PSb	Bit in processor status register
ор	Operation code	M	Memory
n	Number of cycle	M(S)	Contents of memory at address indicated by
#	Number of byte		stack pointer
C	Carry flag	Mb	Bit in memory location
Z	Zero flag	ADH	Value of 24-bit address's upper 8-bit (A23-A16)
	Interrupt disable flag	ADM	Value of 24-bit address's middle 8-bit (A15-A8)
D	Decimal operation mode flag	ADL	Value of 24-bit address's lower 8-bit (A7-A0)
x	Index register length selection flag	IMM	Immediate value
m	Data length selection flag	EAR	Executed address (16 bits)
N N			Upper o-bit address executed
N	Negative flag	EAHL	Lower 8-bit address executed
	Processor interrupt priority level	na	bit position of accumulator or memory indicated
+	Addition		Dy n
-	Subtraction	1	exerction
×	Multiplication	ia io	Operation
÷		11,12	Number of registers pushed or pulled
- C			
V	Logical UK		
	the second areas were second to the second		h - your labor - to a construct of the second se

Appendix 2. 7751 series instruction code table

Appendix 2. 7751 series instruction code table

\searrow	D3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 He	xadecimal notation	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
		0.01/	ORA		ORA	SEB	ORA	ASL	ORA	0110	ORA	ASL		SEB	ORA	ASL	ORA
0000	U	BHK	A,(DIR,X)		A,SR	DIR,b	A,DIR	DIR	A,L(DIR)	PHP	A,IMM	A	PHD	ABS,b	A,ABS	ABS	A,ABL
0001		0.01	ORA	ORA	ORA	CLB	ORA	ASL	ORA	010	ORA	DEC	740	CLB	ORA	ASL	ORA
0001		DFL	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b	A,DIR,X	DIR,X	A,L(DIR),Y	CLC	A,ABS,Y	A	143	ABS,b	A,ABS,X	ABS,X	A,ABL,X
0010	0	JSR	AND	JSR	AND	BBS	AND	ROL	AND		AND	ROL		BBS	AND	ROL	AND
0010	2	ABS	A,(DIR,X)	ABL	A,SR	DIR,b,R	A,DIR	DIR	A,L(DIR)	FUF	A,IMM	A	PLD	ABS,b,R	A,ABS	ABS	A,ABL
0011	•	0141	AND	AND	AND	BBC	AND	ROL	AND	950	AND	INC	TOA	BBC	AND	ROL	AND
0011	3	DMI	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b,R	A,DIR,X	DIR,X	A,L(DIR),Y	SEC	A,ABS,Y	A	134	ABS,b,R	A,ABS,X	ABS,X	A,ABL,X
0100		071	EOR	Alata 1	EOR		EOR	LSR	EOR		EOR	LSR	DUC	JMP	EOR	LSR	EOR
0100	1	нп	A,(DIR,X)	NOLE	A,SR	MVP	A,DIR	DIR	A,L(DIR)		A,IMM	A	PAG	ABS	A,ABS	ABS	A,ABL
0101	6	BVC	EOR	EOR	EOR	141/11	EOR	LSR	EOR		EOR	OUV	TAD	JMP	EOR	LSR	EOR
0101	5	BVC	A,(DIR),Y	A,(DIR)	A,(SR),Y	MVIN	A,DIR,X	DIR,X	A,L(DIR),Y		A,ABS,Y	FDI	IAD	ABL	A,ABS,X	ABS,X	A,ABL,X
0110		оте	ADC	050	ADC	LDM	ADC	ROR	ADC	DIA	ADC	ROR	OTI	JMP	ADC	ROR	ADC
0110	0	п:э	A,(DIR,X)	FER	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM	A	RIL	(ABS)	A,ABS	ABS	A,ABL
0111	7	BV/S	ADC	ADC	ADC	LDM	ADC	ROR	ADC	0E1	ADC	DI V	TDA	JMP	ADC	ROR	ADC
	'	543	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,X	A,L(DIR),Y	SEI	A,ABS,Y	FLT	TDA	(ABS,X)	A,ABS,X	ABS,X	A,ABL,X
1000		BRA	STA	BRA	STA	STY	STA	STX	STA	DEV	Ninte O	TVA	DUT	STY	STA	STX	STA
1000	°	REL	A,(DIR,X)	REL	A,SR	DIR	A,DIR	DIR	A,L(DIR)	DET	NOLE 2	124	PHI	ABS	A,ABS	ABS	A,ABL
1001		BCC	STA	STA	STA	STY	STA	STX	STA	TVA	STA	TYC	TVV	LDM	STA	LDM	STA
1001		ВСС	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y	11A	A,ABS,Y	172	141	ABS	A,ABS,X	ABS,X	A,ABL,X
1010		LDY	LDA	LDX	LDA	LDY	LDA	LDX	LDA	TAV	LDA	TAY		LDY	LDA	LDX	LDA
1010		IMM	A,(DIR,X)	IMM	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM	100	F 6. 1	ABS	A,ABS	ABS	A,ABL
1011	в	BCS	LDA	LDA	LDA	LDY	LDA	LDX	LDA	CIV	LDA	Tey	TVV	LDY	LDA	LDX	LDA
		500	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y		A,ABS,Y	137		ABS,X	A,ABS,X	ABS,Y	A,ABL,X
1100	c	CPY	CMP	CLP	CMP	CPY	CMP	DEC	CMP	INV	СМР		W/IT	CPY	СМР	DEC	СМР
	Ŭ	IMM	A,(DIR,X)	IMM	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM			ABS	A,ABS	ABS	A,ABL
1101	D	BNE	CMP	СМР	CMP	PEI	CMP	DEC	CMP	CIM	СМР	РНХ	STP	JMP	СМР	DEC	СМР
			A,(DIR),Y	A,(DIR)	A,(SR),Y		A,DIR,X	DIR,X	A,L(DIR),Y	02.00	A,ABS,Y	111/	011	L(ABS)	A,ABS,X	ABS,X	A,ABL,X
1110		CPX	SBC	SEP	SBC	СРХ	SBC	INC	SBC	INIY	SBC	NOP	DOU	CPX	SBC	INC	SBC
		IMM	A,(DIR,X)	IMM	A,SR	DIR	A,DIR	DIR	A,L(DIR)		A,IMM	NUP	F30	ABŞ	A,ABS	ABS	A,ABL
1111	_	BEO	SBC	SBC	SBC	DEA	SBC	INC	SBC	SEM	SBC		Di li	JSR	SBC	INC	SBC
	[020	A,(DIR),Y	A,(DIR)	A,(SR),Y	FEA	A,DIR,X	DIR,X	A,L(DIR),Y	SCM	A,ABS,Y	FLX	FUL	(ABS,X)	A,ABS,X	ABS,X	A,ABL,X

7751 SERIES INSTRUCTION CODE TABLE-1

Notes 1. 4216 specifies the contents of the INSTRUCTION CODE TABLE-2. About the second word's codes, refer to the INSTRUCTION CODE TABLE-2.
2. 8916 specifies the contents of the INSTRUCTION CODE TABLE-3. About the second word's codes, refer to the INSTRUCTION CODE TABLE-3.

Appendix 2. 7751 series instruction code table

1101 02			1001			17.01			101 100	Jiuo	0000			uou		12 10.	/
\bigtriangledown	D3–Do	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 H	exadecimal notation	0	1	2	3	4	5	6	7	8	9	A	в	с	D	Ε	F
			ORA		ORA		ORA		ORA	ASR	ORA	ASL			ORA		ORA
0000	0		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	в	B,IMM	в			B,ABS		B,ABL
0004			ORA	ORA	ORA		ORA		ORA		ORA	DEC			ORA		ORA
0001	1 1		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	в	TBS		B,ABS,X		B,ABL,X
			AND		AND		AND		AND		AND	ROL			AND		AND
0010	2		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM	в			B.ABS		B,ABL
			AND	AND	AND		AND		AND		AND	INC			AND		AND
0011	3		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	в	TSB		B,ABS,X		B,ABL,X
			EOR		EOR		EOR		EOR		EOR	LSR			EOR		EOR
0100	4		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	PHB	B,IMM	в			B,ABS		B,ABL
			EOR	EOR	EOR		EOR		EOR		EOR				EOR		EOR
0101	5		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y		TBD		B,ABS,X		B,ABL,X
			ADC		ADC		ADC		ADC		ADC	ROR	-		ADC		ADC
0110	6		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	PLB	B,IMM	в			B,ABS		B,ABL
			ADC	ADC	ADC		ADC		ADC		ADC			<u> </u>	ADC		ADC
0111	7		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y		TDB		B,ABS,X		B,ABL,X
			STA		STA		STA		STA				EXTS		STA		STA
1000	8		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)			тхв	8		B,ABS		8,ABL
			STA	STA	STA		STA		STA		STA				STA		STA
1001	9		B,(DIR),Y	B,(DIR)	B.(SR),Y		B,DIR,X		B,L(DIR),Y	ТҮВ	B.ABS.Y				B.ABS.X		B,ABL,X
			LDA		LDA		LDA		LDA		LDA		EXTZ		LDA		LDA
1010	^		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	TBY	B,IMM	твх	в	ł	B,ABS		B,ABL
			LDA	LDA	LDA		LDA		LDA		LDA				LDA		LDA
1011	8		B,(DIR),Y	B,(DIR)	B,(SR),Y	5	B,DIR,X	•	B,L(DIR),Y		B,ABS,Y				B,ABS,X		B,ABL,X
			CMP		CMP		CMP		CMP		CMP		† ·	1	CMP		CMP
1100	C		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM		1		B,ABS		B,ABL
			CMP	CMP	CMP		CMP		CMP		CMP			[CMP		CMP
1101	D		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y				B,ABS,X		B,ABL,X
			SBC		SBC		SBC		SBC		SBC			 	SBC		SBC
1110	E		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM				B,ABS		B,ABL
			SBC	SBC	SBC		SBC		SBC		SBC				SBC		SBC
1111	F		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B;L(DIR),Y		B,ABS,Y				B,ABS,X		B,ABL,X

7751 SERIES INSTRUCTION CODE TABLE-2(The first word's code of each instruction is 4216.)

Appendix 2. 7751 series instruction code table

1131 SEI		10110				ADLL.	-3(1116	5 111 51	woru a	s coue			sirucii	511 15 0	5910.)		
\bigtriangledown	D3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 H	exadecimal notation	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
0000			MPY		MPY		MPY	ASR	MPY	ASR	MPY				MPY	ASR	MPY
	U		(DIR,X)		SR		DIR	DIR	L(DIR)	A	IMM				ABS	ABS	ABL
0004			MPY	MPY	MPY		MPY	ASR	MPY		MPY			1	MPY	ASR	MPY
0001	1 1		(DIR),Y	(DIR)	(SR),Y		DIR,X	DIR,X	L(DIR),Y		ABS,Y				ABS,X	ABS,X	ABL,X
			DIV		DIV		DIV		DIV		DIV				DIV		DIV
0010	2		(DIR,X)		SR		DIR		L(DIR)	XAB	ІММ				ABS		ABL
			DIV	DIV	DIV		DIV	1	DIV		DIV			<u> </u>	DIV		DIV
0011	3		(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y				ABS.X		ABL.X
											RLA						
0100	4		ĺ								A. IMM						
0101	5																
0110	6												C				
0111	7											,9	5				
			MPYS		MPYS		MPYS		MPYS		MPYS	9	EXTS		MPYS		MPYS
1000	8		(DIR,X)		SR		DIR		L(DIR)		IMM		A		ABS		ABL
			MPYS	MPYS	MPYS		MPYS		MPYS		MPYS			<u> </u>	MPYS		MPYS
1001	9		(DIR),Y	(DIR)	(SR).Y		DIR.X		L(DIR),Y		ABS.Y				ABS X		
			DIVS		DIVS		DIVS		DIVS	$\overline{\mathbf{\nabla}}$	DIVS		EXTZ	<u> </u>	DIVS		DIVS
1010			(DIR,X)		SR		DIR		L(DIR)		IMM		A		ABS		ABL
			DIVS	DIVS	DIVS		DIVS	A	DIVS		DIVS				DIVS		DIVS
1011	8		(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y				ABS.X		ABL.X
				LDT													
1100	С			IMM													
1101	D					- 2											
1110	E			RMPA Multiplied accumula													
1111	F																

7751 SERIES INSTRUCTION CODE TABLE-3(The first word's code of each instruction is 8916.)

MITSUBISHI SEMICONDUCTORS SOFTWARE MANUAL 7751 Series

Jul. First Edition 1996

Editioned by Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©1996 MITSUBISHI ELECTRIC CORPORATION

7751 Group User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan