

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Debugging Extension
User’s Manual

U
ser’s M

anual

 Rev.1.0 2003.08

HS6400IWIN1SE
Renesas Microcomputer
Development Environment
System

Cautions

Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor

products better and more reliable, but there is always the possibility that trouble may occur
with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the

Renesas Technology Corporation product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement
of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corporation assumes no responsibility for any damage, liability or other
loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in
a device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology
Corporation product distributor when considering the use of a product contained herein for
any specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

Rev. 1.0, 08/03, page i of v

The product described in this publication is based on the ITRON specifications and was developed

under the guidance of Dr. Ken Sakamura of The University of Tokyo.

1. µITRON is an acronym of the “Micro Industrial TRON” and TRON is an acronym of “The
Realtime Operating system Nucleus”.

2. Microsoft® Windows® 98 operating system, Microsoft® Windows® Millennium Edition
(Windows® ME) operating system, Microsoft® Windows NT® operating system, Microsoft®
Windows® 2000 operating system, and Microsoft® Windows® XP operating system are
registered trademarks of Microsoft Corporation in the United States and/or other countries.

3. SuperH™ is a trademark of Renesas Technology Corp.

4. All other product names are trademarks or registered trademarks of the respective holders.

Rev. 1.0, 08/03, page ii of iv

Preface

The Debugging Extension (hereafter called the DX) is software for adding the multitasking
debugging functions of the Realtime Operating System (hereafter called the RTOS) to the High-
performance Embedded Workshop (hereafter called the HEW).

This manual describes how the DX is used.

Please read this manual and the related manuals listed below before use so that you fully
understand the DX before using it.

This user’s manual contains the following four sections and appendixes:

Section 1 Introduction to the DX
Section 2 How to operate the DX (based on an example)
Section 3 The functions of the DX
Section 4 Precautions and restrictions
Appendix Troubleshooting

Be sure to read section 4, Precautions and Restrictions, before using the DX.

Please refer to the online help file for details of the DX functions.

The following is a list of the related manuals:

• High-performance Embedded Workshop (HEW) User's Manual

• The user’s manual for the RTOS you are using

• The user’s manual for the compiler you are using

• The hardware manual and programming manual for the microcomputer you are using

Rev. 1.0, 08/03, page iii of iv

Symbols used in this manual have the following meanings:

[Menu -> Menu Option]: The menu name is on the left of the '->', and the item to be selected
 from the menu is on the right of the '->'.
 (Example: [File -> New...]).
H' and D': The prefix H' is attached for hexadecimal integers. The prefix D' is
 attached for decimal integers. If no prefix is attached, a decimal integer
 is assumed.

Rev. 1.0, 08/03, page iv of iv

Contents

Section 1 Overview ...1
1.1 Outline ..1
1.2 Features ...2
1.3 Preparations for Using the DX..2

Section 2 Tutorial ..3
2.1 Configuring the Tutorial ...3

2.1.1 Configurator...3
2.1.2 Build ..3

2.2 Contents of the Sample Program...4
2.3 Executing the Sample Program...5

Section 3 Functions ...25
3.1 Referencing the States of Objects ...25
3.2 Manipulating the Objects ..26
3.3 Displaying Service Call Trace ..28
3.4 List of Functions ...29

3.4.1 Menu Items ..29
3.4.2 Windows and Dialog Boxes...30

Section 4 Precautions and Restrictions..35
4.1 Realtime Operation of the User System and Cyclic Handler ..35
4.2 Consistency of Displayed Contents...35

Appendix A Troubleshooting ..37
A.1 Displaying [Action Result] Window Results ..37

Rev. 1.0, 08/03, page 1 of 38

Section 1 Overview

1.1 Outline

The DX is software for debugging applications which are created for the RTOS. It is installed in
the HEW and RTOS systems.

Figure 1.1 DX Overview

Rev. 1.0, 08/03, page 2 of 38

1.2 Features

• Graphical user interface

The status of objects such as tasks can be referred to and modified through windows and dialog
boxes, and multitasking applications can be debugged in the HEW environment.

• Display of tracing information for service calls

The history of service calls in RTOS systems can be displayed graphically. The user can also
select the items to be displayed in this history.

1.3 Preparations for Using the DX

The followings must be done before using the DX for debugging.

Install the DX: Follow the instructions by the installer to install the DX.

Configure the RTOS: Configure the RTOS system you are using to match the DX. For an
example of configuration, refer to section 2, Tutorial.

Initiate the HEW: Initiate the HEW so that multitasking debugging is enabled after a program
has been built. For examples of the use of the DX, refer to section 2, Tutorial. For the functions of
the DX, refer to section 3, Functions, and to the online help file.

Rev. 1.0, 08/03, page 3 of 38

Section 2 Tutorial

Examples of the operation of the DX using the HI7000/4 series as the RTOS are explained in this
section. For details, refer to the online help file.

The following environment is assumed.

• RTOS: HI7700/4

• Microcomputer: SH7729

• Debugger: SuperH™ RISC engine simulator/debugger

2.1 Configuring the Tutorial

The sample provided by the HI7700/4 is used. For details on the configuration, refer to section 5,
Configuration, in the HI7000/4 Series User's Manual.

2.1.1 Configurator

The sample HCF file (hiuser\sh7729\7729.hcf) provided by the HI7700/4 is used to create the
configuration file. The following configurator settings must be made.

• Check CFG_ACTION.

• Check CFG_TRACE.

• Set CFG_TRCTYPE to 'emulator trace'. (This setting allows RTOS tracing by the DX even in
the simulator.)

• Set CFG_MAXTSKID to seven or more.

• Set CFG_STSTKID to five or less

• Set CFG_MAXTSKPRI to seven or more.

• Set CFG_MAXFLGID to six or more.

• Install the following service calls:
cre_tsk, ext_tsk, cre_flg, wai_flg, and set_flg

2.1.2 Build

The whole linkage method of HI7700/4 is used in this example. Use the HEW to open the sample
hios.hws, and select 7729_mix as the project name for the build. Select [Options->SuperH RISC
engine Standard Toolchain…] and then [User] from [Gbr relative logic operation] in the
[Optimize] category on the [C/C++] page. Select [Build->Build] to start a build.

Rev. 1.0, 08/03, page 4 of 38

2.2 Contents of the Sample Program

The sample source program is hiuser\tutorial\task.c, which includes two tasks, MainTask and
Task7.

When the system is initiated, MainTask is automatically executed because creation and initiation
of MainTask is specified by the configurator with the following conditions:

• Task ID: 6

• Initial priority: 6

• Start address: MainTask()

• Initial state: READY (the TA_ACT attribute is specified)

TASK7 is dynamically created by MainTask with the following conditions:

• Task ID: 7

• Initial priority level: 7

• Start address: Task7()

• Initial state: READY (TA_ACT attribute is specified)

The priority of MainTask is higher.

MainTask creates an event flag with ID6 and Task7, and uses the service call wai_flg to wait for
the event flag with ID6. Then, the event flag with ID6 is deleted with the service call del_flg, and
MainTask is exited by the service call ext_tsk.

Task7 uses the service call set_flg to set the event flag with ID6, then enters an endless loop with a
while(1); statement.

Note that this sample program is created for the user to learn the operation of the kernel and the
DX, and its contents in terms of processing have no meaning.

Rev. 1.0, 08/03, page 5 of 38

2.3 Executing the Sample Program

(1) Start up the simulator/debugger. Select [Options->Debug Settings...] in the HEW to display the
[Debug Settings] dialog box. Then select 7729_mix from the list on the left, [SH3-DSP
Simulator] from the [Target] list box on the [Target] page, and hiuser\obj_big\7729_mix.abs of
HI7000/4 by the [Add…] button, respectively.

Figure 2.1 [Debug Settings] Dialog Box

Rev. 1.0, 08/03, page 6 of 38

(2) Start up the DX. Select [RTOS HI7000/4_4DX ECX] from [Project -> Components…]. Then
press [Load] and [OK].

Figure 2.2 [Component Gallery] Dialog Box

Rev. 1.0, 08/03, page 7 of 38

(3) Set up the simulator/debugger. Check [Enable Timer] in the [Simulator System] dialog box
displayed by selecting [Options -> Simulator -> System…], and select [Continue] from the
[Execution Mode] list box.

Figure 2.3 [Simulator System] Dialog Box ([System] Page)

Rev. 1.0, 08/03, page 8 of 38

(4) The memory resources listed in table 2.1 must be ensured in the [Memory] page of the
[Simulator System] dialog box.

Table 2.1 Memory Resources for the Simulator/Debugger

Start Address End Address Attribute

H’00000000 H’0000FFFF Read

H’0C000000 H’0C0FFFFF Read/Write

Figure 2.4 [Simulator System] Dialog Box ([Memory] Page)

Rev. 1.0, 08/03, page 9 of 38

(5) Download the load module. Select hiuser\obj_big\7729_mix.abs from [Debug->Download
Modules].

Figure 2.5 Downloading the Load Module

Rev. 1.0, 08/03, page 10 of 38

(6) Make the settings for RTOS tracing. Select [View->RTOS->Trace]. Click the right-hand
mouse button on the [RTOS Trace] window and then select [Set Trace Options…] from the
popup menu.

Figure 2.6 Setting RTOS Tracing

Rev. 1.0, 08/03, page 11 of 38

(7) Select [Cycle] from [Scale Type] and [*100 Cycle] from [Scale List], respectively.

Figure 2.7 [Trace Options] Dialog Box

Rev. 1.0, 08/03, page 12 of 38

(8) Select [Debug->Reset Go] to execute the program.

Figure 2.8 Executing the Program

Rev. 1.0, 08/03, page 13 of 38

(9) Select [Debug->Halt Program] to stop the program execution.

Figure 2.9 Stopping the Program Execution

Rev. 1.0, 08/03, page 14 of 38

(10) Execution stops within the while(1); statement of Task7 as shown in figure 2.10.

Figure 2.10 Source Window with the Execution Stopped

Rev. 1.0, 08/03, page 15 of 38

(11) You can check how the program was executed by using the service-call trace function. To
display MainTask (task ID 6) and Task7 (task ID 7) in such a way that the diagram is easy
to see, click the right-hand mouse button on the [RTOS Trace] window and select [Select
Diagram Object...] from the pop-up menu. Add task IDs 6 and 7, and close the dialog box.

Figure 2.11 [Select Diagram Object] Window

Rev. 1.0, 08/03, page 16 of 38

(12) Task IDs 6 and 7 are displayed in the [RTOS Trace Diagram] window. With a glance at
the window, you can see that the execution of Task7 starts after MainTask has issued
wai_flg. Double-clicking the row where the service call is displayed in the [RTOS Trace
Text] window opens the corresponding source window.

Figure 2.12 [RTOS Trace] Window

Rev. 1.0, 08/03, page 17 of 38

(13) You can check the states of MainTask and Task7 in the [Task] window. Select [View
->RTOS->Task] to open the [Task] window. The MainTask is in the DORMANT state,
while Task7 is in the RUN state.

Figure 2.13 [Task] Window

Rev. 1.0, 08/03, page 18 of 38

(14) Next, execute the user program when the priority of MainTask is lower than Task7. First,
MainTask and Task7 must be deleted to return them to their initial state. To delete
MainTask, select (highlight) MainTask in the [Task] window, click the right-hand mouse
button to launch the pop-up menu, then select [Action->Delete Task...] from this pop-up
menu.

Figure 2.14 [Task] Window Pop-Up Menu

Rev. 1.0, 08/03, page 19 of 38

(15) Press the [OK] button in the [Delete Task] dialog box.

Figure 2.15 [Delete Task] Dialog Box

(16) Since Task7 is still in the RUN state, it must be forcibly terminated before deletion. To
terminate Task7, select (highlight) Task7 in the [Task] window, click the right-hand
mouse button to launch the pop-up menu, then select [Action->Terminate Task...]. This
opens the [Terminate Task] dialog box, so press the [OK] button. Task7 can then be
deleted in the same way as MainTask.

Figure 2.16 [Terminate Task] Dialog Box

Rev. 1.0, 08/03, page 20 of 38

(17) You can check the result of the manipulation of kernel objects, such as the termination
and deletion of a task, by selecting [View->RTOS->Action Result]. However, even if the
[Action Result] window is opened, the results will not be visible here. The DX sends
requests for the execution of service calls to the kernel to realize manipulation of kernel
objects. Thus a task will be actually deleted after execution by the kernel. To obtain the
results in this case, resume the execution of the target by selecting [Debug->Go]. The
results will be automatically displayed. Then select [Refresh task sheet] from the pop-up
menu of the [Task] window. You will see that MainTask (task ID 6) and Task7 (task ID
7) are both in the NOEXS state.

Figure 2.17 Result of the Manipulation of Objects

Rev. 1.0, 08/03, page 21 of 38

(18) Select [Debug->Halt Program] to stop the program execution. To create and initiate
MainTask with a priority of 8 that is lower than Task7, select (highlight) task ID 6 in the
[Task] window, and then select [Action->Create Task...] from the pop-up menu. This opens
the [Create Task] dialog box. Make the entries as shown in figure 2.18.

Figure 2.18 [Create Task] Dialog Box

Rev. 1.0, 08/03, page 22 of 38

(19) Selecting [Hide] from the pop-up menu of the [Task] window or [Action Result] window
will close this window. Before doing so, a breakpoint has to be set so that execution of the
program will stop at the while(1); statement of Task7. To set a breakpoint, double-click the
part circled in figure 2.19.

Figure 2.19 Setting a Breakpoint

Rev. 1.0, 08/03, page 23 of 38

(20) When the execution of the target is resumed, MainTask is initiated, and execution stops at the
breakpoint which was set at the while(1); statement of Task7. Check the execution by
updating the information displayed for the service-call trace. Since the execution is switched
to Task7 after the cre_tsk service call by MainTask, MainTask has not yet issued the wai_flg
service call.

Figure 2.20 [RTOS Trace Diagram] Window and [RTOS Trace Text] Window

Rev. 1.0, 08/03, page 24 of 38

Rev. 1.0, 08/03, page 25 of 38

Section 3 Functions

This section is an outline of the functions of the DX. For details on these functions, refer to the
online help file.

3.1 Referencing the States of Objects

Selecting an object (such as a task) from the [View->RTOS] menu will display a window which
shows the state of each object type, as shown in figure 3.1.

Figure 3.1 Example Display of Task State

Rev. 1.0, 08/03, page 26 of 38

3.2 Manipulating the Objects

From the window for each object type, the user can request the manipulation of the object to the
kernel. To use this function, the RTOS you are using needs to be configured so as to allow the DX
to manipulate the objects.

The manipulation of each object can be requested through the dialog box that can be opened from
the pop-up menu of each object window, as shown in figure 3.2.

Figure 3.2 Example of a Request for Manipulation of an Object

The request for manipulation of the object is sent to the target, and the corresponding service call
is issued. The DX will display the results in the [Action Result] window, as shown in figure 3.3.

Rev. 1.0, 08/03, page 27 of 38

Figure 3.3 Result of Manipulation of an Object

The processing of the request for manipulation of an object starts when the target is executed. A
request can be made for the manipulation of the object after the target has been stopped, but
execution will not start until the next execution of the target.

The request for manipulation of the object is queued in the target memory, and the release of the
request from the queue is indicated by the display of the result in the [Action Result] window. Up
to four requests can be queued.

If manipulation of an object is requested after the target has been stopped, the result is not
displayed in the [Action Result] window until the next execution of the target. Accordingly, up to
four requests for manipulation of an object can be made at the same time while the target is
stopped.

The display in the [Action Result] window is updated with the following timing:

• During execution of the target (cyclic)

• [Refresh] is selected from the pop-up menu displayed by clicking the right-hand mouse button
in the [Action Result] window

• User system break (stopped)

Rev. 1.0, 08/03, page 28 of 38

3.3 Displaying Service Call Trace

When [View->RTOS->Trace] is selected, the history of service calls is displayed in diagrammatic
and textual forms, as shown in figure 3.4. To use this function, the RTOS you are using needs to
be configured so as to enable display of service call tracing by the DX.

The location of the data that forms the history of service call tracing can be selected as the tool
(simulator/debugger or emulator) or the target memory. Depending on the configurator in use,
‘Emulator’ may be displayed instead of ‘Tool’. Note that this configurator can also be used with
the simulator/debugger.

The acquired information can be saved in a file, and this file can be read and displayed.

Figure 3.4 [RTOS Trace Diagram] Window and [RTOS Trace Text] Window

Rev. 1.0, 08/03, page 29 of 38

3.4 List of Functions

3.4.1 Menu Items

After the DX has been installed, the items listed in table 3.1, which allow accesses to the DX
functions, are added to the [View] menu of the HEW.

Table 3.1 Items to be Added to the HEW's [View] Menu

Pull-Down Menu Submenu Function

Task Opens the [Task] window

Semaphore Opens the [Semaphore] window

EventFlag Opens the [EventFlag] window

DataQueue Opens the [DataQueue] window

Mailbox Opens the [Mailbox] window

Mutex Opens the [Mutex] window

MessageBuffer Opens the [MessageBuffer] window

V-MemoryPool Opens the [V-MemoryPool] window

F-MemoryPool Opens the [F-MemoryPool] window

Timer Opens the [Timer] window

Interrupt Opens the [Interrupt] window

Trap Opens the [Trap] window

Cyclic Opens the [Cyclic] window

Alarm Opens the [Alarm] window

Extended SVC Opens the [Extended SVC] window

Action Result Opens the [Action Result] window

RTOS

Trace Opens the [Trace] window

Selecting [View->CPU->Status] displays the DX state in the [Status] window common in HEW.

Note that some functions are not supported depending on the RTOS in use.

Rev. 1.0, 08/03, page 30 of 38

3.4.2 Windows and Dialog Boxes

Table 3.2 is a list of windows and dialog boxes for the DX. For further details on the windows and
dialog boxes, refer to the online help file. The online help file can be launched by selecting [Help
->RTOS Help].

Table 3.2 Windows and Dialog Boxes

Classification Window Name Functions

[Task] window • Displays the states of all tasks

• Displays the ready queue

• Displays locked mutexes for all tasks

[Task Detail Information] window Displays detailed information on tasks

[Create Task] dialog box* Creates tasks

[Delete Task] dialog box* Deletes tasks

[Activate Task] dialog box* Initiates tasks

[Cancel Activate Task] dialog box* Cancels request for task initiation

[Start Task] dialog box* Initiates task (with initiation code
specified)

[Terminate Task] dialog box* Forcibly terminates tasks

[Release Wait] dialog box* Forces tasks out of the wait state

[Suspend Task] dialog box* Moves tasks into SUSPENDED state

[Resume Task] dialog box* Resumes the execution of tasks in the
SUSPENDED state

[Wakeup Task] dialog box* Wakes tasks up

[Cancel Wakeup Task] dialog box* Cancels wakeup requests

[Change Task Priority] dialog box* Changes task priority levels

[Set Task EventFlag] dialog box* Sets task-dependent event flags

[Clear Task EventFlag] dialog box* Clears task-dependent event flags

[Rotate Ready Queue] dialog box* Rotates the ready queue

[Raise Task Exception Routine]
dialog box*

Requests task exception processing

[Start Overrun Handler] dialog box* Starts operation of the overrun handler

Tasks

[Stop Overrun Handler] dialog box* Stops the overrun handler

Note: Cannot be used when the RTOS in use was configured without enabling the manipulation of
objects.

Rev. 1.0, 08/03, page 31 of 38

Table 3.2 Windows and Dialog Boxes (cont)

Classification Window Name Functions

[Semaphore] window • Displays states of all semaphores

• Displays the wait task queue for each
semaphore

[Increment Semaphore Count]
dialog box*

Increments semaphore count

Semaphores

[Decrement Semaphore Count]
dialog box*

Decrements semaphore count

[EventFlag] window • Displays the states for all event flags

• Displays the wait task queue for each
event flag

[Set EventFlag] dialog box* Sets an event flag

Event flags

[Clear EventFlag] dialog box* Clears an event flag

[DataQueue] window • Displays the states of all data queues

• Displays the receive data acquired in
all data queues

[Send Data to DataQueue] dialog
box*

Sends data to data queue

Data queue

[DataQueue Wait Task Queue]
window

Displays the wait task queue for each
data queue

[Mailbox] window • Displays the states of all mailboxes

• Displays the wait task queue for each
mailbox

• Displays the received message

queues for all mailboxes

[Send Message to Mailbox] dialog
box*

Sends messages to mailboxes

Mailboxes

[Receive Message from Mailbox]
dialog box*

Receive messages from mailboxes

Mutex [Mutex] window • Displays the states of all mutexes

• Displays the wait task queue for each

mutex

Note: Cannot be used when the RTOS in use was configured without enabling the manipulation of
objects.

Rev. 1.0, 08/03, page 32 of 38

Table 3.2 Windows and Dialog Boxes (cont)

Classification Window Name Functions

[MessageBuffer] window • Displays the states of all message
buffers

• Displays the wait task queue for each
message buffer

• Displays the received message

queue for each message buffer

Message buffer

[Send Message to MessageBuffer]
dialog box*

Sends messages to message buffers

[Variable-size MemoryPool] window • Displays the states of all variable-
size memory pools

• Displays the wait task queue for each
variable-size memory pool

[Get Variable-size MemoryPool]
dialog box*

Acquires variable-size memory blocks

Variable-size
memory pool

[Release Variable-size
MemoryPool] dialog box*

Releases variable-size memory blocks

[Fixed-size MemoryPool] window • Displays the states of all fixed-size

memory pools

• Displays the wait task queue for each
fixed-size memory pool

[Get Fixed-size MemoryPool] dialog
box*

Acquires fixed-size memory blocks

Fixed-size
memory pool

[Release Fixed-size MemoryPool]
dialog box*

Releases fixed-size memory blocks

[Timer] window • Displays the system clock setting

• Displays the wait queue for the timer

Timer

[Set Time] dialog box* Modifies the system clock setting

Interrupt
handler,
exception
processing
routine

[Interrupt Handler] window Displays the states of all interrupt
handlers and exception processing
routines

Trap exception
processing
routine

[Trap Routine] window Displays the states of all trap exception
processing routines

Note: Cannot be used when the RTOS in use was configured without enabling the manipulation of
objects.

Rev. 1.0, 08/03, page 33 of 38

Table 3.2 Windows and Dialog Boxes (cont)

Classification Window Name Functions

[Cyclic Handler] window Displays the states of all cyclic handlers

[Start Cyclic Handler] dialog box* Starts up cyclic handlers

Cyclic handler

[Stop Cyclic Handler] dialog box* Stops cyclic handlers

[Alarm Handler] window Displays the state of all alarm handlers

[Start Alarm Handler] dialog box* Starts up alarm handlers

Alarm handler

[Stop Alarm Handler] dialog box* Stops alarm handlers

Extended SVC
routine

[Extended SVC Routine] window Displays the states of all extended SVC
routines

Result [Action Result] window* Displays the results of object
manipulation

[RTOS Trace Diagram] window • Displays the object item list

• Displays trace information
(diagrammatic form)

[RTOS Trace Text] window • Displays the object item list

• Displays trace information (textual
form)

[RTOS Trace Options] dialog box Makes various settings for trace

[Select Diagram Object] dialog box Defines the target object for trace display
in the diagrammatic form

[Select Text Object] dialog box Defines trace information for the kernel
resource

[Load RTOS Trace Information File]
dialog box

Inputs the trace information file

[RTOS Trace Statistics] dialog box Displays overall view of program
execution

[RTOS Trace Find] window Searches for event information

Trace

[Save As] dialog box Outputs trace information to a file

Note: Cannot be used when the RTOS in use was configured without enabling the manipulation of
objects.

Rev. 1.0, 08/03, page 34 of 38

Rev. 1.0, 08/03, page 35 of 38

Section 4 Precautions and Restrictions

4.1 Realtime Operation of the User System and Cyclic Handler

The DX functions are realized by referencing or updating data in the memory of the user system.
If the following functions are used during the execution of the user program, memory access will
occur, and operation will not be in realtime.

• Opening or updating a window

• Clicking the [OK] button of a dialog box to manipulate an object

If the RTOS in use was configured with the manipulation of objects enabled, the throughput of the
user system falls a little because a cyclic handler for the DX with a certain cycle is automatically
installed in the system.

4.2 Consistency of Displayed Contents

Reference to an object's state is by directly reading from data in the memory of the user system.
Therefore, if such data is read during the execution of an RTOS kernel routine, the information
displayed may not be correct. Also, if an object's state is referred to before the initialization of the
kernel has been completed, the information displayed may not be correct.

Rev. 1.0, 08/03, page 36 of 38

Rev. 1.0, 08/03, page 37 of 38

Appendix A Troubleshooting

A.1 Displaying [Action Result] Window Results

If an object manipulation request is made through a dialog box and the user program is executed
but the display is not updated, this could be because the cyclic handler for the DX is not operating
correctly.

The following is a list of causes and the measures to be taken, in such cases.

1. No timer interrupt occurs.

A. Timer interrupts do not occur.

Correct the timer driver so that timer interrupts will occur.

B. Timer interrupts do occur but are not accepted.

In the following cases, timer interrupts are not accepted.

a. Too many interrupts occur that have an interrupt level higher than the timer interrupt

b. The timer interrupt level has been masked for a long time.

For interrupts that have a level equal to or higher than the timer interrupt level, keep the
masking time as short as possible.

2. The system goes down.

When the system goes down, timer interrupts may not be accepted.

Take care so that the system will not go down.

Rev. 1.0, 08/03, page 38 of 38

Debugging Extension User's Manual

Publication Date: Rev.1.00, August 5, 2003
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

 2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

Debugging Extension

REJ10B0029-0100H

User’s Manual

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	1.1	Outline
	1.2	Features
	1.3	Preparations for Using the DX

	Section 2 Tutorial
	2.1	Configuring the Tutorial
	2.1.1	Configurator
	2.1.2	Build

	2.2	Contents of the Sample Program
	2.3	Executing the Sample Program

	Section 3 Functions
	3.1	Referencing the States of Objects
	3.2	Manipulating the Objects
	3.3	Displaying Service Call Trace
	3.4	List of Functions
	3.4.1	Menu Items
	3.4.2	Windows and Dialog Boxes

	Section 4 Precautions and Restrictions
	4.1	Realtime Operation of the User System and Cyclic Handler
	4.2	Consistency of Displayed Contents

	Appendix A Troubleshooting
	A.1	Displaying [Action Result] Window Results

	Colophon

