

RA4M2 グループ

RA4M2 MCU グループ用評価キット EK-RA4M2 v1 ユーザーズマニュアル

Renesas RA ファミリ RA4 シリーズ

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、予告なしに、本資料に記載した製品または仕様を変更することがあります。ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよび これらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様 または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、 複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図して おります。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等

当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。)から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および 技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定 めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属し ます。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静雷気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 雷源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、VIL (Max.) から VIH (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VIL (Max.) から VIH (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス(予約領域)のアクセス禁止

リザーブアドレス(予約領域)のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス(予約領域)があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

免責事項

本評価キット EK-RA4M2 を使用することにより、お客様は下記条件に同意されたものとみなされます。下記条件は、https://www.renesas.com/en-us/legal/disclaimer.html に記載されている弊社の一般利用条件に追加されるものであり、下記条件と一般利用条件との間に不一致がある場合は下記条件が優先します。

ルネサスは、EK-RA4M2に瑕疵がないことを保証するものではありません。EK-RA4M2の使用結果および性能に関する危険については、すべてお客様が負うものとします。EK-RA4M2は、明示的または黙示的を問わず、一切の保証を伴わずに「現状のまま」で弊社により提供されます。当該保証には良好な出来栄え、特定目的への適合性、商品性、権限および知的財産権の非侵害についての黙示の保証が含まれますが、これらに限られません。弊社は、かかる一切の保証を明示的に否認します。

弊社は、EK-RA4M2 を完成品と考えていません。したがって、EK-RA4M2 はリサイクル、制限物質、電磁環境適合性の規制など、完成品に適用される一部の要件にまだ準拠していない場合があります。 EK-RA4M2 の認証 (Certification) および準拠 (Compliance) に関する情報は、「認証」の章をご参照ください。キットユーザが居る地域ごとに適用されるあらゆる地域的な要件に対する適合性を確認することは、全てそのキットユーザの責任であるものとします。

弊社または関連会社は、逸失利益、データの損失、契約機会の損失、取引上の損失、評判や信用の棄損、経済的損失、再プログラミングやリコールに 伴う費用については(前述の損失が直接的であるか間接的であるかを問わず)一切責任を負いません。また、弊社または関連会社は、EK-RA4M2の使用 に起因または関連して生じるその他の特別、付随的、結果的損害についても、直接的であるか間接的であるかを問わず、弊社またはその関連会社が当該 損害の可能性を指摘されていた場合でも、一切責任を負いません。

弊社は本書に記載されている情報を合理的な注意を払って作成していますが、当該情報に誤りがないことを保証するものではありません。また、弊社は本書に記載されている他のベンダーにより示された部品番号のすべての適用やパラメータが正確に一致していることを保証するものでもありません。本書で提供される情報は、弊社製品の使用を可能にすることのみを目的としています。本書により、または弊社製品と関連して、知的財産権に対する明示または黙示のライセンスが許諾されることはありません。弊社は、製品の仕様および説明を予告なしに随時変更する権利を留保します。本書に記載されている情報の誤りまたは欠落に起因する損害がお客様に生じた場合においても弊社は一切その責任を負いません。弊社は、他社のウェブサイトに記載されている情報の正確性については検証できず、一切責任を負いません。

注意事項

本評価キットは、周囲温度および湿度を制御された実験室の環境でのみ使用されることを前提としています。本製品と高感度機器間には安全な距離を置いてください。実験室、教室、研究エリアもしくは同種のエリア以外での使用は、EMC指令の保護要件への準拠を無効にし、起訴される可能性があります。

本製品は、RF エネルギーを生成・使用し、また放出可能で、無線通信に有害な干渉を起こす可能性があります。しかしながら、特定の実装環境で干渉が起こらないという保証はありません。本装置をオンオフすることにより無線やテレビ受信に有害な干渉を及ぼしていると判断される場合は、下記の対策を講じて干渉を補正してください。

- ・附属のケーブルが装置をまたがらないようにする
- ・受信アンテナの方向を変える
- ・装置とレシーバをさらに離す
- ・装置を接続するコンセントをレシーバが接続してあるコンセントとは異なる回路のコンセントにする
- ・使用していないときは装置の出力を下げる
- ・販売店もしくは経験豊富な無線/TV 技術者に相談する

注:可能なかぎりシールドインタフェースケーブルを使用してください。

本製品は、EMC 事象の影響を受ける可能性があります。影響を軽減するために、下記の対策をとってく ださい。

- ・製品使用中は製品の10メートル以内で携帯電話を使用しない
- ・装置取扱時には ESD に関する注意事項を順守する

本評価キットは、最終製品の理想的なリファレンス設計を表すものではなく、最終製品の規制基準を満足するものでもありません。

Renesas RA ファミリ

EK-RA4M2 v1 ユーザーズマニュアル

目次

1.	概要	4
1.1	本書の前提と注意事項	7
2.	製品構成	8
3.	製品注文情報	8
4.	ハードウェアアーキテクチャと初期設定	9
4.1	キットアーキテクチャ	9
4.2	システムブロック図	10
4.3	ジャンパ設定	10
4.3.	1 はんだジャンパ	10
4.3.2	2 ピンヘッダジャンパ	11
4.3.3	3 ジャンパの初期設定	11
5.	System Control and Ecosystem Access Area	12
5.1	- 電源供給	
5.1.	1 電源供給のオプション	13
5.1.2	2 電源に関する考慮事項	13
5.1.3	3 電源投入時の動作	14
5.2	デバッグとトレース	14
5.2.	1 オンボードデバッグ	14
5.2.2	2 デバッグ入力	15
5.2.3	3 デバッグ出力	17
5.3	エコシステム	17
5.3.	1 Seeed Grove® コネクタ	17
5.3.2	2 SparkFun® Qwiic® コネクタ	18
5.3.3	3 Digilent Pmod™ コネクタ	18
5.3.4	4 Arduino™ コネクタ	20
5.3.5	5 MikroElektronika™ mikroBUS コネクタ	22
5.4	コネクティビティ	22
5.4.	1 USB フルスピード	22
5.5	その他	
5.5.	1 ユーザ LED と Power LED	23
5.5.2	2 ボードボタン	24
5.5.3	3 MCU ブートモード	24
6.	Special Feature Access Area	25
6.1	Quad-SPI フラッシュ	25
7.	MCU Native Pin Access Area	26
7.1	ブレイクアウトピンヘッダ	26

7.2 N	ICU および USB 電流測定	27
8. 認	証	28
	 :MI/EMC 基準	
8.2 杉	オ料の選定、消費、リサイクル、および廃棄の標準	28
8.3 🕏	₹全規格	28
9. 設	計、製造情報	29
10. ウ	ェブサイトおよびサポート	29
改訂記	録	30
図		
一 図 1	EK-RA4M2 ボード(上面)	5
図 2	EK-RA4M2 ボード(裏面)	6
図 3	EK-RA4M2 v1 評価キット構成	8
図 4	EK-RA4M2 ボードの機能エリアの定義	9
図 5	EK-RA4M2 ボードブロック図	10
図 6	はんだジャンパ	11
図 7	System Control and Ecosystem Access Area	12
図 8	電源供給のオプション	13
図 9	EK-RA4M2 デバッグインタフェース	15
図 10	Seeed Grove と Qwiic コネクタ	18
図 11	Pmod 1 コネクタ	19
図 12	Pmod 1 はんだジャンパ(ショート)	19
図 13	Pmod 2 コネクタ	20
図 14	Arduino Uno コネクタ	21
図 15	mikroBUS コネクタ	22
図 16	USB フルスピードコネクタ	23
図 17	ユーザ LED	23
図 18	Power LED	24
図 19	リセットとユーザボタン	24
図 20	ブートモード	24
図 21	Special Feature Access Area	25
図 22	Quad-SPI フラッシュ	25
図 23	Native Pin Access Area	26
図 24	RA USB 電流測定回路	27
図 25	RA +3.3 V 電流測定回路	27
図 26	PA MCII 電液測定	27

表

表 1	ジャンパ初期設定	11
表 2	デバッグモード	14
表 3	デバッグモード毎のジャンパ接続の概要	14
表 4	USB デバッグコネクタ	14
表 5	オンボードデバッグモードのジャンパ構成	15
表 6	デバッグ入力モードのジャンパ構成	16
表 7	JTAG/SWD/TRACE コネクタ	16
表 8	JTAG/SWD コネクタ	16
表 9	デバッグ出力 ジャンパ構成	17
表 10	Grove 1 コネクタ	17
表 11	Grove 2 コネクタ	17
表 12	・ Qwiic コネクタ	18
表 13	Pmod 1 コネクタ	18
表 14	Pmod 2 コネクタ	20
表 15	Arduino Uno コネクタ	20
表 16	mikroBUS コネクタ	22
表 17	USB フルスピードコネクタ	23
表 18	B EK-RA4M2 ボード LED 機能	23
表 19	EK-RA4M2 ボードのボタン	24
表 20	QSPI フラッシュポート割り当て	25
表 21	FK-RΔ4M2 ボード 設計パッケージの内突	20

1. 概要

RA4M2 MCU グループの評価キットである EK-RA4M2 を使用すると、RA4M2 MCU グループの機能を簡単に評価し、フレキシブルソフトウェアパッケージ(FSP)および e² studio IDE を使用して組み込みシステムアプリケーションを開発できます。ユーザは豊富なオンボード機能とポピュラーなエコシステムアドオンの選択を利用して、大きなアイデアを実現できます。

EK-RA4M2 ボードの主要な機能は、以下のグループ(キットのアーキテクチャに一致)に分類されます。

• MCU Native Pin Access

- R7FA4M2AD3CFP MCU (以降、RA MCU)
- 100 MHz Arm® Cortex®-M33 コア
- 512kB コードフラッシュメモリ、128kB SRAM
- 100 ピン LQFP パッケージ
- 28 ピンx4オスヘッダによるネイティブピンアクセス
- MCU および USB 電流測定ポイントにより、正確な消費電流が測定可能
- マルチクロックソース RA MCU オシレーターおよびサブクロック水晶発振子。精度 24.000 MHz および 32,768Hz の基準クロックを提供。 RA MCU の内部では、追加の低精度クロックを使用可能

• System Control and Ecosystem Access

- USB フルスピードホストおよびデバイス(micro A-B コネクタ)
- 3つの5V入力ソース
- USB(デバッグ、フルスピード)
- ― 外部電源(表面実装クランプテストポイントと電源入力ビアを使用)
- 3つのデバッグモード
 - デバッグオンボード (SWD)
- デバッグ入力(ETM、SWD、および JTAG)
- デバッグ出力 (SWD)
- ユーザ LED とボタン
 - 3 つの LED (赤、青、緑)
 - Power LED (白) 電源供給を明示
 - デバッグ LED(黄)デバッガの接続を明示
- 2 つのユーザボタン
- 1つのリセットボタン
- 5つのもっともポピュラーなエコシステム拡張
- 2 Seeed Grove® システム(I2C/アナログ) コネクタ
- SparkFun® Qwiic® コネクタ
- 2 Digilent Pmod™ (SPI および UART) コネクタ
- Arduino™ (Uno R3) コネクタ
- MikroElektronika™ mikroBUS コネクタ
- MCU ブート設定ジャンパ

Special Feature Access

• 32 MB(256 Mb)外部 Quad-SPI フラッシュ

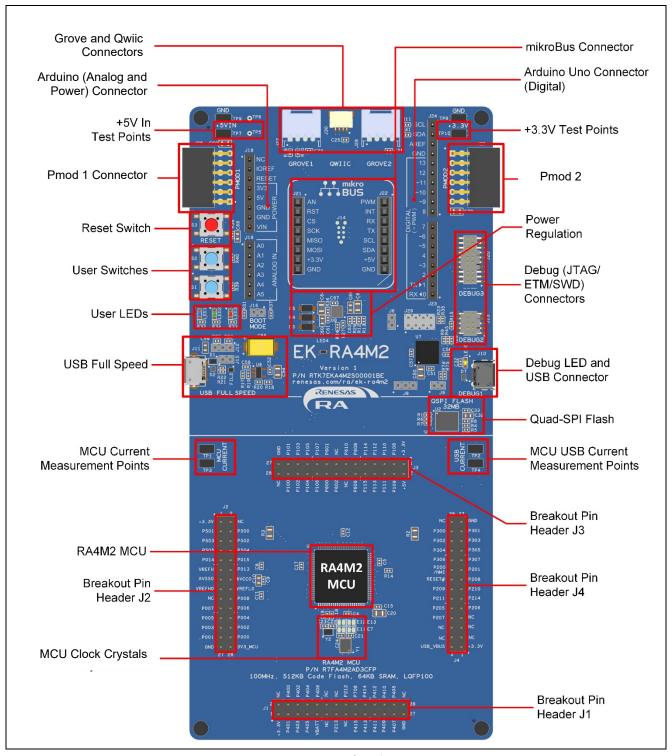


図 1 EK-RA4M2 ボード (上面)

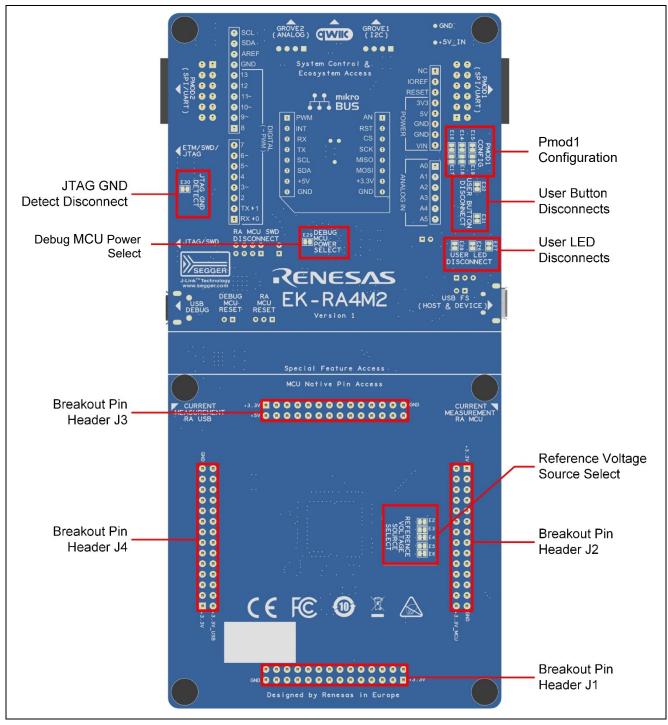


図 2 EK-RA4M2 ボード (裏面)

1.1 本書の前提と注意事項

- 1. 本書は、ユーザがマイクロコントローラと組み込みシステムハードウェアに関する基本事項を理解していることを想定しています。
- 2. ユーザは、まず EK-RA4M2 クイックスタートガイドを参照して、本キットとこれにあらかじめ書き込まれているクイックスタートサンプルプログラムを理解することを推奨します。
- 3. EK-RA4M2 の組み込みアプリケーションの開発には、FSP(Flexible Software Package)と e² studio などの IDE(Integrated Development Environment:統合開発環境)が必要です。
- 4. ソフトウェアのダウンロードとインストール、サンプルプロジェクトのインポート、ビルド、および EK-RA4M2 ボードの書き込み手順はクイックスタートガイドに記載されています。

2. 製品構成

本キットは以下の部品で構成されています。

- 1. EK-RA4M2 ボード 1個
- 2. Micro USB デバイスケーブル(USB Type A オス Micro-B オス変換) 1本
- 3. Micro USB ホストケーブル(USB Type A メス Micro-B オス変換) 1本

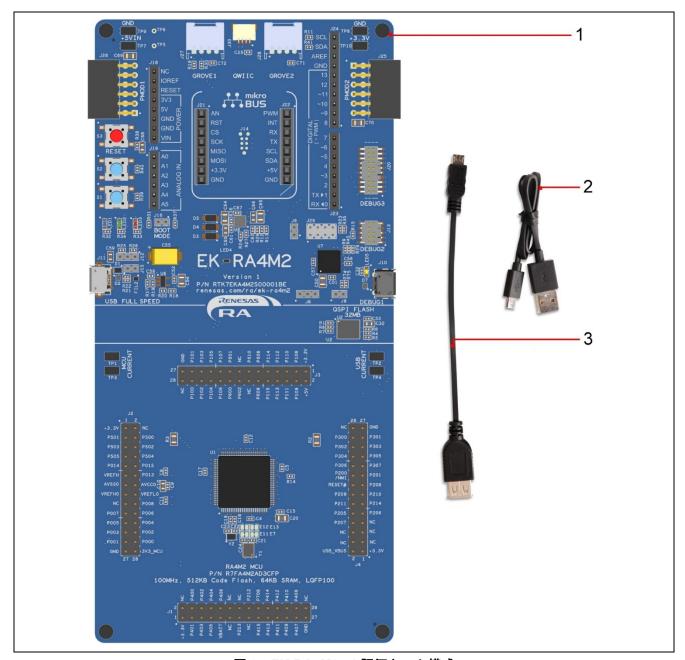


図 3 EK-RA4M2 v1 評価キット構成

3. 製品注文情報

- EK-RA4M2 v1 注文用製品型名: RTK7EKA4M2S0000<u>1</u>BE
 注: 注文可能なパーツ番号の下線付きの文字は、キットのバージョンを表しています。
- EK-RA4M2 ボードの寸法:80 mm(幅)x 170 mm(長さ)

4. ハードウェアアーキテクチャと初期設定

4.1 キットアーキテクチャ

EK-RA4M2 ボードは、3 つのセクションまたはエリアで設計されており、ユーザの学習時間を短縮し、類似のキット間での設計と知識の再利用を最大化します。 これら 3 つのエリアの内容は、類似のキット間で概念的に標準化されています。

キットエリア	エリアの特徴	すべての類似キット に存在するエリア	機能
MCU Native Pin Access Area	RA MCU、全 MCU I/O および電力、電 流測定用のブレイクアウトピンヘッダ	あり	MCU に依存
Special Feature Access Area	MCU の特別な機能:Quad-SPI	オプション	MCU に依存
System Control and Ecosystem Access Area	電源、デバッグ MCU、ユーザ LED と ボタン、リセット、エコシステムコネ クタ、USB フルスピードホストとデバ イス、MCU ブート	あり	類似キットと同じ、または類似

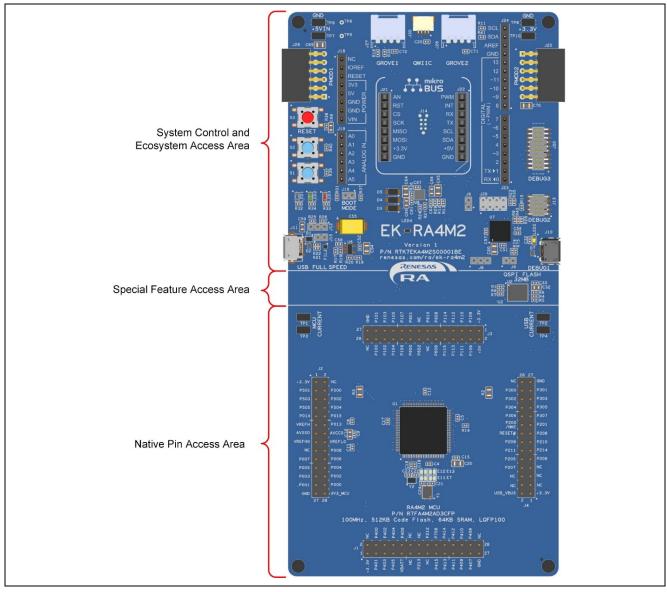


図 4 EK-RA4M2 ボードの機能エリアの定義

4.2 システムブロック図

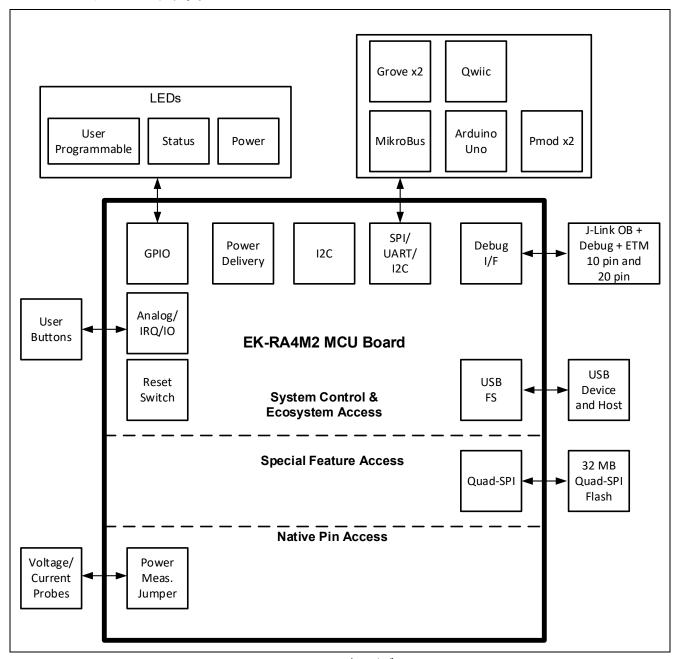


図 5 EK-RA4M2 ボードブロック図

4.3 ジャンパ設定

EK-RA4M2 ボードには2種類のジャンパが用意されています。

- 1. はんだジャンパ(はんだジャンパ(ショート)およびはんだジャンパ(オープン))
- 2. ピンヘッダジャンパ

次の章では、各タイプとその初期設定について説明します。

4.3.1 はんだジャンパ

はんだジャンパには、はんだジャンパ(ショート)とはんだジャンパ(オープン)の2種類があります。

はんだジャンパ(ショート)は、細い銅のトレースで接続されたパッドです。はんだジャンパ(ショート)は、シルクスクリーンでプリントされた四角い線で囲まれています。パッドを絶縁するには、隣り合う各パッド間のトレースをカットした後に、機械的に、もしくは熱を使ってトレース部に残った銅箔を取り除いてください。エッチングされた銅のトレースを取り除くと、はんだジャンパ(ショート)はそれ以降、はんだジャンパ(オープン)になります。

はんだジャンパ (オープン) は 2 つの絶縁されたパッドで構成され、次の 3 つの方法のいずれかで接合することができます。

- 両方のパッドにはんだ付けを行い、それぞれのパッド上に隆起部分を作り、この両パッド上の隆起 に、はんだごてを渡すように接触して両方のパッドを接合させます。
- 小さなワイヤーを2つのパッド間に配置し、はんだ付けすることができます。
- SMT 抵抗器 (サイズ 0805、0603、0402) を 2 つのパッドに配置し、はんだ付けすることができます。 0Ω 抵抗がパッド同士を短絡させます。

はんだジャンパ(オープン)の周りに印刷されたシルクスクリーンオーバーレイは、パッド間の分離領域に 隣接する線にギャップがあるボックスです。

パッド間に電気的接続がある場合(はんだジャンパ(ショート)の初期設定)は、はんだジャンパの接続は 短絡しているとみなされます。パッド間に電気的接続のない場合(はんだジャンパ(オープン)の初期設 定)は、接続は開放とみなされます。

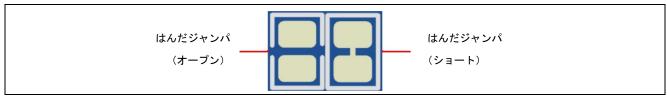


図6 はんだジャンパ

4.3.2 ピンヘッダジャンパ

これらのジャンパは、それらを開放・短絡するために外部シャントを必要とする小さなピッチのジャンパです。 EK-RA4M2 ボードのピンジャンパーは 2 mm ピッチのヘッダーで、互換性のある 2 mm シャントジャンパが必要です。

4.3.3 ジャンパの初期設定

次の表は、EK-RA4M2 の各ジャンパの初期設定を示しています。ここには、ピンジャンパ(Jx 表示)とはんだジャンパ(Ex 表示)が含まれます。

各ジャンパの回路グループはボード回路図に表示されており(デザインパッケージで利用可能)、それに 準拠しています。リストに記載されている機能の詳細については、各機能の章を参照してください。

		— • • • • •	
位置	回路グループ	初期設定(開放/短絡)	機能
J6	J-Link OB	短絡	
J8	J-Link OB	ジャンパピン 1-2 短絡	
J9	J-Link OB	開放	デバッグモードを"オンボードデバッグ"に設定
J29	J-Link OB	ジャンパピン 1-2 短絡 ジャンパピン 3-4 短絡 ジャンパピン 5-6 短絡 ジャンパピン 7-8 短絡	(デバッグモード詳細については、セクション 5.2 を 参照してください)
J16	MCU モード設定	開放	MCU を通常ブートモードに設定
J12	USB FS	ジャンパピン 2-3 短絡	USB FS 電源をデバイスモードに設定
J15	USB FS	ジャンパピン 1-2 短絡	Micro USB 電源をシステム電源に接続
E2	MCU Power	短絡	VREFH を+3.3 V に接続
E3	MCU Power	短絡	AVCC0 を+3.3 V に接続
E4	MCU Power	短絡	AVSS0 を GND に接続
E5	MCU Power	短絡	VREFL0 を GND に接続
E6	MCU Power	短絡	VREFH0 を+3.3 V に接続
E7	MCU Clock	短絡	EXTAL を 24MHz 水晶発振子に接続
E11	MCU Clock	短絡	XTAL を 24MHz 水晶発振子に接続
E12	MCU Clock	開放	P213/XTAL をピンヘッダに接続
E13	MCU Clock	開放	P212/EXTAL をピンヘッダに接続
E14	Pmod 1	短絡	P206 (MISO4/RXD4) を Pmod 1 に接続
E15	Pmod 1	短絡	P400 (SCK4) を Pmod 1 に接続

表1 ジャンパ初期設定

位置	回路グループ	初期設定(開放/短絡)	機能
E16	Pmod 1	短絡	+3.3V を Pmod 1 に接続
E17	Pmod 1	開放	+5.0V を Pmod 1 に接続
E18	Pmod 1	開放	P408 (SCL3) を Pmod 1 に接続
E19	Pmod 1	開放	P409 (SDA3) を Pmod 1 に接続
E26	ユーザ LED	短絡	P404 をユーザ LED2 に接続
E27	ユーザ LED	短絡	P415 をユーザ LED1 に接続
E28	ユーザ LED	短絡	P405 をユーザ LED3 に接続
E29	Debug MCU Power	短絡	Debug MCU power を+3.3 V に接続
E30	JTAG	短絡	J20 と J13 の JTAG GND 検出ピンを GND に接続
E31	ユーザボタン	短絡	P005 をユーザボタン S1 に接続
E32	ユーザボタン	短絡	P006 をユーザボタン S2 に接続

5. System Control and Ecosystem Access Area

次の図は、EK-RA4M2 ボードの System Control and Ecosystem Access Area を示しています。以降のセクションでは、このエリアで提供される機能について詳しく説明します。

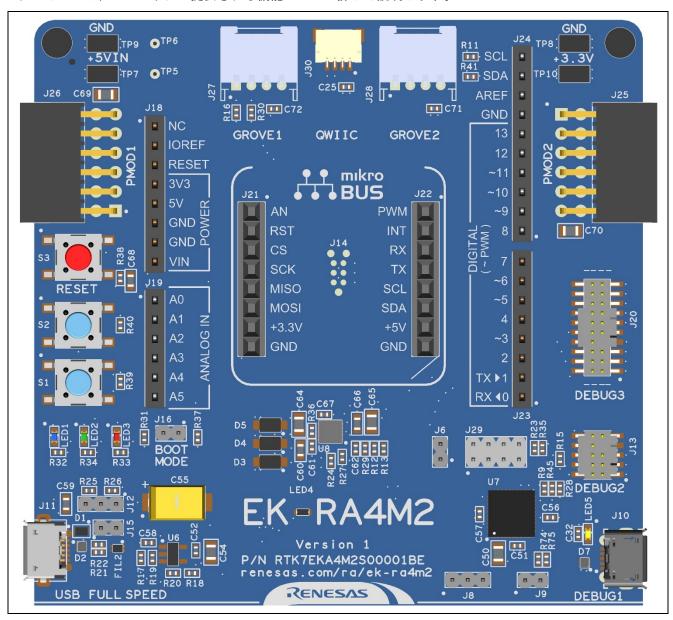


図 7 System Control and Ecosystem Access Area

5.1 電源供給

EK-RA4M2 は 5 V で動作するように設計されています。ボードの低電圧変換レギュレータ(LDO)を使用して 5 V 電源を 3.3 V 電源に変換します。3.3 V 電源は RA MCU およびその他周辺機能に電源供給するために使用します。

5.1.1 電源供給のオプション

本章では、EK-RA4M2の電源供給について、いくつかの方法を説明します。

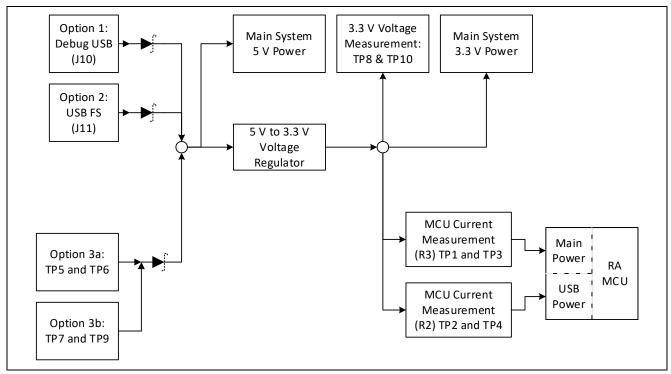


図8 電源供給のオプション

5.1.1.1 オプション1: デバッグ USB

5 V は、外部 USB ホストからボード上の DEBUG とラベル付けされた USB デバッグコネクタ(J10)に 供給されます。この電源はメインシステムの 5 V 電源の間に逆電流保護が提供されます。

5.1.1.2 オプション 2: USB フルスピード

 $5\,V$ は、外部 USB ホストからボード上の USB FULL SPEED というラベルの付いた USB フルスピードコネクタ(J11)に供給できます。 この電源からの電力は、メインシステムの $5\,V$ 電源に接続されます。 このコネクタとメインシステムの $5\,V$ 電源の間に逆電流保護が提供されます。

5.1.1.3 オプション3:5V テストポイント

5 V は、外部電源からボード上のテストポイントに供給できます。 TP7 (5 V) および TP9 (GND) はループスタイルのテストポイントであり、TP5 (5 V) および TP6 (GND) はスタイルのテストポイントを介して大きくなります。 2 種類のテストポイントは電気的に同等であり、どちらもユーザの便宜のために提供されています。 この電源はメインシステムの 5 V 電源に接続されます。 5 V テストポイントとメインシステムの 5 V 電源の間に逆電流保護が提供されます。

5.1.2 電源に関する考慮事項

+3.3 V を供給するボード上の低電圧変換レギュレータには、2.0A の電流制限が組み込まれています。RA MCU、アクティブなオンボード機能、および接続されている周辺機器に必要な合計電流がこの制限を超えないようにしてください。

注:標準的な USB ホストから利用可能な合計電流は最大 500 mA です。製品の構成によっては複数の電源が必要になる場合があります。

5.1.3 電源投入時の動作

電源投入すると、ボードの中央近くの白色の LED(シルク EK-RA4M2 の'-'部分)が点灯します。初期 電源投入時の動作の詳細については、EK-RA4M2 クイックスタートガイドを参照してください。

5.2 デバッグとトレース

EK-RA4M2 ボードは、次の3つのデバッグモードをサポートしています。

表 2 デバッグモード

デバッグモード		ターゲット MCU	デバッグインタフ	使用するコネクタ
	(PC 上の IDE に 接続するもの)	(デバッグされる もの)	ェース/言語	
オンボード	S124	RA4M2	SWD	USB デバッグ (J10)
デバッグ	(オンボード)	(オンボード)		
デバッグ入力	外部デバッグ	RA4M2	SWD, ETM, JTAG	20 ピンコネクタ(J20)
	ツール	(オンボード)		または 10 ピンコネクタ(J13)
デバッグ出力	S124	外付け RA MCU	SWD	USB デバッグ(J10) および
	(オンボード)			20 ピンコネクタ(J20)
				または 10 ピンコネクタ(J13)

注:

- デバッグ USB コネクタピンの定義については、表 4 を参照してください。
- 20 ピン JTAG コネクタピンの定義については、表 7 を参照してください。
- 10 ピン JTAG コネクタピンの定義については、表 8 を参照してください。

以下の表は、各デバッグモードのジャンパ設定をまとめたものです。

表 3 デバッグモード毎のジャンパ接続の概要

Debug Modes	J6	J8	J9	J29
オンボードデバッグ	短絡	ジャンパピン 1-2 短絡	開放	ジャンパピン 1-2, 3-4, 5-6, 7-8 短絡
デバッグ入力	短絡	ジャンパピン 1-2 短絡	短絡	ジャンパピン 1-2, 3-4, 5-6, 7-8 短絡
デバッグ出力	開放	ジャンパピン 2-3 短絡	開放	全ピン開放

5.2.1 オンボードデバッグ

オンボードデバッグ機能は、ルネサス S124 デバッグ MCU および SEGGER J-Link® ファームウェアを使 用して提供されます。USB デバッグコネクタ(J10)は、S124 デバッグ MCU を外部 USB フルス ピード ホストに接続し、ターゲット RA MCU ファームウェアの再プログラミングとデバッグを可能にします。こ の接続は、EK-RA4M2ボードにおいて初期設定のデバッグモードです。

S124 デバッグ MCU は、SWD インタフェースを使用してターゲット RA MCU に接続します。

表 4 USB デバッグコネクタ

	USB デバッグコネクタ	EK-RA4M2
ピン	説明	信 号 /パス
J10-1	+5VDC	+5V_USB_DBG
J10-2	Data-	USB_DM (U7-12)
J10-3	Data+	USB_DP (U7-13)
J10-4	USB ID, jack internal switch, cable inserted	N.C.
J10-5	Ground	GND

黄色の LED5 は、デバッグインタフェースの状態を示すインジケータとして機能します。 EK-RA4M2 ボ ードの電源がオンで LED5 が点滅している場合、S124 デバッグ MCU がプログラミングホストに接続され ていないことを示しています。 LED5 が点灯している場合、S124 デバッグ MCU がプログラミングインタ フェースに接続されていることを示します。

EK-RA4M2 ボードにてオンボードデバッグモードを使用する場合、ジャンパ構成以下に示します。

表 5 オンボードデバッグモードのジャンパ構成	表 5	オンボー	ドデバッ・	ゲモー	ドのジャ	ンパ構成
-------------------------	-----	------	-------	-----	------	------

位置	初期設定	機能
J6	短絡	ターゲット MCU MD をデバッガに接続
J8	ジャンパピン 1-2 短絡	ターゲット MCU RESET#を デバッガの RESET#に接続
J9	開放	S124 デバッグ MCU は通常動作モード
J29	ジャンパピン 1-2, 3-4, 5-6, 7-8	ターゲット MCU デバッグ信号をデバッグインタフェース
	短絡	に接続

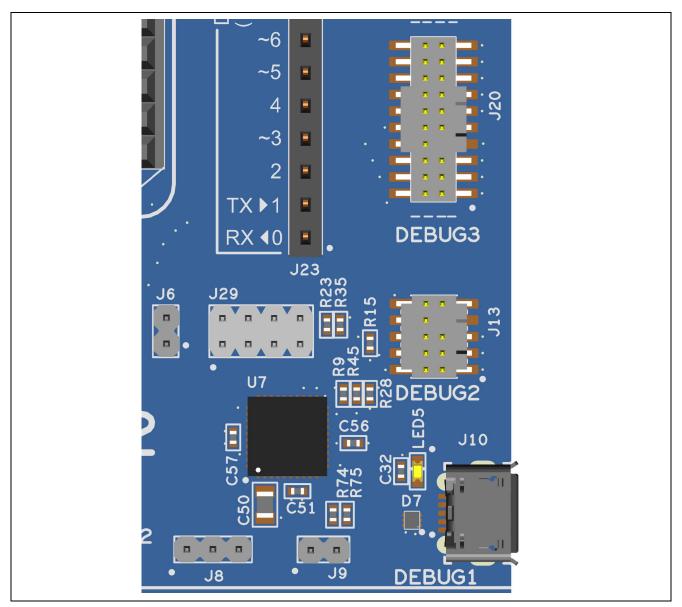


図9 EK-RA4M2 デバッグインタフェース

5.2.2 デバッグ入力

J20 の 1 つの 20 ピン Cortex® デバッグコネクタは、JTAG、SWD、および ETM(TRACE)デバッグをサポートします。 J13 の 1 つの 10 ピン Cortex® デバッグコネクタは、JTAG と SWD をサポートします。 これらのコネクタのいずれかをターゲット RA MCU の外部デバッグに使用できます。

EK-RA4M2 ボードにてデバッグ入力モードを使用する場合、ジャンパ構成を以下に示します。

表 6 デバッグ入力モードのジャンパ構成

位置	初期設定	機能
J6	短絡	ターゲット MCU MD をデバッガに接続
J8	ジャンパピン 1-2 短絡	ターゲット MCU RESET#を デバッガの RESET#に接続
J9	短絡	S124 デバッグ MCU はリセットを保持
J29	ジャンパピン 1-2, 3-4, 5-6, 7-8 短絡	ターゲット MCU デバッグ信号をデバッグインタフェースに接続

表 7 JTAG/SWD/TRACE コネクタ

JTAG コネクタ			EK-RA4M2	
ピン	JTAG ピン名	SWD ピン名	ETM ピン名	信号/バス
J20-1	Vtref	Vtref	Vtref	+3V3
J20-2	TMS	SWDIO	N/A	P108/SWDIO
J20-3	GND	GND	GND	GND
J20-4	TCK	SWCLK	N/A	P300/SWCLK
J20-5	GND	GND	GND	GND
J20-6	TDO	SWO	N/A	P109/TDO
J20-7	Key	Key	Key	N.C.
J20-8	TDI	NC/EXTb	N/A	P110/TDI
J20-9	GNDDetect	GNDDetect	GNDDetect	GND (E30 をカットして開放)
J20-10	nSRST	nSRST	nSRST	RESET#
J20-11	N/A	N/A	N/A	GND
J20-12	N/A	N/A	TCLK	P214/TCLK
J20-13	N/A	N/A	N/A	GND
J20-14	N/A	N/A	TDATA0	P211/TDATA0
J20-15	N/A	N/A	GND	GND
J20-16	N/A	N/A	TDATA1	P210/TDATA1
J20-17	N/A	N/A	GND	GND
J20-18	N/A	N/A	TDATA2	P209/TDATA2
J20-19	N/A	N/A	GND	GND
J20-20	N/A	N/A	TDATA3	P208/TDATA3

表 8 JTAG/SWD コネクタ

	JT		EK-RA4M2	
ピン	JTAG ピン名	SWD ピン名	ETM ピン名	信号/バス
J13-1	Vtref	Vtref	Vtref	+3V3
J13-2	TMS	SWDIO	N/A	P108/SWDIO
J13-3	GND	GND	GND	GND
J13-4	TCK	SWCLK	N/A	P300/SWCLK
J13-5	GND	GND	GND	GND
J13-6	TDO	SWO	N/A	P109/TDO
J13-7	Key	Key	Key	N.C.
J13-8	TDI	NC/EXTb	N/A	P110/TDI
J13-9	GNDDetect	GNDDetect	GNDDetect	GND (E30 をカットして開放)
J13-10	nSRST	nSRST	nSRST	RESET# (J8 経由)

注: Cortex® デバッグコネクタは、Arm® CoreSight™ アーキテクチャ仕様で詳しく説明されています。

5.2.3 デバッグ出力

EK-RA4M2 ボードは、S124 デバッグ MCU を使用して外部ボード上のターゲット RA MCU をデバッグするように構成できます。

黄色 LED5 は、デバッグインタフェースの状態を示すインジケータとして機能します。 EK-RA4M2 ボードの電源がオンで、LED5 が点滅している場合、これは S124 デバッグ MCU がプログラミングホストに接続されていないことを示しています。 LED5 が点灯している場合、これは S124 デバッグ MCU がプログラミングインタフェースに接続されていることを示します。

EK-RA4M2 ボードにてデバッグ出力モードを使用する場合、ジャンパ構成を以下に示します。

位置 初期設定 機能 J6 RA MCU との接続なし 開放 J8 ジャンパピン 2-3 短絡 オンボード RA MCU は RESET を保持 J9 開放 S124 デバッグ MCU は通常動作モード J29 すべてのジャンパを除去 オンボード RA MCU デバッグ信号をデバッグインタフェー スから切断

表 9 デバッグ出力 ジャンパ構成

5.3 エコシステム

System Control and Ecosystem ではこのコネクタを使用して、5 つのもっともポピュラーなエコシステムと互換性のあるいくつかのサードパーティアドオンモジュールを同時接続するオプションが提供されます。

- 1. 2つの Seeed Grove® システム(I2C とアナログ)コネクタ
- 2. SparkFun® Qwiic® コネクタ
- 3. 2つの Digilent Pmod™ (SPI および UART) コネクタ
- 4. Arduino™ (Uno R3) コネクタ
- 5. MikroElektronika™ mikroBUS コネクタ

5.3.1 Seeed Grove® コネクタ

5.3.1.1 Grove 1

Seeed Grove I2C コネクタは J27 にあります。 RA MCU は 2 線式シリアルマスタとして機能し、接続されたモジュールは 2 線式シリアルスレーブとして機能します。

	Grove 1 コネクタ EK-RA4M2		
ピン	説明	信号/バス	
J27-1	SCL	P408 (SCL3)	
J27-2	SDA	P409 (SDA3)	
J27-3	VCC	+3.3 V	
J27-4	GND	GND	

表 10 Grove 1 コネクタ

5.3.1.2 Grove 2

Seeed Grove Analog コネクタは J28 で提供されます。

表 11	Grove	2 コ	ネク	タ
------	-------	-----	----	---

	Grove 2 コネクタ	EK-RA4M2
ピン	説明	信号/パス
J28-1	A0	P002 (AN002)
J28-2	A1	P004 (AN004)
J28-3	VCC	+3.3 V
J28-4	GND	GND

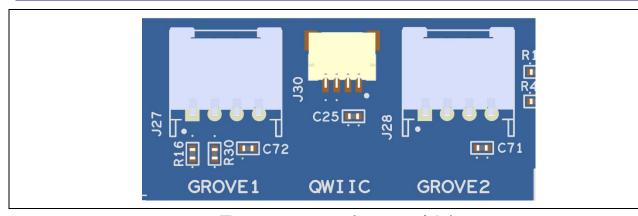


図 10 Seeed Grove と Qwiic コネクタ

5.3.2 SparkFun® Qwiic® コネクタ

Qwiic コネクタは J30 にあります。RA MCU は 2 線式シリアルマスタとして機能し、接続されたモジュールは 2 線式シリアルスレーブとして機能します。 (Grove 1 と共有するデータライン)

Qwiic コネクタ		EK-RA4M2
ピン	説明	信号/パス
J30-1	GND	GND
J30-2	VCC	+3.3 V
J30-3	SDA	P409 (SDA3)
J30-4	SCL	P408 (SCL3)

表 12 Qwiic コネクタ

5.3.3 Digilent Pmod™ コネクタ

5.3.3.1 Pmod 1

12 ピン Pmod Type-2A(拡張 SPI)および Type-3A(拡張 UART)コネクタは J26、Pmod 1 にあります。RA MCU は SPI マスタとして機能し、接続されたモジュールは SPI スレーブデバイスとして機能します。このインタフェースは、ファームウェアで他のいくつかの Pmod タイプとしてさらに再構成が可能です。

Pmod 1 コネクタ		EK-RA4M2	Pmod	1 構成	
ピン	初期説明	Option Type 6A	信号/パス	短絡	開放
J26-1	SS / CTS	NC / INT	P401 (SS4/CTS4/IRQ5-DS)		
J26-2	MOSI / TXD	NC / RESET	P207 (MOSI4/TXD4)		
J26-3	MISO / RXD		P206 (MISO4/RXD4)	E14	R18
		SCL	P408 (SCL3)	E18	E14
J26-4	SCK		P400 (SCK4)	E15	E19
		SDA	P409 (SDA3)	E19	E15
J26-5	GND		GND		
J26-6	VCC		+3.3 V	E16	E17
			+5.0V	E17	E16
J26-7	GPIO / INT (スレー	ブからマスタ)	P008 (IRQ12-DS)		
J26-8	GPIO / RESET (マ	スタからスレーブ)	P403		
J26-9	-9 GPIO / CS2		P402		
J26-10	10 GPIO / CS3		P406		
J26-11	GND		GND		
J26-12	VCC		+3.3 V	E16	E17
			+5.0V	E17	E16

表 13 Pmod 1 コネクタ

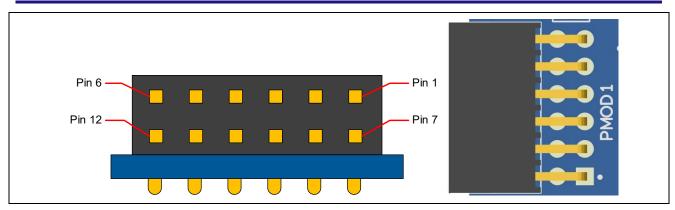


図 11 Pmod 1 コネクタ

この Pmod インタフェースは+3.3 V デバイスをサポートします。インストールされているすべての Pmod デバイスが+3.3 V 電源と互換性があることを確認してください。

Pmod Type 6A 操作

Pmod1 は、I2C 接続(Type 6A)をサポートするように構成可能です。代替の $5 \lor 1$ 電源オプションも用意しています。Type 6A 動作用に Pmod 1 を構成するには、表 13 に示すようにはんだジャンパ(ショート)を変更します。はんだジャンパ(ショート)を図 12 に示します。

注:電源のはんだジャンパ E16 および E17 を変更する場合は注意してください。EK ボードおよび接続されているモジュールに永久的な損傷が生じる可能性があります。

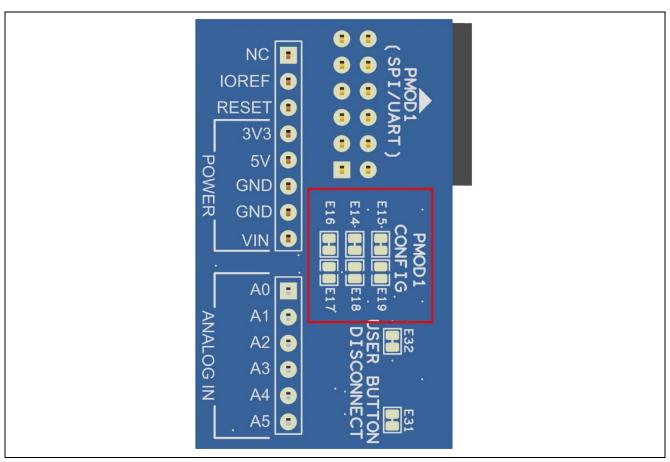


図 12 Pmod 1 はんだジャンパ(ショート)

5.3.3.2 Pmod 2

12ピン Pmod タイプ 2A コネクタは、J25、Pmod 2 で提供されます。RAMCU は SPI マスタとして機能 し、接続されたモジュールは SPI スレーブデバイスとして機能します。このインタフェースは、ファームウ ェアで他のいくつかの Pmod タイプとしてさらに再構成できます。

この Pmod インタフェースは+3.3 V デバイスをサポートします。インストールされているすべての Pmod デバイスが+3.3 V電源と互換性があることを確認してください。

	Pmod 2 コネクタ	EK-RA4M2
ピン	説明	信号/パス
J25-1	SS / CTS	P413 (SS0/CTS0)
J25-2	MOSI / TXD	P411 (MOSI0/TXD0)
J25-3	MISO / RXD	P410 (MISO0/RXD0)
J25-4	SCK	P412 (SCK0)
J25-5	GND	GND
J25-6	VCC	+3.3 V
J25-7	GPIO / INT (スレーブからマスタ)	P414 (IRQ9)
J25-8	GPIO / RESET (マスタからスレーブ)	P608
J25-9	GPIO / CS2	P609
J25-10	GPIO / CS3	P610
J25-11	GND	GND
J25-12	VCC	+3.3 V

表 14 Pmod 2 コネクタ

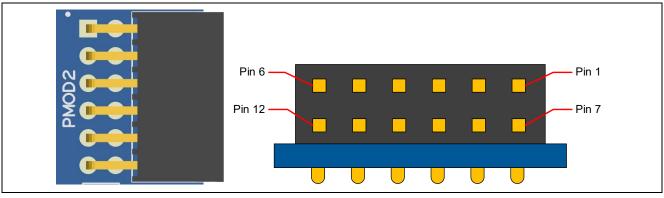


図 13 Pmod 2 コネクタ

5.3.4 Arduino™ コネクタ

System Control and Ecosystem Access area の中央付近には、Arduino Uno R3 互換コネクタインタフェ ースがあります。

表 15 Arduino Uno コネクタ			
	Arduino 互換コネクタ	EK-RA4M2	
ピン	説明	信号/バス	
J18-1	NC	NC	
J18-2	IOREF	+3.3 V	
J18-3	RESET	P115	
J18-4	3V3	+3.3 V	
J18-5	5V	+5V	
J18-6	GND	GND	
J18-7	GND	GND	
J18-8	VIN	NC	
J19-1	A0	P000 (AN000)	
J19-2	A1	P001 (AN001)	

	Arduino 互換コネクタ	EK-RA4M2
ピン	説明	信号/パス
J19-3	A2	P003 (AN003)
J19-4	A3	P007 (AN007)
J19-5	A4	P014 (AN012/DA0)
J19-6	A5	P015 (AN013/DA1)
J23-1	D0 / RXD	P100 (RXD0)
J23-2	D1 / TXD	P101 (TXD0)
J23-3	D2 / INT0	P304 (IRQ9)
J23-4	D3 / INT1 / PWM	P105 (IRQ0/GTIOC1A)
J23-5	D4	P106
J23-6	D5 / PWM	P111 (GTIOC3A)
J23-7	D6 / PWM	P103 (GTIOC2A)
J23-8	D7	P107
J24-1	D8	P102
J24-2	D9 / PWM	P114 (GTIOC2B)
J24-3	D10 / SPI_SS / PWM	P603 (SS9/GTIOC7A)
J24-4	D11 / SPI_MOSI / PWM	P602 (MOSI9/GTIOC7B)
J24-5	D12 / SPI_MISO	P601 (MISO9)
J24-6	D13 / SPI_SCK	P600 (SCK9)
J24-7	GND	GND
J24-8	AREF	+3.3 V
J24-9	I2C_SDA	P112 (SDA2)
J24-10	I2C_SCL	P113 (SCL2)

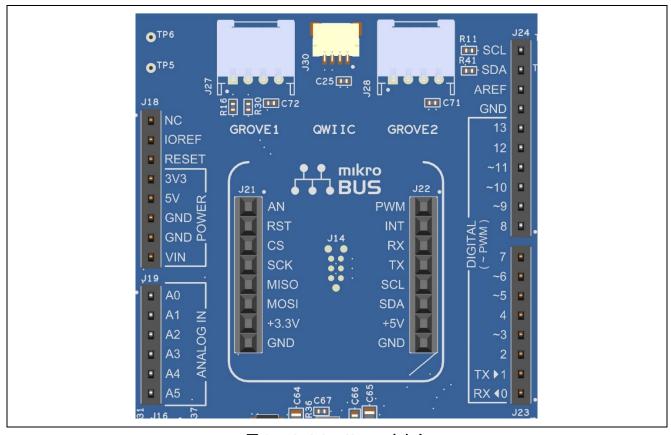


図 14 Arduino Uno コネクタ

5.3.5 MikroElektronika™ mikroBUS コネクタ

System Control and Ecosystem Access area の中央には、mikroBUS 互換のコネクタインタフェースがあります。このインタフェースは、mikroBUS 標準仕様リビジョン 2.00 に準拠しています。

	mikroBUS コネクタ	EK-RA4M2
ピン	説明	信号/パス
J21-1	AN (Analog)	P000 (AN000)
J21-2	RST (Reset)	P115
J21-3	CS (SPI Chip Select)	P603 (SS9)
J21-4	SCK (SPI Clock)	P600 (SCK9)
J21-5	MISO	P601 (MISO9)
J21-6	MOSI	P602 (MOSI9)
J21-7	+3.3 V	+3.3 V
J21-8	GND	GND
J22-1	PWM	P111 (GTIOC3A)
J22-2	INT (Hardware Interrupt)	P502 (IRQ12)
J22-3	RX (UART Receive)	P100 (RXD0)
J22-4	TX (UART Transmit)	P101 (TXD0)
J22-5	SCL (I2C Clock)	P113 (SCL2)
J22-6	SDA (I2C Data)	P112 (SDA2)
J22-7	+5 V	+5V
J22-8	GND	GND

表 16 mikroBUS コネクタ

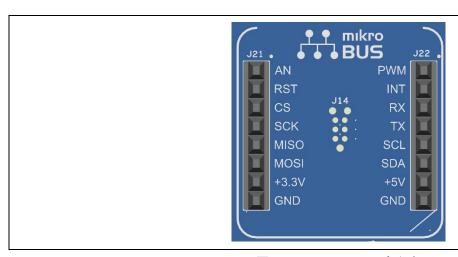


図 15 mikroBUS コネクタ

5.4 コネクティビティ

5.4.1 USB フルスピード

USB の Micro B 接続コネクタは、RA MCU をフルスピード対応の外部 USB ホストに接続し、RA MCU ファームウェアをテストで使用するための通信を可能にします。この接続は、USB デバイスまたは USB ホストインタフェースとして使用できます。

USB デバイスの場合、ジャンパ J12 をピン 2-3 に設定、J15 ピン 1-2 にジャンパを取り付け、デバイスモードで USB フルスピードポートを使用するように RA MCU ファームウェアを構成します。この接続する外部 USB ホストの電源を使用して、EK-RA4M2 ボードに電源供給することができます。

USB ホストの場合、ジャンパ J12 をピン 1-2 に設定、J15 からジャンパを取り外し、ホストモードで USB フルスピードポートを使用するように RA MCU ファームウェアを構成します。この構成では、J11 への電源は U6 から供給されます。 U6 から利用可能な合計電流は 500 mA です。入力電源は、EK-RA4M2 ボードとホストモードの USB フルスピードポートの両方に十分な電源で構成する必要がありますので注意してください。付属の Micro USB ホストケーブルを J11 に接続します。このケーブルを使用して、Micro USB デバイスケーブルまたはデバイスを USB フルスピードポートに接続できます。

衣 17 035 フルスピードコネック			
	USB デバイスコネクタ	EK-RA4M2	
ピン	説明	信号/パス名	
J11-1	+5VDC	J12 で選択 USB ホストモード: +5VUSB デバイスモード: P407/USB_VBUS = +5VUSB	
J11-2	Data-	の 2/3 USB DM (USBFS N)	
J11-3	Data+	USB_DP (USBFS_P)	
J11-4	USB ID, ジャック内部スイッチ, ケーブル挿入	N.C.	
J11-5	Ground	GND	

表 17 USB フルスピードコネクタ

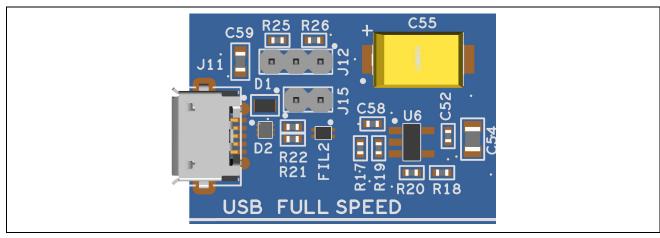


図 16 USB フルスピードコネクタ

5.5 その他

5.5.1 ユーザ LED と Power LED

EK-RA4M2ボードには5つのLEDを搭載しています。

EK-RA4M2 ボード上の LED の動作を次の表に示します。

部品番号	カラー	機能	MCU 制御ポート		
LED1	青	ユーザ LED	P415		
LED2	緑	ユーザ LED	P404		
LED3	赤	ユーザ LED	P405		
LED4	白	Power インジケータ	+3.3 V		
LED5	黄	デバッグ LED	J-Link OB MCU		

表 18 EK-RA4M2 ボード LED 機能

ユーザ LED は RA MCU から分離されているため、関連するポートを他の目的に使用できます。 LED1 を P415 から分離するには、はんだジャンパ(ショート)E27 を開放にする必要があります。 LED2 を P404 から分離するには、はんだジャンパ(ショート)E26 を開放にする必要があります。 P405 から LED3 を分離するには、はんだジャンパ(ショート)E28 を開放にする必要があります。

図 17 ユーザ LED

図 18 Power LED

5.5.2 ボードボタン

EK-RA4M2 ボードには、小型のプッシュボタンタイプの SMT モーメンタリボタンが 3 つ搭載されています。RESET ボタンを押すと RA MCU を再起動するリセット信号が生成されます。

 部品番号
 機能
 MCU 制御ポート
 ボタンカラー

 S3
 MCU RESET ボタン
 RESET#
 赤

 S2
 ユーザボタン
 P006 (IRQ11-DS)
 青

 S1
 ユーザボタン
 P005 (IRQ10-DS)
 青

表 19 EK-RA4M2 ボードのボタン

ユーザボタン S1 および S2 は RA MCU から分離されているため、関連するポートを他の目的に使用できます。 S1 を P005 から分離するには、はんだジャンパ(ショート)E31 を開放にする必要があります。 S2 を P006 から分離するには、はんだジャンパ(ショート)E32 を開放にする必要があります。

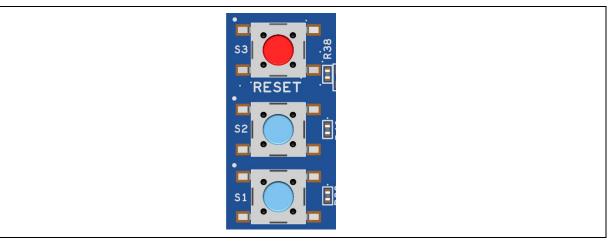


図 19 リセットとユーザボタン

5.5.3 MCU ブートモード

RA MCU のブートモード (P201) の設定用に、2 ピンヘッダ (J16) が用意されています。通常の動作、またはシングルチップモードでは J16 を開放にします。 SCI ブートモードまたは USB ブートモードに入るには、J16 にジャンパにより短絡します。

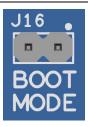


図 20 ブートモード

注: EK-RA4M2 ボードに搭載する RA MCU は、ブートファームウェアが最新のバージョンでない場合があります。

6. Special Feature Access Area

Special Feature Access area は、RA4M2 MCU グループ固有の Quad-SPI 機能を提供します。

図 21 Special Feature Access Area

6.1 Quad-SPI フラッシュ

EK-RA4M2 ボードは、Macronix 32 MB Quad-SPI フラッシュメモリ(MX25L25645G)を搭載しています。 Quad-SPI フラッシュ(U2)は、RA MCU の Quad-SPI 周辺回路に接続し、初期設定で標準 SPI モードになっています。Quad-SPI フラッシュは、電源投入直後に XIP (Execute-in-place)モードで有効になります。

<u> </u>				
QSPI 信号名	EK-RA4M2 ポート			
QSPI CS#	P306 (QSSL)			
QSPI CLK	P305 (QSPCLK)			
QSPI DQ0	P307 (QIO0)			
QSPI DQ1	P503 (QIO1)			
QSPI DQ2	P104 (QIO2)			
QSPI DQ3	P505 (QIO3)			

表 20 QSPI フラッシュポート割り当て

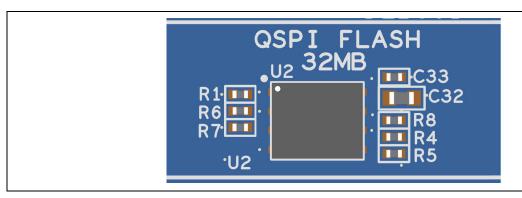


図 22 Quad-SPI フラッシュ

7. MCU Native Pin Access Area

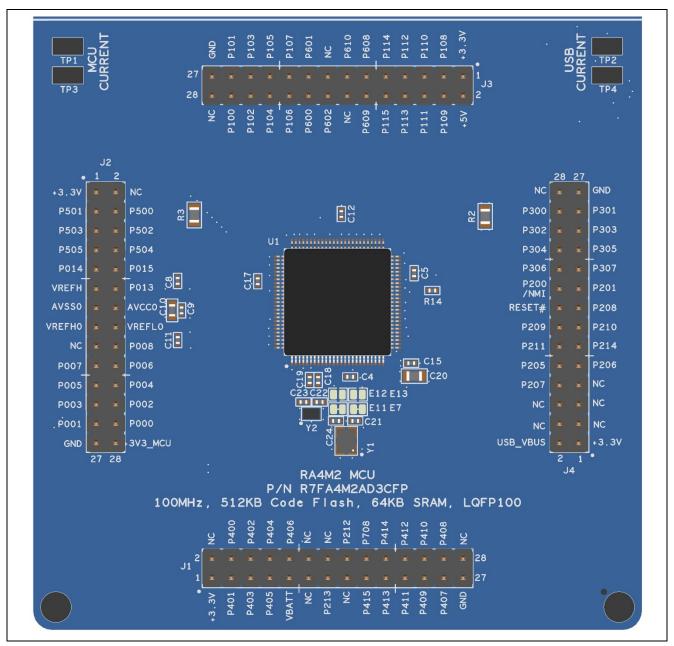


図 23 Native Pin Access Area

7.1 ブレイクアウトピンヘッダ

EK-RA4M2 ボードのピンヘッダ J1、J2、J3、および J4 は、すべての RA MCU インタフェース信号への アクセスと、すべての RA MCU 電源ポートの電圧へのアクセスを提供します。各ヘッダピンには、そのピンに接続されている電圧またはポートのラベルが付いています。各ポート機能の詳細については RA4M2 MCU グループのユーザーズマニュアルを、ピンヘッダポートの割り当てについては EK-RA4M2 ボードの回路図をご参照ください。

ブレイクアウトピンヘッダの配置により、標準の 2.54 mm (0.100 インチ) センターブレッドボードを 4 つのピンヘッダすべてに同時に配置できます。これは、RA4M2 MCU で使用するカスタム回路の試作および テストに使用できます。

7.2 MCU および USB 電流測定

ネイティブピン アクセスエリアには、MCU USB コントローラ電流と MCU コア電源電流を測定するための電流測定抵抗とテストポイントが含まれています。

EK-RA4M2 ボードは、メインの 3.3 V MCU 電源と 3.3 V USB MCU 電源の電流測定用に、高精度 $5m\Omega$ 抵抗(Vishay、部品番号 WSLP08055L000FEA18)を提供します。これらの抵抗の両端の電圧降下を測定し、オームの法則を使用して電流を計算します。メインの 3.3 V MCU 電流を測定するために TP1 および TP3 が提供され、3.3 V USB MCU 電流を測定するために TP2 および TP4 が提供されています。 TP1~TP4 の位置については、**図 26** を参照してください。

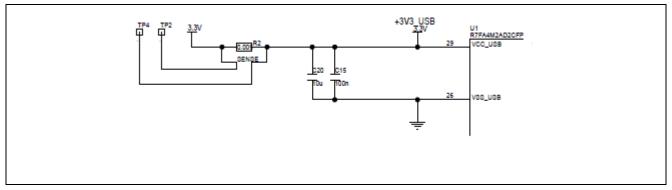


図 24 RA USB 電流測定回路

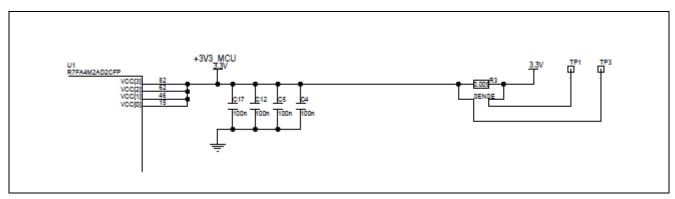


図 25 RA +3.3 V 電流測定回路

図 26 RA MCU 電流測定

8. 認証

EK-RA4M2 v1 は、以下の認証、基準に準拠しています。注意書きと免責事項については、このユーザーズマニュアルの表紙の次頁を参照してください。

8.1 EMI/EMC 基準

• FCC Notice (Class A)

本デバイスは FCC コンプライアンスのパート 15 に準拠しています。運用は次の 2 つの条件の対象となります。(1) 本デバイスが有害な干渉を生じてはならない(2) 本デバイスは、望ましくない動作を引き起こす可能性のある干渉も含め、いかなる干渉も受け入れなければならない。

- 【注意】この機器は、FCCルールの Part 15 に準拠する Class A デジタル機器に対する制限に適合することを試験し確認しています。それらの制限は、一般の住環境に設置された際に危害を及ぼさないよう適切な保護を提供するように設計されたものです。この機器は、RF エネルギーを生成・使用し、また放出可能で、指定の方法に従わずに設置し使用した場合に、無線通信に有害な干渉を起こす可能性があります。しかしながら、特定の実装環境で干渉が起こらないという保証はありません。本装置をオンオフすることにより無線やテレビ受信に有害な干渉を及ぼしていると判断される場合は、下記の対策を講じて干渉を補正してください。
 - 受信アンテナの方向や設置場所を変える
 - ― 装置とレシーバをさらに離す
 - --- 装置を接続するコンセントをレシーバが接続してあるコンセントとは異なる回路のコンセントに する
 - -- 販売店もしくは経験豊富な無線/TV 技術者に相談する
- カナダイノベーション・科学経済開発省(Innovation, Science and Economic Development Canada) ICES-003 への準拠
 CAN ICES-3 (A)/NMB-3(A)
- CE Class A (EMC)

本製品は、電磁環境適合性の指示 2014/30/EU に関連する加盟国の法規制の共通化に関する協議会指示に示された要件に従っていることを確認されています。

警告 - 本製品はクラス A 製品です。各国の国内環境よっては、本製品の使用により無線障害が発生し、 その場合ユーザは障害を除くための適切な対策を講じる必要が生じる可能性があります。

- 台湾:中国国家標準規格 13438、C6357 準拠、Class A 制限
- オーストラリア、ニュージーランド: AS/NZS CISPR 32:2015、Class A

8.2 材料の選定、消費、リサイクル、および廃棄の標準

- EU RoHS
- 中国 SJ/T 113642014、10 年間の環境保護使用期間

8.3 安全規格

• UL 94V-0

9. 設計、製造情報

EK-RA4M2 v1 ボードの設計製造情報は、「EK-RA4M2 v1 設計パッケージ」、<u>renesas.com/ra/ek-ra4m2</u> から入手できます。

- 設計パッケージファイル名: ek-ra4m2-v1-designpackage.zip
- 設計パッケージの内容

表 21 EK-RA4M2 ボード 設計パッケージの内容

ファイルタイプ	内容	ファイル/フォルダ名
ファイル(PDF)	回路図	ek-ra4m2-v1-schematics
ファイル(PDF)	設計図面	ek-ra4m2-v1-mechdwg
ファイル(PDF)	3D 図面	ek-ra4m2-v1-3d
ファイル(PDF)	ВОМ	ek-ra4m2-v1-bom
フォルダ	製造ファイル	Manufacturing Files
フォルダ	設計ファイル	Design Files - Altium

10. ウェブサイトおよびサポート

RA ファミリの MCU とそのキットに関する学習や、ツールやドキュメントのダウンロード、技術サポートなどは、下記の各ウェブサイトを通じて利用できます。

• EK-RA4M2のリソース <u>renesas.com/ra/ek-ra4m2</u>

● RA 製品情報 <u>renesas.com/ra</u>

• RA 製品サポートフォーラム <u>renesas.com/ra/forum</u>

• Renesas サポート <u>renesas.com/support</u>

改訂記録

		説明	
Rev.	発行日	ページ	ポイント
1.00	Jan.04.21	_	第 1.00 版発行

EK-RA4M2 v1 ユーザーズマニュアル

発行年月日 2021年 01月 04日 Rev.1.00

発行 ルネサス エレクトロニクス株式会社

〒135-0061 東京都江東区豊洲3-2-24 (豊洲フォレシア)

EK-RA4M2 v1 ユーザーズマニュアル

