
U
ser’s M

anual

Cover

V850E2M

User’s Manual: Architecture32

RENESAS MCU
V850E2M Microprocessor Core

www.renesas.com Rev.1.00 Oct, 2012

Notice

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external

interface, as a rule, switch on the external power supply after switching on the internal power supply.

When switching the power supply off, as a rule, switch off the external power supply and then the

internal power supply. Use of the reverse power on/off sequences may result in the application of an

overvoltage to the internal elements of the device, causing malfunction and degradation of internal

elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related

specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current

injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and

the abnormal current that passes in the device at this time may cause degradation of internal elements.

Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

Notes for CMOS devices

How to Use This Manual

Target Readers This manual is intended for users who wish to understand the functions of the V850E2M

CPU core for designing application systems using the V850E2M CPU core.

Purpose This manual is intended for users to understand the architecture of the V850E2M CPU core

described in the Organization below.

Organization This manual contains the following information:

 • Basic function

 • Processor protection function

 • Floating-point operation function

How to Use this Manual It is assumed that the reader of this manual has general knowledge in the fields of electrical

engineering, logic circuits, and microcontrollers.

 To learn about the hardware functions,

  Read Hardware User’s Manual of each product.

 To learn about the functions of a specific instruction in detail,

  Read PART 2 CHAPTER 5 INSTRUCTIONS,

 PART 4 CHAPTER 4 INSTRUCTIONS.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: B (B is appended to pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representation: Binary ...  or B

 Decimal ... 
 Hexadecimal ... H

 Prefix indicating the power of 2 (address space, memory capacity):

 K (Kilo): 210 = 1,024

 M (Mega): 220 = 1,0242

 G (Giga): 230 = 1,0243

Table of Contents

PART 1 OVERVIEW..16

CHAPTER 1 FEATURES.. 17
1.1 Basic function... 17
1.2 Processor protection function.. 17
1.3 Floating-point operation function .. 18

PART 2 BASIC FUNCTION ..19

CHAPTER 1 OVERVIEW.. 20
1.1 Features .. 20

CHAPTER 2 REGISTER SET... 22
2.1 Program Registers ... 23
2.2 System Register Bank ... 24

2.2.1 BSEL  Register bank selection..26
2.3 CPU Function Group/Main Bank .. 27

2.3.1 EIPC and EIPSW  Status save registers when acknowledging EI level exception........................28
2.3.2 FEPC and FEPSW  Status save registers when acknowledging FE level exception28
2.3.3 ECR  Exception cause ..29
2.3.4 PSW  Program status word...30
2.3.5 SCCFG  SYSCALL operation setting..33
2.3.6 SCBP  SYSCALL base pointer ...33
2.3.7 EIIC  EI level exception cause ..34
2.3.8 FEIC  FE level exception cause ..34
2.3.9 CTPC and CTPSW  Status save registers when executing CALLT ..34
2.3.10 CTBP  CALLT base pointer...35
2.3.11 EIWR  EI level exception working register ..35
2.3.12 FEWR  FE level exception working register ..35
2.3.13 DBIC  DB level exception cause ...36
2.3.14 DBPC and DBPSW  Status save registers when acknowledging DB level exception36
2.3.15 DBWR  DB level exception working register ...36
2.3.16 DIR  Debug interface register..36

2.4 CPU Function Group/Exception Handler Address Switching Function Banks................. 37
2.4.1 SW_CTL  Exception handler address switching control ..39
2.4.2 SW_CFG  Exception handler address switching configuration ...39
2.4.3 SW_BASE  Exception handler address switching base address ..39
2.4.4 EH_CFG  Exception handler configuration ...40
2.4.5 EH_BASE  Exception handler base address ..40
2.4.6 EH_RESET  Reset address ..41

2.5 User Group.. 42

CHAPTER 3 DATA TYPES .. 44
3.1 Data Formats .. 44

3.1.1 Byte...44

3.1.2 Halfword..44
3.1.3 Word ...45
3.1.4 Bit..45

3.2 Data Representation .. 46
3.2.1 Integers...46
3.2.2 Unsigned integers ...46
3.2.3 Bits..46

3.3 Data Alignment... 47

CHAPTER 4 ADDRESS SPACE .. 48
4.1 Memory Map ... 49
4.2 Addressing Modes ... 51

4.2.1 Instruction address..51
4.2.2 Operand address ..54

CHAPTER 5 INSTRUCTIONS .. 57
5.1 Opcodes and Instruction Formats ... 57

5.1.1 CPU instructions ...57
5.1.2 Coprocessor instructions...62
5.1.3 Reserved instructions ...62

5.2 Overview of Instructions ... 63
5.3 Instruction Set .. 68
ADD..71
ADDI...72
ADF ..73
AND..74
ANDI...75
Bcond ...76
BSH ..78
BSW ...79
CALLT ..80
CAXI ...81
CLR1 ..82
CMOV...84
CMP..86
CTRET ...87
DI..88
DISPOSE..89
DIV ...91
DIVH...92
DIVHU ..94
DIVQ...95
DIVQU ..96
DIVU...97
EI ..98
EIRET...99
FERET..100
FETRAP ...101
HALT ..102
HSH..103

HSW ...104
JARL...105
JMP ..107
JR ...108
LD.B..109
LD.BU...110
LD.H ...111
LD.HU...112
LD.W...113
LDSR..114
MAC..115
MACU...116
MOV ...117
MOVEA...118
MOVHI..119
MUL..120
MULH ...121
MULHI ..122
MULU ...123
NOP..124
NOT..125
NOT1..126
OR ..128
ORI ...129
PREPARE ..130
RETI ...132
RIE ...134
SAR ..135
SASF ..137
SATADD...138
SATSUB ...140
SATSUBI ..141
SATSUBR...142
SBF ..143
SCH0L..144
SCH0R ...145
SCH1L..146
SCH1R ...147
SET1 ..148
SETF ..150
SHL...152
SHR..154
SLD.B ...156
SLD.BU...157
SLD.H...158
SLD.HU ..159
SLD.W ..160
SST.B ...161
SST.H...162
SST.W ..163

ST.B ...164
ST.H ...165
ST.W ..166
STSR..167
SUB ..168
SUBR..169
SWITCH ...170
SXB ..171
SXH ..172
SYNCE ...173
SYNCM...174
SYNCP ...175
SYSCALL ...176
TRAP..178
TST...179
TST1...180
XOR..181
XORI...182
ZXB...183
ZXH ..184

CHAPTER 6 EXCEPTIONS .. 185
6.1 Outline of Exceptions .. 185

6.1.1 Exception cause list ..185
6.1.2 Types of exceptions ..188
6.1.3 Exception processing flow...190
6.1.4 Exception acknowledgment priority and pending conditions ...191
6.1.5 Exception acknowledgment conditions ...191
6.1.6 Resume and restoration..192
6.1.7 Exception level and context saving ...192
6.1.8 Return instructions ..193

6.2 Operations When Exception Occurs.. 196
6.2.1 EI level exception without acknowledgment conditions ...196
6.2.2 EI level exception with acknowledgment conditions..198
6.2.3 FE level exception without acknowledgment conditions..200
6.2.4 FE level exception with acknowledgment conditions...202
6.2.5 Special operations ..204

6.3 Exception Management ... 206
6.3.1 Synchronizing exception when exception is acknowledged or when execution returns208
6.3.2 Exception synchronization instruction ...208
6.3.3 Checking and cancelling pending exception ...208

6.4 Exception Handler Address Switching Function.. 210
6.4.1 Determining exception handler addresses ..210
6.4.2 Purpose of exception handler address switching ..211
6.4.3 Settings for exception handler address switching function..211

CHAPTER 7 COPROCESSOR UNUSABLE STATUS .. 212
7.1 Coprocessor Unusable Exception ... 212
7.2 System Registers ... 212

CHAPTER 8 RESET ... 213
8.1 Status of Registers After Reset .. 213
8.2 Start ... 213

PART 3 PROCESSOR PROTECTION FUNCTION ..214

CHAPTER 1 OVERVIEW.. 215
1.1 Features .. 215

CHAPTER 2 REGISTER SET... 217
2.1 System Register Bank ... 217
2.2 System Registers ... 219

2.2.1 PSW – Program Status Word ...223
2.2.2 MPM – Setting of processor protection operation mode ...224
2.2.3 MPC – Specification of processor protection command..226
2.2.4 TID – Task identifier..226
2.2.5 Other system registers..226

CHAPTER 3 OPERATION SETTING ... 227
3.1 Starting Use of Processor Protection Function.. 227
3.2 Setting of Execution Level Auto Transition Function .. 227
3.3 Stopping Use of Processor Protection Function.. 227

CHAPTER 4 EXECUTION LEVEL.. 228
4.1 Nature of Program.. 228
4.2 Protection Bits on PSW ... 229

4.2.1 T state (trusted state)..229
4.2.2 NT state (non-trusted state) ..229

4.3 Definition of Execution Level.. 229
4.4 Transition of Execution Level ... 230

4.4.1 Transition by execution of write instruction to system register ..230
4.4.2 Transition as result of occurrence of exception...231
4.4.3 Transition by execution of return instruction..231

4.5 Program Model ... 231
4.6 Task Identifier ... 232

CHAPTER 5 SYSTEM REGISTER PROTECTION .. 233
5.1 Register Set .. 234

5.1.1 VSECR – System register protection violation cause..235
5.1.2 VSTID – System register protection violation task identifier..235
5.1.3 VSADR – System register protection violation address ..236

5.2 Access Control... 237
5.3 Registers to Be Protected ... 237
5.4 Detection of Violation .. 238
5.5 Operation Method .. 238

CHAPTER 6 MEMORY PROTECTION .. 239
6.1 Register Set .. 240

6.1.1 IPAnL – Instruction/constant protection area n lower-limit address (n = 0 to 4)241
6.1.2 IPAnU – Instruction/constant protection area n upper-limit address (n = 0 to 4)242
6.1.3 DPAnL – Data protection area n lower-limit address (n = 0 to 5) ..243

6.1.4 DPAnU – Data protection area n upper-limit address (n = 0 to 5) ...244
6.1.5 VMECR – Memory protection violation cause...245
6.1.6 VMTID – Memory protection violation task identifier ...246
6.1.7 VMADR – Memory protection violation address..246

6.2 Access Control... 247
6.3 Setting Protection Area ... 247

6.3.1 Valid bit (E bit)...249
6.3.2 Execution enable bit (X bit) ...249
6.3.3 Read enable bit (R bit) ..249
6.3.4 Write enable bit (W bit) ...249
6.3.5 sp indirect access enable bit (S bit) ..250
6.3.6 Protection area specification mode bit (T bit) ..250
6.3.7 Protection area lower-limit address (AL31 to AL0 bits) ...250
6.3.8 Protection area upper-limit address (AU31 to AU0 bits)..250

6.4 Notes on Setting Protection Area... 251
6.4.1 Crossing of protection area boundaries ..251
6.4.2 Invalid protection area setting ...251

6.5 Stack Inspection Function .. 251
6.6 Special Memory Access Instructions .. 253

6.6.1 Load and store instructions executing misaligned access...253
6.6.2 Some bit manipulation instructions and CAXI instruction ..253
6.6.3 Stack frame manipulation instructions...253
6.6.4 SYSCALL instruction ..253

6.7 Protection Violation and Exception ... 254

CHAPTER 7 PERIPHERAL DEVICE PROTECTION... 255
7.1 Register Set .. 255

7.1.1 PPM – Setting of peripheral device protection operation mode ..257
7.1.2 PPEC – Controlling peripheral device protection exception ..258
7.1.3 VPNECR – Peripheral device protection NT state violation cause..259
7.1.4 VPNADR – Peripheral device protection NT state violation address...260
7.1.5 VPNTID – Peripheral device protection NT state violation task ID..260
7.1.6 VPTECR – Peripheral device protection T state violation cause...261
7.1.7 VPTADR – Peripheral device protection T state violation address ...262
7.1.8 VPTTID – Peripheral device protection T state violation task ID...262
7.1.9 PPSn – Specification of special peripheral device ..263
7.1.10 PPPn – Specification of OS peripheral device ..264
7.1.11 PPVn – Validating general peripheral device protection ...265
7.1.12 PPTn – Specification protection type of general peripheral device ...266

7.2 Standing of Memory Protection and Peripheral Device Protection.................................. 267
7.3 Types of Peripheral Devices ... 268

7.3.1 Setting types of peripheral devices ...269
7.3.2 Detailed protection setting of general peripheral device..270

7.4 Peripheral Device Protection Violation in T State... 271
7.5 Peripheral Device Protection Violation in NT State.. 271

7.5.1 Invalidating subsequent accesses ..272
7.6 Handling PPI Exception... 273

7.6.1 Canceling PPI exception ...273
7.6.2 Operation method not using PPI exception...273
7.6.3 Operation to be performed by PPI exception processing ..273

7.7 List of Results of Detection of Peripheral Device Protection Violation 274
7.8 Accessing Special Peripheral Devices .. 274
7.9 Protection Setting of Peripheral Device Protection Setting Registers............................. 275
7.10 Special Peripheral Device Access Instruction.. 275

7.10.1 SYSCALL instruction ..275

CHAPTER 8 TIMING SUPERVISION FUNCTION ... 276
8.1 Register Set .. 276

8.1.1 TSEC – Controlling timing supervision..278
8.1.2 TSECR – Timing supervision exception cause ...279
8.1.3 TSCCFGn – Setting of timing supervision function counter n (n = 0 to 5).....................................280
8.1.4 TSCCNTn – Count value of timing supervision counter n (n = 0 to 5)...283
8.1.5 TSCCMPn – Comparison value of timing supervision counter n (n = 0 to 5)284
8.1.6 TSCRLDn – Reload value of timing supervision counter n (n = 0 to 5) ...285

8.2 Counter Functions ... 286
8.2.1 Resolution ...286
8.2.2 Counting direction ...286
8.2.3 Exception mode ..287
8.2.4 Auto reloading...287
8.2.5 Counter mode ...287

8.3 Operation Modes of Counter and CPU .. 289
8.4 Detecting Violation... 289

8.4.1 Identifying violation cause ...289
8.5 Handling of TSI Exception... 290

8.5.1 Reporting TSI exception..290
8.5.2 Identifying exception cause...291
8.5.3 Canceling TSI exception ...291

8.6 Setting Counter Corresponding to Each Supervision Function 292
8.6.1 Global interrupt lock supervision ...292
8.6.2 Runtime supervision ...293
8.6.3 Supervising number of times of interrupt reaches a specific value..293
8.6.4 Supervising time lapse..294

CHAPTER 9 PROCESSOR PROTECTION EXCEPTION ... 295
9.1 Types of Violations .. 295

9.1.1 System register protection violation ..295
9.1.2 Execution protection violation ...295
9.1.3 Data protection violation..295
9.1.4 Peripheral device protection violation..295
9.1.5 Timing supervision violation ..296

9.2 Types of Exceptions .. 296
9.2.1 MIP exception ...296
9.2.2 MDP exception..296
9.2.3 PPI exception..296
9.2.4 TSI exception ..296

9.3 Identifying Violation Cause ... 297
9.3.1 MIP exception ...297
9.3.2 MDP exception..297
9.3.3 PPI exception..298
9.3.4 TSI exception ..298

CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION.. 299
10.1 Register Set .. 300

10.1.1 MCA – Memory protection setting check address...301
10.1.2 MCS – Memory protection setting check size ...301
10.1.3 MCC – Memory protection setting check command..302
10.1.4 MCR – Memory protection setting check result...302

10.2 Sample Code... 303

CHAPTER 11 SPECIFAL FUNCTON... 304
11.1 Clearing Memory Protection Setting All at Once.. 304

PART 4 FLOATING-POINT OPERATION FUNCTION...305

CHAPTER 1 OVERVIEW.. 306
1.1 Features .. 306
1.2 Implementing Floating-point Operation Function .. 307

CHAPTER 2 REGISTER SET... 308
2.1 Floating-point Operation Registers.. 308
2.2 Floating-point System Registers.. 308

2.2.1 FPSR  Floating-point configuration/status...310
2.2.2 FPEPC  Floating-point exception program counter ...312
2.2.3 FPST  Floating-point operation status...313
2.2.4 FPCC - Floating-point operation comparison result ..313
2.2.5 FPCFG  Floating-point operation configuration...314
2.2.6 FPEC  Floating-point exception control...315

CHAPTER 3 DATA TYPES .. 316
3.1 Data Formats .. 316

3.1.1 Floating-point format ...316
3.1.2 Fixed-point formats ...318

CHAPTER 4 INSTRUCTIONS .. 319
4.1 Instruction Formats ... 319
4.2 Overview of Floating-point Instructions.. 319
4.3 Conditions for Comparison Instructions... 322
4.4 Instruction Set .. 324
ABSF.D...326
ABSF.S...327
ADDF.D ..328
ADDF.S ..329
CEILF.DL..330
CEILF.DUL ...331
CEILF.DUW..332
CEILF.DW ..333
CEILF.SL..334
CEILF.SUL ...335
CEILF.SUW..336
CEILF.SW...337
CMOVF.D...338

CMOVF.S ...339
CMPF.D..340
CMPF.S..343
CVTF.DL...346
CVTF.DS ..347
CVTF.DUL..348
CVTF.DUW...349
CVTF.DW ...350
CVTF.LD...351
CVTF.LS...352
CVTF.SD ..353
CVTF.SL...354
CVTF.SUL ..355
CVTF.SUW...356
CVTF.SW ...357
CVTF.ULD..358
CVTF.ULS ..359
CVTF.UWD...360
CVTF.UWS...361
CVTF.WD ...362
CVTF.WS ...363
DIVF.D..364
DIVF.S..365
FLOORF.DL ...366
FLOORF.DUL...367
FLOORF.DUW ...368
FLOORF.DW..369
FLOORF.SL..370
FLOORF.SUL ...371
FLOORF.SUW..372
FLOORF.SW ..373
MADDF.S ...374
MAXF.D..376
MAXF.S ..377
MINF.D ...378
MINF.S ...379
MSUBF.S..380
MULF.D ..382
MULF.S ..383
NEGF.D..384
NEGF.S ..385
NMADDF.S...386
NMSUBF.S ...388
RECIPF.D...390
RECIPF.S ...391
RSQRTF.D ...392
RSQRTF.S ...393
SQRTF.D..394
SQRTF.S..395
SUBF.D ..396

SUBF.S...397
TRFSR..398
TRNCF.DL..399
TRNCF.DUL ...400
TRNCF.DUW..401
TRNCF.DW ..402
TRNCF.SL..403
TRNCF.SUL ...404
TRNCF.SUW..405
TRNCF.SW...406

CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS.. 407
5.1 Types of Exceptions .. 407
5.2 Exception Processing.. 408

5.2.1 Status flag...408
5.3 Exception Details ... 409

5.3.1 Inexact exception (I)..409
5.3.2 Invalid operation exception (V)..410
5.3.3 Division-by-zero exception (Z) ..410
5.3.4 Overflow exception (O) ...411
5.3.5 Underflow exception (U)..411
5.3.6 Unimplemented operation exception (E) ...412

5.4 Precise Exceptions and Imprecise Exceptions .. 413
5.4.1 Precise exceptions..413
5.4.2 Imprecise exceptions ..413

5.5 Saving and Returning Status .. 414
5.6 Selection of Floating-point Operation Model .. 416

5.6.1 When accurate operations are required ..416
5.6.2 When operation performance is emphasized..417

APPENDIX A LIST OF INSTRUCTIONS.. 418
A.1 Basic Instructions .. 418
A.2 Floating-point Instructions.. 422

APPENDIX B INSTRUCTION OPCODE MAP ... 424
B.1 Basic Instruction Opcode Map ... 424
B.2 Floating-point Instruction Opcode Map... 429

APPENDIX C PIPELINES... 431
C.1 Features .. 433
C.2 Clock Requirements .. 435

C.2.1 Clock requirements for basic instructions..435
C.2.2 Clock requirements for floating-point instructions ...440

C.3 Pipeline for Basic Instructions ... 443
C.3.1 Load instructions...443
C.3.2 Store instructions ..443
C.3.3 Multiply instructions...444
C.3.4 Multiply-accumulate instructions ...445
C.3.5 Arithmetic operation instructions ...445
C.3.6 Conditional operation instructions ...446
C.3.7 Saturated operation instructions ...446

C.3.8 Logic operation instructions ..447
C.3.9 Data manipulation instructions ..447
C.3.10 Bit search instructions...448
C.3.11 Divide instructions...448
C.3.12 High-speed divide instructions ..449
C.3.13 Branch instructions ...450
C.3.14 Bit manipulation instructions ...452
C.3.15 Special instructions ...453

APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS... 459

APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS.................................... 465
E.1 Difference Between V850E1 and V850E2 .. 465

APPENDIX F INSTRUCTION INDEX ... 468
F.1 Basic Instructions .. 468
F.2 Floating to point Operation Instructions ... 469

Specifications in this document are tetative and subject to change

R01US0001EJ0100 Rev.1.00 Page 16 of 473
Oct 17, 2012

Preliminary

R01US0001EJ0100
Rev.1.00

Oct 17, 2012

V850E2M
RENESAS MCU

PART 1 OVERVIEW

V850E2M CHAPTER 1 FEATURES

R01US0001EJ0100 Rev.1.00 Page 17 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 1 FEATURES

The V850E2M CPU conforms to the V850E2v3 architecture and is designed for microcontrollers that control embedded

systems based on the concept of high performance, high functionality, and high reliability.

The V850E2M CPU supplies the following functions.

(1) Basic function

(2) Processor protection function

(3) Floating-point operation function

The V850E2M CPU executes almost all instructions, such as for address calculation, arithmetic and logic operations,

and data transfer, with one clock under control of a 7-stage pipeline.

The V850E2M CPU can use the software resources of the conventional system as is because it is upwardly compatible

with the V850 CPU, V850E1 CPU, and V850E2 CPU at object code level.

1.1 Basic function

Basic integer operation instructions allowing general data processing and control programming, and special instructions

for application program optimization are provided. In addition, flexible exception processing functions that allow high-

reliability programming, exclusive control instructions that enable data to be shared in a multi-core environment, and

load/store instructions with an extended displacement range are also provided.

The basic funciton mainly consists of an instruction queue, program counter, execution unit, general-purpose registers,

system registers, and control block. The execution unit contains dedicated hardware such as an ALU, LD/ST unit,

multiplier (32 bits x 32 bits), barrel shifter (32 bits/clock), and divider, to execute complicated processing.

For details of the basic function, see PART 2 BASIC FUNCTION.

1.2 Processor protection function

The processor protection function that protects resources, such as the memory, peripheral devices, system registers,

and CPU time of each program, thereby protecting the system from illegal use is provided.

The processor protection function is a function to guarantee high-reliability operations of a CPU which consists of

system register protection, memory protection, peripheral unit protection, and timing supervision function.

For details of the processor protection function, see PART 3 PROCESSOR PROTECTION FUNCTION.

V850E2M CHAPTER 1 FEATURES

R01US0001EJ0100 Rev.1.00 Page 18 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

1.3 Floating-point operation function

The V850E2M CPU can implement a floating-point operation function (FPU) as a coprocessor.

The floating-point unit (FPU) of the V850E2M CPU conforms to the ANSI/IEEE standard 754-1985 (IEEE binary

floating-point operation standard) and is provided with double-precision and single-precision floating-point operation

instructions.

In addition, high-performance operations that can be executed with a high throughput, and high-reliability operations

that can perform accurate exception processing can be selected depending on the situation.

The floating-point operation function depends on the products. Refer to Hardware User’s Manual of each product.

For details of the floating-point operation function, see PART 4 FLOATING-POINT OPERATION FUNCTION.

V850E2M PART 2 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 19 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PART 2 BASIC FUNCTION

V850E2M PART 2 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 20 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 1 OVERVIEW

The V850E2M CPU conforms to the V850E2v3 Architecture, and it supplies basic operations to establish OS and

application programs, and basic functions to manage exceptions.

(1) Integer operation instructions

Basic integer operation instructions that allow general data processing and control programming are provided.

In addition, the conventional load/store instructions are extended with a 23-bit displacement format added.

(2) Special instructions

Instructions useful for optimizing an application program, such as stack frame manipulation instructions and

common function call instructions, are provided.

(3) Multi-core support

Exclusive control functions and memory synchronization functions necessary for exclusive control between two

or more CPUs are provided.

(4) High-function OS support

Instructions dedicated to supporting development of high-function OS are provided.

(5) Flexible and high-performance exception processing

Various exception processing functions that enable high-reliability programming are provided.

1.1 Features

(1) Advanced 32-bit architecture for embedded control

 Number of instructions: 98

 32-bit general-purpose registers: 32 registers

 Load/store instructions with multiple displacement formats

  Long (32 bits)

  Middle (16 bits)

  Short (8 bits)

 3 operand instructions

 Address space: Program area … 4 GB linear

 Data area … 4 GB linear

(2) Instructions used for various application fields

 Saturated operation instructions

 Bit manipulation instructions

V850E2M PART 2 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 21 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 Multiply instructions (on-chip hardware multiplier enable single-clock multiplication processing)

16 bits  16 bits  32 bits

32 bits  32 bits  32 bits or 64 bits

 MAC operation instructions

32 bits  32 bits + 64 bits  64 bits

 High-speed division instruction

This division instruction detects a valid bit length and changes it to the minimum number of execution cycles.

32 bits  32 bits  32 bits (quotient), 32 bits (remainder)

(3) Instructions suitable for high-function/high-performance programming

 Stack frame manipulation instruction

 Exclusive control instruction

 System call instruction (OS service calling instruction)

 Synchronization instruction (event control)

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 22 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 2 REGISTER SET

There are two types of registers related to the basic functions: program registers that are used for ordinary programs

and system registers that are used to control the execution environment. All are 32-bit registers.

Figure 2-1. Register List

(a) Program registers

(b) System registers

Note These are debug functions for development tools.

031

r0 (zero register)

r1 (assembler reserved registers)

r2

r3 (stack pointer) (SP)

r4 (global pointer) (GP)

r5 (text pointer) (TP)

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30 (element pointer) (EP)

r31 (link pointer) (LP)

PC (program counter)

FPU function group system registers

PMU function group system registersNote

Processor protection function group system registers

0 31

EIPC  status save register when acknowledging an EI level exception

EIPSW  status save register when acknowledging an EI level exception

FEPC  status save register when acknowledging an FE level exception

FEPSW  status save register when acknowledging an FE level exception

ECR  exception cause

PSW  program status word

CPU function group system registers

EIIC  EI level exception cause

FEIC  FE level exception cause

DBICNote  DB level exception cause

CTPC  status save register when executing CALLT

CTPSW  status save register when executing CALLT

DBPCNote  status save register when acknowledging a DB level exception

DBPSWNote  status save register when acknowledging a DB level exception

CTBP  CALLT base pointer

EIWR  EI level exception working register

FEWR  FE level exception working register

DBWRNote  DB level execution working register

BSEL  register bank selection

Debug function registersNote

SCCFG  SYSCALL operation setting

SCBP  SYSCALL base pointer

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 23 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.1 Program Registers

Program registers includes general-purpose registers (r0 to r31) and the program counter (PC).

Table 2-1. Program Register List

Program register Name Function Description

r0 Zero register Always retains “0”

r1 Assembler reserved register Used as working register for generating addresses

r2 Register for address and data variables (when the real-time OS being used does not use this

register)

r3 Stack pointer (SP) Used for stack frame generation when functions are called

r4 Global pointer (GP) When to access global variable in data area

r5 Text pointer (TP) Used as a register that indicates the start of the text area

(area where program code is placed)

r6 to r29 Register for addresses and data variables

r30 Element pointer (EP) Used as base pointer for generating addresses when

accessing memory

General-purpose

registers

r31 Link pointer (LP) Used when compiler calls a function

Program counter PC Retains instruction addresses during execution of programs

Remark For further descriptions of r1, r3 to r5, and r31 used for an assembler and/or C compiler, refer to the document

of each software development environment.

(1) General-purpose registers (r0 to r31)

A total of 32 general-purpose registers (r0 to r31) are provided. All of these registers can be used for either

data variables or address variables.

The following points must be noted when using r0 to r5, r30, and r31 because these registers are assumed to

be used for special purposes in a software development environment.

(a) r0, r3, and r30

These registers are implicitly used by instructions.

r0 is a register that always retains “0”. It is used for operations that use 0, addressing with base address

being 0, etc.

r3 is implicitly used by the PREPARE instruction and DISPOSE instruction.

r30 is used as a base pointer when the SLD instruction or SST instruction accesses memory.

(b) r1, r4, r5, and r31

These registers are implicitly used by the assembler and C compiler.

When using these registers, register contents must first be saved so they are not lost and can be restored

after the registers are used.

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 24 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(c) r2

This register is used by a real-time OS in some cases. If the real-time OS that is being used is not using r2,

r2 can be used as a register for address variables or data variables.

(2) Program counter (PC)

The PC retains instruction addresses during program execution. Bit 0 is fixed to 0, and branching to an odd

number address is disabled.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 is automatically set to bits 31 to 29.

2.2 System Register Bank

The V850E2M CPU system registers are provided in the system register bank. These system registers are defined in

groups based on functions, and within these groups “banks” are defined for more specific applications. Up to 28 system

registers can be defined (as registers 0 to 27) within each bank.

The V850E2M CPU includes the following groups and banks.

 CPU function group

 Main bank: Conventional system registers

 Exception handler switching function bank 0: System registers that switches exception handler addresses

 Exception handler switching function bank 1: System registers that switches exception handler addresses

 Processor protection function group

 Processor protection violation bank: System registers related to processor protection violations

 Processor protection setting bank: System registers related to processor protection functions

 Software paging bank: System registers that are used when the memory protection function is used for

software paging operation

 PMU function group

 PMU function bank: System registers that set performance measurement functionNote

 FPU function group

 FPU status bank: System registers related to floating-point operations

 User group

 User 0 bank: This bank is able to access only system registers used by user applications.

 User compatible bank: For the sake of compatibility, this bank is able to access exception-related system

registers as well as system registers used by user applications

Note The PMU function bank is a debug function for development tools.

31 29 28 1 0

PC Initial value
00000000H

 (Instruction address during execution)

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 25 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 2-3. System Register Bank

Note These are debug functions for development tools.

System register 30 (DBWR  DB level working register)

System register 31 (BSEL  register bank selection)

System register 28 (EIWR  EI level working register)

System register 29 (FEWR  FE level working register)

T
he

se
 s

ys
te

m
 r

eg
is

te
rs

 c
an

 b
e

ac
ce

ss
ed

 w
he

n
th

ei
r

ba
nk

 is
 s

el
ec

te
d

by
 th

e
B

S
E

L
re

gi
st

er
 s

et
tin

gs
.

T
he

se
 s

ys
te

m
 r

eg
is

te
rs

al

w
ay

s
ca

n
be

 a
cc

es
se

d,

re
ga

rd
le

ss
 o

f t
he

 s
et

tin
gs

in

 th
e

B
S

E
L

re
gi

st
er

.

System register 26

System register 27

System register 24

System register 25

System register 23

System register 22

:
:

System register 21

System register 06

System register 07

System register 04

System register 05

System register 02

System register 03

System register 00

System register 01

Main banks

CPU function group Processor protection
function group

PMU
function
group

User group
FPU

function
group

E
xc

ep
tio

n
ha

nd
le

r
sw

itc
hi

ng

fu
nc

tio
n

ba
nk

 0

E
xc

ep
tio

n
ha

nd
le

r
sw

itc
hi

ng

fu
nc

tio
n

ba
nk

 1

P
ro

ce
ss

or
 p

ro
te

ct
io

n
vi

ol
at

io
n

ba
nk

P
ro

ce
ss

or
 p

ro
te

ct
io

n
se

tti
ng

 b
an

k

P
M

U
 fu

nc
tio

n
ba

nk
N

o
te

F
P

U
 s

ta
tu

s
ba

nk

U
se

r
0

ba
nk

U
se

r
co

m
pa

tib
le

 b
an

k

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 26 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.1 BSEL  Register bank selection

The BSEL register is used to select the system registers to be accessed by the LDSR instruction and STSR instruction.

The BSEL register can also be referenced, regardless of which bank has been selected.

Always set “0” to bits 31 to 16.

 Bit position Bit name Description

 15 to 8 GRP Specifies the system register bank group number (initial value: 0).

 00H: CPU function group

 10H: Processor protection function group

 11H: PMU function groupNote

 20H: FPU function group

 FFH: User group

Settings other than the above are prohibited.

 7 to 0 BNK Specifies bank number of system register bank (initial value: 0).

 GRP BNK Corresponding execution level

 00H 00H Main bank

 10H Exception handler switching function bank 0

 11H Exception handler switching function bank 1

 10H 00H Processor protection violation bank

 01H Processor protection setting bank

 10H Software paging bank

 11H 00H PMU function bankNote

 20H 00H FPU status bank

 FFH 00H User 0 bank

 FFH User compatible bank

 Other than above Setting prohibited

 Note The PMU function bank is a debug function for development tools.

Part 2 described the CPU function group system register and user banks. For description of the system registers of the

processor protection function group, see PART 3 PROCESSOR PROTECTION FUNCTION. For description of the

system registers of the FPU function group, see PART 4 FLOATING-POINT OPERATION FUNCTION.

31 16 7 0

BSEL Initial value
00000000H

0 0 0 BNK 0 0 0 0 0 0 0 0 0 0 0 0 0

15 8

GRP

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 27 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3 CPU Function Group/Main Bank

The system registers in the main bank are used to control CPU status and to retain exception information.

System register read and write operations are performed using the LDSR instruction and STSR instruction, as specified

via the following system register numbers.

Table 2-2. System Register List (Main Bank)

Able to Specify Operands? System

Register

No.

Symbol System Register Name

LDSR

Instruction

STSR

Instruction

System

Register

Protection

0 EIPC EI level exception status save register   

1 EIPSW EI level exception status save register   

2 FEPC FE level exception status save register   

3 FEPSW FE level exception status save register   

4 ECR Exception cause   

5 PSW Program status word    Note1

6 to 10 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

11 SCCFG SYSCAL operation setting   

12 SCBP SYSCALL base pointer   

13 EIIC EI level exception cause   

14 FEIC FE level exception cause   

15 DBIC Note2 DB level exception cause   

16 CTPC CALLT execution status save register   

17 CTPSW CALLT execution status save register   

18 DBPC Note2 DB level exception status save register   

19 DBPSW Note2 DB level exception status save register   

20 CTBP CALLT base pointer   

21 DIR Debug interface register   

22 to 27 Debug function register   

28 EIWR EI level exception working register   

29 FEWR FE level exception working register   

30 DBWR Note2 DB level exception working register   

31 BSEL Register bank selection   

Notes 1. Only bits 31 to 6 are protected. Even if a write access is made while these bits are protected, a system

register protection violation is not detected. For details, refer to CHAPTER 5 SYSTEM REGISTER

PROTECTION in PART 3.

 2. These are debug functions for development tools.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 28 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3.1 EIPC and EIPSW  Status save registers when acknowledging EI level

exception
The EI level exception status save registers include EIPC and EIPSW.

When an EI level exception (EI level software exception, EI level interrupt (INT), etc.) has occurred, the address of the

instruction that was being executed when the EI level exception occurred, or of the next instruction, is saved to the EIPC

register (see Table 6-1 Exception Cause List). The current PSW information is saved to the EIPSW register.

Since there is only one pair of EI level exception status save registers, when processing multiple exceptions, the

contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the EIPC register. An odd-numbered address must not be specified.

If PSW bits are specified to be set to 0, the same bits in the EIPSW register must also be set to 0.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 of EIPC is automatically set to bits 31 to 29.

2.3.2 FEPC and FEPSW  Status save registers when acknowledging FE level

exception
The FE level exception status save register include FEPC and FEPSW.

When an FE level exception (FE level software exception, FE level interrupt (FEINT or FENMI), etc.) has occurred,

address of the instruction that was being executed when the FE level exception occurred, or of the next instruction, is

saved to the FEPC register (see Table 6-1 Exception Cause List). The current PSW information is saved to the FEPSW

register.

Since there is only one pair of FE level exception status save registers, when processing multiple exceptions, the

contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the FEPC register. An odd-numbered address must not be specified.

If PSW bits are specified to be set to 0, the same bits in the FEPSW register must also be set to 0.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 of FEPC is automatically set to bits 31 to 29.

31 0

EIPSW (PSW contents)

31 0

EIPC (PC contents)
Initial value
Undefined

Initial value
00000020H

31 0

FEPC (PC contents)

31 0

FEPSW (PSW contents)

Initial value
Undefined

Initial value
00000020H

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 29 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3.3 ECR  Exception cause

When an exception has occurred, the ECR register retains the cause of the exception. These values retained in the

ECR are exception codes corresponding to individual exception causes (see Table 6-1 Exception Cause List). Since

this is a read-only register, the LDSR instruction cannot be used to write data to this register.

Caution The ECR register is for upward compatibility and is prohibited from being used in principle.

For programs other than existing programs that do not enable modification, use a program that uses

either the EIIC register or the FEIC register to overwrite all parts that were using the ECR register.

 Bit position Bit name Description

 31 to 16 FECC Exception code for FE level exception (initial value: 0)

 15 to 0 EICC Exception code for EI level exception (initial value: 0)

31 0

ECR FECC EICC

16 15

Initial value
00000000H

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 30 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3.4 PSW  Program status word

PSW (program status word) is a set of flags that indicate the program status (instruction execution result) and bits that

indicate the operation status of the CPU (flags are bits in the PSW that are referenced by a condition instruction (Bcond,

CMOV, etc.)).

When the LDSR instruction is used to change the contents of various bits in a register, the changed contents become

valid once execution of the LDSR instruction is completed.

Bits 31 to 6 are subject to system register protection. When system register protection is enabled, the contents of bits

31 to 6 cannot be changed by using the LDSR instruction (see CHAPTER 5 SYSTEM REGISTER PROTECTION in PART

3).

Bits 31 to 20, 15 to 12, and 8 are reserved for future function expansion, and be sure to set them to 0. Values are

undefined when readNote.

Note Use of bits 19 to 16 is described in PART 3 PROCESSOR PROTECTION FUNCTIONS (see PART 3

PROCESSOR PROTECTION FUNCTION).

Bit 11 to 9 are reserved for debug function for development tools. The LDSR instruction cannot be used to

change these bits in user program.

 (1/3)

 Bit position Bit or flag name Description

 19 PP This bit indicates a state of peripheral device protection.

It indicates whether the CPU trusts an access to a peripheral device by the program

currently being executed.

 0: T state (CPU trusts an access to the peripheral device.) (initial value)

 1: NT state (CPU does not trust an access to the peripheral device.)

The peripheral device protection function limits accesses when the PP bit indicates the T

state. When the PP bit indicates the NT state, it strictly limits accesses.

 18 NPV This bit indicates a state of system register protection.

It indicates whether the CPU trusts an access to a system register by the program currently

being executed.

 0: T state (CPU trusts an access to the system register.) (initial value)

 1: NT state (CPU does not trust an access to the system register.)

The system register protection function does not limit accesses when the NPV bit indicates

the T state. When the NPV bit indicates the NT state, it limits accesses.

31 8 7 6 5 4 3 2 1 0

PSW
N
P

S
A
T

E
P

I
D

O
V

S Z
C
Y

Initial value
00000020H

0 0 0 0 0 0 0 0 0 0 0 P
P

D
M
P

I
M
P

0 0 0 00
N
P
V

S
B

S
E

0

11

S
S

9101216 1519 20

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 31 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 (2/3)

 Bit position Flag name Description

 17 DMP This bit indicates a state of memory protection against a data access (to a data area).

It indicates whether the CPU trusts a data access by the program currently being executed.

 0: T state (CPU trusts the data access.) (initial value)

 1: NT state (CPU does not trust the data access.)

The memory protection function does not limit data accesses when the DMP bit indicates the

T state. When the DMP bit indicates the NT state, it limits data accesses.

 16 IMP This bit indicates a state of memory protection in a program area. It indicates whether the

CPU trusts an access to the program area by the program currently being executed.

 0: T state (CPU trusts the access to the program area.) (initial value)

 1: NT status (CPU does not trust the access to the program area.)

The memory protection function does not limit accesses to the program area when the IMP

bit indicates the T state. When the IMP bit indicates the NT state, it limits accesses to the

program area

 11 SS Debug function for development tools.

 10 SB Debug function for development tools.

 9 SE Debug function for development tools.

 7 NP This bit indicates when FE level exception processing is in progress. When an FE level

exception is acknowledged, this bit is set (1), which prohibits occurrence of multiple

exceptions .

 0: FE level exception processing is not in progress. (initial value)

 1: FE level exception processing is in progress.

 6 EP This bit indicates that an exception other than an interruptNote is being processed. It is set (1)

when the corresponding exception occurs. This bit does not affect acknowledging an

exception request even when it is set (1).

 0: An interrupt is being processed (initial value).

 1: An exception other than an interrupt is being processed.

 5 ID This bit indicates that an EI-level exception is being processed. It is set (1) when an EI level

exception is acknowledged, disabling generation of multiple exceptions. This bit is also used

to disable EI level exceptions from being acknowledged as a critical section while an

ordinary program or interrupt is being processed. It is set (1) when the DI instruction is

executed, and cleared (0) when the EI instruction is executed.

 0: EI level exception is being processed or the section is not a critical section (after

execution of EI instruction).

 1: EI level exception is being processed or the section is a critical section (after execution

of DI instruction). (initial value)

 Note For details of interrupts, see 6.1.2 Types of exceptions.

 Note

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 32 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3/3)

 Bit position Flag name Description

 4 SATNote This bit indicates that the operation result is saturated because the result of a saturated

operation instruction operation has overflowed. This is a cumulative flag, so when the operation

result of the saturated operation instruction becomes saturated, this bit is set (1), but

it is not later cleared to 0 when the operation result for a subsequent instruction is not saturated.

This bit is cleared (0) by the LDSR instruction. This bit is neither set (1) nor cleared (0) when an

arithmetic operation instruction is executed.

 0: Not saturated (initial value)

 1: Saturated

 3 CY This bit indicates whether a carry or borrow has occurred in the operation result.

 0: Carry and borrow have not occurred (initial value).

 1: Carry or borrow has occurred.

 2 OVNote This bit indicates whether or not an overflow has occurred during an operation.

 0: Overflow has not occurred (initial value).

 1: Overflow has occurred.

 1 SNote This bit indicates whether or not the result of an operation is negative.

 0: Result of operation is positive or 0 (initial value).

 1: Result of operation is negative.

 0 Z This bit indicates whether or not the result of an operation is 0.

 0: Result of operation is not 0 (initial value).

 1: Result of operation is 0.

 Note The operation result of the saturation processing is determined in accordance with the contents of the OV flag and S

flag during a saturated operation. When only the OV flag is set (1) during a saturated operation, the SAT flag is set

(1).

 Flag status

Operation result status

SAT OV S

Operation result after

saturation processing

 Exceeded positive maximum value 1 1 0 7FFFFFFFH

 Exceeded negative maximum value 1 1 1 80000000H

 Positive (maximum value not exceeded) 0

 Negative (maximum value not

exceeded)

Value prior to

operation is

retained.

0

1

Operation result itself

 Note

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 33 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3.5 SCCFG  SYSCALL operation setting

This register is used to set operations related to the SYSCALL instruction. Be sure to set an appropriate value to this

register before using the SYSCALL instruction. Be sure to set 0 to bits 31 to 8.

Caution Do not place the SYSCALL instruction immediately after the LDSR instruction that changes the

contents of the SCCFG register.

 Bit position Bit name Description

 7 to 0 SIZE These bits specify the maximum number of entries of a table that the SYSCALL instruction

references. The maximum number of entries the SYSCALL instruction references is 1 if SIZE

is 0, and 256 if SIZE is 255. By setting the maximum number of entries appropriately in

accordance with the number of functions branched by the SYSCALL instruction, the memory

area can be effectively used.

If a vector exceeding the maximum number of entries is specified for the SYSCALL

instruction, the first entry is selected. Place an error processing routine at the first entry.

2.3.6 SCBP  SYSCALL base pointer

The SCBP register is used to specify a table address of the SYSCALL instruction and generate a target address. Be

sure to set an appropriate value to this register before using the SYSCALL instruction.

Be sure to set a word address to the SCBP register.

Note that bits 1 and 0 are fixed to 0.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 of SCBP is automatically set to bits 31 to 29.

31 0

SCCFG Initial value
UndefinedSIZE

78

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000

31 0

SCBP
(Base address)

Initial value
Undefined

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 34 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3.7 EIIC  EI level exception cause

The EIIC register retains the cause of any EI level exception that occurs. The value retained in this register is an

exception code corresponding to a specific exception cause (see Table 6-1 Exception Cause List).

2.3.8 FEIC  FE level exception cause

The FEIC register retains the cause of any FE level exception that occurs. The value retained in this register is an

exception code corresponding to a specific exception cause (see Table 6-1 Exception Cause List).

2.3.9 CTPC and CTPSW  Status save registers when executing CALLT

These are the status save registers when executing CALLT are CTPC and CTPSW.

When a CALLT instruction is executed, the address of the next instruction after the CALLT instruction is saved to CTPC

and the contents of the PSW (program status word) is saved to CTPSW.

Be sure to set bit 0 of the CTPC register to 0.

Whenever a PSW bit is specified to be set to 0, the same bit in the CTPSW register must also be set to 0.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 of CTPC is automatically set to bits 31 to 29.

31 0

EIIC Initial value
00000000H

31 0

FEIC Initial value
00000000H

31 0

CTPC (PC contents)

31 0

CTPSW
Initial value
00000020H

Initial value
Undefined

(PSW contents)

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 35 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3.10 CTBP  CALLT base pointer

The CTBP register is used to specify table addresses of the CALLT instruction and generate target addresses.

Be sure to set the CTBP register to a halfword address.

Note that bit 0 is fixed to 0.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 of CTBP is automatically set to bits 31 to 29.

2.3.11 EIWR  EI level exception working register

The EIWR register is used as working register when an EI level exception has occurred.

The EIWR register can always be referenced, regardless of which bank is selected.

2.3.12 FEWR  FE level exception working register

The FEWR register is used as a working register when an FE level exception has occurred.

The FEWR register can always be referenced, regardless of which bank is selected.

31 0

CTBP (Base address)
Initial value
Undefined

31 0

EIWR Initial value
00000000HEIWR

31 0

FEWR Initial value
00000000HFEWR

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 36 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.3.13 DBIC  DB level exception cause

The DBIC register is related to debug function.

The DBIC register is a debug function for development tools.

2.3.14 DBPC and DBPSW  Status save registers when acknowledging DB level

exception

The status save registers when acknowledging the DB level exception are DBPC and DBPSW.

The DBPC and DBPSW register are debug functions for development tools.

2.3.15 DBWR  DB level exception working register

The DBWR register is related to debug function.

The DBWR register is a debug a function for development tools.

2.3.16 DIR  Debug interface register

The DIR register controls and indicates the status of debug function.

The DIR register and other debug function-related registers (system registers 22 to 27) are debug functions for

development tools.

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 37 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.4 CPU Function Group/Exception Handler Address Switching
Function Banks

Exception handler switching function banks 0 and 1 are selected when 00000010H and 00000011H are set to the

BSEL register by LDSR instructions (see 2.2.1 BSEL  Register bank selection).

System registers 28 to 31 are system registers for all banks, and EIWR, FEWR, DBWR, and BSEL registers in the CPU

function bank are referenced regardless of the settings in the BSEL register.

 Exception handler switching function bank 0

(Group number 00H, bank number 10H, abbreviated as EHSW0 bank)

 Exception handler switching function bank 1

(Group number 00H, bank number 11H, abbreviated as EHSW1 bank)

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 38 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 2-3. System Register Bank

Group CPU Function (00H)

Bank Exception Handler Switching Function Bank 0 (10H) Exception Handler Switching Function Bank 1 (11H)

Bank label EHSW0 EHSW1

Able to Specify

Operands?

Able to Specify

Operands?

Register

No.

Name Function

LDSR

Instruction

STSR

Instruction S
ys

te
m

 R
eg

is
te

r

Name Function

LDSR

Instruction

STSR

Instruction S
ys

te
m

 R
eg

is
te

r

0 SW_CTL Exception

handler address

switching control

   Reserved for future function

expansion

  

1 SW_CFG Exception

handler address

switching

configuration

   EH_CFG Exception

handler

configuration

  

2 Reserved for future function

expansion

   EH_RESE Reset address

register

  

3 SW_BASE Exception handler

address switching

base address

   EH_BASE Exception handler

base address

  

4 to 27 Reserved for future function

expansion

   Reserved for future function

expansion

  

28 EIWR EI level exception working register   

29 FEWR FE level exception working register   

30 DBWRNote DB level exception working register   

31 BSEL Register bank selection   

Note The DBWR register is a debug function for development tools.

Remark : Indicates in the column of “Able to specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to specify Operands?” that the register cannot be specified. In the column of

“System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 39 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.4.1 SW_CTL  Exception handler address switching control

This register controls the exception handler address switching functions.

Be sure to set bits 31 to 1 to “0”.

 Bit position Bit name Description

 0 SET When the SET bit is set (1), values in the SW_CFG and SW_BASE registers are transferred to

EH_CFG and EH_BASE. After these transfers are completed, the SET bit is cleared (0).

2.4.2 SW_CFG  Exception handler address switching configuration

This register specifies settings for the exception handler address switching function.

Be sure to set bits 31 to 1 to “0”.

 Bit position Bit name Description

 0 RINT When the SW_CTL.SET bit is set (1), values in the SW_CFG register are transferred to the

EH_CFG register.

2.4.3 SW_BASE  Exception handler address switching base address

This register specifies the base address for the exception handler addresses used by the exception handler address

switching function.

Be sure to set bits 12 to 0 to “0”.

 Bit position Bit name Description

 31 to 13 SW_BASE31 to

SW_BASE13

When the SW_CTL.SET bit is set (1), the contents of the SW_BASE register are

transferred to the EH_BASE register.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512

MB, a value resulting from a sign-extension of bit 28 of SW_BASE is automatically set to bits

31 to 29.

31 1 0

SW_CTL 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0
S
E
T

Initial value
00000000H

000 0 0 0 0

31 1 0

SW_CFG 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0 Initial value
0000000xH

000 0 0 0 0

R
IN

T

31 0

SW_BASE SW_BASE31 to SW_BASE13 0 0 0 0 Initial value
Undefined

000 0 0 0 0 0

13 1228 29

0

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 40 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.4.4 EH_CFG  Exception handler configuration

This register indicates the current settings of the exception handler address switching function.

Bits 31 to 1 are fixed to 0.

 Bit position Bit name Description

 0 RINT When the RINT bit is set (1), exception handler addresses INT0 to INT255 are reduced to a

single handler address (INT0). When this bit is cleared (0), INT0 to INT255 are held as

independent exception handler addresses. The EH_CFG register is set to the initial value

defined for each product at reset. This register cannot be overwritten directly by an LDSR

instruction. When the SW_CTL.SET bit is set (1), the contents of SW_CFG are transferred.

2.4.5 EH_BASE  Exception handler base address

This register indicates the base addresses of the current exception handler address for the exception handler address

switching function.

Bits 12 to 0 are fixed to 0.

 Bit position Bit name Description

 31 to 13 EH_BASE31 to

EH_BASE13

Addresses are changed by adding an offset address for each exception to the base

addresses of exception handler routines specified in this register.

The EH_BASE register is set to the initial value defined for each product at reset. This

register cannot be overwritten directly by an LDSR instruction. When the SW_CTL.SET bit

is set (1), the contents of SW_BASE are transferred.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 of EH_BASE is automatically set to bits 31 to 29.

31 1 0

EH_CFG 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0 Initial value
0000000xH

000 0 0 0 0

R
IN

T

0

31 0

EH_BASE EH_BASE31 to EH_BASE13 0 0 0 Initial value
Undefined

000 0 0 0 0 0

13 1228 29

0

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 41 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.4.6 EH_RESET  Reset address

This register indicates the reset address when the current reset is input.

Bits 12 to 0 are fixed to 0.

 Bit position Bit name Description

 31 to 13 EH_RESET31 to

EH_RESET13

The values in the EH_RESET register do not change except when initialized by a reset.

For details, see the User’s Manual of each product or CPU.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a

value resulting from a sign-extension of bit 28 of EH_RESET is automatically set to bits 31 to 29.

31 0

EH_RESET EH_RESET31 to EH_RESET13 0 0 0 0 000 0 0 0 0 0

13 1228 29

0 Initial value
Undefined

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 42 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.5 User Group

The user group is selected when 0000FF00H is set by an LDSR instruction to the BSEL register (see 2.2.1 BSEL 

Register bank selection). System registers in the user group are maps of the registers in the main bank and FPU status

bank. The user group includes the following two banks.

 User 0 bank (see Table 2-4)

 User compatible bank (see Table 2-5)

Caution The user compatible bank is defined for backward compatibility with the V850E1 and V850E2

architectures, and its use is generally prohibited. Use the user 0 bank unless manipulating a system

register for which no uncorrectable program exists in the bank.

Table 2-4. System Register List (User 0 Bank)

Able to Specify

Operands?

System

Register No.

Symbol Function

LDSR STSR

System Register

Protection

0 to 4 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

5 PSW Program status word   Note1

6, 7 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

8 FPST Floating-point operation status   

9 FPCC Floating-point operation comparison result   

10 FPCFG Floating-point function configuration   

11 to 15 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

16 CTPC Status save register when executing CALLT   

17 CTPSW Status save register when executing CALLT   

18, 19 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

20 CTBP CALLT base pointer   

21 to 27 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

28 EIWR EI level exception working register   

29 FEWR FE level exception working register   

30 DBWR

Note2

DB level exception working register   

31 BSEL Register bank selection   

Notes1. Only bits 31 to 6 are protected.

 2. The DBWR register is a debug function for development tools.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 2 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 43 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 2-5. System Register List (User Compatible Bank)

Able to Specify Operands? System

Register

No.

Symbol Function

LDSR STSR

System

Register

Protection

0 EIPC Status save register when acknowledging EI level exception   

1 EIPSW Status save register when acknowledging EI level exception   

2 FEPC Status save register when acknowledging FE level exception   

3 FEPSW Status save register when acknowledging FE level exception   

4 ECR Exception cause   

5 PSW Program status word   Note1

6, 7 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

8 FPST Floating-point operation status   

9 FPCC Floating-point operation comparison result   

10 FPCFG Floating-point function configuration   

11, 12 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

13 EIIC EI level exception cause   

14 FEIC FE level exception cause   

15 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

16 CTPC Status save register when executing CALLT   

17 CTPSW Status save register when executing CALLT   

18, 19 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

20 CTBP CALLT base pointer   

21 to 27 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

28 EIWR EI level exception working register   

29 FEWR FE level exception working register   

30 DBWR Note2 DB level exception working register   

31 BSEL Register bank selection   

Notes1. Only bits 31 to 6 are protected.

 2. The DBWR register is a debug function for development tools.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 2 CHAPTER 3 DATA TYPES

R01US0001EJ0100 Rev.1.00 Page 44 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 3 DATA TYPES

3.1 Data Formats

The V850E2M CPU handles data in little endian format. This means that byte 0 of a halfword or a word is always the

least significant (rightmost) byte.

The supported data format is as follows.

 Byte (8-bit data)

 Halfword (16-bit data)

 Word (32-bit data)

 Bit (1-bit data)

3.1.1 Byte

A byte is 8 consecutive bits of data that starts from any byte boundary. Numbers from 0 to 7 are assigned to these bits,

with bit 0 as the LSB (least significant bit) and bit 7 as the MSB (most significant bit). The byte address is specified as “A”.

3.1.2 Halfword

A halfword is two consecutive bytes (16 bits) of data that starts from any byte boundaryNote. Numbers from 0 to 15 are

assigned to these bits, with bit 0 as the LSB and bit 15 as the MSB. The bytes in a halfword are specified using address

“A”, so that the two addresses comprise byte data of “A” and “A+1”.

Note During word access, the V850E2M CPU can be accessed at all byte boundaries. See 3.3 Data

 Alignment.

7 0

Data

AddressesA

L
S
B

M
S
B

15 7 0

Data

8

AddressesA A+1

M
S
B

L
S
B

V850E2M PART 2 CHAPTER 3 DATA TYPES

R01US0001EJ0100 Rev.1.00 Page 45 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

3.1.3 Word

A word is four consecutive bytes (32 bits) of data that starts from any byte boundaryNote. Numbers from 0 to 31 are

assigned to these bits, with bit 0 as the LSB (least significant bit) and bit 31 as the MSB (most significant bit). A word is

specified by address “A” and consists of byte data of four addresses: “A”, “A+1”, “A+2”, and “A+3”.

Note During word access, the V850E2M CPU can be accessed at all byte boundaries.

See 3.3 Data Alignment.

3.1.4 Bit

A bit is bit data at the nth bit within 8-bit data that starts from any byte boundary. Each bit is specified using its byte

address “A” and its bit number “n” (n = 0 to 7).

L
S
B

31 24 23 16 15 7 0

Data

8

AddressesA A+1 A+2 A+3

M
S
B

7

Address “A” byte …....

0

AddressA

Bit numbern

Data

V850E2M PART 2 CHAPTER 3 DATA TYPES

R01US0001EJ0100 Rev.1.00 Page 46 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

3.2 Data Representation

3.2.1 Integers

Integers are represented as binary values using 2’s complement, and are used in one of three lengths: 32 bits, 16 bits,

or 8 bits. Regardless of the length of an integer, its place uses bit 0 as the LSB, and this place gets higher as the bit

number increases. Since this is a 2’s complement representation, the MSB is used as a signed bit.

The integer ranges for various data lengths are as follows.

 Word (32 bits): 2147483648 to +2147483647

 Halfword (16 bits): 32768 to +32767

 Byte (8 bits): 128 to +127

3.2.2 Unsigned integers

In contrast to “integers” which are data that can take either a positive or negative sign, “unsigned integers” are never

negative integers. Like integers, unsigned integers are represented as binary values, and are used in one of three

lengths: 32 bits, 16 bits, or 8 bits. Also like integers, the place of unsigned integers uses bit 0 as the LSB and gets higher

as the bit number increases. However, unsigned integers do not use a sign bit.

The unsigned integer ranges for various data lengths are as follows.

 Word (32 bits): 0 to 4294967295

 Halfword (16 bits): 0 to 65535

 Byte (8 bits): 0 to 255

3.2.3 Bits

Bit data are handled as single-bit data with either of two values: cleared (0) or set (1). There are four types of bit-

related operations (listed below), which target only single-byte data in the memory space.

 Set

 Clear

 Invert

 Test

V850E2M PART 2 CHAPTER 3 DATA TYPES

R01US0001EJ0100 Rev.1.00 Page 47 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

3.3 Data Alignment

The V850E2M CPU allows misaligned placement of data.

When the data to be processed is in halfword format, misaligned access indicates the access to an address that is not

at the halfword boundary (where the address LSB = 0), and when the data to be processed is in word format, misaligned

access indicates the access to an address that is not at the word boundary (where the lower two bits of the address = 0).

Regardless of the data format (byte, halfword, or word), data can be allocated at all addresses.

However, in the case of halfword data or word data, if the data is not aligned, at least one extra bus cycle will occur,

which increases the execution time for the instruction.

Figure 3-1. Example of Data Placement for Misaligned Access

Remark W: word data

HW: halfword data

xxxxxx00H

xxxxxx01H

xxxxxx02H

xxxxxx03H

xxxxxx04H
 Halfword boundary/Word boundary

xxxxxx05H

xxxxxx06H

HW

HW

xxxxxx07H

 Halfword boundary W

HW

W

 Halfword boundary/Word boundary

 Halfword boundary

 Halfword boundary/Word boundary

Aligned
access

Misaligned
access

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 48 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 4 ADDRESS SPACE

The V850E2M CPU supports a linear address space of up to 4 GB. Both memory and I/O are mapped to this address

space (using the memory mapped I/O method). The CPU outputs a 32-bit address for memory and I/O, in which the

highest address number is “232  1”.

The byte data placed at various addresses is defined with bit 0 as the LSB and bit 7 as the MSB. When the data is

comprised of multiple bytes, it is defined so that the byte data at the lowest address is the LSB and the byte data at the

highest address is the MSB (i.e., in little endian format).

This manual stipulates that, when representing data comprised of multiple bytes, the right edge must be represented as

the lower address and the left side as the upper address, as shown below.

31 24 23 16 15 7 0

Data

8

AddressA A+1 A+2 A+3

15 7 0

Data

8

AddressA A+1

7 0

Data

AddressA

Word data at
address “A”

Halfword data at
address “A”..

Byte data at
address “A”..

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 49 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.1 Memory Map

The V850E2M CPU is 32-bit architecture and supports a linear address space of up to 4 GB. The whole range of this 4

GB address space can be addressed by instruction addressing (instruction access) and operand addressing (data access).

Caution Instruction addressing is possible in a range of 64 MB with the V850E1 CPU and of 512 MB with the

V850E2 CPU.

A memory map is shown in Figure 4-1.

Figure 4-1. Memory Map (Address Space)

00000000H

FFFFFFFFH

80000000H

7FFFFFFFH

Data area Program area

4
G

B

Address space

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 50 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Caution For the V850E2M CPU, the range of the 4 GB program area that can be actually addressed is

limited because of physical restrictions of registers that hold an instruction address (such as

the program counter). The following registers hold an instruction address.

  PC (program counter)

  EIPC and FEPC (exception context)

  SCBP, CTBP, and CTPC (table branch/exception instruction)

  SW_BASE, EH_BASE, and EH_RESET (exception handler selection function)

  FPEPC (floating-point operation function)

  VSADR (processor protection function)

With a CPU whose addressable range of the program area is limited by the product specification

to 512 MB, the higher 3 bits of these registers are automatically set to values resulting from a

sign-extension of bit 28. Therefore, the addressable ranges are 00000000H to 0FFFFFFEH and

F0000000H to FFFFFFFEH (the least significant bit is always 0).

(Instruction address register with limitation of 512 MB)

 The memory map in this case is shown below.

(Memory map with 512 MB limitation)

When the memory map with a 512 MB limitation is used, be sure to place a table that is referenced by

instructions and the SWITCH, CALLT, and SYSCALL instructions in a range that can be addressed by

instruction addressing. The other data may be placed anywhere in the 4 GB space.

Sign
extension

31 30 29 28 0

0S

Data area Program area

4
G

B

Non-
addressable

range

Non-
addressable

range

F0000000H

0FFFFFFFH

25
6

M
B

25

6
M

B

Address space

00000000H
FFFFFFFFH

80000000H

7FFFFFFFH

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 51 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.2 Addressing Modes

Two types of addresses are generated: instruction addresses that are used for instructions involved in branch

operations, and operand addresses that are used for instructions that access data.

4.2.1 Instruction address

The instruction address is determined based on the contents of the program counter (PC), and is automatically

incremented according to the number of bytes in the executed instruction. When a branch instruction is executed, the

addressing shown below is used to set the branch destination address to the PC.

(1) Relative addressing (PC relative)

Signed N-bit data (displacement: disp N) is added to the instruction code in the program counter (PC). In this case,

displacement is handled as 2’s complement data, and the MSB is a signed bit (S).

If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The JARL, JR, and Bcond instructions are used with this type of addressing.

Figure 4-2. Relative Addressing

(a) JARL disp22, reg2 instruction, and JR disp22 instruction

Remark This is an example of 22-bit displacement.

31 0

PC

31 22 0

Sign extension S

+
21

0 disp22

Instruction
(branch destination)

31 0

PC

0

0

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 52 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2) Register addressing (register indirect)

The contents of the general-purpose register (reg1) or system register (regID) specified by the instruction are

transferred to the program counter (PC).

The JMP, CTRET, EIRET, FERET, RETI, and DISPOSE instructions are used with this type of addressing.

Figure 4-3. Register Addressing

(3) Based addressing

Contents that are specified by the instruction in the general-purpose register (reg1) and that include the added

N-bit displacement (dispN) are transferred to the program counter (PC). At this time, the displacement is handled

as a 2’s complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits

are sign-extended (N differs from one instruction to another).

The JMP instruction is used with this type of addressing.

Figure 4-4. Based Addressing

31 0

reg1 or regID

Instruction
(branch destination)

31 0

PC 0

31 0

reg1

31 0

S

+

0 disp32

Instruction
(branch destination)

31 0

PC 0

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 53 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 (4) Other addressing

A value specified by an instruction is transferred to the program counter (PC). How a value is specified is

explained in Operation or Description of each instruction.

The CALLT, SYSCALL, TRAP, FETRAP, and RIE instructions, and branch in case of an exception are used

with this type of addressing.

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 54 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.2.2 Operand address

The following methods can be used to access the target registers or memory when executing an instruction.

(1) Register addressing

This addressing method accesses the general-purpose register or system register specified in the general-

purpose register field as an operand.

Any instruction that includes the operand reg1, reg2, reg3, or regID are used with this type of addressing.

(2) Immediate addressing

This address mode uses arbitrary size data as the operation target in the instruction code.

Any instruction that includes the operand imm5, imm16, vector, or cccc are used with this type of addressing.

Remark vector: This is immediate data that specifies the exception vector (00H to 1FH), and is an operand

used by the TRAP, FETRAP, and SYSCALL instructions. The data width differs from one

instruction to another.

 cccc: This is 4-bit data that specifies a condition code, and is an operand used in the CMOV

instruction, SASF instruction, and SETF instruction. One bit (0) is added to the higher position

and is then assigned to an opcode as a 5-bit immediate data.

(3) Based addressing

There are two types of based addressing, as described below.

(a) Type 1

The contents of the general-purpose register (reg1) specified at the addressing specification field in the

instruction code are added to the N-bit displacement (dispN) data sign-extended to word length to obtain the

operand address, and addressing accesses the target memory for the operation. At this time, the

displacement is handled as a 2’s complement data, and the MSB is a signed bit (S). If the displacement is

less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The LD, ST, and CAXI instructions are used with this type of addressing.

Figure 4-5. Based Addressing (Type 1)

Remark This is an example of 16-bit displacement.

31 0

reg1

Target memory for
operation

31 0

Sign extension disp16

+
1516

S

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 55 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(b) Type 2

This addressing accesses a memory to be manipulated by using as an operand address the sum of the

contents of the element pointer (r30) and N-bit displacement data (dispN) that is zero-extended to a word

length. If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one

instruction to another).

The SLD instruction and SST instruction are used with this type of addressing.

Figure 4-6. Based Addressing (Type 2)

Remark This is an example of 8-bit displacement.

(4) Bit addressing

The contents of the general-purpose register (reg1) are added to the N-bit displacement (dispN) data sign-

extended to word length to obtain the operand address, and bit addressing accesses one bit (as specified by 3-bit

data “bit #3”) in one byte of the target memory space. At this time, the displacement is handled as a 2’s

complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits are sign-

extended (N differs from one instruction to another).

The CLR1, SET1, NOT1, and TST1 instructions are used with this type of addressing.

Figure 4-7. Bit Addressing

Remark n: Bit position specified by 3-bit data (bit #3) (n = 0 to 7)

In case of 16-bit displacement

31 0

r30 (element pointer)

Target memory for
operation

31 0

0 (zero extension) disp8

+
78

31 0

reg1

Target memory for
operation

31 0

Sign extension disp16

+
1516

n

S

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

R01US0001EJ0100 Rev.1.00 Page 56 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(5) Other addressing

This addressing is to access a memory to be manipulated by using a value specified by an instruction as the

operand address. How a value is specified is explained in [Operation] or [Description] of each instruction.

The SWITCH, CALLT, SYSCALL, PREPARE, and DISPOSE instructions are used with this type of addressing.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 57 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 5 INSTRUCTIONS

5.1 Opcodes and Instruction Formats

The V850E2M CPU has two types of instructions: CPU instructions, which are defined as basic instructions, and

coprocessor instructions, which are defined according to the application.

5.1.1 CPU instructions

Instructions classified as CPU instructions are allocated in the opcode area other than the area used in the format of

the coprocessor instructions shown in 5.1.2 Coprocessor instructions.

CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several instructions that use

option data to add bits, enabling the configuration of 48-bit and 64-bit instructions. For details, see the opcode of the

relevant instruction in 5.3 Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions are reserved for future

function expansion and cannot be used. For details, see 5.1.3 Reserved instructions.

(1) reg-reg instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general-purpose register specification fields.

15 4 0511 10

reg2 opcode reg1

(2) imm-reg instruction (Format II)

A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a general-purpose register

specification field.

15 4 0511 10

reg2 opcode imm

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 58 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3) Conditional branch instruction (Format III)

A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

15 4 0711 10

disp opcode cond

6

disp

3

(4) 16-bit load/store instruction (Format IV)

A 16-bit instruction format consists of a 4-bit opcode field, a general-purpose register specification field, and a 7-bit

displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

15 0711 10

reg2 opcode

6

disp

1

disp/sub-opcode

A 16-bit instruction format consists of a 7-bit opcode field, a general-purpose register specification field, and a 4-bit

displacement field.

15 4 011 10

reg2 opcode disp

3

(5) Jump instruction (Format V)

A 32-bit instruction format consists of a 5-bit opcode field, a general-purpose register specification field, and a 22-

bit displacement field.

15 5 011 10

reg2 opcode disp

6 31 17 16

0

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 59 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(6) 3-operand instruction (Format VI)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit immediate field.

15 5 011 10

reg1opcode imm

4 31 16

reg2

(7) 32-bit load/store instruction (Format VII)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

15 5 011 10

reg1opcode disp

4 31 16

reg2

17

disp/sub-opcode

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a

general-purpose register specification field, and a 16-bit displacement field.

15 5 011 10

reg1opcode disp

4 31 16

sub

14

bit #

13

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 60 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(9) Extended instruction format 1 (Format IX)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and handles the other bits as a sub-opcode field.

Caution Extended instruction format 1 may use part of the general-purpose register specification field of the

sub-opcode field as a system register number field, condition code field, immediate field, or

displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

(10) Extended instruction format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub-opcode field.

Caution Extended instruction format 2 may use part of the general-purpose register specification field of the

sub-opcode field as a system register number field, condition code field, immediate field, or

displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

(11) Extended instruction format 3 (Format XI)

This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose register specification

fields, and uses the other bits as a sub-opcode field.

Caution Extended instruction format 3 may use part of the general-purpose register specification field or the

sub-opcode field as a system register number field, condition code field, immediate field, or

displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

15 5 011 10

reg1opcode

4 31 16

reg2

17

0sub-opcode

15 5 011 10

opcode

4 31 1617

0sub-opcodesub-opcode
sub-opcode
imm/vector

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

0sub-opcode

17

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 61 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(12) Extended instruction format 4 (Format XII)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and uses the other bits as a sub-opcode field.

Caution Extended instruction format 4 may use part of the general-purpose register specification field of the

sub-opcode field as a system register number field, condition code field, immediate field, or

displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

(13) Stack manipulation instruction format (Format XIII)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, 5-bit sub-

opcode field, and one general-purpose register specification field (or 5-bit sub-opcode field).

The general-purpose register specification field is used as a sub-opcode filed, depending on the format of the

instruction.

(14) Load/store instruction 48-bit format (Format XIV)

This is a 48-bit instruction format that has a 6-bit opcode field, two general-purpose register specification fields,

and a 23-bit displacement field, and uses the other bits as a sub-opcode field.

15 5 011 10

sub-opcodeopcode reg3

4 31 16

reg2

27 26

0sub-opcode

17

15 5 011 10

imm opcode list

31 16

sub-opcode

20 21

reg2

6 1

15 5 011 10

reg1opcode reg3

31 16

sub-opcode

20 4 27 26

disp (low)

19

47 32

disp (high)

sub-opcode

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 62 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.1.2 Coprocessor instructions

Instructions in the following format are defined as coprocessor instructions.

Coprocessor instructions define the functions of each coprocessor.

In the V850E2M CPU, floating-point operation functions are defined as coprocessors.

For the instruction format of floating-point operation instructions, see CHAPTER 4 INSTRUCTIONS in PART 4.

(1) Coprocessor unusable exception

If an attempt is made to execute a coprocessor instruction defined by an opcode that refers to a nonexistent

coprocessor or a coprocessor that cannot be used due to the operational status of the device, a coprocessor

unusable exception (UCPOP) immediately occurs.

For details, see CHAPTER 7 COPROCESSOR UNUSABLE STATUS.

5.1.3 Reserved instructions

An opcode reserved for future function extension and for which no instruction is defined is defined as a reserved

instruction.

It is defined by the product specification that either of the following two types of operations is performed on the opcode

of a reserved instruction.

 A reserved instruction exception occurs

 The reserved instruction is executed as an instruction

In the V850E2M CPU, the following opcodes define the RIE instruction, which always causes a reserved instruction

exception to occur.

 RIE instruction (16 bits)

 RIE instruction (32 bits)

 (x = Either 0 or 1)

15 5 011 10

1 reg3

4 31 16

reg2

27 26

opcode

17

opcode or reg1

1 1 1 1 1 1 0

259 8 7 6

15 4 05 11 10

0 0 0 0 0 0 0 0 0 1 0 0 0 0 00

5 011 10

1 x x x x1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 31 16

x x x x x

15

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 63 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.2 Overview of Instructions

(1) Load instructions:

Execute data transfer from memory to register. The following instructions (mnemonics) are provided.

(a) LD instructions

 LD.B: Load byte

 LD.BU: Load byte unsigned

 LD.H: Load halfword

 LD.HU: Load halfword unsigned

 LD.W: Load word

(b) SLD instructions

 SLD.B: Short format load byte

 SLD.BU: Short format load byte unsigned

 SLD.H: Short format load halfword

 SLD.HU: Short format load halfword unsigned

 SLD.W: Short format load word

(2) Store instructions:

Execute data transfer from register to memory. The following instructions (mnemonics) are provided.

(a) ST instructions

 ST.B: Store byte

 ST.H: Store halfword

 ST.W: Store word

(b) SST instructions

 SST.B: Short format store byte

 SST.H: Short format store halfword

 SST.W: Short format store word

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 64 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3) Multiply instructions:

Execute multiplication in 1 clock with on-chip hardware multiplier. The following instructions (mnemonics) are

provided.

 MUL: Multiply word

 MULH: Multiply halfword

 MULHI: Multiply halfword immediate

 MULU: Multiply word unsigned

(4) Multiply-accumulate instructions

After a multiplication operation, a value is added to the result. The following instructions (mnemonics) are

available.

 MAC: Multiply word and add

 MACU: Multiply word unsigned and add

(5) Arithmetic instructions:

Add, subtract, divide, transfer, or compare data between registers. The following instructions (mnemonics) are

provided.

 ADD: Add

 ADDI: Add immediate

 CMP: Compare

 MOV: Move

 MOVEA: Move effective address

 MOVHI: Move high halfword

 SUB: Subtract

 SUBR: Subtract reverse

(6) Conditional arithmetic instructions

Add and subtract operations are performed under specified conditions. The following instructions (mnemonics)

are available.

 ADF: Add on condition flag

 SBF: Subtract on condition flag

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 65 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(7) Saturated operation instructions:

Execute saturated addition and subtraction. If the operation result exceeds the maximum positive value

(7FFFFFFFH), 7FFFFFFFH returns. If the operation result exceeds the maximum negative value (80000000H),

80000000H returns. The following instructions (mnemonics) are provided.

 SATADD: Saturated add

 SATSUB: Saturated subtract

 SATSUBI: Saturated subtract immediate

 SATSUBR: Saturated subtract reverse

(8) Logical instructions:

Include logical operation instructions. The following instructions (mnemonics) are provided.

 AND: AND

 ANDI: AND immediate

 NOT: NOT

 OR: OR

 ORI: OR immediate

 TST: Test

 XOR: Exclusive OR

 XORI: Exclusive OR immediate

(9) Data manipulation instructions:

Include data manipulation instructions and shift instructions with arithmetic shift and logical shift. Operands can be

shifted by multiple bits in one clock cycle through the on-chip barrel shifter. The following instructions (mnemonics)

are provided:

 BSH: Byte swap halfword

 BSW: Byte swap word

 CMOV: Conditional move

 HSH: Halfword swap halfword

 HSW: Halfword swap word

 SAR: Shift arithmetic right

 SASF: Shift and set flag condition

 SETF: Set flag condition

 SHL: Shift logical left

 SHR: Shift logical right

 SXB: Sign-extend byte

 SXH: Sign-extend halfword

 ZXB: Zero-extend byte

 ZXH: Zero-extend halfword

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 66 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(10) Bit search instructions

The specified bit values are searched among data stored in registers.

 SCH0L: Search zero from left

 SCH0R: Search zero from right

 SCH1L: Search one from left

 SCH1R: Search one from right

(11) Divide instructions:

Execute division operations. Regardless of values stored in a register, the operation can be performed using a

constant number of steps. The following instructions (mnemonics) are provided.

 DIV: Divide word

 DIVH: Divide halfword

 DIVHU: Divide halfword unsigned

 DIVU: Divide word unsigned

(12) High-speed divide instructions

These instructions perform division operations. The number of valid digits in the quotient is determined in

advanced from values stored in a register, so the operation can be performed using a minimum number of steps.

The following instructions (mnemonics are provided).

 DIVQ: Divide word quickly

 DIVQU: Divide word unsigned quickly

(13) Branch instructions:

Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch instruction (Bcond) which

accommodates the flag status to switch controls. Program control can be transferred to the address specified by a

branch instruction. The following instructions (mnemonics) are provided.

 Bcond: Branch on condition code (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH,

BNL, BNV, BNZ, BP, BR, BSA, BV, BZ)

 JARL: Jump and register link

 JMP: Jump register

 JR: Jump relative

(14) Bit manipulation instructions:

Execute logical operation on memory bit data. Only a specified bit is affected. The following instructions

(mnemonics) are provided.

 CLR1: Clear bit

 NOT1: Not bit

 SET1: Set bit

 TST1: Test bit

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 67 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(15) Special instructions:

Include instructions not provided in the categories of instructions described above. The following instructions

(mnemonics) are provided.

 CALLT: Call with table look up

 CAXI: Compare and exchange for interlock

 CTRET: Return from CALLT

 DI: Disable interrupt

 DISPOSE: Function dispose

 EI: Enable interrupt

 EIRET: Return from trap or interrupt

 FERET: Return from trap or interrupt

 FETRAP: Software trap

 HALT: Halt

 LDSR: Load system register

 NOP: No operation

 PREPARE: Function prepare

 RETI: Return from trap or interrupt

 RIE Reserved instruction exception

 STSR: Store system register

 SWITCH: Jump with table look up

 TRAP: Trap

 SYNCM: Synchronize memory

 SYNCP: Synchronize pipeline

 SYNCE: Synchronize exceptions

 SYSCALL: System call

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 68 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.3 Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

 Instruction format: Indicates the description and the instruction operand (for symbols, refer to Table 5-1).

 Operation: Indicates the function of the instruction (for symbols, refer to Table 5-2).

 Format: Indicates the instruction format (refer to 5.1 Opcodes and Instruction Formats).

 Opcode: Indicates the bit field of the instruction opcode (for symbols, refer to Table 5-3).

 Flag: Indicates the change of flags of PSW (program status word) after the instruction execution.

“0” is to clear (reset), “1” to set, and “--” to remain unchanged.

 Description: Describes the operation of the instruction.

 Remark: Provides supplementary information on instruction.

 Caution: Provides precautionary notes.

Table 5-1. Conventions of Instruction Format

Symbol Meaning

reg1 General-purpose register (as source register)

reg2 General-purpose register (primarily as destination register with some as source registers)

reg3 General-purpose register (primarily used to store the remainder of a division result and/or the

higher 32 bits of a multiplication result)

bit#3 3-bit data to specify bit number

imm -bit immediate data

disp -bit displacement data

regID System register number

vector Data to specify vector ( indicates the bit size)

cond Condition code (refer to Table 5-4 Condition Codes)

cccc 4-bit data to specify condition code (refer to Table 5-4 Condition Codes)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 69 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 5-2. Conventions of Operation

Symbol Meaning

 Assignment

GR [] General-purpose register

SR [] System register

zero-extend (n) Zero-extends “n” to word

sign-extend (n) Sign-extends “n” to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

extract-bit (a, b) Extracts value of bit b of data a

set-bit (a, b) Sets value of bit b of data a

not-bit (a, b) Inverts value of bit b of data a

clear-bit (a, b) Clears value of bit b of data a

saturate (n) Performs saturated processing of “n.”

If n > 7FFFFFFFH, n = 7FFFFFFFH.

If n < 80000000H, n = 80000000H.

result Outputs results on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

+ Add

– Subtract

|| Bit concatenation

 Multiply

 Divide

% Remainder of division results

AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by Logical left-shift

logically shift right by Logical right-shift

arithmetically shift right by Arithmetic right-shift

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 70 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 5-3. Conventions of Opcode

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

D 1-bit data of displacement (indicates higher bits of displacement)

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

V 1-bit data of code specifying vector (indicates higher bits of vector)

v 1-bit data of code specifying vector

cccc 4-bit data for condition code specification (Refer to Table 5-4 Condition Codes)

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list

S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list

P 1-bit data of code specifying PSW in register list

Table 5-4. Condition Codes

Condition Code (cccc) Condition Name Condition Formula

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T always (Unconditional)

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 71 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Add register/immediate

ADD

Add

[Instruction format] (1) ADD reg1, reg2

 (2) ADD imm5, reg2

[Operation] (1) GR [reg2]  GR [reg2] + GR [reg1]

 (2) GR [reg2]  GR [reg2] + sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr001110RRRRR

 15 0

 (2) rrrrr010010iiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

 (2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 72 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Add immediate

ADDI

Add immediate

[Instruction format] ADDI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110000RRRRR iiiiiiiiiiiiiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise “0”.

SAT --

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 73 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Conditional Operation Instructions>

Add on condition flag

ADF

Conditional add

[Instruction format] ADF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3]  GR [reg1] + GR [reg2] +1

else GR [reg3]  GR [reg1] + GR [reg2] +0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011101cccc0

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Adds 1 to the result of adding the word data of general-purpose register reg1 to the word data of

general-purpose register reg2 and stores the result of addition in general-purpose register reg3, if

the condition specified as condition code “cccc” is satisfied.

If the condition specified as condition code “cccc” is not satisfied, the word data of general-purpose

register reg1 is added to the word data of general-purpose register reg2, and the result is stored in

general-purpose register reg3.

General-purpose registers reg1 and reg2 are not affected. Designate one of the condition codes

shown in the following table as [cccc]. (cccc is not equal to 1101.)

Condition

Code

Name Condition Formula Condition

Code

Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T always

(Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 74 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

AND

AND

AND

[Instruction format] AND reg1, reg2

[Operation] GR [reg2]  GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001010RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 75 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

AND immediate

ANDI

AND immediate

[Instruction format] ANDI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] AND zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110110RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ANDs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 76 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond

Conditional branch

[Instruction format] Bcond disp9

[Operation] if conditions are satisfied

then PC  PC + sign-extend (disp9)

[Format] Format III

[Opcode] 15 0

 ddddd1011dddcccc

 dddddddd is the higher 8 bits of disp9.

cccc is the condition code of the condition indicated by cond (refer to Table 5-5 Bcond

Instructions).

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Checks each PSW flag specified by the instruction and branches if a condition is met; otherwise,

executes the next instruction. The PC of branch destination is the sum of the current PC value and

the 9-bit displacement (= 8-bit immediate data shifted by 1 and sign-extended to word length).

[Comment] Bit 0 of the 9-bit displacement is masked to “0”. The current PC value used for calculation is the

address of the first byte of this instruction. The displacement value being “0” signifies that the

branch destination is the instruction itself.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 77 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 5-5. Bcond Instructions

Instruction Condition Code

(cccc)

Flag Status Branch Condition

BGE 1110 (S xor OV) = 0 Greater than or equal to signed

BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal to signed

Signed

integer

BLT 0110 (S xor OV) = 1 Less than signed

BH 1011 (CY or Z) = 0 Higher (Greater than)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

Unsigned

integer

BNL 1001 CY = 0 Not lower (Greater than or equal)

BE 0010 Z = 1 Equal Common

BNE 1010 Z = 0 Not equal

BC 0001 CY = 1 Carry

BF 1010 Z = 0 False

BN 0100 S = 1 Negative

BNC 1001 CY = 0 No carry

BNV 1000 OV = 0 No overflow

BNZ 1010 Z = 0 Not zero

BP 1100 S = 0 Positive

BR 0101 – Always (unconditional)

BSA 1101 SAT = 1 Saturated

BT 0010 Z = 1 True

BV 0000 OV = 1 Overflow

Others

BZ 0010 Z = 1 Zero

Caution The branch condition loses its meaning if a conditional branch instruction is executed on a

signed integer (BGE, BGT, BLE, or BLT) when the saturated operation instruction sets “1”

 to the SAT flag. In normal operations, if an overflow occurs, the S flag is inverted (0  1

or 1  0). This is because the result is a negative value if it exceeds the maximum positive

value and it is a positive value if it exceeds the maximum negative value. However, when a

 saturated operation instruction is executed, and if the result exceeds the maximum

positive value, the result is saturated with a positive value; if the result exceeds the maximum

negative value, the result is saturated with a negative value. Unlike the normal operation, the

S flag is not inverted even if an overflow occurs.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 78 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Byte swap halfword

BSH

Byte swap of halfword data

[Instruction format] BSH reg2, reg3

[Operation] GR [reg3]  GR [reg2] (23:16)  GR [reg2] (31:24)  GR [reg2] (7:0)  GR [reg2] (15:8)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000010

[Flags] CY “1” when there is at least one byte value of zero in the lower halfword of the operation result;

 otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” when lower halfword of operation result is “0”; otherwise, “0”.

 SAT --

[Description] Executes endian swap.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 79 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Byte swap word

BSW

Byte swap of word data

[Instruction format] BSW reg2, reg3

[Operation] GR [reg3]  GR [reg2] (7:0)  GR [reg2] (15:8)  GR [reg2] (23:16)  GR [reg2] (31:24)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000000

[Flags] CY “1” when there is at least one byte value of zero in the word data of the operation result;

otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT --

[Description] Executes endian swap.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 80 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Call with table look up

CALLT

Subroutine call with table look up

[Instruction format] CALLT imm6

[Operation] CTPC  PC + 2 (return PC)

CTPSW  PSW

adr  CTBP + zero-extend (imm6 logically shift left by 1)

PC  CTBP + zero-extend (Load-memory (adr, Halfword))

[Format] Format II

[Opcode] 15 0

 0000001000iiiiii

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] The following steps are taken.

 (1) Transfers the contents of both return PC and PSW to CTPC and CTPSW.

 (2) Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and zero-extended

to word length, to generate a 32-bit table entry address.

 (3) Loads the halfword entry data of the address generated in step (2) and zero-extend to word

length.

 (4) Adds the CTBP value to the data generated in step (3) to generate a 32-bit target address.

 (5) Jumps to the target address.

Cautions 1. When an exception occurs during CALLT instruction execution, the execution is aborted

after the end of the read/write cycle.

 2. In the CALLT instruction memory read operation executed in order to read the table,

processor protection is performed.

 3. When memory protection (PSW.DMP = 1) or peripheral device protection (PSW.PP = 1) is

enabled, loading the data for generating a target address from a table allocated in an area

to which access from a user program is prohibited cannot be performed.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 81 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Compare and exchange for interlock

CAXI

Comparison and swap

[Instruction format] CAXI [reg1], reg2, reg3

[Operation] adr  GR[reg1]Note

 token  Load-memory (adr, Word)

 result  GR[reg2]  token

 If result == 0

 then Store-memory (adr, GR[reg3], Word)

 GR[reg3]  token

 else Store-memory(adr, token, Word)

 GR[reg3]  token

 Note The lower 2 bits of GR [reg1] is masked to 0 as adr.

[Format] Format XI

[Opcode] 15 031 16

 rrrrr111111RRRRR wwwww00011101110

[Flags] CY “1” if a borrow occurs in the result operation; otherwise, “0”

OV “1” if overflow occurs in the result operation; otherwise, “0”

S “1” if result is negative; otherwise, “0”

Z “1” if result is 0; otherwise, “0”

SAT --

[Description] First, the data in general-purpose register reg1 is read and the lower two bits are masked to “0”,

then a 32-bit address aligned to the word boundary is generated. Word data is read from the

generated address, then is compared with the word data in general-purpose register reg2, and the

result is indicated by flags in the PSW. Comparison is performed by subtracting the read word data

from the word data in general-purpose register reg2. If the comparison result is “0”, word data in

general-purpose register reg3 is stored in the generated address, otherwise the read word data is

stored in the generated address. Afterward, the read word data is stored in general-purpose

register reg3. General-purpose registers reg1 and reg2 are not affected.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the

period between read and write operations, the target address is not affected by access due to

any other cause.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 82 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit manipulation instruction>

Clear bit

CLR1

Bit clear

[Instruction format] (1) CLR1 bit#3, disp16 [reg1]

 (2) CLR1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 token  Load-memory (adr, Byte)

 Z flag  Not (extract-bit (token, bit#3))

 token  clear-bit (token, bit#3)

 Store-memory (adr, token, Byte)

 (2) adr  GR [reg1]

 token  Load-memory (adr, Byte)

 Z flag  Not (extract-bit (token, reg2))

 token  clear-bit (token, reg2)

 Store-memory (adr, token, Byte)

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 10bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100100

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, then the bits indicated by the 3-bit bit number are cleared (0) and the data is written

back to the original address.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, the bits indicated by the lower three bits of reg2 are cleared

(0), and the data is written back to the original address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 83 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Comment] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is executed,

and does not indicate the content of the specified bit after this instruction is executed.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the

period between read and write operations, the target address is not affected by access due to

any other cause.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 84 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Conditional move

CMOV

Conditional transfer

[Instruction format] (1) CMOV cccc, reg1, reg2, reg3

 (2) CMOV cccc, imm5, reg2, reg3

[Operation] (1) if conditions are satisfied

 then GR [reg3]  GR [reg1]

 else GR [reg3]  GR [reg2]

 (2) if conditions are satisfied

 then GR [reg3]  sign-extended (imm5)

 else GR [reg3]  GR [reg2]

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww011001cccc0

 15 0 31 16

 (2) rrrrr111111iiiii wwwww011000cccc0

[Flags] CY --

OV --

S --

Z --

SAT --

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 85 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Description] (1) When the condition specified by condition code “cccc” is met, data in general-purpose register

reg1 is transferred to general-purpose register reg3. When that condition is not met, data in

general-purpose register reg2 is transferred to general-purpose register reg3. Specify one of

the condition codes shown in the following table as “cccc”.

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

 (2) When the condition specified by condition code “cccc” is met, 5-bit immediate data sign-

extended to word-length is transferred to general-purpose register reg3. When that condition is

not met, the data in general-purpose register reg2 is transferred to general-purpose register

reg3. Specify one of the condition codes shown in the following table as “cccc”.

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Comment] See the description of the SETF instruction.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 86 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Compare register/immediate (5-bit)

CMP

Compare

[Instruction format] (1) CMP reg1, reg2

 (2) CMP imm5, reg2

[Operation] (1) result  GR [reg2]  GR [reg1]

 (2) result  GR [reg2]  sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr001111RRRRR

 15 0

 (2) rrrrr010011iiiii

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Compares the word data of general-purpose register reg2 with the word data of general-

purpose register reg1 and outputs the result through the PSW flags. Comparison is performed

by subtracting the reg1 contents from the reg2 word data. General-purpose registers reg1 and

reg2 are not affected.

 (2) Compares the word data of general-purpose register reg2 with the 5-bit immediate data, sign-

extended to word length, and outputs the result through the PSW flags. Comparison is

performed by subtracting the sign-extended immediate data from the reg2 word data. General-

purpose register reg2 is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 87 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Return from CALLT

CTRET

Return from subroutine call

[Instruction format] CTRET

[Operation] PC  CTPC

PSW  CTPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000100

[Flags] CY Value read from CTPSW is set.

OV Value read from CTPSW is set.

S Value read from CTPSW is set.

Z Value read from CTPSW is set.

SAT Value read from CTPSW is set.

[Description] Loads the return PC and PSW from the appropriate system register and returns from a routine

under CALLT instruction. The following steps are taken:

 (1) The return PC and PSW are loaded from the CTPC and CTPSW.

 (2) The values are restored in PC and PSW and the control is transferred to the return address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 88 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Disable interrupt

DI

Disable EI level maskable exception

[Instruction format] DI

[Operation] PSW.ID  1 (Disables EI level maskable interrupt)

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101100000

[Flags] CY --

OV --

S --

Z --

SAT --

ID 1

[Description] Sets “1” to the ID flag of the PSW to immediately disable the acknowledgement of EI level

maskable exceptions.

[Comment] Overwrite of flags in the PSW by this instruction becomes valid as of the next instruction.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 89 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Function dispose

DISPOSE

Stack frame deletion

[Instruction format] (1) DISPOSE imm5, list12

 (2) DISPOSE imm5, list12, [reg1]

[Operation] (1) adr  sp + zero-extend (imm5 logically shift left by 2)

 foreach (all regs in list12) {

 GR[reg in list12]  Load-memory (adr, Word)Note

 adr  adr + 4

 }

 sp  adr

 (2) adr  sp + zero-extend (imm5 logically shift left by 2)

 foreach (all regs in list12) {

 GR[reg in list12]  Load-memory (adr, Word)Note

 adr  adr + 4

 }

 sp  adr

 PC  GR[reg1]

 Note When loading to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011001iiiiiL LLLLLLLLLLL00000

 15 0 31 16

 (2) 0000011001iiiiiL LLLLLLLLLLLRRRRR

 RRRRR  00000 (Do not specify r0 for reg1.)

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for

example, the “L” at bit 21 of the opcode corresponds to the value of bit21 in list12).

list12 is a 32-bit register list, defined as follows.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 90 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any

of these bits is set (1), it specifies a corresponding register operation as a processing target.

For example, when r20 and r30 are specified, the values in list12 appear as shown below

(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

 When all of the register’s non-corresponding bits are “0”: 08000001H

 When all of the register’s non-corresponding bits are “1”: 081FFFFFH

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to

sp; returns to general-purpose registers listed in list12 by loading the data from the address

specified by sp and adds 4 to sp.

 (2) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to

sp; returns to general-purpose registers listed in list12 by loading the data from the address

specified by sp and adds 4 to sp; and transfers the control to the address specified by general-

purpose register reg1.

[Comment] General-purpose registers in list12 are loaded in descending order (r31, r30, ... r20). The imm5

restores a stack frame for automatic variables and temporary data. The lower 2 bits of the address

specified by sp is always masked to “0” and aligned to the word boundary.

Cautions 1. If an exception occurs while this instruction is being executed, execution of the

instruction may be stopped after the read/write cycle and the register value write

operation are completed, but sp will retain its original value from before the start of

execution. The instruction will be executed again later, after a return from the exception.

 2. For instruction format (2) DISPOSE imm5, list12, [reg1], do not specify r0 for reg1.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 91 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Divide instruction>

Divide word

DIV

Division of (signed) word data

[Instruction format] DIV reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000000

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose register

reg1 and stores the quotient to general-purpose register reg2 with the remainder set to general-

purpose register reg3. General-purpose register reg1 is not affected. When division by zero occurs,

an overflow results and all operation results except for the OV flag are undefined.

[Comment] Overflow occurs when the maximum negative value (80000000H) is divided by 1 with the quotient

= 80000000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIV instruction execution, the execution is aborted to process

the exception. The execution resumes at the original instruction address upon returning from the

exception. General-purpose register reg1 and general-purpose register reg2 retain their values prior

to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 92 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Divide instruction>

Divide halfword

DIVH

Division of (signed) halfword data

[Instruction format] (1) DIVH reg1, reg2

 (2) DIVH reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2]  GR [reg1]

 (2) GR [reg2]  GR [reg2]  GR [reg1]

 GR [reg3]  GR [reg2] % GR [reg1]

[Format] (1) Format I

 (2) Format XI

[Opcode] 15 0

 (1) rrrrr000010RRRRR

 RRRRR  00000 (Do not specify r0 for reg1.)

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01010000000

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] (1) Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2. General-

purpose register reg1 is not affected. When division by zero occurs, an overflow results and all

operation results except for the OV flag are undefined.

 (2) Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2 with the

remainder set to general-purpose register reg3. General-purpose register reg1 is not affected.

When division by zero occurs, an overflow results and all operation results except for the OV

flag are undefined.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 93 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Comment] (1) The remainder is not stored. Overflow occurs when the maximum negative value (80000000H)

is divided by 1 with the quotient = 80000000H and when the data is divided by 0 with quotient

being undefined.

When an exception occurs during the DIVH instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon

returning from the exception. General-purpose register reg1 and general-purpose register reg2

retain their values prior to execution of this instruction.

 (2) Overflow occurs when the maximum negative value (80000000H) is divided by 1 with the

quotient = 80000000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVH instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon

returning from the exception. General-purpose register reg1 and general-purpose register reg2

retain their values prior to execution of this instruction.

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

 2. Do not specify r0 as reg1 and reg2 for DIVH reg1 and reg2 in instruction format (1).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 94 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Divide instruction>

Divide halfword unsigned

DIVHU

Division of (unsigned) halfword data

[Instruction format] DIVHU reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01010000010

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” when the operation result quotient word data is “1”; otherwise, “0”

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2 with the remainder

set to general-purpose register reg3. General-purpose register reg1 is not affected. When division

by zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Comment] Overflow occurs by division by zero (with the operation result being undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVHU instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon returning

from the exception. General-purpose register reg1 and general-purpose register reg2 retain their

values prior to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 95 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<High-speed divide instructions>

Divide word quickly

DIVQ

Division of (signed) word data (variable steps)

[Instruction format] DIVQ reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011111100

[Flags] CY --

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT --

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose register

reg1, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2,

then this operation is executed. When division by zero occurs, an overflow results and all operation

results except for the OV flag are undefined.

[Comment] (1) Overflow occurs when the maximum negative value (80000000H) is divided by -1 (with the

quotient = 80000000H) and when the data is divided by 0 with the quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After

exception processing is completed, the execution resumes at the original instruction address

when returning from the exception. General-purpose register reg1 and general-purpose

register reg2 retain their values prior to execution of this instruction.

 (2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller the

number of execution cycles. In most cases, the number of instruction cycles is smaller than

that of the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit

integer type data, the difference in the number of valid bits is 15 or less, and the operation is

completed within 20 cycles.

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

 2. For the accurate number of execution cycles, refer to C.2 Clock Requirements.

 3. If the number of execution cycles must always be constant to guarantee real-time

features, use the ordinary division instruction.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 96 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<High-speed divide instructions>

Divide word unsigned quickly

DIVQU

Division of (unsigned) word data (variable steps)

[Instruction format] DIVQU reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011111110

[Flags] CY --

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT --

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose register

reg1, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2,

then this operation is executed. When division by zero occurs, an overflow results and all operation

results except for the OV flag are undefined.

[Comment] (1) An overflow occurs when there is division by zero (the operation result is undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After

exception processing is completed, using the return address as this instruction’s start address,

the execution resumes when returning from the exception. General-purpose register reg1 and

general-purpose register reg2 retain their values prior to execution of this instruction.

 (2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller the

number of execution cycles. In most cases, the number of instruction cycles is smaller than

that of the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit

integer type data, the difference in the number of valid bits is 15 or less, and the operation is

completed within 20 cycles.

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

 2. For the accurate number of execution cycles, refer to C.2 Clock Requirements.

 3. If the number of execution cycles must always be constant to guarantee real-time

features, use the ordinary division instruction.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 97 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Divide instruction>

Divide word unsigned

DIVU

Division of (unsigned) word data

[Instruction format] DIVU reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000010

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” when operation result quotient word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose register

reg1 and stores the quotient to general-purpose register reg2 with the remainder set to general-

purpose register reg3. General-purpose register reg1 is not affected. When division by zero occurs,

an overflow results and all operation results except for the OV flag are undefined.

[Comment] When an exception occurs during the DIVU instruction execution, the execution is aborted to

process the exception.

If reg2 and reg3 are the same register, the remainder is stored in that register.

The execution resumes at the original instruction address upon returning from the exception.

General-purpose register reg1 and general-purpose register reg2 retain their values prior to

execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 98 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Enable interrupt

EI

Enable EI level maskable exception

[Instruction format] EI

[Operation] PSW.ID  0 (enables EI level maskable exception)

[Format] Format X

[Opcode] 15 0 31 16

 1000011111100000 0000000101100000

[Flags] CY --

OV --

S --

Z --

SAT --

ID 0

[Description] Clears the ID flag of the PSW to “0” and enables the acknowledgement of maskable exceptions

starting the next instruction.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 99 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Return from trap or interrupt

EIRET

Return from EL level exception

[Instruction format] EIRET

[Operation] PC  EIPC

 PSW  EIPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101001000

[Flags] CY Value read from EIPSW is set

OV Value read from EIPSW is set

S Value read from EIPSW is set

Z Value read from EIPSW is set

SAT Value read from EIPSW is set

[Description] Returns execution from an EI level exception. The return PC and PSW are loaded from the EIPC

and EIPSW registers and set in the PC and PSW, and control is passed. When EP = 0, completed

execution of the exception routine is reported externally (to the interrupt controller, etc.).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 100 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Return from trap or interrupt

FERET

Return from FE level exception

[Instruction format] FERET

[Operation] PC  FEPC

 PSW  FEPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101001010

[Flags] CY Value read from FEPSW is set

OV Value read from FEPSW is set

S Value read from FEPSW is set

Z Value read from FEPSW is set

SAT Value read from FEPSW is set

[Description] Returns execution from an FE level exception. The return PC and PSW are loaded from the FEPC

and FEPSW registers and set in the PC and PSW, and control is passed. When EP = 0, completed

execution of the exception routine is reported externally (to the interrupt controller and elsewhere).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 101 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

FE-level Trap

FETRAP

FE level software exception

[Instruction format] FETRAP vector4

[Operation] FEPC  PC + 2 (return PC)

FEPSW  PSW

ECR.FECC  exception code (31H-3FH)

 FEIC  exception code (31H-3FH)

PSW.EP  1

PSW.ID  1

 PSW.NP  1

 If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

 PSW.PP  0

 PC  00000030H

[Format] Format I

[Opcode] 15 0

 0vvvv00001000000

 Where vvvv is vector4.

 Do not set 0H to vector4 (vvvv ≠ 0000).

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Saves the contents of the return PC (address of the instruction next to the FETRAP instruction) and

the current contents of the PSW to FEPC and FEPSW, respectively, stores an exception source

code in the FEIC register and ECR.FECC bit, and sets (1) the PSW.NP, EP, and ID bits. If the

MPM.AUE bit is set (1), it clears (0) the PSW.PP, NPV, DMP, and IMP bits.

Execution then branches to the exception handler address (00000030H) and exception processing

is started.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 102 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Halt

HALT

Halt

[Instruction format] HALT

[Operation] Instruction execution is halted until the HALT state release request is generated.

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000100100000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Places the system in the HALT state.

 Occurrence of the HALT state release request will return the system to normal execution status.

 If an exception is acknowledged while the system is in HALT state, the return PC of that exception

is the PC of the instruction that follows the HALT instruction.

 A HALT state release request is input when the following exception requests occur.

  Reset input (RESET)

  EI level maskable interrupt input (INT0 to INT255)

  FE level maskable interrupt input (FEINT)

  FE level non-maskable interrupt input (FENMI)

  Peripheral device protection exception (PPI)

  Timing monitoring exception (TSI)

  System error exception (SYSERR)

 Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID or NP

value), as long as a HALT mode release request exists, HALT state is released (for example, even

if ID = 1, HALT state is released when INT0 occurs).

[Comment] The HALT status is not released if interrupt inputs (INT0 to INT255, FEINT, and FENMI) are

“disabled” by the following registers of the interrupt controller.

  EI level interrupt control registers (EIC0 to EIC255)

  EI level interrupt mask registers (IMR0 to IMR15)

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 103 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instructions>

Halfword swap halfword

HSH

Halfword swap of halfword data

[Instruction format] HSH reg2, reg3

[Operation] GR [reg3]  GR [reg2]

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000110

[Flags] CY “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

SAT --

[Description] Stores the content of general-purpose register reg2 in general-purpose register reg3, and stores the

flag judgment result in PSW.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 104 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Halfword swap word

HSW

Halfword swap of word data

[Instruction format] HSW reg2, reg3

[Operation] GR [reg3]  GR [reg2] (15:0)  GR [reg2] (31:16)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000100

[Flags] CY “1” when there is at least one halfword of zero in the word data of the operation result;

 otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT --

[Description] Executes endian swap.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 105 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Branch instruction>

Jump and register link

JARL

Branch and register link

[Instruction format] (1) JARL disp22, reg2

 (2) JARL disp32, reg1

[Operation] (1) GR [reg2]  PC + 4

PC  PC + sign-extend (disp22)

 (2) GR [reg1]  PC + 6

PC  PC + disp32

[Format] (1) Format V

 (2) Format VI

[Opcode] 15 0 31 16

 (1) rrrrr11110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (2) 00000010111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

 RRRRR  00000 (Do not specify r0 for reg1.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Saves the current PC value + 4 in general-purpose register reg2, adds the 22-bit displacement

data, sign-extended to word length, to PC; stores the value in and transfers the control to PC.

Bit 0 of the 22-bit displacement is masked to “0”.

 (2) Saves the current PC value + 6 in general-purpose register reg1, adds the 32-bit displacement

data to PC and stores the value in and transfers the control to PC. Bit 0 of the 32-bit

displacement is masked to “0”.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 106 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself. The

jump destination is this instruction with the displacement value = 0. JARL instruction corresponds to

the call function of the subroutine control instruction, and saves the return PC address in either reg1

or reg2. JMP instruction corresponds to the return function of the subroutine control instruction, and

can be used to specify general-purpose register containing the return address as reg1 to the return

PC.

Caution Do not specify r0 for reg2 in instruction format (1) JARL disp22, reg2.

Do not specify r0 for reg1 in instruction format (2) JARL disp32, reg1.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 107 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Branch instruction>

Jump register

JMP

Unconditional branch (register relative)

[Instruction format] (1) JMP [reg1]

 (2) JMP disp32 [reg1]

[Operation] (1) PC  GR [reg1]

 (2) PC  GR [reg1] + disp32

[Format] (1) Format I

 (2) Format VI

[Opcode] 15 0

 (1) 00000000011RRRRR

 15 0 31 16 47 32

 (2) 00000110111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Transfers the control to the address specified by general-purpose register reg1. Bit 0 of the

address is masked to “0”.

 (2) Adds the 32-bit displacement to general-purpose register reg1, and transfers the control to the

resulting address. Bit 0 of the address is masked to “0”.

[Comment] Using this instruction as the subroutine control instruction requires the return PC to be specified by

general-purpose register reg1.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 108 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Branch instruction>

Jump relative

JR

Unconditional branch (PC relative)

[Instruction format] (1) JR disp22

 (2) JR disp32

[Operation] (1) PC  PC + sign-extend (disp22)

 (2) PC  PC + disp32

[Format] (1) Format V

 (2) Format VI

[Opcode] 15 0 31 16

 (1) 0000011110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 15 0 31 16 47 32

 (2) 0000001011100000 ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC and stores

the value in and transfers the control to PC. Bit 0 of the 22-bit displacement is masked to “0”.

 (2) Adds the 32-bit displacement data to the current PC and stores the value in PC and transfers

the control to PC. Bit 0 of the 32-bit displacement is masked to “0”.

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself. The

displacement value being “0” signifies that the branch destination is the instruction itself.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 109 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Load byte

LD.B

Load of (signed) byte data

[Instruction format] (1) LD.B disp16 [reg1] , reg2

(2) LD.B disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  sign-extend (Load-memory (adr, Byte))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  sign-extend (Load-memory (adr, Byte))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111000RRRRR dddddddddddddddd

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

 ddddddd is the lower 7 bits of disp23.

 DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in general-purpose register reg3.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 110 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Load byte unsigned

LD.BU

Load of (unsigned) byte data

[Instruction format] (1) LD.BU disp16 [reg1] , reg2

(2) LD.BU disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  zero-extend (Load-memory (adr, Byte))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  zero-extend (Load-memory (adr, Byte))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr11110bRRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16, and b is bit 0 of disp16.

rrrrr  00000 (Do not specify r0 for reg2.)

 15 031 1647 32

 (2) 00000111101RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, zero-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, zero-extended to word length, and stored in general-purpose register reg3.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 111 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Load halfword

LD.H

Load of (unsigned) halfword data

[Instruction format] (1) LD.H disp16 [reg1] , reg2

(2) LD.H disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  sign-extend (Load-memory (adr, Halfword))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  sign-extend (Load-memory (adr, Halfword))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111001RRRRR ddddddddddddddd0

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit

address, sign-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit

address, sign-extended to word length, and stored in general-purpose register reg3.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 112 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Load halfword unsigned

LD.HU

Load of (signed) halfword data

[Instruction format] (1) LD.HU disp16 [reg1] , reg2

(2) LD.HU disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  zero-extend (Load-memory (adr, Halfword))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  zero-extend (Load-memory (adr, Halfword))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111111RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

rrrrr  00000 (Do not specify r0 for reg2.)

 15 031 1647 32

 (2) 00000111101RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit

address, zero-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this address,

zero-extended to word length, and stored in general-purpose register reg3.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 113 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Load word

LD.W

Load of word data

[Instruction format] (1) LD.W disp16 [reg1] , reg2

(2) LD.W disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  Load-memory (adr, Word)

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  Load-memory (adr, Word)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111001RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Word data is read from this 32-bit

address, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Word data is read from this address,

and stored in general-purpose register reg3.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 114 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Load to system register

LDSR

Load to system register

[Instruction format] LDSR reg2, regID

[Operation] SR [regID]  GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR 0000000000100000

Caution The fields to define reg1 and reg2 are swapped in this instruction. “RRR” is normally used for

reg1 that is the source operand, and “rrr” is represented by reg2 that is the destination

operand. In this instruction, “RRR” is used for the source operand that is represented by

reg2, and “rrr” is used for the register destination.

 rrrrr: regID specification

 RRRRR: reg2 specification

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Loads the word data of general-purpose register reg2 to a system register specified by the system

register number (regID). General-purpose register reg2 is not affected.

Caution The system register number regID is to identify a system register. Accessing system registers

that are reserved or write-prohibited is prohibited.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 115 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Multiply-accumulate instruction>

Multiply and add word

MAC

Multiply-accumulate for (signed) word data

[Instruction format] MAC reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4]  GR [reg2]  GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011110mmmm0

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this

would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit

data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are

stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered

register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3, …, r31)

is specified.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 116 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Multiply-accumulate instruction>

Multiply and add word unsigned

MACU

Multiply-accumulate for (unsigned) word data

[Instruction format] MACU reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4]  GR [reg2]  GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011111mmmm0

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this

would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit

data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are

stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register re1, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered

register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3, …, r31)

is specified.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 117 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Move register/immediate (5-bit) /immediate (32-bit)

MOV

Data transfer

[Instruction format] (1) MOV reg1, reg2

 (2) MOV imm5, reg2

 (3) MOV imm32, reg1

[Operation] (1) GR [reg2]  GR [reg1]

 (2) GR [reg2]  sign-extend (imm5)

 (3) GR [reg1]  imm32

[Format] (1) Format I

 (2) Format II

 (3) Format VI

[Opcode] 15 0

 (1) rrrrr000000RRRRR

rrrrr  00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010000iiiii

rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (3) 00000110001RRRRR iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.

I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Copies and transfers the word data of general-purpose register reg1 to general-purpose

register reg2. General-purpose register reg1 is not affected.

 (2) Copies and transfers the 5-bit immediate data, sign-extended to word length, to general-

purpose register reg2.

 (3) Copies and transfers the 32-bit immediate data to general-purpose register reg1.

Caution Do not specify r0 as reg2 in MOV reg1, reg2 for instruction format (1) or in MOV imm5, reg2 for

instruction format (2).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 118 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Move effective address

MOVEA

Effective address transfer

[Instruction format] MOVEA imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110001RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. Neither general-purpose

register reg1 nor the flags is affected.

[Comment] This instruction is to execute a 32-bit address calculation with the PSW flag value unchanged.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 119 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Move high halfword

MOVHI

Higher halfword transfer

[Instruction format] MOVHI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] + (imm16  016)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110010RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the word data with its higher 16 bits specified as the 16-bit immediate data and the lower 16

bits being “0” to the word data of general-purpose register reg1 and stores the result in general-

purpose register reg2. Neither general-purpose register reg1 nor the flags is affected.

[Comment] This instruction is to generate the higher 16 bits of a 32-bit address.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 120 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Multiply instruction>

Multiply word by register/immediate (9-bit)

MUL

Multiplication of (signed) word data

[Instruction format] (1) MUL reg1, reg2, reg3

 (2) MUL imm9, reg2, reg3

[Operation] (1) GR [reg3]  GR [reg2]  GR [reg2]  GR [reg1]

 (2) GR [reg3]  GR [reg2]  GR [reg2]  sign-extend (imm9)

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100000

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII00

iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then stores the higher 32 bits of the result (64-bit data) in general-purpose

register reg3 and the lower 32 bits in general-purpose register reg2.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

General-purpose register reg1 is not affected.

 (2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, extended to

word length, then stores the higher 32 bits of the result (64-bit data) in general-purpose register

reg3 and the lower 32 bits in general-purpose register reg2.

[Comment] When general-purpose register reg2 and general-purpose register reg3 are the same register, only

the higher 32 bits of the multiplication result are stored in the register.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 121 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Multiply instruction>

Multiply halfword by register/immediate (5-bit)

MULH

Multiplication of (signed) halfword data

[Instruction format] (1) MULH reg1, reg2

 (2) MULH imm5, reg2

[Operation] (1) GR [reg2] (32)  GR [reg2] (16)  GR [reg1] (16)

 (2) GR [reg2]  GR [reg2]  sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr000111RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010111iiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of

general-purpose register reg1 and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

 (2) Multiplies the lower halfword data of general-purpose register reg2 by the 5-bit immediate data,

sign-extended to halfword length, and stores the result in general-purpose register reg2.

[Comment] In the case of a multiplier or a multiplicand, the higher 16 bits of general-purpose registers reg1 and

reg2, are ignored.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 122 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Multiply instruction>

Multiply halfword by immediate (16-bit)

MULHI

Multiplication of (signed) halfword immediate data

[Instruction format] MULHI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1]  imm16

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110111RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate data

and stores the result in general-purpose register reg2. General-purpose register reg1 is not affected.

[Comment] In the case of a multiplicand, the higher 16 bits of general-purpose register reg1 are ignored.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 123 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Multiply instruction>

Multiply word unsigned by register/immediate (9-bit)

MULU

Multiplication of (unsigned) word data

[Instruction format] (1) MULU reg1, reg2, reg3

 (2) MULU imm9, reg2, reg3

[Operation] (1) GR [reg3]  GR [reg2]  GR [reg2]  GR [reg1]

 (2) GR [reg3]  GR [reg2]  GR [reg2]  zero-extend (imm9)

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100010

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII10

 iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then stores the higher 32 bits of the result (64-bit data) in general-purpose

register reg3 and the lower 32 bits in general-purpose register reg2. General-purpose register

reg1 is not affected.

 (2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, zero-

extended to word length, then stores the higher 32 bits of the result (64-bit data) in general-

purpose register reg3 and the lower 32 bits in general-purpose register reg2.

[Comment] When general-purpose register reg2 and general-purpose register reg3 are the same register, only

the higher 32 bits of the multiplication result are stored in the register.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 124 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

No operation

NOP

No operation

[Instruction format] NOP

[Operation] PC for this instruction is incremented by +2 (nothing else is done).

[Format] Format I

[Opcode] 15 0

 0000000000000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] PC for this instruction is incremented by +2 (nothing else is done).

[Comment] The opcode is the same as that of MOV r0, r0.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 125 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

NOT

NOT

Logical negation (1’s complement)

[Instruction format] NOT reg1, reg2

[Operation] GR [reg2]  NOT (GR [reg1])

[Format] Format I

[Opcode] 15 0

 rrrrr000001RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Logically negates the word data of general-purpose register reg1 using 1’s complement and stores

the result in general-purpose register reg2. General-purpose register reg1 is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 126 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit manipulation instruction>

NOT bit

NOT1

NOT bit

[Instruction format] (1) NOT1 bit#3, disp16 [reg1]

 (2) NOT1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, bit#3))

token  not-bit (token, bit#3)

Store-memory (adr, token, Byte)

 (2) adr  GR [reg1]

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, reg2))

token  not-bit (token, reg2)

Store-memory (adr, token, Byte)

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 01bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100010

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, then the bits indicated by the 3-bit bit number are inverted (0  1, 1  0) and the

data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, then the bits specified by lower 3 bits of general-purpose

register reg2 are inverted (0  1, 1  0) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 127 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Comment] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is executed

and does not indicate the content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the

period between read and write operations, the target address is not affected by access due to

any other cause.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 128 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

OR

OR

OR

[Instruction format] OR reg1, reg2

[Operation] GR [reg2]  GR [reg2] OR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001000RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ORs the word data of general-purpose register reg2 with the word data of general-purpose register

reg1 and stores the result in general-purpose register reg2. General-purpose register reg1 is not

affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 129 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

OR immediate (16-bit)

ORI

OR immediate

[Instruction format] ORI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] OR zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110100RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ORs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 130 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Function prepare

PREPARE

Create stack frame

[Instruction format] (1) PREPARE list12, imm5

 (2) PREPARE list12, imm5, sp/immNote

 Note The sp/imm values are specified by bits 19 and 20 of the sub-opcode.

[Operation] (1) adr  sp

foreach (all regs in list12) {

 adr  adr  4

 Store-memory (adr, GR[reg in list12], Word)Note

}

sp  adr  zero-extend (imm5 logically shift left by 2)

 (2) adr  sp

foreach (all regs in list12) {

 adr  adr  4

 Store-memory (adr, GR[reg in list12], Word) Note

}

sp  adr  zero-extend (imm5 logically shift left by 2)

case

 ff = 00: ep  sp

 ff = 01: ep  sign-extend (imm16)

 ff = 10: ep  imm16 logically shift left by 16

 ff = 11: ep  imm32

 Note When storing to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011110iiiiiL LLLLLLLLLLL00001

 15 0 31 16 Option (47-32 or 63-32)

 (2) 0000011110iiiiiL LLLLLLLLLLLff011 imm16 / imm32

 In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32 and

bits 63 to 48 are the higher 16 bits of imm32.

 ff = 00: sp is loaded to ep

 ff = 01: Sign-extended 16-bit immediate data (bits 47 to 32) is loaded to ep

 ff = 10: 16-bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep

 ff = 11: 32-bit immediate data (bits 63 to 32) is loaded to ep

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 131 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for

example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in list12).

list12 is a 32-bit register list, defined as follows.

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any

of these bits is set (1), it specifies a corresponding register operation as a processing target.

For example, when r20 and r30 are specified, the values in list12 appear as shown below

(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

  When all of the register’s non-corresponding bits are “0”: 08000001H

  When all of the register’s non-corresponding bits are “1”: 081FFFFFH

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the

data is stored in that address). Next, subtracts 5-bit immediate data, logically left-shifted by 2

bits and zero-extended to word length, from sp.

 (2) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the

data is stored in that address). Next, subtracts 5-bit immediate data, logically left-shifted by 2

bits and zero-extended to word length, from sp.

Then, loads the data specified by the third operand (sp/imm) to ep.

[Comment] list12 general-purpose registers are saved in ascending order (r20, r21, ..., r31).

imm5 is used to create a stack frame that is used for auto variables and temporary data.

The lower two bits of the address specified by sp are masked to 0 and aligned to the word boundary.

Caution If an exception occurs while this instruction is being executed, execution of the instruction

may be stopped after the read cycle and the register value write operation are completed, but

sp will retain its original value from before the start of execution. The instruction will be

executed again later, after a return from the exception.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 132 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Return from trap or interrupt

RETI

Return from EI level software exception or interrupt

[Instruction format] RETI

[Operation] if PSW.EP = 1

then PC  EIPC

 PSW  EIPSW

else if PSW.NP = 1

 then PC  FEPC

 PSW  FEPSW

 else PC  EIPC

 PSW  EIPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000000

[Flags] CY Value read from FEPSW or EIPSW is set.

OV Value read from FEPSW or EIPSW is set.

S Value read from FEPSW or EIPSW is set.

Z Value read from FEPSW or EIPSW is set.

SAT Value read from FEPSW or EIPSW is set.

[Description] Reads the return PC and PSW from the appropriate system register and returns from a software

exception or interrupt routine. The following steps are taken:

 (1) If the EP bit of PSW is “1”, the return PC and PSW are read from EIPC and EIPSW, regardless

of the status of the NP bit of PSW.

If the EP bit of PSW is “0” and the NP bit of PSW is “1”, the return PC and PSW are read from

FEPC and FEPSW.

If the EP bit of PSW is “0” and the NP bit of PSW is “0”, the return PC and PSW are read from

EIPC and EIPSW.

 (2) The values are restored in PC and PSW and the control is transferred to the return address.

 When EP = 0, completed execution of the exception routine is reported externally (to the interrupt

controller or elsewhere).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 133 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Cautions 1. The RETI instruction is defined for backward compatibility with the V850E1 and V850E2

CPU. Therefore, in principle, use of the RETI instruction is prohibited. Except for

existing programs that cannot be revised, all RETI instructions should be replaced with

EIRET or FERET instructions.

If the RETI instruction is used, the operation is undefined except when returning from an

interrupt or EI level software exception.

 2. To enable normal restoration of the PC and PSW when returning (via a RETI instruction)

from an FE level non-maskable interrupt exception (FENMI), FE level maskable interrupt

exception (FEINT), or an EI level software exception (TRAP), the NP and EP bits must be

set as follows just before executing the RETI instruction.

  When using RETI instruction to return from FE level non-maskable interrupt exception

 (FENMI): NP = 1 and EP = 0

  When using RETI instruction to return from FE level maskable interrupt exception

 (FEINT): NP = 1 and EP = 0

  When using RETI instruction to return from EI level software exception

 (EITRAP0/EITRAP1): EP = 1

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 134 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Reserved instruction exception

RIE

Reserved instruction exception

[Instruction format] (1) RIE

(2) RIE imm5, imm4

[Operation] FEPC  PC (return PC)

FEPSW  PSW

ECR.FECC  exception code

FEIC  exception code

PSW.NP  1

PSW.EP  1

 PSW.ID  1

 If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

 PSW.PP  0

 PC  00000030H

[Format] (1) Format I

(2) Format X

[Opcode] 15 0

 (1) 0000000001000000

 15 0 31 16

 (2) iiiii1111111IIII 0000000000000000

 Where iiiii = imm5, IIII = imm4.

[Flags] CY 

OV 

S 

Z 

SAT 

[Description] Saves the contents of the return PC (address of the RIE instruction) and the current contents of the

PSW to FEPC and FEPSW, respectively, stores an exception source code in the FEIC register and

ECR.FECC bit, and sets (1) the PSW.NP, EP, and ID bits. If the MPM.AUE bit is set (1), it clears

(0) the PSW.PP, NPV, DMP, and IMP bits.

Execution then branches to the exception handler address (00000030H) and exception processing

is started.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 135 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Shift arithmetic right by register/immediate (5-bit)

SAR

Arithmetic right shift

[Instruction format] (1) SAR reg1, reg2

 (2) SAR imm5, reg2

 (3) SAR reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2] arithmetically shift right by GR [reg1]

 (2) GR [reg2]  GR [reg2] arithmetically shift right by zero-extend

 (3) GR [reg3]  GR [reg2] arithmetically shift right by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010100000

 15 0

 (2) rrrrr010101iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010100010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by copying the pre-shift

MSB value to the post-shift MSB. The result is written to general-purpose register reg2. When

the number of shifts is 0, general-purpose register reg2 retains the value prior to execution of

instructions. General-purpose register reg1 is not affected.

 (2) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by copying the

pre-shift MSB value to the post-shift MSB. The result is written to general-purpose register reg2.

When the number of shifts is 0, general-purpose register reg2 retains the value prior to

execution of instructions.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 136 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 (3) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by copying the pre-shift

MSB value to the post-shift MSB. The result is written to general-purpose register reg3. When

the number of shifts is 0, general-purpose register reg3 retains the value prior to execution of

instructions. General-purpose registers reg1 and reg2 are not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 137 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Shift and set flag condition

SASF

Shift and flag condition setting

[Instruction format] SASF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2]  (GR [reg2] Logically shift left by 1) OR 00000001H

 else GR [reg2]  (GR [reg2] Logically shift left by 1) OR 00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000001000000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] When the condition specified by condition code “cccc” is met, logically left-shifts data of general-

purpose register reg2 by 1 bit, and sets (1) the least significant bit (LSB). If a condition is not met,

logically left-shifts data of reg2 and clears the LSB.

Designate one of the condition codes shown in the following table as [cccc].

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Comment] Refer to the SETF instruction.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 138 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Saturated operation instructions>

Saturated add register/immediate (5-bit)

SATADD

Saturated addition

[Instruction format] (1) SATADD reg1, reg2

 (2) SATADD imm5, reg2

 (3) SATADD reg1, reg2, reg3

[Operation] (1) GR [reg2]  saturated (GR [reg2] + GR [reg1])

 (2) GR [reg2]  saturated (GR [reg2] + sign-extend (imm5))

 (3) GR [reg3]  saturated (GR [reg2] + GR [reg1])

[Format] (1) Format I

 (2) Format II

 (3) Format XI

[Opcode] 15 0

 (1) rrrrr000110RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010001iiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww01110111010

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg2. However, when the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2; then the SAT

flag is set (1). General-purpose register reg1 is not affected.

 (2) Adds the 5-bit immediate data, sign-extended to the word length, to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. However, when

the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2,

and when it exceeds the maximum negative value 80000000H, 80000000H is stored in reg2;

then the SAT flag is set (1).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 139 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 (3) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg3. However, when the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg3; then the SAT

flag is set (1). General-purpose registers reg1 and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 as reg2 in instruction format (1) SATADD reg1, reg2 and in instruction

format (2) SATADD imm5, reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 140 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Saturated operation instruction>

Saturated subtract

SATSUB

Saturated subtraction

[Instruction format] (1) SATSUB reg1, reg2

 (2) SATSUB reg1, reg2, reg3

[Operation] (1) GR [reg2]  saturated (GR [reg2]  GR [reg1])

 (2) GR [reg3]  saturated (GR [reg2]  GR [reg1])

[Format] (1) Format I

 (2) Format XI

[Opcode] 15 0

 (1) rrrrr000101RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01110011010

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] (1) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. If the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag

is set to “1”. General-purpose register reg1 is not affected.

 (2) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg3. However, when

the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3,

and when it exceeds the maximum negative value 80000000H, 80000000H is stored in reg3;

then the SAT flag is set (1). General-purpose registers reg1 and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 as reg2 in instruction format (1) SATSUB reg1, reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 141 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Saturated operation instruction>

Saturated subtract immediate

SATSUBI

Saturated subtraction

[Instruction format] SATSUBI imm16, reg1, reg2

[Operation] GR [reg2]  saturated (GR [reg1]  sign-extend (imm16))

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110011RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. If the result exceeds

the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register reg1 is not affected.

[Comment] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 142 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR

Saturated reverse subtraction

[Instruction format] SATSUBR reg1, reg2

[Operation] GR [reg2]  saturated (GR [reg1]  GR [reg2])

[Format] Format I

[Opcode] 15 0

 rrrrr000100RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. If the result exceeds the

maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register reg1 is not affected.

[Comment] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 143 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Conditional operation instructions>

Subtract on condition flag

SBF

Conditional subtraction

[Instruction format] SBF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3]  GR [reg2]  GR [reg1] 1

else GR [reg3]  GR [reg2]  GR [reg1] 0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011100cccc0

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if operation result is negative; otherwise, “0”.

Z “1” if operation result is “0”; otherwise, “0”.

SAT --

[Description] Subtracts 1 from the result of subtracting the word data of general-purpose register reg1 from the

word data of general-purpose register reg2, and stores the result of subtraction in general-purpose

register reg3, if the condition specified by condition code “cccc” is satisfied.

If the condition specified by condition code “cccc” is not satisfied, subtracts the word data of

general-purpose register reg1 from the word data of general-purpose register reg2, and stores the

result in general-purpose register reg3.

General-purpose registers reg1 and register 2 are not affected. Designate one of the condition

codes shown in the following table as [cccc]. (However, cccc cannot equal 1101.)

Condition

Code

Name Condition Formula Condition

Code

Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T always (Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 144 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit search instructions>

Search zero from left

SCH0L

Bit (0) search from MSB side

[Instruction format] SCH0L reg2, reg3

[Operation] GR [reg3]  search zero from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100100

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 31 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (0)

is eventually found, the CY flag is set (1).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 145 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit search instructions>

Search zero from right

SCH0R

Bit (0) search from LSB side

[Instruction format] SCH0R reg2, reg3

[Operation] GR [reg3]  search zero from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100000

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 0 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (0)

is eventually found, the CY flag is set (1).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 146 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit search instructions>

Search one from left

SCH1L

Bit (1) search from MSB side

[Instruction format] SCH1L reg2, reg3

[Operation] GR [reg3]  search one from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100110

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 31 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (1)

is eventually found, the CY flag is set (1).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 147 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit search instructions>

Search one from right

SCH1R

Bit (1) search from LSB side

[Instruction format] SCH1R reg2, reg3

[Operation] GR [reg3]  search one from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100010

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 0 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (1)

is eventually found, the CY flag is set (1).

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 148 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit manipulation instruction>

Set bit

SET1

Bit setting

[Instruction format] (1) SET1 bit#3, disp16 [reg1]

 (2) SET1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, bit#3))

token  set-bit (token, bit#3)

Store-memory (adr, token, Byte)

 (2) adr  GR [reg1]

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, reg2))

token  set-bit (token, reg2)

Store-memory (adr, token, Byte)

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 00bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100000

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, the bits indicated by the 3-bit bit number are set (1) and the data is written back to the

original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, the lower 3 bits indicated of general-purpose register reg2

are set (1) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 149 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Comment] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate the

content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the

period between read and write operations, the target address is not affected by access due to

any other cause.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 150 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Set flag condition

SETF

Flag condition setting

[Instruction format] SETF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2]  00000001H

 else GR [reg2]  00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000000000000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] When the condition specified by condition code “cccc” is met, stores “1” to general-purpose register

reg2 if a condition is met and stores “0” if a condition is not met.

Designate one of the condition codes shown in the following table as [cccc].

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 151 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Comment] Examples of SETF instruction:

 (1) Translation of multiple condition clauses

 If A of statement if (A) in C language consists of two or greater condition clauses (a1, a2,

a3, and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object code

executes “conditional branch” by checking the result of evaluation equivalent to an. Since a

pipeline operation requires more time to execute “condition judgment” + “branch” than to

execute an ordinary operation, the result of evaluating each condition clause if (an) is stored in

register Ra. By performing a logical operation to Ran after all the condition clauses have been

evaluated, the pipeline delay can be prevented.

 (2) Double-length operation

 To execute a double-length operation, such as “Add with Carry”, the result of the CY flag can

be stored in general-purpose register reg2. Therefore, a carry from the lower bits can be

represented as a numeric value.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 152 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Shift logical left by register/immediate (5-bit)

SHL

Logical left shift

[Instruction format] (1) SHL reg1, reg2

 (2) SHL imm5, reg2

 (3) SHL reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2] logically shift left by GR [reg1]

 (2) GR [reg2]  GR [reg2] logically shift left by zero-extend (imm5)

 (3) GR [reg3]  GR [reg2] logically shift left by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000011000000

 15 0

 (2) rrrrr010110iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00011000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position

specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to LSB. The result

is written to general-purpose register reg2. When the number of shifts is 0, general-purpose

register reg2 retains the value prior to execution of instructions. General-purpose register reg1

is not affected.

 (2) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position

specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to LSB. The

result is written to general-purpose register reg2. When the number of shifts is 0, general-

purpose register reg2 retains the value prior to execution of instructions.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 153 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 (3) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position

specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to LSB. The result

is written to general-purpose register reg3. When the number of shifts is 0, general-purpose

register reg3 retains the value prior to execution of instructions. General-purpose registers reg1

and reg2 are not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 154 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Shift logical right by register/immediate (5-bit)

SHR

Logical right shift

[Instruction format] (1) SHR reg1, reg2

 (2) SHR imm5, reg2

 (3) SHR reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2] logically shift right by GR [reg1]

 (2) GR [reg2]  GR [reg2] logically shift right by zero-extend(imm5)

 (3) GR [reg3]  GR [reg2] logically shift right by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010000000

 15 0

 (2) rrrrr010100iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to MSB.

The result is written to general-purpose register reg2. When the number of shifts is 0, general-

purpose register reg2 retains the value prior to execution of instructions. General-purpose

register reg1 is not affected.

 (2) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to

MSB. The result is written to general-purpose register reg2. When the number of shifts is 0,

general-purpose register reg2 retains the value prior to execution of instructions.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 155 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 (3) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to MSB.

The result is written to general-purpose register reg3. When the number of shifts is 0, general-

purpose register reg3 retains the value prior to execution of instructions. General-purpose

registers reg1 and reg2 are not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 156 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Short format load byte

SLD.B

Load of (signed) byte data

[Instruction format] SLD.B disp7 [ep] , reg2

[Operation] adr  ep + zero-extend (disp7)

GR [reg2]  sign-extend (Load-memory (adr, Byte))

[Format] Format IV

[Opcode] 15 0

 rrrrr0110ddddddd

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to generate

a 32-bit address. Byte data is read from the generated address, sign-extended to word length, and

stored in reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 157 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Short format load byte unsigned

SLD.BU

Load of (unsigned) byte data

[Instruction format] SLD.BU disp4 [ep] , reg2

[Operation] adr  ep + zero-extend (disp4)

GR [reg2]  zero-extend (Load-memory (adr, Byte))

[Format] Format IV

[Opcode] 15 0

 rrrrr0000110dddd

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to generate

a 32-bit address. Byte data is read from the generated address, zero-extended to word length, and

stored in reg2.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 158 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Short format load halfword

SLD.H

Load of (signed) halfword data

[Instruction format] SLD.H disp8 [ep] , reg2

[Operation] adr  ep + zero-extend (disp8)

GR [reg2]  sign-extend (Load-memory (adr, Halfword))

[Format] Format IV

[Opcode] 15 0

 rrrrr1000ddddddd

 ddddddd is the higher 7 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Halfword data is read from this 32-bit address, sign-extended to word length, and

stored in general-purpose register reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 159 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Short format load halfword unsigned

SLD.HU

Load of (unsigned) halfword data

[Instruction format] SLD.HU disp5 [ep] , reg2

[Operation] adr  ep + zero-extend (disp5)

GR [reg2]  zero-extend (Load-memory (adr, Halfword))

[Format] Format IV

[Opcode] 15 0

 rrrrr0000111dddd

 rrrrr  00000 (Do not specify r0 for reg2.)

 dddd is the higher 4 bits of disp5.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 5-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Halfword data is read from this 32-bit address, zero-extended to word length, and

stored in general-purpose register reg2.

Caution Do not specify r0 for reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 160 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Load instruction>

Short format load word

SLD.W

Load of word data

[Instruction format] SLD.W disp8 [ep] , reg2

[Operation] adr  ep + zero-extend (disp8)

GR [reg2]  Load-memory (adr, Word)

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd0

 dddddd is the higher 6 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Word data is read from this 32-bit address, and stored in general-purpose register

reg2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 161 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Store instruction>

Short format store byte

SST.B

Storage of byte data

[Instruction format] SST.B reg2, disp7 [ep]

[Operation] adr  ep + zero-extend (disp7)

Store-memory (adr, GR [reg2] , Byte)

[Format] Format IV

[Opcode] 15 0

 rrrrr0111ddddddd

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 7-bit displacement data, zero-extended to word length, to generate

a 32-bit address and stores the data of the lowest byte of reg2 to the generated address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 162 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Store instruction>

Short format store halfword

SST.H

Storage of halfword data

[Instruction format] SST.H reg2, disp8 [ep]

[Operation] adr  ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Halfword)

[Format] Format IV

[Opcode] 15 0

 rrrrr1001ddddddd

 ddddddd is the higher 7 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address, and stores the lower halfword data of reg2 to the generated 32-bit address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 163 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Store instruction>

Short format store word

SST.W

Storage of word data

[Instruction format] SST.W reg2, disp8 [ep]

[Operation] adr  ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Word)

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd1

 dddddd is the higher 6 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address and stores the word data of reg2 to the generated 32-bit address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 164 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Store instruction>

Store byte

ST.B

Storage of byte data

[Instruction format] (1) ST.B reg2, disp16 [reg1]

(2) ST.B reg3, disp23 [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Byte)

(2) adr  GR [reg1] + sign-extend (disp23)

 Store-memory (adr, GR [reg3], Byte)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111010RRRRR dddddddddddddddd

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwddddddd1101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 [Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose

register reg2 to the generated address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose

register reg3 to the generated address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 165 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Store instruction>

Store halfword

ST.H

Storage of halfword data

[Instruction format] (1) ST.H reg2, disp16 [reg1]

(2) ST.H reg3, disp23 [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Halfword)

(2) adr  GR [reg1] + sign-extend (disp23)

 Store-memory (adr, GR [reg3], Halfword)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111011RRRRR ddddddddddddddd0

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111101RRRRR wwwwwdddddd01101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lower halfword data of general-

purpose register reg2 to the generated address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest halfword data of general-

purpose register reg3 to the generated address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 166 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Store instruction>

Store word

ST.W

Storage of word data

[Instruction format] (1) ST.W reg2, disp16 [reg1]

(2) ST.W reg3, disp23 [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Word)

(2) adr  GR [reg1] + sign-extend (disp23)

 Store-memory (adr, GR [reg3], Word)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111011RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the word data of general-purpose

register reg2 to the generated 32-bit address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest word data of general-

purpose register reg3 to the generated 32-bit address.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 167 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Store contents of system register

STSR

Storage of contents of system register

[Instruction format] STSR regID, reg2

[Operation] GR [reg2]  SR [regID]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR 0000000001000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Stores the system register contents specified by the system register number (regID) to general-

purpose register reg2. The system-register contents are not affected.

Caution The system register number regID is to identify a system register. Operation is not

guaranteed if the reserved system register ID is specified.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 168 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Subtract

SUB

Subtraction

[Instruction format] SUB reg1, reg2

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001101RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Subtracts the word data of general-purpose register reg1 from the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 169 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Arithmetic instruction>

Subtract reverse

SUBR

Reverse subtraction

[Instruction format] SUBR reg1, reg2

[Operation] GR [reg2] GR [reg1]  GR [reg2]

[Format] Format I

[Opcode] 15 0

 rrrrr001100RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 170 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Jump with table look up

SWITCH

Jump with table look up

[Instruction format] SWITCH reg1

[Operation] adr  (PC + 2) + (GR [reg1] logically shift left by 1)

PC  (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

[Format] Format I

[Opcode] 15 0

 00000000010RRRRR

 RRRRR  00000 (Do not specify r0 for reg1.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] The following steps are taken.

 (1) Adds the start address (the one subsequent to the SWITCH instruction) to general-purpose

register reg1, logically left-shifted by 1, to generate a 32-bit table entry address.

 (2) Loads the halfword entry data indicated by the address generated in step (1).

 (3) Adds the table start address after sign-extending the loaded halfword data and logically left-

shifting it by 1 (the one subsequent to the SWITCH instruction) to generate a 32-bit target

address.

 (4) Jumps to the target address generated in step (3).

Cautions 1. Do not specify r0 for reg1.

 2. In the SWITCH instruction memory read operation executed in order to read the table,

processor protection is performed.

 3. When memory protection (PSW.DMP = 1) or peripheral device protection (PSW.PP = 1) is

enabled, loading the data for generating a target address from a table allocated in an area

to which access from a user program is prohibited cannot be performed.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 171 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Sign extend byte

SXB

Sign-extension of byte data

[Instruction format] SXB reg1

[Operation] GR [reg1]  sign-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000101RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Sign-extends the lowest byte of general-purpose register reg1 to word length.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 172 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Sign extend halfword

SXH

Sign-extension of halfword data

[Instruction format] SXH reg1

[Operation] GR [reg1]  sign-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000111RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Sign-extends the lower halfword of general-purpose register reg1 to word length.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 173 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Synchronize exceptions

SYNCE

Exception synchronization instruction

[Instruction format] SYNCE

[Operation] Starts execution when exceptions are synchronized, and increments PC by +2 without executing

anything.

[Format] Format I

[Opcode] 15 0

 0000000000011101

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Waits for the synchronization of all preceding exceptions before starting execution.

It does not perform any operation but is completed when its execution is started.

“Exception synchronization” means that all exceptions that are generated by the preceding

instructions are notified to the CPU and are kept waiting until their priority is judged. If a condition

of acknowledging exceptions is satisfied before this instruction is executed, therefore, all imprecise

exceptions (FPI and PPI exceptions) that are generated because of the preceding instructions are

always acknowledged before execution of this instruction is completed. This instruction can be

used to guarantee completion of exception processing by the preceding task before a task is

changed or terminated in a multi-processing environment.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 174 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Synchronize memory

SYNCM

Memory synchronize instruction

[Instruction format] SYNCM

[Operation] Starts execution when accesses to the memory device are synchronized, and increments PC by +2

without executing anything.

[Format] Format I

[Opcode] 15 0

 0000000000011110

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Waits for the synchronization of all preceding memory accesses before starting execution.

“Synchronization” refers to the status where the result of preceding memory accesses can be

referenced by any master device within the system.

In cases such as when buffering is used to delay memory accesses and synchronization of all

memory accesses has not occurred, the SYNCM instruction does not complete and waits for the

synchronization.

The subsequent instructions will not be executed until the SYNCM instruction execution is complete.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 175 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Synchronize pipeline

SYNCP

Pipeline synchronize instruction

[Instruction format] SYNCP

[Operation] Starts execution when pipeline is synchronized, and increments PC by +2 without executing

anything.

[Format] Format I

[Opcode] 15 0

 0000000000011111

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Waits until execution of all previous instructions is completed before being executed. Execution of

this instruction increments PC by +2.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 176 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

System call

SYSCALL

System call exception

[Instruction format] SYSCALL vector8

[Operation] EIPC  PC + 4 (return PC)

EIPSW  PSW

EIIC  exception code (8000H-80FFH)

ECR.EICC  exception code (8000H-80FFH)

PSW.EP  1

PSW.ID  1

If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

 PSW.PP  0

if (vector8 <= SCCFG.SIZE) is satisfied

 then adr  SCBP + zero-extend (vector8 logically shifted left by 2)

 else adr  SCBP

PC  SCBP + Load-memory (adr, Word)

[Format] Format X

[Opcode] 15 0 31 16

 11010111111vvvvv 00VVV00101100000

 where VVV is the higher 3 bits of vector8 and vvvvv is the lower 5 bits of vector8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] This instruction calls the system service of an OS.

 <1> Saves the contents of the return PC (address of the instruction next to the SYSCALL

instruction) and PSW to EIPC and EIPSW.

 <2> Stores the exception code corresponding to vector8 to the EIIC register and ECR.EICC bit.

The exception code is the value of vector8 plus 8000H.

 <3> Sets (1) the PSW.ID and EP bits.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 177 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 <4> Clears (0) the PSW.PP, NPV, DMP, and IMP bits when the MPM.AUE bit is 1.

 <5> Generates a 32-bit table entry address by adding the value of the SCBP register and vector8

that is logically shifted 2 bits to the left and zero-extended to a word length.

 If vector8 is greater than the value specified by the SIZE bit of system register SCCFG;

however, vector8 that is used for the above addition is handled as 0.

 <6> Loads the word of the address generated in <5>.

 <7> Generates a 32-bit target address by adding the value of the SCBP register to the data in <6>.

 <8> Branches to the target address generated in <7>.

Cautions 1. This instruction is dedicated to calling the system service of an OS. For how to use it in

the user program, refer to the Function Specification of each OS.

 2. In the SYSCALL instruction memory read operation executed in order to read the table,

processor protection is not performed.

 3. When memory protection (PSW.DMP = 1) or peripheral device protection (PSW.PP = 1) is

enabled, loading the data for generating a target address from a table allocated in an area

to which access from a user program is prohibited can be performed.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 178 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Special instruction>

Trap

TRAP

Software exception

[Instruction format] TRAP vector5

[Operation] EIPC  PC + 4 (return PC)

EIPSW  PSW

ECR.EICC  exception code (40H to 5FH)

EIIC  exception code (40H to 5FH)

PSW.EP  1

 PSW.ID  1

If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

 PSW.PP  0

 PC  00000040H (when vector5: 00H to 0FH (exception code: 40H to 4FH))

 00000050H (when vector5: 10H to 1FH (exception code: 50H to 5FH))

[Format] Format X

[Opcode] 15 0 31 16

 00000111111vvvvv 0000000100000000

 vvvvv = vector5

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Saves the contents of the return PC (address of the instruction next to the TRAP instruction) and

the current contents of the PSW to EIPC and EIPSW, respectively, stores the exception source

code in the EIIC register and ECR.EICC bit, and sets (1) the PSW.EP and ID bits. If the MPM.AUE

bit is set (1), it clears (0) the PSW.PP, NPV, DMP, and IMP bits.

It then branches to an exception handler address corresponding to the vector (00H to 1FH)

specified as “vector5” and starts exception processing.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 179 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

Test

TST

Test

[Instruction format] TST reg1, reg2

[Operation] result  GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001011RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, 0.

SAT --

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1. The result is not stored with only the flags being changed. General-purpose registers

reg1 and reg2 are not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 180 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Bit manipulation instruction>

Test bit

TST1

Bit test

[Instruction format] (1) TST1 bit#3, disp16 [reg1]

 (2) TST1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, bit#3))

 (2) adr  GR [reg1]

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, reg2))

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 11bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100110

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address; checks the bit specified by the 3-bit bit

number at the byte data location referenced by the generated address. If the specified bit is “0”,

“1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is cleared to “0”. The byte data,

including the specified bit, is not affected.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address; checks the

bit specified by the lower 3 bits of reg2 at the byte data location referenced by the generated

address. If the specified bit is “0”, “1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is

cleared to “0”. The byte data, including the specified bit, is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 181 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

Exclusive OR

XOR

Exclusive OR

[Instruction format] XOR reg1, reg2

[Operation] GR [reg2]  GR [reg2] XOR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001001RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Exclusively ORs the word data of general-purpose register reg2 with the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 182 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Logical instruction>

Exclusive OR immediate (16-bit)

XORI

Exclusive OR immediate

[Instruction format] XORI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] XOR zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110101RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Exclusively ORs the word data of general-purpose register reg1 with the 16-bit immediate data,

zero-extended to word length, and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 183 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Zero extend byte

ZXB

Zero-extension of byte data

[Instruction format] ZXB reg1

[Operation] GR [reg1]  zero-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000100RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Zero-extends the lowest byte of general-purpose register reg1 to word length.

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 184 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Data manipulation instruction>

Zero extend halfword

ZXH

Zero-extension of halfword data

[Instruction format] ZXH reg1

[Operation] GR [reg1]  zero-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000110RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Zero-extends the lower halfword of general-purpose register reg1 to word length.

V850E2M PART 2 CHAPTER 6 EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 185 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 6 EXCEPTIONS

An exception is an unusual event that forces a branch operation from the current program to another program, due to

certain causes.

A program at the branch destination of each exception is called an “exception handler”. The exception handler start

address is set by the exception handler address switching function (see 6.4 Exception Handler Address Switching

Function).

Caution The V850E2M CPU handles interrupts of the V850E1 and V850E2 CPU as types of exceptions.

6.1 Outline of Exceptions

The following describes the elements that assign properties to exceptions, and shows how exceptions work.

 Exception cause list

 Exception types

 Exception processing flow

 Interrupts

 Priority of exception acknowledgment

 Exception acknowledgment condition

 Resume and restoration

 Exception level and context saving

 Return instructions

6.1.1 Exception cause list
The V850E2M CPU supports the following types of exceptions.

R01US0001EJ0100 Rev.1.00 Page 186 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPTIONS

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

T
ab

le
 6

-1
.

 E
xc

ep
ti

o
n

 C
au

se
 L

is
t

(1
/2

)

A
ck

no
w

le
dg

m
en

t

C
on

di
tio

n
(

: 0
 o

r
1)

R
eg

is
te

r
R

ef
re

sh
 V

al
ue

 (
s:

 s
av

e)

P
S

W

P
S

W

N
am

e
S

ym
bo

l
C

au
se

P

rio
rit

y
E

xc
ep

tio
n

Le
ve

l

T
yp

e
R

es
um

e
R

es
to

ra
tio

n

ID

N
P

E
xc

ep
tio

n

C
od

eN
o

te
 1

R
et

ur
n

P
C

N
o

te
 1

H
an

dl
er

O
ffs

et
N

o
te

 2
E

xe
cu

tio
n

Le
ve

lN
o

te
 3

N
P

E
P

ID

R
et

ur
n

In
st

ru
ct

io
n

C
P

U
 in

iti
al

iz
at

io
n

R
E

S
E

T

R
es

et
 in

pu
t

1


A
sy

nc
hr

on
ou

s
N

G

N
G




N

on
e

N
on

e
+

00
00

H

0
0

0
1

N
on

e

F
E

 le
ve

l n
on

-m
as

ka
bl

e

in
te

rr
up

t

F
E

N
M

I
F

E
N

M
I

in
pu

tN
o

te
 4

3
F

E

In
te

rr
up

t
N

G

N
G




00

00
00

20
H

cu
rr

en
tP

C
+

00
20

H

N
o

te
 5

1
0

1
F

E
R

E
T

S
ys

te
m

 e
rr

or
 e

xc
ep

tio
n

S
Y

S
E

R
R

S

Y
S

E
R

R
 in

pu
t N

o
te

 7

4
F

E

N
o

te
 6

N

G

N
G




00

00
02

30
H

 :

00
00

02
33

H

cu
rr

en
tP

C
+

00
30

H

N
o

te
 5

1
1

1
F

E
R

E
T

P
er

ip
he

ra
l d

ev
ic

e

pr
ot

ec
tio

n
ex

ce
pt

io
n

P
P

I
P

er
ip

he
ra

l d
ev

ic
e

pr
ot

ec
tio

n
vi

ol
at

io
n

5
F

E

Im
pr

ec
is

e
O

K

N
G



0
00

00
04

32
H

cu
rr

en
tP

C
+

00
30

H

0
1

1
1

F
E

R
E

T

T
im

in
g

m
on

ito
rin

g

ex
ce

pt
io

n
T

S
I

T
im

in
g

m
on

ito
rin

g

vi
ol

at
io

n

6
F

E

A
sy

nc
hr

on
ou

s
O

K

O
K



0
00

00
04

33
H

cu
rr

en
tP

C
+

00
30

H

0
1

1
1

F
E

R
E

T

F
E

 le
ve

l m
as

ka
bl

e

in
te

rr
up

t

F
E

IN
T

F

E
IN

T
 in

pu
tN

o
te

 4

7
F

E

In
te

rr
up

t
O

K

O
K



0
00

00
00

10
H

cu
rr

en
tP

C
+

00
10

H

N
o

te
 5

1
0

1
F

E
R

E
T

F
lo

at
in

g-
po

in
t

op
er

at
io

n

ex
ce

pt
io

n
(im

pr
ec

is
e)

F
P

I
F

P
U

 in
st

ru
ct

io
n

8
E

I
Im

pr
ec

is
e

O
K

N

G

0
0

00
00

00
72

H
cu

rr
en

tP
C

+
00

70
H

N

o
te

 5
s

1
1

E
IR

E
T

E
I

le
ve

l m
as

ka
bl

e

in
te

rr
up

t

IN
T

IN

T
n

in
pu

tN
ot

e
4

(n
 =

 0
 to

 2
55

)

9
E

I
In

te
rr

up
t

O
K

O

K

0
0

00
00

00
80

H

 :

00
00

10
70

H

cu
rr

en
tP

C
+

00
80

H

 :

+
10

70
H

N
o

te
 5

s
0

1
E

IR
E

T

N
o

te
s

 1
.

T
he

 r
et

ur
n

P
C

 a
nd

 P
S

W
,

an
d

 t
he

 e
xc

e
pt

io
n

co
de

 s
to

ra
ge

 d
es

tin
at

io
n

ar
e

sp
ec

ifi
ed

 b
y

th
e

ex
ce

pt
io

n
le

ve
l

(E
I

or
 F

E
)

(n
ex

tP
C

:
ne

xt
 i

ns
tr

uc
tio

n,
 c

ur
re

nt
P

C
:

cu
rr

en
t

in
st

ru
ct

io
n)

.

2.

T

he
 b

as
e

ad
dr

es
s

is
 s

et
 b

y
th

e
e

xc
ep

tio
n

h
a

nd
le

r
sw

itc
hi

ng
 fu

nc
tio

n.

3.

F

or
 d

et
ai

ls
 o

f t
he

 e
xe

cu
tio

n
le

ve
l,

se
e

C
H

A
P

T
E

R
 4

 E
X

E
C

U
T

IO
N

 L
E

V
E

L
 in

 P
A

R
T

 3
.

4.

In

pu
t

is
 f

ro
m

 I
N

T
C

.

5.

T

he
 e

xe
cu

tio
n

le
ve

l c
h

an
ge

s
to

 0
 w

he
n

M
P

M
.A

U
E

 =
 1

.
 I

t d
oe

s
no

t c
h

an
g

e
w

h
e

n
M

P
M

.A
U

E
 =

 0
.

6.

E

ac
h

ca
us

e
m

a
y

be
 a

sy
nc

hr
o

no
us

 o
r

im
pr

ec
is

e,
 d

ep
en

di
n

g
on

 th
e

im
p

le
m

en
ta

tio
n

of
 th

e
pr

od
uc

t.

G
en

er
a

lly
, t

he
 c

au
se

 is
 a

sy
n

ch
ro

n
ou

s
b

ut
 it

 m
a

y
b

e
im

pr
ec

is
e

if
an

 e
rr

or
 th

at
 o

cc
ur

s
be

ca
us

e
of

 a
n

in
st

ru
ct

io
n,

 s
uc

h
as

 a
 d

at
a

er
ro

r,
 is

 d
ef

in
e

d.

7.

T

he
 c

au
se

s
of

 th
e

S
Y

S
E

R
R

 d
ep

e
nd

 o
n

th
e

im
pl

em
e

nt
at

io
n

 o
f t

he
 p

ro
du

ct
.

 R
em

ar
k

In

 t
he

 t
ab

le
,

P
rio

rit
y

re
fe

rs
 t

o
th

e
or

d
er

 in
 w

h
ic

h
ex

ce
pt

io
ns

 t
ha

t
ha

ve
 o

cc
ur

re
d

at
 t

he
 s

am
e

tim
e

an
d

fo
r

w
h

ic
h

th
e

ac
kn

o
w

le
dg

em
e

nt
 c

on
d

iti
on

s
h

av
e

be
e

n
m

et
 a

re

ac
kn

o
w

le
dg

ed
.

R01US0001EJ0100 Rev.1.00 Page 187 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPTIONS

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

T
ab

le
 6

-1
.

 E
xc

ep
ti

o
n

 C
au

se
 L

is
t

(2
/2

)

A
ck

no
w

le
dg

m
en

t
C

on
di

tio
n

(
: 0

 o
r

1)

R
eg

is
te

r
R

ef
re

sh
 V

al
ue

 (
s:

 s
av

e)

P
S

W

P
S

W

N
am

e
S

ym
bo

l
C

au
se

P

rio
rit

y
E

xc
ep

tio
n

Le
ve

l
T

yp
e

R
es

um
e

R
es

to
ra

tio
n

ID

N
P

E
xc

ep
tio

n
C

od
eN

o
te

 1
R

et
ur

n
P

C
N

o
te

 1

H
an

dl
er

O

ffs
et

N
o

te
 2

E
xe

cu
tio

n
Le

ve
lN

o
te

 3
N

P
E

P
ID

R
et

ur
n

In
st

ru
ct

io
n

E
xe

cu
tio

n
pr

ot
ec

tio
n

ex
ce

pt
io

n
M

IP

E
xe

cu
tio

n
pr

ot
ec

tio
n

vi
ol

at
io

n
11

F

E

P
re

ci
se

O

K
N

o
te

 4
O

K
N

o
te

 4



00

00
04

30
H

cu
rr

en
tP

C
+

00
30

H

0
1

1
1

F
E

R
E

T

M
em

or
y

er
ro

r
ex

ce
pt

io
n

M
E

P

In
st

ru
ct

io
n

ac
ce

ss

er
ro

r
in

pu
tN

o
te

 5

12

F
E

P

re
ci

se

N
G

N
o

te
 4

N
G

N
o

te
 4




00
00

03
30

H

 :

00

00
03

33
H

cu
rr

en
tP

C
+

00
30

H

N
o

te
 6

1
1

1
F

E
R

E
T

D
at

a
pr

ot
ec

tio
n

ex
ce

pt
io

n
M

D
P

D

at
a

pr
ot

ec
tio

n
vi

ol
at

io
n

F
E

P

re
ci

se

O
K

N
o

te
 4

O
K

N
o

te
 4




00
00

04
31

H
cu

rr
en

tP
C

+
00

30
H

0

1
1

1
F

E
R

E
T

F
lo

at
in

g-
po

in
t

op
er

at
io

n
ex

ce
pt

io
n

(p
re

ci
se

)

F
P

P

F
P

U
 in

st
ru

ct
io

n
E

I
P

re
ci

se

O
K

N
o

te
 4

O
K

N
o

te
 4




00
00

00
71

H
cu

rr
en

tP
C

+
00

70
H

N

o
te

 6
s

1
1

E
IR

E
T

C
op

ro
ce

ss
or

un

us
ab

le
 e

xc
ep

tio
n

U
C

P
O

P

C
op

ro
ce

ss
or

in

st
ru

ct
io

n
F

E

P
re

ci
se

O

K
N

o
te

 4
O

K
N

o
te

 4



00

00
05

30
H

 :

00
00

05
37

H

cu
rr

en
tP

C
+

00
30

H

N
o

te
 6

1
1

1
F

E
R

E
T

R
es

er
ve

d
in

st
ru

ct
io

n
ex

ce
pt

io
n

R
IE

X

R
es

er
ve

d
in

st
ru

ct
io

n
F

E

P
re

ci
se

O

K
N

o
te

 4
O

K
N

o
te

 4



00

00
01

30
H

cu
rr

en
tP

C
+

00
30

H

N
o

te
 6

1
1

1
F

E
R

E
T

F
E

 le
ve

l s
of

tw
ar

e
ex

ce
pt

io
n

F
E

T
R

A
P

E
X

F

E
T

R
A

P
 in

st
ru

ct
io

n
(v

ec
to

r
=

 1
H

 to
 F

H
)

F
E

P

re
ci

se

O
K

N
o

te
 4

O
K

N
o

te
 4




00
00

00
31

H

 :

00

00
00

3F
H

ne
xt

P
C

+

00
30

H

N
o

te
 6

1
1

1
F

E
R

E
T

E
I

le
ve

l s
of

tw
ar

e
ex

ce
pt

io
n

E
IT

R
A

P
0

T
R

A
P

0n
 in

st
ru

ct
io

n
(v

ec
to

r
=

 0
0

to
 0

F
H

)
E

I
P

re
ci

se

O
K

N
o

te
 4

O
K

N
o

te
 4




00
00

00
40

H

 :

00

00
00

4F
H

ne
xt

P
C

+

00
40

H

N
o

te
 6

s
1

1
E

IR
E

T

E
I

le
ve

l s
of

tw
ar

e
ex

ce
pt

io
n

E
IT

R
A

P
1

T
R

A
P

1n
 in

st
ru

ct
io

n
(v

ec
to

r =
 1

0H
 to

 1
F

H
)

E
I

P
re

ci
se

O

K
N

o
te

 4
O

K
N

o
te

 4



00

00
00

50
H

 :

00
00

00
5F

H

ne
xt

P
C

+

00
50

H

N
o

te
 6

s
1

1
E

IR
E

T

S
ys

te
m

 c
al

l e
xc

ep
tio

n
S

Y
S

C
A

LL
E

X

S
Y

S
C

A
LL

 in
st

ru
ct

io
n

(v
ec

to
r =

 0
0H

 to
 F

F
H

)

13
N

ot
es

 7

E
I

P
re

ci
se

O

K
N

o
te

 4
O

K
N

o
te

 4



00

00
80

00
H

 :

00
00

80
F

F
H

ne
xt

P
C

N

o
te

 8

N
o

te
 6

s
1

1
E

IR
E

T

N
o

te
s

 1
.

T
he

 r
et

ur
n

P
C

 a
nd

 P
S

W
,

an
d

th
e

ex
ce

pt
io

n
co

de
 s

to
ra

ge
 d

es
tin

at
io

n
ar

e
sp

ec
ifi

ed
 b

y
th

e
ex

ce
pt

io
n

le
ve

l
(E

I
or

 F
E

)
(n

ex
tP

C
:

ne
xt

 i
ns

tr
uc

tio
n,

 c
ur

re
nt

P
C

:
cu

rr
en

t

in
st

ru
ct

io
n)

.

2.

T

he
 b

as
e

ad
dr

es
s

is
 s

et
 b

y
th

e
e

xc
ep

tio
n

h
a

nd
le

r
sw

itc
hi

ng
 fu

nc
tio

n.

3.

F

or
 d

et
ai

ls
 o

f t
he

 e
xe

cu
tio

n
le

ve
l,

se
e

C
H

A
P

T
E

R
 4

 E
X

E
C

U
T

IO
N

 L
E

V
E

L
 in

 P
A

R
T

 3
.

4.

F

or
 th

e
in

st
ru

ct
io

n
ac

ce
ss

 e
rr

o
r

in
pu

t,
se

e
th

e
 H

ar
d

w
ar

e
U

se
r’

s
M

an
u

al
 o

f
ea

ch
 p

ro
d

u
ct

.

5.

T

he
se

 c
au

se
s

oc
cu

r
ac

co
rd

in
g

to
 th

e
op

er
at

io
n

or
d

er
 o

f e
ac

h
in

st
ru

ct
io

n.

6.

T

he
 e

xe
cu

tio
n

le
ve

l c
h

an
ge

s
to

 0
 w

he
n

M
P

M
.A

U
E

 =
 1

.
 I

t d
oe

s
no

t c
h

an
g

e
w

h
e

n
M

P
M

.A
U

E
 =

 0
.

7.

W

he
n

th
is

 o
cc

ur
s

du
ri

ng
 a

 c
ri

tic
al

 s
ec

tio
n

at
 th

e
sa

m
e

e
xc

e
pt

io
n

le
ve

l,
va

lu
es

 in
 th

e
or

ig
in

al
 r

et
ur

n
P

C
, P

S
W

, e
tc

. m
a

y
be

 d
es

tr
o

ye
d.

8.

F

or
 th

e
br

an
ch

 d
es

tin
at

io
n,

 s
ee

 S
Y

S
C

A
LL

 In
st

ru
ct

io
n

in
 5

.3
 I

n
st

ru
ct

io
n

 S
et

.

 R
em

ar
k

In

 t
he

 t
ab

le
,

P
rio

rit
y

re
fe

rs
 t

o
th

e
or

d
er

 in
 w

h
ic

h
ex

ce
pt

io
ns

 t
ha

t
ha

ve
 o

cc
ur

re
d

at
 t

he
 s

am
e

tim
e

an
d

fo
r

w
h

ic
h

th
e

ac
kn

o
w

le
dg

em
e

nt
 c

on
d

iti
on

s
h

av
e

be
e

n
m

et
 a

re

ac
kn

o
w

le
dg

ed
.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 188 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.2 Types of exceptions

The V850E2M CPU classifies exceptions into the following four types by their timing of generation and characteristics.

 Precise exception

 Imprecise exception

 Asynchronous exception

 Interrupt

(1) Precise exception

This exception is precise in that it is generated in synchronization with an instruction that has caused it. Examples

of this instruction are a software exception that is always generated as result of executing an instruction, and an

exception that is immediately generated if the result of instruction execution is illegal. Because execution can

branch to exception processing before the following instruction is executed in case of a precise exception, the

original processing can be correctly executed after exception processing in many casesNote.

The following exceptions are classified as precise exceptions.

 Execution protection exception

 Memory error exception

 Data protection exception

 Floating-point operation exception (precise)

 Coprocessor unusable exception

 Reserved instruction exception

 FE level software exception

 EI level software exception

 System call exception

Note If a memory error exception occurs, the original processing cannot be restored because the timing of generation

of this exception cannot be controlled.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 189 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2) Imprecise exception

This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction.

This is an imprecise exception that is belatedly generated if the result of executing the instruction preceding the

instruction that is to be aborted is illegal. In case of an imprecise exception, the original processing cannot be

restored and re-executed after processing of the exception because the instruction following the instruction that

has caused the imprecise exception may have already been completed, and because the status of the CPU when

the exception was caused is not saved.

The following exceptions are classified as imprecise exceptions.

 Peripheral device protection exceptions

 Floating-point operation exceptions (imprecise)

(3) Asynchronous exception

This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction. It is

not generated as a result of executing the current instruction but is generated independently of the instruction.

The following exceptions are classified as asynchronous exceptions.

 CPU initialization

 System error exception (Each source depends on the implementation.)

 Timing supervision exception

 (4) Interrupt

This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction. It is

not generated as a result of executing the current instruction but is generated independently of the instruction. An

interrupt is an exception to execute any user program via interrupt controller.

The following exceptions are classified as interrupts.

 FE level non-maskable interrupt

 FE level maskable interrupt

 EI level maskable interrupt

Unlike the other exceptions, the PSW.EP bit is cleared (0) when an interrupt is generated. Consequently,

termination of the exception handler routine is reported to the external interrupt controller when the return

instruction is executed. Be sure to execute an instruction that returns execution from an interrupt while the

PSW.EP bit is cleared (0).

Caution The PSW.EP bit is cleared (0) only when an interrupt (INT0 to INT255, FEINT, or FENMI) is

acknowledged. It is set (1) when any other exception occurs.

If an instruction to return execution from the exception handler routine that has been started

by generation of an interrupt is executed while the PSW.EP bit is set (1), the resources on the

external interrupt controller may not be released, causing malfunctioning.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 190 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.3 Exception processing flow

The handling flow for exceptions in relation to instruction execution and results is reflected (by writing to registers, etc.)

as shown below.

Acknowledgment or non-acknowledgment of an interrupt, asynchronous exception, and imprecise exception is decided

before an instruction is executed. If the exception can be acknowledged, processing branches to exception processing.

After exception handing, if the current instruction execution that has been aborted must be executed again, the return PC

therefore stores the current instruction (Current PC).

By contrast, when a precise exception occurs, processing branches to exception processing unconditionally, as the

instruction execution result. If multiple causes of precise exceptions exist at the same time, only the one with the highest

priority is acknowledged. The return PC is determined according to that exception properties, and in cases where the

instruction does not have to be re-executed after an exception, such as with a software trap or single step exception, the

next instruction (Next PC) is stored. When re-execution is required, such as with a memory protection exception, the

current instruction (Current PC) is stored.

Acknowledge
interrupt, asynchronous
exception, or imprecise

exception?

Acknowledge
precise exception?

Reflect result of normal
execution

(via register, PC, etc.)

End

Start

No

No

Yes

Yes

Execute instruction

Reflect exception result
(via register, PC, etc.)

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 191 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.4 Exception acknowledgment priority and pending conditions

Exception acknowledgment is when processing branches to the exception handler corresponding to the exception

cause after an exception has occurred due to that exception cause. The CPU is able to acknowledge only one exception

at a time. The following priority is used to determine which exception will be acknowledged. When multiple exceptions

occur at the same time, exceptions that are not acknowledged are held pending (Except for CPU initialization. For details,

refer to 6.2.5 Special operations).

Table 6-2. Exception Priority

Priority Exception Timing

CPU initialization (RESET)

FE level non-maskable interrupt (FENMI)

System error exception (SYSERR)

Peripheral device protection exception (PPI)

Timing monitoring exception (TSI)

FE level maskable interrupt (FEINT)

Floating-point operation exception (imprecise) (FPI)

EI level maskable interrupt (INT)

Before instruction

execution

Execution protection exception (MIP)

Memory error exception (MEP)

Data protection exception (MDP)Note

Floating-point operation exception (precise) (FPP)Note

Coprocessor unusable exception (UCPOP)Note

Reserved instruction exception (RIEX)Note

FE level software exception (FETRAPEX)Note

EI level software exception (EITRAP0/EITRAP1)Note

System call exception (SYSCALLEX)Note

After instruction

execution

Note The priority is the same, and the exception occurs based on the instruction operations.

6.1.5 Exception acknowledgment conditions

The acknowledgment of some exceptions may be held pending according to certain conditions.

Exceptions that are listed in Table 6-1 with “0” in the acknowledgment condition column can be acknowledged only

when the relevant bit value is “0”. When one of these exceptions has a relevant bit value of “1”, acknowledgment of the

exception is held pending until the relevant bit value becomes “0”, at which time the exception can be acknowledged.

High

Low

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 192 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.6 Resume and restoration

When exception processing has been performed, it may affect the original program that was interrupted by the

acknowledged exception. This effect is indicated from two perspectives: “Resume” and “Restoration”.

 Resume: Indicates whether or not the original program can be resumed from where it was interrupted.

 Restoration: Indicates whether or not the processor status (status of processor resources such as general-

purpose registers and system registers) can be restored as they were when the original program was

interrupted.

6.1.7 Exception level and context saving

(1) Exception level

The V850E2M CPU manages exception causes in three exception levels (EI level, FE level, and DB level). When

an exception occurs, the exception cause, return PC, and return PSW are automatically stored in the

corresponding return register according to each level (Except for CPU initialization. For details, refer to 6.2.5

Special operations).

Table 6-3. Exception Levels

EI Level Exceptions FE Level Exceptions DB Level ExceptionsNote

EI level maskable interrupt

EI level software exception

Floating-point operation exception

System call exception

System error exception

FE level maskable interrupt

FE level non-maskable interrupt

FE level software exception

Reserved instruction exception

Memory error exception

Execution protection exception

Data protection exception

Peripheral device protection exception

Timing monitoring exception

Coprocessor unusable exception

Debug exceptionNote

Note The DB level exceptions are used by the debug function for development tools

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 193 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2) Context saving

Exceptions with certain acknowledgment conditions may not be acknowledged at the start of exception processing,

based on the pending bits (PSW.ID and NP bits) that are automatically set when another exception is

acknowledged.

To enable processing of multiple exceptions of the same level that can be acknowledged again, certain information

about the corresponding return registers and exception causes must be saved, such as to a stack. This

information that must be saved is called the “context”.

In principle, before saving the context, caution is needed to avoid the occurrence of exceptions at the same level.

The work system registers that can be used for work to save the context, and the system registers that must be at

least saved to enable multiple exception processing are called basic context registers.

These basic context registers are provided for each level.

Table 6-4. Basic Context Registers

Exception Level Basic Context Registers

EI level EIPC, EIPSW, EIIC, EIWR

FE level FEPC, FEPSW, FEIC, FEWR

DB levelNote DBPCNote, DBPSWNote, DBICNote, DBWRNote

Note The DB level exceptions are used by the debug function for development tools

6.1.8 Return instructions

To return from exception processing, execute the return instruction (EIRET, FERET) corresponding to the relevant

exception level.

When a context has been saved, such as to a stack, the context must be restored before executing the return

instruction. When execution is returned from an irrecoverable exception, the status before the exception occurs in the

original program cannot be restored. Consequently, the execution result may be different from that when the exception

does not occur.

(1) EIRET instruction

The EIRET instruction is used to return from exception processing of EI level.

When the EIRET instruction is executed, the CPU performs the following processing and then passes control to

the return PC address.

<1> Return PC and PSW are loaded from the EIPC and EIPSW registers.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

When EP = 0, reports that the exception handler routine execution has been ended to the external units (interrupt

controllers, etc.).

A return from EI level exception processing is illustrated below.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 194 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 6-1. EIRET Instruction

(2) FERET instruction

To return from FE level exception processing, execute the FERET instruction.

When the FERET instruction is executed, the CPU performs the next processing and then passes control to the

return PC address.

<1> Return PC and PSW are loaded from the FEPC and FEPSW registers.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

Figure 6-2. FERET Instruction

PC  EIPC
PSW  EIPSW

Jump to return PC address

EIRET instruction

PC  FEPC
PSW  FEPSW

Jump to return PC address

FERET instruction

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 195 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3) Execute the RETI instruction to return from an interrupt or EI level software exception (EITRAP0/EITRAP1)

Caution The RETI instruction is defined for backward compatibility with the V850E1 and V850E2 CPU.

Therefore, in principle, use of the RETI instruction is prohibited. Except for existing

programs that cannot be revised, all RETI instructions should be replaced with EIRET or

FERET instructions.

If the RETI instruction is used, the operation is undefined except when returning from an

interrupt or EI level software exception (EITRAP0/EITRAP1).

Execute the RETI instruction to return from an interrupt or EI level software exception (EITRAP0/EITRAP1).

When the RETI instruction is executed, the CPU performs the next processing and then passes control to the

return PC address.

<1> When the PSW.EP bit is 0 and the PSW.NP bit is 1, the return PC and PSW are loaded from FEPC and

FEPSW. Otherwise, the return PC and PSW are read from EIPC and EIPSW.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

When returning from any type of exception processing, the LDSR instruction must be used just before the RETI

instruction to correctly restore the PC and PSW, and the flags for the PSW.NP and PSW.EP bits must be set to the

following status.

 When returning from FE level maskable interrupt servicingNote : PSW.NP bit = 1, PSW.EP bit = 0

 When returning from EI level maskable interrupt servicing : PSW.NP bit = 0, PSW.EP bit = 0

 When returning from EI level software exception (EITRAP0/EITRAP1) processing : PSW.EP bit = 1

Note The RETI instruction cannot be used to return from FENMI. After exception processing, perform a

system reset. FENMI is acknowledged even when the PSW.NP bit is set (1).

The following figure illustrates return processing using the RETI instruction.

Figure 6-3. RETI Instruction

PC  EIPC
PSW  EIPSW

Yes

PSW.EP = 0 ?

No

Jump to return PC address

RETI instruction

Yes

PSW.NP = 0 ?
No

<Return from EI level
maskable interrupt>

<Return from FE level non-
maskable interrupt>

<Return from EI level software
exception (EITRAP0/EITRAP1)>

PC  FEPC
PSW  FEPSW

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 196 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.2 Operations When Exception Occurs

6.2.1 EI level exception without acknowledgment conditions

This exception can always be acknowledged because it cannot be disabled by changing the instruction or status of the

PSW from being acknowledged.

If an EI level exception without acknowledgment conditions occurs, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Saves the return PC to EIPC.

<2> Saves the current PSW to EIPSW.

<3> Writes the exception code to EIIC registerNote.

<4> Sets (1) the PSW.ID bit.

<5> Sets (1) the PSW.EP bit.

<6> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,

DMP, and IMP bits will not be updated.

<7> Sets an exception handler address to the PC and transfers control to the exception handler routine.

Note Although the exception code is also written to the lower 16 bits (EICC) of the ECR register, the EIIC register

should be used except when using an existing program that cannot be revised.

EIPC and EIPSW are used as status save registers. An EI level exception without acknowledgment conditions is

acknowledged even if it occurs while another EI level exception is being processed (while the PSW.NP or PSW.ID bit is 1).

If an EI level exception without acknowledgment conditions occurs before the context of the EI level exception is saved,

therefore, the original PC and PSW may be damaged.

Because only one pair of EIPC and EIPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an EI level exception without acknowledgment conditions is illustrated below.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 197 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 6-4. Processing Format of EI Level Exception Without Acknowledgment Conditions

EIPC  Return PC
EIPSW  PSW
EIIC  Exception code
PSW.ID  1
PSW.EP  1

Exception processing

MPM.AUE = 1

Clears (0) PSW.PP, NPV,
DMP, and IMP bits.

PC  Handler address

Yes

No

Occurrence of exception

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 198 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.2.2 EI level exception with acknowledgment conditions

This exception can be held pending by the PSW.ID and NP bits from being acknowledged.

If an EI level exception with acknowledgment conditions is generated, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Holds the exception pending if the PSW.NP bit is set (1).

<2> Holds the exception pending if the PSW.ID bit is set (1).

<3> Saves the return PC to EIPC.

<4> Saves the current PSW to EIPSW.

<5> Writes an exception code to EIICNote.

<6> Sets (1) the PSW.ID bit.

<7> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<8> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,

DMP, and IMP bits will not be updated.

<9> Sets an exception handler address to the PC and transfers control to the exception handler.

Note Although the exception code is also written to the lower 16 bits (EICC) of the ECR register, the EIIC register

should be used except when using an existing program that cannot be revised.

EIPC and EIPSW are used as status save registers. An EI level exception with acknowledgment conditions that has

occurred is held pending while other EI level exception is being processed (while the PSW.NP or PSW.ID bit is 1). In this

case, if the PSW.NP and ID bits are cleared (0) by using the LDSR or EI instruction, the EI-level exception with

acknowledgment conditions which have been held pending is acknowledged.

Because only one pair of EIPC and EIPSW is available, the context must be saved in advance by the program before

multiple exceptions are enabled.

The format of processing of an EI level exception with acknowledgment conditions is illustrated below.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 199 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 6-5. Processing Format of EI Level Exception with Acknowledgment Conditions

Clears (0) PSW.PP, NPV,
DMP, and IMP bits.

PSW.NP = 0

PSW.ID = 0

EIPC  Return PC
EIPSW  PSW
EIIC  Exception code
PSW.ID  1

Exception processing Exception processing pending

Occurrence of exception

Yes

Yes

No

No

Interrupt?

Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.

MPM.AUE = 1

No

Yes

PC  Handler address

Other than interrupt

Interrupt

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 200 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.2.3 FE level exception without acknowledgment conditions

This exception cannot be disabled by an instruction or by changing the status of PSW from being acknowledged and

can always be acknowledged.

If an FE level exception without acknowledgment conditions is generated, the CPU performs the following processing

and transfers control to the exception handler routine.

<1> Saves the return PC to FEPC.

<2> Saves the current PSW to FEPSW.

<3> Writes the exception code to FEICNote 1.

<4> Sets (1) the PSW.NP and ID bits.

<5> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<6> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,

DMP, and IMP bits will not be updatedNote 2.

<7> Sets an exception handler address to the PC and transfers control to the handler.

Notes 1. Although the exception code is also written to the higher 16 bits (FECC) of the ECR register, the FEIC

register should be used except for when using the existing program that cannot be revised.

 2. The PSW.PP, NPV, DMP, and IMP bits are always cleared (0) if an exception related to processor

protection (MDP or MIP exception) occurs.

FEPC and FEPSW are used as status save registers. An FE level exception without acknowledgment conditions is

acknowledged even if it occurs while other FE level exception is being processed (while the PSW.NP bit is 1). If the

exception occurs before the context of the FE exception level is saved, therefore, the original PC and PSW may be

damaged.

Because only one pair of FEPC and FEPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an FE level exception without acknowledgment conditions is illustrated below.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 201 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 6-6. Processing Format of FE Level Exception Without Acknowledgment Conditions

Note If a processor protection exception (MDP or MIP) occurs, the PSW.PP, NPV, DMP, and IMP bits

are always cleared (0) regardless of the status of MPM.AUE.

FEPC  Return PC
FEPSW  PSW
FEIC  Exception code
PSW.NP  1
PSW.ID  1

Occurrence of exception

Exception processing

Clears (0) PSW.PP, NPV, DMP,
and IMP bits.

Interrupt?

Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.

No

Yes

PC  Handler address

Other than interrupt

Interrupt

MPM.AUE = 1Note

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 202 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.2.4 FE level exception with acknowledgment conditions

This exception can be held pending by the PSW.NP bit from being acknowledged.

If an FE level exception with acknowledgment conditions is generated, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Holds the exception pending if the PSW.NP bit is set (1).

<2> Saves the return PC to FEPC.

<3> Saves the current PSW to FEPSW.

<4> Writes an exception code to FEICNote 1.

<5> Sets (1) the PSW.NP and ID bits.

<6> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<7> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,

DMP, and IMP bits will not be updatedNote 2.

<8> Sets an exception handler address to the PC and transfers control to the exception handler.

Notes 1. Although the exception code is also written to the lower 16 bits (FECC) of the ECR register, the FEIC

register should be used except for when using the existing program that cannot be revised.

 2. The PSW.PP, NPV, DMP, and IMP bits are always cleared (0) if an exception related to processor

protection (PPI or TSI exception) occurs.

FEPC and FEPSW are used as status save registers. An FE level exception with acknowledgment conditions that has

occurred is held pending while an other FE level exception is being processed (while the PSW.NP is 1). In this case, if the

PSW.NP bit is cleared (0) by using the LDSR instruction, the FE-level exception with acknowledgment conditions which

has been held pending is acknowledged.

Because only one pair of FEPC and FEPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an FE level exception with acknowledgment conditions is illustrated below.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 203 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 6-7. Processing Format of FE Level Exception with Acknowledgment Conditions

Note If a processor protection exception (PPI or TSI) occurs, the PSW.PP, NPV, DMP, and IMP bits are

always cleared (0), regardless of the status of MPM.AUE.

PSW.NP = 0

FEPC  Return PC
FEPSW  PSW
FEIC  Exception code
PSW.NP  1
PSW.ID  1

Exception processing Exception processing pending

Occurrence of exception

Yes

No

Clears (0) PSW.PP, NPV, DMP,
and IMP bits.

Interrupt?

Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.

MPM.AUE = 1Note

No

Yes

PC  Handler address

Other than interrupt

Interrupt

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 204 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.2.5 Special operations

(1) EP bit of PSW register

If an interrupt is acknowledged, the PSW.EP bit is cleared (0). If an exception other than an interrupt is

acknowledged, the PSW.EP bit is set (1).

Depending on the status of the EP bit, the operation changes when the EIRET, FERET, or RETI instruction is

executed. If the EP bit is cleared (0), the end of the exception processing routine is reported to the external

interrupt controller. This function is necessary for correctly controlling the resources on the interrupt controller

when an interrupt is acknowledged or when execution returns from the interrupt.

To return from an interrupt, be sure to execute the return instruction with the EP bit cleared (0).

(2) PP, NPV, DMP, and IMP bits of PSW register

If a processor protection exception is acknowledged, the PSW.PP, NPV, DMP, and IMP bits are unconditionally

cleared (0). If an exception other than the processor protection exception is acknowledged, the operation differs

depending on the setting of the MPM.AUE bit. If the MPM.AUE bit is set (1) (if the execution level auto transition

function is enabled), the PSW.PP, NPV, DMP, and IMP bits are cleared (0). If the MPM.AUE bit is cleared (0) (if

the execution level auto transition function is disabled), the value of the PSW.PP, NPV, DMP, and IMP bits is not

updated but the previous value is retained.

(3) Coprocessor unusable exception

The generated opcode of the coprocessor unusable exception changes depending on the function specification

of the product.

If an opcode defined as a coprocessor instruction is not implemented on the product or if its use is not enabled

depending on the operation status, the coprocessor unusable exception (UCPOP) immediately occurs when an

attempt to execute the coprocessor instruction is made.

For details, refer to CHAPTER 7 COPROCESSOR UNUSABLE STATUS.

(4) Reserved instruction exception

If an opcode that is reserved for future function extension and for which no instruction is defined is executed, a

reserved instruction exception (RIEX) occurs.

However, which of the following two types of operations each opcode is to perform may be defined by the

product specification.

 Reserved instruction exception occurs.

 Operates as a defined instruction.

An opcode for which a reserved instruction exception occurs is always defined as an RIE instruction.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 205 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(5) System call exception

For a system call exception, a table entry to be referenced is selected by the value of a vector specified by the

opcode and the value of the SSCFG.SIZE bit, and the exception handler address is calculated in accordance with

the contents of that table entry and the value of the SCBP register.

If table size n is specified by SSCFG.SIZE, for example, a table entry is selected as follows. Note that, where n

< 255, table entry 0 is referenced from vector n+1 to 255.

Vector Exception Code Table Entry to Be Referenced

0 0000 8000H Table entry 0

1 0000 8001H Table entry 1

2 0000 8002H Table entry 2

(omitted) : :

n-1 0000 8000H + (n-1) H Table entry n-1

n 0000 8000H + nH Table entry n

N+1 0000 8000H + (n+1) H Table entry 0

(omitted) : :

254 0000 80FEH Table entry 0

255 0000 80FFH Table entry 0

Caution Place an error processing routine at table entry 0 because it is also selected when a vector

exceeding n specified by SCCFG.SIZE is specified.

(6) Reset

An operation which is the same as an exception is performed to initialize the CPU by reset. However, reset

does not belong to any of EI level exception, FE level exception. The reset operation is the same that of an

exception without acknowledgment conditions, but the value of each register is changed to the default value. In

addition, execution does not return from the reset status.

All exceptions that have occurred at the same time as CPU initialization are canceled and not acknowledged

even after CPU initialization.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 206 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.3 Exception Management

The V850E2M CPU has the following functions to manage exceptions in order to prevent mutual interference between

tasks during multi-programming.

 Exception synchronization function when exception is acknowledged or when execution returns

 Exception synchronization instruction (SYNCE)

 Function to check pending exception

 Function to cancel pending exception

The V850E2M CPU defines imprecise exceptions that have a delay time until the exception processing is started after

the cause of the exception has been generated, and asynchronous exceptions that are generated asynchronously with

instruction execution though they are linked with a task. The imprecise exception and asynchronous exception that are

generated for a specific task must be processed when a task is changed or terminated, so that the next task is not

executed without the exception being processed.

The V850E2M CPU has an exception management function to wait for all exceptions caused by a task before the task

is changed or terminated, so that the exceptions are sequentially processed. This prevents the influence of illegal

processing of a certain task from reaching the other tasks. It also prevents termination processing of a task from being

completed without the exceptions being processed.

Exceptions must be managed in the following cases.

(1) To abort and terminate a task causing exceptions

If two or more exceptions are simultaneously generated for a task, care must be exercised in processing these

exceptions. In accordance with the exception priority, one of the exceptions is acknowledged first and processed.

While this exception is being processed, the other exception that is held pending must be managed. Consequently,

exceptions that are generated, caused by a task, must be synchronized until the task is terminated.

For example, if a floating-point exception (FPI exception) and a peripheral device protection exception (PPI

exception) are generated at the same time, peripheral device protection violation is acknowledged first, according

to the exception priority, and the other floating-point exception is held pending. The peripheral device protection

exception may be a relatively serious error and a situation where its task is forcibly terminated is assumed. In this

case, if execution returns from the peripheral device protection exception simply because the task has been

terminated, the pending floating-point exception is acknowledged as soon as execution of another task is started.

However, the task that has caused this floating-point exception has already been terminated and deleted from the

management table of the OS. Consequently, it may be mistakenly recognized that another task has caused the

exception.

If a task is terminated by exception processing related to that task, therefore, exception synchronization

processing is performed and then the other exception related to the task which has been held pending must be

canceled.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 207 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 6-8. To Terminate Task Causing Exception

(2) If exception occurs immediately before task is terminated

If an imprecise exception or asynchronous exception occurs immediately before a task is terminated, the

termination processing is started before the exception is acknowledged. As a result, it may be wrongly recognized

that the task, which should be judged to have caused an abnormality, has been correctly terminated.

To terminate a task, therefore, exception synchronization processing must be performed to process the

exception first or the other exception that has been held pending must be canceled.

Figure 6-9. If Exception Occurs Immediately Before Task Is Terminated

Task A

OS scheduler

Exception 2 related to Task A

Synchronization of exceptions

Ex
ce

pt
io

n
1

Task
terminated

Canceled

If PPI exception related to a task
and TSI exception due to deadline
violation related to that task are
generated Exception 1 related to Task A

Ex
ce

pt
io

n
2

TerminateTask()

Abnormal
termination

Check

To cancel an exception after checking it.
May be canceled by starting exception
processing with software after checking.

Task A

OS scheduler

Exception related to Task A

Ex
ce

pt
io

n

Canceled

Synchronization of exceptions

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 208 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.3.1 Synchronizing exception when exception is acknowledged or when execution

returns
When the CPU acknowledges an EI level or FE level exception or when it returns from an EI level or FE level exception,

it waits for the next imprecise exception or asynchronous exception, and acknowledges the exceptions that can be

acknowledged in accordance with their priority.

 Peripheral device protection exception (PPI exception)

 Floating-point exception (FPI exception)

 Timing supervision exception in run-time supervision mode (TSI exception)

These exceptions are linked to a specific task. The CPU waits for and synchronizes the exceptions when it

acknowledges an EI level or FE level exception that triggers switching the task or when it returns from the EI level or FE

level exception. As a result of the CPU’s synchronizing the exceptions, the software can easily manage the exceptions.

6.3.2 Exception synchronization instruction
The peripheral device protection exception and floating-point exception are synchronized by the SYNCE instruction. To

acknowledge these imprecise exceptions at any point of time, follow this procedure.

(1) Mask the acknowledgment conditions of the imprecise exception to be acknowledged (by clearing PSW.ID

and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this point, all the imprecise exceptions

that are generated by the instructions preceding the SYNCE instruction have always been reported to the

CPU. However, acknowledging an exception may be masked by the acknowledgment condition set in (1)

and the exception may have been held pending.

(3) As a result of (2), an exception that is not masked is acknowledged. If there are two or more sources of

exceptions, the exceptions are sequentially acknowledged in accordance with their priority.

6.3.3 Checking and cancelling pending exception
To check if there is an exception that is held pending, follow this procedure.

(1) Set a mask so that the acknowledgment conditions of the imprecise exception to be checked are not

satisfied (by setting PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise exceptions that

are generated by the instructions preceding the SYNCE instruction have always been reported to the CPU.

The exception to be checked is not acknowledged but held pending because of the mask set in (1).

However, the other exceptions may be acknowledged.

(3) Read the exception report bit of the exception to be checked. If the bit is 1, the exception has been held

pending.

(4) Clear the mask set in (1) as necessary.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 209 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

To not acknowledge but cancel a pending exception without executing exception processing, follow this procedure.

(1) Set a mask so that the acknowledgment conditions of the imprecise exception to be canceled are not

satisfied (by setting PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise exceptions that

are generated by the instructions preceding the SYNCE instruction have always been reported to the CPU.

The exception to be canceled is not acknowledged but held pending because of the mask set in (1).

However, the other exceptions may be acknowledged.

(3) Clear the exception report bit of the exception to be canceled.

(4) Perform waiting processing until cancellation is completed. The instruction sequence of the waiting

processing is defined as the product specification. Refer to the manuals of each product and hardware.

(5) When cancellation has been completed, clear the mask set in (1) as necessary.

The function to cancel each exception is provided by the following registers.

Exception Cause Cancelling Bit Remark

FPI exception FPU instruction FPU bank

FPEC register

FPIVD bit

If this bit is cleared, disabling the

succeeding FPU instruction is canceled.

PPI exception Instruction involving

memory access

Peripheral I/O area

PPEC register

PPVD bit

If this bit is cleared, disabling the

succeeding access instruction is canceled.

TSI exception Timing supervision Peripheral I/O area

TSUCFGn register (n = 0 to 5)

VS bit



V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 210 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.4 Exception Handler Address Switching Function

The V850E2M CPU can use the exception handler address switching function to change the exception handler address.

The exception handler address where processing is passed after an exception is determined by the value set by this

exception handler switching function.

The exception handler address switching function uses the following two banks among the system register banks. For

details, see 2.4 CPU Function Bank/Exception Handler Address Switching Function Banks.

The exception handler address are divided into the following three types.

 CPU initialization (RESET)

 EI level maskable interrupts (INT0 to INT255)

 All other types of exceptions

6.4.1 Determining exception handler addresses
The current exception handler address is indicated by the register assigned to exception handler switching function

bank 1 (ESWH1).

(1) Start address for CPU initialization (RESET)

This address is indicated by the EH_RESET register.

(2) EI level maskable interrupt (INT0 to INT255)

This interrupt is indicated by the EH_BASE register and the RINT bit in the EH_CFG register. The settings in

this register can be changed by software.

When the RINT bit is cleared (0), 256 different exception handler addresses that include the EH_BASE register

and offset addresses are used as the exception handler addresses for INT0 to INT255.

When the RINT bit is set (1), the exception handler addresses for INT0 to INT255 are reduced and a single

exception handler address specified by adding 0080H to EH_BASE is used.

Once an 4096-byte address range has been reserved for INT0 to INT255 exception handler addresses,

reduction to 16 bytes can be performed by setting (1) the RINT bit.

Caution Even when using a reduced exception handler address, exception codes can be used to

distinguish among exception causes for INT0 to INT255.

(3) Exception handler addresses for other types of exceptions

These addresses are indicated by the EH_BASE register. Offset addresses for each exception are added to

addresses indicated in the EH_BASE register to create the address that is used as the particular exception handler

address. The settings in this register can be changed by software.

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

R01US0001EJ0100 Rev.1.00 Page 211 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.4.2 Purpose of exception handler address switching

Exception handler address switching setting is made by software after startup.

(1) Switch according to software

After system startup, addresses can be switched to set up a temporary consistent instruction address area

when instructions are not consistent at addresses near the exception handler address, for various reasons (such

as a flash memory rewrite).

6.4.3 Settings for exception handler address switching function

 (1) Switch according to software

The following methods can be used to change the exception handler address via the following steps while the

CPU is operating.

When switching exception handler addresses, try to prevent exceptions from occurring between when the

switch is started and ended (or, if an exception does occur, try to prevent any problems it would cause). For

example, this can be done by prohibiting exceptions, by using control to prevent system-wide exceptions from

occurring, or by assigning only programs that operate normally to the exception handler addresses before and

after the switch.

Caution The CPU initialization (RESET) start address cannot be changed by software.

Write 1 to SW_CTL.SET

End

Set SW_BASE register

Switch bank to EHSW0 bank

V850E2M PART 2 CHAPTER 7 COPROCESSOR UNUSABLE STATUS

R01US0001EJ0100 Rev.1.00 Page 212 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 7 COPROCESSOR UNUSABLE STATUS

The V850E2M CPU defines a function limited to a specific application as a coprocessor. The V850E2M CPU can

implement a floating-point operation function (FPU) as a coprocessor.

7.1 Coprocessor Unusable Exception

A coprocessor unusable exception (UCPOP) occurs in the following cases if an opcode defined as a coprocessor

instruction is to be executed.

 If the coprocessor function is not defined

 If the coprocessor function is not implemented for the product

 If the coprocessor function is disabled by a function of the product

The coprocessor unusable exception is assigned an exception code for each coprocessor function. The

correspondence between the coprocessor functions and exception causes is shown in the following table.

Coprocessor Function Exception to Occur Exception Code

Single-precision FPU extension function UCPOP0 530H

Double-precision FPU extension function UCPOP1 531H

Undefined UCPOP0 to UCPOP7Note 530H to 537HNote

Note Which exception occur for an undefined opcode is defined by the product specification. For details,

refer to the manuals of each product.

7.2 System Registers

System registers are defined as a part of some coprocessor functions. The operation of the system register of the

corresponding coprocessor function is undefined in the following cases because of the architecture.

 If the coprocessor function is not implemented on the product

 If the coprocessor function is disabled by a function of the product

V850E2M PART 2 CHAPTER 8 RESET

R01US0001EJ0100 Rev.1.00 Page 213 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 8 RESET

8.1 Status of Registers After Reset

If a reset signal is input by a method defined by the product specification, the program registers and system registers

are placed in the status shown in Table 8-1, and program execution is started. Initialize the contents of each register to an

appropriate value in the program.

Table 8-1. Status of Registers After Reset

 Register Status After Reset (Initial Value)

General-purpose register (r0) 00000000H (fixed)

General-purpose registers (r1 to r31) Undefined

Program registers

Program counter (PC) 00000000H

EIPC  Status save register when acknowledging EI level exception Undefined

EIPSW  Status save register when acknowledging EI level exception 00000020H

FEPC  Status save register when acknowledging FE level exception Undefined

FEPSW  Status save register when acknowledging FE level exception 00000020H

ECR  Exception cause 00000000H

PSW  Program status word 00000020H

SCCFG  SYSCAL operation configuration Undefined

SCBP  SYSCALL base pointer Undefined

EIIC  EI level exception cause 00000000H

FEIC  FE level exception cause 00000000H

DBICNote  DB level interrupt cause 00000000H

CTPC  CALLT execution status save register Undefined

CTPSW  CALLT execution status save register 00000020H

CTBP  CALLT base pointer

EIWR  EI level exception working register

FEWR  FE level exception working register

Undefined

System registers

BSEL  Register bank selection 00000000H

Note The DBIC register is used by the debug function for development tools.

8.2 Start

The CPU executes a reset to start execution of a program from the reset address specified by the exception handler

address switching function.

INT exceptions are not acknowledged immediately after a reset. If the program will use INT exceptions, be sure to

clear (0) the PSW.ID bit.

V850E2M PART 3 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 214 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PART 3 PROCESSOR PROTECTION FUNCTION

V850E2M PART 3 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 215 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 1 OVERVIEW

The V850E2M CPU conforms to the V850E2v3 Architecture and supplies a processor protection function that detects

or prevents illegal use of system resources and inappropriate possession of the CPU execution time by non-trusted

programs or program loops, thereby enabling a highly-reliable system to be set up.

Caution The available processor protection functions vary depending on the product.

1.1 Features

(1) Resource access control

The V850E2M CPU supplies a function to control accesses to the following four types of resources.

 System register protection

Damage to the system registers by a non-trusted program can be prevented.

 Memory protection

Up to five instruction or constant protection areas and six data protection areas can be placed on the address

space. As a result, execution or data manipulation by the user program that is not allowed is detected, so

that illegal execution or data manipulation can be prevented. Each area is specified using both upper-limit

and lower-limit addresses, so that the address space can be efficiently used with fine detail.

 Peripheral device protection

An illegal access defined for each system to a peripheral device can be detected and prevented.

 Timing supervision

Inappropriate CPU time possession by a non-trusted program can be prevented, and resources and time of

disabling interrupts can be managed.

(2) Management by execution level

The V850E2M CPU has more than one status bit to control accesses to the resources, and combinations of these

status bits are defined as execution levels.

The user can control accesses in accordance with a situation by selecting an execution level in accordance with

the situation, or by using an execution level auto transition function that automatically changes when some special

instructions are executed if an exception occurs or when execution returns from an exception.

V850E2M PART 3 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 216 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3) Selectable and scalable specification

To use the execution level auto transition function, the OS (and programs similar to it), common library, and user

task must comply with a specific program model.

The V850E2M CPU employs scalable specification that allows processor protection to be used even when the

execution level auto transition function is not selected. Therefore, the processor protection can be easily

introduced to the existing software resources. Moreover, the operation can be performed, in a status without a

processor protection function as usual.

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 217 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 2 REGISTER SET

2.1 System Register Bank

Table 2-1 shows the system register banks related to the processor protection function.

The processor protection setting bank, the processor protection violation bank and the software paging bank are

selected by setting 00001001H, 00001000H and 00001010H to a system register (BSEL) by using an LDSR instruction.

System registers numbered 28 to 31 are shared by the banks, and the EIWR, FEWR, DBWRNote, and BSEL registers of

the CPU function bank are referenced regardless of the set value of the BSEL register.

Note The DBWR register is used by the debug function for development tools.

 Processor protection violation bank

(Group number: 10H, Bank number: 00H, Abbreviation: MPV/PROT00 bank, Stores processor protection

violation registers.)

 Processor protection setting bank

(Group number: 10H, Bank number: 01H, Abbreviation: MPU/PROT01 bank, Stores processor protection setting

registers.)

 Software paging bank

(Group number: 10H, Bank number: 10H, Abbreviation: PROT10 bank, Stores processor protection

setting/violation registers.)

The following system register of the CPU function bank is used as a register related to the processor protection function.

 PSW register

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 218 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 2-1. System Register Bank

Group Processor Protection Function (10H)

Bank Processor protection violation (00H) Processor protection setting (01H) Software paging (10H)

Bank label MPV, PROT00 MPU, PROT01 PROT10

Register No. Name Function Name Function Name

0 VSECR System register protection violation

cause

MPM Setting of processor protection operation

mode

MPM

1 VSTID System register protection violation task

identifier

MPC Specification of processor protection

command

MPC

2 VSADR System register protection violation

address

TID Task identifier TID

3 Reserved for function expansion VMECR

4 VMECR Memory protection violation cause VMTID

5 VMTID Memory protection violation task identifier

Reserved for function extension

VMADR

6 VMADR Memory protection violation address IPA0L Instruction/constant protection area 0

lower-limit address

IPA0L

7 IPA0U Instruction/constant protection area 0

upper-limit address

IPA0U

8 IPA1L Instruction/constant protection area 1

lower-limit address

IPA1L

9 IPA1U Instruction/constant protection area 1

upper-limit address

IPA1U

10 IPA2L Instruction/constant protection area 2

lower-limit address

IPA2L

11 IPA2U Instruction/constant protection area 2

upper-limit address

IPA2U

12 IPA3L Instruction/constant protection area 3

lower-limit address

IPA3L

13 IPA3U Instruction/constant protection area 3

upper-limit address

IPA3U

14 IPA4L Instruction/constant protection area 4

lower-limit address

IPA4L

15 IPA4U Instruction/constant protection area 4

upper-limit address

IPA4U

16 DPA0L Data protection area 0 lower-limit address

(for stack)

DPA0L

17 DPA0U Data protection area 0 upper-limit address

(for stack)

DPA0U

18 DPA1L Data protection area 1 lower-limit address DPA1L

19 DPA1U Data protection area 1 upper-limit address DPA1U

20 DPA2L Data protection area 2 lower-limit address DPA2L

21 DPA2U Data protection area 2 upper-limit address DPA2U

22 DPA3L Data protection area 3 lower-limit address DPA3L

23

Reserved for function expansion

DPA3U Data protection area 3 upper-limit address DPA3U

24 MCA Memory protection setting check address DPA4L Data protection area 4 lower-limit address DPA4L

25 MCS Memory protection setting check size DPA4U Data protection area 4 upper-limit address DPA4U

26 MCC Memory protection setting check

command

DPA5L Data protection area 5 lower-limit address

(2n specification only)

DPA5L

27 MCR Memory protection setting check result DPA5U Data protection area 5 upper-limit address

(2n specification only)

DPA5U

28 EIWR Work register for EI level exception

29 FEWR Work register for FE level exception

30 DBWRNot

e

Work register for DB level exception

31 BSEL Selection of register bank

Note The DBWR register is used by the debug function for development tools.

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 219 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2 System Registers

(1) Processor protection setting registers

The processor protection setting registers select a processor protection mode and specifies a subject to protection.

A system register can be read or written by the LDSR or STSR instruction, by specifying one of the system register

numbers shown in this table.

Table 2-2 lists the processor protection setting registers.

Table 2-2. Processor Protection Setting Registers

Able to Specify

Operands?

System

Register

Number

Name Function

LDSR STSR

System

Register

ProtectionNote

0 MPM Setting of processor protection operation mode   

1 MPC Specification of processor protection command   

2 TID Task identifier   

3 to 5 (Reserved for future function expansion (Operation is not guaranteed if

these registers are accessed.))

  

6 IPA0L Instruction/constant protection area 0 lower-limit address   

7 IPA0U Instruction/constant protection area 0 upper-limit address   

8 IPA1L Instruction/constant protection area 1 lower-limit address   

9 IPA1U Instruction/constant protection area 1 upper-limit address   

10 IPA2L Instruction/constant protection area 2 lower-limit address   

11 IPA2U Instruction/constant protection area 2 upper-limit address   

12 IPA3L Instruction/constant protection area 3 lower-limit address   

13 IPA3U Instruction/constant protection area 3 upper-limit address   

14 IPA4L Instruction/constant protection area 4 lower-limit address   

15 IPA4U Instruction/constant protection area 4 upper-limit address   

16 DPA0L Data protection area 0 lower-limit address   

17 DPA0U Data protection area 0 upper-limit address   

18 DPA1L Data protection area 1 lower-limit address   

19 DPA1U Data protection area 1 upper-limit address   

20 DPA2L Data protection area 2 lower-limit address   

21 DPA2U Data protection area 2 upper-limit address   

22 DPA3L Data protection area 3 lower-limit address   

23 DPA3U Data protection area 3 upper-limit address   

24 DPA4L Data protection area 4 lower-limit address   

25 DPA4U Data protection area 4 upper-limit address   

26 DPA5L Data protection area 5 lower-limit address   

27 DPA5U Data protection area 5 upper-limit address   

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 220 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2) Processor protection violation registers

The processor protection violation registers (memory protection violation report registers) report a violation causes,

violation task identifiers, and violation addresses. A system register can be read or written by the LDSR or STSR

instruction, by specifying one of the system register numbers shown in this table.

Table 2-3 lists the processor protection violation registers.

Table 2-3. Processor Protection Violation Registers

Able to Specify

Operands?

System

Register

Number

Name Function

LDSR STSR

System

Register

ProtectionNote

0 VSECR System register protection violation cause   

1 VSTID System register protection violation task identifier   

2 VSADR System register protection violation address   

3 (Reserved for future function expansion (Operation is not guaranteed if

this register is accessed.))

  

4 VMECR Memory protection violation cause   

5 VMTID Memory protection violation task identifier   

6 VMADR Memory protection violation address   

7 to 23 (Reserved for future function expansion (Operation is not guaranteed if

these registers are accessed.))

  

24 MCA Memory protection setting check address   

25 MCS Memory protection setting check size   

26 MCC Memory protection setting check command   

27 MCR Memory protection setting check result   

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 221 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3) Software paging registers

The software paging registers realize software paging operation using memory protection. These registers are

maps of the processor protection setting registers and processor protection violation registers.

With the V850E2M CPU, it is a general rule to set a fixed memory protection area for each task to protect the

memory. However, an operation that sequentially changes protection setting by an exception program that is

started by a processor protection exception if a memory access is requested when the program accesses the

memory is assumed to provide for a case where the number of memory protection areas runs short in an

extremely large software system. This operation method is called software paging, and a bank consisting of

system registers suitable for this operation is defined as a software paging bank.

By using this bank, the switching of the bank can be reduced to once during a processor protection exception

processing. As a result, the software overhead can be reduced by decreasing the number of general-purpose

registers necessary for software paging and by reducing the execution cycles necessary for saving or restoring the

context.

Table 2-4 lists the software paging registers. A system register can be read or written by the LDSR or STSR

instruction, by specifying one of the system register numbers shown in the following table.

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 222 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 2-4. Software Paging Registers

Able to Specify

Operands?

System

Register

Number

Name Function

LDSR STSR

System

Register

ProtectionNote

0 MPM Setting of processor protection operation mode   

1 MPC Specification of processor protection command   

2 TID Task identifier   

3 VMECR Memory protection violation cause   

4 VMTID Memory protection violation task identifier   

5 VMADR Memory protection violation address   

6 IPA0L Instruction/constant protection area 0 lower-limit address   

7 IPA0U Instruction/constant protection area 0 upper-limit address   

8 IPA1L Instruction/constant protection area 1 lower-limit address   

9 IPA1U Instruction/constant protection area 1 upper-limit address   

10 IPA2L Instruction/constant protection area 2 lower-limit address   

11 IPA2U Instruction/constant protection area 2 upper-limit address   

12 IPA3L Instruction/constant protection area 3 lower-limit address   

13 IPA3U Instruction/constant protection area 3 upper-limit address   

14 IPA4L Instruction/constant protection area 4 lower-limit address   

15 IPA4U Instruction/constant protection area 4 upper-limit address   

16 DPA0L Data protection area 0 lower-limit address   

17 DPA0U Data protection area 0 upper-limit address   

18 DPA1L Data protection area 1 lower-limit address   

19 DPA1U Data protection area 1 upper-limit address   

20 DPA2L Data protection area 2 lower-limit address   

21 DPA2U Data protection area 2 upper-limit address   

22 DPA3L Data protection area 3 lower-limit address   

23 DPA3U Data protection area 3 upper-limit address   

24 DPA4L Data protection area 4 lower-limit address   

25 DPA4U Data protection area 4 upper-limit address   

26 DPA5L Data protection area 5 lower-limit address   

27 DPA5U Data protection area 5 upper-limit address   

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 223 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.1 PSW – Program Status Word

Bits related to the processor protection function are assigned to bits 16 to 19 of the PSW register in the CPU function

bank.

Figure 2-1. Memory Protection Operation Status Bits in PSW

 Bit Position Bit Name Description

 19 PP Status bit of peripheral device protection.

This bit indicates whether the CPU trusts an access by the program currently under execution

to a peripheral device.

 0: T state (CPU trusts the access to the peripheral device.) (initial value)

 1: NT state (CPU does not trust the access to the peripheral device.)

The peripheral device protection function limits accesses if the PP bit indicates the T state. If

it indicates the NT state, it strictly limits accesses.

 18 NPV Status bit of system register protection.

This bit indicates whether the CPU trusts an access by the program currently under execution

to the system register.

 0: T state (CPU trusts the access to the system register.) (initial value)

 1: NT state (CPU does not trust the access to the system register.)

The system register protection function does not limit accesses if the NPV bit indicates the T

state. If it indicates the NT state, it limits the accesses.

 17 DMP Status bit of memory protection for data access (data area).

This bit indicates whether the CPU trusts a data access by the program currently under

execution. (initial value: 0)

 0: T state (CPU trusts data access.) (initial value)

 1: NT state (CPU does not trust data access.)

The memory protection function does not limit data access if the DMP bit indicates the T state.

If it indicates the NT state, it limits data access.

 16 IMP Status bit of memory protection for program area

This bit indicates whether the CPU trusts an access by the program currently under execution

to a program area. (initial value: 0)

 0: T state (CPU trusts the access to the program area.) (initial value)

 1: NT state (CPU does not trust the access to the program area.)

The memory protection function does not limit an access to the program area if the IMP bit

indicates the T state. If it indicates the NT state, it limits an access to the program area.

31 8 7 6 5 4 3 2 1 0

PSW N
P

S
A
T

E
P

I
D

O
V S Z C

Y
Initial value
00000020H

0 0 0 0 0 0 0 0 0 0 0
D
M
P

0 0 0 00
N
P
V

S
B

S
E

0

11

S
S

9101218 16 1519 17

P
P

I
M
P

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 224 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.2 MPM – Setting of processor protection operation mode

The processor protection mode register determines the basic operation status of the processor protection function.

Usually, a value is set to this register only once when the system is started and is not changed arbitrarily as the program is

executed.

Be sure to set bits 31 to 3 to “0”.

(1/2)

 Bit Position Bit Name Description

 This bit enables or disables stack inspection of the memory protection function (initial value: 0).

By setting the SPS bit (1), a range accessible by an instruction that executes sp indirect

access can be limited to an area specified by the DPA0L/DPA0U register.

Depending on the set value of the SPS bit, the DPAnL.S and IPAnL.S bits take the following

value.

 SPS bit = 0 SPS bit = 1

 IPAnL.S bit 1 0

 DPA0L.S bitNote 1 1 1

 DPAmL.S bit 1 0

2 SPS

 Remark n = 0 to 4, m = 1 to 5

 1 AUE This bit automatically changes the execution level if an exception occurs, and sets a function

to update the PSW.PP, NPV, DMP, and IMP bits (initial value: 0).

0: Does not automatically update.

The value of the PSW.PP, NPV, DMP, and IMP bits are not changed even if an

exception occursNotes 2, 3.

1: Automatically updates.

The value of the PSW.PP, NPV, DMP, and IMP bits is cleared to 0 if an exception

occurs.

 Notes 1. The area specified by the DPA0L/DPA0U register can always be accessed in sp indirect

access mode.

 2. The exception that changes the execution level to the DB level and the processor protection

violation exceptions (MDP, MIP, PPI, and TSI exceptions) are excluded. When these

exceptions are acknowledged, the PSW.PP, NPV, DMP, and IMP bits are always updated to 0

under any circumstances.

 3. The PSW.NPV bit is fixed to 0 and cannot be changed if the MPM.AUE bit is cleared (0).

31 1 0

MPM
M
P
E

Initial value
00000000H

0 0
A
U
E

0 0 0
S
P
S

2

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 225 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2/2)

 Bit Position Bit Name Description

 0 MPE This bit enables or disables the operation of the processor protection function (initial value: 0).

0: Processor protection function disabled

 PSW.PP bit is fixed to 0.

The peripheral device protection function limits accesses and detects only

violation of a special peripheral device. The PPI exception does not occurNote.

 PSW.NPV bit is fixed to 0.

The system register protection function is disabled and access to all the system

registers is enabled.

 PSW.DMP and IMP bits are fixed to 0.

The memory protection function is disabled and all memory accesses are

enabled. The MIP and MDP exceptions does not occur.

 TSCCFGn.TSCCFGnACT bit (n = 0 to 5) is fixed to 0.

The timing supervision function is disabled. The TSI exception does not

occurNote.

1: Processor protection function enabled

 Updating the PSW.PP bit is enabled.

The peripheral device protection function strictly limits accesses and detects

violation in accordance with the setting. The PPI exception may occur.

 Updating the PSW.NPV bit is enabled.

The system register protection function is enabled and detects violation in

accordance with the setting.

 Updating the PSW.DMP and IMP bits is enabled.

The memory protection function is enabled and detects violation in accordance

with setting. The MIP and MDP exceptions may occur.

 Updating the TSCCFGn.TSCCFGnACT bit (n = 0 to 5) is enabled.

The timing supervision function is enabled and operates in accordance with

setting. The TSI exception may occur.

 Note However, the PPI or TSI exception that has been detected before the MPE bit is cleared to 0

may be held pending. In this case, the PPI or TSI exception may be acknowledged when the

PSW.NP bit is cleared to 0 even if the MPE bit is 0.

Remark For details on the PP, NPV, IMP, and DMP bits, refer to 2.2.1 PSW – Program Status Word.

V850E2M PART 3 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 226 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.3 MPC – Specification of processor protection command

This register consists of bits that are used for special operation of the processor protection function.

Be sure to set bits 31 to 1 to “0”.

 Bit Position Bit Name Meaning

 0 ALDS When this bit is set (1), the protection operation bits of the entire memory protection area is

immediately cleared (0). The target bits are as follows.

IPAmL.E bit (m = 0 to 4)

DPAnL.E bit (n = 0 to 5)

When all these bits have been cleared (0), the ALDS bit is also cleared (0).

Caution Even when the bits cleared (0) by the function of the ALDS bit are set (1) by the LDSR instruction

immediately after the LDSR instruction that has set the ALDS bit (1), the result in accordance

with the execution sequence of the instruction can be obtained (the target bits are set (1)).

2.2.4 TID – Task identifier

This register is used to set an identifier of a task under execution. The TID register setting is not automatically changed.

Be sure to set an appropriate value to the TID register by program when switching the task.

 Bit Position Bit Name Meaning

 31 to 0 TID These bits set an identifier of a task under execution.

2.2.5 Other system registers

For details on the other system registers, refer to CHAPTER 5 SYSTEM REGISTER PROTECTION, CHAPTER 6

MEMORY PROTECTION, and CHAPTER 11 SPECIAL FUNCTION.

31 0

MPC 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0
Initial value

00000000H

1

0 0 0 0 0 0 0
AL
DS

31 0

TID Initial value
00000000HT I D

V850E2M PART 3 CHAPTER 3 OPERATION SETTING

R01US0001EJ0100 Rev.1.00 Page 227 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 3 OPERATION SETTING

To use the processor protection function, an operation related to overall processor protection must be first set.

Switch the system register bank to the processor protection setting bank (group number: 10H, bank number: 01H) and

set an appropriate value to the MPM register.

3.1 Starting Use of Processor Protection Function

To enable the processor protection function, first the MPM.MPE bit must be set (1). If the MPE bit is cleared (0), the

PSW.PP, NPV, DMP, and IMP bits, and TSCCFGn.TSCCFGnACT bit (n = 0 to 5) are fixed to 0, and each function of the

processor protection function does not operate. When the MPM.MPE bit is set (1), use of the processor protection

function is started as follows.

 The PSW.PP, NPV, DMP, and IMP bits can be updated.

(The system register protection function, memory protection function, and peripheral device protection function

can be used.)

 The TSCCFGnACT bit of the setting register (TSCCFGn) of each counter of the timing supervision function can

be updated.(The timing supervision function can be used.)

3.2 Setting of Execution Level Auto Transition Function

A function to automatically change the execution level is enabled by setting the MPM.AUE bit (1). To operate a system

with a program model that automatically changes the execution level, be sure to set the AUE bit before using the

processor protection function.

For details, refer to CHAPTER 4 EXECUTION LEVEL.

3.3 Stopping Use of Processor Protection Function

To disable the processor protection function that has been once enabled, clear (0) the MPM.MPE bit. As a result, the

PSW.PP, NPV, DMP, and IMP bits, and TSCCFGn.TSCCFGnACT bit (n = 0 to 5) are fixed to 0, and use of the processor

protection function is stopped as follows.

 The PSW.PP, NPV, DMP, and IMP bits are fixed to 0.

(The system register protection function, memory protection function, and peripheral device protection function

cannot be used.)

 The TSCCFGnACT bit of the setting register (TSCCFGn) of each counter of the timing supervision function is fixed

to 0.(The timing supervision function cannot be used.)

Caution When use of the processor protection function has been stopped, some processor protection

exceptions (PPI and TSI exceptions) that have been detected before the MPE bit is cleared to 0

may be held pending. In this case, these exceptions are acknowledged when the PSW.NP bit is

cleared to 0, even after the MPE bit has been changed to 0.

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0001EJ0100 Rev.1.00 Page 228 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 4 EXECUTION LEVEL

The V850E2M CPU indicates the reliability status of the program currently under execution and a right of access to the

resources of the program by controlling the following 4 bits of the PSW (Program Status Word). These bits are called

protection bits, and specific combinations of these bits are called execution levels.

 PP bit:

Indicates whether the CPU trusts an access by the program under execution to the peripheral device.

 NPV bit:

Indicates whether the CPU trusts an access by the program under execution to the system registers.

 DMP bit:

Indicates whether the CPU trusts data access by the program under execution.

 IMP bit:

Indicates whether the CPU trusts an access by the program under execution to the program area.

4.1 Nature of Program

Programs under execution are classified into “trusted programs” and “non-trusted programs” according to their design

quality. Generally, the “trusted programs” are programs that do not pose any threat to systems such as OS (and programs

similar to it) and device derivers. The “non-trusted programs” have not yet been confirmed that they do not pose any

threat to systems such as user programs under development and programs of third parties.

For each of the following four protected subjects; system registers, data area, program area, and peripheral devices,

PSW.PP, NPV, DMP, and IMP bits are defined as information by which the hardware can distinguish between the

operation of a trusted program and the operation of a non-trusted program. These bits have the following meaning for the

related resources, and are set to an appropriate value by the OS (and programs similar to it) before execution of each

program is started.

Status of Protection Bit Status Name Program Quality

0 T state Trusted (trusted program)

1 NT state Not trusted (non-trusted program)

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0001EJ0100 Rev.1.00 Page 229 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.2 Protection Bits on PSW

Protection bits (PP, NPV, DMP, and IMP bits) that indicate the reliability status of the program under execution on the

resources subject to processor protection are placed on PSW. Bits 19, 18, 17, and 16 of the PSW are defined as PP,

NPV, DMP, and IMP bits. Set these bits appropriately when using the processor protection function.

Caution The PSW.PP, NPV, DMP, and IMP bits are fixed to 0 when the MPM.MPE bit is 0. Because these

bits are subject to system register protection, they cannot be written when the NPV bit is 1.

4.2.1 T state (trusted state)

Set 0 to the protection bits if the operation of the program under execution on the resource corresponding to each bit

can be fully trusted and if the program does not perform an illegal operation. The state in which 0 is set to each of the

protection bits is considered as a state in which operation on the resource corresponding to the bit is “trusted” and is called

a T state.

Usually, when a program is in the T state, no violation is detected and the program performs a privileged operation.

Cautions 1. The peripheral device protection function detects violation of an operation on only

special peripheral devices even in the T state.

 2. The concept of trusted state does not apply to the timing supervision function.

4.2.2 NT state (non-trusted state)

Set 1 to each of the protection bits if an operation by the program under execution on the resource corresponding to the

bit cannot be trusted and if the program may perform an illegal operation. A state in which each bit is set to 1 is

considered as a state in which the operation on the resource corresponding to the bit “cannot be trusted” and is called an

NT state.

If a program is in the NT state, violation is detected in accordance with setting and, in some cases, an exception occurs.

4.3 Definition of Execution Level

The V850E2M CPU assumes that some combinations of the statuses of the PSW.PP, NPV, DMP, and IMP bits which

are typically used are defined and used as execution levels. Use with any combinations other than these is possible but

not recommended.

Table 4-1 shows the execution levels and examples of their use.

Table 4-1. Execution Level

Execution

Level

PP Bit

(peripheral device

protection)

NPV Bit

(system register

protection)

DMP Bit

(memory protection

data area)

IMP Bit

(memory protection

program area)

Example of Use of Execution Level

0 0 0 0 0 Exception handler, OS kernel, etc.

1 1 0 0 0 Device driver, etc.

2 1 0 1 1 Common library, etc.

3 1 1 1 1 User task

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0001EJ0100 Rev.1.00 Page 230 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.4 Transition of Execution Level

With the V850E2M CPU, the execution level is mainly changed in the following three ways.

 Execution of write instruction to system registers

 Occurrence of exception

 Execution of return instruction

While the MPM.MPE bit is cleared (0), the PSW.PP, NPV, DMP, and IMP bits are fixed to 0 in any of the above cases,

and the execution level does not change from 0.

Caution For the V850E2M CPU, executing the CALLT instruction does not cause a transition of the

execution level. Common subroutines called as a result of executing this instruction operate

with the same processor protection status as the caller.

4.4.1 Transition by execution of write instruction to system register
The PSW.PP, NPV, DMP, and IMP bits can be rewritten by executing a write instruction (LDSR instruction) to a system

register, so that the user can change the execution level to any level. The rewritten execution level becomes valid when

the next instruction is executed.

Cautions 1. When the PSW.NPV bit is set (1), the PSW.PP, NPV, DMP, and IMP bits cannot be

changed because the system registers are protected. Consequently, the execution

level is not changed (refer to CHAPTER 5 SYSTEM REGISTER PROTECTION).

 2. When the MPM.AUE bit is cleared (0), the PSW.NPV bit is fixed to 0 and cannot be

changed.

 3. If the setting of the PSW.IMP bit is changed by using the LDSR instruction, it may take

several instructions to reflect the new setting. In this case, the new setting can be

accurately reflected by performing a branch by executing the EIRET or FERET

instruction.

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0001EJ0100 Rev.1.00 Page 231 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.4.2 Transition as result of occurrence of exception

The execution level auto transition function is enabled when the MPM.AUE bit is set (1). If an exception occurs in this

status, the PSW.PP, NPV, DMP, and IMP bits are automatically cleared (0) and the execution level changes to level 0.

Caution If an exception that causes the execution level to change to the DB level or a memory

protection exception (MDP, MIP, PPI, or TSI) occurs, the PSW.PP, NPV, DMP, and IMP bits are

automatically cleared (0) regardless of the setting of the AUE bit.

4.4.3 Transition by execution of return instruction

When a return instruction (RETI, EIRET, FERET, or CTRET) to return execution from an exception or the CALLT

instruction is executed, the value of the return PSW (EIPSW, FEPSW, or CTPSW) corresponding to the executed return

instruction is copied to the PSW. If the MPM.MPE bit is set (1) at this time, the value of the bits corresponding to the PP,

NPV, DMP, and IMP bits of the register that stores the value of the return PSW is copied to the PP, NPV, DMP, and IMP

bits of the PSW. The value of the PSW.PP, NPV, DMP, and IMP bits do not change if the MPE bit is cleared (0). The

NPV bit is always fixed to 0.

If an exception occurs, the value of the PSW before the exception occurs is saved for each exception level. If the value

of the register that stores the value of the return PSW is not changed while the exception is processed, the PP, NPV, DMP,

and IMP bits are restored to the status before occurrence of the exception when the exception return instruction is

executed. When viewed from the program that is interrupted by the exception, therefore, the execution level does not

change before and after the exception processing.

Cautions 1. The PSW.PP, NPV, DMP, and IMP bits are updated by the return instruction even when

the execution level auto transition function is disabled.

 2. The execution level also changes when execution is returned by the CTRET

instruction from a subroutine that has been called by the CALLT instruction. However,

the value of the PSW when the CALLT instruction has been executed is saved to

CTPSW, and CTPSW is protected by the system register protection function.

Therefore, the state will not change to the T state even if the user illegally changes the

bit corresponding to the protected bit of CTPSW.

4.5 Program Model

By using the execution level auto transition function, two program models each having a different execution level

management policy can be selected. Select a program model suitable for your system.

 Program model that automatically changes execution level

The execution level auto transition function is enabled and the execution level is changed if an exception occurs.

This program model is suitable for being used by an OS (and programs similar to it) or a program that is

hierarchically managed.

 Program model that always operates at constant execution level

The execution level auto transition function is disabled and the execution level is not changed even when an

exception is acknowledged. The execution level is changed only by a special instruction executed by the user

program, so that processor protection can be easily applied to the existing software resources.

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0001EJ0100 Rev.1.00 Page 232 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.6 Task Identifier

The V850E2M CPU is equipped with a register that identifies to which group the program currently being executed

belongs when two or more different program groups are executed. This group of programs is called a task. An identifier

for each task is defined as a task identifier and set to the TID register.

The processor protection function uses this task identifier as one piece of violation information when an exception

occurs.

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0001EJ0100 Rev.1.00 Page 233 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 5 SYSTEM REGISTER PROTECTION

The V850E2M CPU can control accesses to specific system registers to protect the setting of the system from being

illegally changed by a program that is not trusted (non-trusted program).

If a system register protection violation occurs, the violation information is saved in the system registers of the MPU

violation bank.

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0001EJ0100 Rev.1.00 Page 234 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.1 Register Set

Table 5-1 shows the system registers related to the system register protection function.

Table 5-1. System Register Bank

Group Processor Protection Function (10H)

Bank Processor protection violation (00H) Processor protection setting (01H) Software paging (10H)

Bank label MPV, PROT00 MPU, PROT01 PROT10

Register No. Name Function Name Function Name

0 VSECR System register protection violation cause MPM Setting of processor protection operation mode MPM

1 VSTID System register protection violation task

identifier

MPC Specification of processor protection command MPC

2 VSADR System register protection violation

address

TID Task identifier TID

3 Reserved for function expansion VMECR

4 VMECR Memory protection violation cause VMTID

5 VMTID Memory protection violation task identifier

Reserved for function expansion

VMADR

6 VMADR Memory protection violation address IPA0L Instruction constant protection area 0 lower-

limit address

IPA0L

7 IPA0U Instruction constant protection area 0 upper-

limit address

IPA0U

8 IPA1L Instruction constant protection area 1 lower-

limit address

IPA1L

9 IPA1U Instruction constant protection area 1 upper-

limit address

IPA1U

10 IPA2L Instruction constant protection area 2 lower-

limit address

IPA2L

11 IPA2U Instruction constant protection area 2 upper-

limit address

IPA2U

12 IPA3L Instruction constant protection area 3 lower-

limit address

IPA3L

13 IPA3U Instruction constant protection area 3 upper-

limit address

IPA3U

14 IPA4L Instruction constant protection area 4 lower-

limit address

IPA4L

15 IPA4U Instruction constant protection area 4 upper-

limit address

IPA4U

16 DPA0L Data protection area 0 lower-limit address (for

stack)

DPA0L

17 DPA0U Data protection area 0 upper-limit address (for

stack)

DPA0U

18 DPA1L Data protection area 1 lower-limit address DPA1L

19 DPA1U Data protection area 1 upper-limit address DPA1U

20 DPA2L Data protection area 2 lower-limit address DPA2L

21 DPA2U Data protection area 2 upper-limit address DPA2U

22 DPA3L Data protection area 3 lower-limit address DPA3L

23

Reserved for function expansion

DPA3U Data protection area 3 upper-limit address DPA3U

24 MCA Memory protection setting check address DPA4L Data protection area 4 lower-limit address DPA4L

25 MCS Memory protection setting check size DPA4U Data protection area 4 upper-limit address DPA4U

26 MCC Memory protection setting check command DPA5L Data protection area 5 lower-limit address (2n

specification only)

DPA5L

27 MCR Memory protection setting check result DPA5U Data protection area 5 upper-limit address (2n

specification only)

DPA5U

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0001EJ0100 Rev.1.00 Page 235 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.1.1 VSECR – System register protection violation cause

This register indicates the number of times violation has been detected by the system register protection function.

Be sure to set 0 to bits 31 to 8.

 Bit Position Bit Name Description

 7 to 0 VSEC These bits save the number of times the system register protection violation has been

detected.

When the value of the VSEC bit has reached 255, it is not incremented any longer and

remains as 255. When violation processing has been performed, clear the VSECR register

by program.

5.1.2 VSTID – System register protection violation task identifier

This register saves the contents of the task identifier (TID) when the first instruction that is detected by the system

register protection function as violation is executed.

 Bit Position Bit Name Description

 31 to 0 VSTID These bits store the value of the TID register (in the processor protection setting bank) if

system register protection violation is detected while the VSEC bit of the VSECR register is 0.

The VSTID register saves the identifier of the task that first violates system register protection

after violation processing.

31 0

VSECR
Initial value
00000000HVSEC

78

000000000000 000 000 0 00 000

31 0

VSTID Initial value
UndefinedVSTID

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0001EJ0100 Rev.1.00 Page 236 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.1.3 VSADR – System register protection violation address

This register saves the PC of the first instruction that is detected as violation by the system register protection function.

Bit 0 is fixed to 0.

 Bit Position Bit Name Description

 31 to 0 VSADR These bits store the PC of the instruction if system register protection violation is detected

while the VSEC bit of the VSECR register is 0.

The VSADR register saves the PC of the instruction that first violates system register

protection after violation processing.

Caution For a CPU whose instruction addressing range is partially limited to 512 MB, a value resulting from

a sign-extension of bit 28 of the VSADR register is automatically set to bits 31 to 29.

VSADR

31 0

VSADR Initial value
Undefined

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0001EJ0100 Rev.1.00 Page 237 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.2 Access Control

A write access to the system register is controlled by the PSW.NPV bitNote.

When the PSW.NPV bit is cleared (0) (T state), all the system registers that can be specified by the LDSR instruction

can be written. On the other hand, when the NPV bit is set (1) (NT state), a write access by the LDSR instruction to

specific system registers that are protected and to specific bits of such registers is blocked, and the written value is not

reflected on the registers.

By controlling write accesses in this way, the setting of the system registers can be protected from being changed by a

program that is not trusted (non-trusted program).

Note Only the write access by the LDSR instruction is controlled. The EI, DI, and return instructions (EIRET, FERET,

and RETI) and operations to update the other system registers are not subject to access control.

Cautions 1. When the execution level auto transition function is disabled (AUE = 0), the NPV bit is fixed

to 0. As a result, write operations are not blocked by the system register protection

function.

 2. Note that the PSW.NPV bit itself is also subject to system register protection. If the

PSW.NPV bit has been once set (1), it cannot be cleared (0) unless an exception occurs.

5.3 Registers to Be Protected

Refer to the item of system register protection on the list of the system register of below.

 Main banks

PART2 Table 2-2. System Register List (Main Banks)

 Exception handler switching function 0, 1

PART2 Table 2-3. System Register Bank

 User 0 bank

PART2 Table 2-4. System Register List (User 0 Bank)

 Processor Protection setting bank

PART3 Table 2-2. Processor Protection Setting Registers

 Processor Protection violation bank

PART3 Table 2-3. Processor Protection Violation Registers

 Software Paging bank

PART3 Table 2-4. Software Paging Registers

 FPU status bank

PART4 Table 2-1. System Register Bank

Caution All system register numbers for which no function is defined are subject to system register

protection.

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0001EJ0100 Rev.1.00 Page 238 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.4 Detection of Violation

If the program under execution is not trusted (non-trusted program), set the PSW.NPV bit (1) so that the CPU operates

in the NT state. If a write access is made by the LDSR instruction to a system register protected by the system register

protection function while the CPU operates in the NT state, system register protection violation is immediately detected.

The following operations are performed when the system register protection violation has been detected.

 The write access operation by the LDSR instruction is blocked (the written value is not reflected on the register

value).

 If the value of the VSECR register is 0, the following operations are performed.

 The value of the TID register when the LDSR instruction is executed is stored in the VSTID register.

 The PC of the LDSR instruction is stored in the VSADR register.

 The value of the VSECR register is incremented by 1.

Caution The PSW register has bits that are protected and bits that are not protected. Therefore, it does not

detect violation even if an illegal write access is made to it. However, the write access to the

protected bits is blocked and the written value is not reflected on the value of these bits.

5.5 Operation Method

Check the status of detection of system register violation by using the VSECR, VSTID, and VSADR registers and take

an appropriate action each time the task has been changed by the OS (and programs similar to it) or at a specific interval.

If system register violation has been detected more than once, the chances are the system registers have been illegally

accessed between the previous check and the latest check.

In addition, be sure to clear the VSECR register before returning to the normal processing.

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 239 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 6 MEMORY PROTECTION

The V850E2M CPU can control accesses to the following two areas on the address space; the program area that is

referenced when an instruction is executed (instruction access) and the data area that is referenced when an instruction

that accesses the memory is executed (data access), to protect the system from illegal accesses by a program that is not

trusted (non-trusted program).

For memory protection for the V850E2M CPU, memory protection areas are specified using a maximum and minimum

address. Areas that have a granularity of 16 bytes can be specified. Therefore, suitable protection can be set up by using

only a few areas. The specified addresses are retained in 32-bit system registers, and they completely cover a 4 GB

logical address space.

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 240 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1 Register Set

Table 6-1 lists the system registers related to the memory protection function.

Table 6-1. System Register Bank

Group Processor Protection Function (10H)

Bank Processor protection violation (00H) Processor protection setting (01H) Software

paging (10H)

Bank label MPV, PROT00 MPU, PROT01 PROT10

Register No. Name Function Name Function Name

0 VSECR System register protection violation cause MPM Setting of processor protection operation mode MPM

1 VSTID System register protection violation task

identifier

MPC Specifying processor protection command MPC

2 VSADR System register protection violation

address

TID Task identifier TID

3 Reserved for function expansion VMECR

4 VMECR Memory protection violation cause VMTID

5 VMTID Memory protection violation task identifier

Reserved for function expansion

VMADR

6 VMADR Memory protection violation address IPA0L Instruction/constant protection area 0 lower-limit address IPA0L

7 IPA0U Instruction/constant protection area 0 upper-limit address IPA0U

8 IPA1L Instruction/constant protection area 1 lower-limit address IPA1L

9 IPA1U Instruction/constant protection area 1 upper-limit address IPA1U

10 IPA2L Instruction/constant protection area 2 lower-limit address IPA2L

11 IPA2U Instruction/constant protection area 2 upper-limit address IPA2U

12 IPA3L Instruction/constant protection area 3 lower-limit address IPA3L

13 IPA3U Instruction/constant protection area 3 upper-limit address IPA3U

14 IPA4L Instruction/constant protection area 4 lower-limit address IPA4L

15 IPA4U Instruction/constant protection area 4 upper-limit address IPA4U

16 DPA0L Data protection area 0 lower-limit address (for stack) DPA0L

17 DPA0U Data protection area 0 upper-limit address (for stack) DPA0U

18 DPA1L Data protection area 1 lower-limit address DPA1L

19 DPA1U Data protection area 1 upper-limit address DPA1U

20 DPA2L Data protection area 2 lower-limit address DPA2L

21 DPA2U Data protection area 2 upper-limit address DPA2U

22 DPA3L Data protection area 3 lower-limit address DPA3L

23

Reserved for function expansion

DPA3U Data protection area 3 upper-limit address DPA3U

24 MCA Memory protection setting check address DPA4L Data protection area 4 lower-limit address DPA4L

25 MCS Memory protection setting check size DPA4U Data protection area 4 upper-limit address DPA4U

26 MCC Memory protection setting check

command

DPA5L Data protection area 5 lower-limit address (2n specification

only)

DPA5L

27 MCR Memory protection setting check result DPA5U Data protection area 5 upper-limit address (2n

specification only)

DPA5U

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 241 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.1 IPAnL – Instruction/constant protection area n lower-limit address (n = 0 to 4)

This register is used to set the lower-limit address and operation of the instruction/constant protection area.

Be sure to set bit 3 to “0”.

 Bit Position Bit Name Description

 31 to 4 AL31 to

AL4

These bits set the lower-limit address or base address of the protection area depending on

the protection area specification mode set by the T bit.

Because bits 3 to 0 of the IPAnL register are used for the other setting of the protection area,

bits 3 to 0 (AL3 to 0) of the lower-limit address or base address are implicitly 0.

 2 T This bit selects a mode to specify a range of the protection area.

When the T bit is cleared (0), an upper-limit/lower-limit specification mode is selected. When

it is set (1), a mask/base specification mode is selected.

 0: Upper-limit/lower-limit specification mode

(AU31 to 0 specify an upper-limit address and AL31 to 0 specify a lower-limit address.)

 1: Base/mask specification mode

(AU31 to 0 specify a mask address and AL31 to 0 specify a base address.)

 1 SNote This bit enables or disables data access to the protection area in the sp (r3) register indirect

access mode. When the S bit is cleared (0), accessing data placed in the protection area of

the data area in the sp (r3) register indirect access mode is prohibited.

If an instruction that accesses the access-prohibited protection area is executed, data

protection violation is detected, and MDP exception is immediately acknowledged.

 0: Disables data access to protection area in sp (r3) register indirect access mode.

 1: Enables data access to protection area in sp (r3) register indirect access mode.

 0 E This bit enables or disable the setting of the protection area.

When the E bit is cleared (0), the contents of all the other setting bits are invalid, and no

protection area is set.

 0: Invalid (Instruction/constant protection area n is not used.)

 1: Valid (Instruction/constant protection area n is used.)

 Note The S bit is fixed to 0 or 1 depending on the set value of the MPM.SPS bit. For details, refer to

2.2.2 MPM – Setting of processor protection operation mode.

Remark n = 0 to 4

31

IPAnL AL
31

AL
30

AL
28

29 28

15

Initial value
00000002H

AL
15

AL
29

AL
27

27

AL
26

AL
25

AL
24

AL
23

AL
22

AL
21

AL
20

AL
19

AL
18

AL
17

AL
16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

AL
14

AL
13

AL
12

AL
11

AL
10

AL
9

AL
8

AL
7

7 6 5 4 3 2 1 0

T S E
AL
6

AL
5

AL
4 0

30

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 242 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.2 IPAnU – Instruction/constant protection area n upper-limit address (n = 0 to 4)

This register is used to set the upper-limit address of the instruction/constant protection area.

Be sure to set bits 3 and 2 to “0”.

Bit Position Bit Name Description

 31 to 4 AU31 to

AU4

These bits set the upper-limit address or mask value of the protection area, depending on the

protection area specification mode set by the T bit.

Because bits 3 to 0 of the IPAnU register are used for the other setting of the protection area,

bits 3 to 0 (AU3 to 0) of the upper-limit address or mask value are implicitly 1.

To specify a mask value, be sure to set a value of consecutive 1’s from the least significant bit

(the operation cannot be guaranteed if a value having 1 and 0 alternately placed, such as

000050FFH, is specified).

 1 R This bit enables or disables a read access to the protection area.

When the R bit is cleared (0), a read access to the data placed in the protection area of the

data area is prohibited.

If an instruction that reads the access-prohibited protection area is executed, data protection

violation is detected and the MDP exception is immediately acknowledged.

 0: Disables read access to the protection area.

 1: Enables read access to the protection area.

 0 X This bit enables or disables instruction execution for the protection area.

When the X bit is cleared (0), execution of the program placed in the protection area of the

program area is prohibited.

If an instruction is executed for the protection area, instruction protection violation is detected

and the MIP exception is immediately acknowledged.

 0: Disables instruction execution for the protection area.

 1: Enables instruction execution for the protection area.

 Remark n = 0 to 4

31

IPAnU AU31 AU30 AU28

29 28

15
Initial value
00000000H

AU15

AU29 AU27

27

AU26 AU25 AU24 AU23 AU22 AU21 AU20 AU19 AU18 AU17 AU16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

AU14 AU13 AU12 AU11 AU10 AU9 AU8 AU7

7 6 5 4 3 2 1 0

0 R XAU6 AU5 AU4 0

30

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 243 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.3 DPAnL – Data protection area n lower-limit address (n = 0 to 5)

This register is used to set the lower-limit address and operation of the data protection area.

Be sure to set bit 3 to “0”.

Bit Position Bit Name Description

 31 to 4 AL31 to

AL4

These bits set the lower-limit address or base address of the protection area depending on

the protection area specification mode set by the T bit.

Because bits 3 to 0 of the DPAnL register are used for the other setting of the protection area,

bits 3 to 0 (AL3 to AL0) of the lower-limit address or base address are implicitly 0.

 2 T This bit selects a mode to specify a range of the protection area.

When the T bit is cleared (0), an upper-limit/lower-limit specification mode is selected. When

it is set (1), a mask/base specification mode is selected.

 0: Upper-limit/lower-limit specification mode

(AU31 to AU0 specify an upper-limit address and AL31 to AL0 specify a lower-limit

address.)

 1: Base/mask specification mode

(AU31 to AU0 specify a mask address and AL31 to AL0 specify a base address.)

 1 SNote 2 This bit enables or disables data access to the protection area in the sp (r3) register indirect

access mode. When the S bit is cleared (0), accessing data placed in the protection area of

the data area in the sp (r3) register indirect access mode is prohibited.

If an instruction that accesses the access-prohibited protection area for data is executed, data

protection violation is detected and MDP exception is immediately acknowledged.

 0: Disables data access to protection area in sp (r3) register indirect access mode.

 1: Enables data access to protection area in sp (r3) register indirect access mode.

 0 E This bit enables or disable the setting of the protection area.

When the E bit is cleared (0), the contents of all the other setting bits are invalid, and no

protection area is set.

 0: Invalid (Data protection area n is not used.)

 1: Valid (Data protection area n is used.)

 Notes 1. The default value differs depending on the channel.

 DPA0L to DPA4L: 0000 0002H, DPA5L: 0000 0006H

 2. The S bit is fixed to 0 or 1 depending on the set value of the MPM.SPS bit. For details, refer to

2.2.2 MPM – Setting of processor protection operation mode.

Remark n = 0 to 5

31

DPAnL AL
31

AL
30

AL
28

29 28

15
Initial value

Note 1
AL
15

AL
29

AL
27

27

AL
26

AL
25

AL
24

AL
23

AL
22

AL
21

AL
20

AL
19

AL
18

AL
17

AL
16

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

AL
14

AL
13

AL
12

AL
11

AL
10

AL
9

AL
8

AL
7

7 6 5 4 3 2 1 0

T S E AL
6

AL
5

AL
4

0

30

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 244 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.4 DPAnU – Data protection area n upper-limit address (n = 0 to 5)

This register is used to set the upper-limit address of the data protection area.

Be sure to set bits 3 and 0 to “0”.

Bit Position Bit Name Description

 31 to 4 AU31 to

AU4

These bits set the upper-limit address or mask value of the protection area, depending on the

protection area specification mode set by the T bit.

Because bits 3 to 0 of the DPAnU register are used for the other setting of the protection area,

bits 3 to 0 (AU3 to AU0) of the upper-limit address or mask value are implicitly 1.

To specify a mask value, be sure to set a value of consecutive 1’s from the least significant bit

(the operation cannot be guaranteed if a value having 1 and 0 alternately placed, such as

000050FFH, is specified).

 2 W This bit enables or disables a write access to the protection area.

When the W bit is cleared (0), a write access to the data placed in the protection area of the

data area is prohibited.

If an instruction that writes data to the access-prohibited protection area is executed, data

protection violation is detected and the MDP exception is immediately acknowledged.

 0: Disables write access to the protection area.

 1: Enables write access to the protection area.

 1 R This bit enables or disables a read access to the protection area.

When the R bit is cleared (0), a read access to the data placed in the protection area of the

data area is prohibited.

If an instruction that reads the protection area is executed, data protection violation is

detected and the MDP exception is immediately acknowledged.

 0: Disables read access to the protection area.

 1: Enables read access to the protection area.

 Note The initial value differs depending on the channel.

 DPA0U: 0000 0006H, DPA1U to DPA5U: 0000 0000H

Remark n = 0 to 5

31

DPAnU AU
31

AU
30

AU
28

29 28

15

Initial value
Note

AU
15

AU
29

AU
27

27

AU
26

AU
25

AU
24

AU
23

AU
22

AU
21

AU
20

AU
19

AU
18

AU
17

AU
16

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

AU
14

AU
13

AU
12

AU
11

AU
10

AU
9

AU
8

AU
7

7 6 5 4 3 2 1 0

W R 0
AU
6

AU
5

AU
4

0

30

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 245 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.5 VMECR – Memory protection violation cause

The VMECR register indicates a protection violation cause in case the MIP or MDP exception occurs.

Be sure to set bits 31 to 7 to “0”.

 Bit Position Bit Name Description

 6 VMMS This bit indicates whether a data protection exception occurs. It is set (1) if a data protection

exception occurs during misaligned access by the LD, ST, SLD, or SST instruction.

Otherwise, this bit is cleared (0).

 5 VMRMW This bit indicates whether a data protection exception occurs. It is set (1) if a data protection

exception occurs during access by the SET1, CLR1, NOT1, or CAXI instruction. Otherwise,

this bit is cleared (0).

 4 VMS This bit is set if an MDP exception occurs due to sp indirect access violation. Otherwise, it is

cleared (0).

If this bit is set (1), the VMX bit is always cleared (0). This bit may be set (1) together with the

VMR and VMW bits.

 3 VMW This bit is set (1) if an MDP exception occurs due to write access violation. Otherwise, it is

cleared (0).

If this bit is set (1), the VMX and VMR bits are always cleared (0). This bit may be set (1)

together with the VMS bit.

 2 VMR This bit is set (1) if an MDP exception occurs due to read access violation. Otherwise, it is

cleared (0).

If this bit is set (1), the VMX and VMW bits are always cleared (0). This bit may be set (1)

together with the VMS bit.

 1 VMX This bit is set if an MIP exception occurs due to instruction execution violation. Otherwise, it

is cleared (0).

If this bit is set (1), the VMR, VMW, and VMS bits are always cleared (0).

 Remark For the status of each bit in case of an exception, refer to 9.3 Identifying Violation Cause.

31

VMECR 0 0 0

29 28

15
Initial value
00000000H

0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

VMR VMX 0VMMS
VM

RMW
VMS VMW

30

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 246 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.1.6 VMTID – Memory protection violation task identifier

The VMTID register stores the identifier of a task in case of the MIP or MDP exception.

 Bit Position Bit Name Description

 31 to 0 VMTID These bits store the contents of the identifier of the task (value of the TID register) when an

instruction that causes either execution protection violation or data protection violation is

executed.

6.1.7 VMADR – Memory protection violation address

The VMADR register stores the address when the MIP or MDP exception has occurred.

 Bit Position Bit Name Description

 31 to 0 VMADR These bits store the PC of the instruction that violates execution protection if execution

protection violation is detected, or the address of a data access if data protection violation is

detected.

Caution The PC value of the instruction that has detected execution protection violation may not match

the address of the instruction that has actually violated execution protection if the former

instruction is placed, extending from one address to another.

31 0

VMTID Initial value
UndefinedVMTID

31 0

VMADR Initial value
UndefinedVMADR

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 247 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.2 Access Control

The PSW.IMP bit controls accesses to the program area that is referenced when an instruction is executed. If the IMP

bit is cleared (0) (T state), instruction execution in the entire program area is enabled, and an instruction at any position

can be freely executed. On the other hand, if the IMP bit is set (1) (NT state), an execution of instruction to the entire

program area is prohibited in general, and only instructions to a range enabled as a protection area where instruction

execution is enabled.

The PSW.DMP bit controls accesses to the data area that is referenced when an instruction that accesses the memory

is executed. If the DMP bit is cleared (0) (T state), memory access in the entire data area is enabled, and data at any

position can be freely read and written. On the other hand, if the DMP bit is set (1) (NT state), memory access to the

entire data area is disabled in general, and only the data in a range enabled as a protection area can be manipulated. In

addition, access control that considers writing, reading and stack manipulation is performed.

By these access control features, illegal instruction execution or data access by a program not trusted (non-trusted

program) can be prevented.

6.3 Setting Protection Area

In principle, the program area or data area is prohibited from being accessed. To use memory protection, a protection

area where access is enabled is specified in these areas for each program not trusted (non-trusted program). The

protection area can be enabled or disabled depending on the type of the access (execution, read, or write).

The V850E2M CPU uses the following two registers as a pair to set a protection area.

 IPAnL/IPAnU (n = 0 to 4)

 DPAmL/DPAmU (m = 0 to 5)

Each protection area is set by two combinations of registers: an upper-limit register and a lower-limit register. The

registers defined for the V850E2M CPU allow the placement of up to 11 protection areas, including up to five program

protection areas and six data protection areas.

The settings that can be specified for each area are shown in Table 6-2 below. Note that, depending on the register,

the values of some bits are fixed.

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 248 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 6-2. Setting Protection Area

Register xPAnU xPAnL

 Bits 31 to 4 Bit 3 Bit 2 Bit 1 Bit 0 Bits 31 to 4 Bit 3 Bit 2 Bit 1 Bit 0

Field
function

Upper-limit address
(mask value)

(RFU) Write
enable

Read
enable

Execution
enable

Lower-limit address
(base address)

(RFU) Area
specification

mode

sp
indirect
access
enable

Area
enable

 Field name AU W R X AL T S E

IPA0U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 0 0/1Note (0)

IPA1U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 0 0/1Note (0)

IPA2U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 0 0/1Note (0)

IPA3U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 0 0/1Note (0)

IPA4U/L

Instruction
protection

area setting

Upper-limit address 0 0 (0) (0) Lower-limit address 0 0 0/1Note (0)

DPA0U/L Data
protection

area setting
(for stack)

Upper-limit address 0 1 1 0 Lower-limit address 0 0 1 (0)

DPA1U/L Upper-limit address 0 (0) (0) 0 Lower-limit address 0 0 0/1Note (0)

DPA2U/L Upper-limit address 0 (0) (0) 0 Lower-limit address 0 0 0/1Note (0)

DPA3U/L Upper-limit address 0 (0) (0) 0 Lower-limit address 0 0 0/1Note (0)

DPA4U/L Upper-limit address 0 (0) (0) 0 Lower-limit address 0 0 0/1Note (0)

DPA5U/L

Data
protection

area setting

Mask value 0 (0) (0) 0 Base address 0 1 0/1Note (0)

Note S = 1 if the MPM.SPS bit is 0. S = 0 if the MPM.SPS bit is 1.

Remark 0: Be sure to set this bit to 0.

 1: Be sure to set this bit to 1.

 (0): This bit may be set by the user. The value in parentheses indicates the initial value.

Therefore, the program and data areas are correlated with setting registers as follows.

Program area (enabling/disabling instruction execution)

 IPAnL/IPAnU (n = 0 to 4)

Data area (enabling/disabling read or write execution)

 IPAnL/IPAnU (n = 0 to 4) … Enables only read.

 DPA0L/DPA0U … Always enables sp indirect access. Always enables read and write.

 DPAnL/DPAnU (n = 1 to 4)

 DPA5L/DPA5U … Mask/base specification mode

The IPAnL/IPAnU registers can be used to set up the protection areas for instruction execution permission and read

access permission. These permissions must be specified if the SWITCH and CALLT instructions are used to jump to

tables and there are tables placed in the instruction code.

For data areas, only the DPA0L/DPA0U register is always permitted sp relative access. This is because there is only

one stack referenced during program execution and only one area for which sp relative access is performed.

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 249 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

The default value of each register is as follows.

Register Initial Value

IPA0L to IPA4L 0000 0002H

IPA0U to IPA4U 0000 0000H

DPA0L 0000 0002H

DPA0U 0000 0006H

DPA1L to DPA4L 0000 0002H

DPA1U to DPA4U 0000 0000H

DPA5L 0000 0006H

DPA5U 0000 0000H

The function of each bit is described below.

6.3.1 Valid bit (E bit)

This bit indicates whether setting of a protection area is enabled or disabled.

When the E bit is cleared (0), all the contents of the other setting bits are invalid, and a protection area is not set.

6.3.2 Execution enable bit (X bit)

This bit enables or disables instruction execution for the protection area.

When the X bit is cleared (0), execution of a program placed in the protection area of the program area is disabled.

If an instruction for the protection area is executed, an instruction protection violation is detected and the MIP exception

is immediately acknowledged.

6.3.3 Read enable bit (R bit)
This bit enables or disables a read access to the protection area.

When the R bit is cleared (0), a read access to data placed in the protection area of the data area is prohibited.

If an instruction that reads the access-prohibited protection area is executed, data protection violation is detected and

the MPD exception is immediately acknowledged.

6.3.4 Write enable bit (W bit)
This bit enables or disables a write access to the protection area.

When the W bit is cleared (0), a write access to data placed in the protection area of the data area is prohibited.

If an instruction that writes data to the protection area is executed, data protection violation is detected and the MPD

exception is immediately acknowledged.

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 250 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.3.5 sp indirect access enable bit (S bit)
This bit enables or disables a data access in the sp (r3) register indirect access mode to the protection area.

When the S bit is cleared (0), a data access in the sp (r3) register indirect access mode to data placed in the protection

area of the data address space is prohibited.

If an instruction that accesses the protection area for data in the sp (r3) register indirect access mode is executed, data

protection violation is detected and the MPD exception is immediately acknowledged.

Caution The S bit of each register is fixed to 0 or 1 depending on the set value of the MPM.SPS bit. For

details, refer to 2.2.2 MPM – Processor protection operation mode.

6.3.6 Protection area specification mode bit (T bit)
This bit selects a mode of specifying a range of the protection area.

When the T bit is cleared (0), an upper-limit/lower-limit specification mode is selected. When it is set (1), a mask/base

specification mode is selected.

(1) Upper-limit/lower-limit specification mode

This mode specifies a range of the protection area by specifying the upper-limit address with the AU31 to AU0 bits

and the lower-limit address with the AL31 to AL0 bits. If a value greater than the upper-limit address is set, the

protection area is invalid.

(2) Mask/base specification mode

This mode specifies a range of the protection area by specifying a mask value with the AU31 to AU0 bits and a

base address with the AL31 to AL0 bits. An address range specified by masking the specified base address with

the mask value is the protection area.

The protection area is of size of the power of 2 that is indicated by the upper-limit and lower-limit addresses as

follows.

 Lower-limit address = (AL31 to AL0 and (not AU31 to AU0))

 Upper-limit address = (AL31 to AL0 or AU31 to AU0)

6.3.7 Protection area lower-limit address (AL31 to AL0 bits)

The lower-limit address or base address of the protection area is indicated by the set protection area specification

mode (T bit).

Because the bits 3 to 0 of the IPAnL and DPAmL registers are used for the other setting of the protection area, the bits

3 to 0 (AL3 to AL0) of the lower-limit address or base address are implicitly 0 (n = 0 to 4, m = 0 to 5).

6.3.8 Protection area upper-limit address (AU31 to AU0 bits)

The upper-limit address or mask value of the protection area is indicated by the protection area specification mode set

by the T bit.

Because the bits 3 to 0 of the IPAnU and DPAmU registers are used for the other setting of the protection area, the bits

3 to 0 (AU3 to AU0) of the upper-limit address or mask value are implicitly 1.

When specifying a mask value, be sure to set a value of consecutive 1’s from the least significant bit (the operation is

not guaranteed if a value having 1 and 0 alternately placed, such as 000050FFH, is specified) (n = 0 to 4, m = 0 to 5).

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 251 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.4 Notes on Setting Protection Area

6.4.1 Crossing of protection area boundaries

If the range of a protection area is set in duplicate, regardless of whether in an instruction/constant protection area or

data protection area, setting access control of the crossing part takes precedence.

(1) Instruction/constant protection area

If two or more protection area are set at certain addresses and if execution is enabled in one of the protection

areas, enabling execution is assumed. If read is enabled in one of the areas, enabling read is assumed.

(2) Data protection area

If two or more protection areas are set at certain addresses and if read is enabled in one of the protection areas,

enabling read is assumed.

The same applies to enabling write and sp indirect access.

6.4.2 Invalid protection area setting

Setting of a protection area is invalid in the following case.

 If a value greater than the upper-limit address is set to the lower-limit address

6.5 Stack Inspection Function

The V850E2M CPU prescribes use of a general-purpose register r3 as a stack pointer (sp) for a program model in

terms of stack manipulation. It also defines instructions to generate and delete a stack frame that implicitly uses sp as the

stack pointer. To support this program model and to strictly manage the stack, a stack inspection function is provided.

Stack indirect access can be enabled or disabled in each protection area by using the S bit of each protection area

setting registerNote.

If a memory access instruction that executes an indirect access using sp as the base register is executed in a

protection area where sp indirect access is disabled (S bit is 0), that access is detected as violation. If an indirect access

using a register other than sp as the base register is executed in the same area, the access is controlled in accordance

with the read enable bit (R bit) and write enable bit (W bit).

In a protection area where sp indirect access is enabled (S bit is 1), the access is controlled in accordance with the

read enable bit (R bit) and write enable bit (W bit) in any case.

This stack inspection function detects an sp indirect access violation in other protection areas if the value of sp is

incorrect with a program model that places only one protection area where sp indirect access is enabled, so that the

memory can be protected more powerfully.

Note The V850E2M CPU controls the value of the S bit of each protection area all at once in accordance with the

value of the MPM.SPS register.

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 252 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 6-1. Example of Stack Inspection Function

(a) Example where stack inspection function is enabled (SPS bit = 1)

(b) Example where stack inspection function is disabled (SPS bit = 0)

Remark X: Execution enabled

 R: Read enabled

 W: Write enabled

 S: sp indirect access enabled

Data area

XS

XRS

WS

RWS

Instruction not
executing sp

indirect access

Instruction
executing sp

indirect access

4
G

B

R/W enabled

R/W disabled

R/W enabled

R/W disabled

W enabled

R/W disabled

W enabled

R/W disabled

R/W disabled R/W disabled

R/W enabled R/W enabled

R enabled R enabled

Setting by
IPA0L/IPA0U

Setting by
IPA1L/IPA1U

Setting by
DPA1L/DPA1U

Setting by
DPA0L/DPA0U

X

XR

W

RWS R/W enabled

R/W disabled

Setting by
IPA0L/IPA0U

4
G

B

R/W enabled

R/W disabled

W enabled

R/W disabled

R enabled

R/W disabled

R/W enabled

R/W disabled

Setting by
IPA1L/IPA1U

Setting by
DPA1L/DPA1U

Setting by
DPA0L/DPA0U Instruction not

executing sp
indirect access

Instruction
executing sp

indirect access

Data area

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 253 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.6 Special Memory Access Instructions

The V850E2M CPU has instructions that access the memory more than once while one of the instructions is executed.

For these instructions, the memory protection function performs a special operation. Instructions subject to special

protection operations are described below.

 Load and store instructions that execute misaligned access (LD, ST, SLD, and SST)

 Some bit manipulation instructions (SET1, NOT1, and CLR1) and CAXI instruction

 Stack frame manipulation instructions (PREPARE and DISPOSE)

 SYSCALL instruction

6.6.1 Load and store instructions executing misaligned access
With the V850E2M CPU, data can be allocated at all addresses regardless of the data format (byte, halfword, or word).

A misaligned access indicates an access to an address other than a halfword boundary (the least significant bit of the

address is 0) when the data to be processed is in the halfword format, and an access to an address other than the word

boundary when the data to be processed is in a word format.

When a misaligned access is made, access is enabled if all the addresses to be accessed are in one protection area,

and if read is enabled when the load instruction is executed or if write is enabled when the store instruction is executed.

Caution Even if two protection areas are defined at consecutive addresses without overlapping each other,

a misaligned access extending between the two protection areas is judged as protection violation.

6.6.2 Some bit manipulation instructions and CAXI instruction
Some bit manipulation instructions (SET1, NOT1, and CLR1) and CAXI instruction detect data protection violation if the

address to be accessed is enabled from being read but not from being written.

6.6.3 Stack frame manipulation instructions
The stack frame manipulation instructions (PREPARE and DISPOSE) generates as many memory accesses as the

number of registers specified. The memory protection function detects violation of each of these memory accesses and,

as soon as it has detected violation, it aborts execution of the stack frame manipulation instruction at occurrence of a data

protection exception. However, memory accesses preceding the memory access from which violation has been detected

are executed. The DISPOSE instruction writes a general-purpose register corresponding to the executed memory access.

If the access has been aborted, sp is not updated.

The stack frame manipulation instruction that has been aborted is executed from the beginning again when execution

returns from the exception. Consequently, the same memory access as that which was executed once before execution

was aborted is executed again.

6.6.4 SYSCALL instruction
The SYSCALL instruction is used to call a service supplied by a management program such as an OS (and programs

similar to it). The service is a trusted program and the address table to branch to the service is also trusted. Therefore,

memory protection is not applied to the memory access by the SYSCALL instruction even if the PSW.DMP bit is set (1).

Consequently, the MDP exception is never detected while the SYSCALL instruction is executed.

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0001EJ0100 Rev.1.00 Page 254 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

6.7 Protection Violation and Exception

If an instruction is executed on or a data access is made to an address that is not enabled, instruction protection

violation or data protection violation is detected. If violation is detected, the following operations are performed.

For details of the MIP and MDP exceptions, refer to CHAPTER 9 PROCESSOR PROTECTION EXCEPTION.

(1) If instruction protection violation is detected

 Execution of the instruction placed at the address where instruction protection violation has been detected does

not start.

 An access to the address where instruction protection violation has been detected does not make any request to

the outside of the CPU.

 The MIP exception occurs and exception processing starts immediately.

(2) If data protection violation is detected

 Execution of the instruction that accesses the address where data protection violation has been detected is

aborted.

 An access to the address where data protection violation has been detected does not make any request to the

outside of the CPU.

 The MDP exception occurs and exception processing starts immediately.

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 255 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 7 PERIPHERAL DEVICE PROTECTION

Peripheral device protection controls access to protect peripheral devices (areas) from illegal access by untrusted

programs.

The V850E2M CPU assumes that the connected peripheral devices (such as I/O devices and small scale memory)

differ for each application system. If there are many such devices, they are placed at discrete addresses that are finer than

the granularity of areas subject to memory protection.

When using peripheral device protection, different settings can be specified for each peripheral device, and protection

is possible using a granularity that is not possible by using protection areas, the number of which is limited by memory

protection.

7.1 Register Set

Table 7-1 lists the peripheral device registers related to the peripheral device protection function.

For the V850E2M CPU, the register set used for peripheral device protection is placed in the peripheral device register

area. The base address for the peripheral device protection registers is defined by hardware and is FFFF5100H for the

V850E2M CPU. The PPSn, PPPn, PPVn, and PPTn registers make up one set and can be used to set up protection for

32 peripheral devices, with each bit corresponding to one peripheral device. Multiple sets might be available, depending

on the number of peripheral devices for a product and the peripheral device protection policy. A total of nine sets are

provided for the V850E2M CPU, and they are specified by suffixing a value from 0 to 8 to the register names.

Caution These registers related to the peripheral device protection function are also subject to peripheral

device protection. For details, refer to 7.9 Protection Setting for Peripheral Device Protection

Setting Registers.

Table 7-1. Peripheral Device Protection Function Register Set

Accessible Size Register Name Offset Address

1 8 16 32

Initial Value

PPM +00H     00000000H

PPEC +04H    00000000H

VPNECR +10  UndefinedNote

VPNADR +14  UndefinedNote

VPNTID +18  UndefinedNote

VPTECR +20  UndefinedNote

VPTADR +24  UndefinedNote

VPTTID +28  UndefinedNote

PPVn +40H + (n*10h) + 0H     Refer to Table 7-2.

PPTn +40H + (n*10h) + 4H     Refer to Table 7-2.

PPPn +40H + (n*10h) + 8H     Refer to Table 7-2.

PPSn +40H + (n*10h) + CH     Refer to Table 7-2.

Note This register is not initialized and its previous value is retained following a reset. The initial value is undefined.

Remark n = 0 to 8

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 256 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

The names, addresses, initial values, and protection target addresses of the PPSn, PPPn, PPVn, and PPTn registers

for the V850E2M CPU are shown in Table 7-2. For a list peripheral devices that the register bits correspond to, see

APPENDIX D PERIPHERAL DEVICE PROTECTION AREAS.

Table 7-2. PPSn, PPPn, PPVn, PPTn registers of V850E2M CPU

Register

Name

Address Reset

Value

Protection Setting Target

Address

PPV0 FFFF5140H 00030000H

PPT0 FFFF5144H 00030000H

PPP0 FFFF5148H 00030000H

PPS0 FFFF514CH 00000000H

CPU specific peripheral devices

and

CPU system peripheral devices

PPV1 FFFF5150H 00000000H

PPT1 FFFF5154H 00000000H

PPP1 FFFF5158H 00000000H

PPS1 FFFF515CH 00000000H

FF400000 to FF5FFFFFH

PPV2 FFFF5160H 00000000H

PPT2 FFFF5164H 00000000H

PPP2 FFFF5168H 00000000H

PPS2 FFFF516CH 00000000H

FF600000 to FF7FFFFFH

PPV3 FFFF5170H 00000000H

PPT3 FFFF5174H 00000000H

PPP3 FFFF5178H 00000000H

PPS3 FFFF517CH 00000000H

FF800000 to FF81FFFFH

PPV4 FFFF5180H 00000000H

PPT4 FFFF5184H 00000000H

PPP4 FFFF5188H 00000000H

PPS4 FFFF518CH 00000000H

FF820000 to FF83FFFFH

PPV5 FFFF5190H 00000000H

PPT5 FFFF5194H 00000000H

PPP5 FFFF5198H 00000000H

PPS5 FFFF519CH 00000000H

FFFF8000 to FFFF9FFFH

PPV6 FFFF51A0H 00000000H

PPT6 FFFF51A4H 00000000H

PPP6 FFFF51A8H 00000000H

PPS6 FFFF51ACH 00000000H

FFFFA000 to FFFFBFFFH

PPV7 FFFF51B0H 00000000H

PPT7 FFFF51B4H 00000000H

PPP7 FFFF51B8H 00000000H

PPS7 FFFF51BCH 00000000H

FFFFC000 to FFFFDFFFH

PPV8 FFFF51C0H 00000000H

PPT8 FFFF51C4H 00000000H

PPP8 FFFF51C8H 00000000H

PPS8 FFFF51CCH 00000000H

FFFFE000 to FFFFFFFFH

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 257 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.1 PPM – Setting of peripheral device protection operation mode

This register is used to set an operation mode related to the peripheral device protection function. It can be accessed

in units of 32, 16, 8, or 1 bit.

Be sure to set bits 31 to 1 to “0”.

 Bit Position Bit Name Description

 0 PPMPP

MSK

This bit selects whether a peripheral device protection exception (PPI exception) is to be

used.

 0: Uses PPI exception (initial value).

 1: Does not use PPI exception.

When the PPMPPMSK bit is set (1), the PPEC.PPECPPVD bit remains unchanged even if

peripheral device protection violation is detected in the NT state. Therefore, the PPI

exception is not reported and the PPI exception does not occur.

Be sure to manipulate the PPMPPMSK bit while the PSW.PP bit is 0 and PPEC.PPECPPVD

bit is 0.

31

PPM 0 0 0

29 28

15

Initial value
00000000H

0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0
PPM
PP

MSK
0 0 0 0

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 258 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.2 PPEC – Controlling peripheral device protection exception

This register controls the report status of an exception. It can be accessed in units of 32, 16, or 8 bits.

Be sure to set bits 31 to 1 to “0”.

 Bit Position Bit Name Description

 0 PPEC

PPVDNote

This bit indicates the report status of the PPI exception.

When this bit is set (1), the PPI exception is reported to the CPU and the PPI exception is not

acknowledged. This bit is automatically cleared (0) as soon as the CPU has acknowledged

the PPI exception.

When the PPM.PPMPPMSK bit is set (1), this bit is automatically set (1) and the PPI

exception is reported if peripheral device protection violation is detected during operation in

the NT state. When the PPMPPMSK bit is 1, the value will not automatically change.

When the PPECPPVD bit is set and when PSW.PP = 1, data access of all instructions that

access memory is disabled (except data access by the SYSCALL instruction).

When the PPECPPVD bit is set (1), report of the PPI exception can be canceled by clearing

(0) the PPECPPVD bit by program. When report of the PPI exception has been canceled, the

CPU does not acknowledge the PPI exception.

 0: PPI exception is not reported (Initial value).

 1: PPI exception is reported.

 Note The PPECPPVD bit can only be cleared (0) by a write operation. It cannot be set (1).

31

PPEC 0 0 0

29 28

15

Initial value
00000000H

0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0
PPEC
PPVD 0 0 0 0

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 259 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.3 VPNECR – Peripheral device protection NT state violation cause
This 32-bit register saves information on an access that has violated peripheral device protection in the NT state. It can

be accessed in units of 32 bits.

Be sure to set bits 31 to 16, 11, 7, 6, and 3 to 1 to “0”.

 Bit Position Bit Name Description

 15 VPNECR

SP

This bit is set (1) if an access that has violated peripheral device protection is an access to a

special peripheral device when the peripheral device protection violation is detected in the NT

state. Otherwise, it is cleared (0).

 14 VPNECR

OP

This bit is set (1) if an access that has violated peripheral device protection is an access to an OS

peripheral device when the peripheral device protection violation is detected in the NT state.

Otherwise, it is cleared (0).

 13 VPNECR

RWP

This bit is set (1) if an access that has violated peripheral device protection is an access to a

general peripheral device that is protected from write and read accesses when the peripheral

device protection violation is detected in the NT state. Otherwise, it is cleared (0).

 12 VPNECR

WP
This bit is set (1) if an access that has violated peripheral device protection is an access to a

general peripheral device that is protected from write accesses when the peripheral device

protection violation is detected in the NT state. Otherwise, it is cleared (0).

 10 VPNECR

WD

This bit is set (1) if an access that has violated peripheral device protection is a word access when

the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).

 9 VPNECR

HW

This bit is set (1) if an access that has violated peripheral device protection is a halfword access

when the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared

(0).

 8 VPNECR

BY

This bit is set (1) if an access that has violated peripheral device protection is a byte access when

the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).

 5 VPNECR

RD

This bit is set (1) if an access that has violated peripheral device protection is a read access when

the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).

 4 VPNECR

WR

This bit is set (1) if an access that has violated peripheral device protection is a write access when

the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).

 0 VPNECR

VD

This bit indicates that peripheral device protection violation has been detected in the NT state. It is

set (1) if peripheral device protection violation is detected during an access to a peripheral device

in the NT state. If the VPNECRVD bit is set, the VPNECR, VPNADR, and VPNTID registers are

not updated but retained even if new peripheral device protection violation is detected in the NT

state. Be sure to clear (0) the VPNECRVD bit after completion of the exception processing.

Also be sure to clear (0) the VPNECRVD bit when using the peripheral device protection function.

31

VPNECR 0 0 0

29 28

15

Initial value
Undefined

VPN
ECR
SP

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8
VPN
ECR
OP

VPN
ECR
RWP

VPN
ECR
WP

0
VPN
ECR
WD

VPN
ECR
HW

VPN
ECR
BY

0

7 6 5 4 3 2 1 0

0 0
VPN
ECR
VD

0
VPN
ECR
RD

VPN
ECR
WR

0

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 260 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.4 VPNADR – Peripheral device protection NT state violation address

This 32-bit register saves an address to which an access that has violated peripheral device protection is made when

the peripheral device protection violation is detected in the NT state. It can be accessed in 32-bit units.

Caution The address saved to this register differs depending on the bus system of the product. For the

correspondence between the address stored in this register and the logical address of the

architecture, refer to the manual of the product.

 Bit Position Bit Name Description

 31 to 0 VPNADR If peripheral device protection violation is detected in the NT state, these bits store the memory

address at which the violation has occurred.

7.1.5 VPNTID – Peripheral device protection NT state violation task ID

This 32-bit register saves the ID of the task under execution when peripheral device protection violation is detected in

the NT state. It can be accessed in 32-bit units.

 Bit Position Bit Name Description

 31 to 0 VPNTID These bits store the contents of the identifier (value of the TID register) of the task that is executed

when the instruction that violates peripheral device protection is executed in the NT state.

31 0

VPNTID Initial value
UndefinedVPNTID

31 0

VPNADR
Initial value
UndefinedVPNADR

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 261 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.6 VPTECR – Peripheral device protection T state violation cause

This 32-bit register saves information on the access that has violated peripheral device protection when the peripheral

device protection violation is detected in the T state. It can be accessed in 32-bit units. Be sure to set 0 to bits 31 to 16,

14 to 11, 7, 6, and 3 to 1.

 Bit Position Bit Name Description

 15 VPTECR

SP

This bit is set (1) if an access that has violated peripheral device protection is an access to a special

peripheral device when the peripheral device protection violation is detected in the T state.

Otherwise, it is cleared (0).

 10 VPTECR

WD

This bit is set (1) if an access that has violated peripheral device protection is a word access when

the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).

 9 VPTECR

HW

This bit is set (1) if an access that has violated peripheral device protection is a halfword access

when the peripheral device protection violation is detected in the T state. Otherwise, it is cleared

(0).

 8 VPTECR

BY

This bit is set (1) if an access that has violated peripheral device protection is a byte access when

the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).

 5 VPTECR

RD

This bit is set (1) if an access that has violated peripheral device protection is a read access when

the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).

 4 VPTECR

WR

This bit is set (1) if an access that has violated peripheral device protection is a write access when

the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).

 0 VPTECR

VD

This bit indicates that peripheral device protection violation has been detected in the T state. It is

set (1) if peripheral device protection violation is detected during an access to a peripheral device in

the T state. If the VPTECRVD bit is set, the VPTECR, VPTADR, and VPPTID registers are not

updated but retained even if new peripheral device protection violation is detected in the T state. Be

sure to clear (0) the VPTECRVD bit after completion of the exception processing.

Also be sure to clear (0) the VPTECRVD bit when using the peripheral device protection function.

31

VPTECR 0 0 0

29 28

15
Initial value
Undefined

VPT
ECR
SP

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

0 0 0 0
VPT
ECR
WD

VPT
ECR
HW

VPT
ECR
BY

0

7 6 5 4 3 2 1 0

0 0
VPT
ECR
VD

0
VPT
ECR
RD

VPT
ECR
WR

0

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 262 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.7 VPTADR – Peripheral device protection T state violation address

This 32-bit register saves an address to which the access that has violated peripheral device protection is made when

the peripheral device protection violation is detected in the T state. It can be accessed in 32-bit units.

Caution The address saved to this register differs depending on the bus system of the product. For the

correspondence between the address stored in this register and the logical address of the

architecture, refer to the manual of the product.

 Bit Position Bit Name Description

 31 to 0 VPTADR If peripheral device protection violation is detected in the T state, these bits store the memory

address at which the violation has occurred.

7.1.8 VPTTID – Peripheral device protection T state violation task ID

This 32-bit register saves the ID of the task under execution when peripheral device protection violation is detected in

the T state. It can be accessed in 32-bit units.

 Bit Position Bit Name Description

 31 to 0 VPTTID These bits store the contents of the identifier (value of the TID register) of the task that is executed

when the instruction that violates peripheral device protection is executed in the T state.

31 0

VPTADR Initial value
UndefinedVPTADR

31 0

VPTTID Initial value
UndefinedVPTTID

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 263 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.9 PPSn – Specification of special peripheral device

This register specifies a peripheral device corresponding to each of its bits as a special peripheral device. It can be

accessed in units of 32, 16, 8, or 1 bit. This register is set to the initial value defined for each product at reset.

 Bit Position Bit Name Description

 31 to 0 PPSn31 to

PPSn0

Each of these bits specifies a corresponding peripheral device as a special peripheral device.

When this bit is set to 1, it is recommended to set the bit of the PPPn, PPVn, and PPTn registers

corresponding to this bit to 1.

The special peripheral device detects all accesses as peripheral device protection violation even

while a trusted program is being executed (T state).

 0: Peripheral device corresponding to this bit is not a special peripheral device.

 1: Peripheral device corresponding to this bit is a special peripheral device.

The initial value is defined as the product specification in accordance with each system requirement,

and may be fixed to a specific value.

31

PPSn PPSn
31

PPSn
30

PPSn
28

29 28

15
Initial value

Refer to
Table 7-2

PPSn
15

PPSn
29

PPSn
27

27

PPSn
26

PPSn
25

PPSn
24

PPSn
23

PPSn
22

PPSn
21

PPSn
20

PPSn
19

PPSn
18

PPSn
17

PPSn
16

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

PPSn
14

PPSn
13

PPSn
12

PPSn
11

PPSn
10

PPSn
9

PPSn
8

PPSn
7

7 6 5 4 3 2 1 0
PPSn

2
PPSn

1
PPSn

0
PPSn

6
PPSn

5
PPSn

4
PPSn

3

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 264 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.10 PPPn – Specification of OS peripheral device

This register specifies a peripheral device of an area corresponding to each of its bits as an OS peripheral device. It

can be accessed in units of 32, 16, 8, or 1 bit. This register is set to the initial value defined for each product after reset.

 Bit Position Bit Name Description

 31 to 0 PPPn31 to

PPPn0

Each of these bits specifies a corresponding peripheral device as an OS peripheral device.

When this bit is set to 1, it is recommended to set the bit of the PPVn and PPTn register

corresponding to this bit to 1. If the specified peripheral device has already been specified as a

special peripheral device by the PPSn register, setting this bit to 1 is recommended.

The OS peripheral device can be accessed only by a trusted program (T state). All accesses to the

OS peripheral device from a program not trusted (NT state) are detected as peripheral device

protection violation.

 0: Peripheral device corresponding to this bit is not an OS peripheral device.

 1: Peripheral device corresponding to this bit is an OS peripheral device.

The initial value is defined as the product specification in accordance with each system requirement,

and may be fixed to a specific value.

31

PPPn PPPn
31

PPPn
30

PPPn
28

29 28

15
Initial value

Refer to
Table 7-2

PPPn
15

PPPn
29

PPPn
27

27

PPPn
26

PPPn
25

PPPn
24

PPPn
23

PPPn
22

PPPn
21

PPPn
20

PPPn
19

PPPn
18

PPPn
17

PPPn
16

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

PPPn
14

PPPn
13

PPPn
12

PPPn
11

PPPn
10

PPPn
9

PPPn
8

PPPn
7

7 6 5 4 3 2 1 0

PPPn
2

PPPn
1

PPPn
0

PPPn
6

PPPn
5

PPPn
4

PPPn
3

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 265 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.11 PPVn – Validating general peripheral device protection

This register specifies whether an access to a general peripheral device is detected as violation. It can be accessed in

units of 32, 16, 8, or 1 bit. This register is set to the initial value defined for each product at reset.

 Bit Position Bit Name Description

 31 to 0 PPVn31

to

PPVn0

These bits validate or invalidate the access limitation of a non-trusted program under execution if

the peripheral device corresponding to each of these bits is a general peripheral device.

If the peripheral device has already been specified as a special peripheral device by the PPSn

register or as an OS peripheral device by the PPPn register, it is recommended to set this bit to 1.

An access to a general peripheral device is not limited and violation is not detected if this bit is

cleared (0). If this bit is set (1), violation may be detected in accordance with the specification of the

corresponding bit of the PPTn register.

 0: Access to the general peripheral device corresponding to this bit is not limited.

 1: Access to the general peripheral device corresponding to this bit is limited.

The initial value is defined as the product specification in accordance with each system requirement,

and may be fixed to a specific value.

31

PPVn PPVn
31

PPVn
30

PPVn
28

29 28

15
Initial value

Refer to
Table 7-2

PPVn
15

PPVn
29

PPVn
27

27

PPVn
26

PPVn
25

PPVn
24

PPVn
23

PPVn
22

PPVn
21

PPVn
20

PPVn
19

PPVn
18

PPVn
17

PPVn
16

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

PPVn
14

PPVn
13

PPVn
12

PPVn
11

PPVn
10

PPVn
9

PPVn
8

PPVn
7

7 6 5 4 3 2 1 0

PPVn
2

PPVn
1

PPVn
0

PPVn
6

PPVn
5

PPVn
4

PPVn
3

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 266 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.1.12 PPTn – Specification protection type of general peripheral device

This register sets details of violation protection of an access to a general peripheral device. It can be accessed only by

reading, in units of 32, 16, 8, or 1 bit.

 Bit Position Bit Name Description

 31 to 0 PPTn31 to

PPTn0

These bits indicate the contents of the access limit of a non-trusted program under execution if the

peripheral device corresponding to each of these bits is a general peripheral device.

If the peripheral device has already been specified as a special peripheral device by the PPSn

register or as an OS peripheral device by the PPPn register, it is recommended to set this bit to 1.

If the access is limited by a bit of the PPVn register, an access to the specified peripheral device is

limited as follows.

 0: A read access to the general peripheral device corresponding to this bit is not limited.

A write access to the general peripheral device corresponding to this bit is assumed as

violation.

 1: A read access to the general peripheral device corresponding to this bit is assumed as

violation.

A write access to the general peripheral device corresponding to this bit is assumed as

violation.

The initial value is defined as the product specification in accordance with each system requirement,

and may be fixed to a specific value.

31

PPTn PPTn
31

PPTn
30

PPTn
28

29 28

15
Initial value

Refer to
Table 7-2

PPTn
15

PPTn
29

PPTn
27

27
PPTn

26
PPTn

25
PPTn

24
PPTn

23
PPTn

22
PPTn

21
PPTn

20
PPTn

19
PPTn

18
PPTn

17
PPTn

16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

PPTn
14

PPTn
13

PPTn
12

PPTn
11

PPTn
10

PPTn
9

PPTn
8

PPTn
7

7 6 5 4 3 2 1 0
PPTn

2
PPTn

1
PPTn

0
PPTn

6
PPTn

5
PPTn

4
PPTn

3

30

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 267 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.2 Standing of Memory Protection and Peripheral Device
Protection

The V850E2M CPU uses memory mapped I/O, which means that memory protection is equally applied to the data

areas in the CPU address space. Therefore, memory protection and peripheral device protection are applied each time the

data in a peripheral device is accessed. This is because the V850E2M CPU employs memory-mapped I/O architecture

and because memory protection is equally applied to the data area in the address space of the CPUNote.

The CPU first makes a judgment, by using the memory protection function, whether a data access to a peripheral

device is enabled or disabled, and detects violation. If the CPU judges that the access is disabled and detects violation,

peripheral device protection does not operate and the MDP exception immediately occurs. If the CPU judges that the

access is enabled, it makes a judgment, by using the peripheral device protection function, whether this access is enabled

or disabled, and detects violation. If the CPU judges that the access is disabled and detects violation, the PPI exception

may be generated in some cases, in accordance with the operation setting of peripheral device protection and the status

of the CPU. If the CPU judges that the access is enabled, a data access to the peripheral device is executed.

Note Peripheral device protection is not applied to instruction accesses that occur as a result of program execution or

branch.

Figure 7-1 shows the relationship between memory protection and peripheral device protection.

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 268 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 7-1. Standing of Memory Protection and Peripheral Device Protection

7.3 Types of Peripheral Devices

Generally, the user of a peripheral device is defined or the situation where the peripheral device is to be used is

restricted in accordance with the usage assumed for each system. Peripheral device protection classifies each peripheral

device (or a group of peripheral devices) into the following three categories for management.

 Special peripheral device

 OS peripheral device

 General peripheral device

Violation detected?

Detection of violation of
memory protection in

program area

No

Yes

Start of instruction
access

(a) Peripheral device protection to program area (b) Peripheral device protection to data area

MIP exception
generated

Execution of instruction
access (access to peripheral

device generated)

Violation detected?

Detection of violation of
memory protection in

data area

Detection of violation of
peripheral device

protection

No

Yes

Start of data access

MDP exception
generated

Violation detected?

No

Yes

Execution of data access
(access to peripheral

device generated)

Operation when peripheral
device protection violation is

detected

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 269 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.3.1 Setting types of peripheral devices

A combination of the bits of the same number of the PPSn and PPPn registers indicate the type of each peripheral

device. Table 7-2 shows which type of peripheral device protection is applied depending on the combination of these bits.

Do not change the PPS and PPP registers while the system is operating except when initializing the system or OS (and

programs similar to it).

Table 7-2. Types of Peripheral Devices

Bit of PPSn Bit of PPPn Type

1 0 or 1 (1 is recommended) Special peripheral device

0 1 OS peripheral device

0 0 General peripheral device

(1) Special peripheral device

Of the peripheral devices, the ones that control the most basic environment for the processor to operate are

especially called special peripheral devices. For example, peripheral devices that control clock or power supply

should be prevented from an inadvertent access under any circumstances. Against this background, a peripheral

device specified as a special peripheral device is controlled so that it cannot be accessed even by a “trusted

program” unless a specific procedure is followed.

(2) OS peripheral device

Of the peripheral devices, the ones that can be accessed only by a “trusted program” are treated as “OS peripheral

devices” because the OS is the representative trusted program. Specify peripheral devices important for OS (and

programs similar to it) to at least guarantee its own operation as OS peripheral devices. For example, peripheral

devices, such as an interrupt controller and a DMA controller, that make the system unstable if they are used

inadvertently should be specified as OS peripheral devices. An OS peripheral device is not enabled to be

accessed by a user application that is a “non-trusted program”. Therefore, the OS (and programs similar to it) can

guarantee its own operation no matter what operation the user application may perform.

(3) General peripheral device

Peripheral devices that can be accessed even by a “non-trusted program” are treated as “general peripheral

devices”. All peripheral devices that are neither special peripheral devices nor OS special devices are treated as

general peripheral devices. Assign peripheral devices that have little influence on the overall system even if they

are treated with relatively loose regulations, such as general-purpose timers, A/D converters, and macros for

communication, as general peripheral devices. For general peripheral devices, a mechanism to perform different

access control for each user application is provided.

For details, refer to 7.3.2 Detailed protection setting of general peripheral device.

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 270 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.3.2 Detailed protection setting of general peripheral device

All accesses from a non-trusted program to special peripheral devices and OS peripheral devices are detected as

violation. However, a right to access a general peripheral device can be specified for each program under execution.

Therefore, detailed protection policy must be specified for the general peripheral device by using combinations of the bits

of the PPVn and PPTn registers.

The OS (and programs similar to it) can set a value appropriate for each program to the PPVn register before execution

of the program is

started. As a result, accesses to the general peripheral device, which are different from one program to another under

execution, can be controlled, and precise peripheral device protection can be realized.

In addition to the PPVn register, the OS (and programs similar to it) can change the PPTn register value. However, it is

recommended not to frequently change the PPTn register during system operation in order to avoid a degradation in

performance when switching tasks.

Table 7-3. Controlling Access to General Peripheral Device

Bit of PPVn Bit of PPTn Access Control of General Peripheral Device

0 0 or 1 (1 is recommended) Read enabled/write enabled

1 0 Read enabled/write disabled

1 1 Read disabled/write disabled

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 271 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.4 Peripheral Device Protection Violation in T State

The CPU indicates the T state (PSW.PP bit = 0) when it executes a trusted program. In this state, peripheral device

protection violation is detected only if an access to a special peripheral device is made. If a violation is detected in the T

state, the peripheral device protection function performs the following operations.

 Blocks the access that has caused the violation and does not output it to the peripheral device.

 Stores information on the access that has caused the violation in the VPTECR, VPTTID, and VPTADR registers.

To avoid interrupting critical processing that might be performed while in the T state, exceptions are not generated.

During operation, check the violation information stored in the VPTECR, VPTTID, and VPTADR registers at the

appropriate times, and perform processing for any violations that occur.

When execution is blocked due to a read access violation detected in the peripheral device, the destination register of

the load command is updated. At this time, the value stored in the destination register is defined as a product specification.

7.5 Peripheral Device Protection Violation in NT State

The CPU indicates the NT state (PSW.PP bit = 1) when it executes a program that is not trusted. In this state,

peripheral device protection violation is detected when an access is made to any of the special peripheral, OS peripheral,

and general peripheral devices. If violation is detected in the NT state, the peripheral device protection function performs

the following operations that are different from those performed in the T state.

 The access that caused the violation is blocked to prevent effects on peripheral devices.

 Stores information on the access that has caused violation in the VPNECR, VPNTID, and VPNADR registers.

 Reports the PPI exception to the CPU and waits for the start of the PPI exception processing.

 Until the PPI exception processing is started, invalidates all the subsequent memory accesses in the NT state

(not only accesses to the peripheral devices but also all accesses to the memory).

For invalidation, refer to 7.5.1 Invalidating subsequent accesses.

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 272 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.5.1 Invalidating subsequent accesses

If a peripheral device protection violation by an untrusted program running in the NT state is detected, continuing to

execute that program can be judged to be dangerous, and exception processing can be started by using a PPI exception

to call the OS (and programs similar to it).

However, due to hardware limitations, the PPI exception is not reported immediately, and there might be a delay before

the exception processing starts. At the same time, if there is software processing being performed that cannot be broken

up, it might be undesirable to start exception processing. In cases like these, untrusted programs might continue to

execute instructions from when the peripheral device protection violation is detected until the PPI exception processing

starts.

To resolve this problem, all succeeding memory access is disabled from when a peripheral device protection violation

is detected using the NT state until the PPI exception processing starts. After this access is disabled, the system is

handled as though memory access requests do not exist, so updates to CPU-external resources by instructions issued

after an instruction caused a peripheral device protection violation can be prevented.

Access is typically disabled until the PPI exception processing starts, but, if an interrupt or some other process causes

the system to start executing a different program that is in the T state, access is not disabled while the program is in this

state. If return processing is performed and the system again enters the NT state, memory access is again disabled.

Figure 7-2. Invalidating Subsequent Memory Accesses

This specification assumes that “non-trusted programs” are scheduled by the OS (and programs similar to it) and that,

before other “non-trusted program” is executed, the OS (and programs similar to it) always performs PPI exception

processing and then execute the other “non-trusted program”. By controlling the programs in this way, invalidation that

took place in a “non-trusted program (NT state)” can be prevented from affecting the other “non-trusted program (NT

state)”. “Trusted programs (T state)” are not invalidated in the first place.

When execution is blocked or invalidated due to a read access violation detected in the peripheral device, the

destination register of the load instruction is updated.

Exception acknowledged

PPI exception reported

Program Exception processing

Invalidated Invalidated

Time

Execution
blocked

Peripheral
device 2 RAM Peripheral

device 3RAM Peripheral
device 1

Peripheral
device 2

Violation
detected

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 273 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.6 Handling PPI Exception

If peripheral device protection violation is detected in a “non-trusted program” that operates in the NT state, it is judged

that continuing execution of that program is dangerous, the OS (and programs similar to it) is called through PPI exception,

and the exception processing is immediately started.

7.6.1 Canceling PPI exception

Acknowledging the PPI exception may be delayed because of delayed report or indivisible atomic operations of the

program. Before processing of the PPI exception is started, the program that has generated the PPI exception may

execute termination processing. To avoid this problem, be sure to cancel the PPI exception by using the SYNCE

instruction and the PPECPPVD bit of the PPEC register to cancel invalidation before the termination processing. For

details, refer to 6.3 Exception Management in PART 2.

7.6.2 Operation method not using PPI exception

Depending on the application, the generation of an exception during operation can mess up a program sequence and

lead to loss. For cases like this, operation in which peripheral device protection does not cause PPI exceptions is possible.

To perform such operation, set the PPM.PPMPPMSK bit to 1. If this bit is set, the PPEC.PPECPPVD bit is no longer

set to 1 when a peripheral device protection violation is detected, and PPI exceptions do not occur. During operation,

check the violation information stored in the VPNECR, VPNTID, and VPNADR registers at the appropriate times, and

perform processing for any violations that occur.

7.6.3 Operation to be performed by PPI exception processing

When exception processing has been performed, clear the VPNECR.VPNECRVD bit so that violation information is

correctly saved after execution is returned from the exception processing and when the next violation is detected. If this

bit is not cleared, violation information corresponding to a memory access that has caused the next violation is not stored

even if the next violation is detected.

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 274 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.7 List of Results of Detection of Peripheral Device Protection
Violation

The results of detecting violations in the NT and T states, and the types of peripheral device protections can be

summarized as shown in Table 7-4.

Table 7-4. Results of Detecting Peripheral Device Protection Violation

Trusted Program
(T state)

Non-trusted Program
(NT state)

PSW.PP = 0 PSW.PP = 1

Type of Peripheral
Device

PPSn PPPn PPTn PPVn

Read Write Read Write

Special peripheral
device

1 0 or 1 (1 is
recommended)

0 or 1 (1 is
recommended)

0 or 1 (1 is
recommended)

Violation Violation Violation Violation

OS peripheral
device

0 1 0 or 1 (1 is
recommended)

0 or 1 (1 is
recommended)

  Violation Violation

1   Violation Violation

0

1

   Violation

General
peripheral device

0 0

0 or 1 (1 is
recommended)

0    

Operations after detection of violation can be summarized as follows.

Table 7-5. Operations After Detection of Peripheral Device Protection Violation

Status on Violation Detection T State NT State

PSW.PP 0 1

PPM.PPMPPMSK 0 or 1 0 1

Blocking violating access Blocked Blocked

Saving violation information Stored in VPTECR/VPTTID/VPTADR Stored in VPNECR/VPNTID/VPNADR

PPI exception Does not occur Occurs Does not occur

Invalidation of successive accesses Not invalidated Invalidated

7.8 Accessing Special Peripheral Devices

Usually, violation by an access to a special peripheral device is detected and blocked in both the NT and T states. To

access special peripheral devices in order to control the system behavior, perform the following procedure.

<1> Transfer execution to a trusted program that operates in the T state.

<2> Clear the bits of the PPSn register corresponding to the special peripheral device to be accessed, and

temporarily change the device to an OS peripheral device.

<3> Access the peripheral device.

<4> Restore the bits of the PPSn register which have been changed in <2> to the original status (set).

Caution The system security can be increased by making it impossible to access special peripheral

devices by using procedures other than the above. Because changing special peripheral

devices to OS peripheral devices reduces the system security, it is recommended to

minimize how much time is spent making changes by using the above procedure.

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

R01US0001EJ0100 Rev.1.00 Page 275 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

7.9 Protection Setting of Peripheral Device Protection Setting
Registers

The peripheral I/O registers that set peripheral device protection itself are subject to peripheral device protection. The

peripheral device protection setting registers are protected by either of the following policies.

 The peripheral device protection setting registers are implicitly OS peripheral devices.

 Define the PPSn, PPPn, PPVn, and PPTn bits corresponding to the peripheral device protection setting registers.

Cautions 1. However, be sure to fix the bits on the PPSn corresponding to the peripheral device

protection setting registers to 0.

 2. The bits on PPPn, PPVn, and PPTn corresponding to the peripheral device protection

setting registers may be fixed to any value or could be variable bits. However, if a

peripheral device other than an OS peripheral device is indicated by these bits, there

is no guarantee that the OS (and programs similar to it) will offer protection functions.

7.10 Special Peripheral Device Access Instruction

7.10.1 SYSCALL instruction
The SYSCALL instruction is used to call a service supplied by a management program such as an OS.

The service is a trusted program and the address table to branch to the service is also trusted. Therefore, peripheral

device protection is not applied to the peripheral device access by the SYSCALL instruction even if the PSW.PP bit is set

(1).

Consequently, the PPI exception is never detected while the SYSCALL instruction is executed.

Because the exception is not detected, peripheral device protection and the SYSCALL instruction can also be used, for

example, when test code is placed in the peripheral device area during debugging.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 276 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 8 TIMING SUPERVISION FUNCTION

Timing supervision function is performed to manage times such as program execution time and to prevent the CPU

execution time from being excessively monopolized.

The timing supervision function provides the following six types of supervision functions by operating six counters each

having the same function in accordance with a specific operation method.

 Runtime supervision function

 Deadline supervision function

 Resource supervision function

 Global interrupt lock supervision function

 Software interrupt lock supervision function

 Supervising number of times of interrupt arrival

Each counter has a 28-bit count width and counts in each clock cycle of the CPU. It also has a divided count function

of 1 to 1024 and a count range of up to 1.34 seconds at an accuracy of the CPU clock cycle, or up to 1374 seconds (about

23 minutes) at an accuracy 1024 times the CPU clock cycle (where the CPU frequency is 200 MHz).

If violation is detected as a result of supervising the CPU status by each counter in accordance with setting, a TSI

exception occurs. The TSI exception is defined as an FE level exception, and can forcibly start exception processing even

while an ordinary user application is in a critical section (period during which the PSW.ID bit is 1 and interrupts are not

acknowledged). For the TSI exception, refer to 8.5 Handling of TSI Exception.

8.1 Register Set

Table 8-1 lists the peripheral device registers related to the timing supervision function.

All registers related to timing supervision function are placed in the peripheral device register area. The base address

for the timing supervision function register set is defined by hardware and is FFFF5000H for the V850E2M CPU.

Table 8-1. Timing Supervision Function Register Set

Accessible Size Register Name Address

1 8 16 32

Initial Value

TSEC 00H     00000000H

TSECR 04H    00000000H

TSCCFGn 20H + (n*10H) + 0H    00000000H

TSCCNTn 20H + (n*10H) + 4H  Refer to Table 8-2.

TSCCMPn 20H + (n*10H) + 8H  Refer to Table 8-2.

TSCRLDn 20H + (n*10H) + CH  Refer to Table 8-2.

Remark n = 0 to 5

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 277 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

The names, addresses, and initial values of the timing supervision function counter registers for the V850E2M CPU (the

TSCCFGn, TSCCNTn, TSCCMPn, and TSCRLDn registers) are shown in Table 8-2.

Table 8-2. Timing Supervision Function Cunter Register of V850E2M CPU

Register

Name

Address Initial Value TSU counter

TSCCFG0 FFFF5020H 00000000H

TSCCNT0 FFFF5024H 00000000H

TSCCMP0 FFFF5028H 00000000H

TSCRLD0 FFFF502CH 00000000H

TSU counter 0

TSCCFG1 FFFF5030H 00000000H

TSCCNT1 FFFF5034H 00000000H

TSCCMP1 FFFF5038H 00000000H

TSCRLD1 FFFF503CH 00000000H

TSU counter 1

TSCCFG2 FFFF5040H 00000000H

TSCCNT2 FFFF5044H 00000000H

TSCCMP2 FFFF5048H 00000000H

TSCRLD2 FFFF504CH 00000000H

TSU counter 2

TSCCFG3 FFFF5050H 00000000H

TSCCNT3 FFFF5054H 00000000H

TSCCMP3 FFFF5058H 00000000H

TSCRLD3 FFFF505CH 00000000H

TSU counter 3

TSCCFG4 FFFF5060H 00000000H

TSCCNT4 FFFF5064H 00000000H

TSCCMP4 FFFF5068H 00000000H

TSCRLD4 FFFF506CH 00000000H

TSU counter 4

TSCCFG5 FFFF5070H 00000000H

TSCCNT5 FFFF5074H 00000000H

TSCCMP5 FFFF5078H 00000000H

TSCRLD5 FFFF507CH 00000000H

TSU counter 5

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 278 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.1.1 TSEC – Controlling timing supervision

This register has function bits that control the timing supervision function. It can be accessed in units of 32, 16, 8, or 1

bit.

Be sure to set bits 31 to 1 to “0”.

 Bit Position Bit Name Description

 0 TSECES

UP

While the TSECESUP bit is set, the timing supervision counter is kept from making a request.

The TSECESUP bit is automatically set (1) as soon as the TSI exception has been

acknowledged, and report of the TSI exception is controlled. As a result, starting another TSI

exception is prevented while the first TSI exception is being processed. A TSI exception that

occurs while the TSECESUP bit is held pending. After the TSECESUP bit is cleared, the TSI

exception is not lost but requested again.

Be sure to clear (0) the TSECESUP bit before completion of TSI exception processing.

31

TSEC 0 0 0

29 28

15
Initial value
00000000H

0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0
TSEC
ESUP0 0 0 0

30

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 279 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.1.2 TSECR – Timing supervision exception cause

This is an exception cause register of timing supervision exception (TSI exception). It can be accessed in units of 32,

16, or 8 bits.

Be sure to set bits 31 to 6 to “0”.

 Bit Position Bit Name Description

 5 TSECR

ES5

This is the exception cause bit of timing supervision counter 5.

It is a mapping bit of the TSCCFG5.TSCCFG5ES bit.

 4 TSECR

ES4

This is the exception cause bit of timing supervision counter 4.

It is a mapping bit of the TSCCFG4. TSCCFG4ES bit.

 3 TSECR

ES3

This is the exception cause bit of timing supervision counter 3.

It is a mapping bit of the TSCCFG3. TSCCFG3ES bit.

 2 TSECR

ES2

This is the exception cause bit of timing supervision counter 2.

It is a mapping bit of the TSCCFG2. TSCCFG2ES bit.

 1 TSECR

ES1

This is the exception cause bit of timing supervision counter 1.

It is a mapping bit of the TSCCFG1. TSCCFG1ES bit.

 0 TSECR

ES0

This is the exception cause bit of timing supervision counter 0.

It is a mapping bit of the TSCCFG0. TSCCFG0ES bit.

31

TSECR 0 0 0

29 28

15

Initial value
00000000H

0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

TSECR
ES2

TSECR
ES1

TSECR
ES0 0

TSECR
ES5

TSECR
ES4

TSECR
ES3

30

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 280 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.1.3 TSCCFGn – Setting of timing supervision function counter n (n = 0 to 5)
This register is used to set counter n for timing supervision (n = 0 to 5). It can be accessed in units of 32, 16, or 8 bits.

Be sure to set 0 to bits 31 to 27, 23, 22, 19, 15 to 11, and 7 to 4.

The TSCCFGn register allocates each of its fields at a 1-byte boundary. Therefore, to access any of the fields, a partial

operation can be performed by accessing a byte (for example, to clear only a status, write a byte to an address of offset +

1H).

(1/3)

 Bit Position Bit Name Description

 26 to 24 TSCCFGn

RES

These bits select the resolution of the timing supervision counter.

 000: Counts every 1 clock cycle.

 001: Counts every 4 clock cycles.

 010: Counts every 16 cock cycles.

 011: Counts every 64 clock cycles.

 100: Counts every 256 clock cycles.

 101: Counts every 1024 clock cycles.

 110: RFU

 111: RFU

 21, 20 TSCCF

GnCTM

These bits select an operation mode.

 00: Normal mode

 01: Global interrupt lock supervision mode

 10: Runtime supervision mode

 11: RFU

 Normal mode

The timing supervision counter operates as an ordinary counter in this mode. The counter is not

automatically started or stopped.

 Global interrupt lock supervision mode

In this mode, the value of the TSCRLDn.TSCRLDnVAL bit is automatically transferred to the

TSCCNTn.TSCCNTnVAL bit when the PSW.ID bit changes from 0 to 1. After that,

TSCCFGnACT is updated to 1, and the counter starts counting. TSCCFGnACT is automatically

updated to 0 and the counter is stopped when the PSW.ID bit changes from 1 to 0.

 Runtime supervision mode

In this mode, the value of TSCCFGnACT is automatically transferred to TSCCFGnEIACT/

TSCCFGnFEACT when an EI level or FE level exception is acknowledged. TSCCFGnACT is

updated to 0 and the counter is stopped.

When the EIRET/FERET instruction is executed, the value of TSCCFGnEIACT/

TSCCFGnFEACT bit is automatically transferred to TSCCFGnACT. If TSCCFGnACT is set to 1

as a result, counting is resumed.

TSCCFGnRES

31

TSCCFGn 0 0 0

29 28

15

Initial value
00000000H

0

0 0

27

0 0 TSCCFGn
CTM

0
TSC

CFGn
ARM

TSC
CFGn
EXM

TSC
CFGn
UDM

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

0 0 0 0
TSC

CFGn
OS

TSC
CFGn

ES

TSC
CFGn

VS
0

7 6 5 4 3 2 1 0
TSC

CFGn
FE

ACT

TSC
CFGn
EIACT

TSC
CFGn
ACT

0 0 0
TSC

CFGn
RLD

30

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 281 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2/3)

 Bit Position Bit Name Description

 18 TSCCFGn

ARM

Enables or disables auto reloading.

This bit selects whether the value of the TSCRLDn. TSCRLDnVAL bit is to be transferred to the

TSCCNTn.TSCCNTnVAL bit or not if violation is detected (if TSCCNTn.TSCCNTnVAL and

TSCCMPn.TSCCMPnVAL bits match).

 0: Does not execute auto reloading (disabled).

 1: Executes auto reloading (enabled).

 17 TSCCFGn

EXM

This bit selects an exception mode.

It selects whether the TSI exception is reported if violation is detected (if TSCCNTn.VAL and

TSCCMPn.VAL bits match).

 0: Mode not to report TSI exception. TSI exception is not reported.

 1: Mode to report TSI exception. TSI exception is reported.

 16 TSCCFGn

UDM

This bit selects a counting direction of the counter.

 0: Counter operates as an up counter (addition).

 1: Counter operates as a down counter (subtraction).

 10 TSCCFGn

OSNote

This is the overflow bit of the counter.

It is set if the TSCCNTn.VAL bit overflows or underflows.

 0: This counter does not overflow or underflow.

 1: This counter overflows or underflows.

 9 TSCCFGn

ESNote

This is an exception cause bit.

It is set if the TSI exception is acknowledged when the exception mode is the “mode to report TSI

exception (TSCCFGnEXM = 1)”. Be sure to clear (0) this bit before completion of the TSI exception

processing.

 0: This counter is not the cause of the TSI exception currently under processing.

 1: This counter is the cause of the TSI exception currently under processing.

 8 TSCCFGn

VSNote

This bit detects violation.

 0: Violation is not detected.

 1: Violation is detected.

This bit is set if violation is detected (if TSCCNTn.VAL and TSCCMPn.VAL match).

The TSI exception is requested if the exception mode is the “mode to report TSI exception

(TSCCFGnEXM = 1)” and this bit is set.

This bit is cleared if the TSI exception is acknowledged while the counter is requesting the TSI

exception.

If this bit is cleared by software processing, the request for the TSI exception by the counter can be

canceled.

 3 TSCCFGn

RLD

This is a reload command bit.

If this bit is set (1), the TSCTSCCFGnRLDn.VAL bit is transferred to the TSCCNTn.VAL bit.

This bit is always 0 when read.

 Note The TSCCFGnOS, TSCCFGnVS, and TSCCFGnES bits can only be cleared (0) by a write operation.

They cannot be set (1).

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 282 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3/3)

 Bit Position Bit Name Description

 2 TSCCFGn

FEACT

This bit saves the content of the TSCCFGnACT bit when an FE level exception is acknowledged.

 In runtime supervision mode

This bit transfers the content of the TSCCFGnACT bit to the TSCCFGnFEACT bit and clears (0)

the TSCCFGnACT bit when an FE level exception is acknowledged.

It transfers the content of the TSCCFGnFEACT bit to the TSCCFGnACT bit when the FERET

instruction is executed.

 In mode other than runtime supervision mode

The content of the TSCCFGnFEACT bit is not transferred to the TSCCFGnACT bit even when

the FERET instruction is executed.

 1 TSCCFGn

EIACT

This bit saves the content of the TSCCFGnACT bit when an EI level exception is acknowledged.

 In runtime supervision mode

This bit transfers the content of the TSCCFGnACT bit to the TSCCFGnEIACT bit and clears (0)

the TSCCFGnACT bit when an EI level exception is acknowledged.

It transfers the content of the TSCCFGnEIACT bit to the TSCCFGnACT bit when the EIRET

instruction is executed.

 In mode other than runtime supervision mode

The content of the TSCCFGnEIACT bit is not transferred to the TSCCFGnACT bit even when

the EIRET instruction is executed.

 0 TSCCFGn

ACT

This bit indicates that the counter is operating or stopped. By setting (1) this bit, the counter

operation can be started. By clearing (0) it, the counter can be stopped.

 0: Stopped

 1: Operating

The value of this bit automatically changes in the runtime supervision mode and global interrupt lock

supervision mode. For details, refer to the description of the TSCCFGnCTM bit.

This bit is fixed to 0 if the MPM.MPE bit is 0. As a result, the timing supervision counter does not

operate, and does not detect violation and request the TSI exception.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 283 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.1.4 TSCCNTn – Count value of timing supervision counter n (n = 0 to 5)

This is the count register of timing supervision counter n (n = 0 to 5). It can be accessed in 32-bit units.

 Bit Position Bit Name Description

 31 TSCCNTn

RLD

This is a reload command bit.

It is a mapping bit of the TSCCFGn.TSCCFGnRLD bit.

 30 TSCCNTn

FEACT

This bit saves the content of the TSCCFGnACT bit when an FE level exception is acknowledged.

It is a mapping bit of the TSCCFGn.TSCCFGnFEACT bit.

 29 TSCCNTn

EIACT

This bit saves the content of the TSCCFGnACT bit when an EI level exception is acknowledged.

It is a mapping bit of the TSCCFGn.TSCCFGnEIACT bit.

 28 TSCCNTn

ACT

This bit indicates whether the counter is operating or stopped.

It is a mapping bit of the TSCCFGn.TSCCFGnACT bit.

 27 to 0 TSCCNTn

VAL

These bits indicate the current value of the counter.

Violation is detected if TSCCNTn.TSCCNTnVAL and TSCCMPn. TSCCMPnVAL match.

TSCCNTnVAL

31

TSCCNTn
TSC

CNTn
RLD

TSC
CNTn

FEACT

TSC
CNTn
ACT

29 28

15

Initial value
Undefined

TSC
CNTn
EIACT

27 26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSCCNTnVAL

30

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 284 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.1.5 TSCCMPn – Comparison value of timing supervision counter n (n = 0 to 5)

This is a compare register of the timing supervision counter (n = 0 to 5). It can be accessed in 32-bit units.

 Bit Position Bit Name Description

 31 TSCCMPn

RLD

This is a reload command bit.

It is a mapping bit of the TSCCFGn.TSCCFGnRLD bit.

 30 TSCCMPn

FEACT

This bit saves the content of the TSCCFGnACT bit when an FE level exception is acknowledged.

It is a mapping bit of the TSCCFGn.TSCCFGnFEACT bit.

 29 TSCCMPn

EIACT

This bit saves the content of the TSCCFGnACT bit when an EI level exception is acknowledged.

It is a mapping bit of the TSCCFGn.TSCCFGnEIACT bit.

 28 TSCCMPn

ACT

This bit indicates whether the counter is operating or stopped.

It is a mapping bit of the TSCCFGn.TSCCFGnACT bit.

 27 to 0 TSCCMPn

VAL

These bits indicate the comparison value of the counter.

Violation is detected if TSCCNTn.TSCCNTnVAL and TSCCMPn.TSCCMPnVAL match.

TSCCMPnVAL

31

TSCCMPn
TSC

CMPn
RLD

TSC
CMPn
FEACT

TSC
CMPn
ACT

29 28

15
Initial value
Undefined

TSC
CMPn
EIACT

27 26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSCCMPnVAL

30

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 285 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.1.6 TSCRLDn – Reload value of timing supervision counter n (n = 0 to 5)

This is a reload register of timing supervision counter n (n = 0 to 5). It can be accessed in 32-bit units.

 Bit Position Bit Name Description

 31 TSCRLDn

RLD

This is a reload command bit.

It is a mapping bit of the TSCCFGn.TSCCFGnRLD bit.

 30 TSCRLDn

FEACT

This bit saves the content of the TSCCFGnACT bit when an FE level exception is acknowledged.

It is a mapping bit of the TSCCFGn.TSCCFGnFEACT bit.

 29 TSCRLDn

EIACT

This bit saves the content of the TSCCFGnACT bit when an EI level exception is acknowledged.

It is a mapping bit of the TSCCFGn.TSCCFGnEIACT bit.

 28 TSCRLDn

ACT

This bit indicates whether the counter is operating or stopped.

It is a mapping bit of the TSCCFGn.TSCCFGnACT bit.

 27 to 0 TSCRLDn

VAL

These bits indicate the value to be transferred from the TSCRLDn.TSCRLDnVAL bit to the

TSCCNTn.TSCCNTnVAL bit during reloading.

Reloading is performed in the following cases.

 When the TSCCFGn.TSCCFGnRLD bit is set (1)

 If violation is detected when the TSCCFGn.TSCCFGnARM bit is set (1)

 If the PSW.ID bit changes from 0 to 1 when the TSCCFGn.TSCCFGnCTM bits are 01 (global

interrupt lock supervision mode)

TSCRLDnVAL

31

TSCRLDn
TSCR
LDn
RLD

TSCR
LDn

FEACT

TSCR
LDn
ACT

29 28

15
Initial value
Undefined

TSCR
LDn

EIACT

27 26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSCRLDnVAL

30

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 286 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.2 Counter Functions

Six identical counters are provided for monitoring the timing. Each counter has a 28-bit count width, is incremented on

a CPU clock cycle basis, and can be set to one of six resolutions in the range from 1 to 1,024. During timing supervision

function, violations are detected when a counter value matches a pre-specified comparison value. When a timing

supervision function violation is detected, a TSI exception request is reported to the CPU in accordance with settings.

8.2.1 Resolution

The resolution of each one count of the counter is set by the TSCCFGn.TSCCFGnRES bit. The resolution indicates

the number of clock cycles for one counter (TSCCNTn.TSCCNTnVAL). For example, if the resolution is 1, the count value

1 indicates 1 clock. If the resolution is 1024, the count value 1 indicates 1024 clocks.

Each counter can separately select the resolutions in Table 8-2.

Table 8-2. Resolutions

Value of

TSCCFGn.TSCCFGnRES Bit

Operation

000 Counts every 1 clock.

001 Counts every 4 clocks.

010 Counts every 16 clocks.

011 Counts every 64 clocks.

100 Counts every 256 clocks.

101 Counts every 1024 clocks.

Others RFU

Caution If the resolution is other than 1, a count error of the number of clocks up to two times higher

than the resolution occurs. Note this error when using a low resolution.

8.2.2 Counting direction

An up counter mode or a down counter mode can be selected by using the TSCCFG.TSCCFGnUDM bit. The count

value can be incremented or decremented in 1 unit of the count operation.

(1) Up counter mode

Increments the count value (TSCCNTn.TSCCNTnVAL) each time the counter counts.

(2) Down counter mode

Decrements the count value (TSCCNTn.TSCCNTnVAL) each time the counter counts.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 287 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.2.3 Exception mode
The TSCCFGn.TSCCFGnEXM bit can be used to select whether the TSI exception is to be reported or not if the count

value (TSCCNTn.TSCCNTnVAL) matches a specified comparison value (TSCCMPn.TSCCMPnVAL) and violation is

detected. A mode to report the TSI exception is used for the normal timing supervision usage. However, when the

counter is used for other usage, a mode not to report the TSI exception may be used depending on the purpose.

(1) Mode not to report TSI exception

This mode does not report the TSI exception if the counter detects violation (if the count value matches the

comparison value).

(2) Mode to report TSI exception

This mode reports the TSI exception if the counter detects violation (if the count value matches the comparison

value).

8.2.4 Auto reloading
The TSCCFGn.TSCCFGnARM bit can be used to select whether a reloading value (TSCRLDn.TSCCNTnVAL) is to be

automatically transferred to the counter if the count value (TSCCNTn.TSCCNTnVAL) matches a specified comparison

value (TSCCMPn.TSCCMPnVAL) and violation is detected. Enable auto reloading to immediately start the next counting

as soon as violation has been detected, such as when periodically measuring time.

(1) When auto reloading is disabled

A value is not automatically reloaded to the counter when the counter detects violation (when the count value

matches the comparison value). The counter continues counting from the current value.

(2) When auto reloading is enabled

A value is automatically reloaded to the counter when the counter detects violation (when the count value matches

the comparison value). The counter continues counting from the reloaded value.

8.2.5 Counter mode
The counter has special counter modes that are used for specific purposes. Global interrupt lock supervision mode

and runtime supervision mode, as well as the normal counter mode, can be selected by using the

TSCCFGn.TSCCFGnCTM bit.

(1) Normal mode

The counter operates as an ordinary counter in this mode. It is not automatically started or stopped, and is

controlled by software’s manipulation of the TSCCFGnACT bit. Be sure to set this mode when global interrupt lock

supervision or runtime supervision is not performed.

Caution To stop the counter operating in the global interrupt lock supervision mode or runtime

supervision mode, be sure to change the mode to normal mode. If the counter remains in

the global interrupt lock supervision mode or runtime supervision mode, its operation may

automatically be resumed by execution of another program.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 288 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2) Global interrupt lock supervision mode

Set this mode to perform global interrupt lock supervision. Global interrupt lock supervision supervises the user

application so that it does not illegally extend a critical section and hinder the operations of the other programs of

the CPU. As a global interrupt lock period, time during which the PSW.ID bit is set (1) is supervised, and violation

is detected if a specified time is exceeded.

Because the user application can start or end a critical section by using the DI or EI instruction without the need of

an extra procedure, the status of the PSW.ID bit is supervised and the counter is automatically started, stopped, or

reloaded.

The operations in the global interrupt lock supervision mode are listed below.

Table 8-3. Operations in Global Interrupt Lock Supervision Mode

Bit When PSW.ID Changes from 0 to 1 When PSW.ID Changes from 1 to 0

TSCCFGnACT Updated to 1 Updated to 0

TSCCNTn.TSCCNTnVAL Value of TSCRLDn.VAL is transferred. Not updated

(3) Runtime supervision mode

Set this mode to perform runtime supervision. In the runtime supervision mode, the counter is automatically

stopped when other task is started because of generation of an exception, in order to strictly manage the time

budget of the program currently under execution. At this time, the content of the bit indicating the operation status

of the counter (TSCCFGn.TSCCFGnACT bit) is saved for each exception level

(TSCCFGn.TSCCFGnEIACT/TSCCFGnFEACT). When the return instruction (EIRET/FERET) is executed, the

saved content is restored to the TSCCFGnACT bit, so that the counting operation is automatically resumed

immediately after execution has returned from the exception processing. Appropriately save and restore the

counter value at the beginning and end of each exception.

The operations in the runtime supervision mode are shown in Table 8-4.

Table 8-4. Operations in Runtime Supervision Mode

Bit
When EI level Exception Is

Acknowledged

When EIRET Instruction Is

Executed

When FE level Exception

Is Acknowledged

When FERET Instruction Is

Executed

TSCCFGnACT Updated to 0 Value of TSCCFGnEIACT

is transferred

Updated to 0 Value of

TSCCFGnFEACT is

transferred

TSCCFGnEIACT Value of TSCCFGnACT is

transferred

Not updated Not updated Not updated

TSCCFGnFEACT Not updated Not updated Value of TSCCFGnACT is

transferred

Not updated

TSCCNTn.

TSCCNTnVAL

Not updated Not updated Not updated Not updated

Caution None of the above bits is updated when the CALLT or CTRET instruction is executed.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 289 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.3 Operation Modes of Counter and CPU

Each counter of the timing supervision function performs the following operations depending on the operation status of

each CPU.

Table 8-5. Operation Modes of Counter and CPU

V850E2M Operation

Mode

System

Clock

MPM.MPE Program under Execution TSCCFGnACT

Bit

Operation Status of TSU

Counter

0 Don't care Fixed to 0 Counter stop when

TSCCFGnACT = 0

0 Counter stop when

TSCCFGnACT = 0

Normal/HALT statusNote1 Supplied

1 Normal (task)/

EI level exception/

FE level exception 1 Counter opereiton when

TSCCFGnACT = 0

Standby mode Stopped Previous value

retained

Don't care Previous value

retainedNote 2

Stops because supply of

CPU clock is stopped.

Notes 1. The HALT status is released as a result of occurrence of the TSI exception, and the exception is

acknowledged in accordance with the acknowledgment condition.

 2. Stop the timing supervision function by clearing (0) the TSCCFGnACT bit in advance before stopping the

clock.

8.4 Detecting Violation

Violation related to the timing supervision function is detected when the count value (TSCCNTn.TSCCMPnVAL)

matches the comparison value (TSCCMPn.TSCCMPnVAL). When violation has been detected, the violation detection bit

(TSCCFGn.TSCCFGnVS) of the corresponding counter is set (1).

8.4.1 Identifying violation cause

Each counter of the timing supervision function does not have information that indicates the cause of violation. Manage

the contents supervised by each counter by software and perform appropriate violation processing.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 290 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.5 Handling of TSI Exception

The timing supervision function reports the TSI exception in accordance with setting if it detects a violation.

8.5.1 Reporting TSI exception

If the exception mode is the “mode to report the TSI exception (TSCCFGn.TSCCFGnEXM = 1)” when a violation is

detected, the TSI exception is immediately reported to the CPU. The TSI exception reported is acknowledged

immediately if PSW.NP is cleared (0).

As soon as the TSI exception has been acknowledged, the violation detection bit (TSCCFGn.TSCCFGnVS)

corresponding to the counter reporting the TSI exception is saved to the exception cause bit (TSCCFGn.TSCCFGnES).

Therefore, the TSCCFGnES bit of that counter is set (1) and TSCCFGnVS bit is cleared (0).

Because the content of the TSCCFGnVS bit of the counter that reports the TSI exception is saved to the TSCCFGnES

bit as soon as the TSI exception has been acknowledged, new timing supervision violation that is detected while the timing

supervision counter continues operating during TSI exception processing and the violation that has caused the ongoing

TSI exception processing can be distinguished from each other.

Caution The TSCCFGnVS bit of the counter operating in the ”mode not to report the TSI exception”

is not changed when the TSI exception is acknowledged.

As soon as the TSI exception has been acknowledged, the TSEC.TSECESUP bit is also set (1), suppressing reporting

of the TSI exception under processing. As a result, occurrence of multiple exceptions which takes place if the TSI

exception is reported again when the other counter detects violation while the first TSI exception is being processed is

prevented.

Caution To acknowledge the next TSI exception, be sure to clear the TSCCFGn.TSCCFGnES and

TSEC.TSECESUP bits of counters for which violation processing was performed to 0 before

the TSI exception processing finishes. If the bits are not cleared before the system returns

from this exception processing, it will not be possible to acknowledge the next TSI

exception.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 291 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 8-1. Report of TSI Exception

8.5.2 Identifying exception cause
Each counter of the timing supervision function does not have information that indicates the cause of exception.

Manage the contents supervised by each counter by software and perform appropriate exception processing.

8.5.3 Canceling TSI exception
If a program that is subject to measurement by a counter is terminated as a result of processing other exception, and if

the TSI exception is reported by that counter and has not been acknowledged yet, cancel the TSI exception in the

following procedure. For the situation where this processing is necessary, refer to 6.3 Exception Management in PART

2.

<1> Set (1) the PSW.NP bit.

<2> Clear (0) the TSCCFGn.TSCCFGnACT bit of the counter in question.

<3> Change the mode of the counter to the normal mode by using the TSCCFGn.TSCCFGnCTM bit.

<4> Clear (0) the TSCCFGn.TSCCFGnVS bit of the counter.

Remark The TSCCFGn register can be accessed in 32-bit units, and <2> to <4> can be performed at the

same time.

Time

0

0

PSW.NP

0 1

1

1

0 1

0 1

0

0

0

0 1 0

0

TSEC.TSECESUP

TSCCFG1.TSCCFG1VS

TSCCFG1.TSCCFG1ES

TSCCFG2.TSCCFG2VS

TSCCFG2.TSCCFG2ES

Period during which TSI exception is not acknowledged

Task

TSI exception caused by this violation is
acknowledged after execution restores
from the current exception processing.

0

0

0 1

TSI exception processing

1

1

0 1

0 1

0

TSI exception is
acknowledged.

Violation is
detected by
counter 1.

0

0

0 1 0

NP mask
is cleared.

Violation is
detected by
counter 2.

TSECESUP and
TSCCFG1ES are cleared

(by software).

Restore

0

Task

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 292 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.6 Setting Counter Corresponding to Each Supervision
Function

Set the operation of the counter in accordance with each supervision content. This section shows a recommended

example of setting the register corresponding to each supervision function. Appropriately adjust the set value in

accordance with each OS (and programs similar to it) or purpose for the actual operation.

8.6.1 Global interrupt lock supervision
Global interrupt lock supervision supervises the PSW.ID bit so that the critical section of the user application does not

continue, exceeding specified time. If the ID bit remains 1 longer than specified time, exception processing is started.

Consequently, the system can be prevented from being deadlocked due to a design error of the user application.

Table 8-6. Global Interrupt Lock Supervision

Register Bit Example of Recommended Setting

TSCCFGnUDM Don’t care

TSCCFGnEXM 1 (TSI exception occurs.)

TSCCFGnARM 0 (Auto reloading is not performed.)

TSCCFGnCTM 1 (Global interrupt lock supervision mode)

TSCCFGn

TSCCFGnRES Don’t care

TSCCNTn  Don’t care

TSCCMPn  Maximum permissible lock time for up counter

0 for down counter

TSCRLDn  0 for up counter

Maximum permissible lock time for down counter

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 293 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

8.6.2 Runtime supervision

Runtime supervision is to supervise the execution time budget given to a task under execution and perform exception

processing when the budget is used up. If a preemption occurs due to interrupt, the counter is automatically stopped or

resumed when an interrupt is acknowledged or execution restores from the interrupt, so that the time of the CPU clock

cycle is accurately and delicately supervised.

To supervise part of time of the task under execution, appropriately select one of the set values listed in Table 8-7 in

accordance with the purpose.

To measure time during which a task acquires a resource, for example, make the setting in Table 8-7, start the task by

software when the resource is acquired, and stop the task by software when the resource is released. In this way, the

execution time during which the task acquires the resource can be accurately supervised even if a preemption due to an

interrupt occurs while the task is acquiring the resource.

Table 8-7. Runtime Supervision

Register Bit Example of Recommended Setting

TSCCFGnUDM Don’t care

TSCCFGnEXM 1 (TSI exception occurs.)

TSCCFGnARM 0 (Auto reloading is not performed.)

TSCCFGnCTM 2 (Runtime supervision mode)

TSCCFGn

TSCCFGnRES Don’t care

TSCCNTn


0 for up counter

Execution time budget for down counter

TSCCMPn


Execution time budget for up counter

0 for down counter

TSCRLDn  Not used

8.6.3 Supervising number of times of interrupt reaches a specific value

Supervising the number of times of interrupt arrival is to supervise the number of times a specific interrupt occurs in a

specific frame time. If the interrupt has occurred more than the specified number of times, it is disabled from being

acknowledged and the processing time of the CPU is released to other programs. The disabled interrupt is enabled to be

acknowledged again each time a specific period has elapsed. As a trigger of this periodic operation, a counter of the

timing supervision function is used. Because the counter operates as a periodic counter, the counter that is used to

supervise the number of times the interrupt reaches a specific value uses the auto reloading feature, and when the count

value reaches a specific value, an exception is requested and the counter starts counting the next time frame.

To start a supervising program at specific intervals, change the set value shown in Table 8-8 appropriately in

accordance with the purpose like when supervising the number of times interrupt reaches a specific value.

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

R01US0001EJ0100 Rev.1.00 Page 294 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 8-8. Supervising Number of Times of Interrupt Arrival

Register Bit Example of Recommended Setting

TSCCFGnUDM Don’t care

TSCCFGnEXM 1 (TSI exception occurs.)

TSCCFGnARM 1 (Auto reloading is performed.)

TSCCFGnCTM 0 (Normal mode)

TSCCFGn

TSCCFGnRES Don’t care

TSCCNTn 
Don’t care (TSCCFGnACT bit is set as soon as reloading is executed to start

counting.)

TSCCMPn  Unit frame time to be supervised for up counter

0 for down counter

TSCRLDn  0 for up counter

Unit frame time to be supervised for down counter

8.6.4 Supervising time lapse

To supervise a certain time from occurrence of an event that serves as a reference, basically set the counter as shown

in Table 8-9. By making this setting, basic supervision of the counter can be performed by starting and stopping the

counter by software.

For example, to supervise deadline, acquisition time of a specific resource, or the time during which a specific interrupt

source is masked, appropriately change the set value in Table 8-9.

Table 8-9. Supervising Time Lapse

Register Bit Example of Recommended Setting

TSCCFGnUDM Don’t care

TSCCFGnEXM 1 (TSI exception occurs.)

TSCCFGnARM 0 (Auto reloading is not performed.)

TSCCFGnCTM 0 (Normal mode)

TSCCFGn

TSCCFGnRES Don’t care

TSCCNTn  0 for up counter

Target time for down counter

TSCCMPn  Target time for up counter

0 for down counter

TSCRLDn  Not used

V850E2M PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

R01US0001EJ0100 Rev.1.00 Page 295 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

This chapter describes different types of processor protection violations and exceptions. For details about processing

for each exception, see CHAPTER 6 EXCEPTIONS, which is in PART 2.

9.1 Types of Violations

The V850E2M CPU detects violation in accordance with the setting of each protection function and, as necessary,

generates an exception defined by each protection function. This section explains in detail the relationship between

violations and exceptions.

The following five types of violations are detected in accordance with the setting defined by the processor protection

function.

 System register protection violation

 Execution protection violation

 Data protection violation

 Peripheral device protection violation

 Timing supervision violation

9.1.1 System register protection violation

This violation is detected if a system register is illegally accessed. No exception occurs even when this violation is

detected. For the processing to be performed if this violation is detected, refer to 5.5 Operation Method.

9.1.2 Execution protection violation

This violation may be detected when an instruction is executed. The execution protection violation is detected if an

attempt is made to execute an instruction allocated in an area of the program area where execution is not enabled.

If the execution protection violation is detected, the MIP exception is always generated.

9.1.3 Data protection violation

This violation may be detected when an instruction accesses data. It is detected if a memory access instruction reads

or writes data from or to an area of the data area that is not enabled to be accessed.

If the data protection violation is detected, the MDP exception always occurs.

9.1.4 Peripheral device protection violation

This violation may be detected when an instruction accesses a data. It is detected if a memory access instruction is

enabled by the memory protection function and an operation not permitted by an access control based on the peripheral

device protection setting defined for each system is performed.

If the peripheral device protection violation is detected, the PPI exception occurs in accordance with the setting.

V850E2M PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

R01US0001EJ0100 Rev.1.00 Page 296 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

9.1.5 Timing supervision violation

This violation is detected by the timing supervision function. It is detected when each counter of the timing supervision

function counts in accordance with the operation setting and satisfies a specified status.

If the timing supervision violation is detected, the TSI exception occurs in accordance with the setting.

9.2 Types of Exceptions

The V850E2M CPU generates four types of exceptions defined by the processor protection function. If an exception

occurs, execution branches to the exception handler (00000030H) and violation information defined for each source is

stored in a register.

9.2.1 MIP exception

This exception occurs when an execution protection violation has been detected. This exception is a precise exception

that occurs if execution of an instruction allocated at an address that is not permitted to be accessed is attempted. It can

also be resumed and restored because the original processing can be correctly continued from the instruction that has

generated this exception.

9.2.2 MDP exception

This exception occurs if a data protection violation is detected. This exception is a precise exception that occurs if data

allocated at an address not permitted to be accessed is read or written. It can also be resumed and restored because the

original processing can be correctly continued from the instruction that has caused this exception.

9.2.3 PPI exception

This exception occurs if peripheral device protection violation is detected. It is an imprecise exception that may occur

lagging behind the event that has caused the violation, and that is held pending when the PSW.NP bit is set (1). This

exception can be resumed but cannot be restored, which makes it difficult to continue execution from the instruction that

has caused the violation, because the exception processing is performed after the instruction that has caused the violation

has already been completed and the subsequent instructions have been executed.

A PPI exception is synchronized with exceptions when they are acknowledged or returned from, and the

synchronization is performed by the exception synchronization instruction SYNCE. For details, see 6.3.1 Synchronizing

exception when exception is acknowledged or when execution returns and 6.3.2 Exception synchronization

instruction, which are in PART 2.

9.2.4 TSI exception

This exception occurs if a timing supervision violation is detected. The timing supervision violation is caused by a

counter that operates with the clock input of the CPU. Therefore, it occurs at an unspecific timing, like interrupts. For this

reason, occurrence of the exception is held pending if the PSW.NP bit is set (1) in order to prevent the exception from

being acknowledged when it is impossible to acknowledge exceptions. A TSI exception is synchronized with exceptions

when they are acknowledged or returned from. For details, see 6.3.1 Synchronizing exception when exception is

acknowledged, which is in PART 2.

V850E2M PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

R01US0001EJ0100 Rev.1.00 Page 297 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

9.3 Identifying Violation Cause

If protection violation is detected, an exception cause that indicates which exception, MIP, MDP, PPI, or TSI, has

caused a branch to the exception handler is stored in the system register FEIC of the CPU bank. Because the exception

handler address is shared with the other exceptions, branching processing by the exception cause is necessary. As

shown in Table 9-1, auxiliary information indicating the cause of each exception is stored in a specific system register of

the MPV bank.

Table 9-1. Identifying Violation Cause

 FEIC Exception Type Violation Violation Information Register

00000430H MIP exception Execution protection violation VMECR, VMADR, VMTID

00000431H MDP exception Data protection violation VMECR, VMADR, VMTID

00000432H PPI exception Peripheral device protection violation VPNECR, VPNADR, VPNTID

Violation related to

processor protection

00000433H TSI exception Timing supervision violation TSECR

Other exceptions    

9.3.1 MIP exception

00000430H is stored in the FEIC register. The contents of the TID register when this exception occurs are stored in the

VMTID register, and the PC of the instruction that has caused the exception is stored in the VMADR register. The VMX bit

of the VMECR register is set (1), and the other bits are cleared (0).

Because the MIP and MDP exceptions never occur at the same time, the MIP exception share the violation information

registers (VMECR, VMTID, and VMADR registers) with the MDP exception.

Table 9-2. VMECR Set Value When MIP Exception Occurs

Register VMECR

Bit number 6 5 4 3 2 1 0

Bit name VMMS VMRMW VMS VMW VMR VMX -

All instructions 0 0 0 0 0 1 0

9.3.2 MDP exception
00000431H is stored in the FEIC register. The contents of the TID register when this exception occurs are stored in the

VMTID register, and the address of a memory access that has caused the exception is stored in the VMADR register.

In accordance with the contents of the violation detected, the VMR, VMW, and VMS bits of the VMECR register are set

(1) and the VMX bit is cleared (0).

Because the MIP and MDP exceptions never occur at the same time, the MDP exception shares the violation

information registers (VMECR, VMTID, and VMADR registers) with the MIP exception.

V850E2M PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

R01US0001EJ0100 Rev.1.00 Page 298 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 9-3. VMECR Set Value When MDP Exception Occurs

Register VMECR

Bit number 6 5 4 3 2 1 0

Bit name VMMS VMRMW VMS VMW VMR VMX 

Read instruction (aligned)Note 1 0 0 0/1Note 5 0 1 0 0

Write instruction (aligned)Note 2 0 0 0/1Note 5 1 0 0 0

Read instruction (misaligned)Note 3 1 0 0/1Note 5 0 1 0 0

Write instruction (misaligned)Note 2 1 0 0/1Note 5 1 0 0 0

CAXI/SET1/NOT1/CLR1 instructionNote 4 0 1 0/1Note 5 0 1 0 0

PREPARE instruction 0 0 1 1 0 0 0

DISPOSE instruction 0 0 1 0 1 0 0

Notes 1. LD/SLD/CALLT/SWITCH/TST1 instruction

 2. ST/SST instruction

 3. LD/SLD instruction

 4. When an instruction that performs a read-modify-write operation is executed, violation occurs only during the

read operation because enabling the write operation is checked in the read cycle.

 5. 1 if sp indirect access is executed in accordance with the operand specification of an instruction; otherwise, 0.

9.3.3 PPI exception
00000432H is stored in the FEIC register. The task ID when the violation has been detected is stored in the VPNTID

register and the address of the memory access that has caused the violation is stored in the VPNADR register. In the

VPNECR register, information on the access that has caused the exception and on the peripheral device accessed is

stored.

Cautions 1. The PPI exception does not occur when special peripheral device protection violation

is detected in the T state. The violation information in that case is stored in the

VPTECR, VPTTID, and VPTADR registers, rather than the above VPNECR, VPNTID, and

VPNADR registers. For details, refer to 7.4 Peripheral Device Protection Violation in T

State.

 2. The address saved in the VPNADR register is an address dependent upon the bus

system of each product. For correspondence between the address stored in the

VPNADR register and the logical address of the architecture, refer to the manual of

each product.

9.3.4 TSI exception
00000433H is stored in the FEIC register. The exception cause bit (each bit of the TSECR register or

TSCCFGn.TSCCFGnES bit) corresponding to the counter that has detected violation when the TSI exception is

acknowledged is set (1).

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

R01US0001EJ0100 Rev.1.00 Page 299 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 10 MEMORY PROTECTION SETTING CHECK
FUNCTION

A memory protection settings check is performed in advance to provide service protection by checking whether the

data areas for which operations are requested by user applications running on the OS (and programs similar to it) are

permitted by the access permissions of the application that requested the service. The OS (and programs similar to it) can

check the validity of the parameters for a system service supplied by the user. This check processing can be completed in

a shorter time than repeating a reading and comparing area settings by software.

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

R01US0001EJ0100 Rev.1.00 Page 300 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

10.1 Register Set
The registers used for the memory protection setting check function are listed below.

Table 10-1. System Register Bank

Group Processor Protection Function (10H)

Bank Processor protection violation (00H) Processor protection setting (01H) Software

paging (10H)

Bank label MPV, PROT00 MPU, PROT01 PROT10

Register No. Name Function Name Function Name

0 VSECR System register protection violation

cause

MPM Setting processor protection operation mode MPM

1 VSTID System register protection violation

task identifier

MPC Specifying processor protection command MPC

2 VSADR System register protection violation

address

TID Task identifier TID

3 Reserved for function expansion VMECR

4 VMECR Memory protection violation cause VMTID

5 VMTID Memory protection violation task identifier

Reserved for function expansion

VMADR

6 VMADR Memory protection violation address IPA0L Instruction/constant protection area 0 lower-limit address IPA0L

7 IPA0U Instruction/constant protection area 0 upper-limit address IPA0U

8 IPA1L Instruction/constant protection area 1 lower-limit address IPA1L

9 IPA1U Instruction/constant protection area 1 upper-limit address IPA1U

10 IPA2L Instruction/constant protection area 2 lower-limit address IPA2L

11 IPA2U Instruction/constant protection area 2 upper-limit address IPA2U

12 IPA3L Instruction/constant protection area 3 lower-limit address IPA3L

13 IPA3U Instruction/constant protection area 3 upper-limit address IPA3U

14 IPA4L Instruction/constant protection area 4 lower-limit address IPA4L

15 IPA4U Instruction/constant protection area 4 upper-limit address IPA4U

16 DPA0L Data protection area 0 lower-limit address (for stack) DPA0L

17 DPA0U Data protection area 0 upper-limit address (for stack) DPA0U

18 DPA1L Data protection area 1 lower-limit address DPA1L

19 DPA1U Data protection area 1 upper-limit address DPA1U

20 DPA2L Data protection area 2 lower-limit address DPA2L

21 DPA2U Data protection area 2 upper-limit address DPA2U

22 DPA3L Data protection area 3 lower-limit address DPA3L

23

Reserved for function expansion

DPA3U Data protection area 3 upper-limit address DPA3U

24 MCA Memory protection setting check

address

DPA4L Data protection area 4 lower-limit address DPA4L

25 MCS Memory protection setting check size DPA4U Data protection area 4 upper-limit address DPA4U

26 MCC Memory protection setting check

command

DPA5L Data protection area 5 lower-limit address (2n specification

only)

DPA5L

27 MCR Memory protection setting check result DPA5U Data protection area 5 upper-limit address (2n specification

only)

DPA5U

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

R01US0001EJ0100 Rev.1.00 Page 301 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

10.1.1 MCA – Memory protection setting check address

This register specifies the base address of an area where memory protection setting is to be checked.

 Bit Position Bit Name Description

 31 to 0 MCA31 to

MCA0

These bits specify in bytes the start address of the memory area where memory protection

setting is to be checked.

10.1.2 MCS – Memory protection setting check size

This register specifies the size of an area where memory protection setting is to be checked.

 Bit Position Bit Name Description

 31 to 0 MCS31 to

MCS0

These bits specify in bytes the size of the target area for which the size of the memory area

where memory protection setting is to be checked is specified. Because the specified size is

treated as an unsigned integer, the area cannot be checked in the direction in which the

address value is decremented from the value of the MCA register.

Do not set the MCS register to 00000000H.

31

MCA MCA
31

MCA
30

MCA
28

29 28

15
Initial value

Undefined
MCA
15

MCA
29

MCA
27

27

MCA
26

MCA
25

MCA
24

MCA
23

MCA
22

MCA
21

MCA
20

MCA
19

MCA
18

MCA
17

MCA
16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

MCA
14

MCA
13

MCA
12

MCA
11

MCA
10

MCA
9

MCA
8

MCA
7

7 6 5 4 3 2 1 0

MCA
2

MCA
1

MCA
0

MCA
6

MCA
5

MCA
4

MCA
3

30

31

MCS MCS
31

MCS
30

MCS
28

29 28

15
Initial value
Undefined

MCS
15

MCS
29

MCS
27

27

MCS
26

MCS
25

MCS
24

MCS
23

MCS
22

MCS
21

MCS
20

MCS
19

MCS
18

MCS
17

MCS
16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

MCS
14

MCS
13

MCS
12

MCS
11

MCS
10

MCS
9

MCS
8

MCS
7

7 6 5 4 3 2 1 0

MCS
2

MCS
1

MCS
0

MCS
6

MCS
5

MCS
4

MCS
3

30

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

R01US0001EJ0100 Rev.1.00 Page 302 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

10.1.3 MCC – Memory protection setting check command
This is a command register to start checking memory protection setting.

 Bit Position Bit Name Description

 31 to 0 MCC31 to

MCC0

When any value is written to the MCC register, checking memory protection settings is

started. By setting the MCA/MCS register in advance and by writing this register, the result is

stored in MCR.

Because checking is started with an arbitrarily written value, checking can be started without

additional registers, by using r0 as the source register. Checking reflects the result in

accordance with the setting of each area, regardless of the status of the PSW.DMP and IMP

bits.

The value read from the MCC register is always 00000000H.

10.1.4 MCR – Memory protection setting check result
This register stores the result of checking memory protection setting.

Be sure to set bits 31 to 9, 7 to 5, and 3 to “0”.

 Bit Position Bit Name Description

 8 OV 1 is stored in this bit when the specified area extends to 00000000H or 7FFFFFFFH.

Otherwise, 0 is stored.

 4 SE 1 is stored in this bit if the specified area fits in one of the protection areas and if the stack

protection setting of the protection area is enabled. Otherwise, 0 is stored.

 2 WE 1 is stored in this bit if the specified area fits in one of the protection areas and if that

protection area is enabled to be written. Otherwise, 0 is stored.

 1 RE 1 is stored in this bit if the specified area fits in one of the protection areas and if that

protection area is enabled to be read. Otherwise, 0 is stored.

 0 XE 1 is stored in this bit if the specified area fits in one of the protection areas and if that

protection area is executable. Otherwise, 0 is stored.

31

MCC MCC
31

MCC
30

MCC
28

29 28

15
Initial value

00000000H
MCC

15

MCC
29

MCC
27

27

MCC
26

MCC
25

MCC
24

MCC
23

MCC
22

MCC
21

MCC
20

MCC
19

MCC
18

MCC
17

MCC
16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

MCC
14

MCC
13

MCC
12

MCC
11

MCC
10

MCC
9

MCC
8

MCC
7

7 6 5 4 3 2 1 0

MCC
2

MCC
1

MCC
0

MCC
6

MCC
5

MCC
4

MCC
3

30

31

MCR 0 0 0

29 28

15
Initial value

00000000H
0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

0 0 0 0 0 0 OV 0

7 6 5 4 3 2 1 0

WE RE XE0 0 SE 0

30

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

R01US0001EJ0100 Rev.1.00 Page 303 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

10.2 Sample Code

An example of how to check the memory protection settings is shown below. If the area to be checked extends over

00000000H, it is judged that the specified area is incorrect, and the MCR.OV bit is set (1). To reference the check result,

therefore, be sure to check the MCR.OV bit, confirm that the result is not illegal (OV = 0), and then use the other check

results.

_service_protection:

 …

 ori 0x1000, r0, r12

 ldsr r12, BSEL // Selecting MPV/PROT00 bank

 …

 mov ADDRESS, r10 // Storing in r10 the start address of area to be checked

 mov SIZE, r11 // Storing in r11 the size of area to be checked

 di

 ldsr r10, MCA // Setting address

 ldsr r11, MCS // Setting size

 ldsr r0, MCC // Starting check

 stsr MCR, r12 // Acquiring result

 ei

 andi 0x0100, r12, r0

 be _overflow // Processed with input value assumed to be illegal if OV = 1

 br _result_check // Otherwise, judging the result.

V850E2M PART 3 CHAPTER 11 SPECIFAL FUNCTON

R01US0001EJ0100 Rev.1.00 Page 304 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 11 SPECIFAL FUNCTON

This chapter explains the special function related to the processor protection function.

11.1 Clearing Memory Protection Setting All at Once

By setting (1) the MPC.ALDS bit, the following memory protection setting bits are cleared (0) all at once in the cycle

next to the one in which the MPC.ALDS bit is set.

 IPAnL.E bit (n = 0 to 4)

 DPAnL.E bit (n = 0 to 5)

V850E2M PART 4 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 305 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PART 4 FLOATING-POINT OPERATION FUNCTION

V850E2M PART 4 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 306 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 1 OVERVIEW

The floating-point unit (FPU) of the V850E2M CPU conforms to the V850E2v3 architecture and operates as a CPU

coprocessor that executes floating-point operation instructions.

Either single-precision (32-bit) or double-precision (64-bit) data can be used. In addition, floating-point values and

fixed-point values can be converted.

The V850E2M CPU FPU conforms to ANSI/IEEE standard 754-1985 (IEEE binary floating-point operation standard).

1.1 Features

(1) Floating-point instructions

 Conform to ANSI/IEEE standard 754-1985 (IEEE binary floating-point operation standard).

 Supports single-precision (32-bit) and double-precision (64-bit).

 Supports the basic addition, subtraction, multiplication, and division instruction, multiply-add instruction,

Maximum/Minimum instruction, and square root instruction.

 Supports the flag transfer instruction which transfers the floating-point configuration/status register’s condition

bits to the Z flag of the PSW register

TRFSR

 Supports conditional transfer instruction, to accelerate conditional branch

CMOVF.S, CMOVF.D

 Supports unsigned conversion instructions which efficiently execute format conversions with unsigned integers.

 Supports the CEIL and FLOOR instructions, which efficiently execute conversion of the format to the nearest

integer.

 Supports condition bits (8 bits) for storing floating-point comparison results

 Supports two FPU execution modes: precise mode and imprecise mode

(2) Register set

 Floating-point operation register: Uses general-purpose registers

(not special-purpose register for floating-point operations)

 Floating-point system register: FPSR  Floating-point configuration/status

FPEPC  Floating-point exception program counter

FPST  Floating-point status

FPCC  Floating-point comparison result

FPCFG  Floating-point configuration

FPEC  Floating-point exception control

V850E2M PART 4 CHAPTER 1 OVERVIEW

R01US0001EJ0100 Rev.1.00 Page 307 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

1.2 Implementing Floating-point Operation Function

The V850E2M CPU assumes the floating-point operation function as a coprocessor that can be implemented or not as

follows. It depends on the products. Refer to Hardware User’s Manual of each product.

(1) Not implemented

If the floating-point operation function is not implemented, all the floating-point instructions cannot be used. If an

attempt is made to execute such an instruction, a coprocessor unusable exception occurs. In addition, the

operation of all the floating-point system registers is undefined. Therefore, do not manipulate these registers by

LDSR and STSR.

(2) Implementing single precision and double precision

All the floating-point instructions can be used when floating-point instructions of single precision and double

precision are implemented. All the floating-point system registers supply the functions described in CHAPTER 2

REGISTER SET.

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 308 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 2 REGISTER SET

2.1 Floating-point Operation Registers

The FPU uses the CPU general-purpose registers (r0 to r31). There are no register files used only for floating-point

operations.

 Single-precision floating-point instruction:

32 registers (32 bits each) can be specified. These general-purpose registers correspond to r0 to r31.

 Double-precision floating-point instruction:

16 registers (64 bits each) can be specified. Paired general-purpose registers are used as register pairs ({r1, r0},

{r3, r2} … {r31, r30}). Each register pair is specified in the instruction format with an even numbered register.

Since r0 is a zero register (always holds “0”), in principle {r1, r0} cannot be used by a double-precision floating-

point instruction.

2.2 Floating-point System Registers

The FPU status bank (bank with group #20 and bank number 00H) of the system register bank includes 28 control

registers. The FPU status bank is selected when the LDSR instruction sets 0x2000 to the BSEL register.

Six system registers can be used by the FPU.

 FPSR: This register is used to control and monitor exceptions. It also holds the result of compare operations,

and sets the FPU operation mode. Its bits are used to set condition code, exception mode,

denormalized number flash enable, rounding mode control, cause, exception enable, and preservation.

 FPEPC: This register stores the program counter value for the instruction where a floating-point operation

exception has occurred.

 FPST: This register indicates the same information as the RM and XE bits of the FPSR register.

 FPCC: This register indicates the same information as the CC(7:0) bits of the FPSR register.

 FPCFG: This register indicates the same information as the RM and FS bits of the FPSR register.

 FPEC: Controls checking and canceling the pending status of the FPI exception.

System registers in the FPU bank other than the above are reserved for future expansion. These registers are write-

prohibited. Also, their values are undefined when read. System registers can be accessed by the LDSR, STSR, or

TRFSR instruction.

Table 2-1 shows the system register bank configuration. System register numbers 28 to 31 are used by all banks, and

the CPU function bank’s EIWR, FEWR, DBWR, BSEL registers can be referenced regardless of the settings in the BSEL

register.

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 309 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 2-1. System Register Bank

Able to Specify Operands? System

Register No.

System Register Name

LDSR

Instruction

STSR

Instruction

System

Register

Protection

0 to 5 Reserved for future function expansion. (Operation is not guaranteed if

these registers are accessed.)

  

6 FPSR – Floating-point configuration/status   

7 FPEPC – Floating-point exception program counter   

8 FPST – Floating point status   

9 FPCC – Floating-point comparison result   

10 FPCFG – Floating-point configuration   

11 FPEC – Floating-point exception control   

12 to 26 Reserved for future function expansion. (Operation is not guaranteed if

these registers are accessed.)

  

28 EIWR – Working register for EI level exception   

29 FEWR – Working register for FE level exception   

30 DBWR – Working register for DB level exception   

31 BSEL – Selection of register bank   

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 310 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.1 FPSR  Floating-point configuration/status

The FPSR register indicates the execution status of floating-point operations and any exceptions that occur.

For exception, see CHAPTER 6 EXCEPTIONS in PART 2.

Bits 23 and 22 are reserved for future function expansion, and writing of non-zero values is prohibited. Operation is

undefined when a non-zero value is written. Also, values are undefined when read.

(1/2)

 Bit position Bit name Description

 31 to 24 CC(7:0) These are the CC (condition) bits. They store the results of floating-point comparison instructions.

The CC(7:0) bits are not affected by any instructions except the comparison instruction and LDSR

instruction. The initial values are undefined.

 0: Comparison result is false

 1: Comparison result is true

 21 DEM This bit indicates double-precision operation exception mode. When the DEM bit is 1, any exception

that occurs during execution of a double-precision (Double) instruction is handled as a precise

exception. For description of double-precision instructions, see 4.2 Overview of Floating-point

Instruction. The initial value is 0.

 20 SEM This bit indicates single-precision operation exception mode. When the SEM bit = 1, any exception

that occurs during execution of a single-precision (Single) instruction is handled as a precise

exception. For description of single-precision instructions, see 4.2 Overview of Floating-point

Instruction. The initial value is 0.

These are the rounding mode control bits. The RM bits define the rounding mode that the FPU uses

for all floating-point instructions. The initial value is 0. Be sure to set these bits to “00”.

 RM bit Mnemonic Description

 Bit 19 Bit 18

 0 0 RN Rounds the result to the nearest representable value.

If the value is exactly in-between the two nearest

representable values, the result is rounded toward the

value whose least significant bit is 0.

 Other than above Setting prohibited

 19, 18 RM

 Note See the description of individual bits.

31

CC7 CC4

29 28

15

Initial value

Note

CC5 CC3

27

CC2 CC1 CC0 0 0 DEM SEM RM FS PR

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

Cause bits (XC)
E U I OZ V

Enable bits (XE) Preservation bits (XP)
I UOZ V I U OZV

FPSR CC6

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 311 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2/2)

The FS bit enables flushing of values that cannot be normalized (denormalized numbers). If this bit is

set, the result of a denormalized number does not cause an unimplemented operation exception (E)

but is flushed instead. Whether the denormalized number that has been flushed is 0 or the minimum

normalized value depends on the rounding mode. The initial value is 1.

Be sure to set FS bit to “1”.

 Result of denormalized number Rounding mode of flushed result (RN)

 Positive +0

 Negative 0

 17 FS

 16 PR If the exception mode of the instruction that has caused the floating-point operation exception is

imprecise exception mode, this bit is cleared to 0. If it is precise exception mode, this bit is set to 1.

The initial value is undefined.

 15 to 10 XC

(E, V, Z, O, U, I)

These are the cause bits. The initial values are undefined. For details, see 2.2.1 (1) Cause bits

(XC).

 9 to 5 XE

(V, Z, O, U, I)

These are the enable bits. The initial values are 0. For details, see 2.2.1 (2) Enable bits (XE).

 4 to 0 XP

(V, Z, O, U, I)

These are the preservation bits. The initial values are undefined. For details, see 2.2.1 (3)

Preservation bits (XP).

(1) Cause bits (XC)

Bits 15 to 10 of the FPSR register are cause bits, which indicate the occurrence and cause of a floating-point

operation exception. If an exception defined by IEEE754 is generated, when an enable bit is set (1) corresponding

to the exception, a cause bit is set, and the exception then occurs. When two or more exceptions occur during a

single instruction, each corresponding bit is set (1).

If two or more exceptions are detected, as long as the enable bit corresponding to one of the exceptions is set (1),

the exception occurs. In this case, the cause bits of all the detected exceptions, including exceptions whose enable

bits are cleared (0), are set (1).

The cause bits are rewritten by a floating-point operation instruction (except the TRFSR instruction) where the

floating-point operation exception occurred. The E bit is set (1) when software emulation is required, otherwise it is

cleared (0). Other bits are set (1) or cleared (0) depending on whether or not an IEEE754-defined exception has

occurred.

When a floating-point operation exception has occurred, the operation result is not stored, and only the cause bits

are affected.

When the cause bits are set (1) by an LDSR instruction, a floating-point operation exception does not occur.

(2) Enable bits (XE)

Bits 9 to 5 of the FPSR register are the enable bits, which enable floating-point operation exceptions. When an

IEEE754-defined exception occurs, a floating-point operation exception occurs if the enable bit corresponding to

the exception has been set (1).

There are no enable bits corresponding to an unimplemented operation exception (E). An unimplemented

operation exception (E) always occurs as a floating-point operation exception.

If the corresponding enable bit has not been set (1), no exception occurs and the default result defined by IEEE754

is stored.

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 312 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3) Preservation bits (XP)

Bits 4 to 0 of the FPSR register are preservation bits. These bits store and indicate the detected exception after

reset. An exception defined by IEEE754 occurs, and if the corresponding enable bit is not set (1), the preservation

bit is set (1), otherwise it does not change. The preservation bits are not cleared (0) by the floating-point operation.

However, these bits can be set and cleared by software when an LDSR instruction is used to write a new value to

the FPSR register.

There are no preservation bits corresponding to unimplemented operation exceptions (E). An unimplemented

operation exception (E) always occurs as a floating-point operation exception.

Remark For description of the exception types and how they relate to particular bits, see Figure 5-1 Cause,

Enable, and Preservation Bits of FPSR Register.

2.2.2 FPEPC  Floating-point exception program counter

When an exception that is enabled by an enable bit occurs, the program counter (PC) of the instruction that caused the

exception is stored.

For bits 31 to 29 and 0, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is

written.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512

MB, a value resulting from a sign-extension of bit 28 is automatically set to bits 31 to 29 of

FPEPC.

Undefined

31 8 7 3 2 1 0 11 910 4561213141530 29 28 27 26 25 24 23 22 21 20 19 18 17 16

(PC)FPEPC Initial value

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 313 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.3 FPST  Floating-point operation status

These bits indicate the same information as the PR, XC, and XP bits of the FPSR register.

For bits 31 to 16, 14, and 7 to 5, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is

written.

 Bit position Bit name Description

 15 PR This bit indicates the exception mode of the instruction where the floating-point operation exception

occurred. The initial values are undefined.

The value written to this bit is reflected in PR bit of FPSR.

 0: Imprecise exception

 1: Precise exception

 13 to 8 XC

(E, V, Z, O,

U, I)

These are cause bits. The initial values are undefined. For details, see 2.2.1 (1) Cause bits (XC).

Values written to these bits are reflected in XC bits of FPSR.

 4 to 0 XP

(V, Z, O, U, I)

These are preservation bits. The initial values are undefined. For details, see 2.2.1 (3) Preservation

bits (XP). Values written to these bits are reflected in XP bits of FPSR.

2.2.4 FPCC - Floating-point operation comparison result

These bits indicate the same information as the CC(7:0) bits of the FPSR register.

For bits 31 to 8, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is written.

 Bit position Bit name Description

 7 to 0 CC(7:0) These are CC (condition) bits. They store the result of a floating-point comparison instruction. The

CC(7:0) bits are not affected by any instructions except the comparison instruction and LDSR

instruction. The initial values are undefined. Values written to these bits are reflected in CC(7:0) bits

of FPSR.

 0: Comparison result is false

 1: Comparison result is true

31

FPCC 0 0 0

29 28

15

Initial value
Undefined

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

0 0 0 0 0 0 CC5CC6CC700 CC0 CC1 CC2 CC3CC4

0

31

FPST 0 0 0

29 28

15

Undefined

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

Cause bits (XC)
PR

Z O V E
0

Preservation bits (XP)
000

I U I U OZV

0

Initial value

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 314 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.5 FPCFG  Floating-point operation configuration

These bits indicate the same information as the RM and XE bits of the FPSR register.

For bits 31 to 10 and 7 to 5, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is

written.

 Bit position Bit name Description

These are rounding mode control bits. The RM bits define the rounding mode that the FPU uses for

all floating-point instructions. The initial value is 0. Be sure to set these bits to “00”. Values set to

these bits are reflected in RM bits of FPSR.

 RM bit Mnemonic Description

 Bit 9 Bit 8

 0 0 RN Rounds the result to the nearest representable value.

If the value is exactly in-between the two

representable values, the result is rounded toward the

value whose least significant bit is 0.

 Other than above Setting prohibited

 9, 8 RM

 4 to 0 XE

(V, Z, O, U, I)

These are enable bits. The initial value is 0. For details, see 2.2.1 (2) Enable bits (XE).

Also, values written to these bits are reflected in XE bits of FPSR.

RM 0

31

FPCFG 0 0 0

29 28

15

Initial value
00000000H

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

0 0 0 0 0 0 00
I U OZV

0

Enable bits (XE)

V850E2M PART 4 CHAPTER 2 REGISTER SET

R01US0001EJ0100 Rev.1.00 Page 315 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

2.2.6 FPEC  Floating-point exception control

This register controls the floating-point operation exception.

Writing a value other than 0 to bits 31 to 1 is prohibited. If a value other than 0 is written to these bits, the operation is

undefined.

Caution For how to handle the FPEC register, refer to 6.3 Exception Management in PART 2.

 Bit Position Bit Name Meaning

 0 FPIVDNote This bit indicates the status of reporting the FPI exception.

If this bit is set (1), the FPI exception is reported to the CPU but is not acknowledged. It is

automatically cleared (0) when the CPU acknowledges the FPI exception.

While this bit is set (1), all the floating-point instructions are invalidated.

Report of the FPI exception can be canceled by clearing (0) this bit by the LDSR instruction while it

is set (1). When report of the LDSR instruction is canceled, the CPU does not acknowledge the FPI

exception.

 0: FPI exception is reported.

 1: FPI exception is reported.

 Note The FPIVD bit can only be cleared (0) by the write operation of the LDSR instruction. It cannot be set

(1).

31

FPEC 0 0 0

29 28

15

Initial value
00000000H

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 16 20 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

0 0 0 00 0 00000 FPI
VD 0 000

0

V850E2M PART 4 CHAPTER 3 DATA TYPES

R01US0001EJ0100 Rev.1.00 Page 316 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 3 DATA TYPES

3.1 Data Formats

3.1.1 Floating-point format
The FPU supports 32-bit (single precision) and 64-bit (double precision) IEEE754 floating-point operations.

The single-precision floating-point format consists of a 24-bit signed mantissa (s + f) and an 8-bit exponent (e), as

shown in Figure 3-1.

Figure 3-1. Single-precision Floating-point Format

The double-precision floating-point format consists of a 53-bit signed mantissa (s + f) and an 11-bit exponent (e), as

shown in Figure 3-2.

Figure 3-2. Double-precision Floating-point Format

A numerical value in the floating-point format includes the following three areas.

 Sign bit: s

 Exponent: e = E + bias value

 Mantissa: f = .b1b2...bP-1 (value lower than the first decimal place)

The bias value for the single-precision format is 127. For double-precision format, the bias value is 1023.

The range of the exponent value E when unbiased covers all integers from Emin to Emax, along with two reserved

values, Emin 1 (0 or denormalized number), and Emax +1 ( or NaN: not-a-number). A numeric value other than 0 is

represented in one format, depending on the single-precision and double-precision formats.

The numeric value (v) represented in this format can be calculated by the expression shown in Table 3-1.

s

Sign
1

0 30 23 22

e

Exponent
f

Mantissa

8 23

3 1

s
Sign

1

062 52 51

e

Exponent
f

Mantissa

11 52

63

V850E2M PART 4 CHAPTER 3 DATA TYPES

R01US0001EJ0100 Rev.1.00 Page 317 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 3-1. Calculation Expression of Floating-point Value

Type Calculation Expression

NaN (not-a-number) If E = Emax + 1 and f  0 then v = NaN regardless of s

 (infinite number) If E = Emax + 1 and f = 0 then v = (1)s

Normalized number If Emin  E  Emax then v = (1)s2E (1.f)

Denormalized number If E = Emin  1 and f  0 then v = (1)s2Emin (0.f)

0 (zero) If E = Emin  1 and f = 0 then v = (1)s0

 NaN (not-a-number)

IEEE754 defines a floating-point value called NaN (not-a-number). Because this value is not a numerical value, it

does not have any “greater than” or “less than” relationships to other values.

If v is NaN in all of the floating-point formats, it may be either SignalingNaN (S-NaN) or QuietNaN (Q-NaN),

depending on the value of the most significant bit of f. If the most significant bit of f is set, v is QuietNaN; if the most

significant bit is cleared, it is SignalingNaN.

Table 3-2 lists the value of each parameter defined in floating-point formats.

Table 3-2. Floating-point Formats and Parameter Values

Format Parameter

Single Precision Double Precision

Emax +127 +1023

Emin 126 1022

Exponent bias value +127 +1023

Exponent length (number of bits) 8 11

Integer bits Cannot be seen Cannot be seen

Length of mantissa (number of bits) 23 52

Length of format (number of bits) 32 64

Table 3-3 shows the minimum and maximum values that can be represented in floating-point formats.

Table 3-3. Floating-point Minimum and Maximum Values

Type Value

Minimum value of single-precision floating point 1.40129846e  45

Minimum value of single-precision floating point (normal) 1.17549435e  38

Maximum value of single-precision floating point 3.40282347e + 38

Minimum value of double-precision floating point 4.9406564584124654e  324

Minimum value of double-precision floating point (normal) 2.2250738585072014e  308

Maximum value of double-precision floating point 1.7976931348623157e + 308

V850E2M PART 4 CHAPTER 3 DATA TYPES

R01US0001EJ0100 Rev.1.00 Page 318 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

3.1.2 Fixed-point formats

The value of a fixed point is held in the format of 2’s complement. Figure 3-3 shows a 32-bit fixed-point format and

Figure 3-4 shows a 64-bit fixed-point format. No signed bits exist in the unsigned fixed-point format, and all bits represent

the integer value.

Figure 3-3. 32-bit Fixed-Point Format

s: Sign bit

i: Integer value (2’s complement)

Figure 3-4. 64-bit Fixed-Point Format

s: Sign bit

i: Integer value (2’s complement)

s
Sign

1

030

f

Mantissa

31

3 1

s
Sign

1

062

f
Mantissa

63

63

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 319 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 4 INSTRUCTIONS

4.1 Instruction Formats

All floating-point instructions are in 32-bit format.

When an instruction is actually saved to memory, it is placed as shown below.

 Lower part of instruction format (including bit 0)  Lower address side

 Higher part of instruction format (including bit 15 or bit 31)  Higher address side

(1) Format F:I

The 32-bit long floating-point instruction format includes a 6-bit opcode field, 4-bit sub-opcode field, three fields that

specify general-purpose registers, a 3-bit category field, and a 2-bit type field.

4.2 Overview of Floating-point Instructions
Floating-point instructions are divided into single-precision instructions (single) and double-precision instructions

(double), and include the following instructions (mnemonics).

(1) Basic operation instructions

 ABSF.D: Floating-point Absolute Value (Double)

 ABSF.S: Floating-point Absolute Value (Single)

 ADDF.D: Floating-point Add (Double)

 ADDF.S: Floating-point Add (Single)

 DIVF.D: Floating-point Divide (Double)

 DIVF.S: Floating-point Divide (Single)

 MAXF.D: Floating-point Maximum (Double)

 MAXF.S: Floating-point Maximum (Single)

 MINF.D: Floating-point Minimum (Double)

 MINF.S: Floating-point Minimum (Single)

 MULF.D: Floating-point Multiply (Double)

 MULF.S: Floating-point Multiply (Single)

 NEGF.D: Floating-point Negate (Double)

 NEGF.S: Floating-point Negate (Single)

 RECIPF.D: Reciprocal of a floating-point value (Double)

 RECIPF.S: Reciprocal of a floating-point value (Single)

sub-opcode

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 320 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 RSQRTF.D: Reciprocal of the square root of a floating-point value (Double)

 RSQRTF.S: Reciprocal of the square root of a floating-point value (Single)

 SQRTF.D: Floating-point Square Root (Double)

 SQRTF.S: Floating-point Square Root (Single)

 SUBF.D: Floating-point Subtract (Double)

 SUBF.S: Floating-point Subtract (Single)

(2) Extended basic operation instructions

 MADDF.S: Floating-point Multiply-Add (Single)

 MSUBF.S: Floating-point Multiply-Subtract (Single)

 NMADDF.S: Floating-point Negate Multiply-Add (Single)

 NMSUBF.S: Floating-point Negate Multiply-Subtract (Single)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 321 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3) Conversion instructions

 CEILF.DL: Floating-point Truncate to Long Fixed-point Format, rounded toward + (Double)

 CEILF.DW: Floating-point Truncate to Single Fixed-point Format, rounded toward + (Double)

 CEILF.SL: Floating-point Truncate to Long Fixed-point Format, rounded toward + (Single)

 CEILF.SW: Floating-point Truncate to Single Fixed-point Format, rounded toward + (Single)

 CEILF.DUL: Floating-point Truncate to Unsigned Long, rounded toward + (Double)

 CEILF.DUW: Floating-point Truncate to Unsigned Word, rounded toward + (Double)

 CEILF.SUL: Floating-point Truncate to Unsigned Long, rounded toward + (Single)

 CEILF.SUW: Floating-point Truncate to Unsigned Word, rounded toward + (Single)

 CVTF.DL: Floating-point Convert to Long Fixed-point Format (Double)

 CVTF.DS: Floating-point Convert to Single Floating-point Format (Double)

 CVTF.DUL: Floating-point Convert Double to Unsigned-Long (Double)

 CVTF.DUW: Floating-point Convert Double to Unsigned-Word (Double)

 CVTF.DW: Floating-point Convert to Single Fixed-point Format (Double)

 CVTF.LD: Floating-point Convert to Single Floating-point Format (Double)

 CVTF.LS: Floating-point Convert to Single Floating-point Format (Single)

 CVTF.SD: Floating-point Convert to Double Floating-point Format (Double)

 CVTF.SL: Floating-point Convert to Long Fixed-point Format (Single)

 CVTF.SUL: Floating-point Convert Single to Unsigned-Long (Single)

 CVTF.SUW: Floating-point Convert Single to Unsigned-Word (Single)

 CVTF.SW: Floating-point Convert to Single Fixed-point Format (Single)

 CVTF.ULD: Floating-point Convert Unsigned-Long to Double (Double)

 CVTF.ULS: Floating-point Convert Unsigned-Long to Single (Single)

 CVTF.UWD: Floating-point Convert Unsigned-Word to Double (Double)

 CVTF.UWS: Floating-point Convert Unsigned-Word to Single (Single)

 CVTF.WD: Floating-point Convert to Single Floating-point Format (Double)

 CVTF.WS: Floating-point Convert to Single Floating-point Format (Single)

 FLOORF.DL: Floating-point Truncate to Long Fixed-point Format, rounded toward - (Double)

 FLOORF.DW: Floating-point Truncate to Single Fixed-point Format, rounded toward - (Double)

 FLOORF.SL: Floating-point Truncate to Long Fixed-point Format, rounded toward - (Single)

 FLOORF.SW: Floating-point Truncate to Single Fixed-point Format, rounded toward - (Single)

 FLOORF.DUL: Floating-point Truncate to Unsigned Long, rounded toward - (Double)

 FLOORF.DUW: Floating-point Truncate to Unsigned Word, rounded toward - (Double)

 FLOORF.SUL: Floating-point Truncate to Unsigned Long, rounded toward - (Single)

 FLOORF.SUW: Floating-point Truncate to Unsigned Word, rounded toward - (Single)

 TRNCF.DL: Floating-point Truncate to Long Fixed-point Format, rounded to zero (Double)

 TRNCF.DUL: Floating-point Truncate Double to Unsigned-Long (Double)

 TRNCF.DUW: Floating-point Truncate Double to Unsigned-Word (Double)

 TRNCF.DW: Floating-point Truncate to Single Fixed-point Format, rounded to zero (Double)

 TRNCF.SL: Floating-point Truncate to Long Fixed-point Format, rounded to zero (Single)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 322 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 TRNCF.SUL: Floating-point Truncate Single to Unsigned-Long (Single)

 TRNCF.SUW: Floating-point Truncate Single to Unsigned-Word (Single)

 TRNCF.SW: Floating-point Truncate to Single Fixed-point Format, rounded to zero (Single)

(4) Comparison instructions

 CMPF.S: Compares floating-point values (Single)

 CMPF.D: Compares floating-point values (Double)

(5) Conditional transfer instructions

 CMOVF.S: Floating-point conditional move (Single)

 CMOVF.D: Floating-point conditional move (Double)

(6) Condition bit transfer instruction

 TRFSR: Transfers specified CC bit to Zero flag in PSW (Single)

4.3 Conditions for Comparison Instructions

Floating-point comparison instructions (CMPF.D and CMPF.S) perform two floating-point data compare operations.

The result is determined based on the comparison condition contained in the data and code. Table 4-1 lists the

mnemonics for conditions that can be specified by comparison instructions.

The comparison instruction result is transferred by the TRFSR instruction to the Z flag of PSW (program status word),

and when performing a conditional branch, the condition logic is inverted and then can be used. Table 4-2 shows logic

inversion based on the true/false status of conditions. In a 4-bit condition code for a floating-point comparison instruction,

the condition is specified in the “True” column of the table. The conditional branch instruction BT performs a branch when

the comparison result is true, while BF performs a branch when the result is false.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 323 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 4-1. List of Conditions for Comparison Instructions

Mnemonic Definition Inverted Logic

F Always false (T) Always true

UN Unordered (OR) Ordered

EQ Equal (NEQ) Not equal

UEQ Unordered or equal (OLG) Ordered and less than or greater than

OLT Ordered and less than (UGE) Unordered or greater than or equal to

ULT Unordered or less than (OGE) Ordered and greater than or equal to

OLE Ordered and less than or equal to (UGT) Unordered or greater than

ULE Unordered or less than or equal to (OGT) Ordered and greater than

SF Signaling and false (ST) Signaling and true

NGLE Not greater than, not less than, and not

equal to

(GLE) Greater than, less than, or equal to

SEQ Signaling and equal to (SNE) Signaling and not equal to

NGL Not greater than and not less than (GL) Greater than or less than

LT Less than (NLT) Not less than

NGE Not greater than and not equal to (GE) Greater than or equal to

LE Less than or equal to (NLE) Not less than and not equal to

NGT Not greater than (GT) Greater than

Table 4-2. Definitions of Condition Code Bits and Their Logical Inversions

Bit Definition of Condition Code fcond[3 to 0] Condition Code

fcond

Less than Equal to Unordered

Invalid operation

exception occurs

when unordered?

Mnemonic

(True)

Decimal Binary fcond[2] fcond[1] fcond[0] fcond[3]

Inverted

Logic

(False)

F 0 0b0000 F F F No (T)

UN 1 0b0001 F F T No (OR)

EQ 2 0b0010 F T F No (NEQ)

UEQ 3 0b0011 F T T No (OLG)

OLT 4 0b0100 T F F No (UGE)

ULT 5 0b0101 T F T No (OGE)

OLE 6 0b0110 T T F No (UGT)

ULE 7 0b0111 T T T No (OGT)

SF 8 0b1000 F F F Yes (ST)

NGLE 9 0b1001 F F T Yes (GLE)

SEQ 10 0b1010 F T F Yes (SNE)

NGL 11 0b1011 F T T Yes (GL)

LT 12 0b1100 T F F Yes (NLT)

NGE 13 0b1101 T F T Yes (GE)

LE 14 0b1110 T T F Yes (NLE)

NGT 15 0b1111 T T T Yes (GT)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 324 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

4.4 Instruction Set

This section describes the following items in each instruction (based on alphabetical order of instruction mnemonics).

 Instruction format: Describes the instruction coding method and operands used (symbols are listed in Table 4-3).

 Operation: Indicates instruction function (symbols are listed in Table 4-4).

 Format: Indicates the instruction format (see 4.1 Instruction Formats).

 opcode: Indicates the instruction opcode in bit fields (symbols are listed in Table 4-5).

 Description: Describes the instruction operations.

 Supplement: Provides a supplementary description of the instruction.

Table 4-3. Instruction Format

Symbol Explanation

reg1 General-purpose register

reg2 General-purpose register

reg3 General-purpose register

reg4 General-purpose register

fcbit Specifies the bit number of the condition bit that stores the result of a floating-point comparison

instruction.

imm   bit immediate data

fcond Specifies the mnemonic or condition code of the comparison condition of a comparison

instruction (for details, refer to 4.3 Conditions for Comparison Instructions).

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 325 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 4-4. Operations

Symbol Explanation

 Assignment (input for)

GR [] General-purpose register

SR [] System register

result Result is reflected in flag.

+ Add

 Subtract

 Bit concatenation

 Multiply

 Divide

abs Absolute value

ceil Rounding in + direction

compare Comparison

cvt Converts type according to rounding mode

floor Rounding in  direction

max Maximum value

min Minimum value

neg Sign inversion

round Rounding to closest value

sqrt Square root

trunc Rounding in zero direction

Table 4-5. Opcodes

Symbol Explanation

R Single bit data of code specifying reg1

r Single bit data of code specifying reg2

w Single bit data of code specifying reg3

W Single bit data of code specifying reg4

I Single bit data of immediate data (indicates higher bit of immediate data)

i Single bit data of immediate data

fff 3-bit data that specifies the bit number (fcbit) of the condition bit that stores the result of a

floating-point comparison instruction

FFFF 4-bit data corresponding to the mnemonic or condition code (fcond) of the comparison condition

of a comparison instruction

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 326 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Absolute Value (Double)

ABSF.D
Floating-point absolute value (double precision)

[Instruction format] ABSF.D reg2, reg3

[Operation] reg3  abs (reg2)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction takes the absolute value from the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores it in the register pair

specified by general-purpose register reg3.

The absolute value operation is performed arithmetically. In other words, when the operand is S-

NaN, an IEEE754-defined invalid operation exception (V) is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
+Normal +0 + Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 327 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Absolute Value (Single)

ABSF.S
 Floating-point absolute value (single precision)

[Instruction format] ABSF.S reg2, reg3

[Operation] reg3  abs (reg2)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction takes the absolute value from the single-precision floating-point format contents of

general-purpose register reg2, and stores it in general-purpose register reg3.

The absolute value operation is performed arithmetically. In other words, when the operand is S-

NaN, an IEEE754-defined invalid operation exception (V) is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
+Normal +0 + Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 328 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Add (Double)

ADDF.D
Floating-point add (double precision)

[Instruction format] ADDF.D reg1, reg2, reg3

[Operation] reg3  reg2 + reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction adds the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1 with the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
+Normal Normal +0 0 +  Q-NaN S-NaN

+Normal

Normal

+0


0

A+B

+ + Q-NaN [V]

  Q-NaN [V] 

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 329 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Add (Single)

ADDF.S
Floating-point add (single precision)

[Instruction format] ADDF.S reg1, reg2, reg3

[Operation] reg3  reg2 + reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction adds the single-precision floating-point format contents of general-purpose

register reg1 with the single-precision floating-point format contents of general-purpose register

reg2, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
+Normal Normal +0 0 +  Q-NaN S-NaN

+Normal

Normal

+0


0

A+B

+ + Q-NaN [V]

  Q-NaN [V] 

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 330 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Long Fixed-point Format (Double)

CEILF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] CEILF.DL reg2, reg3

[Operation] reg3  ceil reg2 (double  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the

result in the register pair specified by general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 331 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Unsigned Long Fixed-point Format (Double)

CEILF.DUL
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CEILF.DUL reg2, reg3

[Operation] reg3  ceil reg2 (double  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 332 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Unsigned Single Fixed-point Format (Double)

CEILF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CEILF.DUW reg2, reg3

[Operation] reg3  ceil reg2 (double  unsigned word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 333 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Single Fixed-point Format (Double)

CEILF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] CEILF.DW reg2, reg3

[Operation] reg3  ceil reg2 (double  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 334 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Long Fixed-point Format (Single)

CEILF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] CEILF.SL reg2, reg3

[Operation] reg3  ceil reg2 (single  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair

specified by general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 335 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Unsigned Long Fixed-point Format (Single)

CEILF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CEILF.SUL reg2, reg3

[Operation] reg3  ceil reg2 (single  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents specified

by general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 336 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Unsigned Single Fixed-point Format (Single)

CEILF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CEILF.SUW reg2, reg3

[Operation] reg3  ceil reg2 (single  unsigned word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 337 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Ceiling to Single Fixed-point Format (Single)

CEILF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] CEILF.SW reg2, reg3

[Operation] reg3  ceil reg2 (single  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose

register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 338 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Conditional Move (Double)

CMOVF.D
Conditional transfer (double precision)

[Instruction format] CMOVF.D fcbit, reg1, reg2, reg3

[Operation] if FPSR.CCn == 1 then

 reg3  reg1

else

 reg3  reg2

endif

Remark n = fcbit

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 0 0 1 f f f 0

 reg3 Note category type sub-op

 Note reg3: wwww! = 0

 wwww  0000 (do not set reg3 to r0)

 Remark fcbit: fff

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data from

the register pair specified by reg1 is stored in the register pair specified by reg3. When these bits

are false (0), data from the register pair specified by reg2 is stored in the register pair specified by

reg3.

[Floating-point operation exceptions] None

Caution Do not set reg3 to r0.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 339 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point condition instruction >

Floating-point Conditional Move (Single)

CMOVF.S
Conditional transfer (single precision)

[Instruction format] CMOVF.S fcbit, reg1, reg2, reg3

[Operation] if FPSR.CCn == 1 then

 reg3  reg1

else

 reg3  reg2

endif

Remark n = fcbit

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 0 0 0 f f f 0

 reg3Note category type sub-op

 Note reg3: wwwww! = 0

 wwwww  00000 (do not set reg3 to r0)

 Remark fcbit: fff

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data from

reg1 is stored in reg3. When these bits are false (0), the reg2 data is stored in reg3.

[Floating-point operation exceptions] None

Caution Do not set reg3 to r0.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 340 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Compare (Double)

CMPF.D
 Floating-point comparison (double precision)

[Instruction format] CMPF.D fcond, reg2, reg1, fcbit

CMPF.D fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

 result.less  0

 result.equal  0

 result.unordered  1

 if fcond[3] == 1 then

 Invalid operation exception is detected.

 endif

else

 result.less  reg2 < reg1

 result.equal  reg2 == reg1

 result.unordered  0

endif

FPSR.CCn  (fcond[2] & result.less) | (fcond[1] & result.equal) | (fcond[0] & result.unordered)

 Remark n: fcbit

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R R 0 F F F F 1 0 0 0 0 1 1 f f f 0

 reg2 reg1 category type sub-op

 Remark fcond: FFFF

 fcbit: fff

[Description] This instruction compares the double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 with the double-precision floating-point format contents

of the register pair specified by general-purpose register reg1, based on the condition “fcond”, and

sets the result (1 if true, 0 if false) to the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR

register specified by fcbit in the opcode. If fcbit is omitted, the result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 4-6 Comparison

Conditions.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 341 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has been

set, an IEEE754-defined invalid operation exception is detected. If invalid operation exceptions

are enabled, the comparison result is not set and processing is passed to the exception.

 If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR

register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point operation

instruction (including a comparison), it is regarded as an invalid operation condition. When using

only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid operation, it is simpler

to use a program in which any NaN results in an error. In other words, there is no need to insert

code that explicitly checks for Q-NaN that would result in an unordered result. Instead, the

exception processing system should perform error processing when an exception occurs after

detecting an invalid operation. The following shows a comparison that checks for equivalence of

two numerical values and triggers an error when an unordered result is detected.

Table 4-6. Comparison Conditions

Comparison

Conditions

 fcond

Definition Description

Invalid operation

exception occurs

when unordered?

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ? = reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

OLE 6 reg2  reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ?  reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ? = reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2  reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ?  reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

Remark ?: Unordered (invalid comparison)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 342 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

When explicitly testing Q-NaN

 CMPF.D OLT, r12, r14, 0 # Check if r12 < r14

 CMPF.D UN, r12, r14, 1 # Check if unordered

 TRFSR 0

 BT L2 # If true, go to L2

 TRFSR 1

 BT ERROR # If true, go to error processing

Enter code for processing when neither unordered nor r12 < r14

 L2:

Enter code for processing when r12 < r14

 :

When using a comparison to detect Q-NaN

 CMPF.D LT, r12, r14, 0 # Check if r12 ?< r14

 TRFSR 0

 BT L2 # If true, go to L2

Enter code for processing when not r12 < r14

 L2:

Enter code for processing when r12 < r14

 :

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result] When FPSR.FS = 1

[Condition code (fcond) = 0 to 7]

 reg1 (B)

reg2 (A)
+Normal Normal +0 0 +  Q-NaN S-NaN

Normal

0



Stores result of comparison (true or false) under comparison condition

(fcond) in FPSR.CCn bit (n = fcbit)

Q-NaN

S-NaN
Unordered

[Condition code (fcond) = 8 to 15]

 reg1 (B)

reg2 (A)
+Normal Normal +0 0 +  Q-NaN S-NaN

Normal

0



Stores result of comparison (true or false) under comparison condition

(fcond) in FPSR.CCn bit (n = fcbit)

Q-NaN

S-NaN
Unordered [V]

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 343 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Compare (Single)

CMPF.S
Floating-point comparison (single precision)

[Instruction format] CMPF.S fcond, reg2, reg1, fcbit

CMPF.S fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

 result.less  0

 result.equal  0

 result.unordered  1

 if fcond[3] == 1 then

 Invalid operation exception is detected.

 endif

else

 result.less  reg2 < reg1

 result.equal  reg2 == reg1

 result.unordered  0

endif

FPSR.CCn  (fcond[2] & result.less) | (fcond[1] & result.equal) | (fcond[0] & result.unordered)

 Remark n: fcbit

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R 0 F F F F 1 0 0 0 0 1 0 f f f 0

 reg2 reg1 category type sub-op

 Remark fcond: FFFF

 fcbit: fff

[Description] This instruction compares the single-precision floating-point format contents of general-purpose

register reg2 with the single-precision floating-point format contents of general-purpose register

reg1, based on the comparison condition “fcond”, then sets the result (1 if true, 0 if false) to the

condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register specified by fcbit in the opcode.

If fcbit is omitted, the result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 4-7 Comparison

Conditions.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 344 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

 If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has been

set, an IEEE754-defined invalid operation exception is detected. If invalid operation exceptions

are enabled, the comparison result is not set and processing is passed to the exception.

 If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR

register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point operation

instruction (including a comparison), it is regarded as an invalid operation condition. When using

only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid operation, it is simpler

to use a program in which any NaN results in an error. In other words, there is no need to insert

code that explicitly checks for Q-NaN that would result in an unordered result. Instead, the

exception processing system should perform error processing when an exception occurs after

detecting an invalid operation. The following shows a comparison that checks for equivalence of

two numerical values and triggers an error when an unordered result is detected.

Table 4-7. Comparison Conditions

Comparison

Conditions

 fcond

Definition Description

Invalid operation

exception occurs

when unordered?

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ? = reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

OLE 6 reg2  reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ?  reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ? = reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2  reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ?  reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

Remark ?: Unordered (invalid comparison)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 345 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

When explicitly testing Q-NaN

 CMPF.S OLT, r12, r13, 0 # Check if r12 < r14

 CMPF.S UN, r12, r13, 1 # Check if unordered

 TRFSR 0

 BT L2 # If true, go to L2

 TRFSR 1

 BT ERROR # If true, go to error processing

Enter code for processing when neither unordered nor r12 < r14

 L2:

Enter code for processing when r12 < r14

 :

When using a comparison to detect Q-NaN

 CMPF.S LT, r12, r13, 0 # Check if r12 ?< r14

 TRFSR 0

 BT L2 # If true, go to L2

Enter code for processing when not r12 < r14

 L2:

Enter code for processing when r12 < r14

 :

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result] When FPSR.FS = 1

[Condition code (fcond) = 0 to 7]

 reg1 (B)

reg2 (A)
+Normal Normal +0 0 +  Q-NaN S-NaN

Normal

0



Stores result of comparison (true or false) under comparison condition

(fcond) in FPSR.CCn bit (n = fcbit)

Q-NaN

S-NaN
Unordered

[Condition code (fcond) = 8 to 15]

 reg1 (B)

reg2 (A)
+Normal Normal +0 0 +  Q-NaN S-NaN

Normal

0



Stores result of comparison (true or false) under comparison condition

(fcond) in FPSR.CCn bit (n = fcbit)

Q-NaN

S-NaN
Unordered [V]

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 346 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Long Fixed-point Format (Double)

CVTF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] CVTF.DL reg2, reg3

[Operation] reg3  cvt reg2 (double  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, in accordance

with the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 347 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Single Floating-point Format (Double)

CVTF.DS
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.DS reg2, reg3

[Operation] reg3  cvt reg2 (double  single)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to single-precision floating-point format,

and stores the result in general-purpose register reg3. The result is rounded in accordance with

the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A(Single) +0 0 +  Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 348 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Unsigned Long Fixed-point Format (Double)

CVTF.DUL
Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.DUL reg2, reg3

[Operation] reg3  cvt reg2 (double  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, in

accordance with the current rounding mode, and stores the result in the register pair specified by

general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 349 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Unsigned Single Fixed-point Format (Double)

CVTF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.DUW reg2, reg3

[Operation] reg3  cvt reg2 (double  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 350 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Single Fixed-point Format (Double)

CVTF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] CVTF.DW reg2, reg3

[Operation] reg3  cvt reg2 (double  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 351 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Double Floating-point Format (Double)

CVTF.LD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.LD reg2, reg3

[Operation] reg3  cvt reg2 (long-word  double)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair

specified by general-purpose register reg2 to double-precision floating-point format in accordance

with the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 352 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Single Floating-point Format (Single)

CVTF.LS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.LS reg2, reg3

[Operation] reg3  cvt reg2 (long-word  single)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair

specified by general-purpose register reg2 to single-precision floating-point format, and stores the

result in general-purpose register reg3. The result is rounded in accordance with the current

rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 353 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Double Floating-point Format (Double)

CVTF.SD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.SD reg2, reg3

[Operation] reg3  cvt reg2 (single  double)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to double-precision floating-point format, in accordance with the

current rounding mode, and stores the result in the register pair specified by general-purpose

register reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (Double) +0 0 +  Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 354 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Long Fixed-point Format(Single)

CVTF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] CVTF.SL reg2, reg3

[Operation] reg3  cvt reg2 (single  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, in accordance with the current rounding

mode, and stores the result in the register pair specified by general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 355 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Unsigned Long Fixed-point Format (Single)

CVTF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.SUL reg2, reg3

[Operation] reg3  cvt reg2 (single  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, in accordance with the current

rounding mode, and stores the result in the register pair specified by general-purpose register

reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 356 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Unsigned Single Fixed-point Format (Single)

CVTF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.SUW reg2, reg3

[Operation] reg3  cvt reg2 (single  unsigned word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 357 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Single Fixed-point Format (Single)

CVTF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] CVTF.SW reg2, reg3

[Operation] reg3  cvt reg2 (single  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose

register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 358 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Double Fixed-point Format (Double)

CVTF.ULD
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.ULD reg2, reg3

[Operation] reg3  cvt reg2 (unsigned long-word  double)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to double-precision floating-point format in

accordance with the current rounding mode, and stores the result in the register pair specified by

general-purpose register reg3.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 359 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Single Fixed-point Format (Single)

CVTF.ULS
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.ULS reg2, reg3

[Operation] reg3  cvt reg2 (unsigned long-word  single)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to single-precision floating-point format,

and stores the result in general-purpose register reg3. The result is rounded in accordance with

the current rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 360 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Double Fixed-point Format (Double)

CVTF.UWD
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.UWD reg2, reg3

[Operation] reg3  cvt reg2 (unsigned word  double)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-

purpose register reg2 to double-precision floating-point format, in accordance with the current

rounding mode, and stores the result in the register pair specified by general-purpose register

reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 361 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Single Fixed-point Format (Single)

CVTF.UWS
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.UWS reg2, reg3

[Operation] reg3  cvt reg2 (unsigned word  single)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-

purpose register reg2 to single-precision floating-point format, and stores the result in general-

purpose register reg3. The result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 362 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Double Floating-point Format (Double)

CVTF.WD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.WD reg2, reg3

[Operation] reg3  cvt reg2 (word  double)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose

register reg2 to double-precision floating-point format, in accordance with the current rounding

mode, and stores the result in the register pair specified by general-purpose register reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 363 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Convert to Single Floating-point Format (single)

CVTF.WS
 Conversion to floating-point format (single precision)

[Instruction format] CVTF.WS reg2, reg3

[Operation] reg3  cvt reg2 (word  single)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose

register reg2 to single-precision floating-point format, and stores the result in general-purpose

register reg3. The result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Integer Integer 0 (integer)

Operation result

[exception]
A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 364 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Divide (Double)

DIVF.D
 Floating-point division (double precision)

[Instruction format] DIVF.D reg1, reg2, reg3

[Operation] reg3  reg2  reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 1 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction divides double-precision floating-point format contents of the register pair specified

by general-purpose register reg2 by the double-precision floating-point format contents of the

register pair specified by general-purpose register reg1, and stores the result in the register pair

specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal + 

Normal
BA

 +

+0 + 

0
 [Z] Q-NaN [V]

 +

+ +0 0 +0 0

 0 +0 0 +0
Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 365 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Divide (Single)

DIVF.S
Floating-point division (single precision)

[Instruction format] DIVF.S reg1, reg2, reg3

[Operation] reg3  reg2  reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 1 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction divides the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal + 

Normal
BA

 +

+0 + 

0
 [Z] Q-NaN [V]

 +

+ +0 0 +0 0

 0 +0 0 +0
Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 366 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate, rounded toward the direction of  (Double)

FLOORF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] FLOORF.DL reg2, reg3

[Operation] reg3  floor reg2 (double  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the

result in the register pair specified by general-purpose register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 367 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned, rounded toward the direction of  (Double)

FLOORF.DUL
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] FLOORF.DUL reg2, reg3

[Operation] reg3  floor reg2 (double  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 368 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned, rounded toward the direction of  (Double)

FLOORF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] FLOORF.DUW reg2, reg3

[Operation] reg3  floor reg2 (double  unsigned word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer) Max U-Int [V] 0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 369 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate, rounded toward the direction of  (Double)

FLOORF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] FLOORF.DW reg2, reg3

[Operation] reg3  floor reg2 (double  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 370 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate, rounded toward the direction of  (Single)

FLOORF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] FLOORF.SL reg2, reg3

[Operation] reg3  floor reg2 (single  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair

specified by general-purpose register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 371 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned, rounded toward the direction of  (Single)

FLOORF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] FLOORF.SUL reg2, reg3

[Operation] reg3  floor reg2 (single  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 372 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned, rounded toward the direction of - (Single)

FLOORF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] FLOORF.SUW reg2, reg3

[Operation] reg3  floor reg2 (single  unsigned word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 373 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate, rounded toward the direction of - (Single)

FLOORF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] FLOORF.SW reg2, reg3

[Operation] reg3  floor reg2 (single  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose

register reg3.

The result is rounded in the  direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) +Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 374 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Multiply-add (Single)

MADDF.S
 Floating-point fused-multiply-add operation (single precision)

[Instruction format] MADDF.S reg1, reg2, reg3, reg4

[Operation] reg4  reg2  reg1 + reg3

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 W 0 0 W W W W 0

 reg2 reg1 reg3

N
o

te
 1

N
ot

e
2 type Note 2

Notes 1. category

 2. reg4 (The least significant bit of reg4 is bit 23.)

[Description] This instruction multiples the contents of general-purpose register reg2 by the contents of general-

purpose register reg1, then adds the result with the contents of floating-point register reg3 and

stores the result in general-purpose register reg4. The operation is executed as if it were of

infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 375 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Operation result] When FPSR.FS = 1

reg3(C)

 reg2 (B)

reg1 (A)

+Normal Normal +0 0 +  Q-NaN S-NaN

 +Normal + 

 Normal  +

Normal 0

MADD(A, B, C)

Q-NaN [V]

 + +  + 

   +
Q-NaN [V]

 +

 +Normal + 

 Normal  +

0 0

MADD(A, B, C)

Q-NaN [V]

 + +  + 

   +
Q-NaN [V]

 +

 +Normal + Q-NaN [V]

 Normal Q-NaN [V] +

+ 0

+

Q-NaN [V]

 + + Q-NaN [V] + Q-NaN [V]

  Q-NaN [V] +
Q-NaN [V]

Q-NaN [V] +

 +Normal Q-NaN [V] 

 Normal  Q-NaN [V]

 0



Q-NaN [V]

 + Q-NaN [V]  Q-NaN [V] 

   Q-NaN [V]
Q-NaN [V]

 Q-NaN [V]

 Normal

Q-NaN 0 Q-NaN

 

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN

S-NaN Don’t care
 Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

[Supplement] An exception occurs based on the multiplication result in the following case.

  When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 376 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Maximum (Double)

MAXF.D
 Floating-point maximum value (double precision)

[Instruction format] MAXF.D reg1, reg2, reg3

[Operation] reg3 ← max (reg2, reg1)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the maximum value from the double-precision floating-point format data in

the register pair specified by general-purpose registers reg1 and reg2, and stores it in the register

pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

When the FS bit of the FPSR register has been set, both reg1 and reg2 contain denormalized

numbers, and the maximum value is either +0 or 0, +0 or 0 is stored in reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When the FS bit of the FPSR register has been set, both reg1 and reg2 contain denormalized

numbers, and the maximum value is either +0 or 0, it is undefined whether+0 or 0 is stored in

reg3.

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
+Normal Normal +0 0 +  Q-NaN S-NaN

+Normal

Normal

+0

0

+



MAX (A, B)

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 377 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Maximum (Single)

MAXF.S
 Floating-point maximum value (single precision)

[Instruction format] MAXF.S reg1, reg2, reg3

[Operation] reg3  max (reg2, reg1)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the maximum value from the single-precision floating-point format data in

general-purpose registers reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

When the FS bit of the FPSR register has been set, and both reg1 and reg2 contain denormalized

numbers, the maximum value is either +0 or 0, +0 or 0 is stored in reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When the FS bit of the FPSR register has been set, and both reg1 and reg2 contain denormalized

numbers, the maximum value is either +0 or 0, it is undefined whether +0 or 0 is stored in reg3.

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal

Normal

+0

0

+



MAX (A, B)

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 378 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Minimum (Double)

MINF.D
Floating-point minimum value (double precision)

[Instruction format] MINF.D reg1, reg2, reg3

[Operation] reg3  min (reg2, reg1)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the minimum value from the double-precision floating-point format data in

the register pair specified by general-purpose registers reg1 and reg2, and stores it in the register

pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

When the FS bit of the FPSR register has been set, and both reg1 and reg2 contain denormalized

numbers, and the minimum value is either +0 or 0, +0 or 0 is stored in reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When the FS bit of the FPSR register has been set, and both reg1 and reg2 contain denormalized

numbers, and the minimum value is either +0 or 0, whether +0 or 0 is stored in reg3 is

undefined.

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal

Normal

+0

0

+



MIN (A, B)

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 379 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Minimum (Single)

MINF.S
Floating-point minimum value (single precision)

[Instruction format] MINF.S reg1, reg2, reg3

[Operation] reg3  min (reg2, reg1)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the minimum value from the single-precision floating-point format data in

general-purpose registers reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

When the FS bit of the FPSR register has been set, both reg1 and reg2 contain denormalized

numbers, and the minimum value is either +0 or 0, +0 or 0 is stored in reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When the FS bit of the FPSR register has been set, both reg1 and reg2 contain denormalized

numbers, and the minimum value is either +0 or 0, whether +0 or 0 is stored in reg3 is

undefined.

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal

Normal

+0

0

+



MIN (A, B)

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 380 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Multiply-subtract (Single)

MSUBF.S
 Floating-point fused-multiply-add operation (single precision)

[Instruction format] MSUBF.S reg1, reg2, reg3, reg4

[Operation] reg4  reg2  reg1  reg3

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 W 0 1 W W W W 0

 reg2 reg1 reg3

N
o

te
 1

N
o

te
 2

type Note 2

Notes 1. category

 2. reg4 (The least significant bit of reg4 is bit 23.)

[Description] This instruction multiples the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, then subtracts the single-precision floating-point format contents of general-purpose register

reg3, and stores the result in general-purpose register reg4. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 381 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Operation result] When FPSR.FS = 1

reg3(C)

 reg2 (B)

reg1 (A)

+Normal Normal +0 0 +  Q-NaN S-NaN

 +Normal + 

 Normal  +

Normal 0

MUSB(A, B, C)

Q-NaN [V]

 + +  + 

   +
Q-NaN [V]

 +

 +Normal + 

 Normal  +

0 0

MUSB(A, B, C)

Q-NaN [V]

 + +  + 

   +
Q-NaN [V]

 +

 +Normal Q-NaN [V] 

 Normal  Q-NaN [V]

+ 0



Q-NaN [V]

 + Q-NaN [V]  Q-NaN [V] 

   Q-NaN [V]
Q-NaN [V]

 Q-NaN [V]

 +Normal + Q-NaN [V]

 Normal Q-NaN [V] +

 0

+

Q-NaN [V]

 + + Q-NaN [V] + Q-NaN [V]

  Q-NaN [V] +
Q-NaN [V]

Q-NaN [V] +

Q-NaN Normal

 0 Q-NaN

 

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN

S-NaN Don’t care
 Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

[Supplement] An exception occurs based on the multiplication result in the following case.

  When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 382 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Multiply (Double)

MULF.D
 Floating-point multiplication (double precision)

[Instruction format] MULF.D reg1, reg2, reg3

[Operation] reg3  reg2  reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 1 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 by the double-precision floating-point format contents

of the register pair specified by general-purpose register reg1, and stores the result in general-

purpose register reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal + 

Normal  +

+0

0

AB

Q-NaN [V]

+ +  + 

  +
Q-NaN [V]

 +

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 383 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Multiply (Single)

MULF.S
 Floating-point multiplication (single precision)

[Instruction format] MULF.S reg1, reg2, reg3

[Operation] reg3  reg2  reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 1 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, and stores the result in general-purpose register reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal + 

Normal  +

+0

0

A×B

Q-NaN [V]

+ +  + 

  +
Q-NaN [V]

 +

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 384 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Negate (Double)

NEGF.D
 Floating-point sign inversion (double precision)

[Instruction format] NEGF.D reg2, reg3

[Operation] reg3  neg reg2

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction inverts the sign of double-precision floating-point format contents of the register

pair specified by general-purpose register reg2, and stores the result in general-purpose register

reg3.

Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
Normal +Normal 0 +0  + Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 385 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Negate (Single)

NEGF.S
 Floating-point sign inversion (single precision)

[Instruction format] NEGF.S reg2, reg3

[Operation] reg3  neg reg2

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction inverts the sign of the single-precision floating-point format contents of general-

purpose register reg2, and stores the result in general-purpose register reg3.

Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 +Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
Normal +Normal 0 +0  + Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 386 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Negate Multiply-add (Single)

NMADDF.S
 Floating-point fused-multiply-add operation (single precision)

[Instruction format] NMADDF.S reg1, reg2, reg3, reg4

[Operation] reg4  neg (reg2  reg1 + reg3)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 W 1 0 W W W W 0

 reg2 reg1 reg3

N
o

te
 1

N
o

te
 2

type Note 2

Notes 1. category

 2. reg4 (The least significant bit of reg4 is bit 23.)

[Description] This instruction multiplies the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, then adds the result to the single-precision floating-point format contents of general-purpose

register reg3. Next, it inverts the sign of the result and stores it in general-purpose register reg4.

The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance

with the current rounding mode.

Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 387 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Operation result] When FPSR.FS = 1

reg3(C)

 reg2 (B)

reg1 (A)

+Normal Normal +0 0 +  Q-NaN S-NaN

 +Normal  +

 Normal + 

Normal 0

NMADD (A, B, C)

Q-NaN [V]

 +  +  +

  + 
Q-NaN [V]

+ 

 +Normal  +

 Normal + 

0 0

NMADD (A, B, C)

Q-NaN [V]

 +  +  +

  + 
Q-NaN [V]

+ 

 +Normal  Q-NaN [V]

 Normal Q-NaN [V] 

+ 0



Q-NaN [V]

 +  Q-NaN [V]  Q-NaN [V]

  Q-NaN [V] 
Q-NaN [V]

Q-NaN [V] 

 +Normal Q-NaN [V] +

 Normal + Q-NaN [V]

 0

+

Q-NaN [V]

 + Q-NaN [V] + Q-NaN [V] +

  + Q-NaN [V]
Q-NaN [V]

+ Q-NaN [V]

 Normal

Q-NaN 0 Q-NaN

 

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN

S-NaN Don’t care
 Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

[Supplement] An exception occurs based on the multiplication result in the following case.

  When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 388 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Negate Multiply-subtract (Single)

NMSUBF.S
 Floating-point fused-multiply-add operation (single precision)

[Instruction format] NMSUBF.S reg1, reg2, reg3, reg4

[Operation] reg4  neg (reg2  reg1-reg3)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 W 1 1 W W W W 0

 reg2 reg1 reg3

N
o

te
 1

N
o

te
 2

type Note 2

Notes 1. category

 2. reg4 (The least significant bit of reg4 is bit 23.)

[Description] This instruction multiplies the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, then subtracts from this result the single-precision floating-point format contents of general-

purpose register reg3. Next, it inverts the sign of the result and stores it in general-purpose

register reg4. The operation is executed as if it were of infinite accuracy, and the result is rounded

in accordance with the current rounding mode.

Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 389 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

[Operation result] When FPSR.FS = 1

reg3(C)

 reg2 (B)

reg1 (A)

+Normal Normal +0 0 +  Q-NaN S-NaN

 +Normal  +

 Normal + 

Normal 0

NMSUB(A, B, C)

Q-NaN [V]

 +  +  +

  + 
Q-NaN [V]

+ 

 +Normal  +

 Normal + 

0 0

NMSUB(A, B, C)

Q-NaN [V]

 +  +  +

  + 
Q-NaN [V]

+ 

 +Normal Q-NaN [V] +

 Normal + Q-NaN [V]

+ 0

+

Q-NaN [V]

 + Q-NaN [V] + Q-NaN [V] +

  + Q-NaN [V]
Q-NaN [V]

+ Q-NaN [V]

 +Normal  Q-NaN [V]

 Normal Q-NaN [V] 

 0



Q-NaN [V]

 +  Q-NaN [V]  Q-NaN [V]

  Q-NaN [V] 
Q-NaN [V]

Q-NaN [V] 

 Normal

Q-NaN 0 Q-NaN

 

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN

S-NaN Don’t care
 Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

[Supplement] An exception occurs based on the multiplication result in the following case.

  When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 390 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Reciprocal of a Floating-point Value (Double)

RECIPF.D
Reciprocal (double precision)

[Instruction format] RECIPF.D reg2, reg3

[Operation] reg3  1  reg2

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction approximates the reciprocal of the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Supplement] When underflow exceptions are prohibited, the initial value is determined according to the sign of

the intermediate value in the approximation calculation, so whether or not the sign will be the

same as the source is not guaranteed.

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
1/A [I]  [Z]  [Z] +0 0 Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 391 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Reciprocal of a Floating-point Value (Single)

RECIPF.S
 Reciprocal (single precision)

[Instruction format] RECIPF.S reg2, reg3

[Operation] reg3  1  reg2

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction approximates the reciprocal of the single-precision floating-point format contents

of general-purpose register reg2, and stores the result in general-purpose register reg3. The

operation is executed as if it were of infinite accuracy, and the result is rounded in accordance

with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Supplement] When underflow exceptions are prohibited, the default is determined according to the sign of the

intermediate value in the approximation calculation, so whether or not the sign will be the same as

the source is not guaranteed.

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
1/A [I] + [Z] - [Z] +0 0 Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 392 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Reciprocal of the Square Root of a Floating-point Value (Double)

RSQRTF.D
Reciprocal of square root (double precision)

[Instruction format] RSQRTF.D reg2, reg3

[Operation] reg3  1  (sqrt reg2)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-point

format contents of the register pair specified by general-purpose register reg2, then approximates

the reciprocal of this result and stores the result in the register pair specified by general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is rounded

in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
1/


A [I] Q-NaN [V] + [Z]  [Z] +0 Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 393 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Reciprocal of the Square Root of a Floating-point Value (Single)

RSQRTF.S
Reciprocal of square root (single precision)

[Instruction format] RSQRTF.S reg2, reg3

[Operation] reg3  1  (sqrt reg2)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-point

format contents of general-purpose register reg2, then approximates the reciprocal of this result

and stores it in general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
1/


A [I] Q-NaN [V] + [Z]  [Z] +0 Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 394 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Square Root (Double)

SQRTF.D
Square root (double precision)

[Instruction format] SQRTF.D reg2, reg3

[Operation] reg3  sqrt reg2

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-point

format contents of the register pair specified by general-purpose register reg2, and stores the

result in the register pair specified by general-purpose register reg3. The operation is executed as

if it were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode. When the source operand value is 0, the result becomes 0.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal -Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]


A Q-NaN [V] +0 0 + Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 395 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Square Root (Single)

SQRTF.S
Square root (single precision)

[Instruction format] SQRTF.S reg2, reg3

[Operation] reg3  sqrt reg2

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-point

format contents of general-purpose register reg2, and stores it in general-purpose register reg3.

The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance

with the current rounding mode. When the source operand value is 0, the result becomes 0.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]


A Q-NaN [V] +0 0 + Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 396 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Subtract (Double)

SUBF.D
 Floating-point subtraction (double precision)

[Instruction format] SUBF.D reg1, reg2, reg3

[Operation] reg3  reg2  reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction subtracts the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1 from the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal

Normal

+0
+

0

B  A

+  Q-NaN [V]



 + Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 397 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Subtract (Single)

SUBF.S
 Floating-point subtraction (single precision)

[Instruction format] SUBF.S reg1, reg2, reg3

[Operation] reg3  reg2  reg1

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction subtracts the single-precision floating-point format contents of general-purpose

register reg1 from the single-precision floating-point format contents of general-purpose register

reg2, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS = 1

 reg2 (B)

reg1 (A)
Normal Normal +0 0 +  Q-NaN S-NaN

Normal

Normal

+0
+

0

B  A

+  Q-NaN [V]



 + Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 398 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Transfer Floating Flags

TRFSR
Flag transfer

[Instruction format] TRFSR fcbit

 TRFSR

[Operation] PSW.Z  fcbit

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 f f f 0

 reg3 category type sub-op

 Remark fcbit: fff

[Description] This instruction transfers the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register

specified by fcbit to the Z flag in the PSW. If fcbit is omitted, this instruction transfers the CC0 bit

(bit 24).

[Floating-point operation exceptions] None

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 399 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Long Fixed-point Format, rounded to zero (Double)

TRNCF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] TRNCF.DL reg2, reg3

[Operation] reg3  trunc reg2 (double  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the

result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) Max Int [V] -Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 400 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned Long Fixed-point Format, rounded to zero (Double)

TRNCF.DUL
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] TRNCF.DUL reg2, reg3

[Operation] reg3  trunc reg2 (double  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 401 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned Single Fixed-point Format, rounded to zero (Double)

TRNCF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] TRNCF.DUW reg2, reg3

[Operation] reg3  trunc reg2 (double  unsigned word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 232  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 402 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Single Fixed-point Format, rounded to zero (Double)

TRNCF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] TRNCF.DW reg2, reg3

[Operation] reg3  trunc reg2 (double  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 403 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Long Fixed-point Format, rounded to zero (Single)

TRNCF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] TRNCF.SL reg2, reg3

[Operation] reg3  trunc reg2 (single  long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair

specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263  1 to 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 263  1 is returned.

 Source is a negative number, not-a-number, or : 263 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 404 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned Long Fixed-point Format, rounded to zero (Single)

TRNCF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUL reg2, reg3

[Operation] reg3  trunc reg2 (single  unsigned long-word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative value, or when the rounded result

is outside the range of 264  1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 264  1 to 0, or +: 264  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 405 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Unsigned Single Fixed-point Format, rounded to zero (Single)

TRNCF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUW reg2, reg3

[Operation] reg3  trunc reg2 (single  unsigned word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point number format contents

of general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232  1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number outside the range of 232  1 to 0, or +: 232  1 is returned.

 Source is a negative number, not-a-number, or : 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal -Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 [V] 0 (integer)

Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 406 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

<Floating-point instruction>

Floating-point Truncate to Single Fixed-point Format, rounded to zero (Single)

TRNCF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] TRNCF.SW reg2, reg3

[Operation] reg3  trunc reg2 (single  word)

[Format] Format F:I

[opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point number format contents

of general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-

purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231  1 to 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

 Source is a positive number or +: 231  1 is returned.

 Source is a negative number, not-a-number, or : 231 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS = 1

reg2 (A) Normal -Normal +0 0 +  Q-NaN S-NaN

Operation result

[exception]
A (integer) 0 (integer) Max Int [V] Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. Denormalized numbers are flushed and handled as “0”.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 407 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

This chapter describes how the FPU processes floating-point operation exceptions.

5.1 Types of Exceptions

When floating-point operations or processing of operation results cannot be done using the ordinary method, a floating-

point operation exception occurs.

One of the following two operations is performed when a floating-point operation exception has occurred.

 When exceptions are enabled

The cause bit is set in the floating-point configuration/status register (FPSR), and processing (by software) is

passed to the exception handler routine.

 When exceptions are prohibited

The preservation bit is set in the floating-point configuration/status register (FPSR), an appropriate value (initial

value) is stored in the FPU destination register, then execution is continued.

The FPU uses cause bits, enable bits, and preservation bits (status flags) to support the following five types of

IEEE754-defined exception causes.

 Inexact operation (I)

 Overflow (O)

 Underflow (U)

 Division-by-zero (Z)

 Invalid operation (V)

A sixth type of exception cause is unimplemented operation (E), which causes an exception when a floating-point

operation cannot be executed. This exception requires processing by software. An unimplemented operation exception

(E) occurs when exceptions are always enabled, rather than by using properties, enable bits, or preservation bits.

Figure 5-1 shows the FPSR register bits that are used to support exceptions.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 408 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Figure 5-1. Cause, Enable, and Preservation Bits of FPSR Register

The five exceptions (V, Z, O, U, and I) defined by IEEE754 are enabled when the corresponding enable bits are set.

When an exception occurs, if the corresponding enable bit has been set, the FPU sets the corresponding cause bit. If the

exception can be acknowledged, processing is passed to the exception handler routine. If exceptions are prohibited, the

exception corresponding preservation bit is set, and processing is not passed to the exception handler routine.

5.2 Exception Processing

When a floating-point operation exception occurs, the cause bits of the FPSR register indicate the cause of the floating-

point operation exception.

5.2.1 Status flag

A corresponding preservation bit is available for each IEEE754-defined exception. The preservation bit is set when the

corresponding exception is prohibited but the exception condition has been detected. The preservation bit is set or reset

whenever new values are written to the FPSR register by the LDSR instruction.

If an exception is prohibited by an enable bit, predetermined processing is performed by the FPU. This processing

provides a initial value as the result, rather than a floating-point operation result. This initial value is determined according

to the type of exception. For an overflow exception or underflow exception, the initial value also differs depending on the

current rounding mode. Table 5-1 lists the initial values provided for each of the FPU IEEE754-defined exceptions.

Cause bit (XC) IUOZ V E

10111213 14 Bit 15

Enable bit (XE) IUOZ V

5678 Bit 9

Preservation bit (XP) IUOZ V

0123 Bit 4

Inexact exception

Underflow
Overflow

Division-by-zero operation

Invalid operation
Unimplemented operation

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 409 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table 5-1. FPU Initial Values for IEEE754-defined Exceptions

Area Description Rounding mode Initial value

V Invalid operation  Uses quiet not-a-number (Q-NaN)

Z Division-by-zero  Uses correctly signed 

O Overflow RN  with sign of intermediate result

U Underflow RN 0 with sign of intermediate result

I Inexact operation  Uses rounded result

5.3 Exception Details

The following describes the conditions under which each of the FPU exceptions occurs and the FPU responses.

5.3.1 Inexact exception (I)

In the following cases, the FPU detects an inexact exception.

 When the precision of the rounded result is dropped

 When the rounded result overflows while overflow exceptions are prohibited

 When the rounded result underflows while underflow exceptions are prohibited

 When the operand denormalized number is flushed, neither an invalid operation exception (V) nor a division-by-

zero exception (Z) is detected, and the other operands are not Q-NaN

(1) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved, and an inexact

exception occurs.

(2) If exception is not enabled

If no other exception occurs, the rounded result or the result that underflows or overflows is stored in the

destination register.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 410 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.3.2 Invalid operation exception (V)

An invalid operation exception occurs when one of both of the operands is invalid.

 Addition/subtraction or fused-multiply-add operationNote:

 Addition or subtraction of infinite values (+) + () or ()  ()

 Multiplication or fused-multiply-add operation: 0  

 Division: 0  0 or   

 Comparison: With condition codes 8 15, if the operand is unordered (see Table 4-2 Definitions of Condition

Code Bits and Their Logical Inversions)

 Arithmetic operation with S-Nan included in operands. The conditional transfer instruction (cmov) is not handled

as an arithmetic operation, but the absolute value (ABS), arithmetic negation (NEG), minimum value (MIN), and

maximum value (MAX) operations are handled as arithmetic operations.

 Comparison when operand includes S-NaN and conversion to floating-point format.

 Conversion to integer when source is outside of integer range.

 Square root: When operand is less than 0

Note When the multiplication result is rounded to infinity or when adding or subtracting between infinities, i.e., (+)

+ () or ()  ()

(1) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved, and an invalid

operation exception occurs.

(2) If exception is not enabled

If no other exception occurs, and the destination is a floating-point format, Q-NaN is stored in the destination

register. If the destination has an integer format, refer to the operation result description of each instruction for the

value to be stored in the destination register.

5.3.3 Division-by-zero exception (Z)

A division-by-zero exception occurs when a divisor is 0 and a dividend is a finite number other than 0.

(1) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved, and a division-

by-zero exception occurs.

(2) If exception is not enabled

If no other exception occurs, a correctly signed infinite number () is stored in the destination register.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 411 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.3.4 Overflow exception (O)

An overflow exception is detected if the exponent range is infinite and if the result of the rounded floating point is

greater than maximum finite number in the destination format.

(1) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are saved, and an

overflow exception occurs.

(2) If exception is not enabled

If no other exception occurs, the initial value that is determined by the rounding mode and the sign of the

intermediate result is stored in the destination register (see Table 5-1 FPU Initial Values for IEEE754-defined

Exceptions).

5.3.5 Underflow exception (U)

An underflow exception is detected in the following two cases.

 If the operation result is 2Emin to +2Emin (but not zero)

 If precision is dropped due to an operation between small numbers that are not normalized

Although IEEE754 defines several methods for detecting an underflow, the same method should be used to detect

underflows, regardless of the processing to be performed.

The following two methods can be used to detect an underflow.

 The result calculated after rounding and using an infinite exponent range is not zero and is within 2Emin.

 The result calculated before rounding and using an infinite exponent range and precision is not zero and is within

2Emin.

This FPU detects an underflow before rounding.

The following two methods can be used to detect a drop in precision.

 Denormalized loss (when a given result differs from the result calculated when the exponent range is infinite)

 Inexact result (when a given result differs from the result calculated when the exponent range and precision are

infinite)

This FPU detects a drop in precision as an inexact result.

(1) If exception is enabled

When the FS bit of the FPSR register has been set, if exceptions are enabled, an underflow exception (U) occurs.

When the FS bit of the FPSR register has been set, if exceptions are not enabled but inexact exceptions are

enabled, an inexact exception (I) occurs.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 412 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2) If exception is not enabled

If the FS bit of the FPSR register has been set, the initial value determined according to the rounding mode and

intermediate result sign is stored in the destination register (see Table 5-1 FPU Initial Values for IEEE754-

defined Exceptions).

5.3.6 Unimplemented operation exception (E)

The E bit is set and an unimplemented operation exception occurs when an attempt is made to execute an instruction

using an operation code that is reserved for future expansion. The operand and destination register contents do not

change. Usually, the unimplemented instruction is emulated by software. If an IEEE754-defined exception occurs from an

emulated operation, that exception should be emulated.

If the FS bit of the FPSR register has been set, an unimplemented operation exception (E) will not occur in any defined

FPU instruction.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 413 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.4 Precise Exceptions and Imprecise Exceptions

Each floating-point operation exception can be specified as an exception that occurs precisely (precise exception) or

imprecisely (imprecise exception).

The default setting is that imprecise exceptions occur for both single-precision instructions and double-precision

instructions. Precise exceptions can be specified to occur by setting the SEM and DEM bits of the FPSR register. The

SEM bit specifies a single-precision instruction exception mode and the DEM bit specifies a double-precision instruction

exception mode. For a description of single-precision instructions and double-precision instructions, see 4.2 Overview of

Floating-point Instructions.

5.4.1 Precise exceptions

When a precise exception is specified, the CPU does not start execution of any subsequent instructions until the

already started floating-point instruction has been completed. Consequently, when an exception occurs, the program can

continue after emulation by software.

The program counter for the instruction where a floating-point operation exception has occurred is stored in the EIPC

register and FPEPC register. When returning from emulation processing, an EIRET instruction is executed. Any floating-

point operation exception that has occurred during precise exception mode is acknowledged immediately, regardless of

the status of the ID bit or NP bit of PSW.

5.4.2 Imprecise exceptions

When an imprecise exception is specified, the CPU is able to start execution of subsequent instructions even before

the already started floating-point instruction has been completed. Consequently, when an exception occurs, the

subsequent instructions are executed speculatively, so if an exception occurs, emulation becomes difficult but the

throughput of instruction execution can be greatly increased.

When a floating-point operation exception occurs for a floating-point instruction executed in imprecise exception mode,

the results of subsequent floating-point instructions (except for a TRFSR instruction) are not reflected in the general-

purpose register after the exception is acknowledged and until processing of the exception handler routine starts, and no

other floating-point operation exceptions occur. This is called an “invalidating instruction”.

 The program counter for the instruction where a floating-point operation exception has occurred is stored in the

FPEPC register, and the program counter for an instruction that is interrupted when an exception is acknowledged is

stored in the EIPC register.

 A floating-point operation exception that has occurred in imprecise exception mode is held pending when the ID bit of

PSW = 1 or when the NP bit = 1. In such cases, when an LDSR instruction is used to set the PSW.NP bit and ID bit as “0”,

the pending exception is acknowledged.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 414 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.5 Saving and Returning Status

When a floating-point operation exception occurs, the PC and PSW are saved to the EIPC and EIPSW registers

respectively, and the exception code is saved to the EIIC register.

A floating-point operation exception code is 0x00000071 for a precise exception and 0x00000072 for an imprecise

exception. For the sake of compatibility, the lower 16 bits of the ECR register is also used to store the lower 16 bits of the

exception code.

When an EI level exception is acknowledged while processing a floating-point operation exception, an EIPC register

override occurs, which prevents the returning to the instruction that caused the floating-point operation exception to occur.

When acknowledgment of EI level exceptions is required, the contents of the EIPC, EIPSW, ECR, and EIIC registers must

be saved, such as to a stack.

When a floating-point instruction is used in a floating-point operation exception handler routine, the FPSR and FPEPC

registers will override if another floating-point operation exception occurred. In such cases, the FPSR and FPEPC

registers should be saved at the start of the floating-point operation exception handler processing, and should be returned

at the end of the handler processing.

With the floating-point operation exception handler, the PR bit of the FPSR register can be checked to determine

whether a precise exception or imprecise exception has occurred.

The cause bits and PR bit of the FPSR register hold the results from only one enabled exception. In any case, the

previous results are held until the next enabled exception occurs.

When accessing the FPSR or FPEPC register, note with caution that the FPU function system register bank must be

selected via the BSEL register. If an exception occurs during exception processing, the exception processing may

overwrite the BSEL register. Therefore, it is recommended that the BSEL register be saved as a program context prior to

exception processing.

An example of the floating-point operation exception handler code is shown below.

000 .offset 0x70 -- FPU exception

001 jr _fpu_exception_handler

002 ...

003

004 _fpu_exception_handler:

005 -- Save basic context

006 addi -100, sp, sp

007 st.w r31, 96[sp]

008 st.w r1, 92[sp]

009 stsr 31, r1 -- Save BSEL

010 st.w r1, 8[sp]

011 ldsr zero, 31 -- Select CPU bank

012 stsr 13, r1 -- Save EIIC

013 st.w r1, 28[sp]

014 stsr 1, r1 -- Save EIPSW

015 st.w r1, 24[sp]

016 stsr 0, r1 -- Save EIPC

017 st.w r1, 20[sp]

018 ei -- EI level maskable exception enable

019 stsr 17, r1 -- Save CTPSW

020 st.w r1, 16[sp]

021 stsr 16, r1 -- Save CTPC

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 415 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

022 st.w r1, 12[sp]

023 movea 0x2000, r0, r1 -- Select FPU status bank

024 ldsr r1, 31

025 stsr 6, r1 -- Save FPSR

026 st.w r1, 4[sp]

027 stsr 7, r1 -- Save FPEPC

028 st.w r1, 0[sp]

029

030 -- Determination of precise exception or imprecise exception

031 ld.w 28[sp], r1

032 addi -0x72, r1, r0 -- Is EIIC exception cause code 0x72?

033 be _imprecise_fpe

034

035 -- Floating-point operation exception processing

036

037 -- Basic context restoration

038 movea 0x2000, r0, r1 -- Select FPU status bank

039 ldsr r1, 31

040 ld.w 0[sp], r31

041 ld.w 4[sp], r1

042 ldsr r31, 7 -- FPEPC restoration

043 ldsr r1, 6 -- FPSR restoration

044 ldsr zero, 31 -- Select CPU bank

045 ld.w 12[sp], r31

046 ld.w 16[sp], r1

047 ldsr r31, 16 -- CTPC restoration

048 ldsr r1, 17 -- CTPSW restoration

049 di -- EI level maskable exception prohibited

050 ld.w 24[sp], r31

051 ld.w 28[sp], r1

052 ldsr r31, 1 -- EIPSW restoration

053 ldsr r1, 1 -- EIIC restoration

054 -- Set restoration address (for precise exception)

055 ld.w 20[sp], r1 -- Load EIPC to be saved

056 add 4, r1 -- Add 4 to r1 (all FPU instructions are four bytes)

057 ldsr r1, 0 -- Set r1 (next instruction PC) to EIPC

058 ld.w 8[sp], r1 -- BSEL restoration

059 ldsr r1, 31

060 ld.w 92[sp], r1

061 ld.w 96[sp], r31

062 addi 100, sp, sp

063 eiret

064

065 _imprecise_fpe:

066 -- Basic context restoration

067 ... Omitted ...

068

069 -- Store restoration point address to EIPC

070 ld.w 8[sp], r1 -- BSEL restoration

071 ldsr r1, 31

072 ld.w 92[sp], r1

073 addi 100, sp, sp

074 eiret

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 416 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.6 Selection of Floating-point Operation Model

5.6.1 When accurate operations are required

With this FPU, when an attempt is made to execute an operation code that is reserved for future expansion or an

instruction with invalid format code, the E bit is set and an unimplemented operation exception (E) occurs. The operand

and destination register do not change.

When strictly accurate operations are required, any instruction where an exception occurs is emulated by software. If

IEEE754-defined exceptions occur during an emulated operation, these exceptions should be emulated. If the program

must be resumed after emulation, set the SEM and DEM bits of the FPSR register and specify the precise exception in

advance.

IEEE754 recommends an exception handler that can store calculation results in the destination register regardless of

which of the five standard exceptions occurs.

The exception handler can search instructions using the FPEPC register in order to determine the following.

 Instruction being executed

 Format of destination

To obtain the correctly rounded result when an overflow exception, underflow exception (except conversion instruction),

or inexact exception occurs, the exception handler must have software that checks the source register and emulates

instructions.

If an invalid operation exception or division-by-zero exception occurs or if an overflow exception or underflow exception

occurs during floating-point conversion, the exception handler should have software that can obtain the value of the

operand by checking the source register of the instruction.

IEEE754 recommends that, if possible, the overflow and underflow exceptions should have a priority higher than

inexact exceptions. This priority is set by software. The hardware sets the bits of both the overflow and the underflow

exceptions, as well as the inexact exception.

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

R01US0001EJ0100 Rev.1.00 Page 417 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

5.6.2 When operation performance is emphasized

For this FPU, one operation model emphasizes processing performance by preventing as much as possible the

occurrence of exceptions due to execution of floating-point operations. For applications that require real-time processing

or cases where operations do not have to be strictly precise, this model can be used to eliminate the emulation processing

overhead related to exceptions that occur.

The following settings are recommended when operation performance is emphasized.

 Clear (0) the FPSR register enable bit to prohibit exceptions.

 Use single-precision floating-point format for processing that does not require high precision.

 Use the SEM and DEM bits of the FPSR register to specify imprecise exception mode.

During processing of operations, prohibit exceptions when floating-point operation exceptions can be ignored, so that

the operation can continue using initial values. Single-precision instructions generally require a small number of execution

clocks (low latency).

For this FPU, an unimplemented operation exception (E) does not occur when the FS bit of the FPSR register is set (1)

and flushing of denormalized numbers is enabled. When flushing is enabled, flushing occurs before storage even when

the operation result has underflowed, so the results are not held as denormalized results.

V850E2M APPENDIX A LIST OF INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 418 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

APPENDIX A LIST OF INSTRUCTIONS

A.1 Basic Instructions

Table A-1 shows an alphabetized list of basic instruction functions.

Table A-1. Basic Instruction Function List (Alphabetic Order) (1/4)

Flag Mnemonic Operand Format

CY OV S Z SAT

Function of Instruction

ADD reg1, reg2 I 0/1 0/1 0/1 0/1  Add

ADD imm5, reg2 II 0/1 0/1 0/1 0/1  Add

ADDI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1  Add

ADF cccc, reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1  Conditional add

AND reg1, reg2 I  0 0/1 0/1  AND

ANDI imm16, reg1, reg2 VI  0 0/1 0/1  AND

Bcond disp9 III      Conditional branch

BSH reg2, reg3 XII 0/1 0 0/1 0/1  Byte swap of halfword data

BSW reg2, reg3 XII 0/1 0 0/1 0/1  Byte swap of word data

CALLT imm6 II      Subroutine call with table look up

CAXI [reg1], reg2, reg3 IX 0/1 0/1 0/1 0/1  Comparison and swap

CLR1 bit#3, disp16 [reg1] VIII    0/1  Bit clear

CLR1 reg2, [reg1] IX    0/1  Bit clear

CMOV cccc, reg1, reg2, reg3 XI      Conditional transfer

CMOV cccc, imm5, reg2, reg3 XII      Conditional transfer

CMP reg1, reg2 I 0/1 0/1 0/1 0/1  Comparison

CMP imm5, reg2 II 0/1 0/1 0/1 0/1  Comparison

CTRET (None) X 0/1 0/1 0/1 0/1 0/1 Return from subroutine call

DI (None) X      Disable EI level maskable exception

DISPOSE imm5, list12 XIII      Stack frame deletion

DISPOSE imm5, list12, [reg1] XIII      Stack frame deletion

DIV reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (signed) word data

DIVH reg1, reg2 I  0/1 0/1 0/1  Division of (signed) halfword data

DIVH reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (signed) halfword data.

DIVHU reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (unsigned) halfword data

DIVQ reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (signed) word data (variable steps)

DIVQU reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (unsigned) word data (variable steps)

DIVU reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (unsigned) word data

V850E2M APPENDIX A LIST OF INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 419 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table A-1. Basic Instruction Function List (Alphabetic Order) (2/4)

Flag Mnemonic Operand Format

CY OV S Z SAT

Function of Instruction

EI (None) X      Enable EI level maskable exception

EIRET (None) X 0/1 0/1 0/1 0/1 0/1 Return from EI level exception

FERET (None) X 0/1 0/1 0/1 0/1 0/1 Return from FE level exception

FETRAP vector I      FE level software exception instruction

HALT (None) X      Halt

HSH reg2, reg3 XII 0/1 0 0/1 0/1  Halfword swap of halfword data

HSW reg2, reg3 XII 0/1 0 0/1 0/1  Halfword swap of word data

JARL disp22, reg2 V      Branch and register link

JARL disp32, reg1 VI      Branch and register link

JMP [reg1] I      Unconditional branch (register relative)

JMP disp32 [reg1] VI      Unconditional branch (register relative)

JR disp22 V      Unconditional branch (PC relative)

JR disp32 VI      Unconditional branch (PC relative)

LD.B disp16 [reg1], reg2 VII      Load of (signed) byte data

LD.B disp23 [reg1], reg3 XIV      Load of (signed) byte data

LD.BU disp16 [reg1], reg2 VII      Load of (unsigned) byte data

LD.BU disp23 [reg1], reg3 XIV      Load of (unsigned) byte data

LD.H disp16 [reg1], reg2 VII      Load of (signed) halfword data

LD.H disp23 [reg1], reg3 XIV      Load of (signed) halfword data

LD.HU disp16 [reg1], reg2 VII      Load of (unsigned) halfword data

LD.HU disp23 [reg1], reg3 XIV      Load of (unsigned) halfword data

LD.W disp16 [reg1], reg2 VII      Load of word data

LD.W disp23 [reg1], reg3 XIV     Load of word data

LDSR reg2, regID IX      Load to system register

MAC reg1, reg2, reg3, reg4 XI      Multiply-accumulate for (signed) word data

MACU reg1, reg2, reg3, reg4 XI      Multiply-accumulate for (unsigned) word data

MOV reg1, reg2 I      Data transfer

MOV imm5, reg2 II      Data transfer

MOV imm32, reg1 VI      Data transfer

MOVEA imm16, reg1, reg2 VI      Effective address transfer

MOVHI imm16, reg1, reg2 VI      Higher halfword transfer

MUL reg1, reg2, reg3 XI      Multiplication of (signed) word data

MUL imm9, reg2, reg3 XII      Multiplication of (signed) word data

MULH reg1, reg2 I      Multiplication of (signed) halfword data

MULH imm5, reg2 II      Multiplication of (signed) halfword data

MULHI imm16, reg1, reg2 VI      Multiplication of (signed) halfword immediate data

V850E2M APPENDIX A LIST OF INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 420 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table A-1. Basic Instruction Function List (Alphabetic Order) (3/4)

Flag Mnemonic Operand Format

CY OV S Z SAT

Function of Instruction

MULU reg1, reg2, reg3 XI      Multiplication of (unsigned) word data

MULU imm9, reg2, reg3 XII      Multiplication of (unsigned) word data

NOP (None) I      Nothing else is done.

NOT reg1, reg2 I  0 0/1 0/1  Logical negation (1’s complement)

NOT1 bit#3, disp16 [reg1] VIII    0/1  NOT bit

NOT1 reg2, [reg1] IX    0/1  NOT bit

OR reg1, reg2 I  0 0/1 0/1  OR

ORI imm16, reg1, reg2 VI  0 0/1 0/1  OR immediate

PREPARE list12, imm5 XIII      Create stack frame

PREPARE list12, imm5, sp/imm XIII      Create stack frame

RETI (None) X 0/1 0/1 0/1 0/1 0/1 Return from EI level software exception or interrupt

RIE (None) I/X      Reserved instruction exception

SAR reg1, reg2 IX 0/1 0 0/1 0/1  Arithmetic right shift

SAR imm5, reg2 II 0/1 0 0/1 0/1  Arithmetic right shift

SAR reg1, reg2, reg3 XI 0/1 0 0/1 0/1  Arithmetic right shift

SASF cccc, reg2 IX      Shift and flag condition setting

SATADD reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated addition

SATADD imm5, reg2 II 0/1 0/1 0/1 0/1 0/1 Saturated addition

SATADD reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 0/1 Saturated addition

SATSUB reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated subtraction

SATSUB reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 0/1 Saturated subtraction

SATSUBI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1 0/1 Saturated subtraction

SATSUBR reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated reverse subtraction

SBF cccc, reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1  Conditional subtraction

SCH0L reg2, reg3 IX 0/1 0 0 0/1  Bit (0) search from MSB side

SCH0R reg2, reg3 IX 0/1 0 0 0/1  Bit (0) search from LSB side

SCH1L reg2, reg3 IX 0/1 0 0 0/1  Bit (1) search from MSB side

SCH1R reg2, reg3 IX 0/1 0 0 0/1  Bit (1) search from LSB side

SET1 bit#3, disp16 [reg1] VIII    0/1  Bit setting

SET1 reg2, [reg1] IX    0/1  Bit setting

SETF cccc, reg2 IX      Flag condition setting

SHL reg1, reg2 IX 0/1 0 0/1 0/1  Logical left shift

SHL imm5, reg2 II 0/1 0 0/1 0/1  Logical left shift

SHL reg1, reg2, reg3 XI 0/1 0 0/1 0/1  Logical left shift

V850E2M APPENDIX A LIST OF INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 421 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table A-1. Basic Instruction Function List (Alphabetic Order) (4/4)

Flag Mnemonic Operand Format

CY OV S Z SAT

Function of Instruction

SHR reg1, reg2 IX 0/1 0 0/1 0/1  Logical right shift

SHR imm5, reg2 II 0/1 0 0/1 0/1  Logical right shift

SHR reg1, reg2, reg3 XI 0/1 0 0/1 0/1  Logical right shift

SLD.B disp7 [ep], reg2 IV      Load of (signed) byte data

SLD.BU disp4 [ep], reg2 IV      Load of (unsigned) byte data

SLD.H disp8 [ep], reg2 IV      Load of (signed) halfword data

SLD.HU disp5 [ep], reg2 IV      Load of (unsigned) halfword data

SLD.W disp8 [ep], reg2 IV      Load of word data

SST.B reg2, disp7 [ep] IV      Storage of byte data

SST.H reg2, disp8 [ep] IV      Storage of halfword data

SST.W reg2, disp8 [ep] IV      Storage of word data

ST.B reg2, disp16 [reg1] VII      Storage of byte data

ST.B reg3, disp23 [reg1] XIV      Storage of byte data

ST.H reg2, disp16 [reg1] VII      Storage of halfword data

ST.H reg3, disp23 [reg1] XIV      Storage of halfword data

ST.W reg2, disp16 [reg1] VII      Storage of word data

ST.W reg3, disp23 [reg1] XIV      Storage of word data

STSR regID, reg2 IX      Storage of contents of system register

SUB reg1, reg2 I 0/1 0/1 0/1 0/1  Subtraction

SUBR reg1, reg2 I 0/1 0/1 0/1 0/1  Reverse subtraction

SWITCH reg1 I      Jump with table look up

SXB reg1 I      Sign-extension of byte data

SXH reg1 I      Sign-extension of halfword data

SYNCE (None) I      Exception synchronize instruction

SYNCM (None) I      Memory synchronize instruction

SYNCP (None) I      Pipeline synchronize instruction

SYSCALL vector8 X      System call exception

TRAP vector5 X      Software exception

TST reg1, reg2 I  0 0/1 0/1  Test

TST1 bit#3, disp16 [reg1] VIII    0/1  Bit test

TST1 reg2, [reg1] IX    0/1  Bit test

XOR reg1, reg2 I  0 0/1 0/1  Exclusive OR

XORI imm16, reg1, reg2 VI  0 0/1 0/1  Exclusive OR immediate

ZXB reg1 I      Zero-extension of byte data

ZXH reg1 I      Zero-extension of halfword data

V850E2M APPENDIX A LIST OF INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 422 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

A.2 Floating-point Instructions

Table A-2 shows a list of floating-point instruction functions.

Table A-2. Floating-point Instruction Function List (1/3)

Mnemonic Operand Format Function of Instruction

ABSF.D reg2, reg3 Double precision Floating-point absolute value

ABSF.S reg2, reg3 Single precision Floating-point absolute value

ADDF.D reg1, reg2, reg3 Double precision Floating-point add

ADDF.S reg1, reg2, reg3 Single precision Floating-point add

CEILF.DL reg2, reg3 Double precision Conversion to fixed-point format

CEILF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format

CEILF.DUW reg2, reg3 Double precision Conversion to unsigned fixed-point format

CEILF.DW reg2, reg3 Double precision Conversion to fixed-point format

CEILF.SL reg2, reg3 Single precision Conversion to fixed-point format

CEILF.SUL reg2, reg3 Double precision Conversion to unsigned fixed-point format

CEILF.SUW reg2, reg3 Double precision Conversion to unsigned fixed-point format

CEILF.SW reg2, reg3 Single precision Conversion to fixed-point format

CMOVF.D cc, reg1, reg2, reg3 Double precision Conditional transfer

CMOVF.S cc, reg1, reg2, reg3 Single precision Conditional transfer

CMPF.D cond, reg2, reg1, fcbit

cond, reg1, reg2

Double precision Floating-point comparison

CMPF.S cond, reg2, reg1, fcbit

cond, reg2, reg1

Single precision Floating-point comparison

CVTF.DL reg2, reg3 Double precision Conversion to fixed-point format

CVTF.DS reg2, reg3 Double precision Conversion to floating-point format

CVTF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format

CVTF.DUW reg2, reg3 Double precision Conversion to unsigned fixed-point format

CVTF.DW reg2, reg3 Double precision Conversion to fixed-point format

CVTF.LD reg2, reg3 Double precision Conversion to floating-point format

CVTF.LS reg2, reg3 Single precision Conversion to floating-point format

CVTF.SD reg2, reg3 Double precision Conversion to floating-point format

CVTF.SL reg2, reg3 Single precision Conversion to fixed-point format

CVTF.SUL reg2, reg3 Single precision Conversion to unsigned fixed-point format

CVTF.SUW reg2, reg3 Single precision Conversion to unsigned fixed-point format

CVTF.SW reg2, reg3 Single precision Conversion to fixed-point format

CVTF.ULD reg2, reg3 Double precision Conversion to floating-point format

CVTF.ULS reg2, reg3 Single precision Conversion to floating-point format

CVTF.UWD reg2, reg3 Double precision Conversion to floating-point format

CVTF.UWS reg2, reg3 Single precision Conversion to floating-point format

CVTF.WD reg2, reg3 Double precision Conversion to floating-point format

CVTF.WS reg2, reg3 Single precision Conversion to floating-point format

V850E2M APPENDIX A LIST OF INSTRUCTIONS

R01US0001EJ0100 Rev.1.00 Page 423 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

Table A-2. Floating-point Instruction Function List (2/3)

Mnemonic Operand Format Function of Instruction

DIVF.D reg1, reg2, reg3 Double precision Floating-point division

DIVF.S reg1, reg2, reg3 Single precision Floating-point division

FLOORF.DL reg2, reg3 Double precision Conversion to fixed-point format

FLOORF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format

FLOORF.DUW reg2, reg3 Double precision Conversion to unsigned fixed-point format

FLOORF.DW reg2, reg3 Double precision Conversion to fixed-point format

FLOORF.SL reg2, reg3 Single precision Conversion to fixed-point format

FLOORF.SUL reg2, reg3 Single precision Conversion to unsigned fixed-point format

FLOORF.SUW reg2, reg3 Single precision Conversion to unsigned fixed-point format

FLOORF.SW reg2, reg3 Single precision Conversion to fixed-point format

MADDF.S reg1, reg2, reg3, reg4 Single precision Floating-point fused-multiply-add operation

MAXF.D reg1, reg2, reg3 Double precision Floating-point maximum value

MAXF.S reg1, reg2, reg3 Single precision Floating-point maximum value

MINF.D reg1, reg2, reg3 Double precision Floating-point minimum value

MINF.S reg1, reg2, reg3 Single precision Floating-point minimum value

MSUBF.S reg1, reg2, reg3, reg4 Single precision Floating-point fused-multiply-add operation

MULF.D reg1, reg2, reg3 Double precision Floating-point multiplication

MULF.S reg1, reg2, reg3 Single precision Floating-point multiplication

NEGF.D reg2, reg3 Double precision Floating-point sign inversion

NEGF.S reg2, reg3 Single precision Floating-point sign inversion

NMADDF.S reg1, reg2, reg3, reg4 Single precision Floating-point fused-multiply-add operation

NMSUBF.S reg1, reg2, reg3, reg4 Single precision Floating-point fused-multiply-add operation

RECIPF.D reg2, reg3 Double precision Reciprocal

RECIPF.S reg2, reg3 Single precision Reciprocal

RSQRTF.D reg2, reg3 Double precision Reciprocal of square root

RSQRTF.S reg2, reg3 Single precision Reciprocal of square root

SQRTF.D reg2, reg3 Double precision Square root

SQRTF.S reg2, reg3 Single precision Square root

SUBF.D reg1, reg2, reg3 Double precision Floating-point subtraction

SUBF.S reg1, reg2, reg3 Single precision Floating-point subtraction

TRFSR cc#3 Single precision Flag transfer

TRNCF.DL reg2, reg3 Double precision Conversion to fixed-point format

TRNCF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format

TRNCF.DUW reg2, reg3 Double precision Conversion to unsigned fixed-point format

TRNCF.DW reg2, reg3 Double precision Conversion to fixed-point format

TRNCF.SL reg2, reg3 Single precision Conversion to fixed-point format

TRNCF.SUL reg2, reg3 Single precision Conversion to unsigned fixed-point format

TRNCF.SUW reg2, reg3 Single precision Conversion to unsigned fixed-point format

TRNCF.SW reg2, reg3 Single precision Conversion to fixed-point format

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

R01US0001EJ0100 Rev.1.00 Page 424 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

APPENDIX B INSTRUCTION OPCODE MAP

B.1 Basic Instruction Opcode Map

The following shows opcode maps for the basic instruction code.

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (1/4)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16

Remark

NOP I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SYNCE I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

SYNCM I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

SYNCP I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

MOV reg1, reg2 I r r r r r 0 0 0 0 0 0 R R R R R rrrrr  00000

NOT reg1, reg2 I r r r r r 0 0 0 0 0 1 R R R R R

RIE I 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

SWITCH reg1 I 0 0 0 0 0 0 0 0 0 1 0 R R R R R

FETRAP vector4 I 0 i i i i 0 0 0 0 1 0 0 0 0 0 0 iiii  0000

DIVH reg1, reg2 I r r r r r 0 0 0 0 1 0 R R R R R rrrrr  00000,

RRRRR  00000

JMP [reg1] I 000000 0 0 0 0 1 1 R R R R R

SLD.BU disp4 [ep], reg2 IV r r r r r 0 0 0 0 1 1 0 d d d d rrrrr  00000

SLD.HU disp5 [ep],reg2 IV r r r r r 0 0 0 0 1 1 1 d d d d rrrrr  00000

ZXB reg1 I 0 0 0 0 0 0 0 0 1 0 0 R R R R R

SXB reg1 I 0 0 0 0 0 0 0 0 1 0 1 R R R R R

ZXH reg1 I 0 0 0 0 0 0 0 0 1 1 0 R R R R R

SXH reg1 I 0 0 0 0 0 0 0 0 1 1 1 R R R R R

SATSUBR reg1, reg2 I r r r r r 0 0 0 1 0 0 R R R R R rrrrr  00000

SATSUB reg1, reg2 I r r r r r 0 0 0 1 0 1 R R R R R rrrrr  00000

SATADD reg1, reg2 I r r r r r 0 0 0 1 1 0 R R R R R rrrrr  00000

MULH reg1, reg2 I r r r r r 0 0 0 1 1 1 R R R R R rrrrr  00000

OR reg1, reg2 I r r r r r 0 0 1 0 0 0 R R R R R

XOR reg1, reg2 I r r r r r 0 0 1 0 0 1 R R R R R

AND reg1, reg2 I r r r r r 0 0 1 0 1 0 R R R R R

TST reg1, reg2 I r r r r r 0 0 1 0 1 1 R R R R R

SUBR reg1, reg2 I r r r r r 0 0 1 1 0 0 R R R R R

SUB reg1, reg2 I r r r r r 0 0 1 1 0 1 R R R R R

ADD reg1, reg2 I r r r r r 0 0 1 1 1 0 R R R R R

CMP reg1, reg2 I r r r r r 0 0 1 1 1 1 R R R R R

MOV imm5, reg2 I r r r r r 0 1 0 0 0 0 i i i i i rrrrr  00000

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

R01US0001EJ0100 Rev.1.00 Page 425 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (2/4)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16

Remark

SATADD imm5, reg2 I r r r r r 0 1 0 0 0 1 i i i i i rrrrr  00000

ADD imm5, reg2 I r r r r r 0 1 0 0 1 0 i i i i i

CMP imm5, reg2 I r r r r r 0 1 0 0 1 1 i i i i i

CALLT imm6 II 0 0 0 0 0 0 1 0 0 0 i i i i i i

SHR imm5, reg2 II r r r r r 0 1 0 1 0 0 i i i i i

SAR imm5, reg2 II r r r r r 0 1 0 1 0 1 i i i i i

SHL imm5, reg2 II r r r r r 0 1 0 1 1 0 i i i i i

MULH imm5, reg2 II r r r r r 0 1 0 1 1 1 i i i i i rrrrr  00000

JR disp32 VI 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 ddddd d d d d d d d d d d 0 See Table B-2

JARL disp32, reg1 VI 0 0 0 0 0 0 1 0 1 1 1 R R R R R ddddd d d d d d d d d d d 0 See Table B-2

RRRRR  00000

SLD.B disp7 [ep], reg2 IV r r r r r 0 1 1 0 d d d d d d d

SST.B reg2, disp7 [ep] IV r r r r r 0 1 1 1 d d d d d d d

SLD.H disp8 [ep], reg2 IV r r r r r 1 0 0 0 d d d d d d d

SST.H reg2, disp8 [ep] IV r r r r r 1 0 0 1 d d d d d d d

SLD.W disp8 [ep], reg2 IV r r r r r 1 0 1 0 d d d d d d 0

SST.W reg2, disp8 [ep] IV r r r r r 1 0 1 0 d d d d d d 1

Bcond disp9 III d d d d d 1 0 1 1 d d d C C C C

ADDI imm16, reg1, reg2 VI r r r r r 1 1 0 0 0 0 R R R R R iiiii i i i i i i i i i i i

MOV imm32, reg1 VI 0 0 0 0 0 1 1 0 0 0 1 R R R R R IIIII I I I I I I I I I I I See Table B-2

MOVEA imm16, reg1, reg2 VI r r r r r 1 1 0 0 0 1 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

MOVHI imm16, reg1, reg2 VI r r r r r 1 1 0 0 1 0 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

SATSUBI imm16, reg1, reg2 VI r r r r r 1 1 0 0 1 1 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

DISPOSE imm5, list12 XIII 0 0 0 0 0 1 1 0 0 1 i i i i i L LLLLL L L L L L L 0 0 0 0 0

DISPOSE imm5, list12, [reg1] XIII 0 0 0 0 0 1 1 0 0 1 i i i i i L LLLLL L L L L L L R R R R R RRRRR  00000

ORI imm16, reg1, reg2 VI r r r r r 1 1 0 1 0 0 R R R R R iiiii i i i i i i i i i i i

XORI imm16, reg1, reg2 VI r r r r r 1 1 0 1 0 1 R R R R R iiiii i i i i i i i i i i i

ANDI imm16, reg1, reg2 VI r r r r r 1 1 0 1 1 0 R R R R R iiiii i i i i i i i i i i i

MULHI imm16, reg1, reg2 VI r r r r r 1 1 0 1 1 1 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

JMP imm32 [reg1] VI 0 0 0 0 0 1 1 0 1 1 1 R R R R R ddddd d d d d d d d d d d 0 See Table B-2

LD.B disp16 [reg1], reg2 VII r r r r r 1 1 1 0 0 0 R R R R R ddddd d d d d d d d d d d d

LD.H disp16 [reg1], reg2 VII r r r r r 1 1 1 0 0 1 R R R R R ddddd d d d d d d d d d d 0

LD.W disp16 [reg1], reg2 VII r r r r r 1 1 1 0 0 1 R R R R R ddddd d d d d d d d d d d 1

ST.B reg2, disp16 [reg1] VII r r r r r 1 1 1 0 1 0 R R R R R ddddd d d d d d d d d d d d

ST.H reg2, disp16 [reg1] VII r r r r r 1 1 1 0 1 1 R R R R R ddddd d d d d d d d d d d 0

ST.W reg2, disp16 [reg1] VII r r r r r 1 1 1 0 1 1 R R R R R ddddd d d d d d d d d d d 1

PREPARE list12, imm5 XIII 0 0 0 0 0 1 1 1 1 0 i i i i i L LLLLL L L L L L L 0 0 0 0 1

PREPARE list12, imm5, sp/imm XIII 0 0 0 0 0 1 1 1 1 0 i iiiiiL LLLLL L L L L L L f f 0 1 1 Note

Note See Table B-2 when ff = 01 or 10, and see Table B-3 when ff = 11.

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

R01US0001EJ0100 Rev.1.00 Page 426 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (3/4)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16

Remark

LD.B disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d d 0 1 0 1 See Table B-2

LD.H disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d 0 0 1 1 1 See Table B-2

LD.W disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d 0 1 0 0 1 See Table B-2

ST.B reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d d 1 1 0 1 See Table B-2

ST.W reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d 0 1 1 1 1 See Table B-2
LD.BU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR wwwww d d d d d d d 0 1 0 1 See Table B-2

LD.HU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR wwwww d d d d d d 0 0 1 1 1 See Table B-2

ST.H reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR wwwww d d d d d d 0 1 1 0 1 See Table B-2

JR disp22 V 0 0 0 0 0 1 1 1 1 0 D D D D D D ddddd d d d d d d d d d d 0

JARL disp22, reg2 V r r r r r 1 1 1 1 0 D D D D D D ddddd d d d d d d d d d d 0 rrrrr  00000

LD.BU disp16 [reg1], reg2 VII r r r r r 1 1 1 1 0 b R R R R R ddddd d d d d d d d d d d 1

SET1 bit3#, disp16 [reg1] VIII 0 0 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

NOT1 bit#3, disp16 [reg1] VIII 0 1 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

CLR1 bit3#, disp16 [reg1] VIII 1 0 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

TST1 bit3#, disp16 [reg1] VIII 1 1 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

LD.HU disp16 [reg1], reg2 VII r r r r r 1 1 1 1 1 1 R R R R R ddddd d d d d d d d d d d 1 rrrrr  00000

SETF cond, reg2 IX r r r r r 1 1 1 1 1 1 0 C C C C 00000 0 0 0 0 0 0 0 0 0 0 0

RIE X x x x x x 1 1 1 1 1 1 1 x x x x 00000 0 0 0 0 0 0 0 0 0 0 0

LDSR reg2, regID IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 0 0 1 0 0 0 0 0

STSR sr1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 0 1 0 0 0 0 0 0

SHR reg1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 0 0 0 0 0 0 0

SHR reg1, reg2, reg3 IX r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 0 0 0 0 0 1 0

SAR reg1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 0 1 0 0 0 0 0

SAR reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 0 1 0 0 0 1 0

SHL reg1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 0 0 0 0 0 0

SHL reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 1 0 0 0 0 1 0

SET1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 0 0 0

NOT1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 0 1 0

CLR1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 1 0 0

TST1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 1 1 0

CAXI [reg1], reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 1 1 0 1 1 1 0

TRAP imm5 X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 0 0 0 0 0 0

HALT X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 0 1 0 0 0 0 0

RETI X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 0 0 0 0

CTRET X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 0 1 0 0

EIRET X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 1 0 0 0

FERET X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 1 0 1 0

DI X 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 00000 0 0 1 0 1 1 0 0 0 0 0

EI X 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 00000 0 0 1 0 1 1 0 0 0 0 0

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

R01US0001EJ0100 Rev.1.00 Page 427 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (4/4)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16

Remark

SYSCALL vector8 X 1 1 0 1 0 1 1 1 1 1 1 v v v v v 00VVV 001011 00000

SASF cccc, reg2 IX r r r r r 1 1 1 1 1 1 0 c c c c 00000 0 1 0 0 0 0 0 0 0 0 0

MUL reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 0 0 1 0 0 0 0 0

MULU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 0 0 1 0 0 0 1 0

MUL imm9, reg2, reg3 XII r r r r r 1 1 1 1 1 1 i i i i i wwwww 0 1 0 0 1 I I I I 0 0

MULU imm9, reg2, reg3 XII r r r r r 1 1 1 1 1 1 i i i i i wwwww 0 1 0 0 1 I I I I 1 0

DIVH reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 0 0 0 0 0 0 0

DIVHU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 0 0 0 0 0 1 0

DIV reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 0 0 0 0 0 0

DIVQ reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 1 1 1 1 0 0

DIVU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 0 0 0 0 1 0

DIVQU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 1 1 1 1 1 0

CMOV cccc, imm5, reg2, reg3 XI r r r r r 1 1 1 1 1 1 i i i i i wwwww 0 1 1 0 0 0 c c c c 0

CMOV cccc, reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 0 0 1 c c c c 0

BSW reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 0 0 0

BSH reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 0 1 0

HSW reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 1 0 0

HSH reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 1 1 0

SCH0R reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 0 0 0

SCH1R reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 0 1 0

SCH0L reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 1 0 0

SCH1L reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 1 1 0

SBF cccc, reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 0 c c c c 0 cccc  1101

SATSUB reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 0 1 1 0 1 0

ADF cccc, reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 1 c c c c 0 cccc  1101

SATADD reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 1 1 1 0 1 0

MAC reg1, reg2, reg3, reg4 XI r r r r r 1 1 1 1 1 1 R R R R R wwww0 0 1 1 1 1 0 m m m m 0

MACU reg1, reg2, reg3, reg4 XI r r r r r 1 1 1 1 1 1 R R R R R wwww0 0 1 1 1 1 1 m m m m 0

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

R01US0001EJ0100 Rev.1.00 Page 428 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table B-2. Basic Instruction Opcodes (48-bit Instructions)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16 47 43 42 37 36 32

JR disp32 VI 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 d d d d d d d d d d d d d d d 0 D D D D D D D D D D D D D D D D

JARL disp32, reg1 VI 0 0 0 0 0 0 1 0 1 1 1 R R R R R d d d d d d d d d d d d d d d 0 D D D D D D D D D D D D D D D D

MOV imm32, reg1 VI 0 0 0 0 0 1 1 0 0 0 1 R R R R R i i i i i i i i i i i i i i i I I I I I I I I I I I I I I I I

JMP disp32 [reg1] VI 0 0 0 0 0 1 1 0 1 1 1 R R R R R d d d d d d d d d d d d d d d 0 D D D D D D D D D D D D D D D D

PREPARE list12, imm5, sp/imm XIII 0 0 0 0 0 1 1 1 1 0 i iiiiiL L L L L L L L L L L L ffNote011 I I I I I I I I I I I I I I I I

LD.B disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d d 0 1 0 1 D D D D D D D D D D D D D D D D

LD.H disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d 0 0 1 1 1 D D D D D D D D D D D D D D D D

LD.W disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d 0 1 0 0 1 D D D D D D D D D D D D D D D D

ST.B reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d d 1 1 0 1 D D D D D D D D D D D D D D D D

ST.W reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d 0 1 1 1 1 D D D D D D D D D D D D D D D D

LD.BU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR w w w w w d d d d d d d 0 1 0 1 D D D D D D D D D D D D D D D D

LD.HU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR w w w w w d d d d d d 0 0 1 1 1 D D D D D D D D D D D D D D D D

ST.H reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR w w w w w d d d d d d 0 1 1 0 1 D D D D D D D D D D D D D D D D

Note ff = 01, 10

Table B-3. Basic Instruction Opcode Map (64-bit Instruction)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16

Remark

PREPARE list12, imm5, sp/imm XIII 0 0 0 0 0 1 1 1 1 0 i iiiiiL L L L L L L L L L L L 1 1 0 1 1

 47 32 63 48

 I

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

R01US0001EJ0100 Rev.1.00 Page 429 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

B.2 Floating-point Instruction Opcode Map

The following is an opcode map for floating-point instruction codes.

Table B-4. Floating-point Instruction Opcodes (1/2)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16

Remark

ABSF.D reg2, reg3 Double precision rrrr0 111111 00000 wwww0 100010 11000

ABSF.S reg2, reg3 Single precision rrrrr 111111 00000 wwwww 100010 01000

ADDF.D reg1, reg2, reg3 Double precision rrrr0 111111 RRRR0 wwww0 100011 10000

ADDF.S reg1, reg2, reg3 Single precision rrrrr 111111 RRRRR wwwww 100011 00000

CEILF.DL reg2, reg3 Double precision rrrr0 111111 00010 wwww0 100010 10100

CEILF.DUL reg2, reg3 Double precision rrrr0 111111 10010 wwww0 100010 10100

CEILF.DUW reg2, reg3 Double precision rrrr0 111111 10010 wwwww 100010 10000

CEILF.DW reg2, reg3 Double precision rrrr0 111111 00010 wwwww 100010 10000

CEILF.SL reg2, reg3 Single precision rrrrr 111111 00010 wwww0 100010 00100

CEILF.SUL reg2, reg3 Single precision rrrrr 111111 10010 wwww0 100010 00100

CEILF.SUW reg2, reg3 Single precision rrrrr 111111 10010 wwwww 100010 00000

CEILF.SW reg2, reg3 Single precision rrrrr 111111 00010 wwwww 100010 00000

CMOVF.D cc, reg1, reg2, reg3 Double precision rrrr0 111111 RRRR0 wwww0 100000 1fff0 wwww  0000

CMOVF.S cc, reg1, reg2, reg3 Single precision rrrrr 111111 RRRRR wwwww 100000 0fff0 wwwww  00000

CMPF.D cond, reg2, reg1, cc#3 Double precision rrrr0 111111 RRRRR 0FFFF 100001 1fff0

CMPF.S cond, reg1, reg2, cc#3 Single precision rrrrr 111111 RRRRR 0FFFF 100001 0fff0

CVTF.DL reg2, reg3 Double precision rrrr0 111111 00100 wwww0 100010 10100

CVTF.DS reg2, reg3 Double precision rrrr0 111111 00011 wwwww 100010 10010

CVTF.DUL reg2, reg3 Double precision rrrr0 111111 10100 wwww0 100010 10100

CVTF.DUW reg2, reg3 Double precision rrrr0 111111 10100 wwwww 100010 10000

CVTF.DW reg2, reg3 Double precision rrrr0 111111 00100 wwwww 100010 10000

CVTF.LD reg2, reg3 Double precision rrrr0 111111 00001 wwww0 100010 10010

CVTF.LS reg2, reg3 Single precision rrrr0 111111 00001 wwwww 100010 00010

CVTF.SD reg2, reg3 Double precision rrrrr 111111 00010 wwww0 100010 10010

CVTF.SL reg2, reg3 Single precision rrrrr 111111 00100 wwww0 100010 00100

CVTF.SUL reg2, reg3 Single precision rrrrr 111111 10100 wwww0 100010 00100

CVTF.SUW reg2, reg3 Single precision rrrrr 111111 10100 wwwww 100010 00000

CVTF.SW reg2, reg3 Single precision rrrrr 111111 00100 wwwww 100010 00000

CVTF.ULD reg2, reg3 Double precision rrrr0 111111 10001 wwww0 100010 10010

CVTF.ULS reg2, reg3 Single precision rrrr0 111111 10001 wwwww 100010 00010

CVTF.UWD reg2, reg3 Double precision rrrrr 111111 10000 wwww0 100010 10010

CVTF.UWS reg2, reg3 Single precision rrrrr 111111 10000 wwwww 100010 00010

CVTF.WD reg2, reg3 Double precision rrrrr 111111 00000 wwww0 100010 10010

CVTF.WS reg2, reg3 Single precision rrrrr 111111 00000 wwwww 100010 00010

DIVF.D reg1, reg2, reg3 Double precision rrrr0 111111 RRRR0 wwww0 100011 11110

DIVF.S reg1, reg2, reg3 Single precision rrrrr 111111 RRRRR wwwww 100011 01110

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

R01US0001EJ0100 Rev.1.00 Page 430 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table B-4. Floating-point Instruction Opcodes (2/2)

opcode Mnemonic Operand Format

15 11 10 5 4 0 31 27 26 21 20 16

Remark

FLOORF.DL reg2, reg3 Double precision rrrr0 111111 00011 wwww0 100010 10100

FLOORF.DUL reg2, reg3 Double precision rrrr0 111111 10011 wwww0 100010 10100

FLOORF.DUW reg2, reg3 Double precision rrrr0 111111 10011 wwwww 100010 10000

FLOORF.DW reg2, reg3 Double precision rrrr0 111111 00011 wwwww 100010 10000

FLOORF.SL reg2, reg3 Single precision rrrrr 111111 00011 wwww0 100010 00100

FLOORF.SUL reg2, reg3 Single precision rrrrr 111111 10011 wwww0 100010 00100

FLOORF.SUW reg2, reg3 Single precision rrrrr 111111 10011 wwwww 100010 00000

FLOORF.SW reg2, reg3 Single precision rrrrr 111111 00011 wwwww 100010 00000

MADDF.S reg1, reg2, reg3, reg4 Single precision rrrrr 111111 RRRRR wwwww 101W00 WWWW0

MAXF.D reg1, reg2, reg3 Double precision rrrr0 111111 RRRR0 wwww0 100011 11000

MAXF.S reg1, reg2, reg3 Single precision rrrrr 111111 RRRRR wwwww 100011 01000

MINF.D reg1, reg2, reg3 Double precision rrrr0 111111 RRRR0 wwww0 100011 11010

MINF.S reg1, reg2, reg3 Single precision rrrrr 111111 RRRRR wwwww 100011 01010

MSUBF.S reg1, reg2, reg3, reg4 Single precision rrrrr 111111 RRRRR wwwww 101W01 WWWW0

MULF.D reg1, reg2, reg3 Double precision rrrr0 111111 RRRR0 wwww0 100011 10100

MULF.S reg1, reg2, reg3 Single precision rrrrr 111111 RRRRR wwwww 100011 00100

NEGF.D reg2, reg3 Double precision rrrr0 111111 00001 wwww0 100010 11000

NEGF.S reg2, reg3 Single precision rrrrr 111111 00001 wwwww 100010 01000

NMADDF.S reg1, reg2, reg3, reg4 Single precision rrrrr 111111 RRRRR wwwww 101W10 WWWW0

NMSUBF.S reg1, reg2, reg3, reg4 Single precision rrrrr 111111 RRRRR wwwww 101W11 WWWW0

RECIPF.D reg2, reg3 Double precision rrrr0 111111 00001 wwww0 100010 11110

RECIPF.S reg2, reg3 Single precision rrrrr 111111 00001 wwwww 100010 01110

RSQRTF.D reg2, reg3 Double precision rrrr0 111111 00010 wwww0 100010 11110

RSQRTF.S reg2, reg3 Single precision rrrrr 111111 00010 wwwww 100010 01110

SQRTF.D reg2, reg3 Double precision rrrr0 111111 00000 wwww0 100010 11110

SQRTF.S reg2, reg3 Single precision rrrrr 111111 00000 wwwww 100010 01110

SUBF.D reg1, reg2, reg3 Double precision rrrr0 111111 RRRR0 wwww0 100011 10010

SUBF.S reg1, reg2, reg3 Single precision rrrrr 111111 RRRRR wwwww 100011 00010

TRFSR cc#3 Single precision 00000 111111 00000 00000 100000 0fff0

TRNCF.DL reg2, reg3 Double precision rrrr0 111111 00001 wwww0 100010 10100

TRNCF.DUL reg2, reg3 Double precision rrrr0 111111 10001 wwww0 100010 10100

TRNCF.DUW reg2, reg3 Double precision rrrr0 111111 10001 wwwww 100010 10000

TRNCF.DW reg2, reg3 Double precision rrrr0 111111 00001 wwwww 100010 10000

TRNCF.SL reg2, reg3 Single precision rrrrr 111111 00001 wwww0 100010 00100

TRNCF.SUL reg2, reg3 Single precision rrrrr 111111 10001 wwww0 100010 00100

TRNCF.SUW reg2, reg3 Single precision rrrrr 111111 10001 wwwww 100010 00000

TRNCF.SW reg2, reg3 Single precision rrrrr 111111 00001 wwwww 100010 00000

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 431 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

APPENDIX C PIPELINES

The V850E2M CPU, which is based on RISC architecture, uses seven-stage pipeline control to execute almost all

types of instructions in just one clock cycle. The instruction execution sequence normally includes seven stages, from

instruction fetch (IF) to writeback (WB). The execution time per stage differs depending on factors such as the type of

instruction and the type of memory to be accessed. As an example of pipeline operations, Figure C-1 shows processing

by the CPU when 12 typical instructions are executed consecutively.

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 432 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Figure C-1. Example of Consecutive Execution of 12 Typical Instructions

IF (instruction fetch): Fetches instruction and increments fetch pointer.

DP (dispatch): Checks instruction type and dependencies, then sends

to corresponding pipeline.

ID (instruction decode): Decodes instruction, generates immediate data, and

reads registers.

EX (execution using ALU, multiplier, or barrel shifter): Executes decoded instructions.

AT (address transfer): Transfers address to target memory.

DF (data fetch): Reads data from target memory.

WB (writeback): Writes execution result to register.

<1> to <12> are CPU states. For typical instructions, two instructions can be executed (EX) in parallel per clock cycle.

IF DP
EX WB

EX AT WBDF

ID

IF

End of
instruction

2

DP
ID

EX WB

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12>

Instruction 1

.....................................

.

...........................

.

......

................

.

..

.

...

.

Processing performed
simultaneously by CPU

Internal system clock

Time flow

End of
instruction

4

End of
instructions

1 and 6

End of
instructions

3 and 8

End of
instructions
5 and 10

End of
instructions
7 and 12

End of
instruction

9

End of
instruction

11

Execution of instructions per clock cycle

EX AT WBDF

......

................

.

...........................

.

.....................................

.

..

.

ID

...

.

IF DP
ID

EX WB

EX AT WBDF

ID

IF DP
ID

EX WB

EX AT WBDF

ID

IF DP
ID

EX WB

EX AT WB DF

ID

IF DP
ID

EX WB

EX AT WB DF

ID

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

Instruction 10

Instruction 11

Instruction 12

ID

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 433 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.1 Features

Figure C-2 shows the pipeline configuration of the CPU assumed by the V850E2M CPU. The CPU has the following

three independent pipelines, detects dependency relationship of instructions, and can issue up to two instructions at the

same time.

  Instruction fetch pipeline (Fpipe)

  Instruction execution pipeline left (Lpipe)

  Instruction execution pipeline right (Rpipe)

Figure C-2. Pipeline Configuration

Instruction execution
pipeline left (Lpipe)

Instruction fetch pipeline (Fpipe)

Instruction decode unit R Instruction decode unit L

Writeback unit

MUL unitMEM unit ALU unit BSFT unit

Register file

ALU unit

Instruction fetch unit

Dispatch unit

Instruction buffer

Instruction execution
pipeline right (Rpipe)

Data bus

Instruction bus

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 434 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

(1) Instruction fetch pipeline (Fpipe)

This pipeline includes the following three units.

(a) Instruction fetch unit

Up to eight instructions (when each instruction is 16 bits) can be fetched from a 128-bit fetch bus (iLB) during

one cycle.

(b) Dispatch unit

This unit includes a 128-bit  3-stage instruction queue, which is used to detect instruction dependencies, and

which enables up to two instructions to be efficiently issued at once to the instruction execution pipeline.

(c) Instruction buffer

Fetched instructions are stored by the instruction fetch unit.

(2) Instruction execution pipeline left (Lpipe)

This pipeline includes the following three units.

(a) Instruction decode unit L

This unit decodes instructions issued from the dispatch unit.

(b) ALU unit

This unit issues instructions that perform integer operations and/or logic operations.

(c) MEM unit

This unit executes instructions (such as load and store instructions) that perform memory access.

(3) Instruction execution pipeline right (Rpipe)

This pipeline includes the following three units.

(a) Instruction decode unit R

This unit decodes instructions issued from the dispatch unit.

(b) ALU unit

This unit issues instructions that perform integer operations and/or logic operations.

(c) BSFT unit

This unit performs data manipulation instructions.

(4) MUL unit

This unit executes instructions that perform integer multiplications.

(5) Writeback unit

This unit controls writeback to register files.

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 435 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.2 Clock Requirements

C.2.1 Clock requirements for basic instructions
Table C-1 lists clock requirements for basic instructions. The clock requirements may differ according to the

combination of instructions. For details, see C.3 Pipeline for Basic Instructions.

Table C-1. Clock Requirements for Basic Instructions (1/4)

No. of Execution Clocks Instruction Type Mnemonic Operand Byte

Count issue repeat latency

Parallel

ExecutionNote 1

LD.B disp16 [reg1] , reg2 4 1 1 3Note 2 Yes (L)

LD.B disp23 [reg1] , reg3 6 1 1 3Note 2 No

LD.BU disp16 [reg1] , reg2 4 1 1 3Note 2 Yes (L)

LD.BU disp23 [reg1] , reg3 6 1 1 3Note 2 No

LD.H disp16 [reg1] , reg2 4 1 1 3Note 2 Yes (L)

LD.H disp23 [reg1] , reg3 6 1 1 3Note 2 No

LD.HU disp16 [reg1] , reg2 4 1 1 3Note 2 Yes (L)

LD.HU disp23 [reg1] , reg3 6 1 1 3Note 2 No

LD.W disp16 [reg1] , reg2 4 1 1 3Note 2 Yes (L)

LD.W disp23 [reg1] , reg3 6 1 1 3Note 2 No

SLD.B disp7 [ep] , reg2 2 1 1 3Note 2 Yes (L)

SLD.BU disp4 [ep] , reg2 2 1 1 3Note 2 Yes (L)

SLD.H disp8 [ep] , reg2 2 1 1 3Note 2 Yes (L)

SLD.HU disp5 [ep] , reg2 2 1 1 3Note 2 Yes (L)

Load instructions

SLD.W disp8 [ep] , reg2 2 1 1 3Note 2 Yes (L)

ST.B reg2, disp16 [reg1] 4 1 1 1 Yes (L)

ST.B reg3, disp23 [reg1] 6 1 1 1 No

ST.H reg2, disp16 [reg1] 4 1 1 1 Yes (L)

ST.H reg3, disp23 [reg1] 6 1 1 1 No

ST.W reg2, disp16 [reg1] 4 1 1 1 Yes (L)

ST.W reg3, disp23 [reg1] 6 1 1 1 No

SST.B reg2, disp7 [ep] 2 1 1 1 Yes (L)

SST.H reg2, disp8 [ep] 2 1 1 1 Yes (L)

Store instructions

SST.W reg2, disp8 [ep] 2 1 1 1 Yes (L)

MUL reg1, reg2, reg3 4 1 1 3 Yes (L)

MUL imm9, reg2, reg3 4 1 1 3 Yes (L)

MULH reg1, reg2 2 1 1 3 Yes (L)

MULH imm5, reg2 2 1 1 3 Yes (L)

MULHI imm16, reg1, reg2 4 1 1 3 Yes (L)

MULU reg1, reg2, reg3 4 1 1 3 Yes (L)

Multiply

instructions

MULU imm9, reg2, reg3 4 1 1 3 Yes (L)

MAC reg1, reg2, reg3, reg4 4 1 1 3 No Multiply-accumulate

instructions MACU reg1, reg2, reg3, reg4 4 1 1 3 No

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 436 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table C-1. Clock Requirements for Basic Instructions (2/4)

No. of Execution Clocks Instruction Type Mnemonic Operand Byte

Count issue repeat latency

Parallel

ExecutionNote 1

ADD reg1, reg2 2 1 1 1 Yes (R/L)

ADD imm5, reg2 2 1 1 1 Yes (R/L)

ADDI imm16, reg1, reg2 4 1 1 1 Yes (R/L)

CMP reg1, reg2 2 1 1 1 Yes (R/L)

CMP imm5, reg2 2 1 1 1 Yes (R/L)

MOV reg1, reg2 2 1 1 1 Yes (R/L)

MOV imm5, reg2 2 1 1 1 Yes (R/L)

Arithmetic

operation

instructions

MOV imm32, reg1 6 1 1 1 No

MOVEA imm16, reg1, reg2 4 1 1 1 Yes (R/L)

MOVHI imm16, reg1, reg2 4 1 1 1 Yes (R/L)

SUB reg1, reg2 2 1 1 1 Yes (R/L)

Arithmetic

operation

instructions

SUBR reg1, reg2 2 1 1 1 Yes (R/L)

ADF cccc, reg1, reg2, reg3 4 1 1 1 No Conditional operation

instructions SBF cccc, reg1, reg2, reg3 4 1 1 1 No

SATADD reg1, reg2 2 1 1 1 Yes (R/L)

SATADD imm5, reg2 2 1 1 1 Yes (R/L)

SATADD reg1, reg2, reg3 4 1 1 1 Yes (R/L)

SATSUB reg1, reg2 2 1 1 1 Yes (R/L)

SATSUB reg1, reg2, reg3 4 1 1 1 Yes (R/L)

SATSUBI imm16, reg1, reg2 4 1 1 1 Yes (R/L)

Saturated

operation

instructions

SATSUBR reg1, reg2 2 1 1 1 Yes (R/L)

AND reg1, reg2 2 1 1 1 Yes (R/L)

ANDI imm16, reg1, reg2 4 1 1 1 Yes (R/L)

NOT reg1, reg2 2 1 1 1 Yes (R/L)

OR reg1, reg2 2 1 1 1 Yes (R/L)

ORI imm16, reg1, reg2 4 1 1 1 Yes (R/L)

TST reg1, reg2 2 1 1 1 Yes (R/L)

XOR reg1, reg2 2 1 1 1 Yes (R/L)

Logic operation

instructions

XORI imm16, reg1, reg2 4 1 1 1 Yes (R/L)

BSH reg2, reg3 4 1 1 1 Yes (R)

BSW reg2, reg3 4 1 1 1 Yes (R)

CMOV cccc, reg1, reg2, reg3 4 1 1 1 Yes (R)

CMOV cccc, imm5, reg2, reg3 4 1 1 1 Yes (R)

HSH reg2, reg3 4 1 1 1 Yes (R)

HSW reg2, reg3 4 1 1 1 Yes (R)

SAR reg1, reg2 4 1 1 1 Yes (R)

SAR imm5, reg2 2 1 1 1 Yes (R)

SAR reg1, reg2, reg3 4 1 1 1 Yes (R)

SASF cccc, reg2 4 1 1 1 Yes (R)

SETF cccc, reg2 4 1 1 1 Yes (R)

SHL reg1, reg2 4 1 1 1 Yes (R)

SHL imm5, reg2 2 1 1 1 Yes (R)

Data

manipulation

instructions

SHL reg1, reg2, reg3 4 1 1 1 Yes (R)

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 437 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table C-1. Clock Requirements for Basic Instructions (3/4)

No. of Execution Clocks Instruction Type Mnemonic Operand Byte

Count issue repeat latency

Parallel

ExecutionNote 1

SHR reg1, reg2 4 1 1 1 Yes (R)

SHR imm5, reg2 2 1 1 1 Yes (R)

Data

manipulation

instructions SHR reg1, reg2, reg3 4 1 1 1 Yes (R)

SXB reg1 2 1 1 1 No

SXH reg1 2 1 1 1 No

ZXB reg1 2 1 1 1 No

Data

manipulation

instructions

ZXH reg1 2 1 1 1 No

SCH0L reg2, reg3 4 1 1 1 Yes (R)

SCH0R reg2, reg3 4 1 1 1 Yes (R)

SCH1L reg2, reg3 4 1 1 1 Yes (R)

Bit search

instructions

SCH1R reg2, reg3 4 1 1 1 Yes (R)

DIV reg1, reg2, reg3 4 36 36 36 No

DIVH reg1, reg2 2 36 36 36 No

DIVH reg1, reg2, reg3 4 36 36 36 No

DIVHU reg1, reg2, reg3 4 35 35 35 No

Divide

instructions

DIVU reg1, reg2, reg3 4 35 35 35 No

DIVQ reg1, reg2, reg3 4 N+5Note 3 N+5Note 3 N+5Note 3 No High-speed

divide

instructions

DIVQU reg1, reg2, reg3 4 N+4Note 3 N+4Note 3 N+4Note 3 No

disp9 (when condition is met) 2 4Note 4 4Note 4 4Note 4 Yes (R/L) Bcond

disp9 (when condition is not

met)

2 1 1 1 Yes (R/L)

JARL disp22, reg2 4 4 4 4 Yes (R/L)

JARL disp32, reg1 6 4 4 4 No

JMP [reg1] 2 4 4 4 Yes (R/L)

JMP disp32 [reg1] 6 5 5 5 No

JR disp22 4 4 4 4 Yes (R/L)

Branch

instructions

JR disp32 6 4 4 4 No

CLR1 bit#3, disp16 [reg1] 4 4Note 5 4Note 5 4Note 5 No

CLR1 reg2, [reg1] 4 4Note 5 4Note 5 4Note 5 No

NOT1 bit#3, disp16 [reg1] 4 4Note 5 4Note 5 4Note 5 No

NOT1 reg2, [reg1] 4 4Note 5 4Note 5 4Note 5 No

SET1 bit#3, disp16 [reg1] 4 4Note 5 4Note 5 4Note 5 No

SET1 reg2, [reg1] 4 4Note 5 4Note 5 4Note 5 No

TST1 bit#3, disp16 [reg1] 4 4Note 5 4Note 5 4Note 5 No

Bit manipulation

instructions

TST1 reg2, [reg1] 4 4Note 5 4Note 5 4Note 5 No

CALLT imm6 2 10 10 10 No

CAXI [reg1], reg2, reg3 4 4Note 5 4Note 5 4Note 5 No

CTRET  4 7 7 7 No

DI  4 2 2 2 No

DISPOSE imm5, list12 4 n+2Note 6 n+2Note 6 n+2Note 6 No

DISPOSE imm5, list12, [reg1] 4 n+6Note 6 n+6Note 6 n+6Note 6 No

EI  4 2 2 2 No

EIRET  4 7 7 7 No

Special

instructions

FERET  4 7 7 7 No

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 438 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table C-1. Clock Requirements for Basic Instructions (4/4)

No. of Execution Clocks Instruction Type Mnemonic Operand Byte

Count issue repeat latency

Parallel

ExecutionNote 1

FETRAP vector 2 7 7 7 No

HALT  4 1 1 1 No

reg2, regID (BSEL register,

MCC register)

4 4 4 4 No

reg2, regID (MPU group (except

for MCC register))

4 1 1 1 Yes (R)

reg2, regID (FPU group, user

group)

4 3 3 3 No

LDSR

reg2, regID (other defined bank) 4 2 2 2 No

NOP  2 1 1 1 No

PREPARE list12, imm5 4 n+2Note 6 n+2Note 6 n+2Note 6 No

PREPARE list12, imm5, sp 4 n+2Note 6 n+2Note 6 n+2Note 6 No

PREPARE list12, imm5, imm16 6 n+2Note 6 n+2Note 6 n+2Note 6 No

PREPARE list12, imm5, imm16<<16 6 n+2Note 6 n+2Note 6 n+2Note 6 No

PREPARE list12, imm5, imm32 8 n+2Note 6 n+2Note 6 n+2Note 6 No

RETI  4 7 7 7 No

RIE  4 7 7 7 No

STSR regID, reg2 4 1 1 1 No

SWITCH reg1 2 8 8 8 No

SYNCE  2 Undefined Undefined Undefined No

SYNCM  2 Undefined Undefined Undefined No

SYNCP  2 Undefined Undefined Undefined No

SYSCALL vector8 4 10 10 10 No

Special

instruction

TRAP vector5 4 7 7 7 No

Undefined instruction code (operates as RIE instruction) 4 7 7 7 No

Notes 1. “Yes” indicates that the instruction can be issued in parallel with other instructions, “No” indicates that the

instruction cannot be issued in parallel with other instructions (the instruction must be issued individually). The

pipeline used for parallel issuance (L: Lpipe, R: Rpipe, R/L: Rpipe or Lpipe) is shown in parentheses.

Instructions that use the same pipeline cannot be issued in parallel. For details, refer to C.3 Pipeline for Basic

Instructions.

 2. When there are no wait states (3 + number of read access wait states)

 3. N = (Number of valid bits of dividend) – (Number of valid bits of divisor)

 However, if N is negative, it is assumed that N = 0.

 4. Four clocks even when an instruction that rewrites the PSW register content is placed immediately before. A

parallel issuance is also possible even when the instruction immediately before rewrites the PSW register.

 5. When there are no wait states (4 + number of read access wait states)

 6. n is the total number of registers specified in list  (depends on the number of wait states. When there are no

wait states, n matches with the number of registers specified in list ).

Supplement: 4 clocks when n = 0 or 1 (8 clocks for DISPOSE instruction with JMP).

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 439 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Remarks 1. Description of operands

Symbol Description

reg1 General-purpose register (used as source register)

reg2 General-purpose register (mainly used as the destination register, but used as a

source register for some instructions)

reg3 General-purpose register (mainly stores remainders from division results and the

higher 32 bits from multiplication results)

bit#3 3-bit data for specifying bit number

imm   bit immediate data

disp   bit displacement data

regID System register number

vector  Data specifying vector ( indicates the bit size)

cond Condition name (see Table 5-4 Condition Codes in PART 2).

cccc 4-bit data indicating condition code (see Table 5-4 Condition Codes in PART 2)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Register list

 2. Description of execution clocks

Symbol Description

issue When next instruction is executed immediately after previous instruction

repeat When same instruction is executed again immediately after its first execution

latency When execution result of the current instruction is used by the immediate next

instruction

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 440 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.2.2 Clock requirements for floating-point instructions
Table C-2 lists the number of execution clocks for single-precision floating-point instructions, and Table C-3 lists the

number of execution clocks for double-precision floating-point instructions. The clock requirements vary depending on the

combination of instructions.

Table C-2. Clock Requirements for Single-precision Floating-point Instructions (1/2)

No. of Execution Clocks

Imprecise Precise

Mnemonic Operand Byte

issue repeat latency issue repeat latency

Parallel

ExecutionNote

ABSF.S reg2, reg3 4 1 1 4 4 4 4 No

ADDF.S reg1, reg2, reg3 4 1 1 4 4 4 4 No

CEILF.SL reg2, reg3 4 1 1 4 4 4 4 No

CEILF.SUL reg2, reg3 4 1 1 4 4 4 4 No

CEILF.SUW reg2, reg3 4 1 1 4 4 4 4 No

CEILF.SW reg2, reg3 4 1 1 4 4 4 4 No

CMOVF.S cc, reg1, reg2, reg3 4 1 1 4 4 4 4 No

CMPF.S cond, reg1, reg2, cc 4 1 1 4 4 4 4 No

CVTF.LS reg2, reg3 4 1 1 4 4 4 4 No

CVTF.SL reg2, reg3 4 1 1 4 4 4 4 No

CVTF.SUL reg2, reg3 4 1 1 4 4 4 4 No

CVTF.SUW reg2, reg3 4 1 1 4 4 4 4 No

CVTF.SW reg2, reg3 4 1 1 4 4 4 4 No

CVTF.ULS reg2, reg3 4 1 1 4 4 4 4 No

CVTF.UWS reg2, reg3 4 1 1 4 4 4 4 No

CVTF.WS reg2, reg3 4 1 1 4 4 4 4 No

DIVF.S reg1, reg2, reg3 4 14 14 17 17 17 17 No

FLOORF.SL reg2, reg3 4 1 1 4 4 4 4 No

FLOORF.SUL reg2, reg3 4 1 1 4 4 4 4 No

FLOORF.SUW reg2, reg3 4 1 1 4 4 4 4 No

FLOORF.SW reg2, reg3 4 1 1 4 4 4 4 No

MADDF.S reg1, reg2, reg3, reg4 4 2 2 5 5 5 5 No

MAXF.S reg1, reg2, reg3 4 1 1 4 4 4 4 No

MINF.S reg1, reg2, reg3 4 1 1 4 4 4 4 No

MSUBF.S reg1, reg2, reg3, reg4 4 2 2 5 5 5 5 No

MULF.S reg1, reg2, reg3 4 1 1 4 4 4 4 No

NEGF.S reg2, reg3 4 1 1 4 4 4 4 No

NMADDF.S reg1, reg2, reg3, reg4 4 2 2 5 5 5 5 No

NMSUBF.S reg1, reg2, reg3, reg4 4 2 2 5 5 5 5 No

RECIPF.S reg2, reg3 4 10 10 13 13 13 13 No

RSQRTF.S reg2, reg3 4 13 13 16 16 16 16 No

SQRTF.S reg2, reg3 4 14 14 17 17 17 17 No

SUBF.S reg1, reg2, reg3 4 1 1 4 4 4 4 No

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 441 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table C-2. Clock Requirements for Single-precision Floating-point Instructions (2/2)

No. of Execution Clocks

Imprecise Precise

Mnemonic Operand Byte

issue repeat latency issue repeat latency

Parallel

ExecutionNote

TRFSR cc 4 1 1 1 1 1 1 Yes

TRNCF.SL reg2, reg3 4 1 1 4 4 4 4 No

TRNCF.SUL reg2, reg3 4 1 1 4 4 4 4 No

TRNCF.SUW reg2, reg3 4 1 1 4 4 4 4 No

TRNCF.SW reg2, reg3 4 1 1 4 4 4 4 No

Table C-3. Clock Requirements for Double-precision Floating-point Instructions (1/2)

No. of Execution Clocks

Imprecise Precise

Mnemonic Operand Byte

issue repeat latency issue repeat latency

Parallel

ExecutionNote

ABSF.D reg2, reg3 4 1 1 4 4 4 4 No

ADDF.D reg1, reg2, reg3 4 1 1 4 4 4 4 No

CEILF.DL reg2, reg3 4 1 1 4 4 4 4 No

CEILF.DUL reg2, reg3 4 1 1 4 4 4 4 No

CEILF.DUW reg2, reg3 4 1 1 4 4 4 4 No

CEILF.DW reg2, reg3 4 1 1 4 4 4 4 No

CMOVF.D cc, reg1, reg2, reg3 4 1 1 4 4 4 4 No

CMPF.D cond, reg1, reg2, cc 4 1 1 4 4 4 4 No

CVTF.DL reg2, reg3 4 1 1 4 4 4 4 No

CVTF.DS reg2, reg3 4 1 1 4 4 4 4 No

CVTF.DUL reg2, reg3 4 1 1 4 4 4 4 No

CVTF.DUW reg2, reg3 4 1 1 4 4 4 4 No

CVTF.DW reg2, reg3 4 1 1 4 4 4 4 No

CVTF.LD reg2, reg3 4 1 1 4 4 4 4 No

CVTF.SD reg2, reg3 4 1 1 4 4 4 4 No

CVTF.ULD reg2, reg3 4 1 1 4 4 4 4 No

CVTF.UWD reg2, reg3 4 1 1 4 4 4 4 No

CVTF.WD reg2, reg3 4 1 1 4 4 4 4 No

DIVF.D reg1, reg2, reg3 4 29 29 32 32 32 32 No

FLOORF.DL reg2, reg3 4 1 1 4 4 4 4 No

FLOORF.DUL reg2, reg3 4 1 1 4 4 4 4 No

FLOORF.DUW reg2, reg3 4 1 1 4 4 4 4 No

FLOORF.DW reg2, reg3 4 1 1 4 4 4 4 No

MAXF.D reg1, reg2, reg3 4 1 1 4 4 4 4 No

MINF.D reg1, reg2, reg3 4 1 1 4 4 4 4 No

MULF.D reg1, reg2, reg3 4 2 2 5 5 5 5 No

NEGF.D reg2, reg3 4 1 1 4 4 4 4 No

RECIPF.D reg2, reg3 4 22 22 25 25 25 25 No

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 442 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

Table C-3. Clock Requirements for Double-precision Floating-point Instructions (2/2)

No. of Execution Clocks

Imprecise Precise

Mnemonic Operand Byte

issue repeat latency issue repeat latency

Parallel

ExecutionNote

RSQRTF.D reg2, reg3 4 30 30 33 33 33 33 No

SQRTF.D reg2, reg3 4 29 29 32 32 32 32 No

SUBF.D reg1, reg2, reg3 4 1 1 4 4 4 4 No

TRNCF.DL reg2, reg3 4 1 1 4 4 4 4 No

TRNCF.DUL reg2, reg3 4 1 1 4 4 4 4 No

TRNCF.DUW reg2, reg3 4 1 1 4 4 4 4 No

TRNCF.DW reg2, reg3 4 1 1 4 4 4 4 No

Note “Yes” indicates that the instruction can be issued in parallel with other instructions, “No” indicates that the

instruction cannot be issued in parallel with other instructions (the instruction must be issued individually). The

pipeline used for parallel issuance (L: Lpipe, R: Rpipe, R/L: Rpipe or Lpipe) is shown in parentheses.

Instructions that use the same pipeline cannot be issued in parallel.

Remarks 1. Table C-2 and Table C-3 can be updated.

 2. Convention of execution clocks

Symbol Description

issue When next instruction is executed immediately after previous instruction

repeat When same instruction is executed again immediately after its first execution

latency When execution result of the current instruction is used by the immediate next instruction

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 443 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3 Pipeline for Basic Instructions

C.3.1 Load instructions
Load instructions are executed by the instruction execution pipeline left (Lpipe) MEM unit.

[Target instructions] LD.B, LD.H, LD.W, LD.BU, LD.HU, SLD.B, SLD.BU, SLD.H, SLD.HU, and SLD.W

[Pipeline]

[Description] The pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. This figure shows

an operation where a load instruction is executed by Lpipe, and the next instruction is issued to

Lpipe. The instruction execution pipeline right (Rpipe) executes processing independently

when it has no dependency on the load instruction. However, if an instruction that uses the

execution result is placed immediately after the multiply instruction, a data wait period may be

generated.

Load instruction can be executed in parallel with another instruction.

C.3.2 Store instructions
Store instructions are executed by the instruction execution pipeline left (Lpipe) MEM unit.

[Target instructions] ST.B, ST.H, ST.W, SST.B, SST.H, and SST.W

[Pipeline]

[Description] This pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. However, since

data cannot be written to registers, nothing is done at the WB stage.

This figure shows an operation where a store instruction is executed by Lpipe, and the next

instruction is issued to Lpipe. The instruction execution pipeline right (Rpipe) executes

processing independently when it has no dependency on the store instruction.

Store instruction can be executed in parallel with another instruction.

Load instruction

<1> <2> <3> <4> <5>

IF WB

Next instruction

<6> <7> <8>

DP ID EX AT DF

IF WB DP ID EX AT DF

Store instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX AT DF

IF WBDP ID EX AT DF

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 444 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.3 Multiply instructions
Multiply instructions are executed by the instruction execution pipeline left (Lpipe) MUL unit.

[Target instructions] MUL, MULH, MULHI, and MULU

[Pipeline] (a) When the next instruction is not a multiply instruction (or a multiply-accumulate instruction)

 (b) When the next instruction is a multiply instruction (or a multiply-accumulate instruction)

[Description] The pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. The EX stage

requires two clocks, and EX1 and EX2 operate independently. Accordingly, even if the multiply

instruction (or the multiply-accumulate instruction) is repeated, the number of execution clocks

becomes one.

This figure shows an operation where a multiply instruction is executed by Lpipe, and the next

instruction is issued to Lpipe. The instruction execution pipeline right (Rpipe) executes

processing independently when it has no dependency on the multiply instruction. However, if

an instruction that uses the execution result is placed immediately after the multiply instruction,

a data wait period may be generated.

Multiply instruction can be executed in parallel with another instruction.

Multiply
instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WB DP ID EX AT DF

Multiply
instruction 1

Multiply
instruction 2

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WB DP ID EX1 EX2 DF

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 445 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.4 Multiply-accumulate instructions
Multiply-accumulate instructions are executed by the instruction execution pipeline left (Lpipe) MUL unit.

[Target instructions] MAC and MACU

[Pipeline] (a) When the next instruction is not a multiply instruction (or a multiply-accumulate instruction)

 (b) When the next instruction is a multiply instruction (or a multiply-accumulate instruction)

[Description] The pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. The EX stage

requires two clocks, and EX1 and EX2 operate independently. Accordingly, even if the multiply

instruction (or the multiply-accumulate instruction) is repeated, the number of execution clocks

becomes one.

This figure shows an operation where a multiply instruction is executed by Lpipe, and the next

instruction is issued to Lpipe. The instruction execution pipeline right (Rpipe) executes

processing independently when it has no dependency on the multiply instruction. However, if

an instruction that uses the execution result is placed immediately after the multiply instruction,

a data wait period may be generated.

Multiply-accumulate instruction is issued individually.

C.3.5 Arithmetic operation instructions
Arithmetic operation instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU

unit.

[Target instructions] ADD, ADDI, CMP, MOV, MOVEA, MOVHI, SUB, and SUBR

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where an arithmetic operation instruction is executed by Rpipe,

and the next instruction is issued to Rpipe. Lpipe executes processing independently when it

has no dependency on the arithmetic operation instruction.

All arithmetic operation instructions except the MOV imm32 and reg1 instructions can be

executed in parallel with another instruction (the MOV imm32 and reg1 instruction are issued

individually).

Multiply-accumulate
instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WBDP ID EX AT DF

Multiply-accumulate
instruction

Multiply instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX1 EX2 DF

IF WBDP ID EX1 EX2 DF

Arithmetic operation
instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WB DP ID EX

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 446 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.6 Conditional operation instructions
Conditional operation instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Target instructions] ADF and SBF

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where an arithmetic operation instruction is executed by Rpipe,

and the next instruction is issued to Rpipe.

Conditional operation instruction is issued individually.

C.3.7 Saturated operation instructions
Saturated operation instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU

unit.

[Target instructions] SATADD, SATSUB, SATSUBI, and SATSUBR

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a saturated operation instruction is executed by Rpipe,

and the next instruction is issued to Rpipe. Lpipe executes processing independently when it

has no dependency on the saturated operation instruction.

Saturated operation instructions can be executed in parallel with another instruction.

Conditional operation
instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WB DP ID EX

Saturated operation
instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WB DP ID EX

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 447 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.8 Logic operation instructions
Logic operation instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU unit.

[Target instructions] AND, ANDI, NOT, OR, ORI, TST, XOR, and XORI

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a logic operations instruction is executed by Rpipe, and

the next instruction is issued to Rpipe. Lpipe executes processing independently when it has

no dependency on the logic operation instruction.

Logic operation instructions can be executed in parallel with another instruction.

C.3.9 Data manipulation instructions
Data manipulation instructions are executed by the instruction execution pipeline right (Rpipe) BSFT unit.

[Target instructions] BSH, BSW, CMOV, HSH, HSW, SAR, SASF, SETF, SHL, SHR, SXB, SXH, ZXB, and ZXH

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a data manipulation instruction is executed by Rpipe,

and the next instruction is issued to Rpipe. The instruction execution pipeline left (Lpipe)

executes processing independently when it has no dependency on the data manipulation

instruction.

The data manipulation instructions SXB, SXH, ZXB and ZXH are issued individually.

All other data manipulation instructions can be executed in parallel with another instruction.

Logic operation
instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WBDP ID EX

Data manipulation
instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WB DP ID EX

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 448 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.10 Bit search instructions
Bit search instructions are executed by the instruction execution pipeline right (Rpipe) BSFT unit.

[Target instructions] SCH0L, SCH0R, SCH1L, and SCH1R

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a data manipulation instruction is executed by Rpipe,

and the next instruction is issued to Rpipe. The instruction execution pipeline left (Lpipe)

executes processing independently when it has no dependency on the data manipulation

instruction.

Bit search instructions can be executed in parallel with another instruction.

C.3.11 Divide instructions
Divide instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Target instructions] DIV, DIVH, DIVHU, and DIVU

[Pipeline] (a) DIV and DIVH

 (b) DIVU and DIVHU

[Description] For a DIV or DIVH instruction, the pipeline has 40 stages: IF, DP, ID, EX1 to EX36, and WB, and

for the DIVU and DIVHU instructions, it has 39 stages: IF, DP, ID, EX1 to EX35, and WB.

This figure shows an operation where a divide instruction is executed by Rpipe, and the next

instruction is issued to Rpipe.

However, for the divide instruction, during instruction decoding at the ID stage and during

instruction execution at the EX stage, the dispatch unit does not issue instructions.

Divide instruction is issued individually.

Bit search instruction

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6>

DP ID EX

IF WB DP ID EX

Divide instruction

Instruction after
next instruction

<1> <2> <3> <4> <5>

IF WB

<37> <38>

DP ID EX1 EX2

IF WBDP  EX

<39> <40> <41>

Next instruction IF WB  EX

ID 

: Idle inserted for wait period

EX34 EX35 EX36

DP  



ID



<42>

Divide instruction

Instruction after
next instruction

<1> <2> <3> <4> <5>

IF WB

<37> <38>

DP ID EX1 EX2

IF WBDP  EX

<39> <40> <41>

Next instruction IF WB   EX

ID 

–: Idle inserted for wait period

EX34 EX35

DP 



ID

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 449 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.12 High-speed divide instructions
High-speed divide instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

This instruction automatically determines the minimum number of steps required for the operation.

[Target instructions] DIVQ and DIVQU

[Pipeline] (a) DIVQ

 (b) DIVQU

[Description] For the DIVQ instruction, the pipeline has N + 9 stages: IF, DP, ID, EX1 to EX(N + 5), and WB,

and for the DIVQU instruction, it has N +8 stages: IF, DP, ID, EX1 to EX(N+4), and WB.

This figure shows the operation where a high-speed divide instruction is executed by Rpipe,

and the next instruction is issued to Rpipe.

During instruction decoding at the ID stage and during instruction execution at the EX stage,

the dispatch unit does not issue instructions.

Each instruction is issued individually.

 Remark N = (Number of valid bits of dividend)  (Number of valid bits of divisor)

 However, if N is negative, it is assumed that N = 0.

DIVQ instruction

<1> <2> <3> <4> <5>

IF WB DP ID EX1

<N+9>

Next instruction

EX2

Instruction after
next instruction

<N+6> <N+7> <N+5> <N+8>
EX

(N+2)
EX

(N+3)
EX

(N+4)

IF WBDP     ID EX

IF WB     DP EX

<N+10>

–: Idle inserted for wait period

EX
(N+5)



ID

<N+11>

DIVQU instruction

<1> <2> <3> <4> <5>

IF WB DP ID EX1

<N+9>

Next instruction

EX2

Instruction after
next instruction

<N+6> <N+7> <N+5> <N+8>

EX
(N+2)

EX
(N+3)

IF WB DP     EX

IF WB    DP EX

–: Idle inserted for wait period

EX
(N+4)

ID

ID

<N+10>

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 450 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.13 Branch instructions
Branch instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU unit.

(1) Conditional branch instruction (except BR instruction)

[Target instructions] Bcond instruction

[Pipeline] (a) When condition has not been met

 (b) When condition has been met

[Description] This figure shows an operation where a Bcond instruction is executed by the instruction

execution pipeline right (Rpipe).

Branch instructions can be executed in parallel with another instruction.

(2) BR instruction and unconditional branch instructions (except JMP instruction)

[Target instructions] BR, JARL, and JR instruction

[Pipeline]

[Description] This figure shows an operation where the Bcond instruction is executed by the instruction

execution pipeline right (Rpipe), and all instructions are executed by the instruction

execution pipeline left (Lpipe).

BR and unconditional branch instructions can be executed in parallel with another

instruction.

Conditional branch
instruction

Instruction after
next instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF WB DP EX AT DF

Next instruction WB EX AT DFIF DP

ID

ID

<9>

<10>

Conditional branch
instruction

Instruction after next
instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF

WBDP EX AT DF

<9>

Next instruction IF DP When condition is met, branch is confirmed and
instruction is flushed

When condition is met, branch is confirmed and
instruction is flushed

IFBranch destination
instruction

ID

<11>

<10>
BR instruction, unconditional

branch instruction

Instruction after next
instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF

WBDP EX AT DF

<9>

Next instruction IF DP Unconditional branch occurs, so instruction is flushed

IFBranch destination instruction

WB

Unconditional branch occurs, so instruction is flushed

<11>

ID

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 451 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

(3) JMP instructions

(a) JMP [reg1] instruction

[Pipeline]

[Description] This figure shows an operation where a JMP is executed by the instruction execution

pipeline right (Rpipe), and all instructions are executed by instruction execution pipeline left

(Lpipe).

This instruction can be executed in parallel with other instructions.

(b) JMP dip32 [reg1] instruction

[Pipeline]

[Description] This figure shows an operation where a JMP is executed by the instruction execution

pipeline right (Rpipe) and all instructions are executed by instruction execution pipeline left

(Lpipe).

This instruction can be executed in parallel with other instructions.

<10> <11>

JMP [reg1] instruction

Instruction after next
instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF

WB DP EX AT DF

<9>

Next instruction IF DP Unconditional branch occurs, so instruction is flushed

IFBranch destination
instruction

Unconditional branch occurs, so instruction is flushed

ID

<10> <11>

Instruction after next
instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX

IF

WBDP EX AT DF

<9>

Next instruction IF DP Unconditional branch occurs, so instruction is flushed

IFBranch destination
instruction

Unconditional branch occurs, so instruction is flushed

AT

ID

<12>

JMP disp32 [reg1] instruction

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 452 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.14 Bit manipulation instructions
Bit manipulation instructions are executed by the instruction execution pipeline left (Lpipe) ALU unit.

(1) CLR1, NOT1, and SET1 instructions

[Pipeline]

[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, followed by the store instruction that includes bit manipulation. However, since

no data is written to a register, nothing is done at the WB stage. This figure shows an

operation where a bit manipulation instruction is executed by Lpipe and the next instruction

is issued to Lpipe. During instruction decoding at the ID stage, the dispatch unit issues

instruction to Lpipe.

Bit manipulation instruction is issued individually.

 (2) TST1 instruction

[Pipeline]

[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, following by the store instruction that includes bit manipulation. However, since

no data is written to a register, nothing is done at the WB stage. This figure shows an

operation where a TST1 instruction is executed by Lpipe and the next instruction is issued

to Lpipe. During instruction decoding at the ID stage, the dispatch unit does not issue an

instruction to Lpipe.

TST1 instruction is issued individually.

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX AT DF

IF WB DP  EX AT DF

<9> <10> <11>

ID WB  EX

ID 

–: Idle inserted for wait period

(1)

(2)

Bit manipulation
instruction

(1)

Next instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX AT DF

IF WB DP  EX AT DF

<9> <10> <11>

(2) ID WB   EX AT DF

ID 

: Idle inserted for wait period

Bit manipulation
instruction

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 453 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

C.3.15 Special instructions

(1) CALLT and SYSCALL instruction

The CALLT and SYSCALL instructions are executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline]

[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, followed by execution of the CTBP or CTBP relative branch instruction.

However, since no data is written to a register, nothing is done at the WB stage. This

figure shows an operation where the CALLT or SYSCALL instruction is executed by the

Lpipe, and then the instruction is fetched from the branch destination.

This instruction is issued individually.

(2) CAXI instruction

[Pipeline]

[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, followed by the store instruction. This figure shows an operation where a CAXI

instruction is executed by Lpipe, and the next instruction is issued to Lpipe. During

instruction decoding at the ID stage, the dispatch unit does not issue instructions to Lpipe.

Each instruction is issued individually.

<10> <11><1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID

(IF)

EX1 EX2

<9>

ID

Branch destination
instruction

WBEX AT DF



DP IF ID EX

<12>

–: Idle inserted for wait period

(IF): Invalid instruction fetch

(1)

(2)

CALLT, SYSCALL
instructions

Next instruction (cancel)

EX3 EX4

<13> <14>

(1)

Next
instruction

<1> <2> <3> <4> <5>

IF WB

<6> <7> <8>

DP ID EX AT DF

IF WB DP  EX AT DF

<9> <10> <11>

(2) ID WB   EX AT DF

ID 

–: Idle inserted for wait period

CAXI
manipulation
instruction

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 454 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

(3) CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions

The CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions are executed by the instruction

execution pipeline right (Rpipe) .

[Pipeline]

 Note CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions

[Description] This figure shows an operation where each instruction is executed by the instruction

execution pipeline right (Rpipe) and all instructions are issued by Lpipe.

CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions are issued

individually.

(4) DI, EI, and LDSR instructions

The DI, EI, and LDSR instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where the DI, EI, and LDSR instructions are executed by

Rpipe and all instructions are issued by Rpipe.

DI, EI, and LDSR instructions are issued individually.

<10> <11>

InstructionNote

Instruction after
next instruction

<1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID EX1

IF

WBDP EX AT DF

<9>

Next instruction IF DP Unconditional branch occurs, so instruction is flushed

IFBranch destination
instruction

Unconditional branch occurs, so instruction is flushed

EX2 EX3 EX4

<12> <13> <14>

ID

DI, EI, and
LDSR

<1> <2> <3> <4> <5>

IF

<6>

DP ID EX

Next instruction  WB EXIF DP

WB Update system register

ID  Dummy slot

AT DF

<7> <8>

EX

–: Idle inserted for wait period

<9>

ID

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 455 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

(5) DISPOSE instruction

The DISPOSE instruction is executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline] (a) No branch

 (b) Branch

 Remark n is the number of registers specified by the register list (list12).

[Description] At the ID stage, this instruction is divided into n + 2 instructions, then n load instructions

are executed, followed by an instruction that writes to the stack pointer (SP). This figure

shows an operation where the DISPOSE instruction is executed by the Lpipe and the next

instruction is issued to the Lpipe. The instruction execution pipeline right (Rpipe) executes

processing independently when it has no dependency on the DISPOSE instruction.

This instruction is issued individually.

–: Idle inserted for wait period

<1> <2> <3> <4> <5>

IF WB

<6> <7>

DP ID AT

IF DP  EX

   <n+4>

WB

ID



DF

 

EX AT DF WB

ID EX

ID 

<n+6><n+7><n+5><n+3>

ID AT DF WBEX













Next instruction

(1)

(2)

DISPOSE
instruction

(n + 1)

(n + 2)

EX

DISPOSE instruction
(JMP)

<1> <2> <3> <4> <5>

IF

<6> <7>

DP ID

   <n+4>

WB

ID EX AT DF WB

ID EX

<n+6> <n+7> <n+5>

ID AT DF WBEX

EX

Branch destination
instruction

(IF)

: Idle inserted for wait period
(IF): Invalid instruction fetch

Unconditional branch occurs, so
instruction is flushed

AT





<n+3>





Next instruction

(1)

DISPOSE
instruction (n + 1)

(n + 2)

DF WB

<n+8> <n+9> <n+10>

IF DP EXID

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 456 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

(6) HALT instruction

The HALT instruction is executed by the instruction execution pipeline right (Rpipe).

[Pipeline]

[Description] When a HALT instruction is detected at the DP stage, issuing of instructions to the ID

stage is stopped until the HALT instruction has been canceled. Accordingly, the next

instruction is delayed at the ID stage until the HALT instruction is canceled. This figure

shows an operation where the HALT instruction is executed by the instruction execution

pipeline right (Rpipe), and the next instruction is issued to Rpipe.

This instruction is issued individually.

(7) NOP instruction

The NOP instruction is executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Pipeline]

[Description] The pipeline has five stages: IF, DP, ID, EX, and WB, but since no operations are

performed and there is no writing of data to registers, nothing is done at the EX and WB

stages.

This instruction is issued individually.

HALT instruction

Instruction after
next instruction

<1> <2> <3>

IF DP

IF WB DP EX

Next instruction

ID

IF 

HALT canceled

 DP WB EX ID

–: Idle inserted for wait period

NOP instruction

<1> <2> <3> <4> <5>

IF

<6>

DP ID EX

Next

instruction

ID WBEXIF DP

WB

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 457 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

(8) PREPARE instruction

The PREPARE instruction is executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline]

 Remark n is the number of registers specified in the register list (list12).

[Description] At the ID stage, this instruction is divided into n + 2 instructions, then n store instructions

are executed, followed by an instruction that writes to the stack pointer (SP). Since this

store instruction does not write data to a register, nothing is done at the WB stage. This

figure shows an operation where the PREPARE instruction is executed by Lpipe and the

next instruction is issued to Lpipe.

This instruction is issued individually.

(9) STSR instruction

The STSR instruction is executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Pipeline]

[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where the STSR instruction is executed by Rpipe and the

next instruction is issued to Rpipe. The instruction execution pipeline left (Lpipe) executes

processing independently when it has no dependency on the STSR instruction.

This instruction is issued individually.

<1> <2> <3> <4> <5>

IF WB

<6> <7>

DP

ID AT

IF DP  EX

   <n+4>

WB

ID



DF







Next instruction 

EX AT DF

ID EX

ID 

<n+6><n+7><n+5> <n+3>

ID AT DFEX



EX

WB

WB

<n+2>

DP

DP

DP







: Idle inserted for wait period

(1)

(2)

PREPARE
instruction

(n + 1)

(n + 2)

STSR instruction

<1> <2> <3> <4> <5>

IF

<6>

DP ID EX

Next instruction ID WBEXIF DP

WB

V850E2M APPENDIX C PIPELINES

R01US0001EJ0100 Rev.1.00 Page 458 of 473
Oct 17, 2012

Preliminary document

Specifications in this document are tentative and subject to change.

(10) SWITCH instruction

The SWITCH instruction is executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline]

[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, followed by execution of the PC relative branch instruction. However, since no

data is written to a register, nothing is done at the WB stage. This figure shows an

operation where a SWITCH instruction is executed by Lpipe, and the next instruction is

issued to Lpipe. The instruction execution pipeline right (Rpipe) performs processing

independently when it has no dependency on the SWITCH instruction.

This instruction is issued individually.

 (11) Synchronization instructions

The synchronization instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Target instructions] SYNCE, SYNCM, SYNCP

[Pipeline]

[Description] This figure shows an operation where the synchronization instructions are executed by

Rpipe and all instructions are issued by the instruction execution pipeline left (Lpipe).

Each instruction is issued individually.

The synchronization instructions are not issued until processing of all instructions held

pending by the CPU has been completed.

<10> <11><1> <2> <3> <4> <5>

IF

<6> <7> <8>

DP ID

(IF)

DP

EX AT 

<9>

ID

IF Branch destination
instruction

WBEX AT DF



ID EX

<12>

: Idle inserted for wait period

(IF): Invalid instruction fetch

(1)

(2)

SWITCH
instruction

Next instruction (cancel)

<1> <2> <3>

IF DP

IF

EX WB

DP ID EX

ID

EX

Synchronization
instructions

Next instruction









V850E2M APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

R01US0001EJ0100 Rev.1.00 Page 459 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION
AREAS

Each bit of the peripheral device protection setup registers (PPC0 to PPC8) for the V850E2M CPU corresponds to a

peripheral device.

For the V850E2M CPU, the bits PPx2, PPx4 to PPx6, PPx12 to PPx15, PPx18, and PPx19, which correspond to the

areas in the PPC0 register set enclosed in parentheses, are fixed to 0. In addition, PPx16 and the reserved area PPx17,

where the setup registers for system protection (peripheral device protection and timing monitoring) are placed, are fixed

to 1 as OS peripheral devices.

V850E2M APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

R01US0001EJ0100 Rev.1.00 Page 460 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PPC0 (PPS0, PPP0, PPV0, PPT0)

Bit Name Area Name Address Range Remarks

PPx0 INTC FFFF6000 to FFFF645FH INTC

PPx1 Fcache FFFF6480 to FFFF6487H FlashCache

PPx2 (R.F.U.) R.F.U Reserved

PPx3 SEG FFFF64B0 to FFFF64B3H System error

PPx4 (R.F.U.) R.F.U Reserved

PPx5 (R.F.U.) FFFF6500 to FFFF65FFH Reserved

PPx6 (R.F.U.) FFFF6600 to FFFF66FFH Reserved

PPx7 EXTBRK FFFF6700 to FFFF67FFH Debbug function

PPx8 MIR FFFF6800 to FFFF687FH Inter-PE interrupts

PPx9 MEV FFFF6900 to FFFF697FH MEV

PPx10 MEC FFFF6980 to FFFF699FH MEC

PPx11 PEG FFFF69A0 to FFFF69BFH PE guard

PPx12 (SPB12) FFFF6A00 to FFFF6AFFH Reserved

PPx13 (SPB13) FFFF6B00 to FFFF6BFFH Reserved

PPx14 (SPB14) FFFF6C00 to FFFF6DFFH Reserved

PPx15 (SPB15) FFFF6E00 to FFFF6EFFH Reserved

PPx16 SPF FFFF5000 to FFFF53FFH TSU/PPU

PPx17 (R.F.U.) FFFF5400 to FFFF57FFH Reserved

PPx18 (R.F.U.) FFFF5800 to FFFF5BFFH Reserved

PPx19 (R.F.U.) FFFF5C00 to FFFF5FFFH Reserved

PPx20 EXT20 FFFF7000 to FFFF70FFH Area for expansion

PPx21 EXT21 FFFF7100 to FFFF71FFH Area for expansion

PPx22 EXT22 FFFF7200 to FFFF72FFH Area for expansion

PPx23 EXT23 FFFF7300 to FFFF73FFH Area for expansion

PPx24 EXT24 FFFF7400 to FFFF74FFH Area for expansion

PPx25 EXT25 FFFF7500 to FFFF76FFH Area for expansion

PPx26 EXT26 FFFF7700 to FFFF78FFH Area for expansion

PPx27 EXT27 FFFF7900 to FFFF7AFFH Area for expansion

PPx28 EXT28 FFFF7B00 to FFFF7CFFH Area for expansion

PPx29 EXT29 FFFF7D00 to FFFF7EFFH Area for expansion

PPx30 EXT30 FFFF7F00 to FFFF7F7FH Area for expansion

PPx31 EXT31 FFFF7F80 to FFFF7FFFH Area for expansion

V850E2M APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

R01US0001EJ0100 Rev.1.00 Page 461 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PPC1 (PPS1, PPP1, PPV1, PPT1)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FF400000 to FF40FFFFH 64 KB PPx16 FF500000 to FF50FFFFH 64 KB

PPx1 FF410000 to FF41FFFFH 64 KB PPx17 FF510000 to FF51FFFFH 64 KB

PPx2 FF420000 to FF42FFFFH 64 KB PPx18 FF520000 to FF52FFFFH 64 KB

PPx3 FF430000 to FF43FFFFH 64 KB PPx19 FF530000 to FF53FFFFH 64 KB

PPx4 FF440000 to FF44FFFFH 64 KB PPx20 FF540000 to FF54FFFFH 64 KB

PPx5 FF450000 to FF45FFFFH 64 KB PPx21 FF550000 to FF55FFFFH 64 KB

PPx6 FF460000 to FF46FFFFH 64 KB PPx22 FF560000 to FF56FFFFH 64 KB

PPx7 FF470000 to FF47FFFFH 64 KB PPx23 FF570000 to FF57FFFFH 64 KB

PPx8 FF480000 to FF48FFFFH 64 KB PPx24 FF580000 to FF58FFFFH 64 KB

PPx9 FF490000 to FF49FFFFH 64 KB PPx25 FF590000 to FF59FFFFH 64 KB

PPx10 FF4A0000 to FF4AFFFFH 64 KB PPx26 FF5A0000 to FF5AFFFFH 64 KB

PPx11 FF4B0000 to FF4BFFFFH 64 KB PPx27 FF5B0000 to FF5BFFFFH 64 KB

PPx12 FF4C0000 to FF4CFFFFH 64 KB PPx28 FF5C0000 to FF5CFFFFH 64 KB

PPx13 FF4D0000 to FF4DFFFFH 64 KB PPx29 FF5D0000 to FF5DFFFFH 64 KB

PPx14 FF4E0000 to FF4EFFFFH 64 KB PPx30 FF5E0000 to FF5EFFFFH 64 KB

PPx15 FF4F0000 to FF4FFFFFH 64 KB PPx31 FF5F0000 to FF5FFFFFH 64 KB

PPC2 (PPS2, PPP2, PPV2, PPT2)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FF600000 to FF60FFFFH 64 KB PPx16 FF700000 to FF70FFFFH 64 KB

PPx1 FF610000 to FF61FFFFH 64 KB PPx17 FF710000 to FF71FFFFH 64 KB

PPx2 FF620000 to FF62FFFFH 64 KB PPx18 FF720000 to FF72FFFFH 64 KB

PPx3 FF630000 to FF63FFFFH 64 KB PPx19 FF730000 to FF73FFFFH 64 KB

PPx4 FF640000 to FF64FFFFH 64 KB PPx20 FF740000 to FF74FFFFH 64 KB

PPx5 FF650000 to FF65FFFFH 64 KB PPx21 FF750000 to FF75FFFFH 64 KB

PPx6 FF660000 to FF66FFFFH 64 KB PPx22 FF760000 to FF76FFFFH 64 KB

PPx7 FF670000 to FF67FFFFH 64 KB PPx23 FF770000 to FF77FFFFH 64 KB

PPx8 FF680000 to FF68FFFFH 64 KB PPx24 FF780000 to FF78FFFFH 64 KB

PPx9 FF690000 to FF69FFFFH 64 KB PPx25 FF790000 to FF79FFFFH 64 KB

PPx10 FF6A0000 to FF6AFFFFH 64 KB PPx26 FF7A0000 to FF7AFFFFH 64 KB

PPx11 FF6B0000 to FF6BFFFFH 64 KB PPx27 FF7B0000 to FF7BFFFFH 64 KB

PPx12 FF6C0000 to FF6CFFFFH 64 KB PPx28 FF7C0000 to FF7CFFFFH 64 KB

PPx13 FF6D0000 to FF6DFFFFH 64 KB PPx29 FF7D0000 to FF7DFFFFH 64 KB

PPx14 FF6E0000 to FF6EFFFFH 64 KB PPx30 FF7E0000 to FF7EFFFFH 64 KB

PPx15 FF6F0000 to FF6FFFFFH 64 KB PPx31 FF7F0000 to FF7FFFFFH 64 KB

V850E2M APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

R01US0001EJ0100 Rev.1.00 Page 462 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PPC3 (PPS3, PPP3, PPV3, PPT3)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FF800000 to FF800FFFH 4 KB PPx16 FF810000 to FF810FFFH 4 KB

PPx1 FF801000 to FF801FFFH 4 KB PPx17 FF811000 to FF811FFFH 4 KB

PPx2 FF802000 to FF802FFFH 4 KB PPx18 FF812000 to FF812FFFH 4 KB

PPx3 FF803000 to FF803FFFH 4 KB PPx19 FF813000 to FF813FFFH 4 KB

PPx4 FF804000 to FF804FFFH 4 KB PPx20 FF814000 to FF814FFFH 4 KB

PPx5 FF805000 to FF805FFFH 4 KB PPx21 FF815000 to FF815FFFH 4 KB

PPx6 FF806000 to FF806FFFH 4 KB PPx22 FF816000 to FF816FFFH 4 KB

PPx7 FF807000 to FF807FFFH 4 KB PPx23 FF817000 to FF817FFFH 4 KB

PPx8 FF808000 to FF808FFFH 4 KB PPx24 FF818000 to FF818FFFH 4 KB

PPx9 FF809000 to FF809FFFH 4 KB PPx25 FF819000 to FF819FFFH 4 KB

PPx10 FF80A000 to FF80AFFFH 4 KB PPx26 FF81A000 to FF81AFFFH 4 KB

PPx11 FF80B000 to FF80BFFFH 4 KB PPx27 FF81B000 to FF81BFFFH 4 KB

PPx12 FF80C000 to FF80CFFFH 4 KB PPx28 FF81C000 to FF81CFFFH 4 KB

PPx13 FF80D000 to FF80DFFFH 4 KB PPx29 FF81D000 to FF81DFFFH 4 KB

PPx14 FF80E000 to FF80EFFFH 4 KB PPx30 FF81E000 to FF81EFFFH 4 KB

PPx15 FF80F000 to FF80FFFFH 4 KB PPx31 FF81F000 to FF81FFFFH 4 KB

PPC4 (PPS4, PPP4, PPV4, PPT4)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FF820000 to FF820FFFH 4 KB PPx16 FF830000 to FF830FFFH 4 KB

PPx1 FF821000 to FF821FFFH 4 KB PPx17 FF831000 to FF831FFFH 4 KB

PPx2 FF822000 to FF822FFFH 4 KB PPx18 FF832000 to FF832FFFH 4 KB

PPx3 FF823000 to FF823FFFH 4 KB PPx19 FF833000 to FF833FFFH 4 KB

PPx4 FF824000 to FF824FFFH 4 KB PPx20 FF834000 to FF834FFFH 4 KB

PPx5 FF825000 to FF825FFFH 4 KB PPx21 FF835000 to FF835FFFH 4 KB

PPx6 FF826000 to FF826FFFH 4 KB PPx22 FF836000 to FF836FFFH 4 KB

PPx7 FF827000 to FF827FFFH 4 KB PPx23 FF837000 to FF837FFFH 4 KB

PPx8 FF828000 to FF828FFFH 4 KB PPx24 FF838000 to FF838FFFH 4 KB

PPx9 FF829000 to FF829FFFH 4 KB PPx25 FF839000 to FF839FFFH 4 KB

PPx10 FF82A000 to FF82AFFFH 4 KB PPx26 FF83A000 to FF83AFFFH 4 KB

PPx11 FF82B000 to FF82BFFFH 4 KB PPx27 FF83B000 to FF83BFFFH 4 KB

PPx12 FF82C000 to FF82CFFFH 4 KB PPx28 FF83C000 to FF83CFFFH 4 KB

PPx13 FF82D000 to FF82DFFFH 4 KB PPx29 FF83D000 to FF83DFFFH 4 KB

PPx14 FF82E000 to FF82EFFFH 4 KB PPx30 FF83E000 to FF83EFFFH 4 KB

PPx15 FF82F000 to FF82FFFFH 4 KB PPx31 FF83F000 to FF83FFFFH 4 KB

V850E2M APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

R01US0001EJ0100 Rev.1.00 Page 463 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PPC5 (PPS5, PPP5, PPV5, PPT5)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FFFF8000 to FFFF80FFH 256 byte PPx16 FFFF9000 to FFFF90FFH 256 byte

PPx1 FFFF8100 to FFFF81FFH 256 byte PPx17 FFFF9100 to FFFF91FFH 256 byte

PPx2 FFFF8200 to FFFF82FFH 256 byte PPx18 FFFF9200 to FFFF92FFH 256 byte

PPx3 FFFF8300 to FFFF83FFH 256 byte PPx19 FFFF9300 to FFFF93FFH 256 byte

PPx4 FFFF8400 to FFFF84FFH 256 byte PPx20 FFFF9400 to FFFF94FFH 256 byte

PPx5 FFFF8500 to FFFF85FFH 256 byte PPx21 FFFF9500 to FFFF95FFH 256 byte

PPx6 FFFF8600 to FFFF86FFH 256 byte PPx22 FFFF9600 to FFFF96FFH 256 byte

PPx7 FFFF8700 to FFFF87FFH 256 byte PPx23 FFFF9700 to FFFF97FFH 256 byte

PPx8 FFFF8800 to FFFF88FFH 256 byte PPx24 FFFF9800 to FFFF98FFH 256 byte

PPx9 FFFF8900 to FFFF89FFH 256 byte PPx25 FFFF9900 to FFFF99FFH 256 byte

PPx10 FFFF8A00 to FFFF8AFFH 256 byte PPx26 FFFF9A00 to FFFF9AFFH 256 byte

PPx11 FFFF8B00 to FFFF8BFFH 256 byte PPx27 FFFF9B00 to FFFF9BFFH 256 byte

PPx12 FFFF8C00 to FFFF8CFFH 256 byte PPx28 FFFF9C00 to FFFF9CFFH 256 byte

PPx13 FFFF8D00 to FFFF8DFFH 256 byte PPx29 FFFF9D00 to FFFF9DFFH 256 byte

PPx14 FFFF8E00 to FFFF8EFFH 256 byte PPx30 FFFF9E00 to FFFF9EFFH 256 byte

PPx15 FFFF8F00 to FFFF8FFFH 256 byte PPx31 FFFF9F00 to FFFF9FFFH 256 byte

PPC6 (PPS6, PPP6, PPV6, PPT6)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FFFFA000 to FFFFA0FFH 256 byte PPx16 FFFFB000 to FFFFB0FFH 256 byte

PPx1 FFFFA100 to FFFFA1FFH 256 byte PPx17 FFFFB100 to FFFFB1FFH 256 byte

PPx2 FFFFA200 to FFFFA2FFH 256 byte PPx18 FFFFB200 to FFFFB2FFH 256 byte

PPx3 FFFFA300 to FFFFA3FFH 256 byte PPx19 FFFFB300 to FFFFB3FFH 256 byte

PPx4 FFFFA400 to FFFFA4FFH 256 byte PPx20 FFFFB400 to FFFFB4FFH 256 byte

PPx5 FFFFA500 to FFFFA5FFH 256 byte PPx21 FFFFB500 to FFFFB5FFH 256 byte

PPx6 FFFFA600 to FFFFA6FFH 256 byte PPx22 FFFFB600 to FFFFB6FFH 256 byte

PPx7 FFFFA700 to FFFFA7FFH 256 byte PPx23 FFFFB700 to FFFFB7FFH 256 byte

PPx8 FFFFA800 to FFFFA8FFH 256 byte PPx24 FFFFB800 to FFFFB8FFH 256 byte

PPx9 FFFFA900 to FFFFA9FFH 256 byte PPx25 FFFFB900 to FFFFB9FFH 256 byte

PPx10 FFFFAA00 to FFFFAAFFH 256 byte PPx26 FFFFBA00 to FFFFBAFFH 256 byte

PPx11 FFFFAB00 to FFFFABFFH 256 byte PPx27 FFFFBB00 to FFFFBBFFH 256 byte

PPx12 FFFFAC00 to FFFFACFFH 256 byte PPx28 FFFFBC00 to FFFFBCFFH 256 byte

PPx13 FFFFAD00 to FFFFADFFH 256 byte PPx29 FFFFBD00 to FFFFBDFFH 256 byte

PPx14 FFFFAE00 to FFFFAEFFH 256 byte PPx30 FFFFBE00 to FFFFBEFFH 256 byte

PPx15 FFFFAF00 to FFFFAFFFH 256 byte PPx31 FFFFBF00 to FFFFBFFFH 256 byte

V850E2M APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

R01US0001EJ0100 Rev.1.00 Page 464 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

PPC7 (PPS7, PPP7, PPV7, PPT7)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FFFFC000 to FFFFC0FFH 256B PPx16 FFFFD000 to FFFFD0FFH 256B

PPx1 FFFFC100 to FFFFC1FFH 256B PPx17 FFFFD100 to FFFFD1FFH 256B

PPx2 FFFFC200 to FFFFC2FFH 256B PPx18 FFFFD200 to FFFFD2FFH 256B

PPx3 FFFFC300 to FFFFC3FFH 256B PPx19 FFFFD300 to FFFFD3FFH 256B

PPx4 FFFFC400 to FFFFC4FFH 256B PPx20 FFFFD400 to FFFFD4FFH 256B

PPx5 FFFFC500 to FFFFC5FFH 256B PPx21 FFFFD500 to FFFFD5FFH 256B

PPx6 FFFFC600 to FFFFC6FFH 256B PPx22 FFFFD600 to FFFFD6FFH 256B

PPx7 FFFFC700 to FFFFC7FFH 256B PPx23 FFFFD700 to FFFFD7FFH 256B

PPx8 FFFFC800 to FFFFC8FFH 256B PPx24 FFFFD800 to FFFFD8FFH 256B

PPx9 FFFFC900 to FFFFC9FFH 256B PPx25 FFFFD900 to FFFFD9FFH 256B

PPx10 FFFFCA00 to FFFFCAFFH 256B PPx26 FFFFDA00 to FFFFDAFFH 256B

PPx11 FFFFCB00 to FFFFCBFFH 256B PPx27 FFFFDB00 to FFFFDBFFH 256B

PPx12 FFFFCC00 to FFFFCCFFH 256B PPx28 FFFFDC00 to FFFFDCFFH 256B

PPx13 FFFFCD00 to FFFFCDFFH 256B PPx29 FFFFDD00 to FFFFDDFFH 256B

PPx14 FFFFCE00 to FFFFCEFFH 256B PPx30 FFFFDE00 to FFFFDEFFH 256B

PPx15 FFFFCF00 to FFFFCFFFH 256B PPx31 FFFFDF00 to FFFFDFFFH 256B

PPC8 (PPS8, PPP8, PPV8, PPT8)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FFFFE000 to FFFFE0FFH 256B PPx16 FFFFF000 to FFFFF0FFH 256B

PPx1 FFFFE100 to FFFFE1FFH 256B PPx17 FFFFF100 to FFFFF1FFH 256B

PPx2 FFFFE200 to FFFFE2FFH 256B PPx18 FFFFF200 to FFFFF2FFH 256B

PPx3 FFFFE300 to FFFFE3FFH 256B PPx19 FFFFF300 to FFFFF3FFH 256B

PPx4 FFFFE400 to FFFFE4FFH 256B PPx20 FFFFF400 to FFFFF4FFH 256B

PPx5 FFFFE500 to FFFFE5FFH 256B PPx21 FFFFF500 to FFFFF5FFH 256B

PPx6 FFFFE600 to FFFFE6FFH 256B PPx22 FFFFF600 to FFFFF6FFH 256B

PPx7 FFFFE700 to FFFFE7FFH 256B PPx23 FFFFF700 to FFFFF7FFH 256B

PPx8 FFFFE800 to FFFFE8FFH 256B PPx24 FFFFF800 to FFFFF8FFH 256B

PPx9 FFFFE900 to FFFFE9FFH 256B PPx25 FFFFF900 to FFFFF9FFH 256B

PPx10 FFFFEA00 to FFFFEAFFH 256B PPx26 FFFFFA00 to FFFFFAFFH 256B

PPx11 FFFFEB00 to FFFFEBFFH 256B PPx27 FFFFFB00 to FFFFFBFFH 256B

PPx12 FFFFEC00 to FFFFECFFH 256B PPx28 FFFFFC00 to FFFFFCFFH 256B

PPx13 FFFFED00 to FFFFEDFFH 256B PPx29 FFFFFD00 to FFFFFDFFH 256B

PPx14 FFFFEE00 to FFFFEEFFH 256B PPx30 FFFFFE00 to FFFFFEFFH 256B

PPx15 FFFFEF00 to FFFFEFFFH 256B PPx31 FFFFFF00 to FFFFFFFFH 256B

V850E2M APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS

R01US0001EJ0100 Rev.1.00 Page 465 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND
OTHER CPUS

E.1 Difference Between V850E1 and V850E2
(1/3)

Item V850E2M V850E2 V850E1

ADF cccc, reg1, reg2, reg3

HSH reg2, reg3

JARL disp32, reg1

JMP disp32, [reg1]

JR disp32

MAC reg1, reg2, reg3, reg4

MACU reg1, reg2, reg3, reg4

SAR reg1, reg2, reg3

SATADD reg1, reg2, reg3

SATSUB reg1, reg2, reg3

SBF cccc, reg1, reg2, reg3

SCH0L reg1, reg2

SCH0R reg1, reg2

SCH1L reg1, reg2

SCH1R reg1, reg2

SHL reg1, reg2, reg3

SHR reg1, reg2, reg3

Provided Not provided

CAXI [reg1], reg2, reg3

DIVQ reg1, reg2, reg3

DIVQU reg1, reg2, reg3

EIRET

FERET

FETRAP vector4

RIE

SYNCM

SYNCP

Provided Not provided

SYNCE

SYSCALL vector8

LD.B disp23 [reg1] , reg3

LD.BU disp23 [reg1] , reg4

LD.H disp23 [reg1] , reg3

LD.HU disp23 [reg1] , reg3

LD.W disp23 [reg1] , reg3

ST.B reg3, disp23 [reg1]

ST.H reg3, disp23 [reg2]

Instructions

(including

operands)

ST.W reg3, disp23 [reg3]

V850E2M APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS

R01US0001EJ0100 Rev.1.00 Page 466 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(2/3)

Item V850E2M V850E2 V850E1

Instructions

(including

operands)

Floating to point operation exception Provided Not provided

Number of instruction execution clocks Varies among certain instructions.

Program area 4 GBNote 1 512 MB 64 MB

Valid bits in program counter (PC) 32 bitsNote 1 Lower 29 bits Lower 26 bits

Data area 4 GB 256 M/64 MB

System register bank Provided Not provided

 Main bank Provided ProvidedNote 2

 PSW Functions differ.

 ECR Provided (use is

generally prohibited)

Provided

 EIWR

 FEWR

 EIIC

 FEIC

 BSEL

 SCCFG

 SCBP

 Exception handler address switching function bank 0

Exception handler address switching function bank 1

 MPU violation bank

 MPU setting bank

 Software paging bank

 FPU status bank

 FPEC

 User 0 bank

Provided Not provided

Notes 1. For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a value

resulting from a sign to extension of bit 28 of EIPC is automatically set to bits 31 to 29.

 2. Bank configuration is not employed and only system registers equivalent to the main bank are available.

V850E2M APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS

R01US0001EJ0100 Rev.1.00 Page 467 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

(3/3)

Item V850E2M V850E2 V850E1

Processor protection function Functions differ Not provided

FE level non to maskable exception FENMI NMI2Note

FE level maskable exception FEINT NMI0, NMI1Note

EI level maskable exception INT INT

Memory protection exception Provided (30H) Not provided

Floating to point operation exception Provided (70H) Not provided

Return from FE level exception FERET

Return from EI level exception EIRET

RETI

Checking and cancelling exception Provided Not provided

Exceptions

Execution of undefined opcodes Reserved instruction

exception

FE level exception (30H)

Illegal instruction exception

DB level exception (60H)

Operation mode Misaligned access enable setting Always enabled Can be set as enabled or disabled

7 stages 5 stages Pipeline

Pipeline flow varies for each instruction.

Note Some specifications such as exception handler addresses and exception code are different.

V850E2M APPENDIX F INSTRUCTION INDEX

R01US0001EJ0100 Rev.1.00 Page 468 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

APPENDIX F INSTRUCTION INDEX

F.1 Basic Instructions

[A]

ADD 71

ADDI 72

ADF........................... 73

AND 74

ANDI 75

[B]

Bcond........................ 76

BSH 78

BSW.......................... 79

[C]

CALLT....................... 80

CAXI 81

CLR1......................... 82

CMOV 84

CMP.......................... 86

CTRET...................... 87

[D]

DI 88

DISPOSE.................. 89

DIV............................ 91

DIVH 92

DIVHU....................... 94

DIVQ 95

DIVQU 96

DIVU 97

[E]

EI 98

EIRET 99

[F]

FERET.....................100

FETRAP101

[H]

HALT102

HSH.........................103

HSW........................104

[J]

JARL........................105

JMP107

JR............................108

[L]

LD.B109

LD.BU......................110

LD.H111

LD.HU......................112

LD.W113

LDSR.......................114

[M]

MAC115

MACU......................116

MOV117

MOVEA118

MOVHI.....................119

MUL.........................120

MULH121

MULHI122

MULU123

[N]

NOP 124

NOT 125

NOT1 126

[O]

OR 128

ORI 129

[P]

PREPARE............... 130

[R]

RETI........................ 132

RIE.......................... 134

[S]

SAR 135

SASF 137

SATADD 138

SATSUB.................. 140

SATSUBI................. 141

SATSUBR............... 142

SBF......................... 143

SCH0L 144

SCH0R.................... 145

SCH1L 146

SCH1R.................... 147

SET1....................... 148

SETF....................... 150

SHL......................... 152

SHR 154

SLD.B 156

SLD.BU157

SLD.H......................158

SLD.HU159

SLD.W160

SST.B161

SST.H......................162

SST.W163

ST.B164

ST.H165

ST.W166

STSR.......................167

SUB168

SUBR169

SWITCH170

SXB171

SXH172

SYNCE173

SYNCM174

SYNCP175

SYSCALL176

[T]

TRAP.......................178

TST..........................179

TST1........................180

[X]

XOR.........................181

XORI........................182

ZXB183

ZXH184

V850E2M APPENDIX F INSTRUCTION INDEX

R01US0001EJ0100 Rev.1.00 Page 469 of 473
Oct 17, 2012

Under development
Preliminary document

Specifications in this document are tentative and subject to change.

F.2 Floating to point Operation Instructions

[A]

ABSF.D................... 326

ABSF.S 327

ADDF.D 328

ADDF.S................... 329

[C]

CEILF.DL 330

CEILF.DUL 331

CEILF.DUW 332

CEILF.DW............... 333

CEILF.SL 334

CEILF.SUL.............. 335

CEILF.SUW 336

CEILF.SW............... 337

CMOVF.D 338

CMOVF.S 339

CMPF.D 340

CMPF.S 343

CVTF.DL................. 346

CVTF.DS 347

CVTF.DUL 348

CVTF.DUW............. 349

CVTF.DW 350

CVTF.LD................. 351

CVTF.LS 352

CVTF.SD 353

CVTF.SL 354

CVTF.SUL 355

CVTF.SUW 356

CVTF.SW................ 357

CVTF.ULD.............. 358

CVTF.ULS 359

CVTF.UWD............. 360

CVTF.UWS............. 361

CVTF.WD 362

CVTF.WS 363

[D]

DIVF.D.................... 364

DIVF.S.................... 365

[F]

FLOORF.DL 366

FLOORF.DUL......... 367

FLOORF.DUW 368

FLOORF.DW 369

FLOORF.SL............ 370

FLOORF.SUL 371

FLOORF.SUW........ 372

FLOORF.SW 373

[M]

MADDF.S 374

MAXF.D 376

MAXF.S 377

MINF.D 378

MINF.S 379

MSUBF.S................ 380

MULF.D 382

MULF.S 383

[N]

NEGF.D...................384

NEGF.S...................385

NMADDF.S..............386

NMSUBF.S..............388

[R]

RECIPF.D390

RECIPF.S................391

RSQRTF.D..............392

RSQRTF.S393

[S]

SQRTF.D394

SQRTF.S.................395

SUBF.D396

SUBF.S397

[T]

TRFSR398

TRNCF.DL399

TRNCF.DUL............400

TRNCF.DUW...........401

TRNCF.DW402

TRNCF.SL...............403

TRNCF.SUL404

TRNCF.SUW...........405

TRNCF.SW406

C - 1

REVISION HISTORY V850E2M Preliminary User’s Manual: Architecture

Description Rev. Date

Page Summary

0.01 Dec 09, 2009  First Edition issued

0.02 Aug 31, 2010 p.89 Modification of PART2 5. 3 Instruction Set DISPOSE [Operation]

 p.180 Modification of PART2 5. 3 Instruction Set TST1 [Operation]

 p.255 Modification of PART3 Table 7-1. Peripheral Device Protection Function
Register Set

 p.279 Modification of PART3 8.1.2 TSECR – Timing supervision exception cause

 p.403 Modification of PART4 4. 4 Instruction Set TRNCF.SL [opcode]

 p.404 Modification of PART4 4. 4 Instruction Set TRNCF.SUL [opcode]

 p.425 Modification of Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction)

 pp.429,
430

Modification of Table B-4. Floating-point Instruction Opcodes

 pp.435
to 438

Modification of Table C-1. Clock Requirements for Basic Instructions

p.186 Addition of Note 7 in PART 2, Table 6-1 Exception Cause List

p.263 Modification of the destination for reference to initial values in PART 3, 7.1.9 PPSn –
Specification of special peripheral device

p.264 Modification of the destination for reference to initial values in PART 3, 7.1.10 PPPn –
Specification of OS peripheral device

p.265 Modification of the destination for reference to initial values in PART 3, 7.1.11 PPVn –
Validating general peripheral device protection

1.00 Oct 17, 2012

p.266 Modification of the destination for reference to initial values in PART 3, 7.1.12 PPTn –
Specification protection type of general peripheral device

COLOPHON

V850E2M User’s Manual: Architecture

Publication Date: Rev.1.00 Oct 17, 2012

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 1.3

V850E2M

R01US0001EJ0100

	Cover
	Notice
	NOTES FOR CMOS DEVICES
	How to Use This Manual
	Table of Contents
	PART 1 OVERVIEW
	CHAPTER 1 FEATURES
	1.1 Basic function
	1.2 Processor protection function
	1.3 Floating-point operation function

	PART 2 BASIC FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.2 System Register Bank
	2.2.1 BSEL (Register bank selection

	2.3 CPU Function Group/Main Bank
	2.3.1 EIPC and EIPSW (Status save registers when acknowledging EI level exception
	2.3.2 FEPC and FEPSW (Status save registers when acknowledging FE level exception
	2.3.3 ECR (Exception cause
	2.3.4 PSW (Program status word
	2.3.5 SCCFG (SYSCALL operation setting
	2.3.6 SCBP (SYSCALL base pointer
	2.3.7 EIIC (EI level exception cause
	2.3.8 FEIC (FE level exception cause
	2.3.9 CTPC and CTPSW (Status save registers when executing CALLT
	2.3.10 CTBP (CALLT base pointer
	2.3.11 EIWR (EI level exception working register
	2.3.12 FEWR (FE level exception working register
	2.3.13 DBIC (DB level exception cause
	2.3.14 DBPC and DBPSW (Status save registers when acknowledging DB level exception
	2.3.15 DBWR (DB level exception working register
	2.3.16 DIR (Debug interface register

	2.4 CPU Function Group/Exception Handler Address Switching Function Banks
	2.4.1 SW_CTL (Exception handler address switching control
	2.4.2 SW_CFG (Exception handler address switching configuration
	2.4.3 SW_BASE (Exception handler address switching base address
	2.4.4 EH_CFG (Exception handler configuration
	2.4.5 EH_BASE (Exception handler base address
	2.4.6 EH_RESET (Reset address

	2.5 User Group

	CHAPTER 3 DATA TYPES
	3.1 Data Formats
	3.1.1 Byte
	3.1.2 Halfword
	3.1.3 Word
	3.1.4 Bit

	3.2 Data Representation
	3.2.1 Integers
	3.2.2 Unsigned integers
	3.2.3 Bits

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Modes
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Opcodes and Instruction Formats
	5.1.1 CPU instructions
	5.1.2 Coprocessor instructions
	5.1.3 Reserved instructions

	5.2 Overview of Instructions
	5.3 Instruction Set

	CHAPTER 6 EXCEPTIONS
	6.1 Outline of Exceptions
	6.1.1 Exception cause list
	6.1.2 Types of exceptions
	6.1.3 Exception processing flow
	6.1.4 Exception acknowledgment priority and pending conditions
	6.1.5 Exception acknowledgment conditions
	6.1.6 Resume and restoration
	6.1.7 Exception level and context saving
	6.1.8 Return instructions

	6.2 Operations When Exception Occurs
	6.2.1 EI level exception without acknowledgment conditions
	6.2.2 EI level exception with acknowledgment conditions
	6.2.3 FE level exception without acknowledgment conditions
	6.2.4 FE level exception with acknowledgment conditions
	6.2.5 Special operations

	6.3 Exception Management
	6.3.1 Synchronizing exception when exception is acknowledged or when execution returns
	6.3.2 Exception synchronization instruction
	6.3.3 Checking and cancelling pending exception

	6.4 Exception Handler Address Switching Function
	6.4.1 Determining exception handler addresses
	6.4.2 Purpose of exception handler address switching
	6.4.3 Settings for exception handler address switching function

	CHAPTER 7 COPROCESSOR UNUSABLE STATUS
	7.1 Coprocessor Unusable Exception
	7.2 System Registers

	CHAPTER 8 RESET
	8.1 Status of Registers After Reset
	8.2 Start

	PART 3 PROCESSOR PROTECTION FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features

	CHAPTER 2 REGISTER SET
	2.1 System Register Bank
	2.2 System Registers
	2.2.1 PSW – Program Status Word
	2.2.2 MPM – Setting of processor protection operation mode
	2.2.3 MPC – Specification of processor protection command
	2.2.4 TID – Task identifier
	2.2.5 Other system registers

	CHAPTER 3 OPERATION SETTING
	3.1 Starting Use of Processor Protection Function
	3.2 Setting of Execution Level Auto Transition Function
	3.3 Stopping Use of Processor Protection Function

	CHAPTER 4 EXECUTION LEVEL
	4.1 Nature of Program
	4.2 Protection Bits on PSW
	4.2.1 T state (trusted state)
	4.2.2 NT state (non-trusted state)

	4.3 Definition of Execution Level
	4.4 Transition of Execution Level
	4.4.1 Transition by execution of write instruction to system register
	4.4.2 Transition as result of occurrence of exception
	4.4.3 Transition by execution of return instruction

	4.5 Program Model
	4.6 Task Identifier

	CHAPTER 5 SYSTEM REGISTER PROTECTION
	5.1 Register Set
	5.1.1 VSECR – System register protection violation cause
	5.1.2 VSTID – System register protection violation task identifier
	5.1.3 VSADR – System register protection violation address

	5.2 Access Control
	5.3 Registers to Be Protected
	5.4 Detection of Violation
	5.5 Operation Method

	CHAPTER 6 MEMORY PROTECTION
	6.1 Register Set
	6.1.1 IPAnL – Instruction/constant protection area n lower-limit address (n = 0 to 4)
	6.1.2 IPAnU – Instruction/constant protection area n upper-limit address (n = 0 to 4)
	6.1.3 DPAnL – Data protection area n lower-limit address (n = 0 to 5)
	6.1.4 DPAnU – Data protection area n upper-limit address (n = 0 to 5)
	6.1.5 VMECR – Memory protection violation cause
	6.1.6 VMTID – Memory protection violation task identifier
	6.1.7 VMADR – Memory protection violation address

	6.2 Access Control
	6.3 Setting Protection Area
	6.3.1 Valid bit (E bit)
	6.3.2 Execution enable bit (X bit)
	6.3.3 Read enable bit (R bit)
	6.3.4 Write enable bit (W bit)
	6.3.5 sp indirect access enable bit (S bit)
	6.3.6 Protection area specification mode bit (T bit)
	6.3.7 Protection area lower-limit address (AL31 to AL0 bits)
	6.3.8 Protection area upper-limit address (AU31 to AU0 bits)

	6.4 Notes on Setting Protection Area
	6.4.1 Crossing of protection area boundaries
	6.4.2 Invalid protection area setting

	6.5 Stack Inspection Function
	6.6 Special Memory Access Instructions
	6.6.1 Load and store instructions executing misaligned access
	6.6.2 Some bit manipulation instructions and CAXI instruction
	6.6.3 Stack frame manipulation instructions
	6.6.4 SYSCALL instruction

	6.7 Protection Violation and Exception

	CHAPTER 7 PERIPHERAL DEVICE PROTECTION
	7.1 Register Set
	7.1.1 PPM – Setting of peripheral device protection operation mode
	7.1.2 PPEC – Controlling peripheral device protection exception
	7.1.3 VPNECR – Peripheral device protection NT state violation cause
	7.1.4 VPNADR – Peripheral device protection NT state violation address
	7.1.5 VPNTID – Peripheral device protection NT state violation task ID
	7.1.6 VPTECR – Peripheral device protection T state violation cause
	7.1.7 VPTADR – Peripheral device protection T state violation address
	7.1.8 VPTTID – Peripheral device protection T state violation task ID
	7.1.9 PPSn – Specification of special peripheral device
	7.1.10 PPPn – Specification of OS peripheral device
	7.1.11 PPVn – Validating general peripheral device protection
	7.1.12 PPTn – Specification protection type of general peripheral device

	7.2 Standing of Memory Protection and Peripheral Device Protection
	7.3 Types of Peripheral Devices
	7.3.1 Setting types of peripheral devices
	7.3.2 Detailed protection setting of general peripheral device

	7.4 Peripheral Device Protection Violation in T State
	7.5 Peripheral Device Protection Violation in NT State
	7.5.1 Invalidating subsequent accesses

	7.6 Handling PPI Exception
	7.6.1 Canceling PPI exception
	7.6.2 Operation method not using PPI exception
	7.6.3 Operation to be performed by PPI exception processing

	7.7 List of Results of Detection of Peripheral Device Protection Violation
	7.8 Accessing Special Peripheral Devices
	7.9 Protection Setting of Peripheral Device Protection Setting Registers
	7.10 Special Peripheral Device Access Instruction
	7.10.1 SYSCALL instruction

	CHAPTER 8 TIMING SUPERVISION FUNCTION
	8.1 Register Set
	8.1.1 TSEC – Controlling timing supervision
	8.1.2 TSECR – Timing supervision exception cause
	8.1.3 TSCCFGn – Setting of timing supervision function counter n (n = 0 to 5)
	8.1.4 TSCCNTn – Count value of timing supervision counter n (n = 0 to 5)
	8.1.5 TSCCMPn – Comparison value of timing supervision counter n (n = 0 to 5)
	8.1.6 TSCRLDn – Reload value of timing supervision counter n (n = 0 to 5)

	8.2 Counter Functions
	8.2.1 Resolution
	8.2.2 Counting direction
	8.2.3 Exception mode
	8.2.4 Auto reloading
	8.2.5 Counter mode

	8.3 Operation Modes of Counter and CPU
	8.4 Detecting Violation
	8.4.1 Identifying violation cause

	8.5 Handling of TSI Exception
	8.5.1 Reporting TSI exception
	8.5.2 Identifying exception cause
	8.5.3 Canceling TSI exception

	8.6 Setting Counter Corresponding to Each Supervision Function
	8.6.1 Global interrupt lock supervision
	8.6.2 Runtime supervision
	8.6.3 Supervising number of times of interrupt reaches a specific value
	8.6.4 Supervising time lapse

	CHAPTER 9 PROCESSOR PROTECTION EXCEPTION
	9.1 Types of Violations
	9.1.1 System register protection violation
	9.1.2 Execution protection violation
	9.1.3 Data protection violation
	9.1.4 Peripheral device protection violation
	9.1.5 Timing supervision violation

	9.2 Types of Exceptions
	9.2.1 MIP exception
	9.2.2 MDP exception
	9.2.3 PPI exception
	9.2.4 TSI exception

	9.3 Identifying Violation Cause
	9.3.1 MIP exception
	9.3.2 MDP exception
	9.3.3 PPI exception
	9.3.4 TSI exception

	CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION
	10.1 Register Set
	10.1.1 MCA – Memory protection setting check address
	10.1.2 MCS – Memory protection setting check size
	10.1.3 MCC – Memory protection setting check command
	10.1.4 MCR – Memory protection setting check result

	10.2 Sample Code

	CHAPTER 11 SPECIFAL FUNCTON
	11.1 Clearing Memory Protection Setting All at Once

	PART 4 FLOATING-POINT OPERATION FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features
	1.2 Implementing Floating-point Operation Function

	CHAPTER 2 REGISTER SET
	2.1 Floating-point Operation Registers
	2.2 Floating-point System Registers
	2.2.1 FPSR (Floating-point configuration/status
	2.2.2 FPEPC (Floating-point exception program counter
	2.2.3 FPST (Floating-point operation status
	2.2.4 FPCC - Floating-point operation comparison result
	2.2.5 FPCFG (Floating-point operation configuration
	2.2.6 FPEC (Floating-point exception control

	CHAPTER 3 DATA TYPES
	3.1 Data Formats
	3.1.1 Floating-point format
	3.1.2 Fixed-point formats

	CHAPTER 4 INSTRUCTIONS
	4.1 Instruction Formats
	4.2 Overview of Floating-point Instructions
	4.3 Conditions for Comparison Instructions
	4.4 Instruction Set

	CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS
	5.1 Types of Exceptions
	5.2 Exception Processing
	5.2.1 Status flag

	5.3 Exception Details
	5.3.1 Inexact exception (I)
	5.3.2 Invalid operation exception (V)
	5.3.3 Division-by-zero exception (Z)
	5.3.4 Overflow exception (O)
	5.3.5 Underflow exception (U)
	5.3.6 Unimplemented operation exception (E)

	5.4 Precise Exceptions and Imprecise Exceptions
	5.4.1 Precise exceptions
	5.4.2 Imprecise exceptions

	5.5 Saving and Returning Status
	5.6 Selection of Floating-point Operation Model
	5.6.1 When accurate operations are required
	5.6.2 When operation performance is emphasized

	APPENDIX A LIST OF INSTRUCTIONS
	A.1 Basic Instructions
	A.2 Floating-point Instructions

	APPENDIX B INSTRUCTION OPCODE MAP
	B.1 Basic Instruction Opcode Map
	B.2 Floating-point Instruction Opcode Map

	APPENDIX C PIPELINES
	C.1 Features
	C.2 Clock Requirements
	C.3 Pipeline for Basic Instructions

	APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS
	APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS
	E.1 Difference Between V850E1 and V850E2

	APPENDIX F INSTRUCTION INDEX
	F.1 Basic Instructions
	F.2 Floating to point Operation Instructions

	REVISION HISTORY
	COLOPHON
	Addresslist
	BACKCOVER

