

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

R32C/100 SERIES
SOFTWARE MANUAL

32

U
ser’s M

anual

Rev.1.00 2009.04

RENESAS MCU
M16C FAMILY / R32C/100 SERIES

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

A- 1

The Notation in This Manual
For detailed explications of the R32C/100 Series’s operation, the notation based on specific rules is used
throughout this manual as shown below.

Category Notation Description/Meaning
Symbols IMM Immediate value

IMMEX Immediate value to be sign-extended
abs Absolute value of absolute addressing mode
dsp Displacement value of relative addressing mode
[] Indirect addressing mode
label Specified address as Label used in program counter relative

addressing mode.
Write a label when programming. An address can be written
directly, as well.

bit Specified bit number.
Write a numeric value in the actual program.

R0LB, R0B, R2R0B etc. Bank1 register (with “B” appended)
Numbers 00b Binary number (with “b” appended)

0000h Hexadecimal number (with “h” appended). For a numeric
number beginning with an alphabetic letter, add 0 before the
letter. For example, FFh should be written as 0FFh.

100 Decimal number (BCD)
Bit length #IMM:8 etc. The underlined part indicates an effective bit length for the

operand.
:3 Effective bit length is 3.
:4 Effective bit length is 4.
:8 Effective bit length is 8.
:16 Effective bit length is 16.
:24 Effective bit length is 24.
:32 Effective bit length is 32.

Instruction
formats

MOV. B:S etc. The underlined part specifies instruction format.
:G Generic format
:Q Quick format
:S Short format
:Z Zero format

Data size for
operation

MOV.W etc. The underlined part specifies data size for operation.
.B Byte (8 bits)
.W Word (16 bits)
.L Long word (32 bits)
.BW Byte to Word
.BL Byte to Long word
.WL Word to Long word

A- 2

Category Notation Description/Meaning
Jump distance JMP.A etc. Underlined part specifies effective bit length of jump relative

distance.
.S 3-bit PC forward relative. The effective value is 1 to 8.
.B 8-bit PC relative. The effective value is -128 to 127.
.W 16-bit PC relative. The effective value is -32768 to 32767.
.A 24-bit PC forward relative. The effective value is -8388608 to

8388607.
Operators C language syntax is applied in principle. The notations used in

this manual are shown as below.
= Assignment operator.

Assign the value on the right side to the left.
- Unary minus or subtraction
+ Addition
* Dereferencing operator or multiplication
/ Division
% Modulus
~ Bitwise NOT
& Bitwise AND
| Bitwise OR
^ Bitwise XOR (exclusive or)
(float) Cast operator
; End of a statement
{ } Start and end of compound statements.

More than two statements can be described in {}.
if (expression)
statement 1 else
statement 2

If the conditional expression evaluates to true, statement 1 is
executed, otherwise statement 2 is executed.

for (statement
1;expression;statement
2) {loop body}

After statement 1 is executed, the loop body is executed
followed by statement 2 as long as the conditional expression
evaluates to true.

do statement while
(expression);

The statement is executed until the expression evaluates to
false. The loop body is executed at least once whether true or
not.

while (expression)
statement

The statement is executed until the expression evaluates to
false.

==, != Equal, not equal comparisons
>, < Greater-than, less-than comparisons
>=, <= Greater-than or equal to, less-than or equal to comparisons
&&, || Logical AND, logical OR

The operators guarantee left-to-right evaluation.
Keyword true Non-C language notation.

If the condition specified by Cnd is true, 1 is obtained.
Available src/
dest

#IMMEX #IMMEX:8 or #IMMEX:16 can be specified.
#IMM Either #IMM:8, #IMM:16 or #IMM:32 can be specified

depending on data size for operation. Either #IMM:3 or #IMM:4
is not included.

B- 1

TABLE OF CONTENTS

1. Overview 1
1.1 R32C/100 Series Overview .. 2

1.2 Address Space.. 3

1.3 Register Set .. 4

1.3.1 General Purpose Registers ... 5

1.3.2 Fast Interrupt Registers ... 6

1.3.3 DMAC-associated Registers ... 6

1.3.4 Flag Register (FLG)... 7

1.3.5 Register Bank .. 9

1.3.6 Internal Register Values... 10

1.4 Data Types.. 11

1.4.1 Integer ... 11

1.4.2 Decimal.. 11

1.4.3 Fixed-point Number ... 12

1.4.4 Floating-point Number ... 12

1.4.5 Bit .. 13

1.4.6 String ... 13

1.5 Data Configuration.. 14

1.5.1 Data Configuration in Register... 14

1.5.2 Data Configuration in Memory... 14

1.6 Instruction Formats ... 15

1.6.1 Opcode .. 16

1.6.2 Operand... 16

1.7 Interrupt Vector Table.. 17

1.7.1 Fixed Vector Table ... 17

1.7.2 Relocatable Vector Table ... 18

2. Addressing Mode 19
2.1 Addressing Mode.. 20

2.2 Guide to This Chapter... 21

2.3 General Instruction Addressing .. 22

2.4 Indirect Instruction Addressing ... 25

2.5 Extended Instruction Addressing .. 28

2.6 Special Instruction Addressing.. 30

2.7 Bit Instruction Addressing ... 32

3. Instruction 35
3.1 Guide to This Chapter... 36

3.2 Instruction Details ... 41

3.3 INDEX Instruction ... 164

B- 2

3.3.1 INDEXB.size src .. 164

3.3.2 INDEX1.size src .. 166

3.3.3 INDEX2.size src .. 168

3.3.4 BITINDEX.size src... 169

3.3.5 Enabled Instruction List to Be Executed Next to INDEX Instruction................................ 170

3.3.6 Addressing Mode... 171

4. Instruction Codes/Number of Cycles 173
4.1 Guide to This Chapter... 174

4.2 Addressing.. 176

4.2.1 Specifying Operation Length ... 176

4.2.2 Specifying the Operand ... 176

4.2.3 Specifying Conditions .. 181

4.3 Instruction Codes/Number of Cycles .. 181

5. Interrupts 287
5.1 Overview... 288

5.1.1 Interrupt Types... 288

5.1.2 Software Interrupts .. 289

5.1.3 Hardware Interrupts... 290

5.2 Interrupt Control.. 291

5.2.1 Interrupt Enable Flag (I Flag)... 291

5.2.2 Interrupt Request Bit.. 291

5.2.3 Interrupt Request Level and Processor Interrupt Priority Level (IPL) 292

5.2.4 Rewrite the Interrupt Control Register ... 293

5.3 Interrupt Sequence ... 294

5.3.1 Interrupt Response Time ... 294

5.3.2 IPL After Interrupt Request Acceptance .. 296

5.3.3 Register Saving ... 296

5.4 Register Restoring .. 297

5.5 Interrupt Priority .. 297

5.6 Multiple Interrupts ... 297

5.7 Notes on Interrupts ... 299

Index 301

C- 1

R32C/100 SERIES INSTRUCTION SET

Table C.1 Instruction Set - Alphabetical (1 / 5)

Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles
ABS Absolute 42 182
ADC Add with Carry 43 182
ADCF Add Carry Flag 44 183
ADD Add 45 184
ADDF Add Floating-point 47 187
ADSF Add Sign Flag 48 188
AND And Logical 49 189
BCLR Clear a Bit 51 191
BITINDEX Index next Bit Instruction 52 192
BMCnd Move a Bit Conditionally (conditions listed

below)
53 192

BMC Move a bit if the C flag is 1 53 192
BMEQ Move a bit if equal 53 192
BMGE Move a bit if greater as signed integers or

equal
53 192

BMGEU Move a bit if greater as unsigned integers or
equal

53 192

BMGT Move a bit if greater as signed integers 53 192
BMGTU Move a bit if greater as unsigned integers 53 192
BMLE Move a bit if less as signed integers or equal 53 192
BMLEU Move a bit if less as unsigned integers or

equal
53 192

BMLT Move a bit if less as signed integers 53 192
BMLTU Move a bit if less as unsigned integers 53 192
BMN Move a bit if value is negative 53 192
BMNC Move a bit if the C flag is 0 53 192
BMNE Move a bit if not equal 53 192
BMNO Move a bit if the O flag is 0 53 192
BMNZ Move a bit if the Z flag is 0 53 192
BMO Move a bit if the O flag is 1 53 192
BMPZ Move a bit if value is positive or 0 53 192
BMZ Move a bit if the Z flag is 1 53 192

BNOT Not a Bit 55 193
BRK Break 56 193
BRK2 Break 2 57 193
BSET Set a Bit 58 194
BTST Test a Bit 59 194
BTSTC Test a Bit and Clear 60 195

C- 2

BTSTS Test a Bit and Set 61 196
CLIP Clip 62 196
CMP Compare 63 197
CMPF Compare Floating-point 65 199
CNVIF Convert Integer to Floating-point 66 201
DADC Add Decimal with Carry 67 203
DADD Add Decimal 68 205
DEC Decrement 69 206
DIV Signed Divide 70 207
DIVF Divide Floating-point 71 209
DIVU Unsigned Divide 72 211
DIVX Signed Divide extra 73 213
DSBB Subtract Decimal with Borrow 74 215
DSUB Subtract Decimal 75 217
EDIV Extended Signed Divide with Remainder 76 219
EDIVU Extended Unsigned Divide with Remainder 77 220
EDIVX Extended Signed Divide extra with Remainder 78 221
EMUL Extended Signed Multiply 79 222
EMULU Extended Unsigned Multiply 80 223
ENTER Enter and Create Stack Frame 81 223
EXITD Exit and Deallocate Stack Frame 82 224
EXITI Exit Interrupt and Deallocate Stack Frame 83 224
EXTS Sign Extend 84 224
EXTZ Zero Extend 85 226
FCLR Set a Flag 87 228
FREIT Return from Fast Interrupt 88 228
FSET Set a Flag 89 229
INC Increment 90 229
INDEXType Index (types listed below) 91 230

INDEXB Add to the first and second operands 91 231
INDEX1 Add to the first operand 91 230
INDEX2 Add to the second operand 91 230

INT Interrupt 92 231
INTO Interrupt on Overflow 93 231
JCnd Jump Conditionally (conditions listed below) 94 232

JC Jump if the C flag is 1 94 232
JEQ Jump if equal 94 232
JGE Jump if greater as signed integers or equal 94 232
JGEU Jump if greater as unsigned integers or

equal
94 232

Table C.1 Instruction Set - Alphabetical (2 / 5)

Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles

C- 3

JGT Jump if greater as signed integers 94 232
JGTU Jump if greater as unsigned integers 94 232
JLE Jump if less as signed integers or equal 94 232
JLEU Jump if less as unsigned integers or equal 94 232
JLT Jump if less as signed integers 94 232
JLTU Jump if less as unsigned integers 94 232
JN Jump if a negative value 94 232
JNC Jump if the C flag is 0 94 232
JNE Jump if not equal 94 232
JNO Jump if the O flag is 0 94 232
JNZ Jump if the Z flag is 0 94 232
JO Jump if the O flag is 1 94 232
JPZ Jump if a positive value or 0 94 232
JZ Jump if the Z flag is 1 94 232

JMP Jump Always 95 232
JMPI Jump Indirectly 96 233
JSR Jump to Subroutine 97 234
JSRI Jump to Subroutine Indirectly 98 234
LDC Load into Control Register 99 235
LDCTX Load Context 100 236
LDIPL Load Interrupt Priority Level 102 237
MAX Select Maximum Value 103 237
MIN Select Minimum Value 104 239
MOV Move 105 241
MOVA Move Effective Address 108 246
MOVDir Move Nibble Data (directions listed below) 109 247

MOVHH Move upper src to upper dest 109 247
MOVHL Move upper src to lower dest 109 247
MOVLH Move lower src to upper dest 109 247
MOVLL Move lower src to lower dest 109 247

MUL Signed Multiply 111 249
MULF Multiply Floating-point 112 251
MULU Unsigned Multiply 113 253
MULX Signed Multiply and Round 114 255
NEG Negate 116 255
NOP No Operation 117 256
NOT Logical Complement 118 256
OR Or Logical 119 257
POP Pop Data off the Stack 120 258
POPC Pop Control Register off the Stack 121 259

Table C.1 Instruction Set - Alphabetical (3 / 5)

Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles

C- 4

POPM Pop Registers off the Stack 122 259
PUSH Push Data on the Stack 123 260
PUSHA Push Effective Address on the Stack 125 262
PUSHC Push Control Register on the Stack 126 262
PUSHM Push Registers on the Stack 127 262
REIT Return from Interrupt 128 263
RMPA Repeat Multiply and Accumulation 129 263
ROLC Rotate the bits to the Left with Carry 130 263
RORC Rotate the bits to the Right with Carry 131 264
ROT Rotate the bits 132 264
ROUND Round Floating-point to Integer 133 265
RTS Return from Subroutine 134 266
SBB Subtract with Borrow 135 267
SCCnd Store Condition Conditionally (conditions

listed below)
136 268

SCC Store 1 if the C flag is 1 136 268
SCEQ Store 1 if equal 136 268
SCGE Store 1 if greater as signed integers or equal 136 268
SCGEU Store 1 if greater as unsigned integers or

equal
136 268

SCGT Store 1 if greater as signed integers 136 268
SCGTU Store1 if greater as unsigned integers 136 268
SCLE Store 1 if less as signed integers or equal 136 268
SCLEU Store 1 if less as unsigned integers or equal 136 268
SCLT Store 1 if less as signed integers 136 268
SCLTU Store 1 if less as unsigned integers 136 268
SCN Store 1 if a negative value 136 268
SCNC Store 1 if the C flag is 0 136 268
SCNE Store 1 if not equal 136 268
SCNO Store 1 if the O flag is 0 136 268
SCNZ Store 1 if the Z flag is 0 136 268
SCO Store 1 if the O flag is 1 136 268
SCPZ Store 1 if a positive value or 0 136 268
SCZ Store 1 if the Z flag is 1 136 268

SCMPU Compare Strings until not equal 138 269
SHA Arithmetic Shift 139 269
SHL Logical Shift 140 270
SIN Input Strings 142 272
SMOVB Move Strings Backward 143 272
SMOVF Move Strings Forward 144 272

Table C.1 Instruction Set - Alphabetical (4 / 5)

Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles

C- 5

SMOVU Move Strings While Unequal to Zero 145 273
SOUT Output Strings 146 273
SSTR Store Strings 147 274
STC Store from Control Register 148 274
STCTX Store Context 149 275
STNZ Store on Not Zero 151 276
STOP Stop 152 276
STZ Store on Zero 153 277
STZX Store according to Zero Flag 154 277
SUB Subtract 155 278
SUBF Subtract Floating-point 156 280
SUNTIL Search Equal String 157 281
SWHILE Search Unequal String 158 282
TST Test Logical 159 282
UND Undefined Instruction Interrupt 160 283
WAIT Wait 161 283
XCHG Exchange 162 284
XOR Exclusive Or Logical 163 284

Table C.1 Instruction Set - Alphabetical (5 / 5)

Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles

C- 6

Table C.2 Instruction Set - Functional (1 / 3)

Function Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles
Move MOV Move 105 241

MOVA Move Effective Address 108 246
MOVDir Move Nibble Data 109 247
POP Pop Data off the Stack 120 258
POPM Pop Registers off the Stack 122 259
PUSH Push Data on the Stack 123 260
PUSHA Push Effective Address on the

Stack
125 262

PUSHM Push Registers on the Stack 127 262
STNZ Store on Not Zero 151 276
STZ Store on Zero 153 277
STZX Store according to Zero Flag 154 277
XCHG Exchange 162 284

Bit pro-
cessing

BCLR Clear a Bit 51 191
BITINDEX Index next Bit Instruction 52 192
BMCnd Move a Bit Conditionally 53 192
BNOT Not a Bit 55 193
BSET Set a Bit 58 194
BTST Test a Bit 59 194
BTSTC Test a Bit and Clear 60 195
BTSTS Test a Bit and Set 61 196

Shift ROLC Rotate the bits to the Left with Carry 130 263
RORC Rotate the bits to the Right with

Carry
131 264

ROT Rotate the bits 132 264
SHA Arithmetic Shift 139 269
SHL Logical Shift 140 270

Arithmetic
operation

ABS Absolute 42 182
ADC Add with Carry 43 182
ADCF Add Carry Flag 44 183
ADD Add 45 184
ADSF Add Sign Flag 48 188
CLIP Clip 62 196
CMP Compare 63 197
DEC Decrement 69 206
DIV Signed Divide 70 207
DIVU Unsigned Divide 72 211

C- 7

Arithmetic
operation

DIVX Signed Divide extra 73 213
EDIV Extended Signed Divide with

Remainder
76 219

EDIVU Extended Unsigned Divide with
Remainder

77 220

EDIVX Extended Signed Divide extra with
Remainder

78 221

EMUL Extended Signed Multiply 79 222
EMULU Extended Unsigned Multiply 80 223
EXTS Sign Extend 84 224
EXTZ Zero Extend 85 226
INC Increment 90 229
MAX Select Maximum Value 103 237
MIN Select Minimum Value 104 239
MUL Signed Multiply 111 249
MULU Unsigned Multiply 113 253
MULX Signed Multiply and Round 114 255
NEG Negate 116 255
SBB Subtract with Borrow 135 267
SUB Subtract 155 278

Decimal
operation

DADC Add Decimal with Carry 67 203
DADD Add Decimal 68 205
DSBB Subtract Decimal with Borrow 74 215
DSUB Subtract Decimal 75 217

Froating
point oper-
ation

ADDF Add Floating-point 47 187
CMPF Compare Floating-point 65 199
CNVIF Convert Integer to Floating-point 66 201
DIVF Divide Floating-point 71 209
MULF Multiply Floating-point 112 251
ROUND Round Floating-point to Integer 133 265
SUBF Subtract Floating-point 156 280

Sum of
products
operation

RMPA Repeat Multiply and Accumulation 129 263

Logical
operation

AND And Logical 49 189
NOT Logical Complement 118 256
OR Or Logical 119 257
TST Test Logical 159 282
XOR Exclusive Or Logical 163 284

Table C.2 Instruction Set - Functional (2 / 3)

Function Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles

C- 8

Jump JCnd Jump Conditionally 94 232
JMP Jump Always 95 232
JMPI Jump Indirectly 96 233
JSR Jump to Subroutine 97 234
JSRI Jump to Subroutine Indirectly 98 234
RTS Return from Subroutine 134 266

String SCMPU Compare Strings until not equal 138 269
SIN Input Strings 142 272
SMOVB Move Strings Backward 143 272
SMOVF Move Strings Forward 144 272
SMOVU Move Strings While Unequal to

Zero
145 273

SOUT Output Strings 146 273
SSTR Store Strings 147 274
SUNTIL Search Equal String 157 281
SWHILE Search Unequal String 158 282

Control
register
operation

FCLR Clear a Flag 87 228
FSET Set a Flag 89 229
LDC Load into Control Register 99 235
POPC Pop Control Register off the Stack 121 259
PUSHC Push Control Register on the Stack 126 262
STC Store from Control Register 148 274

Interrupt BRK Break 56 193
BRK2 Break 2 57 193
FREIT Return from Fast Interrupt 88 228
INT Interrupt 92 231
INTO Interrupt on Overflow 93 231
LDIPL Load Interrupt Priority Level 102 237
REIT Return from Interrupt 128 263
UND Undefined Instruction Interrupt 160 283

High-level
language
support

ENTER Enter and Create Stack Frame 81 223
EXITD Exit and Deallocate Stack Frame 82 224
EXITI Exit Interrupt and Deallocate Stack

Frame
83 224

OS support LDCTX Load Context 100 236
STCTX Store Context 149 275

Others INDEXType Index 91 230
NOP No Operation 117 256
SCCnd Store Condition Conditionally 136 268
STOP Stop 152 276
WAIT Wait 161 283

Table C.2 Instruction Set - Functional (3 / 3)

Function Mnemonic Instruction Full Name Page for
Function

Page for Instruction
Codes/

Number of Cycles

1. Overview

1.1 R32C/100 Series Overview

1.2 Address Space

1.3 Register Set

1.4 Data Types

1.5 Data Configuration

1.6 Instruction Formats

1.7 Interrupt Vector Table

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 2 of 304

1 Overview
1.1 R32C/100 Series Overview

1.1 R32C/100 Series Overview
The R32C/100 Series MCU is a single-chip microcomputer which is developed for embedded applications.
Having C language supporting instructions and frequently used instructions in one-byte opcodes, the
R32C/100 Series MCU enables efficient, memory-saving programs to be developed in both C language
and assembly language. Moreover, the R32C/100 Series MCU contains 108 instructions suitable for its
versatile addressing modes. In addition to arithmetic/logic operations on a bit or 4-bit data, this powerful
instruction set allows register-to-register, register-to-memory, and memory-to-memory operations to be
performed.
The R32C/100 Series MCU achieves fast arithmetic processing by using single-clock-cycle instructions. It
also enables fast multiplication by using the internal multiplier and floating-point multiplier.

(1) Features
(a) Register set

Data Registers Four 32-bit data registers (Each register can be used as two 16-bit registers.
Two of the four registers can be also used as four 8-bit registers each.)

Address Registers Four 32-bit address registers
Base Registers Two 32-bit base registers

(b) Instruction set
Instructions suitable for C language : ENTER, EXITD, etc.
 (stack frame operation)
Memory-to-memory instructions : MOV, ADD, SUB, etc.
Powerful bit processing instructions : BCLR, BTST, BSET, etc.
4-bit (nibble) data transfer instructions : MOVLL, MOVHL, etc.
Frequently used 1-byte instructions : MOV, ADD, SUB, JMP, etc.
Fast, single-clock-cycle instructions : MOV, ADD, SUB, etc.
Fixed-point multiplication instruction : MULX
Floating-point instructions : ADDF, SUBF, MULF, DIVF, etc.

(c) 4G-byte linear address space
Relative jump instructions according to jump distance

(d) Fast instruction execution
Single-clock-cycle instructions: 36 out of 108 instructions are executed in a single-clock-cycle.

(2) Performance (operating at 100 MHz)
Register-to-register transfer 10 ns
Register-to-memory transfer 20 ns
Register-to-register addition/subtraction 10 ns
8-bit × 8-bit register-to-register multiplication 20 ns
16-bit × 16-bit register-to-register multiplication 20 ns
32-bit × 32-bit register-to-register multiplication 20 ns
16 / 16-bit register-to-register division 150 ns
32 / 32-bit register-to-register division 220 ns

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 3 of 304

1 Overview
1.2 Address Space

1.2 Address Space
Figure 1.1 shows the address map.
Two special function register (SFR) spaces, SFR1 and SFR2, are mapped to addresses 00000000h to
000003FFh, and 00040000h to 0004FFFFh, respectively.
Memory is mapped to addresses 00000400h to 0003FFFFh, 00060000h to 0007FFFFh, and FFE00000h
to FFFFFFFFh.
The RAM space extends from address 00000400h to higher addresses, and the ROM space extends from
FFFFFFFFh to lower addresses. The fixed vector space is fixed from addresses FFFFFFDCh to
FFFFFFFFh.

Figure 1.1 Address Map

SFR1

Internal RAM

Fixed vector

Internal ROM

External memory

00000000h

FFFFFFFFh

00000400h

FFFFFFDCh

The RAM space extends from
00000400h to higher-addresses

The ROM space extends from
FFFFFFFFh to lower-addresses

SFR2

00040000h

Data ROM
00060000h

00080000h

FFE00000h

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 4 of 304

1 Overview
1.3 Register Set

1.3 Register Set
The central processing unit (CPU) contains registers as shown in Figure 1.2. There are two register banks
each consisting of R2R0, R3R1, R6R4, R7R5, A0, A1, A2, A3, SB, and FB registers. Use the register bank
select flag (B flag in the flag register) to switch from one register bank to the other.

Figure 1.2 CPU Register Configuration

DDR0

DDA0

VCT
SVP
SVF

PC
INTB

USP
ISP

FB
SB
A3
A2
A1

R5R7
R6 R4

R1LR1HR3LR3H
R2H R2L R0H R0L

A0

FLG
b0b31

General purpose registers

Fast interrupt registers

DMAC-associated registers (*2)

DMA destination address reload register

Flag register

Data registers (*1)

Address registers (*1)

Static base register (*1)
Frame base register (*1)

User stack pointer
Interrupt stack pointer
Interrupt vector table base register
Program counter

Save flag register
Save PC register
Vector register

R2R0
R3R1
R6R4
R7R5

DMA destination address register

DMA source address register

DMA terminal count reload register

DMA terminal count register

DMA mode register

*1 There are two banks of these registers.
*2 There are four identical sets of DMAC-associated registers.

DDR0

DDA0

DDR0

DDA0

DDR0

DDA0

DSR0 DMA source address reload registerDSR0DSR0DSR0

DSA0DSA0DSA0DSA0

DSA0DSA0DSA0DCR0

DSA0DSA0DSA0DCT0

DSA0DSA0DSA0DMD0

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 5 of 304

1 Overview
1.3 Register Set

1.3.1 General Purpose Registers
There are nine kinds of general purpose registers.

(1) Data Registers (R2R0, R3R1, R6R4, R7R5, R0, R0H, R0L, R1, R1H, R1L, R2, R2H, R2L,
R3, R3H, R3L, R4, R5, R6, and R7)
These 32-bit registers (R2R0, R3R1, R6R4, and R7R5) are primarily used for data transfers, and
arithmetic and logic operations.
Each of the registers can be divided into upper and lower 16-bit registers, e.g. R2R0 can be divided
into R2 and R0, R3R1 can be divided into R3 and R1, etc.
Moreover, data registers R2R0 and R3R1 can be divided into four 8-bit data registers: upper (R2H,
and R3H), upper-middle (R2L, and R3L), lower-middle (R0H, and R1H) and lower (R0L, and R1L).

(2) Address Registers (A0, A1, A2, and A3)
These 32-bit registers have functions similar to the data registers. They are also used for address
register indirect addressing and address register relative addressing.

(3) Static Base Register (SB)
This 32-bit register is used for SB relative addressing.

(4) Frame Base Register (FB)
This 32-bit register is used for FB relative addressing.

(5) Program Counter (PC)
This 32-bit counter indicates the address of the instruction to be executed next.

(6) Interrupt Vector Table Base Register (INTB)
This 32-bit register indicates the start address of the relocatable vector table.

(7) User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
Two types of 32-bit stack pointers are provided: a user stack pointer (USP) and an interrupt stack
pointer (ISP).
Use the stack pointer select flag (U flag) to select either USP or ISP. The U flag is bit 7 of the flag
register (FLG).
For a faster interrupt sequence, set the USP or ISP to a multiple of 4.

(8) Flag Register (FLG)
Out of the 32 bits that form this register, 16 bits are reserved and the other 16 bits are used as flags.
Refer to 1.3.4, “Flag Register (FLG)” for details of each flag function.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 6 of 304

1 Overview
1.3 Register Set

1.3.2 Fast Interrupt Registers
The following three registers are provided to achieve faster interrupt response. They are accessed in the
interrupt sequence instead of the stack area, which results in reducing the execution time of the interrupt
sequence.

(1) Save Flag Register (SVF)
This 16-bit register is used to save the flag register (FLG) when a fast interrupt is generated.

(2) Save PC Register (SVP)
This 32-bit register is used to save the program counter (PC) when a fast interrupt is generated.

(3) Vector Register (VCT)
This 32-bit register is used to indicate the jump address when a fast interrupt is generated.

1.3.3 DMAC-associated Registers
There are seven types of DMAC-associated registers.

(1) DMA Mode Registers (DMD0, DMD1, DMD2, and DMD3)
These 32-bit registers are used to set DMA transfer mode, bit rate etc.

(2) DMA Terminal Count Registers (DCT0, DCT1, DCT2, and DCT3)
These 32-bit registers are used to set DMA transfer counting.

(3) DMA Terminal Count Reload Registers (DCR0, DCR1, DCR2, and DCR3)
These 24-bit registers are used to set reload values for DMA terminal count registers.

(4) DMA Source Address Registers (DSA0, DSA1, DSA2, and DSA3)
These 32-bit registers are used to set DMA source addresses.

(5) DMA Source Address Reload Registers (DSR0, DSR1, DSR2, and DSR3)
These 32-bit registers are used to set reload values for the DMA source address registers.

(6) DMA Destination Address Registers (DDA0, DDA1, DDA2, and DDA3)
These 32-bit registers are used to hold DMA destination addresses.

(7) DMA Destination Address Reload Registers (DDR0, DDR1, DDR2, and DDR3)
These 32-bit registers are used to set reload values for the DMA destination address registers.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 7 of 304

1 Overview
1.3 Register Set

1.3.4 Flag Register (FLG)
Figure 1.3 shows the structure of the flag register (FLG).

Figure 1.3 Structure of Flag Register (FLG)

The function of each flag is shown as below.

(1) Bit 0: Carry Flag (C Flag)
This flag indicates that a carry, borrow, or shifted-out bit etc. has generated in the arithmetic logic unit
(ALU)

(2) Bit 1: Debug Flag (D Flag)
This flag enables a single-step interrupt. By setting this flag to 1, a single step interrupt is generated
after executing an instruction.
It becomes 0 when the interrupt is accepted.

(3) Bit 2: Zero Flag (Z Flag)
This flag becomes 1 when the result of an operation is 0; otherwise, it is 0.

IPL FO FU U I O B S Z D C
b15 b0

Flag register (lower 16 bits)

Carry flag
Debug flag
Zero flag
Sign flag
Register bank select flag
Overflow flag
Interrupt enable flag
Stack pointer select flag

FLG

Processor interrupt priority level

DP
b31 b16

Flag register (upper 16 bits)

Fixed-point radix point position
designation bit
Floating-point rounding mode

b8 b7

Floating-point underflow flag
Floating-point overflow flag

RND
b24 b23

FLG

Blank boxes are reserved bits.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 8 of 304

1 Overview
1.3 Register Set

(4) Bit 3: Sign Flag (S Flag)
This flag becomes 1 when the result of an operation is a negative value; otherwise, it is 0.

(5) Bit 4: Register Bank Select Flag (B Flag)
This flag selects a register bank. To select the register bank 0, set this bit to 0. To select the register
bank 1, set this bit to 1.

(6) Bit 5: Overflow Flag (O Flag)
This flag becomes 1 when an overflow occurs in an operation; otherwise, it is 0.

(7) Bit 6: Interrupt Enable Flag (I Flag)
This flag enables maskable interrupts.
To disable maskable interrupts, set this flag to 0. To enable them, set this flag to 1. When an interrupt
is accepted, the flag becomes 0.

(8) Bit 7: Stack Pointer Select Flag (U Flag)
To select the interrupt stack pointer (ISP), set this flag to 0. To select the user stack pointer (USP), set
this flag to 1.
It becomes 0 when a hardware interrupt is accepted or when an INT instruction of a software interrupt
numbered 0 to 127 is executed.

(9) Bit 8: Floating-point Underflow Flag (FU Flag)
This flag becomes 1 when an underflow occurs in a floating-point operation; otherwise, it is 0.
It also becomes 1 when the operand has invalid numbers (subnormal numbers).

(10) Bit 9: Floating-point Overflow Flag (FO Flag)
This flag becomes 1 when an overflow occurs in a floating-point operation; otherwise, it is 0.
It also becomes 1 when the operand has invalid numbers (subnormal numbers).

(11) Bit 10 and Bit 11: Reserved Bits

(12) Bit 12 to Bit 14: Processor Interrupt Priority Level (IPL)
The 3-bit processor interrupt priority level selects a processor interrupt priority level from level 0 to 7.
An interrupt is acceptable when the interrupt request level is higher than the IPL.
When the processor interrupt priority level (IPL) is set to level 7 (111b), all interrupts are disabled.

(13) Bit 15: Reserved Bit

(14) Bit 16: Fixed-point Radix Point Position Designation Bit (DP bit)
This bit designates the radix point. It also specifies which portion of the fixed-point multiplication result
to take. This bit is used in the MULX instruction.

(15) Bit 17: Reserved Bit

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 9 of 304

1 Overview
1.3 Register Set

(16) Bit 18 and Bit 19: Floating-point Rounding Mode (RND)
The 2-bit floating-point rounding mode (RND) selects a rounding mode for floating-point calculation
results.

(17) Bit 20 to Bit 31: Reserved Bits

1.3.5 Register Bank
The R32C/100 Series MCU has two register banks, each consists of data registers (R2R0, R3R1, R6R4,
and R7R5), address registers (A0, A1, A2, and A3), frame base register (FB), and static base register
(SB). Use the register bank select flag (B flag) of the flag register (FLG) to switch from one register bank
to the other.
Figure 1.4 shows the configuration of the register banks.

Figure 1.4 Configuration of Register Banks

 The R32C/100 Series MCU supports an addressing mode that can access register bank 1 even if the B
flag is 0.

RND Rounding Mode Description

00b Round to nearest
Round to the nearest value. When the number falls midway, it
is rounded to the nearest value with an even least significant
bit (b0 = 0).

01b N/A Reserved
10b Round toward - infinity Rounds toward negative infinity.
11b Round toward 0 Rounds toward zero.

FB
SB
A3
A2
A1

R5R7
R6 R4

R1LR1HR3LR3H
R2H R2L R0H R0L

A0

b0b31

Register bank 0 (B flag is set to 0)

R2R0
R3R1
R6R4
R7R5

FB
SB
A3
A2
A1

R5R7
R6 R4

R1LR1HR3LR3H
R2H R2L R0H R0L

A0

b0b31
R2R0
R3R1
R6R4
R7R5

Register bank 1 (B flag is set to 1)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 10 of 304

1 Overview
1.3 Register Set

1.3.6 Internal Register Values
After the reset is released, each register’s value is as follows:

• Data registers (R2R0, R3R1, R6R4, and R7R5) : 00000000h
• Address registers (A0, A1, A2, and A3) : 00000000h
• Static base register (SB) : 00000000h
• Frame base register (FB) : 00000000h
• Interrupt vector table base register (INTB) : 00000000h
• User stack pointer (USP) : 00000000h
• Interrupt stack pointer (ISP) : 00000000h
• Flag register (FLG) : 00000000h
• DMA mode registers (DMD0, DMD1, DMD2, and DMD3) : 00000000h
• DMA terminal count registers (DCT0, DCT1, DCT2, and DCT3) : Undefined
• DMA terminal count reload registers (DCR0, DCR1, DCR2, and DCR3) : Undefined
• DMA source address registers (DSA0, DSA1, DSA2, and DSA3) : Undefined
• DMA source address reload registers (DSR0, DSR1, DSR2, and DSR3) : Undefined
• DMA destination address registers (DDA0, DDA1, DDA2, and DDA3) : Undefined
• DMA destination address reload registers (DDR0, DDR1, DDR2, and DDR3) : Undefined
• Save flag register (SVF) : Undefined
• Save PC register (SVP) : Undefined
• Vector register (VCT) : Undefined

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 11 of 304

1 Overview
1.4 Data Types

1.4 Data Types
There are six types of data: integer, decimal, fixed-point number, floating-point number, bit, and string.

1.4.1 Integer
An integer can be signed or unsigned. A negative value of a signed integer is represented by two's
complement.

Figure 1.5 Integer

1.4.2 Decimal
Binary-coded decimal (BCD) is used. Four types of instructions can be performed on this data type:
DADC, DADD, DSBB, and DSUB.

Figure 1.6 Decimal

Unsigned long word (32-bit) integer

b0

Signed long word (32-bit) integer

Unsigned word (16-bit) integer

Signed word (16-bit) integer

Unsigned byte (8-bit) integer

Signed byte (8-bit) integer

S : Sign bit

S
b7

b0b7

S
b15 b0

b15 b0

S
b31 b0

b31 b0

Pack format (2 digits)

Pack format (4 digits)

Pack format (8 digits)

b15 b0

b0b7

b0b31

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 12 of 304

1 Overview
1.4 Data Types

1.4.3 Fixed-point Number
Usually, multiplication of fixed-point numbers is performed by combining integer multiply and bit shift
instructions. The R32C/100 Series MCU provides a unique, exclusive instruction for fixed-point
multiplication: MULX instruction.
The fixed-point numbers supported by MULX are as shown in Figure 1.7. There is no radix point for 8-bit
fixed-point data when DP = 1.

Figure 1.7 Fixed-point Number

1.4.4 Floating-point Number
The R32C/100 Series MCU supports IEEE 754 single precision floating-point format.
Seven types of logical instructions can operate on this data type: ADDF, CMPF, CNVIF, DIVF, MULF,
ROUND and SUBF.

Figure 1.8 Floating-point Number

Floating-point number supports the values below:
• 0 < E < 255 (normal numbers)
• E = 0 and F = 0 (signed zero)

It does not support the values below:
• E = 0 and F > 0 (subnormal numbers)
• E = 255 and F = 0 (infinity)
• E = 255 and F > 0 (NaN: not-a-number)

32-bit fixed-point number

16-bit fixed-point number

8-bit fixed-point number

: Sign bit : Radix point when DP = 0 : Radix point when DP = 1

b0b7
S

b0b15
S

b0b31
S

S

FSingle-precesion floating-point number E

S : Sign bit (1 bit) E : Exponent (8 bits) F : Fraction (23 bits)

Value = (-1) S × (1 + F × 2 -23) × 2 (E - 127)

b0b31
S

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 13 of 304

1 Overview
1.4 Data Types

1.4.5 Bit
Seven types of instructions can operate on this data type: BCLR, BSET, BNOT, BTST, BMCnd, BTSTS
and BTSTC.
Each register bit of the 8-bit registers (R0L, R0H, R1L, R1H, R2L, R2H, R3L, and R3H) can be specified
by a register name and a bit number from 0 to 7.
Each memory bit can be also specified by a target address and a bit number from 0 to 7. Six types of
addressing mode are available: absolute addressing (BTST:S only), sign-extended absolute, address
register indirect addressing, address register relative addressing, SB relative addressing, and FB relative
addressing.

Figure 1.9 Bit

1.4.6 String
A string is a type of data that consists of a sequence of bytes (8-bit), words (16-bit) or long words (32-bit)
data.
Nine types of instructions can operate on this data type: SMOVB, SMOVF, SMOVU, SCMPU, SIN,
SOUT, SSTR, SUNTIL, and SWHILE.

Figure 1.10 String

bit, RnH/RnL
Register

bit : 0 to 7 n : 0 to 3 mem : Memory

bit, mem
Memory

4, R0L (Bit 4 of the R0L register)

2, [A1] (Bit 2 of the memory indicated by the A1
register)

b0b7

b0b7 example

example

Byte (8-bit) data string
8

Word (16-bit) data string
16

Long word (32-bit) data string
32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 14 of 304

1 Overview
1.5 Data Configuration

1.5 Data Configuration

1.5.1 Data Configuration in Register
Figure 1.11 shows the correlation between a register's data size and bit numbers.

Figure 1.11 Data Configuration in Register

1.5.2 Data Configuration in Memory
Figure 1.12 shows data organization in memory.

Figure 1.12 Data Configuration in Memory

Long word (32-bit) data

Word (16-bit) data

Byte (8-bit) data

Nibble (4-bit) data
b0b3

b0b7

b0b15

b0b31

DATA (LL)
DATA (LH)
DATA (HL)
DATA (HH)

Long word (32-bit) data

b7 b0
DATA (L)
DATA (H)

Word (16-bit) data

b7 b0
DATAN

N + 1
N + 2
N + 3

Byte (8-bit) data

b7 b0
N
N + 1
N + 2
N + 3

N
N + 1
N + 2
N + 3

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 15 of 304

1 Overview
1.6 Instruction Formats

1.6 Instruction Formats
The R32C/100 Series MCU instructions vary in size from 1 to 14 bytes as shown in Figure 1.13. The
opcode determines operation, operand type and number, and instruction length.

Figure 1.13 Instruction Format

In the R32C/100 Series MCU, instruction codes are defined in a way that frequently used instructions can
have fewer bytes. Moreover, some instructions can use more byte-saving formats by limiting their available
addressing modes.
There are four types of instruction formats: generic, quick, short, and zero.
The following describes the features of each format.

(1) Generic Format (:G)
An opcode in this format consists of 2 or 3 bytes, and contains information on operation, and each
addressing mode of source (hereinafter referred to as src) and destination (hereinafter referred to as
dest).
An instruction code consists of an opcode (2 or 3 bytes), a src code (0 to 4 bytes), and a dest code (0
to 3 bytes).

(2) Quick Format (:Q)
An opcode in this format consists of 1 or 2 bytes, and contains information on operation, immediate
data, and addressing mode of dest. Note that the immediate data in this opcode is limited to a value
that can be expressed by 3 or 4 bits.
An instruction code consists of an opcode (1 or 2 bytes) containing immediate data and a dest code (0
to 3 bytes).

(3) Short Format (:S)
An opcode in this format consists of 1 or 2 bytes, and contains information on operation, and
addressing modes of src and dest. Note that available addressing modes are limited.
An instruction code consists of an opcode (1 or 2 bytes), a src code (0 to 4 bytes), and a dest code (0
to 2 bytes).

(4) Zero Format (:Z)
An opcode in this format consists of one byte, and contains information on operation (plus immediate
data) and dest addressing modes. Note that the immediate data is fixed to 0, and that the available
addressing modes are limited.
An instruction code consists of an opcode (1 byte) and a dest code (0 to 2 bytes).

Opcode dsp1 (src) dsp2 (dest) #imm1

1 to 4 bytes 1 to 3 bytes 1 to 3 bytes 1 byte

Opcode src
displacement

dest
displacement Immediate data

Operand

#imm2 (src)

1 to 4 bytes

src immediate
data

#imm3

Immediate data

1 to 4 bytes

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 16 of 304

1 Overview
1.6 Instruction Formats

1.6.1 Opcode
An opcode is a 1- to 3-byte bit string. When an operand is in either indirect instruction addressing mode
or bank 1 register direct mode, the opcode is, with an additional 8 bits at the top, a 2- to 4-byte bit string.

1.6.2 Operand
An operand consists of the following fields: dsp1, dsp2, #imm1, #imm2 and #imm3. Each field exists/no
exists depending on instructions or addressing mode.
The src code is either in the dsp1 field or #imm2 field, whereas the dest code is in the dsp2 field. The
#imm1 field is used to extend an opcode. However, for instructions CLIP and STZX which have two srs
codes, src1 is stored in the #imm2 field and src2 is stored in the #imm3 field.

(1) dsp1 field
The dsp1 field consists of 1 to 3 bytes. This field exists only when the addressing mode of src is
absolute addressing or relative addressing (except in stack pointer relative addressing).

(2) dsp2 field
The dsp2 field consists of 1 to 3 bytes. This field exists only when the addressing mode of dest is
relative addressing (except program counter relative addressing).

(3) #imm1 field
The #imm1 field consists of 1 byte. This field exists only for some instructions.

BMCnd instruction 8-bit immediate data is located in the #imm1 field, and the lower 4 bits specify
the condition code.

LDC/STC instruction The DMAC associated register and VCT register are specified by the 8-bit
immediate data located in the #imm1 field. This field does not exist when
accessing the following registers: SB, FB, FLG, SP, ISP, SVF, SVP, or INTB.

MOV dsp:8[SP] The 8-bit immediate data in the #imm1 field represents displacement dsp:8
for the stack pointer.

PUSHM/POPM instruction
The 8-bit immediate data is put in the #imm1 field. The bits which contain 1
are specified as registers to be saved/restored.

ROT/SHA/SHL instruction
The 8-bit immediate data in the #imm1 field specifies the number of bits the
data is shifted.

(4) #imm2 field
The #imm2 field consists of 1, 2 or 4 bytes. This field exists only when the addressing mode of src is
immediate addressing or sign-extended immediate addressing.

(5) #imm3 field
The #imm3 field consists of 1, 2 or 4 bytes. This field exists only for some instructions.

CLIP or STZX instruction Two immediate data are specified for src. The first data is in the #imm2 field
and the second one is in the #imm3 field.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 17 of 304

1 Overview
1.7 Interrupt Vector Table

1.7 Interrupt Vector Table
The interrupt vector table consists of a fixed vector table and a relocatable vector table.

1.7.1 Fixed Vector Table
The fixed vector table is one part of the interrupt vector table, and is allocated in addresses from
FFFFFFDCh to FFFFFFFFh. Figure 1.14 shows the fixed vector table.
The interrupt vector table consists of nine 4-byte interrupt vectors. Each vector has the start address of
each interrupt handler.

Figure 1.14 Fixed Vector Table

FFFFFFDCh

FFFFFFFCh

FFFFFFE0h

FFFFFFE4h

FFFFFFE8h

FFFFFFECh

FFFFFFF0h

FFFFFFF4h

FFFFFFF8h

Undefined instruction

Overflow

BRK instruction

Reserved

Reserved
Watchdog timer, Low voltage detection,

Oscillator stop detection
Reserved

NMI

Reset

Interrupt vector table

3 2 1 0

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 18 of 304

1 Overview
1.7 Interrupt Vector Table

1.7.2 Relocatable Vector Table
The relocatable vector table is another part of the interrupt vector table that is address-variable.
Specifically, this vector table is a 1 kbyte, relocatable interrupt vector table whose start address (IntBase)
is indicated by the interrupt table register (INTB). Figure 1.15 shows the relocatable vector table.
This vector table consists of 256 4-byte interrupt vectors. Each vector has the start address of interrupt
handler. It also has software interrupt numbers from 0 to 255 for the INT instruction.
Peripheral interrupts are also assigned to the relocatable vector table in ascending order from the
software interrupt number 0. The number of peripheral interrupts varies with the MCU model. To
eliminate overlap with peripheral interrupts, assign the INT instruction interrupts in descending order
from software interrupt number 255.
The stack pointer (USP or ISP) to be used for the INT instruction interrupt is determined by the software
interrupt number.
For software interrupt numbers 0 to 127, the stack pointer select flag (U flag) is saved when an interrupt
request is accepted. Then, the interrupt sequence is executed after the U flag is set to 0 to select the
interrupt stack pointer (ISP). The saved U flag is restored upon returning from the interrupt handler.
For the software interrupt numbers 128 to 255, the stack pointer is not switched, so the user stack
pointer (USP) is used.
For the peripheral interrupts, the interrupt stack pointer (ISP) is specified when an interrupt request is
accepted irrespective of software interrupt numbers.

Figure 1.15 Relocatable Vector Table

INTB

0IntBase + 4

IntBase
b31 b0

IntBase + 8

255
IntBase + 1020

The direction of peripheral
I/O interrupts vector
assignment

Software interrupt numbers

1
2

2. Addressing Mode

2.1 Addressing Mode

2.2 Guide to This Chapter

2.3 General Instruction Addressing

2.4 Indirect Instruction Addressing

2.5 Extended Instruction Addressing

2.6 Special Instruction Addressing

2.7 Bit Instruction Addressing

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 20 of 304

2 Addressing Mode
2.1 Addressing Mode

2.1 Addressing Mode
This chapter describes symbols and operations for the five addressing modes listed below.

(1) General instruction addressing
This is the most typical addressing mode to access general purpose registers or memory.

• Register Direct
• Immediate
• Sign-Extended Immediate
• Sign-Extended Absolute
• Address Register Indirect
• Address Register Relative
• SB Relative
• FB Relative

(2) Indirect instruction addressing
This addressing mode accesses memory according to data written in the memory. It is available for
almost all instructions which support general instruction addressing.

• Sign-Extended Absolute Indirect
• Address Register Indirect Indirect
• Address Register Relative Indirect
• SB Relative Indirect
• FB Relative Indirect

(3) Extended instruction addressing
This addressing mode is extended to reduce code size, and to access registers or memory that general
instruction addressing cannot.

• Bank1 Register Direct
• Short Immediate
• Stack Pointer Relative

(4) Special instruction addressing
This addressing mode accesses control registers, flags and memory. Only some instructions such as
LDC, FSET, and JMP support this addressing.

• Control Register Direct
• FLG Direct
• Absolute
• Program Counter Relative

(5) Bit instruction addressing
This addressing mode accesses a bitwise area in general purpose registers or memory.

• Register Direct
• Absolute
• Sign-Extended Absolute
• Address Register Indirect
• Address Register Relative
• SB Relative
• FB Relative

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 21 of 304

2 Addressing Mode
2.2 Guide to This Chapter

2.2 Guide to This Chapter
The following sample shows how to read this chapter.

(1) Name
Indicates the addressing name.

(2) Symbol
The number of effective bits are shown in the form of a colon followed by a number (e.g. :3, :4, :8, :16,
:24, and :32). Note that this element is present only for clarification of the addressing mode and needs
not be written. Write a numeric value or a symbol in place of symbols such as dsp.

(3) Explanation
Describes the addressing operation and the effective address range.

(4) Operation diagram
Diagrammatically explains the addressing operation.

Address register relative
dsp:8[A0]
dsp:8[A1]
dsp:8[A2]
dsp:8[A3]
dsp:16[A1]
dsp:16[A2]
dsp:16[A3]
dsp:24[A0]
dsp:24[A1]
dsp:24[A2]
dsp:24[A3]

A displacement (dsp) is added to an
Address register (A0, A1, A2 or A3)
as signed integers. The lower 32 bits
of the result is the effective address
to be operated on.

Effective address range:
00000000h to FFFFFFFFh

An

dsp

address

Memory

Register
address

dsp

dsp: negative values

dsp: positive values

 (2)

 (3)

 (4)

(1)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 22 of 304

2 Addressing Mode
2.3 General Instruction Addressing

2.3 General Instruction Addressing
This is the most typical addressing mode to access general purpose registers or memory. It is available
 for almost all instructions.
Register direct
R0L
R0H
R1L
R1H
R2L
R2H
R3L
R3H
R0
R1
R2
R3
R4
R5
R6
R7
R2R0
R3R1
R6R4
R7R5
A0
A1
A2
A3
R3R1R2R0
R7R5R6R4
A1A0
A3A2

The specified register is the object to
be operated on.

Immediate
#IMM
#IMM:8
#IMM:16
#IMM:32

The immediate data indicated by
#IMM is the object to be operated on.

Sign-extended immediate
#IMMEX
#IMMEX:8
#IMMEX:16

The immediate data indicated by
#IMMEX which is sign-extended
according to size specifier is the
object to be operated on.

R0L/R1L

R0/R1/
R4/R5

R2R0/R3R1/
R6R4/R7R5/
A0/A1/A2/A3

b31 b24 b23 b16 b15 b8 b7 b0

b15 b8 b7 b0

b7 b0

R0H/R1H
b15 b8

R2L/R3L
b23 b16

R2H/R3H
b31 b24

R2/R3/
R6/R7

b31 b24 b23 b16

Registers

R3R1R2R0/
R7R5R6R4/
A1A0/A3A2

b63 b56 b24 b16 b8 b0b32b40b48

#IMM:8

#IMM:16

#IMM:32
b31 b24 b23 b16 b15 b8 b7 b0

b15 b8 b7 b0

b7 b0

Sign-extended

Sign-extended

Sign-
extended#IMMEX:8

#IMMEX:8

#IMMEX:16
b31 b16 b15 b8 b7 b0

b15 b8 b7 b0

b31 b8 b7 b0

Size specifier: W

Size specifier: L

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 23 of 304

2 Addressing Mode
2.3 General Instruction Addressing

Sign-extended absolute
dsp:16
dsp:24

A sign-extended displacement (dsp)
indicates the effective address to be
operated on.

Effective address range (dsp: 16):
00000000h to 00007FFFh
FFFF8000h to FFFFFFFFh
Effective address range (dsp: 24):
00000000h to 007FFFFFh
FF800000h to FFFFFFFFh

Address register indirect
[A0]
[A1]
[A2]
[A3]

An Address register (A0, A1, A2 or
A3) indicates the effective address to
be operated on.

Effective address range:
00000000h to FFFFFFFFh

Address register relative
dsp:8[A0]
dsp:8[A1]
dsp:8[A2]
dsp:8[A3]
dsp:16[A0]
dsp:16[A1]
dsp:16[A2]
dsp:16[A3]
dsp:24[A0]
dsp:24[A1]
dsp:24[A2]
dsp:24[A3]

A displacement (dsp) is added to an
Address register (A0, A1, A2 or A3)
as signed integers. The lower 32 bits
of the result is the effective address
to be operated on.

Effective address range:
00000000h to FFFFFFFFh

SB relative
dsp:8[SB]
dsp:16[SB]
dsp:24[SB]

A displacement (dsp) is added to the
Static base register (SB) as unsigned
integers. The lower 32 bits of the
result is the effective address to be
operated on.

Effective address range:
00000000h to FFFFFFFFh

Memory

address
Sign extension

dsp:16/dsp:24

Memory
Register

An address

An

dsp

address

Memory

Register
address

dsp

dsp: negative values

dsp: positive values

SB address

Memory
Register

address

dsp

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 24 of 304

2 Addressing Mode
2.3 General Instruction Addressing

FB relative
dsp:8[FB]
dsp:16[FB]

A displacement (dsp) is added to the
Frame base register (FB) as signed
integers. The lower 32 bits of the
result is the effective address to be
operated on.

Effective address range:
00000000h to FFFFFFFFh FB

dsp

address

Memory

Register
address

dsp

dsp: negative values

dsp: positive values

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 25 of 304

2 Addressing Mode
2.4 Indirect Instruction Addressing

2.4 Indirect Instruction Addressing

Sign-extended absolute indirect
[dsp:16]
[dsp:24]

The 4-byte value which is in an
address specified by Sign-extended
absolute is the effective address to
be operated on.

Effective address range:
00000000h to FFFFFFFFh

Address register indirect indirect
[[A0]]
[[A1]]
[[A2]]
[[A3]]

The 4-byte value which is in an
address specified by Address
register indirect addressing is the
effective address to be operated on.

Effective address range:
00000000h to FFFFFFFFh

Memory

address

address LL
address LH
address HL
address HH

b31 b0

address
Sign extension

dsp:16/dsp:24

Regsiter
An address

Memory

address LL
address LH
address HL
address HH

address

b31 b0

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 26 of 304

2 Addressing Mode
2.4 Indirect Instruction Addressing

Address register relative indirect
[dsp:8[A0]]
[dsp:8[A1]]
[dsp:8[A2]]
[dsp:8[A3]]
[dsp:16[A0]]
[dsp:16[A1]]
[dsp:16[A2]]
[dsp:16[A3]]
[dsp:24[A0]]
[dsp:24[A1]]
[dsp:24[A2]]
[dsp:24[A3]]

The 4-byte value which is in an
address specified by Address
register relative addressing is the
effective address to be operated on.

Effective address range:
00000000h to FFFFFFFFh

SB relative indirect
[dsp:8[SB]]
[dsp:16[SB]]
[dsp:24[SB]]

The 4-byte value which is in an
address specified by SB relative
addressing is the effective address to
be operated on.

Effective address range:
00000000h to FFFFFFFFh

An

dsp

address

Memory

Register
address

dsp
address LL
address LH
address HL
address HH

address

b31 b0

address LL
address LH
address HL
address HH

address

b31 b0

SB address

Memory
Register

address

dsp
address LL
address LH
address HL
address HH

address

b31 b0

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 27 of 304

2 Addressing Mode
2.4 Indirect Instruction Addressing

FB relative indirect
[dsp:8[FB]]
[dsp:16[FB]]

The 4-byte value which is in an
address specified by FB relative
addressing is the effective address to
be operated on.

Effective address range:
00000000h to FFFFFFFFh

FB

dsp

address

Memory

Register
address

dsp
address LL
address LH
address HL
address HH

address

b31 b0

address LL
address LH
address HL
address HH

address

b31 b0

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 28 of 304

2 Addressing Mode
2.5 Extended Instruction Addressing

2.5 Extended Instruction Addressing

Bank1 register direct
R0LB
R0HB
R1LB
R1HB
R2LB
R2HB
R3LB
R3HB
R0B
R1B
R2B
R3B
R4B
R5B
R6B
R7B
R2R0B
R3R1B
R6R4B
R7R5B
A0B
A1B
A2B
A3B
R3R1R2R0B
R7R5R6R4B
A1A0B
A3A2B

The specified Bank1 register is the
object to be operated on.

Bank1 register direct can be
specified irrespective of the B flag
value.

Short immediate
#0
#IMM:3
#IMM:4

The immediate data indicated by
zero or #IMM is the object to be
operated on.
It is used for zero format or quick
format.

R0LB/R1LB

R0B/R1B/
R4B/R5B

R2R0B/R3R1B/
R6R4B/R7R5B/
A0B/A1B/A2B/
A3B

b31 b24 b23 b16 b15 b8 b7 b0

b15 b8 b7 b0

b7 b0

R0HB/R1HB
b15 b8

R2LB/R3LB
b23 b16

R2HB/R3HB
b31 b24

R2B/R3B/
R6B/R7B

b31 b24 b23 b16

Registers

R3R1R2R0B/
R7R5R6R4B/
A1A0B / A3A2B

b63 b56 b24 b16 b8 b0b32b40b48

b3 b0

#IMM:3
b2 b0

#IMM:4

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 29 of 304

2 Addressing Mode
2.5 Extended Instruction Addressing

Stack pointer relative
dsp:8[SP] A displacement (dsp) is added to the

Stack pointer register (SP) as signed
integers. The lower 32 bits of the
result is the effective address to be
operated on.

Effective address range:
00000000h to FFFFFFFFh

This addressing mode is available in
MOV instruction.

SP

dsp

address

Memory

Register
address

dsp

dsp: negative values

dsp: positive values

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 30 of 304

2 Addressing Mode
2.6 Special Instruction Addressing

2.6 Special Instruction Addressing

Control register direct
SB
FB
FLG
SP
ISP
INTB
SVF
SVP
VCT
DMD0
DMD1
DMD2
DMD3
DCT0
DCT1
DCT2
DCT3
DCR0
DCR1
DCR2
DCR3
DSA0
DSA1
DSA2
DSA3
DSR0
DSR1
DSR2
DSR3
DDA0
DDA1
DDA2
DDA3
DDR0
DDR1
DDR2
DDR3

The specified control register is the
object to be operated on.

When SP is specified, a stack pointer
indicated by the U flag is the object to
be operated on.

This addressing mode is available in
ADD:Q, LDC, POPC, PUSHC, and
STC instructions.

FLG direct
U
I
O
B
S
Z
D
C

The specified flag is the object to be
operated on.

This addressing mode is available in
FCLR and FSET instructions.

DCR0/DCR1/
DCR2/DCR3

DDA0/DDA1/
DDA2/DDA3

b31 b0

Registers

DSR0/DSR1/
DSR2/DSR3

b31 b0

DSA0/DSA1/
DSA2/DSA3

b31 b0

DCT0/DCT1/
DCT2/DCT3

DMD0/DMD1/
DMD2/DMD3

SVF

VCT
b31 b0

SVP
b31 b0

INTB
b31 b0

ISP
b31 b0

SP
b31 b0

FLG

FB
b31 b0

SB
b31 b0

DDR0/DDR1/
DDR2/DDR3

b31 b0

b31 b0

b31 b0

b31 b0

b31 b0

b31 b0

b7 b0
FLG

Register

U I O B S Z D C

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 31 of 304

2 Addressing Mode
2.6 Special Instruction Addressing

Absolute
abs:16 The value indicated by abs is the

effective address to be operated on.

Effective address range:
00000000h to 0000FFFFh

This addressing mode is available in
LDCTX and STCTX instructions.

Program counter relative
label
(dsp:3)

If jump distance specifier (.length) is
".S", the displacement (dsp) is added
to the current Program Counter (PC)
as unsigned integers. The lower 32
bits of the result is the effective
address to be operated on.
A dsp is calculated by the assembler.

This addressing mode is available in
JMP instruction.

label
(dsp:8)
(dsp:16)
(dsp:24)

If jump distance specifier (.length) is
".B", ".W" or ".A", a displacement
(dsp) is added to the current
Program Counter (PC) as signed
integers. The lower 32 bits of the
result is the effective address to be
operated on.
A dsp is automatically calculated by
the assembler.

This addressing mode is available in
JCnd, JMP and JSR instructions.

Memory

abs:16

Memory

Current PC
value

dsp

label

+1 ≤ dsp ≤ +8
Current PC value = JMP instruction addressing + 1

JMP.S dsp

dsp

Memory

Current PC
value

dsp

dsp: negative values

dsp: positive values

JMP instruction

label

label

In the case when ".B": -128 ≤ dsp ≤ +127
In the case when ".W": -32768 ≤ dsp ≤ +32767
In the case when ".A": -8388608 ≤ dsp ≤ +8388607

Current PC value = JMP instruction address + 1

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 32 of 304

2 Addressing Mode
2.7 Bit Instruction Addressing

2.7 Bit Instruction Addressing
This addressing is available in the following instructions:

BCLR, BSET, BNOT, BTST, BMCnd, BTSTC, and BTSTS

Register direct
bit,R0H
bit,R0L
bit,R1H
bit,R1L
bit,R2H
bit,R2L
bit,R3H
bit,R3L

The register bit specified by the bit
position (bit) is the object to be
operated on.

0 to 7 can be specified for the bit
position (bit) to be operated on.

Absolute
bit, abs:16 The bit specified by the bit position

(bit) of the register indicated by abs
is the object to be operated on.

Effective address range:
00000000h to 0000FFFFh

0 to 7 can be specified for the bit
position (bit) to be operated on.

This addressing mode is only
available in the BTST instruction.

bit,R0L/
bit,R1L

b7 b0

bit,R0H/
bit,R1H

b15 b8

bit,R2L/
bit,R3L

b23 b16

bit,R2H/
bit,R3H

b31 b24

Register

Bit position (3)

Bit position (5)

Bit position (0)

Bit position (4)

Memory

abs:16

Bit position
(1)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 33 of 304

2 Addressing Mode
2.7 Bit Instruction Addressing

Sign-extended absolute
bit,dsp:16
bit,dsp:24

The bit position (bit) indicated by a
sign-extended displacement (dsp) is
the object to be operated on.

Effective address range (dsp: 16):
00000000h to 00007FFFh
FFFF8000h to FFFFFFFFh
Effective address range (dsp: 24):
00000000h to 007FFFFFh
FF800000h to FFFFFFFFh

0 to 7 can be specified for the bit
position (bit).

Address register indirect
bit,[A0]
bit,[A1]
bit,[A2]
bit,[A3]

The bit position (bit) indicated by an
Address register (A0, A1, A2 or A3)
is the object to be operated on.

The address range to be specified is
00000000h to FFFFFFFFh

0 to 7 can be specified for the bit
position (bit).

Address register relative
bit,dsp:8[A0]
bit,dsp:8[A1]
bit,dsp:8[A2]
bit,dsp:8[A3]
bit,dsp:16[A0]
bit,dsp:16[A1]
bit,dsp:16[A2]
bit,dsp:16[A3]
bit,dsp:24[A0]
bit,dsp:24[A1]
bit,dsp:24[A2]
bit,dsp:24[A3]

A displacement (dsp) is added to an
Address register (A0, A1, A2 or A3)
as signed integers. The bit position
(bit) indicated by the lower 32 bits of
the result is the object to be operated
on.

The address range to be specified is
00000000h to FFFFFFFFh

0 to 7 can be specified for the bit
position (bit).

Memory

address
Sign extension

dsp:16/dsp:24

Bit position
(2)

Memory
Register

An address

Bit position
(4)

An

dsp

address

Memory

Register
address

dsp

dsp: negative values

dsp: positive values

Bit position
(5)

Bit position
(5)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 34 of 304

2 Addressing Mode
2.7 Bit Instruction Addressing

SB relative
bit,dsp:8[SB]
bit,dsp:16[SB]
bit,dsp:24[SB]

A displacement (dsp) is added to the
Static base register (SB) as unsigned
integers. The bit position (bit)
indicated by the lower 32 bits of the
result is the object to be operated on.

The address range to be specified is
00000000h to FFFFFFFFh

0 to 7 can be specified for the bit
position (bit).

FB relative
bit,dsp:8[FB]
bit,dsp:16[FB]

 A displacement (dsp) is added to the
Frame base register (FB) as signed
integers. The bit position (bit)
indicated by the lower 32 bits of the
result is the object to be operated on.

The address range to be specified is
00000000h to FFFFFFFFh

0 to 7 can be specified for the bit
position.

SB address

Memory
Register

address

dsp

Bit position
(6)

FB

dsp

address

Memory

Register
address

dsp

dsp: negative values

dsp: positive values

Bit position
(1)

Bit position
(1)

3. Instruction

3.1 Guide to This Chapter

3.2 Instruction Details

3.3 INDEX Instruction

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 36 of 304

3 Instruction
3.1 Guide to This Chapter

3.1 Guide to This Chapter
This chapter describes the functionality of each instruction by showing their syntax, operation, function,
available src/dest, flags, and example instructions.
The following sample shows how to read this chapter.

3
Instruction

3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009

Page 45 of 304

ADDADD Add

[Instruction Syntax]
ADD.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=184

G , Q , S

B , W , L

[Operation]
dest = dest + src;

[Description]
• This instruction adds dest and src and stores the result to dest.

[Available src/dest] (Refer to the next page for src/dest classified by format.)

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

*2. Operation is performed on the stack pointer specified by the U flag.

[Flags Affected]

Description

O : The flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or

-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB =1; otherwise it becomes 0.

Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

C : The flag indicates the overflow of an operation as unsigned integers. It becomes 1 when the

operation results in exceeding 255(.B), 65535(.W), or 4294967295(.L); otherwise it becomes 0.

[Sample Description]
ADD.B #2,R0L

ADD.W R0,R2

ADD.L A0,R7R5

ADD.B R3L,[mem[A0]]

ADD.W [[A1]],R4

ADD.L R2R0,[[A3]]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:3 #IMM:4 SP *2

Flag U I O B S Z D C

Status – – – –

(1)

(2)

(3)

(4)

(7)

(8)

(5)

(6)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 37 of 304

3 Instruction
3.1 Guide to This Chapter

(1) Instruction Mnemonic
Indicates the mnemonic of the instruction explained.

(2) Instruction code/number of cycles
Indicates the page on which the instruction code/number of cycles are listed.

(3) Instruction Syntax
Indicates the syntax that specifies the operation to be performed and the operand(s) used.

ADD.size(:format) src, dest
 G, Q, S (f)
 B , W , L (e)

 (a) (b) (c) (d)

(a) Mnemonic ADD
Specifies the instruction.

(b) Size specifier .size
Specifies the data size of the operand(s).
The size specifiers used in the instruction syntax are listed as below:

.B Byte (8 bits)

.W Word (16 bits)

.L Long word (32 bits)
Some instructions have no size specifier.

(c) Instruction format specifier :format
Specifies the format of the instruction. If omitted, the format is automatically chosen by the assembler.
The instruction format specifiers are listed below:

:G Generic format
:Q Quick format
:S Short format
:Z Zero format

Some instructions have no instruction format specifier.

(d) Operand src, dest
Specifies the operand.

(e) Available size specifiers
Indicates the available data sizes to be specified in (b).

(f) Available instruction format specifiers
Indicates the available instruction formats in (c).

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 38 of 304

3 Instruction
3.1 Guide to This Chapter

3
Instruction

3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009

Page 45 of 304

ADDADD Add

[Instruction Syntax]
ADD.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=184

G , Q , S

B , W , L

[Operation]
dest = dest + src;

[Description]
• This instruction adds dest and src and stores the result to dest.

[Available src/dest] (Refer to the next page for src/dest classified by format.)

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

*2. Operation is performed on the stack pointer specified by the U flag.

[Flags Affected]

Description

O : The flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or

-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB =1; otherwise it becomes 0.

Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

C : The flag indicates the overflow of an operation as unsigned integers. It becomes 1 when the

operation results in exceeding 255(.B), 65535(.W), or 4294967295(.L); otherwise it becomes 0.

[Sample Description]
ADD.B #2,R0L

ADD.W R0,R2

ADD.L A0,R7R5

ADD.B R3L,[mem[A0]]

ADD.W [[A1]],R4

ADD.L R2R0,[[A3]]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:3 #IMM:4 SP *2

Flag U I O B S Z D C

Status – – – –

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 39 of 304

3 Instruction
3.1 Guide to This Chapter

(4) Operation
Explains the operation in C language style.

(5) Description
Describes the operation.

(6) Addressing modes for src/dest (label)
Indicates the addressing modes for the operand(s).

(a) Addressing modes for src (source)

(b) Addressing modes for dest (destination)

(c) Unavailable addressing modes

(d) Available addressing modes

(e) Addressing modes that changes according to operation size
Left (R1L) is available when the operation size is a byte (8 bits).
Center (R4) is available when the operation size is a word (16 bits).
Right (A0) is available when the operation size is a long word (32 bits).

(7) Flags Affected
Indicates which flags are affected by this instruction. The symbols in the table have the following
meanings:

"–" Not affected by this instruction
" " Affected by this instruction

(8) Sample description
Indicates sample descriptions of the instruction.

src dest

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:4

(a)

(b)

(c)

(d)

(e)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 40 of 304

3 Instruction
3.1 Guide to This Chapter

The following sample shows the syntax of each jump instruction: JMP, JPMI, JSR, and JSRI.

(3) Instruction Syntax
Indicates the syntax that specifies the operation to be performed and the operands used.

JMP(.length) label
 S , B , W , A (d)

 (a) (b) (c)

(a) Mnemonic JMP
Specifies the instruction.

(b) Jump distance specifier .length
Specifies the jump distance. In instructions JMP and JSR, the jump distance specifier can be omitted.
The jump distance specifiers used in the instruction syntax are listed as below:

.S PC-relative, 3-bit displacement, forward only

.B PC-relative, 8-bit displacement

.W PC-relative, 16-bit displacement

.A PC-relative, 24-bit displacement

.L Absolute, 32-bit address

(c) Operand label
Specifies the operand for label.

(d) Available jump distance specifiers
Indicates the available jump distances in (b).

3
Instruction

3.2 Instruction Details

JMPJMP Jump Always

[Instruction Syntax]
JMP(.length) label

[Instruction Code/Number of Cycles]
Page=232

S , B , W , A

(1)

(2)

(3)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 41 of 304

3 Instruction
3.2 Instruction Details

3.2 Instruction Details
Detailed explanations of each instruction for the R32C/100 Series MCU begin on the next page.

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 42 of 304

ABSABS Absolute

[Instruction Syntax]
ABS.size dest

[Instruction Code/Number of Cycles]
Page=182

B , W , L

[Operation]
if (dest < 0)

dest = -dest;

[Description]
• This instruction takes an absolute value of dest and stores it to dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when dest before the operation is -128(.B), -32768(.W), or -2147483648(.L);

otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
ABS.B R0L
ABS.W R2
ABS.L R7R5
ABS.L A0
ABS.W mem[SB]

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 43 of 304

ADCADC Add with Carry

[Instruction Syntax]
ADC.size src,dest

[Instruction Code/Number of Cycles]
Page=182

B , W , L

[Operation]
dest = dest + src + C;

[Description]
• This instruction adds dest, src and the C flag and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag indicates the overflow of an operation as unsigned integers. It becomes 1 when the

operation results in exceeding 255(.B), 65535(.W), or 4294967295(.L); otherwise it becomes 0.

[Sample Description]
ADC.B #2,R0L
ADC.W R0,R2
ADC.L A0,R7R5
ADC.B R3L,[A0]
ADC.W [A1],R4
ADC.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 44 of 304

ADCFADCF Add Carry Flag

[Instruction Syntax]
ADCF.size dest

[Instruction Code/Number of Cycles]
Page=183

B , W , L

[Operation]
dest = dest + C;

[Description]
• This instruction adds dest and the C flag and stores the result to dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : This flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : This flag indicates the overflow of an operation as unsigned integers. It becomes 1 when the

operation results in exceeding 255(.B), 65535(.W) or 4294967295(.L); otherwise it becomes 0.

[Sample Description]
ADCF.B R0L
ADCF.W R2
ADCF.L [A3]
ADCF.W [mem[A0]]

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 45 of 304

ADDADD Add

[Instruction Syntax]
ADD.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=184

G , Q , S
B , W , L

[Operation]
dest = dest + src;

[Description]
• This instruction adds dest and src and stores the result to dest.

[Available src/dest] (Refer to the next page for src/dest classified by format.)

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. Operation is performed on the stack pointer specified by the U flag.

[Flags Affected]

Description
O : The flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB =1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag indicates the overflow of an operation as unsigned integers. It becomes 1 when the

operation results in exceeding 255(.B), 65535(.W), or 4294967295(.L); otherwise it becomes 0.

[Sample Description]
ADD.B #2,R0L
ADD.W R0,R2
ADD.L A0,R7R5
ADD.B R3L,[mem[A0]]
ADD.W [[A1]],R4
ADD.L R2R0,[[A3]]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:3 #IMM:4 SP *2

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 46 of 304

[src/dest Classified by Format]
G format

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. Operation is performed on the stack pointer specified by the U flag.
*3. Only ".L" can be specified as a size specifier (.size).

Q format

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. The effective value is -8 ≤ #IMM:4 ≤ +7
*3. The effective value is #IMM:3=4,8,12,16 or 20.
*4. Operation is performed on the stack pointer specified by the U flag.
*5. Only ".L" can be specified as size specifier (.size).

S format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMMEX:8 *3 #IMMEX:16*3 #IMM:32 *3 SP *2,*3

src dest *1

#IMM:4 *2 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:3 *3 SP *4,*5

src dest *1

#IMM R0L/R0/R2R0 dsp:16 dsp:8[SB] dsp:8[FB]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 47 of 304

ADDFADDF Add Floating-point

[Instruction Syntax]
ADDF src,dest

[Instruction Code/Number of Cycles]
Page=187

[Operation]
dest = dest + src;

[Description]
• This instruction executes floating-point addition of src and dest and stores the result to dest. Both

operands and the result are interpreted as signed integers.
• The operation result is rounded according to the rounding mode specified in the flag register (FLG).
• When the result is overflowed, it takes either the maximum positive normal number (7F7FFFFFh) or

the maximum negative normal number (FF7FFFFFh) depending on whether signed or not.
• When the result is underflowed, it takes any of the following according to the rounding mode: zero

(00000000h), the minimum positive number (00800000h) or the minimum negative normal number
(80800000h).

• The result for invalid numbers is undefined.
[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
FO : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

overflow; otherwise it becomes 0.
FU : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

underflow; otherwise it becomes 0.
O : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

overflow; otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
ADDF R2R0,R3R1
ADDF [A1],R2R0
ADDF mem[FB],R3R1

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag FO FU U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 48 of 304

ADSFADSF Add Sign Flag

[Instruction Syntax]
ADSF.size dest

[Instruction Code/Number of Cycles]
Page=188

B , W , L

[Operation]
dest = dest + S;

[Description]
• This instruction adds dest and the S flag and stores the result to dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W) or,
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag indicates the overflow of an operation as unsigned integers. It becomes 1 when the

operation results in exceeding 255(.B), 65535(.W), or 4294967295(.L); otherwise it becomes 0.

[Sample Description]
ADSF.B R0L
ADSF.W R2
ADSF.L [A3]
ADSF.W mem[A0]

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 49 of 304

ANDAND And Logical

[Instruction Syntax]
AND.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=189

G , S
B , W , L

[Operation]
dest = dest & src;

[Description]
• This instruction logically ANDs dest and src and stores the result to dest.

[Available src/dest] (Refer to the next page for src/dest classified by format.)

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
AND.B #2,R0L
AND.W R0,R2
AND.L A0,R7R5
AND.B R3L,[mem[A0]]
AND.W [[A1]],R4
AND.L R2R0,[[A3]]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

dsp:8[SB]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 50 of 304

[src/dest Classified by Format]
G format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

S format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

src dest *1

#IMM R0L/R0/R2R0 dsp:16 dsp:8[SB] dsp:8[FB]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 51 of 304

BCLRBCLR Clear a Bit

[Instruction Syntax]
BCLR dest

[Instruction Code/Number of Cycles]
Page=191

[Operation]
dest = 0;

[Description]
• This instruction sets dest to 0.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
BCLR 1,R0L
BCLR 4,R2H
BCLR 2,[A3]
BCLR 7,mem[SB]

dest *1

bit,R0L bit,R0H bit,R2L bit,R2H

bit,R1L bit,R1H bit,R3L bit,R3H

bit,dsp:8[FB] bit,dsp:16[FB] bit,dsp:24

bit,dsp:16 bit,dsp:16[SB] bit,dsp:24[SB]

bit,[A0] bit,dsp:8[A0] bit,dsp:16[A0] bit,dsp:24[A0]

bit,[A1] bit,dsp:8[A1] bit,dsp:16[A1] bit,dsp:24[A1]

bit,[A2] bit,dsp:8[A2] bit,dsp:16[A2] bit,dsp:24[A2]

bit,[A3] bit,dsp:8[A3] bit,dsp:16[A3] bit,dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 52 of 304

BITINDEXBITINDEX Index next Bit Instruction

[Instruction Syntax]
BITINDEX.size src

[Instruction Code/Number of Cycles]
Page=192

B , W , L

[Operation]

[Description]
• This instruction modifies addressing of the next bit instruction.
• No interrupt request is accepted until the next instruction execution is completed.
• The specified src is the src or the dest index value (bit) of the next sequential instruction.

[Available src]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
BITINDEX.B R0L
BITINDEX.W R2
BITINDEX.L [A0]
BITINDEX.W mem[A1]

src *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 53 of 304

BMCnd Move a Bit Conditionally BMCnd
[Instruction Syntax]

BMCnd dest
[Instruction Code/Number of Cycles]

Page=192

[Operation]
if (true)

dest = 1;
else

dest = 0;

[Description]
• This instruction moves the truth value (1 if true, 0 if false) of the condition specified by Cnd to bit in

dest.
• The following table lists Cnd types:

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Cnd Conditions
Exp
res-
sion

Cnd Conditions
Exp
res-
sion

GEU
/C

C == 1 Equal to or greater
than / C flag is 1. ≤ LTU/

NC
C == 0 Smaller than /

C flag is 0. >

EQ/
Z

Z == 1 Equal to/
Z flag is 1. = NE/

NZ
Z == 0 Not equal to /

Z flag is 0. ≠

GTU C & ~Z == 1 Greater than < LEU C & ~Z == 0 Equal to or smaller
than ≥

PZ S == 0 Positive or zero 0 ≤ N S == 1 Negative 0 >
GE S ^ O == 0 Equal to or greater

than as signed integer ≤ LE (S ^ O) | Z ==
1

Equal to or smaller
than as signed integer ≥

GT (S ^ O) | Z ==
0

Greater than as signed
integer < LT S ^ O == 1 Smaller than as signed

integer >

O O == 1 O flag is 1. NO O == 0 O flag is 0.

dest *1

bit,R0L bit,R0H bit,R2L bit,R2H

bit,R1L bit,R1H bit,R3L bit,R3H

bit,dsp:8[FB] bit,dsp:16[FB] bit,dsp:24

bit,dsp:16 bit,dsp:16[SB] bit,dsp:24[SB]

bit,[A0] bit,dsp:8[A0] bit,dsp:16[A0] bit,dsp:24[A0]

bit,[A1] bit,dsp:8[A1] bit,dsp:16[A1] bit,dsp:24[A1]

bit,[A2] bit,dsp:8[A2] bit,dsp:16[A2] bit,dsp:24[A2]

bit,[A3] bit,dsp:8[A3] bit,dsp:16[A3] bit,dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 54 of 304

[Sample Description]
BMC 1,R0L
BMLT 4,R2H
BMN 2,[A3]
BMNO 7,mem[SB]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 55 of 304

BNOTBNOT Not a Bit

[Instruction Syntax]
BNOT dest

[Instruction Code/Number of Cycles]
Page=193

[Operation]
dest = ~dest;

[Description]
• This instruction inverts bit in dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
BNOT 1,R0L
BNOT 4,R2H
BNOT 2,[A3]
BNOT 7,mem[SB]

dest *1

bit,R0L bit,R0H bit,R2L bit,R2H

bit,R1L bit,R1H bit,R3L bit,R3H

bit,dsp:8[FB] bit,dsp:16[FB] bit,dsp:24

bit,dsp:16 bit,dsp:16[SB] bit,dsp:24[SB]

bit,[A0] bit,dsp:8[A0] bit,dsp:16[A0] bit,dsp:24[A0]

bit,[A1] bit,dsp:8[A1] bit,dsp:16[A1] bit,dsp:24[A1]

bit,[A2] bit,dsp:8[A2] bit,dsp:16[A2] bit,dsp:24[A2]

bit,[A3] bit,dsp:8[A3] bit,dsp:16[A3] bit,dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 56 of 304

BRKBRK Break

[Instruction Syntax]
BRK

[Instruction Code/Number of Cycles]
Page=193

[Operation]

[Description]
• This instruction generates a BRK interrupt.
• The BRK interrupt is non-maskable.

[Flags Affected]

Description
U : The flag becomes 0.
I : The flag becomes 0.
D : The flag becomes 0.

The flags are saved to the stack area before the BRK instruction is executed.

[Sample Description]
BRK

When the address FFFFFFE7h is not FFh,
SP = SP - 4;
*SP = FLG;
SP = SP - 4;
*SP = PC + 1;
PC = *(FFFFFFE4h);

When the address FFFFFFE7h is FFh,
SP = SP - 4;
*SP = FLG;
SP = SP - 4;
*SP = PC + 1;
PC = *IntBase;

Flag U I O B S Z D C
Status – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 57 of 304

BRK2BRK2 Break 2

[Instruction Syntax]
BRK2

[Instruction Code/Number of Cycles]
Page=193

[Operation]
SP = SP - 4;
*SP = FLG;
SP = SP - 4;
*SP = PC + 1;
PC = *(long *)0x0004C000;

[Description]
• This instruction is provided only for use in debuggers. Do not use it in user programs.
• This instruction generates a BRK2 interrupt.
• The BRK2 interrupt is non-maskable.

[Flags Affected]

Description
U : The flag becomes 0.
I : The flag becomes 0.
D : The flag becomes 0.

The flags are saved to the stack area before the BRK2 instruction is executed.

[Sample Description]
BRK2

Flag U I O B S Z D C
Status – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 58 of 304

BSETBSET Set a Bit

[Instruction Syntax]
BSET dest

[Instruction Code/Number of Cycles]
Page=194

[Operation]
dest = 1;

[Description]
• This instruction sets bit in dest to 1.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
BSET 1,R0L
BSET 4,R2H
BSET 2,[A3]
BSET 7,mem[SB]

dest *1

bit,R0L bit,R0H bit,R2L bit,R2H

bit,R1L bit,R1H bit,R3L bit,R3H

bit,dsp:8[FB] bit,dsp:16[FB] bit,dsp:24

bit,dsp:16 bit,dsp:16[SB] bit,dsp:24[SB]

bit,[A0] bit,dsp:8[A0] bit,dsp:16[A0] bit,dsp:24[A0]

bit,[A1] bit,dsp:8[A1] bit,dsp:16[A1] bit,dsp:24[A1]

bit,[A2] bit,dsp:8[A2] bit,dsp:16[A2] bit,dsp:24[A2]

bit,[A3] bit,dsp:8[A3] bit,dsp:16[A3] bit,dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 59 of 304

BTSTBTST Test a Bit

[Instruction Syntax]
BTST (:format) src

[Instruction Code/Number of Cycles]
Page=194

G , S

[Operation]
Z = ~src;
C = src;

[Description]
• This instruction moves inverted bit in src to the Z flag and non-inverted bit in src to the C flag.

[Available src]
G format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

S format

[Flags Affected]

Description
Z : The flag becomes 1 when src is 0; otherwise it becomes 0.
C : The flag becomes 1 when src is 1; otherwise it becomes 0.

[Sample Description]
BTST 1,R0L
BTST 4,R2H
BTST 2,[A3]
BTST 7,mem

src *1

bit,R0L bit,R0H bit,R2L bit,R2H

bit,R1L bit,R1H bit,R3L bit,R3H

bit,dsp:8[FB] bit,dsp:16[FB] bit,dsp:24

bit,dsp:16 bit,dsp:16[SB] bit,dsp:24[SB]

bit,[A0] bit,dsp:8[A0] bit,dsp:16[A0] bit,dsp:24[A0]

bit,[A1] bit,dsp:8[A1] bit,dsp:16[A1] bit,dsp:24[A1]

bit,[A2] bit,dsp:8[A2] bit,dsp:16[A2] bit,dsp:24[A2]

bit,[A3] bit,dsp:8[A3] bit,dsp:16[A3] bit,dsp:24[A3]

src
bit,abs:16

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 60 of 304

BTSTCBTSTC Test a Bit and Clear

[Instruction Syntax]
BTSTC dest

[Instruction Code/Number of Cycles]
Page=195

[Operation]
Z = ~dest;
C = dest;
dest = 0;

[Description]
• This instruction moves inverted bit in dest to the Z flag and non-inverted bit in dest to the C flag, then

set bit in dest to 0.
• Do not use this instruction for dest in SFR area.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
Z : The flag becomes 1 when dest is 0; otherwise it becomes 0.
C : The flag becomes 1 when dest is 1; otherwise it becomes 0.

[Sample Description]
BTSTC 1,R0L
BTSTC 4,R2H
BTSTC 2,[A3]
BTSTC 7,mem[SB]

dest *1

bit,R0L bit,R0H bit,R2L bit,R2H

bit,R1L bit,R1H bit,R3L bit,R3H

bit,dsp:8[FB] bit,dsp:16[FB] bit,dsp:24

bit,dsp:16 bit,dsp:16[SB] bit,dsp:24[SB]

bit,[A0] bit,dsp:8[A0] bit,dsp:16[A0] bit,dsp:24[A0]

bit,[A1] bit,dsp:8[A1] bit,dsp:16[A1] bit,dsp:24[A1]

bit,[A2] bit,dsp:8[A2] bit,dsp:16[A2] bit,dsp:24[A2]

bit,[A3] bit,dsp:8[A3] bit,dsp:16[A3] bit,dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 61 of 304

BTSTSBTSTS Test a Bit and Set

[Instruction Syntax]
BTSTS dest

[Instruction Code/Number of Cycles]
Page=196

[Operation]
Z = ~dest;
C = dest;
dest = 1;

[Description]
• This instruction moves inverted bit in dest to the Z flag and non-inverted bit in dest to the C flag, then

set bit in dest to 1.
• Do not use this instruction for dest in SFR area.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
Z : The flag becomes 1 when dest is 0; otherwise it becomes 0.
C : The flag becomes 1 when dest is 1; otherwise it becomes 0.

[Sample Description]
BTSTS 1,R0L
BTSTS 4,R2H
BTSTS 2,[A3]
BTSTS 7,mem[SB]

dest *1

bit,R0L bit,R0H bit,R2L bit,R2H

bit,R1L bit,R1H bit,R3L bit,R3H

bit,dsp:8[FB] bit,dsp:16[FB] bit,dsp:24

bit,dsp:16 bit,dsp:16[SB] bit,dsp:24[SB]

bit,[A0] bit,dsp:8[A0] bit,dsp:16[A0] bit,dsp:24[A0]

bit,[A1] bit,dsp:8[A1] bit,dsp:16[A1] bit,dsp:24[A1]

bit,[A2] bit,dsp:8[A2] bit,dsp:16[A2] bit,dsp:24[A2]

bit,[A3] bit,dsp:8[A3] bit,dsp:16[A3] bit,dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 62 of 304

CLIPCLIP Clip

[Instruction Syntax]
CLIP.size src1,src2,dest

[Instruction Code/Number of Cycles]
Page=196

B , W , L

[Operation]
if (dest < src1)

dest = src1;
else if (dest > src2)

dest = src2;

[Description]
• This instruction clips the dest value to satisfy the condition src1 ≤ dest ≤ src2.
• The values are compared as signed integers.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
CLIP.B #-32,#32,R0L
CLIP.W #1000,#4000,R2
CLIP.L #-100000,#100000,R7R5
CLIP.W #0,#10000,mem[A0]

src1 src2 dest *1

#IMM R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 63 of 304

CMPCMP Compare

[Instruction Syntax]
CMP.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=197

G , Q , S
B , W , L

[Operation]
dest - src;

[Description]
• This instruction varies each flag bit of the flag register (FLG) according to the result of subtraction of

src from dest.

[Available src/dest] (Refer to the next page for src/dest classified by format.)

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : This flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when an operation as unsigned integers results in any value equal to or

greater than 0; otherwise it becomes 0.

[Sample Description]
CMP.B #2,R0L
CMP.W R0,R2
CMP.L A0,R7R5
CMP.B R3L,[mem[A0]]
CMP.W [[A1]],R4
CMP.L R2R0,[[A3]]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:4

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 64 of 304

[src/dest Classified by Format]
G format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

Q format

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. The effective value is -8 ≤ #IMM:4 ≤ +7.

S format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

src dest *1

#IMM:4 *2 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

src dest *1

#IMM R0L/R0/R2R0 dsp:16 dsp:8[SB] dsp:8[FB]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 65 of 304

CMPFCMPF Compare Floating-point

[Instruction Syntax]
CMPF src,dest

[Instruction Code/Number of Cycles]
Page=199

[Operation]
dest - src;

[Description]
• This instruction varies each flag bit of the flag register (FLG) according to the result of subtraction of

src from dest.
• The result for invalid numbers is undefined.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
FO : The flag becomes 1 when the operand has invalid numbers; otherwise it becomes 0.
FU : The flag becomes 1 when the operand has invalid numbers; otherwise it becomes 0.
O : The flag becomes 1 when the operand has invalid numbers; otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
CMPF R2R0,R3R1
CMPF [A1],R2R0
CMPF mem[FB],R3R1

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag FO FU U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 66 of 304

CNVIFCNVIF Convert Integer to Floating-point

[Instruction Syntax]
CNVIF src,dest

[Instruction Code/Number of Cycles]
Page=201

[Operation]
dest = (float) src;

[Description]
• This instruction converts src to single precision floating-point number.
• The operation result is rounded according to the rounding mode specified in the flag register (FLG).

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
FO : The flag becomes 0.
FU : The flag becomes 0.
O : The flag becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
CNVIF R2R0,R3R1
CNVIF [A1],R2R0
CNVIF mem[FB],R3R1

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag FO FU U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 67 of 304

DADCDADC Add Decimal with Carry

[Instruction Syntax]
DADC.size src,dest

[Instruction Code/Number of Cycles]
Page=203

B , W , L

[Operation]
dest = dest + src + C;

[Description]
• This instruction executes decimal addition of dest, src and the C flag and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the operation results in exceeding 99(.B), 9999(.W), or 99999999(.L):

otherwise it becomes 0.

[Sample Description]
DADC.B #12,R0L
DADC.W R0,R2
DADC.L A0,R7R5
DADC.B R3L,[A0]
DADC.W [A1],R4
DADC.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 68 of 304

DADDDADD Add Decimal

[Instruction Syntax]
DADD.size src,dest

[Instruction Code/Number of Cycles]
Page=205

B , W , L

[Operation]
dest = dest + src;

[Description]
• This instruction executes decimal addition of dest and src and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the operation results in exceeding 99(.B), 9999(.W), or 99999999(.L);

otherwise it becomes 0.

[Sample Description]
DADD.B #12,R0L
DADD.W R0,R2
DADD.L A0,R7R5
DADD.B R3L,[A0]
DADD.W [A1],R4
DADD.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 69 of 304

DECDEC Decrement

[Instruction Syntax]
DEC.size dest

[Instruction Code/Number of Cycles]
Page=206

B , W , L

[Operation]
dest = dest - 1;

[Description]
• This instruction decrements 1 from dest and stores the result to dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
DEC.B R0L
DEC.W R2
DEC.L R7R5
DEC.L A0
DEC.W mem[SB]

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 70 of 304

DIVDIV Signed Divide

[Instruction Syntax]
DIV.size src,dest

[Instruction Code/Number of Cycles]
Page=207

B , W , L

[Operation]
dest = dest / src;

[Description]
• This instruction divides dest by src and stores the result to dest. Both operand and the result are

interpreted as signed integers. The result is rounded toward 0.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 8

bits.
• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in

16 bits.
• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in

32 bits.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when src is 0 or the operation results over -128(.B) or +127(.B), -32768(.W) or

+32767(.W), or -2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

[Sample Description]
DIV.B #12,R0L
DIV.W R0,R2
DIV.L A0,R7R5
DIV.B R3L,[A0]
DIV.W [A1],R4
DIV.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 71 of 304

DIVFDIVF Divide Floating-point

[Instruction Syntax]
DIVF src,dest

[Instruction Code/Number of Cycles]
Page=209

[Operation]
dest = dest / src;

[Description]
• This instruction divides dest by src and stores the result to dest. Both operands and the result are

interpreted as signed integers.
• The operation result is rounded according to the rounding mode specified in the flag register (FLG).
• When the result is overflowed, it takes either the maximum positive normal number (7F7FFFFFh) or

the maximum negative normal number (FF7FFFFFh) depending on whether signed or not.
• When the result is underflowed, it takes any of the following according to the rounding mode: zero

(00000000h), the minimum positive number (00800000h) or the minimum negative normal number
(80800000h).

• The result for invalid numbers is undefined.
[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
FO : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

overflow; otherwise it becomes 0.
FU : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

underflow; otherwise it becomes 0.
O : The flag becomes 1 when src is 0, when the operand has invalid numbers or when the operation

results in an overflow; otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
DIVF R2R0,R3R1
DIVF [A1],R2R0
DIVF mem[FB],R3R1

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag FO FU U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 72 of 304

DIVUDIVU Unsigned Divide

[Instruction Syntax]
DIVU.size src,dest

[Instruction Code/Number of Cycles]
Page=211

B , W , L

[Operation]
dest = dest / src;

[Description]
• This instruction divides dest by src and stores the result to dest. Both operands and the result are

interpreted as unsigned integers. The result is rounded toward 0.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 8

bits.
• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in

16 bits.
• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in

32 bits.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when src is 0; otherwise it becomes 0.

[Sample Description]
DIVU.B #12,R0L
DIVU.W R0,R2
DIVU.L A0,R7R5
DIVU.B R3L,[A0]
DIVU.W [A1],R4
DIVU.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 73 of 304

DIVXDIVX Signed Divide extra

[Instruction Syntax]
DIVX.size src,dest

[Instruction Code/Number of Cycles]
Page=213

B , W , L

[Operation]
dest = dest / src;

[Description]
• This instruction divides dest by src and stores the result to dest. Both operands and the result are

interpreted as signed integers. The result is rounded toward -infinity.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 8

bits.
• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in

16 bits.
• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in

32 bits.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when src is 0 or the operation results over -128(.B) or +127(.B), -32768(.W) or

+32767(.W), or -2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

[Sample Description]
DIVX.B #12,R0L
DIVX.W R0,R2
DIVX.L A0,R7R5
DIVX.B R3L,[A0]
DIVX.W [A1],R4
DIVX.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 74 of 304

DSBBDSBB Subtract Decimal with Borrow

[Instruction Syntax]
DSBB.size src,dest

[Instruction Code/Number of Cycles]
Page=215

B , W , L

[Operation]
dest = dest - src - ~C;

[Description]
• This instruction executes decimal subtraction of src and the inverted C flag from dest and stores the

result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the operation results in any value equal to or greater than 0; otherwise

it becomes 0.

[Sample Description]
DSBB.B #12,R0L
DSBB.W R0,R2
DSBB.L A0,R7R5
DSBB.B R3L,mem[A0]
DSBB.W [A1],R4
DSBB.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 75 of 304

DSUBDSUB Subtract Decimal

[Instruction Syntax]
DSUB.size src,dest

[Instruction Code/Number of Cycles]
Page=217

B , W , L

[Operation]
dest = dest - src;

[Description]
• This instruction executes decimal subtraction of src from dest and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the operation results in any value equal to or greater than 0; otherwise

it becomes 0.

[Sample Description]
DSUB.B #12,R0L
DSUB.W R0,R2
DSUB.L A0,R7R5
DSUB.B R3L,[A0]
DSUB.W mem[A1],R4
DSUB.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 76 of 304

EDIVEDIV Extended Signed Divide with Remainder

[Instruction Syntax]
EDIV.size src,dest

[Instruction Code/Number of Cycles]
Page=219

B , W , L

[Operation]
destL(quotient) = dest / src;
destH(remainder)= dest % src;

[Description]
• This instruction divides dest by src and stores the quotient of the result to lower half of the dest and

the remainder to higher half. Both operands and the result are interpreted as signed integers. The
quotient is rounded toward 0. The remainder has the same sign as that of the dividend (dest).

• When size specifier (.size) is ".B", src is operated in 8 bits and dest is in 16 bits. The quotient and
remainder are respectively stored in 8 bits. Four types of addressing can be specified for dest:
R0(R0H:R0L), R1(R1H:R1L), R2(R2H:R2L), or R3(R3H:R3L).

• When size specifier (.size) is ".W", src is operated in 16 bits and dest is in 32 bits. The quotient and
remainder are respectively stored in 16 bits. 4 addressing modes can be specified for dest:
R2R0(R2:R0), R3R1(R3:R1), R6R4(R6:R4), or R7R5(R7:R5).

• When size specifier (.size) is ".L", src is operated in 32 bits and dest is in 64 bits. The quotient and
remainder are respectively stored in 32 bits. 4 addressing modes can be specified for dest:
R3R1R2R0(R3R1:R2R0), R7R5R6R4(R7R5:R6R4), A1A0(A1:A0), or A3A2(A3:A2).

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when src is 0 or the operation results over -128(.B) or +127(.B), -32768(.W) or

+32767(.W), or -2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

[Sample Description]
EDIV.B #12,R0 ; R0H:R0L ÷ 12
EDIV.W R0,R3R1 ; R3:R1 ÷ R0
EDIV.L A0,R7R5R6R4 ; R7R5:R6R4 ÷ A0
EDIV.W [A1],R2R0 ; R2:R0 ÷ [A1]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0/R2R0/R3R1R2R0 R2/R3R1/R7R5R6R4

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1/R6R4/A1A0 R3/R7R5/A3A2

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 77 of 304

EDIVUEDIVU Extended Unsigned Divide with Remainder

[Instruction Syntax]
EDIVU.size src,dest

[Instruction Code/Number of Cycles]
Page=220

B , W , L

[Operation]
destL(quotient) = dest / src;
destH(remainder)= dest % src;

[Description]
• This instruction divides dest by src and stores the quotient of the result to lower bits of the dest and the

remainder to higher bits. Both operands and the result are interpreted as unsigned integers.
• When size specifier (.size) is ".B", src is operated in 8 bits and dest is in 16 bits. The quotient and

remainder are respectively stored in 8 bits. 4 addressing modes can be specified for dest:
R0(R0H:R0L), R1(R1H:R1L), R2(R2H:R2L), or R3(R3H:R3L).

• When size specifier (.size) is ".W", src is operated in 16 bits and dest is in 32 bits. The quotient and
remainder are respectively stored in 16 bits. 4 addressing modes can be specified for dest:
R2R0(R2:R0), R3R1(R3:R1), R6R4(R6:R4), or R7R5(R7:R5).

• When size specifier (.size) is ".L", src is operated in 32 bits and dest is in 64 bits. The quotient and
remainder are respectively stored in 32 bits. 4 addressing modes can be specified for dest:
R3R1R2R0(R3R1:R2R0), R7R5R6R4(R7R5:R6R4), A1A0(A1:A0), or A3A2(A3:A2).

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 either when the quotient results in over 8 bits (.B), 16 bits (.W), or 32 bits (.L),

or the divisor (src) is 0: otherwise it becomes 0.

[Sample Description]
EDIVU.B #12,R0 ; R0H:R0L ÷ 12
EDIVU.W R0,R3R1 ; R3:R1 ÷ R0
EDIVU.L A0,R7R5R6R4 ; R7R5:R6R4 ÷ A0
EDIVU.W [A1],R2R0 ; R2:R0 ÷ [A1]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0/R2R0/R3R1R2R0 R2/R3R1/R7R5R6R4

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1/R6R4/A1A0 R3/R7R5/A3A2

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 78 of 304

EDIVXEDIVX Extended Signed Divide extra with Remainder

[Instruction Syntax]
EDIVX.size src,dest

[Instruction Code/Number of Cycles]
Page=221

B , W , L

[Operation]
destL(quotient) = dest / src;
destH(remainder)= dest % src;

[Description]
• This instruction divides dest by src and stores the quotient of the result to lower bits of the dest and the

remainder to higher bits. Both operands and the result are interpreted as signed integers. The quotient
is rounded toward -infinity. The remainder has the same sign as that of the divisor (src).

• When size specifier (.size) is ".B", src is operated in 8 bits and dest is in 16 bits. The quotient and
remainder are respectively stored in 8 bits. 4 addressing modes can be specified for dest:
R0(R0H:R0L), R1(R1H:R1L), R2(R2H:R2L), or R3(R3H:R3L).

• When size specifier (.size) is ".W", src is operated in 16 bits and dest is in 32 bits. The quotient and
remainder are respectively stored in 16 bits. 4 addressing modes can be specified for dest:
R2R0(R2:R0), R3R1(R3:R1), R6R4(R6:R4), or R7R5(R7:R5).

• When size specifier (.size) is ".L", src is operated in 32 bits and dest is in 64 bits. The quotient and
remainder are respectively stored in 32 bits. 4 addressing modes can be specified for dest:
R3R1R2R0(R3R1:R2R0), R7R5R6R4(R7R5:R6R4), A1A0(A1:A0), or A3A2(A3:A2).

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when src is 0 or the operation results over -128(.B) or +127(.B), -32768(.W) or

+32767(.W), or -2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

[Sample Description]
EDIVX.B #12,R0 ; R0H:R0L ÷ 12
EDIVX.W R0,R3R1 ; R3:R1 ÷ R0
EDIVX.L A0,R7R5R6R4 ; R7R5:R6R4 ÷ A0
EDIVX.W [A1],R2R0 ; R2:R0 ÷ [A1]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0/R2R0/R3R1R2R0 R2/R3R1/R7R5R6R4

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1/R6R4/A1A0 R3/R7R5/A3A2

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 79 of 304

EMULEMUL Extended Signed Multiply

[Instruction Syntax]
EMUL.size src,dest

[Instruction Code/Number of Cycles]
Page=222

B , W , L

[Operation]
destH:dest = dest * src;

[Description]
• This instruction multiplies src and dest and stores the result to destH:dest. Both operands and the

result are interpreted as signed integers.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 16

bits. 4 addressing modes can be specified as dest: R0L(R0H:R0L), R1L(R1H:R1L), R2L(R2H:R2L), or
R3L(R3H:R3L).

• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in
32 bits. 4 addressing modes can be specified as dest: R0(R2:R0), R1(R3:R1), R4(R6:R4), or
R5(R7:R5).

• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in
64 bits. 4 addressing modes can be specified as dest: R2R0(R3R1:R2R0), R6R4(R7R5:R6R4),
A0(A1:A0), or A2(A3:A2).

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
EMUL.B #12,R0L ; R0L × 12→R0H:R0L (=R0)
EMUL.W R0,R1 ; R1 × R0→R3:R1 (=R3R1)
EMUL.L A0,R6R4 ; R6R4 × A0→R7R5:R6R4
EMUL.W [A1],R0 ; R0 × [A1]→R2:R0 (=R2R0)

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 80 of 304

EMULUEMULU Extended Unsigned Multiply

[Instruction Syntax]
EMULU.size src,dest

[Instruction Code/Number of Cycles]
Page=223

B , W , L

[Operation]
dest = dest * src;

[Description]
• This instruction multiplies src and dest and stores the result to dest. Both operands and the result are

interpreted as unsigned integers.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 16

bits. 4 types of data can be specified as dest: R0(R0H:R0L), R1(R1H:R1L), R2(R2H:R2L), or
R3(R3H:R3L).

• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in
32 bits. 4 types of data can be specified as dest: R2R0(R2:R0), R3R1(R3:R1), R6R4(R6:R4), or
R7R5(R7:R5).

• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in
64 bits. 4 types of data can be specified as dest: R3R1R2R0(R3R1:R2R0), R7R5R6R4(R7R5:R6R4),
A1A0(A1:A0), or A3A2(A3:A2).

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
EMULU.B #12,R0L ; R0L × 12→R0H:R0L (=R0)
EMULU.W R0,R1 ; R1 × R0→R3:R1 (=R3R1)
EMULU.L A0,R6R4 ; R6R4 × A0→R7R5:R6R4
EMULU.W [A1],R0 ; R0 × [A1]→R2:R0 (=R2R0)

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 81 of 304

ENTERENTER Enter and Create Stack Frame

[Instruction Syntax]
ENTER src

[Instruction Code/Number of Cycles]
Page=223

[Operation]
SP = SP - 4;
*SP = FB;
FB = SP;
SP = SP - src;

[Description]
• This instruction creates a stack frame. src indicates stack frame size.
• The diagrams below show the stack area status before and after the ENTER instruction is executed at

the beginning of a called subroutine.

[Available src]

Note:
*1. Set a number in multiples of 4 to #IMM.

[Flags Affected]

[Sample Description]
ENTER #12

src
#IMM:8 *1 #IMM:16 *1

Flag U I O B S Z D C
Status – – – – – – – –

Return address (LL)

Return address (LH)

Return address (HL)

Return address (HH)

Argument of function

SP

Before
instruction
execution

Return address (LL)

Return address (LH)

Return address (HL)

Return address (HH)

Argument of function

FB

After instruction
execution

FB (HH)
FB (HL)
FB (LH)
FB (LL)

Auto variable
area

SP Number of
bytes
indicated by
src

Direction
 in which
address
increases

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 82 of 304

EXITDEXITD Exit and Deallocate Stack Frame

[Instruction Syntax]
EXITD

[Instruction Code/Number of Cycles]
Page=224

[Operation]
SP = FB;
FB = *SP;
SP = SP + 4;
PC = *SP;
SP = SP + 4;

[Description]
• This instruction deallocates the stack frame and exits from the subroutine.
• Use this instruction in combination with the ENTER instruction.
• The diagrams below show the stack area status before and after the EXITD instruction is executed at

the end of a subroutine.

[Flags Affected]

[Sample Description]
EXITD

Flag U I O B S Z D C
Status – – – – – – – –

Argument of functionSP

Before
instruction
execution

Return address (LL)

Return address (LH)

Return address (HL)

Return address (HH)

Argument of function

FB

After instruction
execution

FB (HH)
FB (HL)
FB (LH)
FB (LL)

Auto variable
area

SP

Direction
in which
address
increases

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 83 of 304

EXITIEXITI Exit Interrupt and Deallocate Stack Frame

[Instruction Syntax]
EXITI

[Instruction Code/Number of Cycles]
Page=224

[Operation]
SP = FB;
FB = *SP;
SP = SP + 4;
PC = *SP;
SP = SP + 4;
FLG = *SP;
SP = SP + 4;

[Description]
• This instruction deallocates the stack frame and exits from the interrupt handler.
• Use this instruction in combination with the ENTER instruction.
• The diagrams below show the stack area status before and after the EXITI instruction is executed at

the end of an interrupt handler.

[Flags Affected]

Note:
*1. Every flag has the value before the interrupt was generated, that is, the value saved in the stack

area.
[Sample Description]

EXITI

Flag U I O B S Z D C

Status*1

SP

Before
instruction
execution

Return address (LL)

Return address (LH)

Return address (HL)

Return address (HH)

FLG (LL)

FB

After instruction
execution

FB (HH)
FB (HL)
FB (LH)
FB (LL)

Auto variable
area

SP

Direction
in which
address
increasesFLG (LH)

FLG (HL)
FLG (HH)

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 84 of 304

EXTSEXTS Sign Extend

[Instruction Syntax]
EXTS.size src,dest

[Instruction Code/Number of Cycles]
Page=224

BW , BL , WL

[Operation]
dest = (short | long) src;

[Description]
• This instruction sign-extends src and stores the result to dest.
• When size specifier (.size) is ".BW", 8-bit src is sign-extended to 16 bits and stored to dest.
• When size specifier (.size) is ".BL", 8-bit src is sign-extended to 32 bits and stored to dest.
• When size specifier (.size) is ".WL", 16-bit src is sign-extended to 32 bits and stored to dest.

[Available src/dest]

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. The effective value is -128 ≤ IMM(EX) ≤ +127(.BW, .BL) or -32768 ≤ IMM(EX) ≤ +32767(.WL).

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
EXTS.BW R0L,R1
EXTS.BL R2L,R6R4
EXTS.WL R3,[A0]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM *2 dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 85 of 304

EXTZEXTZ Zero Extend

[Instruction Syntax]
EXTZ.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=226

G , S
BW , BL , WL

[Operation]
dest = (unsigned short | unsigned long) src;

[Description]
• This instruction zero-extends src and stores the result to dest.
• When size specifier (.size) is ".BW", 8-bit src is zero-extended to 16 bits and stored to dest.
• When size specifier (.size) is ".BL", 8-bit src is zero-extended to 32 bits and stored to dest.
• When size specifier (.size) is ".WL", 16-bit src is zero-extended to 32 bits and stored to dest.

[Available src/dest] (Refer to the next page for src/dest classified by format).

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. The effective value is 0 ≤ IMM(EX) ≤ +255 (.BW, .BL) or 0 ≤ IMM(EX) ≤ +65535 (.WL).

[Flags Affected]

Description
S : The flag is always set to 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
EXTZ.BW R0L,R1
EXTZ.BL R2L,R6R4
EXTZ.WL R3,[A0]
EXTZ.WL R0,A0

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM *2 dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 86 of 304

[src/dest Classified by Format]
G format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

S format

Notes:
*1. Only ".WL" can be specified as size specifier (.size). Therefore, each operand has a fixed bit length;

16 bits for src and 32 bits for dest.
*2. Indirect instruction addressing and Bank1 register direct addressing are available.

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

src *1,*2 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 A0 A1 A2 A3

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 87 of 304

FCLRFCLR Clear a Flag

[Instruction Syntax]
FCLR dest

[Instruction Code/Number of Cycles]
Page=228

[Operation]
dest = 0;

[Description]
• This instruction stores 0 to dest.

[Available dest]

[Flags Affected]

Note:
*1. The selected flag becomes 0.

[Sample Description]
FCLR I
FCLR S
FCLR O

dest
U I O B S Z D C

Flag U I O B S Z D C
Status *1 *1 *1 *1 *1 *1 *1 *1

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 88 of 304

FREITFREIT Return from Fast Interrupt

[Instruction Syntax]
FREIT

[Instruction Code/Number of Cycles]
Page=228

[Operation]
FLG = SVF;
PC = SVP;

[Description]
• This instruction restores the PC and FLG that were saved when an interrupt request was accepted

from fast interrupt register to return from the interrupt handler.

[Flags Affected]

Note:
*1. Every flag has the value before the interrupt was generated, that is, the value saved in the save flag

register (SVF).

[Sample Description]
FREIT

Flag U I O B S Z D C

Status *1

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 89 of 304

FSETFSET Set a Flag

[Instruction Syntax]
FSET dest

[Instruction Code/Number of Cycles]
Page=229

[Operation]
dest = 1;

[Description]
• This instruction stores 1 to dest.

[Available dest]

[Flags Affected]

Note:
*1. The selected flag becomes 1.

[Sample Description]
FSET I
FSET S
FSET O

dest
U I O B S Z D C

Flag U I O B S Z D C
Status *1 *1 *1 *1 *1 *1 *1 *1

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 90 of 304

INCINC Increment

[Instruction Syntax]
INC.size dest

[Instruction Code/Number of Cycles]
Page=229

B , W , L

[Operation]
dest = dest + 1;

[Description]
• This instruction adds 1 to dest and stores the result to dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
INC.B R0L
INC.W R2
INC.L R7R5
INC.L A0
INC.W mem[SB]

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 91 of 304

INDEXType Index INDEXType
[Instruction Syntax]

INDEXType.size src
[Instruction Code/Number of Cycles]

Page=230

B , W , L

[Operation]

[Description]
• This instruction modifies the addressing modes of next instruction.
• No interrupt request is accepted until the next instruction execution is completed.
• Use this instruction to access arrays.
• Three instructions for Type show as below:
• Refer to 3.3, "INDEX Instruction" for details.

[Available src]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
INDEX1.B R0L
INDEXB.W R2

Type Function
B Modifies both src and dest if the next instruction has 2 generic-format operands.

1 Modifies src if the next instruction has 2 generic-format operands. If it has only one generic or
short-format operand, it modifies said operand.

2 Modifies dest if the next instruction has 2 generic-format operands.

src *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 92 of 304

INTINT Interrupt

[Instruction Syntax]
INT src

[Instruction Code/Number of Cycles]
Page=231

[Operation]
SP = SP - 4;
*SP = FLG;
SP = SP - 4;
*SP = PC + 2;
PC = *(IntBase + src * 4);

[Description]
• This instruction generates a software interrupt according to the interrupt number specified by src.
• The interrupt number (src) is 0 ≤ src≤ 255.
• If src is ≤ 127, the U flag is set to 0 and the interrupt stack pointer (ISP) is used.
• If 128 ≤ src, stack pointer specified by the U flag is used.
• The interrupts generated by INT instruction are non-maskable.

[Available src]

Note:
*1. #IMM:8 is a software interrupt number whose range is 0 ≤ IMM:8 ≤ 255.

[Flags Affected]

Note:
*1. The flags are saved to the stack area before the INT instruction is executed.

Description
U : The flag becomes 0 when the software interrupt number is 127 or under. Otherwise it has no

change.
I : The flag becomes 0.
D : The flag becomes 0.

[Sample Description]
INT #0

src
#IMM:8 *1

Flag U I O B S Z D C

Status*1 – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 93 of 304

INTOINTO Interrupt on Overflow

[Instruction Syntax]
INTO

[Instruction Code/Number of Cycles]
Page=231

[Operation]
SP = SP - 4;
*SP = FLG;
SP = SP - 4;
*SP = PC + 1;
PC = *(0xFFFFFFE0);

[Description]
• When the O flag is 1, this instruction generates an overflow interrupt.
• When the O flag is 0, no overflow interrupt is generated.
• The overflow interrupt is non-maskable.

[Flags Affected]

Note:
*1. The flags are saved to the stack area before the INTO instruction is executed.

Description
U : The flag becomes 0.
I : The flag becomes 0.
D : The flag becomes 0.

[Sample Description]
INTO

Flag U I O B S Z D C

Status*1 – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 94 of 304

JCnd Jump Conditionally JCnd
[Instruction Syntax]

JCnd label
[Instruction Code/Number of Cycles]

Page=232

[Operation]
if (true)

PC = label; (= PC + dsp)

[Description]
• This instruction branches to label if the condition specified by Cnd is true; if false, it falls through to the

next sequential instruction.
• The following table lists Cnd types:

[Available label]

Notes:
*1. PC indicates an address of JCnd instruction plus 1.
*2. The dsp:8 is -128 ≤ dsp ≤ +127.

[Flags Affected]

[Sample Description]
JC label1
JLT label2

Cnd Conditions
Exp
res-
sion

Cnd Conditions
Exp
res-
sion

GEU
/C

C == 1 Equal to or greater
than/
C flag is 1.

≤
LTU/
NC

C == 0 Smaller than/
C flag is 0. >

EQ/
Z

Z == 1 Equal to/
Z flag is 1. = NE/

NZ
Z == 0 Not equal to/

Z flag is 0. ≠

GTU C & ~Z == 1 Greater than < LEU C & ~Z == 0 Equal to or smaller
than ≥

PZ S == 0 Positive or zero 0 ≤ N S == 1 Negative 0 >
GE S ^ O == 0 Equal to or greater

than as signed integer ≤ LE (S ^ O) | Z ==
1

Equal to or smaller
than as signed integer ≥

GT (S ^ O) | Z==0 Greater than as signed
integer < LT S ^ O == 1 Smaller than as signed

integer >

O O == 1 O flag is 1. NO O == 0 O flag is 0.

label
PC *1 + dsp:8 *2

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 95 of 304

JMPJMP Jump Always

[Instruction Syntax]
JMP(.length) label

[Instruction Code/Number of Cycles]
Page=232

S , B , W , A

[Operation]
PC = label; (= PC + dsp)

[Description]
• This instruction branches to label.

[Available label]

Note:
*1. PC is an address of JMP instruction plus 1.

[Flags Affected]

[Sample Description]
JMP.B label1
JMP.A label2

.length label
.S PC *1 + dsp:3 1 ≤ dsp:3 ≤ 8
.B PC *1 + dsp:8 -128 ≤ dsp:8 ≤ 127
.W PC *1 + dsp:16 -32768 ≤ dsp:16 ≤ 32767
.A PC *1 + dsp:24 -8388608 ≤ dsp:24 ≤ 8388607

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 96 of 304

JMPIJMPI Jump Indirectly

[Instruction Syntax]
JMPI.length src

[Instruction Code/Number of Cycles]
Page=233

W , L

[Operation]

Note:
*1. PC is an address of JMP instruction.

[Description]
• This instruction executes a relative/absolute branch to the address according to the specified src.
• When jump distance specifier (.length) is ".W", this instruction executes jump operation to the address

which is the result of addition operation as signed integers: PC+src. If src is in memory, 2 bytes of
memory capacity is required.

• When jump distance specifier (.length) is ".L", this instruction executes jump operation to the address
specified by src. If src is in memory, 4 bytes of memory capacity is required.

[Available src]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
JMPI.W R0
JMPI.L A2
JMPI.W mem[A0]

When jump distance specifier (.length) is ".W"
PC = PC *1 + src;

When jump distance specifier (.length) is ".L"
PC = src;

src *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 97 of 304

JSRJSR Jump to Subroutine

[Instruction Syntax]
JSR(.length) label

[Instruction Code/Number of Cycles]
Page=234

W , A

[Operation]
SP = SP - 4;
*SP = (PC + n) *1;
PC = label; (= PC + dsp)

Note:
*1. (PC+n) is an address of the next instruction of JSR.

[Description]
• This instruction branches to a subroutine specified by label.

[Available label]

Note:
*1. PC is an address of JSR instruction plus 1.

[Flags Affected]

[Sample Description]
JSR.W subroutine1
JSR.A subroutine2

.length label
.W PC *1+ dsp:16 -32768 ≤ dsp:16 ≤ 32767
.A PC *1 + dsp:24 -8388608 ≤ dsp:24 ≤ 8388607

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 98 of 304

JSRIJSRI Jump to Subroutine Indirectly

[Instruction Syntax]
JSRI.length src

[Instruction Code/Number of Cycles]
Page=234

W , L

[Operation]

Notes:
*1. (PC+n) is an address of the next instruction of JSRI.
*2. PC is an address of JSRI instruction

[Description]
• This instruction executes a relative/absolute subroutine branch according to the specified src.
• When jump distance specifier (.length) is ".W", the instruction branches to the address which is the

result of addition operation as signed integers: PC+src. If src is in memory, 2 bytes of memory
capacity is required.

• When jump distance specifier (.length) is ".L", this instruction branches to the address specified by src.
If src is in memory, 4 bytes of memory capacity is required.

[Available src]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
JSRI.W R0
JSRI.L A2
JSRI.W mem[A0]

When jump distance specifier (.length) is ".W"
SP = SP - 4;
*SP = (PC + n) *1;
PC = PC *2 + src;

When jump distance specifier (.length) is ".L"
SP = SP - 4;
*SP = (PC + n) *1;
PC = src;

src *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 99 of 304

LDCLDC Load into Control Register

[Instruction Syntax]
LDC src,dest

[Instruction Code/Number of Cycles]
Page=235

[Operation]
dest = src;

[Description]
• This instruction moves src to dest.

[Available src/dest]

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. #IMMEX cannot be used as src of DMAC related registers nor that of VCT. When #IMM:8 or #IMM:16

is specified instead, zero-extended src is loaded.
*3. #IMM:8 and #IMM:16 can only be used as src of DMAC related registers or that of VCT.

[Flags Affected]

Note:
*1. The flag changes only when dest is FLG.

[Sample Description]
LDC #00800000h,SB
LDC R6R4,DSA1
LDC A1,DMD2
LDC mem[A0],DCT1

src *1 dest
R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 SB FB FLG SP

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 ISP SVF SVP INTB

#IMMEX *2 dsp:8[FB] dsp:16[FB] dsp:24 DSA0 DSA1 DSA2 DSA3

#IMM *3 dsp:16 dsp:16[SB] dsp:24[SB] DDA0 DDA1 DDA2 DDA3

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] DCT0 DCT1 DCT2 DCT3

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] DSR0 DSR1 DSR2 DSR3

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] DDR0 DDR1 DDR2 DDR3

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] DCR0 DCR1 DCR2 DCR3

DMD0 DMD1 DMD2 DMD3

VCT

Flag FO FU U I O B S Z D C
Status *1 *1 *1 *1 *1 *1 *1 *1 *1 *1

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 100 of 304

LDCTXLDCTX Load Context

[Instruction Syntax]
LDCTX src,dest

[Instruction Code/Number of Cycles]
Page=236

[Operation]
for (i=0 ; i<n *1 ; i++) {

register (dest[src]) = *SP;
SP = SP + 4;

}

Note:
*1. n is the number of registers to be restored.

[Description]
• This instruction restores the task context from the stack area.
• Set the RAM address that contains the task number in src and the start address of table entries in

dest.
• The required register information is specified from table entries by the task number, and the data in the

stack area is restored to each register according to the specified register information. Then the stack
pointer (SP) correction value is added to the stack pointer (SP). For this SP correction value, set the
total bytes of registers to be restored. Do not set any table entries to 0000h.

• Information on registers is configured as shown below. 1 indicates a register to be restored and 0
indicates a register that is not to be restored.

• A table is configured as shown in the following page. The base address of the table is specified by
dest. Each table entry is 16-bit data composed of a register information from bit 0 to bit 9 and a stack
pointer correction value from bit 10 to bit 15 (Refer to the figure above). This word data is stored at an
address in which the content of src is duplicated.

SB A3 A2 A1 A0 R7R5 R6R4 R3R1FB R2R0

b9 b0

Restored sequentially beginning with R2R0

SP correction value

b15 b8 b1b2b3b4b5b6b7b10

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 101 of 304

[Available src/dest]

[Flags Affected]

[Sample Description]
LDCTX ram,rom_tbl

src dest
abs:16 dsp:24

Flag U I O B S Z D C
Status – – – – – – – –

Base address of tabledest

src × 2
Direction
in which
address
increases

Register information for the task

whose task number = n*1 and its SP correction value

Register information for the task

whose task number = 0 and its SP correction value
Register information for the task

whose task number = 1 and its SP correction value

*1 n = 0 to 255

Register information for the task

whose task number = 2 and its SP correction value

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 102 of 304

LDIPLLDIPL Load Interrupt Priority Level

[Instruction Syntax]
LDIPL src

[Instruction Code/Number of Cycles]
Page=237

[Operation]
IPL = src;

[Description]
• This instruction loads src to IPL.

[Available src]

[Flags Affected]

[Sample Description]
LDIPL #2

src
#IMM:3

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 103 of 304

MAXMAX Select Maximum Value

[Instruction Syntax]
MAX.size src,dest

[Instruction Code/Number of Cycles]
Page=237

B , W , L

[Operation]
if (src > dest)

dest = src;

[Description]
• This instruction compares src and dest as signed integers and stores the greater value to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
MAX.B #-50,R1L
MAX.W mem[A1],R2
MAX.L R7R5,[A0]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 104 of 304

MINMIN Select Minimum Value

[Instruction Syntax]
MIN.size src,dest

[Instruction Code/Number of Cycles]
Page=239

B , W , L

[Operation]
if (src < dest)

dest = src;

[Description]
• This instruction compares src and dest as signed integers and stores the smaller value to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
MIN.B #-50,R1L
MIN.W mem[A1],R2
MIN.L R7R5,[A0]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 105 of 304

MOVMOV Move

[Instruction Syntax]
MOV.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=241

G , Q , Z , S
B , W , L

[Operation]
dest = src;

[Description]
• This instruction moves src to dest.

[Available src/dest] (Refer to the next page for src/dest classified by format.)

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
MOV.B:Z #0,R0L
MOV.W R0,R2
MOV.L A0,R7R5
MOV.B R3L,[mem[A0]]
MOV.W [[A1]],R4
MOV.L R2R0,[[A3]]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:4 dsp:8[SP] dsp:8[SP] dsp:8[SB]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 106 of 304

[src/dest Classified by Format]
G format

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. Operation is performed on the stack pointer specified by the U flag. dsp:8 [SP]s for src and dest

cannot be selected simultaneously.
*3. If dsp:8[SP] for src is selected, indirect instruction addressing for dest cannot be selected.
*4. If dsp:8[SP] for dest is selected, either #IMMEX or #IMM for src cannot be selected.

Q format

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. The effective value is - 8 ≤ #IMM:4 ≤ +7.

S format

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. Bank1 register direct addressing is unavailable.
*3. Only ".L" is specified as a size specifier (.size).

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

dsp:8[SP] *2*4 dsp:8[SP] *2,*4

src dest *1

#IMM:4 *2 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

src *1 dest *1

#IMM R0L/R0/R2R0 dsp:16 dsp:8[SB] dsp:8[FB]

R0L/R0/R2R0 dsp:16 dsp:8[SB] dsp:8[FB]

R0H/R2/R3R1 dsp:16 dsp:8[SB] dsp:8[FB] R0L/R0/R2R0

dsp:16 dsp:8[SB] dsp:8[FB] A0 *2,*3

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 107 of 304

Z format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

src dest *1

#0 R0L/R0/R2R0 dsp:16 dsp:8[SB] dsp:8[FB]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 108 of 304

MOVAMOVA Move Effective Address

[Instruction Syntax]
MOVA src,dest

[Instruction Code/Number of Cycles]
Page=246

[Operation]
dest = &src;

[Description]
• This instruction moves the effective address in src to dest.

[Available src/dest]

Note:
*1. Bank1 register direct addressing is available.

[Flags Affected]

[Sample Description]
MOVA mem[FB],A0
MOVA mem[A1],R7R5

src dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 109 of 304

MOVDir Move Nibble Data MOVDir
[Instruction Syntax]

MOVDir src,dest
[Instruction Code/Number of Cycles]

Page=247

[Operation]

[Description]

• R0L must be specified for either src or dest.

[Available src/dest]

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. Bank1 register direct addressing is unavailable.

Dir Operation
HH H4:dest = H4:src
HL L4:dest = H4:src
LH H4:dest = L4:src
LL L4:dest = L4:src

Dir Function
HH Transfers src (8 bits)'s upper 4 bits to dest (8 bits)'s upper 4 bits.
HL Transfers src (8 bits)'s upper 4 bits to dest (8 bits)'s lower 4 bits.
LH Transfers src (8 bits)'s lower 4 bits to dest (8 bits)'s upper 4 bits.
LL Transfers src (8 bits)'s lower 4 bits to dest (8 bits)'s lower 4 bits.

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/
R2R0*2

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

R0L/R0/R2R0*2 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 110 of 304

[Flags Affected]

[Sample Description]
MOVHH R0L,[A0]
MOVHL mem[A2],R0L

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 111 of 304

MULMUL Signed Multiply

[Instruction Syntax]
MUL.size src,dest

[Instruction Code/Number of Cycles]
Page=249

B , W , L

[Operation]
dest = dest * src;

[Description]
• This instruction multiplies src and dest and stores the result to dest. Both operands and the result are

interpreted as signed integers.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 8

bits.
• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in

16 bits.
• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in

32 bits.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : This flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

[Sample Description]
MUL.B #3,R0L
MUL.W R2,R3
MUL.L [A3],R6R4

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 112 of 304

MULFMULF Multiply Floating-point

[Instruction Syntax]
MULF src,dest

[Instruction Code/Number of Cycles]
Page=251

[Operation]
dest = dest * src;

[Description]
• This instruction multiplies src and dest and stores the result to dest. Both operands and the result are

interpreted as unsigned integers.
• The operation result is rounded according to the rounding mode specified in the flag register (FLG).
• When the result is overflowed, it takes either the maximum positive normal number (7F7FFFFFh) or

the maximum negative normal number (FF7FFFFFh) depending on whether signed or not.
• When the result is underflowed, it takes any of the following according to the rounding mode: zero

(00000000h), the minimum positive number (00800000h) or the minimum negative normal number
(80800000h).

• The result for invalid numbers is undefined.
[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
FO : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

overflow; otherwise it becomes 0.
FU : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

underflow; otherwise it becomes 0.
O : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

overflow; otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results is 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
MULF R2R0,R3R1
MULF [A0],R2R0
MULF mem[FB],R3R1

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag FO FU U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 113 of 304

MULUMULU Unsigned Multiply

[Instruction Syntax]
MULU.size src,dest

[Instruction Code/Number of Cycles]
Page=253

B , W , L

[Operation]
dest = dest * src;

[Description]
• This instruction multiplies src and dest and stores the result to dest. Both operands and the result are

interpreted as unsigned integers.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 8

bits.
• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in

16 bits.
• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in

32 bits.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when the operation results in exceeding 8 bits (.B), 16 bits (.W), or 32 bits (.L):

otherwise it becomes 0.

[Sample Description]
MULU.B #3,R0L
MULU.W R2,R3
MULU.L [A3],R6R4

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 114 of 304

MULXMULX Signed Multiply and Round

[Instruction Syntax]
MULX.size src,dest

[Instruction Code/Number of Cycles]
Page=255

B , W , L

[Operation]
short | long | long long tmp;

tmp *1 = (short | long | long long)dest * src;
if (DP==0)

dest = (char | short | long)(tmp >> n *2);
else

dest = (short | long)(tmp >> m *3);

Notes:
*1. tmp: temporary registers
*2. When size specifier (.size) is ".B", n = 6.

When size specifier (.size) is ".W", n = 14.
When size specifier (.size) is ".L", n = 30.

*3. When size specifier (.size) is ".W", n = 8.
When size specifier (.size) is ".L", n = 16.

[Description]
• This instruction multiplies src and dest, shifts and rounds off the result according to the DP bit (the bit

16 of the flag register (FLG)), and stores it to dest.
• When size specifier (.size) is ".B", both src and dest are operated in 8 bits and the result is stored in 8

bits.
• When size specifier (.size) is ".W", both src and dest are operated in 16 bits and the result is stored in

16 bits.
• When size specifier (.size) is ".L", both src and dest are operated in 32 bits and the result is stored in

32 bits.
• This instruction performs fixed-point multiplication. (Refer to Figure 3.1).

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 115 of 304

Figure 3.1 Application of Fixed-point Multiplication

[Flags Affected]

Description
O : This flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

[Sample Description]
MULX.B #12,R0L ; (R0L×12)>>6 R0L
MULX.W R0,R1 ; (R1×R0)>>14 or 8 R1
MULX.L A0,R6R4 ; (R6R4×A0)>>30 or 16 R6R

Flag U I O B S Z D C
Status – – – – – – –

S

32-bit fixed-point data

16-bit fixed-point data8-bit fixed-point data

S : Sign bit
: Radix point when DP = 0 : Radix point when DP = 1

S

S

S

S

S

S

S

S

DP = 0

DP = 1

S

S

S

S

S

DP = 0

DP = 1

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 116 of 304

NEGNEG Negate

[Instruction Syntax]
NEG.size dest

[Instruction Code/Number of Cycles]
Page=255

B , W , L

[Operation]
dest = -dest;

[Description]
• This instruction takes the twos complement of dest and stores the result to dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag becomes 1 when dest before the operation is -128(.B), -32768(.W), or -2147483648(.L);

otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the operation results in 1; otherwise it becomes 0.

[Sample Description]
NEG.B R0L
NEG.W R3
NEG.L [A0]

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 117 of 304

NOPNOP No Operation

[Instruction Syntax]
NOP

[Instruction Code/Number of Cycles]
Page=256

[Operation]
PC = PC + 1;

[Description]
• This instruction adds 1 to PC.

[Flags Affected]

[Sample Description]
NOP

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 118 of 304

NOTNOT Logical Complement

[Instruction Syntax]
NOT.size dest

[Instruction Code/Number of Cycles]
Page=256

B , W , L

[Operation]
dest = ~dest;

[Description]
• This instruction logically inverts dest and stores the result to dest.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
NOT.B R0L
NOT.W R3
NOT.L [A0]

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 119 of 304

OROR Or Logical

[Instruction Syntax]
OR.size src,dest

[Instruction Code/Number of Cycles]
Page=257

B , W , L

[Operation]
dest = dest | src;

[Description]
• This instruction logically ORs dest and src and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
OR.B #2,R0L
OR.W R0,R2
OR.L A0,R7R5
OR.B R3L,[mem[A0]]
OR.W [[A1]],R4
OR.L R2R0,[[A3]]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 120 of 304

POPPOP Pop Data off the Stack

[Instruction Syntax]
POP.size dest

[Instruction Code/Number of Cycles]
Page=258

B , W , L

[Operation]
dest = *SP;
SP = SP + 4 *1;

Note:
*1. SP is always increased by 4 in any size specifier (.size) as ".B" or ".W".

[Description]
• This instruction moves the data restored from the stack area to dest.
• The stack pointer to be used is specified by the U flag.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
POP.B R0L
POP.W R3
POP.L R6R4

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 121 of 304

POPCPOPC Pop Control Register off the Stack

[Instruction Syntax]
POPC dest

[Instruction Code/Number of Cycles]
Page=259

[Operation]
dest = *SP;
SP = SP + 4;

[Description]
• This instruction moves the data restored from the stack area to the control register specified by dest.
• The stack pointer to be used is specified by the U flag.

[Available dest]

Note:
*1. Operation is performed on the stack pointer specified by the U flag.

[Flags Affected]

Note:
*1. The flag changes only when dest is FLG.

[Sample Description]
POPC SB
POPC SVF

dest
SB FB FLG SP *1

ISP SVF SVP INTB

Flag U I O B S Z D C
Status *1 *1 *1 *1 *1 *1 *1 *1

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 122 of 304

POPMPOPM Pop Registers off the Stack

[Instruction Syntax]
POPM dest

[Instruction Code/Number of Cycles]
Page=259

[Operation]
for (i=0 ; i< n *1 ; i++) {

registers (dest)= *SP;
SP = SP + 4;

}

Note:
*1. n is the number of registers to be restored.

[Description]
• This instruction collectively restores the registers selected by dest from the stack area.
• The stack pointer to be used is specified by the U flag.
• Registers are restored from the stack area in the following order:

[Available dest]

Notes:
*1. Multiple registers can be specified for dest.
*2. Bank 1 register direct addressing is available. Note that register direct addressing and bank 1 register

direct addressing cannot be used simultaneously.

[Flags Affected]

[Sample Description]
POPM R6R4,A3,SB
POPM R2R0,R3R1,A0,A1

dest *1,*2

R2R0 R3R1 R6R4 R7R5

A0 A1 A2 A3

SB

Flag U I O B S Z D C
Status – – – – – – – –

SB A3 A2 A1 A0 R7R5 R6R4 R3R1 R2R0

Rturned sequentially beginning with R2R0

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 123 of 304

PUSHPUSH Push Data on the Stack

[Instruction Syntax]
PUSH.size(:format) src

[Instruction Code/Number of Cycles]
Page=260

G , S
B , W , L

[Operation]
SP = SP - 4 *1;
*SP = src;

Note:
*1. SP is always decreased by 4 in any size specifier (.size) as ".B" or ".W". The upper 24 bits in ".B" and

the upper 16 bits in ".W" are undefined.

[Description]
• This instruction stores src to the stack area.
• The stack pointer to be used is specified by the U flag.

[Available src] (Refer to the next page for src classified by format.)

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
PUSH.B R0L
PUSH.W #1000
PUSH.L [mem[A0]]
PUSH.W #FF80h

src *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 124 of 304

[src classified by format]
G format

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

S format

src *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

src
#IMMEX #IMM

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 125 of 304

PUSHAPUSHA Push Effective Address on the Stack

[Instruction Syntax]
PUSHA src

[Instruction Code/Number of Cycles]
Page=262

[Operation]
SP = SP - 4;
*SP = &src;

[Description]
• This instruction stores the effective address in src to the stack area.
• The stack pointer to be used is specified by the U flag.

[Available src]

[Flags Affected]

[Sample Description]
PUSHA mem[FB]
PUSHA mem[A0]

src
R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 126 of 304

PUSHCPUSHC Push Control Register on the Stack

[Instruction Syntax]
PUSHC src

[Instruction Code/Number of Cycles]
Page=262

[Operation]
SP = SP - 4;
*SP = src;

[Description]
• This instruction stores the control register specified by dest to the stack area.
• The stack pointer to be used is specified by the U flag.

[Available src]

Note:
*1. Operation is performed on the stack pointer specified by the U flag.

[Flags Affected]

[Sample Description]
PUSHC SB
PUSHC SVF

src
SB FB FLG SP *1

ISP SVF SVP INTB

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 127 of 304

PUSHMPUSHM Push Registers on the Stack

[Instruction Syntax]
PUSHM src

[Instruction Code/Number of Cycles]
Page=262

[Operation]
for (i=0 ; i< n *1 ;i++) {

SP = SP - 4;
*SP = src;

}
Note:
*1. n is the number of registers to be stored.

[Description]
• This instruction collectively stores the registers selected by src to the stack area.
• The stack pointer to be used is specified by the U flag.
• Registers are stored to the stack area in the following order:

[Available src]

Notes:
*1. Multiple registers can be specified for src.
*2. Bank 1 register direct addressing is available. Note that register direct addressing and bank 1 register

direct addressing cannot be used simultaneously.

[Flags Affected]

[Sample Description]
PUSHM R6R4,A3,SB
PUSHM R2R0,R3R1,A0,A1

src *1,*2

R2R0 R3R1 R6R4 R7R5

A0 A1 A2 A3

SB

Flag U I O B S Z D C
Status – – – – – – – –

SB A3 A2 A1 A0 R7R5 R6R4 R3R1 R2R0

Saved sequentially beginning with SB

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 128 of 304

REITREIT Return from Interrupt

[Instruction Syntax]
REIT

[Instruction Code/Number of Cycles]
Page=263

[Operation]
PC = *SP;
SP = SP + 4;
FLG = *SP;
SP = SP + 4;

[Description]
• This instruction restores the PC and FLG that were saved when an interrupt request was accepted to

return from the interrupt handler.

[Flags Affected]

Note:
*1. It is the value on the stack.

[Sample Description]
REIT

Flag U I O B S Z D C
Status *1 *1 *1 *1 *1 *1 *1 *1

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 129 of 304

RMPARMPA Repeat Multiply and Accumulation

[Instruction Syntax]
RMPA.size

[Instruction Code/Number of Cycles]
Page=263

B , W , L

[Operation]
While (R7R5 != 0) *1 {

R3R1:R2R0 = R3R1:R2R0 + *A0 * *A1;
A0 = A0 + n *2;
A1 = A1 + n *2;
R7R5 = R7R5 - 1;

}

Notes:
*1. This instruction is ignored if it is executed setting 0 in R7R5.
*2. When size specifier (.size) is ".B", n = 1.

When size specifier (.size) is ".W", n = 2.
When size specifier (.size) is ".L", n = 4.

[Description]
• This instruction performs sum-of-product operation, with the multiplicand address indicated by A0, the

multiplier address indicated by A1, and the number of operation indicated by R7R5. The result is
stored to R3R1:R2R0 as 64-bit data. Both operands and the result are interpreted as signed integers.

• The maximum value to be set in R7R5 is 00020000h (131072).
• R4 and R6 are used as working registers. The interim result of the operation is accumulated in

R4:R3R1:R2R0.
• The contents of the address register, R4 and R6 on the instruction completion are undefined.
• Set the initial value in R3R1:R2R0 before instruction execution. Set FFFFh in R4 when R3R1:R2R0 is

negative and set 0000h in the reverse case.
• An interrupt request during the instruction execution is accepted with an interruption of the execution.

[Flags Affected]

Description
O : The flag becomes 1 when the result is over 263 - 1 or -263; otherwise it becomes 0.

[Sample Description]
RMPA.W

Flag U I O B S Z D C
Status – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 130 of 304

ROLCROLC Rotate the bits to the Left with Carry

[Instruction Syntax]
ROLC.size dest

[Instruction Code/Number of Cycles]
Page=263

B , W , L

[Operation]

[Description]
• This instruction rotates dest one bit to the left including the C flag.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the shifted-out bit is 1; otherwise it becomes 0.

[Sample Description]
ROLC.B R0L
ROLC.W [A0]
ROLC.L R2R0

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – –

MSB dest LSB C

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 131 of 304

RORCRORC Rotate the bits to the Right with Carry

[Instruction Syntax]
RORC.size dest

[Instruction Code/Number of Cycles]
Page=264

B , W , L

[Operation]

[Description]
• This instruction rotates dest one bit to the right including the C flag.

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the shifted-out bit is 1; otherwise it becomes 0.

[Sample Description]
RORC.B R0L
RORC.W [A0]
RORC.L R2R0

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – –

MSB dest LSB C

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 132 of 304

ROTROT Rotate the bits

[Instruction Syntax]
ROT.size src,dest

[Instruction Code/Number of Cycles]
Page=264

B , W , L

[Operation]

[Description]
• This instruction rotates dest left or right as many as the number specified by src. The bit overflowing

from LSB/MSB is moved to MSB/LSB and the C flag.
• The rotation direction is specified by the sign of src. When src is positive, bits are rotated left; when it

is negative, they are rotated right. No rotation occurs when it is 0.

[Available src/dest]

Notes:
*1. Bank1 register direct addressing is available.
*2. The effective value for #IMM:8 is -8 to +8(.B), -16 to +16(.W) or -32 to +32(.L).
*3. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Note:
*1. When src is 0, any flag has no change.

Description
S : The flag becomes 1 when the operation resulted in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation resulted in 0; otherwise it becomes 0.
C : The flag becomes 1 when the shifted-out bit is 1; otherwise it becomes 0.

[Sample Description]
ROT.B #1,R0L ;Rotated left
ROT.B #-1,R0L ;Rotated right
ROT.W R1L,[A0]
ROT.L R0H,R6R

src < 0 src > 0

src *1,*2 dest *3

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM:8 dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C

Status*1 – – – – –

MSB dest LSB C MSB dest LSBC

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 133 of 304

ROUNDROUND Round Floating-point to Integer

[Instruction Syntax]
ROUND src,dest

[Instruction Code/Number of Cycles]
Page=265

[Operation]
dest = (long) src;

[Description]
• This instruction converts src to integer and stores the result to dest.
• The operation result is rounded according to the rounding mode specified in the flag register (FLG)

and clipped to satisfy the condition -2147483648 ≤ the value ≤ +2147483647.
• The result is undefined when src has an invalid number.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
FO : The flag becomes 1 when the operand has invalid numbers or when the operation results in

exceeding -2147483648 or +2147483647; otherwise it becomes 0.
FU : The flag becomes 1 when the operand has invalid numbers; otherwise it becomes 0.
O : The flag becomes 1 when the operand has invalid numbers or when the operation results in

exceeding -2147483648 or +2147483647; otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MBS = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
ROUND R2R0,R3R1
ROUND [A1],R2R0
ROUND mem[FB],R3R1

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag FO FU U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 134 of 304

RTSRTS Return from Subroutine

[Instruction Syntax]
RTS

[Instruction Code/Number of Cycles]
Page=266

[Operation]
PC = *SP;
SP = SP + 4;

[Description]
• This instruction executes return operation from a subroutine.

[Flags Affected]

[Sample Description]
RTS

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 135 of 304

SBBSBB Subtract with Borrow

[Instruction Syntax]
SBB.size src,dest

[Instruction Code/Number of Cycles]
Page=267

B , W , L

[Operation]
dest = dest - src - ~C;

[Description]
• This instruction subtracts src and the inverted C flag (borrow) from dest and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag indicates the overflow of an operation as signed integers. It becomes 1 when the

operation results in exceeding -128(.B) or+127(.B), -32768(.W) or +32767(.W), or
 -2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when an operation as unsigned integers results in any value equal to or

greater than 0; otherwise it becomes 0.

[Sample Description]
SBB.B #2,R0L
SBB.W R0,R2
SBB.L A0,R7R5
SBB.B R3L,[A0]
SBB.W [A1],R4
SBB.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 136 of 304

SCCnd Store Condition Conditionally SCCnd
[Instruction Syntax]

SCCnd.size dest
[Instruction Code/Number of Cycles]

Page=268

B , W, L

[Operation]
if (true)

dest = 1;
else

dest = 0;

[Description]
• This instruction sets 1 to dest if the condition specified by Cnd is true; if false, it sets 0 to dest.
• The following table lists Cnd types:

[Available dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

Cnd Conditions
Exp
res-
sion

Cnd Conditions
Exp
res-
sion

GEU
/C

C == 1 Equal to or greater
than/
C flag is 1

≤
LTU/
NC

C == 0 Smaller than/
C flag is 0. >

EQ/
Z

Z == 1 Equal to/
Z flag is 1. = NE/

NZ
Z == 0 Not equal to/

Z flag is 0. ≠

GTU C & ~Z == 1 Greater than < LEU C & ~Z == 0 Equal to or smaller
than ≥

PZ S == 0 Positive or zero 0 ≤ N S == 1 Negative 0 >
GE S ^ O == 0 Equal to or greater

than as signed integer ≤ LE (S ^ O) | Z ==
1

Equal to or smaller
than as signed integer ≥

GT (S ^ O) | Z==0 Greater than as signed
integer < LT S ^ O == 1 Smaller than as signed

integer >

O O == 1 O flag is 1. NO O == 0 O flag is 0.

dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 137 of 304

[Flags Affected]

[Sample Description]
SCC.B R0L
SCNE.W [A0]
SCGT.L A3

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 138 of 304

SCMPUSCMPU Compare Strings until not equal

[Instruction Syntax]
SCMPU.size

[Instruction Code/Number of Cycles]
Page=269

B , W

[Operation]
unsigned char *A1, *A0, tmp0, tmp1;
do {

tmp0 = *A0++;
tmp1 = *A1++;

} while (tmp0 == tmp1 && tmp0 != ‘\0’);

tmp0,tmp1:temporary registers

[Description]
• This instruction compares strings in the address incrementing direction from the comparison address

(A0) to the compared address (A1) until the data content does not match or Null character ‘\0’(=00h) is
detected.

• It has the same operation in any size specifier (.size) as ".B" or ".W".
• The contents of the address registers A0 and A1 are undefined on the instruction completion.
• An interrupt request during instruction execution is accepted with an interruption of the execution.

[Flags Affected]

Description
O : The flag is undefined.
S : The flag is undefined.
Z : The flag becomes 1 when the two strings are matched; otherwise it becomes 0.
C : The flag becomes 1 when an operation of (*A0 - *A1) as unsigned integers results in any value

equal to or greater than 0; otherwise it becomes 0.

[Sample Description]
SCMPU.W

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 139 of 304

SHASHA Arithmetic Shift

[Instruction Syntax]
SHA.size src,dest

[Instruction Code/Number of Cycles]
Page=269

B , W , L

[Operation]

[Description]
• This instruction arithmetically shifts dest left or right as many as the number specified by src. The bit

overflowing from LSB/MSB is moved to the C flag.
• The shift direction is specified by the sign of src. When src is positive, bits are shifted left; when

negative, bits are shifted right. They are not shifted when src is 0.
[Available src/dest]

Notes:
*1. Bank1 register direct addressing is available.
*2. The effective value for #IMM:8 is -8 to +8(.B), -16 to +16(.W), or -32 to +32(.L).
*3. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Note:
*1. When src is 0, any flag has no change.

Description
O : On shifted left, the flag becomes 0 when all the shift resulted in MSB and shifted-out bit are the

same value, that is, when no flags are changed during shifting; otherwise it becomes 1.
On shifted right, the flag becomes 0.

S : The flag becomes 1 when the operation resulted in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the shifted-out bit is 1; otherwise it becomes 0.

[Sample Description]
SHA.B #3,R0L ;shifted left
SHA.B #-3,R0L ;shifted right
SHA.W R1L,[A0]
SHA.L R2H,R6R4

src < 0 src > 0

src *1,*2 dest *3

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM:8 dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C

Status*1 – – – –

MSB dest LSB C MSB dest LSBC 0

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 140 of 304

SHLSHL Logical Shift

[Instruction Syntax]
SHL.size(:format) src,dest

[Instruction Code/Number of Cycles]
Page=270

G , Q
B , W , L

[Operation]

[Description]
• This instruction logically shifts dest left or right as many as the number specified by src. The bit

overflowing from LSB/MSB is moved to the C flag.
• The shift direction is specified by the sign of src. When src is positive, bits are shifted left; when

negative, bits are shifted right.

[Available src/dest] (Refer to the next page for src/dest classified by format).

Notes:
*1. Bank1 register direct addressing is available.
*2. Indirect instruction addressing and Bank1 register direct addressing are available.
*3. The effective value for #IMM:8 is -8 to +8(.B), -16 to +16(.W), or -32 to +32(.L).
*4. The effective value is -8 ≤ #IMM:4 ≤ +7 (≠0).

[Flags Affected]

Note:
*1. When src is 0, any flag has no change.

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : he flag is set when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when the shifted-out bit is 1; otherwise it becomes 0.

src < 0 src > 0

src *1 dest *2

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM:8 *3 dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

#IMM:4 *4

Flag U I O B S Z D C

Status*1 – – – – –

MSB dest LSB C MSB dest LSBC 00

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 141 of 304

[Sample Description]
SHL.B #1,R0L ;shifted left
SHL.B #-1,R0L ;shifted right
SHL.W R1L,[A0]
SHL.L R2H,R6R4

[src/dest Classified by Format]
G format

Notes:
*1. Bank1 register direct addressing is available.
*2. Indirect instruction addressing and Bank1 register direct addressing are available.

Q format

Notes:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.
*2. The effective value is -8 ≤ #IMM:4 ≤ +7 (≠0).

src *1 dest *2

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

#IMM:8 dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

src *1 dest *1

#IMM:4 *2 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 142 of 304

SINSIN Input Strings

[Instruction Syntax]
SIN.size

[Instruction Code/Number of Cycles]
Page=272

B , W , L

[Operation]
while (R7R5 != 0) *1 {

*A1 = *A0;
A1 = A1 + n *2;
R7R5 = R7R5 - 1;

}

Notes:
*1. When the value 0 is set in R7R5, this instruction is ignored.
*2. When size specifier (.size) is ".B", n = 1.

When size specifier (.size) is ".W", n = 2.
When size specifier (.size) is ".L", n = 4.

[Description]
• This instruction moves string in successively address incrementing direction from the fixed source

address specified by A0 to the destination address specified by A1 as many as the number specified
by R7R5.

• Set the source address in A0, the destination address in A1 and the number of moves in R7R5.
• The maximum value to be set in R7R5 is 00FFFFFFh.
• The address register A1 on the instruction completion indicates the next sequential address of the last

data moved.
• An interrupt request during instruction execution is accepted after one data is completely moved.

[Flags Affected]

[Sample Description]
SIN.W

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 143 of 304

SMOVBSMOVB Move Strings Backward

[Instruction Syntax]
SMOVB.size

[Instruction Code/Number of Cycles]
Page=272

B , W , L

[Operation]
while (R7R5 != 0) *1 {

*A1 = *A0;
A0 = A0 - n *2;
A1 = A1 - n *2;
R7R5 = R7R5 - 1;

}

Notes:
*1. When the value 0 is set in R7R5, this instruction is ignored.
*2. When size specifier (.size) is ".B", n = 1.

When size specifier (.size) is ".W", n = 2.
When size specifier (.size) is ".L", n = 4.

[Description]
• This instruction moves string in successively address decrementing direction from the source address

indicated by A0 to the destination address indicated by A1 as many as the number specified by R7R5.
• Set the source address in A0, the destination address in A1 and the number of moves in R7R5.
• The maximum value to be set in R7R5 is 00FFFFFFh.
• The address registers A0 and A1 on the instruction completion indicate the next sequential address of

the last data transferred.
• An interrupt request during instruction execution is accepted after one data is completely moved.

[Flags Affected]

[Sample Description]
SMOVB.W

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 144 of 304

SMOVFSMOVF Move Strings Forward

[Instruction Syntax]
SMOVF.size

[Instruction Code/Number of Cycles]
Page=272

B , W , L , Q

[Operation]
while (R7R5 != 0) *1 {

*A1 = *A0;
A0 = A0 + n *2;
A1 = A1 + n *2;
R7R5 = R7R5 - 1;

}

Notes:
*1. When the value 0 is set in R7R5, this instruction is ignored.
*2. When size specifier (.size) is ".B", n = 1.

When size specifier (.size) is ".W", n = 2.
When size specifier (.size) is ".L", n = 4.
When size specifier (.size) is ".Q", n = 8.

[Description]
• This instruction moves string in successively address incrementing direction from the source address

specified by A0 to the destination address specified by A1 as many as the number specified by R7R5.
• Set the source address in A0, the destination address in A1, and the number of moves in R7R5.
• The maximum value to be set in R7R5 is 00FFFFFFh.
• The address registers A0 and A1 on the instruction completion indicate the next sequential address of

the last data transferred.
• An interrupt request during instruction execution is accepted after one data is completely moved.

[Flags Affected]

[Sample Description]
SMOVF.W

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 145 of 304

SMOVUSMOVU Move Strings While Unequal to Zero

[Instruction Syntax]
SMOVU.size

[Instruction Code/Number of Cycles]
Page=273

B , W

[Operation]
unsigned char *A1, *A0, tmp0;
do {

tmp0 = *A0++;
*A1++ = tmp0

} while (tmp0 != ‘\0’);

tmp0: temporary registers

[Description]
• This instruction moves string in successively address incrementing direction from the source address

specified by A0 to the destination address specified by A1 until 0 is detected.
• Set the source address in A0 and the destination address in A1.
• It has the same operation in any size specifier (.size) as ".B" or ".W".
• The contents of the address registers A0 and A1 are undefined on the instruction completion.
• An interrupt request during instruction execution is accepted after one data is completely moved.

[Flags Affected]

[Sample Description]
SMOVU.W

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 146 of 304

SOUTSOUT Output Strings

[Instruction Syntax]
SOUT.size

[Instruction Code/Number of Cycles]
Page=273

B , W , L

[Operation]
while (R7R5 != 0) *1 {

*A1 = *A0;
A0 = A0 + n *2;
R7R5 = R7R5 - 1;

}

Notes:
*1. When the value 0 is set in R7R5, this instruction is ignored.
*2. When size specifier (.size) is ".B", n = 1.

When size specifier (.size) is ".W", n = 2.
When size specifier (.size) is ".L", n = 4.

[Description]
• This instruction moves string in successively address incrementing direction from the source address

specified by A0 to the fixed destination address specified by A1 as many as the number specified by
R7R5.

• Set the source address in A0, the destination address in A1, and the number of moves in R7R5.
• The maximum value to be set in R7R5 is 00FFFFFFh.
• The address register A0 on the instruction completion indicates the next sequential address of the last

data transferred.
• An interrupt request during instruction execution is accepted after one data is completely moved.

[Flags Affected]

[Sample Description]
SOUT.W

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 147 of 304

SSTRSSTR Store Strings

[Instruction Syntax]
SSTR.size

[Instruction Code/Number of Cycles]
Page=274

B , W , L , Q

[Operation]
while (R7R5 != 0) *1 {

*A1 = R0L/R0/R2R0/R3R1R2R0*2;
A1 = A1 + n *3;
R7R5 = R7R5 - 1;

}

Notes:
*1. When the value 0 is set in R7R5, this instruction is ignored.
*2. When size specifier (.size) is ".B", A1 = R0L.

When size specifier (.size) is ".W", A1 = R0.
When size specifier (.size) is ".L", A1 = R2R0.
When size specifier (.size) is ".Q", A1 = R3R1R2R0.

*3. When size specifier (.size) is ".B", n = 1.
When size specifier (.size) is ".W", n = 2.
When size specifier (.size) is ".L", n = 4.
When size specifier (.size) is ".Q", n = 8.

[Description]
• This instruction stores the contents of R0L/R0/R2R0/R3R1R2R0 in successively address

incrementing direction to the destination address specified by A1 as many as the number specified by
R7R5.

• Set the destination address in A1 and the number of moves in R7R5.
• The maximum value to be set in R7R5 is 00FFFFFFh.
• The address register A1 on the instruction completion indicates the next sequential address of the last

data written.
• An interrupt request during instruction execution is accepted after one data is completely moved.

[Flags Affected]

[Sample Description]
SSTR.W

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 148 of 304

STCSTC Store from Control Register

[Instruction Syntax]
STC src,dest

[Instruction Code/Number of Cycles]
Page=274

[Operation]
dest = src;

[Description]
• This instruction moves src to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
STC SB,R2R0
STC FLG,[A0]
STC DMD2,A1
STC DCT1,mem[A2]

src dest *1

SB FB FLG SP R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

ISP SVF SVP INTB R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

DSA0 DSA1 DSA2 DSA3 dsp:8[FB] dsp:16[FB] dsp:24

DDA0 DDA1 DDA2 DDA3 dsp:16 dsp:16[SB] dsp:24[SB]

DCT0 DCT1 DCT2 DCT3 [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

DSR0 DSR1 DSR2 DSR3 [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

DDR0 DDR1 DDR2 DDR3 [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

DCR0 DCR1 DCR2 DCR3 [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

DMD0 DMD1 DMD2 DMD3

VCT

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 149 of 304

STCTXSTCTX Store Context

[Instruction Syntax]
STCTX src,dest

[Instruction Code/Number of Cycles]
Page=275

[Operation]
for (i=0 ; i< n *1 ; i++) {

SP = SP - 4;
*SP = registers(dest[src]);

}

Note:
*1. n is the number of registers to be stored.

[Description]
• This instruction stores task context to the stack area.
• Set the RAM address that contains the task number in src and the start address of table entries in

dest.
• The required register information is specified from table entries by the task number, and each register

is stored to the stack area according to the specified register information. Then the SP correction
value is subtracted from the stack pointer (SP). For this SP correction value, set the total bytes of
registers to be stored. Do not set any table entries to 0000h.

• Information on registers is configured as shown below. 1 indicates a register to be stored and 0
indicates a register that is not to be stored.

• A table is configures as shown in the following page. The base address of the table is specified by
dest. Each table entry is 16-bit data composed of a register information form bit 0 to bit 9 and a stack
pointer correction value from bit 10 to bit 15 (Refer to the figure above). This word data is stored at an
address in which the content of src is duplicated.

SB A3 A2 A1 A0 R7R5 R6R4 R3R1FB R2R0

b9 b0

Stored sequentially beginning with FB

SP correction value

b15 b8 b1b2b3b4b5b6b7b10

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 150 of 304

[Available src/dest]

[Flags Affected]

[Sample Description]
STCTX ram,rom_tbl

src dest
abs:16 dsp:24

Flag U I O B S Z D C
Status – – – – – – – –

Base address of tabledest

src × 2
Direction
in which
address
increases

Register information for the task

whose task number = n*1 and its SP correction value

Register information for the task

whose task number = 0 and its SP correction value
Register information for the task

whose task number = 1 and its SP correction value

*1 n = 0 to 255

Register information for the task

whose task number = 2 and its SP correction value

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 151 of 304

STNZSTNZ Store on Not Zero

[Instruction Syntax]
STNZ.size src,dest

[Instruction Code/Number of Cycles]
Page=276

B , W , L

[Operation]
if (Z==0)

dest = src;

[Description]
• This instruction moves src to dest when the Z flag is 0. dest is not changed when the Z flag is 1.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
STNZ.B #1,R0L
STNZ.W #5,[A0]
STNZ.L #1000h,R6R4

src dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 152 of 304

STOPSTOP Stop

[Instruction Syntax]
STOP

[Instruction Code/Number of Cycles]
Page=276

[Operation]

[Description]
• This instruction stops the program execution. The execution resumes when an interrupt with a higher

request level than that of the interrupt priority level for wake-up select bit is accepted, or when a reset
is generated.

[Flags Affected]

[Sample Description]
STOP

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 153 of 304

STZSTZ Store on Zero

[Instruction Syntax]
STZ.size src,dest

[Instruction Code/Number of Cycles]
Page=277

B , W , L

[Operation]
if (Z==1)

dest = src;

[Description]
• This instruction moves src to dest when the Z Flag is 1. dest is not changed when the Z flag is 0.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
STZ.B #1,R0L
STZ.W #5,[A0]
STZ.L #1000h,R6R4

src dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 154 of 304

STZXSTZX Store according to Zero Flag

[Instruction Syntax]
STZX.size src1,src2,dest

[Instruction Code/Number of Cycles]
Page=277

B , W , L

[Operation]
if (Z==1)

dest = src1;
else

dest = src2;

[Description]
• This instruction moves src1 to dest when the Z flag is 1. It moves src2 to dest when the flag is 0.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
STZX.B #1,#2,R0L
STZX.W #5,#10,[A0]
STZX.L #1000h,#4000h,R6R4

src1 src2 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 155 of 304

SUBSUB Subtract

[Instruction Syntax]
SUB.size src,dest

[Instruction Code/Number of Cycles]
Page=278

B , W , L

[Operation]
dest = dest - src;

[Description]
• This instruction subtracts src from dest and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
O : The flag indicates the overflow of an operation as signed integers. The flag becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag becomes 1 when an operation as unsigned integers results in equal to or greater than 0;

otherwise it becomes 0.

[Sample Description]
SUB.B #2,R0L
SUB.W R0,R2
SUB.L A0,R7R5
SUB.B R3L,[A0]
SUB.W [A1],R4
SUB.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 156 of 304

SUBFSUBF Subtract Floating-point

[Instruction Syntax]
SUBF src,dest

[Instruction Code/Number of Cycles]
Page=280

[Operation]
dest = dest - src;

[Description]
• This instruction subtract src from dest and stores the result to dest.
• The operation result is rounded according to the rounding mode specified in the flag register (FLG).
• When the result is overflowed, it takes either the maximum positive normal number (7F7FFFFFh) or

the maximum negative normal number (FF7FFFFFh) depending on whether signed or not.
• When the result is underflowed, it takes any of the following according to the rounding mode: zero

(00000000h), the minimum positive number (00800000h) or the minimum negative normal number
(80800000h).

• The result for invalid numbers is undefined.
[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
FO : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

overflow; otherwise it becomes 0.
FU : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

underflow; otherwise it becomes 0.
O : The flag becomes 1 when the operand has invalid numbers or when the operation results in an

overflow; otherwise it becomes 0.
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.
C : The flag is undefined.

[Sample Description]
SUBF R2R0,R3R1
SUBF [A1],R2R0
SUBF mem[FB],R3R1

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag FO FU U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 157 of 304

SUNTILSUNTIL Search Equal String

[Instruction Syntax]
SUNTIL.size

[Instruction Code/Number of Cycles]
Page=281

B , W , L

[Operation]
while (*A0 != R0L/R0/R2R0 *1 && R7R5 != 0 *2) {

A0++;*3
R7R5 = R7R5 - 1;

}

Notes:
*1. When size specifier (.size) is ".B", A0 !=R0L.

When size specifier (.size) is ".W", A0 !=R0.
When size specifier (.size) is ".L", A0 !=R2R0.

*2. When the value 0 is set in R7R5, the comparison operation is performed only once. The value of A0
and flags are undefined on the instruction completion.

*3. A0 is increased by 1, 2 and 4 in size specifier (.size) as ".B", ".W" and "L", respectively.

[Description]
• This instruction searches string in successively address incrementing direction from the comparison

address specified by A0 to the compared address as many as the number specified by R7R5 until the
data content matches that of R0L/R0/R2R0.

• Set the comparison address in A0 and the number of comparison in R7R5.
• The maximum value to be set in R7R5 is 00FFFFFFh.
• Flags vary according to the operation result of “*A0-R0L/R0/R2R0”.
• The address register A0 on the instruction completion indicates the address of matching data. When

no matched data is found, it indicates the address of following data.
• The result of which “the number of comparison operation is subtracted from the initial value” is set in

R7R5 when the instruction is completed.
• An interrupt request during instruction execution is accepted after one data comparison is completed.

[Flags Affected]

Description
O : The flag indicates the overflow of an operation as signed integers. The flag becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when matched data is found; otherwise it becomes 0.
C : The flag becomes 1 when an operation as unsigned integers results in equal to or greater than 0;

otherwise it becomes 0.

[Sample Description]
SUNTIL.W

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 158 of 304

SWHILESWHILE Search Unequal String

[Instruction Syntax]
SWHILE.size

[Instruction Code/Number of Cycles]
Page=282

B , W , L

[Operation]
while (*A0 == R0L/R0/R2R0 *1 && R7R5 != 0 *2) {

A0++;*3
R7R5 = R7R5 - 1;

}

Notes:
*1. When size specifier (.size) is ".B", A0=R0L.

When size specifier (.size) is ".W", A0=R0.
When size specifier (.size) is ".L", A0=R2R0.

*2. When the value 0 is set in R7R5, the comparison operation is performed only once. The value of A0
and flags are undefined on the instruction completion.

*3. A0 is respectively increased by 1, 2 and 4 in size specifier (.size) as ".B", ".W" and "L".

[Description]
• This instruction searches string in successively address incrementing direction from the comparison

address specified by A0 to the compared address as many as the number specified by R7R5 until the
data content does not match that of R0L/R0/R2R0.

• Set the comparison address in A0 and the number of comparison in R7R5.
• The maximum value to be set in R7R5 is 00FFFFFFh.
• Flags vary according to the operation result of “*A0-R0L/R0/R2R0”.
• The address register A0 on the instruction completion indicates the address of matching data. When

no matched data is found, it indicates the address of following data.
• The result of which “the number of comparison operation is subtracted from the initial value” is set in

R7R5 when the instruction is completed.
• An interrupt request during instruction execution is accepted after one data comparison is completed.

[Flags Affected]

Description
O : The flag indicates the overflow of an operation as signed integers. The flag becomes 1 when the

operation results in exceeding -128(.B) or +127(.B), -32768(.W) or +32767(.W), or
-2147483648(.L) or +2147483647(.L); otherwise it becomes 0.

S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when every data is matched; otherwise it becomes 0.
C : The flag becomes 1 when an operation as unsigned integers results in equal to or greater than 0;

otherwise it becomes 0.

[Sample Description]
SWHILE.W

Flag U I O B S Z D C
Status – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 159 of 304

TSTTST Test Logical

[Instruction Syntax]
TST.size src,dest

[Instruction Code/Number of Cycles]
Page=282

B , W , L

[Operation]
dest & src;

[Description]
• This instruction varies each flag status of the flag register (FLG) according to the result of logical AND

of src and dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
TST.B #2,R0L
TST.W R0,R2
TST.L A0,R7R5
TST.B R3L,mem[A0]
TST.W [A1],R4
TST.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 160 of 304

UNDUND Undefined Instruction Interrupt

[Instruction Syntax]
UND

[Instruction Code/Number of Cycles]
Page=283

[Operation]
SP = SP - 4;
*SP = FLG;
SP = SP - 4;
*SP = PC + 1;
PC = *(long *)0xFFFFFFDC;

[Description]
• This instruction generates an undefined instruction interrupt.
• The undefined instruction interrupt is non-maskable.

[Flags Affected]

Note:
*1. The flags are saved to the stack area before the UND instruction is executed.

Description
U : The flag becomes 0.
I : The flag becomes 0.
D : The flag becomes 0.

[Sample Description]
UND

Flag U I O B S Z D C

Status*1 – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 161 of 304

WAITWAIT Wait

[Instruction Syntax]
WAIT

[Instruction Code/Number of Cycles]
Page=283

[Operation]

[Description]
• This instruction stops the program execution. The execution resumes when an interrupt with a higher

request level than that of the interrupt priority level for wake-up select bit is accepted, or when a reset
is generated.

[Flags Affected]

[Sample Description]
WAIT

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 162 of 304

XCHGXCHG Exchange

[Instruction Syntax]
XCHG.size src,dest

[Instruction Code/Number of Cycles]
Page=284

B , W , L

[Operation]
tmp0 = src;
src = dest;
dest = tmp0;

tmp0: temporary registers

[Description]
• This instruction exchanges contents between src and dest.

[Available src/dest]

Notes:
*1. Bank1 register direct addressing is available.
*2. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

[Sample Description]
XCHG.B R0H,R0L
XCHG.W R0,R2
XCHG.L A0,R7R5
XCHG.B R3L,[A0]
XCHG.W [A1],R4
XCHG.L R2R0,[A3]

src *1 dest *2

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

dsp:8[FB] dsp:16[FB] dsp:24

dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – – – –

3 Instruction
3.2 Instruction Details

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 163 of 304

XORXOR Exclusive Or Logical

[Instruction Syntax]
XOR.size src,dest

[Instruction Code/Number of Cycles]
Page=284

B , W , L

[Operation]
dest = dest ^ src;

[Description]
• This instruction exclusive ORs src and dest and stores the result to dest.

[Available src/dest]

Note:
*1. Indirect instruction addressing and Bank1 register direct addressing are available.

[Flags Affected]

Description
S : The flag becomes 1 when the operation results in MSB = 1; otherwise it becomes 0.
Z : The flag becomes 1 when the operation results in 0; otherwise it becomes 0.

[Sample Description]
XOR.B #2,R0L
XOR.W R0,R2
XOR.L A0,R7R5
XOR.B R3L,mem[A0]
XOR.W [A1],R4
XOR.L R2R0,[A3]

src *1 dest *1

R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5

R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3

#IMMEX dsp:8[FB] dsp:16[FB] dsp:24 dsp:8[FB] dsp:16[FB] dsp:24

#IMM dsp:16 dsp:16[SB] dsp:24[SB] dsp:16 dsp:16[SB] dsp:24[SB]

[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]

[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]

[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]

[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

Flag U I O B S Z D C
Status – – – – – –

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 164 of 304

3 Instruction
3.3 INDEX Instruction

3.3 INDEX Instruction
This section explains each INDEX instruction individually.
The INDEX instruction is provided for use in arrays. The instruction adds the content of src of the current
INDEX to the contents of src and dest of the next sequential instruction to obtain an effective address. All
the operands and the result are interpreted as unsigned integers.
The 4GB from 0 to FFFFFFFFh can be modified. The src range for the INDEX instruction varies as below
depending on the size specifier of the next sequential instruction to be executed:

An interrupt request cannot be accepted directly after an INDEX instruction.
Four kinds of INDEX instructions are as shown below:

INDEXB
INDEX1
INDEX2
BITINDEX

3.3.1 INDEXB.size src
The INDEXB (Index Both Operands) instruction adds the content of the src of the current INDEXB to the
contents of the src and dest of the next sequential instruction to obtain an effective address. All operands
and the result are interpreted as unsigned integers.
Specify the addressing to access memory for the src and dest of the next instruction of INDEXB.

Example 1: When ".B" is specified as the size
specifier of the next instruction to be executed,

INDEXB.W src
MOV.B:G mem1, mem2

Memory

Operation in C language
short src;
char mem1[], mem2[];

mem2[src] = mem1[src];

Size Specifier of the
Next Instruction to

be Executed

Size Specifier of
INDEX Instruction src Range Values to be

Added

.B
.B 0 to FFh

src contents.W 0 to FFFFh
.L 0 to FFFFFFFFh

.W
.B 0 to FFh

src contents x 2.W 0 to FFFFh
.L 0 to 7FFFFFFFh

.L
.B 0 to FFh

src contents x 4.W 0 to FFFFh
.L 0 to 3FFFFFFFh

mem2 address

src contents
of INDEXB

mem1 address

src contents
of INDEXB

Transfer

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 165 of 304

3 Instruction
3.3 INDEX Instruction

Example 2: When ".W" is specified as the size
specifier of the next instruction to be executed

INDEXB.W src
MOV.W:G mem1, mem2

Memory

Operation in C language
short src;
short mem1[], mem2[];

mem2[src] = mem1[src];

Example 3: When ".L" is specified as the size
specifier of the next instruction to be executed

INDEXB.W src
MOV.L:G mem1, mem2

Memory

Operation in C language
short src;
long mem1[], mem2[];

mem2[src] = mem1[src];

Instructions modified by INDEXB
The src and dest of ADC, ADD:G *1,*2, ADDF, AND:G *1, CMP:G *1, CMPF, CNVIF, DADC, DADD, DIV,
DIVF, DIVU, DIVX, DSBB, DSUB, EXTS *3, EXTZ:G *1,*3, MAX, MIN, MOV:G *1,*4, MUL, MULF,
MULU, OR, ROUND, SBB, SUB, SUBF, TST and XOR

Notes:
*1. Only the G format can be specified.
*2. dsp:8[SP] cannot be used for the dest of an ADD instruction.
*3. src contents of INDEXB multiplied by n (n = 1, 2, or 4) depending on the size before the sign

extended/zero extended for src (mem1) and the size after the sign extended/zero extended for
dest (mem2).

*4. dsp:8[SP] cannot be used for the src or dest of a MOV instruction.

For instructions following the INDEXB instruction, use only those shown above.

mem2 address

src contents of
INDEXB × 2

mem1 address

Transfer

src contents of
INDEXB × 2

mem2 address

mem1 address

Transfer
src contents of
INDEXB × 4

src contents of
INDEXB × 4

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 166 of 304

3 Instruction
3.3 INDEX Instruction

3.3.2 INDEX1.size src
The INDEX1 (Index 1st Operand) instruction adds the content of the src of the current INDEX1 to the
contents of the first operand of the next sequential instruction to obtain an effective address. All
operands and the result are interpreted as unsigned integers.
Specify the addressing to access memory for the first operand of the next instruction of INDEX1.

Example 1: When ".B" is specified as the size
specifier of the next instruction to be executed

INDEX1.W src
MOV.B:G mem1, mem2

Memory

Operation in C language
short src;
char mem1[], mem2;

mem2 = mem1[src];

Example 2: When ".W" is specified as the size
specifier of the next instruction to be executed

INDEX1.W src
MOV.W:G mem1, mem2

Memory

Operation in C language
short src;
short mem1[], mem2;

mem2 = mem1[src];

mem2 address

src contents
of INDEX1

mem1 address

Transfer

mem2 address

src contents
of INDEX1 × 2

mem1 address

Transfer

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 167 of 304

3 Instruction
3.3 INDEX Instruction

Example 3: When ".L" is specified as the size
specifier of the next instruction to be executed

INDEX1.W src
MOV.L:G mem1, mem2

Memory

Operation in C language
short src;
long mem1[], mem2;

mem2 = mem1[src];

Instructions modified by INDEX1
The src of ADC, ADD:G *1,*2, ADDF, AND:G *1, BTST:G *1, CMP:G *1, CMPF, CNVIF, DADC, DADD,
DIV, DIVF, DIVU, DIVX, DSBB, DSUB, EDIV, EDIVU, EDIVX, EMUL, EMULU, EXTS*3, EXTZ*3, JMPI,
JSRI, LDC, MAX, MIN, MOV:G *1,*4, MOV:S *5, MOVDir *6, MUL, MULF, MULU, OR, PUSH, ROUND,
SBB, SUB, SUBF, TST and XOR
The dest of ABS, ADCF, ADD:Q*2, ADD:S, ADSF, AND:S, BCLR, BMCnd, BNOT, BSET, BTSTC,
BTSTS, CLIP, CMP:Q, CMP:S, DEC, INC, MOV:G *7, MOV:Q, MOV:S *8, MOV:Z, MOVDir *9, NEG,
NOT, POP, ROLC, RORC, ROT, SCCnd, SHA, SHL, STC, STNZ, STZ, STZX and XCHG

Notes:
*1. Only the G format can be specified.
*2. SP cannot be used for the dest of an ADD instruction.
*3. src contents of INDEX1 multiplied by n (n = 1, 2, or 4) depend on the size before sign extended/

zero extended.
*4. dsp:8[SP] cannot be used for the src of a MOV instruction.
*5. MOV:S src,R2R0/R0/R0L or MOV:S.L src, A0 is enabled.
*6. MOVDir src, R0L is enabled. “.B” is designated as the size specifier.
*7. MOV:G dsp:8[SP], dest is enabled.
*8. MOV:S R2R0/R0/R0L, dest or MOV:S #IMM, dest is enabled.
*9. MOVDir R0L, dest is enabled. “.B” is designated as the size specifier.

For instructions following the INDEX1 instruction, use only those shown above.

mem2 address

src contents
of INDEX1 × 4

mem1 address

Transfer

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 168 of 304

3 Instruction
3.3 INDEX Instruction

3.3.3 INDEX2.size src
The INDEX2 (Index 2nd Operand) instruction adds the content of the src of the current INDEX2 to the
contents of the first operand of the next sequential instruction to obtain an effective address. All
operands and the result are interpreted as unsigned integers.
Specify the addressing to access memory for the dest of the next instruction of INDEX2.

Example 1: When ".B" is specified as the size
specifier of the next instruction to be executed

INDEX2.W src
MOV.B:G mem1, mem2

Memory

Operation in C language
short src;
char mem1, mem2[];

mem2[src] = mem1;

Example 2: When ".W" is specified as the size
specifier of the next instruction to be executed

INDEX2.W src
MOV.W:G mem1, mem2

Memory

Operation in C language
short src;
short mem1, mem2[];

mem2[src] = mem1;

mem2 address

mem1 address

src contents of
INDEX2

Transfer

mem2 address

mem1 address

src contents of
INDEX2 × 2

Transfer

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 169 of 304

3 Instruction
3.3 INDEX Instruction

Example 3: When ".L" is specified as the size
specifier of the next instruction to be executed

INDEX2.W src
MOV.L:G mem1, mem2

Memory

Operation in C language
short src;
long mem1, mem2[];

mem2[src] = mem1;

Instructions to be modified by INDEX2
The dest of ADC, ADD:G *1,*2, ADDF, AND:G *1, CMP:G *1, CMPF, CNVIF, DADC, DADD, DIV, DIVF,
DIVU, DIVX, DSBB, DSUB, EXTS *3, EXTZ:G *1,*3, MAX, MIN, MOV:G *1,*4, MUL, MULF, MULU, OR,
ROUND, SBB, SUB, SUBF, TST and XOR

Notes:
*1. Only the G format can be specified.
*2. SP cannot be used for the dest of ADD instruction.
*3. src contents of INDEX2 multiplied by n (n = 1, 2, or 4) depend on the size after sign extended/zero

extended.
*4. dsp:8[SP] cannot be used for the src and dest of a MOV instruction.

For instructions following the INDEX2 instruction, use only those shown above.

3.3.4 BITINDEX.size src
BITINDEX instruction (Bit Index) specifies a bit position of the src or dest of the next instruction to be
executed by the src of BITINDEX.
Specify a bit instruction for the next sequential instruction of BITINDEX and the addressing to access
memory for the src or dest of the next instruction.

Example:
BITINDEX.B/W src
BSET 3, mem1

Bit instruction invalid Memory

Instructions modified by BITINDEX
The src of BTST:G *1
The dest of BCLR, BMCnd, BNOT, BSET, BTSTC and BTSTS

Note:
*1. Only the G format can be specified.

For instructions following the BITINDEX instruction, use only those shown above.

mem2 address

mem1 address

src contents
of INDEX2 × 4

Transfer

mem1 address
b0

Bit position

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 170 of 304

3 Instruction
3.3 INDEX Instruction

3.3.5 Enabled Instruction List to Be Executed Next to INDEX Instruction
The following table lists enabled instructions to be executed next to each INDEX instruction.

Note:
*1. Only the G format can be specified.
*2. SP cannot be used for dest of an ADD instruction.
*3. dsp:8[SP] cannot be used for the src or dest of a MOV instruction.
*4. dsp:8[SP] cannot be used for the src of a MOV instruction.
*5. MOV:S src, R0L/R0/R2R0 or MOV:S.L src, A0 is enabled.
*6. MOVDir src, R0L is enabled.
*7. MOV:G dsp:8[SP], dest is enabled.
*8. MOV:S R0L/R0/R2R0, dest or MOV:S #IMM, dest is enabled.
*9. MOVDir R0L, dest is enabled.

INDEX Instruction Enabled Instructions
INDEXB.B/W/L src and dest of the following instructions:

ADC, ADD:G *1,*2, ADDF, AND:G *1,
CMP:G *1, CMPF, CNVIF, DADC, DADD,
DIV, DIVF, DIVU, DIVX, DSBB, DSUB,
EXTS, EXTZ:G *1, MAX, MIN, MOV:G
*1,*3, MUL, MULF, MULU, OR, ROUND,
SBB, SUB, SUBF, TST, XOR

INDEX1.B/W/L src of the following instructions:
ADC, ADD:G *1,*2, ADDF, AND:G *1,
BTST:G *1, CMP:G *1, CMPF, CNVIF,
DADC, DADD, DIV, DIVF, DIVU, DIVX,
DSBB, DSUB, EDIV, EDIVU, EDIVX,
EMUL, EMULU, EXTS, EXTZ, JMPI,
JSRI, LDC, MAX, MIN, MOV:G *1,*4,
MOV:S *5, MOVDir *6, MUL, MULF,
MULU, OR, PUSH, ROUND, SBB, SUB,
SUBF, TST, XOR

dest of the following instructions:
ABS, ADCF, ADD:Q *2, ADD:S, ADSF,
AND:S, BCLR, BMCnd, BNOT, BSET,
BTSTC, BTSTS, CLIP, CMP:Q, CMP:S,
DEC, INC, MOV:G *7, MOV:Q, MOV:S *8,
MOV:Z, MOVDir *9, NEG, NOT, POP,
ROLC, RORC, ROT, SCCnd, SHA, SHL,
STC, STNZ, STZ, STZX, XCHG

INDEX2.B/W/L dest of the following instructions:
ADC, ADD:G *1,*2, ADDF, AND:G *1,
CMP:G *1, CMPF, CNVIF, DADC, DADD,
DIV, DIVF, DIVU, DIVX, DSBB, DSUB,
EXTS, EXTZ:G *1, MAX, MIN, MOV:G
*1,*3, MUL, MULF, MULU, OR, ROUND,
SBB, SUB, SUBF, TST, XOR

BITINDEX.B/W/L src of the following instruction:
BTST:G *1

dest of the following instructions:
BCLR, BMCnd, BNOT, BSET, BTSTC,
BTSTS

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 171 of 304

3 Instruction
3.3 INDEX Instruction

3.3.6 Addressing Mode
The following table lists the enabled addressing modes for the instructions to be executed after the
INDEX instruction. The indirect instruction addressing mode can be used in each instruction.

src dest
[A0] dsp:8[A0] dsp:16[A0] dsp:24[A0] [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]
[A1] dsp:8[A1] dsp:16[A1] dsp:24[A1] [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]
[A2] dsp:8[A2] dsp:16[A2] dsp:24[A2] [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]
[A3] dsp:8[A3] dsp:16[A3] dsp:24[A3] [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

dsp:8[FB] dsp:16[FB] dsp:8[FB] dsp:16[FB]
dsp:8[SB] dsp:16[SB] dsp:24[SB] dsp:8[SB] dsp:16[SB] dsp:24[SB]

dsp:16 dsp:24 dsp:16 dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 172 of 304

3 Instruction
3.3 INDEX Instruction

4. Instruction Codes/Number of Cycles

4.1 Guide to This Chapter

4.2 Addressing

4.3 Instruction Codes/Number of Cycles

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 174 of 304

4 Instruction Codes/Number of Cycles
4.1 Guide to This Chapter

4.1 Guide to This Chapter
This chapter describes the instruction code and number of cycles for each opcode.
The following sample shows how to read this chapter.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009

Page 182 of 304

4
Instruction Codes/Number of Cycles

4.3 Instruction Codes/Number of Cycles

ABS ABS
(1) ABS.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.

• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles

increases by 2.

ADC ADC
(1) ADC.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.

• Bits g4 to g0 are specified for dest.

• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles

increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 0 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

b7 b0 b7 b0 b7 b0

0111 1111 0 0 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

#IMM(EX):8 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2

#IMM(EX):16 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2

#IMM:32 7 / 1 7 / 2 8 / 2 9 / 2 10 / 2 9 / 2 10 / 2

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code

#IMM:8

#IMM:16

#IMM:32

(1)
(2)

(3)

(4)

(1)
(2)

(3)

(4)

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 175 of 304

4 Instruction Codes/Number of Cycles
4.1 Guide to This Chapter

(1) Mnemonic
Indicates the instruction mnemonic explained.

(2) Syntax
Indicates the instruction syntax using symbols.

(3) Instruction code
Indicates the instruction code. Contents in brackets () may be omitted depending on selected src/dest.

Refer to 4.2, "Addressing" for details on the contents of bits w1, w0, g4 to g0, and h4 to h0 bits.

The contents of operands (4th byte or later in the example above) are aligned as shown below:

(4) Number of Bytes/Number of Cycles Table
Indicates the number of bytes (on the left of the slash) and the minimum number of cycles required for an
instruction (on the right of the slash).
The number of cycles shown is the minimum possible, and it may increase depending on the following
factors:

• Instruction queue buffer status
• External bus width
• Presence of wait cycle/no wait

Contents at
start address
of instruction

Contents at (start
address of instruc-
tion+1)

Contents at (start
address of
instruction+2)

Contents of operands
(See the figure below.)

()

b7 b0 b7 b0 b7 b0

0111 1111 0 0 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

src code

8 bits

Lower 8 bits Upper 8 bits

Lower 8 bits Middle 8 bits Upper 8 bits

Lower 8 bits Lower-middle 8 bits Upper-middle 8 bits Upper 8 bits

dsp:8
#IMM:8
dsp:16
#IMM:16

dsp:24

#IMM:32

b7 b0

b7 b0 b15 b8

b7 b0

b7 b0 b15 b8

b15 b8

b23 b16

b23 b16

b31 b24

+0 +1 +2 +3

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 176 of 304

4 Instruction Codes/Number of Cycles
4.2 Addressing

4.2 Addressing

4.2.1 Specifying Operation Length
The operation length is specified by bits w1 and w0 in an instruction code.

Note:
*1. When src is #IMMEX in a two-operand instruction, bits w1 and w0 follow the #IMMEX rule.

4.2.2 Specifying the Operand
Selecting an operand varies with the instruction and the instruction format.
The tables below show the methods of specifying operands in each addressing mode.

(1) General instruction addressing, generic format
The operands gen1 and gen2 used in generic format are specified in bits g4 to g0 and bits h4 to h0,
respectively.

Note:
*1. #IMMEX and #IMM cannot be specified as dest.

Table 4.1 Specified Operation Length

w1 w0 Operation length*1 #IMMEX operand and operation length

0 0 Byte 8 bits immediate, word
0 1 Word 8 bits immediate, long word
1 0 Long word 16 bit immediate, long word
1 1 Reserved Reserved

Table 4.2 Specification of Operand in Generic Format

g4 / h4 g3 / h3 g2 / h2
gen1 / gen2

g1 / h1 0 0 1 1
g0 / h0 0 1 0 1

0 0 0 R0L/R0/R2R0 R0H/R2/R3R1 R2L/R1/R6R4 R2H/R3/R7R5
0 0 1 R1L/R4/A0 R1H/R6/A1 R3L/R5/A2 R3H/R7/A3
0 1 0 #IMMEX*1 dsp:8[FB] dsp:16[FB] dsp:24

0 1 1 #IMM*1 dsp:16 dsp:16[SB] dsp:24[SB]
1 0 0 [A0] dsp:8[A0] dsp:16[A0] dsp:24[A0]
1 0 1 [A1] dsp:8[A1] dsp:16[A1] dsp:24[A1]
1 1 0 [A2] dsp:8[A2] dsp:16[A2] dsp:24[A2]
1 1 1 [A3] dsp:8[A3] dsp:16[A3] dsp:24[A3]

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 177 of 304

4 Instruction Codes/Number of Cycles
4.2 Addressing

(2) General instruction addressing, Quick format
The operand #IMM:4 used in the quick format is specified in bits q3 to q0.
.

The operand #IMM:3 used in quick format of ADD instruction is specified in bits q2 to q0.

(3) General instruction addressing, Short format
The operand gen0 used in short format is specified in s1 and s0 bits.

Note:
*1. R0H/R2/R3R1 is only used for MOV:S src, R0L/R0/R2R0.

Table 4.3 Specification of Operand in Quick Format (1)
q3 q2 q1 q0 IMM:4 q3 q2 q1 q0 IMM:4
0 0 0 0 0 1 0 0 0 -8
0 0 0 1 1 1 0 0 1 -7
0 0 1 0 2 1 0 1 0 -6
0 0 1 1 3 1 0 1 1 -5
0 1 0 0 4 1 1 0 0 -4
0 1 0 1 5 1 1 0 1 -3
0 1 1 0 6 1 1 1 0 -2
0 1 1 1 7 1 1 1 1 -1

Table 4.4 Specification of Operand in Quick Format (2)
q2 q1 q0 IMM:3
0 0 0 Reserved
0 0 1 4
0 1 0 8
0 1 1 Reserved
1 0 0 12
1 0 1 16
1 1 0 20
1 1 1 Reserved

Table 4.5 Operand Specification in Short Format
s1 s0 gen0

0 0 R0L/R0/R2R0 (R0H/R2/R3R1) *1

0 1 dsp:16
1 0 dsp:8[FB]
1 1 dsp:8[SB]

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 178 of 304

4 Instruction Codes/Number of Cycles
4.2 Addressing

(4) Register direct addressing
The operand greg is specified in bits q2 to q0. It is used as dest for instructions that are only available in
register direct addressing mode: EDIV, EDIVX, EMUL, EMULU, EXTZ:S, and MOVA, and as src for
instructions ROT, SHA, SHL, and XCHG. Tables below show what registers are used with what
instructions:

Table 4.6 Specification of Operand in Instructions EDIV, EDIVU, and EDIVX
q2 q1 q0 greg
0 0 0 R0/R2R0/R3R1R2R0
0 0 1 —
0 1 0 R2/R3R1/R7R5R6R4
0 1 1 —
1 0 0 R1/R6R4/A1A0
1 0 1 —
1 1 0 R3/R7R5/A3A2
1 1 1 —

Table 4.7 Specification of Operand in Instructions EMUL and EMULU
q2 q1 q0 greg
0 0 0 R0L/R0/R2R0
0 0 1 —
0 1 0 R2L/R1/R6R4
0 1 1 —
1 0 0 R1L/R4/A0
1 0 1 —
1 1 0 R3L/R5/A2
1 1 1 —

Table 4.8 Specification of Operand in the EXTZ: S Instruction
q2 q1 q0 greg
0 0 0 —
0 0 1 —
0 1 0 —
0 1 1 —
1 0 0 A0
1 0 1 A1
1 1 0 A2
1 1 1 A3

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 179 of 304

4 Instruction Codes/Number of Cycles
4.2 Addressing

(5) Control register direct addressing (CPU)
The operand creg used in control register direct addressing is specified q2 to q0 bits.

(6) Control register direct addressing (DMAC,VCT)
When a DMAC-associated control register and vector register are specified as operands, append
#IMM:8 to the end of the instruction code. Specify each register in the #IMM:8 bit column.

Table 4.9 Specification of Operand in Instructions MOVA, MULX, ROT, SHA, SHL, and XCHG
q2 q1 q0 greg
0 0 0 R0L/R0/R2R0
0 0 1 R0H/R2/R3R1
0 1 0 R2L/R1/R6R4
0 1 1 R2H/R3/R7R5
1 0 0 R1L/R4/A0
1 0 1 R1H/R6/A1
1 1 0 R3L/R5/A2
1 1 1 R3H/R7/A3

Table 4.10 Specification of Operand in Control Register Direct Addressing
q2 q1 q0 creg
0 0 0 SVP
0 0 1 INTB
0 1 0 SVF
0 1 1 FLG
1 0 0 SP
1 0 1 ISP
1 1 0 FB
1 1 1 SB

Table 4.11 Specification of Register in Control Register Direct Addressing (1)
#IMM:8 (Hexadecimal) Register

03h VCT
00h to 07h (except 03h) Channel 0 DMA register
08h to 0Fh (except 0Bh) Channel 1 DMA register
10h to 17h (except 13h) Channel 2 DMA register
18h to 1Fh (except 1Bh) Channel 3 DMA register

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 180 of 304

4 Instruction Codes/Number of Cycles
4.2 Addressing

Note:
*1. n is a channel number.

(7) Program counter relative addressing, short format
The operand dsp3 used in the short format of the program counter relative addressing is specified in bits
q2 to q0.

(8) Bit instruction addressing
The operand bit used in bit instruction addressing is specified in b2 to b0 bits.

Table 4.12 Specification of Register in Control Register Direct Addressing (2)
lower 3 bits of #IMM:8 Register
0 0 0 DSAn*1 DMA source address register

0 0 1 DDAn*1 DMA destination address register

0 1 0 DCTn*1 DMA terminal count register

0 1 1 Reserved
1 0 0 DSRn*1 DMA source address reload register

1 0 1 DDRn*1 DMA destination address reload register

1 1 0 DCRn*1 DMA terminal count reload register

1 1 1 DMDn*1 DMA mode register

Table 4.13 Specification of Operand in the Short Format of Program Counter Relative Addressing
q2 q1 q0 dsp3
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

Table 4.14 Specification of Bit Position in Bit Instruction Addressing
b2 b1 b0 bit
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 181 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

(9) FLG direct addressing
The operand flg used in FLG direct addressing is specified in bits q2 to q0.

4.2.3 Specifying Conditions
Conditions are specified in bits c3 to c0.

4.3 Instruction Codes/Number of Cycles
The instruction codes and number of cycles in the R32C/100 Series MCU are shown from the next page.

Table 4.15 Specification of Operand in FLG Direct Addressing
q2 q1 q0 flg
0 0 0 C
0 0 1 D
0 1 0 Z
0 1 1 S
1 0 0 B
1 0 1 O
1 1 0 I
1 1 1 U

Table 4.16 Specification of Condition Code
c3 c2 c1 c0 Conditions c3 c2 c1 c0 Conditions
0 0 0 0 LTU / NC 1 0 0 0 GEU / C
0 0 0 1 LEU 1 0 0 1 GTU
0 0 1 0 NE / NZ 1 0 1 0 EQ / Z
0 0 1 1 PZ 1 0 1 1 N
0 1 0 0 NO 1 1 0 0 O
0 1 0 1 GT 1 1 0 1 LE
0 1 1 0 GE 1 1 1 0 LT
0 1 1 1 Reserved 1 1 1 1 Reserved

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 182 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ABS ABS
(1) ABS.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

ADC ADC
(1) ADC.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 0 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

b7 b0 b7 b0 b7 b0

0111 1111 0 0 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM(EX):16 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2
#IMM:32 7 / 1 7 / 2 8 / 2 9 / 2 10 / 2 9 / 2 10 / 2

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 183 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ADC ADC
(2) ADC.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

ADCF ADCF
(1) ADCF.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 0 0 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
[An] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:8[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:16[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24[] 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3
dsp:16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3

b7 b0 b7 b0

1 0 0 0 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 184 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ADD ADD
(1) ADD.size:G #IMM(EX),dest

Note:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
#IMM(EX):16 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:32 6 / 1 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 185 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ADD ADD
(2) ADD.size:G src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0

1 0 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2
[An] 2 / 2 2 / 3 3 / 3 4 / 3 5 / 3 4 / 3 5 / 3
dsp:8[] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:16[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:16 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 186 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ADD ADD
(3) ADD.L:G #IMM,SP

Notes:
• Bits w1 and w0 are specified for the operand length of #IMM.
• #IMM is sign-extended to 32 bits irrespective of the value of bits w1 and w0.

[Bytes/Cycles]

ADD ADD
(4) ADD.size:Q #IMM:4,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 4 bits (q3 to q0) are specified for #IMM:4 and bits g4 to g0 are for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

ADD ADD
(5) ADD.L:Q #IMM:3,SP

Note:
• Bits q2 to q0 are specified for #IMM:3. Refer to 4.2.2, "Specifying the Operand" for details.

[Bytes/Cycles]

b7 b0 b7 b0

1 0 0 0 0 1 w1 w0 0 0 0 0 1 0 0 0

src #IMM:8 #IMM:16 #IMM:32
Bytes/Cycles 3 / 2 4 / 2 6 / 2

b7 b0 b7 b0

1 1 1 1 0 q3 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

b7 b0

0 q2 0 0 0 0 q1 q0

Bytes/Cycles 1 / 1

#IMM:8

#IMM:16

#IMM:32

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 187 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ADD ADD
(6) ADD.size:S #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits s1 to s0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

ADDF ADDF
(1) ADDF #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

0 1 1 1 s1 s0 w1 w0

src \ dest Register dsp:8[] dsp:16
#IMM:8 2 / 1 3 / 2 4 / 2
#IMM:16 3 / 1 4 / 2 5 / 2
#IMM:32 5 / 1 6 / 2 7 / 2

b7 b0 b7 b0 b7 b0

0111 1111 1 0 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMMEX:8 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
#IMMEX:16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
#IMM:32 7 / 4 7 / 5 8 / 5 9 / 5 10 / 5 9 / 5 10 / 5

dsp:8

dsp:16

dest code
#IMM:8

#IMM:16

#IMM:32

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 188 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ADDF ADDF
(2) ADDF src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

ADSF ADSF
(1) ADSF.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 0 0 0 g4 g3 1 0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 4 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
[An] 3 / 5 3 / 6 4 / 6 5 / 6 6 / 6 5 / 6 6 / 6
dsp:8[] 4 / 5 4 / 6 5 / 6 6 / 6 7 / 6 6 / 6 7 / 6
dsp:16[] 5 / 5 5 / 6 6 / 6 7 / 6 8 / 6 7 / 6 8 / 6
dsp:24[] 6 / 5 6 / 6 7 / 6 8 / 6 9 / 6 8 / 6 9 / 6
dsp:16 5 / 5 5 / 6 6 / 6 7 / 6 8 / 6 7 / 6 8 / 6
dsp:24 6 / 5 6 / 6 7 / 6 8 / 6 9 / 6 8 / 6 9 / 6

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 1 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 189 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

AND AND
(1) AND.size:G #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 1 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
#IMM(EX):16 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:32 6 / 1 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 190 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

AND AND
(2) AND.size:G src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0

1 1 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2
[An] 2 / 2 2 / 3 3 / 3 4 / 3 5 / 3 4 / 3 5 / 3
dsp:8[] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:16[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:16 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 191 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

AND AND
(3) AND.size:S #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits s1 and s0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

BCLR BCLR
(1) BCLR bit,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 3 bits (b2 to b0) are specified for the bit position and bits g4 to g0 are for dest.
• Operation length is one-byte basis.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

0 1 1 0 s1 s0 w1 w0

src \ dest Register dsp:8[] dsp:16
#IMM:8 2 / 1 3 / 2 4 / 2
#IMM:16 3 / 1 4 / 2 5 / 2
#IMM:32 5 / 1 6 / 2 7 / 2

b7 b0 b7 b0

0 1 0 0 0 1 0 0 b2 b1 b0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

dsp:8

dsp:16

dest code
#IMM:8

#IMM:16

#IMM:32

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 192 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

BITINDEX BITINDEX
(1) BITINDEX.size src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Notes:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

• The cycles for the next sequential bit instruction increases by 2.

BMCnd BMCnd
(1) BMCnd bit,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 3 bits (b2 to b0) are specified for the bit position and bits g4 to g0 are for dest.
• Bits c3 to c0 are specified for Cnd. Refer to 4.2.3, "Specifying Conditions" for details.
• Operation length is one-byte basis.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 0 1 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4

b7 b0 b7 b0 b7 b0

0111 1111 0 1 1 1 0 0 0 0 b2 b1 b0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 5 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5

dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

dest code

0 0 0 0 c3 c2 c1 c0

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 193 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

BNOT BNOT
(1) BNOT bit,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 3 bits (b2 to b0) are specified for the bit position and bits g4 to g0 are for dest.
• Operation length is one-byte basis.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

BRK BRK
(1) BRK

[Bytes/Cycles]

Note:
• Cycles for relocatable vectors. 19 cycles are adopted for fixed vectors.

BRK2 BRK2
(1) BRK2

[Bytes/Cycles]

b7 b0 b7 b0 b7 b0

0111 1111 0 1 1 0 0 0 0 0 b2 b1 b0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

b7 b0

0 0 0 0 0 0 0 0

Bytes/Cycles 1 / 16

b7 b0

1 0 1 1 1 1 1 1

Bytes/Cycles 1 / 19

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 194 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

BSET BSET
(1) BSET bit,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 3 bits (b2 to b0) are specified for the bit position and bits g4 to g0 are for dest.
• Operation length is one-byte basis.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

BTST BTST
(1) BTST:G bit,src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• 3 bits (b2 to b0) are specified for the bit position and bits g4 to g0 are for src.
• Operation length is one-byte basis.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

0 1 0 0 1 1 0 0 b2 b1 b0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

b7 b0 b7 b0

0 1 0 0 1 0 0 0 b2 b1 b0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 195 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

BTST BTST
(2) BTST:S bit,abs:16

Notes:
• Operation length is one-byte basis.
• 3 bits (b2 to b0) are specified for the bit position.

[Bytes/Cycles]

BTSTC BTSTC
(1) BTSTC bit,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 3 bits (b2 to b0) are specified for the bit position and bits g4 to g0 are for dest.
• Operation length is one-byte basis.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

0 b2 b1 b0 0 1 1 1

Bytes/Cycles 3 / 2

b7 b0 b7 b0 b7 b0

0111 1111 0 1 1 0 0 1 0 0 b2 b1 b0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3

src code
abs:16

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 196 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

BTSTS BTSTS
(1) BTSTS bit,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 3 bits (b2 to b0) are specified for the bit position and bits g4 to g0 are for dest.
• Operation length is one-byte basis.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

CLIP CLIP
(1) CLIP #IMM1,#IMM2,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required bytes in the table increases by 2. In the case of ".L ", it

increases by 6.
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 0 1 1 1 0 1 0 0 b2 b1 b0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3

b7 b0 b7 b0 b7 b0
0011 1111 1 1 0 0 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

#IMM1
#IMM:8

#IMM:16

#IMM:32

#IMM2

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 197 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

CMP CMP
(1) CMP.size:G #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 1 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
#IMM(EX):16 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:32 6 / 1 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 198 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

CMP CMP
(2) CMP.size:G src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 and bits h4 to h0 are respectively specified for dest and for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

CMP CMP
(3) CMP.size:Q #IMM:4,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 4 bits (q3 to q0) are specified for #IMM:4 and bits g4 to g0 are for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 1 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2
[An] 2 / 2 2 / 3 3 / 3 4 / 3 5 / 3 4 / 3 5 / 3
dsp:8[] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:16[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:16 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3

b7 b0 b7 b0

1 1 1 0 0 q3 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 199 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

CMP CMP
(4) CMP.size:S #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits s1 and s0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

CMPF CMPF
(1) CMPF #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

0 0 1 1 s1 s0 w1 w0

src \ dest Register dsp:8[] dsp:16
#IMM:8 2 / 1 3 / 2 4 / 2
#IMM:16 3 / 1 4 / 2 5 / 2
#IMM:32 5 / 1 6 / 2 7 / 2

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMMEX:8 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
#IMMEX:16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
#IMM:32 7 / 3 7 / 4 8 / 4 9 / 4 10 / 4 9 / 4 10 / 4

dsp:8

dsp:16

dest code
#IMM:8

#IMM:16

#IMM:32

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 200 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

CMPF CMPF
(2) CMPF src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 0 g4 g3 1 0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
[An] 3 / 4 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
dsp:8[] 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
dsp:16[] 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24[] 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5
dsp:16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 201 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

CNVIF CNVIF
(1) CNVIF #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 0 0 1 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMMEX:8 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
#IMMEX:16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
#IMM:32 7 / 4 7 / 5 8 / 5 9 / 5 10 / 5 9 / 5 10 / 5

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 202 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

CNVIF CNVIF
(2) CNVIF src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0111 1111 0 0 1 1 g4 g3 1 0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 4 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
[An] 3 / 5 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
dsp:8[] 4 / 5 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
dsp:16[] 5 / 5 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24[] 6 / 5 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5
dsp:16 5 / 5 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24 6 / 5 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 203 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DADC DADC
(1) DADC.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 6 4 / 7 5 / 7 6 / 7 7 / 7 6 / 7 7 / 7
#IMM(EX):16 5 / 6 5 / 7 6 / 7 7 / 7 8 / 7 7 / 7 8 / 7
#IMM:32 7 / 6 7 / 7 8 / 7 9 / 7 10 / 7 9 / 7 10 / 7

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 204 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DADC DADC
(2) DADC.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 6 3 / 6 4 / 6 5 / 6 6 / 6 5 / 6 6 / 6
[An] 3 / 7 3 / 7 4 / 7 5 / 7 6 / 7 5 / 7 6 / 7
dsp:8[] 4 / 7 4 / 7 5 / 7 6 / 7 7 / 7 6 / 7 7 / 7
dsp:16[] 5 / 7 5 / 7 6 / 7 7 / 7 8 / 7 7 / 7 8 / 7
dsp:24[] 6 / 7 6 / 7 7 / 7 8 / 7 9 / 7 8 / 7 9 / 7
dsp:16 5 / 7 5 / 7 6 / 7 7 / 7 8 / 7 7 / 7 8 / 7
dsp:24 6 / 7 6 / 7 7 / 7 8 / 7 9 / 7 8 / 7 9 / 7

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 205 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DADD DADD
(1) DADD.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 6 4 / 7 5 / 7 6 / 7 7 / 7 6 / 7 7 / 7
#IMM(EX):16 5 / 6 5 / 7 6 / 7 7 / 7 8 / 7 7 / 7 8 / 7
#IMM:32 7 / 6 7 / 7 8 / 7 9 / 7 10 / 7 9 / 7 10 / 7

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 206 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DADD DADD
(2) DADD.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

DEC DEC
(1) DEC.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 6 3 / 6 4 / 6 5 / 6 6 / 6 5 / 6 6 / 6
[An] 3 / 7 3 / 7 4 / 7 5 / 7 6 / 7 5 / 7 6 / 7
dsp:8[] 4 / 7 4 / 7 5 / 7 6 / 7 7 / 7 6 / 7 7 / 7
dsp:16[] 5 / 7 5 / 7 6 / 7 7 / 7 8 / 7 7 / 7 8 / 7
dsp:24[] 6 / 7 6 / 7 7 / 7 8 / 7 9 / 7 8 / 7 9 / 7
dsp:16 5 / 7 5 / 7 6 / 7 7 / 7 8 / 7 7 / 7 8 / 7
dsp:24 6 / 7 6 / 7 7 / 7 8 / 7 9 / 7 8 / 7 9 / 7

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 1 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 207 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIV DIV
(1) DIV.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 10 4 / 11 5 / 11 6 / 11 7 / 11 6 / 11 7 / 11
#IMM(EX):16 5 / 10 5 / 11 6 / 11 7 / 11 8 / 11 7 / 11 8 / 11
#IMM:32 7 / 10 7 / 11 8 / 11 9 / 11 10 / 11 9 / 11 10 / 11

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 208 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIV DIV
(2) DIV.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 10 3 / 11 4 / 11 5 / 11 6 / 11 5 / 11 6 / 11
[An] 3 / 11 3 / 12 4 / 12 5 / 12 6 / 12 5 / 12 6 / 12
dsp:8[] 4 / 11 4 / 12 5 / 12 6 / 12 7 / 12 6 / 12 7 / 12
dsp:16[] 5 / 11 5 / 12 6 / 12 7 / 12 8 / 12 7 / 12 8 / 12
dsp:24[] 6 / 11 6 / 12 7 / 12 8 / 12 9 / 12 8 / 12 9 / 12
dsp:16 5 / 11 5 / 12 6 / 12 7 / 12 8 / 12 7 / 12 8 / 12
dsp:24 6 / 11 6 / 12 7 / 12 8 / 12 9 / 12 8 / 12 9 / 12

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 209 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIVF DIVF
(1) DIVF #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 1 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 16 4 / 17 5 / 17 6 / 17 7 / 17 6 / 17 7 / 17
#IMM(EX):16 5 / 16 5 / 17 6 / 17 7 / 17 8 / 17 7 / 17 8 / 17
#IMM:32 7 / 16 7 / 17 8 / 17 9 / 17 10 / 17 9 / 17 10 / 17

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 210 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIVF DIVF
(2) DIVF src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0111 1111 1 1 0 1 g4 g3 1 0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 16 3 / 17 4 / 17 5 / 17 6 / 17 5 / 17 6 / 17
[An] 3 / 17 3 / 18 4 / 18 5 / 18 6 / 18 5 / 18 6 / 18
dsp:8[] 4 / 17 4 / 18 5 / 18 6 / 18 7 / 18 6 / 18 7 / 18
dsp:16[] 5 / 17 5 / 18 6 / 18 7 / 18 8 / 18 7 / 18 8 / 18
dsp:24[] 6 / 17 6 / 18 7 / 18 8 / 18 9 / 18 8 / 18 9 / 18
dsp:16 5 / 17 5 / 18 6 / 18 7 / 18 8 / 18 7 / 18 8 / 18
dsp:24 6 / 17 6 / 18 7 / 18 8 / 18 9 / 18 8 / 18 9 / 18

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 211 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIVU DIVU
(1) DIVU.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 10 4 / 11 5 / 11 6 / 11 7 / 11 6 / 11 7 / 11
#IMM(EX):16 5 / 10 5 / 11 6 / 11 7 / 11 8 / 11 7 / 11 8 / 11
#IMM:32 7 / 10 7 / 11 8 / 11 9 / 11 10 / 11 9 / 11 10 / 11

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 212 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIVU DIVU
(2) DIVU.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 10 3 / 11 4 / 11 5 / 11 6 / 11 5 / 11 6 / 11
[An] 3 / 11 3 / 12 4 / 12 5 / 12 6 / 12 5 / 12 6 / 12
dsp:8[] 4 / 11 4 / 12 5 / 12 6 / 12 7 / 12 6 / 12 7 / 12
dsp:16[] 5 / 11 5 / 12 6 / 12 7 / 12 8 / 12 7 / 12 8 / 12
dsp:24[] 6 / 11 6 / 12 7 / 12 8 / 12 9 / 12 8 / 12 9 / 12
dsp:16 5 / 11 5 / 12 6 / 12 7 / 12 8 / 12 7 / 12 8 / 12
dsp:24 6 / 11 6 / 12 7 / 12 8 / 12 9 / 12 8 / 12 9 / 12

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 213 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIVX DIVX
(1) DIVX.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 1 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 10 4 / 11 5 / 11 6 / 11 7 / 11 6 / 11 7 / 11
#IMM(EX):16 5 / 10 5 / 11 6 / 11 7 / 11 8 / 11 7 / 11 8 / 11
#IMM:32 7 / 10 7 / 11 8 / 11 9 / 11 10 / 11 9 / 11 10 / 11

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 214 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DIVX DIVX
(2) DIVX.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 1 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 10 3 / 11 4 / 11 5 / 11 6 / 11 5 / 11 6 / 11
[An] 3 / 11 3 / 12 4 / 12 5 / 12 6 / 12 5 / 12 6 / 12
dsp:8[] 4 / 11 4 / 12 5 / 12 6 / 12 7 / 12 6 / 12 7 / 12
dsp:16[] 5 / 11 5 / 12 6 / 12 7 / 12 8 / 12 7 / 12 8 / 12
dsp:24[] 6 / 11 6 / 12 7 / 12 8 / 12 9 / 12 8 / 12 9 / 12
dsp:16 5 / 11 5 / 12 6 / 12 7 / 12 8 / 12 7 / 12 8 / 12
dsp:24 6 / 11 6 / 12 7 / 12 8 / 12 9 / 12 8 / 12 9 / 12

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 215 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DSBB DSBB
(1) DSBB.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
#IMM(EX):16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
#IMM:32 7 / 3 7 / 4 8 / 4 9 / 4 10 / 4 9 / 4 10 / 4

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 216 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DSBB DSBB
(2) DSBB.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
[An] 3 / 4 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
dsp:8[] 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
dsp:16[] 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24[] 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5
dsp:16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 217 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DSUB DSUB
(1) DSUB.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
#IMM(EX):16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
#IMM:32 7 / 3 7 / 4 8 / 4 9 / 4 10 / 4 9 / 4 10 / 4

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 218 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

DSUB DSUB
(2) DSUB.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
[An] 3 / 4 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
dsp:8[] 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
dsp:16[] 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24[] 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5
dsp:16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 219 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EDIV EDIV
(1) EDIV.size src,dest

Notes:
• When src is either indirect instruction addressing or Bank1

register direct addressing, or when dest is Bank1 register
direct addressing, the followinwg number is put just before the
instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is Bank1 register direct addressing
01001111, when src is either indirect instruction addressing or Bank1 register direct addressing, and
when dest is Bank1 register direct addressing

• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When src is either indirect instruction addressing or Bank1 register direct addressing, or when dest is

Bank1 register direct addressing, the required bytes in the table increse by 1. When it is either indirect
instruction addressing or Bank1 register direct addressing, and dest is Bank1 register direct, the
required cycles increse by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 1 0 0 1 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

src Regis-
ter

#IMM(
EX):8

#IMM(
EX):16

#IMM:3
2 [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 3 / 16 4 / 16 5 / 16 7 / 16 3 / 16 4 / 16 5 / 16 6 / 16 5 / 16 6 / 16

#IMM:8

#IMM:16

#IMM:32

src code

dsp:8

dsp:16

dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 220 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EDIVU EDIVU
(1) EDIVU.size src,dest

Notes:
• When src is either indirect instruction addressing or Bank1

register direct addressing, or when dest is Bank1 register
direct addressing, the followinwg number is put just before the
instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is Bank1 register direct addressing
01001111, when src is either indirect instruction addressing or Bank1 register direct addressing, and
when dest is Bank1 register direct addressing

• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When src is either indirect instruction addressing or Bank1 register direct addressing, or when dest is

Bank1 register direct addressing, the required bytes in the table increse by 1. When it is either indirect
instruction addressing or Bank1 register direct addressing, and dest is Bank1 register direct, the
required cycles increse by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 1 1 0 1 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

src Regis-
ter

#IMM(
EX):8

#IMM(
EX):16

#IMM:3
2 [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 3 / 14 4 / 14 5 / 14 7 / 14 3 / 14 4 / 14 5 / 14 6 / 14 5 / 14 6 / 14

#IMM:8

#IMM:16

#IMM:32

src code

dsp:8

dsp:16

dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 221 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EDIVX EDIVX
(1) EDIVX.size src,dest

Notes:
• When src is either indirect instruction addressing or Bank1

register direct addressing, or when dest is Bank1 register
direct addressing, the followinwg number is put just before the
instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is Bank1 register direct addressing
01001111, when src is either indirect instruction addressing or Bank1 register direct addressing, and
when dest is Bank1 register direct addressing

• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required cyles in the table increases by 3. In the case of ".L", it

increases by 10.
• When src is either indirect instruction addressing or Bank1 register direct addressing, or when dest is

Bank1 register direct addressing, the required bytes in the table increse by 1. When it is either indirect
instruction addressing or Bank1 register direct addressing, and dest is Bank1 register direct, the
required cycles increse by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 1 0 1 1 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

src Regis-
ter

#IMM(
EX):8

#IMM(
EX):16

#IMM:3
2 [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 3 / 16 4 / 16 5 / 16 7 / 16 3 / 16 4 / 16 5 / 16 6 / 16 5 / 16 6 / 16

#IMM:8

#IMM:16

#IMM:32

src code

dsp:8

dsp:16

dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 222 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EMUL EMUL
(1) EMUL.size src,dest

Notes:
• When src is either indirect instruction addressing or Bank1

register direct addressing, or when dest is Bank1 register
direct addressing, the followinwg number is put just before the
instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is Bank1 register direct addressing
01001111, when src is either indirect instruction addressing or Bank1 register direct addressing, and
when dest is Bank1 register direct addressing

• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.

[Bytes/Cycles]

Notes:
• Cycles when size specifier (.size) is “.B” or ".W". In the case of ".L", it increases by 1.
• When src is either indirect instruction addressing or Bank1 register direct addressing, or when dest is

Bank1 register direct addressing, the required bytes in the table increse by 1. When it is either indirect
instruction addressing or Bank1 register direct addressing, and dest is Bank1 register direct, the
required cycles increse by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 1 0 0 0 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

src Regis-
ter

#IMM(
EX):8

#IMM(
EX):16

#IMM:3
2 [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 3 / 2 4 / 2 5 / 2 7 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3

#IMM:8

#IMM:16

#IMM:32

src code

dsp:8

dsp:16

dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 223 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EMULU EMULU
(1) EMUL.size src,dest

Notes:
• When src is either indirect instruction addressing or Bank1

register direct addressing, or when dest is Bank1 register
direct addressing, the followinwg number is put just before the
instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is Bank1 register direct addressing
01001111, when src is either indirect instruction addressing or Bank1 register direct addressing, and
when dest is Bank1 register direct addressing

• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.

[Bytes/Cycles]

Notes:
• Cycles when size specifier (.size) is “.B” or ".W". In the case of ".L", it increases by 1.
• When src is either indirect instruction addressing or Bank1 register direct addressing, or when dest is

Bank1 register direct addressing, the required bytes in the table increse by 1. When it is either indirect
instruction addressing or Bank1 register direct addressing, and dest is Bank1 register direct, the
required cycles increse by 2.

ENTER ENTER
(1) ENTER #IMM:8

[Bytes/Cycles]

ENTER ENTER
(2) ENTER #IMM:16

[Bytes/Cycles]

b7 b0 b7 b0 b7 b0

0011 1111 0 1 1 1 0 0 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

src Regis-
ter

#IMM(
EX):8

#IMM(
EX):16

#IMM:3
2 [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 3 / 2 4 / 2 5 / 2 7 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3

b7 b0

0 0 0 1 1 0 1 1

Bytes/Cycles 2 / 3

b7 b0

1 1 0 1 1 0 1 1

Bytes/Cycles 3 / 3

#IMM:8

#IMM:16

#IMM:32

src code

dsp:8

dsp:16

dsp:24

#IMM:8

#IMM:16

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 224 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EXITD EXITD
(1) EXITD

[Bytes/Cycles]

EXITI EXITI
(1) EXITI

[Bytes/Cycles]

EXTS EXTS
(1) EXTS.size #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• Bits w1 and w0 are specified for the operand length of src and dst.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

1 1 1 0 1 1 1 1

Bytes/Cycles 1 / 7

b7 b0 b7 b0

1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0

Bytes/Cycles 2 / 8

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 1 g4 g3 w1 w0 g2 g1 g0 0 1 1 0 0

w1 w0 src dest
0 0 B W
0 1 B L
1 0 W L

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM:8 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:16 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 225 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EXTS EXTS
(2) EXTS.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.
• Bits w1 and w0 are specified for the operand length of src and dst.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

w1 w0 src dest
0 0 B W
0 1 B L
1 0 W L

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 1 3 / 1 4 / 1 5 / 1 6 / 1 5 / 1 6 / 1
[An] 3 / 2 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
dsp:8[] 4 / 2 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
dsp:16[] 5 / 2 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2
dsp:24[] 6 / 2 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2
dsp:16 5 / 2 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2
dsp:24 6 / 2 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 226 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EXTZ EXTZ
(1) EXTZ.size:G #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• Bits w1 and w0 are specified for the operand length of src and dst.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 1 1 g4 g3 w1 w0 g2 g1 g0 0 1 1 0 0

w1 w0 src dest
0 0 B W
0 1 B L
1 0 W L

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM:8 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:16 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 227 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EXTZ EXTZ
(2) EXTZ.size:G src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.
• Bits w1 and w0 are specified for the operand length of src and dst.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 0 0 1 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

w1 w0 src dest
0 0 B W
0 1 B L
1 0 W L

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 1 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
[An] 3 / 3 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:8[] 4 / 3 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:16[] 5 / 3 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24[] 6 / 3 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3
dsp:16 5 / 3 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24 6 / 3 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 228 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

EXTZ EXTZ
(3) EXTZ.WL:S src,An

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

FCLR FCLR
(1) FCLR dest

Note:
• 3 bits (q2 to q0) are specified for the flag of dest. Refer to (9), "FLG direct addressing" in 4.2.2,

"Specifying the Operand" for details.

[Bytes/Cycles]

FREIT FREIT
(1) FREIT

[Bytes/Cycles]

b7 b0 b7 b0

0 1 0 0 0 1 0 1 q2 q1 q0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 3 3 / 3 4 / 3 5 / 3 4 / 3 5 / 3

b7 b0 b7 b0

0 1 0 0 1 1 0 0 q2 q1 q0 0 1 0 0 0

Bytes/Cycles 2 / 3

b7 b0

1 0 0 0 1 1 1 1

Bytes/Cycles 1 / 4

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 229 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

FSET FSET
(1) FSET dest

Note:
• 3 bits (q2 to q0) are specified for the flag of dest. Refer to (9), "FLG direct addressing" in 4.2.2,

"Specifying the Operand" for details.

[Bytes/Cycles]

INC INC
(1) INC.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

0 1 0 0 1 1 0 1 q2 q1 q0 0 1 0 0 0

Bytes/Cycles 2 / 3

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 0 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 230 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

INDEX1 INDEX1
(1) INDEX1.size src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Notes:
• The cycles for the next sequential bit instruction increases by 2.
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

INDEX2 INDEX2
(1) INDEX2.size src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Notes:
• The cycles for the next sequential bit instruction increases by 2.
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 1 0 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

src Regis-
ter [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

b7 b0 b7 b0

1 0 0 1 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

src Regis-
ter [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 231 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

INDEXB INDEXB
(1) INDEXB.size src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Notes:
• The cycles for the next sequential instruction increase by 4. If this instruction is EXTS or EXTZ, the

cycles increase by 5.
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

INT INT
(1) INT #IMM:8

[Bytes/Cycles]

INTO INTO
(1) INTO

[Bytes/Cycles]

*1. The cycles are 12 when the O flag is 1.

b7 b0 b7 b0

1 0 0 0 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

src Regis-
ter [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

b7 b0

1 1 1 1 0 0 1 1

Bytes/Cycles 2 / 11

b7 b0

1 0 1 0 1 1 1 1

Bytes/Cycles 1 / 1(12)*1

dsp:8

dsp:16

dsp:24

src code

#IMM:8

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 232 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

JCnd JCnd
(1) JCnd label

Note:
• Bits c3 to c0 are specified for Cnd. Refer to 4.2.3, "Specifying Conditions" for details.

[Bytes/Cycles]

Note:
*1. When the instruction is jumped to label, the cyles is 3.

JMP JMP
(1) JMP.S label

Note:
• Bits q2 to q0 are specified for dsp3. Refer to (7), "Program counter relative addressing, short

format" in 4.2.2, "Specifying the Operand" for details.

[Bytes/Cycles]

JMP JMP
(2) JMP.B label

[Bytes/Cycles]

JMP JMP
(3) JMP.W label

[Bytes/Cycles]

b7 b0

c3 c2 c1 c0 0 0 1 1

Bytes/Cycles 2 / 1(3)*1

b7 b0

1 q2 q1 q0 0 1 1 1

Bytes/Cycles 1 / 1

b7 b0

0 1 1 1 0 0 1 1

Bytes/Cycles 2 / 3

b7 b0

1 0 1 0 1 0 1 1

Bytes/Cycles 3 / 3

label code
dsp:8

label code
dsp:8

label code
dsp:16

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 233 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

JMP JMP
(4) JMP.A label

[Bytes/Cycles]

JMPI JMPI
(1) JMPI.W src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

JMPI JMPI
(2) JMPI.L src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

1 1 1 0 1 0 1 1

Bytes/Cycles 4 / 3

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 0 0 1 0 1 0 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 6 3 / 7 4 / 7 5 / 7 6 / 7 5 / 7 6 / 7

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 0 0 1 1 0 0 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 6 3 / 7 4 / 7 5 / 7 6 / 7 5 / 7 6 / 7

label code
dsp:24

dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 234 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

JSR JSR
(1) JSR.W label

[Bytes/Cycles]

JSR JSR
(2) JSR.A label

[Bytes/Cycles]

JSRI JSRI
(1) JSRI.W src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

1 0 1 1 1 0 1 1

Bytes/Cycles 3 / 3

b7 b0

1 1 1 1 1 0 1 1

Bytes/Cycles 4 / 3

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 0 0 1 0 1 1 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 6 3 / 7 4 / 7 5 / 7 6 / 7 5 / 7 6 / 7

label code
dsp:16

label code
dsp:24

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 235 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

JSRI JSRI
(2) JSRI.L src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

LDC LDC
(1) LDC src,dest

Notes:
• When src is either indirect instruction addressing or Bank 1

register direct, 01101111 is put just before the instruction
code.

• Bits g4 to g0 are specified for src.
• Bits q2 to q0 are specified for the control register of dest. Refer to (5), "Control register direct

addressing (CPU)" in 4.2.2, "Specifying the Operand" for details.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 0 0 1 1 0 1 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 6 3 / 7 4 / 7 5 / 7 6 / 7 5 / 7 6 / 7

b7 b0 b7 b0 b7 b0

0011 1111 1 1 1 0 1 0 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

src Regis-
ter

#IMME
X:8

#IMME
X:16

#IMM:3
2 [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24

Bytes/Cycles 3 / 3 4 / 3 5 / 3 7 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4

dsp:8

dsp:16

dsp:24

src code

#IMM:8

#IMM:16

#IMM:32

src code

dsp:8

dsp:16

dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 236 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

LDC LDC
(2) LDC #IMM,dest

Note:
• #IMM:8 is specified for the register of dest. Refer to (6), "Control register direct addressing

(DMAC,VCT)" in 4.2.2, "Specifying the Operand" for details.

[Bytes/Cycles]

LDC LDC
(3) LDC src,dest

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.
• #IMM:8 is specified for the register of dest. Refer to (6), "Control register direct addressing

(DMAC,VCT)" in 4.2.2, "Specifying the Operand" for details.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

LDCTX LDCTX
(1) LDCTX abs:16,dsp:24

[Bytes/Cycles]

Note:
*1. m is the number of registers to be transferred.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 1 0 1 w1 w0 0 0 0 0 1 0 0 0

src #IMM:8 #IMM:16 #IMM:32
Bytes/Cycles 5 / 3 6 / 3 8 / 3

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 0 0 1 1 0 0 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 3 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

Bytes/Cycles 8 / 10+m*1

#IMM:8

#IMM:8

#IMM:16

#IMM:32

#IMM:8
dsp:8

dsp:16

dsp:24

src code

abs:16 dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 237 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

LDIPL LDIPL
(1) LDIPL #IMM:3

Note:
• 3 bits (q2 to q0) are specified for #IMM:3

[Bytes/Cycles]

MAX MAX
(1) MAX.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

0 1 0 0 0 1 0 1 q2 q1 q0 0 1 0 0 0

Bytes/Cycles 2 / 2

b7 b0 b7 b0 b7 b0

0111 1111 0 1 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
#IMM(EX):16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
#IMM:32 7 / 2 7 / 3 8 / 3 9 / 3 10 / 3 9 / 3 10 / 3

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 238 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MAX MAX
(2) MAX.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0111 1111 0 1 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
[An] 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
dsp:8[] 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
dsp:16[] 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24[] 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4
dsp:16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 239 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MIN MIN
(1) MIN.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 0 1 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
#IMM(EX):16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
#IMM:32 7 / 2 7 / 3 8 / 3 9 / 3 10 / 3 9 / 3 10 / 3

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 240 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MIN MIN
(2) MIN.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0111 1111 0 1 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
[An] 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
dsp:8[] 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
dsp:16[] 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24[] 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4
dsp:16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 241 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOV MOV
(1) MOV.size:G #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 1 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
#IMM(EX):16 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:32 6 / 1 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 242 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOV MOV
(2) MOV.size:G src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

MOV MOV
(3) MOV.size:G src,dsp:8[SP]

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 1 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 2 / 1 2 / 1 3 / 1 4 / 1 5 / 1 4 / 1 5 / 1
[An] 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2
dsp:8[] 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
dsp:16[] 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
dsp:24[] 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2
dsp:16 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
dsp:24 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 0 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 243 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOV MOV
(4) MOV.size:G dsp:8[SP],dest

Notes:
• When dest is Bank1 register direct addressing, 01101111 is put just before the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is Bank1 register direct addressing, the required bytes in the table increases by 1.

MOV MOV
(5) MOV.size:Q #IMM:4,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 4 bits (q3 to q0) are specified for #IMM:4 and bits g4 to g0 are for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 1 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 4 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4

b7 b0 b7 b0

1 1 1 1 1 q3 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 1 3 / 1 4 / 1 5 / 1 4 / 1 5 / 1

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 244 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOV MOV
(6) MOV.size:S #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits s1 and s0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

MOV MOV
(7) MOV.size:S R0L/R0/R2R0,dest

Notes:
• When dest is indirect instruction addressing, 01101111 is put just before the insruction code.
• Bits s1 and s0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is indirect instruction addressing, the required bytes and cycles in the table increase by 1

and 2, respectively.

b7 b0

0 0 1 0 s1 s0 w1 w0

src \ dest Register dsp:8[] dsp:16
#IMM:8 2 / 1 3 / 2 4 / 2
#IMM:16 3 / 1 4 / 2 5 / 2
#IMM:32 5 / 1 6 / 2 7 / 2

b7 b0

0 0 0 0 s1 s0 w1 w0

dest dsp:8[] dsp:16
Bytes/Cycles 2 / 1 3 / 1

dsp:8

dsp:16

dest code
#IMM:8

#IMM:16

#IMM:32

dsp:8
dsp:16

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 245 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOV MOV
(8) MOV.size:S src,R0L/R0/R2R0

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits s1 and s0 are specified for src.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

MOV MOV
(9) MOV.L:S src,A0

Notes:
• When src is indirect instruction addressing, 01101111 is put just before the instruction code.
• Bits s1 and s0 are specified for src.

[Bytes/Cycles]

Note:
• When src is indirect instruction addressing, the required bytes and cycles in the table increase by 1 and

2, respectively.

b7 b0

0 1 0 1 s1 s0 w1 w0

src Register dsp:8[] dsp:16
Bytes/Cycles 1 / 1 2 / 1 3 / 1

b7 b0

0 1 0 0 s1 s0 1 0

src dsp:8[] dsp:16
Bytes/Cycles 2 / 1 3 / 1

src code
dsp:8

dsp:16

src code
dsp:8

dsp:16

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 246 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOV MOV
(10)MOV.size:Z #0,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits s1 and s0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

MOVA MOVA
(1) MOVA src,dest

Notes:
• When dest is Bank1 register direct, 01011111 is put just before the instruction code.
• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.
• Operation length is long word basis.

[Bytes/Cycles]

Note:
• When dest is Bank1 register direct addressing, the required bytes in the table increases by 1.

b7 b0

0 0 0 1 s1 s0 w1 w0

dest Register dsp:8[] dsp:16
Bytes/Cycles 1 / 1 2 / 1 3 / 1

b7 b0 b7 b0

0 1 0 0 1 0 0 1 q2 q1 q0 g4 g3 g2 g1 g0

src [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 3 / 1 4 / 1 5 / 1 4 / 1 5 / 1

dsp:8

dsp:16

dest code

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 247 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOVDir MOVDir
(1) MOVDir src,R0L

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.
• Bits d1 and d0 are specified for the operation (Dir).

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 d1 0 0 0 1 0 0 d0 0 0 g4 g3 g2 g1 g0

d1 d0 Dir
0 0 LL
0 1 LH
1 0 HL
1 1 HH

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4

dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 248 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MOVDir MOVDir
(2) MOVDir R0L,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• Bits d1 and d0 are specified for the operation (Dir).

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 d1 0 1 0 1 0 0 d0 0 0 g4 g3 g2 g1 g0

d1 d0 Dir
0 0 LL
0 1 LH
1 0 HL
1 1 HH

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 3 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 249 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MUL MUL
(1) MUL.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
#IMM(EX):16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
#IMM:32 7 / 2 7 / 3 8 / 3 9 / 3 10 / 3 9 / 3 10 / 3

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 250 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MUL MUL
(2) MUL.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 0 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
[An] 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
dsp:8[] 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
dsp:16[] 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24[] 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4
dsp:16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 251 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MULF MULF
(1) MULF #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 1 0 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
#IMM(EX):16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
#IMM:32 7 / 3 7 / 4 8 / 4 9 / 4 10 / 4 9 / 4 10 / 4

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 252 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MULF MULF
(2) MULF src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0111 1111 1 1 0 0 g4 g3 1 0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
[An] 3 / 4 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
dsp:8[] 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
dsp:16[] 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24[] 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5
dsp:16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24 6 / 4 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 253 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MULU MULU
(1) MULU.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
#IMM(EX):16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
#IMM:32 7 / 2 7 / 3 8 / 3 9 / 3 10 / 3 9 / 3 10 / 3

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 254 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MULU MULU
(2) MULU.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 0 1 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
[An] 3 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
dsp:8[] 4 / 3 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4
dsp:16[] 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24[] 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4
dsp:16 5 / 3 5 / 4 6 / 4 7 / 4 8 / 4 7 / 4 8 / 4
dsp:24 6 / 3 6 / 4 7 / 4 8 / 4 9 / 4 8 / 4 9 / 4

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 255 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

MULX MULX
(1) MULX.size src,dest

Notes:
• When src is either indirect instruction addressing or Bank1

register direct addressing, or when dest is Bank1 register
direct addressing, the followinwg number is put just before the
instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is Bank1 register direct addressing
01001111, when src is either indirect instruction addressing or Bank1 register direct addressing, and
when dest is Bank1 register direct addressing

• Bits g4 to g0 are specified for src and bits q2 to q0 are for dest.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, or when dest is

Bank1 register direct addressing, the required bytes in the table increse by 1. When it is either indirect
instruction addressing or Bank1 register direct addressing, and dest is Bank1 register direct, the
required cycles increse by 2.

NEG NEG
(1) NEG.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 0 1 1 0 1 0 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

src Regis-
ter

#IMM(
EX):8

#IMM(
EX):16

#IMM:
32 [An] dsp:8

[]
dsp:16

[]
dsp:24

[] dsp:16 dsp:24

Bytes/Cycles 3 / 3 4 / 3 5 / 3 7 / 3 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4

b7 b0 b7 b0

1 0 0 1 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

#IMM:8

#IMM:16

#IMM:32

src code

dsp:8

dsp:16

dsp:24

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 256 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

NOP NOP
(1) NOP

[Bytes/Cycles]

NOT NOT
(1) NOT.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

1 0 0 1 1 1 1 1

Bytes/Cycles 1 / 1

b7 b0 b7 b0

1 0 1 0 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 257 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

OR OR
(1) OR.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 1 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
#IMM(EX):16 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:32 6 / 1 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 258 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

OR OR
(2) OR.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

POP POP
(1) POP.size dest

Notes:
• When dest is Bank1 register direct addressing, 01101111 is put just before the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is Bank1 register direct addressing, the required bytes in the table increases by 1.

b7 b0 b7 b0

1 1 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2
[An] 2 / 2 2 / 3 3 / 3 4 / 3 5 / 3 4 / 3 5 / 3
dsp:8[] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:16[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:16 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3

b7 b0 b7 b0

1 0 1 1 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 3 2 / 3 3 / 3 4 / 3 5 / 3 4 / 3 5 / 3

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code
dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 259 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

POPC POPC
(1) POPC dest

Notes:
• Bits q2 to q0 are specified for the control register of dest.
• Operation length is long word basis.

[Bytes/Cycles]

POPM POPM
(1) POPM dest

Notes:
• When SB register is popped, this bit is 1; otherwise it is 0.
• Other registers are specified in #IMM:8.

Note:
• When dest is Bank1 register direct addressing, 01101111 is put just before the instruction code.

[Bytes/Cycles]

Note:
*1. n is the number of registers to be restored.

• When dest is Bank1 register direct addressing, the required bytes in the table increases by 1.

b7 b0 b7 b0

0 1 0 0 1 0 0 1 q2 q1 q0 0 1 0 0 0

Bytes/Cycles 2 / 4

b7 b0

0 1 1 SB 1 0 1 1

bit 7 6 5 4 3 2 1 0
Register A3 A2 A1 A0 R7R5 R6R4 R3R1 R2R0

Bytes/Cycles 2 / n*1

#IMM:8

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 260 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

PUSH PUSH
(1) PUSH.size:G src

Notes:
• When src is either indirect instruction addressing or Bank 1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

Note:
• When src is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

PUSH PUSH
(2) PUSH.B:S #IMM:8

[Bytes/Cycles]

PUSH PUSH
(3) PUSH.W:S #IMM:16

[Bytes/Cycles]

b7 b0 b7 b0

1 1 0 1 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

src Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

b7 b0

0 0 1 0 1 0 1 1

Bytes/Cycles 2 / 1

b7 b0

1 0 0 0 1 0 1 1

Bytes/Cycles 3 / 1

dsp:8

dsp:16

dsp:24

src code

#IMM:8

#IMM:16

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 261 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

PUSH PUSH
(4) PUSH.L:S #IMM:32

[Bytes/Cycles]

PUSH PUSH
(5) PUSH.W:S #IMMEX:8

[Bytes/Cycles]

PUSH PUSH
(6) PUSH.L:S #IMMEX:8

[Bytes/Cycles]

PUSH PUSH
(7) PUSH.L:S #IMMEX:16

[Bytes/Cycles]

b7 b0

1 1 0 0 1 0 1 1

Bytes/Cycles 5 / 1

b7 b0

0 0 0 0 1 0 1 1

Bytes/Cycles 2 / 1

b7 b0

0 0 1 1 1 0 1 1

Bytes/Cycles 2 / 1

b7 b0

1 0 0 1 1 0 1 1

Bytes/Cycles 3 / 1

#IMM:32

#IMM:8

#IMM:8

#IMM:16

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 262 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

PUSHA PUSHA
(1) PUSHA src

Note:
• Bits g4 to g0 are specified for src.

[Bytes/Cycles]

PUSHC PUSHC
(1) PUSHC src

Notes:
• Bits q2 to q0 are specified for the control register of src.
• Operation length is long word basis.

[Bytes/Cycles]

PUSHM PUSHM
(1) PUSHM src

Notes:
• When SB register is pushed, this bit is 1; otherwise it is 0.
• Other registers are specified in #IMM:8.

Note:
• When src is Bank1 register direct addressing, 01101111 is put just before the instruction code.

[Bytes/Cycles]

Notes:
*1. n is the number of registers to be restored.

• When src is Bank1 register direct addressing, the required bytes in the table increases by 1.

b7 b0 b7 b0

0 1 0 0 1 1 0 1 0 0 0 g4 g3 g2 g1 g0

src dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 4 / 1 5 / 1 4 / 1 5 / 1

b7 b0 b7 b0

0 1 0 0 1 0 0 0 q2 q1 q0 0 1 0 0 0

Bytes/Cycles 2 / 3

b7 b0

0 1 0 SB 1 0 1 1

bit 7 6 5 4 3 2 1 0
Register R2R0 R3R1 R6R4 R7R5 A0 A1 A2 A3

Bytes/Cycles 2 / n*1

dsp:8

dsp:16

dsp:24

src code

#IMM:8

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 263 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

REIT REIT
(1) REIT

[Bytes/Cycles]

RMPA RMPA
(1) RMPA.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

ROLC ROLC
(1) ROLC.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0

1 1 0 0 1 1 1 1

Bytes/Cycles 1 / 6

b7 b0 b7 b0

1 0 1 0 0 1 w1 w0 0 0 0 0 1 0 0 0

Bytes/Cycles 2 / 11+1.5m*1

b7 b0 b7 b0 b7 b0

0011 1111 1 1 0 0 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 264 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

RORC RORC
(1) RORC.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

ROT ROT
(1) ROT.size #IMM:8,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 0 1 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

b7 b0 b7 b0

1 1 0 0 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code

#IMM:8

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 265 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ROT ROT
(2) ROT.size src,dest

Notes:
• When src is Bank1 register direct addressing, or when dest is either indirect instruction addressing or

Bank1 register direct, the following number is put just before the instruction code:
01011111, when src is Bank1 register direct addressing
01101111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when src is Bank1 register direct addressing, and when dest is indirect instruction
addressing or Bank1 register direct addressing

• Bits q2 to q0 are specified for the register of src and bits g4 to g0 are for dest.

[Bytes/Cycles]

Note:
• When src is Bank1 register direct addressing or dest is either indirect instruction addressing or Bank1

register direct addressing, the required bytes in the table increases by 1. When src is Bank1 register
direct addressing and dest is either indirect instruction addressing or Bank1 register direct addressing,
the required bytes increse by 1. When dest is indirect instruciton addressing, the required cycles
increases by 2.

ROUND ROUND
(1) ROUND #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 1 0 1 1 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
#IMM(EX):16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
#IMM:32 7 / 4 7 / 5 8 / 5 9 / 5 10 / 5 9 / 5 10 / 5

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 266 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

ROUND ROUND
(2) ROUND src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

RTS RTS
(1) RTS

[Bytes/Cycles]

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 1 g4 g3 1 0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 4 3 / 4 4 / 4 5 / 4 6 / 4 5 / 4 6 / 4
[An] 3 / 5 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
dsp:8[] 4 / 5 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
dsp:16[] 5 / 5 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24[] 6 / 5 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5
dsp:16 5 / 5 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
dsp:24 6 / 5 6 / 5 7 / 5 8 / 5 9 / 5 8 / 5 9 / 5

b7 b0

1 1 0 1 1 1 1 1

Bytes/Cycles 1 / 5

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 267 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SBB SBB
(1) SBB.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 0 0 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM(EX):16 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2
#IMM:32 7 / 1 7 / 2 8 / 2 9 / 2 10 / 2 9 / 2 10 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 268 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SBB SBB
(2) SBB.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

SCCnd SCCnd
(1) SCCnd.size dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits c3 to c0 are specified for Cnd. Refer to 4.2.3, "Specifying Conditions" for details.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 0 0 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
[An] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:8[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:16[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24[] 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3
dsp:16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3

b7 b0 b7 b0 b7 b0

0011 1111 0 1 1 1 1 c3 w1 w0 c2 c1 c0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 2 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 269 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SCMPU SCMPU
(1) SCMPU.size

Note:
• w0 bit is specified for “.B” or “.W”. When this bit is set to 0, the size specifier is “.B”; otherwise it is “.W”.

[Bytes/Cycles]

Note:
*1. m is the 8-byte word number to be compared.

• If the start address of src and/or dest is not in 8-byte alignment, the required cycles increase by 1.

SHA SHA
(1) SHA.size #IMM:8,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 0 1 0 1 0 w0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 8+3m*1

b7 b0 b7 b0

1 1 0 1 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code

#IMM:8

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 270 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SHA SHA
(2) SHA.size src,dest

Notes:
• When src is Bank1 register direct addressing, or when dest is either indirect instruction addressing or

Bank1 register direct, the following number is put just before the instruction code:
01011111, when src is Bank1 register direct addressing
01101111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when src is Bank1 register direct addressing, and when dest is indirect instruction
addressing or Bank1 register direct addressing

• Bits q2 to q0 are specified for the register of src and bits g4 to g0 are for dest.

[Bytes/Cycles]

Note:
• When src is Bank1 register direct addressing or dest is either indirect instruction addressing or Bank1

register direct addressing, the required bytes in the table increases by 1. When src is Bank1 register
direct addressing and dest is either indirect instruction addressing or Bank1 register direct addressing,
the required bytes increse by 1. When dest is indirect instruciton addressing, the required cycles
increases by 2.

SHL SHL
(1) SHL.size:G #IMM:8,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 1 1 0 1 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

b7 b0 b7 b0

1 1 0 0 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code

#IMM:8

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 271 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SHL SHL
(2) SHL.size:G src,dest

Notes:
• When src is Bank1 register direct addressing, or when dest is either indirect instruction addressing or

Bank1 register direct, the following number is put just before the instruction code:
01011111, when src is Bank1 register direct addressing
01101111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when src is Bank1 register direct addressing, and when dest is indirect instruction
addressing or Bank1 register direct addressing

• Bits q2 to q0 are specified for src (register) and bits g4 to g0 are for dest (operand).

[Bytes/Cycles]

Note:
• When src is Bank1 register direct addressing or dest is either indirect instruction addressing or Bank1

register direct addressing, the required bytes in the table increases by 1. When src is Bank1 register
direct addressing and dest is either indirect instruction addressing or Bank1 register direct addressing,
the required bytes increse by 1. When dest is indirect instruciton addressing, the required cycles
increases by 2.

SHL SHL
(3) SHL.size:Q #IMM:4,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• 4 bits (q3 to q0) are specified for #IMM:4 and bits g4 to g0 are for dest.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 1 0 0 1 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

b7 b0 b7 b0

1 1 1 0 1 q3 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 272 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SIN SIN
(1) SIN.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

SMOVB SMOVB
(1) SMOVB.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

SMOVF SMOVF
(1) SMOVF.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

b7 b0 b7 b0

1 1 0 0 0 1 w1 w0 0 0 0 0 1 0 0 0

Bytes/Cycles 2 / 3+2m*1

b7 b0 b7 b0

1 0 1 1 0 1 w1 w0 0 0 0 0 1 0 0 0

Bytes/Cycles 2 / 3+2m*1

b7 b0 b7 b0

1 1 0 0 0 1 w1 w0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 2+2m*1

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 273 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SMOVF SMOVF
(2) SMOVF.Q

[Bytes/Cycles]

Note:
*1. m is the number of operation.

SMOVU SMOVU
(1) SMOVU.size

Note:
• w0 bit is specified for “.B” or “.W”. When this bit is set to 0, the size specifier is “.B”; otherwise it is “.W”.

[Bytes/Cycles]

Notes:
*1. m is the 8-byte word number to be compared.

• If the start address of src and/or dest is not in 8-byte alignment, the required cycles increase by 1.

SOUT SOUT
(1) SOUT.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

b7 b0 b7 b0

1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 4+2m*1

b7 b0 b7 b0

1 1 0 1 0 1 0 w0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 5+3m*1

b7 b0 b7 b0

1 0 0 0 0 1 w1 w0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 3+2m*1

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 274 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SSTR SSTR
(1) SSTR.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

SSTR SSTR
(2) SSTR.Q

[Bytes/Cycles]

Note:
*1. m is the number of operation.

STC STC
(1) STC src,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• Bits q2 to q0 are specified for the control register of src. Refer to (5), "Control register direct

addressing (CPU)" in 4.2.2, "Specifying the Operand" for details.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 1 0 1 0 1 w1 w0 0 0 0 0 1 0 0 0

Bytes/Cycles 2 / 5+m*1

b7 b0 b7 b0

1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 8+m*1

b7 b0 b7 b0 b7 b0

0011 1111 1 1 1 1 1 0 1 0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 2 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2

dsp:8

dsp:16

dsp:24

dest code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 275 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

STC STC
(2) STC src,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• #IMM:8 is specified for the register of src. Refer to (6), "Control register direct addressing

(DMAC,VCT)" in 4.2.2, "Specifying the Operand" for details.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

STCTX STCTX
(1) STCTX abs:16,dsp:24

[Bytes/Cycles]

Note:
*1. m is the number of registers to be transferred.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 1 0 1 1 0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 3 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3

b7 b0 b7 b0 b7 b0

0011 1111 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

Bytes/Cycles 8 / 10+m*1

dsp:8

dsp:16

dsp:24

dest code

#IMM:8

abs:16 dsp:24

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 276 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

STNZ STNZ
(1) STNZ.size #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required bytes in the table increases by 1. In the case of ".L ", it

increases by 3.
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

STOP STOP
(1) STOP

[Bytes/Cycles]

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 1 0 1 w1 w0 1 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 2 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2

b7 b0 b7 b0 b7 b0 b7 b0 b7 b0 b7 b0 b7 b0

0011 1111 1010 0100 0000 1000 1100 0010 0001 0000 0000 0110 0000 0000

Bytes/Cycles 7 / 8

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 277 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

STZ STZ
(1) STZ.size #IMM,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", 1 is added to the required bytes in the table increases by 1. In the

case of ".L", it increases by 3.
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

STZX STZX
(1) STZX.size #IMM1,#IMM2,dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01101111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.

[Bytes/Cycles]

Notes:
• When size specifier (.size) is ".W", the required bytes in the table increases by 2. In the case of ".L", it

increases by 6.
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 0 1 1 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 2 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2

b7 b0 b7 b0

1 0 1 1 0 1 w1 w0 0 0 0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 4 / 4 4 / 4 5 / 4 6 / 4 7 / 4 6 / 4 7 / 4

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

#IMM1
#IMM:8

#IMM:16

#IMM:32

#IMM2

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 278 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SUB SUB
(1) SUB.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
#IMM(EX):16 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM:32 6 / 1 6 / 2 7 / 2 8 / 2 9 / 2 8 / 2 9 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 279 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SUB SUB
(2) SUB.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

b7 b0 b7 b0

1 0 0 1 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 2 / 1 2 / 2 3 / 2 4 / 2 5 / 2 4 / 2 5 / 2
[An] 2 / 2 2 / 3 3 / 3 4 / 3 5 / 3 4 / 3 5 / 3
dsp:8[] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:16[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:16 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:24 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 280 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SUBF SUBF
(1) SUBF #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0111 1111 1 0 0 1 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 4 4 / 5 5 / 5 6 / 5 7 / 5 6 / 5 7 / 5
#IMMEX:16 5 / 4 5 / 5 6 / 5 7 / 5 8 / 5 7 / 5 8 / 5
#IMM:32 7 / 4 7 / 5 8 / 5 9 / 5 10 / 5 9 / 5 10 / 5

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 281 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SUBF SUBF
(2) SUBF src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

SUNTIL SUNTIL
(1) SUNTIL.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

b7 b0 b7 b0 b7 b0

0111 1111 1 0 0 1 g4 g3 1 0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 4 3 / 5 4 / 5 5 / 5 6 / 5 5 / 5 6 / 5
[An] 3 / 5 3 / 6 4 / 6 5 / 6 6 / 6 5 / 6 6 / 6
dsp:8[] 4 / 5 4 / 6 5 / 6 6 / 6 7 / 6 6 / 6 7 / 6
dsp:16[] 5 / 5 5 / 6 6 / 6 7 / 6 8 / 6 7 / 6 8 / 6
dsp:24[] 6 / 5 6 / 6 7 / 6 8 / 6 9 / 6 8 / 6 9 / 6
dsp:16 5 / 5 5 / 6 6 / 6 7 / 6 8 / 6 7 / 6 8 / 6
dsp:24 6 / 5 6 / 6 7 / 6 8 / 6 9 / 6 8 / 6 9 / 6

b7 b0 b7 b0

1 0 1 0 0 1 w1 w0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 3+3m*1

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 282 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

SWHILE SWHILE
(1) SWHILE.size

[Bytes/Cycles]

Note:
*1. m is the number of operation.

TST TST
(1) TST.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0

1 0 1 1 0 1 w1 w0 1 0 0 0 1 0 0 0

Bytes/Cycles 2 / 3+3m*1

b7 b0 b7 b0 b7 b0

0111 1111 0 0 1 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM(EX):16 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2
#IMM:32 7 / 1 7 / 2 8 / 2 9 / 2 10 / 2 9 / 2 10 / 2

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 283 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

TST TST
(2) TST.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
• When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the

required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the
required cycles increases by 2. When both src and dest are indirect instruction addressing, the required
cycles increases by 4.

UND UND
(1) UND

[Bytes/Cycles]

WAIT WAIT
(1) WAIT

[Bytes/Cycles]

b7 b0 b7 b0 b7 b0

0111 1111 0 0 1 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
[An] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:8[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:16[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24[] 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3
dsp:16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3

b7 b0

1 1 1 1 1 1 1 1

Bytes/Cycles 1 / 12

b7 b0 b7 b0 b7 b0 b7 b0 b7 b0 b7 b0 b7 b0

0011 1111 1010 0101 0000 1000 1100 0010 0001 0000 0000 0110 0000 0000

Bytes/Cycles 7 / 8

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 284 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

XCHG XCHG
(1) XCHG.size src,dest

Notes:
• When src is Bank1 register direct addressing, or when dest is either indirect instruction addressing or

Bank1 register direct, the following number is put just before the instruction code:
01011111, when src is Bank1 register direct addressing
01101111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when src is Bank1 register direct addressing, and when dest is indirect instruction
addressing or Bank1 register direct addressing

• Bits q2 to q0 are specified for the register of src and bits g4 to g0 are for dest.

[Bytes/Cycles]

Note:
• When src is Bank1 register direct addressing or dest is either indirect instruction addressing or Bank1

register direct addressing, the required bytes in the table increases by 1. When src is Bank1 register
direct addressing and dest is either indirect instruction addressing or Bank1 register direct addressing,
the required bytes increse by 1. When dest is indirect instruciton addressing, the required cycles
increases by 2.

XOR XOR
(1) XOR.size #IMM(EX),dest

Notes:
• When dest is either indirect instruction addressing or Bank1 register direct, 01011111 is put just before

the instruction code.
• Bits g4 to g0 are specified for dest.
• h2 bit is specified for src. When this bit is set to 0, the operand is #IMMEX; otherwise it is #IMM.

[Bytes/Cycles]

Note:
• When dest is either indirect instruction addressing or Bank1 register direct addressing, the required

bytes in the table increases by 1. When it is indirect instruction addressing, the required cycles
increases by 2.

b7 b0 b7 b0 b7 b0

0011 1111 1 1 1 0 0 0 w1 w0 q2 q1 q0 g4 g3 g2 g1 g0

dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Bytes/Cycles 3 / 3 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 0 g4 g3 w1 w0 g2 g1 g0 0 1 h2 0 0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
#IMM(EX):8 4 / 1 4 / 2 5 / 2 6 / 2 7 / 2 6 / 2 7 / 2
#IMM(EX):16 5 / 1 5 / 2 6 / 2 7 / 2 8 / 2 7 / 2 8 / 2
#IMM:32 7 / 1 7 / 2 8 / 2 9 / 2 10 / 2 9 / 2 10 / 2

dsp:8

dsp:16

dsp:24

dest code

dsp:8

dsp:16

dsp:24

dest code
#IMM:8

#IMM:16

#IMM:32

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 285 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

XOR XOR
(2) XOR.size src,dest

Notes:
• In indirect instruction addressing or Bank1 register direct addressing, the followinwg number is put just

before the instruction code:
01101111, when src is indirect instruction addressing or Bank1 register direct addressing
01011111, when dest is indirect instruction addressing or Bank1 register direct addressing
01001111, when both src and dest are indirect instruction addressing or Bank1 register direct
addressing

• Bits g4 to g0 are spcified for dest and bits h4 to h0 are for src.

[Bytes/Cycles]

Note:
When either src and/or dest are indirect instruction addressing or Bank1 register direct addressing, the
required bytes in the table increases by 1. When src or dest is indirect instruction addressing, the required
cycles increases by 2. When both src and dest are indirect instruction addressing, the required cycles
increases by 4.

b7 b0 b7 b0 b7 b0

0011 1111 1 0 1 0 g4 g3 w1 w0 g2 g1 g0 h4 h3 h2 h1 h0

src \ dest Register [An] dsp:8[] dsp:16[] dsp:24[] dsp:16 dsp:24
Register 3 / 1 3 / 2 4 / 2 5 / 2 6 / 2 5 / 2 6 / 2
[An] 3 / 2 3 / 3 4 / 3 5 / 3 6 / 3 5 / 3 6 / 3
dsp:8[] 4 / 2 4 / 3 5 / 3 6 / 3 7 / 3 6 / 3 7 / 3
dsp:16[] 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24[] 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3
dsp:16 5 / 2 5 / 3 6 / 3 7 / 3 8 / 3 7 / 3 8 / 3
dsp:24 6 / 2 6 / 3 7 / 3 8 / 3 9 / 3 8 / 3 9 / 3

dsp:8

dsp:16

dsp:24

dest code
dsp:8

dsp:16

dsp:24

src code

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 286 of 304

4 Instruction Codes/Number of Cycles
4.3 Instruction Codes/Number of Cycles

5. Interrupts

5.1 Overview

5.2 Interrupt Control

5.3 Interrupt Sequence

5.4 Register Restoring

5.5 Interrupt Priority

5.6 Multiple Interrupts

5.7 Notes on Interrupts

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 288 of 304

5 Interrupts
5.1 Overview

5.1 Overview
When an interrupt request is accepted, the instruction branches to the interrupt handler set in the interrupt
vector table. The start address of the interrupt handler should be set in the interrupt vector table. Refer to
1.7, "Interrupt Vector Table" for details.

5.1.1 Interrupt Types
Figure 5.1 shows types of interrupt. Table 5.1 lists interrupt sources (non-maskable) and vector table.

Figure 5.1 Interrupt Types

Table 5.1 Interrupt Sources (non-maskable) and Vector Table

Interrupt source Vector table addresses
address (L) to address (H) Remarks

Undefined
instruction FFFFFFDCh to FFFFFFDFh Interrupt generated by UND instruction

Overflow FFFFFFE0h to FFFFFFE3h Interrupt generated by INTO instruction
BRK instruction

FFFFFFE4h to FFFFFFE7h
Executed beginning from the address indicated by a
vector in relocatable vector table if the bit of address
FFFFFFE7h is FFh.

Watchdog timer
Low voltage
detection
Oscillator stop
detection

FFFFFFF0h to FFFFFFF3h

NMI FFFFFFF8h to FFFFFFFBh External interrupt generated by driving the NMI pin
low.

Reset FFFFFFFCh to FFFFFFFFh

Interrupt

Software

Hardware

Special

Peripheral*1

Undefined instruction (UND instruction)
Overflow (INTO instruction)
BRK instruction
BRK2 instruction
INT instruction

Reset
NMI
Watchdog timer
Low voltage detection
Oscillator stop detection
Single-step

*1. The peripheral functions in the MCU are used to generate the peripheral interrupt. Fast
interrupt can be used for the highest priority interrupt in peripheral interrupts.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 289 of 304

5 Interrupts
5.1 Overview

The interrupts are also classified into maskable/non-maskable.

(1) Maskable interrupt
Maskable interrupts can be disabled by the interrupt enable flag (I flag).
The priority is configurable by assigning an interrupt request level.

(2) Non-maskable interrupt
Non-maskable interrupts cannot be disabled by the interrupt enable flag (I flag).
The priority is not configurable.

5.1.2 Software Interrupts
Software interrupts are non-maskable. A software interrupt is generated by executing an instruction.
There are five types of software interrupts as follows:

(1) Undefined instruction interrupt
This interrupt is generated when the UND instruction is executed.

(2) Overflow interrupt
This interrupt is generated when the INTO instruction is executed while the O flag is 1. The following
instructions may change the O flag to 1, depending on the operation results:

ABS, ADC, ADCF, ADD, ADDF, ADSF, CMP, CMPF, CNVIF, DIV, DIVF, DIVU, DIVX, EDIV, EDIVU,
EDIVX, MUL, MULF, MULU, MULX, NEG, RMPA, ROUND, SBB, SCMPU, SHA, SUB, SUBF, SUNTIL
and SWHILE

(3) BRK instruction interrupt
This interrupt is generated when the BRK instruction is executed.

(4) BRK2 instruction interrupt
This interrupt is generated when the BRK2 instruction is executed.
This interrupt is used only for development support tool, and users are not allowed to used it.

(5) INT instruction interrupt
This interrupt is generated when the INT instruction is executed with a selected software interrupt
number from 0 to 255. Numbers 0 to 127 are designated for peripheral interrupts. That is, the INT
instruction with a number from 0 to 127 has the same interrupt handler as that for the peripheral
interrupt.
The stack pointer (SP), which contains two types, is specified by the stack pointer select flag (U flag). For
numbers 0 to 127, when an interrupt request is accepted, the U flag is saved to select the interrupt stack
pointer (ISP) before the interrupt sequence is executed. The saved data of the U flag is restored upon
returning from the interrupt handler. For numbers 128 to 255, the stack pointer used before the interrupt
request acceptance remains unchanged for the interrupt sequence.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 290 of 304

5 Interrupts
5.1 Overview

5.1.3 Hardware Interrupts
There are two kinds of hardware interrupts: special interrupt and peripheral interrupt.
In the peripheral interrupt, only a single interrupt with the highest priority can be specified as fast
interrupt.

(1) Special interrupts
Special interrupts are non-maskable. There are six interrupts as follows:
(a) Reset

This interrupt occurs when the RESET pin is driven low.
(b) NMI

This interrupt occurs when the NMI pin is driven low.
(c) Watchdog timer interrupt

This interrupt is generated by the first time-out of the watchdog timer.
(d) Low voltage detection interrupt

This interrupt is generated by the low voltage detection circuit.
(e) Oscillator stop detection interrupt

This interrupt is generated by the oscillator stop detection circuit.
(f) Single-step interrupt

This interrupt is used only for development support tool. Users are not allowed to used it. This interrupt
is generated after an instruction is executed while the debug flag (D flag) is set to 1.

(2) Peripheral interrupt
This interrupt is generated by internal peripheral functions. The functions and interrupt source types vary
with each MCU model. It shares the interrupt vector table with software interrupt numbers 0 to 127 for the
INT instruction. This interrupt is maskable. Refer to "Hardware manual" for details.
For this interrupt, when an interrupt request is accepted, the stack pointer select flag (U flag) is saved to
select the interrupt stack pointer (ISP) before the interrupt sequence is executed. The saved data of the
U flag is restored upon returning from the interrupt handler.

(3) Fast interrupt
This interrupt enables the CPU to execute the interrupt response at high speeds. Only a single
peripheral interrupt with the highest priority can be designated as the fast interrupt. Execute the FREIT
instruction to return from the fast interrupt handler. Refer to "Hardware manual" for details.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 291 of 304

5 Interrupts
5.2 Interrupt Control

5.2 Interrupt Control
This section describes how to enable/disable maskable interrupts and how to set the acceptable interrupt
request level. The explanation here does not apply to non-maskable interrupts.
The maskable interrupts may be enabled/disabled using the interrupt enable flag (I flag), the interrupt
request level select bit and the processor interrupt priority level (IPL). Each interrupt has its interrupt control
register with the interrupt request level select bit and the interrupt request bit. The presence/absence of an
interrupt request is indicated by the interrupt request bit. The interrupt enable flag (I flag) and the processor
interrupt priority level (IPL) are allocated in the flag register (FLG). Refer to "Hardware manual" for details
on the memory allocation of the interrupt control registers and the register organization.

5.2.1 Interrupt Enable Flag (I Flag)
This flag enables/disables maskable interrupts. When the I flag is set to 1, all maskable interrupts are
enabled; when it is set to 0, they are disabled. The I flag automatically becomes 0 after a reset operation.
When changing the flag, the change becomes effective from the following timings:

• Changed in the REIT or FREIT instruction, the change becomes effective during the execution of the
instruction.

• Changed in the FCLR, FSET, POPC or LDC instruction, the change becomes effective from the next
instruction.

Figure 5.2 The Timing of Interrupt Request Acceptance Affected by the I Flag Change

5.2.2 Interrupt Request Bit
Interrupt request bit is changed to 1 when an interrupt request is generated. It remains 1 until the
interrupt request is accepted in which the bit is set to 0.
This bit can be set to 0 by software. (Do not set it to 1).

When the I flag changed from 0 to 1 in the REIT or FREIT instruction:

When the I flag changed from 0 to 1 in the FSET, FCLR, POPC, or LDC instruction:

REIT

Interrupt request is generated. The interrupt request is accepted.

Time

Interrupt request is generated.

Previous instruction Interrupt sequence

FSET IPrevious instruction

The interrupt request is accepted.

Next instrutction
Time

Interrupt sequence

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 292 of 304

5 Interrupts
5.2 Interrupt Control

5.2.3 Interrupt Request Level and Processor Interrupt Priority Level (IPL)
Interrupt request level is set by the interrupt request level select bit in an interrupt control register. When
an interrupt request is generated, its interrupt request level is compared with the processor interrupt
priority level (IPL). This interrupt is accepted only when its interrupt request level is higher than the
processor interrupt priority level (IPL). This means an interrupt whose interrupt priority level is 0 is
disabled.
Table 5.2 lists interrupt priority level settings. Table 5.3 lists interrupt enable levels according to the
processor interrupt priority level (IPL).

The following lists the conditions under which an interrupt request is accepted:
• Interrupt enable flag (I flag) = 1
• Interrupt request bit = 1
• Interrupt request level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), the interrupt request bit, the interrupt request level select bit, and the
processor interrupt priority level (IPL) are all independent of each other, so they do not affect any other
bit.

Table 5.2 Interrupt Request Levels
Interrupt Request
Level Select Bit Interrupt Request Level Priority

Order
b2 b1 b0
1 1 1 Level 7 High
1 1 0 Level 6
1 0 1 Level 5
1 0 0 Level 4
0 1 1 Level 3
0 1 0 Level 2
0 0 1 Level 1 Low
0 0 0 Level 0 (Interrupt disabled) —

Table 5.3 IPL and Interrupt Enable Levels
Processor Interrupt
Priority Level (IPL) Acceptable Interrupt Request Levels

IPL2 IPL1 IPL0
1 1 1 All maskable interrupts are disabled.
1 1 0 Level 7 only
1 0 1 Level 6 and above
1 0 0 Level 5 and above
0 1 1 Level 4 and above
0 1 0 Level 3 and above
0 0 1 Level 2 and above
0 0 0 Level 1 and above

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 293 of 304

5 Interrupts
5.2 Interrupt Control

When changing the processor interrupt priority level (IPL) or the interrupt request level, the change
becomes effective from the following timings:

• Changed in the REIT or FREIT instruction, the new processor interrupt priority level (IPL) becomes
effective during the execution of the instruction.

• Changed in the POPC, LDC, or LDIPL instruction, the new processor interrupt priority level (IPL)
becomes effective from the next instruction.

• Changed in an instruction such as MOV, the new interrupt request level becomes effective after one
peripheral bus clock cycle.

5.2.4 Rewrite the Interrupt Control Register
When rewriting the interrupt control register, disable all maskable interrupts before the rewrite to ensure
that no corresponding interrupt request will be generated.
When enabling the maskable interrupts immediately after the rewrite, depending on the instruction
queue status the interrupt enable flag (I flag) may be set to 1 before the rewrite completes. To prevent
this, a measure such as NOP insertion may be necessary.
While interrupts are disabled, if an interrupt is generated for the register being rewritten, the interrupt
request bit may not be set to 1. Use the following instructions to rewrite the register, if necessary:

• AND
• OR
• BCLR
• BSET

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 294 of 304

5 Interrupts
5.3 Interrupt Sequence

5.3 Interrupt Sequence
The interrupt sequence is performed from when an interrupt request has been accepted until the interrupt
handler starts.
For most instructions, when an interrupt request is generated while an instruction is being executed, the
requested interrupt is evaluated in the priority resolver after the current instruction is completed. If
appropriate, the interrupt sequence starts from the next cycle.
For instructions RMPA, SCMPU, SIN, SMOVB, SMOVF, SMOVU, SOUT, SSTR, SUNTIL, and SWHILE, as
soon as an interrupt request is generated, the requested interrupt is evaluated suspending the current
instruction being executed. If appropriate, the interrupt sequence starts immediately.
The interrupt sequence is as follows:

(1) The CPU acknowledges the interrupt request to obtain the interrupt information (the interrupt
number, and the interrupt request level) from the interrupt controller. Then the corresponding IR bit
becomes 0 (no interrupt requested)

(2) The state of the flag register (FLG) before the interrupt sequence is stored to a temporary register *1
in the CPU.

(3) The following bits in the flag register (FLG) become 0:
• The I flag (interrupt enable flag): interrupt disabled
• The D flag (debug flag): single-step interrupt disabled
• The U flag (Stack pointer select flag): ISP selected (Note that the U flag does not change for INT

instruction whose software interrupt number is from 128 to 255)
(4) The content of the temporary register *1 in the CPU is saved to the stack area; or to the save flag

register (SVF) in case of the fast interrupt.
(5) The content of the program counter (PC) is saved to the stack area; or to the save PC register (SVP)

in case of the fast interrupt.
(6) The interrupt request level of the accepted interrupt is set in the processor interrupt priority level

(IPL).
(7) The corresponding interrupt vector is read from the interrupt vector table.
(8) This interrupt vector is stored into the program counter (PC).

When the interrupt sequence completes, the interrupt handler is initiated.

Note:
*1. This register is inaccessible to users.

5.3.1 Interrupt Response Time
The interrupt response time, as shown in Figure 5.3 consists of two non-overlapping time segments: (a)
the period from when an interrupt request is generated until the instruction being executed is completed;
and (b) the period required for the interrupt sequence.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 295 of 304

5 Interrupts
5.3 Interrupt Sequence

Figure 5.3 Interrupt Response Time

Time (a) varies depending on the instruction being executed.
Time (b) is listed in Table 5.4.

Notes:
*1. The interrupt vectors should be aligned to a 4-byte boundary to shorten the execution time.
*2. If a peripheral bus has three or more waits, the required cycles increases by (waits -2).
*3. Addresses are 4-byte aligned.
*4. The fast interrupt is independent of these conditions.

Table 5.4 Interrupt Sequence Execution Time

Interrupt Interrupt Vector Address Interrupt Sequence Execution Time
(internal memory)

Peripherals Aligned to a 4-byte boundary *1 13 cycles *2
INT instruction Aligned to a 4-byte boundary *1 11 cycles
BRK instruction
(relocatable vector table)

Aligned to a 4-byte boundary *1 16 cycles

Undefined instruction FFFFFFDCh *3 12 cycles
Overflow FFFFFFE0h *3 12 cycles
BRK instruction
(fixed vector table)

FFFFFFE4h *3 19 cycles

Watchdog timer
Low voltage detection
Oscillator stop detection

FFFFFFF0h *3
11 cycles

NMI FFFFFFF8h *3 10 cycles
Single-step
BRK2 instruction
DBC interrupt

Aligned to a 4-byte boundary *3
19 cycles

Fast interrupt *4 Vector table is internal register 11 cycles

Instruction Interrupt sequence Instruction in
interrupt handler

Interrupt request
accepted

Interrupt request
generated

(a) (b)

Interrupt response time

Time

(a) Period from when an interrupt request is generated until when the instruction being
executed is completed

(b) Period required to perform the interrupt sequence

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 296 of 304

5 Interrupts
5.3 Interrupt Sequence

5.3.2 IPL After Interrupt Request Acceptance
When an interrupt request is accepted, the interrupt request level is set in the processor interrupt priority
level (IPL).
If an interrupt request has no interrupt priority level, the value shown in Table 5.5 is set in the IPL.

5.3.3 Register Saving
In the interrupt sequence, the flag register (FLG) and the program counter (PC) values are saved to the
stack, in that order. Figure 5.4 shows the stack status before and after an interrupt request is accepted.
In the fast interrupt sequence, the flag register (FLG) and the program counter (PC) values are saved to
the save flag register (SVF) and to the save PC register (SVP), respectively.
If there are any other registers to be saved to the stack, save them at the beginning of the interrupt
handler. A single PUSHM instruction saves all registers except the stack pointer (SP).

Figure 5.4 Stack Status Before and After an Interrupt Request is Accepted

Table 5.5 Interrupts without Interrupt Priority Level and IPL
Interrupt Sources Without Interrupt Priority Level IPL Value to be Set

Watchdog timer, NMI, Low voltage detection,
Oscillator stop detection 7

Reset 0
Others unchanged

Contents of previous stackm+1
m

m-1
m-2
m-3
m-4
m-5
m-6
m-7
m-8

SP

MSB LSB

Stack area

Address

Contents of previous stack

Contents of previous stack

Flag register (FLGHH)
Flag register (FLGHL)
Flag register (FLGLH)
Flag register (FLGLL)

Program counter (PCHH)
Program counter (PCHL)
Program counter (PCLH)
Program counter (PCLL)

m+1
m

m-1
m-2
m-3
m-4
m-5
m-6
m-7
m-8 SP

MSB LSB

Stack area

Address

Stack status before interrupt request is accepted Stack status after interrupt request is accepted

Contents of previous stack

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 297 of 304

5 Interrupts
5.4 Register Restoring

5.4 Register Restoring
When the REIT instruction is executed at the end of the interrupt handler, the saved values of the flag
register (FLG) and the program counter (PC) are restored from the stack area, and the program resumes
the operation that has been interrupted. In the fast interrupt, execute the FREIT instruction to restore them
from the save registers, instead.
To restore the values of registers, which are saved by software in the interrupt handler, use an instruction
such as POPM before the REIT or FREIT instruction.

5.5 Interrupt Priority
If two or more interrupt requests are detected at an interrupt request sampling point, the interrupt request
with higher priority is accepted.
For maskable interrupts (peripheral interrupts), the interrupt request level select bits (bits ILVL2 to ILVL0)
select a request level. If there are more than two interrupts with the same level, they are accepted
according to their relative priority predetermined by the hardware *1.
The priorities of non-maskable interrupts such as the reset (reset has the highest priority) and watchdog
timer interrupt are determined by the hardware. The following is the priority order of non-maskable
interrupts:

Software interrupts are not governed by priority. They always cause execution to jump to the interrupt
handler whenever the relevant instruction is executed.

Note:
*1. The priority order varies with the MCU model. Refer to "Hardware Manual" for details.

5.6 Multiple Interrupts
The following shows the internal bit states when control has branched to an interrupt handler:

• The interrupt enable flag (I flag) is 0 (disable interrupts).
• The interrupt request bit for the accepted interrupt is 0.
• The processor interrupt priority level (IPL) equals the interrupt request level of the accepted interrupt.

By setting the interrupt enable flag (I flag) to 1 in the interrupt handler, an interrupt request that has higher
priority than the processor interrupt priority level (IPL) can be accepted. Figure 5.5 shows multiple
interrupts proceeding.
The interrupt requests that have not been accepted due to their low interrupt priority level are kept pending.
When the IPL is restored by an REIT or an FREIT instruction, the pending interrupt requests are accepted
if the following condition is satisfied:

Reset
Watchdog timer

Low voltage detection
Oscillation stop detection

NMI Peripherals Single-step> > > >

Interrupt request level of pending interrupt request Restored processor interrupt prioroty level (IPL)>

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 298 of 304

5 Interrupts
5.6 Multiple Interrupts

Figure 5.5 Multiple Interrupts

Caused Interrupt request

Reset

Interrupt 1

Interrupt 2

Interrupt 3

Main routine

Interrupt 1

Interrupt 2

Interrupt 3

I = 0

IPL = 0

I = 1

REIT

Multiple interrupts

Nesting

Interrupt request level = 3

Interrupt request level = 5

Interrupt request level = 2

REIT

Interrupt 3

REIT

The request is not
accepted due to the lower
interrupt request level.

The instruction of main
routine is not executed.

I: Interrupt enable flag
IPL: Processor interrupt priority level

: executed automatically
: set by software

Time

I = 0

IPL = 3

I = 1

I = 0

IPL = 5

I = 1

IPL = 3

I = 1

IPL = 0

I = 0

IPL = 2

I = 1

IPL = 0

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 299 of 304

5 Interrupts
5.7 Notes on Interrupts

5.7 Notes on Interrupts
Notes on interrupts are listed as follows:

(1) ISP Setting
The interrupt stack pointer (ISP) is initialized to 00000000h after a reset operation. Set a value to the ISP
before an interrupt is accepted to avoid undefined behavior.
Especially when using the NMI interrupt, set a value to the ISP at the beginning of a program. The NMI
interrupt cannot be disabled if the PM24 bit in the PM2 register is set to 1.
A multiple of 4 should be set to the ISP to shorten the time required for the interrupt sequence.

(2) Rewrite the Interrupt Control Register
When rewriting the interrupt control register, disable all maskable interrupts before the rewrite to ensure
that no corresponding interrupt request will be generated.
When enabling the maskable interrupts immediately after the rewrite, depending on the instruction
queue status the interrupt enable flag (I flag) may be set to 1 before the rewrite completes. To prevent
this, a measure such as NOP insertion may be necessary.
While interrupts are disabled, if an interrupt is generated for the register being rewritten, the interrupt
request bit may not be set to 1. Use the following instructions to rewrite the register, if necessary:

• AND
• OR
• BCLR
• BSET

(3) Exit from Stop Mode and Wait Mode
When using a peripheral interrupt to exit stop mode or wait mode, the relevant interrupt must have been
enabled and assigned a interrupt request level higher than the level set by the interrupt priority set bits
for exiting a stop/wait state. Set the interrupt priority set bits for exiting a stop/wait state to the same level
as the processor interrupt level (IPL) of the flag register (FLG).
Reset and NMI interrupts are independent of the interrupt priority set bits for exiting a stop/wait state to
exit stop mode or wait mode.

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 300 of 304

5 Interrupts
5.7 Notes on Interrupts

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 301 of 304

INDEX

INDEX

A

A0 ... 5
A1 ... 5
A2 ... 5
A3 ... 5
Absolute ... 31, 32
Address Map .. 3
Address Register 5
Address register indirect 23, 33
Address register indirect indirect 25
Address register relative 23, 33
Address register relative indirect 26
Available src/dest 39

B

B Flag ... 8
Bank1 register direct 28
Bit ... 13
Bit instruction addressing 20
BRK instruction interrupt 289
BRK2 instruction interrupt 289

C

C Flag .. 7
Carry Flag .. 7
Control register direct 30

D

D Flag .. 7
Data Register ... 5
Data Types ... 11
DCR ... 6
DCT .. 6
DDA ... 6
DDR ... 6
Debug Flag .. 7
Decimal .. 11
dest .. 15
DMA Destination Address Register 6
DMA Destination Address Reload Register 6
DMA Mode Register 6
DMA Source Address Register 6
DMA Source Address Reload Register 6
DMA Terminal Count Register 6

DMA Terminal Count Reload Register 6
DMD ... 6
DP bit ... 8
DSA .. 6
DSR .. 6

E

Enabled size specifiers 37
Extended instruction addressing 20

F

Fast interrupt .. 290
FB ... 5
FB relative .. 24, 34
FB relative indirect 27
Fixed Vector Table 17
Fixed-point Number 12
Fixed-point Radix Point Position
Designation Bit ... 8
Flag effects ... 39
Flag Register .. 5
FLG .. 5, 7
FLG direct .. 30
Floating-point Number 12
Floating-point Overflow Flag 8
Floating-point Rounding mode 9
Floating-point Underflow Flag 8
FO Flag .. 8
Frame Base Register 5
FU Flag .. 8
Function ... 39

G

General instruction addressing 20
Generic Format .. 15

H

Hardware Interrupt 290

I

I Flag .. 8, 291
Immediate .. 22
INDEX Instruction

Addressing Mode 171
Enabled Instruction List 170

Indirect instruction addressing 20

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 302 of 304

INDEX

Instruction code 37, 175
Instruction format specifier 37
Instruction Formats 15
INT instruction interrupt 289
INTB ... 5
Integer .. 11
Interrupt

Disable .. 291
Enable ... 291
Save Registers 296
Sources ... 288
Types .. 288

Interrupt Control Register 293
Interrupt Enable Flag 291
Interrupt Priority Level 292
Interrupt Request Bit 291
Interrupt Response Time 294
Interrupt Sequence 294
Interrupt Stack Pointer 5
Interrupt Vector Table 17
Interrupt Vector Table Base Register 5
IPL .. 8, 292
ISP ... 5

L

Low voltage detection interrupt 290

M

Maskable interrupt 289
Mnemonic .. 37, 175

N

NMI .. 290
Non-maskable interrupt 289
Number of Bytes 175
Number of Cycles 37, 175

O

O Flag .. 8
Opcode .. 16
Operand ... 16, 37

#imm3 ... 177
#imm4 ... 177
bit .. 180
creg ... 179
dsp3 .. 180
flg .. 181

gen0 .. 177
gen1 .. 176
gen2 .. 176
greg ... 178

Operation length 176
Oscillator stop detection interrupt 290
Overflow Flag ... 8
Overflow interrupt 289

P

PC .. 5
Peripheral interrupt 290
Processor Interrupt Priority Level 8, 292
Program Counter .. 5
Program counter relative 31

Q

Quick Format .. 15

R

R0 ... 5
R0H .. 5
R0L ... 5
R1 ... 5
R1H .. 5
R1L ... 5
R2 ... 5
R2H .. 5
R2L ... 5
R2R0 .. 5
R3 ... 5
R3H .. 5
R3L ... 5
R3R1 .. 5
R4 ... 5
R5 ... 5
R6 ... 5
R6R4 .. 5
R7 ... 5
R7R5 .. 5
Register Bank ... 9
Register Bank Select Flag 8
Register direct 22, 32
Relocatabe Vector Table 18
Reset .. 290
RND ... 9

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 303 of 304

INDEX

S

S Flag ... 8
Sample description 39
Save Flag Register 6
Save PC Register 6
SB .. 5
SB relative .. 23, 34
SB relative indirect 26
Short Format .. 15
Short immediate 28
Sign Flag .. 8
Sign-extended absolute 23, 33
Sign-extended absolute indirect 25
Sign-extended immediate 22
Single-step interrupt 290
Size specifier .. 37
Software Interrupts 289
Special instruction addressing 20
Special interrupts 290
src .. 15
Stack pointer relative 29
Stack Pointer Select Flag 8
Static Base Register 5
String .. 13
SVF .. 6
SVP .. 6
Syntax .. 37, 40, 175

U

U Flag .. 8
Undefined instruction interrupt 289
User Stack Pointer 5
USP .. 5

V

VCT .. 6
Vector Register .. 6
Vector table .. 17

W

Watchdog timer interrupt 290

Z

Z Flag ... 7
Zero Flag .. 7
Zero Format ... 15

REJ09B0267-0100 Rev.1.00 Apr 08, 2009
Page 304 of 304

INDEX

D- 1

REVISION HISTORY R32C/100 Series Software Manual

Rev. Date Description
Page Summary

1.00 Apr 08, 2009 — First edition published

D- 2

RENESAS MCU
SOFTWARE MANUAL
R32C/100 SERIES

Publication Date: Apr 08, 2009 Rev.1.00

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.
2-6-2, Otemachi, Chiyoda-ku, Tokyo 100-0004

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

R32C/100 SERIES

REJ09B0267-0100

SOFTWARE MANUAL

	R32C/100 Series Software Manual
	The Notation in This Manual
	Table of Contents
	R32C/100 Series Instruction Set
	1. Overview
	1.1 R32C/100 Series Overview
	1.2 Address Space
	1.3 Register Set
	1.3.1 General Purpose Registers
	1.3.2 Fast Interrupt Registers
	1.3.3 DMAC-associated Registers
	1.3.4 Flag Register (FLG)
	1.3.5 Register Bank
	1.3.6 Internal Register Values

	1.4 Data Types
	1.4.1 Integer
	1.4.2 Decimal
	1.4.3 Fixed-point Number
	1.4.4 Floating-point Number
	1.4.5 Bit
	1.4.6 String

	1.5 Data Configuration
	1.5.1 Data Configuration in Register
	1.5.2 Data Configuration in Memory

	1.6 Instruction Formats
	1.6.1 Opcode
	1.6.2 Operand

	1.7 Interrupt Vector Table
	1.7.1 Fixed Vector Table
	1.7.2 Relocatable Vector Table

	2. Addressing Mode
	2.1 Addressing Mode
	2.2 Guide to This Chapter
	2.3 General Instruction Addressing
	2.4 Indirect Instruction Addressing
	2.5 Extended Instruction Addressing
	2.6 Special Instruction Addressing
	2.7 Bit Instruction Addressing

	3. Instruction
	3.1 Guide to This Chapter
	3.2 Instruction Details
	ABS
	ADC
	ADCF
	ADD
	ADDF
	ADSF
	AND
	BCLR
	BITINDEX
	BMCnd
	BNOT
	BRK
	BRK2
	BSET
	BTST
	BTSTC
	BTSTS
	CLIP
	CMP
	CMPF
	CNVIF
	DADC
	DADD
	DEC
	DIV
	DIVF
	DIVU
	DIVX
	DSBB
	DSUB
	EDIV
	EDIVU
	EDIVX
	EMUL
	EMULU
	ENTER
	EXITD
	EXITI
	EXTS
	EXTZ
	FCLR
	FREIT
	FSET
	INC
	INDEXType
	INT
	INTO
	JCnd
	JMP
	JMPI
	JSR
	JSRI
	LDC
	LDCTX
	LDIPL
	MAX
	MIN
	MOV
	MOVA
	MOVDir
	MUL
	MULF
	MULU
	MULX
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHA
	PUSHC
	PUSHM
	REIT
	RMPA
	ROLC
	RORC
	ROT
	ROUND
	RTS
	SBB
	SCCnd
	SCMPU
	SHA
	SHL
	SIN
	SMOVB
	SMOVF
	SMOVU
	SOUT
	SSTR
	STC
	STCTX
	STNZ
	STOP
	STZ
	STZX
	SUB
	SUBF
	SUNTIL
	SWHILE
	TST
	UND
	WAIT
	XCHG
	XOR

	3.3 INDEX Instruction
	3.3.1 INDEXB.size src
	3.3.2 INDEX1.size src
	3.3.3 INDEX2.size src
	3.3.4 BITINDEX.size src
	3.3.5 Enabled Instruction List to Be Executed Next to INDEX Instruction
	3.3.6 Addressing Mode

	4. Instruction Codes/Number of Cycles
	4.1 Guide to This Chapter
	4.2 Addressing
	4.2.1 Specifying Operation Length
	4.2.2 Specifying the Operand
	4.2.3 Specifying Conditions

	4.3 Instruction Codes/Number of Cycles
	ABS ABS
	ADC ADC
	ADCF ADCF
	ADD ADD
	ADDF ADDF
	ADSF ADSF
	AND AND
	BCLR BCLR
	BITINDEX BITINDEX
	BMCnd BMCnd
	BNOT BNOT
	BRK BRK
	BRK2 BRK2
	BSET BSET
	BTST BTST
	BTSTC BTSTC
	BTSTS BTSTS
	CLIP CLIP
	CMP CMP
	CMPF CMPF
	CNVIF CNVIF
	DADC DADC
	DADD DADD
	DEC DEC
	DIV DIV
	DIVF DIVF
	DIVU DIVU
	DIVX DIVX
	DSBB DSBB
	DSUB DSUB
	EDIV EDIV
	EDIVU EDIVU
	EDIVX EDIVX
	EMUL EMUL
	EMULU EMULU
	ENTER ENTER
	EXITD EXITD
	EXITI EXITI
	EXTS EXTS
	EXTZ EXTZ
	FCLR FCLR
	FREIT FREIT
	FSET FSET
	INC INC
	INDEX1 INDEX1
	INDEX2 INDEX2
	INDEXB INDEXB
	INT INT
	INTO INTO
	JCnd JCnd
	JMP JMP
	JMPI JMPI
	JSR JSR
	JSRI JSRI
	LDC LDC
	LDCTX LDCTX
	LDIPL LDIPL
	MAX MAX
	MIN MIN
	MOV MOV
	MOVA MOVA
	MOVDir MOVDir
	MUL MUL
	MULF MULF
	MULU MULU
	MULX MULX
	NEG NEG
	NOP NOP
	NOT NOT
	OR OR
	POP POP
	POPC POPC
	POPM POPM
	PUSH PUSH
	PUSHA PUSHA
	PUSHC PUSHC
	PUSHM PUSHM
	REIT REIT
	RMPA RMPA
	ROLC ROLC
	RORC RORC
	ROT ROT
	ROUND ROUND
	RTS RTS
	SBB SBB
	SCCnd SCCnd
	SCMPU SCMPU
	SHA SHA
	SHL SHL
	SIN SIN
	SMOVB SMOVB
	SMOVF SMOVF
	SMOVU SMOVU
	SOUT SOUT
	SSTR SSTR
	STC STC
	STCTX STCTX
	STNZ STNZ
	STOP STOP
	STZ STZ
	STZX STZX
	SUB SUB
	SUBF SUBF
	SUNTIL SUNTIL
	SWHILE SWHILE
	TST TST
	UND UND
	WAIT WAIT
	XCHG XCHG
	XOR XOR

	5. Interrupts
	5.1 Overview
	5.1.1 Interrupt Types
	5.1.2 Software Interrupts
	5.1.3 Hardware Interrupts

	5.2 Interrupt Control
	5.2.1 Interrupt Enable Flag (I Flag)
	5.2.2 Interrupt Request Bit
	5.2.3 Interrupt Request Level and Processor Interrupt Priority Level (IPL)
	5.2.4 Rewrite the Interrupt Control Register

	5.3 Interrupt Sequence
	5.3.1 Interrupt Response Time
	5.3.2 IPL After Interrupt Request Acceptance
	5.3.3 Register Saving

	5.4 Register Restoring
	5.5 Interrupt Priority
	5.6 Multiple Interrupts
	5.7 Notes on Interrupts

	Index
	Revision History

