To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Eleetronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquity.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in thisdocument, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liabilityawhatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality gfades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product.depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any applicati omeategorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Reriesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arisiig from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product ismotintended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or databooks, etc.

“Standard”: Computers; office equipment; communications equi pment; test and measurement equipment; audio and visual
equipment; home el ectronic appliafices, machine tools, personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (aut@mobiles; trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace eguipment; submersible repesaters; nuclear reactor control systems; medical equipment or
systems for life supporti(e.gdartificial life support devices or systems), surgical implantations, or healthcare
intervention (e/@. exeision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect tothe mieximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installationand other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and mal function prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software aloneis very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with al applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “RenesasElectronics’ asused in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

and power devices.

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

LENESAS

-
»
)
ﬁ\
»
<
)
>
-
=

7700 Family

Software Manual

MITSUBISHI 16-BIT SINGLE-CHIP
MICROCOMPUTER /7700 SERIES

—
@)

Renesas Electronics

Www.renesas.com

keep safety first in your circuit designs !

e Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

e These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

e Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.

e All information contained in these materials, including product data, diagrams
and charts, represent information on products at.the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasorns. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

e Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi . Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

e The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.

e If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
JAPAN and/or the country of destination is prohibited.

e Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Preface

This manual has been prepared to enable the users of
the 7700 Family CMOS 16-bit microcomputers to bet-
ter understand the instruction set and the features so
that they can utilize the capabilities of the microcom-
puters to the fullest. This manual presents detailed
descriptions of the instructions and addressing modes
available for the 7700 Family microcomputers.

For the hardware descriptions of the 7700 Family
microcomputers and descriptions of various develop-
ment support tools (e.g., assembler, debugger, and so
on.), please refer o the user's manuals and operating
guidebooks for the respective hardware and software
products.

List of tables

Table of contents

[CHAPTER 1. DESCRIPTION]

P DIESCITDTION L vttt ettt ettt et et et e et e e et et ee et et e et et e e eee et et e et et e e e eee e eee e 1-2

ICHAPTER 2. CENTRAL PROCESSING UNIT (CPU) |

I2.1 Central Processing Unit (CPU) J ... et 2-2
ICHAPTER 3. ADDRESSING MODES| &

3.1 _Addressing MOES J.....cccoeiiuiiiiiiiiiiiii st 3-2

|§.2 Explanation of addressing MOAE [... e 3-2

[CHAPTER 4. INSTRUCTIONS] N

... 4-2
B.2 Description Of ANSIIUCHIONS [ooivuueniiiiiiiiiie et e e et e e e e e e s e e s s ea b s e e s e s asbaaeeesenns 4-7
B.3 Notes for programming J.....ooooeeo i 4-129

CHAPTER 5. INSTRUCTION EXECUTION SEQUENCE |

[5.T Change Of the CPU DASIC CIOCK TP U .. oviieeeveeeeeeeeseeeeeseseeesssseesesessessassesessesseseseesesessssassesesesesses 5-2

[CHAPTER 6. CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE |

i 7700 FAMILY SOFTWARE MANUAL

EPPENDIX]

JAPPENDIX.1 Machine INSTTUCHIONS J...coiiiiiiiiiiiiiiiiee et e et e e e e s e aab e e e s eesaba e eeseens

EPPENDIX.Z Hexadecimal Instruction Code Table SRR RTUROTR 7-18

7700 FAMILY SOFTWARE MANUAL

CRAPRPTER 1
DESCRIPTION
06
00
0 1.1 Description
O

DESCRIPTION
1.1 DESCRIPTION

1.1 Description

The 7700 Family software offer the following features.

1.1.1 7700 Series, 7770 Series, and 7790 Series software features
e m and x flags are used to select between word and byte operation enabling most instructions to be
implemented with 1-byte operation code (reduces application ROM size)

e Powerful addressing modes, and fast and compact instruction set
e Direct page mapping function and memory oriented software system by direct paging

e The usual 64K bytes program memory boundary can be ignored for the practical purposes, and
programs can be written to utilize the full 16M bytes of memory space

e For data memory linear as well as bank memory accessing are supported

e Bit manipulation instructions and bit test and branch instructions can be used for memory and I/O
accessing of the entire 16M bytes space

e Block transfer instruction capable of handling blocks of up to 64K bytes each

e Decimal arithmetic instruction execution requiring no software corpensation

1.1.2 7750 Series software features

The 7750 Series software is based on the Mitsubishi original 16-bit microcomputer 7700 Series and provides
enhanced signed operation instructions. The signed operation.enhiancement is realized by additional instructions,
instruction code and execution cycle of 7750 Series are completely compatible with those of conventional 7700
Series instructions.

In addition to the 7700 Series, 7770 Series, and 7790 Series software features, the 7750 Series software offer
the following features.

e Upward compatibility for the 7700 Series

e Signed operation enhancements through signed divide/multiply, arithmetic shift right, and sign/zero
extension instruction support

In this manual, 7700 Series software is described unless otherwise noted.

1-2 7700 FAMILY SOFTWARE MANUAL

CHAPTER 2
CENTRAL PROCESSING
" UNIT (CPU

< (CPU)

é&ntral processing unit (CPU)

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1 Central processing unit (CPU)

The CPU of 7700 Series has the ten registers as shown in Figure 2.1.1. Each of these registers is described
below.

2.1.1 Accumulator (Acc)
Accumulators A and B are available and each can be used as 8-bit or 16-bit register as necessary.

(1) Accumulator A (A)

Accumulator A is the main register of the microcomputer. Data operations such as calculations, data
transfer, and input/output are executed mainly through accumulator A. It consists of 16 bits, and the
low-order 8 bits can be also used separately. The data length flag (m) determines whether the register
is used as a 16-bit register or as an 8-bit register. It is used as a 16-bit register when the flag m is
“0", and as an 8-bit register when the flag m is “1”. The flag m is a part of the processor status register
(PS) which is described later. When an 8-bit register is selected, the low-order 8 bits of the accumu-
lator A are used and the contents of the high-order 8 bits are unchanged.

(2) Accumulator B (B)
Accumulator B is a 16-bit register with the same function as accumulator’A. The instructions of 7700
Series can use accumulator B instead of accumulator A, but the use of accumulator B requires more
instruction bytes and execution cycles than accumulator A. Accumulator B is also controlled by the
data length flag m just as in accumulator A.

2.1.2 Index register X (X)

Index register X consists of 16 bits and the low-order 8 bits can be also used separately. The index register
length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. It is used
as a 16-bit register when the flag x is “0” and as.an 8-bit register when the flag x is “1". The flag x is a
part of the processor status register (PS) which.is described later. When an 8-bit register is selected, the
low-order 8 bits of the index register X are used and the contents of the high-order 8 bits are unchanged.
In addressing mode in which the index register X is used as the index register, the contents of this register
is added to obtain the real address.

When executing the block transfer instruction MVP or MVN, the contents of the index register X indicate
the low-order 16 bits of the source data@address. The third byte of the MVP or MVN instruction is the high-
order 8 bits of the source data address.

2.1.3 Index register Y (Y)

Index register Y is a 16-bit.register with the same function as index register X. Just as in index register
X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an
8-bit register.

When executing the block transfer instruction MVP or MVN, the contents of the index register Y indicate
the low-order 16 bits of the destination data address. The second byte of the MVP or MVN instruction is
the high-order 8 bits of the destination data address.

2-2 7700 FAMILY SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

-

Accumulator A (A)

Accumulator B (B)

Index register X (X)

Index register Y (Y)

Stack pointer (S)

Data bank register (DT)

Program counter (PC)

Direct page register (DPR)

Processor status register (PS)

b15 b8 b7 bo
AH AL
b15 b8 b7 b0
BH BL
b15 b8 b7 b0
XH XL
b15 b8 b7 b0
YH YL
b15 b8 b7 b0
SH SL
b7 b0
DT
b23 b16 bl5 b8 b7 b0
PG PCH PCL
b7 : bo
e EERRREEREEEERL - Gl Shhhhhhbhbbbbbbbbbbbbhbbbhil Program bank register (PG)
b15 b8 b7 b0
DPRH DPRL
b15 b8 b7 bo
PSH PSL
b15 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bO:
0 0 0 IPL NlIVIm|[x]|D|I]|]Z]C

Carry flag
Zero flag

Interrupt disable flag

Decimal mode flag
Index register length flag

Data length flag

Overflow flag

Negative flag
Processor interrupt priority level

Fig. 2.1.1 CPU registers structure

7700 FAMILY SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1.4 Stack pointer (S)

Stack pointer S is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used for
addressing modes using the stack. The contents of the stack pointer S indicate the address (stack area)
for storing registers during subroutine calls and interrupts.

When an interrupt request is accepted, the contents of the program bank register PG is stored at the
address indicated by the contents of the stack pointer S, and the contents of the stack pointer S are
decremented by 1. Then the contents of the program counter PC and the processor status register PS
(PCH, PCL, PSH, PSL) are stored. The contents of the stack pointer S after accepting an interrupt request
are equal to the contents of the stack pointer S before the accepting of the interrupt request decremented
by 5.

Figure 2.1.2 shows the stored registers before an interrupt routine.

When returning to the original routine after processing the interrupt routine by executing the RTI instruction,
the registers stored in the stack area are restored to the original registers in the reverse sequence and the
contents of the stack pointer are returned to the numerical value before the accepting of interrupt request.
The same operation is performed during a subroutine call, but the contents of the processor status register
PS are not automatically stored. (The contents of the program bank register PG may not be stored. It
depends on the addressing mode.)

The user is responsible for storing registers other than those described above with a program during
interrupts or subroutine calls.

Additionally, the stack pointer S must be initialized at the beginning of the program because its contents
are undefined at reset. The stack area changes when subroutines are nested or when multiple interrupt
requests are accepted. Therefore, make sure necessary data in the internal RAM are not destroyed when
nesting subroutines.

Stack area
Address

S-5

S—4 | Processor status register’s low-order byte (PSL)

S—3 | Processor status register’s high-order byte (PSH)

S—2 Program counter’s low-order byte (PCL)
S—-1 Program counter’s high-order byte (PCH)
S Program bank register (PG)

M

O “S” is the initial address that the stack pointer (S)
indicates at accepting an interrupt request.
The S’s contents become “S-5" after storing the
above registers.

Fig. 2.1.2 Stored registers before an interrupt routine

2—4 7700 FAMILY SOFTWARE MANUAL

Renesas
EOL announced

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1.5 Program counter (PC)

Program counter PC is a 16-bit counter that indicates the low-order 16 bits of the next program memory
address (24 bits) to be executed. The contents of the high-order program counter (PCH) become “FF16”,
and the low-order program counter (PCL) become “FE16” at reset. The contents of the program counter PC
become the contents of the reset vector address (addresses FFFE16, FFFF16) after removing reset status.
Figure 2.1.3 shows the program counter PC and the program bank register PG.

b23 b16 b15 b8 b7 b0
PG PCH § PCL

Fig. 2.1.3 Program counter PC and program bank register PG

2.1.6 Program bank register (PG)

Program bank register PG is an 8-bit register that indicates the high-order 8 bits (referred to as bank) of
the next program memory address (24 bits) to be executed.

When a carry occurs after adding the contents of the program counter PC and other factors, the contents
of the program bank register PG are automatically incremented.by 1. When a borrow occurs after subtract-
ing the contents of the program counter PC, the contents of the pregram bank register PG are automatically
decremented by 1. Accordingly, there is no need to consider bank boundaries, usually.

This register is cleared to “0016” at reset.

In single-chip mode, keep the program bank register PG “0016” because the access within bank 016 is only
allowed. Be sure that prevent the program bank register PG from being set to a value other than “0016”
by executing the instructions of branch and so on.

This register is cleared to “0016” at reset.

7700 FAMILY SOFTWARE MANUAL 2-5

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1.7 Data bank register (DT)

Data bank register DT is an 8-bit register. With some addressing modes using the data bank register DT,
the contents of this register are used as the high-order 8 bits (bank) of a 24-bit address.

Use the LDT instruction to set the value in this register.

Set the only “0016” in single-chip mode because the access within bank 016 is only allowed.

This register is cleared to “0016” at reset.

2.1.8 Direct page register (DPR)

Direct page register DPR is a 16-bit register. The contents of this register indicate the direct page area
which is allocated in bank 016 or in the area across banks 016 and 116. This area can be accessed with
2 bytesU by using the direct page addressing mode.

The contents of the DPR are the base address (the lowest address) of the direct page area which extends
to 256 bytes above this address. The DPR can contain a value from 000016 to FFFF16. However, set a
value from 000016 to FF0O016 in single-chip mode because the access within bank 016 is only allowed.
If it contains a value equal to or more than “FF0116", the direct page area spans the area across banks
016 and 11e. If the low-order 8 bits of the DPR is “0016”, the number of cycles required to generate an
address is smaller by 1 cycle than the number if its contents are not “0016”. Accordingly, the low-order 8
bits of the DPR should usually be set to “0016".

This register is cleared to “000016" at reset. Figure 2.1.4 shows a setting example of the direct page with
the direct page register (DPR).

O With 3 bytes for DIV and MPY instructions, and 1 byte is added for all instructions when using accu-

mulator B.
— 016 016]
DPR area when DPR=000016
_____________________________________ |Fris |
"""""""""""""""""""" 12316 |
DPR area when DPR=012316
BankOwe [~~~ 22216 __| (Note 1)
"""""""""""""""""""""""" FF1016
— ;)ggglﬁ DPR area when DPR=FF1016
|— e 1000F16 (NOte 2)
Bank 116
|
Note 1 : The number of execution cycles is incremented by 1 when the low-order 8 bits of the
DPR are not “0016”.
Note 2 : The direct page area spans the area across banks 0is and 116 when the DPR is “FF0116”
or more.

Fig. 2.1.4 Setting example of direct page with direct page register (DPR)

2-6 7700 FAMILY SOFTWARE MANUAL

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

2.1.9 Processor status register (PS)

Processor status register is an 11-bit register. It consists of the flags to indicate the result of operation and
the processor interrupt priority level. The flags C, Z, V, and N are tested by branch instructions.

Figure 2.1.5 shows the structure of the processor status register.

The details of the processor status register flags are described below.

Note: Bits 11 to 15 are always “0” when the contents of the processor status register are read.

b15 bl4 bl3 bl12 b1l b10 b9 b8 b7 b6 b5 bd b3 b2 bl bho
ofo]J0O0O] 0] O IPL N|V|Im| x|[D|] Z | C

Fig. 2.1.5 Processor status register structure

(1)

(2)

3)

4)

(5)

Carry flag (C)

The carry flag is assigned to bit 0O of the processor status register. It contains the carry or borrow bit
from the arithmetic and logic unit (ALU) after an arithmetic operation. This.flag is also affected by shift
and rotate instructions. This flag can be set with the SEC or SEP instruction and cleared with the CLC
or CLP instruction.

Zero flag (2)

The zero flag is assigned to bit 1 of the processor status register. It is set to “1” when the result of
an arithmetic operation or data transfer is zero, and cleared to “0” when otherwise. This flag can be
set with the SEP instruction and cleared with the CLP instruction.

Note: This flag has no meaning in decimal mode addition (the ADC instruction).

Interrupt disable flag (I)

The interrupt disable flag is assigned te bit 2 of the processor status register. It disables all maskable
interrupts (interrupts other than watchdog timer, the BRK instruction, and zero division). Interrupts are
disabled when this flag is “1”. When arni interrupt request is accepted, this flag is automatically set to
“1” to avoid multiple interrupts. This:flag can be set with the SEI or SEP instruction and cleared with
the CLI or CLP instruction. This flag is set to “1” at reset.

Decimal mode flag (D)

The decimal mode ilag is assigned to bit 3 of the processor status register. It determines whether
addition and subtraction are performed in binary or decimal. Binary arithmetic is performed when this
flag is “0”. When it is “1", decimal arithmetic is performed with each word treated as two or four digits
decimal (determined by the data length flag m). Decimal adjust is performed automatically. Decimal
operation is possible only with the ADC and SBC instructions. This flag can be set with the SEP
instruction and cleared with the CLP instruction. This flag is cleared to “0” at reset.

Index register length flag (x)

The index register length flag is assigned to bit 4 of the processor status register. It determines
whether the index register X and index register Y are used as a 16-bit register or an 8-bit register.
The register is used as a 16-bit register when this flag x is “0”, and as an 8-bit register when it is “1".
This flag can be set with the SEP instruction and cleared with the CLP instruction. This flag is cleared
to “0” at reset.

O When transferring between different bit lengths, the data is transferred with the length of the
destination register, but except for the TXA, TYA, TXB, and TYB instructions.

7700 FAMILY SOFTWARE MANUAL 2-7

CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit (CPU)

(6)

)

(8

~

C)

Data length flag (m)

The data length flag is assigned to bit 5 of the processor status register. It determines whether to treat
data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit when this flag m is “0”, and
as an 8-bit unit when it is “1”.

This flag can be set with the SEM or SEP instruction and cleared with the CLM or CLP instruction.
This flag is cleared to “0” at reset.

O When transferring between different bit lengths, the data is transferred with the length of the
destination register, but except for the TXA, TYA, TXB, and TYB instructions.

Overflow flag (V)

The overflow flag is assigned to bit 6 of the processor status register. It is used when adding or
subtracting a word as signed binary. In case the data length flag m is “0”, the overflow flag is set to
“1” when the result of addition or subtraction is outside the range between —32768 and +32767, and
cleared to “0” in all other cases. In case the data length flag m is “1”, the overflow flag is set to “1”
when the result of addition or subtraction is outside the range between —128 and +127, and cleared
to “0” in all other cases. The overflow flag can be set with the SEP instruction and cleared with the
CLV or CLP instructions.

Note : This flag has no meaning in decimal mode.

Negative flag (N)

The negative flag is assigned to bit 7 of the processor status register. It is set to “1” when the result
of arithmetic operation or data transfer is negative (data bit 15 is “1” when the data length flag m is
“0", or data bit 7 is “1” when the data length flag m is “1"). it is cleared to “0” in all other cases. This
flag can be set with the SEP instruction and cleared with the CLP instruction.

Note : This flag has no meaning in decimal mode.

Processor interrupt priority level (IPL)

The processor interrupt priority level (IPL) is assigned to bits 8, 9, and 10 of the processor status
register. These three bits determine the priority level of processor interrupts from level O to level 7.
The interrupt is enabled when the interrupt priority level of a required interrupt (set with the interrupt
control register) is higher than IPL.-.When an interrupt request is accepted, the IPL is stored in the
stack and IPL is replaced by the interrupt priority level of the accepted interrupt request. This simpli-
fies control of multiple interrupts.

There are no instructions to directly set or clear the IPL. It can be changed by placing the new IPL
on the stack and updating the processor status register with the PUL or PLP instruction.

The contents of the IPL are cleared to “0002” at reset.

2-8

7700 FAMILY SOFTWARE MANUAL

CHAPTER

ADDRESSING
() MODES
N

0 3.1 Addressing modes

3.2 Explanation of addressing
o modes

ADDRESSING MODES
3.1 Addressing Modes, 3.2 Explanation of Addressing Modes

3.1 Addressing Modes

When executing an instruction, the address of the memory location from which the data required for arithmetic
operation is to be retrieved or to which the result of arithmetic operation is to be stored must be specified in
advance. Address specification is also necessary when the control is to jump to a certain memory address
during program execution. Addressing refers to the method of specifying the memory address.

The 7700 Series microcomputers support 28 different addressing modes, offering extremely versatile and
powerful memory accessing capability.

3.2 Explanation of Addressing Modes

Each of the 28 addressing modes is explained on the pages indicated below:

Implied addressing MOUEoeiiiiiiiiiiee e 3-3
Immediate addressing MOAEccooeiiiiiiiiiiire e 3-4
Accumulator addressing MOUEcooiiiiiiiiieiiiiee e 326
Direct addresSsing MOTEoeviiiiiiiiiiiiee e i 3-7
Direct bit addressing MOdEcooiiiiiiiiieeee e 3-9
Direct indexed X addressing Modec.eeeeveeviiiiiieeeee i i, 3-11
Direct indexed Y addressing modeccccuuviuiiimiieiieesiiineeereeeeeeeeeeeen 3-14
Direct indirect addressing mModeooooviiiiiiiiie e 3-15
Direct indexed X indirect addressing modeccieeeeiiiiiiieeee e 3-17
Direct indirect indexed Y addressing mode ..i....ciieiieieiiiiiiiiieeeeeeeeeeee 3-20
Direct indirect long addressing Mode ..cc.....ivnneiiiiiniiieiiereeieeeeeeeeee 3-23
Direct indirect long indexed Y addressing modeccccoovvvvvviieeeneennnn. 3-25
Absolute addressing MOde ... 3-28
Absolute bit addressing Mode ... 3-31
Absolute indexed X addressing modecccooviiiiiiiiiiiiinii e 3-33
Absolute indexed Y addressing Modecccociiiiiiiiiiiiiiiiiiiieeeeeeeee e 3-36
Absolute long addressing MOAEevveeiieiiiiiiieiee e 3-39
Absolute long indexed X addressing mode..........cccccovvvviiiiieieeeinniiinnnn 3-41
Absolute indirect addressing MOUecooveeeieeiiiiiiiiiieeee e 3-43
Absolute indirect long addressing MOdeuvveveeeeeiiiiiiieiieiiiceeeeeeeeenn, 3-44
Absolute indexed X indirect addressing mode...........cccooccviiiiieeenninnnnne 3-45
Stack addressing MOAEoovvieiiiiicc e 3-46
Relative addressing MOUeooviiiiiiiiiiiie e 3-49
Direct bit relative addressing modecooeeiiiiiiiiieenii e 3-50
Absolute bit relative addressing modecceeiiiiieeiiieeiiiii e 3-52
Stack pointer relative addressing modecccccoviiiieieeiiiiiiiiieee s 3-54
Stack pointer relative indirect indexed Y addressing mode 3-55
Block transfer addressing modeccocociiiiiiiiiiiiiceceeee e 3-58

Note. On the pages below, the instructions with the mark “ * ” can be used in the 7750 Series only.

3-2

7700 FAMILY SOFTWARE MANUAL

Implied

Mode : Implied addressing mode
Function : The single-instruction inherently address an internal register.
Instruction : BRK, CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP, RTI, RTL,
RTS, SEC, SEl, SEM, STP, TAD, TAS, TAX, TAY, TBD, TBS, TBX,
TBY, TDA, TDB, TSA, TSB, TSX, TXA, TXB, TXS, TXY, TYA, TYB,
TYX, WIT, XAB
ex. : Mnemonic Machine Code
CLC 1816
C flag
ps LI [[| [2[?]2[2[2]2]2[?]2]2]"]
ps LL [[| [2[?]2[2[2]2]2[?]2]2]0]

ex. : Mnemonic

Machine Code

TXA 8A1s6

(m=1, x=1)
X | \ | | 16 j

The upper-byte is ¢
/ not transferred.
A I | Lo |
ex. : Mnemonic Machine Code

TXA 8A16

(m=0, x=0)
X | hhie | | 16 |
A | hhie | | l16 |

7700 FAMILY SOFTWARE MANUAL

3-3

Immediate

Mode Immediate addressing mode
Function A portion of the instruction is the actual data. Such instruction code may cross over the bank
boundary.
Instruction : ADC, AND, CLP, CMP, CPX, CPY, Dlv, DIVS*, EOR, LDA, LDT, LDX,
LDY, MPY, MPYS* ORA, RLA, SBC, SEP
ex. : Mnemonic Machine Code
ADC A, #0A5H 6916 AS16
(m=1) Memory
PG|00001s |
Op Code (691s) bank PG
A — A+C+|AS16 | = | Operand (A5us) :
PG| FFFEs
ex. : Mnemonic Machine Code
ADC A, #0A5B7H 6916 B716 Abis
(m =0) Memory
PG|0000ss
Op Code (6916) :
. Operand (B 716) bank PG
A - A+C+|Abis i B716 | < :
: Operand (Abzs)
PG| FFFFis |
ex. : Mnemonic Machine Code
LD X #0AS5H A216 Abis
0=1) Memory
PG|00001s |
Op Code (A21s) :
i bank PG
X < | ASi6| - | Operand (A5s) :
PG| FFFFis |

3-4

7700 FAMILY SOFTWARE MANUAL

ex.:

Mnemonic
LDX #0A5B7H

(x=0)

X <

Immediate

Machine Code
A216 B716 Abie

PG

Op Code (A21s)

Abi6 B716

Operand (B716)

Operand (Abise)

PG

000016 |

bank PG

FFFFis |

7700 FAMILY SOFTWARE MANUAL

3-5

Accumulator

Mode . Accumulator addressing mode
Function : The contents of accumulator are the actual data.

Instruction : ASL, ASR* DEC, EXTS* EXTZ* INC, LSR, ROL, ROR

ex. : Mnemonic Machine Code
ROL A 2A16
(m=1)

Feae—

Carry flag Accumulator A
ex. : Mnemonic Machine Code
ROL A 2A16
(m=0)
L b15 b0 J
Carry flag Accumulator A

3-6 7700 FAMILY SOFTWARE MANUAL

Direct

Mode Direct addressing mode
Function The contents of the bank 016 memory location specified by the result of adding the second byte
of the instruction to the contents of the direct page register become the actual data. If, however,
addition of the instruction’s second byte to the direct page register’'s contents result in a value that
exceeds the bank 016 range, the specified location will be in bank 116.
Instruction : ADC, AND, ASL, ASR* CMP, CPX, CPY, DEC, DIV, DIVS* EOR, INC,
LDA, LDM, LDX, LDY, LSR, MPY, MPYS*ORA, ROL, ROR, SBC, STA,
STX, STY
ex. : Mnemonic Machine Code
ADC A, 02H 6516 0216
(m=1)
Memory
0000z Bank Oie
A « A+C+ |DATA| - DATA 1236 =
____________________________ FFFF ..
Direct Page
Op Code (65:6) Register
Operand (021s) + |123416 | = 123616
ex. : Mnemonic Machine Code
ADC A, 02H 6516 0216
(m=0) Memory
000015 . Bank 016
; DATAL 123616 <—‘—
A — A+C+ |DATAH: DATAL| « :
' DATAH 123716 :
____________________________ FFFF1s .-
Direct Page
Op Code (651s) Register
Operand (0216) + 123416 | = 123616

7700 FAMILY SOFTWARE MANUAL

3-7

Direct

ex. : Mnemonic Machine Code
LDX 02H A61s 0216
(x=1)
Memory B
00001 ; Bank Qs
X | DATA| - DATA 123616 <7
FFFFi |
Direct Page
Op Code (A61s) Register
Operand (0216) + 123445 | = 123616
ex. : Mnemonic Machine Code
LDX 02H A61s 0216
(x=0)
Memory
000016 - Bank 016
. DATAL 123616 =<
X « |DATAH: DATAL| = :
' DATAx ;
____________________________ FFFFis !
Direct Page
Op Code (A616) Register
Operand (0216) + |123446 | = 123616

3-8 7700 FAMILY SOFTWARE MANUAL

Direct Bit

Mode . Direct bit addressing mode

Function : Specifies the bank 016 memory location by the value obtained by adding the instruction’s second
byte to the direct page register’'s contents, and specifies the positions of multiple bits in the
memory location by the bit pattern in the third and fourth bytes of the instruction (third byte only
when the m flag is set to 1). If, however, addition of the instruction’s second byte to the direct
page register’s contents result in a value that exceeds the bank 016 range, the specified location
will be in bank 116.

Instruction : CLB, SEB

ex. : Mnemonic Machine Code
CLB #5AH, 04H 1416 0416 5A16
(m=1)

(Before the instruction execution)

Memory

000015 : Bank Oze

21212 |2] 2| 2| 2| 2[12381s =+
FEEF6 j
Direct Page
Op Code (141) Register
Operand (0416) + 123416 | = 123816

Operand (5A1s)

|

(After the instruction execution)

Memory

000016

?2(0]1?]10[{0]?[0]| ?]123816 Bank Qi

Lemcccmmcecee e

FFFFie

7700 FAMILY SOFTWARE MANUAL 3-9

Direct Bit

ex. : Mnemonic Machine Code
CLB #5AA5H, 04H 1416 0416 A516 5A16
(m=0)

(Before the instruction execution)

Memory

000016 : Bank 016
21 2| 2| 2] 2| 2| 2| 2]|1238: <=

21?20?2(?21?]1?] 7] ?]12394 :

FFFFis
Direct Page
Op Code (141s) Register
Operand (041s) + 1123445 | = 123816

Operand (A5us)

Operand (5Az6)

|

(After the instruction execution)

Memaory

000016

ol?(o]|?|?2|0]|2]|0[1238s

Bank O1e

?lof?|ofo|?|0]?|1230:

FFFFie

3-10 7700 FAMILY SOFTWARE MANUAL

Direct Indexed X

Mode Direct indexed X addressing mode
Function The contents of the bank 016 memory location specified by the result of adding the second byte
of the instruction, the contents of the direct page register and the contents of the index register
X become the actual data. If, however, addition of the instruction’s second byte, the direct page
register’s contents and the index register X’s contents results in a value that exceeds the bank 016
or bank 116 range, the specified location will be in bank 116 or bank 216.
Instruction : ADC, AND, ASL, ASR* CMP, DEC, DIV, DIVS* EOR, INC, LDA, LDM,
LDY, LSR, MPY, MPYS* ORA, ROL, ROR, SBC, STA, STY
ex. : Mnemonic Machine Code
ADC A, 1EH, X 7516 1E16
(m=1, x=1) Memory
000016 i Bank D1
A — A+C+ DATA| « DATA 13380~
FFFFts |
Direct Page Index
Op Code (7516) Register Register X
Operand (1Ess) +|123416 | + | E61s | = 13381
ex. : Mnemonic Machine Code
ADC A, 1EH, X 7516 1E16
(m=0, x=1) Memory
00001 iBankOm
. DATAL 133816 i
A — A+C+|DATAHDATAL| - :
' DATAw 133915 |
____________________________ FFFFi |
Direct Page Index
Op Code (751s) Register Register X
Operand (1Ezs) + |12345 | + { E6i | = 13381

7700 FAMILY SOFTWARE MANUAL

3-11

Direct Indexed X

ex. : Mnemonic Machine Code
ADC A, 1EH, X 7516 1Ez1s
(m=1, x=0)
Memory
A < A+C+| DATA| — DATA

00005 ‘B

ank Oz

433816 <

FFFFie

30E61s| =433816

Direct Page Index
Op Code (7515) Register Register X
Operand (1Ezs) +(123455 | +

ex. : Mnemonic Machine Code
ADC A, 1EH, X 7516 1Ez1s
(m=0, x=0) Memaory
000016 ' Bank O16
; DATAL 433815 <
A — A+C+|DATAH: DATAL| - ;
' DATAw 433915
____________________________ FFFFi |
Direct Page Index
Op Code (751s) Register Register X
Operand (1Eus) + 123416 | + |30E61s

= 433816

3-12

7700 FAMILY SOFTWARE MANUAL

ex. : Mnemonic

Direct Indexed X

Machine Code

LDY 1EH, X B4is 1Ezs
*=1) Memory
000026 ; Bank O1s
Y —| DATA| - DATA 133815 <
FFFFis |
Direct Page Index
Op Code (B41s) Register Register X
Operand (1Ezs) +]123456| + E616 | = 133816
ex. : Mnemonic Machine Code
LDY 1EH, X B4is 1Es
(x=0) Memaory
000015 ' Bank 016
. DATAL 433815 =<
Y — |DATAH: DATA| < :
' DATAw 43395 |
____________________________ FFFFi |
Direct Page Index
Op Code (B41s) Register Register X
Operand (1Eis) + 1123416 | +|30E616| = 433816

7700 FAMILY SOFTWARE MANUAL

3-13

Direct Indexed Y

Mode . Direct indexed Y addressing mode

Function : The contents of the bank 016 memory location specified by the result of adding the second byte
of the instruction, the contents of the direct page register and the contents of the index register
Y become the actual data. If, however, addition of the instruction’s second byte, the direct page
register’'s contents and the index register Y’s contents results in a value that exceeds the bank 016
or bank 116 range, the specified location will be in bank 116 or bank 21s.

Instruction : LDX, STX

ex. : Mnemonic Machine Code
LDX 02H, Y B61s 0216
(x=1)
Memory
000016 - Bank 016
X — [DATA | DATA 131G <t
FFFEi |
Direct Page Index
Op Code (B61s) Register Register Y
Operand (021) +|12345 | + ! E6is | =131Cs
ex. : Mnemonic Machine Code
LDX 02H, Y R6is 0216
(x=0) Memory
000016 ' Bank 016
. DATAL 131Ci16 =< ;
X — |DATAH: DATAL| — ;
' DATAx 131D !
____________________________ FFFFis |
Direct Page Index
Op Code (B61s) Register Register Y
Operand (021s) + |123416 | + |OOE616| = 131Cus

3-14 7700 FAMILY SOFTWARE MANUAL

Direct Indirect

Mode . Direct indirect addressing mode

Function : The value obtained by adding the instruction’s second byte to the contents of the direct page
register specifies 2 adjacent bytes in memory bank 016, and the contents of these bytes in memory
bank DT (DT is contents of data bank register) become the actual data. If, however, the value
obtained by adding the instruction’s second byte and the direct page register's contents exceeds
the bank 016 range, the specified location will be in bank 11s.

Instruction : ADC, AND, CMP, DIV, DIVS* EOR, LDA,

MPY, MPYS* ORA,

SBC,

ex. : Mnemonic Machine Code
ADC A, (1EH) 7216 1Ezs
(m=1)
Memory
00001 Bank Ozs
> 125216 DATA | (0116) —’ E
125315 DATA Il (121) J
____________________________ FFFFi |
Direct Page
Register Op Code (7216)
123446} + Operand (1Ezs)
1
125215 :
____________________________ Data Bank
Register
A < A+C+| DATA| ~ DATA DT | 120lie<~—""

STA

7700 FAMILY SOFTWARE MANUAL

3-15

ex. : Mnemonic

Direct Indirect

Machine Code

ADC A, (1EH) 7216 1E1s
(m=0)
Memory
000016 E Bank Ois
125216 DATA | (011) —‘ :
125316 DATA Il (121) J :
____________________________ FFFFi |
Direct Page
Register Op Code (7216)
123416 | + Operand (1Ezs)
1
—125216
____________________________ Data Bank
Register
, DATAL DT | 12016~
A — A+C+| DATAH: DATAL| «
. DATAH DT | 120216

3-16

7700 FAMILY SOFTWARE MANUAL

Direct Indexed X Indirect

Mode . Direct indexed X indirect addressing mode

Function : The value obtained by adding the instruction’s second byte, the contents of the direct page register
and the contents of the index register X specifies 2 adjacent bytes in memory bank 016, and the
contents of these bytes in memory bank 016, and the contents of these bytes in memory bank DT
(DT is contents of data bank register) become the actual data. If, however, the value obtained by
adding the instruction’s second byte, the direct page register’s contents and the index register X's
contents exceeds the bank 016 or bank 116 range, the specified location will be in bank 116 or bank
216.

Instruction : ADC, AND, CMP, DIV, DIVS* EOR, LDA, MPY, MPYS*ORA, SBC, STA

ex. : Mnemonic Machine Code
ADC A, (1EH, X) 6116 1Es
(m=1, x=1)
Memory
00004, Bank 016
r DATA | (001s) 133815 <—i
L DATA II (1416) 133955 |
____________________________ FFFFi |
Direct Page Index
Op Code (611) Register Register X
Operand (1E:e) + | 123446 + ! E61s | = 133816
-------------------------- Data Bank
Register
A « A+C+| DATA| — DATA DT | 1400ss

7700 FAMILY SOFTWARE MANUAL 3-17

ex. : Mnemonic

ADC A, (1EH, X)

Direct Indexed X Indirect

Machine Code

6116 1E16

(m=0, X=1) Memory
000015 Bank O1s
r DATA | (001s) 133815 <—:
L DATA Il (14:0) 1339 |
___________________________ FFFFi |
Direct Page Index
Op Code (6116) Register Register X
Operand (1E1s) + 123416 | + \ E6ls | = 13381
--------------------------- Data Bank
Register
DATAL DT | 140016
A — A+C+| DATAH! DATAL| - DATAw OF | 140146
ex. : Mnemonic Machine Code
ADC A, (1EH, X) 6116 1E1s
(m=1, x=0) Memory
100006 . Bank 116
[_ DATA I (001s) 1033815 <
L DATA Il (141) 10339 |
___________________________ 1FFFFis |
Direct Page Index
Op Code (611s) Register Register X
Operand (1Eus) + |123416| + |FOE61s| = 1033816
--------------------------- Data Bank
\ Register
A — A+C+| DATA| < DATA DT | 140016

3-18

7700 FAMILY SOFTWARE MANUAL

Direct Indexed X Indirect

ex. : Mnemonic

ADC A, (1EH, X)
(m=0, x=0)

Machine Code
611 1E1e

Memory

’7 DATA | (00zs)

A — A+C+| DATA#! DATAL

L DATA Il (1416)

Op Code (611s)

100001

1033816 <

1033916

1FFFF1 __ |

Direct Page
Register

' Bank 116

Index
Register X

Operand (1Ezs)

+ |123415 | + |FOEG1s

= 1033816

---------------------------- Data Bank
Register

DATAL DT | 140016

DATAH DT | 140116

7700 FAMILY SOFTWARE MANUAL

3-19

Mode

Function

Instruction :

ex. : Mnemonic

ADC A, (1EH), Y
(m=1, x=1)

ADC, AND, CMP,

Direct Indirect Indexed Y

Direct indirect indexed Y addressing mode

The value obtained by adding the instruction’s second byte and the contents of the direct page
register specifies 2 adjacent bytes in memory bank 016.
The value obtained by adding the contents of these bytes and the contents of the index register
Y specifies address of the actual data in memory bank DT (DT is contents of data bank register).
If, however, the value obtained by adding the contents of the instruction’s second byte and the
direct page register exceeds the bank 016 range, the specified location will be in bank 116. Also,
if addition of the contents of memory and index register Y generate a carry, the bank number will
be 1 larger than the contents of the data bank register.

DIV, DIVS*, EOR, LDA, MPY, MPYS* ORA, SBC, STA
Machine Code
7116 1Ezs
Memory
Bank O1e Index
: Register Y
12525 DATAI (Ol ‘l E :
' + . E6is | = 12E716
125316 DATA Il (121) J ;
Direct Page
Register Op Code (711s)
12346 + Operand (1Ezs)
1
———125216
________________________ Data Bank
Register
A — A+C+|DATA| < DATA DT | 12E716

3-20

7700 FAMILY SOFTWARE MANUAL

Direct Indirect Indexed Y

ex. : Mnemonic Machine Code
ADC A, (1EH), Y 7116 1E16
(m=0, x=1) Memory
i Bank 016 Index
! Register Y
— 125216 DATA | (0l1e) —I : T
: + E616 | = 12E716
125316 DATA Il (1216) J .
Direct Page
Register Op Code (7116)
123416 | + Operand (1Ezs)
I
125216
--------------------------- Data Bank
Register
T DATAL DT | 12E716 %
A — A+C+ |DATAH: DATAL| ~
' DATAx DT | 12E81
ex. : Mnemonic Machine Code
ADC A, (1EH), Y 7116 1E1s
(m=1, x=0) Memory » .
: Bank O1s
: Index
: Register Y
> 1280i| . DATAI (0lw) :
; + |FOE6G1s| = 102E716
1253 DATA Il (1216) J :
Direct Page
Register Op Code (711s)
123416 | + Operand (1Eas)
Il
— 125216
---------------------- Data Bank
Register
A — A+C+| DATA| < DATA DT |+1 O02E7i. <—
L 1
Bank

7700 FAMILY SOFTWARE MANUAL 3-21

ex. : Mnemonic

Direct Indirect Indexed Y

Machine Code

Index
Register Y

FOEG6:6

=102E716

+1 02E71e <

ADC A, (1EH), Y 7116 1E1s
(m=0, x=0) Memory
Bank Ois
> 12521 DATA | (0l1e) —| ;
v +
125316 DATA Il (1216) J
Direct Page
Register Op Code (711s)
123416 | + Operand (1E1s)
I
— 125216
--------------------------- Data Bank
Register
H DATAL DT
A — A+C+ |DATAH: DATA <
' DATA« Df [+1 02E8uw
L 1
Bank

3-22

7700 FAMILY SOFTWARE MANUAL

Direct Indirect Long

Mode . Direct indirect long addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the direct page
register specifies 3 adjacent bytes in memory bank 016, and the contents of these bytes specify
the address of the memory location that contains the actual data. If, however, the value obtained
by adding the contents of the instruction’s second byte and the direct page register exceeds the
bank 016 range, the specified location will be in bank 116. The 3 adjacent bytes memory location

may be spread over two

different banks.

Instruction : ADC, AND, CMP, DIV, DIVS* EOR, LDA, MPY, MPYS* ORA,

ex. : Mnemonic Machine Code
ADCL A, (1EH) 6716 1E1s
(m=1)
Memory
> 125216 DATA | (EFus)

125316 DATA I (0116)

125416 DATA 1l (1210)

......

Direct Page
Register Op Code (6716)
1234416 | + Operand (1Ezs)
1
—— 125216
A — A+C+| DATA| DATA

1201EFie <~

STA

7700 FAMILY SOFTWARE MANUAL

3-23

ex. : Mnemonic
ADCL A, (1EH)

(m=0)

A ~ A+C+

Direct Indirect Long

Machine Code

6716 1E1s

> 125216

125316

125416

Memory

DATA| (EFis)

DATA Il (0l1s)

DATA Il (1216)

Direct Page
Register Op Code (6716)
123416 + Operand (1E1s)
1
— 125216
T DATAL
DATAH: DATA|
' DATAH

1201EF16 <

1201F01s

3-24

7700 FAMILY SOFTWARE MANUAL

Direct Indirect Long Indexed Y

Mode . Direct indirect long indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the direct page
register specifies 3 adjacent bytes in memory bank 016, and the value obtained by adding the
contents of these bytes and the contents of the index register Y specifies the address of the
memory location where the actual data is stored. If, however, the value obtained by adding the
contents of the instruction’s second byte and the direct page register exceeds the bank 016 range,
the specified location will be in bank 116. The 3 adjacent bytes memory location may be spread
over two different banks.

Instruction : ADC, AND, CMP, DIV, DIVS* EOR, LDA, MPY, MPYS*ORA, SBC, STA

ex. : Mnemonic Machine Code
ADCL A, (1EH), Y 7716 1Ez1s
(m=1, x=1)
Memory
© Bank O
' Index
> 125216 DATA | (EFus) : Register Y
125316 DATA Il (Ol1e) >+ i 2116 |= 1202101
125416 DATA il (1216)
Direct Page
Register Op Code (7716)
1234416 | + Operand (1Ezs)
1
—125216
A — A+C+| DATA]| < DATA 12021016

7700 FAMILY SOFTWARE MANUAL 3-25

Direct Indirect Long Indexed Y

ex. : Mnemonic Machine Code
ADCL A, (1EH), Y 771 1Eis
(M=0, x=1) Memory
i Bank Ois
: Index
12521 DATA | (EF1s) : Register Y
12535] DATAII (Oli) — + P 211 [=1202101
125416 DATA Il (121)
Direct Page
Register Op Code (771s)
123416 | + Operand (1Ezs)
1
— 125216
' DATAL 12021016 <~
A — A+C+ |DATAH: DATAL| <
' DATA+ 12021116
ex. : Mnemonic Machine Code
ADCL A, (1EH), Y 7716 1E1s
(m=1, x=0) Memory
: Bank Ois
Index
1252 DATA | (EF1s) Register Y

+ |E52116| = 12E71016

125245 DATA Il (0116)

125416 DATA Il (1216)

Direct Page
Register Op Code (7716)

123446 | + Operand (1Ezs)
1
125216

A — A+C+| DATA| DATA 12E71016

3-26 7700 FAMILY SOFTWARE MANUAL

Direct Indirect Long Indexed Y

ex. : Mnemonic Machine Code
ADCL A, (1EH), Y 7716 1E16
(m=0, x=0) Memory
————> 125216 DATA | (EFzs)
125316 DATA Il (0116)
125416 DATA Il (1216)
Direct Page
Register Op Code (77:1s)
123416 | + Operand (1Ezs)
1
125216

DATAL

A — A+C+ | DATAH DATA -

DATAH

12E7101s6

12E71116

+

Bank 016

Index
Register Y

E52116

= 12E71016

7700 FAMILY SOFTWARE MANUAL

3-27

Absolute

Mode . Absolute addressing mode

Function : The contents of the memory locations specified by the instruction’s second and third bytes and the
contents of the data bank register are the actual data. Note that, in the cases of the JMP and JSR
instructions, the instructions’ second and third byte contents are transferred to the program
counter.

Instruction : ADC, AND, ASL, ASR* CMP, CPX, CPY, DEC, DIV, DIVS* EOR, INC,

A

JMP, JSR, LDA, LDM, LDX, LDY, LSR, MPY, MPYS* ORA, ROL, ROR,
SBC, STA, STX, STY

ex.: Mnemonic Machine Code
ADC A, OAD12H 6D16 1216 AD1s
(m=1) Memory

Op Code (6D1s)

Operand (1216) —|
Operand (AD1s6) J

Data Bank
Register

A - A+C+ |DATA]| - DATA DT | AD1216~—

ex. : Mnemonic Machine Code
ADC A, OAD12H 6Dis 1216 AD1s
(m=0) Memory

Op Code (6D1s)

Operand (121s) —|
Operand (ADze) J

Data Bank
Register
T DATAL DT| AD1216<—
« A+C+ | DATAH: DATAL| <
- DATAH DT| AD131s

3-28

7700 FAMILY SOFTWARE MANUAL

ex. : Mnemonic
LDX OAC14H

(x=1)

ex. : Mnemonic
LDX OAC14H

(x=0)

Absolute

Machine Code
AE1s 1416 ACis

Op Code (AEz1s)

Operand (141s)

-

Operand (ACais)

X ~ |DATA

DATA

i

Data Bank
Register

DT

X «

DATAH! DATAL -

Machine Code
AE1s 1416 ACis

Op Code (AEz1s)

Operand (141s)

-

AGHY, =

Operand (ACais)

i

--------------------------- Data Bank
Register
DATAL DT| ACl1l416~—
DATAH DT| AC151s

7700 FAMILY SOFTWARE MANUAL

3-29

ex. :

Absolute

Mnemonic Machine Code
JMP OAC14H 4C16 1416 ACis

Address to be
executed next.

PG | 000016

Op Code (4Cas)

Operand (141s)

-

Operand (ACas)

i

Program
Bank Register

PG | AC1416

PG | FFFFs

e S '

'
v d

+ bank PG

Program bank register contents

are not affected.

(Note) The branch destination bank must be considered carefully when a JMP
or a JSR instruction is located near a bank boundary.
- Refer the description i a JMP instruction (Page 4-50).

Refer the description of a JSR instruction (Page 4-51).

3-30

7700 FAMILY SOFTWARE MANUAL

Absolute Bit

Mode . Absolute bit addressing mode

Function : The contents of the instruction’s second and third bytes and the contents of the data bank register
specify the memory locations, and data for multiple bit positions in the memory locations are
specified by a bit pattern specified in the instruction's fourth and fifth bytes (the fourth byte only
if the m flag is set to 1).

Instruction : CLB, SEB
ex. : Mnemonic Machine Code
CLB #5AH, 1234H 1C16 3416 1216 HA1s
(m=1)

Op Code (1Cais)
Operand (341s) —I

Operand (121s) _I
Operand (5Azs)

Data Bank
Register

21 20?2 ??] 2| ?| ?|| DT | 1234, =<

Data Bank
Register

?2(0[?]0]|0|?[0]|?]|| DT |12341s

7700 FAMILY SOFTWARE MANUAL 3-31

ex. : Mnemonic

CLB #5AA5H, 1234H
(m=0)

Absolute Bit

Machine Code
1C16 3416 1216 AS16 5A16

Memory

Op Code (1Cais)

Operand (341s)

Operand (121s)

Operand (Abus)

Operand (5Azs)

Data Bank
Register

DT | 12341 =<

Memory

DT | 123516

Data Bank
Register

DT | 12341

DT | 123516

3-32

7700 FAMILY SOFTWARE MANUAL

Absolute Indexed X

INC, LDA, LDM,

Mode Absolute indexed X addressing mode
Function The contents of the memory locations specified by a value resulting from addition of a 16-bit
numeric value expressed by the instruction’s second and third bytes with the contents of the index
register X and the contents of the data bank register are the actual data. If, however, addition of
the numeric value expressed by the instruction’s second and third bytes with the contents of the
index register X generates a carry, the bank number will be 1 larger than the contents of the data
bank register.
Instruction : ADC, AND, ASL, ASR* CMP, DEC, DIV, DIVS* EOR,
LDY, LSR, MPY, MPYS*ORA, ROL, ROR, SBC, STA
ex. : Mnemonic Machine Code
ADC A, 0AD12H, X 7D16 1216 AD1s
(m=1, x=1)
Memory
Op Code (7Da1s) Index
Register X
Operand (1216) [
+ i EE1s |= AEO0O1s
Operand (ADzs) :
A « A+C+| DATA DATA DT | AE0Ois <——
ex. : Mnemonic Machine Code
ADC A, 0AD12H, X 7D 1216 AD1s
(m=0, x=1)
Memory
Op Code (7D1s6) Index
Register X
Operand (1216) [
+ i EE1s | = AEOOzs
Operand (ADzs) .
--------------------------- Index
Register X
, DATAL DT | AEOOis <
A — A+C+| DATAu: DATA. | -
: DATA DT | AEOLs

7700 FAMILY SOFTWARE MANUAL

3-33

Absolute Indexed X

ex. : Mnemonic Machine Code
ADC A, 0OAD12H, X 7D1s 1216 AD1s
(m=1, x=0)
Memory
Op Code (7D1s) Index

Register X

Operand (1216)

+ | 10EE1| = BEOO1s

Operand (ADzs)

"""""""""""""" Data Bank
Register
A ~ A+C+| DATA| - DATA DT | BEOOis <—
ex. : Mnemonic Machine Code
ADC A, OAD12H, X 7D16 1216 ADis
(m=0, x=0)
Memory
Op Code (7D1s) Index
Register X

Operand (121s)

+ | 10EE1s] = BEOO1s

Operand (AD1s)

"""""""""""""""" Data Bank
Register
T DATAL DT | BEOOw =
A — A+C+| DATAx: DATAL | <
. DATAH DT | BEO1is

3-34 7700 FAMILY SOFTWARE MANUAL

Absolute Indexed X

ex. : Mnemonic Machine Code
LDY OBC12H, X BCis 1216 BCus
(x=1)
Memory
Op Code (BCis) Index
Register X
Operand (1216) ;
+ : EE1s |= BDOO1s
Operand (BCais) .
"""""""""""""" Data Bank
Register
Y « |DATA | « DATA DT | BD001s <—
ex. : Mnemonic Machine Code
LDY OBC12H, X BCis 1216 BCis
(x=0)
Memory
Op Code (BCis) Index
Register X

Operand (121s)

+ |10EEw| = CDO0O1s

Operand (BCas)

"""""""""""""" Data Bank
Register
- DATAL DT | CD0O0w <—
Y « | DATAu | DATAL | —
. DATAH DT | CDO1l1s

7700 FAMILY SOFTWARE MANUAL 3-35

Absolute Indexed Y

Mode . Absolute indexed Y addressing mode

Function : The contents of the memory locations specified by a value resulting from addition of a 16-bit
numeric value expressed by the instruction’s second and third bytes with the contents of the index
register Y and the contents of the data bank register are the actual data. If, however, addition of
the numeric value expressed by the instruction’s second and third bytes with the contents of the
index register Y generates a carry, the bank number will be 1 larger than the contents of the data
bank register.

Instruction : ADC, AND, CMP, DIV, DIVS* EOR, LDA, LDX, MPY, MPYS*ORA, SBC,

STA
ex. : Mnemonic Machine Code
ADC A, OAD12H, Y 7916 1216 AD1s
(m=1, x=1)
Memory
Op Code (7916) Index
Register Y
Operand (121s) v
+ i EEis |= AEO0Os
Operand (ADzs) *
"""""""""""""" Data Bank
Register
A < A+C+ | DATA| -~ DATA DT | AE0O1s <—
ex. : Mnemonic Machine Code
ADC A, OAD12H, Y 7918 1216 AD1e
(m=1, x=0)
Memory
Op Code (7916) Index
Register Y
Operand (121s)
+ | 10EE1s| = BEOO1s
Operand (ADzs)
----------------------- Data Bank
Register
A — A+C+ |DATA | < DATA DT | BEOOws =<~

3-36 7700 FAMILY SOFTWARE MANUAL

Absolute Indexed Y

ex. : Mnemonic Machine Code
ADC A, OAD12H, Y 7916 1216 AD1s
(m=0, x=1)
Memory
Op Code (7916) Index
Register Y
Operand (1216) f
+ i EE1s |= AEOQO1s
Operand (ADais) :
------------------------- Data Bank
Repister
' DATAL DT | AE0Qis <—
A — A+C+ |DATAH: DATAL <
' DATAH DT | AEO11s
ex. : Mnemonic Machine Code
ADC A, 0AD12H, Y 7916 1216 ADus
=0, x=0
(m x=0) Memory
Op Code (791s) Index
Register Y

Operand (121s)

+ |10EEws | = BEOQOOs

Operand (ADzs)

--------------------------- Data Bank
Register
: DATAL DT | BEOOzs
A — A+C+ [DATAW! DATA| -
: DATAH DT | BEOLs

7700 FAMILY SOFTWARE MANUAL 3-37

ex. : Mnemonic

LDX OBC12H, Y

(x=1)

ex. : Mnemonic

Machine Code
BE1s 1216 BCis

X | DATA

Absolute Indexed Y

LDX 0BC12H, Y

(x=0)

DATAH: DATAL

Op Code (BEus) Index
Register Y
Operand (121s) v
+ i EE1s |= BDOO1s
Operand (BCas) :
"""""""""""""" Data Bank
Register
DATA DT | BD00Oig <«——
Machine Code
BEis 1216 BCis
Memory
Op Code (BEus) Index
Register Y
Operand (1216)
+ |10EE1s| = CDO0Os
Operand (BCis)
"""""""""""""" Data Bank
Register
DATAL DT | CD00ws <
DATAH DT | CDO11s

3-38

7700 FAMILY SOFTWARE MANUAL

Absolute Long

Mode Absolute long addressing mode
Function The contents of the memory locations specified by the instruction’s second, third and fourth bytes
become the actual data. Note that, in the cases of the JMP and JSR instructions, the instructions’
second and third byte contents are transferred to the program counter and the fourth byte contents
are transferred to the program bank register.
Instruction : ADC, AND, CMP, DIV, DIVS* EOR, JMP, JSR, LDA, MPY, MPYS* ORA,
SBC, STA
ex. : Mnemonic Machine Code
ADC A, 123456H 6F16 5616 3416 1216
(m=1)
Memory

A

ex. : Mnemonic

Op Code (6Fz1s)

Operand (56:16)

Operand (341e)

Operand (1216)

L |

~ A+C+ | DATA | < DATA 12345616

Machine Code

ADC A, 123456H 6Fi6 5616 3416 1216

(m=0)

Op Code (6Fzs)

Operand (5616)

Operand (3416)

L |

Operand (121s)

A ~ A+C+

DATAL 12345616 <

DATAx! DATAY

DATAH 12345716

7700 FAMILY SOFTWARE MANUAL 3-39

Absolute Long

ex. : Mnemonic Machine Code
JMPL 123456H 5C16 5616 3416 1216

Memory

Op Code (5Cas)

Operand (5616)

Operand (341s)

Operand (121s)

Program Bank
Register

Address to be
executed next. 1216 | 345616 <

Program bank register contents
are replaced by the third
operand.

3-40 7700 FAMILY SOFTWARE MANUAL

Absolute Long Indexed X

Mode Absolute long indexed X addressing mode
Function The contents of the memory location specified by adding the numeric value expressed by the
instruction’s second, third and fourth bytes with the contents of the index register X are the actual
data.
Instruction : ADC, AND, CMP, DIV, DIVS* EOR, LDA, MPY, MPYS*ORA, SBC, STA
ex. : Mnemonic Machine Code
ADC A, 123456H, X 7F16 5616 3416 1216
(m=1, x=1)
Memory
Op Code (7Fz1s)
Index
Operand (56:6) Register X
Operand (341) + ! Eli |=123537:
Operand (1216)
A < A+C+ |DATA| -~ DATA 12353716
ex. : Mnemonic Machine Code
ADC A, 123456H, X 7TF156.5616 3416 1216
(m=0, x=1) Memory
Op Code (7Fis)
Index
Operand (56:6) Register X
Operand (341s) + ! Elis |= 1235371
Operand (1216)
. DATAL 12353716
A — A+C+ | DATAH: DATA] «
' DATA- 12353816

7700 FAMILY SOFTWARE MANUAL 3-41

Absolute Long Indexed X

ex. : Mnemonic

ex. : Mnemonic

ADC A, 123456H, X
(m=1, x=0)

A ~ A+C+

Machine Code
7F16 5616 3416 1216

Memory

Op Code (7F1s)

Operand (56:s)

Index
Register X

Operand (341s)

+ | EEElil = 13233716

Operand (1216)

DATA

DATA

1323371 <

ADC A, 123456H, X
(m=0, x=0)

A ~ A+C+

Machine Code
7F16 5616 3416.1216

Op Code (7F1s)

Operand (5616)

Index
Register X

Operand (3416)

+ |EEEl16] = 13233716

Operand (121s)

DATAw | DATAL

DATAL

13233716

DATAH

13233816

342

7700 FAMILY SOFTWARE MANUAL

Absolute Indirect

Mode . Absolute indirect addressing mode

Function : The instruction’s second and third bytes specify 2 adjacent bytes in memory, and the contents of
these bytes specify the address within the same program bank to which a jump is to be made.

Instruction : JMP
ex. : Mnemonic Machine Code
JMP (1400H) 6C16 0016 1416

Op Code (6Cais)
r Operand (0016)
L Operand (141s) :

' bank PG
DATA | (FF1s) PG | 14001 :

DATA [l (1E1s)

Address to be

PG | 1EFFi <— .
executed next.

(Note) The branch destination bank must be considered carefully when a IMP
instruction is located near a bank boundary.

- Refer the description of a JMP instruction (Page 4-50).

7700 FAMILY SOFTWARE MANUAL 3-43

Absolute Indirect Long

Mode . Absolute indirect long addressing mode

Function : The instruction’s second and third bytes specify 3 adjacent bytes in memory, and the contents of
these bytes specify the address to which a jump is to be made.

Instruction : JMP
ex. : Mnemonic Machine Code
JMPL (1234H) DCis 3416 1216

Memory

Op Code (DCus)

r Operand (341s)
L Operand (1216)

Program Bank
Register

DATA| (12) _‘ PG | 123416
DATA Il (B4)
DATA i1l (Als) J

bank PG

Program Bank
Register

Address to be
execlted next. Alis | B4121s <——

DATA Il is loaded in the
program bank register.

(Note) The branch destination bank must be considered carefully when a JMP
instruction is located near a bank boundary.
- Refer the description of a JMP instruction (Page 4-50).

3-44 7700 FAMILY SOFTWARE MANUAL

Absolute Indexed X Indirect

Mode . Absolute indexed X indirect addressing mode

Function : The value obtained by adding the instruction's second and third bytes and the contents of the index

register X specifies 2 adjacent bytes in memory, and the contents of these bytes specify the
address to which a jump is to be made.

Instruction : JMP, JSR

ex. : Mnemonic Machine Code
JMP (1234H, X) 7C16 3416 1216
(=1) Memory

Op Code (7Cus) Index

Register X

Operand (341s) N m = 124616

Operand (121s)

- bank PG
DATA | (1216) 124616 <€ :

DATA 1l (BCus) 124716

Program Bank
Register

BC1216 <

Address to be PG
executed next.

(Note) The branch destination bank must be considered carefully
when a JMP or a JSR instruction is located near a boundary.

- Refer the description of a JMP instruction (Page 4-50).
Refer the description of a JSR instruction (Page 4-51).

7700 FAMILY SOFTWARE MANUAL 3-45

Stack

Mode . Stack addressing mode

Function : Register contents are saved to or restored from the memory location specified by the stack pointer.
The stack pointer is set in bank-0.

Instruction : PEA, PEl, PER, PHA, PHB, PHD, PHG, PHP, PHT, PHX, PHY, PLA
PLB, PLD, PLP, PLT, PLX, PLY, PSH, PUL

ex. : Mnemonic Machine Code
PHA 4816
(m=1) Memory
Stack Pointer 5
I i Bank 06
IS AL '
ex. : Mnemonic Machine Code
PHA 4816
(m=0) Memory L
Stack Pointer
S_2 00| SwH - Su ,
I ' Bank Ozs
S-1 AL '
S AH i
ex. : Mnemonic Machine Code
PHD OB1e
Memory
Stack Pointer !
S-2 00 | Sw i Sc E
' Bank Os
S—1 DPRL .
S DPR

3-46 7700 FAMILY SOFTWARE MANUAL

Stack

ex. : Mnemonic Machine Code
PEA #1234H F416 3416 1216
Memory
Stack Pointer
S-—2 00| SH Sc g
s 3416 g Bank O1e
S 1216
Op Code (F41s)
Operand (3416)
Operand (1216)
ex. : Mnemonic Machine Code
PEI #12H D416 1216
Memory
DATA | 34121 < g Bank O1e
DATA I 341316
Stack Pointer
S—2 00| SH S. ;
s-1 DATA |
s DATA i
Direct Page
Op Code (D4:6) Register
Operand (121s) + |340016 | = 341216

7700 FAMILY SOFTWARE MANUAL 3—-47

ex. :

Mnemonic
PER #1234H

Stack

Machine Code
6216 3416 1216

' Bank O

Memory
Stack Pointer :
S-2 00| Su: St :
S—1 ACis
S 6816

Program Bank
Register

Op Code (6216)

PG | 567616

Operand (3416)

Operand (121s)

+ | 567816 | = 68AC1s

Program Counter

L

bank PG

3-48

7700 FAMILY SOFTWARE MANUAL

Relative

Mode . Relative addressing mode

Function : Branching occurs to the address specified by the value resulting from addition of the contents of
the program counter and the instruction’s second byte. In the case of a long branch by the BRA
instruction, a 15-bit signed numeric value formed by the contents of the instruction’s second and
third bytes is added to the program counter contents. If the addition generates a carry or borrow,
1 is added to or subtracted from the program bank register.

Instruction : BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS

ex. : Mnemonic Machine Code
BCC O-12 9016 F416
Memory Memory
Address to be 0-12
executed next.
Jump Op Code (9016)
Op Code (9016) Operand (F41s)
Operand (F41s) Address to be]
executed next.
0
Branches to the address [0 -12 if Advances to the address O if the
the carry flag (C) has been cleared carry flag (C) has been set “1".
“Q".
ex. : Mnemonic Machine Cade
BRAL 1234H 8216 3445 1216
Memory
Op Code (8216)
Operand (3416) : bank PG
Operand (121s)
PG | FF12:6
PG [114616 : bank PG + 1
Address to be :
executed next. :

7700 FAMILY SOFTWARE MANUAL 3—-49

Mode

Function

Direct Bit Relative

Direct bit relative addressing mode

specified location will be in bank 116.

Instruction :

BBC,

BBS

ex. : Mnemonic
BBS #5AH, 04H, OF6H

(m=1)

Address to be
executed next.

Jump

(Branch)

Memory

00123816 <

Machine Code
2416 0416 5A16 FB1s

Program
Bank Register

1116 | FFFDus

Operand (F616)

Direct Page
Op Code (2416) Register
Operand (0416) | +] 123416 = 12381
Operand (5Aus)

Program

Bank Register

1216 000716

(Not branch)

Memory.

Op Code (2416)

00123815 <

Direct Page
Register

Specifies the bank 016 memory location by the value obtained by adding the instruction’s second
byte to the direct page register’s contents, and specifies the positions of multiple bits in the
memory location by the bit pattern in the third and fourth bytes (the third byte only if the m flag
is setto 1). Then, if the specified bits all satisfy the branching conditions, the instruction’s fifth byte
(or the fourth byte if the m flag is set to 1) is added to the program counter as a signed value,
generating the branching destination address. If, however, addition of the instruction’s second byte
to the direct page register’'s contents result in a value that exceeds the bank 016 range, the

Operand (041s)

123416

= 123816

Operand (5Az6)

Operand (F616)

Program

Address to be
executed next.

1216

Bank Register

000716

3-50

7700 FAMILY SOFTWARE MANUAL

ex. : Mnemonic

BBS #5AA5H, 04H, OF6H

(m=0)

(Branch)

Memory

Address to be
executed next.

Jump

Direct Bit Relative

Machine Code

2416 0416 AS16 5A16 F616

00123816 <

Operand (F61s)

1|10(2]1({0|1 (100123916

1116 | FFFE16

Direct Page
Op Code (241s) Register
Operand (0416) | +| 123445
Operand (A516)
Operand (5A16)

Program

Bank Register

12151 000816

= 123816

(Not branch)

Memory

Address to be
executed next.

00123816 <

Operand (F616)

1{0]1{1]0|1|1]001239:6
Direct Page
Op Code (241s) Register
Operand (0416) +| 123416
Operand (A5zs)
Operand (5Au1s)
Program

Bank Register

1216 | 000816

= 123816

' Bank Ois

7700 FAMILY SOFTWARE MANUAL

3-51

Absolute Bit Relative

Mode Absolute bit relative addressing mode
Function

destination address.
Instruction : BBC, BBS

ex. : Mnemonic Machine Code

BBS #5AH, 1234H, OF6H 2Cis 3416 1216 5A16 F616
(m=1)

(Branch)
Memory

Program
Bank Register

Address to be

executed next. 11| FFFD1s
Op Code (2Ca6)
Jump Operand (341e) _‘
Operand (1215) J
Operand (5A16)
Opérand (F61s) BaFn)rkolgreagrinster
- 1216 | 000716
Data Bank
Register
oj1|1|1(1j0]1 /0 DT | 123416 <

Address
to be
executed
next.

(Not branch)
Memory

Op Code (2Cas)

Operand (341s)

The instruction’s second and third bytes and the contents of the data bank register specify the
memory location, and data for the memory location’s multiple bits is specified by a bit pattern in
the instruction’s fourth and fifth bytes (the fourth byte only if the m flag is set to 1). Then, if the
specified bits all satisfy the branching conditions, the instruction’s sixth byte (or the fifth byte if the
m flag is set to 1) is added to the program counter as a signed value, generating the branching

-

Operand (1216)

Operand (5A1s6)

Operand (F6:s)

i

Program
Bank Register

1216 | 000716

Data Bank
Register

DT

3-52

7700 FAMILY SOFTWARE MANUAL

123416 <

ex. : Mnemonic

BBS #5AA5H, 1234H, OF6H

(m=0)

(Branch)

Memory

Absolute Bit Relative

Machine Code
2Ci16 3416 1216 Ab16 5A16 Fb16

(Not branch)
Memory

Program
Bank Register

Address to be

executed next. 1li6| FFFDas
Op Code (2Cas) Op Code (2Cus)
Jump Operand (341s) _I Operand (341s) _‘
Operand (1216) J Operand (121s) J
Operand (A516) Operand (A516)
Operand (5A16) Operand (5A16)
Program Program
Operand (F61s) Bank Register Operand (F61s) Bank Register
Address
— 1216 000715 to be 1216 | 000716
executed
next.
Data Bank Data Bank
Register Register
1{o|1j1|01]0]1 DT | 12341 <— o|0|1|1fo|1|0|2 DT [123416 <—
1|1|0|1|1|1|1 0| | DT | 12351 1|1|o|1f1a|1|1]o] | DT | 12351

7700 FAMILY SOFTWARE MANUAL

3-53

Stack Pointer Relative

Mode . Stack pointer relative addressing mode

Function : The contents of a bank-0 memory location specified by the value resulting from addition of the
instruction’s second byte and the contents of the stack pointer become the actual data. If,
however, the value obtained by adding the contents of the instruction’s second byte and the stack
pointer's contents exceeds the bank-0 range, the specified location will be in bank-1.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*ORA, SBC, STA

ex. : Mnemonic Machine Code
ADC A, 02H, S 6316 0216
(m=1) Memory
! Bank O1s
A — A+C+| DATA| « DATA 123616 <——
Op Code (6316) Stack Pointer
Operand (0216) + 1123416 | = 123616
ex. : Mnemonic Machine Code
ADC A, 02H, S 631 021
(m=0) Memory
Bank 016
- DATAL 123616 <——
A — A+C+ DATAH: DATAL] <
' DATA- 12375 i
Op Code (631s) Stack Pointer
Operand (0216) + 1123416 | = 123616

3-54 7700 FAMILY SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

Mode . Stack pointer relative indirect indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the stack pointer
specifies 2 adjacent bytes in memory. The value obtained by adding the contents of these bytes
and the contents of the index register Y specifies address of the actual data in memory bank-DT
(DT is contents of data bank register). If addition of the 2 bytes in memory with the contents of
the index register Y generate a carry, the bank number will be 1 larger than the contents of the
data bank register.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*ORA, SBC, STA

ex. : Mnemonic Machine Code
ADC A, (1EH,S), Y 7316 1Ez1e
(m=1, x=1)
' Bank Oz Index
5 Register Y
——> 125216 DATA | (011s) —’ :
: + i E61s | =12E716
125316 DATA Il (1216) J .
Stack Painter Op Code (73:16)
12341 | + Operand (1Eus)
11
W52 fro-----meeeemmmeeeeenanea-
---------------------------- Data Bank
Register
A « A+C+ | DATA | - DATA DT | 12E71

7700 FAMILY SOFTWARE MANUAL 3-55

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic Machine Code
ADC A, (1EH,S), Y 7316 1E1s6
(m=0, x=1) Memory
i Bank O1s Index
: Register Y
—>125216 DATA| (0l1) —| ; :

H + E E616 = 12E71e
125316 DATA Il (1216) J !

Stack Pointer Op Code (7316)

123416 | + Operand (1Ezs)
1
125216 -
Data Bank
-------------------- Register
! DATAL DT | 12E71
A — A+C+ |DATAH: DATAL| -
' DATA:
ex. : Mnemonic Machine Code
ADC A, (1EH,S), Y 7316 1E16
(m=1, x=0) Meriory
15 Bank 016
H Index
Register Y
—>125216 DATA | (0116) —| :
: + |FOE6G1s| = 102E716
12531 DATA Il (1216) J H
Stack Pointer Op Code (7316)
123416 | + Operand (1Exs)
I
125215 f---eeemeemeeee e
----------------------- Data Bank
Register
A — A+C+| DATA| - DATA DT [+1 02E716 <——
1
Bank

3-56 7700 FAMILY SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic

Machine Code

E716

ADC A, (1EH,S), Y 7316 1E1s6
(m=0, x=0) Memory
: Bank Qe Index
' Register Y
——> 12525 DATA | (011s) —I
: + | FOF61s| = 1021
125316 DATA Il (1216) J ;
Stack Pointer Op Code (73:16)
123416 | + Operand (1Ezs)
1
125216 f----ieememmieeea
"""""""""""""""" Data Bank
Register
. DATAL DT |+1 O02E7i6 <—
A — A+C+ |DATAH: DATAL < |
' DATAH Bank

7700 FAMILY SOFTWARE MANUAL

3-57

Mode Block transfer addressing mode
Function The instruction’s second byte specifies the transfer-to data bank, and the contents of the index
register Y specify the transfer-to address within the data bank. The instruction’s third byte speci-
fies the transfer-from data bank, and the contents of the index register X specify the address in
the data bank where the data to be transferred is stored. The contents of the accumulator A
constitute the number of bytes to be transferred. Upon termination of transfer, the contents of the
data bank register will specify the transfer-to data bank. The MVN instruction is used for transfer
to lower address location. In this case, the contents of the index registers X and Y are incre-
mented each time data is transferred. The MVP instruction is used for transfer to higher address
location. In this case, the contents of the index registers X and Y are decremented each time data
is transferred. The block of data to be transferred may cross over the bank boundary.
Instruction MVN, MVP
ex. : Mnemonic Machine Code
MVN OEZ2H, OE5H 5416 E216 E516
(m=0, x=0)
{Before transfer) { After transfer)
Memory Memory
. DATA | E2567816 !
| Bank E216 DATA I E2567916 | Bank E21
' > DATA Il E2567A16 |
Op Code (541e) 000316 Op Code (5416) A| FFFFis
Operand (E21s) 123416 Operand (E216) X| 123716
Operand (E5as) 567816 Operand (E5as) Y| 567Bis
.............................. DT| ? DT| E216
""""""""""""""""""" First [~ I
DATA I E5123416 (_ DATA | E512341s §
DATA Il E5123516 ;BankESw L_ DATA I E5123516 éBankESm
DATA Il E5123616 | DATA Il E5123616 |

Block Transfer

Second

3-58

7700 FAMILY SOFTWARE MANUAL

fukuyama
ノート
fukuyama : Unmarked

Renesas
EOL announced

ex.

:Mnemonic

MVP OE5H, OE2H
(m=0, x=0)

{ Before transfer)

Block Transfer

Machine Code
4416 E516 E216

Memory

DATA | E2567816

DATA Il E2567916 ; Bank E216

DATA I E2567A16
Op Code (4416) A| 000316
Operand (Eb5zs) X| 567A1s
Operand (E21s) Y| 123616

______________________________ DT| 2
: Bank E516

{ After transfer)
Memory
Second DATA | E2567816 !
First DATA I E2567916 | Bank E216
DATA III E2567A1s |
Op Code (441s) A| FFFFis
Operand (Eb5zs) X| 567716
Operand (E21s) Y| 123316
.............................. DT| E516
> DATA I E5123416
DATA || E512351 éBank E516
DATA Il E5123616

(Note) For block transfer instruction, the transfer byte count and transfer source/destination address
range change with the status of the m and x flags, but the transfer unit is unaffected.

The transfer unit is word (16 bits), but only 1 byte is transferred when transferring the last byte
of an odd byte transfer.

7700 FAMILY SOFTWARE MANUAL

3-59

Renesas
EOL announced

EOL announced

CHAPTER 4
INSTRUCTIONS

4.1 Instruction set
4.2 Description of instructions
4.3 Notes for programming

Renesas
EOL announced

INSTRUCTIONS

4.1 Instruction set

4.1 Instruction Set

The 7700 Series, 7770 Series, and 7790 Series CPU uses the instruction set with 103 instructions. The
7750 Series CPU uses an extended instruction set (108 instructions) adding five additional instructions to
their instruction set.

«Additional instructions»

Instructions Mnemonic Addressing mode
Multiply with sign MPYS Supports addressing mode equivalent to MPY instruction
Divide with sign DIVS Supports addressing mode equivalent to DIV instruction
Arithmetic shift right ASR Supports addressing mode equivalent to ASL instruction
Extension with sign EXTS Supported the accumulator addressing mode
Extension zero EXTZ

4.1.1 Data transfer instructions

The data transfer instructions move data between data and registers, between a register and the memory,
between registers or between memory devices.

Category |[Instruction Description

Load LDA Loads the contents of memory into the accumulator.
LDM Loads an immediate value into the memory.
LDT Loads an immediate value .ifto the data bank register.
LDX Loads the contents of memory into the index register X.
LDY Loads the contents of memory into the index register Y.

Store STA Stores the contents of the accumulator in the memory.
STX Stores the contents of the index register X in the memory.
STY Stores the coritents of the index register Y in the memory.

Transfer TAX Transiers.the contents of the accumulator A to the index register X.
TXA Transfers the contents of the index register X to the accumulator A.
TAY Transfers the contents of the accumulator A to the index register Y.
TYA Transfers the contents of the index register Y to the accumulator A.
TSX Transfers the contents of the stack pointer to the index register X.
TXS Transfers the contents of the index register X to the stack pointer.
TAD Transfers the contents of the accumulator A to the direct page register.
TDA Transfers the contents of the direct page register to the accumulator A.
TAS Transfers the contents of the accumulator A to the stack pointer.
TSA Transfers the contents of the stack pointer to the accumulator A.

4-2 7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.1 Instruction set

Category |Instruction Description

Transfer TBD Transfers the contents of the accumulator B to the direct page register.
TDB Transfers the contents of the direct page register to the accumulator B.
TBS Transfers the contents of the accumulator B to the stack pointer.
TSB Transfers the contents of the stack pointer to the accumulator B.
TBX Transfers the contents of the accumulator B to the index register X.
TXB Transfers the contents of the index register X to the accumulator B.
TBY Transfers the contents of the accumulator B to the index register Y.
TYB Transfers the contents of the index register Y to the accumulator B.
XY Transfers the contents of the index register X to the index register Y.
TYX Transfers the contents of the index register Y to the index register X.
MVN Transfers a block of data from the lower addresses.
MVP Transfers a block of data from the higher addresses.
PSH Saves the contents of the specified register to the stack.

Stack PUL Restores the contents of stack to the specified register.

operation PHA Saves the contents of the accumulator A to the stack.
PLA Restores the contents of stack to the accumulator A.
PHP Saves the contents of the processor status register to the stack.
PLP Restores the contents of stack to the processor status register.
PHB Saves the contents of the accumulator B to the stack.
PLB Restores the contents of stack to the accumulator B.
PHD Saves the contents of the direct page register to the stack.
PLD Restores the contents of stack to the direct page register.
PHT Saves the contenis of the data bank register to stack.
PLT Restores the contents of stack to the data bank register.
PHX Saves the contents of the index register X to the stack.
PLX Restores the contents of stack to the index register X.
PHY Saves the contents of the index register Y to the stack.
PLY Restores the contents of stack to the index register Y.
PHG Saves the contents of the program bank register to the stack.
PEA Saves a the numeric of 2 bytes to the stack.
PEI Saves the contents of 2 consecutive bytes in the direct page area to the stack.
PER Saves the result of adding a 16-bit numeric value to the program counter contents to

the stack.
Exchange XAB Swaps the contents of the accumulator A with the contents of the accumulator B.

7700 FAMILY SOFTWARE MANUAL 4-3

INSTRUCTIONS

4.1 Instruction set

4.1.2 Arithmetic instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation, comparison,
rotation, shifting and sign/zero extension of register and memory contents.
The following table summarizes the arithmetic instructions supported:

Note. The instructions with the mark “ * " can be used in the 7750 Series only.

Category |Instruction Description
Addition, ADC Adds the contents of the accumulator, the contents of memory and the contents of the
Subtraction, carry flag.
Multiplica- SBC Subtracts the contents of memory and the complement of the carry flag from the con-
tion tents of the accumulator.
Division INC Increments the accumulator or memory contents by 1.
DEC Decrements the accumulator or memory contents by 1.
INX Increments the contents of the index register X by 1.
DEX Decrements the contents of the index register X by 1.
INY Increments the contents of the index register Y by 1.
DEY Decrements the contents of the index register Y by 1.
MPY Multiples the contents of the accumulator A arnd the contents of memory.
MPYS* Multiply the contents of the accumulator A and the contents of memory with sign.
DIV Divides the numeric value whose lower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory.
DIVS* Divides the numeric value whose iower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory with sign.
Logical op- AND Performs logical AND between the contents of the accumulator and the contents
eration of memory.
ORA Performs logical OR between the contents of the accumulator and the contents of
memory.
EOR Performis logical exclusive-OR between the contents of the accumulator and the con-
tents of memory.
Comparison CMP Compares the contents of the accumulator with the contents of memory.
CPX Compares the contents of the index register X and the contents of memory.
CcpPY Compares the contents of the index register Y and the contents of memory.
Shifting, ASL Shifts the contents of the accumulator or memory to the left by 1 bit.
Rotation ASR* Shifts the contents of the accumulator or memory holding sign to the right by 1 bit.
LSR Shifts the contents of the accumulator or memory to the right by 1 bit.
ROL Links the contents of accumulator or memory with the carry flag, and rotates the result
to the left by 1 bit.
ROR Links the contents of accumulator or memory with the carry flag, and rotates the result
to the right by 1 bit.
RLA Rotates the contents of the accumulator A to the left by the specified number of bits.
Extension EXTS* Extend the low-order 8 bits of accumulator to 16 bits by sign extending.
with sign /
zero EXTZ* Extend the low-order 8 bits of accumulator to 16 bits by zero extending.

4-4

7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.1 Instruction set

4.1.3 Bit manipulation instructions

The bit manipulation instructions set the specified bits of the processor status register or memory to “1” or “0”.

The following table summarizes the bit manipulation instructions supported:

Category |Instruction Description
Bit manipu- CLB Clears the specified memory bit to “0”".
lation SEB Sets the specified memory bit to “1”.
CLP Clears the specified bit of the processor status register’s lower byte (PSL) to “0".
SEP Sets the specified bit of the processor status register’s lower byte (PSL) to “1”.

4.1.4 Flag manipulation instructions

The flag manipulation instructions set to “1” or clear to “0” the C, I, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category |Instruction Description

Flag ma- CLC Clears the contents of carry flag to “0”.

nipulation SEC Sets the contents of carry flag to “1”.
CLM Clears the contents of data length selection flag to “0”.
SEM Sets the contents of data length selection flag to “1”.
CLI Clears the contents of interfupt disable flag to “0”.
SEI Sets the contents of interrupt disable flag to “1”.
CLv Clears the contents of overflow flag to “0".

4.1.5 Branching and return instructions

The branching and return instructions enable changing the program execution sequence.

The following table summarizes.the branching and return instructions:

Category |Instruction Description
Jump JMP Sets a new address in the program counter and jumps to the new address.
BRA Jumps to the address obtained by adding an offset value to the contents of the program
counter.
JSR Saves the contents of the program counter to the stack and then jumps to the new

address.

7700 FAMILY SOFTWARE MANUAL 4-5

INSTRUCTIONS

4.1 Instruction set

Category |Instruction Description

Branch BBC Causes a branch if the specified memory bits are all “0”".
BBS Causes a branch if the specified memory bits are all “1”".
BCC Causes a branch if the carry flag is set to “0”".
BCS Causes a branch if the carry flag is set to “1”.
BNE Causes a branch if the zero flag is set to “0".
BEQ Causes a branch if the zero flag is set to “1".
BPL Causes a branch if the negative flag is set to “0”".
BMI Causes a branch if the negative flag is set to “1".
BVC Causes a branch if the overflow flag is set to “0".
BVS Causes a branch if the overflow flag is set to “1".

Return RTI Returns from the interrupt routine to the original routine.
RTS Returns from a subroutine to the original routine. The program bank register contents

are not restored.

RTL Returns from a subroutine to the original routine. The program bank register contents

are restored.

4.1.6 Interrupt instruction (break instruction)

The interrupt instruction executes software interrupt.

Category

Instruction

Description

Break

BRK

Executes a software_interrupt.

4.1.7 Special instructions

The special instructions listed below control the clock generator circuit.

Category |Instruction Description
Special WIT Stops the internal clock.
STP Stops the oscillator.
4.1.8 Other instruction
Category |Instruction Description
Other NOP Only advances the program counter.

4-6

7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.2 Description of Instructions

4.2 Description of Instructions

This section describes the 7700 Family instructions at each instruction (Note 1). To the extent possible, each
instruction is described using one page per instruction. Each instruction description page is headed by the
instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruc-
tion, operation and description of the instruction (Note 2, 3), status flag changes and a listing sorted by
addressing modes of the assembler coding format (Note 4), machine code, bytes-count and cycles-count (Note
5) are presented.

Note 1.
Note 2.

Note 3.

Note 4.

Note 5.

The instructions with the mark “ * ” can be used in the 7750 Series only.

In the description of instruction operation, the change in the PC (program counter) is described only
for instructions affecting the processing flow.

When an instruction is executed, the length of the instruction is added to content of the PC to form
the address of the next instruction to be executed. If a carry occurs during this addition, PG (program
bank register) is incremented by 1.

In the description of each instruction, [Operation] indicates the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitied.

The assembler coding formats shown are general examples, and they may differ from the actual

formats for the assembler used. Please be sure to refer to the minemonic coding description in the
manual for the assembler actually used for programming.

The cycles-counts shown are the minimum possible, and they vary depending on the following con-
ditions:

e Value of direct page register’s lower byte

The cycles-count shown are for when the direct page register’'s lower byte (DPRL) is 0016. When
using an addressing mode that uses the direct page register with DPR.£“0016", the cycles-count
will be 1 more than the value shown.

e Number of bytes that have been lpaded in the instruction queue buffer

e Whether the first address of the memory read/write is even- or odd-numbered in accessing the 16-
bit data length.

e Accessing of an external memory are with BYTE=1 (using 8-bit external bus)

e Whether a waitds inserted in the bus cycle.

7700 FAMILY SOFTWARE MANUAL 4-7

INSTRUCTIONS

4.2 Description of Instructions

The table below lists the symbols that are used in this section:

Symbol Description
C Carry flag
4 Zero flag
I Interrupt disable flag
D Decimal operation mode flag
X Index register length selection flag
m Data length selection flag
Vv Overflow flag
N Negative flag
IPL Processor interrupt priority level
+ Addition
- Subtraction
X Multiplication
/ Division
A Logical AND
V Logical OR
O Exclusive OR
- Negation
- Movement to the arrow direction
- Movement to the arrow direction
5 Movement to the arrow directicn
Acc Accumulator
AccH Accumulator’s upper 8 bits
AccL Accumulator’s lower 8 bits
A Accumulator A
AH Accumulator A’s upper 8 bits
AL AccumulatorA’s lower 8 bits
B Accumulator B
BH Aecumulator B’s upper 8 bits
BL Accumulator B’s lower 8 bits
X Index register X
XH Index register X's upper 8 bits
XL Index register X's lower 8 bits
Y Index register Y
YH Index register Y's upper 8 bits
YL Index register Y’'s lower 8 bits
S Stack pointer
PC Program counter
PCH Program counter’s upper 8 bits
PCL Program counter’s lower 8 bits
REL Relative address
PG Program bank register
DT Data bank register

4-8 7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.2 Description of Instructions

Symbol Description

DPR Direct page register

DPRH Direct page register’s upper 8 bits

DPRL Direct page register’'s lower 8 bits

PS Processor status register

PSH Processor status register’s upper 8 bits

PSL Processor status register’s lower 8 bits

PSn Processor status register’s n-th bit

M Memory contents

M(n) Contents of memory location specified by operand (1 byte data)

M(n+1,n) Contents of memory location specified by operand (1 word data)

M(m to n) Contents of memory location specified by operand (plural bytes data)

M(S) Contents of memory at address indicated by stack pointer

Mb b-th memory location

ADDR Value of 24-bit address’ lower 16-bit (A15 to Ao)

BANK Value of 24-bit address’ upper 8-bit (A23 to A16)

ADG Value of 24-bit address’ upper 8-bit (A23 to A16)

ADH Value of 24-bit address’ middle 8-bit (A15 to A8)

ADL Value of 24-bit address’ lower 8-hit (Az.to A0)

IMM Immediate value

IMM16 16-bit immediate value

IMM8 8-bit immediate value

bn n-th bit of data

dd 8-bit offset value

i Number of transfer bytes or rotation

i1,i2 Number of registers pushed or pulled

imm 8-bit immediate value

immHimmL 16-bit immediate value (immH specifies the upper 8-bit, and immL specifies
the‘lower 8-bit)

I 8-bit address value

mmll 16-bit address value (mm specifies the upper 8-bit and Il specifies the lower
8-hit)

hhmmll 24-bit address value (hh specifies the upper 8-bit, mm specifies the middle
8-bit and Il specifies the lower 8-bit)

nn 8-bit data value

ni,n2 8-bit data value (Used when coding two 8-bit data side by side)

r
rrarr2

Signed 8-bit data value

Signed 16-bit data value (rr1is the upper 8-bit value, and rr2 is the lower 8-
bit value)

7700 FAMILY SOFTWARE MANUAL 4-9

INSTRUCTIONS

4.1 Instruction set

4.1 Instruction Set

The 7700 Series, 7770 Series, and 7790 Series CPU uses the instruction set with 103 instructions. The
7750 Series CPU uses an extended instruction set (108 instructions) adding five additional instructions to
their instruction set.

«Additional instructions»

Instructions Mnemonic Addressing mode
Multiply with sign MPYS Supports addressing mode equivalent to MPY instruction
Divide with sign DIVS Supports addressing mode equivalent to DIV instruction
Arithmetic shift right ASR Supports addressing mode equivalent to ASL instruction
Extension with sign EXTS Supported the accumulator addressing mode
Extension zero EXTZ

4.1.1 Data transfer instructions

The data transfer instructions move data between data and registers, between a register and the memory,
between registers or between memory devices.

Category |[Instruction Description

Load LDA Loads the contents of memory into the accumulator.
LDM Loads an immediate value into the memory.
LDT Loads an immediate value .ifto the data bank register.
LDX Loads the contents of memory into the index register X.
LDY Loads the contents of memory into the index register Y.

Store STA Stores the contents of the accumulator in the memory.
STX Stores the contents of the index register X in the memory.
STY Stores the coritents of the index register Y in the memory.

Transfer TAX Transiers.the contents of the accumulator A to the index register X.
TXA Transfers the contents of the index register X to the accumulator A.
TAY Transfers the contents of the accumulator A to the index register Y.
TYA Transfers the contents of the index register Y to the accumulator A.
TSX Transfers the contents of the stack pointer to the index register X.
TXS Transfers the contents of the index register X to the stack pointer.
TAD Transfers the contents of the accumulator A to the direct page register.
TDA Transfers the contents of the direct page register to the accumulator A.
TAS Transfers the contents of the accumulator A to the stack pointer.
TSA Transfers the contents of the stack pointer to the accumulator A.

4-2 7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.1 Instruction set

Category |Instruction Description

Transfer TBD Transfers the contents of the accumulator B to the direct page register.
TDB Transfers the contents of the direct page register to the accumulator B.
TBS Transfers the contents of the accumulator B to the stack pointer.
TSB Transfers the contents of the stack pointer to the accumulator B.
TBX Transfers the contents of the accumulator B to the index register X.
TXB Transfers the contents of the index register X to the accumulator B.
TBY Transfers the contents of the accumulator B to the index register Y.
TYB Transfers the contents of the index register Y to the accumulator B.
XY Transfers the contents of the index register X to the index register Y.
TYX Transfers the contents of the index register Y to the index register X.
MVN Transfers a block of data from the lower addresses.
MVP Transfers a block of data from the higher addresses.
PSH Saves the contents of the specified register to the stack.

Stack PUL Restores the contents of stack to the specified register.

operation PHA Saves the contents of the accumulator A to the stack.
PLA Restores the contents of stack to the accumulator A.
PHP Saves the contents of the processor status register to the stack.
PLP Restores the contents of stack to the processor status register.
PHB Saves the contents of the accumulator B to the stack.
PLB Restores the contents of stack to the accumulator B.
PHD Saves the contents of the direct page register to the stack.
PLD Restores the contents of stack to the direct page register.
PHT Saves the contenis of the data bank register to stack.
PLT Restores the contents of stack to the data bank register.
PHX Saves the contents of the index register X to the stack.
PLX Restores the contents of stack to the index register X.
PHY Saves the contents of the index register Y to the stack.
PLY Restores the contents of stack to the index register Y.
PHG Saves the contents of the program bank register to the stack.
PEA Saves a the numeric of 2 bytes to the stack.
PEI Saves the contents of 2 consecutive bytes in the direct page area to the stack.
PER Saves the result of adding a 16-bit numeric value to the program counter contents to

the stack.
Exchange XAB Swaps the contents of the accumulator A with the contents of the accumulator B.

7700 FAMILY SOFTWARE MANUAL 4-3

INSTRUCTIONS

4.1 Instruction set

4.1.2 Arithmetic instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation, comparison,
rotation, shifting and sign/zero extension of register and memory contents.
The following table summarizes the arithmetic instructions supported:

Note. The instructions with the mark “ * " can be used in the 7750 Series only.

Category |Instruction Description
Addition, ADC Adds the contents of the accumulator, the contents of memory and the contents of the
Subtraction, carry flag.
Multiplica- SBC Subtracts the contents of memory and the complement of the carry flag from the con-
tion tents of the accumulator.
Division INC Increments the accumulator or memory contents by 1.
DEC Decrements the accumulator or memory contents by 1.
INX Increments the contents of the index register X by 1.
DEX Decrements the contents of the index register X by 1.
INY Increments the contents of the index register Y by 1.
DEY Decrements the contents of the index register Y by 1.
MPY Multiples the contents of the accumulator A arnd the contents of memory.
MPYS* Multiply the contents of the accumulator A and the contents of memory with sign.
DIV Divides the numeric value whose lower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory.
DIVS* Divides the numeric value whose iower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory with sign.
Logical op- AND Performs logical AND between the contents of the accumulator and the contents
eration of memory.
ORA Performs logical OR between the contents of the accumulator and the contents of
memory.
EOR Performis logical exclusive-OR between the contents of the accumulator and the con-
tents of memory.
Comparison CMP Compares the contents of the accumulator with the contents of memory.
CPX Compares the contents of the index register X and the contents of memory.
CcpPY Compares the contents of the index register Y and the contents of memory.
Shifting, ASL Shifts the contents of the accumulator or memory to the left by 1 bit.
Rotation ASR* Shifts the contents of the accumulator or memory holding sign to the right by 1 bit.
LSR Shifts the contents of the accumulator or memory to the right by 1 bit.
ROL Links the contents of accumulator or memory with the carry flag, and rotates the result
to the left by 1 bit.
ROR Links the contents of accumulator or memory with the carry flag, and rotates the result
to the right by 1 bit.
RLA Rotates the contents of the accumulator A to the left by the specified number of bits.
Extension EXTS* Extend the low-order 8 bits of accumulator to 16 bits by sign extending.
with sign /
zero EXTZ* Extend the low-order 8 bits of accumulator to 16 bits by zero extending.

4-4

7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.1 Instruction set

4.1.3 Bit manipulation instructions

The bit manipulation instructions set the specified bits of the processor status register or memory to “1” or “0”.

The following table summarizes the bit manipulation instructions supported:

Category |Instruction Description
Bit manipu- CLB Clears the specified memory bit to “0”".
lation SEB Sets the specified memory bit to “1”.
CLP Clears the specified bit of the processor status register’s lower byte (PSL) to “0".
SEP Sets the specified bit of the processor status register’s lower byte (PSL) to “1”.

4.1.4 Flag manipulation instructions

The flag manipulation instructions set to “1” or clear to “0” the C, I, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category |Instruction Description

Flag ma- CLC Clears the contents of carry flag to “0”.

nipulation SEC Sets the contents of carry flag to “1”.
CLM Clears the contents of data length selection flag to “0”.
SEM Sets the contents of data length selection flag to “1”.
CLI Clears the contents of interfupt disable flag to “0”.
SEI Sets the contents of interrupt disable flag to “1”.
CLv Clears the contents of overflow flag to “0".

4.1.5 Branching and return instructions

The branching and return instructions enable changing the program execution sequence.

The following table summarizes.the branching and return instructions:

Category |Instruction Description
Jump JMP Sets a new address in the program counter and jumps to the new address.
BRA Jumps to the address obtained by adding an offset value to the contents of the program
counter.
JSR Saves the contents of the program counter to the stack and then jumps to the new

address.

7700 FAMILY SOFTWARE MANUAL 4-5

INSTRUCTIONS

4.1 Instruction set

Category |Instruction Description

Branch BBC Causes a branch if the specified memory bits are all “0”".
BBS Causes a branch if the specified memory bits are all “1”".
BCC Causes a branch if the carry flag is set to “0”".
BCS Causes a branch if the carry flag is set to “1”.
BNE Causes a branch if the zero flag is set to “0".
BEQ Causes a branch if the zero flag is set to “1".
BPL Causes a branch if the negative flag is set to “0”".
BMI Causes a branch if the negative flag is set to “1".
BVC Causes a branch if the overflow flag is set to “0".
BVS Causes a branch if the overflow flag is set to “1".

Return RTI Returns from the interrupt routine to the original routine.
RTS Returns from a subroutine to the original routine. The program bank register contents

are not restored.

RTL Returns from a subroutine to the original routine. The program bank register contents

are restored.

4.1.6 Interrupt instruction (break instruction)

The interrupt instruction executes software interrupt.

Category

Instruction

Description

Break

BRK

Executes a software_interrupt.

4.1.7 Special instructions

The special instructions listed below control the clock generator circuit.

Category |Instruction Description
Special WIT Stops the internal clock.
STP Stops the oscillator.
4.1.8 Other instruction
Category |Instruction Description
Other NOP Only advances the program counter.

4-6

7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.2 Description of Instructions

4.2 Description of Instructions

This section describes the 7700 Family instructions at each instruction (Note 1). To the extent possible, each
instruction is described using one page per instruction. Each instruction description page is headed by the
instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruc-
tion, operation and description of the instruction (Note 2, 3), status flag changes and a listing sorted by
addressing modes of the assembler coding format (Note 4), machine code, bytes-count and cycles-count (Note
5) are presented.

Note 1.
Note 2.

Note 3.

Note 4.

Note 5.

The instructions with the mark “ * ” can be used in the 7750 Series only.

In the description of instruction operation, the change in the PC (program counter) is described only
for instructions affecting the processing flow.

When an instruction is executed, the length of the instruction is added to content of the PC to form
the address of the next instruction to be executed. If a carry occurs during this addition, PG (program
bank register) is incremented by 1.

In the description of each instruction, [Operation] indicates the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitied.

The assembler coding formats shown are general examples, and they may differ from the actual

formats for the assembler used. Please be sure to refer to the minemonic coding description in the
manual for the assembler actually used for programming.

The cycles-counts shown are the minimum possible, and they vary depending on the following con-
ditions:

e Value of direct page register’s lower byte

The cycles-count shown are for when the direct page register’'s lower byte (DPRL) is 0016. When
using an addressing mode that uses the direct page register with DPR.£“0016", the cycles-count
will be 1 more than the value shown.

e Number of bytes that have been lpaded in the instruction queue buffer

e Whether the first address of the memory read/write is even- or odd-numbered in accessing the 16-
bit data length.

e Accessing of an external memory are with BYTE=1 (using 8-bit external bus)

e Whether a waitds inserted in the bus cycle.

7700 FAMILY SOFTWARE MANUAL 4-7

INSTRUCTIONS

4.2 Description of Instructions

The table below lists the symbols that are used in this section:

Symbol Description
C Carry flag
4 Zero flag
I Interrupt disable flag
D Decimal operation mode flag
X Index register length selection flag
m Data length selection flag
Vv Overflow flag
N Negative flag
IPL Processor interrupt priority level
+ Addition
- Subtraction
X Multiplication
/ Division
A Logical AND
V Logical OR
O Exclusive OR
- Negation
- Movement to the arrow direction
- Movement to the arrow direction
5 Movement to the arrow directicn
Acc Accumulator
AccH Accumulator’s upper 8 bits
AccL Accumulator’s lower 8 bits
A Accumulator A
AH Accumulator A’s upper 8 bits
AL AccumulatorA’s lower 8 bits
B Accumulator B
BH Aecumulator B’s upper 8 bits
BL Accumulator B’s lower 8 bits
X Index register X
XH Index register X's upper 8 bits
XL Index register X's lower 8 bits
Y Index register Y
YH Index register Y's upper 8 bits
YL Index register Y’'s lower 8 bits
S Stack pointer
PC Program counter
PCH Program counter’s upper 8 bits
PCL Program counter’s lower 8 bits
REL Relative address
PG Program bank register
DT Data bank register

4-8 7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.2 Description of Instructions

Symbol Description

DPR Direct page register

DPRH Direct page register’s upper 8 bits

DPRL Direct page register’'s lower 8 bits

PS Processor status register

PSH Processor status register’s upper 8 bits

PSL Processor status register’s lower 8 bits

PSn Processor status register’s n-th bit

M Memory contents

M(n) Contents of memory location specified by operand (1 byte data)

M(n+1,n) Contents of memory location specified by operand (1 word data)

M(m to n) Contents of memory location specified by operand (plural bytes data)

M(S) Contents of memory at address indicated by stack pointer

Mb b-th memory location

ADDR Value of 24-bit address’ lower 16-bit (A15 to Ao)

BANK Value of 24-bit address’ upper 8-bit (A23 to A16)

ADG Value of 24-bit address’ upper 8-bit (A23 to A16)

ADH Value of 24-bit address’ middle 8-bit (A15 to A8)

ADL Value of 24-bit address’ lower 8-hit (Az.to A0)

IMM Immediate value

IMM16 16-bit immediate value

IMM8 8-bit immediate value

bn n-th bit of data

dd 8-bit offset value

i Number of transfer bytes or rotation

i1,i2 Number of registers pushed or pulled

imm 8-bit immediate value

immHimmL 16-bit immediate value (immH specifies the upper 8-bit, and immL specifies
the‘lower 8-bit)

I 8-bit address value

mmll 16-bit address value (mm specifies the upper 8-bit and Il specifies the lower
8-hit)

hhmmll 24-bit address value (hh specifies the upper 8-bit, mm specifies the middle
8-bit and Il specifies the lower 8-bit)

nn 8-bit data value

ni,n2 8-bit data value (Used when coding two 8-bit data side by side)

r
rrarr2

Signed 8-bit data value

Signed 16-bit data value (rr1is the upper 8-bit value, and rr2 is the lower 8-
bit value)

7700 FAMILY SOFTWARE MANUAL 4-9

ADC

ADd with Carry AD C

Function

Operation

Description

Status flags

IPL:

N — O X 3

Addition with carry

Acc -« Acc+ M+ C

When m=0

Acc Acc M(n+1,n) C
-0 T]+
When m=1

AccL AccL M(n) C

-

Adds the contents of the accumulator, memory and carry flag, and places the result in the
accumulator.

Executed as binary addition if the decimal operation mode flag D is set to 0.
Executed as decimal addition if the decimal operation mode flag D is set to 1.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0. Meaningless for decimal addition.

Set to 1 when binary addition of signed data result in a value outside the range of -32768 to
+32767 (-128 to +127 if the data length selection flag m is set to 1). Otherwise, cleared to O.
Meaningless for decimal addition.

Not affected.
Not affected.
Not affected.
Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0. Meaningless for decimal
addition.

When the'data length selection flag m is set to 0, set to 1 if binary addition exceeds +65535
or if decimal addition exceeds +9999. Otherwise, cleared to 0. When the data length selection
flag m is set to 1, set to 1 if binary addition exceeds +255 or if decimal addition exceeds +99.
Otherwise, cleared to O.

4-10

7700 FAMILY SOFTWARE MANUAL

ADC ADd with Carry ADC

Addressing mode Syntax Machine code Bytes Cycles
Immediate ADC A, #imm 6916, imm 2 2
Direct ADC A, dd 6516, dd 2 4
Direct indexed X ADC A, dd, X 7516, dd 2 5
Direct indirect ADC A, (dd) 7216, dd 2 6
Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7
Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8
Direct indirect long ADCL A, (dd) 6716, dd 2 10
Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 11
Absolute ADC A, mmlil 6Da1s, Il, mm 3 4
Absolute indexed X ADC A, mmll, X 7Dz1s, Il, mm 3 6
Absolute indexed Y ADC A, mmll, Y 7916, Il, mm 3 6
Absolute long ADC A, hhmmll 6Fis, I, mm, hh 4 6
Absolute long indexed X ADC A, hhmmll, X 7F1s, ll, mm, hh 4 7
Stack pointer relative ADC A, nn,S 6316, NN 2 5
Stack pointer relative ADC A, (hn, S), Y 7316, NN 2 8
indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to O, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4-11

AND

logical AND AN D

Function

Operation

Description

Status flags

IPL:

O xX 3 < Z

N —

Logical AND

Acc —« Acca M

When m=0
Acc Acc M(n+1,n)
I N
When m=1
AccL AccL M(n)
L - Al]

Performs logical AND between the contents of the accumulator and the contents of memory,
and places the result in the accumulator.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

4-12

7700 FAMILY SOFTWARE MANUAL

AN D logical AND AN D

Addressing mode Syntax Machine code Bytes Cycles
Immediate AND A, #imm 2916, imm 2 2
Direct AND A, dd 2516, dd 2 4
Direct indexed X AND A, dd, X 3516, dd 2 5
Direct indirect AND A, (dd) 3216, dd 2 6
Direct indexed X indirect AND A, (dd, X) 2116, dd 2 7
Direct indirect indexed Y AND A, (dd), Y 3116, dd 2 8
Direct indirect long ANDL A, (dd) 2716, dd 2 10
Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2 11
Absolute AND A, mmll 2D1s, Il, mm 3 4
Absolute indexed X AND A, mmll, X 3D1s, II, mm 3 6
Absolute indexed Y AND A, mmll, Y 3916, Il, mm 3 6
Absolute long AND A, hhmmll 2F1s6, Il, mm, hh 4 6
Absolute long indexed X AND A, hhmmll, X 3F1s, Il, mm, hh 4 7
Stack pointer relative AND A, nn, S 2316, NN 2 5
Stack pointer relative AND A, (nn, S), Y 3316, NN 2 8
indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with
“B”. In this case, “4216" is added at the beginning of the machine code, the bytes-count increases
by 1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4-13

ASL

Arithmetic Shift Left AS L

Function

Operation

Description

Status flags

Arithmetic shift left

C Acc or M
| + 1 bit shift to left + 0

When m=0
C 15 Acc or M(n+1,n) b0

N R A LR A B A
BI [Y T [I 0
When m=1
b7 AccL or M(n) bo

C
S A Y A
|:%‘IIIIIIIIIo

Shifts all bits of the accumulator or memory one place to the left. Bit 0 is loaded with 0. The
carry flag C is loaded from bit 15 (or bit 7 when the data length selection flag m is set to 1)
of the data before the shift.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to O.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

IPL: Not affected.
N

V Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected.
C

Set to 1 when bit 15 (or bit 7 when the data length selection flag m is set to 1) before the
operation is‘1. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles
Accumulator ASL A OA16 1 2
Direct ASL dd 0616, dd 2 7
Direct indexed X ASL dd, X 1616, dd 2 7
Absolute ASL mmll OEzs, Il, mm 3 7
Absolute indexed X ASL mmll, X 1Ez1s, Il, mm 3 8

(Note 1)The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216" is added at the beginning

of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

4-14

7700 FAMILY SOFTWARE MANUAL

ASR

Arithmetic Shift Right

ASR

Function . Arithmetic shift right

Operation : Acc or M

C

[+ 1 bit shift to Right +|

MSB
When m=0
b15

Acc or M(n+1,n)

——
|

—|—

AccL or M(n)

-

-

g

Description

This instruction can be used
in the 7750 Series only.

Shifts all bits of the accumulator or memory one place o the right. Bit 15 (or bit 7 when the

data length selection flag m is set to 1) is loaded with the value before shift. The carry flag
C is loaded from bit O of the data before the shift.

Status flags
IPL: Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation

result is 1. Otherwise, cleared to 0.

Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected:

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 when bit 0 before the operation is 1. Otherwise, cleared to 0.
Addressing mode Syntax Machine code Bytes Cycles
Accumulator ASR A 8916, 0816 2 5
Accumulator ASR B 4216, 0816 2 5
Direct ASR dd 8916, 0616, dd 3 10
Direct indexed X ASR dd, X 8916,1616, dd 3 10
Absolute ASR mmll 8916, OEus, Il, mm 4 10
Absolute indexed X ASR mmll, X 8916, 1E1s, II, mm 4 11

7700 FAMILY SOFTWARE MANUAL

4-15

BBC

Branch on Bit Clear B BC

Function

Operation

Description

Status flags

Branch on condition

Mb = 0 ? (b is the specified bits)

When M A IMM = 0 (True) PC -« PC+n+ REL
When M A IMM # 0 (False) PC « PC +n
O PG changes according to the result of the above PC operation
« if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG « PG -1
O IMM is an immediate value indicating the bit to be tested with “1”.
O n is the number of instruction bytes in each addressing mode of the BBC instruction
O REL is relative value (—128 to +127) indicated by the last byte of the instruction
When m=0

M(n+1,n) IMM16
I S
When m=1

M(n) IMM8

LAl

The BBC instruction tests the specified bits (which may be specified simultaneously) of
memory. The instruction causes a branech to the specified address when the specified bits are
all 0. The branch address is speciiied by a relative address.

Not affected.

Addressing mode

Syntax Machine code Bytes Qycles

Direct bit relative
Absolute bit relative

BBC #imm, dd, rr
BBC #imm, mmll, rr

3416, dd, imm, rr
3Cis, Il, mm, imm, rr

(Note 1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag

m set to 0.

(Note 2) The cycles-count increases by 2 when a branch occurs.

4-16

7700 FAMILY SOFTWARE MANUAL

BBS

Branch on Bit Set B BS

Function

Operation

Description

Status flags

Branch on condition

Mb = 1 ? (b is the specified bits)

When M A IMM = 0 (True) PC -« PC+n=* REL
When M A IMM # 0 (False) PC -« PC+n
O PG changes according to the result of the above PC operation
« if carry occurs in PC : PG -« PG +1
« if borrow occurs in PC: PG -« PG -1
O n is the number of instruction bytes of the BBS instruction
O REL is relative value (=128 to +127) indicated by the last byte of the instruction
When m=0

M(n+1,n) IMM16
R
When m=1

M(n) IMM8

LAl]
The BBS instruction tests the specified hits (which may be specified simultaneously) of

memory. The instruction causes a branch to the specified address when the specified bits are
all 1. The branch address is specified by a relative address.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Direct bit relative BBS #imm, dd, rr 2416, dd, imm, rr 4 7
Absolute bit relative BBS #imm, mmll, rr 2Cis, Il, mm, imm, rr 5 8

(Note 1) The bytes-couint increases by 1 when operating on 16-bit data with the data length selection flag

m set to 0.

(Note 2) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4-17

BCC Branch on Carry Clear BCC

Function . Branch on condition

Operation . C=07?
When C =0 (True) PC -« PC+2+REL
When C =1 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG - PG -1

O 2 is the number of instruction bytes of the BCC instruction
O REL is relative value (—128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag C is clear (0), the BCC instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the carry flag C is set (1), the program advances to next step without any action.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Relative BCC rr 9016, 1T 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

4-18 7700 FAMILY SOFTWARE MANUAL

BCS Branch on Carry Set BCS

Function . Branch on condition

Operation . C=17?
When C =1 (True) PC -« PC+ 2+ REL
When C = 0 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1

« if borrow occurs in PC: PG - PG -1
O 2 is the number of instruction bytes of the BCS instruction
O REL is relative value (=128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag C is set (1), the BCS instruction causes a branch to the specified address.
The branch address is specified by a relative address.

When the carry flag C is clear (0), the program advances to next step without any action.

Status flags . Not affected.
Addressing mode Syntax achine code Bytes Cycles
Relative BCS rr BOzs, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4-19

B EQ Branch on Equal B EQ

Function Branch on condition
Operation Z=17?
When Z =1 (True) PC -« PC+ 2+ REL
When Z = 0 (False) PC -« PC +2
O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG - PG -1
O 2 is the number of instruction bytes of the BEQ instruction
O REL is relative value (—128 to +127) indicated by the 2nd byte of the instruction
Description : When the zero flag Z is set (1), the BEQ instruction causes a branch to the specified address.
The branch address is specified by a relative address.
When the zero flag Z is clear (0), the program advances to next step without any action.
Status flags . Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Relative BEQ rr FO16yfT 2 4

4-20

7700 FAMILY SOFTWARE MANUAL

B M I Branch on Result Minus B M I

Function . Branch on condition

Operation . N=17?
When N =1 (True) PC -« PC+ 2+ REL
When N = 0 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1
* if borrow occurs in PC: PG - PG -1

O 2 is the number of instruction bytes of the BMI instruction
O REL is relative value (=128 to +127) indicated by the 2nd byte of the instruction

Description . When the negative flag N is set (1), the BMI instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the negative flag N is clear (0), the program advances to next step without any action.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Relative BMI rr 3016, T 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4-21

B N E Branch on Not Equal B N E

Function Branch on condition
Operation Z=07?
When Z =0 (True) PC -« PC+ 2+ REL
When Z =1 (False) PC -« PC +2
O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG -~ PG -1
O 2 is the number of instruction bytes of the BNE instruction
O REL is relative value (=128 to +127) indicated by the 2nd byte of the instruction
Description . When the zero flag Z is clear (0), the BNE instruction causes a branch to the specified
address. The branch address is specified by a relative address.
When the zero flag Z is set (1), the program advances to next step without any action.
Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Relative BNE rr DO1e, 1T 2 4

(Note 1) The cycles-count increases by 2 when a ©ranch occurs.

4-22

7700 FAMILY SOFTWARE MANUAL

B P L Branch on Result Plus B P L

Function . Branch on condition

Operation : N=07?
When N =0 (True) PC -« PC+ 2+ REL
When N =1 (False) PC -« PC +2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1
* if borrow occurs in PC: PG - PG -1

O 2 is the number of instruction bytes of the BPL instruction

O REL is relative value (=128 to +127) indicated by the 2nd byte of the instruction

Description . When the negative flag N is clear (0), the BPL instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the negative flag N is set (1), the program advances 10 next step without any action.

Status flags . Not affected.
Addressing mode Syntax achine code Bytes Cygles
Relative BPL rr 1016, 11 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4-23

BRA

Branch Always B RA

Function

Operation

Description

Status flags

Branch always

PC branch address (relative)

PC - PC+n = REL

O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG « PG -1

O n is the number of instruction bytes in each addressing mode of the BRA instruction
O REL is relative value (-128 to +127) indicated by the last 1-byte or last 2-byte of the

instruction
Branch area : For short relative —128 to +127

For long relative -32768 to +32767

The BRA instruction causes a branch to the specified address. The branch address is
specified by a relative address.

Not affected.

Addressing mode Syntax achine code Bytes Cycles
Relative BRA rr 801, Ir 2 4
BRAL rrirr2 8216, IT2, IT1 3 4

4-24

7700 FAMILY SOFTWARE MANUAL

BRK

Force Break

BRK

Function

Operation

Description

Status flags

Software interrupt

Stack ~ PG, PC, PS
I -1
PG, PC ~ 00, Contents of BRK interrupt vector

PC ~ PC+2

M(S to S-4) -~ PG, PC, PS
S ~S-5

I <1

PG ~ 00

PC « M(FFFBuis,FFFAzs)

(S) in just after instruction execution

Stack

PSL

PSH

PCL

PCH

(S) in just before instruction execution

PG

O “2" means the byte number of the BRK instruction, and “PC+2" is the address that stored

the next instruction

When the BRK instruction is executed, the CPU first saves the address where the next
instruction is stored, and then saves the contents of thie pfocessor status register on the stack.
Then, the CPU executes a branch to the address in bank-0 the lower portion of which is
specified by the contents of FFFA16 in bank-0.and the upper portion specified by the contents

of FFFB1s in bank-0.

%
-

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1.

Not affected.
Not affected:

ON — O X 3 < Z

Addressing mode Syntax Machine code

[

Bytes

C

ycles

Implied BRK #nn 0016,EA16

15

(Note 1) The instruction's second byte is ignored, so any value impossible.

7700 FAMILY SOFTWARE MANUAL

4-25

BVC

Branch on Overflow Clear BVC

Function

Operation

Description

Status flags

Branch on condition

v=07?
When V =0 (True) PC -« PC+2+REL
When V = 1 (False) PC -« PC+2

O PG changes according to the result of the above PC operation
e if carry occurs in PC : PG « PG +1
« if borrow occurs in PC: PG -~ PG -1

O 2 is the number of instruction bytes of the BRA instruction
O REL is relative value (=128 to +127) indicated by the 2nd byte of the instruction

When the overflow flag V is clear (0), the BVC instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the overflow flag V is set (1), the program advances to next step without any action.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BVC rr 501s, IT 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

4-26

7700 FAMILY SOFTWARE MANUAL

BVS

Branch on Overflow Set BVS

Function

Operation

Description

Status flags

Branch on condition

v=17?
When V =1 (True) PC -« PC+ 2+ REL
When V = 0 (False) PC -« PC+2

O PG changes according to the result of the above PC operation
o if carry occurs in PC : PG « PG +1
* if borrow occurs in PC: PG - PG -1

O 2 is the number of instruction bytes of the BVS instruction
O REL is relative value (=128 to +127) indicated by the 2nd byte of the instruction

When the overflow flag V is set (1), the BVS instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the overflow flag V is clear (0), the program advances to next step without any action.

Not affected.

Addressing mode Byntax achine code

vs]

ytes Cycles

Relative BVS rr 1016, IT 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4-27

CLB

Clear Bit C L B

Function

Operation

Description

Status flags

Bit manipulation

Mb — 0 (b is the specified bits)

When m=0
M(n+1,n) M(n+1,n) MM16
I
When m=1
M(n) M(n) IMM8
I

O IMM is immediate value indicating the bit to be cleared with a “1” and is specified by the
last 1 or 2 bytes of the instruction.

The CLB instruction clears the specified memory bits to 0. Multiple bits to be cleared can be
specified at one time.

Not affected.

Addressing mode Syntax Machine code Bytes Cjcles
Direct bit CLB #imm, dd 1416, dd, imm 3 8
Absolute bit CLB #imm, mmli 1Cis, Il, mm, imm 4 9

(Note 1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag

m set to 0.

4-28

7700 FAMILY SOFTWARE MANUAL

C LC Clear Carry Flag C LC

Function . Flag manipulation
Operation . C<0
Description . Clears the contents of carry flag C to 0.

Status flags

IPL: Not affected.

N Not affected.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Not affected.

C Cleared to 0.
Addressing mode $yntax Machine coade Bytes Cycles
Implied CLC 1816 1 2

7700 FAMILY SOFTWARE MANUAL 4-29

CLI Clear Interrupt Disable Status C LI

Function : Flag manipulation
Operation 1«0
Description . Clears the interrupt disable flag | to O.

Status flags

IPL: Not affected.

N Not affected.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Cleared to 0.

Z Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied CLI 5816 1 2

4-30 7700 FAMILY SOFTWARE MANUAL

CLM Clear m Flag CLM

Function . Flag manipulation
Operation . m< 0
Description . Clears the data length selection flag m to 0.

Status flags

IPL: Not affected.

N Not affected.

\% Not affected.

m Cleared to 0.

X Not affected.

D Not affected.

I Not affected.

z Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied CLM D816 1 2

7700 FAMILY SOFTWARE MANUAL 4-31

C L P Clear Processor Status C L P

Function : Flag manipulation

Operation . PSLb « 0 (b is the specified flags)
PSL « PSL A IMM8

O IMM is a 1 byte immediate value indicating the flag to be cleared with a “1” and is
specified by the second byte of the instruction.

b7 b6 b5 b4 b3 b2 bl b0
IN[V[m[x[D]1]Z[C]|PSt

Description . Clears the processor status flags specified by the bit pattern in the second byte of the
instruction to 0.

Status flags . The specified status flags are cleared to “0”. IPL is not affecied.
Addressing mode Syntax Machine code Bytes Cycles
Immediate CLP #imm C216, imm 2 4

4-32 7700 FAMILY SOFTWARE MANUAL

CLV

Clear Overflow Flag

CLV

Function Flag manipulation
Operation V<O
Description

Status flags

%
—

ON — O X 3 < 2Z

Not affected.
Not affected.
Cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Clears the overflow flag V to 0.

Addressing mode

Syntax

N

flachine code

ytes

Cy

cles

Implied

CLv

B8is

7700 FAMILY SOFTWARE MANUAL

4-33

CMP

Compare C M P

Function

Operation

Description

Status flags

Compare

Acc — M
When m=0
Acc M(n+1,n)

When m=1
AccL M(n)

Subtracts the contents of memory from the contents of the accumulator. The accumulator and
memory contents are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.
Addressing mode Syntax Machine code Bytes Cycles
Immediate CMP A, #imm C916, imm 2 2
Direct CMP A, dd C516, dd 2 4
Direct indexed X CMP A, dd, X D516, dd 2 5
Direct indirect CMP A, (dd) D216, dd 2 6
Direct indexed X indirect CMP A, (dd, X) Clis, dd 2 7
Direct indirect indexed Y CMP A, (dd), Y D11s, dd 2 8
Direct indirect long CMPL A, (dd) C716, dd 2 10
Direct indirect long indexed Y| CMPL A, (dd), Y D716, dd 2 11
Absolute CMP A, mmil CDus, II, mm 3 4
Absolute indexed X CMP A, mmll, X DDus, Il, mm 3 6
Absolute indexed Y CMP A, mmll, Y D91s, Il, mm 3 6
Absolute long CMP A, hhmmll CFus, I, mm, hh 4 6
Absolute long indexed X CMP A, hhmmll, X DFis, Il, mm, hh 4 7
Stack pointer relative CMP A, nn, S C316, NN 2 5
Stack pointer relative CMP A, (nhn, S), Y D316, Nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with
“B”. In this case, “4216” is added at the beginning of the machine code, the bytes-count increases
by 1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length
selection flag m set to 0, the bytes-count increases by 1.

4-34

7700 FAMILY SOFTWARE MANUAL

C PX Compare Memory and Index Register X C PX
Function Compare
Operation X-M

When x=0

X M(n+1,n)
When x=1
XL M(n)

Description Subtracts the contents of memory from the contents of the index register X. The index register

Status flags

X and memory contents are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register lerigth selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.
Addressing mode Syntax Machine code Bytes Qycles
Immediate CPX #imm EOQ16, imm 2 2
Direct CPX dd E416, dd 2 4
Absolute CPX mmll ECis, Il, mm 3 4

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL

4-35

C PY Compare Memory and Index Register Y C PY
Function Compare
Operation Y-M

When x=0

Y M(n+1,n)
When x=1
YL M(n)

Description Subtracts the contents of memory from the contents of the index register Y. The index register

Y and memory contents are not changed.

Status flags

IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the index register lerigth selection flag x is set to 1) of the

operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Setto 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.
Addressing mode Syntax Machine code Bytes Cycles
Immediate CPY #imm CO016, imm 2 2
Direct CPY dd C41s,dd 2 4
Absolute CPY mmll CCais, Il, mm 3 4

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

4-36

7700 FAMILY SOFTWARE MANUAL

DEC

Decrement by One D EC

Function

Operation

Description

Status flags

Decrement

Acc « Acc-1 or M- M-1

When m=0
Acc M(n+1,n)
I
or
M(n+1,n) M(n+1,n)
I
When m=1
AccL AccL
1-[-
M(n) > M(n)
L - -t

Subtracts 1 from the contents of the accumulator or memory.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.
Y Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected:
Set to 1. when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Accumulator DEC A 1A 1 2
Direct DEC dd C616, dd 2 7
Direct indexed X DEC dd, X D61s, dd 2 7
Absolute DEC mmll CEus, Il, mm 3 7
Absolute indexed X DEC mmll, X DEzis, Il, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator

. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning

of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL 4-37

DEX

Decrement Index Register X by One D EX

Function

Operation

Description

Status flags

Decrement
X « X=-1
When x=0

X X
I
When x=1

XL XL

L -]-

Subtracts 1 from the contents of the index register X.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation i1s 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Pyntax Machine code Bytes Cycles
Implied DEX CAuzs 1 2

4-38

7700 FAMILY SOFTWARE MANUAL

D EY Decrement Index Register Y by One D EY
Function Decrement
Operation Y «Y-1
When x=0
Y Y
I e I
When x=1
YL YL
[I-L -2
Description Subtracts 1 from the contents of the index register Y.

Status flags

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Pyntax Machine code Bytes Cycles
Implied DEY 8816 1 2

7700 FAMILY SOFTWARE MANUAL 4-39

DIV

Divide DIV

Function

Operation

Description

Status flags
IPL
N

O X 3

Division (Unsigned)

A(quotient), B(remainder) — (B, A) /M

When m=0
A B B A M(n+1,n)
| Quo:tient || Rema:linder | - | | Divit?lend | | + | Divlisor |
When m=1
AL BL BL AL M(n)
|Quotiem|,|Remainder| - | Divi(:iend | - |Divisor|

When the data length selection flag m is set to 0, a 32-bit data stored in the accumulators B
(upper 16 bits) and A (lower 16 bits) are divided by a 16-bit data in memory. The quotient
is placed in the accumulator A, and the remainder is placed in the accumulator B.

When the data length selection flag m is set to 1, a 16-bit data stoered in the lower 8 bits of
the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by an 8 bit data in memory.
The quotient is placed in the lower 8 bits of the accumuiator A, and the remainder is placed
in the lower 8 bits of the accumulator B.

If an overflow occurs as a result of the operation, the V flag is set and the content of the
accumulator is unpredictable.

When divisor is 0, the zero division interrupt.is generated, in which case the contents of the
program bank register, program counter, and processor status register are saved on the stack
and a branch occurs to the address in bank-0 as specified by the zero division interrupt vector.
Accumulator contents are not changed. In this case, the content of the accumulator is
unchanged.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of quotient from
the operation is 1. Otherwise, cleared to 0.

O When an oyerflow occurs as a result of the operation or divisor is 0, N flag is not affected.
Clear to 0.

O Set to 1 when an overflow occurs

O Not affected when divisor is 0

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No changes occur
when divisor is 0.

O When an overflow occurs as a result of the operation or divisor is 0, Z flag is not affected.
Clear to 0.

O Set to 1 when an overflow occurs

0 Not affected when divisor is 0

4-40

7700 FAMILY SOFTWARE MANUAL

DIV Divide DIV

Addressing mode Syntax Machine code Bytes Cycles
Immediate DIV #imm 8916, 2916, imm 3 27
Direct DIV dd 8916, 2516, dd 3 29
Direct indexed X DIV dd, X 8916, 3516, dd 3 30
Direct indirect DIV (dd) 8916, 3216, dd 3 31
Direct indexed X indirect DIV (dd, X) 8916, 2116, dd 3 32
Direct indirect indexed Y DIV (dd), Y 8916, 3116, dd 3 33
Direct indirect long DIVL (dd) 8916, 2716, dd 3 35
Direct indirect long indexed Y | DIVL (dd), Y 8916, 3716, dd 3 36
Absolute DIV mmll 8916, 2D1s, II, mm 4 29
Absolute indexed X DIV mmll, X 8916, 3D1s, Il ,mm 4 31
Absolute indexed Y DIV mmll, Y 8916, 3916, || ,mm 4 31
Absolute long DIV hhmmll 8916, 2F16, Il, mm, hh 5 31
Absolute long indexed X DIV hhmmll, X 8916, 3F1s, Il, mm, hh 5 32
Stack pointer relative DIV nn, S 8916, 2316, NN 3 30
Stack pointer relative DIV (nn, S), Y 8916, 3316, NN 3 33
indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

(Note 2) The cycles-count in this table are for 16-bit + 8-bit operations. For 32-bit + 16-bit operations, the
cycles-count increases by 16.

(Note 3) The cycle count in this table and Note 2 are the valué when the operation completes normally
(no interrupt has occurred). If a zero divide interrupt has oecurred, the cycle counts in the above
table are decremented by 8 regardless of the data length.

7700 FAMILY SOFTWARE MANUAL 4-41

D IVS Divide with Sign D IVS

Function . Division (Signed) This instruction can be used
in the 7750 Series only.
Operation : A(quotient), B(remainder) -~ (B, A) /M
When m=0
A B B A M(n+1,n)
Is Quo:tient |!$ Rema:linder | - Is | Divit?lend | | + Is Divlisor |
When m=1
AL BL BL AL M(n)
uotient | , Remainder| « Diviollend + |Divisor
[Quotent |, et | Dividend | + |

O “s” means a sign bit that is the most significant bit of the data

Description : When the data length selection flag m is set to 0, a signed 32-bit data stored in the
accumulators B (upper 16 bits) and A (lower 16 bits) are divided by a signed 16-bit data in
memory. As a result of the operation, the quotient is stored in accumulator A and the
remainder is stored in accumulator B as signed 16-bit data.

When the data length selection flag m is set to 1, a signed 16-bit data stored in the lower 8
bits of the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by a signed 8 bit data
in memory. As a result of the operation,the quotient is stored in low-order 8 bits of
accumulator A and the remainder is stored in low-order 8 bits of accumulator B as signed 8-
bit data.

The sign of remainder becomes same as dividend.

When an overflow results from.this operation (the quotient exceeds the extent —32767 to
+32767 if m=0 or —127 to +127 if m=1) neglect removed out, the V flag is set. In this case,
the content of the accumulator is unpredictable.

When divisor is 0, the zero division interrupt is generated, in which case the contents of the
processor status register are saved on the stack and a branch occurs to the address in bank
016 as specified by thé zero division interrupt vector. And accumulator contents are not

changed.
Status flags
IPL : Not affected.
N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of quotient from

the operation is 1. Otherwise, cleared to 0.
O When an overflow occurs as a result of the operation or divisor is 0, N flag is not affected.
\Y, : CleartoO.
0 Set to 1 when an overflow occurs
O Not affected when divisor is 0
Not affected.
Not affected.
Not affected.
Not affected.
0 Set to 1 when divisor is 0

O X 3

4-42 7700 FAMILY SOFTWARE MANUAL

D IVS Divide with Sign D IVS

4 . Setto 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No changes occur
when divisor is 0.

O When an overflow occurs as a result of the operation or divisor is 0, Z flag is not affected.
C : Clearto 0.

00 Set to 1 when an overflow occurs

O Not affected when divisor is 0

Addressing mode Syntax Machine code Bytes Qycles
Immediate DIVS #imm 8916, A916, ImMm 3 29
Direct DIVS dd 8916, Ab1s, dd 3 31
Direct indexed X DIVS dd, X 8916, B516, dd 3 32
Direct indirect DIVS (dd) 8916, B216, dd 3 33
Direct indexed X indirect DIVS (dd, X) 8916, Alis, dd 3 34
Direct indirect indexed Y DIVS (dd), Y 8916, Blis, dd 3 35
Direct indirect long DIVSL (dd) 8916, A716, dd 3 37
Direct indirect long indexed Y| DIVSL (dd), Y 8916, B716, dd 3 38
Absolute DIVS mmll 8916, ADa1s, Il, mm 4 31
Absolute indexed X DIVS mmll, X 8916, BD1s, Il ,mm 4 33
Absolute indexed Y DIVS mmll, Y 8916, B916, Il ,mm 4 33
Absolute long DIVS hhmmll 8916, AF1s, Il, mm, hh 5 33
Absolute long indexed X DIVS hhmmll, X 8916, BF16, I, mm, hh 5 34
Stack pointer relative DIVS nn, S 8916, A316, NN 3 32
Stack pointer relative DIVS (nn, S), Y 8916, B316, NN 3 35
indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count.increases by 1.

(Note 2) The cycles-count in this table are ior 16-bit + 8-bit operations. For 32-bit + 16-bit operations, the
cycles-count increases by 16.

(Note 3) The cycle count in this tablecand Note 2 are the value when the operation completes normally
(no interrupt has occurred). if a zero divide interrupt has occurred, the cycle counts in the above
table are decremented by 10 regardless of the data length.

7700 FAMILY SOFTWARE MANUAL 4-43

EOR

Exclusive OR Memory with Accumulator EO R

Function

Operation

Description

Status flags

Logical EXCLUSIVE OR

Acc —« AccO M

When m=0

Acc Acc M(n+1,n)
I e I O
When m=1

AccL AccL M(n)

I

Performs the logical EXCLUSIVE OR between the contents of the accumulator and the
contents of memory, and places the result in the accumulator.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yntax Machine code Bytes Cycles
Immediate EOR A, #imm 4916, imm 2 2
Direct EOR A, dd 4516, dd 2 4
Direct indexed X EOR A, dd, X 5516, dd 2 5
Direct indirect EOR A, (dd) 5216, dd 2 6
Direct indexed X indirect EOR A, (dd, X) 4116, dd 2 7
Direct indirect indexed Y EOR A, (dd), Y 5116, dd 2 8
Direct indirect long EORL A, (dd) 4716, dd 2 10
Direct indirect long indexed Y | EORL A, (dd), Y 5716, dd 2 11
Absolute EOR A, mmll 4Dz1s, Il, mm 3 4
Absolute indexed X EOR A, mmll, X 5D1s, II, mm 3 6
Absolute indexed Y EOR A, mmll, Y 5916, Il, mm 3 6
Absolute long EOR A, hhmmll 4F1s, I, mm, hh 4 6
Absolute long indexed X EOR A, hhmmll, X 5F1s, Il, mm, hh 4 7
Stack pointer relative EOR A, nn, S 4316, NN 2 5
Stack pointer relative EOR A, (nn, S), Y 5316, NN 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.

(Note 2)

In this case, “421¢6" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

4-44

7700 FAMILY SOFTWARE MANUAL

EXTS

Extension with Sign EXTS

Function

Operation

Description

Status flags

- O X 3< 2

O N

Extension with sign This instruction can be used
in the 7750 Series only.

AccH — 0016 or FFie
When bit 7 of AccL="0"
AccH — 0016

AcCH AccL AcCH AccL
00000000 0XXXXXXX| . | ? OXXXXXXX

When bit 7 of AccL="1"
AccH — FFi1e

ACCH AccL AcCCH AccL
11111111 1xxxxxxx| - | ? IXXXXXXX

O The high-order byte of Acc changes regardless of the m flag

This instruction is used to extend the signed 8-bit data stored in the low-order byte of the
accumulator to a 16-bit data.

If bit 7 of the accumulator is “0”, bits 8 to 15 are set to “0". If bit 7 of the accumulator is “1”,
bits 8 to 15 are set to “1".

With this instruction, the high-order byte of accumulator changes regardless of the data length
selection flag m, but the content of the data length selection flag m is unchanged.

Not affected.

Set to 1, if bit 15 of the result of operation is 1. Otherwise, cleared to 0.
Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1, if the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code ytes Cycles
Accumulator EXTS A 8916, 8B16 2 8
Accumulator EXTS B 4216, 8B16 2 8

7700 FAMILY SOFTWARE MANUAL

4-45

EXTZ

Extension Zero EXTZ

Function

Operation

Description

Status flags

Extension zero This instruction can be used
in the 7750 Series only.

AccH — 0016

AccH AccL AccH AccL
0016 | | - | ?
O The high-order byte of Acc changes regardless of the m flag

This instruction is used to extend the 8-bit data stored in the low-order byte of the accumulator
to a 16-bit data.

Bits 8 to 15 of the accumulator are set to “0".

With this instruction, the high-order byte of accumulator changes regardless of the data length
selection flag m, but the content of the data length selection flag m is unchanged.

IPL: Not affected.

N Set to “0”

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1, if the result of operation is 0. Otherwise, cleared to O.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Accumulator EXTZ A 8916, AB1s 2 5
Accumulator EXTZ B 4216, AB16 2 5

4-46

7700 FAMILY SOFTWARE MANUAL

INC

INC

Increment by One

Function

Operation

Description

Status flags

o xX 3 < Z

N —

Increment

Acc « Acc+1orM -« M+1

When m=0
Acc Acc
Lol - e
or

M(n+1,n) M(n+1,n)
I
When m=1

AccL AccL

L - =

M(n) > M(n)

| +1

Adds 1 to the contents of the accumulator or memory:

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Accumulator INC A 3A16 1 2
Direct INC dd E616, dd 2 7
Direct indexed X INC dd, X F616, dd 2 7
Absolute INC mmll EEzs, I, mm 3 7
Absolute indexed X INC mmll, X FEzis, Il, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator

. If using the accumulator B, replace “A” with “B”. In this case, “4216" is added at the beginning

of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL 4-47

I NX Increment Index Register X by One I NX

Function : Increment
Operation X e X+1
When x=0
X X
I e
When x=1
XL XL
s A
Description : Adds 1 to the contents of the index register X.

Status flags
IPL: Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation i1s 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Implied INX E816 1 2

4-48 7700 FAMILY SOFTWARE MANUAL

I NY Increment Index Register Y by One I NY
Function Increment
Operation Y « Y+1
When x=0
Y Y
I
When x=1
YL YL
-+t
Description Adds 1 to the contents of the index register Y.

Status flags

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied INY C816 1 2

7700 FAMILY SOFTWARE MANUAL 4-49

JMP Jump JMP

Function Jump always
Operation [PG], PC - specified address (absolute or indirect)
When the addressing mode is ...
absolute addressing mode,
PC —~ ADDR
absolute long addressing mode,
PC -~ ADDR
PG ~ BANK
absolute indirect addressing mode,
PC — M(ADDR+1, ADDR)
absolute indirect long addressing mode,
PC — M(ADDR+1, ADDR)
PG - M(ADDR+2)
absolute indexed X indirect addressing imode,
PC —~ M(ADDR+X+1, ADDR+X)
O ADDR indicates the low-order 16 bits Gf a 24-bit address and is specified by bytes 2 and
3 of the instruction.
O BANK is the high-order 8 bits of a 24-bit address and is specified by byte 4 of the
instruction.

Description : The JMP.instruction causes a jump to the address specified for the addressing mode in use.
Whenthisdnstruction is used in addressing mode other than absolute long, the content of PG
is incremented by 1 and the branch destination becomes the next bank if the last byte of the
instruction is at the topmost address (XXFFFF16) of a bank or if the instruction spans across
banks.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Absolute JMP mmll 4Cais, Il, mm 3 2
Absolute long JMPL hhmmll 5Cis, Il, mm, hh 4 4
Absolute indirect JMP (mmll) 6Czs, Il, mm 3 4
Absolute indirect long JMPL (mmll) DCuss, Il, mm 3 8
Absolute indexed X indirect | JMP (mmll, X) 7Czs, Il, mm 3 6

4-50

7700 FAMILY SOFTWARE MANUAL

JSR

Jump to Subroutine

JSR

Function

Operation

Description

Status flags

Jump to subroutine

Stack ~ [PG], PC
[PG], PC ~ specified address (absolute or indirect)
When the addressing mode is ...
absolute addressing mode,
PC - PC+3
M(S,S-1) ~ PC
S «S-2
PC - ADDR

absolute long addressing mode,
PC - PC+14
M(S to S-2) ~ PG, PC

S ~S-3
PC ~ ADDR
PG <« BANK

absolute indexed X indirect addressing mode,
PC ~ PC+3
M(S,5-1) -~ PC
S ~S-2
PC « M(ADDR+X+1,ADDR+X)

(S) in just after instruction execution

(S) in just before instruction execution

(S) in just after instruction execution

(S) in just before instruetion execution

(S) In just after instruction execution

(S) in just before instruction execution

Stack

PCL

PCH

Stack

PCL

PCH

PG

Stack

PCL

PCH

0O ADDR indicates the low-order 16 bits of a 24-bit address and is specified by bytes 2 and

3 of the instruction.

0 BANK is‘the high-order 8 bits of a 24-bit address and is specified by byte 4 of the

instruction.

The contents of the program counter PC (or the program bank register PG and the program
counter PC if absolute long addressing mode) are first saved on the stack, then a jump occurs

to the address shown for each addressing mode.

When this instruction is used in addressing mode other than absolute long, the content of PG
is incremented by 1 and the branch destination becomes the next bank if the last byte of the
instruction is at the topmost address (XXFFFF16) of a bank or if the instruction spans across

banks.

Not affected.

Addressing mode Syntax Nachine code ytes Clycles
Absolute JSR mmll 2016, Il, mm 3 6
Absolute long JSRL hhmmll 2216, Il, mm, hh 4 8
Absolute indexed X indirect | JSR (mmll, X) FCis, I, mm 3 8

7700 FAMILY SOFTWARE MANUAL

4-51

L DA Load Accumulator from Memory L DA

Function : Load
Operation . Acc « M
When m=0
Acc M(n+1, n)
When m=1
AccL M(n)
Description : Loads the contents of memory into the accumulator.

Status flags
IPL: Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection fiag m is set to 1) of the operation
result is 1. Otherwise, cleared to O.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operationis 0. Otherwise, cleared to 0.

C : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Immediate LDA A, #imm A916, imm 2 2
Direct LDA A, dd Abss6, dd 2 4
Direct indexed X LDA A, dd, X B516, dd 2 5
Direct indirect LDA A, (dd) B21s, dd 2 6
Direct indexed X indirect LDA A, (dd, X) Alis, dd 2 7
Direct indirect indexed Y LDA A, (dd), Y Blis, dd 2 8
Direct indirect long LDAL A, (dd) A71s, dd 2 10
Direct indirect long indexed Y | LDAL A, (dd), Y B716, dd 2 11
Absolute LDA A, mmll ADzs, Il, mm 3 4
Absolute indexed X LDA A, mmll, X BDzs, II, mm 3 6
Absolute indexed Y LDA A, mmll, Y B91s, I, mm 3 6
Absolute long LDA A, hhmmll AFis, I, mm, hh 4 6
Absolute long indexed X LDA A, hhmmll, X BFis, Il, mm, hh 4 7
Stack pointer relative LDA A, nn, S A316, Nn 2 5
Stack pointer relative LDA A, (nn, S), Y B31s, Nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

4-52 7700 FAMILY SOFTWARE MANUAL

LDM

Function . Load
Operation M <« IMM
When m=0

M(n+1, n)

Load Immediate to Memory

|:|j ~ IMM16

When m=1
M(n)

D < IMM8

Description . Loads an immediate value into memory.

Status flags . Not affected.

LDM

Addressing mode Syntax Machine code tes Cycles
Direct LDM #imm, dd 6416, dd, imm 3 4
Direct indexed X LDM #imm, dd, X 7416, dd, imm 3 5
Absolute LDM #imm, mmll 9Cis, I, mm, imm 4 5
Absolute indexed X LDM #imm, mmll, X 9Eis,), mm, imm 4 6

(Note 1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count

increases by 1.

7700 FAMILY SOFTWARE MANUAL

4-53

LDT Load Immediate to Data Bank Register LDT

Function . Load

Operation . DT <« IMM8

DT
D < IMM8

Description . Loads an immediate value into the data bank register DT.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Immediate LDT #imm 8916, C216, imm 3 5

4-54 7700 FAMILY SOFTWARE MANUAL

LDX Load Index Register X from Memory LDX
Function Load
Operation X « M

When x=0

X M(n+1, n)
When x=1
XL M(n)

Description Loads the contents of memory into the index register X.

Status flags

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Set to 1 when the result of operaiionis 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Immediate LDX #imm A216, imm 2 2
Direct LDX dd A61s, dd 2 4
Direct indexed Y LDX dd, Y B61s, dd 2 5
Absolute LDX mmll AEzis, Il, mm 3 4
Absolute indexed Y LDX mmll, Y BEzis, Il, mm 3 6

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length

selection flag x set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4-55

LDY Load Index Register Y from Memory LDY
Function Load
Operation Y « M
When x=0
Y M(n+1, n)
-0
When x=1
YL M(n)
L -1
Description Loads the contents of memory into the index register Y.

Status flags

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

V4 Set to 1 when the result of operationis 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code ytes Cycles
Immediate LDY < #imm AO1s6, imm 2 2
Direct LDY dd Adis, dd 2 4
Direct indexed X LDY dd, X B41s, dd 2 5
Absolute LDY mmll ACis, Il, mm 3 4
Absolute indexed X LDY mmll, X BCis, Il, mm 3 6

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

4-56

7700 FAMILY SOFTWARE MANUAL

LSR

Logical Shift Right

LSR

Function . Logical shift right

Operation : Acc or M

C

0 L. 1 bit shift to Right % |

When m=0

b7 AccL or M(n)

Oi_>'_.'_>'_,l,_>_,

1]

Description . Shifts all bits of the accumulator or memory one place to the tight. Bit 15 (or bit 7 if the data
length selection flag m is set to 1) of the accumulator or meiriory is loaded with 0.

The carry flag C is loaded from bit O of the data before the shift.

Status flags

IPL: Not affected.

N Cleared to “0".

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Setto 1 when bit O before the operation is 1. Otherwise, cleared to 0.

Addressing mode dyntax Machine code tes Cycles
Accumulator LSR A 4A16 2
Direct LSR dd 4616, dd 2 7
Direct indexed X LSR dd, X 5616, dd 2 7
Absolute LSR mmll 4Ez1s, Il, mm 3 7
Absolute indexed X LSR mmill, X 5Ez1s, Il, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “421¢6" is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL

4-57

MPY

Multiply M PY

Function

Operation

Description

Status flags

z

- O X 3 <

O N

Multiplication (Unsigned)

B,A - AxM
When m=0
B A A M(n+1,n)
| | Proc:juct | | - |Multip:licand| X | Multiplier |
When m=1
BL AL AL M(n)
| Pm?um | - @uMNEa@jX yummm}

When the data length selection flag m is set to 0, the contents of the accumulator A and the
contents of memory are multiplied. Multiplication is performed as 16-bit x 16-bit, and the result
is a 32-bit data which is placed in the accumulators B (upper 16 bits of the result) and A (lower
16 bits of the result).

When the data length selection flag m is set to 1, the lower 8-Bit contents of the accumulator
A and the contents of memory are multiplied. Multiplication is performed as 8-bit x 8-bit, and
the result is a 16-bit data which is placed in the lower 8 bits of the accumulators B (upper 8
bits of the result) and A (lower 8 bits of the result).

Not affected.

Set to 1 when bit 31 (or bit 15 if the data iength selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1-when the result of operation is 0. Otherwise, cleared to 0.
Cleared to 0.

4-58

7700 FAMILY SOFTWARE MANUAL

MPY Mty MPY

Addressing mode Syntax Machine code Bytes Cycles
Immediate MPY #imm 8916, 0916, Iimm 3 16
Direct MPY dd 8916, 0516, dd 3 18
Direct indexed X MPY dd, X 8916, 1516, dd 3 19
Direct indirect MPY (dd) 8916, 1216, dd 3 20
Direct indexed X indirect MPY (dd, X) 8916, 0116, dd 3 21
Direct indirect indexed Y MPY (dd), Y 8916, 1116, dd 3 22
Direct indirect long MPYL (dd) 8916, 0716, dd 3 24
Direct indirect long indexed Y | MPYL (dd), Y 8916, 1716, dd 3 25
Absolute MPY mmll 8916, 0D1s, Il, mm 4 18
Absolute indexed X MPY mmll, X 8916, 1D1s, Il, mm 4 20
Absolute indexed Y MPY mmll, Y 8916, 1916, I, mm 4 20
Absolute long MPY hhmmll 8916, OF1s, Il, mm, hh 5 20
Absolute long indexed X MPY hhmmll, X 8916, 1F1s, Il, mm, hh 5 21
Stack pointer relative MPY nn, S 8916, 0316, NN 3 19
Stack pointer relative MPY (nn, S), Y 8916, 1316, NN 3 22
indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note 2) The cycles-count in this table are for 8-bit x 8-bit multiplications.” For 16-bit x 16-bit multiplications,
the cycles-count increases by 8.

7700 FAMILY SOFTWARE MANUAL 4-59

MPYS

Multiply with Sign M PYS

Function

Operation

Description

Status flags

IPL :

N

O N — O X 3 <

Multiplication (Signed) This instruction can be used
in the 7750 Series only.
B,A -« AxM
When m=0
B A A M(n+1,n)

| | Product | | - |Mu|tip'Iicand| x| Multi'plier |

S 1 S 1 S 1
When m=1

BL AL AL M(n)
| Product - Niultiplicaﬁd X Multiplie'r
S | S J S]

O s indicates the sign bit and is the topmost bit of the data to be operated on.

When the data length selection flag m is set to 0, the content of the accumulator A is multiplied
by the content of memory as signed data. The multiplication is performed as a 16-bit x 16-
bit operation, and the result is a 32-bit data which is placed in the accumulators B (upper 16
bits of the result) and A (lower 16 bits of the result). Bit 15 of accumulator B becomes the
sign bit.

When the data length selection flag m is set to.1, the lower 8-bit content of the accumulator
A is multiplied by the content of memory as sianed data. The multiplication is performed as
8-bit x 8-bit operation, and the result is a 16-bit data which is placed in the lower 8 bits of the
accumulators B (upper 8 bits of the result) and A (lower 8 bits of the result). Bit 7 of
accumulator B becomes the sign bit.

Not affected.

Set to 1 when bit 31 of the operation result which is bit 15 of accumulator B (or if the data
length selection flag m is set to 1, bit 15 of the operation result which is bit 7 of accumulator
B) is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affecied:
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

4-60

7700 FAMILY SOFTWARE MANUAL

M PYS Multiply with Sign M PYS

Addressing mode Syntax Machine code Bytes Cycles
Immediate MPYS #imm 8916, 8916, IMmM 3 18
Direct MPYS dd 8916, 8516, dd 3 20
Direct indexed X MPYS dd, X 8916, 9516, dd 3 21
Direct indirect MPYS (dd) 8916, 9216, dd 3 22
Direct indexed X indirect MPYS (dd, X) 8916, 8116, dd 3 23
Direct indirect indexed Y MPYS (dd), Y 8916, 9116, dd 3 24
Direct indirect long MPYSL (dd) 8916, 8716, dd 3 26
Direct indirect long indexed Y | MPYSL (dd), Y 8916, 9716, dd 3 27
Absolute MPYS mmll 8916, 8D1s, Il, mm 4 20
Absolute indexed X MPYS mmll, X 8916, 9D1s, Il, mm 4 22
Absolute indexed Y MPYS mmll, Y 8916, 9916, Il, mm 4 22
Absolute long MPYS hhmmll 8916, 8F1s, II, mm, hh 5 22
Absolute long indexed X MPYS hhmmll, X 8916, 9F16, II, mm, hh 5 23
Stack pointer relative MPYS nn, S 8916, 8316, NN 3 21
Stack pointer relative MPYS (nn, S), Y 8916, 9316, NN 3 24
indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note 2) The cycles-count in this table are for 8-bit x 8-bit multiplications with the same sign. If the multiplier
and multiplicand have different signs, three additional cyecles are required. For 16-bit x 16-bit
multiplications, the cycles-count increases by 8.

7700 FAMILY SOFTWARE MANUAL 4-61

MVN Move Negative MVN

Function . Move
Operation : M(nton+ k) « M(mtom + k)
— o n Transfer
A=07 — = || Transfer direction |destination
When A=0 n+k area
Instruction execution complete i i
| |
When AZz0 | m Transfer
Repeat operation L || Transfer direction |source
M(DTd: Y) M(DTs: X) m +k area
X « X+2
Y « Y+2
A A-=-2

0O DTd indicates the transfer destination bank and is specified with the second byte of the
instruction.

O DTs indicates the transfer source bank and.is specified with the third byte of the
instruction.

O Values set in register before transfer
A: Transfer byte count
When m=0 The value 0 t0 65535 can be set
When m=1 The value 0 to 255 can be set
X: Transfer source area beginning (lowermost) address
When x=0 The value 0 to 65535 can be set
When x=1 The value 0 to 255 can be set (Note 1)
Y: Transfer destination area beginning (lowermost) address
When x=0 The value 0 to 65535 can be set
When x=1 The value 0 to 255 can be set (Note 1)
O Conient of register after transfer
A FFFF16
X: Transfer source area end (highermost) address + 1
Y: Transfer destination area beginning (highermost) address + 1
DT:Bank number of transfer destination

O Transfer is always performed two bytes at a time. Therefore, in the case of a 16-bit
bus, the transfer time is shorter when transfer start addresses are even compared to
when they are both odd addresses.

Note 1. This instruction is recommended to use at the x="0". Data in the area between
XX0016 and XXFF16 can be only used because the higher bytes of index
registers X and Y are not affected at x="1".

4-62 7700 FAMILY SOFTWARE MANUAL

MVN Move Negative MVN

Description : Normally, a block of data is transferred from upper addresses to lower addresses. The
transfer is performed in the ascending address order of the block being transferred. The target
bank is specified by the instruction’s second byte, and the address within the target bank is
specified by the contents of the index register Y. The source bank is specified by the
instruction’s third byte, and the address within the source bank is specified by the contents of
the index register X. The accumulator A is loaded with the bytes-count of the data to be
transferred. As each byte of data is transferred, the index registers X and Y are incremented
by 1, so that the index register X will become a value equal to 1 larger than the source address
of the last byte transferred and the index register Y will become a value equal to 1 larger than
the target address of the last byte received. The data bank register DT will become the target
bank number, and the accumulator A will become FFFFie.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Block transfer MVN ni1, n2 5416, n1, N2 3 7+(i/12)x7

(Note 1)The cycles-count shown above is for when the number of bytes transferred, i, is an even
number. If i is an odd number, the cycles-count is obtained as follows:

74 (i+2)x7+ 4
Note that (i + 2) denotes the integer part of the result of dividing i by 2.

7700 FAMILY SOFTWARE MANUAL 4-63

MVP Move Positive MVP

Function . Move
Operation : M(n-kton) « M(m — Kk to m)
N m —k Transfer
A=0c ———— | t Transfer direction |source
When A=0 m area
Instruction execution complete i i
| |
When AZ0 . n-k Transfer
Repeat operation L~ |1 Transfer direction |destination
X X =1 n area
Y «Y-1
M(DTd: Y) M(DTs: X)
X « X-1
Y «Y-1
A A-2

O DTd indicates the transfer destination bank and is specified with the second byte of the
instruction.

O DTs indicates the transfer source bank and is specified with the third byte of the
instruction.

O Values set in register before transfer
A: Transfer byte count
When m=0 The value 0 to 65535 can be set
When m=1 The value 0 to 255 can be set
X: Transfer source area beginning (highermost) address
When x=0 The value 0 to 65535 can be set
When x=1 The value 0 to 255 can be set
Y.« Transfer destination area beginning (highermost) address
When x=0 The value 0 to 65535 can be set
When x=1 The value 0 to 255 can be set
O Content of register after transfer
A: FFFFie
X: Transfer source area end (lowermost) address — 1
Y: Transfer destination area beginning (lowermost) address — 1
DT:Bank number of transfer destination

O Transfer is always performed two bytes at a time. Therefore, in the case of a 16-bit
bus, the transfer time is shorter when transfer start addresses are odd compared to
when they are both even addresses.

Note 1. This instruction is recommended to use at the x="0". Data in the area between
XX0016 and XXFF16 can be only used because the higher bytes of index
registers X and Y are not affected at x="1".

4-64 7700 FAMILY SOFTWARE MANUAL

MVP

Move Positive M V P

Description

Status flags

Normally, a block of data is transferred from lower addresses to upper addresses. The
transfer is performed in the descending address order of the block being transferred. The
target bank is specified by the instruction’s second byte, and the address within the
target bank is specified by the contents of the index register Y. The source bank is
specified by the instruction’s third byte, and the address within the source bank is
specified by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred, the index
registers X and Y are decremented by 1, so that the index register X will become a value
equal to 1 less than the source address of the last byte transferred and the index
register Y will become a value equal to 1 smaller than the target address of the last byte
received. The data bank register DT will become the target bank number, and the
accumulator A will become FFFFas.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVP ni, n2 4416, N1, N2 3 9+(i/2)x7

(Note 1)The cycles-count shown above is for when the fiumber of bytes transferred, i, is an even

number. If i is an odd number, the cycles-count is obtained as follows:

9+ (i+2)x7+5.

Note that (i + 2) denotes the integer part of the result of dividing i by 2.

7700 FAMILY SOFTWARE MANUAL 4-65

N O P No Operation N O P

Function . No operation

Operation : PC «PC+1
O PG also changes depending on the result of the above operation on PC.
If a carry occurs in PC: PG ~ PG + 1

Description : This instruction only causes the program counter to be incremented by 1 and nothing else.
Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles

Implied NOP EA1e 1 2

4-66 7700 FAMILY SOFTWARE MANUAL

ORA

OR Memory with Accumulator O RA

Function

Operation

Description

Status flags

Logical OR

Acc -« AccV M

When m=0

Acc A M(n+1,n)
- v]
When m=1

AccL AccL M(n)

- Y,
L YL
Performs the logical OR between the contents of the accumulator and the contents of memory,
and places the result in the accumulator.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to O.

Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yntax Machine code Bytes Cylcles
Immediate ORA A, #imm 0916, imm 2 2
Direct ORA A, dd 0516, dd 2 4
Direct indexed X ORA A, dd, X 1516, dd 2 5
Direct indirect ORA A, (dd) 1216, dd 2 6
Direct indexed X indirect ORA A, (dd, X) 0lis, dd 2 7
Direct indirect indexed Y ORA A, (dd), Y 1116, dd 2 8
Direct indirect long ORAL A, (dd) 0716, dd 2 10
Direct indirect long indexed Y | ORAL A, (dd), Y 1716, dd 2 11
Absolute ORA A, mmll ODzs, Il, mm 3 4
Absolute indexed X ORA A, mmll, X 1Dz1s, Il, mm 3 6
Absolute indexed Y ORA A, mmll, Y 1916, Il, mm 3 6
Absolute long ORA A, hhmmll OF1s, Il, mm, hh 4 6
Absolute long indexed X ORA A, hhmmll, X 1F1s, Il, mm, hh 4 7
Stack pointer relative ORA A, nn, S 0316, NN 2 5
Stack pointer relative ORA A, (Nn, S), Y 1316, Nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4-67

P EA Push Effective Address P EA

Function . Stack manipulation (push)

Operation . Stack ~ IMM16 Stack
(S) in just after instruction execution

IMML
(S) in just before instruction execution| [MMH

M(S,S — 1) — IMM16
S.S-2

O IMM16 is an immediate value and IMMH indicates its high-order byte and IMML indicates
its low-order byte.

Description : The instruction’s third and second bytes are saved on the stack in this order.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PEA #immuimmc F416, immL, iImms 3 5

4-68 7700 FAMILY SOFTWARE MANUAL

PEI

Push Effective Indirect Address

PEI

Function : Stack manipulation (push)

Operation

M(S,S - 1) « M(DPR + IMM8 + 1, DPR + IMM8)
S.S-2

(S) in just after instruction execution

(S) in just before instruction execution

Stack « M(DPR + IMM8 + 1, DPR + IMMS8)

O IMMS8 is an 8-bit immediate value and is used as an offset from DPR.

Description

Status flags

Not affected.

Stack

M(DPR+IMM8)

MDPR+MMB8+1)

Addressing mode

Syntax

P

Machine code

ytes

Cy

cles

Stack

PEI

#imm

D416, mim

Saves the contents of the consecutive 2 bytes in the direct page as specified by the sum of
the contents of the direct page register DPR and the instruction’s second byte on the stack
in the order of upper address first and lower address second.

7700 FAMILY SOFTWARE MANUAL

4-69

P E R Push Effective Program Counter Relative Address P E R

Function . Stack manipulation (push)

Operation . Stack —~ PC + IMM16 Stack
(S) in just after instruction execution

EARL
EAR ~ PC +IMM16 (s) in just before instruction execution| EARx
M(S, S — 1) < EAR

S~-S-2

0 IMM16 is a 16-bit immediate value

0 EAR is an execution address added PC and IMM16, and EARH indicates its high-order byte
and EARL indicates its low-order byte.

Description : Saves the result of adding a 16-bit data consisting of an upper byte specified by the
instruction’s third byte and a lower byte specified by the instruction’s second byte with the
contents of the program counter on the stack in the order of thie result’'s upper byte first and
lower byte second.

Status flags : Not affected.
Addressing mode Byntax Machine code Bytes Cpycles
Stack PER #immuimmc 6216, immL, immH 3 5

4-70 7700 FAMILY SOFTWARE MANUAL

PHA

Push Accumulator A on Stack

PHA

Function : Stack manipulation (push)
Operation : Stack « A
When m=0
M(S,S-1) « A
() Stack
S-S-2 (S) in just after instruction execution
A
(S) in just before instruction execution An
When m=1
M(S) - AL Stack
S-S-1 (S) in just after instruction execution
(S) in just before instruction execution AL
Description : Saves the contents of the accumulator A to the address specified by the stack pointer S. When

the data length selection flag m is set to 0, the accumulator A’s upper byte is saved on the
stack first and then the lower byte. When the data length selection flag m is set to 1, only
the accumulator A’s lower byte is saved on the stack.

Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PHA

4816

7700 FAMILY SOFTWARE MANUAL

4-71

Renesas
EOL announced

PHB

Stack manipulation (push)

Push Accumulator B on Stack

Function
Operation Stack —« B
When m=0
M(S,S-1) - B
S-S-2
When m=1
M(S) - BL
S~-S-1
Description

Status flags

Not affected.

(S) in just after instruction execution

(S) in just before instruction execution

(S) in just after instruction execution
(S) in just before instruction execution

Stack

BL

Bx

Stack

BL

Saves the contents of the accumulator B to the address indicated by the stack pointer S.
When the data length selection flag m is set to 0, the accumulator B’s upper byte is saved on
the stack first and then the lower byte. When the data length seléction flag m is set to 1, only
the accumulator B’s lower byte is saved on the stack.

Addressing mode

q

Syntax

achine code

o]

ytes Cy

cles

Stack

PHB

4216, 4816

4-72

7700 FAMILY SOFTWARE MANUAL

P H D Push Direct Page Register on Stack P H D

Function : Stack manipulation (push)
Operation . Stack ~ DPR
Stack
M(S, S — 1) — DPR (S) in just after instruction execution —
L
S-S-2 (S) in just before instruction execution| DPRH
Description . Saves the contents of the direct page register DPR to the address indicated by the stack
pointer S in the order of upper byte first and then lower byte.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PHD OBu1s 1 4

7700 FAMILY SOFTWARE MANUAL 4-73

P H G Push Program Bank Register on Stack P H G

Function . Stack manipulation (push)
Operation . Stack - PG
Stack
M(S) — PG (S) in just after instruction execution
(S) in just before instruction execution PG
S~-S-1
Description . Saves the contents of the program bank register to the address indicated by the stack pointer
S.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PHG 4B1e 1 3

4-74 7700 FAMILY SOFTWARE MANUAL

P H P Push Processor Status on Stack

PHP

Function : Stack manipulation (push)
Operation . Stack - PS
Stack
M(S, S — 1) « PS (S) in just after instruction execution
PSL
S-S5-2 (S) in just before instruction execution PSH
Description . Saves the contents of the processor status register PS to the address indicated by the stack
pointer S in the order of upper byte and then lower byte.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PHP 0816 1 4

7700 FAMILY SOFTWARE MANUAL

4-75

P HT Push Data Bank Register on Stack P HT

Function . Stack management (push)
Operation . Stack - DT
Stack
M(S) — DT (S) in just after instruction execution
(S) in just before instruction execution DT
S~-S-1
Description . Saves the contents of the data bank register DT to the address indicated by the stack pointer
S.
Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PHT 8Bis 1 3

4-76 7700 FAMILY SOFTWARE MANUAL

PHX

Push Index Register X on Stack

PHX

Function . Stack management (push)
Operation . Stack « X
When x=0 Stack
M(S, S —1) « X (S) in just after instruction execution
S.Ss-2 - . . . Xt
(S) in just before instruction execution XH
When x=1 Stack
M(S) — XL (S) in just after instruction execution
S.S—-1 (S) in just before instruction execution Xu
Description . Saves the contents of the index register X to the address indicated by the stack pointer S.

When the index register length selection flag x is set to 0, the contents are saved in the order
of upper byte and then lower byte. When the index register length selection flag x is set to
1, only the lower byte is saved on the stack.

Status flags . Not affected.

Addressing mode

Syntax

Machine code

(09}

ytes Cy

cles

Stack

PHX

DA1s

7700 FAMILY SOFTWARE MANUAL

4-77

PHY

Stack management (push)

Push Index Register Y on Stack

Function
Operation Stack « Y
When x=0
M(S,S-1) « Y
S~-S-2
When x=1
M(S) « YL
S~-S-1
Description

Status flags

(S) in just after instruction execution

(S) in just before instruction execution

(S) in just after instruction execution
(S) in just before instruction execution

1, only the lower byte is saved on the stack.

Not affected.

Stack

Yu

YH

Stack

Yo

Saves the contents of the index register Y to the address indicated by the stack pointer S.
When the index register length selection flag x is set to 0, the contents are saved in the order
of upper byte and then lower byte. When the index register length selection flag x is set to

Addressing mode

Syntax

Machine code

o]

ytes

Cy

cles

Stack

PHY

5A16

4-78

7700 FAMILY SOFTWARE MANUAL

PLA

Pull Accumulator A from Stack P LA

Function

Operation

Description

Status flags

Stack manipulation (pull)

A < Stack
When m=0 AH AL

A < M(S+2, S+1) Stack | | |
S < S+2 (S) in just before instruction execution

(S) in just after instruction execution

When m=1 AL

AL <« M(S+1) Stack

S-S+1 (S) in just before instruction execution
(S) in just after instruction execution

The stack pointer S is incremented, and then restores the lower byte of the accumulator A
with the data at the address indicated by the stack pointer.S. Again, increments the stack
pointer S and then restores the upper byte of the accumulator A with the data at the address
indicated by the stack pointer S. When the data length selection flag m is set to 0, 2 bytes
data are restored. When the data length selection flag m is set to 1, only 1 byte data is
restored (to the lower byte of the accumulator A).

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to O.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLA 6816 1 5

7700 FAMILY SOFTWARE MANUAL 4-79

PLB

Pull Accumulator B from Stack P LB

Function

Operation

Description

Status flags

Stack manipulation (pull)

B — Stack
When m=0 BH BL

B « M(S+2, S+1) Stack | | | |
S.S+2 (S) in just before instruction execution

(S) in just after instruction execution

When m=1 BL
BL « M(S+1) Stack
S .S+1 (S) in just before instruction execution
(S) in just after instruction execution

The stack pointer S is incremented, and then restores the lower byte of the accumulator B with
the data at the address indicated by the stack pointer S: Again, increments the stack pointer
S and then restores the upper byte of the accumulator B with the data at the address indicated
by the stack pointer S. When the data length selection flag m is set to 0, 2 bytes data are
restored. When the data length selection flag.m is set to 1, only 1 byte data is restored (to
the lower byte of the accumulator B).

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 ii the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected:

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLB 4216, 6816 2 7

4-80

7700 FAMILY SOFTWARE MANUAL

PLD

Pull Direct Page Register from Stack

PLD

Function

Operation

DPR ~ M(S+2, S+1)
S S+2

Description

DPR ~ Stack

Stack manipulation (pull)

(S) in just before instruction execution

(S) in just after instruction execution

data at the address indicated by the stack pointer .

Status flags

Not affected.

Stack

DPR

Addressing mode

Syntax

N

lachine code

ytes

Cy

cles

Stack

PLD

2B16

The stack pointer S is incremented, and then the direct page register DPR is restored with the

7700 FAMILY SOFTWARE MANUAL

4-81

PLP

Function : Stack manipulation (pull)

Operation . PS ~ Stack

PS « M(S+2, S+1)
S.S+2

Description

Pull Processor Status from Stack

(S) in just before instruction execution

Stack

PSH

(S) in just after instruction execution

the data at the address indicated by the stack pointer S.

Status flags . Changes to the values restored from the stack.

The stack pointer S is incremented and then the processor status register PS is restored with

Addressing mode

Syntax

Machine code

ytes

C

ycles

Stack

PLP

2816

4-82

7700 FAMILY SOFTWARE MANUAL

PLT

Pull DaTa Bank Register from Stack

PLT

Function : Stack manipulation (pull)
Operation . DT ~ Stack
DT — M(S+1) (S) in just before instruction execution

S« S+1

Description

(S) in just after instruction execution

data at the address indicated by the stack pointer S.

Status flags

IPL: Not affected.

N

Y Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
z

C : Not affected.

Stack

DT

L]

Set to 1 when the result of operation is 0.. Otherwise, cleared to 0.

Set to 1 when bit 7 of the operation result is 1. Otherwise, cleared to 0.

The stack pointer S is incremented, and then the data bank register DT is restored with the

Addressing mode

Syntax

Machine code

o)

ytes

Cy

cles

Stack

PLT

AB16

7700 FAMILY SOFTWARE MANUAL

4-83

PLX

Pull Index Register X from Stack P LX

Function

Operation

Description

Status flags

Stack manipulation (pull)

X < Stack
When x=0
X « M(S+2, S+1) XH XL

S _S+2 Stack | | |
(S) in just before instruction execution

(S) in just after instruction execution

When x=1
XL « M(S+1) XL

SS+1 Stack

(S) in just before instruction execution
(S) in just after instruction execution

The stack pointer S is incremented, and then restores the lower byte of the index register X
with the data at the address indicated by the stack pointer S. Again, increments the stack
pointer S and then restores the upper byte of the index register X with the data at the address
indicated by the stack pointer S. When the index register length selection flag x is set to 0,
2 bytes are restored. When the index registéer length selection flag x is set to 1, only 1 byte
is restored (to the lower byte of the index register X).

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise; cleared to 0.

Y, Not affected.

m Not affected.

X Not affected:

D Not affected.

I Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLX FAz1e 1 5

4-84

7700 FAMILY SOFTWARE MANUAL

PLY

Pull Index Register Y from Stack P LY

Function

Operation

Description

Status flags

Stack manipulation (pull)

Y ~ Stack
When x=0
Y M(S+2, S+1) YH YL

S-S+2 Stack | | |
(S) in just before instruction execution

(S) in just after instruction execution

When x=1
YL < M(S+1) YL
S-S+1 Stack

(S) in just before instruction execution
(S) in just after instruction execution

The stack pointer S is incremented, and then restores the lower byte of the index register Y
with the data at the address indicated by the stack pointer S. Again, increments the stack
pointer S and then restores the upper byte of the index register Y with the data at the address
indicated by the stack pointer S. When the index register length selection flag x is set to 0,
2 bytes are restored. When the index register length selection flag x is set to 1, only 1 byte
is restored (to the lower byte of the index register Y).

IPL: Not affected.
N Set to 1 when bit 15 (or bit. 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Stack PLY TA16 1 5

7700 FAMILY SOFTWARE MANUAL 4-85

PSH

Push PS H

Function

Operation

Description

Status flags

Stack manipulation (push)
Stack ~ Specified register of A, B, X, Y, DPR, DT, PG, PS

MStoS—-n) « A, B
ordertosave [[
S<«S-n-1

O The immediate value in the second byte of the instruction is used to specify the registers
to be saved.

Y, DPR, DT, PG, PS
o o o o o

X
U

O Among the registers being saved, the following registers are affected by the flags just before
the instruction is executed.

e A, B registers
When m=0 : The high-order and low-order bytes of the register are saved.
When m=1 : The low-order bytes of the register are saved.
e X, Y registers
When x=0 : The high-order and low-order bytes of the register is saved.
When x=1 : The low-order byte of the register is saved.
O n indicates the number of data bytes to be saved.

This instruction’s second byte specifies the registers to be saved. The registers corresponding
to the bits in the second byte that are 1 are saved on the stack. The bit and register
correspondence is as shown below:

b7 b0
| PS | PG | DT | DPR v | X | B | A |
~ Direction to save on the stack

When saving the registers o stack, registers A and B are affected by the m flag and registers
X and Y are affected by the x flag.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Stack PSH #nn EB1s, Nn 2 12+2xi1+i2
(Note 1) To the cycles-count shown above, the values shown below are added depending on the registers being

saved. The count is 12 cycles when no registers are saved. i1 in above table represents the number
of registers (chosen from A, B, X, Y, DPR and PS) to be saved, and iz represents the number of registers
(chosen from DT and PG) to be saved.

Register type|| PS PG DT DPR Y X B A
Cycles-count 2 1 1 2 2 2 2 2

4-86

7700 FAMILY SOFTWARE MANUAL

PSH

i

M(S,S1) - A
S . S2

M(S) — AL
S

— S-1

i

M(S,S-1) - B
S.S-2

~ BL
~ S-1

Z
o

M(S,S-1) < X

- -

— XL
-~ S-1

0

M(S,S-1) « Y

- -

M(S)
S

< YL
~ S-1

|
|

Push

1

M(S,S-1) — DPR
S ~ S-2

n

M(S) — DT
S s1

i

M(S) « PG
S .Sl

W

M(S,S-1) — PS

- -

-

at the value.

O IMM8 is an immediate value in 1-byte and
inside of () specifies the contents of the bit

PSH

7700 FAMILY SOFTWARE MANUAL

4-87

PUL

pul PUL

Function

Operation

Description

Status flags

Stack manipulation (pull)
Specified register of A, B, X, Y, DPR, DT, PG, PS « Stack

A, B, X, Y, DPR,DT, PG, PS « M(S+1tS+n)
O O 0O 0O 0O 0O 0O 0O ordertorestore
S <« S+n

0 The immediate value in the second byte of the instruction is used to specify the registers
to be restored.

0 Among the registers being restored, the following registers are affected by the flags in the
restored PS or the flags just before the instruction is executed.

e A, B registers
When m=0 : The high-order and low-order bytes of the register are restored.
When m=1 : The low-order bytes of the register are restored.
e X, Y registers
When x=0 : The high-order and low-order bytes of the register is restored.
When x=1 : The low-order byte of the register is restored.
O n indicates the number of data bytes to be restored.

This instruction’s second byte specifies the registers to be restored. The registers correspond-
ing to the bits in the second byte that are 1 are restored from the stack. The bit and register
correspondence is as shown below:

b7 b0
| PS | | DT | DPR vy | X | B | A |
Direction to restore from the stack -

When restoring from stack, registers A and B are affected by the m flag in restored PS, and
registers X and Y are affected by the x flag in restored PS. If PS is not restored, the registers
are affected by the value of these flags just before instruction execution.

When bit 7 of the Instruction’s second byte is 1, specifying that the program status register PS
is to be réstored, the status flags are restored to the values that had been restored from the
stack. Otherwise, the status flags are not affected.

Addressing mode Syntax Machine code Bytes Cygles

Stack

PUL #nn FB1s, Nn 2 14+3xi1+4xi2

(Note 1) To the cycles-count shown above, the values shown below are added depending on the registers

being restored. The count is 14 cycles when no registers are restored. i1 in above table represents

the number of registers (chosen from A, B, X, Y, PS and DT) to be saved. i2=1 if DPR is to be

restored, and i2=0 if DPR is not to be restored.

Register type | PS DT DPR Y X B A

Cycles-count 3 3 4 3 3 3 3

4-88

7700 FAMILY SOFTWARE MANUAL

PUL

Pull

PUL

PS M(S+2,5+1)

S « S+2

DT — M(S+1)
S — S+1

i

DPR M(S+2 s+1)

NO
Y < M(S+2,S+1) YL < M(S+1)
S — S+2 S — S+1
-

éé

X « M(S+2,S+1) XL ~ M(S+1)
S - S+2 ~ S+1
>
o

B « M(S+2,S+1)

S « S+2

BL — M(S+1)
S+1

—

A — M(S+2,S+1) AL « M(S+1)
S — S+2 S - S+1
-t

N/

0 IMM8 is an immediate value in 1-byte and
inside of () specifies the contents of the bit
at the value.

7700 FAMILY SOFTWARE MANUAL

4-89

R LA Rotate Left Accumulator A R LA

Function : n bits rotate to left
Operation :
I n bits rotate to left <_I
When m=0
b15 A bo n bits rotate to left
r Tttt L B — 0 n=0to 65535
L 1 1 1 l 1 1 1 1 I
When m=1
b7 AL bo n bits rotate to left
[I I I I I I I 1 0On=0to 255
L 1 1 1 1 1 1 1 I
Description : The contents of the accumulator A are rotated to the ieft.by n bits. The value of n is specified

by the instruction’s third byte (or third and fourth bytes when m=0).

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Immediate RLA #imm 8916, 4916, imm 3 6+i

i: Number of rotation
(Note 1) When the data length selection flag m is 0, the bytes-count increases by 1.

4-90 7700 FAMILY SOFTWARE MANUAL

ROL

Rotate One Bit Left RO L

Function

Operation

Description

Status flags

Rotate to left

L Acc or M CJ
L1 bit rotate to left <_| I

When m=0
b15 Acc or M(n+1,n) bo C
[I I T | I I I I 1 [
L 1 1 1 | L 1 1 1 I | I—
When m=1
b7 AccL or M(n) b0 C
I T T T T T T T 1 1
L | | | | | | | | | —

The carry flag C is linked to the accumulator oromemory, and the combined contents are
rotated by 1 bit to the left.

Bit 0 of the accumulator or memory is loaded with the content of the carry flag C before
execution of this instruction, and the carry flag C is loaded with the content of bit 15 (or bit
7 if the data length selection flag m is sét tc 1) of the accumulator or memory before execution
of this instruction.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.
\% Not affected:
m Not affected.
X Not affected.
D Not affected.
I Not affected.
4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) before execution
of the instruction is 1. Otherwise, cleared to 0
Addressing mode Syntax Machine code Bytes Cycles
Accumulator ROL A 2A16 1 2
Direct ROL dd 2616, dd 2 7
Direct indexed X ROL dd, X 3616, dd 2 7
Absolute ROL mmll 2Ezs, Il, mm 3 7
Absolute indexed x ROL mmll, X 3Ezs, Il, mm 3 8
(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator

. If using the accumulator B, replace “A” with “B”. In this case, “421¢6" is added at the beginning

of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL 4-91

ROR

Rotate One Bit Right

ROR

Function . Rotate to right
Operation
_ C Acc or M J
| _I> 1 bit rotate to right I
When m=0
c b15 Acc or M(n+1,n) b
[I T T T L T T 1
L1 L | | | | I | | |
When m=1
C b7 AccL or M(n) b0
1 [I I I I I I I 1
SN M

Description

shifted by 1 bit to the right.

Bit 15 (or bit 7 if the data length selection flagimn is set to 1) of the accumulator or memory
is loaded with the content of the carry flag C, and the carry flag C is loaded with the content
of bit 0 of the accumulator or memory before execution of this instruction.

Status flags
IPL: Not affected.

The carry flag C is linked to the accumulator or memory, and the combined contents are

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected:

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Setto 1 when bit 0 before execution of the instruction is 1. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles
Accumulator ROR A 6A16 1 2
Direct ROR dd 6616, dd 2 7
Direct indexed X ROR dd, X 7616, dd 2 7
Absolute ROR mmll 6E1s, Il, mm 3 7
Absolute indexed X ROR mmll, X 7E1s, Il, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

4-92

7700 FAMILY SOFTWARE MANUAL

RTI

Return from Interrupt

RTI

Function . Return from subroutine

Operation

PS « M(S+2, S+1)
PC « M(S+4, S+3)

PG « M(S+5)

S ~S+5

(S) in just before instruction execution

(S) in just after instruction execution

Description

Stack

PG, PC, PS ~ Stack (Saved content when interrupt occurred)

PSL

JEN

=

PG

PCH

PCL

The contents of the processor status register PS, program counter PC, and program bank

register PG, which are saved on the stack when the Iast interrupt was accepted, are restored

these registers.

Status flags

Restored according to the values that had been on the stack.

Addressing mode

Syntax

N

lachine code

ytes

ycles

Implied

RTI

4016

11

7700 FAMILY SOFTWARE MANUAL

4-93

RTL

Return from Subroutine Long RTL

Function Return from subroutine
Operation PG, PC ~ Stack (Subroutine long return address)

PC —~ M(S+2, S+1)

PG —~ M(S+3)

S~ S+3 Stack

(S) in just after instruction execution
(S) in just before instruction execution ﬂ
| | | |
PG PCH PCL
Description The program counter PC and program bank register PG are restored according to the state
previously saved on the stack.
Status flags . Not affected.
Addressing mode Syntax achine code Bytes Cycles

Implied RTL 6B16 1

4-94

7700 FAMILY SOFTWARE MANUAL

RTS Return from Subroutine

RTS

Function : Return from subroutine
Operation : PC < Stack (Subroutine return address)
PC ~ M(S+2, S+1) Stack
S-8+2 (S) in just before instruction execution
(S) in just after instruction execution ﬂ
| |
PCH PCL
Description . The program counter PC is restored according to the state previously saved on the stack.
The contents of PG is added 1 when this instruction is at topmost address (XXFFFF16) of a
bank.
Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied RTS 6015 1 5

7700 FAMILY SOFTWARE MANUAL

4-95

SBC

Subtract with Carry S B C

Function

Operation

Description

Status flags

IPL :

N

N — O X 3

Subtract with carry

Acc « Acc—M-C
When m=0
Acc Acc M(n+1,n)

C
L= - I
When m=1
AccL AccL M(n) C

- - -0

Subtracts the contents of memory and the 1's complements of carry flag from the contents of
the accumulator , and places the result in the accumulator. Executed as a binary subtraction
if the decimal operation mode flag D is set to 0. Executed @s a decimal subtraction if the
decimal operation mode flag D is set to 1.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0. Meaningless for decimal subtraction.

Set to 1 when binary subtraction of signed data results in a value outside the range of -32768
to +32767 (-128 to +127 if the data length selection flag m is set to 1). Otherwise, cleared
to 0. Meaningless for decimal subtraction.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 whefi the resuit of operation is 0. Otherwise, cleared to 0.

Set to 1 when the result of operation is equal to or larger than 0. Otherwise,
cleared to'0, and a borrow is indicated.

4-96

7700 FAMILY SOFTWARE MANUAL

S B C Subtract with Carry S B C

Addressing mode Syntax Machine code Bytes Cycles
Immediate SBC A, #imm E916, imm 2 2
Direct SBC A, dd E516, dd 2 4
Direct indexed X SBC A,dd, X F516, dd 2 5
Direct indirect SBC A, (dd) F216, dd 2 6
Direct indexed X indirect SBC A,(dd, X) Elis, dd 2 7
Direct indirect indexed Y SBC A,(dd), Y Flie6, dd 2 8
Direct indirect long SBCL A, (dd) E716, dd 2 10
Direct indirect long indexed Y | SBCL A, (dd), Y F716, dd 2 11
Absolute SBC A,mmll EDzs,ll,mm 3 4
Absolute indexed X SBC A, mmll, X FDus, II, mm 3 6
Absolute indexed Y SBC A, mmll, Y F91s, Il, mm 3 6
Absolute long SBC A, hhmmll EFis, Il, mm, hh 4 6
Absolute long indexed X SBC A, hhmmll, X FFis, Il, mm, hh 4 7
Stack pointer relative SBC A, nn, S E316, NN 2 5
Stack pointer relative SBC A, (nn, S), Y F316, Nn 2 8
indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addréssing mode with the data length selection flag
m set to O, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4-97

SEB

Set Bit S E B

Function

Operation

Description

Status flags

Bit management

Mb — 1 (b is the specified bits)

When m=0

M(n+1, n) M(n+1,n) IMM16
L - v L
When m=1

M(n) M(n) IMM8

- vl]

O IMM is an immediate value indicating the bit to be set with a “1” and is specified by the last
1 or 2 bytes of the instruction.

The SEB instruction sets the specified memory bits to 1. Multiple bits to be set can be
specified at one time.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Direct bit SEB #imm, dd 0416, dd, imm 3 8
Absolute bit SEB #imm, mmill 0Cis, Il, mm, imm 4 9

(Note 1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count

increases by 1.

4-98

7700 FAMILY SOFTWARE MANUAL

SEC

Set Carry Flag

SEC

Function Flag manipulation
Operation . C <1
Description Sets the carry flag C to 1.

Status flags

%
-

ON — 0O X 3 < 2Z

Set to 1.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Addressing mode

Syntax

N

lachine code

ytes

Cy

cles

Implied

SEC

3815

7700 FAMILY SOFTWARE MANUAL

4-99

SEI Set Interrupt Disable Status S EI

Function : Flag manipulation
Operation Dol <1
Description : Sets the interrupt disable flag | to 1.

Status flags

IPL: Not affected.

N Not affected.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Set to 1.

z Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied SEI 7815 1 2

4-100 7700 FAMILY SOFTWARE MANUAL

SEM

Set m Flag

SEM

Function . Flag manipulation
Operation oom <1
Description

Status flags

%
-

Set to 1.

ON — 0O X 3 < 2Z

Not affected.
Not affected.
Not affected.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Sets the data length selection flag m to 1.

Addressing mode

Syntax

Machine code

ytes

Cy

cles

Implied

SEM

F816

7700 FAMILY SOFTWARE MANUAL

4-101

S E P Set Processor Status S E P

Function : Flag manipulation
Operation . PSLb « 1 (b is the specified flags)

PSL « PSL V IMMS8

O IMMS8 is an immediate value indicating the bit to be set with a “1” and is specified by
the last 1 or 2 bytes of the instruction.

b7 b6 b5 b4 b3 b2 bl b0
IN|V|m[x|D| I]Z]|C|PSL

Description . Sets the processor status flags specified by the bit pattern in the second byte of the instruction
to 1.
Status flags . The specified status flags are set to “1”. IPL is not affected.
Addressing mode $yntax Machine code Bytes Cycles
Immediate SEP #imm E216, imm 2 3

4-102 7700 FAMILY SOFTWARE MANUAL

STA

Store Accumulator in Memory

STA

Function

Operation

Description

Store

M « Acc
When m=0
M(n+1,n) Acc

When m=1
M(n) AccL

L J-0]

Stores the contents of the accumulator in memory.

The contents of the accumulator are not changed.

Status flags

Not affected.

Addressing mode Syntax Machine code ytes Cycles
Direct STA A, dd 8516, dd 2 4
Direct indexed X STA A, dd, X 9516, dd 2 5
Direct indirect STA A, (dd) 9216, dd 2 7
Direct indexed X indirect STA A, (dd, X) 8116, dd 2 7
Direct indirect indexed Y STA A, (dd), Y 9116, dd 2 7
Direct indirect long STAL A, (dd) 8716, dd 2 10
Direct indirect long indexed Y | STAL A, (dd), Y 9716, dd 2 11
Absolute STA A, mmll 8D1s, I, mm 3 5
Absolute indexed X STA A, mmill, X 9Da1s, Il, mm 3 5
Absolute indexed Y STA A, mmll, Y 9916, II, mm 3 5
Absolute long STA A, hhmmll 8F1s, II, mm, hh 4 6
Absolute long indexed X STA A, hhmmll, X 9F16, Il, mm, hh 4 7
Stack pointer relative STA A, nn, S 8316, NN 2 5
Stack pointer relative STA A, (nn, S), Y 9316, NN 2 8
indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL

4-103

STP

SToP

STP

Function Oscillation control
Operation Stop the oscillation
Description

Status flags

To restart the oscillator, either an interrupt or reset must be executed.

Not affected.

Resets the oscillator controlling flip-flop circuit to inhibit the oscillation of the oscillation circuit.

Addressing mode

Syntax

Machine code

By

tes

Cy

cles

Implied

STP

DBis

4-104

7700 FAMILY SOFTWARE MANUAL

STX

Store Index Register X in Memory

STX

Function . Store
Operation M« X
When x=0
M(n+1,n)
When x=1
M(n)

XL

L J-0]

Description

remain the same.

Status flags Not affected.

Stores the contents of the index register X in memory. The contents of the index register X

Addressing mode Syntax Machine code ytes Cycles
Direct STX dd 8616, dd 2 4
Direct indexed Y STX dd, Y 9616, dd 2 5
Absolute STX mmll 8E1s6, I, mm 3 5

7700 FAMILY SOFTWARE MANUAL

4-105

STY

Store Index Register Y in Memory

STY

Function Store
Operation M <Y
When x=0
M(n+1,n) Y
When x=1
M(n) Yo
Description
remain the same.
Status flags : Not affected.

Stores the contents of the index register Y in memory. The contents of the index register Y

Addressing mode Syntax Machine code Bytes Cycles
Direct STY dd 8416, dd 2 4
Direct indexed X STY dd, X 9416, dd 2 5
Absolute STY mmll 8Cas, II,mm 3 5

4-106

7700 FAMILY SOFTWARE MANUAL

TAD Transfer Accumulator A to Direct Page Register TAD

Function . Transfer
Operation . DPR « A
DPR A
Description : Loads the direct page register DPR with the contents of the accumulator A. Data is transferred

as 16-bit data regardless of the status of the data length selection flag m. The contents of
the accumulator A are not changed.

Status flags : Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Implied TAD 5B16 1 2

7700 FAMILY SOFTWARE MANUAL 4-107

TAS Transfer Accumulator A to Stack Pointer TAS

Function : Transfer
Operation S <A
S A
Description . Loads the stack pointer S with the contents of the accumulator A. Data is transferred as 16-

bit data regardless of the status of the data length selection flag m. The contents of the
accumulator A are not changed.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TAS 1B1s 1 2

4-108 7700 FAMILY SOFTWARE MANUAL

TAX Transfer Accumulator A to Index Register X TAX
Function Transfer
Operation X <« A

When x=0

X A
When x=1
XL AL

Description Loads the index register X with the contents of the accumulator A. The contents of the

Status flags

accumulator A are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TAX AAis 1 2

7700 FAMILY SOFTWARE MANUAL 4-109

TAY Transfer Accumulator A to Index Register Y TAY
Function Transfer
Operation Y « A

When x=0

Y A
When x=1
YL AL

Description Loads the index register Y with the contents of the accumulator A. The contents of the

Status flags

accumulator A are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yhtax Machine code Bytes Cycles
Implied TAY A816 1 2

4-110

7700 FAMILY SOFTWARE MANUAL

TB D Transfer Accumulator B to Direct Page Register TB D

Function . Transfer
Operation . DPR - B
DPR B
Description . Loads the direct page register DPR with the contents of the accumulator B. Data is transferred

as 16-bit data regardless of the status of the data length selection flag m. The contents of
the accumulator B are not changed.

Status flags . Not affected.
Addressing mode Syntax Machine code Bytes Cygles
Implied TBD 4216, 5B16 2 4

7700 FAMILY SOFTWARE MANUAL 4-111

T B S Transfer Accumulator B to Stack Pointer T B S

Function . Transfer
Operation . S B
S B
Description . Loads the stack pointer S with the contents of the accumulator B. Data is transferred as 16-

bit data regardless of the status of the data length selection flag m. The contents of the
accumulator B are not changed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TBS 4216, 1B16 2 4

4-112 7700 FAMILY SOFTWARE MANUAL

TBX Transfer Accumulator B to Index Register X TBX
Function Transfer
Operation X <« B

When x=0

X B
When x=1
XL BL

Description Loads the index register X with the contents of the accumulator B. The contents of the

Status flags

accumulator B are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yhntax Machine code Bytes Cycles
Implied 1BX 4216, AA1s 2 4

7700 FAMILY SOFTWARE MANUAL 4-113

TBY Transfer Accumulator B to Index Register Y TBY
Function Transfer
Operation Y - B

When x=0

Y B
When x=1
YL BL

Description Loads the index register Y with the contents of the accumulator B. The contents of the

Status flags

accumulator B are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied 1BY 4216, AB16 2 4

4-114

7700 FAMILY SOFTWARE MANUAL

TDA Transfer Direct Page Register to Accumulator A TDA
Function Transfer
Operation A - DPR

When m=0

A DPR
When m=1
AL DPRL

Description Loads the accumulator A with the contents of the direct page register DPR. The contents of

Status flags

the direct page register DPR are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to O.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TDA 7B16 1 2

7700 FAMILY SOFTWARE MANUAL 4-115

TD B Transfer Direct Page Register to Accumulator B TD B
Function Transfer
Operation B —~ DPR

When m=0

B DPR
When m=1
BL DPRL

Description Loads the accumulator B with the contents of the direct page register DPR. The contents of

Status flags

the direct page register DPR are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied 1DB 4216, 7B16 2 4

4-116

7700 FAMILY SOFTWARE MANUAL

TSA Transfer Stack Pointer to Accumulator A TSA
Function Transfer
Operation A ~S

When m=0

A S
When m=1
AL St

Description Loads the accumulator A with the contents of the stack pointer S. The contents of the stack

Status flags

pointer S are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to O.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TSA 3B1s 1 2

7700 FAMILY SOFTWARE MANUAL 4-117

TS B Transfer Stack Pointer to Accumulator B TS B
Function Transfer
Operation B ~S

When m=0

B S
When m=1
BL SL

Description Loads the accumulator B with the contents of the stack pointer S. The contents of the stack

Status flags

pointer S are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied 1SB 4216, 3B16 2 4

4-118

7700 FAMILY SOFTWARE MANUAL

TSX Transfer Stack Pointer to Index Register X TSX
Function Transfer
Operation X < S

When x=0

X S
When x=1
XL S.

Description Loads the index register X with the contents of the stack pointer S. The contents of the stack

Status flags

pointer S are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yntax Machine code Bytes Cylcles
Implied TSX BA1s 1 2

7700 FAMILY SOFTWARE MANUAL 4-119

TXA Transfer Index Register X to Accumulator A TXA
Function Transfer
Operation A« X
When m=0 and x=0
A X
When m=0 and x=1
A XL
00 -
(0] |- |
O Under this condition, 0016 is transferred to AH regardless of XH.
When m=1
AL)
Description Loads the accumulator A with the contents of the index register X. The contents of the index

Status flags

register X are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Y, Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Byntax Machine code Bytes Cycles
Implied TXA 8A16 1 2

4-120

7700 FAMILY SOFTWARE MANUAL

TXB Transfer Index Register X to Accumulator B TXB
Function Transfer
Operation B - X
When m=0 and x=0
B X
When m=0 and x=1
B XL
(o] |-]
O Under this condition, 0016 is transferred to AH regardless of XH.
When m=1
BL XL
Description Loads the accumulator B with the contents of the index register X. The contents of the index

Status flags

register X are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when ithe result of operation is 0. Otherwise, cleared to 0.

C Not affected:
Addressing mode Byntax Machine code Bytes Cyrgles
Implied TXB 4216, 8A16 2 4

7700 FAMILY SOFTWARE MANUAL 4-121

TXS Transfer Index Register X to Stack Pointer TXS

Function : Transfer
Operation S <X
When x=0
S X
When x=1
S XL
(°] |- |
Description : Loads the stack pointers with the contents of the index register X. The contents of the index

register X are not changed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TXS 9A16 1 2

4-122 7700 FAMILY SOFTWARE MANUAL

XY

Transfer Index Register X to Y TXY

Function

Operation

Description

Status flags

Transfer

Y « X
When x=0

When x=1

YL XL
Loads the index register Y with the contents of the index register X. The contents of the index
register X are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode yntax Machine code Bytes Cycles
Implied TXY 9B16 1 2

7700 FAMILY SOFTWARE MANUAL 4-123

TYA Transfer Index Register Y to Accumulator A TYA

Function . Transfer
Operation A Y
When m=0 and x=0
A Y

When m=0 and x=1
A YL
(0] -8 |
O Under this condition, 0016 is transferred to AH regardless of YH.

When m=1
AL Yo

-]

Description : Loads the accumulator A with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags
IPL: Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared ta O.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes Cycles
Implied TYA 9816 1 2

4-124 7700 FAMILY SOFTWARE MANUAL

TYB Transfer Index Register Y to Accumulator B TYB
Function Transfer
Operation B ~Y
When m=0 and x=0
B Y
When m=0 and x=1
B YL
(0] |- |
O Under this condition, 0016 is transferred to BH regardless of YH.
When m=1
BL Yo
Description Loads the accumulator B with the contents of the index register Y. The contents of the index

Status flags

register Y are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

Z Set to 1 when ithe result of operation is 0. Otherwise, cleared to 0.

C Not affected:
Addressing mode Syntax Machine code Bytes Cytles
Implied TYB 4216, 9816 2 4

7700 FAMILY SOFTWARE MANUAL 4-125

TYX Transfer Index Register Y to X TYX

Function : Transfer
Operation X <Y
When x=0
X Y
When x=1
XL Yo
Description : Loads the index register X with the contents of the index register Y. The contents of the index

register Y are not changed.

Status flags
IPL: Not affected.

N : Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\% Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.
Addressing mode yntax Machine code Bytes Cyrcles
Implied TYX BBu1s 1 2

4-126 7700 FAMILY SOFTWARE MANUAL

WIT

Wait

WIT

Function . Clock control

Operation

Description

Stop the CPU clock

The WIT instruction stops the internal clock but not the oscillation of the oscillation circuit is

not stopped. To restart the internal clock, either an interrupt or reset must be executed.

Status flags Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cy

cles

Implied

WIT

CBis

7700 FAMILY SOFTWARE MANUAL

4-127

XAB Exchange Accumulator A and B XAB

Function . Exchange
Operation . AT B
When m=0
A B
When m=1
AL BL
Description . Swaps the contents of the accumulators A and B.

Status flags
IPL: Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumulator
A after the operation is 1. Otherwise, cleared to 0.

Y, Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z : Setto 1 when the contents of the accumulator A is cleared to 0 by the operation. Otherwise,
cleared to 0.
C : Not affected.
Addressing mode yntax Vachine code Byies Cycles
Implied XAB 8916, 2816 2 6

4-128 7700 FAMILY SOFTWARE MANUAL

INSTRUCTIONS

4.3 Notes for programming

4.3 Notes for Programming

Take care of the following when programming with the 7700 Family.

1)

)

®3)

(4)

()

(6)

()

(8)

(9)

The stack pointer S is undefined immediately after the reset is commanded. Always set the initial value.

Example) LDX #27FH
TXS

The program bank register PG and the data bank register DT are disabled under the single chip mode. Do
not set value other than “0016” here.

When “1” is set in the D-flag for decimal operation:

The C-flag alone is effective in the ADC instruction, while the Z, N, and V flags are disabled. The C and Z
flags alone are effective in the SBC instruction, while the N and V flags are disabled. (Decimal operation can
be done in the ADC and the SBC instructions alone.)

Using the 16-bit immediate data with “1” (data length : 8 bits) in the data length selection flag m, or using
the 8- bit immediate data with “0” (data length : 16 bits) in flag m, will cause the program run-away. The same
rule is applied to the index register length selection flag x. Take care of the condition of these flags when
coding the program.

The 7700 Family can prefetch the instructions using the 3-byte instruction queue buffer. Keep in mind when
creating the timer with the software, that the number of cycles shown in the list of machine language
instructions is the minimum value. (Also see Chapter 5.)

When value other than “0016” is set in the lower order 8 bits of the direct page register DPR (DPRL), the
processing time will become 1 machine cycle longer than when “0016” is set.

The processing speed will deteriorate if a 16- bit data will be accessed from an odd address. Place the 16-
bit data from an even address if the processing speed is important.

The N and Z flags will change by execution of the PLA instruction, but the contents of the processor status
register will not change if the accumulator A alone is recovered by the PUL instruction.

The program bank register PG can be saved into the stack by setting “1” in bit 6 of the operation by the PSH
instruction. However, the PG cannot be recovered by the PUL instruction.

(10) The code in the second byte of the BRK instruction will not affect the CPU.

7700 FAMILY SOFTWARE MANUAL 4-129

INSTRUCTIONS

4.3 Notes for programming

MEMORANDUM

4-130 7700 FAMILY SOFTWARE MANUAL

CHAPTER 5
INSTRUCTION EXECU-
TION SEQUENCE

0: 5.1 Change of the CPU basic

clock ¢gcpu

5.2 Instruction execution se-
guence

INSTRUCTION EXECUTION SEQUENCE
5.1 Change of the CPU basic clock ¢cpu

The basic clock of the 7700 Family central processing unit (CPU) is the internal clock ¢ (divided by 2 of the
oscillation frequency f(Xw)). The basic clock of the bus is an E derived from the internal clock ¢, so data exchange
between the CPU and the internal bus is done via the bus interface unit (BIU). The frequency of E is normally
divided by 2 of the internal clock ¢ but it becomes divided by 3 or 4 of ¢ when accessing external memory while
the wait is enabled by the wait bit (Note).

Note : The frequency of E is depend on the product. Therefore, refer to an user's manual or a data sheet
(or a data book) to confirm it.

5.1 Change of the CPU Basic Clock ¢cpu

When the bus interface unit is not ready, the CPU extends the basic clock to synchronize with the bus, and
waits till it is ready. As the CPU basic clock waits owing to some conditions, this clock will be called ¢cru to
be distinguished from the clock . The following are the cases in which the ¢gceu waits.

= Causes for the ¢ru to wait N\

<Cause 1>

When the CPU requests operation codes and operands, but the operation codes and operands
in the instruction queue buffer did not reach the necessary number.

<Cause 2>

When the CPU tried to access data, but the bus interface unit. was using the bus for fetching some
data into the instruction queue buffer or writing data.

<Cause 3>

When the bus interface unit was reading data from the internal/external memory or I/O, according
to the request of the CPU.

In addition to the above, the following are also causes for the ¢gCPU to be extended.
e When 16-bit data is accessed fromi odd address.
e When external memory 16-bit data is accessed while the BYTE terminal level is “H”.
e When external memory is accessed with wait commanded by the wait bit.

\S J

The above conditions causes the execution time to differ each time, even with the same instruction and same
addressing mode. Two example instructions are given in the next section to see the variation of the number
of cycles according to the above conditions.

The “CPU execution sequence per addressing mode” of Chapter 6 is the CPU instruction execution sequences
based on the @ru. The number of cycles shown in “4.2 Instructions” and “Appendix 1 List of machine
instructions” are the count for the shortest case, and cannot always be applied when calculating the actual
cycles or the execution time of instructions.

5-2 7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

5.2 Instruction Execution Sequence

This section describes how the instruction execution cycles change under various conditions.

e Example 1. ASL instruction Direct addressing mode

e Example 2. LDA instruction Direct indirect long addressing mode

[N Before observing the gzeu based CPU instruction execution sequence [

The following table describes the geeu based CPU instruction execution sequence symbols. The signals
indicated in this execution sequence are all CPU internal signals, that show data exchange between the bus
interface unit and the CPU. Accordingly, these signhals cannot be observed from outside.

@-ru Based CPU Instruction Execution Sequence Symbols

Symbol Description
{rru CPU basic clock
Ar(cru) Higher order 8 bits of the address (24 bits) of the prograim that the CPU is actually execution
AHAL(cPU) Lower order 16 bits of the address (24 bits) of the program that the CPU is actually execution
DATAcruy)| Data information the CPU is processing
R/W.cru) Data read/write request to the data buffer in the bus interface unit
PG,PC Contents of the program bank register (PG) and the program counter (PC)
ADr Data indicating the address (higher crder 8 bits)
AD+,ADL Data indicating the address (lower order 16 bits)
DPR# Contents of the higher order 8 bits of the direct page register
DPRL Contents of the lower order 8 hits of the direct page register (DPRL = 0 in the examples)
Dn Data to be fetched or written from the data buffer by the CPU (higher order 8 bits)
Du Data to be fetched or written from the data buffer by the CPU (lower order 8 bits)
dd Contents of the operand (DPRL = 0 in examples 1 and 2, so dd represents the lower order 8 bits

of the address)

7700 FAMILY SOFTWARE MANUAL 5-3

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

I Before observing the @based instruction execution sequence [N

The @based instruction execution sequence symbols are shown in the following table. The signals in this
execution sequence indicates data exchange of the bus interface unit with the memory and 1/O. The internal
instruction execution sequence of the CPU can be guessed from these signals.

However, the ¢@ru and the number of data in the instruction queue buffer shown here cannot be observed from
the outside.

(@ Based Execution Sequence Symbols

Symbol Description
Q Basic operation clock of the microcomputer (divided by 2 of f(XIN))
E Basic operation clock of the bus (divided by 2 of @) O No wait
hh Higher order 8 bits of the address where the bus interface unit is to access to (bank)
mm Middle order 8 bits of the address where the bus interface unit is to access to

Il Lower order 8 bits of the address where the bus interface unit is 10 access to

DPR Contents of the direct page
DPRH Contents of the higher order 8 bits of the direct page register
DPRL Contents of the lower order 8 bits of the direct page register

OP1 Data to be fetched into the instruction queue buffer by the bus interface

OP2 (Operation code or operand)

OP3 The subscript represents the fetch sequence.

DL Data to be fetched into the data bufferor data to be written into the memory by the bus interface unit

DH

dd Data obtained as the operand (The lower order 8 bits of the address are given in examples 1 and
2, because DPRL =0.)

ADP Higher order 8 bits of data that indicates the address (contents of the data address register)

ADH Middle order 8 bits of data that indicates the address (contents of the data address register)

ADL Lower order 8 bits of data that indicates the address (contents of the data address register)

The following are the cause of the “gru to queue” in the gpbased instruction execution sequence.

ﬁ

Cause 1
When the CPU required operation codes and operands, but the number of operation codes and operands did
not reach the requested number.

Cause 2
When the CPU tried to access data, but the bus interface was using the bus for fetching data into the instruction
gueue buffer or for writing data.

Cause 3
When the bus interface unit is reading data from the internal/external memory or /O, etc., according to the
request of the CPU.

y)

5-4 7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 001s)

— ¢@rubased CPU instruction execution sequence

N\
0wy LI LI LML LI L
Arcry) (PG X PG X 00 PG)
AHALCPU) (PC X PC+1 X DPRH,dd PC+2)
DATA(CPU) (Op CodeXOperand ddX DHDL XNot UsedX NEBHDLX Nexs Code)
R/W(CPU) |
\S Y,

The following examples 1-1 to 1-6 are examples of the ¢ru based instruction execution sequences
under various conditions.

Example 1-1 When the instruction queue buffer is vacant

Example 1-2 When two data are in the instruction queue buffer

Example 1-3 When three data are in the instruction queue buffer

Example 1-4 When 16-bit. daia is accessed from odd address

Example 1-5 When extérnal memory is accessed from the BYTE terminal using 8-bit external
bus widih

Example 1-6 When external memory is accessed with wait by the wait bit

7700 FAMILY SOFTWARE MANUAL 5-5

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR

L = 0016)

(Example 1-1) When the instruction queue buffer is vacant

Conditions

¢ Number of data in the instruction queue buffer

* ROM, RAM

Data length selection flag m

BYTE terminal level

¢ Contents of the operand (dd)

@based execution sequence

CPU

Number of data in inst-

Contents of lower order bytes (PCL) of the program counter

External memory is used (Note)
“0” (16-bit length)
“L” (External bus width is 16 bits)

ruction queue buffer

A23—A16
/DATA(even)

A15—As8
/DATA(odd)

A7—A0
E

BHE
"E
RIW
Cause for @ cpu
to queue

1 2 4 5 6 7 8 9
L L L e
Fetches Fetches Reads data Modifies Writes Next
Op Code Operand Data Data Instruction
2.1 0 2 1
hh X op: X hh KoFa X oo X DL X 00 Modified DL
Op Code Next Op Code
mm X OP2 X mim X OP4 XDPRHX DH X DPRH Modified DH

Operand (dd)

I [1+2

A

A A

dd

L]

Cause 1 Cause 2 Cause 3

L

)
| [
[

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regard-
less of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot
be observed from outside, when the mode is single-chip mode.

5-6

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Operation of the CPU and bus interface unit under various cycles

Example 1. ASL instruction / direct addressing mode (DPR

L = 0016)

@ No. CPU Bus interface unit
1 (No fetching can be done, because there are no | Fetches the instruction, because instruction
operation codes in the instruction queue buffer.) gueue buffer is vacant and the CPU is not using
the bus.

2 Fetches 2-byte worth of data into the instruction

gueue buffer when E becomes “L".
Fetches the operation code. -

3 Fetches the operand. Prefetches the instruction, because the instruc-
tion queue buffer is vacant and the CPU is not
using the bus.

4 (Waits till the bus used by the bus interface unit | Fetches 2 bytes worth of data into the instruction

becomes vacant.) qgueue buffer when E becomes “L".

5 Waits for E to become “L”, to read data.

6 Reads data when E becomes “L".

7 Modifies data.

8 Writes data into the data buffer.

9 Fetches the next operation code. Writes the contents of the data buffer into the

original address, when E becomes “L".

7700 FAMILY SOFTWARE MANUAL

5-7

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR

L = 0016)

(Example 1-2) When two data are in the instruction queue buffer

Conditions

¢ Number of data in the instruction queue buffer...........cccccccvveeeeenn. 2
® ROM, RAM Lttt e s aeee e e e External m
¢ Data length selection flag m ..., “0” (16-bit |
e BYTE terminal [eVel ..o “L” (Extern
¢ Contents of lower order bytes (PCL) of the program counter Even
e Contents of the operand (dd)ccccuveeevieeeeiiiie e Even
@based execution sequence
1 2 3 4 5 6 7
? I I D S B I
®
L1 [] [11

Number of data in inst-
ruction queue buffer

A23—A16
/IDATA(even)

A15—As8
/DATA(odd)

A7—Ao0
E
BHE
apL
RIW
Cause for @ cpPu
to queue

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regard-
less of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot

emory is used (Note)

ength)

al bus width is 16 bits)

LI

L

Fetches Fetches Reads Data Modifies Writes Next
Op Code Operand Data Data Instruction
1 0 2 1
hh = fopi X oo X b X 00 (Modified DL
Next Op Code
mit X OP2 XDPRHX DH X DPR X Modified D

dd

—

L

)
| [
[

e
Cause 2

e
Cause 3

be observed from outside, when the mode is single chip mode.

5-8

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

Operation of the CPU and bus interface unit under various cycles

@No. CPU Bus interface unit

1 Fetches operation code.

2 Fetches operand (dd). Prefetches the instruction, because the instruct
gueue buffer is vacant and the CPU is not using
the bus.

3 (Waits till the bus used by the bus interface unit | Fetches 2-byte worth of data into the instruction

becomes vacant.) gueue buffer when E becomes “L".

4 Waits for E to become “L”, to read data.

5 Reads data when E becomes “L".

6 Modifies data.

7 Writes data into the data buffer.

8 Fetches the next operation code. Writes the contents of the data buffer into the

original address,; wheri E becomes “L”.

7700 FAMILY SOFTWARE MANUAL 5-9

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

(Example 1-3) When three data are in the instruction queue buffer

Conditions

¢ Number of data in the instruction queue buffercccoeecvinnnnen. 3

* ROM, RAM

Data length selection flag m

BYTE terminal IEVEcooveiiie et

e Contents of lower order bytes (PCL) of the program counter Even

¢ Contents of the operand (dd)

@based execution sequence

CPU
Number of data in inst-
ruction queue buffer

A23—A16
/DATA(even)

A15—As
/DATA(odd)

A7—A0

E

BHE
ap»
R/W
Cause for ¢ cpu
to queue

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regard-
less of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot

—

3

| L1 | [7] [LI

Fetches Fetches Reads data = Maodifies Writes Next
Op Code Operand Data Data Instruction
2

1 3 : 2

hh X 00.X DL X hh X OP1 X 00)i(ModifiedDL

mm XDPRHX DH X mm X OP2 XDPRHg Modified DH

I X dd X I X déd)

L LI

| [
[

e i
Cause 3 Cause 2

be observed from outside, when the mode is single chip mode.

5-10

7700 FAMILY SOFTWARE MANUAL

External memory is used (Note)
... “0” (16-bit length)
“L” (External bus width is 16 bits)

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Operation of the CPU and bus interface unit under various cycles

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

@No. CPU Bus interface unit

1 Fetches operation code .

2 Fetches operand (dd).

3 Waits for E to become “L”, to read data.

4 Reads data when E becomes “L".

5 Modifies data. Prefetches the instruction, because there are two
vacant instruction queue buffers and the CPU is
not using the bus.

6 (Waits till the bus used by the bus interface unit | Fetches 2-byte worth of data into the instruction

becomes vacant.)

queue buffer when E becomes “L".

Writes data into the data buffer.

Fetches the next operation code.

Writes the contents of the data buffer into the
original address, as £ -becomes “L".

7700 FAMILY SOFTWARE MANUAL 5-11

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

(Example 1-4) When 16-bit data is accessed from odd address

Conditions
¢ Number of data in the instruction queue bufferccccccooeviiiiinnnnen. 0
¢ ROM, RAM ..ottt e e e e e e e e e e s nnnes External memory is used (Note 1)
e Data length selection flag M............eeiiiiiiiiii “0” (16-bit length)
o BYTE terminal leVel ... “L” (External bus width is 16 bits)
¢ Contents of lower order bytes (PCL) of the program counter Odd
e Contents of the operand (dd)cceeveveeeriiiiiicr e Odd

@based execution sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14

’ Jrrrrr e L rLrer
Poru 11]] L [T LITL

Fetches Fetches Reads Data Modifies Writes Next Instruction
Op Code Operand Data Data
Number of data in
instruction queue 0 1-0 2-1 3 2
buffer
A28—A16 ? Modified DH
oA Taeven) hh X opr X hh X ops X 00 X D X 00 X Dn X hh X OPs X 00 > X 00 X
Invalid Operand (dd) Invaiid Invalid
A15—As —
/DATA(0dd) mm X OP2 X mm X OP4 XDPRHX DL XDPRHX D X mm X OPs XDPRH \Modlfledx DPRHX 2)
Op Code Next Op Code Invalid DL Invalid
AT—Ao I X G X dd X ddv1 X 1+3 X dd X dd+v1)

E 4 1 I L1 L[[LT
RIW [

Cause for g cru ~— ~— - - - P —
to queue Cause 1 Cause 1 Cause 3 Cause 2 Cause 2
(Note 2)

Note 1. The operation when internal ROM and internal RAM are used, will be as shown above,
regardless of the level of the BYTE terminal. However, the address/data bus, BHE, R/W
signal cannot be observed from outside, when the mode is single chip mode.

Note 2. At the < part
O When the CPU does not use the bus, ¢cpu corresponds with ¢.

O When the CPU uses the bus, the ¢gcPu queues till the writing in the bus interface unit completes.
(the ¢l4 cycle)

5-12 7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Operation of the CPU and bus interface unit under various cycles

Example 1. ASL instruction / direct addressing mode (DPR

L = 0016)

@ No. CPU Bus interface unit

1 (No fetching can be done, because there are no | Fetches the instruction, because instruction queue

operation codes in the instruction queue buffer.) buffer is vacant and the CPU is not using the bus.

2 Fetches 1 odd address byte worth of data into the
instruction queue buffer, when E becomes “L".

Fetches operation code.
3 (No fetching can be done, because there are no | Fetches the instruction, because instruction
operands in the instruction queue buffer.) gueue buffer is vacant and the CPU is not using
the bus.

4 Fetches 2-byte worth of data into the instruction

gueue buffer when E becomes “L".
Fetches operand (dd). <//I

5 Waits for E to become “L”, to read data.

6 Reads data in the odd addresses (DL) alone into the data buffer when E becorties “L”.

7 Waits for E to become “L”, to read data.

8 Reads data in the even addresses (DH) alone into the data buffer when E becomes “L”.

9 Modifies data. Prefeiches the instruction, because there are two
vacant positions in the instruction queue buffer,
and the CPU is not using the bus.

10 (Waits till the bus used by the bus interface unit'}. Fetches 2 bytes worth of data into the instruction

becomes vacant.) queue buffer, when E becomes “L".

11 | Writes data into the data buffer. Waits till E becomes “L” to write data.

12 Fetches the next operation code. Writes the contents of the data buffer (DL) into
the original address (odd address), when E be-
comes “L".

13 ? Waits till E becomes “L” to write data.

14 2 Writes the contents of the data buffer (DH) into
the original address (even address), when E be-
comes “L”.

When internal ROM or BYTE teérminal level “L” external memory is used as the program memory, the instruction is
fetched into the instruction queue buffer normally in 2-byte (word) unit of sequential even and odd addresses in this
order. However, when the instruction must be fetched from odd address like after execution of the JMP instruction,
the 1-byte of the first odd address alone is fetched into the instruction queue buffer (¢2 cycle), and the later instructions
are fetched into the instruction queue buffer in 2-byte units (¢4, @0 cycle).

The bus interface unit automatically selects whether to fetch one word or to fetch the 1 byte of odd address alone. The
operation status can be observed from outside, according to the output of the BHE terminal and the address bus signal
Ao, as long as the mode is not single-chip mode.

* When one word is fetched
The output from both the BHE terminal and the address bus Ao are at the “L” level.

e When 1 byte of odd address alone is fetched
The output from the BHE terminal is “L”, while the output from address bus Ao is “H”.

When internal RAM and external memory at BYTE terminal level “L” are used as the data memory, with data
length selection flag m=0, both data read and write are normally done in 2-byte units of even and odd addresses,
in this sequence. However, access can also be done when the word data is defined from an odd address. In
other words, “H” is output first from address bus Ao and then “L” from the BHE terminal to access to odd address
alone. Next, “L” is output from Ao, and “H” from the BHE terminal to access to the even address (¢b to ¢8, ¢l1

to_gl4 cycle).

7700 FAMILY SOFTWARE MANUAL 5-13

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR

(Example 1-5)

Conditions

¢ Number of data in the instruction queue buffer

L = 0016)

When external memory is accessed from the BYTE terminal using 8-bit
external bus width

* ROM, RAM

¢ Data length selection flag m

e BYTE terminal level

@based execution sequence

CPU

Number of data in

instruction queue

buffer

A23—A16
/IDATA(even)

A15—As8
/DATA(odd)

A7—Ao
E

BHE
RIW

Cause for @ cpu
to queue

0

[] [

-

-

External me

“H” (External

10 11

[1]

mory is used

“0” (16-bit length)

bus width is 8 bits)

12 13 14

L LI LT
LT L

Fetches Fetches Reads Data Modifies Writes Next
Op Code Operand Data Data Instruction
1.0 1-0 1 0
hh X oPi X hh X op2 X 00, X DL X 00 X Dn X hh X oPs X 00 Xmodified 00 X Modified DH
Op Code Operand (dd) Next Op Code DL
mm X mm X DPRH X mm X DPRH)
1l X od+1 X dd X dds1 X 12 X dd X ddsl)
| I | I | I I I I I I | [
g g - - e P
Cause 1 Cause 1 Cause 3 Cause 2 Cause 2
(Note)

Note. Atthe g4 part
0 When the CPU does not use the bus, ¢cpu corresponds with ¢.
0 When the CPU uses the bus, the ¢gcpu queues till the writing in the bus interface unit completes.

(the @13 to ¢l4 cycle)

5-14

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Operation of the CPU and bus interface unit under various cycles

Example 1. ASL instruction / direct addressing mode (DPR

L = 0016)

@No. CPU Bus interface unit
1 (No fetching can be done, because there are no | Fetches the instruction, because the instruction
operation codes in the instruction queue buffer.) gueue buffer is vacant and the CPU is not using
the bus.

2 Fetches 1 odd address byte worth of data into the

instruction queue buffer when E becomes “L".
Fetches operation code. — ——
3 (No fetching can be done, because there are no | Fetches the instruction, because instruction
operands in the instruction queue buffer.) queue buffer is vacant and the CPU is not using
the bus.

4 Fetches 1-byte worth of data into the instruction

queue buffer when E becomes “L".
Fetches operand (dd).

5 Waits for E to become “L”, to read data.

6 Reads data (DL) into the data buffer when E becomes “L”.

7 Waits for E to become “L”, to read data.

8 Reads data (DH) alone into the data buffer when E becomes “L.

9 Modifies data. Prefetches the instruction, because there are two
vaeant positions in the instruction queue buffer,
and the CPU is not using the bus.

10 (Waits till the bus used by the bus interface unitis | Fetches 1 byte worth of data into the instruction

vacant.) gueue buffer when E becomes “L".

11 Writes data into the data buffer. Waits till E becomes “L” to write data.

12 Fetches the next operation code. Writes the contents of the data buffer (DL) into
the original address (odd address), when E be-
comes “L".

13 ? Waits till E becomes “L” to write data.

14 ? Writes the contents of the data buffer (DH) into

the original address (even address), when E be-
comes “L".

The external bus width becomes 8 bits when the “H” level is applied to the BYTE terminal. (The width of the internal
bus is 16 bits, regardless of the level of the BYTE terminal.) When external ROM is used under this mode, the instruction
can only be fetched byte by byte. (2, ¢4, ¢@l0 cycle) When external RAM is used, the data can likewise only be handled
byte by byte. Accordingly, when data length selection flag m = 0 is selected, it takes time worth 2 cycles of the enable
output E for data read and write. (¢b to ¢B, ¢ll to ¢l4 cycle)

7700 FAMILY SOFTWARE MANUAL

5-15

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)
(Example 1-6) When external memory is accessed with wait by the wait bit
Conditions

¢ Number of data in the instruction queue buffer

¢ ROM, RAM

¢ Data length selection flag m “0” (16-bit length)

e BYTE terminal level

External memory is used

“L” (External bus width is 16 hits)

¢ Contents of lower order bytes (PCL) of the program counter Even
e Contents of the operand (dd)ccceeeiiiiiieeiinii e Even
@based execution sequence
1 2 3 4 5 6 7 8 9 10 11 12 13
¢ [5 O I
Peru 1 [1 [] [T LT LITL
Fetches Op Code Fetches Operand Reads Data Modifies Writes Next
Data Data Instruction

Number of data
in instruction 0 2-1 0 2 1
queue buffer
A23—A16 —

IDATA(even) hh X oPi X hh X .. 0Pz X 00 X DL X 00 Modified DL)

Op Code Next Op Code

A15—As .

/DATA(0dd) mm X opz X mm X oOPsa XDPRHX DH X DPRw Modified DH)

Operand (dd)
AT—A0 I X 1+2 X dd)
E RN P I I I SN I E—
!
_ Note Note Note Note
BHE
"
RIW | [
Cause for ¢ cpu —— — —
to queue Cause 1 Cause 2 Cause 3

Note:

This figure hows the case of the bus cycle becomes as 3 cycles of @ If the bus cycle becomes 4 cycles of @by

wait, the “H” width of E (—0 -) becomes as 2 cycles. Therefore, the ASL instruction execution time extended

by 4 cycles from the above case.

5-16 7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Operation of the CPU and bus interface unit under various cycles

Example 1. ASL instruction / direct addressing mode (DPR

L = 0016)

@ No. CPU Bus interface unit

1 (No fetching can be done, because there are no | Fetches the instruction, because instruction queue

operation codes in the instruction queue buffer.) buffer is vacant and the CPU is not using the bus.

2 Fetches 2 bytes worth of data into the instruction

3 gueue buffer when E becomes “L".

Fetches the operationcode = —————————

4 Fetches operand (dd). Prefetches the instruction because the instruction
gueue buffer is vacant and the CPU is not using the
bus.

5 (Waits till the bus used by the bus interface unit | Fetches 2 bytes worth of data into the instruction

6 becomes vacant.) gueue buffer when becomes “L".

7 | Waits till E becomes “L” to write data.

8 Reads data when E becomes “L”.

9

10 Modifies data.

11 Writes data into the data buffer.

12 Fetches the next operation code.

13 ? Writes the contents of the data buffer into the

original address (odd address), when E becomes
“L.

The conditions are the same as the Example 1-1, except when wait is commanded by the wait bit . When accessing
to the external memory, the “L” width of enable output E is extended by 1 cycle of gwhen compared to the case of no
wait. Therefore, the ¢cpu wait interval is also extended by 1 cycle (¢2 to ¢3, ¢b to ¢6, ¢B to ¢O cycle).

If the bus cycle becomes 4 cycles, the ¢gcpu wait interval is also extended by 2 cycles of gbecause the “H” and “L” width
extended by 1 cycle from the case no wait.

7700 FAMILY SOFTWARE MANUAL

5-17

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

5-18 7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 2. LDA instruction / Direct indirect long addressing mode (DPR L = 0016)

— @rubased CPU instruction execution sequence N\
> | 1 L4 1 I 1 1 1
AP(CPU) PG X PG X 00 X 00or01 X 00oro1 X ADP X PG)

AHAL(CPU) (PC X PC+1 X DPRH,dd XDPRH+dd+2X ADHADLX PC+2)
DATA(cPU) (Op CodeXOperand ddX ADHADLX Not Used X ADP X DHDL xNeétQ Code}
R/VV(CPU)
\S Y,
7700 FAMILY SOFTWARE MANUAL 5-19

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 2. LDA instruction / Direct indirect long addressing mode (DPRL = 00 16)

(Example 2-1) When the internal as well as the external memories are used together while wait is commanded

by the wait bit.
Conditions
¢ Number of data in the instruction queue buffercccoceiiiiniee. 0
LI 7= T o] O PP Internal ROM, RAM are used
Bank 1 and afterccveiiiiiiiiieee e External memory is used
¢ Data length selection flag Mcccevveeeieee e, “0" (16-bit length)
e BYTE terminal I@VEL..........c.uvimiiiieeiieee e “L” (External bus width is 16 bits)
e Contents of lower order bytes (PCL) of the program counter Even
e Contents of the operand (dd)ccceeeeiiiiiiieiii e Even
e Data indicated by the address ADLcccccoevviiiiiiiiiiiiiee e Even

@pbased execution sequence

1 2 3 4 5 6 4 8 9 10 11 12

! B Iy [I I o S B
oru 1 [] [] F LT [] LI

Fetches Fetches Reads Calculates Reads Reads Next
Op code Operand Data Address Data Data Instruction
Number of data in
instruction queue 0 2-1 0 2 1
?&Jffer A
23—A16
IDATA(even) hh X OP1 X hh X OPs X 00 X ADL X 00 X ADp X ADp X DL

Op Code Next Op Code

A}é;'?p\s(odd) mm X 0P X _mm X oPs XDPRHX ADH X DPRe X 2 X ADH X DH

Operand (dd)

A7T—A0 o X a2 X dd X dd2 X ADL

E I e I
N Note
BHE I |

RIW H
Cause for ¢ cpu - - -~ ~— -
to queue Cause 1 Cause 2 Cause 3 Cause 3 Cause 3

Note: This figure hows the case of the bus cycle becomes as 3 cycles of @ If the bus cycle becomes 4 cycles of pby
wait, the “H” width of E (~ 0O -) becomes as 2 cycles.

5-20 7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE

5.2 Instruction execution sequence

Example 2. LDA instruction / Direct indirect long addressing mode (DPRL = 00 16)

Operation of the CPU and bus interface unit under various cycles

@ No. CPU Bus interface unit
1 (No fetching can be done, because there are no | Fetches the instruction, because instruction queue
operation codes in the instruction queue buffer.) buffer is vacant and the CPU is not using the bus.
2 Fetches 2 bytes worth of data into the instruction

gueue buffer when E becomes “L".
Fetches the operation code .

3 Fetches operand (dd). Prefetches the instruction because the instruction
gueue buffer is vacant and the CPU is not using the
bus.

4 (Waits till the bus used by the bus interface unit | Fetches 2 bytes worth of data into the instruction
becomes vacant.) gueue buffer when E becomes “L".

5 Waits for E to becomes “L”, to read data (ADH, ADL) indicated by the address obtained by adding the contents
of the operand (dd) and the DPRL.

Reads data when E becomes “L".

| Caleulated address.

Waits for E to become “L”, to read data (ADP).
Reads data when E becomes “L".
10 Waits for E to become “L”, to read the data (DH, DL) at.the address specified by ADp, ADH, ADL.

11 Reads data when E becomes “L”.
12

O |0 |IN| O

The above is the case when bank 1 and after are used by the external memory under the memory expansion mode.
The currently executed program is in bank 0. The contents of the lower order bytes of the direct page register DPRL
is “0016”, so the direct pages are all in bank 0. The access to the outside (¢10 to ¢12 cycle) alone is affected by the wait
bit, and access to the internal memory is not affected by the bit.

7700 FAMILY SOFTWARE MANUAL 5-21

CHAPTER ©

CPU INSTRUCTION EXECU-
TIO UENCE FOR
EAC RESSING MODE

o

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODES

The following are the CPU instruction execution sequences for each addressing mode. The execution sequences
shown here describe the internal operation of the CPU. Therefore, the signals are all CPU internal signals, and
cannot be observed from outside. The CPU internal operation, the actual execution time, and the relation between
signals that can be externally checked are described in Chapter 4 “Instruction Execution Sequence”.

The following are the signals and the symbols indicating the contents.

Symbol Description

Py CPU basic cycle

AP(cpru) Higher order 8 bits of the CPU internal address bus.

AHAL(cPu) Lower order 16 bits of the CPU internal address bus.

PG Contents of the program bank register.
PC Contents of the program counter.
Others are data that indicates the address obtained as result of address calculation.

DATAcruy | The CPU internal data bus. The signal is output with a half-cycle delay from the CPU internal
address bus. The operation codes and the operands are fetched fram the instruction buffer. They
are not directly fetched from the memory indicated by the PG and PC of this cycle.

R/W(cpu) Becomes “L” when the CPU writes data into the data buffer of the bus interface unit.

The accumulator used in the above instructions in the CPU instruction execution sequence is accumulator A.
When accumulator B is used, the execution cycle will have the two cycles of a “4216” that indicates accumulator
B, and an internal processing cycle added at the front. (See the figure in the next page.)

The number of @cru cycles differs in the addressing mode that uses the direct page register, according to
whether the lower order 8 bits (DPRL) are “0016”. The number of cycles when DPR. = 0016 is 1 cycle (address
calculation cycle) less than when DPRL # 00ss.

The number of cycles differs in the PSH and PUL instructions according to the number and type of registers
placed in (taken out of) the stack.

The number of cycles differs in the block transmission instruction (MVN, MVP), according to the number of the
data transmitted.

Note. The instructions with.the mark “ * " can be used in the 7750 Series only.

7700 FAMILY SOFTWARE MANUAL

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODES

Variation of the execution cycles according to the accumulator used

= ADC Instruction / Immediate addressing mode N\
<<When accumulator A is used>>
Mnemonic : ADC A,#1234H Machine code : 6916 3416 1216
@CPU
:
AP(CPU) \ PG >< PG >< PG ><
1
:
AHAL(CPU) < PC >< PC+1 >< PC+3 ><
1
|'___l
1
DATA(cCPU) < 6916 >< 123416 >< >
1
l Op Code Operand
<<When accumulator B is used>>
Mnemonic : ADC B,#1234H Machine code : 4216 6916 3416 1216
H 2-cycleﬁ:
1 [}
@CPU |
1
1
AP(CPU) < PG >< PG >< PG >< PG >< PG ><
1
:
AHAL(CPU) < PC >< PC+1 X PC+1 >< PC+2 >< PC+4 ><
1
l____I
1
DATA(CPU) < 4216 ><Not usedX 6916 >< 123416 >< >
1
Op Code I Op Code Operand
\S Y,
7700 FAMILY SOFTWARE MANUAL 6-3

Implied

Instructions : CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP,
SEC, SEIl, SEM, TAD, TAS, TAX, TAY, TDA, TSA,
TSX, TXA, TXS, TXY, TYA, TYX

Timing :

@ CPU |

AP(CPU) < PG >< PG >< PG ><
AHAL(CPU) < PC >< PC+1 >< PC+1 ><
DATA(CPU) >< Op Code >< Not used >< O’L\I(e:)étde >

R/W(CPU)

Instructions : TBD, TBS, TBX, . 1TBY, TDB, TSB, TXB, TYB

Timing :

@CcPU |

AP(CPU) < PG >< PG >< PG >< PG >< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+1 >< PC+2 >< PC+2 ><
OpCode Y Notused Y OpCode Y Notused Next

DATA(CPU) p Code ot use p Code ot use Op Code

R/W(cPU)

6-4 7700 FAMILY SOFTWARE MANUAL

Implied

Instructions

Timing :

@CPU

AP(CPU)

AHAL(CPU)

DATA(cPU)

R/W(cPU)

Instructions

Timing :

@CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

RIW(CPU)

XAB

A

EDERED P X o
=

< PC >< PC+1 >< PC+1 >< PC+2

>< Op Code >< Not used >< Op Code>< Not used >< Not used >< Not used ><

Next
Op Code

)

STP, WIT

>< Op code >< Not used>< Not used

7700 FAMILY SOFTWARE MANUAL

6-5

Implied

Instructions : RTS

Timing

@cPU |

AP(CPU) < PG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S+1 >< ADHADL><
Next

DATA(CPU) >< Op Code >< Not used >< Not used >< ADHADL >< Op Code >

R/W(cPU)

Instructions : RTL

Timing

@cPU |

AP(CPU) < PG >< PG >< 00 >< ADpP ><

AHAL(CPU) < PC >< PC+1 >< S+1 >< S+3 >< ADHADL ><

DATA Op Cod N d Y Notused X ADHADL X N d ADP Next
(CPU) p Code ot use ot use ot use Op Code

g

R/W(cpPu)

6—6 7700 FAMILY SOFTWARE MANUAL

Implied

Instructions : RTI

Timing

@cPU |

AP(CPU) < PG X PG X 00 X PG X
AHAL(CPU) < PC X PC+1 X S+1 X S+2 X S+3 X S+5 X PCHPCL X

Next
DATA(CPU) X Op Code XNot usedXNot usedX PSHPSL XNot usedX PCHPCL XNot usedX PG X Op Code >

(Stack) (Stack) (Stack)

R/W(cPU)

7700 FAMILY SOFTWARE MANUAL

Implied

Instructions : BRK

Timing

@ CPU |

AP(CPU) < PG X PG X 00

AHAL(CPU) < PC X PC+1 X FFFF X FFFE X FFFC X S X S-1 >

DATA(CPU) X Op Code X Operand X Not usedX Not used X Not used X Not used XNO[used X PG X u'\slgtd
apy

R/W(cPU) |

00

< S-2 X S-3 X S—-4 X FFFA X ADHADLX
Not Next
used X PC x Not used x PS X Not used X ADHADLX op Code>

6-8

7700 FAMILY SOFTWARE MANUAL

Immediate

Instructions

Timing

@cpPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(cpPu)

Instructions

Timing

@CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(cpPu)

ADC, AND, CMP, EOR, LDA, ORA, SBC

m=0

(e X pe X P X
< PC >< PC+1 >< PC+3 ><
Operand Next

><Op Code>< mmnn ><OpCode>

When m=1, fetched operand at 2-nd cycle is 1-byte (nn).

LDX, LDY, CPX, .CRY

x=0

< PG >< PG >< PG ><
< PC >< PC+1 >< PC+3 ><
Operand Next

>< Op Code >< mmnn >< Op Code >

When x=1, fetched operand at 2-nd cycle is 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL

6-9

Immediate

Instructions : LDT

Timing

@cPU |

ApP(CPU) < PG >< PG >< PG >< PG >< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+1 >< PC+2 >< PC+3 ><
Operand Next

DATA(cPU) >< Op Code >< Not used >< Op Code >< nn >< Not used >< Op Code >

R/W(CPU)

Instructions : RLA

Timing

@CcPU |

AP(CPU) < PG X PG X PG X PG PG X
AHAL(CPU) < PC X PC+1 X PC+1 X PC+2 PC+4 X

(@] d Next
DATA(cPU) X Op CodeX Not used X Op CodeX Frfr:;nn X Not used X Not used X Not used X Op (e:)(()de >

“qr

R/W(cPU)

This Figure is shown that shifted 1 bit. If shifted more than 2 bit, the cycle * <——= "
is repeated each shift number worth. When 0 bit shift(not shifted), the cycle

“ <——= "is nothing.

When m=1, fetched operand at 4-th cycle is 1-byte (nn).

6-10 7700 FAMILY SOFTWARE MANUAL

Renesas
EOL announced

Immediate

Instructions : SEP

Timing

@ CPU |

AP(CPU) < PG >< PG

e X

AHAL(CPU) < PC >< PC+1

=X

DATA(cPu) >< Op Code >< Op?]rnand >< Not used>< O;g\lg)c()tde >

“
R/W(cPu)

Instructions : CLP

Timing

@cPU |

AP(CPU) < PG >< PG

e X

AHAL(CPU) < PC >< PC+1

=X

DATA(CPU) >< Op Code >< Opﬁ;and >< Not used >< Not used >< Og‘g’g e >

oy

R/W(cPu)

7700 FAMILY SOFTWARE MANUAL

6-11

Immediate

Instructions : DIV, DIVS*, MPY, MPYS*

Timing

@cpPU

AP(CPU) < PG X PG X PG X PG PG X

AHAL(CPU) < PC X PC+1 X PC+1 X PC+2 PC+2 PC+3 X
Operand Next

DATA(cPU) X Op Code X Not Used X Op Code X mmnn X Not Used X op Code >

R/W(CPU) ‘

When m=1, fetched operand at 4-th cycle is 1-byte(nn).

(Note) The cycle number during O is shown in following table

. The contents | The number of cycles(cycle)
Instruction of division - p—
DIV — 39 23

Plus+Plus

Plus+Minus 41 25
DIVS - -

Minus+Minus

Minus+Plus 42 26
MPY — 20 12

PlusDPlus |

MinusOMinus 28 14
MPYS -

PlusOMinus

- 25 17
MinusOPlus

« The contents of AHAL(cPU) during O of the DIVS instruction is undefined.
« When the multiplier and the multiplicand is different sign at the MPYSS instruction, the contents of
AHAL(cPu) of the last 3 cycles during O is undefined.

6-12 7700 FAMILY SOFTWARE MANUAL

Immediate

Instructions

Timing

@CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

e
R/W(CPU)

DIV, DIVS* (case of zero division)

<PGXPGXPGXPGX PG
<|% XPG&XPG&XPGQX PC+2 XF#FX FFFE

|

x Operand
Op CodeXNot usedXOp CodeX :1mnn XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedX Not used

]

——

—

At DIVS instruction, this cycle is riothing.

00 X 00 X 00 x

S x S-1 X S-2 X S-3 X S—4X S-4 X FFFC XADHADX
< PG XNotusedX PC XNotusedX PS XNotusedXADHADLX Next >
Op Code,

When m=1, fetched operand at 4-th cycle is 1-byte(nn).

51

7700 FAMILY SOFTWARE MANUAL

6-13

Accumulator

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing

@cPU |

ApP(CPU) < PG >< PG >< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+1 ><
Next

DATA(CPU) >< Op Code>< Not used>< op Code>

R/W(cpPu)

Instruction : ASR*, EXTZ*

Timing

@CcPU |

AP(CPU) < PG >< PG >< PG >< PG >< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+1 >< PC+2 >< PC+2 ><

DATA Op Cod Notused X Op Cod Notused X Not used Next
(CPU) p Coae ot use p Coae ot use ot use Op Code

R/W(cpPu)

6-14 7700 FAMILY SOFTWARE MANUAL

Accumulator

Instruction : EXTS*

Timing

AP(CPU) < PG X X PG X PG X:
AHAL(CPU) < X PC+1 X PC+1 X PC+2 PC+2 X:
DATA(CPU) :X pCode Not used | Op CodeXNot usedXNot usedXNot usedXNot usedXNot usedX Orz\‘g)(()tde>

R/W(cpu)

7700 FAMILY SOFTWARE MANUAL 6-15

Direct

Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC
Timing
DPRL#0
@ CPU

AP(CPU) < PG >< PG 00 00 or 01 >< PG ><

AHAL(CPU) < PC >< PC+1 DPR+dd >< PC+2 ><
Operand Next

DATA(cPU) >< Op Code >< ad >< Not used >< DHDL >< Op Code >

o
R/W(cPu)
When DPRL=0, this cycle is nothing.
Instruction : LDM
Timing
DPRL#0
@ CPU

AP(CPU) < PG >< PG >< PG 00 00 or 01 >< PG ><
AHAL(CPU) < PC >< PC+1 >< PC+2 ? DPR+dd >< PC+4 ><
DATA(CPU) >< Op Code >< Opgzjand >< Orﬁ‘;:ﬁgd >< Not used >< mmnn >< O;')\Ig)(()tde>

apr

R/W(cPU)

When DPRL=0, this cycle is nothing.

When m=1, fetched operand at 3-rd cycle and data at 5-th cycle are 1-byte(nn).

6-16 7700 FAMILY SOFTWARE MANUAL

Direct

Instruction STA, STX, STY
Timing
DPRL#0
(@ CPU
AP(CPU) < PG >< PG 00 00 or 01 >< PG ><
AHAL(CPU) < PC >< PC+1 DPR+dd >< PC+2 ><
Operand Next
DATA(CPU) >< Op Code >< ad >< Not used >< Not used >< A >< Op Code >
“yr
R/W(CPU)
When DPRL=0, this cycle is nothing.
Instruction ASL, DEC, INC, .LSR, ROL, ROR
Timing
DPRL#0
@ CPU
ApP(CPU) < PG >< PG 00 00 or 01 >< PG ><
AHAL(CPU) < PC >< PC+1 DPR+dd >< PC+2 ><
Operand Not d Modified Next
DATA(CPU) >< Op Code>< ud >< otuse DHDL Not used DHDL Op Code
ayr
R/W(CPU)

When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL

6-17

Instruction

Timing

@CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

RIW(CPU)

Direct

ASR*

DPRLZ0

JERSESEnAnRREnRnRuEn]

< PGX PGX PGX PG 00 00 or 01 X PG ‘

PC X PC+1 X PC+1X PC+2 DPR+dd X PC+3 x

|

When DPRL=0, this cycle is nothing.

>< Operand Modifiedy Next
Op CodeXNot usedXOp CodeX dd XNot usedX DHDL X Not used X DHDL Xop Code>
“qr A

6-18

7700 FAMILY SOFTWARE MANUAL

Direct

Instruction DIV,
Timing
DPRL#0
@CPU

UL

DIVS*, MPY, MPYS*

O

UL UL

00

or 01

AHAL(CPU)

AP(CPU) < PG X PG X PG X PG 00
< PC XPC+1 X PC+1X PC+2

DPR+dd

|

DATA(cPU)

Op
Code used

Not

Op Operand
Code dd

apqr

Not
used X DHDL K Not used

R/W(cPu)

When DPRL=0, this cycle is nothing.

(Note) The cycle number during O is shown in following table

| The contents | The number of cycles(cycle)

Instruction of division =0 p—)
DIV — 39 23

Plus+Plus
DIVS Pl'us+Min.us 41 25

Minus+Minus

Minus+Plus 42 26
MPY — 20 12

PlusOPlus

MinusOMinus & 14
MPYS PlusCOMinus

MinusOPlus 2 7

* The contents of AHAL(crPU) during O of the DIVS instruction is undefined.

» When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of

AHAL(cPu) of the last 3 cycles during O is undefined.

7700 FAMILY SOFTWARE MANUAL

6-19

Instruction

Timing

Direct

DIV, DIVS* (case of O division)

DPRLz0

@cPU

AP(CPU)

AHAL(CPU)

DATA(cPU)

“y
R/W(cpPu)

g

UL

PGXPGXPGXPG 00

00 or 01

|

< PC X PC+1X PC+1X PC+2 DPR+dd

XFFFF x FFFE

|

|

l Op CodeXNot usedXOp CodeXOerdandXNot usedX DHDL XNot usedXNot usedXNot usedXNot usedXNot used>

Pt

When DPRL=0, this cycle is nothing. At DIVS instruction, this cycle is nothing.

Jut by e L

00 or 01 X 00 X 00 X 00 ”

e e

Next
<NotusedXNotusedx PG xNotusedX PC XNotusedX PS XNotusedXADHADLXopCOde>

6-20

7700 FAMILY SOFTWARE MANUAL

Direct Bit

Instruction : CLB, SEB
Timing
DPRL20, m=0
@cPU

AP(CPU) < PG X PG X PG 00 00 or 01 X PG X
AHAL(CPU) < PC X PC+1 X PC+2 4 DPR+dd X PC+4 X

Operand Operand Modified Next
DATA(CPU) X Op CodeX dd X mmnn X Not used X DHDL X Not used X DuDL op Code>

wpr

R/W(cpPu)

When DPRL=0, this cycle is nothing.

When m=1, fetched operands at 3-rd cycle is 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL 6-21

Direct Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC
Timing
DPRLZ#0
@ cPU

AP(CPU) < PG >< PG 00 00 or 01 ><00, Olor02>< PG ><
AHAL(CPU) < PC >< PC+1 ><DPR+dd+X>< PC+2 ><

DATA(cPu) >< Op Code >< Opz:jand >< Not used >< Not used >< DHDL >< Opl)\ligtje >

“y
R/W(cPU)
When DPRL=0, this cycle is nothing.
Instruction : LDM
Timing
DPRL#0
@CcPU

AP(CPU) < PG >< PG >< PG 00 00 or 01 ><00| 01 or 02>< PG ><
AHAL(CPU) < PC >< PC+1 >< PC+2 ? DPR+dd ><DPR+dd+X>< PC+4 ><
DATA(cPU) >< Op Code >< Opggand >< Og(;:iﬂd >< Not used >< Not used >< mmnn >< OpNgé:je >

R/W(cPU)

When DPRL=0, this cycle is nothing.

When m=1, fetched operand at 3-rd cycle and data at 6-th cycle are 1-byte(nn).

6-22 7700 FAMILY SOFTWARE MANUAL

Direct Indexed X

Instruction : STA, STY
Timing
DPRL#0
@CPU

AP(CPU) < PG >< PG 00 000r01>< 00, 01 or 02 >< PG ><
AHAL(CPU) < PC >< PC+1 >< DPR+dd+X >< PC+2 ><

DATA(cPu) >< Op Code >< Op(e;:jand >< Not used >< Not used >< Not used >< A >< O;!\lg)c()tde >

g
R/W(cPu)
When DPRL=0, this cycle is nothing.
Instruction : ASL, DEC, INC, . LS8R, ROL, ROR
Timing
DPRLz0
@cPU

AP(CPU) < PG X PG 00 OOor01X 00,01 or 02 X PG X
AHAL(CPU) < PC X PC+1 X DPR+dd+X X PC+2 X

Operand Modified Next
DATA(CPU) X Op CodeX P X Not usedX Not used X DHDL X Not usedX DHDL X Op code >

R/W(CPU)

When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6-23

Direct Indexed X

Instruction : ASR*

Timing

DPRLz0

AP(CPU) < PG X PG X PG X PG 00 00 or OlX 00, 01 or 02 X PG x
AHAL(CPU) PC X PC+1X PC+1X PC+2 X DPR+dd+X X PC+3 x

>< Operand Modified}y Next
DATA(CPU) Op CodeXNot usedXOp CodeX dd XNot usedXNot usedX DHDLX Not used X DHDL Xop Code>
“qr

R/W(cpPu)

When DPRL=0, this cycle is nothing.

6-24

7700 FAMILY SOFTWARE MANUAL

Direct Indexed X

Instruction

Timing

@CcPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/V\l(cw)

DIV, DIVS*, MPY, MPYS*
DPRL#0 O
< PG XPGX PG XPG 00 omm% 00, 01 or 02 PG
< PC X PC+1 X PC+1 X PC+2 X 35?; DPR+dd+X PC+3

IR

B

Op
Code

Not
used

Op Operand
Code dd

Not
used

Not
used

X DHDL x Not used

g

Next
Op Code,

——

When DPRL=0, this cycle is nothing.

(Note) The cycle number during O is shown in following table

| The contents | The number of cycles(cycle)

Instruction of division —0 pr)
DIV — 39 23

Plus+Plus

Plus+Minus 41 25
DIVS - -

Minus+Minus

Minus+Plus 42 26
MPY — 20 12

Plus[OPlus

MinusCOMinus é 14
MPYS -

PlusOMinus

- 25 17
MinusOPlus

« The contents of AHAL(cpu) during O of the DIVS instruction is undefined.
* When the multiplier and the multiplicand is different sign at the MPY'S instruction, the contents of
AHAL(cPu) of the last 3 cycles during O is undefined.

7700 FAMILY SOFTWARE MANUAL

6-25

Direct Indexed X

Instruction

Timing

@cpPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“
R/W(cpPu)

g

DIV, DIVS* (case of O division)

DPRLz0

< PG X PG X PG X PG 00 OOOrOJX 00, 01 or 02

< PC XPC+1X PC+1X PC+2 X DPR+dd+X | FrFF

[[

Operand
Op Codej Not usedj Op Code dd Not used f Notused] DHDL ANot Used p Not used g Not used § Not used

When DPRL=0, this cycle is nothing. AL DIVS instruction, this cycle is nothing.

JUuuUuieyyyyl
TN B O O 0§

FFFFx FFFE X S Xs-l X s-2 X s-3 X S-4 X Ss-4 XFFFC XADHADLx
<N°tusede0w59%0tusedx PG XNotusedX PC XNotusedX PS XNotusedXADHADLXo,;\‘g)gde>

626

7700 FAMILY SOFTWARE MANUAL

Direct Indexed Y

Instruction : LDX
Timing
DPRL#0
@CPU

AP(CPU) < PG >< PG 00 00 or 01 ><00,010r02>< PG ><
AHAL(CPU) < PC >< PC+1 ><DPR+dd+Y>< PC+2 ><

Operand Next
DATA
(CPU) >< Op Code >< dd >< Not used >< Not used >< DHDL >< Op Code >

o
R/W(cPu)
When DPRL=0, this cycle is nothing.
Instruction : STX
Timing
DPRL#0
@cCPU

AP(CPU) < PG >< PG 00 00 or 01 >< 00, 01 or 02 >< PG

X

AHAL(CPU) < PC >< PC+1 >< DPR+dd+Y >< PC+2 ><

| |

DATA(CPU) >< Op Code >< Op(cei:jand >< Not used >< Not used >< Not used >< X ><

Next
Op Code

)

R/W(cPu)

When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL

6-27

Direct Indirect

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
DPRLZ0
pCPu

AP(CPU) < PG >< PG 00 00 or 01 >< DT >< PG ><

AHAL(CPU) < PC >< PC+1 DPR+dd >< ADHADL >< PC+2 ><
Operand Next

DATA(CPU) >< Op Code >< dd >< Not used >< ADHADL >< DHDL >< Op Code >

o
R/W(cpPu)
When DPRL=0, this cycle is nothing.
Instruction : STA
Timing
DPRL#0
@CPU

AP(CPU) < PG >< PG 00 00 or 01 >< DT >< PG ><
AHAL(CPU) < PC >< PC+1 DPR+dd >< ADHADL >< PC+2 ><
Operand Next
DATA
(CPU) >< Op Code >< dd >< Not used >< ADHADL >< Not used >< A >< Op Code >

g

R/W(CPU)

When DPRL=0, this cycle is nothing.

6—28 7700 FAMILY SOFTWARE MANUAL

Direct Indirect

Instruction

Timing

@cPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(cpPu)

DIV,

DPRLz0

DIVS*, MPY, MPYS*

Uy L

=

PGXPGXPGXPG 00

00 or OlX DT

PG

DE§+ XADHADL ADHADL

PC+3

<
< PC X PC+1 X PC+1X Pc‘+2

x Op Not Op Operand Not x
Code X used X Code X dd X used XADHADX DHDL Not used

1]

g

Next
Op Code

—

When DPRL=0, this cycle is nothing.

(Note) The cycle number during O is shown in following table

Instruction The_ contents The number of cycles(cycle)

of division m=0 m=1
DIV — 39 23

Plus+Plus

Plus+Minus 41 25
DIVS Minus+Minus

Minus+Plus 42 26
MPY — 20 12

PlusCPlus

MinusOMinus £2 14
MPYS PlusOMinus o

MinusOPlus 2 7

« The contents of AHAL(cPu) during O of the DIVS instruction is undefined.
» When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
AHAL(cPu) of the last 3 cycles during [is undefined.

7700 FAMILY SOFTWARE MANUAL

6-29

Direct Indirect

Instruction : DIV, DIVS* (case of O division)

Timing

AP(CPU) < PG X PG X PG X PG 00 00 or OJX DT
< PC X pc+1X PC+1X PC+2 00 or 01X ADHADL | FrFF

| [

operand
DATA(cPU) xOp Code) Not usedXOp Cod X P dad XNot usedXADHADLX DHDL XNot usedXNot usedXNot usedXNot used>

AHAL(CPU)

R/W(cPU)
|

.

When DPRL =0, this cycle is nothing. AL DIVS instruction, this cycle is nothing.

X 00 X 00 X 00 x
FFFFX FFFE X S X S x S—ZX s-3 X s-4 X S-4 XFFFC XADHADLx
<N°‘ usedXﬂsedx Not USeEX PG XNOl UsedX PC XNot usedX PS XNOI usedXADHADLX op Ci()tde>

6-30 7700 FAMILY SOFTWARE MANUAL

Direct Indexed X Indirect

Instruction

Timing

@cPU

AP(CPU)

AHAL(CPU)

DATA(cPU)

R/W(cPu)

Instruction

Timing

@cPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

ur
R/W(cPU)

ADC, AND, CMP, EOR, LDA, ORA, SBC

DPRLZ0

00

00 or 01 ><00, 01 or 02>< DT >< PG ><

A

PC+1

><DPR+dd+x>< ADHADL>< PC+2 ><

Operand Next
>< Op Code >< dd >< Not used>< Not used >< ADHADL >< DHDL >< Op Code >

When DPRL=0, this cycle is nothing.

STA

DPRL#0

< PG X PG 00

00 or 01 XO0,0l or OZX DT X PG X

< PC X PC+1

|

DPR+ddX ADHADL X PC+2 X
+X

|

|

Operand Next
X Op Code X dd X Not usedX Not used X ADHADL X Not usedX A X op Code>

When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6-31

Direct Indexed X Indirect

Instruction : DIV, DIVS*, MPY, MPYS*

Timing

DPRLz0 D

- Uyl aL

S

AP(CPU) < PG X PG X PG X PG 00 000r01X0§’r'0%1X DT

PG

AHAL(CPU) < PC X PC+1 X PC+1X PC+2 X 355; XADHADL ADHADL

PC+3

1T]

N N N
DATA(CPU) I or X o X op XO”EE‘”“X et X et XADHADLX DHDL| Mot used

Next
Op Code

—

“Hr -

R/W(cPU)

When DPRL=0, this cycle is nothing.

(Note) The cycle number during O is shown in following table

Instruction The contents The number of cycles(cycle)
of division m=0 =1
DIV — 39 23
Plus+Plus
DIVS Pl.us+Min'us 41 25
Minus+Minus
Minus+Plus 42 26
MPY — 20 12
Plus[OPlus
MinusOMinus 22 14
MPYS PlusOMinus T
MinusOPlus 25 17

 The contents of AHAL(cpPu) during O of the DIVS instruction is undefined.
» When the multiplier and the multiplicand is different sign at the MPY'S instruction, the contents of
AHAL(cPu) of the last 3 cycles during [is undefined.

6-32 7700 FAMILY SOFTWARE MANUAL

Direct Indexed X Indirect

Instruction : DIV, DIVS* (case of O division)

Timing

AP(CPU) < PG X X PG X PG 00 OOOrOlX %?’YOOZ:LX DT

DPR
AHAL(CPU) < PC XPC+1X PC+1X PC+2 X +d>? X ADHADL
+

DATA(cPU) xOp Code | Not usedXOp Cod XOerjndXNot usedXNot usedXADHADLX DHDL x Not used x Not usedx Not used>

o

R/W(cpPU)

When DPRL =0, this cycle is nothing. At DIVS instruction, this cycle is nothing.

DT X 00 X 00 X 00 N
ADHADLN FFFF FFFE K X S-1 X S-2 X sS-3 X sS4 X S-4 X FFFC ADHADx
Next
<Not usedXNot usedXNot usedXNot usedX PG XNot usedX PC XNot usedX PS XNot usedXADHADLXOp Code>

wpr

7700 FAMILY SOFTWARE MANUAL

6-33

Direct Indirect Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
DPRLz0
@CPU

AP(CPU) < PG >< PG 00 000r01>< DT ><DTorDT+1>< PG ><
AHAL(CPU) < PC >< PC+1 DPR+dd ><ADHAD|_+Y>< PC+2 ><

DATA(cPU) >< Op Code>< Operand >< Not used>< ADHADL >< Not used >< DHDL >< Og\‘g’g ” >

e
R/W(cPu)
When DPRL=0, this cycle is nothing.
Instruction : STA
Timing
DPRL#0
@CPU

AP(CPU) < PG X PG 00 00 0r01X DT X DT or DT+1 X PG X
AHAL(CPU) < PC X PC+1 DPR+dd X ADHADL+Y X PC+2X

DATA(CPY) X Op Code X Op(;:jand X Not usedX ADHADL X Not usedX Not usedX A X O[’)\I?:)(()tde>

pr

R/W(cPU)

When DPRL=0, this cycle is nothing.

6-34 7700 FAMILY SOFTWARE MANUAL

Instruction

Timing

@cPU

AP(CPU)

AHAL(CPU)

DATA(cPUL)

R/W(cPU)

DIV,

Direct Indirect Indexed Y

DPRL#0

HUHHHHHL

DIVS*, MPY, MPYS*

O

L UL

DT or DT+1

<PGX PGXPGX PG | 00 ng’X DTX
< PC XPC+1XPC+1X PC+2

ADH
DPR+dd ADL
+Y

ADHADL+Y

Not Op Ope- Not | ADH | Not
used /\ Code "‘Zr&d used \ ADL)\ used

XDHDL* Not used

Op
Code
“qr

When DPRL=0, this cycle is nothing.

(Note) The cycle number during O is shown in following table

Instruction The_ contents The nu_mber of cyclesEcycIe)
of division m=0 m=1
DIV — 39 23
Plus+Plus
DIVS Pl.us+Min'us 41 25
Minus+Minus
Minus+Plus 42 26
MPY — 20 12
PlusOPlus
MinusOMinus & 14
MPYS PlusCOMinus o
MinusOPlus 2 7

* The contents of AHAL(cpu) during O of the DIVS instruction is undefined.
» When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
AHAL(cPu) of the last 3 cycles during O is undefined.

7700 FAMILY SOFTWARE MANUAL

6-35

Direct Indirect Indexed Y

Instruction : DIV, DIVS* (case of O division)

Timing

AP(CPU) < PG X PG X PG X PG 00 OOorO]X DT X DT or DT+1

[

AHAL(CPU) < PC X PC+1X PC+1X PC+2 DPR+dd X ADHADL+Y x FFFF

[

Operand
DATA(cPU) xOp CodeXNot usedXOp CodeX P ad XNot usedXADHADLXNot usedX DHDL XNot usedXNot usedXNot usedXNot used>
g

R/W(cPU)

When DPRL =0, this cycle is nothing. At DIVS instruction, this cycle is nothing.

DT or DT+1 X 00 X 00 X 00 x
FFFF x FFFE X S X SN S—ZX S—3X s_4X s4 XFFFC XADHADLx
<NotusedXTsedNNotuse}X PG XNotusedX PC XNotusedX PS XNmuSEdXADHADLXO;L\Iggde>
g

6—36 7700 FAMILY SOFTWARE MANUAL

Direct Indirect Long

Instruction : ADC, AND, CMP, EOR,
Timing

DPRLz0

LDA, ORA, SBC

@cPU

AP(CPU) < PG X PG 00 00 or 01 X 00 or 01 X 00 or 01 X ADp X PG X

AHAL(CPU) < PC X PC+1 DPR+dd

|

Dpfgddx ADHADLX PC+2 X

DATA(cPu) X Op CodeX Opg:jand X Not USedX ADHADL X Not usedX ADpP X DuDL X o;;\l(e:étde>

P
R/W(cPU)
When DPRL=0, this cycle is nothing.
Instruction : STA
Timing
DPRL#0
@cPU

AP(CPU) < PG X PG 00 00 or 01 X 00 or 01 X 00 or 01 X ADp X PG X

AHAL(CPU) < PC X PC+1 DPR+dd

X

Dpfz‘“ddx ADHADL X PC+2 X

Operand Next
DATA(CPU) X Op Code X ad X Not used X ADHADL X Not usedX ADp X Not used X A X Op Code >

R/W(CPU)

When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL

Instruction

Timing

@CcPU

AP(CPU)

AHAL(CPU)

DATA(CPU) | COOSeX

R/W(CPU)

DIV,

DPRL#0

UL

Direct Indirect Long

DIVS*, MPY, MPYS*

HUUUL

LIUL

PG | PG | PG Y PG | oo [OOor) 00ory 00or ADp PG
or A\ o1 A\ o1
DPR \/ AD
< PC XPC+1XPC+1X PC+2 DPR+dd X+ddX DL ADHADL pc+3)
+2

|

Not
used

|

O
Code

)

Ope-
rand
dd

z

Not
used

|

ot YV ADH
used ADL

mo

apg

Not used

When DPRL=0, this cycle is nothing.

(Note) The cycle number during O is shown in following table

Instruction thgi Si(;?;ﬁnts The rrr]]lirgber of cycl;ensz(tiycle)
DIV —_ 39 23

Plus+Plus

Plus+Minus 41 25
DIVS Minus+Minus

Minus+Plus 42 26
MPY — 20 12

PlusOPlus

MinusOMinus 22 14
MPYS PlusOMinus

MinusOPlus 25 17

» The contents of AHAL(cpPU) during O of the DIVS instruction is undefined.
» When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
AHAL(cPU) of the last 3 cycles during O is undefined.

6-38

7700 FAMILY SOFTWARE MANUAL

Renesas
EOL announced

Direct Indirect Long

Instruction : DIV, DIVS* (case of O division)

Timing

- UL

AP(CPU) < PG X PG X PG X PG 00 OOmOlXOOorOlXOOorOlX ADP

DPR
AHAL(CPU) < PC XPC+1XPC+1X PC+2 DPR+dd X +dd X ADHADL
+2

Op Not Op Operand Not Not Not Not Not
DATA(CPU) >< Code X used X Code X dd used \APHADLA ceq ADP DHDL used used used
o

R/W(CPU)

When DPRL=0, this cycle is nothing. AL DIVS instruction, this cycle is nothing.

ADP X 00 X 00 X 00

ADHADLx FFFFX FFFE K S x s-1 K s-2 X s-3 X s-4 X sS4 X FFFC XADHADL
Not x Not x Not Not Not Not Not Next

< used used usediX used X PG X used X PC X used X Ps X used XADHADLXOP C0d9>

g

1T]

7700 FAMILY SOFTWARE MANUAL

6-39

Direct Indirect Long Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC
Timing
DPRLz0
@CPU

AP(CPU) < PG X PG 00 00 orOlX 00 orOlX 00 0r01X ADP X ﬁg:’{ X PG X
AHAL(CPU) < PC X PC+1 DPR+dd X DPR+dd+2 X ADféDL X pPC+2 X
DATA(CPU) X Op CodeX Opg[ja”d X Not usedX ADHADL X Not used X ADpP X Not used X DHDL X o;\l(e:étde>
ar
R/W(CPU)
When DPRL=0, this cycle is nothing.
Instruction : STA
Timing
DPRL£0
(@ CPU

00

AHAL(CPU)

S <
=]

PC+1

00 or OIX 00 or OlX 00 or OlX ADp X ADP or ADP+1 X

DPR+dd X DPR+dd+2 X ADHADL+Y

[
=

DATA(CPU) x Op Cod

Operand
dd

I

Not

Next
usedX ADHADLX Not usedX ADpP XNot usedX Not usedX A Xop (e:>(<)d8>

“yr
R/W(cpPu)

When DPRL=0, this cycle is nothing.

6-40

7700 FAMILY SOFTWARE MANUAL

Direct Indirect Long Indexed Y

Instruction : DIV, DIVS*, MPY, MPYS*

Timing

DPRL#0

0
AP(CPU) < PG X PG X PGX PG | 00 08 ffxog ffxog er ADPX ADP or ADP+1 PG
< c

=

DPR ADH
P PC+1]| PC+1 PC+2 DPR+dd +dd @\DL ADHADL+Y PC+3
+2 +Y
Ope- ADH - Next
Op Not Op ot Not Not
DATA(cPU) x CodeX usedX CodeX rzzd X used X@ADL used \ ADP | used | DHDL Not used C(c))ge

apr p N

AHAL(CPU)

r 1

z

]

R/W(CPU)

When DPRL=0, this cycle is nothing.

(Note) The cycle number during O is shown in following table

| The contents | The number of cycles(cycle)

Instruction of division =0 1
DIV — 39 23

Plus+Plus

Plus+Minus 41 25
DIVS Minus+Minus

Minus+Plus 42 26 |
MPY — 20 12

PlusOPlus

MinusOMinus 22 14
MPYS PlusOMinus

MinusOPlus 3 17

» The contents of AHAL(cPU) during O of the DIVS instruction is undefined.
» When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
AHAL(cPu) of the last 3 cycles during [is undefined.

7700 FAMILY SOFTWARE MANUAL 6-41

Direct Indirect Long Indexed Y

Instruction : DIV, DIVS* (case of O division)

Timing

@CPU ||||||||||||||||
PG X PG X PG X PG 00 OOorOlXOOorOlXOOorOlX ADP ADP or ADp+1

AHAL(CPU) < PC X PC+1X PC+1X PC+2 DPR+dd X DPR+dd+2 ADHADL+Y
“yr

AP(CPU)

Op CodeXNot usedXOp CodeXOerdandXNo usedXADHADLXNot usedX ADP XNot usedX DHDL XNot usedXNot used>

DATA(CPU)

-

R/W(CPU)
\

>
When DPRL=0, this cycle is nothing. AL DIVS instruction, this cycle is nothing.

X 00 X 00 N
ADHADL+Y X FFFFX FFFE X S x s-1 X S-2 X s-3 X S-4 X S-4 XFFFC XADHADLN
ADHAD. Next
Not used § Not used} Not tsed] Not used g Not used PG Not used PC Not used PS Not used H LOp Code

ADp or ADp+1 X 00

apg

642 7700 FAMILY SOFTWARE MANUAL

Absolute

Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC
Timing
@CPU |

AP(CPU) < PG >< PG >< DT >< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll >< PC+3 ><
Operand Next

DATA(CPU) >< Op Code >< hhil >< DHDL >< Op Code >

R/W(cpPu)

Instruction : LDM

Timing

@CcPU |
AP(CPU) < PG >< PG >< PG >< DT >< PG ><
AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhll >< PC+5 ><
DATA(CPU) >< Op Code>< Opﬁ:ﬁnd >< On‘?"e]:ﬁgd >< mmnn >< O;’)\leer);;d >

R/W(CPU)

When m=1, fetched operand at 3-rd cycle and data at 4-th cycle are 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL 6-43

Instru

Absolute

ction : STA, STX, STY

Timing

@cpPU |

AP(CPU) < PG >< PG >< DT >< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll >< PC+3 ><
Operand Next

DATA(CPU) >< Op Code >< phh" >< Not used >< A >< Op Code >

R/W(cPU)

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing

@cPU |

AP(CPU) < PG >< PG X DT >< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll >< PC+3 ><
Operand Next

DATA(cPU) >< Op Code >< hhll >< DHDL >< Not used ><New DHDL>< Op Code >

R/W(CPU)

6-44

7700 FAMILY SOFTWARE MANUAL

Absolute

Instruction : ASR*

Timing

@CcPU

AP(CPU) < PG X X PG X PG X DT X PG x
AHAL(CPU) < PC X PC+1 X PC+1 X PC+2 X hhll X PC+4 X

>< Operand New Next
DATA(CPU) Op Code} Not usedX Op CodeX hhll X DHDL X Not used X DHDL Xop Code>

o

R/W(cpPu)

7700 FAMILY SOFTWARE MANUAL 6-45

Absolute

Instruction DIV, DIVS*, MPY, MPYS*
Timing
]
m=1
@CcPU | J
AP(CPU) < PG X PG X PG X PG X DT PG X
AHAL(CPU) < PC X PC+1 X PC+1 X PC+2 X hhil X hhll PC+4 X
DATA Operand Next
(CPU) Op Code |} Notused } Op Code hhil DHDL Not used Op Code
o =t
R/W(cPU)

(Note) The cycle number during O is shown in following table

Instruction| The contents The number of cycles(cycle)
of division m=0 m=1
DIV — 39 23
Plus+Plus
Plus+Minus 41 25
DIVS - .
Minus+Minus A
Minus+Plus 42 26
MPY — 20 12
PlusOPlus - 5.
MinusOMinus
MPYS -
PlusOMinus 7 17
MinusOPlus

* The contents of AHAL(cPY) during Elof the DIVS instruction is undefined.
* When the multiplier and thesnultiplicand is different sign at the MPYS instruction, the contents of
AHAL(cPu) of the last 3 cycles during O is undefined.

6-46 7700 FAMILY SOFTWARE MANUAL

Absolute

Instruction : DIV, DIVS* (case of O division)
Timing

@cpPU

AP(CPU) < PG X PG X PG X PG X DT
AHAL(CPU) < PC X PC+1X PC+1X Pc+2X hhll X FFFFX FFFE S

Operand
DATA(CPU) xOp Code Not used\ Op CodeX phh" X DHDL XNot usedXNot usedXNot usedXNot usedXNot usedXNot usedXNot used>

R/W(cPU)

1Tz

—

——=>

I
At DIVS instruction, this cycle is nothing.

00 X 00 X 00 x
S x s-1 X S-2 X S-3 X S4 ﬁ—m FFFC XADHADLx
< PG xNOluse&CiXNotusedX PS XNotusedXADHADLX Next >
Op Code
g i

7700 FAMILY SOFTWARE MANUAL 6-47

Absolute

Instruction : JMP

Timing

@cPU |

AP(CPU) < PG >< PG >< PG ><
AHAL(CPU) < PC >< PC+1 >< hhll ><
Operand Next
DATA
cPo) >< Op Code >< hhll >< Op Code >

R/W(cPu)

Instruction : JSR

Timing

@cPU |

AP(CPU) < PG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S-1 >< hhll ><
Operand Next

DATA(cPU) >< Op Code >< hhil >< Not used >< PCHPCL >< Op Code >

R/W(cpPu)

6-48 7700 FAMILY SOFTWARE MANUAL

Absolute Bit

Instruction : CLB, SEB

Timing

@cPU

AP(CPU) < PG >< PG >< PG >< DT >< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhll >< PC+5 ><
Operand Operand Next

DATA(cPU) >< Op Code >< hhil >< mmnn >< DHDL >< Not used ><New DHDL>< Op Code >

o

RIW(CPU)

When m=1, fetched operand at 3-rd cycle is 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL 6-49

Absolute Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing

@cPU |

AP(CPU) < PG >< PG >< DT ><DT or DT+1>< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll+X >< PC+3 ><
Operand Next

DATA(cPU) >< Op Code >< hhil >< Not used >< DHDL >< Op Code >

R/W(cPU)

Instruction : LDM

Timing

@cPU |

AP(CPU) < RG >< PG >< PG >< DT ><DT or DT+1>< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhil+X >< PC+5 ><
Operand Operand Next

DATA(cPU) >< Op Code >< hhil >< mmnn >< Not used >< mmnn >< Op Code >

R/W(cPu)

When m=1, fetched operand at 3-rd cycle and data at 5-th cycle are 1-byte (nn).

6-50 7700 FAMILY SOFTWARE MANUAL

Absolute Indexed X

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing

@cpPU |

AP(CPU) < PG >< PG >< DT >< DT or DT+1 >< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll+X >< PC+3 ><

DATA(cPU) Op Code Operand Not used DHDL Not used New DHDL Next
hhll Op Code

R/W(cPU)

Instruction : ASR*

Timing

@CPU | | | | | l | | | | | | | | | | | | | | | |
AP(CPU) < PG X X PG X PG X DT X DT or DT+1 X PG X:
AHAL(CPU) < PC X PC+1 X PC+1X PC+2 X hhll+X X PC+4 X:
DATA(CPU) :X p Code Not used Op CodeXOpﬁgﬁndXNot usedX DHDL X Not used X I'D\II—?SVL Xog\lg)c()tde>

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL 6-51

Absolute Indexed X
Absolute Indexed Y

Instruction DIV, DIVS*, MPY, MPYS*
Timing
O
U UUUUL UL L]
AP(CPU) < PG X PG X PG X PG X DT X DT or DT+1 PG
AHAL(CPU) < PC XPC+1X PC+1X PC+2 X ')1('2'\'(‘)‘ hhll+X(Y) PC+4

Not
used

Not
used

Op
Code

Op Operand
DATACPU) >< CodeX X X hhll X

X DHDL x Not used

apg

L
I
=

R/W(cpu)

(Note) The cycle number during O is shown in following table

The number of cycles(cycle

Instruction| 1€ contents ycles(cycle)

of division m=0 m=1
DIV — 39 23

Plus+Plus

Plus+Minus 41 25
DIVS - -

Minus+Minus

Minus+Plus 42 26
MPY — 20 12

PlusOPlus -

MinusOMinus 14
MPYS -

PlusOMinus 4 17

MinusOPlus

* The contents of AHAL(CPu) during [1.of the DIVS instruction is undefi

ned.

* When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of

AHAL(cPU) of the last 3 cycles dufing O is undefined.

6-52

7700 FAMILY SOFTWARE MANUAL

Absolute Indexed X
Absolute Indexed Y

Instruction : DIV, DIVS* (case of O division)
Timing

@cPU

AP(CPU) < PG X PG X PG X PG X DT X DT or DT+1

PC X PC+1X PC+1X PC+2 X hhil+X(Y) X FFFFX FFFE

DATA(CPU) xOp CodeXNot usedXOp CodeXOpﬁgﬁndXNot usedX DHDL XNot usedXNot usedXNot usedXNot usedXNot usedXNot used>
apyr

AHAL(CPU)

R/\W(CPU)
ﬁ/ y
At DIVS instruction, this cycle is nothing.
DT or DT+1 00

X 00 X 00 x

FFFE S X S-1 X sS-2 X sS-3 X sS4 X S-4 X FFFC XADHADLx
<N0tusedX PG XNotusedX PC XNotusedX PS XNotusedXADHADI_XoNext >
p Code

LERES

|

7700 FAMILY SOFTWARE MANUAL 6-53

Absolute Indexed X
Absolute Indexed Y

Instruction : STA

Timing

@cPU |

AP(CPU) < PG >< PG >< DT >< DT or DT+1 >< PG ><
AHAL(CPU) < PC >< PC+1 >< hhll+X(Y) >< PC+3 ><
Operand Next
DATA
(CPU) >< Op Code >< hhil >< Not used >< Not used >< A >< Op Code >

R/W(cpPu)

6-54 7700 FAMILY SOFTWARE MANUAL

Absolute Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC

Timing

@cPU |

AP(CPU) < PG >< PG >< DT >< DT or DT+>< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll+Y >< PC+3 ><
Operand Next

DATA(cP) >< Op Code >< hhil >< Not used >< DHDL >< Op Code >

R/W(cPu)

7700 FAMILY SOFTWARE MANUAL 6-55

Absolute Long

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

@cPU |

AP(CPU) < PG >< PG >< PG >< pp >< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhll >< PC+4 ><
Operand Operand Next

DATA(cPU) >< Op Code >< hhil >< op >< DHDL >< Op Code >

R/W(cPU)

Instruction : STA

Timing

(QcCPU |
AP(CPU) < PG >< PG‘>< PG >< pp >< PG ><
AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhll ><

DATA(cPu) >< Op Code >< Opﬁ;ﬁnd >< Opre;rpand >< Not used>< A >< Ogg)étde >

R/W(cPU)

6-56 7700 FAMILY SOFTWARE MANUAL

Absolute Long

Instruction : DIV, DIVS*, MPY, MPYS*

Timing

- TUUUUHH L UL
AP(CPU) < PG X PG X PG X PG X PG X pp PG X:
AHAL(CPU) < PC X PC+1X PC+1X PC+2X PC+4X hhll hhll PC+5 X:
DATA(CPU) :X Cose X used X Cone Xoprsr:ﬁndXopzrpandX DH "X: : :: Not used Xo;‘ ?:T)tde>
J— “H”

R/W(cpPu)

g

(Note) The cycle number during O is shown in following table

The number of cycles(cycle

Instruction| The contents ycles(cycle)

of division m=0 m=1
DIv — 39 23

Plus+Plus

Plus+Minus 41 25
DIVS - -

Minus+Minus

Minus=+Plus 42 26
MPY — 20 12

PlusOPlus 2

MinusOMinus 14
MPYS : N Y

PlusOMinus e 17

MinusOPlus

 The contents of AHAL(GPU) during LI of the DIVS instruction is undefined.
* When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
AHAL(cpu) of the last 3 cyclesduring O is undefined.

7700 FAMILY SOFTWARE MANUAL 6-57

Absolute Long

Instruction : DIV, DIVS*(case of O division)

Timing

@CcPU

AP(CPU) < PG X X PG X PG X PG X pp
AHAL(CPU) < PC X pc+1X Pc+1X PC+2X Pc+4X hhll X FFFFX FFFE

DATA(CPU) ‘ Op Code Not used Op CodeXOpr?r:ﬁndXOp;;)andX DHDL XNOI usedXNot usedXNot usedXNot usedXNot usedX Not used>

“yr

R/W(cpPu)

£

At DIVS instruction, this cycle is nothing.
pp N 00 00 00 ~
FFFE x S X S-1 X S-2 X S-3 X S-4 X S-4 X FFFC XADHADLx
<NotusedX PG XNot usedX PC XNotusedX PS XNOtusedXADHADLXOpCthe>

6-58

7700 FAMILY SOFTWARE MANUAL

Absolute Long

Instruction : JMP

Timing

@cPU |

AP(CPU) < PG >< PG >< PG >< pp ><

AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhll ><
Operand Operand Next

DATA(cPU) X Op Code X hhil X pp X Op Code >

R/W(cPu)

Instruction : JSR

Timing

@cpPU |

AP(CPU) < PG >< PG X PG >< 00 >< pp ><

AHAL(CPU) < PC >< PC+1 >< PC+3 >< S >< S-2 >< hhll ><
Operand Operand Next

DATA(CPU) >< Op Code >< hhil >< op >< PG >< Not used >< PCHPCL >< Op Code >

R/W(cPu)

7700 FAMILY SOFTWARE MANUAL 6-59

Absolute Long Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

@CcPU |

AP(CPU) < PG >< PG >< PG >< pp ><pp or pp+1>< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhll+X >< PC+4 ><
Operand Operand Next

DATA(CPU) >< Op Code >< hhil >< PP >< Not used >< DHDL >< Op Code >

R/W(cPU)

Instruction : STA

Timing

@CcPU |

AP(CPU) < PG >< PG >< PG >< pp >< pp or pp+1 >< PG ><

AHAL(CPU) < PC >< PC+1 >< PC+3 >< hhll+X >< PC+4 ><
Operand Operand Next

DATA(cPU) >< Op Code >< hhil op >< Not used >< Not used >< A >< Op Code >

R/W(cPu)

6—60 7700 FAMILY SOFTWARE MANUAL

Absolute Long Indexed X

Instruction : DIV, DIVS*, MPY, MPYS*

Timing

O

v v v v g

AHAL(CPU) < PC X PC+1 X PC+1X PC+2 X PC+4 Xhhl|+x hhll+X PC+5 “

x Op Not Op Operand Y Operand Not x Next
DATA(CPY) Code X used X Code X hhll X pp X used XDHDL Not used XOp Code>
‘e

AP(CPU)

R/W(cPU)

(Note) The cycle number during O is shown in following table

Instruction The_ contents The number of cycles(cycle)
of division m=0 m=1
DIV — 39 23
Plus+Plus
DIVS Plus+Minus 41 25
Minus+Minus
Minus=Plus 42 26
MPY — 20 12
PlusOPlus
MinusOMinus 22 14
MPYS PlusOMinus
MinusOPlus 25 o

» The contents of AHAL(cpU) during [of the DIVS instruction is undefined.
» When the multiplier and the‘multiplicand is different sign at the MPYS instruction, the contents of
AHAL(cPu) of the last 3 cycles during O is undefined.

7700 FAMILY SOFTWARE MANUAL 6—61

Instruction

Timing

@cPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(cPU)

Absolute Long Indexed X

DIV, DIVS* (case of O division)

B0 0 00 0 S

|

< PC X PC+1X PC+1X PC+2 X PC+4 X hhll+X

X FFFF | FFFE

x Op Code Not used { Op CodeXOpﬁr:ﬁnd XOpgrpandXNot usedX DHDL XNot usedXNot usedXNot usedX Not usedX Not used>

—

AL DIVS instruction, this cycle is nothing.

Jut iy L

pporpp+1X 00 X 00 X 00 x

e | s | s Ksz)(j(s4 | 54 | eeec XADHADLX:

<N0tusedeotused* PGiXNotusedX PC XNotusedX PS XNotusedXADHADLX

Next
Op Code

662

7700 FAMILY SOFTWARE MANUAL

Absolute Indirect

Instruction : JMP

Timing

@cPU |

AP(CPU) < PG >< PG >< PG >< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll >< ADHADL ><

DATA(CPU) OpCode X ©°Perand V' apiap Next
hhll Op Code

R/W(cPu)

7700 FAMILY SOFTWARE MANUAL 6—63

Absolute Indirect Long

Instruction : JMP

Timing

@cPU |

AP(CPU) < PG >< PG >< PG ><PG or PG+1><PG or PG+1>< ADP ><

AHAL(CPU) < PC >< PC+1 >< hhll >< hhll+2 >< ADHADL ><
Operand Next

DATA(cPU) >< Op Code >< hhil >< ADHADL >< Not used >< ADp >< Op Code >

R/W(cPu)

6—64 7700 FAMILY SOFTWARE MANUAL

Absolute Indexed X Indirect

Instruction : JMP

Timing

@cPU |

AP(CPU) < PG X PG X PG XPG or PG+1XPG or PG+1X

AHAL(CPU) < PC >< PC+1 >< hhll+X >< ADHADL ><
Operand Next

DATA(CPU) >< Op Code >< hhll >< Not used >< ADHADL >< Op Code >

R/W(cPu)

Instruction : JSR

Timing

@cPU |

AP(CPU) < PG >< PG >< PG ><PG or PG+1>< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< hhll+X >< S-1 >< ADHADL ><
Operand Next

DATA(cPU) >< Op Code >< hhll >< Not used >< ADHADL >< PCHPCL >< Op Code >

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL 6—65

Stack

Instruction : PEA

Timing

@cpPU |

AP(CPU) < PG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S-1 >< PC+3 ><
Operand Next

DATA(CPU) >< Op Code >< mmnn >< Not used >< mmnn >< Op Code >

R/W(cPU)

Instruction : PEI

Timing

@ CPU |

AP(CPU) < PG >< PG >< 00 >< 00 or 01 >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< DPR+nn >< S-1 >< PC+2 ><
Operand Next

DATA(CPU) >< Op Code >< nn >< Not used >< DHDL >< DHDL >< Op Code >

g

R/W(cPu)

6—66 7700 FAMILY SOFTWARE MANUAL

Stack

Instruction : PER

Timing

@cPU |

AP(CPU) < PG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S-1 >< PC+3 ><
Operand Next

DATA(CPU) >< Op Code >< mmnn >< Not used >< Not used ><PC+mmnn>< Op Code >

R/W(cPU)

Instruction : PHA, PHD, PHP, PHX, PHY

Timing

@cPU |

AP(CPU) < RG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S-1 >< PC+1 ><

DATA(CPU) Op Code Not used Not used A Next
Op Code

R/W(cPU)

7700 FAMILY SOFTWARE MANUAL 6—67

Stack

Instruction : PHB

Timing

@CPU |
AP(CPU) < PG >< PG >< PG >< PG >< 00 >< PG ><
AHAL(CPU) < PC >< PC+1 >< PC+1 >< PC+2 >< S-1 >< PC+2 ><
DATA(cPu) >< Op Code>< Not used >< Op Code >< Not used >< Not used >< B >< Op!\lg)(()tde>

R/W(cPu)

Instruction : PHG, PHT

Timing

@cPU |

AP(CPU) < PG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S >< PC+1 ><
Next

DATA(CPU) >< Op Code>< Not used>< PG >< Op Code >

R/W(cPU)

6—68 7700 FAMILY SOFTWARE MANUAL

Stack

Instruction : PLA, PLD, PLX, PLY

Timing

@cPU |

Ap(CPU) < PG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S+1 >< PC+1 ><

DATA(CPU OpCode Y Notused Y Notused A Next
(CPVU) Op Code

(Stack)

R/W(cpPu)

Instruction : PLB

Timing

@cpPU |

oy (N s N ke X " 'EED D

AHAL(CPU) < PC >< PC+1 >< PC+1 >< PC+2 >< S+1 >< PC+2 ><

DATA(cPU) >< Op Code >< Not used >< Op Code >< Not used >< Not used >< B ><

(Stack)

R/W(cPU)

7700 FAMILY SOFTWARE MANUAL

6-69

Stack

Instruction : PLP

Timing

@cpPU |

AP(CPU) < PG >< PG >< 00 >< PG ><

AHAL(CPU) < PC >< PC+1 >< S+1 >< PC+1 ><

DATA(CPU Op Code Not used Not used PS Not used Next
(CPU) Op Code

(Stack)

RIW(cpPU)

Instruction : PLT

Timing

@cPU |

AP(CPU) < PG >< PG >< 00 >< DL >< PG ><
AHAL(CPU) < PC >< PC+1 >< S+1 >< PC+1 ><

Op Code Not used Not used DT Not used Next
DATA(cPu) P Op Code

(Stack)

R/W(cpPu)

6-70 7700 FAMILY SOFTWARE MANUAL

Stack

Instruction : PSH

Timing

- [LT L UL
AP(CPU) PG X PG X 00 X 00
AHAL(CPU) < PC X PC+1 X S X S S X S-1 S-2 S—ZX S-3
owtern_forcoagf ol i Y Y e a (o e

“‘H” —

R/W(CPU)

X Y L DPR
IS

< S-4 S—4 X S-5 S-6 (S—G x S—7) S-8 S-8 X S-9 S-10
B Not Not
used used

<
<
Gz
D C
5 C
=
Gz
@D O
@9
<
<
<
Gz
@D O
Q9
<
5z
@® O
29
<
=}
o
o
o]
@ O
@9

DT PG PS
00 00 X 00 PG x
S-10 S-11 S-11 S-12 S-12 X S-13 PC+2 x

"

Not Not Not Not
used ot X used X PG X used X used X P

L0 _1

Next
Op Code,

(Note) This figure is an example pushed all the registers by PSH instruction. If any register is
not pushed, its cycle * «<———= " is nothing.

7700 FAMILY SOFTWARE MANUAL 6-71

Stack

Instruction PUL
Timing
PS
AP(CPU) PG X PG 00 >
AHAL(CPU) (PC X PC+1 X S+1 X S+1 X S+1 S+1 X S+2 S+3 X S+3 >
Operand Not Not Not Not Not Not Not
DATA(CPU) ><Op COdeX nn used X used X used X used X PS X used X used >< used
e
R/W(CPU)
DT DPR s
00 X DT 00 > 00 >
S+3 X S+3 S+4 S+4 X S+5 S+6 S+6 X S+7 S+8 >
Not Not Not Not Not Not Not Not
used >< DT X used X used X DPRX used X used X used X Y X used used
X B A
00 00 00 X PG x
S+8 X S+9 S+10 S+1OX S+11 S+12 S+12X S+13 S+14 X PC+2 x
Not X Not Not B Not Not A Not Not Next
used used used used used used used /\Op Code

(Note) This figure is an example pushed all the registers by PUL instruction. If any register is

not pushed, its cycle “<————= " is nothing.

6-72

7700 FAMILY SOFTWARE MANUAL

Relative

Instruction BRA
Timing
(@ CPU |
AP(CPU) < PG >< PG >< PG ><PG or PG+1><
AHAL(CPU) < PC >< PC+1 >< PC+rr ><
Operand Next
DATA(cPU) >< Op Code >< " >< Not used >< Not used >< op Code>
o
R/W(cPu)
Instruction BCC, BCS, BEQ, .BMI, BNE, BPL, BVC, BVS
Timing
Branched
@CPU
AP(CPU) < PG >< PG >< PG PG or PG+1><
AHAL(CPU) < PC >< PC+1 PC+rr ><
DATA(cPU Op Code Operand Not used Not used Not used Not used Next
(CPU) P rr Op Code
I
R/W(cpPu)

When not branch, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL

6-73

Instruction

Timing

@CPU
AP(CPU)
AHAL(CPU)
DATA(CPU)

R/W(cPU)

Direct Bit Relative

BBC, BBS

DPRL#0, m=0, Branched

JERERERERNRERNE

(PG X PG 00 OOOfOlX PG X

PG >< pc | PGor

PG+1
|

< PC X PC+1 EE(F; XPC+2X

PC+4 PCHPCL x

+rr

Operand Operand
xOp COdeX X use X DHDL X mman

Operand Not Not Not Next
used used used Op Code

When DPRL=0, this cycle is nothing.

When not branech, this cycle is nothing.

When m=1, fetched operand at 5-th cycle is 1-byte (nn).

6-74

7700 FAMILY SOFTWARE MANUAL

Absolute Bit Relative

Instruction : BBC, BBS
Timing

m=0, Branched

PG or

AP(CPU) (PG X PG X PG X PG X PG X PG PG+1

AHAL(CPU) (PC X PC+1X hhll X PC+3X PC+5 PC+rr
Operand Operand Operand Not Not Not Next

DATA(CPU) xOP CodeX hhil X DHDL X mmnn " used X used X used XOp Code

o

-

1

L2 __

R/W(cpPu)

When not branch, this cycle is nothing.

When m=1, fetched operand at 4-th cycle is 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL

6-75

Instruction

Timing

@cpPu

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(cpPu)

Instruction

Timing

@cPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(cpPu)

Stack Pointer Relative

ADC, AND, CMP, EOR, LDA, ORA, SBC

D D € D

PC >< PC+1 >< S+ir >< PC+2 ><

Operand Next
>< OpCode>< " ><N0tused>< DHDL ><OpCode>

STA

10,5 D TN D

PC >< PC+1 >< S+rr >< PC+2 ><

Next
>< Op Code >< Operrrand >< Not used >< Not used>< A >< Op Code >

6-76

7700 FAMILY SOFTWARE MANUAL

Instruction

Timing

@ CPU

AP(CPU)

AHAL(CPU)

DATA(cCPU)

R/W(cPu)

DIV,

Stack Pointer Relative

DIVS*, MPY, MPYS*

O0

UL UL

=

(7o) re fre fre f oo | woron

PG

< PC X PC+1 X PC+1 X PC+2 X S+t

PC+3

1]

Op
Code

Not
used

|

Op Operand Not
Code X m used DHDL Not used

“qr

Next
Op Code

———

(Note) The cycle number during O is shown in following table

Instruction The contents The number of cycles(cycle)
of division m=0 =1
DIV — 39 73
Plus+Plus
Plus+Minus 41 25
DIVS Minus+Minus
Minus+Plus 42 26 q
MPY — 20 3
PlusOPlus
MinusOMinus 22 14
MPYS PlusOMinus
MinusOPlus & 17

« The contents of AHAL(cpPY) during l.of the DIVS instruction is undefined.
« When the multiplier and thednultiplicand is different sign at the MPYS instruction, the contents of
AHAL(cPU) of the last 3 cycles during O is undefined.

7700 FAMILY SOFTWARE MANUAL

677

Stack Pointer Relative

Instruction : DIV, DIVS* (case of O division)
Timing

@CcPU

AP(CPU) < PG X PG X PG X PG X 00 X 00 or 01
AHAL(CPU) < PC X PC+1X PC+1X PC+2 X S+ X FFFF X FFFE

DATA(CPU) N Op CodeXNot usedXOp CodeXOperrrandXNot usedX DHDL XNot usedXNot used x Not used x Not usedXNot usedXNot used>

“qr

R/W(CPU)

I

At DIVS instruction, this cycle is nothing.

00 or 01 00 X 00 X 00 I
S X s-1 X S-2 Ks_i’yx sS4 X S-4 XFFFC XADHADL*
<Not usedX PG XNot usedX PC XNot usedX PS XNot usedXADHADLXo’;\‘g)gde>

FFFE

L L2

|

6-78 7700 FAMILY SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

@cpPU |

AP(CPU) < PG >< PG >< 00 >< 00 or 01 >< DT ><DT or DT+1>< PG ><

AHAL(CPU) < PC >< PC+1 >< SHIT ><ADHADL+Y>< PC+2 ><
Next

DATA(CPU) >< Op Code >< Operand >< Not used >< ADHADL >< Not used >< DHDL >< Op Code >

R/W(cPu)

Instruction : STA

Timing

(@ CPU |

AP(CPU) < PG X PG X 00 XOOorOlX DT X DT or DT+1 X PG X
AHAL(CPU) < PC X PC+1 X S+t X ADHADL+Y X PC+2 X

Operand Next
DATA(CPU) XOp CodeX " X Not usedX ADHADLX Not usedX Not usedX A Xop Code>

R/W(cPu)

7700 FAMILY SOFTWARE MANUAL 6-79

Instruction

Timing

@CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(cpPU)

Stack Pointer Relative Indirect Indexed Y

DIV, DIVS*, MPY, MPYS*

Uyt Uyl
(7o) pe [e | re | fwoof or | —— -

ADH
ADL
+Y

< PC X PC+1 X PC+1 X PC+2 X S+t X

ADHADL+Y

PC+3

L
L

Not
used

Op
Code

Not
used

Not
used

Op Operand
>< CodeX X X " X XADHADLX

X DHDL x Not used

Next

XOp Code>

aqr

(Note) The cycle number during O is shown in following table

The number of cycles(cycle
Instruction| The contents ycles(cycle)
of division m=0 m=1
DIV — 39 23
Plus+Plus
Plus+Minus 41 25
DIVS - -
Minus+Minus |
Minus+Plus 42 26
MPY — 20 12
PlusOPlus
MinusCOMinus 22 4
MPYS -
PlusOMinus P 17
MinusOPlus

* The contents of AHAL(ePU) during [of the DIVS instruction is undefined.
* When the multiplier and the multiplicand is different sign at the MPYSS instruction, the contents of
AHAL(cpPU) of the last 3 cycles during O is undefined.

6-80

7700 FAMILY SOFTWARE MANUAL

Stack Pointer Relative Indirect Indexed Y

Instruction : DIV, DIVS*(case of O division)
Timing

@cPU

AP(CPU) < PG X X PG X PG X 00 X000r01X DT X DT or DT+1
AHAL(CPU) < X Pc+1X Pc+1X PC+2 X S+rr X ADHADL+Y XFFFF

DATA(cPU) x Op Code Not used Op CodeXOperrrandXNot usedXADHADLXNot usedX DHDL XNot usedXNot usedXNot usedXNot used>

R/W(cPu)

At DIVS instruction, this cycle is nothing.

DT or DT+1 X [¢)0) X 00 X 00 x
FFFF x FFFE X S X s-1 X s-2 X s-3 X sS4 X s-4 X FFFC XADHADx
<Not usedXNot usedXNot usedX PG XNOt usedX PC XNot usedX PS XNot usedXADHADLX o,;\lg)(()tde>

7700 FAMILY SOFTWARE MANUAL 6-81

Block Transfer

Instruction : MVN
Timing
e The transfer of even byte Repeat this cycle

@CPU |||||||||||||||||||
PG X PGX dd X PGX Ss X Source Bank ss >

<
e (e wen wem ({7)

AP(CPU)

dd Not SS Not Not Not Not ot
DATA(cPU) xop C°de><(Desggiﬂ'<°] >< used \S°5ee A\ used \ used /\ used DHDL N ysed A\ used

g

R/W(cpPu)

— |

Destination Bank dd X PG x

.

=T

N DHD Not Not Next
used HDL used used [\Op Code

—

—

[=]
=4

_

(Note) This figure is shown that transferred the 2-bytes data. If transferred more than 2-bytes
data, the cycle “* <———=" is repeated each 2-bytes.
The CPU Instruction execution sequence is identical regardless of whether the transfer
start address is even or odd.

6-82

7700 FAMILY SOFTWARE MANUAL

Block Transfer

Instruction MVN
Timing

e The transfer of odd byte

Repeated this cycle

%

UL

@CcPU
AP(CPU) < PG X PG X dd X PG X ss X Source Bank ss >
AHAL(CPU) < PC X PC+1 X PC+2 X X 2(n—1)X ? >
Op Cod Not Not Not Not Not
DATA(CPU) >< po exD“"QZE‘;}”x used ‘Swégﬁkx used used used DL used used
B g
R/W(cpu) |

Transfer last 1-byte

I:I

—

Destination Bank dd X

\
Y+2(n-1) X ? X
.

Not
used

_

Next
Op Code,

X+2n x Y+2n X PC+3
XDHDLX X DL X

Not
used

Lo

(Note) This figure s .shown that transferred the 2-bytes. If transferred more than 2-bytes data,
the cycle “* =<———"is repeated each 2-bytes.
The CPU instruction execution sequence is identical regardless of whether the transfer
start address is even or odd. The transfer of the last byte is performed by reading 2 byte
and writing 1 byte.

7700 FAMILY SOFTWARE MANUAL 6-83

Block Transfer

Instruction : MVP
Timing

e The transfer of even byte Repeated this cycle

PG X dd X PG X Ss XSource Bank ss)

AHAL(CPU) < PC X PC+1 X Y X PC+2X X X ? X X-1)
x Not Not Not Not Not x Not
DATACPY) op COdeXDeS“Bn:,fL(;rX used X Bank)X used X used X used X used X DHDL A seq

g |

@cpPU

%

(9]

AP(CPU) < P

R/\W(CPU)

|

Destination Bank dd XDeSt!‘rﬁ(ﬂonX PG x

\

23 W O3, SO

DHDL Not Not Not Not Next
used used used used used [\Op Code,

iE

—

P
o
=3

-

(Note) This figure is shown that transferred the 2-bytes data. If transferred more than 2-bytes,
the cycle “ <———= " is repeated each 2-bytes.
The CPU instruction execution sequence is identical regardless of whether the transfer
start address is even or odd.

6-84 7700 FAMILY SOFTWARE MANUAL

Block Transfer

Instruction : MVP
Timing

e The transfer of odd byte Repeated this cycle

U UL
Lo frofoe ok = =)
N O 0 D D O szm 1)1>
|

@cpPu

%

AP(CPU)

Not Not Not Not Not
x D
DATACPU) or COdeX ES‘QS‘;‘E”X used XS uégﬁkX used X used X used X used us

R/W(cPU)

Transfer last 1-byte

I:I

—

Destination Bank dd X ss X Ss X dd X dd X PG x

Y-2(n-1)-1 >< ? X X:f” X X—2n >< Y:f”X Y—ZnX PC+3
N DHD Not Not Not Not D Not Not D Next
used HDL A used used used used - used used L /\Op Code

—

[=]
—~

-

(Note) This figure is shown that transferred the 2-bytes data. If transferred more than 2-bytes,
the cycle “ «<——= " is repeated each 2-bytes.
The CPU instruction execution sequence is identical regardless of whether the transfer
start address is even or odd.

7700 FAMILY SOFTWARE MANUAL

6-85

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODES

MEMORANDUM

6—86 7700 FAMILY SOFTWARE MANUAL

EOL announced

APPENDIX

APPENDIX 1. Machine Instructions
APPENDIX 2. Hexadecimal Instruction Code Table

Renesas
EOL announced

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode
Symbal Funetion Detalls IMP | IMM A DIR | DIRD | DIRX j DIRY | (DIR) | {DIRX] | {DIRYY
- op| n (4 top] | % [op| n 14 [opi n |4]op| n | [op| n[# Joo| n % |op| n | % |op| n |H[op| n|#
ADC Ape,C + AceM+C | Adds the carry, the assumulator and the memary egntents, woj2|2 B5(4 | 2 75|92 72 82|67 |27T|8]|2
(Mota 1,2} The result is entered into the accumulator. When the D _m
flag s "0", binary additions |$ done, and when the D flag is 42 4|3 1426 | 3 492|713 42/ 8 | 3[42| 9 |3 [42(10] 3
1", dacimal addition |5 done. b | 5 751 72] 61 71
AND Acc— AccAM Obtains the logical product of the contents of the accumu- 7H2| 2 25 42 35512 32| 6| 2|21 7| 2|3 B|2
(MNote 1,2} iator and the soniemts of the memory. The result s en-
terad into the accumulator. 424 4|3 26| 3 42/ 7|3 42 8|3 42| 2|3 [42/70] 3
29} 251 35| 32 21 31
ASL m={0 Shifts the accumulator or the memary contents one bit to 0al 2]1 06| 7(2 1672
{Mote 1} Ele{bi{-~[oe]~0 | the left. "0" is entered Into bll 0 of the accumulator or the
et memery. The contents of bit 15 {bit 7 when the m flag is 42 42
"1") of the accumulator or memory before shift |5 entered LY
€l bz [[bg -0 into the C flag.
ASR™ m=0 Shifts the ascumulator or the memory contents one bit to 89| 5]2 89|93 891104 3
(Mote 1} [bys] T o] tha right. The kit 0 of the acsumulator ar memory |3 en- 08 18] 15|
tared into the C flag. The contents of bit 15 (bit 7 when
=1 the m flag is “1) of the accumulator or memery hefore 420512
[br [T shift is enlered Into bit 15 (bit 7). 08,
BRBC M=07% Tests the specified bit of the memery. Branches when all
{Nate 3,5) the contents of the apeciffed bit is “07.
BEs Mb=17 Tests the spesified bit of the memory. Branches when all
{Note 3,5) tha contents of the specifled bit is “1~.
BCC GC=07 Branchas whan the contents of the C flag is "7
{Mote 5}
BCS c=1? Branchas when the cantents of the G flag s "1".
(Note 3}
BEQ 2=17 Branches when the contents of the Z flag s 1",
{Note 3}
EMI N=17% Branchas when tha contents of the M flag s “1°.
{Mote 3)
ENE Z=07 Branchas when the contents of the Z flag is "0".
{Note 3)
BRL =07 Branches when the contenta of tha N flag s “0".
{Note 3}
ERA PC—PCXoffsat Jumps to the address indicated by the program counter
{Mote 4] | PG+PGH1 plus the offset value,
{carry occured)
PGE—PE—]
{bearrow gecured)
BRK PC—PC+2 Executas softwars intarruption, O[5 2
M{S}~PG
551
M{5}—PCy
F5—1
M{S)I—PCL
B+5—1
M{S)—PSy
5-5—1
M{S)+PS,
S—5—1
11
PO +AD,
FCy—ADY
PE—005
BWG v=07? Branches when the contenta of the ¥V Hag Is "0".
{Note a))
BVE y=17? Branches when the contents of the ¥ flag is "1".
{Note 3)
CLE Mb—0 Makes the contents of the specified bit in the memory "0". 14/8(3
{Nota 5)
CLC C+0 Makes the canlents of the C flag “0". w2
cLt 10 Makes the contents of the | lag “0". E8| 2 (1
oLM - Makas ths contents of the m flag "0". bs] 2]

7-2 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode Pracessor status register
L{DIANLBIRLY[ABS | ABSb | ABSX|ABS,Y | ABL | ABLX|{ABS) L(ABS)|{ABSX)| STK | REL | DIRbR | ABSpR] SA [{SALY| BLK 10|9{a 782 |4|2(2|1]0
co| n | % {on| nidk|an] n | #lon| n ool o [#]on| n| #]0n| n|#op] n| Ziep| nitk|opf n|#|ep| 1| 4{on| nitt|op| n|#|op| n]3t|opl 0 |#tlop| nltt|op| n|#|opla 2] 1PL [W|v{m|x|D]|1)
6750 2177111 2 60 4| 3 o[63|79 6|3 6F| 6| 41FF{7 |4 63 5| 2[73|8 R IR RN N o
42i12(3421313 4256 | 4 42 8| 4|42 8| 4142\ B |5 42] 3|5 42| 7| 3142010
57| i G| 0| 79 6F TF| 63 73
2702|3718 2 |ep| 4 | 3 30|6| 3396|326 |d 3¢ 7|4 2351230 el Te - T=]2]~
4212(3213 3426 |4 4205 |4 42]0 | 4|48 5 142 9|3 42| 7 |3 42|10
27| 137 20 El 30 2F IF 23 33
0| 7|3 1|8 elofaml=lele]o]e]z]a
€9/ 9|4 83[11 e s [N{s]=]|*|"|*|2|C
g 1E|
34|17 |4[35C| 815 AR R RN RN
2417 |4 [2C| R 15 ale|ale|w|ale]a|alels
ool 412 spafege|r]ege|e]ele]e
6l4]2
Fl4i2
3014 | 2 { e e efo]e]|w]|nfofs]n
ol 4|2 elw|afaln|ata]a]s]e]|n
10(4f2 elol|sbalolota]|alalols
H]
v s ! S PR RPN S
g0 412
82413 :
!
|
=0 4| 2 el Tl e e]
. - -Pr R 0 DR D e e S B O
cial4 alwlafafe]o|a|ola]n]s
|] e|n|w|w|ofja|w|agu]|=]|D
lwdalalalols]aia]-]-
elw|w]|alofo|e]|ode]e]s

7700 FAMILY SOFTWARE MANUAL

7-3

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode
Symbol Funstion Datails MP IMM A DIR | DIRb | DIRX | DIRY | (DIRY | (DIRXY] (DAY
oo lopin | #|op| ni|opln|#op| n{# |op| n | |op| v} op]| 0| #lop| n|#ep|niH
CLP PSb-—0t Specilies he kit position in the procassor stalus reglster by the bit Cid |2
pealem of the second byte in the instrucion, and sats "7 in that bit.
cLy Wil Makes the contents of the V flag “0". BE| 2|1
) S
CMP Age—M Gompares the contents of the accumulator with the ¢on- cal2]z2 ci 4|2 b5 62 Dele|2|cv|2|m|el2
(Note 1,2) tenis of the memory.
42/ 443 42/ 6|3 42/ 713 42,8 | 3 |42| 3| 3 (4210 3
CY Ch 8 o Gl Dl
CPY X—M Compares the contents of the index register X wih the E1l 2|2 Ef 412
{Mate 2} contents of the memary. |
CPY ¥—M Compares the contents of the index register ¥ with the ool z2j2 Gl 42
{Mote 2) contants of the memory.
DEC Apo+hAge—1 or Decrements the contents of the accumiator or memory by 1al2(1]k 712 DB 7;2
(Mote 1} | M—M—) T,
42142
1A
DEX K—¥—1 Decrements the contents of the index regiater X by 1. Cal 211
DEY Y—¥—1 Decrements the contents of the index register Y by 1. ag) 21
D Afquotiont] —BAM | The mmenl tat places the comtents of aceomulgter B 10 the Higher crder ang the B3j27| 3 24129| 3 B930| 3 63|31} 3 |BOI32| 3189133 3
(Nole 2,10} | Blremalnder) cerfients of apcumulalor A to the towes order is dhider] by e conlants of e mamory. 29 25 35 32 2 31
The quotiart |5 entered ito datet A and the remzindes it iy B
plvs* Alquotient)~B.A/M | The numars! with sign thal placss the contents of accumulator B lo fre highes B58/29) 3 42(31) 3 B3I32| 3 83133(3 [B234| 3 |49(345| 3
(Note 2,14) | Blremalnder)with sigh | erder and the contents of accumutator A b the fowst areler in divided by the S 5 B5| B2 Al B
contents of the memcey. The quodiem 15 entered |#lo 2ccumulaler & and the
remainder inta accumulatoe B.
ECR Aco—Acc¥M Loglcal exclusive sum bs obtained of the contents of the 481212 454 | 2 S5 5|2 BaG(27| 2518|2
{Note 1,2) accumuiator and the contents of the memary. The result 1s
placed ints the ascurnulatar. 42 4 '3 42/ 6|3 421 5| 3342 9| 3|42010(3
49 45| 52 41 51
EXTS* Bit 7 of Ape=1 The signed 8-bit data stored In the low-order byte of the 9| 812
{Note 1) |15 _ b7 accurnulater ia extended te a 16-hit dala, 38
T 777
Bit 7 of Acg=D 42/ 8|2
B15 b7 B8
ExTZ¥ Ace The 8-bit data stored In the low-order byta of the accumu- A3 52
(Note 1) | Bb1G BB b7 b0 1 lator is extended to a 16-bit data. Bits B b3 15 of the acou- AB|
mulator are get to "0", 42[5)2
IMNG Apc—Aept1 or Increments the contants of the accumulator or memary by 4|2 |1 |EB| 712 i 7|2
(Natz 1) | M —M+1 B ol
4214 (2
1A
IMX Ke=xX+1 Increments the contents of the Index registar X by 1. E3 2|1
MY Y—Y+1 Increments the contents of the Index raglster Y by 1. CB[2|1
JMP ABS Plagez @ new address into the program counter and Jumps
PGy — ADL ta that new address.
PCy+— Ay
ABL
P PG+ ADL
PCry +— ALy
PG+—ADg
{ABS}
PGL ~(ADy, AD}
PGy ~—{ADy, ADLH)
L{ABS)
PGy —{ADw ADL) |
PCy +{ADy, Al H1) '{
PG ~{ADy, ADy +2} !
’
(ABS, X)
PGy, ~—{ADy, AD 2]
PGy = { ADy, AD -+ X
+1)

7-4 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode Processor slatus regisler
LIDIR]|LIDIRLY| ABS |ABS.b|ABSX|ABSY | ABL | ABLX|{ABS)[L{ABS)|{aBSX)| STH | AEL {DIRBR | ABSER| SR |{SRLY[BLK mJ sjs 7|g{sld(3|2|
apin |[#|op njf n#opn#opn#opn#opn#oph#opn#opn#npn#opn#epn#opn#opn#opnﬁ IPL |N|(¥|mlz|D|1j2
=|*|*| Specified flag b
comes "{)
elo|ale|a]alaf=|]=
o102 o7|11| 2 ooy 4| 3 oo 6|3 |03| 6| 3]cr 6|4 1DF 7|4 ¢35 (2| e} Lol =l"|" |2
EEEEEBERE ERRFARERREEE 42| 73 a2[i0t 3
c7| W oo o) M cF OF, Gy 3]
ec(4|2 wlefaqn|=|=y]=]|+|2
ool 4|3 s afaipg[e|a]e]|e|a]|Z
e 72 D53 ANENMNEANEPE
— -1
o|wfn s nfsfjela|?
! ---N-----
35| 3 [aal26t 3 |Bo|29) 4 Botst| 4 [ag{1| 4 |Bojal| 5 j3a(32| 5 o(30| 3 88133 2 =l |NJY ||]
27 47 | i) i * 3 73 3
taal37] 3 |alag) 3 nolm |4 ae|33] 4 [eala2] 4 [so[3] 5 [esfad] 5 Balaz| 3 [68]35(5 o] e n]w|-[-]<]+]z
Y g 4D B} B #F| BF A3 &
!
47(10f 2 [57{11| 2 {4 | 3 5n| 6|3 |54 6|2 |4e| 6|4 |5F| 7| 4 43(5|2[53)8 |2 elels|Nje|o|r|e]+|2Z
HEREERZEEE ERRHEEREEREEE MHEELE
47 57 1D 50 53 I 5 43 53
e N | w | a|w}w z
aleta|Qle]|e]|a]|e]s|Z
EE| 7|3 FE{d |3 el TnlT-1-T- 112
|
T e slale|e|al?
sla|afju|a|a]=]|=|=72
(2|3 scl4la c|4i3jpcia|3fc|6}a
i
!
]
i
J‘

7700 FAMILY SOFTWARE MANUAL 7-5

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode

Symbot Function Details IMP | IMM A DIR | DIRb | BR.X | DIRY | (DAY | (DIRXY] (DIRLY

opn#opn#apnﬁ_opn#cpn#opn#apn{#opn#mnﬂmn#
JSR ABS Baves the contents of the program counter {alse the con-
M{S)+— PCy tents of the progeam bank register for ABL} Inte the stack,
i §+5-1 and jumps to the new address.
M5} PG,
§+-5—1
FC| - AD|
PCH + ADy
ABL
M8} PG
B—8-1
M(5)— PCy
§e-5—1
M3 —eC,
§+58—1
PG — ADy
POy +— ADy
PG+~ ADg
{ABS, X)
M{8)— PGy
§+—5—1
M(8)+ PG|,
3+—5—1
Py~ (ADy, AD X
PCy + {ADg ADLHX
+1)
LDA Ace— M Enters the contents of the memory inta the accumulator, Ml22 A5 4|2 W52 BEG(2|Al}7|2|(Bl|B|2
{Mote 1,2} R
420 423 42| 6|3 42| 7|3 42| 8 | 342 2|3 [4210 2
Al A5 BA | A Bi
LDM M+ (M0t Entars the immadiate value into the memaory. 64433 74513
{Note &)
LDT OT + IMM Enters the immadiate value Into the data kank ragisier, 83513
e
LD X+ M Enters the contants of the memary into index register X, A 2|2 A 42 8652
{Note 2}
LoY Y~ M Enters the contents of the memory Inla Index reglster Y, #|2| 2 A 412 Bi|5]2
{Note 2)
LSR m=0 Shifts the contents of the accumulalor or the contents of 2148712 56|72
{Note 1} | nJpe] ~Tmol-c the memery cne bit to the right. The bit O of the accurmula-
=1 tor or the memory s entared inlko the C flag. “0° s entered 4214 (2
into kit 15 (bit 7 when the m flag is "1".) 4A
O+ tyy]- . [bo G
MPY B, A—A% M Multiplieg the of lalar A and the contents of the mem- 8016; 3 [918| 3 4913 3 BO20 3189121 3:89(22(3
{Hgta 2,11) ory. This Highet crder of the result of aperation are enterad into agtu- e 05 15 12 01 H
mulater B, and the lower order lnte accumylater A,
Mevs® B, A—A% M with sign | The celent of the accumulalor A is multipied by the content of mem- 8918] 3 89(20| 3 89|21 3 8922 3 [69(23) 318924| 3
(Note 2,15} ofy as signed data. The reault s a 32-bit data which is placed In the 89 85| 95| 92 81 Ell
sccumulatons B {upper 16 bits of the resut) and A (lower 16 bils of
1he resut].
WMVH Mn+i—tm-+i Transmits the data block. The transmission |s done from
(Mota 8) the lower order aeddress of the block.
MVP Ma=—i=mMm—i Transmits the data block. Transmission i3 done form the
{Nete 9) highet order address of the data bigek,
NOP PG+PC+1 Advances the pragram counter, but performs nothing else. (B8 2|1
ORA Acoc—AocVM Logleal sum per bit of the contents of the accumulator and 0z 2 05 4|2 16162 12|g|2[07{2(1178|2
{Note 1,2) the contents of tha memory is obtained. The rasult is en-
terad into the accumulatar, 42,413 4263 42|73 42| 813 42| 9] 3|42/101 3
09;] 05 154 12 01 1

7—6 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mads Processor status register
L{DIR)|L(OIA)¥] ABS |ABSb{ABSX|ABSY| ABL |ABLX | (ABS)|L(ABS)|(ABS%}| STK | REL [DIR4A | ABSHR} SR |(BR)¥] BLK IOT9|B 7i6(5]4(3|2]1|0
on| n {4 lop| | #ion| n (4 top| 0| # on| n{dtlop o |3t op| | 3 op| n|dt|op| n | |op| nidt|o| 0|]op| n | & op| n) lop| n | S| n | opl n |8 |op| 0 | lop(n(#] 1PL [M{¥|miz|D|11Z|C
20|16 |3 228 |4 FC|B |3
13
arf1orz |eFad| 2 fan| 413 erl 613 100(6| 2|ar{ 6|4 [er 7] 4 f | jnals|2tey8|2 oo NWfe|u]a]e|e]|Z]"
FEEBEERERY EROEEREEREEE ' 42| 7| 3 [azhio[2
At = D) B AF] BF a3 B3,
eG4 aw|e|afe|n|a|w|n]a]w
ol | e
AE 4|3 BE[6 |3 e oMo |2]"
A4 3 Bol 63 N'Z
E7]3 |sel8] 2 NEENE | Szl
Rol24| 3 {8w|25| 2 1aa| 18] 4 801207 4 (RY[26) 4 [49(20] 5 (B5/2}| & 59]19] 3 (39|22 3 NERNENBENED
07] 17 D 10| i3 0E 1F 03, 13
B9(26| 3 [89)27| 3 [R9j20f 4 T 2021 3 (8924 3 slela(Mje|a|ois|n|ZIO
7] 97, 50 GE] 93
£ 2 - r - | - B [[
[4| Fhaj e o]+ j ||)~
+
- X7
i 449!3......-.-..
+i
M7
]
o710t 2 [17[11] 2{on[4] 2 10{B|3)19|6|3)0F| 6| 41F|7| 4 03| 521382 s oo |N[e|[efa]e]a]Zje
i
4201203 [4213] 3 {42(&3 4 42 8]4i42(84142/ 8|5 (42195 42 7| 3 (42|10 3
o7 " oDy 1D 19 i3 1F| ! 03 13

7700 FAMILY SOFTWARE MANUAL 7-7

APPENDIX

APPENDIX.1 Machine Instructions

Symbot

Function

Addressing mode

Details

IMM A

D

DIRb { DIRX

DIRY

[DIH)_ _{_IjIR.K)

o

n|#)op| n|#lop|n |2

PEA

PEI

M{ S} e IMMz
3+e8—1
M{S 3w M)
5-5—1

| Mis) - mitoeR) -+ naws |

+t}
551
WIS —hal [DPE}H- M)
§+8—1

The 3rd and the 2nd bytes of the instruction are saved inlo
the stack, in this order.

#upnﬁopn?#upn

Specifies 2 sequential bytes in the direct page in the 2nd
byte of the instruclion, and saves the contents Into the
atack.

PER

EARPCHIMMaIMM,
M(8}—EARK
5-5—1
M{SI—EARL
§—5—1

Regards the 2nd and 3rd bytes of the instruction as 16-hiL
numerals, adds them to the program counter, and saves
the result into the stack.

PHA

m=0
M{S) Ay
Se5—1
MES)—A,
5—5—1

=1
M{BI—AL
8—5—1

Saves the contents of accumulater A into the stack.

FHE

m=0
M{S}—By
§—5—1
WS B
§—58—1

m=1
M{5]—B_

1 geg~1

Saves the contents of acoumulaior 8 inlo the stack.

PHO

M{S]—DPRY
&—5—1
M(5]—DPRy
§+-5—1

Saves the contents of the diract page register inlo the
stack.

PHG

i M(51—PG

G581

Saves the contents of the program bank register Into the
stack.

PHF

M(S)"‘—pSH
s8]
MiS}—P3.
5-5—1

Saves the cemtents of The program stalus register into the
stack.

PHT

PHX

551

M{S}—DT

Saves the contents of the data bank register into the
stack.

»=0

M Sh—xy
§+5—1
MBI,
5481

x=1
M) X,
§5~1

Saves ihe conients of the index register X into the stack.

PHY

x=0
MBIy
$—5—1
M3),

: §=—8~-1

x=}
MBI+,
Fe5—1

Saves the contents of the index registar ¥ into the stack.

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addrassing mode Processor status registar
L{DIR)|LIDRYY| ABS | ABSb | ABS X | ABSY | ABL [ABLX |({ARS}|L{ABSH(ABSX]| STK | REL |DIRbR|AESpA| SR |{sAly| BLK 1U|9]s dle(a(4(8]|2|1]0
upn#cpn#upn#cpnﬁop‘n#opnﬂopn#upgn#opn#upn#upn#wnlﬁopnﬁmn#upnﬂopn#epniopn# IPL |N|(¥im|x|D|1|Z|C
5 Fi5]3
i
D462 I wla|ofo|alela|ale]s]s
|
i .
; 5253 i sla|wla|w|afal|n|s]|s]n
| | |
l |
| .5
j f f 45041 efa|w|e|alo]|o]|afln]e]n
e | ;
;
‘ |
| | !
i :
! 426 |2
] 48
R A !
i ! i | i ; [
i | | (]
i] i I
J i
i . ! i
[i 5| 41 :
1
i
BEENI a 493'1 P IR (S I [I (R PO I R Y
o o - “-
|
583 (1
D4 (1
|
- h
A | el w ol w]|u|a}e
i
3
i | |
L

7700 FAMILY SOFTWARE MANUAL 7-9

APPENDIX

APPENDIX.1 Machine Instructions

Symhbaol

PLA

Function

m=0
S+-54)
AL—MIS)
-5+
Ay—{S)

m=}
G541
Ap+—-M(8)

PLB

m=0
3+-5+1
BL—M{S)
S+—5+1
ByM(S)

m=1
3—5+1
By +—M(S}

Dretails

Addrassing mode

IMM

JEE

DIR

DIRb | DIRX

DIR.Y

[DIRX)

(DIR)Y

opl r | 3 {em| n it fop

Restores the contents of the stack on \he accumulator A

i
1
1

ik

Festores the contents of the stack on the accumulater B,

PLD

S+-G+1
DPRAL—M(3]
§ew5rht
DPRp—M{ S}

#lap

opln

#oo

n

#

Restores the contents of the stack en the diract page reg-
ister.

S+8+1
PSL—M(S)
§e-8+1
PSH+—M(5)

Restores the contents of the stack on the processar status
register.

B+-3+1

1 DT—M{8)

Restaores the contents of the stack on the data bark reg-
ister,

¥=0
B+-54-1
X MIS}
5+58+1
Xer—M{S)

x=1
GeBefel
He—MiS)

Restores the sontenis of the slack an the index register X.

PLY

=0
5—5+1
fy+=M(S}
S-5+1
Yu—MI8)

%=1
ge-5pd
YL-MES}

Restores the contents of the stack on tha index register ¥,

PEH
{Mote 8]

M{SH—A, B, X

Suves the registers among accumulater, index ragister,
direct page register, deta bank register, program bank
register, or processgr status register, specified by the bit
pattern of the second byta of the instruction Into the atack.

PUL
(Nota 7}

A, B, X e=M(E)

Restares the contents of the stack to the reglisters among
accumutator, index register, direct page register, dala
bank reglster, or procesacr siatus register, speciled by
the: bit patiern of the second byte of the instruction.

RLA
{Nate 13)

m=0
n blt rotate left

E]

m=1
n bit rotate left

L [o]

|

Aotates the contenta of the accumulator A, n bits to the
lesft.

83|
49

-t

7-10

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing maode Procassar status register
L{R)LDIR)Y| ABS | ABS.b|ABSX|ABSY | ABL | ABLX|{ARS) [L{ABSIHABSX)] STK REL [DRbA | ABSLR| SR [(8R)Y] BLK TOIS|B 7|6é 5;4 afz(1|n
op| o (# dep| n| 3 op| o [#lop| | op| m (4 tep| n |2 op| n 4 op] 0| #|ep| n| £{op| n |Hop |2 n|#|op|n|H#icp{n|2|op| n|Hle|n{#] WPL N[V mix|D|I]Z|C
] wlofogm|a|ate|a]=|2]|"
i
1
[
| : - L 1
42/ 7|2 ANENMEERBBEE
68
i
i]
H i
: :
{ 2B 511 el fa]jala]elalalaiale
§ i i } I
. i - .F ;
28| 611 Value saved in stack.
|
Lol 1‘ e et s
2RI G117 i e oMy i sl zi' -
| '
Fal5i ' Aol wle]s]s ||z b
i i 1k 1
i i | H
P !
i 1 §
H i H
! i ;
[
; i Lo Lals|s bl oo 2] -
i H :
1 ! '
: i .
: : ' ! H
: i ! !
i i I
] t
: i : i i
| 3 3 ' j H i
] 7o : ‘ ‘
re[1z 2| 1 NN NN R
i : 1+ ! . |
! : : . 2lit-iz ! -
: | : :
E} :
| = L
] i : | i
; FB(14 2) i It restored the contents of PS,
1 " _:_4 H It becomes |ts value. And the
it othgr case is no changa,
i
: |
N 1 ¢ :
I i ‘I .
i i i :
- [1
0] ! i
: i ’ H t
| 1
: | i
| ’ i

7700 FAMILY SOFTWARE MANUAL 7-11

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode
Symbal Function Details (YN YT A DIF | DIAL | DIRX | DIRY | (DIR) | (Dm) | tDIR),Y
ap{n|toen|* (op| n (4 iep| n | £ op| n |]op| n| 2 fopl n |t |ep| n | op| k|0 n | #
RO Links the accumulator or the memory to G flag, and rotates [2|01)26| 7|2 26|72
(Mote 1} . R result to the 1ekt by 1 bit.
bigf | be [-[€] 42 4|2 :
2 f
m=]
e |
ROR m=0 Links the accumulator or the memoery to C flag, and rotates GA| 2| 1|66/ 7(2
(Mote 13 result ta the right by 1 bit. !
(G~ bus] -~ [] 47 4]z ;
i
me=1]
RT| ge3+1 Returna from the Intarruption rautine. ol
PS,—MiS}
S5+1
PSy—M(S] ; ‘
Ge§+1 |
PCL—M(8) :
S-S+ i |
POy —MI5} i i
5—5+1 l !
PG—M(S) : ;
ATL 5+3+1 Relurng fram the subroutine. The contents of the program 68| B| 1
¢t PCL—-M(8) bank reglster are also restared,
g5+ i
PC—M(S) {
5—5H1
PG-M{S} !
RTS 5—5+1 Returns from the subroutine, The contents of the program [60/ 51
PO —MIS) bank reqister are not restared.
5+58+1
PCy-M{8)
SBC Ace, C*—ACC—M—E Subtracts the contents of the memory and the Gorrow from B8 2|2 E5(42 FelBi2| F|a|2|EH 2| 2|F1|B)2
{Nate 1.2) the contents the accumulator. .
424 (13 42|63 42/ 7| 3 428|342 9| 210 2
=] £5 F5 F2 E FI| 4
SEE Mh—1 | Makes the contents of the specified bit in the memory 0483 :
{Note 5)
SEC [} | Makes the cofilents of the G flag "1". 2|1
R [N b i I b
SEL +1 Makes the conlents af lhe { flag "1". 78 2| 1 :
SEM o] Makss the contents of the m flag "1". fl2)) e
SEP PSh—1 Sel the@pacifled bit ol the processor status register's 1ow- EN 32 ‘
er byte (PSJ 1o "1, i
S5TA VM= A Stores the contents of the accumulator into the memory. f 85| 4|2 95 5|2 o 7| 2my T (2Mm| 7|2
(Note 1} ¢ ; 0 0 O Ot I
4263 42 7|3 422932 9|3 42 3|3
B 35 =) Ll 21
STP Stops the oscillation of the cscillator. DB 311 |
ETX =X Stares the contanls of the indax register X into the memary, BE[4|2 | 6|52
STY MY Stores the contenls of the index registar ¥ into tha mameary, Bal4(2 94iq|2
TAD DPR*A Transmits the oonterts of the accumulatar A to the direct {38(2 (1
page regiater.
TAS S+A Transmits the contents of the acoumulater A ta the stack peinter. (18| 2]
TAX KA { Transmits the conlants of the acsumulator A to the index [A4(2 (1] i
register ¥, i
TAY Ye-A Transmits the contents of the accumulator A to the index (A8 2 (1 !
Lreglster Y. l
TBO OPR—B i Transmits the contents ol the accurnulator B lo the direct |42 4 (2 i i :
1 page register. 56| ! H

7-12 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode Processor status register
LIDIR|LIDIALY| ABS | ABSb | ABSX | ABS)Y | ABL [ABLX [(ABS) [L{ABS)[(#B3X})] STK | REL | DIRbR JABSBR| S8R NSRLY| BLK 10]9‘8 ?'ia 543 2'1,1 0
Dpn#ﬂpnﬁopﬂ#np%n#ﬂpn:opnlﬂ'onn#upnﬂupni*opn#up;in3upr1ﬂupln#opnﬁmn.#np}n#mnﬂnpén# IPL NEmenlizc
w7[3] T] [x[e]s i ! e : ! TGN e
. H ! .
f 5 | L :
t '
. |
| i i)
Bl 7|3 JE| 8|3 Y i olofefn|ejele|+|«]|2]c
|
i : i
! 1 i
\ Pl
i ! I
i | Value saved in stack.
t [[
Ii |
! | bl o
’ L [
| | |
1. | |
Il 1 !
! ; . T[T
)) i !
5 | E | ! |
. ! :
'I I il | !
. ’ Ll L 655 A O O 1 |
I { i -i i e |- al = el
! ! . § ! I If
' I
glo 2|71 2 |eo[4 | 2 FO;6 |3 (P3| 6|3 |EF| 6| 4|FF|7 4 | e2|5|2|rlalz SN Vet 2]
FEAZEBREAL iofa2|8|4142) 8l 44zl 8[54z 5[5 ! HEHEEZEIEE : !
3] F7 e ¥0) Fa| 1 [er FE l £ Fl
: I S 0 ; 8 B IS ot i o o b o
| ! ! %4 § [. |
1 i :
I:. [r oi' eialefe]e]|w]e]=1
i r' ! .;:. |- i- 10,
i - - L] - I- - -
i o [z b1 -'
! i ! +j+|+|Speciied fag be-
L l 1 ! |1 | i comes "1°
! : B I T A fory e =T
a7[10] 2 g1 2305 3 ans,sss-as A G| 4(9F|7 4 E B2 5| 29382 i|
N L ,
az[12l 3[4zl 3 42 7 [4 427 4427 | 4 |r2l6 5 |42l 85 | P 4275 [az)ro3 | '
87 97 L] oy - (99 I BF ! [|eal 93 i '
20 O O e O O i N l i R -
il ABHABEAREERE
gnl 5|3]' i [; e fefw|efe]rn]e]e|]s
1™] : f
TR | ! K A EEREEREE
4 ol i i
_j B ! i - - - ':f' -i't -
! e [M]in .F. T
........... | [I EARERER
| ! | SRRLIRERE ';i. |+
ol elais el
| | | L i

7700 FAMILY SOFTWARE MANUAL 7-13

APPENDIX

APPENDIX.1 Machine Instructions

Addrassing mode

Symbot Funetion Detalls IMP | IMM [A DiR | DIRb | DIAX | DIRY | (DIR) |{0IRX) | (DIR)Y
ep| n 4 |op] n|$ [op| n | |on] 0|4 |ep| nid|op| 0|4k |op| n 4t |on| n |4]op| n |4]op|n |8
TES S+B Transmits the contents of the accumulator B to the stack (42)4 |2
poirter. 18
TEX X+-B Tranzmlts the contents of the accumulator B io the Index [42) 412
reqlster X, Al
TEY Y+—B Transmits the contents of the accumulator B 1o the index |42 4! 2
reglster Y. Al
TDA A+—DPAR Transmlts tha contents of the direct page reglster ta the 78| 211
accumulator A, j
DB B+DPFR Transmits ihe contents of tha diract page register to the
accumulator B. ‘
TsA A3 Tranamits the contenls of the slack pointer to the accemutator A, [
TEB B—5 Transmits the contants of the stack polnter to the accumu- '
lator B. :
TH% K5 Transmiis the contents of the stack pointer to the Index (BA 2 (1 .
register X : !
TxA A | Transmits the sontents of the index register X to the accu- |BA| 2|1
mulator A,
TrE B Transmits the contenta of the index register X to the accu- 42:% 42
mulator 8. 941 :
TXS S+X Transmits the contents of the indax registar X to the stack |94 2 (1 :
pointer,
TXY YK Transmits the contenla of the index reglster X to the index (981 2|1 :
! register Y. : i
e 1 P S R
TYa AY Transmits the contents of the index register ¥ ta the accu- [B8: 2|1
mulator A,
Ve By Transmits the contents of the index reglster ¥ ta the accu- [42[4|2
mulatar B. k]
TvX A=Y i Transmits the contents of the index registar ¥ to the Index BB 2 (1 :
: register X, i
wiT 1 Stops tha Intarnal clock. ca 3|1 i
¥aB AZR Exchanges the contents of tha accumulater A and the con- B9 6 (2 :
" tents of tha accumulator B. 28] 1

7-14 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addrezsing moda Processor status register

L{QIR}LIDIRLY] ABS | ABS.b|ABSX | ABS,Y | ABL |ABLX |[{ABS)|L{ABSH{ABSX]| STK | REL |DIRpR | aBSbR| &R [(SA)LY| BLK 10|9]a 7|sisl4]z[2]1]o

upn#npn#cpn#oun#upn#opn#up[n#cpn'!-‘-upn#opnﬂopn#upn#opn#wn#upnﬁwn#wnﬁopnﬂ IPL IN(Mim|2|D|(}2

|
[
i
i
i

.
.
-4
.
.
.
™

7700 FAMILY SOFTWARE MANUAL 7-15

APPENDIX

APPENDIX.1 Machine Instructions

The number of cycles shown in the table is described in case of the fastest mode for 2zch Instruction. The numbet of cycles shown in the table is

calculated for DFR =0. The number of cycies in the addressing mede concarning the DPR when DPR, 0 must be incremented by 1.

The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory

read/write address is odd ar aven. It also differs when the external region memory is accessed by BYTE="H".

Mote

Note

Note

Note

Mote

Mote

Mote

Mote

Mote

Mote

Note

Note

MNote

Note

Mote

1. The operation code at the upper row |s used for accumuiator A, and the operation at the lower row is used for accumulator B,
2. When setting flag m=0 to handle the data as 16-bit data in the immediate addressing made, the number of bytes Increments by 1.

3. The number of cycles increments by 2 when branching.

4. The operation code on the upper row |s used for branching in the range ot —128~+127, and the operation code on the lower raw is used for

branching in the range of —32768~—132767.

5. When handling 16-hit data with flag m=0, the byte in the table is incremented by 1.
6.

Typeofregister | A | B X | ¥ |opR| DT | PG | PS
Numberofeycles| 2 | 2 2 | 2 2 11 1V z

Tha numbar of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done is 12, i; indicates

the number of registers among A, B, X, ¥, DPR, and PS to be saved, while t; indicates the number of regisiers among OT and PG to be saved,

7.

Type of reglster A B x Y |.DPR| DT PS5
Number of cycles | 3 3 3 3 | 4 3 3

The number of cycles corresponding to the register to be pulled are added. The number of cyclas when no pulling is done is 14. 1y indicates the

number of registers among A, B, X, Y, OT, and PS to be restored, while [;=1 when DFR |5 (b be restorad.

§. The number of cycles is the case when the number of bytes to be transfered is even.
When the number of bytes to be transfered is odd, the number is catculated as;

74 (i/2) X744
Note that, (1/2) shows tha integer part when t 1 divided by 2.

9. The number of cycles |5 the case when tha number of bytes tn be transfered is even.
When the number of bytes to be transfered is odd, the sumber is calculated as;

94 {ir2} X715
Mote that, {i/2) shows the integer part when i is divided by 2.
10. The number of cycles is the case in the 16-bit-8-bit operatlon. The number of gycles |5 Incramented by 18 for 32-bit-+-16-bit operation.
11. The number of cycles is the case in the 8-bitX8-bit aperation. The number of cycles is incremented by 8 for 16-bit X 16-bit operation.
12, When setting flag x=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.

13. When flag m iz O, the byte in the fable is Incremented by 1.

14. The eycles-count in this table are for 8-hit X 8-bit multiplications with the same sign. If the muHiplier and multiplicand have different signs,

three additional cycles are required. For 16-hit> 18-bit multiplications, the cycles-count increases by 8.

15. The eyctes-count in this table are for 16-bit+2-bit operaticns. For 32-bit+16-bit operations, the cycles-sount increases by 16,

7-16

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Symbols in machine instructions table

Symbol Description Symbol , o Dascriptlon
Me Implied addressing mode St i Excluslva on
[EGE Immediate addressing mode — i Negation
A Accumulator addressing mode - [Movement to the arrow direction
PIR Direct addressing mode Ao Accumulator
DR, b Direct bit addressing mode Accn Accurnulator's upper § bits
BIR, X Direct indexed X addressing mode Accy Accumulator's lower 8 bits
DIR, ¥ Direct indexed ¥ addressing mede A Accumulator A
(DIR) Diract indirect addressing mode Ay Accumulator A's upper 8 bits
{DIR, X} Direct Indexed ¥ indirect addressing mode A Accurnufator A's lower B bits
{DIR), Y Direct ndirect indexed ¥ addressing mods B Accumulator B
L{DIR} Direct indirect long addressing mods By Accumulator B's upper 8 bits
L{DIR), ¥ Direct indirect long indexed Y addressing mode BL Accumulater B's lawer § bits
ABS . Absolute addressing mode b4 Index ragister X
ABS, b Absolute bit addressing mode XH Index register X's upper B bits
ABS, X Absolute Indexad X addressing mode XL Index reglzter X's lower 8 bits
ABS, Y Absolute indexed Y addressing made Y Index registar ¥
ABL Absolute long addressing maode Y Index register ¥'s tpper 8 bits
ABL, X Absolute Tong Indexed X addressing mode A% Indert realstar s lowar § bits
{ABS) Absolyte Indirect addressing mode 3 Stack pointar
L {ABS) | Absolute Indirect long addressing mode FC Program counter
{ABS, X) i Absolute indexed X indiract addressing mode PCy | Program counter's upper B bits
5TK Stack addrassing mode PC. .l Program counter's lower 8 bits
REL Relative addressing moda PG Program bank register
DIR, b, REL Direct bt relatlve addressing mode BT Data bank register
ABS, b, REL Absolute bit relative addrassing mode DPR Direct page rogister
SH Stack puinter redative addressing mode DPR,y Direct page register's upper B bits
(B8R}, ¥ Stack peointer relative indirect Indexed ¥ addressing | OPRL Direct page register's lawer 8 bits
made RS Processor status register
BLK Black transfer addressing mode PSSy Processor status register's upper 8 bits
c Garry flag [=1: 0] Processar status reglsters [ower 8 bits
z Zero flag PSh Processor status registers b-th bit
I Interrupt disable flag MiS) . Contents of memory at address indicated by stack
(8] Decimal operation mede flag . peintar
X Index register length seleclion flag Mp b-th memory locatich
m Data length selection flag ADg Value of 24-bit address’s upper 8-bit { Az~ ay5)
W Ovarflow flag AbDy Value of 24-bit address's middle 8-bit {A;~Ag}
N Negative flag AD_ Value of 24-bit address's [ower 8-bit { A;~Ag)
IPL Processor intarrupt priorty level op Operatlon code
+ Additlon n Number of cycle
— Subtraction # Number of byte
* Multiptication i Number of transfer byte or rotation
e Diviglan iy, T2 Nurnber of registers pushed or pullad
AN Logical AND
N Logical OR

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 1

D3—Do| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecimal
D7—Da4 notation| O 1 2 3 4 5 6 7 8 9 A B C D E F

ORA ORA | SEB | ORA | ASL | ORA ORA | ASL SEB | ORA | ASL | ORA

0000 0 BRK PHP PHD
A,(DIRX) ASR | DIRb | ADIR | DIR |AL(DIR) AIMM A ABS,b | AABS| ABS | AABL
ORA | ORA | ORA | CLB | ORA | ASL | ORA ORA | DEC CLB | ORA | ASL | ORA

0001 1 BPL CcLC TAS
A,(DIR),Y| A(DIR) |A,(SR).Y| DIR,b | ADIRX | DIR,X [ALDIR)Y AABSY| A ABS,b | AABSX| ABSX |AABLX
JSR | AND | JSR | AND | BBS | AND | ROL | AND AND | ROL BBS | AND | ROL | AND

0010 2 PLP PLD
ABS |A(DIRX)| ABL | ASR |[DIRbR|ADIR | DIR |AL{DIR) A,IMM A ABSbR| AABS| ABS | AABL
AND | AND | AND | BBC | AND | ROL | AND AND | INC BBC | AND | ROL | AND

0011 3 BMI SEC TSA
ADIR),Y| A(DIR) |A,(SR),Y| DIRb,R | ADIRX | DIRX |ALDIR)Y AABSY| A ABS,b,R| AABS X| ABSX |AABLX
EOR EOR EOR | LSR | EOR EOR | LSR JMP | EOR | LSR | EOR

0100 4 RTI Note 1 MVP PHA PHG
A,(DIR X) ASR ADIR | DIR |AL(DIR) AIMM A ABS | AABS| ABS | AABL
EOR | EOR | EOR EOR | LSR | EOR EOR JMP | EOR | LSR | EOR

0101 5 BVC MVN CLI PHY | TAD
A,(DIR),Y| A(DIR) |A(SR),Y ADIRX | DIR,X |ALDIR)Y AABS,Y ABL |AABSX| ABSX |AABLX
ADC ADC | LDM | ADC | ROR | ADC ADC | ROR JMP | ADC | ROR | ADC

0110 6 RTS PER PLA RTL
A,(DIR,X) ASR | DIR |ADIR| DIR |ALDIR) A MM A (ABS) | AABS| ABS | AABL
ADC | ADC | ADC | LDM | ADC | ROR | ADC ADC JMP | ADC | ROR | ADC

0111 7 BVS SE| PLY | TDA
A,DIR),Y| A(DIR) |A,(SR).Y| DIR,X | ADIRX | DIR,X |ALDIR)Y AABS)Y (ABS,X) | AABS X| ABS,X |AABLX
BRA | STA | BRA | STA | STY | STA | STX | STA STY | STA | STX | STA

1000 8 DEY | Note 2| TXA | PHT
REL |A(DIRX) REL | ASR | DIR |ADIR| DIR |ALDIR) ABS | AABS| ABS | AABL
STA | STA | STA | STY | STA | STX | STA STA LDM | STA | LDM | STA

1001 9 BCC | TYA TXS | TXY
A,(DIR),Y| A(DIR) |A,(SR),Y| DIRX |ADIRX| DIR,Y |ALDIR)Y AABSY ABS | AABSX| ABSX |AABLX
LDY | LDA | LDX | LDA | LDY | LDA.| LDX | LDA LDA LDY | LDA | LDX | LDA

1010 A TAY TAX | PLT
IMM |A(DIRX)| IMM | ASR [DIR |ADIR | DIR |ALDIR) A IMM ABS | AABS| ABS | AABL
LDA | LDA | LDA | LDY | EDA " LDX | LDA LDA LDY | LDA | LDX | LDA

1011 B BCS CLv TSX | TYX
A,(DIR),Y| A(DIR) |A,(SR).Y| DIRX |ADIRX| DIRY [ALDIR)Y AABS,Y ABSX | AABSX| ABS)Y |AABLX
CPY | CMP | CLP | CMP | CPY | CMP | DEC | CMP CMP CPY | CMP | DEC | CMP

1100 C INY DEX | WIT
IMM [A(DIRX)| IMM< "ASR | DIR |ADIR| DIR |ALDIR) AIMM ABS | AABS| ABS | AABL
CMP | CMP | CMP CMP | DEC | CMP CMP JMP | CMP | DEC | CMP

1101) BNE PEI CLM PHX | STP
A(DIR)Y, A(DIR) 'A(SR),Y ADIRX | DIRX |ALDIR)Y, AABSY L(ABS) | A/ABSX| ABSX |AABLX
cpx | sBc “sep<l sBc | cPx | sBc | INc | sBC SBC CPX | SBC | INC | SBC

1110 E INX NOP | PSH
IMM |A(DIRX) IMM | ASR | DIR |ADIR| DIR |AL(DIR) AIMM ABS | AABS| ABS | AABL
SBC | SBC | SBC SBC | INC | SBC SBC JSR | SBC | INC | SBC

1111 F BEQ PEA SEM PLX | PUL
A(DIR),Y| A(DIR) |A(SR),Y ADIRX | DIRX |ALDIR)Y, AABSY (ABS,X) | AABS,X| ABSX |AABLX

Note 1. 4216 specifies the contents of the INSTRUCTION CODE TABLE-2. About the second word's codes, refer to the INSTRUCTION CODE TABLE-2.
Note 2. 8916 specifies the contents of the INSTRUCTION CODE TABLE-3. About the second word's codes, refer to the INSTRUCTION CODE TABLE-3.

7-18 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 2 (The first word's code of each instruction is 4216)

Ds—Do| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecimal
D7—D4 notation| O 1 2 3 4 5 6 7 8 9 A B C D E F

ORA ORA ORA ORA ORA | ASL ORA ORA
0000 0

B,(DIR,X) B,SR B,DIR BL(DIR) B/MM| B B,ABS B,ABL

ORA | ORA | ORA ORA ORA ORA | DEC ORA ORA
0001 1 TBS

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BL(DIR),Y BABSY B B,ABS X B,ABL,X

AND AND AND AND AND | ROL AND AND
0010 2

B,(DIR,X) B,SR B.DIR BL(DIR) BIMM| B B.ABS B,ABL

AND | AND | AND AND AND AND | INC AND AND
0011 3 TSB

B,(DIR).Y| B,(DIR) |B,(SR),Y B.DIRX BL(DIR),Y BABSY B B,ABS X B,ABL.X

EOR EOR EOR EOR EOR | LSR EOR EOR
0100 4 PHB

B,(DIR,X) B,SR B,DIR BL(DIR) B/MM| B B,ABS B,ABL

EOR | EOR | EOR EOR EOR EOR EOR EOR
0101 5 TBD.

B,(DIR).Y| B,(DIR) |B,(SR),Y B,DIR X BLDIR),Y B,ABS,Y B,ABS X B,ABLX

ADC ADC ADC ADC ADC | ROR ADC ADC
0110 6 PLB

B,(DIR,X) B,SR B.DIR B,L(DIR B./MM | . B B,ABS B,ABL

ADC | ADC | ADC ADC ADC ADC ADC ADC
0111 7 TDB

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BLOIR),Y BABS,Y B,ABS X B,ABLX

STA STA STA STA STA STA
1000 8 TXB

B,(DIR,X) B,SR B,DIR B.L(DIR) B,ABS B,ABL

STA | STA | STA STA STA STA STA STA
1001 9 TYB

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BL(DIR),Y B,ABS,Y B,ABS X B,ABL,X

LDA LDA LDA LDA LDA LDA LDA
1010 A TBY TBX

B,(DIR,X) B,SR B,DIR BL(DIR) B,IMM B,ABS B,ABL

LDA | LDA | LDA LDA LDA LDA LDA LDA
1011 B

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIR X BLOIR)Y B,ABS,Y B,ABS X B,ABLX

CMP CMP CMP CMP CMP CMP CMP
1100 C

B.(DIR.X) |"B.SR B.DIR BLOIR) B,IMM B,ABS B,ABL

CMP | CMP | CMP CMP CMP CMP CMP CMP
1101 D

B(DIR),Y. B,(DIR) |Bi(SR).Y B,DIRX BLDIR),Y B,ABS,Y B,ABS X B,ABLX

SBC | SBC SBC SBC SBC SBC SBC
1110 E

B,(DIR,X) B,SR B,DIR BL(DIR) B.IMM B,ABS B,ABL

SBC | SBC | SBC SBC SBC SBC SBC SBC
1111 F

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BL(DIR),Y B,ABS,Y B,ABS X B,ABLX

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 3 (The first word's code of each instruction is 8916)

D3—Do| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 1111
Hexadecimal
D7—D4 notation 0 1 2 3 4 5 6 7 8 9 A B C D E F
MPY MPY MPY MPY MPY MPY MPY
0000 0
(DIR,X) SR DIR L(DIR) IMM ABS ABL
MPY | MPY | MPY MPY MPY MPY MPY MPY
0001 1
(DIR),Y| (DIR) | (SR),Y DIR,X L(DIR),Y ABS,Y ABS X ABL,X
DIV DIV DIV DIV DIV DIV DIV
0010 2 XAB
(DIR),X SR DIR L(DIR) IMM ABS ABL
DIV DIV DIV DIv DIV DIV DIV DIV
0011 3
(DIR),Y| (DIR) | (SR),Y DIR,X L(DIR),Y ABS,Y ABS, X ABL,X
RLA
0100 4
IMM
0101 5
0110 6
0111 7
MPYS* MPYS* MPYS* MPYS* MPYS* EXTS* MPYS* MPYS*
1000 8
(DIR,X) SR DIR L(DIR) IMM A ABS ABL
MPYS* | MPYS*| MPYS* MPYS* MPYS* MPYS* MPYS* MPYS*
1001 9
(DIR),Y| (DIR) | (SR),Y DIR,X ~LDIR)Y ABS,Y ABS,X ABL,X
DIVS* DIVS* DIVS* DIVS* DIVS* EXTZ* DIVS* DIVS*
1010 A
(DIR),X SR DIR L(DIR) IMM A ABS ABL
DIVS* | DIVS* | DIVS* DIV S* DIVS* DIVS* DIVS* DIVS*
1011 B
(DIR),Y| (DIR) | (SR),Y DIR,X L(DIR),Y ABS,)Y ABS,X ABL,X
LDT
1100 C
IMM_e.
1101 D
1110 E
1111 F

Note 1. The code of each instruction first word is 8916.
Note 2. “*” shows the instructions can be used in 7750 Series.

7-20

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode
Symbal Funetion Detalls IMP | IMM A DIR | DIRD | DIRX j DIRY | (DIR) | {DIRX] | {DIRYY
- op| n (4 top] | % [op| n 14 [opi n |4]op| n | [op| n[# Joo| n % |op| n | % |op| n |H[op| n|#
ADC Ape,C + AceM+C | Adds the carry, the assumulator and the memary egntents, woj2|2 B5(4 | 2 75|92 72 82|67 |27T|8]|2
(Mota 1,2} The result is entered into the accumulator. When the D _m
flag s "0", binary additions |$ done, and when the D flag is 42 4|3 1426 | 3 492|713 42/ 8 | 3[42| 9 |3 [42(10] 3
1", dacimal addition |5 done. b | 5 751 72] 61 71
AND Acc— AccAM Obtains the logical product of the contents of the accumu- 7H2| 2 25 42 35512 32| 6| 2|21 7| 2|3 B|2
(MNote 1,2} iator and the soniemts of the memory. The result s en-
terad into the accumulator. 424 4|3 26| 3 42/ 7|3 42 8|3 42| 2|3 [42/70] 3
29} 251 35| 32 21 31
ASL m={0 Shifts the accumulator or the memary contents one bit to 0al 2]1 06| 7(2 1672
{Mote 1} Ele{bi{-~[oe]~0 | the left. "0" is entered Into bll 0 of the accumulator or the
et memery. The contents of bit 15 {bit 7 when the m flag is 42 42
"1") of the accumulator or memory before shift |5 entered LY
€l bz [[bg -0 into the C flag.
ASR™ m=0 Shifts the ascumulator or the memory contents one bit to 89| 5]2 89|93 891104 3
(Mote 1} [bys] T o] tha right. The kit 0 of the acsumulator ar memory |3 en- 08 18] 15|
tared into the C flag. The contents of bit 15 (bit 7 when
=1 the m flag is “1) of the accumulator or memery hefore 420512
[br [T shift is enlered Into bit 15 (bit 7). 08,
BRBC M=07% Tests the specified bit of the memery. Branches when all
{Nate 3,5) the contents of the apeciffed bit is “07.
BEs Mb=17 Tests the spesified bit of the memory. Branches when all
{Note 3,5) tha contents of the specifled bit is “1~.
BCC GC=07 Branchas whan the contents of the C flag is "7
{Mote 5}
BCS c=1? Branchas when the cantents of the G flag s "1".
(Note 3}
BEQ 2=17 Branches when the contents of the Z flag s 1",
{Note 3}
EMI N=17% Branchas when tha contents of the M flag s “1°.
{Mote 3)
ENE Z=07 Branchas when the contents of the Z flag is "0".
{Note 3)
BRL =07 Branches when the contenta of tha N flag s “0".
{Note 3}
ERA PC—PCXoffsat Jumps to the address indicated by the program counter
{Mote 4] | PG+PGH1 plus the offset value,
{carry occured)
PGE—PE—]
{bearrow gecured)
BRK PC—PC+2 Executas softwars intarruption, O[5 2
M{S}~PG
551
M{5}—PCy
F5—1
M{S)I—PCL
B+5—1
M{S)—PSy
5-5—1
M{S)+PS,
S—5—1
11
PO +AD,
FCy—ADY
PE—005
BWG v=07? Branches when the contenta of the ¥V Hag Is "0".
{Note a))
BVE y=17? Branches when the contents of the ¥ flag is "1".
{Note 3)
CLE Mb—0 Makes the contents of the specified bit in the memory "0". 14/8(3
{Nota 5)
CLC C+0 Makes the canlents of the C flag “0". w2
cLt 10 Makes the contents of the | lag “0". E8| 2 (1
oLM - Makas ths contents of the m flag "0". bs] 2]

7-2 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode Pracessor status register
L{DIANLBIRLY[ABS | ABSb | ABSX|ABS,Y | ABL | ABLX|{ABS) L(ABS)|{ABSX)| STK | REL | DIRbR | ABSpR] SA [{SALY| BLK 10|9{a 782 |4|2(2|1]0
co| n | % {on| nidk|an] n | #lon| n ool o [#]on| n| #]0n| n|#op] n| Ziep| nitk|opf n|#|ep| 1| 4{on| nitt|op| n|#|op| n]3t|opl 0 |#tlop| nltt|op| n|#|opla 2] 1PL [W|v{m|x|D]|1)
6750 2177111 2 60 4| 3 o[63|79 6|3 6F| 6| 41FF{7 |4 63 5| 2[73|8 R IR RN N o
42i12(3421313 4256 | 4 42 8| 4|42 8| 4142\ B |5 42] 3|5 42| 7| 3142010
57| i G| 0| 79 6F TF| 63 73
2702|3718 2 |ep| 4 | 3 30|6| 3396|326 |d 3¢ 7|4 2351230 el Te - T=]2]~
4212(3213 3426 |4 4205 |4 42]0 | 4|48 5 142 9|3 42| 7 |3 42|10
27| 137 20 El 30 2F IF 23 33
0| 7|3 1|8 elofaml=lele]o]e]z]a
€9/ 9|4 83[11 e s [N{s]=]|*|"|*|2|C
g 1E|
34|17 |4[35C| 815 AR R RN RN
2417 |4 [2C| R 15 ale|ale|w|ale]a|alels
ool 412 spafege|r]ege|e]ele]e
6l4]2
Fl4i2
3014 | 2 { e e efo]e]|w]|nfofs]n
ol 4|2 elw|afaln|ata]a]s]e]|n
10(4f2 elol|sbalolota]|alalols
H]
v s ! S PR RPN S
g0 412
82413 :
!
|
=0 4| 2 el Tl e e]
. - -Pr R 0 DR D e e S B O
cial4 alwlafafe]o|a|ola]n]s
|] e|n|w|w|ofja|w|agu]|=]|D
lwdalalalols]aia]-]-
elw|w]|alofo|e]|ode]e]s

7700 FAMILY SOFTWARE MANUAL

7-3

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode
Symbol Funstion Datails MP IMM A DIR | DIRb | DIRX | DIRY | (DIRY | (DIRXY] (DAY
oo lopin | #|op| ni|opln|#op| n{# |op| n | |op| v} op]| 0| #lop| n|#ep|niH
CLP PSb-—0t Specilies he kit position in the procassor stalus reglster by the bit Cid |2
pealem of the second byte in the instrucion, and sats "7 in that bit.
cLy Wil Makes the contents of the V flag “0". BE| 2|1
) S
CMP Age—M Gompares the contents of the accumulator with the ¢on- cal2]z2 ci 4|2 b5 62 Dele|2|cv|2|m|el2
(Note 1,2) tenis of the memory.
42/ 443 42/ 6|3 42/ 713 42,8 | 3 |42| 3| 3 (4210 3
CY Ch 8 o Gl Dl
CPY X—M Compares the contents of the index register X wih the E1l 2|2 Ef 412
{Mate 2} contents of the memary. |
CPY ¥—M Compares the contents of the index register ¥ with the ool z2j2 Gl 42
{Mote 2) contants of the memory.
DEC Apo+hAge—1 or Decrements the contents of the accumiator or memory by 1al2(1]k 712 DB 7;2
(Mote 1} | M—M—) T,
42142
1A
DEX K—¥—1 Decrements the contents of the index regiater X by 1. Cal 211
DEY Y—¥—1 Decrements the contents of the index register Y by 1. ag) 21
D Afquotiont] —BAM | The mmenl tat places the comtents of aceomulgter B 10 the Higher crder ang the B3j27| 3 24129| 3 B930| 3 63|31} 3 |BOI32| 3189133 3
(Nole 2,10} | Blremalnder) cerfients of apcumulalor A to the towes order is dhider] by e conlants of e mamory. 29 25 35 32 2 31
The quotiart |5 entered ito datet A and the remzindes it iy B
plvs* Alquotient)~B.A/M | The numars! with sign thal placss the contents of accumulator B lo fre highes B58/29) 3 42(31) 3 B3I32| 3 83133(3 [B234| 3 |49(345| 3
(Note 2,14) | Blremalnder)with sigh | erder and the contents of accumutator A b the fowst areler in divided by the S 5 B5| B2 Al B
contents of the memcey. The quodiem 15 entered |#lo 2ccumulaler & and the
remainder inta accumulatoe B.
ECR Aco—Acc¥M Loglcal exclusive sum bs obtained of the contents of the 481212 454 | 2 S5 5|2 BaG(27| 2518|2
{Note 1,2) accumuiator and the contents of the memary. The result 1s
placed ints the ascurnulatar. 42 4 '3 42/ 6|3 421 5| 3342 9| 3|42010(3
49 45| 52 41 51
EXTS* Bit 7 of Ape=1 The signed 8-bit data stored In the low-order byte of the 9| 812
{Note 1) |15 _ b7 accurnulater ia extended te a 16-hit dala, 38
T 777
Bit 7 of Acg=D 42/ 8|2
B15 b7 B8
ExTZ¥ Ace The 8-bit data stored In the low-order byta of the accumu- A3 52
(Note 1) | Bb1G BB b7 b0 1 lator is extended to a 16-bit data. Bits B b3 15 of the acou- AB|
mulator are get to "0", 42[5)2
IMNG Apc—Aept1 or Increments the contants of the accumulator or memary by 4|2 |1 |EB| 712 i 7|2
(Natz 1) | M —M+1 B ol
4214 (2
1A
IMX Ke=xX+1 Increments the contents of the Index registar X by 1. E3 2|1
MY Y—Y+1 Increments the contents of the Index raglster Y by 1. CB[2|1
JMP ABS Plagez @ new address into the program counter and Jumps
PGy — ADL ta that new address.
PCy+— Ay
ABL
P PG+ ADL
PCry +— ALy
PG+—ADg
{ABS}
PGL ~(ADy, AD}
PGy ~—{ADy, ADLH)
L{ABS)
PGy —{ADw ADL) |
PCy +{ADy, Al H1) '{
PG ~{ADy, ADy +2} !
’
(ABS, X)
PGy, ~—{ADy, AD 2]
PGy = { ADy, AD -+ X
+1)

7-4 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode Processor slatus regisler
LIDIR]|LIDIRLY| ABS |ABS.b|ABSX|ABSY | ABL | ABLX|{ABS)[L{ABS)|{aBSX)| STH | AEL {DIRBR | ABSER| SR |{SRLY[BLK mJ sjs 7|g{sld(3|2|
apin |[#|op njf n#opn#opn#opn#opn#oph#opn#opn#npn#opn#epn#opn#opn#opnﬁ IPL |N|(¥|mlz|D|1j2
=|*|*| Specified flag b
comes "{)
elo|ale|a]alaf=|]=
o102 o7|11| 2 ooy 4| 3 oo 6|3 |03| 6| 3]cr 6|4 1DF 7|4 ¢35 (2| e} Lol =l"|" |2
EEEEEBERE ERRFARERREEE 42| 73 a2[i0t 3
c7| W oo o) M cF OF, Gy 3]
ec(4|2 wlefaqn|=|=y]=]|+|2
ool 4|3 s afaipg[e|a]e]|e|a]|Z
e 72 D53 ANENMNEANEPE
— -1
o|wfn s nfsfjela|?
! ---N-----
35| 3 [aal26t 3 |Bo|29) 4 Botst| 4 [ag{1| 4 |Bojal| 5 j3a(32| 5 o(30| 3 88133 2 =l |NJY ||]
27 47 | i) i * 3 73 3
taal37] 3 |alag) 3 nolm |4 ae|33] 4 [eala2] 4 [so[3] 5 [esfad] 5 Balaz| 3 [68]35(5 o] e n]w|-[-]<]+]z
Y g 4D B} B #F| BF A3 &
!
47(10f 2 [57{11| 2 {4 | 3 5n| 6|3 |54 6|2 |4e| 6|4 |5F| 7| 4 43(5|2[53)8 |2 elels|Nje|o|r|e]+|2Z
HEREERZEEE ERRHEEREEREEE MHEELE
47 57 1D 50 53 I 5 43 53
e N | w | a|w}w z
aleta|Qle]|e]|a]|e]s|Z
EE| 7|3 FE{d |3 el TnlT-1-T- 112
|
T e slale|e|al?
sla|afju|a|a]=]|=|=72
(2|3 scl4la c|4i3jpcia|3fc|6}a
i
!
]
i
J‘

7700 FAMILY SOFTWARE MANUAL 7-5

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode

Symbot Function Details IMP | IMM A DIR | DIRb | BR.X | DIRY | (DAY | (DIRXY] (DIRLY

opn#opn#apnﬁ_opn#cpn#opn#apn{#opn#mnﬂmn#
JSR ABS Baves the contents of the program counter {alse the con-
M{S)+— PCy tents of the progeam bank register for ABL} Inte the stack,
i §+5-1 and jumps to the new address.
M5} PG,
§+-5—1
FC| - AD|
PCH + ADy
ABL
M8} PG
B—8-1
M(5)— PCy
§e-5—1
M3 —eC,
§+58—1
PG — ADy
POy +— ADy
PG+~ ADg
{ABS, X)
M{8)— PGy
§+—5—1
M(8)+ PG|,
3+—5—1
Py~ (ADy, AD X
PCy + {ADg ADLHX
+1)
LDA Ace— M Enters the contents of the memory inta the accumulator, Ml22 A5 4|2 W52 BEG(2|Al}7|2|(Bl|B|2
{Mote 1,2} R
420 423 42| 6|3 42| 7|3 42| 8 | 342 2|3 [4210 2
Al A5 BA | A Bi
LDM M+ (M0t Entars the immadiate value into the memaory. 64433 74513
{Note &)
LDT OT + IMM Enters the immadiate value Into the data kank ragisier, 83513
e
LD X+ M Enters the contants of the memary into index register X, A 2|2 A 42 8652
{Note 2}
LoY Y~ M Enters the contents of the memory Inla Index reglster Y, #|2| 2 A 412 Bi|5]2
{Note 2)
LSR m=0 Shifts the contents of the accumulalor or the contents of 2148712 56|72
{Note 1} | nJpe] ~Tmol-c the memery cne bit to the right. The bit O of the accurmula-
=1 tor or the memory s entared inlko the C flag. “0° s entered 4214 (2
into kit 15 (bit 7 when the m flag is "1".) 4A
O+ tyy]- . [bo G
MPY B, A—A% M Multiplieg the of lalar A and the contents of the mem- 8016; 3 [918| 3 4913 3 BO20 3189121 3:89(22(3
{Hgta 2,11) ory. This Highet crder of the result of aperation are enterad into agtu- e 05 15 12 01 H
mulater B, and the lower order lnte accumylater A,
Mevs® B, A—A% M with sign | The celent of the accumulalor A is multipied by the content of mem- 8918] 3 89(20| 3 89|21 3 8922 3 [69(23) 318924| 3
(Note 2,15} ofy as signed data. The reault s a 32-bit data which is placed In the 89 85| 95| 92 81 Ell
sccumulatons B {upper 16 bits of the resut) and A (lower 16 bils of
1he resut].
WMVH Mn+i—tm-+i Transmits the data block. The transmission |s done from
(Mota 8) the lower order aeddress of the block.
MVP Ma=—i=mMm—i Transmits the data block. Transmission i3 done form the
{Nete 9) highet order address of the data bigek,
NOP PG+PC+1 Advances the pragram counter, but performs nothing else. (B8 2|1
ORA Acoc—AocVM Logleal sum per bit of the contents of the accumulator and 0z 2 05 4|2 16162 12|g|2[07{2(1178|2
{Note 1,2) the contents of tha memory is obtained. The rasult is en-
terad into the accumulatar, 42,413 4263 42|73 42| 813 42| 9] 3|42/101 3
09;] 05 154 12 01 1

7—6 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mads Processor status register
L{DIR)|L(OIA)¥] ABS |ABSb{ABSX|ABSY| ABL |ABLX | (ABS)|L(ABS)|(ABS%}| STK | REL [DIR4A | ABSHR} SR |(BR)¥] BLK IOT9|B 7i6(5]4(3|2]1|0
on| n {4 lop| | #ion| n (4 top| 0| # on| n{dtlop o |3t op| | 3 op| n|dt|op| n | |op| nidt|o| 0|]op| n | & op| n) lop| n | S| n | opl n |8 |op| 0 | lop(n(#] 1PL [M{¥|miz|D|11Z|C
20|16 |3 228 |4 FC|B |3
13
arf1orz |eFad| 2 fan| 413 erl 613 100(6| 2|ar{ 6|4 [er 7] 4 f | jnals|2tey8|2 oo NWfe|u]a]e|e]|Z]"
FEEBEERERY EROEEREEREEE ' 42| 7| 3 [azhio[2
At = D) B AF] BF a3 B3,
eG4 aw|e|afe|n|a|w|n]a]w
ol | e
AE 4|3 BE[6 |3 e oMo |2]"
A4 3 Bol 63 N'Z
E7]3 |sel8] 2 NEENE | Szl
Rol24| 3 {8w|25| 2 1aa| 18] 4 801207 4 (RY[26) 4 [49(20] 5 (B5/2}| & 59]19] 3 (39|22 3 NERNENBENED
07] 17 D 10| i3 0E 1F 03, 13
B9(26| 3 [89)27| 3 [R9j20f 4 T 2021 3 (8924 3 slela(Mje|a|ois|n|ZIO
7] 97, 50 GE] 93
£ 2 - r - | - B [[
[4| Fhaj e o]+ j ||)~
+
- X7
i 449!3......-.-..
+i
M7
]
o710t 2 [17[11] 2{on[4] 2 10{B|3)19|6|3)0F| 6| 41F|7| 4 03| 521382 s oo |N[e|[efa]e]a]Zje
i
4201203 [4213] 3 {42(&3 4 42 8]4i42(84142/ 8|5 (42195 42 7| 3 (42|10 3
o7 " oDy 1D 19 i3 1F| ! 03 13

7700 FAMILY SOFTWARE MANUAL 7-7

APPENDIX

APPENDIX.1 Machine Instructions

Symbot

Function

Addressing mode

Details

IMM A

D

DIRb { DIRX

DIRY

[DIH)_ _{_IjIR.K)

o

n|#)op| n|#lop|n |2

PEA

PEI

M{ S} e IMMz
3+e8—1
M{S 3w M)
5-5—1

| Mis) - mitoeR) -+ naws |

+t}
551
WIS —hal [DPE}H- M)
§+8—1

The 3rd and the 2nd bytes of the instruction are saved inlo
the stack, in this order.

#upnﬁopn?#upn

Specifies 2 sequential bytes in the direct page in the 2nd
byte of the instruclion, and saves the contents Into the
atack.

PER

EARPCHIMMaIMM,
M(8}—EARK
5-5—1
M{SI—EARL
§—5—1

Regards the 2nd and 3rd bytes of the instruction as 16-hiL
numerals, adds them to the program counter, and saves
the result into the stack.

PHA

m=0
M{S) Ay
Se5—1
MES)—A,
5—5—1

=1
M{BI—AL
8—5—1

Saves the contents of accumulater A into the stack.

FHE

m=0
M{S}—By
§—5—1
WS B
§—58—1

m=1
M{5]—B_

1 geg~1

Saves the contents of acoumulaior 8 inlo the stack.

PHO

M{S]—DPRY
&—5—1
M(5]—DPRy
§+-5—1

Saves the contents of the diract page register inlo the
stack.

PHG

i M(51—PG

G581

Saves the contents of the program bank register Into the
stack.

PHF

M(S)"‘—pSH
s8]
MiS}—P3.
5-5—1

Saves the cemtents of The program stalus register into the
stack.

PHT

PHX

551

M{S}—DT

Saves the contents of the data bank register into the
stack.

»=0

M Sh—xy
§+5—1
MBI,
5481

x=1
M) X,
§5~1

Saves ihe conients of the index register X into the stack.

PHY

x=0
MBIy
$—5—1
M3),

: §=—8~-1

x=}
MBI+,
Fe5—1

Saves the contents of the index registar ¥ into the stack.

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addrassing mode Processor status registar
L{DIR)|LIDRYY| ABS | ABSb | ABS X | ABSY | ABL [ABLX |({ARS}|L{ABSH(ABSX]| STK | REL |DIRbR|AESpA| SR |{sAly| BLK 1U|9]s dle(a(4(8]|2|1]0
upn#cpn#upn#cpnﬁop‘n#opnﬂopn#upgn#opn#upn#upn#wnlﬁopnﬁmn#upnﬂopn#epniopn# IPL |N|(¥im|x|D|1|Z|C
5 Fi5]3
i
D462 I wla|ofo|alela|ale]s]s
|
i .
; 5253 i sla|wla|w|afal|n|s]|s]n
| | |
l |
| .5
j f f 45041 efa|w|e|alo]|o]|afln]e]n
e | ;
;
‘ |
| | !
i :
! 426 |2
] 48
R A !
i ! i | i ; [
i | | (]
i] i I
J i
i . ! i
[i 5| 41 :
1
i
BEENI a 493'1 P IR (S I [I (R PO I R Y
o o - “-
|
583 (1
D4 (1
|
- h
A | el w ol w]|u|a}e
i
3
i | |
L

7700 FAMILY SOFTWARE MANUAL 7-9

APPENDIX

APPENDIX.1 Machine Instructions

Symhbaol

PLA

Function

m=0
S+-54)
AL—MIS)
-5+
Ay—{S)

m=}
G541
Ap+—-M(8)

PLB

m=0
3+-5+1
BL—M{S)
S+—5+1
ByM(S)

m=1
3—5+1
By +—M(S}

Dretails

Addrassing mode

IMM

JEE

DIR

DIRb | DIRX

DIR.Y

[DIRX)

(DIR)Y

opl r | 3 {em| n it fop

Restores the contents of the stack on \he accumulator A

i
1
1

ik

Festores the contents of the stack on the accumulater B,

PLD

S+-G+1
DPRAL—M(3]
§ew5rht
DPRp—M{ S}

#lap

opln

#oo

n

#

Restores the contents of the stack en the diract page reg-
ister.

S+8+1
PSL—M(S)
§e-8+1
PSH+—M(5)

Restores the contents of the stack on the processar status
register.

B+-3+1

1 DT—M{8)

Restaores the contents of the stack on the data bark reg-
ister,

¥=0
B+-54-1
X MIS}
5+58+1
Xer—M{S)

x=1
GeBefel
He—MiS)

Restores the sontenis of the slack an the index register X.

PLY

=0
5—5+1
fy+=M(S}
S-5+1
Yu—MI8)

%=1
ge-5pd
YL-MES}

Restores the contents of the stack on tha index register ¥,

PEH
{Mote 8]

M{SH—A, B, X

Suves the registers among accumulater, index ragister,
direct page register, deta bank register, program bank
register, or processgr status register, specified by the bit
pattern of the second byta of the instruction Into the atack.

PUL
(Nota 7}

A, B, X e=M(E)

Restares the contents of the stack to the reglisters among
accumutator, index register, direct page register, dala
bank reglster, or procesacr siatus register, speciled by
the: bit patiern of the second byte of the instruction.

RLA
{Nate 13)

m=0
n blt rotate left

E]

m=1
n bit rotate left

L [o]

|

Aotates the contenta of the accumulator A, n bits to the
lesft.

83|
49

-t

7-10

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing maode Procassar status register
L{R)LDIR)Y| ABS | ABS.b|ABSX|ABSY | ABL | ABLX|{ARS) [L{ABSIHABSX)] STK REL [DRbA | ABSLR| SR [(8R)Y] BLK TOIS|B 7|6é 5;4 afz(1|n
op| o (# dep| n| 3 op| o [#lop| | op| m (4 tep| n |2 op| n 4 op] 0| #|ep| n| £{op| n |Hop |2 n|#|op|n|H#icp{n|2|op| n|Hle|n{#] WPL N[V mix|D|I]Z|C
] wlofogm|a|ate|a]=|2]|"
i
1
[
| : - L 1
42/ 7|2 ANENMEERBBEE
68
i
i]
H i
: :
{ 2B 511 el fa]jala]elalalaiale
§ i i } I
. i - .F ;
28| 611 Value saved in stack.
|
Lol 1‘ e et s
2RI G117 i e oMy i sl zi' -
| '
Fal5i ' Aol wle]s]s ||z b
i i 1k 1
i i | H
P !
i 1 §
H i H
! i ;
[
; i Lo Lals|s bl oo 2] -
i H :
1 ! '
: i .
: : ' ! H
: i ! !
i i I
] t
: i : i i
| 3 3 ' j H i
] 7o : ‘ ‘
re[1z 2| 1 NN NN R
i : 1+ ! . |
! : : . 2lit-iz ! -
: | : :
E} :
| = L
] i : | i
; FB(14 2) i It restored the contents of PS,
1 " _:_4 H It becomes |ts value. And the
it othgr case is no changa,
i
: |
N 1 ¢ :
I i ‘I .
i i i :
- [1
0] ! i
: i ’ H t
| 1
: | i
| ’ i

7700 FAMILY SOFTWARE MANUAL 7-11

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode
Symbal Function Details (YN YT A DIF | DIAL | DIRX | DIRY | (DIR) | (Dm) | tDIR),Y
ap{n|toen|* (op| n (4 iep| n | £ op| n |]op| n| 2 fopl n |t |ep| n | op| k|0 n | #
RO Links the accumulator or the memory to G flag, and rotates [2|01)26| 7|2 26|72
(Mote 1} . R result to the 1ekt by 1 bit.
bigf | be [-[€] 42 4|2 :
2 f
m=]
e |
ROR m=0 Links the accumulator or the memoery to C flag, and rotates GA| 2| 1|66/ 7(2
(Mote 13 result ta the right by 1 bit. !
(G~ bus] -~ [] 47 4]z ;
i
me=1]
RT| ge3+1 Returna from the Intarruption rautine. ol
PS,—MiS}
S5+1
PSy—M(S] ; ‘
Ge§+1 |
PCL—M(8) :
S-S+ i |
POy —MI5} i i
5—5+1 l !
PG—M(S) : ;
ATL 5+3+1 Relurng fram the subroutine. The contents of the program 68| B| 1
¢t PCL—-M(8) bank reglster are also restared,
g5+ i
PC—M(S) {
5—5H1
PG-M{S} !
RTS 5—5+1 Returns from the subroutine, The contents of the program [60/ 51
PO —MIS) bank reqister are not restared.
5+58+1
PCy-M{8)
SBC Ace, C*—ACC—M—E Subtracts the contents of the memory and the Gorrow from B8 2|2 E5(42 FelBi2| F|a|2|EH 2| 2|F1|B)2
{Nate 1.2) the contents the accumulator. .
424 (13 42|63 42/ 7| 3 428|342 9| 210 2
=] £5 F5 F2 E FI| 4
SEE Mh—1 | Makes the contents of the specified bit in the memory 0483 :
{Note 5)
SEC [} | Makes the cofilents of the G flag "1". 2|1
R [N b i I b
SEL +1 Makes the conlents af lhe { flag "1". 78 2| 1 :
SEM o] Makss the contents of the m flag "1". fl2)) e
SEP PSh—1 Sel the@pacifled bit ol the processor status register's 1ow- EN 32 ‘
er byte (PSJ 1o "1, i
S5TA VM= A Stores the contents of the accumulator into the memory. f 85| 4|2 95 5|2 o 7| 2my T (2Mm| 7|2
(Note 1} ¢ ; 0 0 O Ot I
4263 42 7|3 422932 9|3 42 3|3
B 35 =) Ll 21
STP Stops the oscillation of the cscillator. DB 311 |
ETX =X Stares the contanls of the indax register X into the memary, BE[4|2 | 6|52
STY MY Stores the contenls of the index registar ¥ into tha mameary, Bal4(2 94iq|2
TAD DPR*A Transmits the oonterts of the accumulatar A to the direct {38(2 (1
page regiater.
TAS S+A Transmits the contents of the acoumulater A ta the stack peinter. (18| 2]
TAX KA { Transmits the conlants of the acsumulator A to the index [A4(2 (1] i
register ¥, i
TAY Ye-A Transmits the contents of the accumulator A to the index (A8 2 (1 !
Lreglster Y. l
TBO OPR—B i Transmits the contents ol the accurnulator B lo the direct |42 4 (2 i i :
1 page register. 56| ! H

7-12 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addressing mode Processor status register
LIDIR|LIDIALY| ABS | ABSb | ABSX | ABS)Y | ABL [ABLX [(ABS) [L{ABS)[(#B3X})] STK | REL | DIRbR JABSBR| S8R NSRLY| BLK 10]9‘8 ?'ia 543 2'1,1 0
Dpn#ﬂpnﬁopﬂ#np%n#ﬂpn:opnlﬂ'onn#upnﬂupni*opn#up;in3upr1ﬂupln#opnﬁmn.#np}n#mnﬂnpén# IPL NEmenlizc
w7[3] T] [x[e]s i ! e : ! TGN e
. H ! .
f 5 | L :
t '
. |
| i i)
Bl 7|3 JE| 8|3 Y i olofefn|ejele|+|«]|2]c
|
i : i
! 1 i
\ Pl
i ! I
i | Value saved in stack.
t [[
Ii |
! | bl o
’ L [
| | |
1. | |
Il 1 !
! ; . T[T
)) i !
5 | E | ! |
. ! :
'I I il | !
. ’ Ll L 655 A O O 1 |
I { i -i i e |- al = el
! ! . § ! I If
' I
glo 2|71 2 |eo[4 | 2 FO;6 |3 (P3| 6|3 |EF| 6| 4|FF|7 4 | e2|5|2|rlalz SN Vet 2]
FEAZEBREAL iofa2|8|4142) 8l 44zl 8[54z 5[5 ! HEHEEZEIEE : !
3] F7 e ¥0) Fa| 1 [er FE l £ Fl
: I S 0 ; 8 B IS ot i o o b o
| ! ! %4 § [. |
1 i :
I:. [r oi' eialefe]e]|w]e]=1
i r' ! .;:. |- i- 10,
i - - L] - I- - -
i o [z b1 -'
! i ! +j+|+|Speciied fag be-
L l 1 ! |1 | i comes "1°
! : B I T A fory e =T
a7[10] 2 g1 2305 3 ans,sss-as A G| 4(9F|7 4 E B2 5| 29382 i|
N L ,
az[12l 3[4zl 3 42 7 [4 427 4427 | 4 |r2l6 5 |42l 85 | P 4275 [az)ro3 | '
87 97 L] oy - (99 I BF ! [|eal 93 i '
20 O O e O O i N l i R -
il ABHABEAREERE
gnl 5|3]' i [; e fefw|efe]rn]e]e|]s
1™] : f
TR | ! K A EEREEREE
4 ol i i
_j B ! i - - - ':f' -i't -
! e [M]in .F. T
........... | [I EARERER
| ! | SRRLIRERE ';i. |+
ol elais el
| | | L i

7700 FAMILY SOFTWARE MANUAL 7-13

APPENDIX

APPENDIX.1 Machine Instructions

Addrassing mode

Symbot Funetion Detalls IMP | IMM [A DiR | DIRb | DIAX | DIRY | (DIR) |{0IRX) | (DIR)Y
ep| n 4 |op] n|$ [op| n | |on] 0|4 |ep| nid|op| 0|4k |op| n 4t |on| n |4]op| n |4]op|n |8
TES S+B Transmits the contents of the accumulator B to the stack (42)4 |2
poirter. 18
TEX X+-B Tranzmlts the contents of the accumulator B io the Index [42) 412
reqlster X, Al
TEY Y+—B Transmits the contents of the accumulator B 1o the index |42 4! 2
reglster Y. Al
TDA A+—DPAR Transmlts tha contents of the direct page reglster ta the 78| 211
accumulator A, j
DB B+DPFR Transmits ihe contents of tha diract page register to the
accumulator B. ‘
TsA A3 Tranamits the contenls of the slack pointer to the accemutator A, [
TEB B—5 Transmits the contants of the stack polnter to the accumu- '
lator B. :
TH% K5 Transmiis the contents of the stack pointer to the Index (BA 2 (1 .
register X : !
TxA A | Transmits the sontents of the index register X to the accu- |BA| 2|1
mulator A,
TrE B Transmits the contenta of the index register X to the accu- 42:% 42
mulator 8. 941 :
TXS S+X Transmits the contents of the indax registar X to the stack |94 2 (1 :
pointer,
TXY YK Transmits the contenla of the index reglster X to the index (981 2|1 :
! register Y. : i
e 1 P S R
TYa AY Transmits the contents of the index register ¥ ta the accu- [B8: 2|1
mulator A,
Ve By Transmits the contents of the index reglster ¥ ta the accu- [42[4|2
mulatar B. k]
TvX A=Y i Transmits the contents of the index registar ¥ to the Index BB 2 (1 :
: register X, i
wiT 1 Stops tha Intarnal clock. ca 3|1 i
¥aB AZR Exchanges the contents of tha accumulater A and the con- B9 6 (2 :
" tents of tha accumulator B. 28] 1

7-14 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Addrezsing moda Processor status register

L{QIR}LIDIRLY] ABS | ABS.b|ABSX | ABS,Y | ABL |ABLX |[{ABS)|L{ABSH{ABSX]| STK | REL |DIRpR | aBSbR| &R [(SA)LY| BLK 10|9]a 7|sisl4]z[2]1]o

upn#npn#cpn#oun#upn#opn#up[n#cpn'!-‘-upn#opnﬂopn#upn#opn#wn#upnﬁwn#wnﬁopnﬂ IPL IN(Mim|2|D|(}2

|
[
i
i
i

.
.
-4
.
.
.
™

7700 FAMILY SOFTWARE MANUAL 7-15

APPENDIX

APPENDIX.1 Machine Instructions

The number of cycles shown in the table is described in case of the fastest mode for 2zch Instruction. The numbet of cycles shown in the table is

calculated for DFR =0. The number of cycies in the addressing mede concarning the DPR when DPR, 0 must be incremented by 1.

The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory

read/write address is odd ar aven. It also differs when the external region memory is accessed by BYTE="H".

Mote

Note

Note

Note

Mote

Mote

Mote

Mote

Mote

Mote

Note

Note

MNote

Note

Mote

1. The operation code at the upper row |s used for accumuiator A, and the operation at the lower row is used for accumulator B,
2. When setting flag m=0 to handle the data as 16-bit data in the immediate addressing made, the number of bytes Increments by 1.

3. The number of cycles increments by 2 when branching.

4. The operation code on the upper row |s used for branching in the range ot —128~+127, and the operation code on the lower raw is used for

branching in the range of —32768~—132767.

5. When handling 16-hit data with flag m=0, the byte in the table is incremented by 1.
6.

Typeofregister | A | B X | ¥ |opR| DT | PG | PS
Numberofeycles| 2 | 2 2 | 2 2 11 1V z

Tha numbar of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done is 12, i; indicates

the number of registers among A, B, X, ¥, DPR, and PS to be saved, while t; indicates the number of regisiers among OT and PG to be saved,

7.

Type of reglster A B x Y |.DPR| DT PS5
Number of cycles | 3 3 3 3 | 4 3 3

The number of cycles corresponding to the register to be pulled are added. The number of cyclas when no pulling is done is 14. 1y indicates the

number of registers among A, B, X, Y, OT, and PS to be restored, while [;=1 when DFR |5 (b be restorad.

§. The number of cycles is the case when the number of bytes to be transfered is even.
When the number of bytes to be transfered is odd, the number is catculated as;

74 (i/2) X744
Note that, (1/2) shows tha integer part when t 1 divided by 2.

9. The number of cycles |5 the case when tha number of bytes tn be transfered is even.
When the number of bytes to be transfered is odd, the sumber is calculated as;

94 {ir2} X715
Mote that, {i/2) shows the integer part when i is divided by 2.
10. The number of cycles is the case in the 16-bit-8-bit operatlon. The number of gycles |5 Incramented by 18 for 32-bit-+-16-bit operation.
11. The number of cycles is the case in the 8-bitX8-bit aperation. The number of cycles is incremented by 8 for 16-bit X 16-bit operation.
12, When setting flag x=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.

13. When flag m iz O, the byte in the fable is Incremented by 1.

14. The eycles-count in this table are for 8-hit X 8-bit multiplications with the same sign. If the muHiplier and multiplicand have different signs,

three additional cycles are required. For 16-hit> 18-bit multiplications, the cycles-count increases by 8.

15. The eyctes-count in this table are for 16-bit+2-bit operaticns. For 32-bit+16-bit operations, the cycles-sount increases by 16,

7-16

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.1 Machine Instructions

Symbols in machine instructions table

Symbol Description Symbol , o Dascriptlon
Me Implied addressing mode St i Excluslva on
[EGE Immediate addressing mode — i Negation
A Accumulator addressing mode - [Movement to the arrow direction
PIR Direct addressing mode Ao Accumulator
DR, b Direct bit addressing mode Accn Accurnulator's upper § bits
BIR, X Direct indexed X addressing mode Accy Accumulator's lower 8 bits
DIR, ¥ Direct indexed ¥ addressing mede A Accumulator A
(DIR) Diract indirect addressing mode Ay Accumulator A's upper 8 bits
{DIR, X} Direct Indexed ¥ indirect addressing mode A Accurnufator A's lower B bits
{DIR), Y Direct ndirect indexed ¥ addressing mods B Accumulator B
L{DIR} Direct indirect long addressing mods By Accumulator B's upper 8 bits
L{DIR), ¥ Direct indirect long indexed Y addressing mode BL Accumulater B's lawer § bits
ABS . Absolute addressing mode b4 Index ragister X
ABS, b Absolute bit addressing mode XH Index register X's upper B bits
ABS, X Absolute Indexad X addressing mode XL Index reglzter X's lower 8 bits
ABS, Y Absolute indexed Y addressing made Y Index registar ¥
ABL Absolute long addressing maode Y Index register ¥'s tpper 8 bits
ABL, X Absolute Tong Indexed X addressing mode A% Indert realstar s lowar § bits
{ABS) Absolyte Indirect addressing mode 3 Stack pointar
L {ABS) | Absolute Indirect long addressing mode FC Program counter
{ABS, X) i Absolute indexed X indiract addressing mode PCy | Program counter's upper B bits
5TK Stack addrassing mode PC. .l Program counter's lower 8 bits
REL Relative addressing moda PG Program bank register
DIR, b, REL Direct bt relatlve addressing mode BT Data bank register
ABS, b, REL Absolute bit relative addrassing mode DPR Direct page rogister
SH Stack puinter redative addressing mode DPR,y Direct page register's upper B bits
(B8R}, ¥ Stack peointer relative indirect Indexed ¥ addressing | OPRL Direct page register's lawer 8 bits
made RS Processor status register
BLK Black transfer addressing mode PSSy Processor status register's upper 8 bits
c Garry flag [=1: 0] Processar status reglsters [ower 8 bits
z Zero flag PSh Processor status registers b-th bit
I Interrupt disable flag MiS) . Contents of memory at address indicated by stack
(8] Decimal operation mede flag . peintar
X Index register length seleclion flag Mp b-th memory locatich
m Data length selection flag ADg Value of 24-bit address’s upper 8-bit { Az~ ay5)
W Ovarflow flag AbDy Value of 24-bit address's middle 8-bit {A;~Ag}
N Negative flag AD_ Value of 24-bit address's [ower 8-bit { A;~Ag)
IPL Processor intarrupt priorty level op Operatlon code
+ Additlon n Number of cycle
— Subtraction # Number of byte
* Multiptication i Number of transfer byte or rotation
e Diviglan iy, T2 Nurnber of registers pushed or pullad
AN Logical AND
N Logical OR

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 1

D3—Do| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecimal
D7—Da4 notation| O 1 2 3 4 5 6 7 8 9 A B C D E F

ORA ORA | SEB | ORA | ASL | ORA ORA | ASL SEB | ORA | ASL | ORA

0000 0 BRK PHP PHD
A,(DIRX) ASR | DIRb | ADIR | DIR |AL(DIR) AIMM A ABS,b | AABS| ABS | AABL
ORA | ORA | ORA | CLB | ORA | ASL | ORA ORA | DEC CLB | ORA | ASL | ORA

0001 1 BPL CcLC TAS
A,(DIR),Y| A(DIR) |A,(SR).Y| DIR,b | ADIRX | DIR,X [ALDIR)Y AABSY| A ABS,b | AABSX| ABSX |AABLX
JSR | AND | JSR | AND | BBS | AND | ROL | AND AND | ROL BBS | AND | ROL | AND

0010 2 PLP PLD
ABS |A(DIRX)| ABL | ASR |[DIRbR|ADIR | DIR |AL{DIR) A,IMM A ABSbR| AABS| ABS | AABL
AND | AND | AND | BBC | AND | ROL | AND AND | INC BBC | AND | ROL | AND

0011 3 BMI SEC TSA
ADIR),Y| A(DIR) |A,(SR),Y| DIRb,R | ADIRX | DIRX |ALDIR)Y AABSY| A ABS,b,R| AABS X| ABSX |AABLX
EOR EOR EOR | LSR | EOR EOR | LSR JMP | EOR | LSR | EOR

0100 4 RTI Note 1 MVP PHA PHG
A,(DIR X) ASR ADIR | DIR |AL(DIR) AIMM A ABS | AABS| ABS | AABL
EOR | EOR | EOR EOR | LSR | EOR EOR JMP | EOR | LSR | EOR

0101 5 BVC MVN CLI PHY | TAD
A,(DIR),Y| A(DIR) |A(SR),Y ADIRX | DIR,X |ALDIR)Y AABS,Y ABL |AABSX| ABSX |AABLX
ADC ADC | LDM | ADC | ROR | ADC ADC | ROR JMP | ADC | ROR | ADC

0110 6 RTS PER PLA RTL
A,(DIR,X) ASR | DIR |ADIR| DIR |ALDIR) A MM A (ABS) | AABS| ABS | AABL
ADC | ADC | ADC | LDM | ADC | ROR | ADC ADC JMP | ADC | ROR | ADC

0111 7 BVS SE| PLY | TDA
A,DIR),Y| A(DIR) |A,(SR).Y| DIR,X | ADIRX | DIR,X |ALDIR)Y AABS)Y (ABS,X) | AABS X| ABS,X |AABLX
BRA | STA | BRA | STA | STY | STA | STX | STA STY | STA | STX | STA

1000 8 DEY | Note 2| TXA | PHT
REL |A(DIRX) REL | ASR | DIR |ADIR| DIR |ALDIR) ABS | AABS| ABS | AABL
STA | STA | STA | STY | STA | STX | STA STA LDM | STA | LDM | STA

1001 9 BCC | TYA TXS | TXY
A,(DIR),Y| A(DIR) |A,(SR),Y| DIRX |ADIRX| DIR,Y |ALDIR)Y AABSY ABS | AABSX| ABSX |AABLX
LDY | LDA | LDX | LDA | LDY | LDA.| LDX | LDA LDA LDY | LDA | LDX | LDA

1010 A TAY TAX | PLT
IMM |A(DIRX)| IMM | ASR [DIR |ADIR | DIR |ALDIR) A IMM ABS | AABS| ABS | AABL
LDA | LDA | LDA | LDY | EDA " LDX | LDA LDA LDY | LDA | LDX | LDA

1011 B BCS CLv TSX | TYX
A,(DIR),Y| A(DIR) |A,(SR).Y| DIRX |ADIRX| DIRY [ALDIR)Y AABS,Y ABSX | AABSX| ABS)Y |AABLX
CPY | CMP | CLP | CMP | CPY | CMP | DEC | CMP CMP CPY | CMP | DEC | CMP

1100 C INY DEX | WIT
IMM [A(DIRX)| IMM< "ASR | DIR |ADIR| DIR |ALDIR) AIMM ABS | AABS| ABS | AABL
CMP | CMP | CMP CMP | DEC | CMP CMP JMP | CMP | DEC | CMP

1101) BNE PEI CLM PHX | STP
A(DIR)Y, A(DIR) 'A(SR),Y ADIRX | DIRX |ALDIR)Y, AABSY L(ABS) | A/ABSX| ABSX |AABLX
cpx | sBc “sep<l sBc | cPx | sBc | INc | sBC SBC CPX | SBC | INC | SBC

1110 E INX NOP | PSH
IMM |A(DIRX) IMM | ASR | DIR |ADIR| DIR |AL(DIR) AIMM ABS | AABS| ABS | AABL
SBC | SBC | SBC SBC | INC | SBC SBC JSR | SBC | INC | SBC

1111 F BEQ PEA SEM PLX | PUL
A(DIR),Y| A(DIR) |A(SR),Y ADIRX | DIRX |ALDIR)Y, AABSY (ABS,X) | AABS,X| ABSX |AABLX

Note 1. 4216 specifies the contents of the INSTRUCTION CODE TABLE-2. About the second word's codes, refer to the INSTRUCTION CODE TABLE-2.
Note 2. 8916 specifies the contents of the INSTRUCTION CODE TABLE-3. About the second word's codes, refer to the INSTRUCTION CODE TABLE-3.

7-18 7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 2 (The first word's code of each instruction is 4216)

Ds—Do| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hexadecimal
D7—D4 notation| O 1 2 3 4 5 6 7 8 9 A B C D E F

ORA ORA ORA ORA ORA | ASL ORA ORA
0000 0

B,(DIR,X) B,SR B,DIR BL(DIR) B/MM| B B,ABS B,ABL

ORA | ORA | ORA ORA ORA ORA | DEC ORA ORA
0001 1 TBS

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BL(DIR),Y BABSY B B,ABS X B,ABL,X

AND AND AND AND AND | ROL AND AND
0010 2

B,(DIR,X) B,SR B.DIR BL(DIR) BIMM| B B.ABS B,ABL

AND | AND | AND AND AND AND | INC AND AND
0011 3 TSB

B,(DIR).Y| B,(DIR) |B,(SR),Y B.DIRX BL(DIR),Y BABSY B B,ABS X B,ABL.X

EOR EOR EOR EOR EOR | LSR EOR EOR
0100 4 PHB

B,(DIR,X) B,SR B,DIR BL(DIR) B/MM| B B,ABS B,ABL

EOR | EOR | EOR EOR EOR EOR EOR EOR
0101 5 TBD.

B,(DIR).Y| B,(DIR) |B,(SR),Y B,DIR X BLDIR),Y B,ABS,Y B,ABS X B,ABLX

ADC ADC ADC ADC ADC | ROR ADC ADC
0110 6 PLB

B,(DIR,X) B,SR B.DIR B,L(DIR B./MM | . B B,ABS B,ABL

ADC | ADC | ADC ADC ADC ADC ADC ADC
0111 7 TDB

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BLOIR),Y BABS,Y B,ABS X B,ABLX

STA STA STA STA STA STA
1000 8 TXB

B,(DIR,X) B,SR B,DIR B.L(DIR) B,ABS B,ABL

STA | STA | STA STA STA STA STA STA
1001 9 TYB

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BL(DIR),Y B,ABS,Y B,ABS X B,ABL,X

LDA LDA LDA LDA LDA LDA LDA
1010 A TBY TBX

B,(DIR,X) B,SR B,DIR BL(DIR) B,IMM B,ABS B,ABL

LDA | LDA | LDA LDA LDA LDA LDA LDA
1011 B

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIR X BLOIR)Y B,ABS,Y B,ABS X B,ABLX

CMP CMP CMP CMP CMP CMP CMP
1100 C

B.(DIR.X) |"B.SR B.DIR BLOIR) B,IMM B,ABS B,ABL

CMP | CMP | CMP CMP CMP CMP CMP CMP
1101 D

B(DIR),Y. B,(DIR) |Bi(SR).Y B,DIRX BLDIR),Y B,ABS,Y B,ABS X B,ABLX

SBC | SBC SBC SBC SBC SBC SBC
1110 E

B,(DIR,X) B,SR B,DIR BL(DIR) B.IMM B,ABS B,ABL

SBC | SBC | SBC SBC SBC SBC SBC SBC
1111 F

B,(DIR),Y| B,(DIR) |B,(SR),Y B,DIRX BL(DIR),Y B,ABS,Y B,ABS X B,ABLX

7700 FAMILY SOFTWARE MANUAL

APPENDIX

APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 3 (The first word's code of each instruction is 8916)

D3—Do| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 1111
Hexadecimal
D7—D4 notation 0 1 2 3 4 5 6 7 8 9 A B C D E F
MPY MPY MPY MPY MPY MPY MPY
0000 0
(DIR,X) SR DIR L(DIR) IMM ABS ABL
MPY | MPY | MPY MPY MPY MPY MPY MPY
0001 1
(DIR),Y| (DIR) | (SR),Y DIR,X L(DIR),Y ABS,Y ABS X ABL,X
DIV DIV DIV DIV DIV DIV DIV
0010 2 XAB
(DIR),X SR DIR L(DIR) IMM ABS ABL
DIV DIV DIV DIv DIV DIV DIV DIV
0011 3
(DIR),Y| (DIR) | (SR),Y DIR,X L(DIR),Y ABS,Y ABS, X ABL,X
RLA
0100 4
IMM
0101 5
0110 6
0111 7
MPYS* MPYS* MPYS* MPYS* MPYS* EXTS* MPYS* MPYS*
1000 8
(DIR,X) SR DIR L(DIR) IMM A ABS ABL
MPYS* | MPYS*| MPYS* MPYS* MPYS* MPYS* MPYS* MPYS*
1001 9
(DIR),Y| (DIR) | (SR),Y DIR,X ~LDIR)Y ABS,Y ABS,X ABL,X
DIVS* DIVS* DIVS* DIVS* DIVS* EXTZ* DIVS* DIVS*
1010 A
(DIR),X SR DIR L(DIR) IMM A ABS ABL
DIVS* | DIVS* | DIVS* DIV S* DIVS* DIVS* DIVS* DIVS*
1011 B
(DIR),Y| (DIR) | (SR),Y DIR,X L(DIR),Y ABS,)Y ABS,X ABL,X
LDT
1100 C
IMM_e.
1101 D
1110 E
1111 F

Note 1. The code of each instruction first word is 8916.
Note 2. “*” shows the instructions can be used in 7750 Series.

7-20

7700 FAMILY SOFTWARE MANUAL

MITSUBISHI SEMICONDUCTORS
7700 Family Software MANUAL

Sep. First Edition 1994

Editioned by
Committee of editing of Mitsubishi Semiconductor USER’'S MANUAL

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1994 MITSUBISHI ELECTRIC CORPORATION

Renesas
EOL announced

7700 Family
Software Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

	Table of contents
	1 DESCRIPTION
	1.1 Description

	2 CENTRAL PROCESSING UNIT (CPU)
	2.1 Central processing unit (CPU)

	3 ADDRESSING MODES
	3.1 Addressing Modes
	3.2 Explanation of Addressing Modes

	4 INSTRUCTIONS
	4.1 Instruction Set
	4.2 Description of Instructions
	4.3 Notes for Programming

	5 INSTRUCTION EXECUTION SEQUENCE
	5.1 Change of the CPU Basic Clock fCPU
	5.2 Instruction Execution Sequence

	6 CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE
	APPENDIX
	APPENDIX.1 Machine Instructions
	APPENDIX.2 Hexadecimal Instruction Code Table

