LENESAS

Synergy Software Quality
Handbook

Renesas Synergy™ Platform
Synergy Software
Software Quality Assurance

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published by Renesas Electronics Corp.
through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Rev. 4.0 April 2019

Synergy Software Quality Handbook

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,

software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any

losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes

involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas

Electronics products or technical information described in this document, including but not limited to, the product data, drawing,

chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of

Renesas Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such

alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard™ and "High Quality". The

intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale
communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human

10.

11.

12.

life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages
(space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment;
etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from
the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application
notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage
conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply
voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any
malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor
products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety
measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of
failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited
to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate
measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software
alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for
damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas
Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc.,
of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including
unmanned aerial vehicles (UAVS)) for delivering such weapons, (2) any purpose relating to the development, design,
manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you
shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or
indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above.
When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable
export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over
the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of
the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse
or violation results from your resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 2 of 2
April 2019April 2019

April 2019April 2019

Synergy Software Quality Handbook Approvals
Approvals

IoT Platform Business Division Vice President " Dat¢

)2l Cna- o1
Serﬁeﬁ' Director of Engineering Date
Lo Bl 51e 119
SoWre Devﬁcﬁt Senior Manager Date
5/e/r7

%em Engineering Diregﬁr/ Date

Software Qha-h-ly-&lemm Manager Date
loT-SQH-00304 Rev. 4.0 RENESAS Page 10f 4

Synergy Software Quality Handbook Contents

Contents
AAPPIOVAIS ...ttt bbb Rt e et b R bbbt 1
(000 01 1=] 01 1 ST R OPRTUPUPRUPROTN 2
1. L1 00 [od o] o SRR TSP 1
2. DETINITIONS. ...ttt bbb b bbbt s et e bbb bbbt 2
2 1o 111 T - OO USPSPRRN 2
2.2 SOTIWANE QUANTTY ...ttt b bbbt bbbt b e bbb bbbt bbbt bt bbbt bt b e 2
2.3 SOftWAre QUAIITY ASSUIANCEcueveiteitesiestesteetetestestestestesteasseseessesteseesteaseasseseessestessessesteasseseesestessessessesseesenssensessens 2
I O TV - 1] = o (o] £ SRS 2
3. Software Development Life CyCle ACHIVILIESccoiiieiieii i 4
3L PlANNING PRESE ...ttt ettt et b bbb bbb bk E R b h R R b e R b e Rt b bRt Rt b e 4
3.2 Software Development Plan (I0T-SDP-00217)ccoiiireiiiiriiiainieieiisieneeie ettt sttt sb et sbe s 4
3.3 Software Verification Plan (I0T-SVP-00174).........ccccciueiiiiieie e st sttt ettt e s e e e sae e eesteesteaaeansesneesseesreens 5
3.4 Software Configuration Management Plan (I0T-SCP-00172)cccccteiiieiiiiiiiieiiese e eie e steeste e snee e e 5
3.5 Software Quality Assurance Plan (I0T-SQP-00173)cccciieiiieiiieiieieeite et ste st ese e e se e e e e sreesaeesesneesreesreens 6
3.6 Software DeVElOPMENT PRASEcoiiiiiiiiiiee bbbt et b bbbt 6
3.6.1 Software Requirements Specification (10T-STD-00XXX)cc.erueiririiirierieirienieiesiesieesiesesesse e seenes 6
3.6.2 Software Design Description (I0T-STD-00006)ccerueriririririiiiinieieesiesese e seenes 7
3.6.3 SOftware IMPIEMENTALIONcoiiiie et sb e et e et e e nb e s reesteesreesreenaesnnes 8
3.6.4 Software development VEITICALION.cciiii ittt e e re e re e enees 8
3.6.5 Code Operation/Maintenance StANAAIAScccueiierieeieere et sre e e e et esreesbeebeeaesnnes 9
3.6.6 RS 7= T Lo S SSRST 9
3.6.7 L=V 1= SRS 9
3.6.8 0o | SRS 9
3.7 Software Configuration Management PRASE..........cccueiioiiiieiie ittt se e sbe e steaaeensesnaesreesreens 9
3.7.1 Problem Reporting and Corrective Action (I0T-PRP-00247)cccviieiieeiiee et este e 9
3.7.2 COrTeCtiVE ACLION PrOCEAUIES.ciueiiieiietete sttt bttt b e sb bbb e et bt b e bt b e e e et e b sbe e 10
3.7.3 SCIM A CHIVITIES ..ttt ettt s et e e st et e e se e st e st e s e e eeseesbesEeeseeseensenteseesbenneaneeneenseneeneeneas 10
3.74 Configuration TAeNEIFICALIONcouiiiiii ettt bbbt 10
3.75 Configuration Change CONEIOLoiiiiiiieiie bbbttt sne e 11
3.7.6 Configuration Status Accounting and REPOMING.........ciiveiieieiie i sre e e e 11
3.7.7 Configuration AUdItS aNd REVIEWSccveiiieiicieiic ettt e e s e e e sreesteeseaneeanbesseesreens 11
3.7.8 (O1aTo S 0] 1] (o] TSSO TPV PP 11
3.8 SOftWare VerifiCation PRaSE.........cooiiiiiiiieieiee ettt sttt st s e e st e e et e besteerenseeneeneenaeneenes 11
381 Independent Verification per SPECITICAtIONooviiiiiiiii s 12
3.8.2 RequiremMent BASEA TESLING.eviirtiieiirteietirte ettt etk b et b bbb bbb 12
3.8.3 Testing and the Software Development Life CYCIe.........ooiiiiiiiiiice e 12
3.84 Characteristics of Testable ReqUIFEMENTS ..o 13
3.85 Traceability of SOftware REQUITEMENTcoo ittt bbb e 14
3.8.6 Baselines MUSE BE CONGIUENTcuiiiiiitiiteieiisie ettt sttt bbbt sbe e 15
3.8.7 RS0 0TV LT L (=T PSS 15
3.8.8 U001 L T £ OSSP 15
3.8.9 SOFEWAIE INTEGIALIONevee ettt bbbt bt et e et sb e b e bt bt e e e neeeennennas 15
3.8.10 SOftWare PerfOrMANCE TESIS......eiieiiiiiite ettt bbbttt e bbbttt se et e nae e e 16
3.8.11 Regression Tests (I0T-LED-00289)cccuiiitiiaieierieiie sttt st st sbe e e e bbb sse st eseeneesaesreseas 16
3.8.12 TESHNG GUIARBIINES.ciiiiieiiciite bbbt b et e ettt b et e eb ettt nenes 17
3.8. 13 DYNAMIC ANGIYSHS ...ttt ettt sttt bbbt bbbt n bbbt n et e s 17
3814 SHALIC ANAIYSIS. ...ttt b bR R R R R bt b et R bbbt n et b e enes 17
10T-SQH-00304 Rev. 4.0 :{ENESAS Page 2 of 4

April 2019April 2019

Synergy Software Quality Handbook Contents

3.8.15 REVIBW ... ettt ettt et e et e st e e s te e s te e beeabeeateeaeeabe e be e s be e s beeReeeReeeheebeenbeeRbeeRbeetrentaenteenreerreaneen 18
TR T0 T VU o 1) SRRSO RO PRTOO 18
3.9 SOftWArE REIEASE PNASEciiiviiciiiteiieie ittt ettt bbbt s b et st et et st e e ebe st e s e ebeneereebenae e 18
B0 O T Yoo oL o (=T 1 o o] S SRSR 18
4. Documentation QUANITYccveiieii ettt re e nres 19
41 DOocUMENAtION STANUAITSiiviiiecec e e e s e st e s te e ste e beeaseeaeesteesbeebeesbeessessaesaeesbeesteenreenns 19
4.2 DOCUMENTALION REVIBW .. .cuiitiiiiiitiieiiste ittt ettt ettt sttt b e ettt e bt et et e st et e e bt st e st e bt et e e b e s be e e st nbennenes 19
4.3 DoCUMENEAtiON IMAINTENANCEcviiveriitiriesiitirteiete ettt ettt ettt e bttt e b e st e b ese st et e bt st e e eb e sbe b e bt nbebesenbeeenes 19
4.4 DOCUMENTALION CONEIOL....c.iitiiiiiitiiieiite ettt ekt b bbbt e b e e bttt e bt st et e bt st et nenbennenes 19
5. Standards, Practices, and CONVENLIONSccccoveiiiieieeie e 20
6. Reviews, AUdits, aNd CONTIOIS.........iii ittt e e s b b e e e e s sabreeas 21
6.1.1 TECNNICAI REVIBWS ...ttt bbbt bt bbbt bt e e et e b sb e eb e bt e st e e e n e b e 21
6.1.2 REVIEW TRAM MEMDEIS. ...ttt b e bbbttt nne bt 21
6.1.3 REVIBW PIOCEAUIESveeve ittt ettt ettt st st et e et e et e e bt e ebe e e be e be e st e e seesbeesbeesbeenbeenbesasesbsesbaesbeesbenraearees 21
LT N 1o [} SOOI 22
6.2.1 Functional Configuration AUGIT ..o bbb 22
6.2.2 Physical Configuration AUIT............coueiiiiiii ettt e s ee e sneesneenreenes 22
6.2.3 IN-PPOCESS AUGITS ...ttt bbbttt bt bbbt e b e b e b e bt eb e eb e bt e bt e s e e b et e ebeeb e e b e ebe e e e b et e 22
6.2.4 10 7 AN AN U o [T OSSPSR PRPRUSPRPN 22
6.2.5 COMTECEIVE ACTION ...ttt ettt st s b e s b e e e be et e eabeebeeebs e be e beesbessaesteesaeesbeesbeenbesnsesssestsesreens 22
7. Software MainteNaNCE PRESEueiiuiiiiiicie ettt e re e 23
7.1 L=t g L 0] o L= OSSR 23
7.1.1 Defect and BUQ LiTe CYCIEottt et et e s ta e be e teenaeaneas 23
7.1.2 L oo T 1o T I 1= Tt = U T SRS 23
7.13 (D) C=Tol A =N T Y o1 OO OSSP P PR PRTRTRP 23
7.14 INVESEIGAtION — DETECE, BUG ... cveteieitiieeiiitirteeete ettt bttt b ettt b bbbt 24
7.15 Res0IVE and ClOSE — DEFECE, BUQiueieiriiiieieieieieie sttt st e e saestesaesneeneeneeseeneenae e 24
7.2 Customer reported PrODIEMSccvi ettt e et e e te e et e e nae e e enes 24
7.2.1 WAITANTY CHAIMS ...ttt s et e b e e e e s b e s se e s te e steesbeenbeeaeeaaseassesteeteestaesaeeseeannes 24
7.2.2 10 o] 010 (R =T [0 LTSy PP UPPPPRPIN 24
8. SOTIWAIE IMIBIIICS ...ttt et e et e s ae e st e et e e seesreesreenneareenaeens 26
8.1 COmMPIEXItY OF SOFIWANEcoeitiiitiitee bbb bbbt eb e sttt sb et et sb et et sne e 26
8.1.1 Module Software COMPIEXILY INAEX ...c.vvciiiiiiie e re e 27
8.2 CHEAN BUIIU ...t bttt b bbb h e bRt bRt b £ bR e R e e bbbt bt et e b nbe e 28
8.2.1 Module SOftware Warning INAEXccveuiiiiiie ettt s te e e e e sraestaesteeseeesaeannes 28
8.3 SrUCLUral DECISION COVEIAQEc.eiveieieitieeieite ittt sttt sttt ettt b et besb e s b e st b s b e e ebe s b e st eb e st e s e et e sb et ebesb et et e sbe e ebenbe e 28
8.3.1 Module Software Code COVErAgE INUEXcviiiiiiiiiiiieireiece ettt 28
8.4 COUING SLANUANAS ... ettt ettt b bbbt b e s b st eb e se e st ek e s b e st ekt sb e s e et e st e st et e nbe e ebesbe e ebennenea 29
8.4.1 Module Software Coding StaNAArd INUEXccoiiiuiiiiiiiiieeee e e 30
T 1o {411 A LT) 1 To%: o] RSP PS 30
8.5.1 Module Software Verification INAEXc.oouiiiiiii it 30
8.6 Software Backward COMPALIDIIILYoiiiiiiiiiiiese ettt sttt sttt sne e 30
8.6.1 Module Software Backward Compatibility INAEXccviriiiiiiiiiee e 30
9. Requirements Management SOIULION TOOI ..o, 31
10. SSP Software Qualification and Verification Packagesccccccvvieivieiiiiiie s 32
10T-SQH-00304 Rev. 4.0 :{ENESAS Page 3 of 4

April 2019April 2019

Synergy Software Quality Handbook Contents

Appendix A - Simulated Verification REPOITS.........ccuoiiiiiiiiieireree s 33
11, FUNCHIONAI TESES REPOITS.uiiieiieiieieteete ittt 33
I R 70 V=T - To T3 =T oo o A O OO OP P SU R OPPPPRON 33
11,2 VErfICAION RESUILScoeiiiiieiee bbbt b e bbbt b bbbttt nb bbb 34
12. Performance and Benchmark REPOIT ..o 35
13, INtEQration REPOITc.eieiiiieiei bbb bbbt 36
14, COMPIEXITY REPOIottt et e e st e et e e e e saeenaeeneesraenaeaneenreas 37
15, Coding StANdard REPOIT........ccviieiiieiteiteeie et bbbt 38
16, UNIE TESE REPOI. .. .ottt bbb bbbt 39
17. Regression and QUality REPOIccvoiiiieiice e 40
loT-SQH-00304 Rev. 4.0 RENESAS Page 4 of 4

April 2019April 2019

Synergy Software Quality Handbook 1. Introduction

1. Introduction

This handbook defines a set of guidelines for Software Quality Assurance (SQA) activities as applied to the
Renesas Synergy Software, and is intended for use by developers, managers, vendors, and quality teams
who use the Synergy Platform in their own end-products.

Developing quality software requires everyone's involvement. Anyone who has faced the challenge of
developing a software system understands that the task of producing quality software is harder than it
appears, and certainly harder than the user thinks it should be. The road to functional software is filled with
many pitfalls and the risk of failure is significant.

Much of the difficulty and part of the challenge of developing software stem from its intangibility; a person can't
simply draw a blueprint or describe its physical characteristics. Although the process of developing software
borrows much from established engineering disciplines, some of the process remains undefined. Software
developers often have strong convictions about the proper mix of engineering and art, but these vary from
person to person. At Renesas, sharing a consistent set of ideas about what constitutes software quality and
using consistent methods to achieve that end are critical to a successful product. These ideas and methods
also play an important part in making a project successful.

As we will discuss in this handbook, the benefits of SQA are very real. We strive for better software quality
and for consistency in the engineering process to lower the risk of failure. Developing software may never
become easy. If, however, we improve the process for development and the methods for checking quality, we
can significantly raise the level of success that can be achieved. Conducting a software quality assurance
program can significantly reduce the number of errors introduced into the software product and ensure that
more errors are detected earlier in the system development life cycle.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 1 of 40
April 2019April 2019

Synergy Software Quality Handbook 2. Definitions

2. Definitions

2.1 Software

Software is "computer programs, procedures, rules, and possibly associated documentation and data
pertaining to the operation of a computer system." The definition of software includes not only the computer
(microcontroller) code, but also the accompanying documentation. This definition encompasses both in-line
comments in the code as well as requirements specifications, design documents, user manuals, and
maintenance guides. Good software must not only work well but must be documented well, too.

2.2 Software Quality

Renesas has established processes to ensure the ability of the software to comply with defined requirements.
This differs from a definition based on the fitness for use of the software. Defined requirements act as the
foundation for determining the level of quality. Emphasis on establishing the requirements in the first place,
rather than on determining what to do after the damage is done and the system works inadequately. This
definition of quality affects two areas of action:

1. Ensure that the product correctly meets customer needs.
2. Verify that reasonable steps were taken to ensure the quality of the product.

The goal of quality is to meet specified requirements rather than achieve an absolute level of quality. The
purpose is not to guarantee 100% reliability or zero defects; rather, it is to verify that every reasonable step
has been taken during the life cycle to achieve a desired level of quality in the end product.

2.3 Software Quality Assurance

SQA is "a systematic set of actions that provide confidence that the software conforms to established
technical requirements." This definition encompasses the following:

1. All necessary activities that can contribute to the quality of software during entire software
development life cycle.

2. Systematic execution of the Plan to achieve the objectives of software quality.

3. Developing techniques to demonstrate the effectiveness of process in practice.

Renesas’ quality plan for Synergy Software involves the entire software development process, from early
stage of market requirements validation to software verification and maintenance. Most importantly, changes
are aligned with market requirements and software architecture, to ensure consistency and backward
compatibility. All changes are monitored and reviewed for correctness, completeness, and traced within each
fully verified release product. This includes defects analysis and verification of defects, which demands
specification testing, procedures, categories, types of tests, and methods of testing. The major pitfall of such a
test-oriented program is:

Quality cannot be tested into the software product; quality is built into the software product.
2.4 Quality Factors

Quality factors are grouped according to performance, design, or adaptation concerns. These are the general
categories that inherently characterize the nature of a software project's quality.

Performance quality factors characterize how well the software functions. The performance factors are
efficiency, integrity, reliability, survivability, and usability.

Design quality factors characterize the software design. The design factors are correctness, maintainability,
and verifiability.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 2 of 40
April 2019April 2019

Synergy Software Quality Handbook 2. Definitions

Adaptation quality factors characterize the adaptability of the software. The adaptation factors are
expandability, flexibility, interoperability, portability, and reusability.

1.

10.
11.
12.
13.

Efficiency - The amount of computing resources and code required by the software to perform a
function.

Integrity - The extent to which access to software or data by unauthorized persons is being
controlled.

Reliability - The extent to which the software performs its intended function without failures for a
given time period.

Survivability - The extent to which the software will perform and support criterial functions when a
portion of the system is inoperable.

Usability - The effort required to learn, operate, prepare input, and interpret output of the software.

Correctness — The extent to which the software satisfies its specifications and fulfills the user
objectives.

Maintainability - The effort required to locate and fix an error in the operational software.
Verifiability - The effort required to test and verify that the software performs its intended function.

Expandability - The effort required to increase the software capability or performance by enhancing
current functions or by adding new functions or data.

Flexibility - The effort required to modify operational software.
Portability - The effort required to transport the software for use in another environment.
Reusability - The extent to which the software can be used in other applications.

Interoperability - The effort required to couple the software of one system to the software of another
system.

SQA uses these quality factors to determine the extent that the project is satisfying its quality objectives.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 3 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

3. Software Development Life Cycle Activities

The development process is comprised of a number of stages that are broken into deliberate steps. All
software development life cycles exhibit similar characteristics, regardless of what the specific stages are
called, or the format of the documentation that results.

The stages are as follows:

Requirements Includes understanding the target environment and gathering and analyzing the requirements.

Design Includes both the logical and physical aspects of the system.

Implementation Includes defining the details of the design, coding the system, testing, and installing it.

Release Includes using the system in production and maintaining and controlling the corrections,
enhancements, and additions.

3.1 Planning Phase

The planning phase establishes the basic project structure, evaluates feasibility and risks associated with the
project, and describes appropriate management and technical approaches.

The output of the project planning stage is the software development plan (SDP), the software verification plan
(SVP), the software configuration management plan (SCMP), and the software quality assurance plan (SQP),
with a listing of activities, responsibilities for the upcoming requirements phase, and high-level estimates of
effort for the output phases.

Software Verification

Software Development

Development Plan Configuration Plan Rizk Management CQualivy Assurance Plan verification Plan
loT-50P-00217 loT-5CP-00172 1o T-SRAM-00319 IoT-SOP-00173 loT-5WP-00174
] 1 1 1
. . Integration Plan
Coding Standard S5P Architecture External & Internal Audit
| loT-STD-00001 | laTSTD00227 | L [IoT-5IP-D0288
] 1 !
Standard Operation Requiramant Documeant S04 Reviews IaT-mS\thG"J-EC(;::E
l 1aT-STO-00218 L 1oT-5TD-D00x \
] -] o Static and Dynamic Lab Enwironment
Problem Reporting Design Description Analysis Reports laT-LED-00289
L IoT-PRP-00247 | 1aT-DSN-0006 0028
-I] Verlfication Reports Continuous Integration
S5 Versioning Release Process - nhep |oT-TST-00154
L 1aT-STO-00320 [laT-5TD-00249
Performance and
Benchmark Reports
SOLE Planaing Docisments B softwsee verification Documents

Saftware Development Dodiments - Saftwane Verification Reparts
At & Revieas Reparts - Fask Mitigation and Asseszment

Figure 1 Renesas Synergy Software SDLC Documentation
3.2 Software Development Plan (IoT-SDP-00217)

The SSP software development plan describes a breakdown of the software development project into
manageable tasks arranged into hierarchical refinement of detail. The SDP identifies all technical and
managerial activities associated with program development. It specifies the following items:

loT-SQH-00304 Rev. 4.0 RENESAS Page 4 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

Activity description

Activity deliverables and associated completion criteria
Prerequisite deliverables from prior activities
Interrelationship among activities

The development process output documents:

Software requirement document (SRD)
Software design description (SDD)
Requirements Traceability Matrix (RTM)
Source codes

Executable object code

Dev Unit Tests

Dev Unit Test Results

Note: Traceability is from Market Use Cases to Market Requirements Document (MRD) to Software
Requirements Document (SRD) to Software Design Description (SDD) to source code section or executable
object codes, verification cases and results.

All the software product requirements to be developed during the requirements definition stage flow from one
or more of the market requirements. The minimum information for each market requirement consists of a title
and textual description, although additional information and references to external documents may be
included.

3.3 Software Verification Plan (IoT-SVP-00174)

The SSP software verification document provides the planning and guidance for the performance of
requirements verification. It will provide documentation demonstrating compliance with the processes defined
herein, and provide documentation demonstrating compliance of the software with the high-level (Functional,
Integration, Performance, and Regression tests) and low-level (Unit tests) software requirements.

The verification process output documents:

e Software Verification Cases and Procedures (SVCP)
o Functional Module testing
o Integration testing
o Performance testing
o Regression testing
e Software Verification Results (SVR):
o Review requirements, design, code, test cases and test results
Testing of executable object code
Review requirement coverage
Code coverage analysis

O O O

3.4 Software Configuration Management Plan (IoT-SCP-00172)

The Software Configuration Management Plan (SCP) provides an operational plan to initiate and maintain
software configuration identification, software configuration control, software configuration status, accounting
records, and software configuration audits.

The Software Configuration Management activities include configuration identification, change control,
baseline establishment in Configuration System, and archiving of software lifecycle data. The SCP will detail
how these activities will be performed. This plan also addresses the method of storage, handling, and delivery
of project media, configuration status accounting, and configuration audits.

SCM requirements established by this plan apply to all software product/development phases over the life of
the product and through any post software release activities.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 5 of 40
April 2019April 2019

http://en.wikipedia.org/wiki/Object_code

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

Renesas’ Configuration System will manage the configured portion of the software data repository. The
configuration system is capable of managing multiple variants of evolving software systems, tracking which
versions were used in software builds, performing builds of individual programs or entire releases according to
user-defined version specifications, and enforcing site-specific development policies.

The Renesas’ Configuration System toolset will be used to:

Provide a mechanism for tracking baseline software and documentation
Maintain a history and record of each software or documentation change
Initiate changes to the baseline through the use of Action Requests
Identify and control all released configuration of software

3.5 Software Quality Assurance Plan (IoT-SQP-00173)

The SSP Software Quality Assurance Plan addresses activities to be used by Development Process
Assurance (DPA) to ensure that all software development is done in accordance with the approved methods
described in the corresponding software plans.

Output documents from the quality assurance process:
e Software guality assurance records (SQAR)

e Software conformity review (SCR)
e Software Release Notes (SRN)

3.6 Software Development Phase

The Software Development Phase consists of:

1. Requirements Specification stage which identifies the requirements that the computer program must
satisfy

2. Design Description stage which determines the design of the software

3. Software Implementation stage is the execution of stage one and two

4. Software development verification stage is the verification of stage 3 to meet the requirements

The first two stages produce a statement of the project objectives, system functional specification, and design
constraints.

3.6.1 Software Requirements Specification (I0T-STD-00xxx)

The requirements gathering process takes as its input the requirements identified in the market requirements
document (MRD). Each market requirement will be refined into a set of one or more software requirement(s).

The requirements are fully described in the primary deliverables for this stage, the requirements document
and the requirements traceability matrix (RTM). The requirements document contains complete descriptions of
each requirement, including diagrams and references to external documents as necessary.

The software requirements review takes place at software release planning phase in which the software
requirements specification is generated. The software requirements review constitutes an evaluation of the
SRD. It is conducted to assure the adequacy, technical feasibility, and completeness of the requirements
stated in the SRD. The software requirements review is held to evaluate the SRD to ensure that it is complete,
verifiable, consistent, maintainable, modifiable, traceable, and usable during the operation and maintenance
phases. The review ensures that sufficient detail is available to complete the software design. The results of
the software requirements review are documented including a record of all deficiencies identified, and a plan
and schedule for corrective action. After the software requirements review is updated to correct these
deficiencies, the document is placed under configuration control, establishing the baseline to be used for
software design and other efforts throughout the life cycle. Additional changes to the SRD are permitted
during software design and its implementation.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 6 of 40
April 2019April 2019

http://en.wikipedia.org/wiki/Quality_assurance

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

The SSP’s SRD is created based on Market Requirements Document and Renesas Synergy MCU family
datasheet(s) to ensure:

Every requirement is uniquely identifying a verifiable behavior of software

Requirements are forward and backward compatible with design

Requirements identify required software interfaces based on hardware capabilities
Requirements identify data coupling for internal and external communication interfaces
Requirements identify internal and external control coupling

Safety requirements and error management scenarios to meet mission critical applications as
applicable

IS S

3.6.2 Software Design Description (IoT-STD-00006)

The design stage takes as its initial input the requirements identified in the approved requirements document.
For each requirement, a set of one or more design elements will be produced.

Design elements describe the desired software features in detail, and include functional hierarchy diagrams,
screen layout diagrams, tables of business rules, business process diagrams, pseudo code, and a complete
entity-relationship diagram with a full data dictionary. These design elements are intended to describe the

software in sufficient detail that skilled programmers may develop the software with minimal additional input.

The Software Design Description (SDD) captures verifiable design details of all software requirements (SRD),
to ensure only required functionalities are implemented and documented.

The preliminary design review is held at the end of the functional specification stage. The preliminary design
review evaluates the technical adequacy of the preliminary design as a prelude to the detailed design. The
review assesses the technical adequacy of the selected design approach; checks the design compatibility with
the functional and performance requirements of the SRD; and verifies the existence and compatibility of the
interfaces between software, hardware, and user.

All organizational elements that impose requirements or that are impacted by the design provide
representatives to participate in this review. Documentation of the results contains a record of all deficiencies
identified in the review, and a plan and schedule for their corrective action. The updated SDD document is
placed under configuration control, establishing a baseline for the detailed software design effort. Changes to
the high-level design that become necessary during detailed design, implementation or testing, are
incorporated into the design documentation, with appropriate reviews made to determine the impact of these
changes.

The critical design review is held at the end of the detailed software design phase. The critical design review
evaluates the technical adequacy, completeness, and correctness of the detailed design before the start of
actual coding. The purpose of the critical design review is to evaluate the acceptability of the detailed design
depicted in the software design description to establish that the detailed design satisfies the requirements of
the SRD; to review compatibility with other software and hardware with which the product is required to
interact; and to assess the technical, cost, and schedule risks of the product's design.

The organizational elements that impose requirements or that are impacted by the design participate in the
review. Documentation of the results of the review identifies the discrepancies found during the review and
presents schedules and plans for their resolution. The updated SDD is then placed under configuration control
to establish a baseline for the next phase of implementation and coding.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 7 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

The software designs are created with the following objectives:

Provide conceptual software product architecture with all interfaces - hardware, software and system.
Unique Software architecture for all layers — BSP, HAL, Application Framework, Interfaces, etc.
Software Component Initialization.

Description of steps that uses formulas and computational logic for statistical decisions.

Follows standard design principles for data flow and control coupling.

Common industry design patterns - component driven designs to support multiple Synergy MCU Groups.
Standard API descriptions, data structure methods that meets Renesas Synergy Software coding
standards.

8. Vivid error management.

9. Interface definitions - Inter-module, inter-processor, inter-components.

10. Memory requirements and partitioning details.

11. Description of any communication protocol.

12. Design constraints.

NoghrwnpE

3.6.3 Software Implementation

When the design document is finalized and accepted, the RTM is updated to show that each design element

is formally associated with a specific requirement. The output of the design stage is the design document. For
each design element, a set of one or more software artifacts will be produced. Appropriate unit test cases will
be developed for each set of functionally related software artifacts.

The output of the development stage includes a fully functional set of software that satisfies the requirements
and design elements previously documented, unit test cases to be used to validate the correctness and
completeness of the software, and an updated RTM.

The SSP code implementation is based on ‘C’ programing language. Software developers follow the Software
Developer Guide for the development environment (maintainability and usability).

All software components and artifacts are maintained using a secure version control (Integrity and Reliability).
New development and changes must comply with Renesas Synergy Software coding standards. The coding
standard compliance is checked by using a static code analysis (usability and portability). In addition, newly
developed and changed code, or any associated artifacts are subjected to peer-review and independent
review to ensure changes are traceable to requirement, design and verification results (compatibility and
correctness).

3.6.4 Software development verification

Software development verification is requirement-based testing. Basically, all development verification cases
are traced to at least one software requirement and all software requirements are traced to a verification case
(100% requirements coverage) and execution of verification cases provide 100% data and control coupling.
This objective is achieved by full traceability of verification cases to software requirements and executing
verification cases against instrumented code to collect coverage data.

The software development exit criteria:

All SRD items are traced at least to one SDD item.

All SRD and SDD are reviewed and baselined.

All planned requirements are implemented.

All implementations are traceable to at least one SDD item.

All requirements are traceable to a verification case which fully verifies the requirement which it is traced
to.

All implementations are in compliance with Renesas Synergy Software coding standards.

All software components, specifications, and verifications are version controlled and baselined.
All verification cases are executed and satisfy pass/fail criteria.

All test cases, verification results, and coverage reports are reviewed.

10 All deficiencies are reported and dispositioned.

10T-SQH-00304 Rev. 4.0 .zENESAS Page 8 of 40
April 2019April 2019

agrwNE

©oxoNo

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

11. All software components are compiled and linked with no warning.
12. 100% requirements coverage provides 100% data and control coupling coverage.

3.6.5 Code Operation/Maintenance Standards

There are two types of maintenance: repair and enhancement. Repair corrects a defect found in the software
or incorporates changes required by a change in the environment; enhancement adds some feature to the
requirement specification. When considering an operation/maintenance standard, a new kind of maintenance
known as preventative maintenance needs to be considered.

Once a program or module has been identified as a candidate for preventative maintenance, a peer review is
held to ensure there is no redundant code and decision complexity is in an acceptable range.

3.6.6 Standards

All developed code is in compliance with Renesas Synergy Software coding standards. Standards are
“documented agreements containing technical specifications or other precise criteria to be used consistently
as rules, guidelines, or definitions of characteristics, to ensure that materials, products, processes and
services are fulfil their purpose.”

3.6.7 Review

The initial version of documentation or code is subject to a full review and changes are subject to an
incremental review. The purpose of review is to evaluate the conceptual and technical approach to the system
solution and ensure that the quality factors previously defined for the project are satisfied. The peer review
attempts to identify problems before they appear as error in software product.

3.6.8 Audit

An audit is an inspection of the documentation and associated development methods to verify that the process
and its documentation are in accordance with the SQA plan and organizational policies and procedures.

3.7 Software Configuration Management Phase

This section presents a general discussion of software configuration management (SCM) and code control,
including problem reporting and corrective actions.

3.7.1 Problem Reporting and Corrective Action (loT-PRP-00247)

The formal Renesas procedure for software problem reporting and corrective action is established for all
software to measure and promptly identify failures, malfunctions, deficiencies, deviations, defective materials
and equipment, and nonconformance. The problem reporting system interfaces with software configuration
management procedures to ensure formal processing to resolve these problems.

Problems encountered during software development or operation may result from defects in software, in
hardware, or in system operations. Because of the large number of possible defects, defect sources, and
means of detection, a centrally located system for monitoring software defects is necessary.

The objective of the software problem reporting, and tracking system are:

»= To assure that the defects are documented, corrected, and not forgotten
»= To assure that the defects are assessed for their validity

= To assure that all defect corrections are approved by a review team or change control board before
changes to the software configuration are made

= To facilitate measuring the defect correction process
= To inform the designer and user of the defect's status
= To provide a method of setting priorities for defect correction and scheduling appropriate actions

10T-SQH-00304 Rev. 4.0 .zENESAS Page 9 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

= To provide management with knowledge of the status of software defects
= To provide data for measuring and predicting software quality and reliability

Standard forms or documents are encouraged for reporting problems and proposed changes for software.
These forms include the following items as a minimum:

= A description of the problem and proposed corrective action

= Authorization to implement the change

= Alist of all items expected to be affected by the change

= An estimate of the resources required for the change

= Identification of the personnel involved in the origination and disposition of the problem report and in
the resolution of the problem

* An identification number and date

= Any finding during review is reported as an action item within the issue tracking system. The action
items are specific to artifact(s) under the review. An action item shall clearly specify what needs to be
done to change a NO answer in the checklist to YES.

3.7.2 Corrective Action Procedures

Corrective action procedures deal with the process of correcting software discrepancies. All corrective actions
are supported by software development. Corrective actions allow developers enough latitude so that their
productivity and creativity are not encumbered. Significant negative impacts on the cost and reliability of
software can occur if corrective action is not timely or is improperly administered. Software errors that go
uncorrected until the system is implemented cost far more to correct than those that are uncovered during
software development. The corrective action process is established early in the Software Development
Planning phase. Prompt detection and early correction of software deficiencies cannot be overemphasized.

Corrective action procedures aid rather than hinder the systematic identification and correction of software
discrepancies and anomalies. The baselines established in the SCM system permits systematic incorporation
of corrective action procedures. These procedures include steps for identifying the discrepancy in writing,
documenting the proposed changes, independently reviewing the proposed changes for adequacy and
retesting of the affected code and all interfacing modules.

Corrective action procedures establish a mechanism for feedback to users on the error analysis of individual
problems, and information about recurrent types of problems. Conversely, corrective action procedures
require software users to inform the program developer when errors are discovered in the computer program,
so that the developer can examine and assess the overall effects of the error.

The program developer is ultimately responsible for the resolution of errors discovered during software
development and use. Furthermore, the developer decides if the error can be corrected with a minor change,
or if a significant revision that requires reverification of the software is necessary.

Effective corrective action procedures require input from software designers, developers, and testers, as well
as SQA and configuration management organizations. This input helps determine what in the original
development process went wrong. Existing methodologies can be reexamined by project management to
determine actions to be taken to minimize recurrence of such defects. In particular, any points in the software
development life cycle that tend to be error-prone are identified.

3.7.3 SCM Activities
SCM activities consist of the following:
3.7.4 Configuration Identification

All components, units, or documents associated with software are version controlled and labeled per releases.
The SSP package uses the versioning scheme of X.Y.Z-maturitylevel+ buildmetadata where:

10T-SQH-00304 Rev. 4.0 -zENESAS Page 10 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

X: Major (Upgrade) release Number, Y: Minor (Update) release number, and Z: Patch (Bug) release number

Maturity Level String: Each release will go through different levels of maturity. For example: Alpha, Beta,
Custom, Release Candidate (RC) and finally the Gold or General Availability (GA).

Build Metadata String: Incremented every time a release is made to outside the development team but within
Renesas. This is an internal tracking number and not necessarily provided to anyone outside Renesas.

The concept of baselines is important in this function because it allows everyone associated with a project to
have a common point of reference when they are defining, developing, or changing a software product.

3.75 Configuration Change Control

Configuration change control provides the controls necessary to manage and control the change process. The
mechanics of processing changes are defined by the SCM plan. Appropriate signoff procedures are
incorporated. A Change Control Review Board (CCRB) monitors and approves changes for each release.

3.7.6 Configuration Status Accounting and Reporting

Configuration status accounting is used to develop and maintain records of the status of software as it moves
through the software life cycle. CSA may be thought of as an accounting system.

3.7.7 Configuration Audits and Reviews

The SCM processes are audited and reviewed for each release. The configuration items are audited when the
baseline is released. The number of audits involved will vary according to the baseline being released. The
criteria for the audit, including the roles of its participants, is set in the SCM plan. At a minimum, audits are
performed whenever a product baseline is established, whenever the product baseline is changed, or
whenever a new version of the software is released.

3.7.8 Code Control

Code control encompasses the procedures necessary to distribute, protect, and ensure the validity of the
operating software and associated documentation. Once a code baseline is established, the operating code
and associated artifacts are placed in a centralized computer program library. SQA ensures that adequate
controls and security measures are established for software changes and for protection from inadvertent
alteration after the code has been baselined.

New version implementation is to follow the documented procedures. Accurate and unique identification of all
versions of a computer program is being ensured. Controls are established to record the changing of source
or object code or related material. The software library assigns and tracks identification numbers of computer
programs and documentation, including revisions. The library provides documentation of release
authorization. The software library assists with the arrangements for marking, labeling, and packing software
shipments, and maintains logs and records of the distribution, inventory, and configuration control/status
accounting for deliverables. A central index lists the documents composing the project file.

3.8 Software Verification Phase

The software verification is “(1) The process of determining whether the products of a given phase of the
software development cycle fulfill the requirements established during the previous phase. (2) Formal proof of
program correctness. (3) The act of reviewing, inspection, testing, checking, auditing, or otherwise
establishing and documenting whether or not items, processes, services, or documents confirm to specified
requirements.” This approach is known as requirements-based testing (RBT).

10T-SQH-00304 Rev. 4.0 -zENESAS Page 11 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

3.8.1 Independent Verification per Specification

Verification is intended to check that a product, service, or system (or portion thereof, or set thereof) meets a
set of design specifications. In the development phase, verification procedures involve performing special
tests to model or simulate a portion, or the entirety, of a product, service or system, then performing a review
or analysis of the modeling results. In the post-development phase, verification procedures involve regularly
repeating tests devised specifically to ensure that the product, service, or system continues to meet the initial
design requirements, specifications, and regulations as time progresses. It is a process that is used to
evaluate whether a product, service, or system complies with regulations, specifications, or conditions
imposed at the start of a development phase.

3.8.2 Requirement Based Testing

The RBT approach validates that the requirements are correct, complete, unambiguous, and logically
consistent. It also reduces the immensely large number of potential tests down to a reasonable number and
ensures that the tests got the right answer for the right reason.

The overall RBT strategy is to integrate testing throughout the development life cycle and focus on the quality
of the Requirements Specification. This leads to early defect detection which has been shown to be much less
expensive than finding defects during integration testing or later. The RBT process also has a focus on defect
prevention, not just defect detection.

To put the RBT process into perspective, testing is divided into the following eight activities:

1. Define Test Completion Criteria. The test effort has specific, quantitative and qualitative goals. Testing
is completed only when the goals have been reached (for example, testing is complete when all functional
variations, fully sensitized for the detection of defects, and 100% of all statements and branch vectors
have executed successfully in single run or set of runs with no code changes in between).

2. Design Test Cases. Logical test cases are defined by five characteristics: the initial state of the system
prior to executing the test, the data in the data base, the inputs, the expected outputs, and the final
system state.

3. Build Test Cases. There are two parts needed to build test cases from logical test cases: creating the
necessary data, and building the components to support testing (for example, build the navigation to get
to the portion of the program being tested).

4. Execute Tests. Execute the test-case steps against the system being tested and document the results.

5. Verify Test Results. Verify that the test results are as expected.

6. Verify Test Coverage. Track the amount of functional coverage and code coverage achieved by the
successful execution of the set of tests.

7. Manage and Track Defects. Any defects detected during the testing process are tracked to resolution.
Statistics are maintained concerning the overall defect trends and status.

8. Manage the Test Library. The test manager maintains the relationships between the test cases and the
programs being tested. The test manager keeps track of what tests have or have not been executed, and
whether the executed tests have passed or failed.

3.8.3 Testing and the Software Development Life Cycle

In most software development life cycles, the bulk of testing occurs only when code becomes available. With
the RBT process, testing is integrated throughout the life cycle (Figure 2).

10T-SQH-00304 Rev. 4.0 -zENESAS Page 12 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

Test Requirements Requirements

Test Design

User Manual Training

Test Code

Released
Product

Figure 2 Life Cycle with Integrated Testing

3.8.4 Characteristics of Testable Requirements

For requirements to be considered testable, the requirements should have all of the following characteristics:

1.

10.

11.
12.

13.

14.
15.

16.

Deterministic: Given an initial system state and a set of inputs, you must be able to predict exactly what
the outputs will be.

Unambiguous: All project members must get the same meaning from the requirements; otherwise they
are ambiguous.

Correct: The relationships between causes and effects are described correctly.

Complete: All requirements are included. There are no omissions.

Non-redundant: Just as the data model provides a non-redundant set of data, the requirements should
provide a non-redundant set of functions and events.

Lends itself to change control: Requirements, like all other deliverables of a project, are placed under
change control.

Traceable: Requirements must be traceable to each other, to the objectives, to the design, to the test
cases, and to the code.

Readable by all project team members: The project stakeholders, including the users, developers and
testers, must each arrive at the same understanding of the requirements.

Written in a consistent style: Requirements should be written in a consistent style to make them easier
to understand.

Processing rules reflect consistent standards: Processing rules should be written in consistent manner
to make them easier to understand.

Explicit: Requirements must never be implied.

Logically consistent: There should not be any logical errors in the relationships between causes and
effects.

Lends itself to reusability: Good requirements can be reused on future projects.

Terse: Requirements should be written in a brief manner, with as few words as possible.

Annotated for criticality: Not all requirements are critical. Each requirement should note the degree of
impact a defect in it would have on production. In this way, the priority of each requirement can be
determined, and the proper amount of emphasis placed on developing and testing each requirement. We
do not need zero defect in most systems. We need “good enough” testing.

Feasible: If the software design is not capable of delivering the requirements, then the requirements are
not feasible.

The key characteristics in the above list are Deterministic and Unambiguous. By definition, testing is
comparing the expected behavior to observable behavior of a system.

loT-SQH-00304 Rev. 4.0 RENESAS Page 13 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

3.85 Traceability of Software Requirement

Requirements traceability is a sub-discipline of requirements management within software development and
systems engineering. Requirements traceability is concerned with documenting the life of a requirement and
providing bidirectional traceability between various associated requirements. It enables users to find the origin
of each requirement and track every change that was made to this requirement. For this purpose, it may be
necessary to document every change made to the requirement.

Traceability is the "ability to chronologically interrelate the uniquely identifiable entities in a way that matters.”
What matters in requirements management is not a temporal evolution so much as a structural evolution: a
trace of where requirements are derived from, how they are satisfied, how they are tested, and what impact
will result if they are changed.

Renesas’ requirements for Synergy Software come from different sources, such as market segment, market
demand and/or the customer. Using requirements traceability, an implemented feature can be traced back to
the source that wanted it during the requirements elicitation. This can be used during the development
process to prioritize the requirement, determining how valuable the requirement is to a specific user. It can
also be used after the deployment when user studies show that a feature is not used, to see why it was
required in the first place.

Requirements Traceability is concerned with documenting the relationships between requirements and other
development artifacts. Its purpose is to facilitate:

e Overall quality of the product(s) under development
e Understanding of product under development and its artifact
e Ability to manage change

Not only should the requirements themselves be traced but also the requirements relationship with all the
artifacts associated with it, such as models, analysis results, test cases, test procedures, test results and
documentation of all kinds. Even people and user groups associated with requirements should be traceable.

~ P

Requirement " TestCase | | Test Script) Test " Defect

Execution
D001

‘ Instance

D002

D003

D004
e

y € >

Figure 3 Software Requirements Traceability

loT-SQH-00304 Rev. 4.0 RENESAS Page 14 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

3.8.6 Baselines Must Be Congruent

Verification must check the consistency between successive levels of detail within and between successive
baselines (that is, products of successive life cycle phases). The extent to which this can be accomplished
depends on the information contained at each level in the respective baselines. The design specification, for
example, can only be verified against an unambiguous and complete SRD. In this manner, verification
ensures that what is intended in one baseline or life cycle phase is actually achieved in the succeeding one. In
other terms, the verification process must establish traceability between life cycle phases. A systematic
method for carrying out this traceability also be included within a software configuration management
program.

3.8.7 Software Unit test

The software artifacts and unit test data from the development environment are migrated to a separate
Continuous Integration environment. All unit test cases are run to verify the correctness and completeness of
software components.

The Continuous Integration environment is integrated with a Commercial-off-the-shelf (COTS) tools such as
Liverpool Data Research Associates (LDRA) to perform continuous Dynamic and Static Analysis.

3.8.8 Functional Tests

Functional tests are developed based on SDD on LDRA test harness environment. These cases include
Boundary, Range, and Robustness cases. The objective of this type of test is to verify behavior of software
based on SDD for nominal and robustness cases.

Therefore, the objective of functional tests is to achieve 100% decision coverage when all design descriptions
are tested independently. The completeness objective of boundary, range, and robustness cases are
achieved by peer-review.

The Functional Tests exit criteria:

All SDD are traced to at least one SRD.

All SDD are traced to at least one test case

All software component, specifications, and verification are version controlled and baselined
All verification cases are executed and satisfy pass/fail criteria

Achieved 100% Decision Coverage by execution all test cases

All test cases, verification results, and coverage report are reviewed

All deficiencies are reported and dispositioned

NogohkrwnpE

3.8.9 Software Integration

The Software Configuration Integration Testing provides a set of high-level use cases to exercise all or most
of software components, which are coupled together to form a complete software system or major part of the
system.

The test cases are executed on several different Synergy MCU hardware systems. This level of testing is
mostly event driven to interact with the test harness, user interfaces, or other software components.

Interface Use Cases type:

Use cases to engage at driver level for working with MCU peripherals directly

Use cases to engage at framework layer using the peripheral specific HAL layer

Use cases to engage at the framework layer using abstract functional API

Use cases for RTOS-aware drivers that access the HAL layer

Use cases using ThreadX® services to implement higher-level services for application code

agrwNE

10T-SQH-00304 Rev. 4.0 -zENESAS Page 15 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

The Software Configuration Integration exit criteria:

All use cases are version controlled and baselined
All use cases are reviewed

All cases are executed and satisfy pass/fail criteria
All verification results are reviewed

All deficiencies are reported and dispositioned

agrwNE

User Interface Debu Main
Console console

Application . e
th 2o Key thread

LED thread

ThreadX

RTOS

SEEEC)

BS

MCU

Figure 4 Software integration diagram

3.8.10 Software Performance Tests

SSP components are tested for performance to fulfill market requirements to which they are traced. The test
cases are executed on several different Synergy MCU hardware systems to report scalability and stability
characteristic of a software components.

The Software Performance Tests exit criteria:

All tests are traced to at least one MRD

All tests are version controlled

All tests are reviewed

All tests are executed and satisfy pass/fail criteria
All tests reports are reviewed

All deficiencies are reported and dispositioned

ok~ wNE

3.8.11 Regression Tests (loT-LED-00289)

Continuous Integration (Cl) servers are configured to build and execute tests on all Synergy MCU hardware
systems supported by the SSP for a specific baseline automatically. The Cl server is used to measure, and
monitor quality of SPP per changes to a specific baseline, to ensure changes are compatible and quality has
been improved.

loT-SQH-00304 Rev. 4.0 RENESAS Page 16 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

Unit Test Test Functional Test Integration Test
Coverage Report Coverage Report Coverage Report

HW Platform

EEES
. 0

I LDRA Source Code Instrumentation I

Test Code

HW
Platform

'S1
ST

RELEEES

Continuous Integration
Server

Figure 5 Continuous integration server
3.8.12 Testing Guidelines

The standards, practices, and conventions to be used during the testing phase is described in a set of
guidelines for unit, integration, regression, and system testing. The criteria for test repeatability and test
coverage is addressed, perhaps by including requirements that specify testing every requirement, user
procedure, and programming statement.

The guidelines indicate whether support software may be used. A testing guideline contains specific criteria
governing the program testing to be performed. It assures that programs are uniformly tested by all
programmers.

3.8.13 Dynamic Analysis

Dynamic Analysis explores the semantics of the program-under-test via test data selection. It uses control and
data flow models and compares them with the actual control and data flow as the program executes. Dynamic
Analysis therefore forces the selection of test data which explores the structure of the source code. The LDRA
tool suite includes a Dynamic Coverage Analysis module. It is used for beneficial effect on software
robustness and reliability during both development and maintenance cycles.

3.8.14 Static Analysis

Static Analysis initiates LDRA Testbed activity by undertaking lexical and syntactic analysis of the source code
for a single file or a complete system. The adherence to Renesas Synergy Software coding standards is

loT-SQH-00304 Rev. 4.0 RENESAS Page 17 of 40
April 2019April 2019

Synergy Software Quality Handbook 3. Software Development Life Cycle Activities

automatically checked by the LDRA Testbed. Main Static Analysis searches the source code for any coding
standard violations, by checking the source file(s).

LDRA Testbed reports violations of the chosen set of standards in both textual reports and as annotations to
graphical displays.

3.8.15 Review

The initial version of documentation or code is subject to a full review and changes are subject to an
incremental review. The purpose of review is to evaluate the conceptual and technical approach to the system
solution and ensure that the quality factors previously defined for the project are satisfied. The review attempts
to identify problems in verification approach.

3.8.16 Audit

An inspection of the documentation and associated verification methods to verify that the process and its
documentation are in accordance with the SQA plan and organizational policies and procedures

3.9 Software Release Phase

The primary outputs of the integration stage include a production application, a completed acceptance test
suite, and a Release Note for the software. Finally, the DPA enters the last of the actual labor data into the
project schedule and locks the project as a permanent project record. At this point the DPA "locks" the project
by archiving all software items, the Implementation map, the source code, and the documentation for future
reference.

3.10 Scope Restriction

The project scope is established by the requirements listed in an approved MRD. These market requirements
are subsequently refined into system and software requirement, then design elements, then software artifacts.
This hierarchy of requirements, elements, and artifacts is documented in a Requirements Traceability Matrix
(RTM). The RTM serves as a control element to restrict the project to the originally defined scope.

Project participants are restricted to addressing those requirements, elements, and artifacts that are directly
traceable to market requirements listed in the MRD. This prevents the substantial occurrence of scope creep,
which is the leading cause of software project failure.

Any changes to scope need to be approved by CCRB before such a change is implemented.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 18 of 40
April 2019April 2019

Synergy Software Quality Handbook 4. Documentation Quality

4. Documentation Quality

The overall quality of a development project is dependent on the quality of its documentation. The effective
SQA plan specifies uniform requirements for all project and software documents. These standards define the
scope and format of each document. The standard also addresses the issue of technical writing style to
improve document clarity and consistency. Because of the necessity for traceability, paragraph numbering by
means of a decimal system is used.

4.1 Documentation Standards

Documentation is formatted per appropriate standards. Standards provide a means for the author to
determine exactly what needs to be included in the document as well as the form it is to take.

4.2 Documentation Review

Upon completion, all documentation is peer reviewed for correctness and reviewed by an independent
reviewer who has not been part of documentation generation for completeness.

4.3 Documentation Maintenance

All documentation associated with SSP are maintained online. Maintenance of documentation online allows
developer to obtain the most up-to-date copy directly when it is needed.

4.4 Documentation Control

SSP documentation is considered a software product as much as the computer program itself and is subject
to the same configuration management and control. All documentation changes follow the approval process
by the appropriate librarian or responsible person.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 19 of 40
April 2019April 2019

Synergy Software Quality Handbook 5. Standards, Practices, and Conventions

5. Standards, Practices, and Conventions

The establishment, implementation, and enforcement of sound standards, practice, and conventions are
essential for the certification of a program. Software Development Life Cycle (SDLC) standards include
procedures and rules employed and enforced that prescribe a disciplined, uniform approach to complete a
specific task.

Renesas Synergy Software SDLC is developed based on IEC12207, which is a common industry standard for
Developing Software Life Cycle and compliance with other highly regulated standards such as IEC61508, and
IEC62304.

Renesas Synergy Software processes are agreed-upon methods or techniques for developing and using
software, established to ensure uniformity of our product. As a best practice specifies methods, techniques,
conventions with uniform patterns or forms for arranging data or presenting information to provide consistency
and to facilitate understanding.

These standards serve both technical and managerial functions. They facilitate program readability, software
verification and validation, interface definition, and management review of software development. Renesas
Synergy Software processes clearly identify required procedures and activities to satisfy these standards
objectives.

A primary function of SQA consists of monitoring the software products and software development process to
ensure that they comply with the adopted standards. The standards adopted constitute a thread that links one
event to another throughout the software life cycle and shows how the particular requirement has been
implemented in the ultimate product.

If a standard or procedure is revised while the project is under way, the effect of the revised standard on the
project is evaluated and presented to CCRB, a decision made whether to continue to comply with the previous
standard or with the new one. However, records clearly the state which procedure is always being followed
during the course of the project.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 20 of 40
April 2019April 2019

Synergy Software Quality Handbook 6. Reviews, Audits, and Controls

6. Reviews, Audits, and Controls

Software development, operation, and maintenance efforts are reviewed and audited periodically to determine
conformance to SQA requirements. Technical reviews and audits are being concluded periodically to evaluate
the status and quality of the engineering efforts and to assure the generation of required engineering
documentation and adherence to adopted standards.

The specific technical reviews and audits of software development plans and schedules are identified in the
SQA plan. The procedures to be used in reviews and audits are described in a guideline. The participants and
their specific responsibilities are to be identified as well. As a minimum, the following reviews and audits are
being conducted:

Market requirements review
Software requirements review
Preliminary design review
Critical design review
Software verification review
Functional configuration audit
Physical configuration audit
In-process audit

Managerial reviews

©COoNoOGOrWNE

6.1.1 Technical Reviews

Technical reviews serve many purposes beyond helping to establish software quality. They allow several
individuals to share their experience with the creators of a product. The software review has the effect of
improving the technical capabilities of the individuals, as well as the team associated with the development
project. The members of the group gradually come to know and understand their colleagues, how they think in
certain situations, where they routinely make mistakes, etc. Such mutual understanding creates a better
technical team and can keep the same types of problems from recurring. The organization of people into
teams allows projects to proceed smoothly. The process of assembling the teams and assigning work can
compensate for differences in individual capabilities. A team can often find defects overlooked by individuals.

6.1.2 Review Team Members

The review is performed by individuals with sufficient technical expertise to provide a thorough review of all
activities. Independent checking is performed by an engineering or technical group rather than by an SQA

organization, which normally performs the auditing function. Review participants are independent of those

developing the program logic and are technically competent in areas related to the program tasks.

6.1.3 Review Procedures

The reviews and audits are clearly identified, scheduled, and properly sequenced. The procedures to be used
for reviews and audits identify the participants, their specific responsibilities, and the types of information to be
collected and reviewed. They also specify the preparation of a written report for each review and identify who
is to prepare the reports. In addition, the report format, who is to receive the reports, and the associated
management responsibilities are to be described along with any follow-up actions assure that
recommendations made during the reviews and audits are properly implemented. The time interval between
the review and the follow-up action are prescribed, as well as the personnel responsible for performing the
follow-up actions.

Checklists are effectively used in the course of the technical review. The participants in the review inspect all
available documentation against these checklists before the formal review meeting.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 21 of 40
April 2019April 2019

Synergy Software Quality Handbook 6. Reviews, Audits, and Controls

6.2 Audits
The following sections describe audits of the SQA program and the SQA function.
6.2.1 Functional Configuration Audit

A functional configuration audit is held prior to software delivery to verify that all requirements specified in the
software requirements specification have been met. The functional audit compares the code with the
requirements stated in the current software requirements document. Its intent is to determine that the code
addresses all documented requirements. Documentation of the results include any discrepancies and the plan
and schedule for their resolution. Once the discrepancies have been resolved, the software can be delivered
to the user.

6.2.2 Physical Configuration Audit

The principal purpose of a physical configuration audit is to determine if all the technical products of the
computer program development effort are complete and formally adhere to approved processes. The material
audited during a physical audit includes the technical products related to the computer program are available,
such as the final SRD, the software design description, and all other documentation formally prepared for
each release.

6.2.3 In-Process Audits

The objective of these audits is to verify the consistency of the product as it evolves during development or as
it is changed during the maintenance phase. The results of all the in-process audits are documented and all
discrepancies found are identified with the plans and schedule for their resolution.

6.2.4 SQA Audits

These audits evaluate the adherence to and effectiveness of the prescribed procedures, standards, and
conventions provided in SQA documentation. The internal procedures, the SQA plans, configuration
management, and contractually required deliverables from both the physical and functional aspects are
audited throughout the life cycle. The SQA audit consists of visual inspection of documents to determine if
they meet accepted standards and requirements. The SQA audit is not intended to review the conceptual
approach to a solution of a problem or to a design. Rather, the auditor checks the format of each document for
conformance with its prescribed outline as well as for omissions, apparent contradictions, and items that may
be sources of confusion in later work. The auditors verify the existence of all required documents and that the
quality of each is acceptable. A formal SQA audit report is generated and submitted to the cognizant project
manager for information and action. When such audits are carried on concurrently with design, coding,
documentation, etc., they decrease the possibility of oversights or inadvertent misconceptions that could result
in major rework and cost overruns.

6.2.5 Corrective Action

Plans and schedules for correction of deficiencies are necessary to complete the review and audit process.
Corrective action is subjected to CCRB approval. If it has been decided that the corrective action is not
necessary or can be deferred, then the issue is included in the release notes and captured in the problem
report system as a known issue.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 22 of 40
April 2019April 2019

Synergy Software Quality Handbook 7. Software Maintenance Phase

7. Software Maintenance Phase

The purpose of the maintenance phase is to collect and respond to problems found after the software is
released. The problems may be discovered internally in the reproduction and shipping of the software or
reported by a customer after they have installed the software. The following sections have brief description of
each of these.

7.1 Internal problems

When a problem is discovered internally it is reported as a defect in the tracking system. These problems are
reported and tracked per IOT-PRP-00247 Problem Reporting Procedure. These problems are tracked to
resolution by following this procedure.

7.1.1 Defect and Bug Life Cycle

The following explains the workflow for any defect or bug reported in the Problem Tracking System. Please
refer to IOT-PRP-00247 for procedural details of issue management in the problem tracking system.

1. The problem is reported.

2. The state of the problem is changed to open to allow work to be done.

3. When work is started, the state is changed to In Progress.

4. If more information is needed or there is a delay in starting the work on the problem the state is
changed to Waiting. Once the work is restarted the state is changed back to In Progress.

5. When a solution for the problem has been determined, the state is changed to Review.

6. If the problem resolution is acceptable, the state is changed to Resolved. If further verification is

needed the problem is referred to SQA for verification. If no further verification is needed, the state is
changed to Closed. If the solution is not acceptable the state is changed to Reopen and work is
resumed to find the acceptable solution.

7. Once the problem has been resolved it receives a final verification by SQA. If the resolution is verified
by SQA, the state is changed to Closed. If there is a discrepancy discovered in the verification, the
state is changed to Reopen and further work is needed.

7.1.2 Reporting — Defect, Bug

A Defect/Bug has to be reported clearly so that it is interpreted and reproduced, which enables investigation
and resolution. The reporter must provide details of classification of the Defect/Bug. The description will
contain following details:

A brief summary

Artifact’s identification and the version in which the Defect/Bug is observed

Method/steps to re-create the Defect/Bug

Deviation description from expected results. Reference to test case ID if any test cases are used to
execute the test

Attach any images or error information for better clarification

PN E

o

7.1.3 Defect, Bug — Types

Defects/Bugs can be separated into the following types:

Documentation

Build/Package

Review and Peer Review
Coding Guidelines

Unit Test (UT)

Integration Test (IT)
Performance Test
Test/Development Environment

NG~ LNE

10T-SQH-00304 Rev. 4.0 -zENESAS Page 23 of 40
April 2019April 2019

Synergy Software Quality Handbook 7. Software Maintenance Phase

9. Structural coverage and Code Complexity
10. Undesired Functional Behavior

7.1.4 Investigation — Defect, Bug

Any Defect/Bug that is reported in the Problem Tracking System is investigated and dispositioned to
respective stakeholders. The Defect/Bug investigation has following steps:

1. Validate the Defect/Bug

2. Root cause analysis (RCA)
3. Impact Analysis

4. Propose a Resolution

During the investigation of the issue, relevance and similarity to other known or potential issues needs to be
considered. Similar issues are tracked by explicit links or by making them as sub-issues of the main problem.

7.1.5 Resolve and Close — Defect, Bug

Defects DO NOT require Change Control Review Board (CCRB) approval and will be fixed by assignee and
verified/closed by reporter (independent reviewer).

Bugs require CCRB approval to be fixed. When the Bug is fixed, it verified by reporter, and closed by SQA.

CCRB’s approval for Bug records

Implementation of suggested Resolution

Changes to artifacts are traced to a unique Defect/Bug ID
Independent Review by reporter

Defects can be closed by reporter after review

Bugs can be closed by SQA after review

S

Refer to IOT-PRP-00247 Problem Reporting Procedure for a detailed description of the procedure that is
followed.

7.2 Customer reported problems

Problems discovered by the customer may be warranty claims or requests for support.

7.2.1 Warranty Claims

When a warranty claim is submitted by a customer, it is investigated first by the Renesas regional support
teams. Before the customer can submit a warranty claim, they must reproduce the problem using a Synergy
Development Kit (DK). This may be in conjunction with regional support. A warranty claim can only be against
SSP behavior that is specified in the Performance section of the SSP datasheet, and while operating on the
MCU hardware system that is also specified in the Performance section. Once the problem has been
confirmed by Renesas to be a defect in the SSP against behavior specified in the SSP datasheet
Performance section, the customer is notified of this acknowledgement by Renesas within 24 hours (excluding
weekends). Renesas will continue to work to resolve the defect and within 7 business days Renesas will either
provide a solution to the customer, or Renesas will provide an update on resolution to the defect with a best
estimate of the additional time to provide a solution.

7.2.2 Support requests

When support is requested by a customer on an SSP software problem, it will be entered in Renesas’ problem
reporting and tracking system and a ticket is created.

The following are the goals for support tickets:

1. Alltickets should receive a first response to the requester within 24 hours

10T-SQH-00304 Rev. 4.0 -zENESAS Page 24 of 40
April 2019April 2019

Synergy Software Quality Handbook 7. Software Maintenance Phase

2. All tickets should be solved or pending within 72 hours
3. Any ticket open more than 1 week will be escalated to a manager

Tickets are assigned to agents automatically by the system based on keywords in the ticket. If this assignment
is incorrect then the ticket is reassigned to the correct agent.

Tickets have the following status:

e When the ticket is received by the agent it will have a status of NEW.
e When the agent opens the ticket to read it or start responding with the originator, the status changes
to OPEN. The ticket status will stay OPEN unless it is manually changed.
e If the agent is waiting for information they will change the status to PENDING.
e When the problem is resolved, the status is moved to SOLVED.
— If the customer responds within 24 hours of the ticket moving to SOLVED, the status is changed
to OPEN and work continues.
— If the customer doesn’t respond within 24 hours, the status is changed to CLOSED.
— If the customer responds after the 24-hour period, the system will generate a new ticket.

While resolving the ticket, the Agent will search the knowledge database to see if there is an answer to the
problem. If not, after the problem is resolved the agent will determine if there needs to be any additional
information added to the knowledge database.

Some tickets may be added to the internal problem reporting system for further follow-up.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 25 of 40
April 2019April 2019

Synergy Software Quality Handbook 8. Software Metrics

8. Software Metrics

Software Metrics are a means to quantify the measurement software quality. The intent is to show the
correlation between software engineering methods and improved software quality. The long-term goal is to
see how different SQA procedures and structured development method affect the overall quality that can be
achieved. By collecting metric data, improvements in quality can be measured. Such quality metrics are
important because it is difficult to manage and improve what is not measured.

8.1 Complexity of Software

Software complexity is a natural byproduct of the functional complexity that the code is accomplish. With
multiple system interfaces and complex requirements, the complexity of software systems sometimes grows
beyond control, rendering applications and portfolios overly costly to maintain and risky to enhance. Left
unchecked, software complexity can run rampant in delivered projects, leaving behind bloated, cumbersome
applications.

The software engineering discipline has established some common measures of software complexity. The
most common measure is the McCabe essential complexity metric. This is also sometimes called cyclomatic
complexity. It is a measure of the depth and quantity of routines in a piece of code.

Without the use of dependable software complexity metrics, it can be difficult and time consuming to
determine the architectural hotspots where risk and cost emanates. More importantly, continuous software
complexity analysis enables project teams and technology management to get ahead of the problem and
prevent excess complexity from taking root.

When measuring complexity, it is important to look holistically at coupling, cohesion, use of frameworks, and
algorithmic complexity. It is also important to have an accurate, repeatable set of complexity metrics,
consistent across the technology layers of the application portfolio to provide benchmarking for continued
assessment as changes are implemented to meet business needs. A robust software complexity
measurement program provides an organization with the opportunity to:

¢ Improve code quality

e Reduce maintenance cost

e Heighten productivity

e Increase robustness

e Meet architecture standards

Automated analysis based on defined software complexity algorithms provide a comprehensive assessment
regardless of application size or frequency of analysis. Automation is objective, repeatable, consistent, and
cost effective. A software complexity measurement regime is important for any organization attempting to
increase the agility of software delivery.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 26 of 40
April 2019April 2019

Synergy Software Quality Handbook 8. Software Metrics

COMPLEXITY REPORT — THE CYCLOMATIC COMPLEXITY

8 Hodes

9 Edges 1 Component

() (Cyclomatic complexity - a software metric that indicates complexity of a
o /-" 7\ ® program. A quantitative measure of number of linearly independent

4

o ood paths through a program's source code

Cyclomatic Complexity =E - M+ 2P
where T oy
E =the number of edzes of thegraph. LDRA Testbed ® Quality Review Report
N =the number of nodes of thegraph, System : r_doc

P =the number of connected components.
File and Procedure Results, Metric by Metric

PROCEDURE CYCLOMATIC|
COMPLEXITY

= Some studies find a positive correlation between R_DOC_Open 6 (P
R_DOC_Close 3(P

R_DOC_StatusGet 4 (P
methods that have highest complexity tend to also R_DOC_StatusClear 3(P
R_DOC_Write 4 (F
R_DOC_InputRegisterWrite 3 (P
R_DOC_VersionGet 2(P
doc_int_isr

cyclomatic complexity and defects: functions and

contain most defects

Total for r_doc.c 20
==

Figure 6 Cyclomatic Complexity
Cyclomatic Complexity Limits

The higher code complexity increases debugging effort and decreases code reliability (more security flaws)

Complexity Reliability Risk
1-10 A simple function, little risk
11-20 More complex moderate risk
21-50 Complex, high risk
51+ Untestable, very high risk

The higher code complexity increases risk of injecting new deficiency while fixing existing one

Complexity Risk of injecting a bug when making a change
1-10 5%
20-30 20%
>50 40%
Approaching 100 60%

Note: McCabe, Thomas Jr. Software Quality Metrics to Identify Risk. Presentation to the Department of
Homeland Security Software Assurance Working Group, 2008.

(http://www.mccabe.com/ppt/SoftwareQualityMetricsToldentifyRisk.ppt#36) and Laird, Linda and
Brennan, M. Carol. Software Measurement and Estimation: A Practical Approach. Los Alamitos, CA:
IEEE Computer Society, 2006.

8.1.1 Module Software Complexity Index

The cyclomatic complexity of each function of a module is calculated by using a static analysis tool. The
maximum number of calculated cyclomatic complexity of the module is scaled as follows:

10T-SQH-00304 Rev. 4.0 -zENESAS Page 27 of 40
April 2019April 2019

Synergy Software Quality Handbook

8. Software Metrics

Maximum number of Complexity

Index

>0 and <=15

>15 and <= 20

>20 and <= 25

>25 and <= 30

>30 and <= 35

>35

O|lFR,|N|W|A~ O

8.2 Clean Build

8.2.1 Module Software Warning Index

The maximum number of generated warnings from various build configuration using different toolchains is

scaled as follows:

Maximum Number of Warning

Index

Zero

> zero and <=5

>5and <= 10

>10 and <= 15

>15 and <= 20

> 20

OR[N W&l O

8.3 Structural Decision Coverage

8.3.1 Module Software Code Coverage Index

Module Code Coverage Index is calculated as follows:

Total Decision Coverage (%)

Index

=100

>= 95 and <100

>=80 and < 95

>= 60 and <80

>=50 and < 60

<50

O[R[N W[~ O

l0T-SQH-00304 Rev. 4.0 RENESAS

April 2019April 2019

Page 28 of 40

Synergy Software Quality Handbook 8. Software Metrics

Code Coverage — Dynamic Analysis

Code coverage - a measure used to describe degree to which program source code is tested
by a particular test suite. A program with high code coverage has been more thoroughly
tested and has lower chance of containing bugs

. . . R _DOC_Writ
® Function coverage - Has each function in the program

been called? = =

PREVIOUS CURRENT
RUNS RUN COMBINED

Cine womaia
" Statement coverage - Has each statementin the B CuRE) STATGRRT
i
program been executed? 20013

26312
26315 (288)
6316 (289)

3
® Branch coverage - Has each branch of each control S 2

26319 (293)
26320

structure been executed? 21z

0 1 1
o 1 1

3
® Condition coverage - Has each Boolean sub-expression 3t
evaluated both to true and false? 36330

1 0000000000000000C0 ! 1

26335 SSP_ERR_ASSERTION ;
SRaR 3

Figure 7 Code Coverage — Dynamic Analysis
8.4 Coding Standards

The practices and conventions to be used during the implementation and coding phases is describe in coding
standards. Coding standards provide for specifying quality attributes in a testable way. Implementing
standards for structured code or use of structuring precompiles, local/global data access, and parameter
passing will reduce the number of coding errors. Code maintenance will also be improved by using coding
standards, particularly those that deal with the appearance and arrangement of the code as well as
commentary. The standards include criteria for module size, naming and numbering, header commentary, in-
line commentary, local/global data access, parameter passing, and code formatting. Automated methods or
manual methods for verifying compliance with programming standards can be implemented using software
tools. Using these methods is cost-effective, based upon the authors' experience.

To provide uniformity, naming and labeling conventions are established for each version and every
component of the software. The program name is included in all source code and each version derived from
every element. Each version of a program is given a unique version number. The version number is
referenced in verification results obtained from the program, as well as the date on which the program was
tested. Naming and labeling conventions are unique to each project but uniform in format throughout
Renesas.

Renesas Synergy Software coding standards mandate appropriate layout conventions for each software
module to result in higher quality software. Detailed specifications are established that cover such
programming conventions as indenting and spacing of the program statements, use of comments, and
required use or restriction of certain features of the programming language. Layout conventions are required,
particularly for maintenance. As the results, Renesas Synergy Software always has the same format, a
maintenance programmer can gain a great deal of information simply from familiarity with the particular
format.

Coding techniques tend to be specific to a particular programming language. All the basic structured
constructs can be implemented in a standard fashion using any of the programming languages available.

Standard constructs, followed rigorously, allow ease of translation of the so-called pseudo-coding or other
design representations created during detailed design directly into the programming language.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 29 of 40
April 2019April 2019

Synergy Software Quality Handbook 8. Software Metrics

Renesas Synergy Software coding techniques provides in-line verification by assertion techniques. Assertions
are embedded within the code in the form of comments that can later be activated to determine the state of
the processing variables at any point in the code. The assertions can check limitations on the variables that
are physically realizable, such as ranges, and thereby provide a degree of verification while the code is
operating. Pre- and post-processors can be used to embed assertions into almost any type of implementation
language.

Renesas Synergy Software standards for in-line comments leads to uniformity in the amount of detail included
in the commentary. Comments do not simply reflect information that can be obtained more readily by looking
at the logic flow itself, such as by saying, "branch on plus," when it is obvious from the computer coding.
Comments add information about programming logic and can be used as a means to embed the detailed
design into the program listing.

8.4.1 Module Software Coding Standard Index

The adherence to 10T BU coding standards is automatically checked by LDRA Testbed. The total number of
violations is scaled as follows:

Total Number of Coding Standard Violations Index
zero 5
>0 and <= 20 4
>20 and <= 40 3
>40 and <= 60 2
>60 and <= 80 1

>80 0

8.5 Software Verification
8.5.1 Module Software Verification Index

Module Software Verification Index is calculated as follows:

Table Title Description Yes No

Tested on all HWs All tests are ex_ecuted on all 1 0
supported devices

No Failure 1 0

Tests Passed
No Ignored 1 0
Test Matrix Complete Traceable 1 0
Tests traceable Full requirement coverage 1 0
Verification Sum of listed items 5 0

8.6 Software Backward Compatibility

8.6.1 Module Software Backward Compatibility Index

Module Backward Compatibility Index means no change to APIs, Data, and Control Coupling without a
performance degradation.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 30 of 40
April 2019April 2019

Synergy Software Quality Handbook 9. Requirements Management Solution Tool

9. Requirements Management Solution Tool

A requirements management solution tool is being used to meet the needs of Renesas' complex products with
the following features:

Capture, discuss, review, approve and manage all requirements in one central place.

Understand coverage and track relationships between requirements, use cases, test cases, defects
and other related items to demonstrate compliance and assure quality.

Embrace an open, modern approach to product delivery with the tool collaborative Review Center.
Save time setting up new projects by reusing existing strategic assets.

Provide real-time product status to stakeholders across the organization.

Control scope and track change requests with full version history.

10T-SQH-00304 Rev. 4.0 -zENESAS Page 31 of 40
April 2019April 2019

Synergy Software Quality Handbook 10. SSP Software Qualification and Verification

Packages

10. SSP Software Qualification and Verification Packages
SSP qualification package contains:

1. Software Quality Presentation

2. Software Quality Handbook

3. Software Quality Summary Report
SSP software verification package is available per customer request under NDA and includes:

1. Software Development Life Cycle

2. Software Coding Standard

3. Software Specification Reports

4. Software Static Analysis Report

5. Software Dynamic Analysis Report

6. Software Performance and Benchmark Reports

7. Software Metrics
loT-SQH-00304 Rev. 4.0 RENESAS Page 32 of 40

April 2019April 2019

Synergy Software Quality Handbook 11. Functional Tests Reports

Appendix A - Simulated Verification Reports
11. Functional Tests Reports

11.1 Coverage Report

R_CGC_SystemClockFreqGet

Coverage Metrics required to achieve Decision Coverage
Attained

|| Statement (TER1) = 100 % Branch/Decision (TER2) = 100 %

Statement Coverage Profile

LINE HUMEER PREWIOUS CURRENT
REF. ({SOLURCE} STATEMENT RLINS RLIN COMBINED)
27284 (582) ssp_err_t 2] 1 1
27205 R_CGC_systemClockFreqGet | a 1 1
27206 cgc_system clocks_t clock , = = =
27287 uint3i2 t * p_freq_hz) = = =
27208 (5E3) - - -
27282 (584) f* return error if invalid system clock or not supported by hardu = = =
2721@ (585) * p_freq_hz = @x@@ ; 2] 1 1
27211 (58E) I a 1 1
27212 if 2 1 i
27213 (a 1 1
27214 { a 1 1
27215 { 2 1 i
27216 [HU_Cac_SystemClockWalidCheck (clock)))) 2] 1 1
27217 I} a 1 1
27218 { 2 1 i
27219 { void J @ ; a 1 1
27220 } a 1 1
27221 else 2 1 i
27222 1 a 1 1
27223 { wold) (a 1 1
27224 { 2 1 i
27225 [a 1 1
27226 { & g cge_wersion)))) ; a 1 1
27227 ssp_error_log 2] 1 1
27228 [a 1 1
27229 { a 1 1
27238 { S5P_ERR_INVALID_ARGUMENT)) , (a 1 1
27231 [g module name) 3 , _ LINE_) ; ; 2] 1 1
27232 return a 1 1
27233 { 2 1 i
27234 { SSP_ERR_INVALID ARGLMENT)) ; a 1 1
27235 1 - - -
27236 & 2 1 i
27237 (588) * p_freq_hz = HW_CGC_ClockHzGet [clock) ; 2] 1 1
27238 (583) return a 1 1
27239 SSP_SUCCESS 2 1 i
27248 (559@) 1 = - -

10T-SQH-00304 Rev. 4.0 .zEN ESNS Page 33 of 40
April 2019April 2019

Synergy Software Quality Handbook

11. Functional Tests Reports

11.2

Description

Verification Results

Test Case 1 : Procedure R_CGC_SystemClockSet (r_cge.c) -

PASS

TC_CGC_00018_002_NM_A_02

werify that the System Clock is successfully set when the specified clock is system clock and the dinternal clock divider is configured as fastest. is configured as fastest.

Mumber of Input Parameters : 2
Mumber of Input Globals : 7

Mumber of Cutput Parameters : 0

Mumber of Qutput Globals : &

Return Value

Input Parameters

Input Globals

Output Globals

Type Expected Value Actual Value Status
[Procedure Returns ssp_err_t SSP_SUCCESS SSP_SUCCESS PASS
Name Type Value

clock_source cge_clock_t CGC_CLOCE _MOCO
Ip_clock_cfg cgc_systerm_clock_cfg_t* &L_sysp_clock_cig

Name Type Value UsrlG
L_sysp_clock_cfgicll dir cge_sys_clock div_t CGC_SYS_CLOCKE_DIV_1 Tes
L_sysp_clock_cfg felle diw cgc_sys_clock dw_t CGC_SYS_CLOCE_DIV_1 Tes
L_sysp_clock cfgbelk div coc_sys_clock div t CGC_S5YS CLOCE DIV 1 Tes
L_sysp_clock cfgpelkd div coc sys_clock div t CGC_SYs CLOCE DIV 1 Tes
L_sysp_clock_cfgpelke_dir cgc_sys_clock _div t CGC_SY3 CLOCE DIV 1 Tes
L_sysp_clock_cfg.pelidh_div cge_sys_clock div_t CGC_SYS_CLOCE_DIV_1 Tes
L_sysp_clock_cfg pelka_div cgc_sys_clock dw_t CGC_SY5_CLOCE_DIV_1 Yes

Name Type Expected Value Actual Value Status || Usriy

L_sysp_clock_cfgfell div cgc_sys_clock _div t CGC_SYS_CLOCK _DIV_1 CGC_SYS_CLOCE_DIV_1 PASS |[Yes
L_sysp_clock_cfgbelk_div coc_sys_clock div t CGC_SYS_CLOCE _DIV_1 CGC_SYS_CLOCE _DIV_1 PASS |[Yes
L_sysp cleck cfgpelkd div coc_sys_cleck div t CGC EYE CLOCKE DIV 1 CGC_SYS CLOCE DIV 1 PASS | [Tes
L_sysp_clock cfgpelke div cgc_sys_clock div t CGC 3YS CLOCE DIV 1 CGC_SYS CLOCE DIV 1 PASS ||Tes
L_sysp_clock_cfgpelkb_diw cge_sys_clock div t CGC_3YS_CLOCE DIV 1 CGC_SYS_CLOCE DIV 1 PASS | [Yes
L_sysp_clock_cfg.pelka_div cge_sys_clock div_t CGC_SYS_CLOCE_DIV_1 CGC_SYS_CLOCK_DIV_1 PASS || Yes
L_sysp_clock_cfziclle div coc_sys_clock_div_t CGC_SYS_CLOCE_DIV_1 CGC_SYS_CLOCE_DIV_1 PASS || Yes
clock_source coc_clock t CGC_CLOCE_MOCO CGC_CLOCE_MOCO PASS
E_SYSTEM-=SCEESCE _b.CESEL uintS ¢ 0x01 1 PASS

10T-SQH-00304 Rev. 4.0
April 2019April 2019

RENESAS

Page 34 of 40

Synergy Software Quality Handbook

12. Performance and Benchmark Report

12. Performance and Benchmark Report

SSPX.Y.0{e2studioM.N.1.010)

IAR
5124 S3AT S509 572
Class Operation Mode
OHSpeed, OHSpeed, OHSpeed, OHSpeed,
no size no size no size no size
QHE constrains QHE constrains constrains QHE constrains
7Dk CPU 240Mhz Iterations 10000 {time sec) 21
CPU 160Mhz Iterations 10000 (time sec) 27
EEMBC CoreMark@ CPU 80Mhz Iterations 6000 (time sec) 32
=3-DK CPU 48Mhz Iterations 10000 {time sec) 80
CPU 24Mhz Iterations 10000 {time sec) 159
S5124-DK CPU 32Mhz Iterations 10000 {time sec) 167
basic processing Cycle count per 30 second 63,841 175,595 638,717
cooperative scheduling Cycle count per 30 second 3,353,310 8,179,504 32,934,167
interrupt preemption proces| Cycle count per 30 second 1,291,687 2,999,190 12,630,826
TM Threadx Metrics interrupt processing Cycle count per 30 second 4,442,511 10,743,624 45,857,288
- rermory allocation Cycle count per 30 second 5,177,587 12,410,857 51,425,800
Message processing Cycle count per 30 second 2,787,673 7,121,126 29,236,962
preemptive scheduling Cycle count per 30 second 1678080 3,853,070 16,251,622
synchronization processing Cycle count per 30 second 5,899,047 13,842,831 61,534,943
File number: 200
Filexx Transaction number; Time (sec) 28 24
s00
|2C transfer rate in standard mode for different clock settings with dtc
100000
90000 = —
——
80000 »-
w 4‘\
£ 70000
c
E 60000
© 50000
«g 40000
© 30000
'_
20000
10000
0
PLL/2: i i PLL/16 : PLL/32 : PLL/64 :
(120MHz) PLL/4: (BOMHz) | PLL/8 : (30MHz) (15MHz) (7.5MHz) (3.75MHz)
=== R xavg(bps) 88552.8 88552.8 82996 77140.2 76635 68333
—fi—Txavg(bps) 88457.6 88457.6 82996 78095 77067.6 68734.2
PCLKA clock frequency
TFTP Server with USBx File system Data transfer rate in kBps
160.00
140.00
—
120.00
2
= 100.00
X
E
L 80.00
&
% 60.00 o TETP Server with USBx File system Data
o transfer rate in kBps
40.00
20.00
0.00
i)) O O O o N]
S P R -
v F &

Data size in Bytes

10T-SQH-00304 Rev. 4.0
April 2019April 2019

RENESAS

Page 35 of 40

Synergy Software Quality Handbook

13. Integration Report

13. Integration Report

- - - - T Targin- - - - - - - -
) imsto | Total Latest
| ime Actual)
. o Compile | , 1! solve | Costthour| ¢ Estimate)) - 3SP | Readyfor | Overall
Madule Chss Deseription P Canthou| TS |FTHRN Time | B Rediew | Reriewer | Compatiiity |0 *5E || SeTer | Bl
b h] Gostihour)
unexpecte | Margin on
Use ADC: Periodic framework ko detect the frequency of
L signal applicd to 3 GPID on a channel,
ADE Periodic, USE |2 71907 3PP !]
L2 et [Full Specd), ufrite al rany data from ADG during sampling to o FATS2) |, 0 8 30% 104 2 . Yer Feder DK-37G2 115 | 500045 | Pass
et oy £ x| Fle e LISE thums v Full Spccd.
. Display detceted fraqueney on the eonneet LCD.
Dranw the signal on the connect LCD,
Uzar zelact 3 media SO or MMC
User save three jpeq images on selected media fram
" <onnected thumb drive
;‘::fg:;ug;lnmh“ User st 5 time interval in zec
L2_UC_3 | SOMMMC, Flach, spi | H2¢7 select number of repetition [1, 2, endless) e & 30% 104 45 . Yer Feder DK-3702 15 | 500045 | Pass
g User start s manual slide shom where pictures and be
e e, EL x| ehenged bya user action on the sereen
Ipeq - Uzer skart n automats slide show where pictures changes
within selected time interval and continues for selected
number of repetition
L2 UUE_ 4L Gk, 2p | Mot sslsat fils Forms fram (FAT12, FATIS, or FATS2)
G4 . Use select a media to save
1R 3 0% 8 3 . . DK-57G2 15 | 500045 | pass
La_be_s ?.’I“'"‘g' iPededecode |y Biraw o nok straight line on screen o
e Uzer save the image to the selected media as 3 jpeg file
L2_UG_T: Pawer Mode | User utilize messaging framework ta send command to
Frofile, Console, FITC, | lisked driver using Messaging Framework . ; y
La_UGT | b I0PORT, and User receives an acknowledgment for cach command 4R s 0% 8 2 e Fudur D-3162 M3 | 500047
C&E, Mersaging thraugh the consol
ESOFvE AR z 0% Ex} z - Mo DK-5762 115 | 00045 | Fass
AT 1P Pvd only 5 z 20% 24 1 . T DK-57G2 113 | 500045 | Pass
SMTF Client IFvd GoC z Z0% 7a 1 . e DK-5762 115 | 00045 | FAss
DHCP Clicnt 1Pyt GoC B 0% 55 1 . M DK-5TG2 115 | 500045 | Fess
L& UC_8: Mets Client - HTTF Client IFud. GoC z =% 24 1 - Mo DK-57G2 115 | 500045 | Fass
e s DHCF, DNE, FTP, TFTF, FOP3 Clicnt [Pud GCT 2 20% 2.4 1 - Mo DE-37G2 113 5.0.0.04% FAZE
- Telnet, SMTF, PO, DN Client 1Pvd GoC z =% 24 1 . [DK-57G2 115 | 00045 | Fess
TP FTP Client IPrd GoC B z0% 24 1 . He DK-57G2 115 | 500045 | Fess
TFTP Clicnt Pyd GoC z =% 24 1 . [DK-57G2 115 | 00045 | Fess
SITP Clicnt Prd GoC B z0% 24 1 . He DE-5TGE 115 | 500045 | Fess
TELMET Client [Prd GoC 3 Z0% 3 1 . [DK-57G2 115 | 00045 | Fass
PPF Pt anly GoC B B0% Tz 1 . No DK-57G2 115 | 500045 | Fess
AT P (Ped only 1AF, B 20% 24 1 No DK-57G2 113 PASS
SATF Client IPvd] z 20% X} 1 Mo DK-5762 115 FASS
SMTF Clent P46 GeC = 20% 24 1 Mo DK-57G2 113 PASS
DHCF Clicnt IPvd GoC 3 0% 56 05 o DK-57G2 115 PASS
DHCF Client IPv6 GeC 3 30% 3 1 Mo DK-5762 113 PAST
HTTF Clicnt IFvd. GoC = 0% 24 1 o DK-57G2 115 PASS
HTTF Client IFv6s GCC 20% Mo DK-5TG2 &
POF3 Clicnt [Pd GCC 0% Mo DK-57G2 2
FOF3 Clicnt (PG GoC 20% Mo DK-31G2 &
L2_UIC_13: HetsDus NG Clicnt (Pvd GeC 20% . Mo DK-5TG2 1 &
Chient - DHCP, DS, DN Client IPv6 GoC = 0% 24 1 o DK-57G2 XE FAsE
Le_uc_t3 . 50.0.043
FTP, TFTF, Telnst, FTF Client Fvd cC 0% M DK-3Ta2 5
SMTF, POP3, SNTP FTF Clicnt [Py CC 20% Ho DE-5TG2 =
TETP Client (Pt cC 20% Mo DK-31G2 &
TFTP Clicnt Py GeC 20% . Mo DK-5TG2 1 &
SITF Clicnt [Frd GoC = 0% 24 1 o DK-57G2 115 PASS
SITF Clicnt Py cC 0% X 05 Mo DK-371G2 &
TELMET Clicnt [Fvd cC 0% © 1 Mo DK-3TG2 &
TELMET Client IFvE cC 20% 5 [Mo DK-51G2 &
PP Fvd only GeC 20% 2 1 Mo DK-5TG2 1 &
B30 1Pyt TAF, = 0% 24 1 o DK-57G2 115 PASS
ESOFvE I z 0% Ex} 1 Mo DK-57G2 113 FASS

10T-SQH-00304 Rev. 4.0

April 2019April 2019

RENESAS

Page 36 of 40

Synergy Software Quality Handbook

14. Complexity Report

Complexity Metrics (r_cgc.c)

14. Complexity Report

File and Procedure Results, Metric by Metric

April 2019April 2019

Procedure Cyclomatic Complexity

R_CGC_Init 4@
R_CGC ClocksCig 26 (F)
R_CGC_ClockStart 31(F)
R_CGC_ClockStop 20 (F)
R_CGC_SystemClockSet 48 (F)
R_CGC_SystemClockGet 1(®)
R_CGC_SystemClockFreqGet 2(®
R_CGC_ClockCheck 11 (®)
R_CGC_OscStopDetect 47 (F)
R_CGC_OscStopStatusClear ()
R_CGC BusClockQuiCfg 1®
R_CGC_BusClockQutEnable 1(®)
R_CGC_BusClockOutDisable 1(®)
R_CGC_ClockQuiCfg 1®

R _CGC_ClockQutEnable 1®
R_CGC_ClockOutDisable 1@
R_CGC_LCDClockCfg 7(®)
R_CGC_LCDClockEnable 5@
R_CGC_LCDClockDisable 5(
R_CGC_SDRAMClockQutEnable 2@
R_CGC_SDRAMClockOutDisable 2@
R_CGC_USBClockCfg 2@
R_CGC_SystickUpdate 4(P)
R_CGC VersionGet 1®
r_cge_stabilization_wait 6(P)
r_cge_clock_start stop 6(P)
Total forr_cgec 220(P)

loT-SQH-00304 Rev. 4.0 RENESAS Page 37 of 40

Synergy Software Quality Handbook

15. Coding Standard Report

15. Coding Standard Report

Totals of Violations for Selected Code Review Standards

*-' indicates required Analysis Phase results are not yet available.
'Off indicates that the standard 1s switched off in the Penalty File (<lang=pen dat).

Overall Code Review Summary

Number of Violations LDRA Code (M) Mandatory Standards MISRA-C:2012 Code
0 36 § [Function has no return statement. MISRA-C:2012R.174
0 34 S Sizeof operator with side effects. MISRA-C:2012R.13.6
0 66 S [Function with empty refurn expression. MISRA-C:2012R 17 4
0 407 S [free used on string. MISRA-C:2012R 222
0 480 S String function params access same variable. MISRA-C:2012R.19.1
0 483 S free parameter is not heap item. MISRA-C:2012R.22.2
0 484 S |Attempt to use already freed object. MISRA-C:2012R.22.2
0 496 S [Function call with no prior declaration MISRA-C:2012 R 173
0 545 S |Assignment of overlapping storage. MISRA-C:2012 R 19.1
0 591 S Inappropniate use of file pointer. MISRA-C:2012R.22.5
0 614 S [Use of static keyword in array parameter. MISRA-C:2012R.17.6
0 631 8 [Declaration not reachable. MISRA-C:2012R.9.1
0 2D IFunction does not return a value on all paths. MISRA-C:2012R.17.4
0 48 D |Attempt to write to unopened file. MISRA-C:2012R.22.6
0 51 D |Attempt to read from freed memory. MISRA-C:2012R.22.2
0 53 D |Attempt to use uninitialised pointer. MISRA-C:2012R 9.1
0 69 D [Procedure contains UR. data flow anomalies. MISRA-C:2012R.9.1
0 98 D |Attempt to write to file opened read only. MISRA-C:2012R 22 4
0 113 D [File closed more than once. MISRA-C:2012 R.22.6
0 62 X [Function prototype/defn return type mismatch (MR). MISRA-C:2012R 8 4
0 63 X [Function prototype/defn param type mismatch (MR). MISRA-C:2012R83 R 84
0 5Q [File does not end with new line. MISRA-C:2012R 13

10T-SQH-00304 Rev. 4.0
April 2019April 2019

RENESAS

Page 38 of 40

Synergy Software Quality Handbook

16. Unit Test Report

16. Unit Test Report

#H#28Pr VERSION#H

Unity test run 1 of 1

TEST (F_AGT TG1,
TEST (R_AGT TG1,
TEST (F_AGT Ta1,
TEST (F_AGT TG1,
TEST (R_AGT TG1,
TEST (F_AGT Ta1,
TEST (F_AGT TG1,
TEST (R_AGT TG1,
TEST (F_AGT Ta1,
TEST (F_AGT TG1,
TEST (R_AGT TG1,
TEST (F_AGT Ta1,
TEST (F_AGT TG1,
TEST (R_AGT TG1,
TEST (F_AGT Ta1,
TEST (F_AGT TG1,
TEST (R_AGT TG1,

T 1 1 GetVersion) PAZSR

TCc 1 2 OpenWithValidchan0) PASS

TC¢ 1 3 CpenWithValidchanl) PBASS

T 1 4 CpenilithInvalidChannel) PAZS

TCc 1 5 CpenWithInvalidHdlPtr) P&z

T 1 & CpenWithOpenedChannel) PASS

T 1 7 CpenilithOutputCompareDisabled) PAZS
TC 1 8 OpenWithAGTO Enabled) PASS

TC¢ 1 2 CpenWithASTIO Enabled) PASS

TC 1 10 OCpenWithASTO ASTIO Enabled) PASS

TCc 1 11 OpenWithValidcChan0 one shot mode) PASS

T 1 12 OpenWithValidChan0 callback trigger)

TC 1 13 StartStopClear); PASE

T 1 14 SetietDelay) PASS

Tc_ 1 14 CalculateDuty) PASS

T¢ 1 15 CaleulateDutyOutputPinCheck) PASE
TCc 1 16 CascadedTimers) PASS

TEST (DRV_TIMER _T&1, TC 1 1 Cpenfuccess) PASS

TEST (DRV_TIMER T&l, TC 1 2 OpenHdl) PASS

TEST (DRV_TIMER _T&1, TC 1 3 OpenCallbackParameter) PASS
TEST (DRV_TIMER T&l, TC 1 4 OpenConfigIsNull) Pass

TEST (DRV_TIMER Tl,

TEST (DRV_TIMER TGl, TC_ 1 6 OpenOneShot) PASS
TEST (DRV_TIMER T&l, To_1 10 OpenTwice) PASS

TEST (DRV_TIMER Tl,

TEST (DRV_TIMER _T&1, TC_l_lZ_DpenPeriDdTDDLarge} PAGS
TEST (DRV_TIMER T&l, TC 1 13 MultipleChannels) PASS
TEST (DRV_TIMER T&Z, TC Z 1 NullPointers) PASS

TEST (DRV_TIMER T3Z, TC Z 2 StartStopClear) PASS
TEST (DRV_TIMER T&Z, TC 2 3 SetGetDelay) PASS

TEST (DRV_TIMER TGZ, TC Z 4 GetVersion) PASS

TEST (DRV_TIMER T3Z, TC Z 5 ControlNotOpen) PASS
TEST (DRV_TIMER T&Z, TC 2 & infoGet) PASS

TEST (DRV _TIMER T3, TC 3 1 Closefuccess) PASS

TEST (DRV_TIMER T3, TC 3 2 CloseHdl) PA3s

TEST (DRV_TIMER T3, TC 3 3 CloseNotOpen) PASS

36 Tests 0 Failures 0 Ignored 38 Pass

oK

PASE

T¢ 1 5 CpenConfigChanneldutOfRange) PAZS

T¢ 1 11 OpencallbackIRCNotivailable) PAZR

10T-SQH-00304 Rev. 4.0
April 2019April 2019

RENESAS

Page 39 of 40

Synergy Software Quality Handbook 17. Regression and Quality Report

17. Regression and Quality Report

Quality summary reports can be obtained for each minor release of SSP. Please visit the Synergy Software
Quality webpage at Renesas.com for information on where to locate these reports.

Synergy Software Package Quality Matrices Quality Data Functional Test
[}
5 S & 3 = z = 3@ L © = =

o E E22cE Fg 3t o :ECHEIEEEEY
g : 5228 8¢ (B 4 2z || 25z |S2|2|2|3(5|8|8|3 (58|13
& = @ > S5 © = o = 5 - = = o o o o 2] 0] w20 on)

= E §2e0 5 5 5 - SRS 88§ B §

=L s Es & = :
S £@ (25
o 8 E

1 bsp 00% (100/100)|13(O |O| 1| (88/80) | 193 (4/38) 31 (33|33|33|33|33|33]|33|33(33|31
2 00% (100/100)|10(O |O] 1 (0/0) 33 (83/70) 9 9 9 |10| 9 9
3 00% (100/100)| 8 O |0O] 1 (0/0) 27 (84/71) 6 10 | 10 | 10 | 10 |10|10(10
4 ad 00% (100/100)(10| O | O] 1|(100/100)| 255 (93/89) 45| 45| 45| 9 | 45| 45| 45 | 45 |45|45(45
5 a 00% (100/100)(10| O | O] 1|(100/100)| 116 (92/89) 33 (3333|4533 | 33| 33| 33|33(33|33
6 a p apture 00% (100/100)[13| 0 [0 1| (85/79) | 35 | (100/100) | 22 [22 | 22 | 33 | 22 | 22 | 22 | 22 || 22|22
7 analog_conne 00% (100/100) 7| O [Of 1| (79/74) 40 (70/62) 3 3 3 |22 5 4 4 4 |5|5[4
8 a 00% (100/100)[10| 0o |0 1|(100/100)| 122 | (98/94) |24 | 24| 24| 3 | 24| 24| 24| 24 [24]|24]24
9 a 00% (100/100)(10| O [O] 1)(100/100)| 180 | (100/100) [40 | 40 | 40 [24 | 40 | 40 | 40 | 40 [40|40]|40
10 g 00% (100/100)(15| O [O] 1| (90/81) | 294 (87/82) 94 [94 | 94| 40 | 94 | 94 | 94 | 94 |70(70|70
11 00% (100/100)(8| O | O] 1|(100/100)| 80 (86/80) 10 (10| 10|94 | 10| 10| 10| 10 |10(10|10
12 60% (100/100)[84|247| 0| 1| (94/87) | 229 (31/21) 14 | 14 | 14 14 13[13
13 da 00% (100/100)(10| O [O] 1)(100/100)| 56 | (100/100) | 34 | 34 | 34 [10 | 34 | 34 | 34 | 34 (34 34
14 dac8 00% (100/100)(10| O | O] 1|(100/200)| 50 (95/94) 14 37 | 37 [37|37
15 dma 00% (100/100)(10| O | O] 1|(100/100)| 117 (96/92) 29 (29| 29|34 |29|29|29|29
16 do 00% (100/100)(10| O | O] 1|(100/200)| 52 (99/96) 7 7 7 29| 7 7 7 77|77
17 d 00% (100/100)[10| O [O] 1|(100/100)| 111 (96/93) 28 |28 |28 | 7 |28 28| 28 | 28 |28|28(28
18 e 00% (100/100)(5| O | 0] 1|(100/100)| 48 (80/62) 7 7 7 | 28| 7 7 7 7 |7|7|7
19 a p 00% (100/100)10] o [of 2| (96/95) [184 | (9a/86) [29[2029 7
20 a p 00% (100/100)10| O |O| 1| (97/96) | 203 (97/95) 58 | 58 | 58 | 58 |58|58|58
21 00% (100/200) 9| o |of 1] (92/01) | 56 | (8o/71) |12 [13|22 | 29|12 12]12]12[12]12]12
22 glcd 00% (100/100)10 O | O] 1)(100/100)| 218 (96/89) [150|150
23 ap 00% (100/100)[10| O [O] 1|(100/100)| 109 | (100/99) | 35| 35| 35|12 | 35| 35| 35| 35 [35|35|35
24 ap p ap e 00% (100/100) 9| O | O] 1|(100/100)| 90 (99/96) 23| 23| 23| 35| 23| 23| 23| 23 (23|23|23
25 00% (100/100) 8| O | O] 1(100/100)| 69 (86/75) 30 (30| 30|23 |30]| 30| 30| 30|30(30|30
26 opo 00% (100/100) 6 | O | O] 1](100/100)| 134 (89/88) 27 | 27 | 27 | 30 | 27 | 27 | 27 | 27 |27|27 |27
27 d 00% (100/100) 7| O | O] 1|(100/100)| 60 (93/81) 20 | 20| 20| 27 | 20 | 20 | 20 | 20 [20|20|20
29 peg_decode 00% (100/100)(10| O | O] 1|(100/100)| 212 (95/89) 50 | 50
30 peg_encode 00% (100/100) 9| O | O] 1](100/100)| 77 (82/70) 9 9
31 00% (100/100) 9| O | O] 1|(100/100)| 60 (88/80) 15| 15| 15| 20| 15| 15| 15| 15 [15|15|15
32 P 00% (100/100) 7 [0 [o] 1| (94/88) | 90 | (85/77) | 13 13 13
33 p 00% (100/100)(10| O | O (84/79) | 254 (86/75) 18 | 15| 15| 15| 15| 15| 15| 15 [15|15|15
34 d 00% (100/100) 9| O | O I(100/100)| 54 (97/93) 12 | 12|12 | 15| 12| 12| 12| 12 [12]|12|12
35 00% (100/100)(10| O [O (0/0) 51 (57/48) 10 | 10 [10 | 10 |10(10
36 pd 00% (100/100)(10| O | O] 1(100/100)| 83 (94/85) 10 10
37 gsp 00% (100/100)(9| O | O] 1| (100/99) | 269 (79/71) 11|11 |11)12 | 11 11 | 11
38 00% (100/100){10| O (O] 1](100/100)| 162 | (100/100) | 39 | 39| 39| 11| 39 | 40 | 39 | 39 [39]|39|40
39 ave 00% (100/100)(10| O | O] 1(100/100)| 92 (94/84) 45 | 45| 45 | 39 | 45 | 45 | 45 | 45 |45|45(|45
40 p 00% (100/100)(12| O | O (100/100)| 125 (91/82) 31| 29|29 | 45| 29| 29| 29| 29 [29]|29|29
41 00% (100/100)[{10| O [O] 1](100/100)| 258 | (100/100) | 13 | 13|13 [29| 13 | 13 | 13| 13 [13]|13|13
42 e 00% (100/100)[10| O [O| O] (99/99) |1921 (73/65) |576(576|576| 13 |195|195(195|195|67 |67 |67
43 00% (100/100)(10| O | O] 1(100/100)| 126 (92/84) 40 | 40 | 40 [576| 40 | 40 | 40 | 40 |40|40|40
44 p 00% (100/100)(10| O | O] 1|(100/100)| 90 (99/98) 27 | 27 | 26 | 40 | 27 | 27 | 26 | 26 27|27 |27
45 a 00% (100/100)(10| O | O] 0|(100/100)| 343 (91/86) 73| 73| 73| 26| 73| 73| 73| 73 |73|73|73
46 00% (100/100)(10] O [O| 1 (0/0) 95 (83/76) 25
47 d 00% (100/100)(10| O | O] 1|(100/100)| 253 (88/78) 52 | 54 73 | 36 52 | 52
48 d 00% (100/200) 10| 0 [o] a|(100/100)] 125 (77/71) 20 | 20 | 20 | 20
49 00% (100/100)(10| O | O] 1(100/100)| 216 (94/89) 26 | 26 | 26 | 52 | 26 | 26 | 26 | 26
50 d 00% (100/100) 9| O | O] 1|(100/100)| 85 (57/50) 27 | 27 | 27 | 26 | 27 | 27 | 27 | 27 |27|27 |27
51 ad period 00% (100/100)(10| O [Of 1| (99/98) 52 (83/73) 18 | 17 | 17 | 27 | 17 | 17 | 17 | 17 [17|17 |17
52 audio_playb 00% (100/100)(10| O | O] 1(100/100)| 123 (77/69) 36|36 [36| 17| 36| 36| 36| 36 (18|18|18
53 audio_record 00% (100/100) 9| O [O] 1](100/100)| 49 | (100/100) | 14 | 14 |14 | 36| 14 | 14 | 14 14|13
54 audio_record 00% (100/100) 8| O | O] 1|(100/100)| 31 (85/79) 14|14 |14 | 14|14 | 14| 14 | 14
55 ble 8g1d 00% (100/100)(10| O [O 1] (100/99) |1178 (36/25) 55| 50| 2 15| 2 2 50 | 2 50| 2
56 blo ed o 00% (100/100) 9| O | O] 1|(100/100)| 45 (88/85) 10 | 10| 10 1 10 10 | 10
57 blo ed asp 00% (100/100) 9| O | O] 1](100/100)| 50 (81/78) 11|11 |11)10 11 11| 11
58 blo ed a 00% (100/100) 8| O | O] 1|(100/100)| 34 (96/95) 8 8 8 11| 8 8 8 8 8| 6
59 blo ed d 00% (100/100) 8| O | O] 1](100/100)| 38 | (100/100)| 8 8 8 8 8 8 8
60 e a 00% (100/100)(10| O [O| 1| (96/96) |1323| (65/43) 4514928 | 32|28 | 8 20 | 28 8
61 0 elne 00% (100/100)(10| O [Of 1| (99/99) 89 (85/77) 17| 4 17| 4
62 onsole 00% (100/1200)10[0 [0 1 |(100100)| 85 | (100/100)| 78 [17 [52| 17| 52| 52| 52 | 52 [52]52]52
63 pto 00% (100/100) 7| O | O] 1](100/100)| 43 (87/81) 12 | 78|12 | 78| 12| 12| 12| 12 [12]|12|12
64 pto_ciphe 00% (100/100)10[0 [o| 2| (99r99) [322 (9a/87) |91 |12 91| 12|57 57|57 |57 [27]27]27
65 pto a 00% (100/100) 9| O | O] 1|(100/100)| 91 (87/75) 18| 91| 18| 91
66 pto_ke 96% (100/100)(10| O [O] 1|(100/100)| 124 (94/89) 34|18 [34| 18| 7 7 7 7
67 pto_ke allatio 100% (100/100)(10| O | O] 1|(100/100)| 92 (86/77) 25|34 | 25|34 |13 |13 | 13| 13
68 pto gna e 00% (100/100)(10| O | O] 1|(100/100)| 188 (93/90) 28 | 25 | 28 | 25
69 pto g 00% (100/100) 9| O | O] 1](100/100)| 24 (83/74) 8 28 | 8 28 | 8 8 8 8 8|88
70 e 00% (100100) 10] 0 [o[1](100/200)] 30 | (91/83) [25]| 8 [25[8 |25 25[26 25

loT-SQH-00304 Rev. 4.0 RENESAS Page 40 of 40
April 2019April 2019

Revision History

Rev. Date Description
Page Summary
4.0 04-23-2019 Publish for Signature
3.22>36 04-16-2019 Update typos and revision history table
3.1 04-06-2019 Updated Verification description
3.0 08-07-2018 Fix formatting and Publish for signature
2.0 08-06-2018 Publish for signature
115 06-24-2018 tegraton sample oUpUL, and review cLstomer maintenanes section
1.15 06-24-2018 Create a clean version to merge with documentation changes
114 05-30-2018 E(he?;gnea:getc:{l:dded cover, Updated Regression and Quality Report,
1.13 03-07-2018 Safety manager review
112 03-06-2017 !Sr;:cc;ir!)orclnrate review comments and add software maintenance
1.10-1.11 02-13-2017 Marketing review
1.8-1.9 02-08-2017 Safety manager review
1.7 12-12-2016 Applied template
1.6 12-12-2016 Added feedback
15 12-08-2016 Edited headers
14 12-07-2016 Edited
1.3 11-22-2016 added Verification environment and incorporated comment reviews
1.0->1.2 09-22-2016 Added the Approval Page and final publish copy
0.16-0.17 08-25-2016 Updated cover page date and code coverage diagram
goliS 08-25-2016 Incorporated review comments
0.11 08-10-2016 Incorporated some of review comments
0.8-0.10 06-01-2016 Incorporated some of review comments
0.5->0.7 05-12-2016 Update typo’s and reorder KPIs
0.2->0.4 05-08-2016 Updated with quality Indexes
0.1 11-22-2015 Initial revision

All trademarks and registered trademarks are the property of their respective owners.

Synergy Software Quality Handbook
Publication Date: Rev. 4.0 April 2019

Published by: Renesas Electronics Corporation

RENESAS

SALES OFFICES Renesas Electronics Corporation http:/Awww.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 4.1

Renesas Synergy™ Platform
Synergy Software Quality Handbook

LENESANS

Renesas Electronics Corporation loT-SQH-00304

