

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

ASM72 V.1.20
User’s Manual

U
ser’s M

anual

Rev.1.00 2004.05

Absolute Assembler for 720 Series

Keep safety first in your circuit designs!

 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application
examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and
Renesas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that
customers contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product
distributor for the latest product information before purchasing a product listed herein. The information described here may contain
technical inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no
responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information
published by Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home
page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or
reproduce in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Preface

The PD72 is an emulator debugger for the Renesas 720 Series. This manual describes the
functions and operations of the three software packages listed below.
The release notes included with this product are supplements of user’s manual. Before using
this product, be sure to read them.

1. Absolute Assembler ASM72
2. Cross Referencer CRF72
3. Branch-out Error Correction Utility BRANCH

Organization of this manual
This manual consists of the three parts shown below.

 Part 1 ASM72 Operation Manual
Describes how to operate absolute assembler ASM72 and how to write the source
programs.

 Part 2 CRF72 Operation Manual
Describes how to operate cross-referencer CRF72.

 Part 3 BRANCH Operation Manual
Describes how to operate branch-out error correction utility BRANCH.

MEMO

Part 1

Absolute Assembler for 720 Series

ASM72 Operation Manual

(1-1)

Table of Contents

Chapter 1. Organization of ASM72 User's Manual .. 1-4

Chapter 2. Overview... 1-5
 2.1 Features... 1-5
 2.2 File Generation .. 1-5
 2.2.1 HEX Files ... 1-5
 2.2.2 PRN Files ... 1-7
 2.2.3 TAG Files ... 1-8
 2.2.4 SYM Files ... 1-9
 2.2.5 MAP Files ... 1-9

Chapter 3. Source Program Coding Methods .. 1-13
 3.1 Source Program Configuration .. 1-13
 3.2 Line Configuration.. 1-13
 3.2.1 MCU Name Specification Line ... 1-13
 3.2.2 Assembly Language Instruction Line ... 1-14
 3.2.3 Line of Addition/Subtraction to a Bit Symbol .. 1-14
 3.2.4 Pseudo Instruction Line.. 1-15
 3.2.5 Macro Instruction Line.. 1-16
 3.2.6 Comment Line .. 1-16
 3.3 Column Description.. 1-16
 3.3.1 Symbol Type 1 through 4/Label Column.. 1-17
 3.3.2 Comment Column .. 1-17
 3.4 Operand Data Format.. 1-17
 3.4.1 Numeric Constants... 1-17
 3.4.2 Character Constants .. 1-18
 3.4.3 Symbol Constants .. 1-18
 3.4.4 Expressions.. 1-18
 3.5 Special Characters... 1-19
 3.6 Operator... 1-19

Chapter 4. Pseudo Instructions .. 1-20
 4.1 Pseudo Instruction Features.. 1-20
 4.2 Assembly Control... 1-20
 4.2.1 Declaration of Assembly Completion ... 1-20
 4.2.2 Conditional Assembly... 1-21
 4.2.3 File Loading.. 1-21
 4.3 Address Control ... 1-21
 4.3.1 Synonymous Definition... 1-21
 4.3.2 Address Declaration ... 1-21
 4.3.3 Data Establishment .. 1-21
 4.1 Listing Control .. 1-21
 4.4.1 Page and Title Designation .. 1-21
 4.4.2 Listing Format Designation .. 1-21
 4.4.3 Listing Output Suppress Designation... 1-21

(1-2)

Chapter 5. Macro Instruction .. 1-22
 5.1 Macro Instruction Features .. 1-22
 5.2 Bit Macro Instructions .. 1-22
 5.2.1 Clearing a Specified Bit .. 1-22
 5.2.2 Setting a Specified Bit .. 1-22
 5.2.3 Changing the Program Sequence According to a Specified Bit 1-22
 5.3 Macro Register Instructions ... 1-22
 5.3.1 Setting Values of Z, X and Y .. 1-22

Chapter 6. Operating Method... 1-23
 6.1 Getting Started... 1-23
 6.2 Parameter Input ... 1-23
 6.2.1 Source Filename .. 1-23
 6.2.2 Command Parameter ... 1-23
 6.3 Input Method.. 1-25
 6.4 Errors ... 1-26
 6.4.1 Error Types... 1-26
 6.4.2 Return Value to DOS.. 1-27

Appendix A. Error Message List... 1-28
 A.1 System Errors.. 1-28
 A.2 Assembly Errors .. 1-29
 A.3 Warnings ... 1-31

Appendix B. Pseudo Instruction List .. 1-32
 B.1 Overview of the Pseudo Instruction List .. 1-32
 B.2 Pseudo Instruction List .. 1-32

Appendix C. Macro Instruction List... 1-38
 C.1 Overview of the Macro Instruction List .. 1-38
 C.2 Macro Instruction List .. 1-38

(1-3)

Chapter 1. Organization of ASM72 User's Manual

This manual is organized in the following manner.

Chapter 2. Overview
Description of basic features of the ASM72.

Chapter 3. Source Program Coding Methods
Description of coding a source program with the ASM72.

Chapter 4. Pseudo Instruction
Description of the available pseudo instructions.

Chapter 5. Macro Instruction
Description of the available macro instructions.

Chapter 6. Operating Method
Description of the ASM72 system operation.

Appendix A. Error Message List
Error messages of the ASM72 with explanations and processes.

Appendix B. Pseudo Instruction List
ASM72 pseudo instructions with explanations and processes.

Appendix C. Macro Instruction List
ASM72 macro instructions with explanations.

This manual is compliant with the ASM72 V.1.20xx.

(1-4)

Chapter 2. Overview

The ASM72 is the absolute assembler for the Renesas 720 Series. It converts a source
program, (hereafter, source file), written in assembly language into machine language. This
process is termed "Assembly".

2.1 Features
The ASM72 has the following features:

1. It generates a Tag file1 which contains the error descriptions. (It is for efficient modification

of assembly errors.)
2. It executes the automatic start-up of an editor or cross-referencer by specifying an

assembly parameter.
3. It indicates an output object program by specifying an assembly parameter.

2.2 File Generation
The ASM72 generates the following five types of files:

1. Object file (hereafter, HEX file)
2. Print file (hereafter, PRN file)
3. Tag file (hereafter, TAG file)
4. Symbol file (hereafter, SYM file)
5. Map file (hereafter, MAP file)

The following is a description of each file type.

2.2.1 HEX File

 HEX files have machine language data.
 The ASM72 generates the following format files according to each purpose.

1. HEX file (see Figure 2.1)

- When a command parameter "-V", "-W" or "-WM" is not specified, the object code for
piggybacking is divided into 1 low-order bit and 8 high-order bits. The default HEX
file is in the order: low-order and high-order.

2. HEU/HEL File (see Figure 2.1)

- When a command parameter designates "-V", the object code for evaluation board is
divided into 1 high-order bit and 8 low-order bits, which default into the HEU and
HEL files respectively.

1. "Tag" is derived from a tag label that indicates the location of an error or warning.

(1-5)

3. OTP2 File (see Figure 2.2)
- When a command parameter designates "-W", the object code for debugging with

the use of a one-time EPROM is divided into 5 high-order bits and 4 low-order bits,
which default into the OTP file in the order: low-order and high-order.

- All empty areas store as a "1".
- When a program of ROM capacity less than 2K, using a one-time EPROM, is

executing, the data in the address locations from 000016 to 07FF16 is block copied to
080016 and after, while that from 100016 to 17FF16 is copied to 180016 and after.

4. CAD File (see Figure 2.3)

- When a command parameter designates "-WM", the object code for writing into a
Renesas one-time EPROM is divided into 1 high-order bit and 8 low-order bits,
which default into the CAD file in the order: low-order and high-order.

- All empty areas stores as a "1".
- When a program of ROM capacity 2K, using a one-time EPROM, is executing, the

data in the address locations from 000016 to 07FF16 is block copied to 080016 and
after, while that from 100016 to 17FF16 is copied to 180016 and after.

- When a program of ROM capacity 1K, using a one-time EPROM, is executing, the
data in the address locations from 000016 to 03FF16 is block copied to 080016 and
after, while that from 100016 to 13FF16 is copied to 180016 and after. Each 8 bit area
in the address locations from 040016 to 07FF16 and from 0C0016 to 0FFF16 is stored
as FF16. The high-order 1 bit area in the address locations from 140016 to 17FF16
and from 1C0016 to 1FFF16 are stored as 0116.

 When the command parameter specifies a "-O", the designated directory is used to store

these files, otherwise the current directory is used.
 A coding parameter can designate the file extension of .HEU, .HEL, .OTP, .CAD or .HEX.

HEX File HEL/HEU File
000016 TEST.HEX 000016 TEST.HEL

(07FF16) (07FF16)
0FFF16 0FFF16
100016

000016

(17FF16) (07FF16)
1FFF16 0FFF16

High-order 1 bit High-order 1 bit

Low-order 8 bits Low-order 8 bits

TEST.HEU

Figure 2.1 HEX File & HEL/HEU File

2. OTP: One-time programmable ROM

(1-6)

ROM Capacity 4K ROM Capacity 2K
OTP File OTP File

000016 000016

07FF16

080016

0FFF16 0FFF16

100016 100016

17FF16

180016

1FFF16 1FFF16

High-order 5 bits

Low-order 4 bits

High-order 5 bits

Low-order 4 bits

Low-order 4 bits

High-order 5 bits

Figure 2.2 OTP File

ROM Capacity 2K ROM Capacity 1K

CAD File CAD File
000016 000016

03FF16

07FF16 07FF16

0BFF16

0FFF16 0FFF16

13FF16

17FF16 17FF16

1BFF16

1FFF16 1FFF16

High-order 1 bit

Low-order 8 bits

High-order 1 bit

Low-order 8 bits
Low-order 8 bits

High-order 1 bit

Low-order 8 bits

High-order 1 bit

Figure 2.3 CAD File

2.2.2 PRN Files

 A PRN file contains the source file for the printing process, the address location, and the
generating data.

 The printout of a PRN file can be of use in debugging.
 A PRN file can be created only when the command parameter specifies a "-L".
 When a command parameter contains an "-O", the designated directory is used to store

the PRN file, otherwise the current directory is used.
 The file extension is .PRN.

(1-7)

[Configuration of a PRN File]
Figures 2.5 to 2.7 describe the sample output of a PRN file. A PRN file has the following
information.

 Symbol list information (Figure 2.5)
This gives the symbols and labels for the first segment of a PRN file

 Source file information (Figure 2.6)

SEQ. LOC. OBJ...... DEST. N M*....1....*....2....*....3....*....4....*...

 7654 3 1 2

1. Source file line information (SEQUENCE)
2. Address locations corresponding to the contents of the source file (LOCATION)
3. Object code corresponding to the contents of the source file (OBJECT)
4. Page and address of the jump destination (DESTINATION)

The page and address locations of the jump destination are specified as hexadecimal
numbers.

5. Nesting information (NEST)
The nesting location is specified as a '1'.

6. Macro instruction information (MACRO)
Locations involved in a developing program with the macro instruction is specified
with a '+'.

7. Column information of a source file
Every 5th column, a '*' or number is coded.

 Assembly result information (Figure 2.7)

The number of errors, warnings, full lines, comment lines, and memory capacity are
specified.

 When the pseudo instruction .COL designates the number of columns as 132 characters,
the assembly time is specified at the head of the list in the following form:

DATE (Mon Jun 3 15:06:42 1989)

2.2.3 TAG Files

 Used to store the assembly error messages and warning messages which occur in the
assembly process.

 A TAG file can be used as a reference while error correction is performed with the use of
an editor.

 A TAG file can be executed only when the command parameter specifies an "-E".
 The file extension is .TAG.

[Configuration of a TAG File]
Figure 2.8 describes a sample output of a TAG file. A TAG file gives the following information.

 Description of the file name, file line numbers, through line numbers, error numbers, and
error messages for the location of an error or warning occurrence.

(1-8)

2.2.4 SYM Files
 A SYM file stores the necessary symbolic debugging information for the PD72.
 A SYM file can be executed only when the command parameter specifies an "-S".
 The file extension is .SYM.
 If the command parameter "-O" is also specified, the SYM file is output to the specified

directory of the drive; if not specified, it is output to the current directory.
 The following is the configuration for a SYM file.

1. Label information

Label name and corresponding address value (9 bits).
2. Symbol type 1 information

Symbols representing the values from 016 to FFFF16.
3. Symbol type 2 information

Symbols representing register values for X and Y.
4. Symbol type 3 information

Symbols representing register values for Z, X and Y.
5. Symbol type 4 information

Symbols representing a bit location in a bit symbol and register values for Z, X and Y,
which are used to designate a bit in the data page (DP).

Figure 2.9 is a sample output of a SYM file.

2.2.5 MAP Files

 A MAP file contains the memory information for each page.
 A MAP file is output when the command parameter specifies "-A".
 The file extension is .MAP.

(1-9)

-M50727
;**
;* *
;* M50727 TEST PROGRAM *
;* *
;**
 .COL 80
 .ORG 0,0
 .TTL 727TEST PROG. ;SET TITLE
PORTD1 .EQU 0,0 ;SET LABEL
PORTD2 .EQU 0,1
PORTD3 .EQU 0,2
PORTK .EQU 0,3
;**
;* MAIN ROUTIN *
;**
MAIN: DI ;STOP INT
 LZ 0 ;RAM CLEAR
 LXY 0,0
WAIT: LA 0
 XAMI 0
 B WAIT
RAM_X0: LA 0
 XAMI 0
 B RAM_X0
 LXY 10
RAM_X1: LA 0
 XAMI 0
 B RAM_X1
 LXY 2,0
RAM_X2: LA 0
 XAMI 0
 B RAM_X2
 LXY 3,0
 :
 :

Figure 2.4 Sample of a Source File

M50727 ASSEMBLER SYMBOL TABLES P.001

ATOC 029C A_D 01B6 COUNT 0100 D0_SET 0262 D10 0253
D10_SET 0280 D1_SET 0265 D2 0206 D2_SET 0268 D3 020F
D3_SET 026B D4 0218 D4_SET 026E D5 0221 D5_SET 0271
D6 022A D6_SET 0274 D7 0233 D7_SET 0277 D8_SET 027A
D9 024A D9_SET 027D DH_OUT 025C DL_OUT 023C D_OFF1 0083
D_OFF1.1 01A7 D_OFF1.2 01B3 D_OFF2 0093 D_SET1 01C9 D_SET2 01D7
ERR 0191 HENKAN 02B0 IN1 01EE IN2 01E8 IN3 01E0
LOOP 0027 LOOP1 01BC LOT 001E LOTS 0199 MAIN 0000
OUT 01C3 PORTD1 0000 PORTD2 0001 PORTD3 0002 PORTK 0003
RAM_X0 0006 RAM_X1 000A RAM_X2 000E RAM_X3 0012 SERIAL 0283
SOUSIN1 028B SOUSIN2 0295 SUB0 0180 T_1 0109 T_1CNT 010B
WAIT 0003

Figure 2.5 Sample of a PRN File (Symbol & Label List)

(1-10)

* 720 SERIES ASSEMBLER V.1.00.00C * (00 page) P.002

SEQ. LOC. OBJ...... DEST. N M....*....1....*....2....*....3....*....4....*...

 1 0 ;M50727
 2 0 ;***
 3 0 ;*
 4 0 ;* M50727 TEST PROGRAM
 5 0 ;*
 6 0 ;***
 7 0 .COL 80
 8 0 .ORG 0,0
 9 0 .TTL 727TEST PROG.
test.ASM 9 (TOTAL LINE 9) Error 12: No ';' at the top of comment "727TEST"
 10 0000 0 PORTD1 .EQU 0,0
 11 0001 0 PORTD2 .EQU 0,1
 12 0002 0 PORTD3 .EQU 0,2
 13 0003 0 PORTK .EQU 0,3
 14 0 ;***
 15 0 ;* MAIN ROUTINE
 16 0 ;***
 17 0000 004 0 MAIN: DI
 18 0001 048 0 LZ 0
 19 0002 0C0 0 LXY 0,0
 20 0003 0B0 0 WAIT: LA 0
 21 0004 068 0 XAM 0
 22 0005 183 00/03 0 B WAIT
 23 0006 0B0 0 RAM_X0: LA 0
 24 0007 068 0 XAMI 0
 25 0008 186 00/06 0 B RAM_X0
 26 0009 000 0 LXY 10
test.ASM 26 (TOTAL LINE 26) Error 5: Improper operand type "10"
 27 000A 0B0 0 RAM_X1: LA 0
 28 000B 068 0 XAMI 0
 29 000C 18A 00/0A 0 B RAM_X1
 30 000D 0E0 0 LXY 2,0
 31 000E 0B0 0 RAM_X2: LA 0
 32 000F 068 0 XAMI 0
 33 0010 18E 00/0E 0 B RAM_X2
 34 0011 0F0 0 LXY 3,0
 35 0012 0B0 0 RAM_X3: LA 0
 36 0013 068 0 XAMI 0
 37 0014 192 00/12 0 B RAM_X3
 38 0015 0C0 0 LXY 0,0

Figure 2.6 Sample of a PRN File (first half)

* 720 SERIES ASSEMBLER V.1.00.00C * (05 page) P.013

SEQ. LOC. OBJ...... DEST. N M....*....1....*....2....*....3....*....4....*...

 413 02BF 0B0 0 LA 0
 414 02C0 082 0 TCA
 415 02C1 044 0 RT
 416 0 .END

ERROR COUNT 0003
WARNING COUNT 0000
SOURCE LINE 0416 LINES
TOTAL LINE 0416 LINES
COMMENT LINE 0043 LINES
OBJECT SIZE 0395 BYTES

Figure 2.7 Sample of a PRN File (second half)

(1-11)

test.ASM 9 (TOTAL LINE 9) Error 12: No ';' at the top of comment "727TEST"
test.ASM 26 (TOTAL LINE 26) Error 5: Improper operand type "10"
test.ASM 53 (TOTAL LINE 53) Error 19: Reference to undefined label "F"

Figure 2.8 Sample of a TAG File

#MELPS720
#EQU << Symbol type 1 information
FALSE 0000 TRUE 0001 ZERO 0000
#SYMBOL << Symbol type 2, 3, 4 information
BANKO *000 BANK1 *100 CNT1 **00 CNT2 **01 EVF 0002
OVF 2002 TSF 3002
#LABEL << Label information
RAMCL 0125 RAMCL0 0121 RAMCL1 0122 RAMCL2 0123 RAMCL3 0124

Figure 2.9 Sample of a SYM File

(1-12)

Chapter 3. Source Program Coding Methods

3.1 Source Program Configuration
A source program is composed of lines put together as a unit. The following are the rules for
coding lines.

 An instruction cannot be specified on more than one line.
 The total number of characters on a line can be a maximum of 100. The ASM72 ignores

the characters past 100.
 Lines can be classified by contents, into the following six types.

1. MCU Name Specification Line

This line specifies the MCU name of your 720 Series MCU.
2. Assembly Language Instruction Line

This line is an ASM72 assembly language instruction, which generates the
corresponding machine language.

3. Line of Addition/Subtraction to a Bit Symbol
This line describes an addition/subtraction to a bit symbol

4. Pseudo Instruction Line
This line describes a pseudo instruction.

5. Macro Instruction Line
This line describes an ASM72 macro instruction, which develops into the
corresponding assembly language.

6. Comment Line
Because the ASM72 does not process this line, the user can use this line freely.

3.2 Line Configuration
This section discusses the configuration of each line. The following are explanations, or rules,
for the symbols described on a line.
1. A white () or black () triangle represents a space or tab code. A white one is

essential, but you may omit a black one .
2. When you describe a label name, you need not specify the ':' (colon).
3. A space or tab code is required between a label and an instruction.

3.2.1 MCU Name Specification Line
The configuration of an MCU name specification is described as follows:

-MCU name ;comment <RET>

1. MCU Name Column

 Specifies an MCU name.
 Be sure to describe '-' (hyphen) before the MCU name.
 The MCU name can be set by the -M option in an assembly process.

(1-13)

2 Comment Column
 The ASM72 does not process this column. It can be used for narrative information.
 The first character of a comment column must be a ';' (semi-colon).
 When an entire statement is a comment, the ';' must be the first character in the line.

All character after a ';' are regarded as a comment.

3.2.2 Assembly Language Instruction Line
The configuration of an assembly language instruction is described as follows:

Label Op-Code Operand ;Comment <RET>

1. Label Column

 Specifies a label used to reference the line from another location.
 Specifies a character line which contains up to fifteen alphanumeric characters and

the special characters, '_' (underscore), '.' (period), and '?' (question mark).
 The first character of a label must be an alphabet character or a special character, as

the '_' (underscore), '.' (period), and '?' (question mark). Other characters, including
numeric characters other than the above, cannot be used.

 Upper-case and lower-case letters of a label can be distinguished.
Example: 'BIG' and 'big' are judged as different labels.

2. Op-code Column

 Specifies an assembly language mnemonic (hereafter, Op-code).
 Upper-case and lower-case letters of an Op-code cannot be distinguished. For

example, both 'NOP' and 'nop' are the same.

3. Operand Column

 Specifies an operand to process.
 When the operand covers more than two data points, a ',' (comma) must be specified

between the data.
 A space or tab code can be used on both sides of the comma.

4. Comment Column

 The ASM72 does not process this column. It can be used for narrative information.
 The first character of a comment must be specified by a ';' (semi-colon).
 When an entire statement is a comment, the ';' (semi-colon) must be the first

character in the line. All characters after a ';' (semi-colon) are regarded as a comment.

3.2.3 Line of Addition/Subtraction to a Bit Symbol
The following is the configuration of a line of addition/subtraction to a bit symbol.

Instruction Bit symbol Operator Bit symbol
Instruction Bit symbol Operator Symbol/numeric ,Symbol/numeric ・・・

(1-14)

1. Instruction Column
 Describes a macro instruction or mnemonic operable to a bit symbol.

Macro instruction: .clb .lzxy .seb .szxyb
Mnemonic : lz lxy rb sb szb

2. Bit Symbol Column After Instruction Column

 Specifies a bit symbol.

3. Operator Column

 Operator can be described by addition (+) or subtraction (-).
 Only one operator can be described in one line.

4. Bit Symbol Column After Operator Column

 Specifies XY symbol, ZXY symbol or bit symbol.
 Only one bit symbol can be described in one line.

5. Symbol/Numeric Column after Operator Column

 Specifies a symbol/numeric.
 The maximum number of symbols/numerics which can be specified is four.
 If one symbol/numeric is specified, it is processed as Y register.
 If two symbols/numerics are specified, the first is processed as Z register, the second

as Y register, respectively.
 If three symbols/numerics are specified, the first is processed as Z register, the

second as X register, the third as Y register, respectively.
 If four symbols/numerics are specified, the first is processed as a bit location, the

second as Z register, the third as X register, the forth as Y register, respectively.
 Describe "," (comma) between numerics.
 A numeric between commas can be left out.
 The following cases result in an error.

- When the result of an addition exceeds each value of registers and a bit location
- When the result of a subtraction is a minus value
- When there is no operand after an operator
- When more than one bit symbol is specified in the bit symbol column after the

operator column
- When more than four symbols/numerics are specified in the symbol/numeric

column after the operator column

3.2.4 Pseudo Instruction Line
The following is the configuration of a pseudo instruction line. Refer to Chapter 4 and Appendix
B for further information.

Symbol type 1-4 .EQU Operand ;Comment <RET>
Label Pseudo instruction Operand ;Comment <RET>

1. Symbol Type 1-4 Column

 Describes the symbol and bit-symbol which assigns the value by the pseudo
instruction EQU.

(1-15)

2. Label Column
 Refer to the section on assembly language instructions.

3. Pseudo Instruction Column

 Describes pseudo instructions of the 720 Series.
 A pseudo instruction does not distinguish between upper-case and lower-case

characters. For example, both .END and .end are equivalent.

4. Operand Column

 Describes the corresponding process target of a pseudo instruction.
 Refer to "3.2.2 Assembly Language Instruction Line".

5. Comment Column

 Refer to "3.2.2 Assembly Language Instruction Line".

3.2.5 Macro Instruction Line
The following is the configuration of a macro instruction line. Refer to Chapter 5 and Appendix
C for further information.

Label: Macro instruction Operand ;Comment <RET>

1. Label Column

 Describes the label (name) which can be used to refer to the macro instruction line
from another location.

2. Macro Instruction Column

 Describes a macro instruction of the 720 Series. Macro instructions cannot distinguish
between upper-case and lower-case characters. For example, .CLB and .clb are the
same.

3. Operand Column

 Describes the corresponding process target of a macro instruction.
 Refer to "3.2.2 Assembly Language Instruction Line".

4. Comment Column

 Refer to "3.2.2 Assembly Language Instruction Line".

3.2.6 Comment Line
The first character of a comment line must be a ';' (semi-colon). The following is the
configuration of a comment Line.

 ;Comment <RET>

3.3 Column Description
This section discusses the common coding method columns of each instruction line. For more
information on the different coding method columns, refer to Chapters 4 and 5.

(1-16)

3.3.1 Symbol Type 1 through 4/Label Column
For these lines, the coding method of an instruction line is common. However, the ASM72
distinguishes between symbol type 1 through 4 and a label1 for management.

1. The name can be up to fifteen characters, and can contain alphanumeric characters and

special characters, such as the '_' (underscore), '.' (period), and '?' (question mark).
However, the first character of the line must be an alphabetic character or a special
character.

2. Upper-case and lower-case characters can be distinguished. For example, BIG and big
are recognized as different names.

When you describe a label, you can add a ':' (colon) after the label. It is recommended that a
colon be specified to distinguish the symbols easily, and to make searching for labels with an
editor more effective.

3.3.2 Comment Column
Used to describe any type of information. The following is the coding method of the comment
column.

1. Must be started with a ';' (semi-colon).
2. Any characters can be used in the comment column.

3.4 Operand Data Format
The following four data formats are possible in the operand notational convention

1. Numeric constant
2. Character constant
3. Symbolic constant
4. Expression

3.4.1 Numeric Constants

 A space or tab key must not be placed between a numeric type symbol and a numeric
value.

 Example .DW $ 64 >> Error

 Binary, octal, decimal and hexadecimal notations can be used for a numeric constant.

 When the description is from binary to binary, a '%' must precede the constant or a 'B' or
'b' must follow it.
Examples .DW %100110

 .DW 100110B

1. Symbol Type 1-4 is defined by pseudo instruction .EQU or parameter "-D". Any others are

processed as labels.

(1-17)

 When the description is from octal to octal, an '@' must precede the constant or a 'O', 'o',
'Q', or 'q' must follow it.
Examples .DW @70

 .DW 70O
 .DW 70Q

 When the description is from decimal to decimal, no designation is necessary. However,
an integral number, such as 23 or 256, is required.
Example .DW 100

 When the description is hexadecimal to hexadecimal, a '$' must precede the constant or

an 'H' or 'h' must follow it. When the first letter is an alphabetic A through F, a '0' must
precede it.
Examples .DW $64

.DW 64H

.DW 0ABH

3.4.2 Character Constants

 Descriptions of up to 16 characters, defined by the ASCII code, can be used.
 A character constant must be quoted by a ' (a single quotation mark). Each character

corresponds to a 7 bit ASCII code (the high-order bit is 0.)
Example .DW 'A' >> Encode 41H.

3.4.3 Symbol Constants

 Symbols have five kinds: a label and symbol types from 1 to 4.
- A label has a ROM Address.
- Symbol type 1 has an absolute value.
- Symbol type 2 has a symbol name and register values for X and Y.
- Symbol type 3 has a symbol name and register values for Z, X and Y.
- Symbol type 4 has a bit location in a bit symbol and register values for Z, X and Y. A bit

symbol has an assigned bit value and an address of the bit.
Example B MAIN >> Branch to MAIN

3.4.4 Expressions

 An expression is configured by the combination of a numeric constant, character constant,
symbolic constant and operand. A space or tab can be placed between the operand and
each term.
Example TBL + 1

 An expression is calculated from left to right. Brackets () specify a priority level.

Example 2+6/2 >> Result is four.
 2+(6/2) >> Result is five.

(1-18)

3.5 Special Characters
Table 3.1 lists the special characters available for specifying operand data.

Table 3.1 Special Character List
Character Name Character Name

 Space ? Question mark

+ Plus # Sharp

- Minus (Left parenthesis

* Asterisk) Right parenthesis

/ Slash \ Reverse slash

$ Dollar sign ! Exclamation mark

! Exclamation mark < Unequal (Less than)

% Percent > Unequal (Greater than)

, Comma & Ampersand

' Single quotation : Colon

^ High-hat ; Semi-colon

. Period Horizontal tab

Note:

When your system does not have the \ (Reverse slash), the ¥ mark can be used instead.

3.6 Operator
Table 3.2 lists the operators available for specifying operand data.

Table 3.2 Operator List

Class Operator Definition
! Deduct the ones complement.
< Retrieve high-order 8 bits from a label or symbol.
> Retrieve low-order 8 bits from a label or symbol. Monadic operator

Retrieve page (high-order 1 bit) from a label or symbol.
+ Addition
- Subtraction
* Multiplication
/ Division
& AND for each bit
|
: OR for each bit

^ NOT-IF-THEN operation for each bit

Binary operator

() Designation of priority level for an operation

Note:
Operations on bit symbols are not possible.

(1-19)

Chapter 4. Pseudo Instruction

4.1 Pseudo Instruction Features
Pseudo Instructions tell the ASM721 to generate machine language as an object. The ASM72
has twelve kinds of pseudo instructions, which are classified into the following three groups.

1. Assembly Control

 This group of pseudo instructions does not generate data, but controls the flow of the
assembly process.

 They do not update the address.
 This group includes the following three pseudo instructions.

.END Declaration of assembly completion
.IF (.ELSE) .ENDIF Conditional assembly
.INCLUDE File loading

2. Address Control

 Data setting pseudo instructions generate constant data
 They update the address.
 This group includes the following three pseudo instructions.

.EQU Synonymous definition
.ORG Address declaration
.DW Data establishment

3. List Controls

 They control the output of a PRN file.
 This group includes the following six pseudo instructions.

.COL List column format designation
.LINE List line format designation
.LIST List output
.NLIST List suppress designation
.PAGIE New page designation
.TTL Title designation

The following are the features of pseudo instructions, as classified into groups.

4.2 Assembly Control
4.2.1 Declaration of Assembly Completion
.END

 Declares the end of a source program.
 The ASM72 does not process after this line.

1. The indication of a pseudo instruction can be classified into a "Declaration" to instruct the

ASM72, and a "Command" to effect the output file.

(1-20)

4.2.2 Conditional Assembly
.IF - (.ELSE) - .ENDIF

 According to the specification of the symbolic value, it designates the assembling
locations.

 When a source program manages programs that are applicable for multiple specifications,
it controls the test routine assembly.

4.2.3 File Loading
.INCLUDE

 Instructs the loading of other files into the, location where this instruction is specified.
 Can be used to partially edit a large source.

4.3 Address Control
4.3.1 Synonymous Definition
.EQU

 Defines an absolute value for a symbol.
 Defines values of X and Y registers for a symbol.
 Defines values of Z, X and Y registers for a symbol.
 Defines bit location of Z, X and Y register values.

4.3.2 Address Declaration
.ORG

 Declares the address after the specified line.

4.3.3 Data Establishment
.DW

 Generates data coded by the operand in the ROM area.

4.4 Listing Control
4.4.1 Page and Title Designation
.PAGE, .TTL

 Designates a new page and the title of a list.

4.4.2 Listing Format Designation
.COL, .LINE

 Designates the number of a column and line.
 You can specify these pseudo instructions only once in a source file.

4.4.3 Listing Output Suppress Designation
.LIST, .NLIST

 Controls the listing output to a PRN file.
 These instructions can be used when only part of a list is required for debugging the

program, or for other purposes.

(1-21)

Chapter 5. Macro Instruction

5.1 Macro Instruction Features
Multiple assembly language instructions for the 720 Series are available through the use of a
macro instruction, in the same way as for an Op-code. The ASM72 has four pseudo
instructions, which are classified into the following two groups.

1. Bit Macro Instructions

 Operates on the bits of a bit symbol designated by the operand.
 This group includes the following three macro instructions

.CLB Clearing of the specified bit

.SEB Setting of the specified bit

.SZXYB Changing of the program sequence in accordance with the specified bits

2. Register Macro Instructions

 Sets values of Z, X and Y to each register, in accordance with the bit symbols
specified by the operand.

.LZXY Setting of the specified value of Z, X and Y registers.

Macro instruction features are classified into the following groups and are discussed
respectively.

5.2 Bit Macro Instructions
5.2.1 Clearing a Specified Bit
.CLB

 Clears the bit of a bit symbol specified by the operand.

5.2.2 Setting a Specified Bit
.SEB

 Sets the bit of a bit symbol specified by the operand.

5.2.3 Changing the Program Sequence According to a Specified Bit
.SZXYB

 If the test performed on the bit of a bit symbol specified by the operand should result in a
zero, the program sequence is changed.

5.3 Macro Register Instructions
5.3.1 Setting Values of Z, X and Y
.LZXY

 Sets values of Z, X and Y to each register in accordance with the specified operand.

(1-22)

Chapter 6. Operating Method

6.1 Getting Started
Before starting the ASM72, the following information (input parameters) should be set.

1. Name of the source file (essential)
2. Command parameters

The ASM72 requires this information in a DOS command line. Section 6.2 discusses the input
parameters, while Section 6.3 describes how to input the command line by giving examples.

6.2 Parameter Input
6.2.1 Source Filename
1. The source filename for assembly must be designated. There can be only one
2. When the file attribute (.ASM) is omitted, the ASM72 selects .ASM as the default attribute

value.
3. By specifying the full name, the assembly of files from extension .ASM (example: .SRC) is

also possible.
4. The designation of a directory path, included in the file name, is possible. When you only

indicate a file name, the file processed is the one in the current directory of the current
drive.

Example A>ASM72 C:¥WORK¥TEST<RET>

6.2.2 Command Parameter
1. Upper or lower case letters can be used for command parameters
2. Multiple definitions are possible in a command parameter. In this case, a space should be

inserted between the parameters.

Tables 6.1 and 6.2 list the definitions of command parameters.

(1-23)

Table 6.1 Command Parameter List
Command Parameter Definition
-A Generates a MAP file.

Example: A>ASM72 FILENAME -A<RET>
-C Outputs a source line debug information to a symbol file.

Example: A>ASM72 FILENAME –C -S<RET>
-D Defines an assembler symbol. This parameter has the same function

as pseudo instruction .EQU. The syntax is formed as follows. (When
you define many symbols simultaneously. Insert a ‘:’ between each
symbol)
-D SYMBOL=VALUE[:SYMBOL=VALUE.....:SYMBOL=VALUE]
Example: A>ASM72 FILENAME -DSYMBOL1=10:SYMBOL2=20<RET>

-E Generates a tag file and starts the editor. The following syntax
specifies the program name of the editor.
-E[Program Name of Editor]
Example: A>ASM72 FILENAME -EMl<RET>
You can omit the program name of the editor inside the []. When the
name is omitted, it generates a tag file. When the name is specified, it
starts the editor with the option of a tag file after assembly
completion.
However, if no error has occurred, it suppresses the start of the
designated editor.

-L Generates a PRN file. Without this parameter, the ASM72 omits the
generation of a PRN File.

-M Designates the assembly MCU's name. Without this parameter, the
ASM72 refers to the indication of the MCU specified in the first line of
the source file.
Example: A>ASM72 FILENAME -M50720<RET>

-O Designates the path where the generated file is targeted. A directory
or drive name can be indicated in the path. However, without this
parameter, the ASM72 targets the same path as the source file.
-O path name
Example: A>ASM72 FILENAME -OB:¥USR<RET>

-P Designates the directory and drive where the data file
(MXXXXX.DAT) is stored.
-P drive name
Example: A>ASM72 FILENAME -PB:¥USR<RET>

-R Outputs the program developed by bit macro pseudo instructions into
a PRN file.
Example: A>ASM72 FILENAME -R<RET>

-S Outputs a symbol file for the PD72.
Example: A>ASM72 FILENAME -S<RET>

-V Outputs HEU (high-order 1 bit of a HEX file) and HEL (low-order 8
bits of a HEX file) for an evaluation board.
Example: A>ASM72 FILENAME -V<RET>

-W Outputs an EPROM OTP file.
Example: A>ASM72 FILENAME -W<RET>

-WM Outputs the high-order 1 bit and the low-order 8 bits of a CAD file of
the EPROM version.
Example: A>ASM72 FILENAME -WM<RET>

-X After assembly completion, starts cross-referencer CRF721.
Example: A>ASM72 FILENAME -X<RET>

[Notes]
1. When the CRF72 does not exist in the current directory or command path, a system error

occurs.
2. The combination of command parameters -V, -W, and -WM is not permitted.

(1-24)

6.3 Input Method
Starting the ASM72 is performed by the input of a command line at the DOS prompt. The
following is an example of a boot-up command.

A> ASM72 FILENAME -L -S <Enter>

1. DOS prompt
2. ASM72
3. Source filename of the assembly target
4. Command parameter -L generates a PRN file.
5. Command parameter -S generates a SYM file.
6. Return key

When an error is detected in the command line, assembly is suppressed, with the help display
as shown below.

64 5 31 2

C:¥>ASM72<Enter>
720 SERIES ASSEMBLER V.1.20.02C
COPYRIGHT(C) 1989 (1989-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

Usage : ASM72 <filename> [Options...]

 -A : make memory Area information.(output MAP file)
 -C : output source line information.(output SYM file)
 -D : define symbol (use -Ds1=1:s2=2)
 -E : make tag file and start editor (use -E or -Eeditor name)
 -L : make list file
 -M : define CPU name (use -M50720)
 -O : select drive and directory for output (use -Oa:¥work)
 -P : select directory(drive) of mxxxxx.dat file.(use -P¥work)
 -R : output bit macro expansion
 -S : make symbol file for symbolic debugger
 -V : make file for eva.chip
 -W : output hex data for EPROM version (lower 4bit, upper 5bit)
 -WM : output hex data for EPROM version (lower 8bit, upper 1bit)
 -X : execute crf72

Figure 6.1 Help Display after a Command Error

(1-25)

When assembly is complete, the number of errors, warning lines, comment lines, and memory
capacity are displayed. Figure 6.2 is an example of a display after a normal assembly
completion.

D:¥>ASM72 TEST<Enter>
720 SERIES ASSEMBLER V.1.20.02C
COPYRIGHT(C) 1989 (1989-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
now processing pass 1
----*----*
now processing pass 2
----*----*
ERROR COUNT 0000
WARNING COUNT 0000
SOURCE LINE 1028 LINES
TOTAL LINE 1028 LINES
COMMENT LINE 0000 LINES
OBJECT SIZE 1024 BYTES

Figure 6.2 Display after a Normal Completion

6.4 Errors
6.4.1 Error Types
Errors which occur in the ASM72 assembling are classified into the following causes.

1. Errors related to DOS
 This relates to the lack of memory capacity, DOS operation environment when executing

the ASM72, etc. Please refer to the error messages listed in Appendix A and process them
with a DOS command.

2. Errors related to ASM72 command indications
 This relates to the command line indications when starting the ASM72. Please refer to this

chapter and execute the command line again.

3. Errors related to the source file
 This relates to the contents of a source file; as multiply defined, reference to undefined

symbols, etc. Please modify the indicated part of the source file and assemble again. If the
ASM72 detects an error, HEX files will not be generated properly.

If the ASM72 detects an error or warning, the following error content (filename, line number in
the file, through line number, error number and error message) is output to the display and
PRN file. Please apply the necessary procedure by referring to the error messages listed in
Appendix A.

(1-26)

D:¥>ASM72 TEST<Enter>
720 SERIES ASSEMBLER V.1.20.02C
COPYRIGHT(C) 1989 (1989-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
now processing pass 1
----*----*
now processing pass 2
----*----*
1028 0401 102 08/02 0 BM sub1
TERST.ASM 1028 (TOTAL LINE 1028) Error 21: Value is out of range "sub1"

ERROR COUNT 0001
WARNING COUNT 0000
SOURCE LINE 1031 LINES
TOTAL LINE 1031 LINES
COMMENT LINE 0000 LINES
OBJECT SIZE 1026 BYTES

Figure 6.3 Example of an Error Description

6.4.2 Return Value to DOS
When you describe an execution command in a DOS batch file, sometimes you have to
change the transaction process according to the results of the execution. The ASM72
classifies these execution results into four error levels, as shown below.

Table 6.3 Error Level List
Error Level Execution Result

0 Normal completion
1 ASM72 source file error
2 ASM72 command description error
3 DOS error

(1-27)

Appendix A. Error Message List

A.1 System Errors
When the ASM72 detects a system error during assembly, it shows an error message on the
display and suppresses the assembly. Table A.1 is a list of the system error messages.

[Note]
The total number of symbols and labels that can be used in an ASM72 assembly depends on
the system memory capacity available to execute the assembly.

Table A.1 System Error Message List

Error Message Troubleshooting
Usage: ASM72 <filename>
[Options...]

Syntax error in the command line.
>> Refer to the help display and input a new command
line.

Cannot open xxx Cannot find a source file.
>> Make sure of the source file name and input again.

Cannot create xxx Indicates the file can not be generated.
>> Make sure of the -O parameter and input again.

Out of disk space Not enough disk capacity to output the file.
>> Delete an unnecessary file from the diskette.

Out of heap space Not enough memory to operate the assembler.
>> Reduce the number of symbols or labels.

Can't find crf72.exe CRF72 can not be found.
>> Copy the CRF72.exe file into the current directory
or DOS command path directory.

Can't find command.com to execute
xxx

COMMAND .COM needed to boot the designated
editor by the -E option, cannot be found.
>> Make sure of the directory path description for DOS
commands.

Multiply defined CPU name Multiply defined CPU name both in command line and
the source file.
>> Eliminate all but one of the descriptions.

M34xxx.DAT not found A data file in the indicated directory for the specified
MCU was not found.
>> Make sure that the specified data file exists.

(1-28)

A.2 Assembly Errors
When the ASM72 detects an assembly error, it outputs an error message on the display and in
the PRN file. Tables A.2 through A.6 show the assembly errors and their descriptions.

Table A.2 Assembly Error List (No. 1)

Error Number Error Message Troubleshooting
1 Already had same statement Pseudo instruction is used more than two

times. Can only be used once in a source
file.
Example .LINE 60
 :
 .LINE 80
>> Declaration should be used only one
time.

2 Reference to backward label
or symbol

Pseudo instruction refers to a later symbol
or label.
Example .ORG TOP
 TOP:
>> Reference of label and symbol is set
after definition.

3 Division by 0 A numeric expression includes division by
0.
>> Make sure of the numeric expression
value.

4 Illegal operand An operand includes an unavailable
character.
Example LDA #&10
>> Make sure of the operand description.

5 Improper operand type The combination of mnemonic and
operand is incorrect.
Example ASL work,Y
>> Make sure of the instruction syntax
form.

6 Invalid label definition Defined label is executed at an
unavailable
location.
Example 1) LABEL1: .LINE 60
>> Delete the label.
Example 2) LABEL2: .EQU 100
>> Change the label to a symbol.

7 Out of maximum program
size

Address is out of the maximum program
size.
Example .ORG 0FFFFH
 .WORD 1,2,3,4,5,6,7,8,9
>> Change the program address to be
within the maximum program size.

8 Label is multiply defined The same label or symbol is defined more
than once.
Example MAIN: NOP
 MAIN: NOP
>> Make sure of the label and symbol
names.

(1-29)

Table A.3 Assembly Error List (No. 2)
Error Number Error Message Troubleshooting

9 Nesting error The pseudo instruction .lF or .INCLUDE is
nested.
Example. IF DATA1
 .IF DATA2
 :
 .ENDIF
 .ELSE
 :
 .ENDIF
>> Change the program to avoid nesting.

10 No .END statement No .END pseudo is stated in the source
file.
>> Place an .END pseudo at the end of
the program.

11 No label definition Symbol is not defined.
Example .EQU 60
>> Define the symbol.

12 No ‘;’ at the start of a
comment

No ';' (semi colon) is at the start of a
comment.
Example LDA #CNT counter set
>> Place a ';' at the start of a comment.

13 Not in conditional block .ELSE or .ENDIF pseudo is placed in a
block where the corresponding .IF pseudo
is not defined.
(If the corresponding .lF pseudo is defined
as an error, this error message will
appear.)
Example .IF DATA1
 :
 .ENDIF
 :
 .ELSE
 :
 .ENDIF
>> Make sure of the .IF pseudo condition.

14 Operand is expected Operand for an instruction is missing.
Example .BYTE
>> Make sure of the instruction operand.

15 Questionable syntax A mnemonic instruction is misspelled.
Example ADD #DATA
>> Make sure of the mnemonic instruction
spelling.

16 Reference to a multiply
defined label

Reference is made to multiply defined
label or symbol.
Example MAIN: NOP
 MAIN: NOP
 BRA MAIN
>> Make sure of the label or symbol name.

17 Relative jump is out of range The location addressed by a relative jump
instruction is out of range.
>> Relocate the program or change the
instruction.

18 Label is a reserved word A label and symbol have the same
reserved word.
Example A .EQU 1FFH
>> Change the name of the label or
symbol.

(1-30)

Table A.4 Assembly Error List (No. 3)
Error Number Error Message Troubleshooting

19 Reference to an undefined
label

Reference is made to an undefined label
or symbol.
>> Make sure of the label or symbol.

20 Value error Data value is invalid.
Example ADC #’A
>> Make sure of the data description form.

21 Value is out of range Data value is out of range.
Example ADC #100H
>> Make sure of the operand description
form.

22 “()” format error The number of open and close
parenthesis is unequal.
Example ADC (WORK
>> Make sure of the operand description
form.

23 Label error A label has more than sixteen characters
or includes invalid characters.
Example L123456789012345:
>> Make sure of the label.

A.3 Warnings
When the ASM72 detects a warning, it outputs a warning message to the display and PRN file.
Table A.5 is a list of the warnings and transactions with their descriptions.

Table A.5 Warning List
Warning Number Warning Message Troubleshooting

1) The address designated by an .ORG
pseudo instruction is bigger than the
address designated by an .ORG pseudo
instruction
Example .ORG 0E000H
MAIN: LDA WORK
 :
 .ORG 0C000H

1 Phase warning

2) The instruction refers to the label or
symbol after this line.
Example LDA WK,X
 :
WK .EQU 80H
>> Define the label or symbol before the
line referred.

2 .END statement in included file Pseudo instruction .END is stated in
included file.
>> Place .END in the source file only.

(1-31)

Appendix B. Pseudo Instruction List

B.1 Overview of the Pseudo Instruction List
ASM72 Pseudo Instructions are listed in alphabetical order. The following are notational rules
for pseudo instructions.

1. The portion inside the [] can be omitted.
2. A white triangle means a space or tab code.
3. In the following description, a white triangle is inserted between the label and pseudo

instructions. A label description does not always require a ':' (colon).
4. A space or tag code should be inserted between a label and a pseudo instruction.

B.2 Pseudo Instruction List

.COL Indicating Columns (default 132)

Syntax
 .COL Value

Description

 Designates the number of characters in a line (80 or 132).
 Numbers designated below 80 are regarded as 80, while those beyond 81 are regarded

as 132.
 This instruction can be used only once in a program.

Example
.COL 80 ; Set the number of columns to 80.
 :

(1-32)

DW Setting up data

Syntax
 Label .DW Expression

Description

 Sets up the value of an expression (Unit: word).
 When you set more than two data values, each must be separated by a comma ','.
 The maximum number of values in a line is sixteen.

Example
label: .DW 1FF ; Set up 1FFH.
 .DW symbol ; Set up the value of symbol.
 :

 :

.END Declaring the End of a Program

Syntax
 .END

Description

 This instruction indicates the end of a source program.
 The ASM72 does not assemble any lines after this pseudo instruction.

Example
 :

.END ; Declares the end of the program.

(1-33)

.EQU Synonymous Define

Syntax 1
Symbol type 1 .EQU Value

Syntax 2
Symbol type 1 .EQU Value X, Value Y

Syntax 3
Symbol type 1 .EQU Value Z, Value X, Value Y

Syntax 4
Symbol type 1 .EQU Bit Location, Value Z, Value X, Value Y

Description

 Assign a value to the symbol on the left side.
 Syntax 1 assigns an integral value of sixteen bits for the symbol code.
 Syntax 2 assigns the register values of X and Y for the symbol code to be used by the

LXY instruction.
 Syntax 3 assigns the register values of Z, X and Y. LXY, LZ and macro pseudo (.LZXY)

instructions can be used.
 Symbol 4 assigns a bit value from 0 to 3, register values of Z, X and Y. LXY, LZ, SB, RB,

SZB and macro instructions (.LZXY, .CLB, .SZXYB, .SEB) can be used.
 Symbols for the values input must be defined before this line.

Example
 COUNT .EQU 4 ; Syntax 1
 TYPE .EQU 3,0 ; Syntax 2
 DATE5 .EQU 0,3,4 ; Syntax 3 (No indication of bit location)
 FLAG0 .EQU 1,0,3,4 ; Syntax 3 (Indication of bit location)
 LXY TYPE ; X=3,Y=0
 LXY DATE5 ; X=3,Y=4
 LXY FLAG0 ; X=3,Y=4
 LZ DATE5 ; Z=0
 LZ FLAG0 ; Z=0
 SB FLAG0 ; Set the 1st bit to 1 in DP.
 RB FLAG0 ; Set the 1st bit to 0 in DP.
 SZB FLAG0 ; If the 1st bit in DP is 0, skip the next instruction.

(1-34)

.IF (.ELSE) .ENDIF Conditional Assembly

Syntax
 .IF Expression

Instruction 1
 .ELSE

Instruction 2
 .ENDIF

Description

 A label defined by a synonymous instruction of syntax type 1 and the -D parameter can be
described in the expression.

 If the expression following .IF is true, the ASM72 assembles instruction 1. If false, it
assembles instruction 2.

 This pseudo instruction can not be nested.
 You can describe instructions in a column.
 Labels or symbols using in the expression must be defined before this line.

Example
.IF FLAG ; If the value of FLAG is true, the ASM72
 : performs the assembly until .ELSE.
 :

.ELSE ; If false, it assembles until .ENDIF
 :

 :

.ENDIF

.INCLUDE Loading a File

Syntax
 .INCLUDE Filename

Description

 The ASM72 loads the contents of the file specified by an operand to the location this
pseudo instruction is described.

 The filename must be specified in full.
 A path indication can be used in the filename.

Example
.INCLUDE TEST.INC ; Load the contents of TEST.INC.
 :

 :

(1-35)

.LINE Indicates the Number of Lines per page (Default 54)

Syntax
 .LINE Value

Description

 This instruction designates the number of lines per page (5 to 255).
 4 header lines are included.
 This pseudo instruction can be used only once in a program
 Symbols for an operand must be defined before this line.

Example
.Line 60 ; Set the number of lines to 60
 :

 :

.LIST List output start (Default)

Syntax
 .LIST

Description

 This instruction starts output to the list file.
 This pseudo is used to restart output to the list file after stopping output by

pseudo .NLIST.

Example
.NLSIT ; Output of list stopped.
 : ; No output to PRN file until ".LIST" is designated.
 :

.LIST ; Output of lists started.
 : ; Data following this pseudo instruction is output to PRN file.
 :

.NLIST List Output stop

Syntax
 .NLIST

Description

 This instruction stops output to the list file.
 If you want to start output to the list file again, pseudo .LIST can be used.

Example
.NLIST ; Output of list stopped.
 : ; No output to PRN file until ".LIST" is designated.
 :

.LIST ; Output of lists started.
 : ; Data following this pseudo instruction is output to PRN file.
 :

(1-36)

.ORG Declaring Address (Default 0000H)

Syntax 1
 .ORG Address

Syntax 2

 .ORG Page, Offset

Description

 Declares the starting address after this line.
 With no indication, it uses a starting address of 0000H.
 Labels or symbols used in the expression must be defined before this line.

Example
.ORG 780H ; Set the address of page 15.
 :

.ORG 5,10 ; Set to address 10 of page 15.

.PAGE Forward the list page and specify a Title

Syntax
 .PAGE ['Title']

Description

 Forwards the list page just before this instruction and outputs the title indicated by the
operand at the head of the list.

 The title must be specified with ' (single quotations) or " (double quotations).
 If the column is designated as 80, the maximum number of characters is 20. If 132, the

maximum number of characters is 30. If the title is omitted, only a page forward occurs.

Example
.PAGE ‘PROG1’ ; Output PROG1 at the head of the PRN file.
 :

.TTL Indicating a Title

Syntax
 .TTL ['Title']

Description

 Forwards a page just before this instruction and outputs the title indicated by the operand
at the head of the list.

 Title must be specified with a ' (single quotations).
 The maximum number of title characters is 16.

Example
.TTL ‘PROG1’ ; Output PROG1 at the head of the PRN file
 :

(1-37)

Appendix C. Macro Instruction List

C.1 Overview of the Macro Instruction List
The macro instructions used by the ASM72 are listed in alphabetical order.
The following are the notational convention rules.

1. The portion enclosed by [] can be omitted.
2. A white triangle indicates a space or tab code.
3. In the following description, a white triangle is inserted between the label and the

macro instruction.
4. A ':' (colon) is not always required when specifying a label.
5. A space or tab code is required between a label and a macro instruction.

C.2 Macro instruction list

.CLB Clearing a Bit

Syntax
 Label .CLB Symbol type 4

Description

 Sets the bit specified by symbol type 4 to "0".

Example
[Specifying Example]
FLAG0 .EQU 1,0,3,4

 .CLB FLAG0

 :

[After Macro Generation]
 LXY 3,4

 RB 1

 :

(1-38)

.LZXY Setting a Register

Syntax
[Label] .LZXY Bit symbol

Description

 Sets the specified value of Z, X and Y to each register.
 If register Z does not exist, you cannot use this instruction.

Example
[Specifying Example]
FLAG0 .EQU 1,0,3,4

 .LZXY FLAG0

:

[After Macro Generation]
 LZ 0

 LXY 3,4

 :

.SEB Setting a Bit

Syntax
[Label:] .SEB Symbol type 4

Description

 Sets the bit specified by symbol type 4 to "1".

Example
[Specifying Example]
FLAG0 .EQU 1,0,3,4

 .SEB FLAG0

 :

[After Macro Generation]
 LXY 3,4

 SB 1

 :

(1-39)

.SZXYB Setting a Bit

Syntax
[Label] .SZXYB Bit symbol

Description

 Tests the bit specified by the bit symbol. If it results in a "0", it skips to the next instruction.

Example
[Specifying Example]
FLAG0 .EQU 1,0,3,4

 .SZXYB FLAG0

 :

[After Macro Generation]
 LXY 3,4

 SZB 1

 :

(1-40)

Part 2

Cross-Referencer for 720 Series

CRF72 Operation Manual

(2-1)

Table of Contents

Chapter 1. Organization of the CRF72 Operation Manual... 2-3

Chapter 2. Overview... 2-4
 2.1 Features... 2-4
 2.2 File Generation .. 2-4
 2.3 CRF File Configuration .. 2-4

Chapter 3. Operation Method... 2-6
 3.1 Getting Started... 2-6
 3.2 Input Parameters ... 2-6
 3.2.1 Source Filename .. 2-6
 3.2.2 Command Parameters ... 2-6
 3.3 Input Method.. 2-6
 3.3.1 Command Line Input .. 2-6
 3.4 Errors ... 2-7
 3.4.1 Types of Errors... 2-7
 3.4.2 Returned Values to DOS.. 2-7
 3.5 Environmental Variables.. 2-7

Appendix A. Error Message List... 2-8

(2-2)

Chapter 1. Organization of the CRF72 Operation Manual

This CRF72 Operation Manual is organized by the following chapters.

Chapter 2. Overview
This chapter describes the basic functions and files the CRF72 generates.

Chapter 3. Operation Method
This chapter describes the command input method.

Appendix A. Error Message List
Lists the descriptions and transactions of the error messages displayed by the CRF72.

This manual is compliant with the CRF72 V.1.xx.xxC.

(2-3)

Chapter 2. Overview

CRF72 creates a cross-reference list of labels and symbols (hereafter, cross-reference list) for
the source file. By using this list to correct a program, it becomes easy to understand the
interactive relationship of the source files.

2.1 Features
The CRF72 can be used with the ASM721. The CRF72 performs the following functions to
effective understand the source files.

1. Displays the various types of label reference instructions in the reference line number.
2. Creates reference information of the file defined in the Source file by the pseudo

instruction .INCLUDE.
3. Outputs a header with the pseudo instruction .PAGE.

2.2 File Generation
The CRF72 creates the following files.

1. Cross-reference file (hereafter, CRF file)

 Shows a cross-reference list of labels and symbols.
 The number of columns is fixed to 80, and the number of lines per page to 57.
 By printing this file, it can be used for debugging or editing.
 The file extension is .CRF.

2.3 CRF File Configuration
Figure 2.1 shows an example of a CRF file. The following information is included in a CRF file.

1. A numeric character beside the label and symbol name indicates the line number of the

assembly list where the label is used.
2. A '#' (sharp) indicates that the label is defined in the line.
3. An '&' (ampersand) indicates the reference line is executed by a BM, BML and BMLA

instruction.
4. Label and symbol names can be up to eight characters; excessive characters will be

ignored.
5. The title indicated by the .PAGE pseudo instruction will be specified in the header of the

list.
6. As CRF72 does not check the values of labels and symbols in the source program. Note

that it cannot perform conditional assembly.

1. ASM72: Absolute assembler for the 720 Series

(2-4)

M50720 CROSS REFERENCE V1.00C 727TEST PROG. P.001

ATOC 177& 396#
A_D 118 174#
COUNT 95# 154& 166& 201& 214& 379& 388&
D0_SET 250& 333#
D10 318 320#
D10_SET 322& 363#
D1_SET 254& 336#
D2 257 259#
D2_SET 261& 339#
D3 264 266#
D3_SET 268& 342#
D4 271 273#
D4_SET 275& 345#
D5 278 280#
D5_SET 282& 348#
D6 285 287#

 :

Figure 2.1 Example of a CRF File

(2-5)

Chapter 3. Operation Method

3.1 Getting Started
Starting CRF72 requires the input of the following information (input parameters).

1. Source filename (essential)
2. Command parameters

3.2 Input Parameters
3.2.1 Source Filename

1. Always input a source filename.
2. Without a file extension (.ASM), the CRF72 sets the extension to .ASM.
3. By describing the name and extension together in a filename, the CRF72 can process files

other than .ASM.
4. A drive name can be also specified in the filename. Without a drive name, the CRF72

processes files in the current directory. The directory path cannot be used.
5. The source filename can include up to 16 characters.

3.2.2 Command Parameters
Command parameters indicate the .INCLUDE pseudo instruction and the drive name of the
output file for the source file. Table 3.1 describes the command parameters.

Table 3.1 Command Parameter List

Command Parameter Description
-O Indicates the directory name for the output file. The

following is an example of the syntax.
Example A>CRF72 TEST -OC:¥TEMP<RET>
Output the cross-reference file to C¥TEMP.

3.3 Input Method
3.3.1 Command Line Input
Starting the CRF72 is performed with the input of a command line at the DOS prompt display.
Figure 3.1 shows an example of a starting command input.

A>CRF72 TEST<RET>

Figure 3.1 Example of a Command Line Input

If the CRF72 detects an error in the command line, it suppresses the process and outputs the
following display; Figure 3.2.

(2-6)

C:¥>CRF72<Enter>

720 SERIES CROSS REFERENCE V.1.01.01C
COPYRIGHT(C) 1992 (1992-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

Usage: crf72 <filename> [-.] [-opath]
 -. : all messages supressed
 -o : select drive and directory for output (use -otmp)

Figure 3.2 Help Display for a Command Line Error

3.4 Errors
3.4.1 Types of Errors
The following are the causes of errors while executing the CRF72.

1. DOS errors

Relates to the DOS environment while executing the CRF72, lack of hard disc or memory
capacity, etc. By referring to the Error Message List of Appendix A, process the necessary
transaction with a DOS command.

2. CRF72 command line input errors
Relates to the command line input starting the CRF72. Refer to this section and input the
command line again.

3. Content of the source file in process errors
Occurs when a specified source file does not exist.

C:¥>CRF72 TEST<Enter>

720 SERIES CROSS REFERENCE V.1.01.01C
COPYRIGHT(C) 1992 (1992-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

Error 2:Can't open file (TEST.ASM)

Figure 3.3 Example of an Error Display

3.4.2 Returned Value to DOS
The returned value to DOS is 0 in the CRF72.

3.5 Environmental Variables
The CRF72 does not use the DOS environmental variables.

(2-7)

Appendix A. Error Message List

Table A.1 Error Message List

Error Number Error Message Troubleshooting
1 Can't make cross reference CRF72 start-up is rejected.

>> Check the memory capacity.
2 Can't open XXX.ASM Cannot open the file.

>> Make sure XXX.ASM exists and check
the memory capacity.

3 Can't close XXX.ASM Cannot close the file.
>> Check the memory capacity.

4 Out of disk space Cannot output a CRF file.
>> Check the memory capacity.

(2-8)

Part 3

Branch-out Error Correction Utility BRANCH for 720 Series

BRANCH Operation Manual

(3-1)

Table of Contents

Chapter 1. Organization of the BRANCH Operation Manual ... 3-3

Chapter 2. Overview... 3-4
 2.1 Features... 3-4
 2.2 File Generation .. 3-4

Chapter 3. Operation Method... 3-5
 3.1 Getting Started... 3-5
 3.2 Input Parameters ... 3-5
 3.2.1 Source Filename .. 3-5
 3.2.2 Command Parameters ... 3-5
 3.3 Input Method.. 3-5
 3.3.1 Command Line Input .. 3-5
 3.4 Errors ... 3-7
 3.4.1 Types of Errors... 3-7
 3.4.2 Value Returned to DOS.. 3-7

Appendix A. Error Message List... 3-8
 A.1 Error Message List .. 3-8

(3-2)

Chapter 1. Organization of the BRANCH Operation Manual

This BRANCH Operation Manual is organized by the following chapters.

Chapter 2. Overview
This chapter describes the basic functions and files the BRANCH generates.

Chapter 3. Operation Method
This chapter describes the command input method.

Appendix A. Error Message List
Lists the descriptions and transactions of the error messages displayed by the BRANCH.

This manual is compliant with the BRANCH V.1.xx.xx.

(3-3)

Chapter 2. Overview

The BRANCH is a software tool for correcting branch-out errors which occur at assembling.
Supported MCUs are the 4500 and 720 Series of 4-bit microcomputers.

2.1 Features
The BRANCH has the following functions.

1. Automatically starts up assembler ASM45/ASM72.
2. Converts all branch instructions in a page (B) where a branch-out error occurs to branch

instructions out of the page (BL).
3. Saves the assembler source file which has not been converted.

2.2 File Generation
The BRANCH generates the following files.

1. Corrected assembler source file

This file is an assembler source file whose branch-out errors are corrected. Its file name is
the same as a file name which is specified at start-up. If an extension is not specified,
".ASM" is its extension.

2. Assembler source file before correcting
This is an assembler source file before correcting. Its extension is ".ORG". If a branch-out
error does not occur, it is not generated.

(3-4)

Chapter 3. Operation Method

3.1 Getting Started
Starting the BRANCH requires the input of the following information (input parameters).

1. Source filename (essential)
2. Command parameters

3.2 Input Parameters
3.2.1 Source Filename

1. Specify the name of an assembler source file to be corrected.
2. You can specify only one source file.
3. Without a file extension (.ASM), the BRANCH sets the extension to .ASM.
4. By describing the name and extension together in a filename, the BRANCH can process

files other than .ASM.
5. A directory path can be also specified in the filename. When only a file name is specified,

the BRANCH processes files in the current directory.

3.2.2 Command Parameters
Command parameters indicate the .INCLUDE pseudo instruction and the drive name of the
output file for the source file. Table 3.1 describes the command parameters.

Table 3.1 Command Parameter List

Command Parameter Description
-. Suppresses all the messages displayed on the screen.

-45/72 Specifies an MCU series. "-45" is for the 4500 Series;
"-72" is for the 720 Series. The default setting is "-72".

-ASM Specifies options for the ASM45/ASM72. Set options after
"-ASM".

3.3 Input Method
3.3.1 Command Line Input
Starting the BRANCH is performed with the input of a command line at the DOS prompt
display. An example of a starting command input is shown below.

A>BRANCH SAMPLE<RET>

If the BRANCH detects an error in the command line, it suppresses the process and outputs
the following display; Figure 3.1.

(3-5)

C:¥>BRANCH<Enter>
720/4500 Series Branch Instruction Change Tool V.1.01.00
COPYRIGHT(C) 1994 (1994-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

The file name is not specified.

Usage: branch <ASMfilename> [-.][-45/72][-ASM asmOption]

 -. : all messages suppressed.
 -45/72 : set MCU type(4500 or 720(default)).
 -ASM : set assembler option after -ASM.

Figure 3.1 Help Display for a Command Line Error

When the conversion is completed, the result of assemble and number of errors are displayed.
Figure 3.2 shows an example of window display when the conversion is completed normally.

C:¥>BRANCH TEST<Enter>
720/4500 Series Branch Instruction Change Tool V.1.01.00
COPYRIGHT(C) 1994 (1994-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

[1]720 SERIES ASSEMBLER V.1.20.02C
COPYRIGHT(C) 1989 (1989-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
now processing pass 1

now processing pass 2
TEST.ASM 6 (TOTAL LINE 6) Error 17: Relative jump is out of range "start"

ERROR COUNT 0001
WARNING COUNT 0000
SOURCE LINE 0008 LINES
TOTAL LINE 0008 LINES
COMMENT LINE 0000 LINES
OBJECT SIZE 0002 BYTES
[2]720 SERIES ASSEMBLER V.1.20.02C
COPYRIGHT(C) 1989 (1989-2004)
RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
now processing pass 1

now processing pass 2

ERROR COUNT 0000
WARNING COUNT 0000
SOURCE LINE 0008 LINES
TOTAL LINE 0008 LINES
COMMENT LINE 0000 LINES
OBJECT SIZE 0003 BYTES

Conversion was completed.

Figure 3.2 Display When the Conversion is Completed Normally

(3-6)

3.4 Errors
3.4.1 Types of Errors
The following are the causes of errors while executing the BRANCH.

1. Error Concerning Command Line Input

Relates to the command line input at BRANCH start-up. Input the command line again.
2. Error Concerning an Operation Environment

Relates to an operating environment of the BRANCH such as shortage of hard disk or
memory space.

3.4.2 Value Returned to DOS
To describe an execution file in a DOS batch file, you may want to change its process
according the result of the execution. The BRANCH can return the result to DOS with a label
listed below. For details on the usage of error labels, refer to a manual of DOS commercially
available.

Table 3.2 List of Error Level
Error Level Execution Result

0 Normal completion
1 Target file error
2 Operating environment error

(3-7)

Appendix A. Error Message List
A.1 Error Message List
If an error is detected when executing the BRANCH, an error message is displayed and the
conversion is canceled. The list of error message is shown below.

Error Messages
An error does not exist.
Conversion was completed.
The instruction for conversion does not exist.
Conversion was completed, the error exists.
Please correct the error of an ORG file and execute the BRANCH again.
Option specification of the BRANCH is wrong.
Option specification of an assembler is wrong.
The file name is not specified.
An assembler cannot be executed.
Please check a PATH, and an environmental setup of DOS.
Option specification of an assembler is wrong.
The system error occurred in the assembler.
Please execute an assembler and check a cause.
Out of heap space.
Can't open source file.
Can't open temporary file.
The source file has broken.
Can't write temporary file.
The specified editor does not execute.
CRFxx cannot be executed.
Execute of cross referencer was completed.
Can't open nul device.

(3-8)

 AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

ASM72 V.1.20 User’s Manual

Rev.1.00
May 1, 2004
REJ10J0486-0100Z

COPYRIGHT ©2004 RENESAS TECHNOLOGY CORPORATION

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

ASM72 V.1.20

REJ10J0486-0100Z

User’s Manual

	Preface
	Part 1 ASM72 Operation Manual
	Table of Contents
	Chapter 1. Organization of ASM72 User's Manual
	Chapter 2. Overview
	2.1 Features
	2.2 File Generation
	2.2.1 HEX File
	2.2.2 PRN Files
	2.2.3 TAG Files
	2.2.4 SYM Files
	2.2.5 MAP Files

	Chapter 3. Source Program Coding Methods
	3.1 Source Program Configuration
	3.2 Line Configuration
	3.2.1 MCU Name Specification Line
	3.2.2 Assembly Language Instruction Line
	3.2.3 Line of Addition/Subtraction to a Bit Symbol
	3.2.4 Pseudo Instruction Line
	3.2.5 Macro Instruction Line
	3.2.6 Comment Line

	3.3 Column Description
	3.3.1 Symbol Type 1 through 4/Label Column
	3.3.2 Comment Column

	3.4 Operand Data Format
	3.4.1 Numeric Constants
	3.4.2 Character Constants
	3.4.3 Symbol Constants
	3.4.4 Expressions

	3.5 Special Characters
	3.6 Operator

	Chapter 4. Pseudo Instruction
	4.1 Pseudo Instruction Features
	4.2 Assembly Control
	4.2.1 Declaration of Assembly Completion
	4.2.2 Conditional Assembly
	4.2.3 File Loading

	4.3 Address Control
	4.3.1 Synonymous Definition
	4.3.2 Address Declaration
	4.3.3 Data Establishment

	4.4 Listing Control
	4.4.1 Page and Title Designation
	4.4.2 Listing Format Designation
	4.4.3 Listing Output Suppress Designation

	Chapter 5. Macro Instruction
	5.1 Macro Instruction Features
	5.2 Bit Macro Instructions
	5.2.1 Clearing a Specified Bit
	5.2.2 Setting a Specified Bit
	5.2.3 Changing the Program Sequence According to a Specified Bit

	5.3 Macro Register Instructions
	5.3.1 Setting Values of Z, X and Y

	Chapter 6. Operating Method
	6.1 Getting Started
	6.2 Parameter Input
	6.2.1 Source Filename
	6.2.2 Command Parameter

	6.3 Input Method
	6.4 Errors
	6.4.1 Error Types
	6.4.2 Return Value to DOS

	Appendix A. Error Message List
	A.1 System Errors
	A.2 Assembly Errors
	A.3 Warnings

	Appendix B. Pseudo Instruction List
	B.1 Overview of the Pseudo Instruction List
	B.2 Pseudo Instruction List

	Appendix C. Macro Instruction List
	C.1 Overview of the Macro Instruction List
	C.2 Macro instruction list

	Part 2 CRF72 Operation Manual
	Table of Contents
	Chapter 1. Organization of the CRF72 Operation Manual
	Chapter 2. Overview
	2.1 Features
	2.2 File Generation
	2.3 CRF File Configuration

	Chapter 3. Operation Method
	3.1 Getting Started
	3.2 Input Parameters
	3.2.1 Source Filename
	3.2.2 Command Parameters

	3.3 Input Method
	3.3.1 Command Line Input

	3.4 Errors
	3.4.1 Types of Errors
	3.4.2 Returned Value to DOS

	3.5 Environmental Variables

	Appendix A. Error Message List

	Part 3 BRANCH Operation Manual
	Table of Contents
	Chapter 1. Organization of the BRANCH Operation Manual
	Chapter 2. Overview
	2.1 Features
	2.2 File Generation

	Chapter 3. Operation Method
	3.1 Getting Started
	3.2 Input Parameters
	3.2.1 Source Filename
	3.2.2 Command Parameters

	3.3 Input Method
	3.3.1 Command Line Input

	3.4 Errors
	3.4.1 Types of Errors
	3.4.2 Value Returned to DOS

	Appendix A. Error Message List
	A.1 Error Message List

