

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been

made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

 and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

7700 Family
Software Manual

16

U
ser’s M

anual

MITSUBISHI 16-BIT SINGLE-CHIP
MICROCOMPUTER / 7700 SERIES

keep safety first in your circuit designs !

● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

● These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

● Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.

● All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

● Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

● The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.

● If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
JAPAN and/or the country of destination is prohibited.

● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Preface

This manual has been prepared to enable the users of
the 7700 Family CMOS 16-bit microcomputers to bet-
ter understand the instruction set and the features so
that they can utilize the capabilities of the microcom-
puters to the fullest. This manual presents detailed
descriptions of the instructions and addressing modes
available for the 7700 Family microcomputers.
For the hardware descriptions of the 7700 Family
microcomputers and descriptions of various develop-
ment support tools (e.g., assembler, debugger, and so
on.), please refer to the user's manuals and operating
guidebooks for the respective hardware and software
products.

7700 FAMILY SOFTWARE MANUALii

Table of contents

CHAPTER 1. DESCRIPTION

1.1 Description .. 1-2

CHAPTER 2. CENTRAL PROCESSING UNIT (CPU)

2.1 Central Processing Unit (CPU) ... 2-2

CHAPTER 3. ADDRESSING MODES

3.1 Addressing Modes ... 3-2

3.2 Explanation of addressing mode .. 3-2

CHAPTER 4. INSTRUCTIONS

4.1 Instruction set ... 4-2

4.2 Description of instructions .. 4-7

4.3 Notes for programming ..4-129

CHAPTER 5. INSTRUCTION EXECUTION SEQUENCE

5.1 Change of the CPU basic clock φCPU ... 5-2

5.2 Instruction execution sequence .. 5-3

CHAPTER 6. CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE

List of tables

7700 FAMILY SOFTWARE MANUAL iii

APPENDIX

APPENDIX.1 Machine Instructions .. 7-2

APPENDIX.2 Hexadecimal Instruction Code Table ... 7-18

CHAPTER 1
DESCRIPTION

1.1 Description

7700 FAMILY SOFTWARE MANUAL1–2

DESCRIPTION

1.1 Description
The 7700 Family software offer the following features.

1.1.1 7700 Series, 7770 Series, and 7790 Series software features
● m and x flags are used to select between word and byte operation enabling most instructions to be

implemented with 1-byte operation code (reduces application ROM size)

● Powerful addressing modes, and fast and compact instruction set

● Direct page mapping function and memory oriented software system by direct paging

● The usual 64K bytes program memory boundary can be ignored for the practical purposes, and
programs can be written to utilize the full 16M bytes of memory space

● For data memory linear as well as bank memory accessing are supported

● Bit manipulation instructions and bit test and branch instructions can be used for memory and I/O
accessing of the entire 16M bytes space

● Block transfer instruction capable of handling blocks of up to 64K bytes each

● Decimal arithmetic instruction execution requiring no software compensation

1.1.2 7750 Series software features
The 7750 Series software is based on the Mitsubishi original 16-bit microcomputer 7700 Series and provides
enhanced signed operation instructions. The signed operation enhancement is realized by additional instructions,
instruction code and execution cycle of 7750 Series are completely compatible with those of conventional 7700
Series instructions.

In addition to the 7700 Series, 7770 Series, and 7790 Series software features, the 7750 Series software offer
the following features.

● Upward compatibility for the 7700 Series

● Signed operation enhancements through signed divide/multiply, arithmetic shift right, and sign/zero
extension instruction support

In this manual, 7700 Series software is described unless otherwise noted.

1.1 DESCRIPTION

CHAPTER 2
CENTRAL PROCESSING

UNIT (CPU)

2.1 Central processing unit (CPU)

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

7700 FAMILY SOFTWARE MANUAL2–2

2.1 Central processing unit (CPU)
The CPU of 7700 Series has the ten registers as shown in Figure 2.1.1. Each of these registers is described
below.

2.1.1 Accumulator (Acc)
Accumulators A and B are available and each can be used as 8-bit or 16-bit register as necessary.

(1) Accumulator A (A)
Accumulator A is the main register of the microcomputer. Data operations such as calculations, data
transfer, and input/output are executed mainly through accumulator A. It consists of 16 bits, and the
low-order 8 bits can be also used separately. The data length flag (m) determines whether the register
is used as a 16-bit register or as an 8-bit register. It is used as a 16-bit register when the flag m is
“0”, and as an 8-bit register when the flag m is “1”. The flag m is a part of the processor status register
(PS) which is described later. When an 8-bit register is selected, the low-order 8 bits of the accumu-
lator A are used and the contents of the high-order 8 bits are unchanged.

(2) Accumulator B (B)
Accumulator B is a 16-bit register with the same function as accumulator A. The instructions of 7700
Series can use accumulator B instead of accumulator A, but the use of accumulator B requires more
instruction bytes and execution cycles than accumulator A. Accumulator B is also controlled by the
data length flag m just as in accumulator A.

2.1.2 Index register X (X)
Index register X consists of 16 bits and the low-order 8 bits can be also used separately. The index register
length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. It is used
as a 16-bit register when the flag x is “0” and as an 8-bit register when the flag x is “1”. The flag x is a
part of the processor status register (PS) which is described later. When an 8-bit register is selected, the
low-order 8 bits of the index register X are used and the contents of the high-order 8 bits are unchanged.
In addressing mode in which the index register X is used as the index register, the contents of this register
is added to obtain the real address.
When executing the block transfer instruction MVP or MVN, the contents of the index register X indicate
the low-order 16 bits of the source data address. The third byte of the MVP or MVN instruction is the high-
order 8 bits of the source data address.

2.1.3 Index register Y (Y)
Index register Y is a 16-bit register with the same function as index register X. Just as in index register
X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an
8-bit register.
When executing the block transfer instruction MVP or MVN, the contents of the index register Y indicate
the low-order 16 bits of the destination data address. The second byte of the MVP or MVN instruction is
the high-order 8 bits of the destination data address.

2–37700 FAMILY SOFTWARE MANUAL

2.1 Central processing unit (CPU)

CENTRAL PROCESSING UNIT (CPU)

Fig. 2.1.1 CPU registers structure

b0b7b8b15

AH AL

b0b7b8b15

BH BL

b0b7b8b15

XH XL

b0b7b8b15

YH YL

b0b7b8b15

SH SL

b0b7b8b15

b7 b0

b8b23 b16 b15 b7 b0

PCH PCLPG

b0b7

DT

b0b7b8b15

b0b1b2b3b4b5b6b7b8b10

0 0 0 0 0 CZIDxmVNIPL

Accumulator A (A)

Accumulator B (B)

Index register X (X)

Index register Y (Y)

Stack pointer (S)

Data bank register (DT)

Program counter (PC)

Program bank register (PG)

Direct page register (DPR)

Processor status register (PS)

Processor interrupt priority level

Carry flag
Zero flag

Interrupt disable flag

Index register length flag

Decimal mode flag

Data length flag
Overflow flag

Negative flag

DPRLDPRH

PSLPSH

b9b15

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

7700 FAMILY SOFTWARE MANUAL2–4

2.1.4 Stack pointer (S)
Stack pointer S is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used for
addressing modes using the stack. The contents of the stack pointer S indicate the address (stack area)
for storing registers during subroutine calls and interrupts.
When an interrupt request is accepted, the contents of the program bank register PG is stored at the
address indicated by the contents of the stack pointer S, and the contents of the stack pointer S are
decremented by 1. Then the contents of the program counter PC and the processor status register PS
(PCH, PCL, PSH, PSL) are stored. The contents of the stack pointer S after accepting an interrupt request
are equal to the contents of the stack pointer S before the accepting of the interrupt request decremented
by 5.
Figure 2.1.2 shows the stored registers before an interrupt routine.
When returning to the original routine after processing the interrupt routine by executing the RTI instruction,
the registers stored in the stack area are restored to the original registers in the reverse sequence and the
contents of the stack pointer are returned to the numerical value before the accepting of interrupt request.
The same operation is performed during a subroutine call, but the contents of the processor status register
PS are not automatically stored. (The contents of the program bank register PG may not be stored. It
depends on the addressing mode.)
The user is responsible for storing registers other than those described above with a program during
interrupts or subroutine calls.
Additionally, the stack pointer S must be initialized at the beginning of the program because its contents
are undefined at reset. The stack area changes when subroutines are nested or when multiple interrupt
requests are accepted. Therefore, make sure necessary data in the internal RAM are not destroyed when
nesting subroutines.

Fig. 2.1.2 Stored registers before an interrupt routine

❈ “S” is the initial address that the stack pointer (S)
indicates at accepting an interrupt request.
The S’s contents become “S–5” after storing the
above registers.

Address

S–4

S–3

S–2

S–1

S

Stack area

S–5

Processor status register’s low-order byte (PSL)

Processor status register’s high-order byte (PSH)

Program counter’s low-order byte (PCL)

Program counter’s high-order byte (PCH)

Program bank register (PG)

Renesas
EOL announced

2–57700 FAMILY SOFTWARE MANUAL

2.1 Central processing unit (CPU)

CENTRAL PROCESSING UNIT (CPU)

2.1.5 Program counter (PC)
Program counter PC is a 16-bit counter that indicates the low-order 16 bits of the next program memory
address (24 bits) to be executed. The contents of the high-order program counter (PCH) become “FF16”,
and the low-order program counter (PCL) become “FE16” at reset. The contents of the program counter PC
become the contents of the reset vector address (addresses FFFE16, FFFF16) after removing reset status.
Figure 2.1.3 shows the program counter PC and the program bank register PG.

Fig. 2.1.3 Program counter PC and program bank register PG

2.1.6 Program bank register (PG)
Program bank register PG is an 8-bit register that indicates the high-order 8 bits (referred to as bank) of
the next program memory address (24 bits) to be executed.
When a carry occurs after adding the contents of the program counter PC and other factors, the contents
of the program bank register PG are automatically incremented by 1. When a borrow occurs after subtract-
ing the contents of the program counter PC, the contents of the program bank register PG are automatically
decremented by 1. Accordingly, there is no need to consider bank boundaries, usually.
This register is cleared to “0016” at reset.

In single-chip mode, keep the program bank register PG “0016” because the access within bank 016 is only
allowed. Be sure that prevent the program bank register PG from being set to a value other than “0016”
by executing the instructions of branch and so on.
This register is cleared to “0016” at reset.

PCH PCL

b15 b8 b7 b0b16

PG

b23

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

7700 FAMILY SOFTWARE MANUAL2–6

2.1.7 Data bank register (DT)
Data bank register DT is an 8-bit register. With some addressing modes using the data bank register DT,
the contents of this register are used as the high-order 8 bits (bank) of a 24-bit address.
Use the LDT instruction to set the value in this register.
Set the only “0016” in single-chip mode because the access within bank 016 is only allowed.
This register is cleared to “0016” at reset.

2.1.8 Direct page register (DPR)
Direct page register DPR is a 16-bit register. The contents of this register indicate the direct page area
which is allocated in bank 016 or in the area across banks 016 and 116. This area can be accessed with
2 bytes❈ by using the direct page addressing mode.
The contents of the DPR are the base address (the lowest address) of the direct page area which extends
to 256 bytes above this address. The DPR can contain a value from 000016 to FFFF16. However, set a
value from 000016 to FF0016 in single-chip mode because the access within bank 016 is only allowed.
If it contains a value equal to or more than “FF0116”, the direct page area spans the area across banks
016 and 116. If the low-order 8 bits of the DPR is “0016”, the number of cycles required to generate an
address is smaller by 1 cycle than the number if its contents are not “0016”. Accordingly, the low-order 8
bits of the DPR should usually be set to “0016”.
This register is cleared to “000016” at reset. Figure 2.1.4 shows a setting example of the direct page with
the direct page register (DPR).

❈ With 3 bytes for DIV and MPY instructions, and 1 byte is added for all instructions when using accu-
mulator B.

Fig. 2.1.4 Setting example of direct page with direct page register (DPR)

Note 1 : The number of execution cycles is incremented by 1 when the low-order 8 bits of the
DPR are not “0016”.

Note 2 : The direct page area spans the area across banks 016 and 116 when the DPR is “FF0116”
or more.

Bank 016

Bank 116

016

FF16

12316

22216

FF1016

1000F16

016

FFFF16

1000016

DPR area when DPR=012316

(Note 1)

DPR area when DPR=FF1016

(Note 2)

DPR area when DPR=000016

2–77700 FAMILY SOFTWARE MANUAL

2.1 Central processing unit (CPU)

CENTRAL PROCESSING UNIT (CPU)

2.1.9 Processor status register (PS)
Processor status register is an 11-bit register. It consists of the flags to indicate the result of operation and
the processor interrupt priority level. The flags C, Z, V, and N are tested by branch instructions.
Figure 2.1.5 shows the structure of the processor status register.
The details of the processor status register flags are described below.

Fig. 2.1.5 Processor status register structure

(1) Carry flag (C)
The carry flag is assigned to bit 0 of the processor status register. It contains the carry or borrow bit
from the arithmetic and logic unit (ALU) after an arithmetic operation. This flag is also affected by shift
and rotate instructions. This flag can be set with the SEC or SEP instruction and cleared with the CLC
or CLP instruction.

(2) Zero flag (Z)
The zero flag is assigned to bit 1 of the processor status register. It is set to “1” when the result of
an arithmetic operation or data transfer is zero, and cleared to “0” when otherwise. This flag can be
set with the SEP instruction and cleared with the CLP instruction.
Note: This flag has no meaning in decimal mode addition (the ADC instruction).

(3) Interrupt disable flag (I)
The interrupt disable flag is assigned to bit 2 of the processor status register. It disables all maskable
interrupts (interrupts other than watchdog timer, the BRK instruction, and zero division). Interrupts are
disabled when this flag is “1”. When an interrupt request is accepted, this flag is automatically set to
“1” to avoid multiple interrupts. This flag can be set with the SEI or SEP instruction and cleared with
the CLI or CLP instruction. This flag is set to “1” at reset.

(4) Decimal mode flag (D)
The decimal mode flag is assigned to bit 3 of the processor status register. It determines whether
addition and subtraction are performed in binary or decimal. Binary arithmetic is performed when this
flag is “0”. When it is “1”, decimal arithmetic is performed with each word treated as two or four digits
decimal (determined by the data length flag m). Decimal adjust is performed automatically. Decimal
operation is possible only with the ADC and SBC instructions. This flag can be set with the SEP
instruction and cleared with the CLP instruction. This flag is cleared to “0” at reset.

(5) Index register length flag (x)
The index register length flag is assigned to bit 4 of the processor status register. It determines
whether the index register X and index register Y are used as a 16-bit register or an 8-bit register.
The register is used as a 16-bit register when this flag x is “0”, and as an 8-bit register when it is “1”.
This flag can be set with the SEP instruction and cleared with the CLP instruction. This flag is cleared
to “0” at reset.

❈ When transferring between different bit lengths, the data is transferred with the length of the
destination register, but except for the TXA , TYA , TXB , and TYB instructions.

Note : Bits 11 to 15 are always “0” when the contents of the processor status register are read.

b15 b8 b7 b0b1b2b3b4b5b6b14 b9b10b11b12b13

0 N CZIDxmV0 IPL000

CENTRAL PROCESSING UNIT (CPU)
2.1 Central processing unit (CPU)

7700 FAMILY SOFTWARE MANUAL2–8

(6) Data length flag (m)
The data length flag is assigned to bit 5 of the processor status register. It determines whether to treat
data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit when this flag m is “0”, and
as an 8-bit unit when it is “1”.
This flag can be set with the SEM or SEP instruction and cleared with the CLM or CLP instruction.
This flag is cleared to “0” at reset.

❈ When transferring between different bit lengths, the data is transferred with the length of the
destination register, but except for the TXA , TYA , TXB , and TYB instructions.

(7) Overflow flag (V)
The overflow flag is assigned to bit 6 of the processor status register. It is used when adding or
subtracting a word as signed binary. In case the data length flag m is “0”, the overflow flag is set to
“1” when the result of addition or subtraction is outside the range between –32768 and +32767, and
cleared to “0” in all other cases. In case the data length flag m is “1”, the overflow flag is set to “1”
when the result of addition or subtraction is outside the range between –128 and +127, and cleared
to “0” in all other cases. The overflow flag can be set with the SEP instruction and cleared with the
CLV or CLP instructions.
Note : This flag has no meaning in decimal mode.

(8) Negative flag (N)
The negative flag is assigned to bit 7 of the processor status register. It is set to “1” when the result
of arithmetic operation or data transfer is negative (data bit 15 is “1” when the data length flag m is
“0”, or data bit 7 is “1” when the data length flag m is “1”). It is cleared to “0” in all other cases. This
flag can be set with the SEP instruction and cleared with the CLP instruction.
Note : This flag has no meaning in decimal mode.

(9) Processor interrupt priority level (IPL)
The processor interrupt priority level (IPL) is assigned to bits 8, 9, and 10 of the processor status
register. These three bits determine the priority level of processor interrupts from level 0 to level 7.
The interrupt is enabled when the interrupt priority level of a required interrupt (set with the interrupt
control register) is higher than IPL. When an interrupt request is accepted, the IPL is stored in the
stack and IPL is replaced by the interrupt priority level of the accepted interrupt request. This simpli-
fies control of multiple interrupts.
There are no instructions to directly set or clear the IPL. It can be changed by placing the new IPL
on the stack and updating the processor status register with the PUL or PLP instruction.
The contents of the IPL are cleared to “0002” at reset.

CHAPTER 3
ADDRESSING

MODES

3.1 Addressing modes
3.2 Explanation of addressing

modes

7700 FAMILY SOFTWARE MANUAL3–2

3.1 Addressing Modes

When executing an instruction, the address of the memory location from which the data required for arithmetic
operation is to be retrieved or to which the result of arithmetic operation is to be stored must be specified in
advance. Address specification is also necessary when the control is to jump to a certain memory address
during program execution. Addressing refers to the method of specifying the memory address.

The 7700 Series microcomputers support 28 different addressing modes, offering extremely versatile and
powerful memory accessing capability.

3.2 Explanation of Addressing Modes

Each of the 28 addressing modes is explained on the pages indicated below:

Implied addressing mode .. 3-3

Immediate addressing mode ... 3-4

Accumulator addressing mode.. 3-6

Direct addressing mode .. 3-7

Direct bit addressing mode ... 3-9

Direct indexed X addressing mode .. 3-11

Direct indexed Y addressing mode .. 3-14

Direct indirect addressing mode ... 3-15

Direct indexed X indirect addressing mode ... 3-17

Direct indirect indexed Y addressing mode ... 3-20

Direct indirect long addressing mode ... 3-23

Direct indirect long indexed Y addressing mode 3-25

Absolute addressing mode .. 3-28

Absolute bit addressing mode .. 3-31

Absolute indexed X addressing mode .. 3-33

Absolute indexed Y addressing mode .. 3-36

Absolute long addressing mode ... 3-39

Absolute long indexed X addressing mode.. 3-41

Absolute indirect addressing mode ... 3-43

Absolute indirect long addressing mode .. 3-44

Absolute indexed X indirect addressing mode 3-45

Stack addressing mode... 3-46

Relative addressing mode... 3-49

Direct bit relative addressing mode .. 3-50

Absolute bit relative addressing mode ... 3-52

Stack pointer relative addressing mode ... 3-54

Stack pointer relative indirect indexed Y addressing mode 3-55

Block transfer addressing mode ... 3-58

Note. On the pages below, the instructions with the mark “ * ” can be used in the 7750 Series only.

ADDRESSING MODES
3.1 Addressing Modes, 3.2 Explanation of Addressing Modes

7700 FAMILY SOFTWARE MANUAL 3–3

Implied

Mode : Implied addressing mode

Function : The single-instruction inherently address an internal register.

Instruction : BRK, CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP, RTI, RTL,
RTS, SEC, SEI, SEM, STP, TAD, TAS, TAX, TAY, TBD, TBS, TBX,
TBY, TDA, TDB, TSA, TSB, TSX, TXA, TXB, TXS, TXY, TYA, TYB,
TYX, WIT, XAB

ex. : Mnemonic

CLC

Machine Code

1816

PS

PS

C flag

ex. : Mnemonic
TXA
(m=1, x=1)

Machine Code

X

A

The upper-byte is
 not transferred.

ex. : Mnemonic
TXA
(m=0, x=0)

Machine Code
8A16

X

A

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? 0

l l16

8A16 l l16

hh16 l l16

hh16 l l16

8A16

7700 FAMILY SOFTWARE MANUAL3–4

 Immediate

Mode : Immediate addressing mode

Function : A portion of the instruction is the actual data. Such instruction code may cross over the bank
boundary.

Instruction : ADC, AND, CLP, CMP, CPX, CPY, DIV, DIVS*, EOR, LDA, LDT, LDX,
LDY, MPY, MPYS*, ORA, RLA, SBC, SEP

ex. : Mnemonic
ADC A, #0A5H
 (m=1)

Machine Code
6916 A516

A ← A+C+ A516 ←

Op Code (6916)

Operand (A516)

Memory

PG

PG

000016

FFFF16

bank PG

ex. : Mnemonic
ADC A, #0A5B7H
 (m =0)

Machine Code
6916 B716 A516

Op Code (6916)

Operand (A516)

Memory

PG

PG

000016

FFFF16

bank PGOperand (B716)
A A+C+ A516 B716

ex. : Mnemonic
LDX #0A5H
 (x=1)

Machine Code
A216 A516

A516

Op Code (A216)

Operand (A516)

Memory

PG

PG

0000 16

FFFF16

bank PG
X ← ←

←←

7700 FAMILY SOFTWARE MANUAL 3–5

 Immediate

ex. : Mnemonic
LDX #0A5B7H
 (x=0)

Machine Code
A216 B716 A516

←

Op Code (A216)

Operand (A516)

Memory

PG

PG

000016

FFFF16

bank PG
Operand (B716)

X ← A516 B716

7700 FAMILY SOFTWARE MANUAL3–6

Accumulator

Mode : Accumulator addressing mode

Function : The contents of accumulator are the actual data.

Instruction : ASL, ASR*, DEC, EXTS*, EXTZ*, INC, LSR, ROL, ROR

ex. : Mnemonic
ROL A
(m=0)

Machine Code

2A16

b15 b0

Carry flag Accumulator A

ex. : Mnemonic

ROL A
(m=1)

Machine Code

2A16

b7 b0

Carry flag Accumulator A

7700 FAMILY SOFTWARE MANUAL 3–7

Direct

Mode : Direct addressing mode

Function : The contents of the bank 016 memory location specified by the result of adding the second byte
of the instruction to the contents of the direct page register become the actual data. If, however,
addition of the instruction’s second byte to the direct page register’s contents result in a value that
exceeds the bank 016 range, the specified location will be in bank 116.

Instruction : ADC, AND, ASL, ASR*, CMP, CPX, CPY, DEC, DIV, DIVS*, EOR, INC,
LDA, LDM, LDX, LDY, LSR, MPY, MPYS*,ORA, ROL, ROR, SBC, STA,
STX, STY

ex. : Mnemonic

ADC A, 02H
 (m=1)

Machine Code
6516 0216

Op Code (6516)

Memory

000016

FFFF16

Bank 016

Operand (0216)

←A ← A+C+ DATA DATA 123616

+ 123416 = 123616

Direct Page
 Register

ex. : Mnemonic

ADC A, 02H
 (m=0)

Machine Code
6516 0216

Op Code (6516)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 123616

+ 123416 = 123616

Direct Page
 Register

DATAH 123716

←A ← A+C+ DATAH DATAL

7700 FAMILY SOFTWARE MANUAL3–8

Direct

ex. : Mnemonic

LDX 02H
 (x=1)

Machine Code
A616 0216

Op Code (A616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

←X ← DATA DATA 123616

+ 123416 = 123616

Direct Page
 Register

ex. : Mnemonic

LDX 02H
 (x=0)

Machine Code
A616 0216

Op Code (A616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 123616

+ 123416 = 123616

Direct Page
 Register

DATAH

←X ← DATAH DATAL

7700 FAMILY SOFTWARE MANUAL 3–9

Direct Bit

Mode : Direct bit addressing mode

Function : Specifies the bank 016 memory location by the value obtained by adding the instruction’s second
byte to the direct page register’s contents, and specifies the positions of multiple bits in the
memory location by the bit pattern in the third and fourth bytes of the instruction (third byte only
when the m flag is set to 1). If, however, addition of the instruction’s second byte to the direct
page register’s contents result in a value that exceeds the bank 016 range, the specified location
will be in bank 116.

Instruction : CLB, SEB

ex. : Mnemonic

CLB #5AH, 04H
 (m=1)

Machine Code

1416 0416 5A16

Op Code (1416)

Operand (0416) + 123416 = 123816

Direct Page
 Register

(Before the instruction execution)

(After the instruction execution)

Memory

000016

FFFF16

Bank 016

123816? ? ? ? ? ? ? ?

Operand (5A16)

Memory

000016

FFFF16

Bank 016123816? 0 ? 0 0 ? 0 ?

7700 FAMILY SOFTWARE MANUAL3–10

Direct Bit

ex. : Mnemonic

CLB #5AA5H, 04H
 (m=0)

Machine Code

1416 0416 A516 5A16

Op Code (1416)

Operand (0416) + 123416 = 123816

Direct Page
 Register

(Before the instruction execution)

Memory

000016

FFFF16

Bank 016

123816

(After the instruction execution)

Memory

000016

FFFF16

Bank 016

123816

? ? ? ? ? ? ? ?

Operand (A516)

Operand (5A16)

123916

0 ? 0 ? ? 0 ? 0

? 0 ? 0 0 ? 0 ? 123916

? ? ? ? ? ? ? ?

7700 FAMILY SOFTWARE MANUAL 3–11

Mode : Direct indexed X addressing mode

Function : The contents of the bank 016 memory location specified by the result of adding the second byte
of the instruction, the contents of the direct page register and the contents of the index register
X become the actual data. If, however, addition of the instruction’s second byte, the direct page
register’s contents and the index register X’s contents results in a value that exceeds the bank 016

or bank 116 range, the specified location will be in bank 116 or bank 216.

Instruction : ADC, AND, ASL, ASR*, CMP, DEC, DIV, DIVS*, EOR, INC, LDA, LDM,
LDY, LSR, MPY, MPYS*, ORA, ROL, ROR, SBC, STA, STY

Direct Indexed X

ex. : Mnemonic

ADC A, 1EH, X
 (m=1, x=1)

Machine Code

7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

←A ← A+C+ DATA DATA 133816

+ 123416 +

Direct Page
 Register

E616 = 133816

 Index
Register X

ex. : Mnemonic

ADC A, 1EH, X
 (m=0, x=1)

Machine Code

7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 133816

+ 123416 +

Direct Page
 Register

DATAH

←A ← A+C+ DATAH

E616 = 133816

 Index
Register X

133916

 DATAL

7700 FAMILY SOFTWARE MANUAL3–12

Direct Indexed X

ex. : Mnemonic
ADC A, 1EH, X
 (m=1, x=0)

Machine Code
7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

←A ← A+C+ DATA DATA 433816

+ 123416 +

Direct Page
 Register

30E616 = 433816

 Index
Register X

ex. : Mnemonic

ADC A, 1EH, X
 (m=0, x=0)

Machine Code

7516 1E16

Op Code (7516)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 433816

+ 123416 +

Direct Page
 Register

DATAH

←A ← A+C+ DATAH

30E616 = 433816

 Index
Register X

433916

DATAL

7700 FAMILY SOFTWARE MANUAL 3–13

Direct Indexed X

ex. : Mnemonic

LDY 1EH, X
(x=0)

Machine Code

B416 1E16

Op Code (B416)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATAL 433816

+ 123416 +

Direct Page
 Register

DATAH

←Y ← DATAH

30E616 = 433816

 Index
Register X

433916

ex. : Mnemonic
LDY 1EH, X
(x=1)

Machine Code
B416 1E16

Op Code (B416)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

←Y ← DATA DATA 133816

+ 123416 +

Direct Page
 Register

E616 = 133816

 Index
Register X

DATAL

7700 FAMILY SOFTWARE MANUAL3–14

Direct Indexed Y

Mode : Direct indexed Y addressing mode

Function : The contents of the bank 016 memory location specified by the result of adding the second byte
of the instruction, the contents of the direct page register and the contents of the index register
Y become the actual data. If, however, addition of the instruction’s second byte, the direct page
register’s contents and the index register Y’s contents results in a value that exceeds the bank 016

or bank 116 range, the specified location will be in bank 116 or bank 216.

Instruction : LDX, STX

ex. : Mnemonic

LDX 02H, Y
 (x=0)

Machine Code

B616 0216

Op Code (B616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

DATAL 131C16

+ 123416 +

Direct Page
 Register

DATAH

←X ← DATAH

00E616 = 131C16

 Index
Register Y

131D16

ex. : Mnemonic
LDX 02H, Y
 (x=1)

Machine Code
B616 0216

Op Code (B616)

Memory

000016

FFFF16

Bank 016

Operand (0216)

←X ← DATA DATA 131C16

+ 123416 +

Direct Page
 Register

E616 = 131C16

 Index
Register Y

DATAL

7700 FAMILY SOFTWARE MANUAL 3–15

Direct Indirect

Mode : Direct indirect addressing mode

Function : The value obtained by adding the instruction’s second byte to the contents of the direct page
register specifies 2 adjacent bytes in memory bank 016, and the contents of these bytes in memory
bank DT (DT is contents of data bank register) become the actual data. If, however, the value
obtained by adding the instruction’s second byte and the direct page register’s contents exceeds
the bank 016 range, the specified location will be in bank 116.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

ex. : Mnemonic

ADC A, (1EH)
(m=1)

Machine Code
7216 1E16

Op Code (7216)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Direct Page
 Register

←A ← A+C+ DATA

125216

125316

125216

DATA DT 120116

Data Bank
 Register

=

DATA II (1216)

7700 FAMILY SOFTWARE MANUAL3–16

Direct Indirect

ex. : Mnemonic

ADC A, (1EH)
(m=0)

Machine Code
7216 1E16

Op Code (7216)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Direct Page
 Register

DATA II (1216)

125216

125316

125216

DATAL DT 120116

Data Bank
 Register

=

DATAH

←A ← A+C+ DATAH DATAL

DT 120216

7700 FAMILY SOFTWARE MANUAL 3–17

Direct Indexed X Indirect

Mode : Direct indexed X indirect addressing mode

Function : The value obtained by adding the instruction’s second byte, the contents of the direct page register
and the contents of the index register X specifies 2 adjacent bytes in memory bank 016, and the
contents of these bytes in memory bank 016, and the contents of these bytes in memory bank DT
(DT is contents of data bank register) become the actual data. If, however, the value obtained by
adding the instruction’s second byte, the direct page register’s contents and the index register X’s
contents exceeds the bank 016 or bank 116 range, the specified location will be in bank 116 or bank
216.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

ex. : Mnemonic

ADC A, (1EH, X)
(m=1, x=1)

Machine Code

6116 1E16

Op Code (6116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATA I (0016)

DATA II (1416)

←A ← A+C+ DATA DATA DT 140016

Data Bank
 Register

133816

133916

+ 123416 +

Direct Page
 Register

E616 = 133816

 Index
Register X

7700 FAMILY SOFTWARE MANUAL3–18

Direct Indexed X Indirect

ex. : Mnemonic
ADC A, (1EH, X)
(m=0, X=1)

Machine Code
6116 1E16

Op Code (6116)

Memory

000016

FFFF16

Bank 016

Operand (1E16)

DATA I (0016)

DATA II (1416)

DATAL DT 140016

Data Bank
 Register

DATAH←A ← A+C+ DATAH DATAL DT 140116

+ 123416 +

Direct Page
 Register

E616 = 133816

 Index
Register X

133816

133916

ex. : Mnemonic
ADC A, (1EH, X)
(m=1, x=0)

Machine Code
6116 1E16

Op Code (6116)

Memory

1FFFF16

Bank 116

Operand (1E16)

DATA I (0016)

DATA II (1416)

←A ← A+C+ DATA DATA DT 140016

Data Bank
 Register

1033816

1033916

+ 123416 +

Direct Page
 Register

F0E616 = 1033816

 Index
Register X

1000016

7700 FAMILY SOFTWARE MANUAL 3–19

Direct Indexed X Indirect

ex. : Mnemonic
ADC A, (1EH, X)
 (m=0, x=0)

Machine Code
6116 1E16

Op Code (6116)

Memory

1FFFF16

Bank 116

Operand (1E16)

DATA I (0016)

DATA II (1416)

1033816

1033916

+ 123416 +

Direct Page
 Register

F0E616 = 1033816

 Index
Register X

1000016

DATAL DT 140016

Data Bank
 Register

DATAH←A ← A+C+ DATAH DATAL DT 140116

7700 FAMILY SOFTWARE MANUAL3–20

Direct Indirect Indexed Y

Mode : Direct indirect indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the direct page
register specifies 2 adjacent bytes in memory bank 016.
The value obtained by adding the contents of these bytes and the contents of the index register
Y specifies address of the actual data in memory bank DT (DT is contents of data bank register).
If, however, the value obtained by adding the contents of the instruction’s second byte and the
direct page register exceeds the bank 016 range, the specified location will be in bank 116. Also,
if addition of the contents of memory and index register Y generate a carry, the bank number will
be 1 larger than the contents of the data bank register.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

ex. : Mnemonic

ADC A, (1EH), Y
 (m=1, x=1)

Machine Code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Direct Page
 Register

125216

125316

125216

=

← DATA DT 12E716

Data Bank
 Register

DATA II (1216)
E616 = 12E716

 Index
Register Y

+

A ← A+C+ DATA

7700 FAMILY SOFTWARE MANUAL 3–21

Direct Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH), Y
 (m=0, x=1)

Machine Code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Direct Page
 Register

125216

125316

125216

=

DATAL DT 12E716

Data Bank
 Register

DATA II (1216)
E616 = 12E716

 Index
Register Y

+

DATAH

←A ← A+C+ DATAH DATAL

DT 12E816

ex. : Mnemonic

ADC A, (1EH), Y
 (m=1, x=0)

Machine Code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Direct Page
 Register

125216

125316

125216

=

A A+C+ DATA DATA DT + 1 02E716

Data Bank
 Register

DATA II (1216)
F0E616 = 102E716

 Index
Register Y

+

Bank

← ←

7700 FAMILY SOFTWARE MANUAL3–22

Direct Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH), Y
 (m=0, x=0)

Machine Code
7116 1E16

Op Code (7116)

Memory

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Direct Page
 Register

125216

125316

125216

=

DATAL DT + 1 02E716

Data Bank
 Register

DATA II (1216)

DATAH

←A ← A+C+ DATAH DATAL

DT + 1 02E816

F0E616 = 102E716

 Index
Register Y

+

Bank

7700 FAMILY SOFTWARE MANUAL 3–23

Direct Indirect Long

Mode : Direct indirect long addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the direct page
register specifies 3 adjacent bytes in memory bank 016, and the contents of these bytes specify
the address of the memory location that contains the actual data. If, however, the value obtained
by adding the contents of the instruction’s second byte and the direct page register exceeds the
bank 016 range, the specified location will be in bank 116. The 3 adjacent bytes memory location
may be spread over two different banks.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

ex. : Mnemonic

ADCL A, (1EH)
 (m=1)

Machine Code
6716 1E16

Memory

Bank 016

DATA I (EF16)125216

125316 DATA II (0116)

A ← A+C+ DATA

Op Code (6716)

Operand (1E16)123416 +

Direct Page
 Register

125216

=

← DATA 1201EF16

DATA III (1216)125416

7700 FAMILY SOFTWARE MANUAL3–24

Direct Indirect Long

ex. : Mnemonic

ADCL A, (1EH)
 (m=0)

Machine Code
6716 1E16

Memory

Bank 016

DATA I (EF16)125216

125316 DATA II (0116)

DATA III (1216)125416

A ← A+C+ DATAH

Op Code (6716)

Operand (1E16)123416 +

Direct Page
 Register

125216

=

←
DATAL 1201EF16

DATAH 1201F016

DATAL

7700 FAMILY SOFTWARE MANUAL 3–25

Direct Indirect Long Indexed Y

Mode : Direct indirect long indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the direct page
register specifies 3 adjacent bytes in memory bank 016, and the value obtained by adding the
contents of these bytes and the contents of the index register Y specifies the address of the
memory location where the actual data is stored. If, however, the value obtained by adding the
contents of the instruction’s second byte and the direct page register exceeds the bank 016 range,
the specified location will be in bank 116. The 3 adjacent bytes memory location may be spread
over two different banks.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=1, x=1)

Machine Code
7716 1E16

Memory

Bank 016

DATA I (EF16)125216

125316 DATA II (0116)

A ← A+C+ DATA

Op Code (7716)

Operand (1E16)123416 +

Direct Page
 Register

125216

=

← DATA 12021016

DATA III (1216)125416

2116 = 12021016

 Index
Register Y

+

7700 FAMILY SOFTWARE MANUAL3–26

Direct Indirect Long Indexed Y

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=0, x=1)

Machine Code
7716 1E16

Op Code (7716)

Memory

Bank 016

Operand (1E16)

DATA I (EF16)

123416 +

Direct Page
 Register

125216

125316

125216

=

DATAL 12021016

DATA II (0116) 2116 = 12021016

 Index
Register Y

+

DATAH

←A ← A+C+ DATAH DATAL

12021116

125416 DATA III (1216)

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=1, x=0)

Machine Code
7716 1E16

Op Code (7716)

Memory

Bank 016

Operand (1E16)

DATA I (EF16)

123416 +

Direct Page
 Register

125216

125316

125216

=

DATA 12E71016

DATA II (0116)

←A ← A+C+ DATA

125416 DATA III (1216)

+ E52116 = 12E71016

 Index
Register Y

7700 FAMILY SOFTWARE MANUAL 3–27

Direct Indirect Long Indexed Y

ex. : Mnemonic

ADCL A, (1EH), Y
 (m=0, x=0)

Machine Code
7716 1E16

Op Code (7716)

Memory

Bank 016

Operand (1E16)

DATA I (EF16)

123416 +

Direct Page
 Register

125216

125316

125216
=

12E71016

DATA II (0116)

125416 DATA III (1216)

+ E52116 = 12E71016

 Index
Register Y

DATAL

DATAH 12E71116

←A ← A+C+ DATAH DATAL

7700 FAMILY SOFTWARE MANUAL3–28

Absolute

Mode : Absolute addressing mode

Function : The contents of the memory locations specified by the instruction’s second and third bytes and the
contents of the data bank register are the actual data. Note that, in the cases of the JMP and JSR
instructions, the instructions’ second and third byte contents are transferred to the program
counter.

Instruction : ADC, AND, ASL, ASR*, CMP, CPX, CPY, DEC, DIV, DIVS*, EOR, INC,
JMP, JSR, LDA, LDM, LDX, LDY, LSR, MPY, MPYS*, ORA, ROL, ROR,
SBC, STA, STX, STY

DT

ex.: Mnemonic
ADC A, 0AD12H
 (m=1)

Machine Code
6D16 1216 AD16

Op Code (6D16)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+C+ DATA ← AD1216

Data Bank
 Register

←A ← A+C+ DATAH
DT

ex. : Mnemonic
ADC A, 0AD12H
 (m=0)

Machine Code
6D16 1216 AD16

Op Code (6D16)

Operand (AD16)

Memory

Operand (1216)

DATAL AD1216

Data Bank
 Register

DATAH DT AD1316
 DATAL

7700 FAMILY SOFTWARE MANUAL 3–29

Absolute

DT

ex. : Mnemonic
LDX 0AC14H
 (x=1)

Machine Code
AE16 1416 AC16

Op Code (AE16)

Operand (AC16)

Memory

Operand (1416)

DATAX ← DATA ← AC1416

Data Bank
 Register

←X ← DATAH DATAL

DT

ex. : Mnemonic
LDX 0AC14H
 (x=0)

Machine Code
AE16 1416 AC16

Op Code (AE16)

Operand (AC16)

Memory

Operand (1416)

DATAL AC1416

Data Bank
 Register

DATAH DT AC1516

7700 FAMILY SOFTWARE MANUAL3–30

Absolute

ex. : Mnemonic
JMP 0AC14H

Machine Code
4C16 1416 AC16

Op Code (4C16)

Operand (AC16)

Memory

PG 000016

PG FFFF16

bank PG

Operand (1416)

Address to be
executed next.

PG AC1416

Program
Bank Register

Program bank register contents
are not affected.

The branch destination bank must be considered carefully when a JMP
or a JSR instruction is located near a bank boundary.
→Refer the description of a JMP instruction (Page 4-50).
 Refer the description of a JSR instruction (Page 4-51).

(Note)

7700 FAMILY SOFTWARE MANUAL 3–31

Absolute Bit

Mode : Absolute bit addressing mode

Function : The contents of the instruction’s second and third bytes and the contents of the data bank register
specify the memory locations, and data for multiple bit positions in the memory locations are
specified by a bit pattern specified in the instruction's fourth and fifth bytes (the fourth byte only
if the m flag is set to 1).

Instruction : CLB, SEB

? 0 ? 0 0 ? 0 ? DT 123416

Data Bank
 Register

Memory

ex. : Mnemonic

CLB #5AH, 1234H
 (m=1)

Machine Code

1C16 3416 1216 5A16

Op Code (1C16)

Operand (1216)

Memory

Operand (3416)

DT 123416

Data Bank
 Register

Operand (5A16)

? ? ? ? ? ? ? ?

7700 FAMILY SOFTWARE MANUAL3–32

Absolute Bit

ex. : Mnemonic

CLB #5AA5H, 1234H
 (m=0)

Machine Code

1C16 3416 1216 A516 5A16

Op Code (1C16)

Operand (1216)

Memory

Operand (3416)

DT 123416

Data Bank
 Register

Operand (A516)

? ? ? ? ? ? ? ?

0 ? 0 ? ? 0 ? 0 DT 123416

Data Bank
 Register

Memory

Operand (5A16)

? ? ? ? ? ? ? ? DT 123516

? 0 ? 0 0 ? 0 ? DT 123516

7700 FAMILY SOFTWARE MANUAL 3–33

Absolute Indexed X

Mode : Absolute indexed X addressing mode

Function : The contents of the memory locations specified by a value resulting from addition of a 16-bit
numeric value expressed by the instruction’s second and third bytes with the contents of the index
register X and the contents of the data bank register are the actual data. If, however, addition of
the numeric value expressed by the instruction’s second and third bytes with the contents of the
index register X generates a carry, the bank number will be 1 larger than the contents of the data
bank register.

Instruction : ADC, AND, ASL, ASR*, CMP, DEC, DIV, DIVS*, EOR, INC, LDA, LDM,
LDY, LSR, MPY, MPYS*,ORA, ROL, ROR, SBC, STA

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=1, x=1)

Machine Code

7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+C+ DATA ← AE0016

+ EE16 = AE0016

 Index
Register X

←A ← A+C+ DATAH DATAL

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=0, x=1)

Machine Code
7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATAL AE0016

 Index
Register X

DATAH DT AE0116

+ EE16 = AE0016

 Index
Register X

7700 FAMILY SOFTWARE MANUAL3–34

Absolute Indexed X

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=1, x=0)

Machine Code

7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+C+ DATA ← BE0016

+ 10EE16 = BE0016

 Index
Register X

←A ← A+C+ DATAH DATAL

DT

ex. : Mnemonic
ADC A, 0AD12H, X
 (m=0, x=0)

Machine Code
7D16 1216 AD16

Op Code (7D16)

Operand (AD16)

Memory

Operand (1216)

DATAL BE0016

Data Bank
 Register

DATAH DT BE0116

+

Data Bank
 Register

+ 10EE16 = BE0016

 Index
Register X

7700 FAMILY SOFTWARE MANUAL 3–35

Absolute Indexed X

DT

ex. : Mnemonic
LDY 0BC12H, X
 (x=1)

Machine Code

BC16 1216 BC16

Op Code (BC16)

Operand (BC16)

Memory

Operand (1216)

DATAY ← DATA ← BD0016

←Y ← DATAH DATAL

DT

ex. : Mnemonic
LDY 0BC12H, X
 (x=0)

Machine Code
BC16 1216 BC16

Op Code (BC16)

Operand (BC16)

Memory

Operand (1216)

DATAL CD0016

Data Bank
 Register

DATAH DT CD0116

+

Data Bank
 Register

+ 10EE16 = CD0016

 Index
Register X

+ EE16 = BD0016

 Index
Register X

7700 FAMILY SOFTWARE MANUAL3–36

Absolute Indexed Y

Mode : Absolute indexed Y addressing mode

Function : The contents of the memory locations specified by a value resulting from addition of a 16-bit
numeric value expressed by the instruction’s second and third bytes with the contents of the index
register Y and the contents of the data bank register are the actual data. If, however, addition of
the numeric value expressed by the instruction’s second and third bytes with the contents of the
index register Y generates a carry, the bank number will be 1 larger than the contents of the data
bank register.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, LDX, MPY, MPYS*,ORA, SBC,
STA

DT

ex. : Mnemonic
ADC A, 0AD12H, Y
 (m=1, x=1)

Machine Code

7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATAA ← A+C+ DATA ← AE0016

DT

ex. : Mnemonic

ADC A, 0AD12H, Y
 (m=1, x=0)

Machine Code

7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATA BE0016

Data Bank
 Register

+

Data Bank
 Register

+ 10EE16 = BE0016

 Index
Register Y

+ EE16 = AE0016

 Index
Register Y

A ← A+C+ DATA ←

7700 FAMILY SOFTWARE MANUAL 3–37

Absolute Indexed Y

ex. : Mnemonic
ADC A, 0AD12H, Y
 (m=0, x=1)

Machine Code

7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATAL DT AE0016

Data Bank
 Register

+ EE16 = AE0016

 Index
Register Y

DATAH DT AE0116

A ← A+C+ DATAH DATAL ←

ex. : Mnemonic
ADC A, 0AD12H, Y
 (m=0, x=0)

Machine Code
7916 1216 AD16

Op Code (7916)

Operand (AD16)

Memory

Operand (1216)

DATAL

++ 10EE16 = BE0016

 Index
Register Y

DT BE0016

Data Bank
 Register

DT BE0116

A ← A+C+ DATAH DATAL ←
DATAH

7700 FAMILY SOFTWARE MANUAL3–38

Absolute Indexed Y

ex. : Mnemonic
LDX 0BC12H, Y
 (x=1)

Machine Code

BE16 1216 BC16

Op Code (BE16)

Operand (BC16)

Memory

Operand (1216)

DATA DT BD0016

Data Bank
 Register

+ EE16 = BD0016

 Index
Register Y

X ← DATA ←

ex. : Mnemonic

LDX 0BC12H, Y
 (x=0)

Machine Code

BE16 1216 BC16

Op Code (BE16)

Operand (BC16)

Memory

Operand (1216)

DATAL

++ 10EE16 = CD0016

 Index
Register Y

DT CD0016

Data Bank
 Register

DT CD0116

X ← DATAH DATAL ←
DATAH

7700 FAMILY SOFTWARE MANUAL 3–39

Absolute Long

Mode : Absolute long addressing mode

Function : The contents of the memory locations specified by the instruction’s second, third and fourth bytes
become the actual data. Note that, in the cases of the JMP and JSR instructions, the instructions’
second and third byte contents are transferred to the program counter and the fourth byte contents
are transferred to the program bank register.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, JMP, JSR, LDA, MPY, MPYS*, ORA,
SBC, STA

ex. : Mnemonic
ADC A, 123456H
 (m=1)

Machine Code

6F16 5616 3416 1216

Op Code (6F16)

Operand (3416)

Memory

Operand (5616)

DATA 12345616A ← A+C+ DATA ←

Operand (1216)

ex. : Mnemonic
ADC A, 123456H
 (m=0)

Machine Code
6F16 5616 3416 1216

Op Code (6F16)

Operand (3416)

Memory

Operand (5616)

DATAL 12345616

12345716

A ← A+C+ DATAH DATAL ←
DATAH

Operand (1216)

7700 FAMILY SOFTWARE MANUAL3–40

Absolute Long

ex. : Mnemonic
JMPL 123456H

Machine Code

5C16 5616 3416 1216

Op Code (5C16)

Operand (3416)

Memory

Operand (5616)

345616

Operand (1216)

Address to be
executed next.

Program Bank
 Register

1216

Program bank register contents
are replaced by the third
operand.

7700 FAMILY SOFTWARE MANUAL 3–41

Absolute Long Indexed X

Mode : Absolute long indexed X addressing mode

Function : The contents of the memory location specified by adding the numeric value expressed by the
instruction’s second, third and fourth bytes with the contents of the index register X are the actual
data.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

+ E116 = 12353716

 Index
Register X

ex. : Mnemonic

ADC A, 123456H, X
 (m=1, x=1)

Machine Code

7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATA 12353716A ← A+C+ DATA ←

ex. : Mnemonic
ADC A, 123456H, X
 (m=0, x=1)

Machine Code
7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATAL 12353716

12353816

A ← A+C+ DATAH DATAL ←
DATAH

Operand (1216)

Operand (1216)

+ E116 = 12353716

 Index
Register X

7700 FAMILY SOFTWARE MANUAL3–42

Absolute Long Indexed X

ex. : Mnemonic
ADC A, 123456H, X
 (m=1, x=0)

Machine Code

7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATA 13233716A ← A+C+ DATA ←

ex. : Mnemonic

ADC A, 123456H, X
 (m=0, x=0)

Machine Code

7F16 5616 3416 1216

Op Code (7F16)

Operand (3416)

Memory

Operand (5616)

DATAL 13233716

13233816

A ← A+C+ DATAH ←
DATAH

Operand (1216)

Operand (1216)

+

+ EEE116 = 13233716

 Index
Register X

EEE116 = 13233716

 Index
Register X

DATAL

7700 FAMILY SOFTWARE MANUAL 3–43

Absolute Indirect

Mode : Absolute indirect addressing mode

Function : The instruction’s second and third bytes specify 2 adjacent bytes in memory, and the contents of
these bytes specify the address within the same program bank to which a jump is to be made.

Instruction : JMP

ex. : Mnemonic

JMP (1400H)
Machine Code

6C16 0016 1416

Op Code (6C16)

Operand (1416)

Memory

Operand (0016)

DATA I (FF16) PG 140016

DATA II (1E16)

1EFF16
Address to be
executed next.

PG

bank PG

(Note) The branch destination bank must be considered carefully when a JMP
 instruction is located near a bank boundary.
 →Refer the description of a JMP instruction (Page 4-50).

7700 FAMILY SOFTWARE MANUAL3–44

Absolute Indirect Long

Mode : Absolute indirect long addressing mode

Function : The instruction’s second and third bytes specify 3 adjacent bytes in memory, and the contents of
these bytes specify the address to which a jump is to be made.

Instruction : JMP

ex. : Mnemonic
JMPL (1234H)

Machine Code
DC16 3416 1216

Op Code (DC16)

Operand (1216)

Memory

Operand (3416)

DATA I (1216) PG 123416

DATA II (B416)

B41216
Address to be
executed next. A116

bank PG

DATA III (A116)

Program Bank
 Register

DATA III is loaded in the
program bank register.

Program Bank
 Register

The branch destination bank must be considered carefully when a JMP
instruction is located near a bank boundary.
→Refer the description of a JMP instruction (Page 4-50).

(Note)

7700 FAMILY SOFTWARE MANUAL 3–45

Absolute Indexed X Indirect

Mode : Absolute indexed X indirect addressing mode

Function : The value obtained by adding the instruction's second and third bytes and the contents of the index
register X specifies 2 adjacent bytes in memory, and the contents of these bytes specify the
address to which a jump is to be made.

Instruction : JMP, JSR

ex. : Mnemonic
JMP (1234H, X)
(x=1)

Machine Code
7C16 3416 1216

Op Code (7C16)

Operand (3416)

Operand (1216)

DATA I (1216)

Memory

DATA II (BC16)

124616

124716

+ 1216

 Index
Register X

= 124616

Address to be
executed next.

Program Bank
 Register

PG BC1216

bank PG

(Note) The branch destination bank must be considered carefully
 when a JMP or a JSR instruction is located near a boundary.
 →Refer the description of a JMP instruction (Page 4-50).
 Refer the description of a JSR instruction (Page 4-51).

7700 FAMILY SOFTWARE MANUAL3–46

Stack

Mode : Stack addressing mode

Function : Register contents are saved to or restored from the memory location specified by the stack pointer.
The stack pointer is set in bank-0.

Instruction : PEA, PEI, PER, PHA, PHB, PHD, PHG, PHP, PHT, PHX, PHY, PLA,
PLB, PLD, PLP, PLT, PLX, PLY, PSH, PUL

ex. : Mnemonic
PHA
 (m=1)

Machine Code

4816

Memory

Bank 016
AL

S–1

S

00 SH SL

Stack Pointer

ex. : Mnemonic

PHA
 (m=0)

Machine Code

4816

Memory

Bank 016
AL

S–2

S

00 SH SL

Stack Pointer

S–1

AH

ex. : Mnemonic

PHD

Machine Code

0B16
Memory

Bank 016
DPRL

S–2

S

00 SH SL

Stack Pointer

S–1

DPRH

7700 FAMILY SOFTWARE MANUAL 3–47

Stack

ex. : Mnemonic
PEA #1234H

Machine Code

F416 3416 1216

Memory

Bank 016
3416

S–2

S

00 SH SL

Stack Pointer

S–1

1216

Op Code (F416)

Operand (3416)

Operand (1216)

ex. : Mnemonic
PEI #12H

Machine Code

D416 1216

Memory

Bank 016

00 SH SL

Stack Pointer

S–2

S

S–1

DATA I

DATA II

DATA I

Op Code (D416)

Operand (1216)

341216

341316

Direct Page
 Register

+ 340016 = 341216

DATA II

7700 FAMILY SOFTWARE MANUAL3–48

Stack

ex. : Mnemonic
PER #1234H

Machine Code

6216 3416 1216

Memory

Bank 016

AC16

S–2

S

00 SH SL

Stack Pointer

S–1

6816

Op Code (6216)

Operand (3416)

Operand (1216)

PG 567616

Program Bank
 Register

Program Counter

+ 567816 = 68AC16

bank PG

7700 FAMILY SOFTWARE MANUAL 3–49

Relative

Mode : Relative addressing mode

Function : Branching occurs to the address specified by the value resulting from addition of the contents of
the program counter and the instruction’s second byte. In the case of a long branch by the BRA
instruction, a 15-bit signed numeric value formed by the contents of the instruction’s second and
third bytes is added to the program counter contents. If the addition generates a carry or borrow,
1 is added to or subtracted from the program bank register.

Instruction : BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS

ex. : Mnemonic
BCC ✽ –12

Machine Code

9016 F416

Memory

Op Code (9016)

Operand (F416)

Address to be
executed next.

✽ –12

Jump

✽

Branches to the address ✽ –12 if
the carry flag (C) has been cleared
“0”.

Memory

Op Code (9016)

Operand (F416)

Address to be
executed next.

✽

Advances to the address ✽ if the
carry flag (C) has been set “1”.

ex. : Mnemonic

BRAL 1234H

Machine Code

8216 3416 1216

Memory

Op Code (8216)

Operand (3416)

Address to be
executed next.

Operand (1216)

PG

PG 114616

FF1216

bank PG

bank PG + 1

7700 FAMILY SOFTWARE MANUAL3–50

Direct Bit Relative

Mode : Direct bit relative addressing mode

Function : Specifies the bank 016 memory location by the value obtained by adding the instruction’s second
byte to the direct page register’s contents, and specifies the positions of multiple bits in the
memory location by the bit pattern in the third and fourth bytes (the third byte only if the m flag
is set to 1). Then, if the specified bits all satisfy the branching conditions, the instruction’s fifth byte
(or the fourth byte if the m flag is set to 1) is added to the program counter as a signed value,
generating the branching destination address. If, however, addition of the instruction’s second byte
to the direct page register’s contents result in a value that exceeds the bank 016 range, the
specified location will be in bank 116.

Instruction : BBC, BBS

ex. : Mnemonic

BBS #5AH, 04H, 0F6H
 (m=1)

Machine Code

2416 0416 5A16 F616

Bank 016

Memory

Op Code (2416)

Operand (0416)

Operand (5A16)

Direct Page
 Register

+ 123416 = 123816

(Branch)

Operand (F616)

Address to be
executed next.

00123816

 Program
Bank Register

1116 FFFD16

 Program
Bank Register

1216 000716

Memory

Op Code (2416)

Operand (0416)

Operand (5A16)

Direct Page
 Register

+ 123416 = 123816

(Not branch)

Operand (F616)

Address to be
executed next.

00123816

 Program
Bank Register

1216 000716

0

Jump

1 1 1 1 0 1 1 0 0 1 1 1 0 1 1

7700 FAMILY SOFTWARE MANUAL 3–51

Direct Bit Relative

ex. : Mnemonic

BBS #5AA5H, 04H, 0F6H
 (m=0)

Machine Code

2416 0416 A516 5A16 F616

(Branch) (Not branch)

Memory

Op Code (2416)

Operand (0416)

Operand (A516)

Direct Page
 Register

+ 123416 = 123816

 1 1 1 0 0 1 1 1

Operand (5A16)

Address to be
executed next.

Jump

00123816

1116 FFFE16

 Program
Bank Register

1216 000816

 0 1 0 1 1 0 1 1 00123916

Operand (F616)

Memory

Op Code (2416)

Operand (0416)

Operand (A516)

Direct Page
 Register

+ 123416 = 123816

 0 1 1 0 0 1 1 1

Operand (5A16)

Address to be
executed next.

00123816

 Program
Bank Register

1216 000816

 0 1 0 1 1 0 1 1 00123916

Operand (F616)

Bank 016

7700 FAMILY SOFTWARE MANUAL3–52

Absolute Bit Relative

Mode : Absolute bit relative addressing mode

Function : The instruction’s second and third bytes and the contents of the data bank register specify the
memory location, and data for the memory location’s multiple bits is specified by a bit pattern in
the instruction’s fourth and fifth bytes (the fourth byte only if the m flag is set to 1). Then, if the
specified bits all satisfy the branching conditions, the instruction’s sixth byte (or the fifth byte if the
m flag is set to 1) is added to the program counter as a signed value, generating the branching
destination address.

Instruction : BBC, BBS

ex. : Mnemonic
BBS #5AH, 1234H, 0F6H
 (m=1)

Machine Code

2C16 3416 1216 5A16 F616

Memory

Op Code (2C16)

Operand (3416)

Operand (1216)

(Branch)

Operand (5A16)

Address to be
executed next.

Jump

 Program
Bank Register

1116 FFFD16

Data Bank
 Register

DT 123416

(Not branch)

Operand (F616)
 Program
Bank Register

1216 000716

Op Code (2C16)

Operand (3416)

Operand (1216)

 0 0 1 1 1 0 1 0

Operand (5A16)

Address
to be
executed
next.

Data Bank
 Register

DT 123416

Operand (F616)
 Program
Bank Register

1216 000716

Memory

 0 1 1 1 1 0 1 0

7700 FAMILY SOFTWARE MANUAL 3–53

Absolute Bit Relative

ex. : Mnemonic
BBS #5AA5H, 1234H, 0F6H
 (m=0)

Machine Code
2C16 3416 1216 A516 5A16 F616

(Branch) (Not branch)

Memory

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand (A516)

Address to be
executed next.

Jump

 Program
Bank Register

1216 000716

Operand (5A16)

Memory

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand (A516)

Address
to be
executed
next.

 Program
Bank Register

1216 000716

Operand (5A16)

 1 0 1 1 0 1 0 1

 1 1 0 1 1 1 1 0

 0 0 1 1 0 1 0 1

 1 1 0 1 1 1 1 0

Operand (F616)

1116 FFFD16

 Program
Bank Register

DT 123416

DT 123516

Data Bank
 Register

Data Bank
 Register

DT 123416

DT 123516

Operand (F616)

7700 FAMILY SOFTWARE MANUAL3–54

Stack Pointer Relative

Mode : Stack pointer relative addressing mode

Function : The contents of a bank-0 memory location specified by the value resulting from addition of the
instruction’s second byte and the contents of the stack pointer become the actual data. If,
however, the value obtained by adding the contents of the instruction’s second byte and the stack
pointer’s contents exceeds the bank-0 range, the specified location will be in bank-1.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

ex. : Mnemonic

ADC A, 02H, S
 (m=1)

Machine Code
6316 0216

Op Code (6316)

Memory

Bank 016

Operand (0216)

DATA←A ← A+C+ DATA

 = 123616

Stack Pointer

+ 123416

123616

ex. : Mnemonic

ADC A, 02H, S
 (m=0)

Machine Code
6316 0216

Op Code (6316)

Memory

Bank 016

Operand (0216)

DATAL
←A ← A+C+ DATAH DATAL

 = 123616

Stack Pointer

+ 123416

123616

DATAH 123716

7700 FAMILY SOFTWARE MANUAL 3–55

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the stack pointer
specifies 2 adjacent bytes in memory. The value obtained by adding the contents of these bytes
and the contents of the index register Y specifies address of the actual data in memory bank-DT
(DT is contents of data bank register). If addition of the 2 bytes in memory with the contents of
the index register Y generate a carry, the bank number will be 1 larger than the contents of the
data bank register.

Instruction : ADC, AND, CMP, DIV, DIVS*, EOR, LDA, MPY, MPYS*,ORA, SBC, STA

E616 = 12E716

 Index
Register Y

+

ex. : Mnemonic

ADC A, (1EH, S), Y
 (m=1, x=1)

Machine Code
7316 1E16

Op Code (7316)

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Stack Pointer

125216

125316

125216

=

DATA DT 12E716

Data Bank
 Register

DATA II (1216)

← A ← A+C+ DATA

7700 FAMILY SOFTWARE MANUAL3–56

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH, S), Y
 (m=0, x=1)

Machine Code
7316 1E16

Op Code (7316)

Memory

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Stack Pointer

125216

125316

125216

=

DATAL DT 12E716

Data Bank
 Register

DATA II (1216)
E616 = 12E716

 Index
Register Y

+

DATAH

←A ← A+C+ DATAH

ex. : Mnemonic

ADC A, (1EH, S), Y
 (m=1, x=0)

Machine Code
7316 1E16

Op Code (7316)

Memory

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Stack Pointer

125216

125316

125216

=

← A ← A+C+ DATA DATA DT + 1 02E716

Data Bank
 Register

DATA II (1216)
 = 102E716

 Index
Register Y

+ F0E616

DATAL

Bank

7700 FAMILY SOFTWARE MANUAL 3–57

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic

ADC A, (1EH, S), Y
 (m=0, x=0)

Machine Code
7316 1E16

Op Code (7316)

Memory

Bank 016

Operand (1E16)

DATA I (0116)

123416 +

Stack Pointer

125216

125316

125216
=

DATAL DT + 1 02E716

Data Bank
 Register

DATA II (1216)

DATAH

←A ← A+C+ DATAH

 = 102E716

 Index
Register Y

+ F0F616

DATAL

Bank

7700 FAMILY SOFTWARE MANUAL3–58

Block Transfer

Mode : Block transfer addressing mode

Function : The instruction’s second byte specifies the transfer-to data bank, and the contents of the index
register Y specify the transfer-to address within the data bank. The instruction’s third byte speci-
fies the transfer-from data bank, and the contents of the index register X specify the address in
the data bank where the data to be transferred is stored. The contents of the accumulator A
constitute the number of bytes to be transferred. Upon termination of transfer, the contents of the
data bank register will specify the transfer-to data bank. The MVN instruction is used for transfer
to lower address location. In this case, the contents of the index registers X and Y are incre-
mented each time data is transferred. The MVP instruction is used for transfer to higher address
location. In this case, the contents of the index registers X and Y are decremented each time data
is transferred. The block of data to be transferred may cross over the bank boundary.

Instruction : MVN, MVP

Op Code (5416)

Operand (E216)

Operand (E516)

DATA I

DATA III

DATA II

E5123416

E5123516

E5123616

Bank E516

Bank E216

000316

123416

567816

A

X

Y

?DT

Memory

Before transfer

ex. : Mnemonic

MVN 0E2H, 0E5H
(m=0, x=0)

5416 E216 E516

Machine Code

Op Code (5416)

Operand (E216)

Operand (E516)

DATA I

DATA III

DATA II

E5123416

E5123516

E5123616

Bank E516

FFFF16

123716

567B16

A

X

Y

DT

Memory

After transfer

DATA I

DATA III

DATA II

E2567816

E2567916

E2567A16

Bank E216

E216

First

Second

fukuyama
ノート
fukuyama : Unmarked

Renesas
EOL announced

7700 FAMILY SOFTWARE MANUAL 3–59

Block Transfer

Operand (E516)

Op Code (4416)

Operand (E216)

Bank E516

Bank E216

000316

567A16

123616

A

X

Y

?DT

Memory

Before transfer

ex. Mnemonic

MVP 0E5H, 0E2H
(m=0, x=0)

4416 E516 E216

Machine Code

Op Code (4416)

Operand (E516)

Operand (E216)

DATA I

DATA III

DATA II

E5123416

E5123516

E5123616

Bank E516

FFFF16

567716

123316

A

X

Y

DT

Memory

After transfer

DATA I

DATA III

DATA II

E2567816

E2567916

E2567A16

Bank E216

E516

DATA I

DATA III

DATA II

E2567816

E2567916

E2567A16

First

Second

 (Note) For block transfer instruction, the transfer byte count and transfer source/destination address
range change with the status of the m and x flags, but the transfer unit is unaffected.
The transfer unit is word (16 bits), but only 1 byte is transferred when transferring the last byte
of an odd byte transfer.

:

Renesas
EOL announced

CHAPTER 4CHAPTER 4
INSTRUCTIONS

4.1 Instruction set
4.2 Description of instructions
4.3 Notes for programming

Renesas
EOL announced

7700 FAMILY SOFTWARE MANUAL4–2

4.1 Instruction Set
The 7700 Series, 7770 Series, and 7790 Series CPU uses the instruction set with 103 instructions. The
7750 Series CPU uses an extended instruction set (108 instructions) adding five additional instructions to
their instruction set.

«Additional instructions»

INSTRUCTIONS
4.1 Instruction set

Instructions

Multiply with sign

Divide with sign

Arithmetic shift right

Extension with sign

Extension zero

Mnemonic

MPYS

DIVS

ASR

EXTS

EXTZ

Addressing mode

Supports addressing mode equivalent to MPY instruction

Supports addressing mode equivalent to DIV instruction

Supports addressing mode equivalent to ASL instruction

Supported the accumulator addressing mode

4.1.1 Data transfer instructions

The data transfer instructions move data between data and registers, between a register and the memory,
between registers or between memory devices.

Category

Load

Store

Transfer

Instruction

LDA

LDM

LDT

LDX

LDY

STA

STX

STY

TAX

TXA

TAY

TYA

TSX

TXS

TAD

TDA

TAS

TSA

Description

Loads the contents of memory into the accumulator.

Loads an immediate value into the memory.

Loads an immediate value into the data bank register.

Loads the contents of memory into the index register X.

Loads the contents of memory into the index register Y.

Stores the contents of the accumulator in the memory.

Stores the contents of the index register X in the memory.

Stores the contents of the index register Y in the memory.

Transfers the contents of the accumulator A to the index register X.

Transfers the contents of the index register X to the accumulator A.

Transfers the contents of the accumulator A to the index register Y.

Transfers the contents of the index register Y to the accumulator A.

Transfers the contents of the stack pointer to the index register X.

Transfers the contents of the index register X to the stack pointer.

Transfers the contents of the accumulator A to the direct page register.

Transfers the contents of the direct page register to the accumulator A.

Transfers the contents of the accumulator A to the stack pointer.

Transfers the contents of the stack pointer to the accumulator A.

7700 FAMILY SOFTWARE MANUAL 4–3

Instruction

TBD

TDB

TBS

TSB

TBX

TXB

TBY

TYB

TXY

TYX

MVN

MVP

PSH

PUL

PHA

PLA

PHP

PLP

PHB

PLB

PHD

PLD

PHT

PLT

PHX

PLX

PHY

PLY

PHG

PEA

PEI

PER

XAB

Description

Transfers the contents of the accumulator B to the direct page register.

Transfers the contents of the direct page register to the accumulator B.

Transfers the contents of the accumulator B to the stack pointer.

Transfers the contents of the stack pointer to the accumulator B.

Transfers the contents of the accumulator B to the index register X.

Transfers the contents of the index register X to the accumulator B.

Transfers the contents of the accumulator B to the index register Y.

Transfers the contents of the index register Y to the accumulator B.

Transfers the contents of the index register X to the index register Y.

Transfers the contents of the index register Y to the index register X.

Transfers a block of data from the lower addresses.

Transfers a block of data from the higher addresses.

Saves the contents of the specified register to the stack.

Restores the contents of stack to the specified register.

Saves the contents of the accumulator A to the stack.

Restores the contents of stack to the accumulator A.

Saves the contents of the processor status register to the stack.

Restores the contents of stack to the processor status register.

Saves the contents of the accumulator B to the stack.

Restores the contents of stack to the accumulator B.

Saves the contents of the direct page register to the stack.

Restores the contents of stack to the direct page register.

Saves the contents of the data bank register to stack.

Restores the contents of stack to the data bank register.

Saves the contents of the index register X to the stack.

Restores the contents of stack to the index register X.

Saves the contents of the index register Y to the stack.

Restores the contents of stack to the index register Y.

Saves the contents of the program bank register to the stack.

Saves a the numeric of 2 bytes to the stack.

Saves the contents of 2 consecutive bytes in the direct page area to the stack.

Saves the result of adding a 16-bit numeric value to the program counter contents to
the stack.

Swaps the contents of the accumulator A with the contents of the accumulator B.Exchange

Stack

operation

Category

Transfer

INSTRUCTIONS
4.1 Instruction set

7700 FAMILY SOFTWARE MANUAL4–4

4.1.2 Arithmetic instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation, comparison,
rotation, shifting and sign/zero extension of register and memory contents.
The following table summarizes the arithmetic instructions supported:

Note. The instructions with the mark “ * ” can be used in the 7750 Series only.

INSTRUCTIONS
4.1 Instruction set

Description

Adds the contents of the accumulator, the contents of memory and the contents of the
carry flag.

Subtracts the contents of memory and the complement of the carry flag from the con-
tents of the accumulator.

Increments the accumulator or memory contents by 1.

Decrements the accumulator or memory contents by 1.

Increments the contents of the index register X by 1.

Decrements the contents of the index register X by 1.

Increments the contents of the index register Y by 1.

Decrements the contents of the index register Y by 1.

Multiples the contents of the accumulator A and the contents of memory.

Multiply the contents of the accumulator A and the contents of memory with sign.

Divides the numeric value whose lower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory.

Divides the numeric value whose lower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory with sign.

Performs logical AND between the contents of the accumulator and the contents
of memory.

Performs logical OR between the contents of the accumulator and the contents of
memory.

Performs logical exclusive-OR between the contents of the accumulator and the con-
tents of memory.

Compares the contents of the accumulator with the contents of memory.

Compares the contents of the index register X and the contents of memory.

Compares the contents of the index register Y and the contents of memory.

Shifts the contents of the accumulator or memory to the left by 1 bit.

Shifts the contents of the accumulator or memory holding sign to the right by 1 bit.

Shifts the contents of the accumulator or memory to the right by 1 bit.

Links the contents of accumulator or memory with the carry flag, and rotates the result
to the left by 1 bit.

Links the contents of accumulator or memory with the carry flag, and rotates the result
to the right by 1 bit.

Rotates the contents of the accumulator A to the left by the specified number of bits.

Extend the low-order 8 bits of accumulator to 16 bits by sign extending.

Extend the low-order 8 bits of accumulator to 16 bits by zero extending.

Category

Addition,

Subtraction,

Mult ipl ica-
tion,

Division

Instruction

ADC

SBC

INC

DEC

INX

DEX

INY

DEY

MPY

MPYS*

DIV

DIVS*

AND

ORA

EOR

CMP

CPX

CPY

ASL

ASR*

LSR

ROL

ROR

RLA

EXTS*

EXTZ*

Shifting,

Rotation

Comparison

Logical op-
eration

Extension
with sign /
zero

7700 FAMILY SOFTWARE MANUAL 4–5

4.1.3 Bit manipulation instructions

The bit manipulation instructions set the specified bits of the processor status register or memory to “1” or “0”.

The following table summarizes the bit manipulation instructions supported:

Category

Bit manipu-
lation

Instruction

CLB

SEB

CLP

SEP

Description

Clears the specified memory bit to “0”.

Sets the specified memory bit to “1”.

Clears the specified bit of the processor status register’s lower byte (PSL) to “0”.

Sets the specified bit of the processor status register’s lower byte (PSL) to “1”.

INSTRUCTIONS
4.1 Instruction set

4.1.4 Flag manipulation instructions

The flag manipulation instructions set to “1” or clear to “0” the C, I, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category

F l a g m a -
nipulation

Instruction

CLC

SEC

CLM

SEM

CLI

SEI

CLV

Description

Clears the contents of carry flag to “0”.

Sets the contents of carry flag to “1”.

Clears the contents of data length selection flag to “0”.

Sets the contents of data length selection flag to “1”.

Clears the contents of interrupt disable flag to “0”.

Sets the contents of interrupt disable flag to “1”.

Clears the contents of overflow flag to “0”.

4.1.5 Branching and return instructions

The branching and return instructions enable changing the program execution sequence.

The following table summarizes the branching and return instructions:

Category

Jump

Instruction

JMP

BRA

JSR

Description

Sets a new address in the program counter and jumps to the new address.

Jumps to the address obtained by adding an offset value to the contents of the program
counter.

Saves the contents of the program counter to the stack and then jumps to the new
address.

7700 FAMILY SOFTWARE MANUAL4–6

Category

Branch

Instruction

BBC

BBS

BCC

BCS

BNE

BEQ

BPL

BMI

BVC

BVS

RTI

RTS

RTL

Description

Causes a branch if the specified memory bits are all “0”.

Causes a branch if the specified memory bits are all “1”.

Causes a branch if the carry flag is set to “0”.

Causes a branch if the carry flag is set to “1”.

Causes a branch if the zero flag is set to “0”.

Causes a branch if the zero flag is set to “1”.

Causes a branch if the negative flag is set to “0”.

Causes a branch if the negative flag is set to “1”.

Causes a branch if the overflow flag is set to “0”.

Causes a branch if the overflow flag is set to “1”.

Returns from the interrupt routine to the original routine.

Returns from a subroutine to the original routine. The program bank register contents
are not restored.

Returns from a subroutine to the original routine. The program bank register contents
are restored.

Return

4.1.6 Interrupt instruction (break instruction)

The interrupt instruction executes software interrupt.

Category

Break

Instruction

BRK

Description

Executes a software interrupt.

4.1.7 Special instructions

The special instructions listed below control the clock generator circuit.

Category

Special

Instruction

WIT

STP

Description

Stops the internal clock.

Stops the oscillator.

INSTRUCTIONS
4.1 Instruction set

4.1.8 Other instruction

Category

Other

Instruction

NOP

Description

Only advances the program counter.

7700 FAMILY SOFTWARE MANUAL 4–7

INSTRUCTIONS
4.2 Description of Instructions

4.2 Description of Instructions
This section describes the 7700 Family instructions at each instruction (Note 1). To the extent possible, each
instruction is described using one page per instruction. Each instruction description page is headed by the
instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruc-
tion, operation and description of the instruction (Note 2, 3), status flag changes and a listing sorted by
addressing modes of the assembler coding format (Note 4), machine code, bytes-count and cycles-count (Note
5) are presented.

Note 1. The instructions with the mark “ * ” can be used in the 7750 Series only.

Note 2. In the description of instruction operation, the change in the PC (program counter) is described only
for instructions affecting the processing flow.

When an instruction is executed, the length of the instruction is added to content of the PC to form
the address of the next instruction to be executed. If a carry occurs during this addition, PG (program
bank register) is incremented by 1.

Note 3. In the description of each instruction, [Operation] indicates the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitted.

Note 4. The assembler coding formats shown are general examples, and they may differ from the actual
formats for the assembler used. Please be sure to refer to the mnemonic coding description in the
manual for the assembler actually used for programming.

Note 5. The cycles-counts shown are the minimum possible, and they vary depending on the following con-
ditions:

● Value of direct page register’s lower byte

The cycles-count shown are for when the direct page register’s lower byte (DPRL) is 0016. When
using an addressing mode that uses the direct page register with DPRL≠“0016”, the cycles-count
will be 1 more than the value shown.

● Number of bytes that have been loaded in the instruction queue buffer

● Whether the first address of the memory read/write is even- or odd-numbered in accessing the 16-
bit data length.

● Accessing of an external memory are with BYTE=1 (using 8-bit external bus)

● Whether a wait is inserted in the bus cycle.

7700 FAMILY SOFTWARE MANUAL4–8

INSTRUCTIONS
4.2 Description of Instructions

The table below lists the symbols that are used in this section:

Description

Carry flag

Zero flag

Interrupt disable flag

Decimal operation mode flag

Index register length selection flag

Data length selection flag

Overflow flag

Negative flag

Processor interrupt priority level

Addition

Subtraction

Multiplication

Division

Logical AND

Logical OR

Exclusive OR

Negation

Movement to the arrow direction

Movement to the arrow direction

Movement to the arrow direction

Accumulator

Accumulator’s upper 8 bits

Accumulator’s lower 8 bits

Accumulator A

Accumulator A’s upper 8 bits

Accumulator A’s lower 8 bits

Accumulator B

Accumulator B’s upper 8 bits

Accumulator B’s lower 8 bits

Index register X

Index register X’s upper 8 bits

Index register X’s lower 8 bits

Index register Y

Index register Y’s upper 8 bits

Index register Y’s lower 8 bits

Stack pointer

Program counter

Program counter’s upper 8 bits

Program counter’s lower 8 bits

Relative address

Program bank register

Data bank register

←→

V

Symbol

C

Z

I

D

x

m

V

N

IPL

+

–

×
/

V

∀

←
→

Acc

AccH

AccL

A

AH

AL

B

BH

BL

X

XH

XL

Y

YH

YL

S

PC

PCH

PCL

REL

PG

DT

7700 FAMILY SOFTWARE MANUAL 4–9

Symbol

DPR

DPRH

DPRL

PS

PSH

PSL

PSn

M

M(n)

M(n+1,n)

M(m to n)

M(S)

Mb

ADDR

BANK

ADG

ADH

ADL

IMM

IMM16

IMM8

bn

dd

i

i1,i2

imm

immHimmL

ll

mmll

hhmmll

nn

n1,n2

rr

rr1rr2

Description

Direct page register

Direct page register’s upper 8 bits

Direct page register’s lower 8 bits

Processor status register

Processor status register’s upper 8 bits

Processor status register’s lower 8 bits

Processor status register’s n-th bit

Memory contents

Contents of memory location specified by operand (1 byte data)

Contents of memory location specified by operand (1 word data)

Contents of memory location specified by operand (plural bytes data)

Contents of memory at address indicated by stack pointer

b-th memory location
Value of 24-bit address’ lower 16-bit (A15 to A0)

Value of 24-bit address’ upper 8-bit (A23 to A16)

Value of 24-bit address’ upper 8-bit (A23 to A16)

Value of 24-bit address’ middle 8-bit (A15 to A8)

Value of 24-bit address’ lower 8-bit (A7 to A0)

Immediate value

16-bit immediate value

8-bit immediate value

n-th bit of data

8-bit offset value

Number of transfer bytes or rotation

Number of registers pushed or pulled

8-bit immediate value

16-bit immediate value (immH specifies the upper 8-bit, and immL specifies
the lower 8-bit)

8-bit address value

16-bit address value (mm specifies the upper 8-bit and ll specifies the lower
8-bit)

24-bit address value (hh specifies the upper 8-bit, mm specifies the middle
8-bit and ll specifies the lower 8-bit)

8-bit data value

8-bit data value (Used when coding two 8-bit data side by side)

Signed 8-bit data value

Signed 16-bit data value (rr1 is the upper 8-bit value, and rr2 is the lower 8-
bit value)

INSTRUCTIONS
4.2 Description of Instructions

7700 FAMILY SOFTWARE MANUAL4–2

4.1 Instruction Set
The 7700 Series, 7770 Series, and 7790 Series CPU uses the instruction set with 103 instructions. The
7750 Series CPU uses an extended instruction set (108 instructions) adding five additional instructions to
their instruction set.

«Additional instructions»

INSTRUCTIONS
4.1 Instruction set

Instructions

Multiply with sign

Divide with sign

Arithmetic shift right

Extension with sign

Extension zero

Mnemonic

MPYS

DIVS

ASR

EXTS

EXTZ

Addressing mode

Supports addressing mode equivalent to MPY instruction

Supports addressing mode equivalent to DIV instruction

Supports addressing mode equivalent to ASL instruction

Supported the accumulator addressing mode

4.1.1 Data transfer instructions

The data transfer instructions move data between data and registers, between a register and the memory,
between registers or between memory devices.

Category

Load

Store

Transfer

Instruction

LDA

LDM

LDT

LDX

LDY

STA

STX

STY

TAX

TXA

TAY

TYA

TSX

TXS

TAD

TDA

TAS

TSA

Description

Loads the contents of memory into the accumulator.

Loads an immediate value into the memory.

Loads an immediate value into the data bank register.

Loads the contents of memory into the index register X.

Loads the contents of memory into the index register Y.

Stores the contents of the accumulator in the memory.

Stores the contents of the index register X in the memory.

Stores the contents of the index register Y in the memory.

Transfers the contents of the accumulator A to the index register X.

Transfers the contents of the index register X to the accumulator A.

Transfers the contents of the accumulator A to the index register Y.

Transfers the contents of the index register Y to the accumulator A.

Transfers the contents of the stack pointer to the index register X.

Transfers the contents of the index register X to the stack pointer.

Transfers the contents of the accumulator A to the direct page register.

Transfers the contents of the direct page register to the accumulator A.

Transfers the contents of the accumulator A to the stack pointer.

Transfers the contents of the stack pointer to the accumulator A.

7700 FAMILY SOFTWARE MANUAL 4–3

Instruction

TBD

TDB

TBS

TSB

TBX

TXB

TBY

TYB

TXY

TYX

MVN

MVP

PSH

PUL

PHA

PLA

PHP

PLP

PHB

PLB

PHD

PLD

PHT

PLT

PHX

PLX

PHY

PLY

PHG

PEA

PEI

PER

XAB

Description

Transfers the contents of the accumulator B to the direct page register.

Transfers the contents of the direct page register to the accumulator B.

Transfers the contents of the accumulator B to the stack pointer.

Transfers the contents of the stack pointer to the accumulator B.

Transfers the contents of the accumulator B to the index register X.

Transfers the contents of the index register X to the accumulator B.

Transfers the contents of the accumulator B to the index register Y.

Transfers the contents of the index register Y to the accumulator B.

Transfers the contents of the index register X to the index register Y.

Transfers the contents of the index register Y to the index register X.

Transfers a block of data from the lower addresses.

Transfers a block of data from the higher addresses.

Saves the contents of the specified register to the stack.

Restores the contents of stack to the specified register.

Saves the contents of the accumulator A to the stack.

Restores the contents of stack to the accumulator A.

Saves the contents of the processor status register to the stack.

Restores the contents of stack to the processor status register.

Saves the contents of the accumulator B to the stack.

Restores the contents of stack to the accumulator B.

Saves the contents of the direct page register to the stack.

Restores the contents of stack to the direct page register.

Saves the contents of the data bank register to stack.

Restores the contents of stack to the data bank register.

Saves the contents of the index register X to the stack.

Restores the contents of stack to the index register X.

Saves the contents of the index register Y to the stack.

Restores the contents of stack to the index register Y.

Saves the contents of the program bank register to the stack.

Saves a the numeric of 2 bytes to the stack.

Saves the contents of 2 consecutive bytes in the direct page area to the stack.

Saves the result of adding a 16-bit numeric value to the program counter contents to
the stack.

Swaps the contents of the accumulator A with the contents of the accumulator B.Exchange

Stack

operation

Category

Transfer

INSTRUCTIONS
4.1 Instruction set

7700 FAMILY SOFTWARE MANUAL4–4

4.1.2 Arithmetic instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation, comparison,
rotation, shifting and sign/zero extension of register and memory contents.
The following table summarizes the arithmetic instructions supported:

Note. The instructions with the mark “ * ” can be used in the 7750 Series only.

INSTRUCTIONS
4.1 Instruction set

Description

Adds the contents of the accumulator, the contents of memory and the contents of the
carry flag.

Subtracts the contents of memory and the complement of the carry flag from the con-
tents of the accumulator.

Increments the accumulator or memory contents by 1.

Decrements the accumulator or memory contents by 1.

Increments the contents of the index register X by 1.

Decrements the contents of the index register X by 1.

Increments the contents of the index register Y by 1.

Decrements the contents of the index register Y by 1.

Multiples the contents of the accumulator A and the contents of memory.

Multiply the contents of the accumulator A and the contents of memory with sign.

Divides the numeric value whose lower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory.

Divides the numeric value whose lower byte is the contents of the accumulator A and
upper byte is the contents of the accumulator B by the contents of memory with sign.

Performs logical AND between the contents of the accumulator and the contents
of memory.

Performs logical OR between the contents of the accumulator and the contents of
memory.

Performs logical exclusive-OR between the contents of the accumulator and the con-
tents of memory.

Compares the contents of the accumulator with the contents of memory.

Compares the contents of the index register X and the contents of memory.

Compares the contents of the index register Y and the contents of memory.

Shifts the contents of the accumulator or memory to the left by 1 bit.

Shifts the contents of the accumulator or memory holding sign to the right by 1 bit.

Shifts the contents of the accumulator or memory to the right by 1 bit.

Links the contents of accumulator or memory with the carry flag, and rotates the result
to the left by 1 bit.

Links the contents of accumulator or memory with the carry flag, and rotates the result
to the right by 1 bit.

Rotates the contents of the accumulator A to the left by the specified number of bits.

Extend the low-order 8 bits of accumulator to 16 bits by sign extending.

Extend the low-order 8 bits of accumulator to 16 bits by zero extending.

Category

Addition,

Subtraction,

Mult ipl ica-
tion,

Division

Instruction

ADC

SBC

INC

DEC

INX

DEX

INY

DEY

MPY

MPYS*

DIV

DIVS*

AND

ORA

EOR

CMP

CPX

CPY

ASL

ASR*

LSR

ROL

ROR

RLA

EXTS*

EXTZ*

Shifting,

Rotation

Comparison

Logical op-
eration

Extension
with sign /
zero

7700 FAMILY SOFTWARE MANUAL 4–5

4.1.3 Bit manipulation instructions

The bit manipulation instructions set the specified bits of the processor status register or memory to “1” or “0”.

The following table summarizes the bit manipulation instructions supported:

Category

Bit manipu-
lation

Instruction

CLB

SEB

CLP

SEP

Description

Clears the specified memory bit to “0”.

Sets the specified memory bit to “1”.

Clears the specified bit of the processor status register’s lower byte (PSL) to “0”.

Sets the specified bit of the processor status register’s lower byte (PSL) to “1”.

INSTRUCTIONS
4.1 Instruction set

4.1.4 Flag manipulation instructions

The flag manipulation instructions set to “1” or clear to “0” the C, I, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category

F l a g m a -
nipulation

Instruction

CLC

SEC

CLM

SEM

CLI

SEI

CLV

Description

Clears the contents of carry flag to “0”.

Sets the contents of carry flag to “1”.

Clears the contents of data length selection flag to “0”.

Sets the contents of data length selection flag to “1”.

Clears the contents of interrupt disable flag to “0”.

Sets the contents of interrupt disable flag to “1”.

Clears the contents of overflow flag to “0”.

4.1.5 Branching and return instructions

The branching and return instructions enable changing the program execution sequence.

The following table summarizes the branching and return instructions:

Category

Jump

Instruction

JMP

BRA

JSR

Description

Sets a new address in the program counter and jumps to the new address.

Jumps to the address obtained by adding an offset value to the contents of the program
counter.

Saves the contents of the program counter to the stack and then jumps to the new
address.

7700 FAMILY SOFTWARE MANUAL4–6

Category

Branch

Instruction

BBC

BBS

BCC

BCS

BNE

BEQ

BPL

BMI

BVC

BVS

RTI

RTS

RTL

Description

Causes a branch if the specified memory bits are all “0”.

Causes a branch if the specified memory bits are all “1”.

Causes a branch if the carry flag is set to “0”.

Causes a branch if the carry flag is set to “1”.

Causes a branch if the zero flag is set to “0”.

Causes a branch if the zero flag is set to “1”.

Causes a branch if the negative flag is set to “0”.

Causes a branch if the negative flag is set to “1”.

Causes a branch if the overflow flag is set to “0”.

Causes a branch if the overflow flag is set to “1”.

Returns from the interrupt routine to the original routine.

Returns from a subroutine to the original routine. The program bank register contents
are not restored.

Returns from a subroutine to the original routine. The program bank register contents
are restored.

Return

4.1.6 Interrupt instruction (break instruction)

The interrupt instruction executes software interrupt.

Category

Break

Instruction

BRK

Description

Executes a software interrupt.

4.1.7 Special instructions

The special instructions listed below control the clock generator circuit.

Category

Special

Instruction

WIT

STP

Description

Stops the internal clock.

Stops the oscillator.

INSTRUCTIONS
4.1 Instruction set

4.1.8 Other instruction

Category

Other

Instruction

NOP

Description

Only advances the program counter.

7700 FAMILY SOFTWARE MANUAL 4–7

INSTRUCTIONS
4.2 Description of Instructions

4.2 Description of Instructions
This section describes the 7700 Family instructions at each instruction (Note 1). To the extent possible, each
instruction is described using one page per instruction. Each instruction description page is headed by the
instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruc-
tion, operation and description of the instruction (Note 2, 3), status flag changes and a listing sorted by
addressing modes of the assembler coding format (Note 4), machine code, bytes-count and cycles-count (Note
5) are presented.

Note 1. The instructions with the mark “ * ” can be used in the 7750 Series only.

Note 2. In the description of instruction operation, the change in the PC (program counter) is described only
for instructions affecting the processing flow.

When an instruction is executed, the length of the instruction is added to content of the PC to form
the address of the next instruction to be executed. If a carry occurs during this addition, PG (program
bank register) is incremented by 1.

Note 3. In the description of each instruction, [Operation] indicates the contents of each register and memory
after executing the instruction. The detailed operation sequence is omitted.

Note 4. The assembler coding formats shown are general examples, and they may differ from the actual
formats for the assembler used. Please be sure to refer to the mnemonic coding description in the
manual for the assembler actually used for programming.

Note 5. The cycles-counts shown are the minimum possible, and they vary depending on the following con-
ditions:

● Value of direct page register’s lower byte

The cycles-count shown are for when the direct page register’s lower byte (DPRL) is 0016. When
using an addressing mode that uses the direct page register with DPRL≠“0016”, the cycles-count
will be 1 more than the value shown.

● Number of bytes that have been loaded in the instruction queue buffer

● Whether the first address of the memory read/write is even- or odd-numbered in accessing the 16-
bit data length.

● Accessing of an external memory are with BYTE=1 (using 8-bit external bus)

● Whether a wait is inserted in the bus cycle.

7700 FAMILY SOFTWARE MANUAL4–8

INSTRUCTIONS
4.2 Description of Instructions

The table below lists the symbols that are used in this section:

Description

Carry flag

Zero flag

Interrupt disable flag

Decimal operation mode flag

Index register length selection flag

Data length selection flag

Overflow flag

Negative flag

Processor interrupt priority level

Addition

Subtraction

Multiplication

Division

Logical AND

Logical OR

Exclusive OR

Negation

Movement to the arrow direction

Movement to the arrow direction

Movement to the arrow direction

Accumulator

Accumulator’s upper 8 bits

Accumulator’s lower 8 bits

Accumulator A

Accumulator A’s upper 8 bits

Accumulator A’s lower 8 bits

Accumulator B

Accumulator B’s upper 8 bits

Accumulator B’s lower 8 bits

Index register X

Index register X’s upper 8 bits

Index register X’s lower 8 bits

Index register Y

Index register Y’s upper 8 bits

Index register Y’s lower 8 bits

Stack pointer

Program counter

Program counter’s upper 8 bits

Program counter’s lower 8 bits

Relative address

Program bank register

Data bank register

←→

V

Symbol

C

Z

I

D

x

m

V

N

IPL

+

–

×
/

V

∀

←
→

Acc

AccH

AccL

A

AH

AL

B

BH

BL

X

XH

XL

Y

YH

YL

S

PC

PCH

PCL

REL

PG

DT

7700 FAMILY SOFTWARE MANUAL 4–9

Symbol

DPR

DPRH

DPRL

PS

PSH

PSL

PSn

M

M(n)

M(n+1,n)

M(m to n)

M(S)

Mb

ADDR

BANK

ADG

ADH

ADL

IMM

IMM16

IMM8

bn

dd

i

i1,i2

imm

immHimmL

ll

mmll

hhmmll

nn

n1,n2

rr

rr1rr2

Description

Direct page register

Direct page register’s upper 8 bits

Direct page register’s lower 8 bits

Processor status register

Processor status register’s upper 8 bits

Processor status register’s lower 8 bits

Processor status register’s n-th bit

Memory contents

Contents of memory location specified by operand (1 byte data)

Contents of memory location specified by operand (1 word data)

Contents of memory location specified by operand (plural bytes data)

Contents of memory at address indicated by stack pointer

b-th memory location
Value of 24-bit address’ lower 16-bit (A15 to A0)

Value of 24-bit address’ upper 8-bit (A23 to A16)

Value of 24-bit address’ upper 8-bit (A23 to A16)

Value of 24-bit address’ middle 8-bit (A15 to A8)

Value of 24-bit address’ lower 8-bit (A7 to A0)

Immediate value

16-bit immediate value

8-bit immediate value

n-th bit of data

8-bit offset value

Number of transfer bytes or rotation

Number of registers pushed or pulled

8-bit immediate value

16-bit immediate value (immH specifies the upper 8-bit, and immL specifies
the lower 8-bit)

8-bit address value

16-bit address value (mm specifies the upper 8-bit and ll specifies the lower
8-bit)

24-bit address value (hh specifies the upper 8-bit, mm specifies the middle
8-bit and ll specifies the lower 8-bit)

8-bit data value

8-bit data value (Used when coding two 8-bit data side by side)

Signed 8-bit data value

Signed 16-bit data value (rr1 is the upper 8-bit value, and rr2 is the lower 8-
bit value)

INSTRUCTIONS
4.2 Description of Instructions

7700 FAMILY SOFTWARE MANUAL4–10

Function : Addition with carry

Operation : Acc ← Acc + M + C

When m=0

Acc Acc M(n+1,n) C

← + +

When m=1

AccL AccL M(n) C

← + +

Description : Adds the contents of the accumulator, memory and carry flag, and places the result in the
accumulator.

Executed as binary addition if the decimal operation mode flag D is set to 0.

Executed as decimal addition if the decimal operation mode flag D is set to 1.

Status flags

IPL: Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0. Meaningless for decimal addition.

V : Set to 1 when binary addition of signed data result in a value outside the range of -32768 to
+32767 (-128 to +127 if the data length selection flag m is set to 1). Otherwise, cleared to 0.
Meaningless for decimal addition.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0. Meaningless for decimal
addition.

C : When the data length selection flag m is set to 0, set to 1 if binary addition exceeds +65535
or if decimal addition exceeds +9999. Otherwise, cleared to 0. When the data length selection
flag m is set to 1, set to 1 if binary addition exceeds +255 or if decimal addition exceeds +99.
Otherwise, cleared to 0.

ADC ADd with Carry ADC

7700 FAMILY SOFTWARE MANUAL 4–11

Addressing mode Syntax Machine code Bytes Cycles

Immediate ADC A, #imm 6916, imm 2 2
Direct ADC A, dd 6516, dd 2 4

Direct indexed X ADC A, dd, X 7516, dd 2 5

Direct indirect ADC A, (dd) 7216, dd 2 6

Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7

Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8

Direct indirect long ADCL A, (dd) 6716, dd 2 10

Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 11

Absolute ADC A, mmll 6D16, ll, mm 3 4

Absolute indexed X ADC A, mmll, X 7D16, ll, mm 3 6

Absolute indexed Y ADC A, mmll, Y 7916, ll, mm 3 6
Absolute long ADC A, hhmmll 6F16, ll, mm, hh 4 6

Absolute long indexed X ADC A, hhmmll, X 7F16, ll, mm, hh 4 7

Stack pointer relative ADC A, nn,S 6316, nn 2 5

Stack pointer relative ADC A, (nn, S), Y 7316, nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

ADC ADd with Carry ADC

7700 FAMILY SOFTWARE MANUAL4–12

AND logical AND AND

Function : Logical AND

Operation : Acc ← Acc M
When m=0

Acc Acc M(n+1,n)

←

When m=1

AccL AccL M(n)

←

Description : Performs logical AND between the contents of the accumulator and the contents of memory,
and places the result in the accumulator.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

V

V

V

7700 FAMILY SOFTWARE MANUAL 4–13

Addressing mode Syntax Machine code Bytes Cycles

Immediate AND A, #imm 2916, imm 2 2

Direct AND A, dd 2516, dd 2 4

Direct indexed X AND A, dd, X 3516, dd 2 5

Direct indirect AND A, (dd) 3216, dd 2 6
Direct indexed X indirect AND A, (dd, X) 2116, dd 2 7

Direct indirect indexed Y AND A, (dd), Y 3116, dd 2 8

Direct indirect long ANDL A, (dd) 2716, dd 2 10

Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2 11

Absolute AND A, mmll 2D16, ll, mm 3 4

Absolute indexed X AND A, mmll, X 3D16, ll, mm 3 6

Absolute indexed Y AND A, mmll, Y 3916, ll, mm 3 6

Absolute long AND A, hhmmll 2F16, ll, mm, hh 4 6

Absolute long indexed X AND A, hhmmll, X 3F16, ll, mm, hh 4 7

Stack pointer relative AND A, nn, S 2316, nn 2 5
Stack pointer relative AND A, (nn, S), Y 3316, nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with
“B”. In this case, “4216” is added at the beginning of the machine code, the bytes-count increases
by 1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

AND logical AND AND

7700 FAMILY SOFTWARE MANUAL4–14

ASL Arithmetic Shift Left ASL

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ASL A 0A16 1 2

Direct ASL dd 0616, dd 2 7

Direct indexed X ASL dd, X 1616, dd 2 7

Absolute ASL mmll 0E16, ll, mm 3 7

Absolute indexed X ASL mmll, X 1E16, ll, mm 3 8

(Note 1)The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

Function : Arithmetic shift left

Operation : C Acc or M
← 1 bit shift to left ← 0

When m=0

C b15 Acc or M(n+1,n) b0

← ← ← ← ← ← ← ← ← ← 0

When m=1

C b7 AccL or M(n) b0

← ← ← ← ← ← ← ← ← 0

Description : Shifts all bits of the accumulator or memory one place to the left. Bit 0 is loaded with 0. The
carry flag C is loaded from bit 15 (or bit 7 when the data length selection flag m is set to 1)
of the data before the shift.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 when bit 15 (or bit 7 when the data length selection flag m is set to 1) before the
operation is 1. Otherwise, cleared to 0.

7700 FAMILY SOFTWARE MANUAL 4–15

ASR Arithmetic Shift Right ASR

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ASR A 8916, 0816 2 5

Accumulator ASR B 4216, 0816 2 5

Direct ASR dd 8916, 0616, dd 3 10

Direct indexed X ASR dd, X 8916,1616, dd 3 10
Absolute ASR mmll 8916, 0E16, ll, mm 4 10

Absolute indexed X ASR mmll, X 8916, 1E16, ll, mm 4 11

Function : Arithmetic shift right

Operation : Acc or M C
→ 1 bit shift to Right →

MSB

When m=0

b15 Acc or M(n+1,n) b0 C

→ → → → → → → → → →

When m=1

b7 AccL or M(n) b0 C

→ → → → → → → → →

Description : Shifts all bits of the accumulator or memory one place to the right. Bit 15 (or bit 7 when the
data length selection flag m is set to 1) is loaded with the value before shift. The carry flag
C is loaded from bit 0 of the data before the shift.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 when bit 0 before the operation is 1. Otherwise, cleared to 0.

This instruction can be used
in the 7750 Series only.

7700 FAMILY SOFTWARE MANUAL4–16

BBC Branch on Bit Clear BBC

Function : Branch on condition

Operation : Mb = 0 ? (b is the specified bits)

When M IMM = 0 (True) PC ← PC + n ± REL

When M IMM ≠ 0 (False) PC ← PC + n

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ IMM is an immediate value indicating the bit to be tested with “1”.

❊ n is the number of instruction bytes in each addressing mode of the BBC instruction

❊ REL is relative value (–128 to +127) indicated by the last byte of the instruction

When m=0

M(n+1,n) IMM16

When m=1

M(n) IMM8

Description : The BBC instruction tests the specified bits (which may be specified simultaneously) of
memory. The instruction causes a branch to the specified address when the specified bits are
all 0. The branch address is specified by a relative address.

Status flags : Not affected.

V

V

V

V

Addressing mode Syntax Machine code Bytes Cycles

Direct bit relative BBC #imm, dd, rr 3416, dd, imm, rr 4 7

Absolute bit relative BBC #imm, mmll, rr 3C16, ll, mm, imm, rr 5 8

(Note 1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag
m set to 0.

(Note 2) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4–17

Function : Branch on condition

Operation : Mb = 1 ? (b is the specified bits)

When M IMM = 0 (True) PC ← PC + n ± REL

When M IMM ≠ 0 (False) PC ← PC + n

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ n is the number of instruction bytes of the BBS instruction

❊ REL is relative value (–128 to +127) indicated by the last byte of the instruction

When m=0

M(n+1,n) IMM16

When m=1

M(n) IMM8

Description : The BBS instruction tests the specified bits (which may be specified simultaneously) of
memory. The instruction causes a branch to the specified address when the specified bits are
all 1. The branch address is specified by a relative address.

Status flags : Not affected.

BBS Branch on Bit Set BBS

V

V

V

V

Addressing mode Syntax Machine code Bytes Cycles

Direct bit relative BBS #imm, dd, rr 2416, dd, imm, rr 4 7
Absolute bit relative BBS #imm, mmll, rr 2C16, ll, mm, imm, rr 5 8

(Note 1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag
m set to 0.

(Note 2) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL4–18

BCC Branch on Carry Clear BCC

Function : Branch on condition

Operation : C = 0 ?

When C = 0 (True) PC ← PC + 2 ± REL

When C = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BCC instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag C is clear (0), the BCC instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the carry flag C is set (1), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BCC rr 9016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4–19

BCS Branch on Carry Set BCS

Function : Branch on condition

Operation : C = 1 ?

When C = 1 (True) PC ← PC + 2 ± REL

When C = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BCS instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the carry flag C is set (1), the BCS instruction causes a branch to the specified address.
The branch address is specified by a relative address.

When the carry flag C is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BCS rr B016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL4–20

BEQ Branch on Equal BEQ

Function : Branch on condition

Operation : Z = 1 ?

When Z = 1 (True) PC ← PC + 2 ± REL

When Z = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation

• if carry occurs in PC : PG ← PG + 1

• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BEQ instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the zero flag Z is set (1), the BEQ instruction causes a branch to the specified address.
The branch address is specified by a relative address.

When the zero flag Z is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BEQ rr F016, rr 2 4

7700 FAMILY SOFTWARE MANUAL 4–21

BMI Branch on Result Minus BMI

Function : Branch on condition

Operation : N = 1 ?

When N = 1 (True) PC ← PC + 2 ± REL

When N = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BMI instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the negative flag N is set (1), the BMI instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the negative flag N is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BMI rr 3016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL4–22

BNE Branch on Not Equal BNE

Function : Branch on condition

Operation : Z = 0 ?

When Z = 0 (True) PC ← PC + 2 ± REL

When Z = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BNE instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the zero flag Z is clear (0), the BNE instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the zero flag Z is set (1), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BNE rr D016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL 4–23

BPL Branch on Result Plus BPL

Function : Branch on condition

Operation : N = 0 ?

When N = 0 (True) PC ← PC + 2 ± REL

When N = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BPL instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the negative flag N is clear (0), the BPL instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the negative flag N is set (1), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BPL rr 1016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL4–24

BRA Branch Always BRA

Function : Branch always

Operation : PC ← branch address (relative)

PC ← PC + n ± REL

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ n is the number of instruction bytes in each addressing mode of the BRA instruction

❊ REL is relative value (–128 to +127) indicated by the last 1-byte or last 2-byte of the
instruction

Branch area : For short relative –128 to +127

For long relative –32768 to +32767

Description : The BRA instruction causes a branch to the specified address. The branch address is
specified by a relative address.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BRA rr 8016, rr 2 4
BRAL rr1rr2 8216, rr2, rr1 3 4

7700 FAMILY SOFTWARE MANUAL 4–25

BRK Force Break BRK

Function : Software interrupt

Operation : Stack ← PG, PC, PS

I ← 1

PG, PC ← 00, Contents of BRK interrupt vector

PC ← PC + 2

M(S to S–4) ← PG, PC, PS

S ← S – 5

I ← 1

PG ← 0016

PC ← M(FFFB16,FFFA16)

❊ “2” means the byte number of the BRK instruction, and “PC+2” is the address that stored
the next instruction

Description : When the BRK instruction is executed, the CPU first saves the address where the next
instruction is stored, and then saves the contents of the processor status register on the stack.
Then, the CPU executes a branch to the address in bank-0 the lower portion of which is
specified by the contents of FFFA16 in bank-0 and the upper portion specified by the contents
of FFFB16 in bank-0.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Set to 1.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied BRK #nn 0016,EA16 2 15

(Note 1) The instruction's second byte is ignored, so any value impossible.

Stack

PSL

PSH

PCL

PCH

PG

(S) in just after instruction execution

(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL4–26

Addressing mode Syntax Machine code Bytes Cycles

Relative BVC rr 5016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

BVC Branch on Overflow Clear BVC

Function : Branch on condition

Operation : V = 0 ?

When V = 0 (True) PC ← PC + 2 ± REL

When V = 1 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BRA instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the overflow flag V is clear (0), the BVC instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the overflow flag V is set (1), the program advances to next step without any action.

Status flags : Not affected.

7700 FAMILY SOFTWARE MANUAL 4–27

BVS Branch on Overflow Set BVS

Function : Branch on condition

Operation : V = 1 ?

When V = 1 (True) PC ← PC + 2 ± REL

When V = 0 (False) PC ← PC + 2

❊ PG changes according to the result of the above PC operation
• if carry occurs in PC : PG ← PG + 1
• if borrow occurs in PC : PG ← PG – 1

❊ 2 is the number of instruction bytes of the BVS instruction

❊ REL is relative value (–128 to +127) indicated by the 2nd byte of the instruction

Description : When the overflow flag V is set (1), the BVS instruction causes a branch to the specified
address. The branch address is specified by a relative address.

When the overflow flag V is clear (0), the program advances to next step without any action.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BVS rr 7016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

7700 FAMILY SOFTWARE MANUAL4–28

CLB Clear Bit CLB

Function : Bit manipulation

Operation : Mb ← 0 (b is the specified bits)
When m=0

M(n+1,n) M(n+1,n) IMM16

←

When m=1

M(n) M(n) IMM8

←

❊ IMM is immediate value indicating the bit to be cleared with a “1” and is specified by the
last 1 or 2 bytes of the instruction.

Description : The CLB instruction clears the specified memory bits to 0. Multiple bits to be cleared can be
specified at one time.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct bit CLB #imm, dd 1416, dd, imm 3 8

Absolute bit CLB #imm, mmll 1C16, ll, mm, imm 4 9

(Note 1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag
m set to 0.

V

V

7700 FAMILY SOFTWARE MANUAL 4–29

CLC Clear Carry Flag CLC

Function : Flag manipulation

Operation : C ← 0

Description : Clears the contents of carry flag C to 0.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLC 1816 1 2

7700 FAMILY SOFTWARE MANUAL4–30

CLI Clear Interrupt Disable Status CLI

Function : Flag manipulation

Operation : I ← 0

Description : Clears the interrupt disable flag I to 0.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Cleared to 0.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLI 5816 1 2

7700 FAMILY SOFTWARE MANUAL 4–31

CLM Clear m Flag CLM

Function : Flag manipulation

Operation : m ← 0

Description : Clears the data length selection flag m to 0.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Cleared to 0.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLM D816 1 2

7700 FAMILY SOFTWARE MANUAL4–32

CLP Clear Processor Status CLP

Function : Flag manipulation

Operation : PSLb ← 0 (b is the specified flags)

PSL ← PSL IMM8

❊ IMM is a 1 byte immediate value indicating the flag to be cleared with a “1” and is
specified by the second byte of the instruction.

b7 b6 b5 b4 b3 b2 b1 b0
N V m x D I Z C PSL

Description : Clears the processor status flags specified by the bit pattern in the second byte of the
instruction to 0.

Status flags : The specified status flags are cleared to “0”. IPL is not affected.

V

Addressing mode Syntax Machine code Bytes Cycles

Immediate CLP #imm C216, imm 2 4

7700 FAMILY SOFTWARE MANUAL 4–33

CLV Clear Overflow Flag CLV

Function : Flag manipulation

Operation : V ← 0

Description : Clears the overflow flag V to 0.

Status flags

IPL : Not affected.

N : Not affected.

V : Cleared to 0.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLV B816 1 2

7700 FAMILY SOFTWARE MANUAL4–34

CMP Compare CMP

Function : Compare

Operation : Acc – M

When m=0

Acc M(n+1,n)

–

When m=1

AccL M(n)

–

Description : Subtracts the contents of memory from the contents of the accumulator. The accumulator and
memory contents are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CMP A, #imm C916, imm 2 2
Direct CMP A, dd C516, dd 2 4
Direct indexed X CMP A, dd, X D516, dd 2 5
Direct indirect CMP A, (dd) D216, dd 2 6
Direct indexed X indirect CMP A, (dd, X) C116, dd 2 7
Direct indirect indexed Y CMP A, (dd), Y D116, dd 2 8
Direct indirect long CMPL A, (dd) C716, dd 2 10
Direct indirect long indexed Y CMPL A, (dd), Y D716, dd 2 11
Absolute CMP A, mmll CD16, ll, mm 3 4
Absolute indexed X CMP A, mmll, X DD16, ll, mm 3 6
Absolute indexed Y CMP A, mmll, Y D916, ll, mm 3 6
Absolute long CMP A, hhmmll CF16, ll, mm, hh 4 6
Absolute long indexed X CMP A, hhmmll, X DF16, ll, mm, hh 4 7
Stack pointer relative CMP A, nn, S C316, nn 2 5
Stack pointer relative CMP A, (nn, S), Y D316, nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with
“B”. In this case, “4216” is added at the beginning of the machine code, the bytes-count increases
by 1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length
selection flag m set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4–35

CPX Compare Memory and Index Register X CPX

Function : Compare

Operation : X – M

When x=0

X M(n+1,n)

–

When x=1

XL M(n)

–

Description : Subtracts the contents of memory from the contents of the index register X. The index register
X and memory contents are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CPX #imm E016, imm 2 2
Direct CPX dd E416, dd 2 4
Absolute CPX mmll EC16, ll, mm 3 4

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL4–36

CPY Compare Memory and Index Register Y CPY

Function : Compare

Operation : Y – M

When x=0

Y M(n+1,n)

–

When x=1

YL M(n)

–

Description : Subtracts the contents of memory from the contents of the index register Y. The index register
Y and memory contents are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CPY #imm C016, imm 2 2
Direct CPY dd C416,dd 2 4
Absolute CPY mmll CC16, ll, mm 3 4

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4–37

Function : Decrement

Operation : Acc ← Acc – 1 or M ← M – 1

When m=0

Acc M(n+1,n)

← – 1

or
M(n+1,n) M(n+1,n)

← – 1

When m=1

AccL AccL

← – 1

or
M(n) M(n)

← – 1

Description : Subtracts 1 from the contents of the accumulator or memory.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

DEC Decrement by One DEC

Addressing mode Syntax Machine code Bytes Cycles

Accumulator DEC A 1A16 1 2
Direct DEC dd C616, dd 2 7
Direct indexed X DEC dd, X D616, dd 2 7
Absolute DEC mmll CE16, ll, mm 3 7
Absolute indexed X DEC mmll, X DE16, ll, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL4–38

DEX Decrement Index Register X by One DEX

Function : Decrement

Operation : X ← X – 1

When x=0

X X

← – 1

When x=1

XL XL

← – 1

Description : Subtracts 1 from the contents of the index register X.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied DEX CA16 1 2

7700 FAMILY SOFTWARE MANUAL 4–39

DEY Decrement Index Register Y by One DEY

Function : Decrement

Operation : Y ← Y – 1

When x=0

Y Y

← – 1

When x=1

YL YL

← – 1

Description : Subtracts 1 from the contents of the index register Y.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied DEY 8816 1 2

7700 FAMILY SOFTWARE MANUAL4–40

DIV Divide DIV

Function : Division (Unsigned)

Operation : A(quotient), B(remainder) ← (B, A) / M

When m=0

A B B A M(n+1,n)

Quotient , Remainder ← Dividend ÷ Divisor

When m=1

AL BL BL AL M(n)

Quotient , Remainder ← Dividend ÷ Divisor

Description : When the data length selection flag m is set to 0, a 32-bit data stored in the accumulators B
(upper 16 bits) and A (lower 16 bits) are divided by a 16-bit data in memory. The quotient
is placed in the accumulator A, and the remainder is placed in the accumulator B.

When the data length selection flag m is set to 1, a 16-bit data stored in the lower 8 bits of
the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by an 8 bit data in memory.
The quotient is placed in the lower 8 bits of the accumulator A, and the remainder is placed
in the lower 8 bits of the accumulator B.

If an overflow occurs as a result of the operation, the V flag is set and the content of the
accumulator is unpredictable.

When divisor is 0, the zero division interrupt is generated, in which case the contents of the
program bank register, program counter, and processor status register are saved on the stack
and a branch occurs to the address in bank-0 as specified by the zero division interrupt vector.
Accumulator contents are not changed. In this case, the content of the accumulator is
unchanged.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of quotient from
the operation is 1. Otherwise, cleared to 0.

❊ When an overflow occurs as a result of the operation or divisor is 0, N flag is not affected.

V : Clear to 0.

❊ Set to 1 when an overflow occurs

❊ Not affected when divisor is 0

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No changes occur
when divisor is 0.

❊ When an overflow occurs as a result of the operation or divisor is 0, Z flag is not affected.

C : Clear to 0.

❊ Set to 1 when an overflow occurs

❊ Not affected when divisor is 0

7700 FAMILY SOFTWARE MANUAL 4–41

DIV Divide DIV

Addressing mode Syntax Machine code Bytes Cycles

Immediate DIV #imm 8916, 2916, imm 3 27
Direct DIV dd 8916, 2516, dd 3 29
Direct indexed X DIV dd, X 8916, 3516, dd 3 30
Direct indirect DIV (dd) 8916, 3216, dd 3 31
Direct indexed X indirect DIV (dd, X) 8916, 2116, dd 3 32
Direct indirect indexed Y DIV (dd), Y 8916, 3116, dd 3 33
Direct indirect long DIVL (dd) 8916, 2716, dd 3 35
Direct indirect long indexed Y DIVL (dd), Y 8916, 3716, dd 3 36
Absolute DIV mmll 8916, 2D16, ll, mm 4 29
Absolute indexed X DIV mmll, X 8916, 3D16, ll ,mm 4 31
Absolute indexed Y DIV mmll, Y 8916, 3916, ll ,mm 4 31
Absolute long DIV hhmmll 8916, 2F16, ll, mm, hh 5 31
Absolute long indexed X DIV hhmmll, X 8916, 3F16, ll, mm, hh 5 32
Stack pointer relative DIV nn, S 8916, 2316, nn 3 30
Stack pointer relative DIV (nn, S), Y 8916, 3316, nn 3 33

indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

(Note 2) The cycles-count in this table are for 16-bit ÷ 8-bit operations. For 32-bit ÷ 16-bit operations, the
cycles-count increases by 16.

(Note 3) The cycle count in this table and Note 2 are the value when the operation completes normally
(no interrupt has occurred). If a zero divide interrupt has occurred, the cycle counts in the above
table are decremented by 8 regardless of the data length.

7700 FAMILY SOFTWARE MANUAL4–42

Function : Division (Signed)

Operation : A(quotient), B(remainder) ← (B, A) / M

When m=0

A B B A M(n+1,n)

Quotient , Remainder ← Dividend ÷ Divisor

DIVS Divide with Sign DIVS

s s s s

When m=1

AL BL BL AL M(n)

Quotient , Remainder ← Dividend ÷ Divisor
s s s s

❊ “s” means a sign bit that is the most significant bit of the data

Description : When the data length selection flag m is set to 0, a signed 32-bit data stored in the
accumulators B (upper 16 bits) and A (lower 16 bits) are divided by a signed 16-bit data in
memory. As a result of the operation, the quotient is stored in accumulator A and the
remainder is stored in accumulator B as signed 16-bit data.

When the data length selection flag m is set to 1, a signed 16-bit data stored in the lower 8
bits of the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by a signed 8 bit data
in memory. As a result of the operation, the quotient is stored in low-order 8 bits of
accumulator A and the remainder is stored in low-order 8 bits of accumulator B as signed 8-
bit data.

The sign of remainder becomes same as dividend.

When an overflow results from this operation (the quotient exceeds the extent –32767 to
+32767 if m=0 or –127 to +127 if m=1) neglect removed out, the V flag is set. In this case,
the content of the accumulator is unpredictable.

When divisor is 0, the zero division interrupt is generated, in which case the contents of the
processor status register are saved on the stack and a branch occurs to the address in bank
016 as specified by the zero division interrupt vector. And accumulator contents are not
changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of quotient from
the operation is 1. Otherwise, cleared to 0.

❊ When an overflow occurs as a result of the operation or divisor is 0, N flag is not affected.

V : Clear to 0.

❊ Set to 1 when an overflow occurs

❊ Not affected when divisor is 0

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

❊ Set to 1 when divisor is 0

This instruction can be used
in the 7750 Series only.

7700 FAMILY SOFTWARE MANUAL 4–43

DIVS Divide with Sign DIVS

Z : Set to 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No changes occur
when divisor is 0.

❊ When an overflow occurs as a result of the operation or divisor is 0, Z flag is not affected.

C : Clear to 0.

❊ Set to 1 when an overflow occurs

❊ Not affected when divisor is 0

Addressing mode Syntax Machine code Bytes Cycles

Immediate DIVS #imm 8916, A916, imm 3 29
Direct DIVS dd 8916, A516, dd 3 31
Direct indexed X DIVS dd, X 8916, B516, dd 3 32
Direct indirect DIVS (dd) 8916, B216, dd 3 33
Direct indexed X indirect DIVS (dd, X) 8916, A116, dd 3 34
Direct indirect indexed Y DIVS (dd), Y 8916, B116, dd 3 35
Direct indirect long DIVSL (dd) 8916, A716, dd 3 37
Direct indirect long indexed Y DIVSL (dd), Y 8916, B716, dd 3 38
Absolute DIVS mmll 8916, AD16, ll, mm 4 31
Absolute indexed X DIVS mmll, X 8916, BD16, ll ,mm 4 33
Absolute indexed Y DIVS mmll, Y 8916, B916, ll ,mm 4 33
Absolute long DIVS hhmmll 8916, AF16, ll, mm, hh 5 33
Absolute long indexed X DIVS hhmmll, X 8916, BF16, ll, mm, hh 5 34
Stack pointer relative DIVS nn, S 8916, A316, nn 3 32
Stack pointer relative DIVS (nn, S), Y 8916, B316, nn 3 35

indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

(Note 2) The cycles-count in this table are for 16-bit ÷ 8-bit operations. For 32-bit ÷ 16-bit operations, the
cycles-count increases by 16.

(Note 3) The cycle count in this table and Note 2 are the value when the operation completes normally
(no interrupt has occurred). If a zero divide interrupt has occurred, the cycle counts in the above
table are decremented by 10 regardless of the data length.

7700 FAMILY SOFTWARE MANUAL4–44

Function : Logical EXCLUSIVE OR

Operation : Acc ← Acc ∀ M

When m=0

Acc Acc M(n+1,n)

← ∀

When m=1

AccL AccL M(n)

← ∀

Description : Performs the logical EXCLUSIVE OR between the contents of the accumulator and the
contents of memory, and places the result in the accumulator.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

EOR Exclusive OR Memory with Accumulator EOR

Addressing mode Syntax Machine code Bytes Cycles

Immediate EOR A, #imm 4916, imm 2 2
Direct EOR A, dd 4516, dd 2 4
Direct indexed X EOR A, dd, X 5516, dd 2 5
Direct indirect EOR A, (dd) 5216, dd 2 6
Direct indexed X indirect EOR A, (dd, X) 4116, dd 2 7
Direct indirect indexed Y EOR A, (dd), Y 5116, dd 2 8
Direct indirect long EORL A, (dd) 4716, dd 2 10
Direct indirect long indexed Y EORL A, (dd), Y 5716, dd 2 11
Absolute EOR A, mmll 4D16, ll, mm 3 4
Absolute indexed X EOR A, mmll, X 5D16, ll, mm 3 6
Absolute indexed Y EOR A, mmll, Y 5916, ll, mm 3 6
Absolute long EOR A, hhmmll 4F16, ll, mm, hh 4 6
Absolute long indexed X EOR A, hhmmll, X 5F16, ll, mm, hh 4 7
Stack pointer relative EOR A, nn, S 4316, nn 2 5
Stack pointer relative EOR A, (nn, S), Y 5316, nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4–45

Function : Extension with sign

Operation : AccH ← 0016 or FF16

When bit 7 of AccL=“0”

AccH ← 0016

AccH AccL AccH AccL

00000000 0XXXXXXX ← ? 0XXXXXXX

When bit 7 of AccL=“1”

AccH ← FF16

AccH AccL AccH AccL

11111111 1XXXXXXX ← ? 1XXXXXXX

❊ The high-order byte of Acc changes regardless of the m flag

Description : This instruction is used to extend the signed 8-bit data stored in the low-order byte of the
accumulator to a 16-bit data.

If bit 7 of the accumulator is “0”, bits 8 to 15 are set to “0”. If bit 7 of the accumulator is “1”,
bits 8 to 15 are set to “1”.

With this instruction, the high-order byte of accumulator changes regardless of the data length
selection flag m, but the content of the data length selection flag m is unchanged.

Status flags

IPL : Not affected.

N : Set to 1, if bit 15 of the result of operation is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1, if the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

EXTS Extension with Sign EXTS

Addressing mode Syntax Machine code Bytes Cycles

Accumulator EXTS A 8916, 8B16 2 8
Accumulator EXTS B 4216, 8B16 2 8

This instruction can be used
in the 7750 Series only.

7700 FAMILY SOFTWARE MANUAL4–46

Function : Extension zero

Operation : AccH ← 0016

AccH AccL AccH AccL

0016 ← ?

❊ The high-order byte of Acc changes regardless of the m flag

Description : This instruction is used to extend the 8-bit data stored in the low-order byte of the accumulator
to a 16-bit data.

Bits 8 to 15 of the accumulator are set to “0”.

With this instruction, the high-order byte of accumulator changes regardless of the data length
selection flag m, but the content of the data length selection flag m is unchanged.

Status flags

IPL : Not affected.

N : Set to “0”

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1, if the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

EXTZ Extension Zero EXTZ

Addressing mode Syntax Machine code Bytes Cycles

Accumulator EXTZ A 8916, AB16 2 5
Accumulator EXTZ B 4216, AB16 2 5

This instruction can be used
in the 7750 Series only.

7700 FAMILY SOFTWARE MANUAL 4–47

Function : Increment

Operation : Acc ← Acc + 1 or M ← M + 1

When m=0

Acc Acc

← + 1

or
M(n+1,n) M(n+1,n)

← + 1

When m=1

AccL AccL

← +1

or
M(n) M(n)

← +1

Description : Adds 1 to the contents of the accumulator or memory.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

INC Increment by One INC

Addressing mode Syntax Machine code Bytes Cycles

Accumulator INC A 3A16 1 2
Direct INC dd E616, dd 2 7
Direct indexed X INC dd, X F616, dd 2 7
Absolute INC mmll EE16, ll, mm 3 7
Absolute indexed X INC mmll, X FE16, ll, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL4–48

INX Increment Index Register X by One INX

Function : Increment

Operation : X ← X + 1

When x=0

X X

← + 1

When x=1

XL XL

← + 1

Description : Adds 1 to the contents of the index register X.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied INX E816 1 2

7700 FAMILY SOFTWARE MANUAL 4–49

INY Increment Index Register Y by One INY

Function : Increment

Operation : Y ← Y + 1

When x=0

Y Y

← + 1

When x=1

YL YL

← + 1

Description : Adds 1 to the contents of the index register Y.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied INY C816 1 2

7700 FAMILY SOFTWARE MANUAL4–50

JMP Jump JMP

Function : Jump always

Operation : [PG], PC ← specified address (absolute or indirect)

When the addressing mode is ...

absolute addressing mode,

PC ← ADDR

absolute long addressing mode,

PC ← ADDR

PG ← BANK

absolute indirect addressing mode,

PC ← M(ADDR+1, ADDR)

absolute indirect long addressing mode,

PC ← M(ADDR+1, ADDR)

PG ← M(ADDR+2)

absolute indexed X indirect addressing mode,

PC ← M(ADDR+X+1, ADDR+X)

❊ ADDR indicates the low-order 16 bits of a 24-bit address and is specified by bytes 2 and
3 of the instruction.

❊ BANK is the high-order 8 bits of a 24-bit address and is specified by byte 4 of the
instruction.

Description : The JMP instruction causes a jump to the address specified for the addressing mode in use.

When this instruction is used in addressing mode other than absolute long, the content of PG
is incremented by 1 and the branch destination becomes the next bank if the last byte of the
instruction is at the topmost address (XXFFFF16) of a bank or if the instruction spans across
banks.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Absolute JMP mmll 4C16, ll, mm 3 2
Absolute long JMPL hhmmll 5C16, ll, mm, hh 4 4
Absolute indirect JMP (mmll) 6C16, ll, mm 3 4
Absolute indirect long JMPL (mmll) DC16, ll, mm 3 8
Absolute indexed X indirect JMP (mmll, X) 7C16, ll, mm 3 6

7700 FAMILY SOFTWARE MANUAL 4–51

JSR Jump to Subroutine JSR

Function : Jump to subroutine

Operation : Stack ← [PG], PC

[PG], PC ← specified address (absolute or indirect)

When the addressing mode is ...

absolute addressing mode,

PC ← PC + 3

M(S,S–1) ← PC

S ← S – 2

PC ← ADDR

absolute long addressing mode,

PC ← PC + 4

M(S to S–2) ← PG, PC

S ← S – 3

PC ← ADDR

PG ← BANK

absolute indexed X indirect addressing mode,

PC ← PC + 3

M(S,S–1) ← PC

S ← S – 2

PC ← M(ADDR+X+1,ADDR+X)

❊ ADDR indicates the low-order 16 bits of a 24-bit address and is specified by bytes 2 and
3 of the instruction.

❊ BANK is the high-order 8 bits of a 24-bit address and is specified by byte 4 of the
instruction.

Description : The contents of the program counter PC (or the program bank register PG and the program
counter PC if absolute long addressing mode) are first saved on the stack, then a jump occurs
to the address shown for each addressing mode.

When this instruction is used in addressing mode other than absolute long, the content of PG
is incremented by 1 and the branch destination becomes the next bank if the last byte of the
instruction is at the topmost address (XXFFFF16) of a bank or if the instruction spans across
banks.

Status flags : Not affected.

Stack

PCL

PCH

(S) in just after instruction execution

(S) in just before instruction execution

Stack

PCL

PCH

PG

(S) in just after instruction execution

(S) in just before instruction execution

Stack

PCL

PCH

(S) in just after instruction execution

(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Absolute JSR mmll 2016, ll, mm 3 6
Absolute long JSRL hhmmll 2216, ll, mm, hh 4 8
Absolute indexed X indirect JSR (mmll, X) FC16, ll, mm 3 8

7700 FAMILY SOFTWARE MANUAL4–52

LDA Load Accumulator from Memory LDA

Function : Load

Operation : Acc ← M

When m=0

Acc M(n+1, n)

←

When m=1

AccL M(n)

←

Description : Loads the contents of memory into the accumulator.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDA A, #imm A916, imm 2 2

Direct LDA A, dd A516, dd 2 4

Direct indexed X LDA A, dd, X B516, dd 2 5

Direct indirect LDA A, (dd) B216, dd 2 6

Direct indexed X indirect LDA A, (dd, X) A116, dd 2 7

Direct indirect indexed Y LDA A, (dd), Y B116, dd 2 8

Direct indirect long LDAL A, (dd) A716, dd 2 10
Direct indirect long indexed Y LDAL A, (dd), Y B716, dd 2 11

Absolute LDA A, mmll AD16, ll, mm 3 4

Absolute indexed X LDA A, mmll, X BD16, ll, mm 3 6

Absolute indexed Y LDA A, mmll, Y B916, ll, mm 3 6

Absolute long LDA A, hhmmll AF16, ll, mm, hh 4 6

Absolute long indexed X LDA A, hhmmll, X BF16, ll, mm, hh 4 7

Stack pointer relative LDA A, nn, S A316, nn 2 5

Stack pointer relative LDA A, (nn, S), Y B316, nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4–53

Function : Load

Operation : M ← IMM

When m=0

M(n+1, n)

← IMM16

When m=1

M(n)

← IMM8

Description : Loads an immediate value into memory.

Status flags : Not affected.

LDM Load Immediate to Memory LDM

Addressing mode Syntax Machine code Bytes Cycles

Direct LDM #imm, dd 6416, dd, imm 3 4
Direct indexed X LDM #imm, dd, X 7416, dd, imm 3 5
Absolute LDM #imm, mmll 9C16, ll, mm, imm 4 5
Absolute indexed X LDM #imm, mmll, X 9E16, ll, mm, imm 4 6

(Note 1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count
increases by 1.

7700 FAMILY SOFTWARE MANUAL4–54

LDT Load Immediate to Data Bank Register LDT

Function : Load

Operation : DT ← IMM8

DT

← IMM8

Description : Loads an immediate value into the data bank register DT.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDT #imm 8916, C216, imm 3 5

7700 FAMILY SOFTWARE MANUAL 4–55

LDX Load Index Register X from Memory LDX

Function : Load

Operation : X ← M

When x=0

X M(n+1, n)

←

When x=1

XL M(n)

←

Description : Loads the contents of memory into the index register X.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDX #imm A216, imm 2 2
Direct LDX dd A616, dd 2 4
Direct indexed Y LDX dd, Y B616, dd 2 5
Absolute LDX mmll AE16, ll, mm 3 4
Absolute indexed Y LDX mmll, Y BE16, ll, mm 3 6

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL4–56

LDY Load Index Register Y from Memory LDY

Function : Load

Operation : Y ← M

When x=0

Y M(n+1, n)

←

When x=1

YL M(n)

←

Description : Loads the contents of memory into the index register Y.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Immediate LDY #imm A016, imm 2 2
Direct LDY dd A416, dd 2 4
Direct indexed X LDY dd, X B416, dd 2 5
Absolute LDY mmll AC16, ll, mm 3 4
Absolute indexed X LDY mmll, X BC16, ll, mm 3 6

(Note 1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL 4–57

LSR Logical Shift Right LSR

Function : Logical shift right

Operation : Acc or M C
0 → 1 bit shift to Right →
When m=0

b15 Acc or M(n+1,n) b0 C

0 → → → → → → → → → →

When m=1

b7 AccL or M(n) b0 C

0 → → → → → → → → →

Description : Shifts all bits of the accumulator or memory one place to the right. Bit 15 (or bit 7 if the data
length selection flag m is set to 1) of the accumulator or memory is loaded with 0.

The carry flag C is loaded from bit 0 of the data before the shift.

Status flags

IPL : Not affected.

N : Cleared to “0”.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 when bit 0 before the operation is 1. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Accumulator LSR A 4A16 1 2

Direct LSR dd 4616, dd 2 7
Direct indexed X LSR dd, X 5616, dd 2 7

Absolute LSR mmll 4E16, ll, mm 3 7

Absolute indexed X LSR mmll, X 5E16, ll, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL4–58

Function : Multiplication (Unsigned)

Operation : B, A ← A × M

When m=0

B A A M(n+1,n)

Product ← Multiplicand × Multiplier

When m=1

BL AL AL M(n)

Product ← Multiplicand × Multiplier

Description : When the data length selection flag m is set to 0, the contents of the accumulator A and the
contents of memory are multiplied. Multiplication is performed as 16-bit × 16-bit, and the result
is a 32-bit data which is placed in the accumulators B (upper 16 bits of the result) and A (lower
16 bits of the result).

When the data length selection flag m is set to 1, the lower 8-bit contents of the accumulator
A and the contents of memory are multiplied. Multiplication is performed as 8-bit × 8-bit, and
the result is a 16-bit data which is placed in the lower 8 bits of the accumulators B (upper 8
bits of the result) and A (lower 8 bits of the result).

Status flags

IPL : Not affected.

N : Set to 1 when bit 31 (or bit 15 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Cleared to 0.

MPY Multiply MPY

7700 FAMILY SOFTWARE MANUAL 4–59

MPY Multiply MPY

Addressing mode Syntax Machine code Bytes Cycles

Immediate MPY #imm 8916, 0916, imm 3 16
Direct MPY dd 8916, 0516, dd 3 18
Direct indexed X MPY dd, X 8916, 1516, dd 3 19
Direct indirect MPY (dd) 8916, 1216, dd 3 20
Direct indexed X indirect MPY (dd, X) 8916, 0116, dd 3 21
Direct indirect indexed Y MPY (dd), Y 8916, 1116, dd 3 22
Direct indirect long MPYL (dd) 8916, 0716, dd 3 24
Direct indirect long indexed Y MPYL (dd), Y 8916, 1716, dd 3 25
Absolute MPY mmll 8916, 0D16, ll, mm 4 18
Absolute indexed X MPY mmll, X 8916, 1D16, ll, mm 4 20
Absolute indexed Y MPY mmll, Y 8916, 1916, ll, mm 4 20
Absolute long MPY hhmmll 8916, 0F16, ll, mm, hh 5 20
Absolute long indexed X MPY hhmmll, X 8916, 1F16, ll, mm, hh 5 21
Stack pointer relative MPY nn, S 8916, 0316, nn 3 19
Stack pointer relative MPY (nn, S), Y 8916, 1316, nn 3 22

indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note 2) The cycles-count in this table are for 8-bit × 8-bit multiplications. For 16-bit × 16-bit multiplications,
the cycles-count increases by 8.

7700 FAMILY SOFTWARE MANUAL4–60

Function : Multiplication (Signed)

Operation : B, A ← A × M

When m=0

B A A M(n+1,n)

Product ← Multiplicand × Multiplier

MPYS Multiply with Sign MPYS

s s s

When m=1

BL AL AL M(n)

Product ← Multiplicand × Multiplier
s s s

❊ s indicates the sign bit and is the topmost bit of the data to be operated on.

Description : When the data length selection flag m is set to 0, the content of the accumulator A is multiplied
by the content of memory as signed data. The multiplication is performed as a 16-bit × 16-
bit operation, and the result is a 32-bit data which is placed in the accumulators B (upper 16
bits of the result) and A (lower 16 bits of the result). Bit 15 of accumulator B becomes the
sign bit.

When the data length selection flag m is set to 1, the lower 8-bit content of the accumulator
A is multiplied by the content of memory as signed data. The multiplication is performed as
8-bit × 8-bit operation, and the result is a 16-bit data which is placed in the lower 8 bits of the
accumulators B (upper 8 bits of the result) and A (lower 8 bits of the result). Bit 7 of
accumulator B becomes the sign bit.

Status flags

IPL : Not affected.

N : Set to 1 when bit 31 of the operation result which is bit 15 of accumulator B (or if the data
length selection flag m is set to 1, bit 15 of the operation result which is bit 7 of accumulator
B) is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

This instruction can be used
in the 7750 Series only.

7700 FAMILY SOFTWARE MANUAL 4–61

MPYS Multiply with Sign MPYS

Addressing mode Syntax Machine code Bytes Cycles

Immediate MPYS #imm 8916, 8916, imm 3 18
Direct MPYS dd 8916, 8516, dd 3 20
Direct indexed X MPYS dd, X 8916, 9516, dd 3 21
Direct indirect MPYS (dd) 8916, 9216, dd 3 22
Direct indexed X indirect MPYS (dd, X) 8916, 8116, dd 3 23
Direct indirect indexed Y MPYS (dd), Y 8916, 9116, dd 3 24
Direct indirect long MPYSL (dd) 8916, 8716, dd 3 26
Direct indirect long indexed Y MPYSL (dd), Y 8916, 9716, dd 3 27
Absolute MPYS mmll 8916, 8D16, ll, mm 4 20
Absolute indexed X MPYS mmll, X 8916, 9D16, ll, mm 4 22
Absolute indexed Y MPYS mmll, Y 8916, 9916, ll, mm 4 22
Absolute long MPYS hhmmll 8916, 8F16, ll, mm, hh 5 22
Absolute long indexed X MPYS hhmmll, X 8916, 9F16, ll, mm, hh 5 23
Stack pointer relative MPYS nn, S 8916, 8316, nn 3 21
Stack pointer relative MPYS (nn, S), Y 8916, 9316, nn 3 24

indirect indexed Y

(Note 1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note 2) The cycles-count in this table are for 8-bit × 8-bit multiplications with the same sign. If the multiplier
and multiplicand have different signs, three additional cycles are required. For 16-bit × 16-bit
multiplications, the cycles-count increases by 8.

7700 FAMILY SOFTWARE MANUAL4–62

Function : Move

Operation : M(n to n + k) ← M(m to m + k)

A = 0 ?

When A=0

Instruction execution complete

When A≠0

Repeat operation

M(DTd: Y) M(DTs: X)

X ← X + 2

Y ← Y + 2

A ← A – 2

❊ DTd indicates the transfer destination bank and is specified with the second byte of the
instruction.

❊ DTs indicates the transfer source bank and is specified with the third byte of the
instruction.

❊ Values set in register before transfer

A: Transfer byte count

When m=0 The value 0 to 65535 can be set

When m=1 The value 0 to 255 can be set

X: Transfer source area beginning (lowermost) address

When x=0 The value 0 to 65535 can be set

When x=1 The value 0 to 255 can be set (Note 1)

Y: Transfer destination area beginning (lowermost) address

When x=0 The value 0 to 65535 can be set

When x=1 The value 0 to 255 can be set (Note 1)

❊ Content of register after transfer

A: FFFF16

X: Transfer source area end (highermost) address + 1

Y: Transfer destination area beginning (highermost) address + 1

DT:Bank number of transfer destination

❊ Transfer is always performed two bytes at a time. Therefore, in the case of a 16-bit
bus, the transfer time is shorter when transfer start addresses are even compared to
when they are both odd addresses.

Note 1. This instruction is recommended to use at the x=“0”. Data in the area between
XX0016 and XXFF16 can be only used because the higher bytes of index
registers X and Y are not affected at x=“1”.

MVN Move Negative MVN

n Transfer
↓ Transfer direction destination

n + k area

m Transfer
↓ Transfer direction source

m + k area

7700 FAMILY SOFTWARE MANUAL 4–63

MVN Move Negative MVN

Description : Normally, a block of data is transferred from upper addresses to lower addresses. The
transfer is performed in the ascending address order of the block being transferred. The target
bank is specified by the instruction’s second byte, and the address within the target bank is
specified by the contents of the index register Y. The source bank is specified by the
instruction’s third byte, and the address within the source bank is specified by the contents of
the index register X. The accumulator A is loaded with the bytes-count of the data to be
transferred. As each byte of data is transferred, the index registers X and Y are incremented
by 1, so that the index register X will become a value equal to 1 larger than the source address
of the last byte transferred and the index register Y will become a value equal to 1 larger than
the target address of the last byte received. The data bank register DT will become the target
bank number, and the accumulator A will become FFFF16.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVN n1, n2 5416, n1, n2 3 7+(i/2)×7

(Note 1)The cycles-count shown above is for when the number of bytes transferred, i, is an even
number. If i is an odd number, the cycles-count is obtained as follows:

7 + (i ÷ 2) × 7 + 4.
Note that (i ÷ 2) denotes the integer part of the result of dividing i by 2.

7700 FAMILY SOFTWARE MANUAL4–64

MVP Move Positive MVP

Function : Move

Operation : M(n – k to n) ← M(m – k to m)

A = 0 ?

When A=0

Instruction execution complete

When A≠0

Repeat operation

X ← X – 1

Y ← Y – 1

M(DTd: Y) M(DTs: X)

X ← X – 1

Y ← Y – 1

A ← A – 2

❊ DTd indicates the transfer destination bank and is specified with the second byte of the
instruction.

❊ DTs indicates the transfer source bank and is specified with the third byte of the
instruction.

❊ Values set in register before transfer

A: Transfer byte count

When m=0 The value 0 to 65535 can be set

When m=1 The value 0 to 255 can be set

X: Transfer source area beginning (highermost) address

When x=0 The value 0 to 65535 can be set

When x=1 The value 0 to 255 can be set

Y: Transfer destination area beginning (highermost) address

When x=0 The value 0 to 65535 can be set

When x=1 The value 0 to 255 can be set

❊ Content of register after transfer

A: FFFF16

X: Transfer source area end (lowermost) address – 1

Y: Transfer destination area beginning (lowermost) address – 1

DT:Bank number of transfer destination

❊ Transfer is always performed two bytes at a time. Therefore, in the case of a 16-bit
bus, the transfer time is shorter when transfer start addresses are odd compared to
when they are both even addresses.

Note 1. This instruction is recommended to use at the x=“0”. Data in the area between
XX0016 and XXFF16 can be only used because the higher bytes of index
registers X and Y are not affected at x=“1”.

m – k Transfer
↑ Transfer direction source

m area

n – k Transfer
↑ Transfer direction destination

n area

7700 FAMILY SOFTWARE MANUAL 4–65

MVP Move Positive MVP

Description : Normally, a block of data is transferred from lower addresses to upper addresses. The
transfer is performed in the descending address order of the block being transferred. The
target bank is specified by the instruction’s second byte, and the address within the
target bank is specified by the contents of the index register Y. The source bank is
specified by the instruction’s third byte, and the address within the source bank is
specified by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred, the index
registers X and Y are decremented by 1, so that the index register X will become a value
equal to 1 less than the source address of the last byte transferred and the index
register Y will become a value equal to 1 smaller than the target address of the last byte
received. The data bank register DT will become the target bank number, and the
accumulator A will become FFFF16.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVP n1, n2 4416, n1, n2 3 9+(i/2)×7

(Note 1)The cycles-count shown above is for when the number of bytes transferred, i, is an even
number. If i is an odd number, the cycles-count is obtained as follows:

9 + (i ÷ 2) × 7 + 5.
Note that (i ÷ 2) denotes the integer part of the result of dividing i by 2.

7700 FAMILY SOFTWARE MANUAL4–66

NOP No Operation NOP

Function : No operation

Operation : PC ← PC + 1

❊ PG also changes depending on the result of the above operation on PC.

If a carry occurs in PC: PG ← PG + 1

Description : This instruction only causes the program counter to be incremented by 1 and nothing else.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied NOP EA16 1 2

7700 FAMILY SOFTWARE MANUAL 4–67

ORA OR Memory with Accumulator ORA

Function : Logical OR

Operation : Acc ← Acc V M

When m=0

Acc A M(n+1,n)

← V

When m=1

AccL AccL M(n)

← V

Description : Performs the logical OR between the contents of the accumulator and the contents of memory,
and places the result in the accumulator.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate ORA A, #imm 0916, imm 2 2

Direct ORA A, dd 0516, dd 2 4

Direct indexed X ORA A, dd, X 1516, dd 2 5

Direct indirect ORA A, (dd) 1216, dd 2 6

Direct indexed X indirect ORA A, (dd, X) 0116, dd 2 7
Direct indirect indexed Y ORA A, (dd), Y 1116, dd 2 8

Direct indirect long ORAL A, (dd) 0716, dd 2 10

Direct indirect long indexed Y ORAL A, (dd), Y 1716, dd 2 11

Absolute ORA A, mmll 0D16, ll, mm 3 4

Absolute indexed X ORA A, mmll, X 1D16, ll, mm 3 6

Absolute indexed Y ORA A, mmll, Y 1916, ll, mm 3 6

Absolute long ORA A, hhmmll 0F16, ll, mm, hh 4 6

Absolute long indexed X ORA A, hhmmll, X 1F16, ll, mm, hh 4 7

Stack pointer relative ORA A, nn, S 0316, nn 2 5

Stack pointer relative ORA A, (nn, S), Y 1316, nn 2 8
indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL4–68

PEA Push Effective Address PEA

Function : Stack manipulation (push)

Operation : Stack ← IMM16

M(S,S – 1) ← IMM16

S ← S – 2

❊ IMM16 is an immediate value and IMMH indicates its high-order byte and IMML indicates
its low-order byte.

Description : The instruction’s third and second bytes are saved on the stack in this order.

Status flags : Not affected.

Stack

IMML

IMMH

Addressing mode Syntax Machine code Bytes Cycles

Stack PEA #immHimmL F416, immL, immH 3 5

(S) in just after instruction execution

(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL 4–69

PEI Push Effective Indirect Address PEI

Function : Stack manipulation (push)

Operation : Stack ← M(DPR + IMM8 + 1, DPR + IMM8)

M(S,S – 1) ← M(DPR + IMM8 + 1, DPR + IMM8)

S ← S – 2

❊ IMM8 is an 8-bit immediate value and is used as an offset from DPR.

Description : Saves the contents of the consecutive 2 bytes in the direct page as specified by the sum of
the contents of the direct page register DPR and the instruction’s second byte on the stack
in the order of upper address first and lower address second.

Status flags : Not affected.

Stack

M(DPR+IMM8)
M(DPR+IMM8+1)

(S) in just after instruction execution

(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PEI #imm D416, imm 2 6

7700 FAMILY SOFTWARE MANUAL4–70

PER Push Effective Program Counter Relative Address PER

Function : Stack manipulation (push)

Operation : Stack ← PC + IMM16

EAR ← PC + IMM16

M(S, S – 1) ← EAR

S ← S – 2

❊ IMM16 is a 16-bit immediate value

❊ EAR is an execution address added PC and IMM16, and EARH indicates its high-order byte
and EARL indicates its low-order byte.

Description : Saves the result of adding a 16-bit data consisting of an upper byte specified by the
instruction’s third byte and a lower byte specified by the instruction’s second byte with the
contents of the program counter on the stack in the order of the result’s upper byte first and
lower byte second.

Status flags : Not affected.

Stack

EARL

EARH

(S) in just after instruction execution

(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PER #immHimmL 6216, immL, immH 3 5

7700 FAMILY SOFTWARE MANUAL 4–71

PHA Push Accumulator A on Stack PHA

Function : Stack manipulation (push)

Operation : Stack ← A

When m=0

M(S, S – 1) ← A

S ← S – 2

When m=1

M(S) ← AL

S ← S – 1

Description : Saves the contents of the accumulator A to the address specified by the stack pointer S. When
the data length selection flag m is set to 0, the accumulator A’s upper byte is saved on the
stack first and then the lower byte. When the data length selection flag m is set to 1, only
the accumulator A’s lower byte is saved on the stack.

Status flags : Not affected.

Stack

AL

AH

(S) in just after instruction execution

(S) in just before instruction execution

Stack

AL

(S) in just after instruction execution
(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHA 4816 1 4

Renesas
EOL announced

7700 FAMILY SOFTWARE MANUAL4–72

PHB Push Accumulator B on Stack PHB

Function : Stack manipulation (push)

Operation : Stack ← B

When m=0

M(S, S – 1) ← B

S ← S – 2

When m=1

M(S) ← BL

S ← S – 1

Description : Saves the contents of the accumulator B to the address indicated by the stack pointer S.
When the data length selection flag m is set to 0, the accumulator B’s upper byte is saved on
the stack first and then the lower byte. When the data length selection flag m is set to 1, only
the accumulator B’s lower byte is saved on the stack.

Status flags : Not affected.

Stack

BL

BH

(S) in just after instruction execution

(S) in just before instruction execution

Stack

BL

(S) in just after instruction execution
(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHB 4216, 4816 2 6

7700 FAMILY SOFTWARE MANUAL 4–73

PHD Push Direct Page Register on Stack PHD

Function : Stack manipulation (push)

Operation : Stack ← DPR

M(S, S – 1) ← DPR

S ← S – 2

Description : Saves the contents of the direct page register DPR to the address indicated by the stack
pointer S in the order of upper byte first and then lower byte.

Status flags : Not affected.

Stack

DPRL

DPRH

(S) in just after instruction execution

(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHD 0B16 1 4

7700 FAMILY SOFTWARE MANUAL4–74

PHG Push Program Bank Register on Stack PHG

Function : Stack manipulation (push)

Operation : Stack ← PG

M(S) ← PG

S ← S – 1

Description : Saves the contents of the program bank register to the address indicated by the stack pointer
S.

Status flags : Not affected.

Stack

PG
(S) in just after instruction execution

(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHG 4B16 1 3

7700 FAMILY SOFTWARE MANUAL 4–75

Stack

PSL

PSH

PHP Push Processor Status on Stack PHP

Function : Stack manipulation (push)

Operation : Stack ← PS

M(S, S – 1) ← PS

S ← S – 2

Description : Saves the contents of the processor status register PS to the address indicated by the stack
pointer S in the order of upper byte and then lower byte.

Status flags : Not affected.

(S) in just after instruction execution

(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHP 0816 1 4

7700 FAMILY SOFTWARE MANUAL4–76

PHT Push Data Bank Register on Stack PHT

Function : Stack management (push)

Operation : Stack ← DT

M(S) ← DT

S ← S – 1

Description : Saves the contents of the data bank register DT to the address indicated by the stack pointer
S.

Status flags : Not affected.

Stack

DT
(S) in just after instruction execution

(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHT 8B16 1 3

7700 FAMILY SOFTWARE MANUAL 4–77

PHX Push Index Register X on Stack PHX

Function : Stack management (push)

Operation : Stack ← X

When x=0

M(S, S – 1) ← X

S ← S – 2

When x=1

M(S) ← XL

S ← S – 1

Description : Saves the contents of the index register X to the address indicated by the stack pointer S.
When the index register length selection flag x is set to 0, the contents are saved in the order
of upper byte and then lower byte. When the index register length selection flag x is set to
1, only the lower byte is saved on the stack.

Status flags : Not affected.

Stack

XL

XH

(S) in just after instruction execution

(S) in just before instruction execution

Stack

XL

(S) in just after instruction execution
(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHX DA16 1 4

7700 FAMILY SOFTWARE MANUAL4–78

PHY Push Index Register Y on Stack PHY

Function : Stack management (push)

Operation : Stack ← Y

When x=0

M(S, S – 1) ← Y

S ← S – 2

When x=1

M(S) ← YL

S ← S – 1

Description : Saves the contents of the index register Y to the address indicated by the stack pointer S.
When the index register length selection flag x is set to 0, the contents are saved in the order
of upper byte and then lower byte. When the index register length selection flag x is set to
1, only the lower byte is saved on the stack.

Status flags : Not affected.

Stack

YL

YH

(S) in just after instruction execution

(S) in just before instruction execution

Stack

YL

(S) in just after instruction execution
(S) in just before instruction execution

Addressing mode Syntax Machine code Bytes Cycles

Stack PHY 5A16 1 4

7700 FAMILY SOFTWARE MANUAL 4–79

PLA Pull Accumulator A from Stack PLA

Function : Stack manipulation (pull)

Operation : A ← Stack

When m=0

A ← M(S+2, S+1)

S ← S + 2

When m=1

AL ← M(S+1)

S ← S + 1

Description : The stack pointer S is incremented, and then restores the lower byte of the accumulator A
with the data at the address indicated by the stack pointer S. Again, increments the stack
pointer S and then restores the upper byte of the accumulator A with the data at the address
indicated by the stack pointer S. When the data length selection flag m is set to 0, 2 bytes
data are restored. When the data length selection flag m is set to 1, only 1 byte data is
restored (to the lower byte of the accumulator A).

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Stack
(S) in just before instruction execution

(S) in just after instruction execution

Stack

AH AL

AL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLA 6816 1 5

(S) in just after instruction execution
(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL4–80

PLB Pull Accumulator B from Stack PLB

Function : Stack manipulation (pull)

Operation : B ← Stack

When m=0

B ← M(S+2, S+1)

S ← S + 2

When m=1

BL ← M(S+1)

S ← S + 1

Description : The stack pointer S is incremented, and then restores the lower byte of the accumulator B with
the data at the address indicated by the stack pointer S. Again, increments the stack pointer
S and then restores the upper byte of the accumulator B with the data at the address indicated
by the stack pointer S. When the data length selection flag m is set to 0, 2 bytes data are
restored. When the data length selection flag m is set to 1, only 1 byte data is restored (to
the lower byte of the accumulator B).

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of

the operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Stack

Stack

BH BL

BL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLB 4216, 6816 2 7

(S) in just after instruction execution

(S) in just before instruction execution

(S) in just after instruction execution
(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL 4–81

PLD Pull Direct Page Register from Stack PLD

Function : Stack manipulation (pull)

Operation : DPR ← Stack

DPR ← M(S+2, S+1)

S ← S + 2

Description : The stack pointer S is incremented, and then the direct page register DPR is restored with the
data at the address indicated by the stack pointer .

Status flags : Not affected.

Stack
DPR

Addressing mode Syntax Machine code Bytes Cycles

Stack PLD 2B16 1 5

(S) in just after instruction execution

(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL4–82

PLP Pull Processor Status from Stack PLP

Function : Stack manipulation (pull)

Operation : PS ← Stack

PS ← M(S+2, S+1)

S ← S + 2

Description : The stack pointer S is incremented and then the processor status register PS is restored with
the data at the address indicated by the stack pointer S.

Status flags : Changes to the values restored from the stack.

Stack
PSH PSL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLP 2816 1 6

(S) in just after instruction execution

(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL 4–83

PLT Pull DaTa Bank Register from Stack PLT

Function : Stack manipulation (pull)

Operation : DT ← Stack

DT ← M(S+1)

S ← S + 1

Description : The stack pointer S is incremented, and then the data bank register DT is restored with the
data at the address indicated by the stack pointer S.

Status flags

IPL : Not affected.

N : Set to 1 when bit 7 of the operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Stack
DT

Addressing mode Syntax Machine code Bytes Cycles

Stack PLT AB16 1 6

(S) in just after instruction execution
(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL4–84

PLX Pull Index Register X from Stack PLX

Function : Stack manipulation (pull)

Operation : X ← Stack

When x=0

X ← M(S+2, S+1)

S ← S + 2

When x=1

XL ← M(S+1)

S ← S + 1

Description : The stack pointer S is incremented, and then restores the lower byte of the index register X
with the data at the address indicated by the stack pointer S. Again, increments the stack
pointer S and then restores the upper byte of the index register X with the data at the address
indicated by the stack pointer S. When the index register length selection flag x is set to 0,
2 bytes are restored. When the index register length selection flag x is set to 1, only 1 byte
is restored (to the lower byte of the index register X).

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Stack

Stack

XH XL

XL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLX FA16 1 5

(S) in just after instruction execution

(S) in just before instruction execution

(S) in just after instruction execution
(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL 4–85

PLY Pull Index Register Y from Stack PLY

Function : Stack manipulation (pull)

Operation : Y ← Stack

When x=0

Y ← M(S+2, S+1)

S ← S + 2

When x=1

YL ← M(S+1)

S ← S + 1

Description : The stack pointer S is incremented, and then restores the lower byte of the index register Y
with the data at the address indicated by the stack pointer S. Again, increments the stack
pointer S and then restores the upper byte of the index register Y with the data at the address
indicated by the stack pointer S. When the index register length selection flag x is set to 0,
2 bytes are restored. When the index register length selection flag x is set to 1, only 1 byte
is restored (to the lower byte of the index register Y).

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Stack

Stack

YH YL

YL

Addressing mode Syntax Machine code Bytes Cycles

Stack PLY 7A16 1 5

(S) in just after instruction execution

(S) in just before instruction execution

(S) in just after instruction execution
(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL4–86

PSH Push PSH

(Note 1) To the cycles-count shown above, the values shown below are added depending on the registers being
saved. The count is 12 cycles when no registers are saved. i1 in above table represents the number
of registers (chosen from A, B, X, Y, DPR and PS) to be saved, and i2 represents the number of registers
(chosen from DT and PG) to be saved.

Register type PS PG DT DPR Y X B A
Cycles-count 2 1 1 2 2 2 2 2

Function : Stack manipulation (push)

Operation : Stack ← Specified register of A, B, X, Y, DPR, DT, PG, PS

M(S to S – n) ← A, B, X, Y, DPR, DT, PG, PS
order to save ➀ ➁ ➂ ➃ ➄ ➅ ➇

S ← S – n – 1

❊ The immediate value in the second byte of the instruction is used to specify the registers
to be saved.

❊ Among the registers being saved, the following registers are affected by the flags just before
the instruction is executed.

● A, B registers

When m=0 : The high-order and low-order bytes of the register are saved.

When m=1 : The low-order bytes of the register are saved.

● X, Y registers

When x=0 : The high-order and low-order bytes of the register is saved.

When x=1 : The low-order byte of the register is saved.

❊ n indicates the number of data bytes to be saved.

Description : This instruction’s second byte specifies the registers to be saved. The registers corresponding
to the bits in the second byte that are 1 are saved on the stack. The bit and register
correspondence is as shown below:

b7 b0
PS PG DT DPR Y X B A

← Direction to save on the stack

When saving the registers to stack, registers A and B are affected by the m flag and registers
X and Y are affected by the x flag.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PSH #nn EB16, nn 2 12+2xi1+i2

➆

7700 FAMILY SOFTWARE MANUAL 4–87

PSH Push PSH

PSH

NO
IMM8(0) = 1 ?

m = 0 ?

M(S,S-1) ← A
S ← S-2

M(S) ← AL
S ← S-1

NO

IMM8(1) = 1 ?

m = 0 ?
NO

NO

M(S,S-1) ← B
S ← S-2

M(S) ← BL
S ← S-1

IMM8(2) = 1 ?

x = 0 ? NO

NO

M(S,S-1) ← X
S ← S-2

M(S) ← XL
S ← S-1

IMM8(3) = 1 ?

x = 0 ?
NO

NO

M(S,S-1) ← Y
S ← S-2

M(S) ← YL
S ← S-1

IMM8(4) = 1 ?

M(S,S-1) ← DPR
S ← S-2

M(S) ← DT
S ← S-1

IMM8(5) = 1 ?

M(S) ← PG
S ← S-1

IMM8(6) = 1 ?

IMM8(7) = 1 ?

M(S,S-1) ← PS
S ← S-2

NO

NO

NO

NO

❊ IMM8 is an immediate value in 1-byte and
 inside of () specifies the contents of the bit
 at the value.

7700 FAMILY SOFTWARE MANUAL4–88

PUL Pull PUL

Function : Stack manipulation (pull)

Operation : Specified register of A, B, X, Y, DPR, DT, PG, PS ← Stack

A, B, X, Y, DPR, DT, PG, PS ← M(S + 1 to S + n)
➀ ➁ ➂ ➃ ➄ ➅ ➇ order to restore
S ← S + n

❊ The immediate value in the second byte of the instruction is used to specify the registers
to be restored.

❊ Among the registers being restored, the following registers are affected by the flags in the
restored PS or the flags just before the instruction is executed.

● A, B registers

When m=0 : The high-order and low-order bytes of the register are restored.

When m=1 : The low-order bytes of the register are restored.

● X, Y registers

When x=0 : The high-order and low-order bytes of the register is restored.

When x=1 : The low-order byte of the register is restored.

❊ n indicates the number of data bytes to be restored.

Description : This instruction’s second byte specifies the registers to be restored. The registers correspond-
ing to the bits in the second byte that are 1 are restored from the stack. The bit and register
correspondence is as shown below:

b7 b0
PS DT DPR Y X B A
Direction to restore from the stack →

When restoring from stack, registers A and B are affected by the m flag in restored PS, and
registers X and Y are affected by the x flag in restored PS. If PS is not restored, the registers
are affected by the value of these flags just before instruction execution.

Status flags : When bit 7 of the instruction’s second byte is 1, specifying that the program status register PS
is to be restored, the status flags are restored to the values that had been restored from the
stack. Otherwise, the status flags are not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PUL #nn FB16, nn 2 14+3xi1+4xi2

(Note 1) To the cycles-count shown above, the values shown below are added depending on the registers
being restored. The count is 14 cycles when no registers are restored. i1 in above table represents
the number of registers (chosen from A, B, X, Y, PS and DT) to be saved. i2=1 if DPR is to be
restored, and i2=0 if DPR is not to be restored.

Register type PS DT DPR Y X B A
Cycles-count 3 3 4 3 3 3 3

➆

7700 FAMILY SOFTWARE MANUAL 4–89

PUL Pull PUL

PUL

NO
IMM8(7) = 1 ?

x = 0 ?

PS ← M(S+2,S+1)
S ← S+2

XL ← M(S+1)
S ← S+1

NO

IMM8(5) = 1 ?
NO

X ← M(S+2,S+1)
S ← S+2

IMM8(1) = 1 ?

m = 0 ?
NO

NO

B ← M(S+2,S+1)
S ← S+2

BL ← M(S+1)
S ← S+1

IMM8(3) = 1 ?

x = 0 ? NO

NO

S ← S+2
YL ← M(S+1)

S ← S+1

NO
IMM8(4) = 1 ?

DPR ← M(S+2,S+1)
S ← S+2

NO
IMM8(2) = 1 ?

IMM8(0) = 1 ?

m = 0 ?
NO

NO

A ← M(S+2,S+1)
S ← S+2

AL ← M(S+1)
S ← S+1

Y ← M(S+2,S+1)

DT ← M(S+1)
S ← S+1

❊ IMM8 is an immediate value in 1-byte and
 inside of () specifies the contents of the bit
 at the value.

7700 FAMILY SOFTWARE MANUAL4–90

RLA Rotate Left Accumulator A RLA

Addressing mode Syntax Machine code Bytes Cycles

Immediate RLA #imm 8916, 4916, imm 3 6+i

i: Number of rotation

(Note 1) When the data length selection flag m is 0, the bytes-count increases by 1.

Function : n bits rotate to left

Operation : →
A

← n bits rotate to left ←

When m=0

→
b15 A b0 n bits rotate to left

← ❊ n = 0 to 65535

When m=1

→
b7 AL b0 n bits rotate to left

← ❊ n = 0 to 255

Description : The contents of the accumulator A are rotated to the left by n bits. The value of n is specified
by the instruction’s third byte (or third and fourth bytes when m=0).

Status flags : Not affected.

7700 FAMILY SOFTWARE MANUAL 4–91

ROL Rotate One Bit Left ROL

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ROL A 2A16 1 2
Direct ROL dd 2616, dd 2 7
Direct indexed X ROL dd, X 3616, dd 2 7
Absolute ROL mmll 2E16, ll, mm 3 7
Absolute indexed x ROL mmll, X 3E16, ll, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

Function : Rotate to left

Operation : →
Acc or M C

← 1 bit rotate to left ← ←

When m=0

→
b15 Acc or M(n+1,n) b0 C

← ← ← ← ← ← ← ← ← ← ←

When m=1

→
b7 AccL or M(n) b0 C

← ← ← ← ← ← ← ← ← ←

Description : The carry flag C is linked to the accumulator or memory, and the combined contents are
rotated by 1 bit to the left.

Bit 0 of the accumulator or memory is loaded with the content of the carry flag C before
execution of this instruction, and the carry flag C is loaded with the content of bit 15 (or bit
7 if the data length selection flag m is set to 1) of the accumulator or memory before execution
of this instruction.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) before execution
of the instruction is 1. Otherwise, cleared to 0

7700 FAMILY SOFTWARE MANUAL4–92

ROR Rotate One Bit Right ROR

Addressing mode Syntax Machine code Bytes Cycles

Accumulator ROR A 6A16 1 2
Direct ROR dd 6616, dd 2 7
Direct indexed X ROR dd, X 7616, dd 2 7
Absolute ROR mmll 6E16, ll, mm 3 7
Absolute indexed X ROR mmll, X 7E16, ll, mm 3 8

(Note 1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

Function : Rotate to right

Operation : ←
C Acc or M

→ → 1 bit rotate to right →
When m=0

←
C b15 Acc or M(n+1,n) b0

→ → → → → → → → → → →

When m=1

←
C b7 AccL or M(n) b0

→ → → → → → → → → →

Description : The carry flag C is linked to the accumulator or memory, and the combined contents are
shifted by 1 bit to the right.

Bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumulator or memory
is loaded with the content of the carry flag C, and the carry flag C is loaded with the content
of bit 0 of the accumulator or memory before execution of this instruction.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 when bit 0 before execution of the instruction is 1. Otherwise, cleared to 0.

7700 FAMILY SOFTWARE MANUAL 4–93

Function : Return from subroutine

Operation : PG, PC, PS ← Stack (Saved content when interrupt occurred)

PS ← M(S+2, S+1)

PC ← M(S+4, S+3)

PG ← M(S+5)

S ← S + 5

Description : The contents of the processor status register PS, program counter PC, and program bank
register PG, which are saved on the stack when the last interrupt was accepted, are restored
these registers.

Status flags : Restored according to the values that had been on the stack.

RTI Return from Interrupt RTI

Addressing mode Syntax Machine code Bytes Cycles

Implied RTI 4016 1 11

PSH PSL

Stack

PG PCH PCL

(S) in just after instruction execution

(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL4–94

RTL Return from Subroutine Long RTL

Function : Return from subroutine

Operation : PG, PC ← Stack (Subroutine long return address)

PC ← M(S+2, S+1)

PG ← M(S+3)

S ← S + 3

Description : The program counter PC and program bank register PG are restored according to the state
previously saved on the stack.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied RTL 6B16 1 8

(S) in just before instruction execution

PG PCH PCL

Stack
(S) in just after instruction execution

7700 FAMILY SOFTWARE MANUAL 4–95

RTS Return from Subroutine RTS

Function : Return from subroutine

Operation : PC ← Stack (Subroutine return address)

PC ← M(S+2, S+1)

S ← S + 2

Description : The program counter PC is restored according to the state previously saved on the stack.

The contents of PG is added 1 when this instruction is at topmost address (XXFFFF16) of a
bank.

Status flags : Not affected.

PCH PCL

Stack

Addressing mode Syntax Machine code Bytes Cycles

Implied RTS 6016 1 5

(S) in just after instruction execution

(S) in just before instruction execution

7700 FAMILY SOFTWARE MANUAL4–96

Function : Subtract with carry

Operation : Acc ← Acc – M – C

When m=0

Acc Acc M(n+1,n) C

← – –

When m=1

AccL AccL M(n) C

← – –

Description : Subtracts the contents of memory and the 1's complements of carry flag from the contents of
the accumulator , and places the result in the accumulator. Executed as a binary subtraction
if the decimal operation mode flag D is set to 0. Executed as a decimal subtraction if the
decimal operation mode flag D is set to 1.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0. Meaningless for decimal subtraction.

V : Set to 1 when binary subtraction of signed data results in a value outside the range of -32768
to +32767 (-128 to +127 if the data length selection flag m is set to 1). Otherwise, cleared
to 0. Meaningless for decimal subtraction.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 when the result of operation is equal to or larger than 0. Otherwise,

cleared to 0, and a borrow is indicated.

SBC Subtract with Carry SBC

7700 FAMILY SOFTWARE MANUAL 4–97

SBC Subtract with Carry SBC

Addressing mode Syntax Machine code Bytes Cycles

Immediate SBC A, #imm E916, imm 2 2

Direct SBC A, dd E516, dd 2 4

Direct indexed X SBC A,dd, X F516, dd 2 5

Direct indirect SBC A, (dd) F216, dd 2 6

Direct indexed X indirect SBC A,(dd, X) E116, dd 2 7

Direct indirect indexed Y SBC A,(dd), Y F116, dd 2 8

Direct indirect long SBCL A, (dd) E716, dd 2 10

Direct indirect long indexed Y SBCL A, (dd), Y F716, dd 2 11

Absolute SBC A,mmll ED16,ll,mm 3 4

Absolute indexed X SBC A, mmll, X FD16, ll, mm 3 6

Absolute indexed Y SBC A, mmll, Y F916, ll, mm 3 6

Absolute long SBC A, hhmmll EF16, ll, mm, hh 4 6

Absolute long indexed X SBC A, hhmmll, X FF16, ll, mm, hh 4 7

Stack pointer relative SBC A, nn, S E316, nn 2 5

Stack pointer relative SBC A, (nn, S), Y F316, nn 2 8
indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note 2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

7700 FAMILY SOFTWARE MANUAL4–98

Function : Bit management

Operation : Mb ← 1 (b is the specified bits)

When m=0

M(n+1, n) M(n+1,n) IMM16

← V

When m=1

M(n) M(n) IMM8

← V

❊ IMM is an immediate value indicating the bit to be set with a “1” and is specified by the last
1 or 2 bytes of the instruction.

Description : The SEB instruction sets the specified memory bits to 1. Multiple bits to be set can be
specified at one time.

Status flags : Not affected.

SEB Set Bit SEB

Addressing mode Syntax Machine code Bytes Cycles

Direct bit SEB #imm, dd 0416, dd, imm 3 8
Absolute bit SEB #imm, mmll 0C16, ll, mm, imm 4 9

(Note 1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count
increases by 1.

7700 FAMILY SOFTWARE MANUAL 4–99

SEC Set Carry Flag SEC

Function : Flag manipulation

Operation : C ← 1

Description : Sets the carry flag C to 1.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Set to 1.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEC 3816 1 2

7700 FAMILY SOFTWARE MANUAL4–100

SEI Set Interrupt Disable Status SEI

Function : Flag manipulation

Operation : I ← 1

Description : Sets the interrupt disable flag I to 1.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Set to 1.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEI 7816 1 2

7700 FAMILY SOFTWARE MANUAL 4–101

SEM Set m Flag SEM

Function : Flag manipulation

Operation : m ← 1

Description : Sets the data length selection flag m to 1.

Status flags

IPL : Not affected.

N : Not affected.

V : Not affected.

m : Set to 1.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Not affected.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEM F816 1 2

7700 FAMILY SOFTWARE MANUAL4–102

SEP Set Processor Status SEP

Function : Flag manipulation

Operation : PSLb ← 1 (b is the specified flags)

PSL ← PSL V IMM8

❊ IMM8 is an immediate value indicating the bit to be set with a “1” and is specified by
the last 1 or 2 bytes of the instruction.

b7 b6 b5 b4 b3 b2 b1 b0

N V m x D I Z C PSL

Description : Sets the processor status flags specified by the bit pattern in the second byte of the instruction
to 1.

Status flags : The specified status flags are set to “1”. IPL is not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate SEP #imm E216, imm 2 3

7700 FAMILY SOFTWARE MANUAL 4–103

STA Store Accumulator in Memory STA

Function : Store

Operation : M ← Acc

When m=0

M(n+1,n) Acc

←

When m=1

M(n) AccL

←

Description : Stores the contents of the accumulator in memory.

The contents of the accumulator are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STA A, dd 8516, dd 2 4
Direct indexed X STA A, dd, X 9516, dd 2 5

Direct indirect STA A, (dd) 9216, dd 2 7

Direct indexed X indirect STA A, (dd, X) 8116, dd 2 7

Direct indirect indexed Y STA A, (dd), Y 9116, dd 2 7

Direct indirect long STAL A, (dd) 8716, dd 2 10

Direct indirect long indexed Y STAL A, (dd), Y 9716, dd 2 11

Absolute STA A, mmll 8D16, ll, mm 3 5

Absolute indexed X STA A, mmll, X 9D16, ll, mm 3 5

Absolute indexed Y STA A, mmll, Y 9916, ll, mm 3 5

Absolute long STA A, hhmmll 8F16, ll, mm, hh 4 6

Absolute long indexed X STA A, hhmmll, X 9F16, ll, mm, hh 4 7
Stack pointer relative STA A, nn, S 8316, nn 2 5

Stack pointer relative STA A, (nn, S), Y 9316, nn 2 8

indirect indexed Y

(Note 1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

7700 FAMILY SOFTWARE MANUAL4–104

STP SToP STP

Function : Oscillation control

Operation : Stop the oscillation

Description : Resets the oscillator controlling flip-flop circuit to inhibit the oscillation of the oscillation circuit.
To restart the oscillator, either an interrupt or reset must be executed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied STP DB16 1 3

7700 FAMILY SOFTWARE MANUAL 4–105

STX Store Index Register X in Memory STX

Function : Store

Operation : M ← X

When x=0

M(n+1,n) X

←

When x=1

M(n) XL

←

Description : Stores the contents of the index register X in memory. The contents of the index register X
remain the same.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STX dd 8616, dd 2 4
Direct indexed Y STX dd, Y 9616, dd 2 5
Absolute STX mmll 8E16, ll, mm 3 5

7700 FAMILY SOFTWARE MANUAL4–106

STY Store Index Register Y in Memory STY

Function : Store

Operation : M ← Y

When x=0

M(n+1,n) Y

←

When x=1

M(n) YL

←

Description : Stores the contents of the index register Y in memory. The contents of the index register Y
remain the same.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STY dd 8416, dd 2 4
Direct indexed X STY dd, X 9416, dd 2 5
Absolute STY mmll 8C16, ll, mm 3 5

7700 FAMILY SOFTWARE MANUAL 4–107

TAD Transfer Accumulator A to Direct Page Register TAD

Function : Transfer

Operation : DPR ← A

DPR A

←

Description : Loads the direct page register DPR with the contents of the accumulator A. Data is transferred
as 16-bit data regardless of the status of the data length selection flag m. The contents of
the accumulator A are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAD 5B16 1 2

7700 FAMILY SOFTWARE MANUAL4–108

TAS Transfer Accumulator A to Stack Pointer TAS

Function : Transfer

Operation : S ← A

S A

←

Description : Loads the stack pointer S with the contents of the accumulator A. Data is transferred as 16-
bit data regardless of the status of the data length selection flag m. The contents of the
accumulator A are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAS 1B16 1 2

7700 FAMILY SOFTWARE MANUAL 4–109

TAX Transfer Accumulator A to Index Register X TAX

Function : Transfer

Operation : X ← A

When x=0

X A

←

When x=1

XL AL

←

Description : Loads the index register X with the contents of the accumulator A. The contents of the
accumulator A are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAX AA16 1 2

7700 FAMILY SOFTWARE MANUAL4–110

TAY Transfer Accumulator A to Index Register Y TAY

Function : Transfer

Operation : Y ← A

When x=0

Y A

←

When x=1

YL AL

←

Description : Loads the index register Y with the contents of the accumulator A. The contents of the
accumulator A are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAY A816 1 2

7700 FAMILY SOFTWARE MANUAL 4–111

TBD Transfer Accumulator B to Direct Page Register TBD

Function : Transfer

Operation : DPR ← B

DPR B
←

Description : Loads the direct page register DPR with the contents of the accumulator B. Data is transferred
as 16-bit data regardless of the status of the data length selection flag m. The contents of
the accumulator B are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBD 4216, 5B16 2 4

7700 FAMILY SOFTWARE MANUAL4–112

TBS Transfer Accumulator B to Stack Pointer TBS

Function : Transfer

Operation : S ← B

S B

←

Description : Loads the stack pointer S with the contents of the accumulator B. Data is transferred as 16-
bit data regardless of the status of the data length selection flag m. The contents of the
accumulator B are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBS 4216, 1B16 2 4

7700 FAMILY SOFTWARE MANUAL 4–113

TBX Transfer Accumulator B to Index Register X TBX

Function : Transfer

Operation : X ← B

When x=0

X B

←

When x=1

XL BL

←

Description : Loads the index register X with the contents of the accumulator B. The contents of the
accumulator B are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBX 4216, AA16 2 4

7700 FAMILY SOFTWARE MANUAL4–114

TBY Transfer Accumulator B to Index Register Y TBY

Function : Transfer

Operation : Y ← B

When x=0

Y B

←

When x=1

YL BL

←

Description : Loads the index register Y with the contents of the accumulator B. The contents of the
accumulator B are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBY 4216, A816 2 4

7700 FAMILY SOFTWARE MANUAL 4–115

TDA Transfer Direct Page Register to Accumulator A TDA

Function : Transfer

Operation : A ← DPR

When m=0

A DPR

←

When m=1

AL DPRL

←

Description : Loads the accumulator A with the contents of the direct page register DPR. The contents of
the direct page register DPR are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TDA 7B16 1 2

7700 FAMILY SOFTWARE MANUAL4–116

TDB Transfer Direct Page Register to Accumulator B TDB

Function : Transfer

Operation : B ← DPR

When m=0

B DPR

←

When m=1

BL DPRL

←

Description : Loads the accumulator B with the contents of the direct page register DPR. The contents of
the direct page register DPR are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TDB 4216, 7B16 2 4

7700 FAMILY SOFTWARE MANUAL 4–117

TSA Transfer Stack Pointer to Accumulator A TSA

Function : Transfer

Operation : A ← S

When m=0

A S

←

When m=1

AL SL

←

Description : Loads the accumulator A with the contents of the stack pointer S. The contents of the stack
pointer S are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSA 3B16 1 2

7700 FAMILY SOFTWARE MANUAL4–118

TSB Transfer Stack Pointer to Accumulator B TSB

Function : Transfer

Operation : B ← S

When m=0

B S

←

When m=1

BL SL

←

Description : Loads the accumulator B with the contents of the stack pointer S. The contents of the stack
pointer S are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSB 4216, 3B16 2 4

7700 FAMILY SOFTWARE MANUAL 4–119

TSX Transfer Stack Pointer to Index Register X TSX

Function : Transfer

Operation : X ← S

When x=0

X S

←

When x=1

XL SL

←

Description : Loads the index register X with the contents of the stack pointer S. The contents of the stack
pointer S are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSX BA16 1 2

7700 FAMILY SOFTWARE MANUAL4–120

TXA Transfer Index Register X to Accumulator A TXA

Function : Transfer

Operation : A ← X

When m=0 and x=0

A X

←

When m=0 and x=1

A XL

00 ←
❊ Under this condition, 0016 is transferred to AH regardless of XH.

When m=1

AL XL

←

Description : Loads the accumulator A with the contents of the index register X. The contents of the index
register X are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXA 8A16 1 2

7700 FAMILY SOFTWARE MANUAL 4–121

TXB Transfer Index Register X to Accumulator B TXB

Function : Transfer

Operation : B ← X

When m=0 and x=0

B X

←

When m=0 and x=1

B XL

00 ←
❊ Under this condition, 0016 is transferred to AH regardless of XH.

When m=1

BL XL

←

Description : Loads the accumulator B with the contents of the index register X. The contents of the index
register X are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXB 4216, 8A16 2 4

7700 FAMILY SOFTWARE MANUAL4–122

TXS Transfer Index Register X to Stack Pointer TXS

Function : Transfer

Operation : S ← X

When x=0

S X

←

When x=1

S XL

00 ←

Description : Loads the stack pointers with the contents of the index register X. The contents of the index
register X are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXS 9A16 1 2

7700 FAMILY SOFTWARE MANUAL 4–123

TXY Transfer Index Register X to Y TXY

Function : Transfer

Operation : Y ← X

When x=0

Y X

←

When x=1

YL XL

←

Description : Loads the index register Y with the contents of the index register X. The contents of the index
register X are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXY 9B16 1 2

7700 FAMILY SOFTWARE MANUAL4–124

TYA Transfer Index Register Y to Accumulator A TYA

Function : Transfer

Operation : A ← Y

When m=0 and x=0

A Y

←

When m=0 and x=1

A YL

00 ←
❊ Under this condition, 0016 is transferred to AH regardless of YH.

When m=1

AL YL

←

Description : Loads the accumulator A with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYA 9816 1 2

7700 FAMILY SOFTWARE MANUAL 4–125

TYB Transfer Index Register Y to Accumulator B TYB

Function : Transfer

Operation : B ← Y

When m=0 and x=0

B Y

←

When m=0 and x=1

B YL

00 ←
❊ Under this condition, 0016 is transferred to BH regardless of YH.

When m=1

BL YL

←

Description : Loads the accumulator B with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the operation
result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYB 4216, 9816 2 4

7700 FAMILY SOFTWARE MANUAL4–126

TYX Transfer Index Register Y to X TYX

Function : Transfer

Operation : X ← Y

When x=0

X Y

←

When x=1

XL YL

←

Description : Loads the index register X with the contents of the index register Y. The contents of the index
register Y are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYX BB16 1 2

7700 FAMILY SOFTWARE MANUAL 4–127

WIT Wait WIT

Function : Clock control

Operation : Stop the CPU clock

Description : The WIT instruction stops the internal clock but not the oscillation of the oscillation circuit is
not stopped. To restart the internal clock, either an interrupt or reset must be executed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied WIT CB16 1 3

7700 FAMILY SOFTWARE MANUAL4–128

Function : Exchange

Operation : A B

When m=0

A B

←

When m=1

AL BL

←

Description : Swaps the contents of the accumulators A and B.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumulator
A after the operation is 1. Otherwise, cleared to 0.

V : Not affected.

m : Not affected.

x : Not affected.

D : Not affected.

I : Not affected.

Z : Set to 1 when the contents of the accumulator A is cleared to 0 by the operation. Otherwise,
cleared to 0.

C : Not affected.

XAB Exchange Accumulator A and B XAB

Addressing mode Syntax Machine code Bytes Cycles

Implied XAB 8916, 2816 2 6

→

→

→←

7700 FAMILY SOFTWARE MANUAL 4–129

INSTRUCTIONS
4.3 Notes for programming

4.3 Notes for Programming

Take care of the following when programming with the 7700 Family.

(1) The stack pointer S is undefined immediately after the reset is commanded. Always set the initial value.

Example) LDX #27FH
TXS

(2) The program bank register PG and the data bank register DT are disabled under the single chip mode. Do
not set value other than “0016” here.

(3) When “1” is set in the D-flag for decimal operation:

The C-flag alone is effective in the ADC instruction, while the Z, N, and V flags are disabled. The C and Z
flags alone are effective in the SBC instruction, while the N and V flags are disabled. (Decimal operation can
be done in the ADC and the SBC instructions alone.)

(4) Using the 16-bit immediate data with “1” (data length : 8 bits) in the data length selection flag m, or using
the 8- bit immediate data with “0” (data length : 16 bits) in flag m, will cause the program run-away. The same
rule is applied to the index register length selection flag x. Take care of the condition of these flags when
coding the program.

(5) The 7700 Family can prefetch the instructions using the 3-byte instruction queue buffer. Keep in mind when
creating the timer with the software, that the number of cycles shown in the list of machine language
instructions is the minimum value. (Also see Chapter 5.)

(6) When value other than “0016” is set in the lower order 8 bits of the direct page register DPR (DPRL), the
processing time will become 1 machine cycle longer than when “0016” is set.

(7) The processing speed will deteriorate if a 16- bit data will be accessed from an odd address. Place the 16-
bit data from an even address if the processing speed is important.

(8) The N and Z flags will change by execution of the PLA instruction, but the contents of the processor status
register will not change if the accumulator A alone is recovered by the PUL instruction.

(9) The program bank register PG can be saved into the stack by setting “1” in bit 6 of the operation by the PSH
instruction. However, the PG cannot be recovered by the PUL instruction.

(10) The code in the second byte of the BRK instruction will not affect the CPU.

7700 FAMILY SOFTWARE MANUAL4–130

INSTRUCTIONS
4.3 Notes for programming

MEMORANDUM

CHAPTER 5

INSTRUCTION EXECU-
TION SEQUENCE

5.1 Change of the CPU basic
clock φCPU

5.2 Instruction execution se-
quence

7700 FAMILY SOFTWARE MANUAL5–2

INSTRUCTION EXECUTION SEQUENCE
5.1 Change of the CPU basic clock φCPU

The basic clock of the 7700 Family central processing unit (CPU) is the internal clock φ (divided by 2 of the
oscillation frequency f(XIN)). The basic clock of the bus is an E derived from the internal clock φ, so data exchange
between the CPU and the internal bus is done via the bus interface unit (BIU). The frequency of E is normally
divided by 2 of the internal clock φ, but it becomes divided by 3 or 4 of φ, when accessing external memory while
the wait is enabled by the wait bit (Note).

Note : The frequency of E is depend on the product. Therefore, refer to an user's manual or a data sheet
(or a data book) to confirm it.

5.1 Change of the CPU Basic Clock φCPU

When the bus interface unit is not ready, the CPU extends the basic clock to synchronize with the bus, and
waits till it is ready. As the CPU basic clock waits owing to some conditions, this clock will be called φCPU to
be distinguished from the clock . The following are the cases in which the φCPU waits.

The above conditions causes the execution time to differ each time, even with the same instruction and same
addressing mode. Two example instructions are given in the next section to see the variation of the number
of cycles according to the above conditions.

The “CPU execution sequence per addressing mode” of Chapter 6 is the CPU instruction execution sequences
based on the φCPU. The number of cycles shown in “4.2 Instructions” and “Appendix 1 List of machine
instructions” are the count for the shortest case, and cannot always be applied when calculating the actual
cycles or the execution time of instructions.

Causes for the φCPU to wait

<Cause 1>

When the CPU requests operation codes and operands, but the operation codes and operands
in the instruction queue buffer did not reach the necessary number.

<Cause 2>

When the CPU tried to access data, but the bus interface unit was using the bus for fetching some
data into the instruction queue buffer or writing data.

<Cause 3>

When the bus interface unit was reading data from the internal/external memory or I/O, according
to the request of the CPU.

In addition to the above, the following are also causes for the φCPU to be extended.

 • • • • • When 16-bit data is accessed from odd address.

 • • • • • When external memory 16-bit data is accessed while the BYTE terminal level is “H”.

 • • • • • When external memory is accessed with wait commanded by the wait bit.

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–3

 φCPU Based CPU Instruction Execution Sequence Symbols

Symbol Description

φCPU CPU basic clock

AP(CPU) Higher order 8 bits of the address (24 bits) of the program that the CPU is actually execution

AHAL(CPU) Lower order 16 bits of the address (24 bits) of the program that the CPU is actually execution

DATA(CPU) Data information the CPU is processing

R/W(CPU) Data read/write request to the data buffer in the bus interface unit

PG,PC Contents of the program bank register (PG) and the program counter (PC)

ADP Data indicating the address (higher order 8 bits)

ADH,ADL Data indicating the address (lower order 16 bits)

DPRH Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register (DPRL = 0 in the examples)

DH Data to be fetched or written from the data buffer by the CPU (higher order 8 bits)

DL Data to be fetched or written from the data buffer by the CPU (lower order 8 bits)

dd Contents of the operand (DPRL = 0 in examples 1 and 2, so dd represents the lower order 8 bits
of the address)

Before observing the φCPU based CPU instruction execution sequence

The following table describes the φCPU based CPU instruction execution sequence symbols. The signals
indicated in this execution sequence are all CPU internal signals, that show data exchange between the bus
interface unit and the CPU. Accordingly, these signals cannot be observed from outside.

5.2 Instruction Execution Sequence

This section describes how the instruction execution cycles change under various conditions.

••••• Example 1. ASL instruction Direct addressing mode

••••• Example 2. LDA instruction Direct indirect long addressing mode

7700 FAMILY SOFTWARE MANUAL5–4

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

The following are the cause of the “φCPU to queue” in the φ based instruction execution sequence.

Cause 1
When the CPU required operation codes and operands, but the number of operation codes and operands did
not reach the requested number.

Cause 2
When the CPU tried to access data, but the bus interface was using the bus for fetching data into the instruction
queue buffer or for writing data.

Cause 3
When the bus interface unit is reading data from the internal/external memory or I/O, etc., according to the
request of the CPU.

Before observing the φ based instruction execution sequence

The φ based instruction execution sequence symbols are shown in the following table. The signals in this
execution sequence indicates data exchange of the bus interface unit with the memory and I/O. The internal
instruction execution sequence of the CPU can be guessed from these signals.
However, the φCPU and the number of data in the instruction queue buffer shown here cannot be observed from
the outside.

φ Based Execution Sequence Symbols

Symbol Description

φ Basic operation clock of the microcomputer (divided by 2 of f(XIN))

E Basic operation clock of the bus (divided by 2 of φ) ❊ No wait

hh Higher order 8 bits of the address where the bus interface unit is to access to (bank)

mm Middle order 8 bits of the address where the bus interface unit is to access to

ll Lower order 8 bits of the address where the bus interface unit is to access to

DPR Contents of the direct page

DPRH Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register

OP1 Data to be fetched into the instruction queue buffer by the bus interface

OP2 (Operation code or operand)

OP3 The subscript represents the fetch sequence.

 :

DL Data to be fetched into the data buffer or data to be written into the memory by the bus interface unit

DH

dd Data obtained as the operand (The lower order 8 bits of the address are given in examples 1 and
2, because DPRL = 0.)

ADP Higher order 8 bits of data that indicates the address (contents of the data address register)

ADH Middle order 8 bits of data that indicates the address (contents of the data address register)

ADL Lower order 8 bits of data that indicates the address (contents of the data address register)

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–5

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

φCPU based CPU instruction execution sequence

The following examples 1-1 to 1-6 are examples of the φCPU based instruction execution sequences
under various conditions.

Example 1-1 When the instruction queue buffer is vacant

Example 1-2 When two data are in the instruction queue buffer

Example 1-3 When three data are in the instruction queue buffer

Example 1-4 When 16-bit data is accessed from odd address

Example 1-5 When external memory is accessed from the BYTE terminal using 8-bit external
bus width

Example 1-6 When external memory is accessed with wait by the wait bit

φ
CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

PG PG 00 PG

PC PC+1 DPRH,dd PC+2

Operand ddOp Code DHDL Not Used DHDL Op Code
New Next

7700 FAMILY SOFTWARE MANUAL5–6

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

(Example 1-1) When the instruction queue buffer is vacant

Conditions

••••• Number of data in the instruction queue buffer 0

••••• ROM, RAM ... External memory is used (Note)

••••• Data length selection flag m ... “0” (16-bit length)

••••• BYTE terminal level .. “L” (External bus width is 16 bits)

••••• Contents of lower order bytes (PCL) of the program counter Even

••••• Contents of the operand (dd) ... Even

 φ based execution sequence

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regard-
less of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot
be observed from outside, when the mode is single-chip mode.

φ
CPU

A23—A16
 /DATA(even)

A7—A0

R/W

hh OP1

l l l l+2 d d

Fetches
Op Code

Fetches
Operand

Reads data Modifies
Data

Writes
 Data

Next
Instruction

φ

Number of data in inst-
ruction queue buffer

1 2 3 4 5 6 7 8 9

0 2→1 0 2 1

hh OP3 00 DL 00 Modified DL

Op Code Next Op Code

A15—A8
 /DATA(odd)

mm OP2 mm OP4 DPRH DH DPRH Modified DH

Operand (dd)

E

BHE
“L”

Cause 1 Cause 2 Cause 3

Cause for φ CPU

 to queue

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–7

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

Operation of the CPU and bus interface unit under various cycles

CPU

(No fetching can be done, because there are no
operation codes in the instruction queue buffer.)

Fetches the operation code.

Fetches the operand.

(Waits till the bus used by the bus interface unit
becomes vacant.)

Waits for E to become “L”, to read data.

Reads data when E becomes “L”.

Modifies data.

Writes data into the data buffer.

Fetches the next operation code.

φ No.

1

2

3

4

5

6

7

8

9

Bus interface unit

Fetches the instruction, because instruction
queue buffer is vacant and the CPU is not using
the bus.

Fetches 2-byte worth of data into the instruction
queue buffer when E becomes “L”.

Prefetches the instruction, because the instruc-
tion queue buffer is vacant and the CPU is not
using the bus.

Fetches 2 bytes worth of data into the instruction
queue buffer when E becomes “L”.

Writes the contents of the data buffer into the
original address, when E becomes “L”.

7700 FAMILY SOFTWARE MANUAL5–8

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

φ based execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

(Example 1-2) When two data are in the instruction queue buffer

Conditions

••••• Number of data in the instruction queue buffer 2

••••• ROM, RAM ... External memory is used (Note)

••••• Data length selection flag m .. “0” (16-bit length)

••••• BYTE terminal level .. “L” (External bus width is 16 bits)

••••• Contents of lower order bytes (PCL) of the program counter Even

••••• Contents of the operand (dd) .. Even

φ
CPU

A23—A16
 /DATA(even)

A7—A0

R/W

hh

l l d d

Fetches
Op Code

Fetches
Operand

Reads Data Modifies
Data

Writes
Data

Next
Instruction

φ

Number of data in inst-
ruction queue buffer

1 2 3 4 5 6 7 8

2 1 0 2 1

OP1 00 DL 00 Modified DL

Next Op Code

A15—A8
 /DATA(odd) mm OP2 DPRH DH DPRH Modified DH

E

BHE
“L”

Cause for φ CPU

 to queue Cause 2 Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regard-
less of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot
be observed from outside, when the mode is single chip mode.

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–9

Operation of the CPU and bus interface unit under various cycles

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

φ No.

1

2

3

4

5

6

7

8

CPU

Fetches operation code.

Fetches operand (dd).

(Waits till the bus used by the bus interface unit
becomes vacant.)

Waits for E to become “L”, to read data.

Reads data when E becomes “L”.

Modifies data.

Writes data into the data buffer.

Fetches the next operation code.

Bus interface unit

Prefetches the instruction, because the instruct
queue buffer is vacant and the CPU is not using
the bus.

Fetches 2-byte worth of data into the instruction
queue buffer when E becomes “L”.

Writes the contents of the data buffer into the
original address, when E becomes “L”.

7700 FAMILY SOFTWARE MANUAL5–10

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

φ based execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regard-
less of the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot
be observed from outside, when the mode is single chip mode.

(Example 1-3) When three data are in the instruction queue buffer

Conditions

••••• Number of data in the instruction queue buffer 3

••••• ROM, RAM ... External memory is used (Note)

••••• Data length selection flag m ... “0” (16-bit length)

••••• BYTE terminal level .. “L” (External bus width is 16 bits)

••••• Contents of lower order bytes (PCL) of the program counter Even

••••• Contents of the operand (dd) ... Even

φ
CPU

A23—A16
 /DATA(even)

A7—A0

R/W

hh

l l d d

Fetches
Op Code

Fetches
Operand

Reads data Modifies
Data

Writes
Data

Next
Instruction

φ

Number of data in inst-
ruction queue buffer

1 2 3 4 5 6 7 8

3 2 1 2

OP100 DL 00 Modified DL

A15—A8
 /DATA(odd) mm OP2DPRH DH DPRH Modified DH

E

BHE
“L”

Cause for φ CPU

 to queue Cause 3 Cause 2

hh

mm

l l d d

3

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–11

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

Operation of the CPU and bus interface unit under various cycles

φ No.

1

2

3

4

5

6

7

8

CPU

Fetches operation code .

Fetches operand (dd).

Waits for E to become “L”, to read data.

Reads data when E becomes “L”.

Modifies data.

(Waits till the bus used by the bus interface unit
becomes vacant.)

Writes data into the data buffer.

Fetches the next operation code.

Bus interface unit

Prefetches the instruction, because there are two
vacant instruction queue buffers and the CPU is
not using the bus.

Fetches 2-byte worth of data into the instruction
queue buffer when E becomes “L”.

Writes the contents of the data buffer into the
original address, as E becomes “L”.

7700 FAMILY SOFTWARE MANUAL5–12

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

φ based execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

(Example 1-4) When 16-bit data is accessed from odd address

Conditions

••••• Number of data in the instruction queue buffer 0

••••• ROM, RAM .. External memory is used (Note 1)

••••• Data length selection flag m... “0” (16-bit length)

••••• BYTE terminal level ... “L” (External bus width is 16 bits)

••••• Contents of lower order bytes (PCL) of the program counter Odd

••••• Contents of the operand (dd) ... Odd

Note 1. The operation when internal ROM and internal RAM are used, will be as shown above,
regardless of the level of the BYTE terminal. However, the address/data bus, BHE, R/W
signal cannot be observed from outside, when the mode is single chip mode.

Note 2. At the part

❊ When the CPU does not use the bus, φCPU corresponds with φ.

❊ When the CPU uses the bus, the φCPU queues till the writing in the bus interface unit completes.
(the φ14 cycle)

Modified
DL

φ
CPU

A23—A16
 /DATA(even)

A7—A0

R/W

hh OP1

l l l l+1 d d

Fetches
Op Code

Fetches
Operand

Reads Data Modifies
Data

Writes
Data

Next Instruction

φ

Number of data in
instruction queue
buffer

1 2 3 4 5 6 7 8 9

0 1→0 3 2

hh OP3 00 D 00 hh

Op Code Next Op Code

A15—A8
 /DATA(odd) mm OP2 mm OP4 DPRH DL

Operand (dd)

E

Cause for φ CPU

 to queue Cause 1 Cause 1 Cause 3

10 11 12 13 14

2→1

Modified DHOP5 00 ? 00DH

DPRH mm ?OP6 DPRH DPRHD

d d+1 l l+3 d d d d+1

Cause 2 Cause 2
(Note 2)

Invalid Invalid

Invalid

Invalid

Invalid

BHE

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–13

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

φ No.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

CPU

(No fetching can be done, because there are no
operation codes in the instruction queue buffer.)

Fetches operation code.
(No fetching can be done, because there are no
operands in the instruction queue buffer.)

Fetches operand (dd).

Bus interface unit

Fetches the instruction, because instruction queue
buffer is vacant and the CPU is not using the bus.

Fetches 1 odd address byte worth of data into the
instruction queue buffer, when E becomes “L”.

Fetches the instruction, because instruction
queue buffer is vacant and the CPU is not using
the bus.

Fetches 2-byte worth of data into the instruction
queue buffer when E becomes “L”.

Prefetches the instruction, because there are two
vacant positions in the instruction queue buffer,
and the CPU is not using the bus.

Fetches 2 bytes worth of data into the instruction
queue buffer, when E becomes “L”.

Waits till E becomes “L” to write data.

Writes the contents of the data buffer (DL) into
the original address (odd address), when E be-
comes “L”.

Waits till E becomes “L” to write data.

Writes the contents of the data buffer (DH) into
the original address (even address), when E be-
comes “L”.

Operation of the CPU and bus interface unit under various cycles

Waits for E to become “L”, to read data.

Reads data in the odd addresses (DL) alone into the data buffer when E becomes “L”.

Waits for E to become “L”, to read data.

Reads data in the even addresses (DH) alone into the data buffer when E becomes “L”.

Modifies data.

(Waits till the bus used by the bus interface unit
becomes vacant.)

Writes data into the data buffer.

Fetches the next operation code.

?

?

When internal ROM or BYTE terminal level “L” external memory is used as the program memory, the instruction is
fetched into the instruction queue buffer normally in 2-byte (word) unit of sequential even and odd addresses in this
order. However, when the instruction must be fetched from odd address like after execution of the JMP instruction,
the 1-byte of the first odd address alone is fetched into the instruction queue buffer (φ2 cycle), and the later instructions
are fetched into the instruction queue buffer in 2-byte units (φ4, φ10 cycle).

The bus interface unit automatically selects whether to fetch one word or to fetch the 1 byte of odd address alone. The
operation status can be observed from outside, according to the output of the BHE terminal and the address bus signal
A0, as long as the mode is not single-chip mode.

••••• When one word is fetched
The output from both the BHE terminal and the address bus A0 are at the “L” level.

••••• When 1 byte of odd address alone is fetched
The output from the BHE terminal is “L”, while the output from address bus A0 is “H”.

When internal RAM and external memory at BYTE terminal level “L” are used as the data memory, with data
length selection flag m=0, both data read and write are normally done in 2-byte units of even and odd addresses,
in this sequence. However, access can also be done when the word data is defined from an odd address. In
other words, “H” is output first from address bus A0 and then “L” from the BHE terminal to access to odd address
alone. Next, “L” is output from A0, and “H” from the BHE terminal to access to the even address (φ5 to φ8, φ11
to φ14 cycle).

7700 FAMILY SOFTWARE MANUAL5–14

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

φ based execution sequence

Note. At the part
❊ When the CPU does not use the bus, φCPU corresponds with φ.
❊ When the CPU uses the bus, the φCPU queues till the writing in the bus interface unit completes.
(the φ13 to φ14 cycle)

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

(Example 1-5) When external memory is accessed from the BYTE terminal using 8-bit
external bus width

Conditions

••••• Number of data in the instruction queue buffer 0

••••• ROM, RAM ... External memory is used

••••• Data length selection flag m ... “0” (16-bit length)

••••• BYTE terminal level .. “H” (External bus width is 8 bits)

φ
CPU

A23—A16
 /DATA(even)

A7—A0

R/W

hh OP1

l l l l+1 d d

Fetches
Op Code

Fetches
Operand

Reads Data Modifies
Data

Writes
Data

Next
Instruction

φ

Number of data in
instruction queue
buffer

1 2 3 4 5 6 7 8 9

0 1→0 1 0

hh OP2 00 DL 00 hh

Op Code Next Op Code

A15—A8
 /DATA(odd) mm mm DPRH

Operand (dd)

E

BHE

Cause for φ CPU

 to queue Cause 1 Cause 1 Cause 3

10 11 12 13 14

1→0

Modified DHOP3 00 Modified
DL

00DH

mm DPRH

d d+1 l l+2 d d d d+1

Cause 2 Cause 2
 (Note)

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–15

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

Operation of the CPU and bus interface unit under various cycles

φ No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

CPU

(No fetching can be done, because there are no
operation codes in the instruction queue buffer.)

Fetches operation code.

(No fetching can be done, because there are no
operands in the instruction queue buffer.)

Fetches operand (dd).

Bus interface unit

Fetches the instruction, because the instruction
queue buffer is vacant and the CPU is not using
the bus.

Fetches 1 odd address byte worth of data into the
instruction queue buffer when E becomes “L”.

Fetches the instruction, because instruction
queue buffer is vacant and the CPU is not using
the bus.

Fetches 1-byte worth of data into the instruction
queue buffer when E becomes “L”.

Waits for E to become “L”, to read data.

Reads data (DL) into the data buffer when E becomes “L”.

Waits for E to become “L”, to read data.

Reads data (DH) alone into the data buffer when E becomes “L”.

Modifies data.

 (Waits till the bus used by the bus interface unit is
vacant.)

Writes data into the data buffer.

Fetches the next operation code.

?

?

Prefetches the instruction, because there are two
vacant positions in the instruction queue buffer,
and the CPU is not using the bus.

Fetches 1 byte worth of data into the instruction
queue buffer when E becomes “L”.

Waits till E becomes “L” to write data.

Writes the contents of the data buffer (DL) into
the original address (odd address), when E be-
comes “L”.

Waits till E becomes “L” to write data.

Writes the contents of the data buffer (DH) into
the original address (even address), when E be-
comes “L”.

The external bus width becomes 8 bits when the “H” level is applied to the BYTE terminal. (The width of the internal
bus is 16 bits, regardless of the level of the BYTE terminal.) When external ROM is used under this mode, the instruction
can only be fetched byte by byte. (φ2, φ4, φ10 cycle) When external RAM is used, the data can likewise only be handled
byte by byte. Accordingly, when data length selection flag m = 0 is selected, it takes time worth 2 cycles of the enable
output E for data read and write. (φ5 to φ8, φ11 to φ14 cycle)

7700 FAMILY SOFTWARE MANUAL5–16

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

φ based execution sequence

(Example 1-6) When external memory is accessed with wait by the wait bit

Conditions

••••• Number of data in the instruction queue buffer 0

••••• ROM, RAM ... External memory is used

••••• Data length selection flag m ... “0” (16-bit length)

••••• BYTE terminal level .. “L” (External bus width is 16 bits)

••••• Contents of lower order bytes (PCL) of the program counter Even

••••• Contents of the operand (dd) ... Even

Note: This figure hows the case of the bus cycle becomes as 3 cycles of φ. If the bus cycle becomes 4 cycles of φ by
wait, the “H” width of E (←→) becomes as 2 cycles. Therefore, the ASL instruction execution time extended
by 4 cycles from the above case.

φ
CPU

A23—A16
 /DATA(even)

A7—A0

R/W

hh OP1

l l l l+2

Fetches Op Code Fetches Operand Reads Data Modifies
Data

Writes
Data

Next
Instruction

φ

Number of data
in instruction
queue buffer

1 2 3 4 5 6 7 8 9

0 2→1 1

hh 00

Op Code Next Op Code

A15—A8
 /DATA(odd) mm mm DPRH

Operand (dd)

E

BHE

Cause for φ CPU

 to queue Cause 1 Cause 2 Cause 3

10 11 12 13

0

Modified DH

OP3 00 Modified DLDL

DPRH

d d

2

OP2 DHOP4

“L”

Note Note Note Note

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–17

Example 1. ASL instruction / direct addressing mode (DPR L = 0016)

Operation of the CPU and bus interface unit under various cycles
 CPU

 (No fetching can be done, because there are no
operation codes in the instruction queue buffer.)

Fetches the operation code .

Fetches operand (dd).

 (Waits till the bus used by the bus interface unit
becomes vacant.)

Bus interface unit

Fetches the instruction, because instruction queue
buffer is vacant and the CPU is not using the bus.

Fetches 2 bytes worth of data into the instruction
queue buffer when E becomes “L”.

Prefetches the instruction because the instruction
queue buffer is vacant and the CPU is not using the
bus.

Fetches 2 bytes worth of data into the instruction
queue buffer when becomes “L”.

Waits till E becomes “L” to write data.

Reads data when E becomes “L”.

φ No.

1

2
3

4

5
6

7

8

9

10

11

12

13 Writes the contents of the data buffer into the
original address (odd address), when E becomes
“L”.

Modifies data.

Writes data into the data buffer.

Fetches the next operation code.

?

The conditions are the same as the Example 1-1, except when wait is commanded by the wait bit . When accessing
to the external memory, the “L” width of enable output E is extended by 1 cycle of φ when compared to the case of no
wait. Therefore, the φCPU wait interval is also extended by 1 cycle (φ2 to φ3, φ5 to φ6, φ8 to φ9 cycle).
If the bus cycle becomes 4 cycles, the φCPU wait interval is also extended by 2 cycles of φ because the “H” and “L” width
extended by 1 cycle from the case no wait.

7700 FAMILY SOFTWARE MANUAL5–18

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–19

Example 2. LDA instruction / Direct indirect long addressing mode (DPR L = 0016)

φCPU based CPU instruction execution sequence

φ
CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

PC PC+1 DPRH,dd PC+2

Operand ddOp Code ADHADL Not Used DHDL Op Code

ADHADLDPRH +dd+2

ADP

PG PG 00 00or01 00or01 ADP PG

Next

7700 FAMILY SOFTWARE MANUAL5–20

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

φ based execution sequence

Example 2. LDA instruction / Direct indirect long addressing mode (DPRL = 00 16)

(Example 2-1) When the internal as well as the external memories are used together while wait is commanded
by the wait bit.

Conditions

••••• Number of data in the instruction queue buffer 0

••••• Bank 0 .. Internal ROM, RAM are used

Bank 1 and after ... External memory is used

••••• Data length selection flag m ... “0” (16-bit length)

••••• BYTE terminal level .. “L” (External bus width is 16 bits)

••••• Contents of lower order bytes (PCL) of the program counter Even

••••• Contents of the operand (dd) ... Even

••••• Data indicated by the address ADL ... Even

ADP .. 1 or more (bank 1 and after)

Note: This figure hows the case of the bus cycle becomes as 3 cycles of φ. If the bus cycle becomes 4 cycles of φ by
wait, the “H” width of E (←→) becomes as 2 cycles.

φ
CPU

A23—A16
 /DATA(even)

A7—A0

R/W

hh OP1

l l l l+2

Fetches
Op code

Fetches
Operand

Reads
Data

Calculates
Address

Next
Instruction

φ

Number of data in
instruction queue
buffer

1 2 3 4 5 6 7 8 9

0 2→1 1

00

Op Code Next Op Code

A15—A8
 /DATA(odd)

mm DPRH

Operand (dd)

E

BHE

Cause for φ CPU

 to queue Cause 1 Cause 2 Cause 3

10 11 12 13

0

DH

OP3 ADP DLADL

DPRH

d d

2

OP2 ADHOP4

“H”

Reads
Data

Reads
Data

mm

ADP

?

hh 00

ADH

d d+2 ADL

Cause 3Cause 3

Note

7700 FAMILY SOFTWARE MANUAL

INSTRUCTION EXECUTION SEQUENCE
5.2 Instruction execution sequence

5–21

Example 2. LDA instruction / Direct indirect long addressing mode (DPRL = 00 16)

Operation of the CPU and bus interface unit under various cycles

 φ No.

1

2

3

4

5

6

7

8

9

10

11
12

CPU

(No fetching can be done, because there are no
operation codes in the instruction queue buffer.)

Fetches the operation code .

Fetches operand (dd).

(Waits till the bus used by the bus interface unit
becomes vacant.)

Bus interface unit

Fetches the instruction, because instruction queue
buffer is vacant and the CPU is not using the bus.

Fetches 2 bytes worth of data into the instruction
queue buffer when E becomes “L”.

Prefetches the instruction because the instruction
queue buffer is vacant and the CPU is not using the
bus.

Fetches 2 bytes worth of data into the instruction
queue buffer when E becomes “L”.

Waits for E to becomes “L”, to read data (ADH, ADL) indicated by the address obtained by adding the contents
of the operand (dd) and the DPRL.

Reads data when E becomes “L”.

Calculated address.

Waits for E to become “L”, to read data (ADP).

Reads data when E becomes “L”.

Waits for E to become “L”, to read the data (DH, DL) at the address specified by ADP, ADH, ADL.

Reads data when E becomes “L”.

The above is the case when bank 1 and after are used by the external memory under the memory expansion mode.
The currently executed program is in bank 0. The contents of the lower order bytes of the direct page register DPRL

is “0016”, so the direct pages are all in bank 0. The access to the outside (φ10 to φ12 cycle) alone is affected by the wait
bit, and access to the internal memory is not affected by the bit.

CHAPTER 6

CPU INSTRUCTION EXECU-
TION SEQUENCE FOR

EACH ADDRESSING MODE

7700 FAMILY SOFTWARE MANUAL6–2

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODES
The following are the CPU instruction execution sequences for each addressing mode. The execution sequences
shown here describe the internal operation of the CPU. Therefore, the signals are all CPU internal signals, and
cannot be observed from outside. The CPU internal operation, the actual execution time, and the relation between
signals that can be externally checked are described in Chapter 4 “Instruction Execution Sequence”.

The following are the signals and the symbols indicating the contents.

Symbol

φCPU

AP(CPU)

AHAL(CPU)

PG

PC

DATA(CPU)

R/W(CPU)

Description

CPU basic cycle

Higher order 8 bits of the CPU internal address bus.

Lower order 16 bits of the CPU internal address bus.

Contents of the program bank register.

Contents of the program counter.

Others are data that indicates the address obtained as result of address calculation.

The CPU internal data bus. The signal is output with a half-cycle delay from the CPU internal
address bus. The operation codes and the operands are fetched from the instruction buffer. They
are not directly fetched from the memory indicated by the PG and PC of this cycle.

Becomes “L” when the CPU writes data into the data buffer of the bus interface unit.

The accumulator used in the above instructions in the CPU instruction execution sequence is accumulator A.
When accumulator B is used, the execution cycle will have the two cycles of a “4216” that indicates accumulator
B, and an internal processing cycle added at the front. (See the figure in the next page.)

The number of φCPU cycles differs in the addressing mode that uses the direct page register, according to
whether the lower order 8 bits (DPRL) are “0016”. The number of cycles when DPRL = 0016 is 1 cycle (address
calculation cycle) less than when DPRL ≠ 0016.

The number of cycles differs in the PSH and PUL instructions according to the number and type of registers
placed in (taken out of) the stack.

The number of cycles differs in the block transmission instruction (MVN, MVP), according to the number of the
data transmitted.

Note. The instructions with the mark “ * ” can be used in the 7750 Series only.

7700 FAMILY SOFTWARE MANUAL

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODES

6–3

 Variation of the execution cycles according to the accumulator used

ADC Instruction / Immediate addressing mode

<<When accumulator A is used>>
Mnemonic : ADC A,#1234H Machine code : 6916 3416 1216

 <<When accumulator B is used>>
Mnemonic : ADC B,#1234H Machine code : 4216 6916 3416 1216

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG PG

PC+3PC+1PC

6916 123416

Op Code Operand

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG PG

PC+1PC+1PC

4216 Not used

PG PG

PC+2 PC+4

6916 123416

Op Code Op Code Operand

 2-cycle

7700 FAMILY SOFTWARE MANUAL6–4

Implied

Instructions : CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP,
SEC, SEI, SEM, TAD, TAS, TAX, TAY, TDA, TSA,
TSX, TXA, TXS, TXY, TYA, TYX

Timing :

Instructions : TBD, TBS, TBX, TBY, TDB, TSB, TXB, TYB

Timing :

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC+1PC

Op Code Not used
Next

Op Code

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC+1PC

Op Code Not used
Next

Op Code

PG PG

PC+2 PC+2

Op Code Not used

7700 FAMILY SOFTWARE MANUAL 6–5

Implied

Instructions : XAB

Timing :

Instructions : STP, WIT

Timing :

“H”

PG PG PG

PC+1PC+1PC

Op Code Not used
Next

Op Code

PG

PC+2PC+2

Op Code Not used

PG

Not used Not used

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG PG PG

PC+1PC+1PC

Op code Not used Not used

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–6

Implied

Instructions : RTS

Timing :

Instructions : RTL

Timing :

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Not used
Next

Op Code

00 PG

S+1 ADHADL

Not used ADHADL

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG PG

PC+1PC

Op Code Not used
Next

Op Code

00

ADHADLS+1

Not used ADHADL

ADP

Not used ADP

S+3

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL 6–7

Implied

Instructions : RTI

Timing :

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Not used
Next

Op Code

00

S+2

Not used

PG

Not used Not used

S+1 S+3 S+5 PCHPCL

PGPSHPSL PCHPCL

(Stack) (Stack) (Stack)

7700 FAMILY SOFTWARE MANUAL6–8

Implied

Instructions : BRK

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand

00

FFFE

Not used Not used Not used

FFFF FFFC S S–1

PGNot used Not used
Not

used

S–3S–2

00

FFFA

Not used

S–4 ADHADL

PC Not usedPS ADHADL
Next

Op Code
Not

used

7700 FAMILY SOFTWARE MANUAL 6–9

Immediate

Instructions : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instructions : LDX, LDY, CPX, CPY

Timing :

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+3PC+1PC

Op Code
Next

Op Code

m=0

When m=1, fetched operand at 2-nd cycle is 1-byte (nn).

Operand
mmnn

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG PG PG

PC+3PC+1PC

Op Code Operand
mmnn

Next
Op Code

When x=1, fetched operand at 2-nd cycle is 1-byte (nn).

x=0

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–10

Immediate

Instructions : LDT

Timing :

Instructions : RLA

Timing :

This Figure is shown that shifted 1 bit. If shifted more than 2 bit, the cycle “ ”
is repeated each shift number worth. When 0 bit shift(not shifted), the cycle
“ ” is nothing.
When m=1, fetched operand at 4-th cycle is 1-byte (nn).

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Not used
Next

Op Code

PG

Op Code Not used Not used

PG

PC+2 PC+4

Operand
 mmnn

PC+1

PG

Not used

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Not used

PG

PC+2

Op Code Operand
nn

PG

PC+3

PG

PC+1

Next
Op CodeNot used

R/W(CPU)

“H”

Renesas
EOL announced

7700 FAMILY SOFTWARE MANUAL 6–11

Immediate

Instructions : SEP

Timing :

Instructions : CLP

Timing :

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Next
Op Code

PG

PC+2

Not used

?

Not usedOperand
nn

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Not used

PG

PC+2

Next
Op Code

Operand
nn

φ CPU

“H”

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–12

Immediate

Instructions : DIV, DIVS*, MPY, MPYS*

Timing :

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Op Code

PC+2

Operand
mmnn

PGPG

PC+1

Not Used

✽

PG

Not Used

PC+3

Next
Op Code

PC+2

m=0

When m=1, fetched operand at 4-th cycle is 1-byte(nn).

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL 6–13

Instructions : DIV, DIVS* (case of zero division)

Timing :

Immediate

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

PGPG

PC+2

Not used
mmnn

Operand
Not used

PC+2 FFFF FFFE

Not used Not usedNot used Not used Not used

00

S

At DIVS instruction, this cycle is nothing.

00

S–1S

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next

Op Code
Not usedNot usedPG PC PS ADHADL

When m=1, fetched operand at 4-th cycle is 1-byte(nn).

7700 FAMILY SOFTWARE MANUAL6–14

Instructions : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Instruction : ASR*, EXTZ*

Timing :

Accumulator

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG PG

PC+1PC

Op Code Not used Next
Op Code

PC+1

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG PG

PC+1PC

Op Code Not used
Next

Op Code

PC+2

PG PG

PC+1 PC+2

Op Code Not used Not used

φ CPU

R/W(CPU)

“H”

7700 FAMILY SOFTWARE MANUAL 6–15

Instruction : EXTS*

Timing :

Accumulator

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+2PC+1

PG

Op Code Not used Op Code

PC+2

PG

Next
Op Code

Not usedNot used Not usedNot used Not used

7700 FAMILY SOFTWARE MANUAL6–16

Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC

Timing :

Instruction : LDM

Timing :

Direct

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Operand
dd

Next
Op Code

00 or 01 PG

DPR+dd PC+2

Not used DHDL

DPRL≠0

00

When DPRL=0, this cycle is nothing.

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
dd

00 or 01

DPR+dd

Not used Next
Op Code

mmnn

PC+4

PG 00 PG

PC+2 ?

Operand
mmnn

When DPRL=0, this cycle is nothing.

DPRL≠0

When m=1, fetched operand at 3-rd cycle and data at 5-th cycle are 1-byte(nn).

φ CPU

R/W(CPU)

“H”

7700 FAMILY SOFTWARE MANUAL 6–17

Instruction : STA, STX, STY

Timing :

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Direct

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG PG

PC+1PC

Op Code
Operand

dd Not used
Next

Op Code
A

PC+2

00 PG

When DPRL=0, this cycle is nothing.

DPRL≠0

Not used

DPR+dd

00 or 01

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
dd

Not used Modified
DHDL

PC+2

00 PG

When DPRL=0, this cycle is nothing.

DPRL≠0

Not used

DPR+dd

00 or 01

Next
Op Code

DHDL

φ CPU

“H”

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–18

Instruction : ASR*

Timing :

Direct

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

PG

PC+3PC+1

PG

Op Code Not used Op Code

DPR+dd

00 or 01

Next
Op Code

Not used

PG 00

PC+2

Not used DHDL
Modified
DHDL

When DPRL=0, this cycle is nothing.

DPRL≠0

Operand
dd

7700 FAMILY SOFTWARE MANUAL 6–19

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Direct

When DPRL=0, this cycle is nothing.

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG 00 or 01

PC+1PC

Op
Code

Op
Code

DPR+dd

PGPG

PC+1

Not
used

✽

PG

PC+3

Operand
dd

Next
Op Code

Not used

PG 00

PC+2

DHDL
Not

used

DPRL≠0

DPR+
dd

R/W(CPU)

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus
Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL6–20

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Direct

At DIVS instruction, this cycle is nothing.

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

00 or 01PG

DPR+dd

Not used
dd

Operand

PC+2 FFFF

Not used Not usedNot used Not used Not used

FFFE

00

DHDL

When DPRL=0, this cycle is nothing.

DPRL≠0

00 or 01

S

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

Not usedNot used

FFFE

“H”

7700 FAMILY SOFTWARE MANUAL 6–21

Instruction : CLB, SEB

Timing :

Direct Bit

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Next
Op Code

DPR+dd

DHDL

PG

PC+2

00 or 01

Not used

PC+4

PG

DPRL≠0, m=0

00

?

Operand
dd

Operand
mmnn Not used Modified

 DHDL

When DPRL=0, this cycle is nothing.

When m=1, fetched operands at 3-rd cycle is 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL6–22

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing :

Instruction : LDM

Timing :

Direct Indexed X

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code Operand
dd

00 or 01 00, 01 or 02

DPR+dd+X

Not used Next
Op codeDHDL

DPRL≠0

00

When DPRL=0, this cycle is nothing.

PG

PC+2

Not used

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
dd Not used mmnn

PC+4

PG PG

When DPRL=0, this cycle is nothing.

DPR+dd

00 or 01

Next
Op code

00

PC+2 ?

00, 01 or 02

DPR+dd+X

Not usedOperand
mmnn

When m=1, fetched operand at 3-rd cycle and data at 6-th cycle are 1-byte(nn).

φ CPU

R/W(CPU)

“H”

DPRL≠0

7700 FAMILY SOFTWARE MANUAL 6–23

Instruction : STA, STY

Timing :

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Direct Indexed X

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG PG

PC

Op Code
Operand

dd Not used A

PC+2

00 PG

When DPRL=0, this cycle is nothing.

DPRL≠0

Next
Op Code

00 or 01

PC+1

00, 01 or 02

DPR+dd+X

Not usedNot used

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG 00 00,01 or 02 PG00 or 01

PC DPR+dd+XPC+1 PC+2

When DPRL=0, this cycle is nothing.

Op Code Next
Op code

DHDL Not usedOperand
dd

Not used Modified
 DHDL

Not used

φ CPU

“H”

DPRL≠0

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–24

Instruction : ASR*

Timing :

Direct Indexed X

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

PG

PC+3PC+1

PG

Op Code Not used Op Code

DPR+dd+X

00, 01 or 02

Next
Op CodeNot used

PG 00

PC+2

Not used
dd

Operand
DHDL

Modified
 DHDL

00 or 01

Not used

When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6–25

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Direct Indexed X

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG 00 , 01 or 02

PC+1PC

Op
Code

Op
Code

DPR+
dd+X

PGPG

PC+1

Not
used

✽

PG

Not used

PC+3

Operand
dd

Next
Op Code

PG 00

PC+2

DHDL
Not

used

When DPRL=0, this cycle is nothing.

00 or 01

Not
used

DPR+dd+X

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

—

7700 FAMILY SOFTWARE MANUAL6–26

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Direct Indexed X

“H”

00, 01 or 02

S

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

Not usedNot used

FFFEFFFF

Not used

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

00, 01 or 02PG

DPR+dd+X

Not used
dd

Operand

PC+2

Not used Not usedNot Used Not used

FFFF

00

DHDL

00 or 01

Not used

When DPRL=0, this cycle is nothing. At DIVS instruction, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6–27

Instruction : LDX

Timing :

Instruction : STX

Timing :

Direct Indexed Y

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
dd

00 or 01 00, 01 or 02

DPR+dd+Y

Not used Next
Op CodeDHDL

00

When DPRL=0, this cycle is nothing.

PG

PC+2

Not used

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code Operand
dd Not used X

PC+2

00 PG

When DPRL=0, this cycle is nothing.

Next
Op Code

00 or 01

PC+1

00, 01 or 02

DPR+dd+Y

Not usedNot used

φ CPU

“H”

DPRL≠0

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–28

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

Direct Indirect

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
dd

00 or 01 DT

ADHADL

Not used Next
Op CodeDHDL

00

When DPRL=0, this cycle is nothing.

PG

PC+2

ADHADL

DPR+dd

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code Operand
dd Not used A

PC+2

00 PG

When DPRL=0, this cycle is nothing.

Next
Op Code

00 or 01

PC+1

DT

ADHADL

ADHADLNot used

DPR+dd

φ CPU

“H”

DPRL≠0

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL 6–29

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Direct Indirect

When DPRL=0, this cycle is nothing.

φ CPU

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG 00 or 01

PC+1PC

Op
Code

Op
Code

DPR+
dd

PGPG

PC+1

Not
used

✽

PG

PC+3

Operand
dd

Next
Op CodeNot used

PG 00

PC+2

DHDL
Not

used ADHADL

DT

ADHADL ADHADL

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

7700 FAMILY SOFTWARE MANUAL6–30

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Direct Indirect

DT

S

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

Not usedNot used

FFFEFFFF

Not used

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

DTPG

ADHADL

Not used
dd

operand

PC+2

Not used Not usedNot used Not used

FFFF

00

DHDL

00 or 01

00 or 01

ADHADL

At DIVS instruction, this cycle is nothing.When DPRL =0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6–31

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

Direct Indexed X Indirect

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code Next
Op Code

ADHADL

00

PC+1

DT

Not used

PC+2

PG00 or 01

Operand
dd

Not used A

When DPRL=0, this cycle is nothing.

Not used

00,01 or 02

ADHADL
DPR+dd

+X

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
dd

00 or 01 00, 01 or 02

DPR+dd+X

Not used Next
Op CodeADHADL

00

When DPRL=0, this cycle is nothing.

PG

PC+2

Not used

DT

ADHADL

DHDL

φ CPU

“H”

DPRL≠0

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–32

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Direct Indexed X Indirect

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG DT

PC+1PC ADHADL

PGPG

PC+1

✽

PG

PC+3

PG 00

PC+2

00 or 01 00 , 01
or 02

DPR+
dd+X ADHADL

Op
Code

Op
Code

Not
used

Operand
dd

Next
Op CodeNot usedDHDL

Not
used

When DPRL=0, this cycle is nothing.

ADHADL
Not

used

The number of cycles(cycle)

(Note) The cycle number during ✻ is shown in following table

Plus÷Plus

Plus÷Minus
Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL 6–33

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Direct Indexed X Indirect

“H”

DT

S

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

Not usedNot used

FFFEADHADL

Not used Not used

FFFF

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

DTPG

ADHADL

Not used
dd

Operand

PC+2

Not usedNot used Not used

00

DHDL

00 or 01

ADHADLNot used

00, 01
or 02

+dd
DPR

+X

At DIVS instruction, this cycle is nothing.When DPRL =0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL6–34

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

Direct Indirect Indexed Y

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
dd

00 or 01 DT

DPR+dd

Not used Next
Op CodeNot used

00

When DPRL=0, this cycle is nothing.

PG

PC+2

ADHADL

DT or DT+1

ADHADL+Y

DHDL

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code
Next

Op CodeNot used

00

PC+1

DT or DT+1

Not used

PC+2

PG00 or 01

Operand
dd ADHADL A

When DPRL=0, this cycle is nothing.

Not used

DT

ADHADL+YDPR+dd

φ CPU

“H”

DPRL≠0

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL 6–35

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Direct Indirect Indexed Y

When DPRL=0, this cycle is nothing.

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG

PC+1PC

PGPG

PC+1

✽

Not used

PG 00

PC+2

DHDL

00 or
01

PC+3

PG

ADH

ADL

DT or DT+1

DPR+dd

DT

ADH
ADL ADHADL+Y

Op
Code

Op
Code

Not
used

Not
used

Not
used

dd

Ope-
rand

Next
Op
Code

+Y

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus
Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL6–36

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Direct Indirect Indexed Y

φ CPU

“H”

R/W(CPU)

At DIVS instruction, this cycle is nothing.When DPRL =0, this cycle is nothing.

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

DT or DT+1PG

ADHADL+Y

Not used
dd

Operand

PC+2

Not usedNot used Not used

00 00 or 01

DHDLNot used

DT

DPR+dd

Not used

FFFF

ADHADL

DT or DT+1

S

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

Not used

FFFEFFFF

Not used Not used

“H”

7700 FAMILY SOFTWARE MANUAL 6–37

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

Direct Indirect Long

φ CPU

“H”

DPRL≠0

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code
Next

Op CodeNot used

00

PC+1

00 or 01

ADP

PC+2

PG00 or 01

Operand
dd ADHADL DHDL

When DPRL=0, this cycle is nothing.

Not used

00 or 01

DPR+dd ADHADL
DPR+dd

+2

ADP

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code Next
Op Code

Not used

00

PC+1

ADP

ADP

PC+2

PG00 or 01

Operand
dd

ADHADL Not used

When DPRL=0, this cycle is nothing.

Not used

00 or 01

ADHADLDPR+dd

00 or 01

DPR+dd
+2

A

φ CPU

“H”

DPRL≠0

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–38

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Direct Indirect Long

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG

PC+1PC

Op
Code

Op
Code

PGPG

PC+1

Not
used

✽

Not used

PG 00

PC+2

DHDL
Not

used

DPRL ≠ 0

Not
used

00 or
01

PC+3

PG

ADH

ADL

ADP

DPR+dd

00 or
01

00 or
01

+dd
DPR

+2

ADP

ADH

ADL ADHADL

dd

Next
Op

Code

When DPRL=0, this cycle is nothing.

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

Ope-
rand

Renesas
EOL announced

7700 FAMILY SOFTWARE MANUAL 6–39

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Direct Indirect Long

ADP

S

00

FFFCS–2 S–4

Not
used

00

ADHADLS–3 S–4

Next
Op Code

Not
used

Not
usedPG PC PS ADHADL

S–1

00

Not
used

FFFE

Not
used

Not
used

ADHADL FFFF

Not
used

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+1

PG

Op
Code

Not
used

Op
Code

ADPPG

ADHADL

Not
used

Operand
dd

PC+2

Not
used

Not
used

Not
used

00 00 or 01

ADHADL
Not

used

+dd
DPR

+2

00 or 0100 or 01

DPR+dd

ADP DHDL

At DIVS instruction, this cycle is nothing.When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL6–40

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

Direct Indirect Long Indexed Y

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC

Op Code Next
Op CodeNot used

00

PC+1

ADP

PC+2

PG

DPRL≠0

00 or 01

Operand
dd ADHADL Not used

When DPRL=0, this cycle is nothing.

Not used

00 or 01

DPR+dd DPR+dd+2

ADP or
ADP+100 or 01 ADP

DHDL

ADHADL

+Y

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG

DPRL≠0

When DPRL=0, this cycle is nothing.

PG 00 00 or 01 00 or 01 00 or 01 ADP ADP or ADP+1 PG

PC PC+1 DPR+dd DPR+dd+2 ADHADL+Y PC+2

Next
Op CodeANot usedNot usedADPNot usedADHADLNot used

Operand
ddOp Code

7700 FAMILY SOFTWARE MANUAL 6–41

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Direct Indirect Long Indexed Y

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PC+3

PGPG

PC+1PC

Op
Code

Op
Code

PGPG

PC+1

Not
used

✽

Not used

PG 00

PC+2

DHDL
Not

used

DPRL≠0

Not
used

00 or
01

ADH

�@ADL

ADP or ADP+1

DPR+dd

00 or
01

00 or
01

+dd
DPR

+2

ADP

ADP

Not
used

�@ADL
ADH

+Y
ADHADL+Y

dd

Ope-
rand

Next
Op

Code

When DPRL=0, this cycle is nothing.

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

7700 FAMILY SOFTWARE MANUAL6–42

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Direct Indirect Long Indexed Y

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

ADP or ADP+1PG

ADHADL+Y

Not used
dd

Operand

PC+2

Not used Not used

00 00 or 01

ADHADL Not used

00 or 0100 or 01

DPR+dd

ADP Not used

ADP

DPR+dd+2

DHDL

“H”

ADP or ADP+1

S

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

Not used

FFFEADHADL+Y

Not used Not used

FFFF

Not used Not used

At DIVS instruction, this cycle is nothing.When DPRL=0, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6–43

Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC

Timing :

Instruction : LDM

Timing :

Absolute

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

“H”

PG PG

PC+1PC

Op Code Operand
hhll

DT

hhll

Next
Operand

mmnn

PC+5

PG PG

PC+3

Operand
mmnn

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

R/W(CPU)

“H”

PG PG

PC+1PC

Op Code
Operand

hhll
Next

Op Code

PG

hhll PC+3

DHDL

DT

When m=1, fetched operand at 3-rd cycle and data at 4-th cycle are 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL6–44

Instruction : STA, STX, STY

Timing :

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Absolute

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op CodeNot used

PC+3

DT PG

hhll

DHDL New DHDL

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code
Operand

hhll
Next

Op Code

PG

hhll PC+3

A

DT

Not used

7700 FAMILY SOFTWARE MANUAL 6–45

Instruction : ASR*

Timing :

Absolute

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

DT

Not used

PG

hhll PC+4PC+1

PG

Op Code
hhll

Operand
DHDLNot used Op Code

PC+2

PG

Next
Op Code

New
DHDL

7700 FAMILY SOFTWARE MANUAL6–46

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

Absolute

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG DT

PC+1PC

Op Code Op Code

hhll

Operand
hhll

PGPG

PC+2

Not used

✽

PG

Not used

PC+4

Next
Op Code

m=1

PG

PC+1

DHDL

hhll

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL 6–47

Instruction : DIV, DIVS* (case of 0 division)

Timing :

Absolute

“H”

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

S

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

DTPG

Operand
hhll

Shhll

Not used Not used

FFFE

Not used

FFFF

DHDL Not used

00

Not used Not used Not used

PC+2

At DIVS instruction, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL6–48

Absolute

Instruction : JMP

Timing :

Instruction : JSR

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

PG

hhll

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

00

S–1

Next
Op CodePCHPCL

hhll

PG

Not used

7700 FAMILY SOFTWARE MANUAL 6–49

Absolute Bit

Instruction : CLB, SEB

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Next
Op Code

PG

PC+3

PG

PC+5hhll

Operand
hhll

Operand
mmnn DHDL Not used New DHDL

DT

When m=1, fetched operand at 3-rd cycle is 1-byte (nn).

m=0

7700 FAMILY SOFTWARE MANUAL6–50

Absolute Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing :

Instruction : LDM

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

DT

PC+3

DT or DT+1 PG

hhll+X

Not used DHDL

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+3PC

Op Code Operand
hhll

DT

hhll+X

Next
Op Codemmnn

PC+5

PG

Not used

PG DT or DT+1

PC+1

Operand
mmnn

When m=1, fetched operand at 3-rd cycle and data at 5-th cycle are 1-byte (nn).

7700 FAMILY SOFTWARE MANUAL 6–51

Absolute Indexed X

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Instruction : ASR*

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

DT

PC+3

DT or DT+1 PG

hhll+X

Not used DHDL Not used New DHDL

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

DT or DT+1

Not used

PG

PC+2 PC+4PC+1

PG

Op Code Operand
hhll DHDLNot used Op Code

hhll+X

PG

Next
Op Code

New
DHDL

DT

Not used

7700 FAMILY SOFTWARE MANUAL6–52

Absolute Indexed X
Absolute Indexed Y

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG DT or DT+1

PC+1PC

Op
Code

Op
Code

hhll+
X(Y)

PGPG

PC+1

Not
used Not usedDHDL

✽

PG

PC+4

PG DT

PC+2

Not
used

hhll+X(Y)

Operand
hhll

Next
Op Code

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL 6–53

Absolute Indexed X
Absolute Indexed Y

Instruction : DIV, DIVS* (case of 0 division)

Timing :

FFFE

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00DT or DT+1

S

Not used

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

DT or DT+1PG

Operand
hhll

hhll+X(Y)

Not used Not used

FFFE

Not used

FFFF

DHDL Not used Not used Not used Not used

PC+2

DT

At DIVS instruction, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL6–54

Absolute Indexed X
Absolute Indexed Y

Instruction : STA

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

DT

PC+3

DT or DT+1 PG

hhll+X(Y)

Not used Not used A

7700 FAMILY SOFTWARE MANUAL 6–55

Absolute Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

DT

PC+3

DT or DT+1 PG

hhll+Y

Not used DHDL

7700 FAMILY SOFTWARE MANUAL6–56

Absolute Long

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

hhllPC

Op Code Operand
hhll

PC+3

Next
Op CodeA

PC+4

PG

Not used

ppPG

PC+1

Operand
pp

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

PG

PC+4

pp PG

hhll

DHDL
Operand

pp

PC+3

7700 FAMILY SOFTWARE MANUAL 6–57

Absolute Long

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG pp

PC+1PC

Op
Code

Op
Code

hhll

PGPG

PC+1

Not
used

✽

PG

PC+5

Not used

PG PG

PC+2

DHDL

PC+4 hhll

Operand
hhll

Next
Op Code

Operand
pp

—

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL6–58

Absolute Long

Instruction : DIV , DIVS*(case of 0 division)

Timing :

FFFE

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00pp

S

Not used

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

ppPG

Operand
hhll

hhll

Not used

FFFE

Not used

FFFF

DHDL Not used Not used Not used Not used

PC+4

PG

Operand
pp

PC+2

At DIVS instruction, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6–59

Absolute Long

Instruction : JMP

Timing :

Instruction : JSR

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

PG pp

hhllPC+3

Operand
pp

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

SPC

Op Code Operand
hhll

PC+3

Next
Op CodePCHPCL

hhll

pp

PG

00PG

PC+1

Operand
pp

S–2

Not used

7700 FAMILY SOFTWARE MANUAL6–60

Absolute Long Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

PG

PC+4

pp PG

DHDL

PC+3

Operand
pp

hhll+X

pp or pp+1

Not used

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

hhll+XPC

Op Code Operand
hhll

PC+3

Next
Op CodeA

PC+4

PG

Not used

pp or pp+1PG

PC+1

Operand
pp Not used

pp

7700 FAMILY SOFTWARE MANUAL 6–61

Absolute Long Indexed X

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG pp or pp+1

PC+1PC

Op
Code

Op
Code

hhll+X

PGPG

PC+1

Not
used

✽

PG

Not used

PC+5

PG PG

PC+2

DHDL

PC+4

pp

Not
used

hhll+X

Operand
hhll

Next
Op Code

Operand
pp

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL6–62

Absolute Long Indexed X

Instruction : DIV, DIVS* (case of 0 division)

Timing :

FFFE

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00pp or pp+1

S

Not used Not used

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

pp or pp+1PG

Operand
hhll

hhll+X FFFE

Not used

FFFF

DHDL Not used Not used Not used Not used

PC+4

PG

Operand
pp

PC+2

Not used

pp

At DIVS instruction, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6–63

Absolute Indirect

Instruction : JMP

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code operand
hhll

Next
Op Code

PG PG

ADHADLhhll

ADHADL

7700 FAMILY SOFTWARE MANUAL6–64

Absolute Indirect Long

Instruction : JMP

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

Next
Op Code

PG ADP

ADHADLhhll

ADP

PG or PG+1 PG or PG+1

hhll+2

Not usedADHADL

7700 FAMILY SOFTWARE MANUAL 6–65

Absolute Indexed X Indirect

Instruction : JMP

Timing :

Instruction : JSR

Timing :

φ CPU

“H”

R/W(CPU)

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
hhll

PG PG or PG+1

hhll+X

Not used Next
Op Code

PG or PG+1

ADHADL

ADHADL

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

hhll+XPC

Op Code Operand
hhll

Next
Op Code

ADHADL

PG

ADHADL

PG

PC+1 S–1

PCHPCL

00PG or PG+1

Not used

“H”

R/W(CPU)

7700 FAMILY SOFTWARE MANUAL6–66

Stack

Instruction : PEA

Timing :

Instruction : PEI

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
mmnn

Next
Op Code

00 PG

PC+3

Not used

S–1

mmnn

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

DPR+nnPC

Op Code Operand
nn

Next
Op Code

PC+2

PG

DHDL

00

PC+1 S–1

DHDL

0000 or 01

Not used

7700 FAMILY SOFTWARE MANUAL 6–67

Stack

Instruction : PER

Timing :

Instruction : PHA, PHD, PHP, PHX, PHY

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
mmnn

Next
Op Code

00 PG

PC+3

Not used

S–1

PC+mmnnNot used

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code Next
Op Code

PC+1

PG

A

PC+1 S–1

00

Not usedNot used

7700 FAMILY SOFTWARE MANUAL6–68

Stack

Instruction : PHB

Timing :

Instruction : PHG, PHT

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code Next
Op Code

PC+1

PG

PG

PC+1 S

00

Not used

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+2PC

Op Code Next
Op Code

00 PG

PC+2

Op Code

S–1

BNot used

PG PG

PC+1 PC+1

Not usedNot used

7700 FAMILY SOFTWARE MANUAL 6–69

Stack

Instruction : PLA, PLD, PLX, PLY

Timing :

Instruction : PLB

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Next
Op Code

00 PG

PC+1

Not used

S+1

ANot used

(Stack)

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+2PC

Op Code Next
Op Code

PC+2

PG

Not used

PG

PC+1 S+1

B

00PG

Op Code Not used

PC+1

Not used

(Stack)

7700 FAMILY SOFTWARE MANUAL6–70

Stack

Instruction : PLP

Timing :

Instruction : PLT

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Next
Op Code

00 PG

PC+1

Not used

S+1

PSNot used Not used

(Stack)

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG DL

S+1PC

Op Code Next
Op Code

PC+1

PG

DT Not used

00PG

Not used

PC+1

Not used

(Stack)

7700 FAMILY SOFTWARE MANUAL 6–71

Stack

Instruction : PSH

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG 00

PC PC+1 S S S S–1 S–2 S–2 S–3

BANot
used

Op Code Operand
nn

Not
used

Not
used

Not
used

Not
used

Not
used

BA

00

00 00 00

S–4 S–4 S–6 S–6 S–7 S–8 S–8 S–9 S–10

DPR Y
Not

used
Not

used
Not

used
Not

used

DPRX

S–5

00

Not
used

Not
used X

Not
used

Y

B

00 00 00

S–10 S–11 S–12 S–12 S–13 PC+2

PS
Not

used
Not

used
Next

Op Code

PSDT

S–11

Not
used PG

PG

DT

PG

Not
used

This figure is an example pushed all the registers by PSH instruction. If any register is
not pushed, its cycle “ ” is nothing.

(Note)

7700 FAMILY SOFTWARE MANUAL6–72

Stack

Instruction : PUL

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG 00

PC PC+1 S+1 S+1 S+1 S+1 S+2 S+3 S+3

Operand
nn

PS

PSNot
usedOp Code

Not
used

Not
used

Not
used

Not
used

Not
used

Not
used

PG00

S+8 S+9 S+10 S+11 S+12 S+13 S+14 PC+2

Not
used

Not
used

Not
used

AX

S+10

00

Not
used

Not
usedX

Not
used

00

B A

S+12

B

Next
Op Code

Not
used

This figure is an example pushed all the registers by PUL instruction. If any register is
not pushed, its cycle “ ” is nothing.

(Note)

00 00

S+3 S+3 S+5 S+6 S+6 S+7 S+8

Not
used

Not
used

Not
used

Not
used

YDT

S+4

00

Not
used

Not
usedDT

Not
used

DPR

DT

DPR Y
Not

used

S+4

7700 FAMILY SOFTWARE MANUAL 6–73

Relative

Instruction : BRA

Timing :

Instruction : BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Next
Op Code

PG PG or PG+1

PC+rr

Not usedOperand
rr Not used

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG

PC

Op Code Next
Op Code

PC+rr

PG or PG+1

Not used

PC+1

PGPG

Not usedOperand
rr Not used Not used

When not branch, this cycle is nothing.

Branched

7700 FAMILY SOFTWARE MANUAL6–74

Direct Bit Relative

Instruction : BBC, BBS

Timing :

“H”

R/W(CPU)

φ CPU

When m=1, fetched operand at 5-th cycle is 1-byte (nn).

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG 00 or 01 PG

PC PC+1
DPR
+dd PC+2 PC+4

PCHPCL

+rr

Not
used

Op Code Operand
dd

Operand
mmnn

Operand
rr

Not
used

Not
used

When not branch, this cycle is nothing.

Next
Op Code

PG 00 PG PG PG or
PG+1

DHDL
Not

used

When DPRL=0, this cycle is nothing.

DPRL≠0, m=0, Branched

7700 FAMILY SOFTWARE MANUAL 6–75

Absolute Bit Relative

Instruction : BBC, BBS

Timing :

“H”
R/W(CPU)

φ CPU

When m=1, fetched operand at 4-th cycle is 1-byte (nn).

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG PG

PC PC+1 PC+5

Op Code Operand
hhll

Operand
mmnn

Operand
rr

Not
used

Not
used

When not branch, this cycle is nothing.

Next
Op Code

PG PG PG PG or
PG+1

DHDL
Not

used

hhll PC+3 PC+rr

m=0, Branched

7700 FAMILY SOFTWARE MANUAL6–76

Stack Pointer Relative

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

“H”
R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Next
Op Code

00 or 01 PG

PC+2

Not usedOperand
rr DHDL

00

S+rr

“H”
R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG

PC

Op Code
Next

Op Code

PC+2

Not used

PC+1

PGPG

AOperand
rr Not used

00 00 or 01

S+rr

7700 FAMILY SOFTWARE MANUAL 6–77

Stack Pointer Relative

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG 00 or 01

PC+1PC

Op
Code

Op
Code

S+rr

PGPG

PC+1

Not
used

✽

PG

PC+3

Not used

PG

DHDL

PC+2

00

Not
used

S+rr

Operand
rr

Next
Op Code

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIV

DIVS

Plus✕Plus

Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS

2339

1422

1220

1725

—

—

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

7700 FAMILY SOFTWARE MANUAL6–78

Stack Pointer Relative

Instruction : DIV, DIVS* (case of 0 division)

Timing :

FFFE

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

0000 or 01

S

Not used

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

00 or 01

Operand
rr

S+rr FFFE

Not used

FFFF

DHDL Not used Not used Not used Not used

PC+2

PG

Not used

00

Not used

“H”

R/W(CPU)

φ CPU

At DIVS instruction, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL 6–79

Stack Pointer Relative Indirect Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

Instruction : STA

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC

Op Code Next
Op CodeNot used

00

PC+1

DT or DT+1

Not used

PC+2

PG00 or 01

Operand
rr ADHADL ANot used

DT

ADHADL+YS+rr

“H”
R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC

Op Code Operand
rr

00 or 01 DT

S+rr

Not used
Next

Op CodeNot used

00 PG

PC+2

ADHADL

DT or DT+1

ADHADL+Y

DHDL

7700 FAMILY SOFTWARE MANUAL6–80

Stack Pointer Relative Indirect Indexed Y

Instruction : DIV, DIVS*, MPY, MPYS*

Timing :

“H”

R/W(CPU)

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG DT or DT+1

PC+1PC

Op
Code

Op
Code

ADHADL+Y

PGPG

PC+1

Not
used

✽

PG

Not used

PC+3

PG 00

PC+2

DHDL
Not

used

00 or 01

Not
used

DT

S+rr

ADHADL

+Y

ADH
ADL

Operand
rr

Next
Op Code

DIV 2339—

The number of cycles(cycle)

(Note) The cycle number during ✽ is shown in following table

Plus÷Plus

Plus÷Minus

Minus÷Minus

Minus÷Plus

25

2642

41

Instruction

DIVS

Plus✕Plus
Minus✕Minus

Plus✕Minus

Minus✕Plus

MPY

MPYS
1422

1220

1725

• The contents of AHAL(CPU) during ✽ of the DIVS instruction is undefined.
• When the multiplier and the multiplicand is different sign at the MPYS instruction, the contents of
 AHAL(CPU) of the last 3 cycles during ✽ is undefined.

The contents
of division m=0 m=1

—

7700 FAMILY SOFTWARE MANUAL 6–81

Stack Pointer Relative Indirect Indexed Y

Instruction : DIV , DIVS*(case of 0 division)

Timing :

FFFF

00

FFFCS–2 S–4

Not used

00

ADHADLS–3 S–4

Next
Op CodeNot usedNot usedPG PC PS ADHADL

S–1

00

FFFE

DT or DT+1

S

Not used Not usedNot used

R/W(CPU)

“H”

φ CPU

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG

PC+1PC PC+1

PG

Op Code Not used Op Code

DT or DT+1

Operand
rr

ADHADL+Y

Not used

FFFF

DHDL Not used Not used

PC+2

PG

Not used

00

Not usedADHADL Not used

S+rr

00 or 01 DT

At DIVS instruction, this cycle is nothing.

7700 FAMILY SOFTWARE MANUAL6–82

Block Transfer

Instruction : MVN

Timing :

“H”
R/W(CPU)

φ CPU

● The transfer of even byte

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG Source Bank ss

PC PC+1 PC+2 ? X ?

DHDL
Not

usedOp Code
Not

used
Not

used
Not

used
Not

used

Repeat this cycle

Not
used

PG dd ss

dd
(Destination

 Bank)

ss
(Source

Bank)

Destination Bank dd PG

Y PC+3?

Not
used

Not
usedDHDL

Not
used

Next
Op Code

This figure is shown that transferred the 2-bytes data. If transferred more than 2-bytes
data, the cycle “ ” is repeated each 2-bytes.
The CPU instruction execution sequence is identical regardless of whether the transfer
start address is even or odd.

(Note)

7700 FAMILY SOFTWARE MANUAL 6–83

Block Transfer

Instruction : MVN

Timing :

“H”
R/W(CPU)

φ CPU

● The transfer of odd byte

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG Source Bank ss

PC PC+1 PC+2 ?
X+

2(n–1) ?

DHDLNot
used

Op Code Not
used

Not
used

Not
used

Not
used

Repeated this cycle

Not
used

PG dd ss

dd
(Destination

Bank)

ss
(Source

Bank)

Not
used

Destination Bank dd PG

Y+2(n–1) PC+3?

Not
used

Not
usedDHDL

Next
Op Code

ss dd

X+2n Y+2n

Not
usedDHDL DL

Transfer last 1-byte

This figure is shown that transferred the 2-bytes. If transferred more than 2-bytes data,
the cycle “ ” is repeated each 2-bytes.
The CPU instruction execution sequence is identical regardless of whether the transfer
start address is even or odd. The transfer of the last byte is performed by reading 2 byte
and writing 1 byte.

(Note)

7700 FAMILY SOFTWARE MANUAL6–84

Block Transfer

Instruction : MVP

Timing :

Destination Bank dd PG

Y–1 PC+3?

Not
used

Not
used

DHDL
Not

used
Next

Op Code

Destination
Bank

?

Not
used

Not
used

“H”
R/W(CPU)

φ CPU

● The transfer of even byte

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG Source Bank ss

PC PC+1 X ? X–1

DHDL
Not

used
Op Code Not

used
Not

used
Not

used
Not

used

Repeated this cycle

Not
used

PG dd ss

Y PC+2

dd
(Destination

Bank)

ss
(Source

Bank)

This figure is shown that transferred the 2-bytes data. If transferred more than 2-bytes,
the cycle “ ” is repeated each 2-bytes.
The CPU instruction execution sequence is identical regardless of whether the transfer
start address is even or odd.

(Note)

7700 FAMILY SOFTWARE MANUAL 6–85

Block Transfer

Instruction : MVP

Timing :

Destination Bank dd PG

Y–2(n–1)–1 PC+3X–2n
–1

Not
used

Not
usedDHDL

Not
used

Next
Op Code

ss

?

Not
used

Not
used

Transfer last 1-byte

X–2n

ss

Y–2n
–1

dd

Not
used

Y–2n

dd

DL
Not

used DL

This figure is shown that transferred the 2-bytes data. If transferred more than 2-bytes,
the cycle “ ” is repeated each 2-bytes.
The CPU instruction execution sequence is identical regardless of whether the transfer
start address is even or odd.

(Note)

“H”
R/W(CPU)

φ CPU

● The transfer of odd byte

AP(CPU)

AHAL(CPU)

DATA(CPU)

PG PG ss

PC PC+1 X ? X–2(n–1)–1

DHDLNot
used

Op Code
dd ss Not

used
Not

used
Not

used
Not

used
Not

used

PG dd ss

Y PC+2

(Destination
Bank)

(Source
Bank)

Repeated this cycle

7700 FAMILY SOFTWARE MANUAL6–86

CPU INSTRUCTION EXECUTION SEQUENCE FOR
EACH ADDRESSING MODES

MEMORANDUM

APPENDIXAPPENDIX

APPENDIX 1. Machine Instructions
APPENDIX 2. Hexadecimal Instruction Code Table

Renesas
EOL announced

7700 FAMILY SOFTWARE MANUAL7–2

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–3

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–4

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–5

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–6

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–7

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–8

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–9

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–10

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–11

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–12

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–13

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–14

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–15

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–16

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–17

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–18

APPENDIX
APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 1

D3—D0

D7—D4
Hexadecimal

notation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1101

1100

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 B C D E F

BRK

BPL

BMI

RTI

BVC

RTS

BVS

BCC

BCS

BNE

BEQ

JSR

ABS

BRA

REL

LDY

IMM

CPX

IMM

CPY

IMM

ORA

A,(DIR,X)

ORA

A,(DIR),Y

AND

A,(DIR,X)

EOR

A,(DIR,X)

EOR

A,(DIR),Y

ADC

A,(DIR,X)

ADC

A,(DIR),Y

STA

A,(DIR,X)

LDA

A,(DIR,X)

AND

A,(DIR),Y

STA

A,(DIR),Y

LDA

A,(DIR),Y

CMP

A,(DIR),Y

CMP

A,(DIR,X)

SBC

A,(DIR,X)

SBC

A,(DIR),Y

ORA

A,(DIR)

JSR

ABL

AND

A,(DIR)

Note 1

EOR

A,(DIR)

PER

ADC

A,(DIR)

STA

A,(DIR)

LDA

A,(DIR)

CMP

A,(DIR)

SBC

A,(DIR)

BRA

REL

LDX

IMM

CLP

IMM

SEP

IMM

ORA

A,SR

A

ORA

A,DIR

SEB

DIR,b

ASL

DIR

ORA

A,L(DIR)

ORA

A,IMM

ORA

A,ABS
PHP PHD

ASL

A

SEB

ABS,b

ASL

ABS

ORA

A,(SR),Y

ORA

A,L(DIR),Y

CLB

DIR,b

ORA

A,DIR,X

ASL

DIR,X
CLC TAS

ORA

A,ABS,Y

DEC

A

CLB

ABS,b

ORA

A,ABS,X

ASL

ABS,X

AND

A,SR

BBS

DIR,b,R

AND

A,DIR

ROL

DIR

AND

A,L(DIR)
PLP PLD

AND

A,IMM

ROL

A

BBS

ABS,b,R

AND

A,ABS

ROL

ABS

AND

A,(SR),Y

BBC

DIR,b,R

AND

A,DIR,X

ROL

DIR,X

AND

A,L(DIR),Y
SEC

AND

A,ABS,Y

INC

A
TSA

BBC

ABS,b,R

AND

A,ABS,X

ROL

ABS,X

EOR

A,SR
MVP

EOR EOR EOR EOR

A,DIR

LSR

DIR A,L(DIR)
PHA

A,IMM

LSR

A
PHG

JMP

ABS A,ABS

LSR

ABS

EOR

A,(SR),Y

A,(SR),Y

A,(SR),Y

A,(SR),Y

A,(SR),Y

A,(SR),Y

MVN
EOR EOR EOR EOR LSRLSR

CLI TADPHY
JMP

A,DIR,X

A,DIR,X

A,DIR,X

A,DIR,X

A,DIR,X

A,DIR,X

DIR,X

DIR,X

DIR,Y

DIR,Y

DIR,X

DIR,X

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

ABL

(ABS)

ABS

ABS

ABS

ABS

A,ABS,X

A,ABS,X

A,ABS,X

A,ABS,X

A,ABS,X

A,ABS,X

ABS,X

ABS,X

ABS,X

ABS,Y

ABS,X

ABS,X

ADC ADC ADC ADC ADCROR ROR RORJMP
RTLPLA

LDM

A,SR

A,SR

A,SR

A,SR

A,SR

DIR

DIR

DIR

DIR

DIR

A,DIR

A,DIR

A,DIR

A,DIR

A,DIR

DIR

DIR

DIR

DIR

DIR

A,L(DIR)

A,L(DIR)

A,L(DIR)

A,L(DIR)

A,L(DIR)

A,IMM

A,IMM

A,IMM

A,IMM

A A,ABS ABS

A,ABS ABS

A,ABS ABS

A,ABS ABS

A,ABS ABS

ADC ADC ADC ADC ADCJMP RORRORLDM

DIR,X

DIR,X

DIR,X

SEI TDAPLY
(ABS,X)

STA STY STA STA STASTX STY STX
DEY TXA PHTNote 2

STASTASTASTASTA STY STX
TXS TXYTYA

LDM LDM

LDA LDALDY LDA LDA LDALDX LDXLDY
PLTTAXTAY

LDA LDALDY LDALDX LDA
TYXTSXCLV

ABS,X

LDA LDXLDY

CMP CMP CMP CMP CMPCPY DEC CPY DEC

CMP DEC

INY DEX WIT

CMP CMP CMPDEC
CLM

CMP
PHX STP

JMP

L(ABS)
PEI

SBC SBC SBC SBC SBC

ORA

A,ABL

ORA

A,ABL,X

AND

A,ABL

AND

A,ABL,X

EOR

A,ABL

EOR

A,ABL,X

A,ABL,X

A,ABL,X

A,ABL,X

A,ABL,X

A,ABL,X

ADC

A,ABL

A,ABL

A,ABL

A,ABL

A,ABL

ADC

STA

STA

LDA

LDA

CMP

CMP

SBC

SBCSBCSBC

CPX CPX INC

INC

INX
INC

SBC
PEA

SBC SBCINC
SEM PLX

NOP PSH

PUL
JSR

ABS

(ABS,X)

Note 1. 4216 specifies the contents of the INSTRUCTION CODE TABLE-2. About the second word's codes, refer to the INSTRUCTION CODE TABLE-2.
Note 2. 8916 specifies the contents of the INSTRUCTION CODE TABLE-3. About the second word's codes, refer to the INSTRUCTION CODE TABLE-3.

7700 FAMILY SOFTWARE MANUAL 7–19

APPENDIX
APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 2 (The first word's code of each instruction is 4216)

D3—D0

D7—D4
Hexadecimal

notation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1101

1100

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 B C D E F

ORA

B,(DIR,X)

ORA

B,(DIR),Y

AND

B,(DIR,X)

EOR

B,(DIR,X)

EOR

B,(DIR),Y

ADC

B,(DIR,X)

ADC

B,(DIR),Y

STA

B,(DIR,X)

LDA

B,(DIR,X)

AND

B,(DIR),Y

STA

B,(DIR),Y

LDA

B,(DIR),Y

CMP

B,(DIR),Y

CMP

B,(DIR,X)

SBC

B,(DIR,X)

SBC

B,(DIR),Y

ORA

B,(DIR)

AND

B,(DIR)

EOR

B,(DIR)

ADC

B,(DIR)

STA

B,(DIR)

LDA

B,(DIR)

CMP

B,(DIR)

SBC

B,(DIR)

ORA

B,SR

A

ORA

B,DIR

ORA

B,L(DIR)

ORA

B,IMM

ORA

B,ABS

ASL

B

ORA

B,(SR),Y

ORA

B,L(DIR),Y

ORA

B,DIR,X
TBS

ORA

B,ABS,Y

DEC

B

ORA

B,ABS,X

AND

B,SR

AND

B,DIR

AND

B,L(DIR)

AND

B,IMM

ROL

B

AND

B,ABS

AND

B,(SR),Y

AND

B,DIR,X

AND

B,L(DIR),Y

AND

B,ABS,Y

INC

B
TSB

AND

B,ABS,X

EOR

B,SR

EOR EOR EOR EOR

B,DIR B,L(DIR)
PHB

B,IMM

LSR

B B,ABS

EOR

B,(SR),Y

B,(SR),Y

B,(SR),Y

B,(SR),Y

B,(SR),Y

B,(SR),Y

EOR EOR EOR EOR
TBD

B,DIR,X

B,DIR,X

B,DIR,X

B,DIR,X

B,DIR,X

B,DIR,X

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,X

B,ABS,X

B,ABS,X

B,ABS,X

B,ABS,X

B,ABS,X

ADC ADC ADC ADC ADCROR
PLB

B,SR

B,SR

B,SR

B,SR

B,SR

B,DIR

B,DIR

B,DIR

B,DIR

B,DIR

B,L(DIR)

B,L(DIR)

B,L(DIR)

B,L(DIR)

B,L(DIR)

B,IMM

B,IMM

B,IMM

B,IMM

B B,ABS

B,ABS

B,ABS

B,ABS

B,ABS

ADC ADC ADC ADC ADC
TDB

STA STA STA STA
TXB

STASTASTASTASTA
TYB

LDA LDA LDA LDA LDA
TBXTBY

LDA LDA LDA LDA LDA

CMP CMP CMP CMP CMP

CMPCMP CMP CMP CMP

SBC SBC SBC SBC SBC

ORA

B,ABL

ORA

B,ABL,X

AND

B,ABL

AND

B,ABL,X

EOR

B,ABL

EOR

B,ABL,X

B,ABL,X

B,ABL,X

B,ABL,X

B,ABL,X

B,ABL,X

ADC

B,ABL

B,ABL

B,ABL

B,ABL

B,ABL

ADC

STA

STA

LDA

LDA

CMP

CMP

SBC

SBCSBCSBCSBC SBC SBC

7700 FAMILY SOFTWARE MANUAL7–20

APPENDIX
APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 3 (The first word's code of each instruction is 8916)

D3—D0

D7—D4
Hexadecimal

notation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1101

1100

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 B C D E F

MPY

(DIR,X)

MPY

(DIR),Y

DIV

(DIR),X

DIV

(DIR),Y

MPY

(DIR)

DIV

(DIR)

MPY

SR

A

MPY

DIR

MPY

L(DIR)

MPY

IMM

MPY

ABS

MPY

(SR),Y

MPY

L(DIR),Y

MPY

DIR,X

MPY

ABS,Y

MPY

ABS,X

DIV

SR

DIV

DIR

DIV

L(DIR)

DIV

IMM

DIV

ABS

DIV

(SR),Y

DIV

DIR,X

DIV

L(DIR),Y

DIV

ABS,Y

DIV

ABS,X

RLA

IMM

IMM

LDT

MPY

ABL

MPY

ABL,X

DIV

ABL

DIV

ABL,X

XAB

Note 1. The code of each instruction first word is 8916.
Note 2. “*” shows the instructions can be used in 7750 Series.

MPYS*

(DIR,X)

MPYS*

(DIR),Y

DIVS*

(DIR),X

DIVS*

(DIR),Y

MPYS*

(DIR)

DIVS*

(DIR)

MPYS*

SR

MPYS*

DIR

MPYS*

L(DIR)

MPYS*

(SR),Y

MPYS*

L(DIR),Y

MPYS*

DIR,X

DIVS*

SR

DIVS*

DIR

DIVS*

L(DIR)

DIVS*

(SR),Y

DIVS*

DIR,X

DIVS*

L(DIR),Y

MPYS*

IMM

MPYS*

ABS,Y

DIVS*

IMM

DIVS*

ABS,Y

MPYS*

ABS

MPYS*

ABS,X

DIVS*

ABS

DIVS*

ABS,X

EXTS*

A

EXTZ*

A

MPYS*

ABL

MPYS*

ABL,X

DIVS*

ABL

DIVS*

ABL,X

7700 FAMILY SOFTWARE MANUAL7–2

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–3

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–4

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–5

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–6

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–7

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–8

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–9

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–10

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–11

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–12

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–13

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–14

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–15

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–16

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL 7–17

APPENDIX
APPENDIX.1 Machine Instructions

7700 FAMILY SOFTWARE MANUAL7–18

APPENDIX
APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 1

D3—D0

D7—D4
Hexadecimal

notation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1101

1100

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 B C D E F

BRK

BPL

BMI

RTI

BVC

RTS

BVS

BCC

BCS

BNE

BEQ

JSR

ABS

BRA

REL

LDY

IMM

CPX

IMM

CPY

IMM

ORA

A,(DIR,X)

ORA

A,(DIR),Y

AND

A,(DIR,X)

EOR

A,(DIR,X)

EOR

A,(DIR),Y

ADC

A,(DIR,X)

ADC

A,(DIR),Y

STA

A,(DIR,X)

LDA

A,(DIR,X)

AND

A,(DIR),Y

STA

A,(DIR),Y

LDA

A,(DIR),Y

CMP

A,(DIR),Y

CMP

A,(DIR,X)

SBC

A,(DIR,X)

SBC

A,(DIR),Y

ORA

A,(DIR)

JSR

ABL

AND

A,(DIR)

Note 1

EOR

A,(DIR)

PER

ADC

A,(DIR)

STA

A,(DIR)

LDA

A,(DIR)

CMP

A,(DIR)

SBC

A,(DIR)

BRA

REL

LDX

IMM

CLP

IMM

SEP

IMM

ORA

A,SR

A

ORA

A,DIR

SEB

DIR,b

ASL

DIR

ORA

A,L(DIR)

ORA

A,IMM

ORA

A,ABS
PHP PHD

ASL

A

SEB

ABS,b

ASL

ABS

ORA

A,(SR),Y

ORA

A,L(DIR),Y

CLB

DIR,b

ORA

A,DIR,X

ASL

DIR,X
CLC TAS

ORA

A,ABS,Y

DEC

A

CLB

ABS,b

ORA

A,ABS,X

ASL

ABS,X

AND

A,SR

BBS

DIR,b,R

AND

A,DIR

ROL

DIR

AND

A,L(DIR)
PLP PLD

AND

A,IMM

ROL

A

BBS

ABS,b,R

AND

A,ABS

ROL

ABS

AND

A,(SR),Y

BBC

DIR,b,R

AND

A,DIR,X

ROL

DIR,X

AND

A,L(DIR),Y
SEC

AND

A,ABS,Y

INC

A
TSA

BBC

ABS,b,R

AND

A,ABS,X

ROL

ABS,X

EOR

A,SR
MVP

EOR EOR EOR EOR

A,DIR

LSR

DIR A,L(DIR)
PHA

A,IMM

LSR

A
PHG

JMP

ABS A,ABS

LSR

ABS

EOR

A,(SR),Y

A,(SR),Y

A,(SR),Y

A,(SR),Y

A,(SR),Y

A,(SR),Y

MVN
EOR EOR EOR EOR LSRLSR

CLI TADPHY
JMP

A,DIR,X

A,DIR,X

A,DIR,X

A,DIR,X

A,DIR,X

A,DIR,X

DIR,X

DIR,X

DIR,Y

DIR,Y

DIR,X

DIR,X

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,L(DIR),Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

A,ABS,Y

ABL

(ABS)

ABS

ABS

ABS

ABS

A,ABS,X

A,ABS,X

A,ABS,X

A,ABS,X

A,ABS,X

A,ABS,X

ABS,X

ABS,X

ABS,X

ABS,Y

ABS,X

ABS,X

ADC ADC ADC ADC ADCROR ROR RORJMP
RTLPLA

LDM

A,SR

A,SR

A,SR

A,SR

A,SR

DIR

DIR

DIR

DIR

DIR

A,DIR

A,DIR

A,DIR

A,DIR

A,DIR

DIR

DIR

DIR

DIR

DIR

A,L(DIR)

A,L(DIR)

A,L(DIR)

A,L(DIR)

A,L(DIR)

A,IMM

A,IMM

A,IMM

A,IMM

A A,ABS ABS

A,ABS ABS

A,ABS ABS

A,ABS ABS

A,ABS ABS

ADC ADC ADC ADC ADCJMP RORRORLDM

DIR,X

DIR,X

DIR,X

SEI TDAPLY
(ABS,X)

STA STY STA STA STASTX STY STX
DEY TXA PHTNote 2

STASTASTASTASTA STY STX
TXS TXYTYA

LDM LDM

LDA LDALDY LDA LDA LDALDX LDXLDY
PLTTAXTAY

LDA LDALDY LDALDX LDA
TYXTSXCLV

ABS,X

LDA LDXLDY

CMP CMP CMP CMP CMPCPY DEC CPY DEC

CMP DEC

INY DEX WIT

CMP CMP CMPDEC
CLM

CMP
PHX STP

JMP

L(ABS)
PEI

SBC SBC SBC SBC SBC

ORA

A,ABL

ORA

A,ABL,X

AND

A,ABL

AND

A,ABL,X

EOR

A,ABL

EOR

A,ABL,X

A,ABL,X

A,ABL,X

A,ABL,X

A,ABL,X

A,ABL,X

ADC

A,ABL

A,ABL

A,ABL

A,ABL

A,ABL

ADC

STA

STA

LDA

LDA

CMP

CMP

SBC

SBCSBCSBC

CPX CPX INC

INC

INX
INC

SBC
PEA

SBC SBCINC
SEM PLX

NOP PSH

PUL
JSR

ABS

(ABS,X)

Note 1. 4216 specifies the contents of the INSTRUCTION CODE TABLE-2. About the second word's codes, refer to the INSTRUCTION CODE TABLE-2.
Note 2. 8916 specifies the contents of the INSTRUCTION CODE TABLE-3. About the second word's codes, refer to the INSTRUCTION CODE TABLE-3.

7700 FAMILY SOFTWARE MANUAL 7–19

APPENDIX
APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 2 (The first word's code of each instruction is 4216)

D3—D0

D7—D4
Hexadecimal

notation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1101

1100

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 B C D E F

ORA

B,(DIR,X)

ORA

B,(DIR),Y

AND

B,(DIR,X)

EOR

B,(DIR,X)

EOR

B,(DIR),Y

ADC

B,(DIR,X)

ADC

B,(DIR),Y

STA

B,(DIR,X)

LDA

B,(DIR,X)

AND

B,(DIR),Y

STA

B,(DIR),Y

LDA

B,(DIR),Y

CMP

B,(DIR),Y

CMP

B,(DIR,X)

SBC

B,(DIR,X)

SBC

B,(DIR),Y

ORA

B,(DIR)

AND

B,(DIR)

EOR

B,(DIR)

ADC

B,(DIR)

STA

B,(DIR)

LDA

B,(DIR)

CMP

B,(DIR)

SBC

B,(DIR)

ORA

B,SR

A

ORA

B,DIR

ORA

B,L(DIR)

ORA

B,IMM

ORA

B,ABS

ASL

B

ORA

B,(SR),Y

ORA

B,L(DIR),Y

ORA

B,DIR,X
TBS

ORA

B,ABS,Y

DEC

B

ORA

B,ABS,X

AND

B,SR

AND

B,DIR

AND

B,L(DIR)

AND

B,IMM

ROL

B

AND

B,ABS

AND

B,(SR),Y

AND

B,DIR,X

AND

B,L(DIR),Y

AND

B,ABS,Y

INC

B
TSB

AND

B,ABS,X

EOR

B,SR

EOR EOR EOR EOR

B,DIR B,L(DIR)
PHB

B,IMM

LSR

B B,ABS

EOR

B,(SR),Y

B,(SR),Y

B,(SR),Y

B,(SR),Y

B,(SR),Y

B,(SR),Y

EOR EOR EOR EOR
TBD

B,DIR,X

B,DIR,X

B,DIR,X

B,DIR,X

B,DIR,X

B,DIR,X

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,L(DIR),Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,Y

B,ABS,X

B,ABS,X

B,ABS,X

B,ABS,X

B,ABS,X

B,ABS,X

ADC ADC ADC ADC ADCROR
PLB

B,SR

B,SR

B,SR

B,SR

B,SR

B,DIR

B,DIR

B,DIR

B,DIR

B,DIR

B,L(DIR)

B,L(DIR)

B,L(DIR)

B,L(DIR)

B,L(DIR)

B,IMM

B,IMM

B,IMM

B,IMM

B B,ABS

B,ABS

B,ABS

B,ABS

B,ABS

ADC ADC ADC ADC ADC
TDB

STA STA STA STA
TXB

STASTASTASTASTA
TYB

LDA LDA LDA LDA LDA
TBXTBY

LDA LDA LDA LDA LDA

CMP CMP CMP CMP CMP

CMPCMP CMP CMP CMP

SBC SBC SBC SBC SBC

ORA

B,ABL

ORA

B,ABL,X

AND

B,ABL

AND

B,ABL,X

EOR

B,ABL

EOR

B,ABL,X

B,ABL,X

B,ABL,X

B,ABL,X

B,ABL,X

B,ABL,X

ADC

B,ABL

B,ABL

B,ABL

B,ABL

B,ABL

ADC

STA

STA

LDA

LDA

CMP

CMP

SBC

SBCSBCSBCSBC SBC SBC

7700 FAMILY SOFTWARE MANUAL7–20

APPENDIX
APPENDIX.2 Hexadecimal Instruction Code Table

INSTRUCTION CODE TABLE - 3 (The first word's code of each instruction is 8916)

D3—D0

D7—D4
Hexadecimal

notation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1101

1100

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 B C D E F

MPY

(DIR,X)

MPY

(DIR),Y

DIV

(DIR),X

DIV

(DIR),Y

MPY

(DIR)

DIV

(DIR)

MPY

SR

A

MPY

DIR

MPY

L(DIR)

MPY

IMM

MPY

ABS

MPY

(SR),Y

MPY

L(DIR),Y

MPY

DIR,X

MPY

ABS,Y

MPY

ABS,X

DIV

SR

DIV

DIR

DIV

L(DIR)

DIV

IMM

DIV

ABS

DIV

(SR),Y

DIV

DIR,X

DIV

L(DIR),Y

DIV

ABS,Y

DIV

ABS,X

RLA

IMM

IMM

LDT

MPY

ABL

MPY

ABL,X

DIV

ABL

DIV

ABL,X

XAB

Note 1. The code of each instruction first word is 8916.
Note 2. “*” shows the instructions can be used in 7750 Series.

MPYS*

(DIR,X)

MPYS*

(DIR),Y

DIVS*

(DIR),X

DIVS*

(DIR),Y

MPYS*

(DIR)

DIVS*

(DIR)

MPYS*

SR

MPYS*

DIR

MPYS*

L(DIR)

MPYS*

(SR),Y

MPYS*

L(DIR),Y

MPYS*

DIR,X

DIVS*

SR

DIVS*

DIR

DIVS*

L(DIR)

DIVS*

(SR),Y

DIVS*

DIR,X

DIVS*

L(DIR),Y

MPYS*

IMM

MPYS*

ABS,Y

DIVS*

IMM

DIVS*

ABS,Y

MPYS*

ABS

MPYS*

ABS,X

DIVS*

ABS

DIVS*

ABS,X

EXTS*

A

EXTZ*

A

MPYS*

ABL

MPYS*

ABL,X

DIVS*

ABL

DIVS*

ABL,X

MITSUBISHI SEMICONDUCTORS
7700 Family Software MANUAL

Sep. First Edition 1994

Editioned by
Committee of editing of Mitsubishi Semiconductor USER’S MANUAL

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1994 MITSUBISHI ELECTRIC CORPORATION

Renesas
EOL announced

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

7700 Family
Software Manual

	Table of contents
	1 DESCRIPTION
	1.1 Description

	2 CENTRAL PROCESSING UNIT (CPU)
	2.1 Central processing unit (CPU)

	3 ADDRESSING MODES
	3.1 Addressing Modes
	3.2 Explanation of Addressing Modes

	4 INSTRUCTIONS
	4.1 Instruction Set
	4.2 Description of Instructions
	4.3 Notes for Programming

	5 INSTRUCTION EXECUTION SEQUENCE
	5.1 Change of the CPU Basic Clock fCPU
	5.2 Instruction Execution Sequence

	6 CPU INSTRUCTION EXECUTION SEQUENCE FOR EACH ADDRESSING MODE
	APPENDIX
	APPENDIX.1 Machine Instructions
	APPENDIX.2 Hexadecimal Instruction Code Table

