LENESAS

C
0
@
”
<
Q
S
-
D

V850E2M

User’'s Manual: Architecture

RENESAS MCU
V850E2M Microprocessor Core

Renesas Electronics
WWW.renesas.com Rev.1.00 Oct, 2012

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard™: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

NOTES FOR CMOS DEVICES

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the
CMOS device stays in the area between Vic (MAX) and Vi (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between Vi (MAX) and
ViH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Voo or GND
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must
be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as
much as possible, and quickly dissipate it when it has occurred. Environmental control must be
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the
reset signal is received. A reset operation must be executed immediately after power-on for devices
with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external
interface, as a rule, switch on the external power supply after switching on the internal power supply.
When switching the power supply off, as a rule, switch off the external power supply and then the
internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal
elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related
specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an 1/O pull-up power supply while the device is not powered. The current
injection that results from input of such a signal or 1/O pull-up power supply may cause malfunction and
the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to
related specifications governing the device.

Target Readers

Purpose

Organization

How to Use this Manual

Conventions

How to Use This Manual

This manual is intended for users who wish to understand the functions of the V850E2M
CPU core for designing application systems using the V850E2M CPU core.

This manual is intended for users to understand the architecture of the VB50E2M CPU core
described in the Organization below.

This manual contains the following information:
¢ Basic function
* Processor protection function
* Floating-point operation function

It is assumed that the reader of this manual has general knowledge in the fields of electrical
engineering, logic circuits, and microcontrollers.

To learn about the hardware functions,
— Read Hardware User’'s Manual of each product.

To learn about the functions of a specific instruction in detail,
— Read PART 2 CHAPTER 5 INSTRUCTIONS,
PART 4 CHAPTER 4 INSTRUCTIONS.

Data significance: Higher digits on the left and lower digits on the right
Active low representation: xxxB (B is appended to pin or signal name)

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remark: Supplementary information

Numerical representation: Binary ... xxxx oOr xxxxB
Decimal ... xxxx
Hexadecimal ... xxxxH
Prefix indicating the power of 2 (address space, memory capacity):
K (Kilo): 21°=1,024
M (Mega): 220 = 1,024
G (Giga): 2% =1,0243

Table of Contents

PART 1 OVERVIEW.t e et e et e e e e ea e ees 16
CHAPTER L FEATURES ...ttt ettt ettt ettt et e et e ettt st s bt s et s st e st s st s s bebnbnbnnes 17
A = 7= 11 o3 U o o 1 T o PSPPSR 17

1.2 Processor proteCtion fUNCHION...........ooiiiiiiiiii e e e e e e e e e eee s 17

1.3 Floating-point operation FUNCLIONvuiiiiii e e e 18
PART 2 BASIC FUNCTION ...t e e e e enn e e eees 19
CHAPTER 1L OVERVIEW ...ttt ettt s et s e e e e e s st s e s st st e s sbnn s sn e e rnnnnes 20
1.1 FAIUIES ..ot e e e s e e e e r e e e s e e e e e n e 20
CHAPTER 2 REGISTER SEToiiiiiiiiiiiiiitiiitieitieieieieteteietetebebsbebabsbatseseessbessesbssessessesssssssssssssssssssssssssssnsnrenes 22
A R = o Ve | = T T LT 1S 1= SR 23

2.2 SyStemM REQISTEN BANK ...uooiiiiiiiiei et e e 24
2.2.1 BSEL — Register Dank SEIECHON.uiiiiiieeiiee et e e 26

2.3 CPU Function Group/Main BanKcccoiuiiiiiiiiiiiiiiiee ettt snnee e 27
2.3.1 EIPC and EIPSW - Status save registers when acknowledging El level exception.............cc......... 28

2.3.2 FEPC and FEPSW - Status save registers when acknowledging FE level exception 28

2.3.3 ECR — EXCEPLION CAUSEuiiieeieieee ittt e e ettt e e e e ettt e e e e s ettt et e e e e e e sab b et e e e e e e e annbbeeeeeeeeeaans 29

2.3.4 PSW — Program SEATUS WOFTcoueieiiiiiiiieeeee ettt ee e e e e e ettt e e e e e e e e s aeteeeeaaeeaaanbaseeaaeaesaannnnseeaaaeaaanns 30

2.3.5 SCCFG — SYSCALL 0peration SEHNGc.cuveeiiriieeiiiie ettt e e e e 33

2.3.6 SCBP — SYSCALL DA POINTEL ...cciiiiiiiiiiiee ettt e ettt e e e e s st e e e e e s et e eeeeeseassataeeeeaeeenanees 33

2.3.7 EIC — El |eVel EXCOPLION CAUSEcciiiiiiiiiiiiee e ettt ee e e ettt e e e e e ettt e e e e s e s abba e e e e e e e e aannbreeeeeeeeaanns 34

2.3.8 FEIC — FE |eVel EXCEOPLION CAUSEcoeiieiieiiiae e ettt ee e e ettt e e e e e e ettt e e e e e e e anabeeeeaaeeeaanntbeeeaaeeeaannnes 34

2.3.9 CTPC and CTPSW - Status save registers when executing CALLTcccccoviiiiiiiiiee e 34

2.3.10 CTBP — CALLT DASE POINTEE....ueiiieeiiiiiiiiiieeeeeeeiiiiet e e e e e e s sttt e e e e e e s esastb e et e e e e easntbaareaeessssntbaseeaaeessannes 35

2.3.11 EIWR — El level exception WOrKiNg FEQISTENuuiiiiiiiiiiiieee et ee e e e e e e e e e e 35

2.3.12 FEWR — FE level exception WOrKing FEQISTENcuiiiiiiiiiiiieee e e aaiiiiee e e e e et e e e e e e e e sneaeeeeaaeeeannnees 35

2.3.13 DBIC — DB 1eVEl EXCEPLION CAUSEeciiuiiiiiiiiiee ittt ettt sit et e e st e e st e s eesabre e e e 36

2.3.14 DBPC and DBPSW - Status save registers when acknowledging DB level exception.................... 36

2.3.15 DBWR — DB level exception WOrKing FEQISTEYcouiiuiiiiiiiiiieeei ittt e e e e e 36

2.3.16 DIR — Debug INtEaCE FEQISTON.....cie ittt ee ettt et e e e e e e et e e e e e e e e snnebeeeeaeeeeannees 36

2.4 CPU Function Group/Exception Handler Address Switching Function Banks................. 37
2.4.1 SW_CTL - Exception handler address sWitChing CONrol............cocciuviiiiieiiiiiiiiier e 39

2.4.2 SW_CFG - Exception handler address switching configurationcccoccuviieiieiiiiiiieceeeniins 39

2.4.3 SW_BASE - Exception handler address switching base addressccoociiieiieiiiiiiee s 39

2.4.4 EH_CFG — Exception handler CONfIQUIrationcoccueiiiiiiieiiiiieeeiice e 40

2.4.5 EH_BASE — Exception handler base adadreSsccieeiiiiiiiiiiii et e e e e e e e e e e 40

2.4.6 EH RESET — RESEt AUUIMNESS .. .uuuuuuiiiiiiiiiiii s 41

I U =TT g €1 ¢ o] U] o F TP T TR PPPP PP 42
CHAPTER 3 DAT A TY PES ettt e e e e e s et e e e e e st e e e e e e e e e annrereeeaeeas 44
T O B = = B 0 4 1= PO 44

T R == YOS a4

T I o T 1 1V o] (o RSP PPTOP SNSRI 44

B 30 IS 11 o o IS PRPRR 45

B 0 T S PRPR 45

T T - 2 =Y o] £=11=] 01 = Ld Lo] o NSRS 46
Bi2. L MBS . e bbb rnrnnne 46

I A O [o TS oo T To [(=T [T TP RPR 46

1 070 N =11 £ SR RPR 46

TG I B 7 = BN T | 10 0 1=] o | SRR a7
CHAPTER 4 ADDRESS SPACE ...ttt eteaetetetetebe et ebebe e bebebebebabebe b s bebsbsbsbsbsbsbssssssssssssssssnssbnnes 48
o R |V (=T g L0] VY =T o TP PPPPI 49
VN2 Ao [| =137 T 1Y, o T Lo S 51
o R [1S\ (W Tod o = 1o [0 [T PP ROPPPPRPPPPOPPR 51

4.2.2 OPEIANG AAUIESS ...ttt ettt e oottt e e e e e e b et et e e e e e e aab b e et e e e e e e e nb b e et e e e e e e anbeeeeeeaaae 54
CHAPTER 5 INSTRUGCTIONScoeiiititttittttitetetetateueteteteueaererereeerereeaeeeseeeseasaeseeeeesesssesesesesssssssnnasasnsnnsessrsrnnes 57
5.1 Opcodes and INStruCtion FOrMALScccuiiiiiiiie e 57
B5.1.1 CPU INSIIUCTIONS .itiiie ittt ettt ettt ettt e ekt e e s sttt e e s h b e e e ettt e e e nb e e e e snbbeeanbeeeenanee 57

5.1.2 COPrOCESSON INSIIUCTIONS.ieiieiiiee e ettt e ettt e e e e ettt et e e e e st e e e e e e e e aab e e e e e e e e e annbbeeeeesannneees 62

5.1.3 RESEIVEA INSIIUCHONS ...oiiiiiiiiiieii ettt e ettt e e e e e ettt e e e e e e e e e aee e e e e e e e e aannebeeeeaaeeeannsteneeesannnneas 62

5.2 OVErvieW Of INSTIUCTIONSooiiiiiiiiie ittt snbee e e e 63
TR B [0] 1 B [1o TS T=) SRR 68
F Y] T T PP PPPPPPPPPPPPPPPPPPIRE 71
F Y B T TP PP PPPPPPPPPPPPPPPPPINE 72
F Y PP PPPPPPPPPPPPPPPPPRPIRE 73
AN DD ettt bbb e bbb e 1 b e 1 e 11 e 1 e b e 1 e e b e 111118 1R £ e e e e e e ettt et ettt e e ettt ettt e et e e e eeees 74
F NN PO TP PPPPPPPPPPPPPPPPPPPIRE 75
2 o0 o To [ST ROSPPTT 76
B S H R nen 78
1S TP PP PP PP PPPPPPPPPPN 79
A LT e 80
A X e 81
LR L 82
CIMOV .ttt a e bbbt A h R E e E oAb Rt E ke ke a ke E b et et 84
P 86
T RET e 87
5 TN 88
DISPOSE ...ttt ettt bttt h bR b h e E R E e bR eh e R bRt bbbt e bt et ne s 89
3 TN 91
DIV H Rt nnen 92
3] Y [N 94
DIVQ ettt ettt ettt ettt ettt ettt ettt ettt 95
DIV QU R 96
DIVU Rt nnen 97
TSP 98
T N 99
FE R E T R E R R et R e s e R e e b e b e s ennnnnes 100
FET RAP £ R £ R £ Rt Rt Rt Rt s e st st s e nnnnnnnen 101
H A L T AR R b e bt Rt bkttt bttt sttt ittt e st nnnnnnnen 102

I3 I o T TSP PP RO U P OUPRPPRP 165
3 I TSP U RO OURPRP 166
] 5] - TP OO T TP P PP OUPTPURPPRP 167
SU B .ttt eR A b e E e e £ e oA R e R e e Rt Rt et e E et e b et b e e et e b e s 168
102] o O TP PP P OUPTOPPRPPRP 169
SWITCH ettt et e h bt h e e a bt e e skt e oa bt e o Rkt e ea bt e oAbt e oAbt e e a ke e eab et eb e e e bt e e beeenbeeebeeenbeeenbeas 170
)= T PO O TP O TP P PP OUPTPURPRRO 171
) T O P T P T PP PP P OUPTOPPPPRPI 172
SYINCE ...ttt b et b bt b et b et R et R e e e R et ek bt e R etk b e e R et e R bt R et e R et e ket e be e et e e ene e b s 173
I} [USSR U RSP OURPRP 174
SYNCP ..t E e E oL bt E e R et et Rt b b et b e 175
SY SCALL ittt E R E R e bt R et bt ar e e R et b et e b et e s 176
LR T T T TP PP PP OPRTPN 178
LIS LI TP UPR TR 179
LIS LI PP P T TP PR U RO PR PR OPPTRTN 180
D (] S T P TP T PR U PP PP UPPUPP TP 181
D (] = 4 T TP T TP PP ORI 182
= TP OPRTR 183
ZXH Lo L et e et e h ettt e e nens 184
CHAPTER 6 EXCEPTIONSceeeiieiiitiiiittttteteeeteteteteeeteteaeaste st s et e e st e e et e st e st s e bs st sssssssbnbsbnr e 185
6.1 OULIINE OF EXCEPTIONSeeiiiiiiiieiiiiiie ettt ettt ettt e et e et e e e sabe e e e e sbr e e e e sbreeeees 185
6.1.1 EXCEPUON CAUSE lIST ...eiiiiiiiieiiiiie ittt etttk e e e et e e s st e e e nnneeanne e e e 185

6.1.2 TYPES Of EXCEPLIONS ...vveiiiie e ittt e e e ettt e e e e e et e e e e e e s e et e e e e s assatbeeteaeesaaasbaneeaaeeeasssaeeeesanes 188

6.1.3 EXCeption ProCeSSING FlOW........uuiiiiiiiiiiiiie et e et e e e e e e e e 190

6.1.4 Exception acknowledgment priority and pending conditionscoooeoiiiiiiiiiiieen e 191

6.1.5 Exception acknowledgment CONAILIONSociiiiiiiiiiiiieiiee e 191

6.1.6 RESUME @NA FESIOTALIONeiiiiiiiii ittt e e n e nre e 192

6.1.7 Exception level and CONTEXE SAVINGc.ueueiiiieiiiiiiiieiee ettt e e e e e e e e e e e e e e snebeeeeaeeeaes 192

6.1.8 RELUIM INSIIUCTIONSeeiiiiiii ettt e e e s e e st e e s e e e e s e e e s s re e e e ann e e e nnneennnreeenns 193

6.2 Operations When EXCEPLiON OCCUIS........c..uuuiiiieeeiiiiiiiieeeee e s s s steree e e e e e s s s srreee e e e e e e s e snnrneeees 196
6.2.1 El level exception without acknowledgment CONditioNScooiiiiiiiieiiiiiiiiiiee e 196

6.2.2 El level exception with acknowledgment CONAItIONSeiiiiiiiiiiiiiie e 198

6.2.3 FE level exception without acknowledgment cONditioNS............cooiiuiiiiiiieiiiiiiiiee e 200

6.2.4 FE level exception with acknowledgment CONAItIONS..........c.uvviiiiiieiiiiiiie e 202

(oI SIS o =T F= o =T = i [0 < TSP PRPRN 204

(SRS = edet=To] (To] oW1V FoT g F=To =1 0 0=T o | AU PURTPTSPR 206
6.3.1 Synchronizing exception when exception is acknowledged or when execution returns 208

6.3.2 Exception synchronization iNSIIUCHIONcueviiiiiiiiiiiie et 208

6.3.3 Checking and cancelling pending ©XCEPLIONuviieeiiiiiiiiiiee e eeiieee e e e e e e s e s e e e e e e e asaneaes 208

6.4 Exception Handler Address Switching FUNCLION............cccccoiiiiiiiiii e 210
6.4.1 Determining exception handler AddreSSESuuuiiiii it e e e nneeee 210

6.4.2 Purpose of exception handler address SWItChINGcooviiieiiiiiieiii e 211

6.4.3 Settings for exception handler address switching funCtion............cccccviie i 211
CHAPTER 7 COPROCESSOR UNUSABLE STATUS ..ottt s 212
7.1 Coprocessor UNUsable EXCEPLIONcooiiiiiiiiiiiiiie et 212

A S (=] 4 T (=T TS 1= RS 212

CHAPTER 8 RESET ...ttt et e e e s s e e e e e e s s ee e e e e e serar e 213

8.1 Status Of REQISIErS AFtEr RESET.....cooiiiiiiiiiiii e 213

S T - | SO P PO PP RPPPRPRPPI 213
PART 3 PROCESSOR PROTECTION FUNCTIONcocviiiiiiieiiieee e 214
CHAPTER 1 OVERVIEW ...ttt e e e e s e e e e e e s e e e e e e s anrnrne s 215
O O T Ll | T TP 215
CHAPTER 2 REGISTER SET ...ttt eete e be e e et bab et ebs ettt sssssbennres 217
2.1 System ReQISTEr BANKcocuuiiiiiiiiiie et 217

A (=] T (=T S 1= S 219
2.2.1 PSW — Program StAtUS WOTGccoiiuuriiiiee e ittt e e e e esiivett e e e e s s sitbae e e e e e e s satbaaseaaesssntaanaeesesssnnnns 223

2.2.2 MPM — Setting of processor protection operation MOEoocuuieiiieeiiiiiiiiiiee e 224

2.2.3 MPC - Specification of processor protection COMMANG...........coouiiiiiiiiiiiiiiiiiie e 226

A | D I =] QT [T 1 P PUP P UPRPR 226

2.2.5 Other SYSIEM FEQISTEIS ...eiii i it iiiiiiiie e e e ettt e e e e et e e e e e e s s e e e e e e e s satbereeteaeesasatbaeaaaeeesssssbsaeeesannes 226
CHAPTER 3 OPERATION SETTING ..ottt ettt tete e e e bebe e bebebsbsbaebbsebbsbsssesssssssssnnsnnnres 227
3.1 Starting Use of Processor Protection FUNCHION............cooiiiiiiiiiiic e 227

3.2 Setting of Execution Level Auto Transition FUNCLION ..., 227

3.3 Stopping Use of Processor Protection FUNCLION.........ccccceoiiiiiiiiiiicc e 227
CHAPTER 4 EXECUTION LEVEL....ccoiiiiiiiiiiiiiiiiiiie ettt ettt s s s bsbessssssssssssssssnnees 228
A1 NATUIE OF PIrOGIaIMci ittt ettt s bt e st e e s snbb e e e e snnee s 228

4.2 ProteCtion BitS ON PSW ..ottt sttt e et e s e e e snneeas 229
o N B - (N (0 S (=T [-1 () PP PP UPRPR 229

4.2.2 NT state (NON-TrUSTEA STALE)ueieiiieiiiiiieie ettt e e e e e e e e e st e e e e e e e aanbneeeeeanes 229

4.3 Definition of EXECULION LEVEL.......cceeeiiiiiie e e e 229

4.4 Transition Of EXECULION LEVEL........c...oiiiiiiiiii e 230
4.4.1 Transition by execution of write instruction to System registerccoovveeeiiiiiiiieie e 230

4.4.2 Transition as result of 0ccurrence of @XCEPLION..........ciiiiiiiiiiiii e 231

4.4.3 Transition by execution Of return INSTFUCTION..........oiiuiiiiii e 231

ST = o To | = o 4 1, (o Yo = ISR 231

4.6 TasK IAENTTIEr ... 232
CHAPTER 5 SYSTEM REGISTER PROTECTIONcititiiiiiiiiieitiiiiieieiiiiiiieeneenssnesees s 233
N = To [(=] ST =) A PP O PP P PUPPPPPPPPRT 234
5.1.1 VSECR — System register protection Violation CAUSE............ccirriieiiiiiieiiiee e 235

5.1.2 VSTID — System register protection violation task identifier.............ccccccoiiiiii s 235

5.1.3 VSADR — System register protection violation address ..o 236

I 2 o o 113 @] o | 1 o | PRSI 237

5.3 RegiSters t0 Be ProteCIEAcuuviiiiiie ettt e e s s st e e e e e e e e s nnreneeees 237

5.4 DeteCtion OF VIOIALIONcciuiiiiiiiiiie ettt e st e et e e e st e e e s snbe e e e s snraeeene 238

5.5 Operation MENOAt e e e e e e e e e e e 238
CHAPTER 6 MEMORY PROTECTION ...cciiiiiiiiiiiiiiiiiiiiiieeeteeeeeeeaeeeeeeeeeeesessebeesbsbebsbsbsssesssssessnsnsnsnsnsnnnsnnnnnn 239
0 T = LYo [1S (=T Y= RS 240
6.1.1 IPANL — Instruction/constant protection area n lower-limit address (N =010 4)ccccovvveeeeeiinnns 241

6.1.2 IPANU — Instruction/constant protection area n upper-limit address (N =0t04)ccccceveeeieninens 242

6.1.3 DPAnNL — Data protection area n lower-limit address (N =010 5)uueeieeieiiiiiiiiiee e 243

6.1.4 DPANU — Data protection area n upper-limit address (N =010 5)uveviieeiiiiiiiiiieieeeieieeee e 244

6.1.5 VMECR — Memory protection ViOlation CAUSEooiiiuuiiiiiiaeiaaiieiee e ee e e eieeeee e e e e enneeee 245
6.1.6 VMTID — Memory protection violation task identifiercccovveiiiiiii e 246
6.1.7 VMADR — Memory protection violation addreSS...........occuiiiiiiee i 246
6.2 ACCESS CONTIOL ... ettt e et e e st e e st e e e e s abr e e e s anreee e e 247
6.3 Setting ProteCLION AFBaAcocuviiiiiiiiiee ittt e e et b e e e abreee e 247
(ST Y - 1o o L (= o1 T PR PPRP 249
6.3.2 Execution enable Dit (X DIt)ocuuiiiiiii i a e e e aae e 249
6.3.3 Read enable bit (R bit)
6.3.4 Write enable bit (W bit)
6.3.5 sp indirect access enable bit (S bit)
6.3.6 Protection area specification mode bit (T Dit)ueeiiiiiiiiiiiiie e 250
6.3.7 Protection area lower-limit address (AL31 t0 ALO DItS)couiiiiiiiiiiiiiiiiiiiiieeee e 250
6.3.8 Protection area upper-limit address (AU31 to AUO DitS)........coooiiiiiiiiiiiiiiiiie e 250
6.4 Notes on Setting ProteCtioN ArCa..........cccuiiiiiiiee et e e anaaeee s 251
6.4.1 Crossing of protection area DOUNUAIIESccccuriiiiiee it e e ae e e e e s eaees 251
6.4.2 Invalid ProteCtion Area SEIHINGcccoeiiiiuiiiiei ettt e e e e e et e e e e e e e e aabbeeeeesaaes 251
6.5 Stack INSPECLION FUNCLIONcoiiiiiiiiiiiiiii et 251
6.6 Special Memory ACCESS INSTIUCLIONSuviiiiieeiiiiiiiiieece e e e e e e 253
6.6.1 Load and store instructions executing Misaligned aCCESS..........ccoiiiiriiiieeeiiiiiiiiee e 253
6.6.2 Some bit manipulation instructions and CAXI INSIUCTIONcooiiuiiieiiieiiii e 253
6.6.3 Stack frame manipulation instructions
6.6.4 SYSCALL instruction
6.7 Protection Violation and EXCEPLIONccuviiiiiiii e
CHAPTER 7 PERIPHERAL DEVICE PROTECTIONcuiiiiiiiiiiiiiiiiiiiiiiii i 255
A N o= To [11 (=] ST =) AP P PP PUPPPPPPPPRP 255
7.1.1 PPM — Setting of peripheral device protection operation Modecoccvveeriiieeeiiiieeiniiee e 257
7.1.2 PPEC - Controlling peripheral device protection eXCeptionc.uvverieeiiiiiiiieiee e eeiiiiiereeeeeesienns 258
7.1.3 VPNECR - Peripheral device protection NT state violation CauSe...........ccooviiieieeieeiiiiiiiieeee e 259
7.1.4 VPNADR - Peripheral device protection NT state violation address............occooeeeveeeiiiiiiieeneeennne 260
7.1.5 VPNTID - Peripheral device protection NT state violation task 1D
7.1.6 VPTECR — Peripheral device protection T state violation CaUSE..........cccccceeveiviiieeeeeiiiiiieeee e
7.1.7 VPTADR - Peripheral device protection T state violation address
7.1.8 VPTTID — Peripheral device protection T state violation task ID...........cccccoiiiiiiiiiiiiiiiiieeee e
7.1.9 PPSn — Specification of special peripheral deVIiCeccoveiiiiiiiiiiiii e
7.1.10 PPPn — Specification of OS peripheral deVICEcooiiiuiiiiiieiiiiiies et
7.1.11 PPVn — Validating general peripheral device proteCtioncccceeeeiieiiiiiiiiiiie e
7.1.12 PPTn — Specification protection type of general peripheral device
7.2 Standing of Memory Protection and Peripheral Device Protection............ccccccceeevvinneee. 267
7.3 Types Of PEripheral DEVICESuuuiiiiiiii ittt e et e e e e e e s aaee s
7.3.1 Setting types of Peripheral QEVICESueiiiiiiiiiieee et e e e e
7.3.2 Detailed protection setting of general peripheral device
7.4 Peripheral Device Protection Violation in T State.........ccccceveviiiciiiiiiee e
7.5 Peripheral Device Protection Violation in NT State........ccccccoovviiiiiieiie e
7.5.1 Invalidating SUDSEQUENT ACCESSESuuiiiiiiiiiiiiitie ettt e e e e e e e e e e e
7.6 HaNdliNg PPl EXCEPLION ...ttt ettt e e e st e e s nabeee e
7.6.1 CancCeliNng PPl @XCEPTIONcoiutiiiiiiieee ettt ettt et e et e e et e e s e e st e e s st e e nnneeesareeea
7.6.2 Operation method NOt USING PPl @XCEPLION........uiiiiiieii ittt e e e e e e e e e

7.6.3 Operation to be performed by PPl eXCeption ProCESSINGcccceiiirurrieiieeeiiiiitieeee e e e riiieeee e e e 273

7.7 List of Results of Detection of Peripheral Device Protection Violation 274

7.8 Accessing Special Peripheral DEVICESccooiiiiiiiiiiiiiiiiiie et 274
7.9 Protection Setting of Peripheral Device Protection Setting Registers.........cccccccovvvnvnnen. 275
7.10 Special Peripheral Device ACCesS INSIrUCLIONc.vvvvviee i 275
7.20.1 SYSCALL INSIUCHION ..couiiiieiiiiie ittt e st srn e e s e e e srr e e e 275
CHAPTER 8 TIMING SUPERVISION FUNGCTIONuutttiiiiieieieieieiiiuiererereeeeeeeeeneeneaeneeeeenenseas 276
S0 I = L= o [1S (=T Y= P EER 276
8.1.1 TSEC — Controlling timinNg SUPEIVISIONccciiiiiiiiiiiee e sttt e e e s e e e e e s e e e e e s ssibaraeeaeessnnnes 278

8.1.2 TSECR — Timing SUPErviSiON €XCEPLION CAUSEcceeeiiiiriiiiieaeiaiiiiiieeeeesarisereeeeeessaisereeeeeesaannnenes 279

8.1.3 TSCCFGn — Setting of timing supervision function counter n (N =010 5).....cc.uveveeieiiiiiiiiieeeeee 280

8.1.4 TSCCNTn — Count value of timing supervision counter N (N =010 5).....c.ceeeviiiiiiiiiieiiiieeeriieeee 283

8.1.5 TSCCMPn — Comparison value of timing supervision counter n (N =01t05)covvveeeiiiiiiiieneeennnns 284

8.1.6 TSCRLDnN — Reload value of timing supervision counter N (N =010 5)ooiiiiiieiiiiiiiiiiieeeeeee 285

ST 2 7o 1 1 | (=T gl = U] Lod 4T) o =P SER 286
8.2. 1 RESOIULION ...ttt ettt ekt e et e et e ok bt e e e e a bt e e e b e e e e et et e e e b et e e e e annreeea 286

372 110 1 1 1] ol [T £=To3 110] o IO PPUP S UPEPR 286

S T2 B b (o= o1 [o] o 01 T To [OO PP PUPUPPPPPN 287

S I A AN T | (o I (=1 (o =To [T Vo PSP UUTUPRPR 287

8.2.5 COUNLET MOME ...ttt ettt ettt s et e ekt e e ekt e e e b e e e e asbr e e e ebee e e s bbeeanbneena 287

8.3 Operation Modes of Counter and CPUcooooiiiiiiiiiiec e 289
8.4 DeteCting VIOIAtIONueiiiiiiii et e e e e e e e e e neees 289
8.4.1 1dentifying VIOIAtiON CAUSEueiiiieai it ee ettt e et et e e e e e ettt et e e e e e e e nnbeeeeaaeeeaannneeeeeannes 289

8.5 Handling Of TSI EXCEPLION......c.ci i ettt e e e e e e e e e e e e s e e e e e e e e e nnenees 290
8.5.1 REPOIiNG TSI EXCOPION.cii ittt ettt e e e et e e e e s e st e e e e e e e e s sstaareaaeeessessasaeesanes 290

8.5.2 1dentifying EXCEPLION CAUSEuuiiiie ittt e ettt e ettt e e e e s e e e e e e e e s nbb e e e e e e e e e aanabneeeesaanes 291

8.5.3 CanCeliNg TSI @XCOPLIONniiiieiiee ettt e e e ettt e e e e e e ettt e eeeaeeaaannsbeeeeaaeesaannnneeeeaannns 2901

8.6 Setting Counter Corresponding to Each Supervision Function.............cccccoceveeeeiviiennee, 292
8.6.1 Global iNterrupt I0CK SUPEIVISIONciiiiiiiii et e e e e e e e e e e e sabeeeeaeeanes 292

8.6.2 RUNLIME SUPEIVISIONeiiiiiiiiiiiititee e ettt e e e ettt e e e e e e bbb e e e e e e e s s s bbbt e e e e e e s aanbbbbeeeeeesaaaantbeeeeeaannns 293

8.6.3 Supervising humber of times of interrupt reaches a specific value..............occcoiiiiiiiic e 293

8.6.4 SUPEIVISING tIME [APSEeiii ettt et e s e e ettt e e ebe et e s e e ebneeea 294
CHAPTER 9 PROCESSOR PROTECTION EXCEPTIONocuiiiiiiiiiiiiiiiiiieiieiiiieiieiennieenees 295
9.1 TYPES OF VIOIALIONS ...ttt e e e e et e e e e e e e e nnaees 295
9.1.1 System register Protection VIOIAtIONooiiiiiiiiiiiii et e e e e e e e e 295

9.1.2 Execution ProteCtion VIOIAtIONcoiiriiiiiiiie ittt e e 295

9.1.3 Data ProteCtion VIOIAtION.uiiiiie et e e e s e e e e e e st r e e e e e s anb e e e e eanes 295

9.1.4 Peripheral device proteCtion VIOIAtION.coiiiiiiiiiiieieiii e e 295

9.1.5 TiminNg SUPEIVISION VIOIATIONeeiiiieiiiiiiie ettt e e e ettt e e e e e e e et e e e e e e e e e annneeeeeeanes 296

(S T2 Y/ o 1T o) T (o =T o o] 1 SR 296
Lo I R |V 1| = (ot =Y o 1 o ISP PP UPEPR 296

LS I VD] = (o= o (o] PO TP PPUPTPPPPPRN 296

LS IS B o e I = Col= o] (o] o F PR UPRUT PP 296

S IS I =3 ot =T o1 [0 BT TP T PO PP PPPPPPPPPTPPRIN 296

9.3 Identifying VIolation CaAUSEuuiiiiiiiiiiiciiie e e e e e s e e e e e e s e sanraaeees 297
LS IR 0 R IV 1| = = (ot =T o 1T IO PP PP PUPTPPPPPPN 297

LS IR I IV D] = (o= o (o] o P PPTPUPEPR 297

LS TR T o o o (o =T o] {0 TP P T PP PP PPPPTPPPTPPRI 298

Lo IR A IS I3 (o T 1[0) o [P PPPUPPRPRN 298

CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION........ccoviiiiiiiiiiieieee e, 299

L10.1 REGISTEE S ..eiiiiiiiii ittt ettt e et e e e e b b e e e et bt e e e aabb e e e e abbe e e e e nbe e e ennnes 300
10.1.1 MCA — Memory protection setting check addresSs...........cocveiiiiieiiiii e 301

10.1.2 MCS — Memory protection Setting CheCK SIZEcooiiiiiiiii e 301

10.1.3 MCC — Memory protection setting check COmmand.............ccccoiiuiiiiiiiiiiiiiiiie e 302

10.1.4 MCR — Memory protection setting CheCk reSUI................ueiiiii e 302

02T T ¢ o L= e Yo [T PP 303
CHAPTER 11 SPECIFAL FUNGCTON. ..ottt ettt seseaeseseeeseee s ssss e s s bnbnsnbnensnnnssnnnnnnne 304
11.1 Clearing Memory Protection Setting All @t ONCEecooiiiiiiiiiiiiiieee e 304
PART 4 FLOATING-POINT OPERATION FUNCTION ..ot 305
CHAPTER L OVERVIEW ...ttt ettt ettt te e ts et e sk e et e et st s s sk s st s s b5kttt st s sttt sttt s s bnbnbne e 306
L1 FRATUIES ettt e aaaaaeaaaaaaaeaaaas 306

1.2 Implementing Floating-point Operation FUNCLIONccooviiiiiiiiiie e 307
CHAPTER 2 REGISTER SET ...ttt s s sssnsnsennnes 308
2.1 Floating-point Operation REGQISTEIS. ..o i 308

2.2 Floating-point SYStemM REGISIEIScoiuuiiiiiiiiiie ittt 308
2.2.1 FPSR - Floating-point configuration/Statusccoiiriieiiiiie i 310

2.2.2 FPEPC - Floating-point exception program COUNLETceiieeiiiiuiiiereeeseeirireeeeeessasnereeseeeseassnenes 312

2.2.3 FPST — Floating-point OPeration STALUS...........cuurrieiie ettt e e e et e e e e e e e enenee 313

2.2.4 FPCC - Floating-point operation COmMpPariSON reSUILcoiiiiiiiiiiiiiie e e e 313

2.2.5 FPCFG - Floating-point operation CONfIQUIationcocueieiiiiieiiiiie e 314

2.2.6 FPEC - Floating-point eXCePLioN CONIOL.........ccuiiiiiii ettt e et e e e e e e e s e e e e e e e e snnens 315
CHAPTER 3 DATA TYPES ..ottt ettt tetettte et ete e be et e et e e et a et et st s b stttk s s ssb s esbnbnres 316
T R D -1 = W o] 1 0T 1S TSR 316
3.1. 1 Floating-POiNt FOMMI@Lc..viieiiiieei ettt e e e et e e s e e s e e br e e 316

0 I <o B o o] g1 A {0 3 = L £ PP PUPTPEPR 318
CHAPTER 4 INSTRUGCTIONSeieiieieiiitttiettteieietaietetsbebabsesbsbeesbsbaeebabessbessesssesseesesssssas s s s s s s nssrsssnnres 319
o R [o =3 (U o o T e 2 = £ SRR 319

4.2 Overview of Floating-point INSIrUCLIONSuvviiiiii e 319

4.3 Conditions for Comparison INStrUCTIONS............eiiiiiiiiiiiieicee e e 322

A4 INSTFUCTION SEE...oiiiiiiiiiiiiiit ettt e et e st e e a ket e e s b et e e s bb e e e e s annneeennnneees 324
ABSE Dttt S A A4 4o R R e Rk Rk Rk Rt bttt st ettt s e st nnnnnnnnnen 326

A B S . Sttt £t 1 £ 1ttt 1ttt sttt sttt ettt e e nnnen 327
ADDFF.D ettt E b e b e b e b e b e b e b b n e nrnrrnres 328

ADD .S ittt R E R e Rt bt n et bt s e n e s nnnnnnnnes 329

GBI DL e 330
CEILF. DUL o 331
CEILF.DUW .ttt oo o4kttt e e o4 4o et ettt e e o2 4o e bbb e et e e e a4 e bbb e e e e e anbb e et e e e e e nbnnneeeee s 332
GBI DV e 333
GBI, S ., 334
CEILF.SUL . 335
CEILF.SUWV ..ottt ettt e e o4kt e e oo 4ot e ettt e o4 ekttt e e e e e e e et e e e e st e et e e e e e nnbr e e e e e e s 336
GBI, SV 337

L0V (@ A I U RP PP 338

CVTF.DUL...
CVTF.DUW
CVTF.DW
CVTF.LD
CVTF.LS
CVTF.SD
CVTF.SL
CVTFE.SUL
CVTF.SUW
CVTF.SW
CVTF.ULD
CVTF.ULS
CVTF.UWD
CVTF.UWS
CVTF.WD

FLOORF.DW
FLOORF.SL
FLOORF.SUL
FLOORF.SUW
FLOORF.SW
MADDF.S

NMSUBF.S
RECIPF.D....

SUB . S e e 397

LIRS 2 ST PP PP PP PPPPPPPPPPPPPP 398
LR (O B] PP PP P PP PPPPPPPPPPPPP 399
LI L 516 O T TP PP P PO PPPPPPPPT PP 400
TRINCEF.DUW ...ttt ettt ettt ettt ettt ettt st e e et st e et s e st st st et be e et e e e e e aeaeeeeeeeeaeaaaaeens 401
TRINCE.DW ...ttt ettt ettt ettt ettt e 2555552555555 5 5555855588588 888 etk e e e e e e e e e eeeeeeaaeaeaaaaaeaens 402
LI R (O s 1 PP P PP PPPPPPPPPPPPP 403
TRINCEF.SUL ..ottt ettt e e e e ek bttt e e oo 4o e e et et e e 4o sk e e ettt e e e e et e e e e e e e st e e e e e e e e s nnnnnne s 404
TRINCEF.SUW ...ttt ettt ettt ettt ettt ettt e ettt e et e et e e e eee e et e e e e e e e e e e e e e e eeaeaaeaeeas 405
TRINCE.SWV .. ettt ettt ettt ettt ettt ettt sttt st 555555554555t £ 5585858 £ s £ s E bk ke e e e e e e e e e e e e eeeaeeeaeaaaaaeaens 406
CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS......ooiiiiiiiiiiiieeeee e 407
L0 N Y/ o 1Y o) T Co =T o o] i SRR 407
5.2 EXCEPLION PrOCESSING ... uuetiiiiiiiiiiiiiiieii e ettt e e e e et b e et e e e e e s s aabb e et e e e e e e s s anbbeeeaaaeeeaannnrees 408
B5.2.1 SHATUS flAG .- eeeeeeeeee ettt e et e e e e e e e e nn e e e e e e e e nnraneaaeeaane 408

IR T b o= o 1] o I L1 = U1 SRS 409
LR N A o) Tt A =Dt =Y o1 o] I () TR S PPUPUPEPR 409

5.3.2 Invalid operation EXCEPLHON (V) i ittt e e e e s e e e e e e e e e e nnntbeeeeesaaes 410

5.3.3 DiViSION-DY-ZEr0 @XCEPLION (Z) ...eeeeeieeiiiiiiiiit et e et e e e e ettt e e e e e s e e nbe e eeeaeeeeannnbeeeaaeaanns 410

5.3.4 OVErflOW €XCEPLON (O) .uvriiiiiiiieiiiiie ettt ettt e et e e s e e e bt e s st et e s nneeesrneeea 411

5.3.5 UNAerflow @XCEPLION (U)....ciiiiiiiiiiiei e ettt ettt e e e e et e e e e s et e e e e e e e e ssntb e e e e e e e e e snsbenaeesanes 411

5.3.6 Unimplemented operation eXCeption (E)oouiiiiiiiiiiiiiiiie e 412

5.4 Precise Exceptions and IMpreciSe EXCEPLIONSccueeiiiiiiiiiiiiiiie e 413
B5.4.1 PreCiSE @XCEPUONSeiiiiitiii ittt ettt ettt e ekt e et e s e e e st b e e e e sttt e s b b e e e ek be e e e aabe e e e nnneennreeeaa 413

5.4.2 IMPIrECISE EXCEPLIONS ...eiiiiiiiiiiitiiiie i e e s ee sttt e e e e e e s r e e e e e s st e et eeesseatbebeeteaeeeasssbaseeaeeessassaaeessannes 413

5.5 Saving and RetUrNiNg STAtUScoiiiiiiiiiiiii e e e e 414
5.6 Selection of Floating-point Operation Model ... 416
5.6.1 When accurate operations are rEQUITEAciirrieeiiiireiieieeriiee ettt e st e e e s snreeesnree s 416

5.6.2 When operation performance is emphasiZea............ccooiiuiiiiiieiiiiiiiier e 417
APPENDIX A LIST OF INSTRUCTIONS ... 418
ALl BASIC INSITUCTIONSeiiiiie ittt e e e e s e s sttt e e e e e e s s snsbeaeeeaeeesaannnrreneeeeennnns 418
A.2 Floating-point INStIUCHIONS........ooiii i e e e e e s rarreeeeeee s 422
APPENDIX B INSTRUCTION OPCODE MAP ... e 424
B.1 Basic INStruction OPCOUE Macoiiiiiiiiiiiiie ettt e e e e e be e e e e e e an 424
B.2 Floating-point INStruction OPCOAE Mapcuveieiiiiiiiieiiiee et 429
APPENDIX C PIPELINESottt e e e e st et e e e s s aan e e et et e e e s s annreeeeeeaeanns 431
C.1 FRALUIMES ...ttt e e e e e s s e e e e e e s e e e 433
O3 4 [oTo] (g 2 {=To [BT1 1= 1.0 1=] 01 €=U UPRRT RO 435
C.2.1 Clock requirements for basiC INSIFUCLIONS..........uuuiiiiie et e e e e e 435

C.2.2 Clock requirements for floating-point iNStIUCLIONScooiiiiiiiiiieei e 440

C.3 Pipeline for BasiC INSIIUCTIONScciiiiiii i e e e e e e e s e 443
(O3S J0t R Mo T To I 10 1S3 (U Tt 1o OO PP PUPRTPPPRPPN 443

(O P (o] = 1S3 1 £ 0T (o] o =S RRUP PP 443
C.3.3 MUIIPIY INSTIUCTIONSee ittt e et e et e e s e e e bt e e anbn et e nbeeeannneeea 444

C.3.4 Multiply-accumulate INSIIUCTIONSoiiiiiiiiie et e s e e e e e e r e e e e e s sntbaeeeaeeanes 445

C.3.5 Arithmetic Operation INSIIUCTIONSoiuuiiiiiii ettt e e e e et eeenaes 445

C.3.6 Conditional 0peration INSIUCHIONSuuiiiieee et ee et e e et e e e e e e e e aee e e e e e e e e annbeeeeaaaanns 446

C.3.7 Saturated Operation INSIIUCTIONSccoiouiiiiriieee ittt e et e e e s anbe e e e e e e arreenas 446

C.3.8 L0OQIC OPEration INSIIUCLIONSeeiiiiiiiiiiiiit e ettt e e e et e e e e e st e e e e e s e aibe b e e e e e e e eaaantbeeeeeeanns 447

C.3.9 Data manipulation INSIIUCLIONSceiiiiuiiiii et e e ettt e e e e e s et ee e e e e e e s nereeeeaaeesannaeeeeaaaanns 447

C.3.10 Bit SEArCH INSIIUCIONSceiiiiieiiiiiee ettt e e e et e e e e e e ettt e e e e e e s e s ntbaeeeaaeeesannbeaeeeeannes 448

C.3.11 DiVIdE INSIIUCHIONSeeeiitiie ettt ettt ettt e e e st e e sabb e e et b e e e s anbee e e snbeeeanbreeens 448

C.3.12 High-speed diVide INSIIUCLIONScoiiiiuiiiiiiee ittt e e s e e e e s e e nantbeeeeeeaans 449

C.3.13 BranCh INSIIUCTIONSeeiiieeiiiiitiiee e e ettt ettt e e e e e e ettt e e e e e e eanneeeeeeaeeeaannsbeneeaaeeeaannbeeaeeaannns 450

C.3.14 Bit Manipulation INSIFUCHIONScciiuriieiiiiiee ettt e e st e e e senee e e s e e e e aneeeas 452

C.3.15 SPECIAI INSITUCTIONSuviiiiee e ettt e ettt e e e e e e e e e s e et e e e e e st s eb e et eaeeeesasbaaeeaaeeesasneeeeesannes 453
APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS........coiii i, 459
APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS..........cooiiiiiieeere, 465
E.1 Difference Between V850EL and VB50E2ccooiiiiiiiiiiiieeiiiiiee e iiieee e sieeee e siteee e s sineeee e 465
APPENDIX F INSTRUCTION INDEX ...ttt ettt et e et e s e s e e eaabann s e e e s e eeannannns 468
[R = - 1] Tol o E3 1 8 o T 1 S TP TT TP 468

F.2 Floating to point Operation INSIIUCTIONSc.eiiiiiiiiii e 469

LENESAS

V850E2M RO1US0001EJO100
RENESAS MCU Rev.1.00
Oct 17, 2012

PART 1 OVERVIEW

RO1US0001EJO0100 Rev.1.00 Page 16 of 473
Oct 17, 2012

V850E2M CHAPTER 1 FEATURES

CHAPTER 1 FEATURES

The V850E2M CPU conforms to the V850E2v3 architecture and is designed for microcontrollers that control embedded
systems based on the concept of high performance, high functionality, and high reliability.

The V850E2M CPU supplies the following functions.

(1) Basic function
(2) Processor protection function
(3) Floating-point operation function

The V850E2M CPU executes almost all instructions, such as for address calculation, arithmetic and logic operations,
and data transfer, with one clock under control of a 7-stage pipeline.
The V850E2M CPU can use the software resources of the conventional system as is because it is upwardly compatible

with the V850 CPU, V850E1 CPU, and V850E2 CPU at object code level.

1.1 Basic function

Basic integer operation instructions allowing general data processing and control programming, and special instructions
for application program optimization are provided. In addition, flexible exception processing functions that allow high-
reliability programming, exclusive control instructions that enable data to be shared in a multi-core environment, and
load/store instructions with an extended displacement range are also provided.

The basic funciton mainly consists of an instruction queue, program counter, execution unit, general-purpose registers,
system registers, and control block. The execution unit contains dedicated hardware such as an ALU, LD/ST unit,
multiplier (32 bits x 32 bits), barrel shifter (32 bits/clock), and divider, to execute complicated processing.

For details of the basic function, see PART 2 BASIC FUNCTION.

1.2 Processor protection function

The processor protection function that protects resources, such as the memory, peripheral devices, system registers,
and CPU time of each program, thereby protecting the system from illegal use is provided.

The processor protection function is a function to guarantee high-reliability operations of a CPU which consists of
system register protection, memory protection, peripheral unit protection, and timing supervision function.

For details of the processor protection function, see PART 3 PROCESSOR PROTECTION FUNCTION.

RO1USO0001EJ0100 Rev.1.00 Page 17 of 473
Oct 17, 2012

V850E2M CHAPTER 1 FEATURES

1.3 Floating-point operation function

The V850E2M CPU can implement a floating-point operation function (FPU) as a coprocessor.

The floating-point unit (FPU) of the V850E2M CPU conforms to the ANSI/IEEE standard 754-1985 (IEEE binary
floating-point operation standard) and is provided with double-precision and single-precision floating-point operation
instructions.

In addition, high-performance operations that can be executed with a high throughput, and high-reliability operations

that can perform accurate exception processing can be selected depending on the situation.
The floating-point operation function depends on the products. Refer to Hardware User's Manual of each product.

For details of the floating-point operation function, see PART 4 FLOATING-POINT OPERATION FUNCTION.

RO1USO0001EJ0100 Rev.1.00 Page 18 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 1 OVERVIEW

PART 2 BASIC FUNCTION

RO1USO0001EJ0100 Rev.1.00 Page 19 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 1 OVERVIEW

CHAPTER 1 OVERVIEW

The V850E2M CPU conforms to the V850E2v3 Architecture, and it supplies basic operations to establish OS and

application programs, and basic functions to manage exceptions.

(1) Integer operation instructions
Basic integer operation instructions that allow general data processing and control programming are provided.

In addition, the conventional load/store instructions are extended with a 23-bit displacement format added.

(2) Special instructions
Instructions useful for optimizing an application program, such as stack frame manipulation instructions and

common function call instructions, are provided.

(3) Multi-core support
Exclusive control functions and memory synchronization functions necessary for exclusive control between two

or more CPUs are provided.

(4) High-function OS support

Instructions dedicated to supporting development of high-function OS are provided.

(5) Flexible and high-performance exception processing

Various exception processing functions that enable high-reliability programming are provided.

1.1 Features

(1) Advanced 32-bit architecture for embedded control

o Number of instructions: 98
e 32-bit general-purpose registers: 32 registers
e Load/store instructions with multiple displacement formats
— Long (32 bits)
— Middle (16 bits)
— Short (8 bits)
e 3 operand instructions
e Address space: Program area ... 4 GB linear
Data area ... 4 GB linear

(2) Instructions used for various application fields

e Saturated operation instructions
e Bit manipulation instructions

RO1USO0001EJ0100 Rev.1.00 Page 20 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 1 OVERVIEW

e Multiply instructions (on-chip hardware multiplier enable single-clock multiplication processing)
16 bits x 16 bits — 32 bits
32 bits x 32 bits — 32 bits or 64 bits
o MAC operation instructions
32 bits x 32 bits + 64 bits — 64 bits
e High-speed division instruction
This division instruction detects a valid bit length and changes it to the minimum number of execution cycles.
32 bits + 32 bits — 32 bits (quotient), 32 bits (remainder)

(3) Instructions suitable for high-function/high-performance programming

e Stack frame manipulation instruction

e Exclusive control instruction

e System call instruction (OS service calling instruction)
e Synchronization instruction (event control)

RO1USO0001EJ0100 Rev.1.00 Page 21 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 2 REGISTER SET

CHAPTER 2 REGISTER SET

There are two types of registers related to the basic functions: program registers that are used for ordinary programs

and system registers that are used to control the execution environment. All are 32-bit registers.

Figure 2-1. Register List

(a) Program registers

31

r0 (zero register)

rl (assembler reserved registers)

r2

(b) System registers

FPU function group system registers

PMU function group system registers™°®

3 (stack pointer) (SP)

r4 (global pointer) (GP)

Processor protection function group system registers

15 (text pointer) (TP)

6

7

8

9

r10

ril

r12

r13

ri4

rls

rl6

rl7

rl8

r19

r20

r21

22

r23

r24

25

26

27

28

r29

r30 (element pointer) (EP)

r31 (link pointer) (LP)

PC (program counter)

CPU function group system registers
31 0

EIPC - status save register when acknowledging an El level exception

EIPSW - status save register when acknowledging an El level exception

FEPC - status save register when acknowledging an FE level exception

FEPSW - status save register when acknowledging an FE level exception

| ECR - exception cause

PSW - program status word

SCCFG — SYSCALL operation setting

SCBP — SYSCALL base pointer

EIIC - El level exception cause

FEIC — FE level exception cause

DBIC"° — DB level exception cause

CTPC - status save register when executing CALLT

CTPSW - status save register when executing CALLT

DBPCM* _ status save register when acknowledging a DB level exception

DBPSW°'® _ status save register when acknowledging a DB level exception

CTBP — CALLT base pointer

Debug function registers"®*

EIWR - El level exception working register

FEWR - FE level exception working register

DBWR""*® — DB level execution working register

| BSEL - register bank selection

Note These are debug functions for development tools.

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 22 of 473

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.1 Program Registers

Program registers includes general-purpose registers (r0 to r31) and the program counter (PC).

Table 2-1. Program Register List

Program register Name Function Description

General-purpose r0 Zero register Always retains “0”

registers rl Assembler reserved register Used as working register for generating addresses
r2 Register for address and data variables (when the real-time OS being used does not use this

register)

r3 Stack pointer (SP) Used for stack frame generation when functions are called
r4 Global pointer (GP) When to access global variable in data area
r5 Text pointer (TP) Used as a register that indicates the start of the text area

(area where program code is placed)

r6 to r29| Register for addresses and data variables

r30 Element pointer (EP) Used as base pointer for generating addresses when
accessing memory

r31 Link pointer (LP) Used when compiler calls a function

Program counter PC Retains instruction addresses during execution of programs

Remark For further descriptions of r1, r3 to r5, and r31 used for an assembler and/or C compiler, refer to the document

of each software development environment.

(1) General-purpose registers (r0 to r31)
A total of 32 general-purpose registers (r0 to r31) are provided. All of these registers can be used for either
data variables or address variables.
The following points must be noted when using r0 to r5, r30, and r31 because these registers are assumed to

be used for special purposes in a software development environment.

(@ ro, r3,and r30
These registers are implicitly used by instructions.
r0 is a register that always retains “0”. It is used for operations that use 0, addressing with base address
being 0, etc.
r3 is implicitly used by the PREPARE instruction and DISPOSE instruction.

r30 is used as a base pointer when the SLD instruction or SST instruction accesses memory.

(b) r1,r4,r5,and r31
These registers are implicitly used by the assembler and C compiler.
When using these registers, register contents must first be saved so they are not lost and can be restored

after the registers are used.

RO1USO0001EJ0100 Rev.1.00 Page 23 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

(c) r2
This register is used by a real-time OS in some cases. If the real-time OS that is being used is not using r2,

r2 can be used as a register for address variables or data variables.

(2) Program counter (PC)
The PC retains instruction addresses during program execution. Bit O is fixed to 0, and branching to an odd

number address is disabled.

PC Initial value
(Instruction address during execution) 00000000H

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 is automatically set to bits 31 to 29.

2.2 System Register Bank

The V850E2M CPU system registers are provided in the system register bank. These system registers are defined in
groups based on functions, and within these groups “banks” are defined for more specific applications. Up to 28 system
registers can be defined (as registers 0 to 27) within each bank.

The V850E2M CPU includes the following groups and banks.

e CPU function group
e Main bank: Conventional system registers
e Exception handler switching function bank 0: System registers that switches exception handler addresses
o Exception handler switching function bank 1: System registers that switches exception handler addresses
e Processor protection function group
e Processor protection violation bank: System registers related to processor protection violations
¢ Processor protection setting bank: System registers related to processor protection functions
e Software paging bank: System registers that are used when the memory protection function is used for
software paging operation
¢ PMU function group
* PMU function bank: System registers that set performance measurement function'°*®
e FPU function group
o FPU status bank: System registers related to floating-point operations
e User group
e User 0 bank: This bank is able to access only system registers used by user applications.
e User compatible bank: For the sake of compatibility, this bank is able to access exception-related system

registers as well as system registers used by user applications

Note The PMU function bank is a debug function for development tools.

RO1USO0001EJ0100 Rev.1.00 Page 24 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

Figure 2-3. System Register Bank

) PMU FPU
Processor protection function function

CPU functi
unction group function group group group

User group

Main banks

System register 00

System register 01

System register 02

System register 03

System register 04

System register 05

System register 06

System register 07

function bank 0
function bank 1
FPU status bank

PMU function bank“°*®

System register 21

Exception handler switching
Exception handler switching

Processor protection setting bank

System register 22

User 0 bank
User compatible bank

System register 23

System register 24

System register 25

System register 26

System register 27

System register 28 (EIWR — El level working register)

System register 29 (FEWR - FE level working register)

System register 30 (DBWR — DB level working register)

System register 31 (BSEL - register bank selection)

Note These are debug functions for development tools.

by the BSEL register settings.

~
These system registers can be
accessed when their bank is selected

These system registers
always can be accessed,
regardless of the settings

in the BSEL register

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 25 of 473

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.2.1 BSEL - Register bank selection
The BSEL register is used to select the system registers to be accessed by the LDSR instruction and STSR instruction.
The BSEL register can also be referenced, regardless of which bank has been selected.

Always set “0” to bits 31 to 16.

31 16 15 8 7 0
1T T T T T | R R .
Initial value
BSEL|0o|0O|0|O|0O|O|0O|O|O|0O|O|0|O|0|O|O
GRP BNK 00000000H
Bit position | Bit name Description
15t0 8 GRP Specifies the system register bank group number (initial value: 0).

00H: CPU function group
10H: Processor protection function group
11H: PMU function group™®
20H: FPU function group
FFH: User group
Settings other than the above are prohibited.

7t00 BNK Specifies bank number of system register bank (initial value: 0).
GRP BNK Corresponding execution level
O00H O00H Main bank
10H Exception handler switching function bank 0
11H Exception handler switching function bank 1
10H 00H Processor protection violation bank
01H Processor protection setting bank
10H Software paging bank
11H OOH PMU function bank"**
20H O00H FPU status bank
FFH O00H User 0 bank
FFH User compatible bank
Other than above Setting prohibited

Note The PMU function bank is a debug function for development tools.

Part 2 described the CPU function group system register and user banks. For description of the system registers of the
processor protection function group, see PART 3 PROCESSOR PROTECTION FUNCTION. For description of the
system registers of the FPU function group, see PART 4 FLOATING-POINT OPERATION FUNCTION.

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 26 of 473

V850E2M

PART 2 CHAPTER 2 REGISTER SET

2.3 CPU Function Group/Main Bank

The system registers in the main bank are used to control CPU status and to retain exception information.

System register read and write operations are performed using the LDSR instruction and STSR instruction, as specified

via the following system register numbers.

Table 2-2. System Register List (Main Bank)

System Symbol System Register Name Able to Specify Operands? System
Register LDSR STSR Register
No. Instruction Instruction | Protection
0 EIPC El level exception status save register v \ S
1 EIPSW El level exception status save register N \ N
2 FEPC FE level exception status save register v \ S
3 FEPSW FE level exception status save register v \ \
4 ECR Exception cause x S \
5 PSW Program status word v \ Mot
6 to 10 (Reserved for future function expansion (operation is not x x \/
guaranteed when accessed))
11 SCCFG SYSCAL operation setting v \ S
12 SCBP SYSCALL base pointer N \ N
13 EllC El level exception cause v \ \
14 FEIC FE level exception cause v \ \
15 DBIC N2 DB level exception cause - - -
16 CTPC CALLT execution status save register v \ S
17 CTPSW CALLT execution status save register N \ N
18 DBPC"* | DB level exception status save register - - -
19 DBPSW “°? | DB level exception status save register - - -
20 CTBP CALLT base pointer v \ x
21 DIR Debug interface register - - -
22 to 27 Debug function register - - -
28 EIWR El level exception working register v \ S
29 FEWR FE level exception working register N \ N
30 DBWR "**? | DB level exception working register N \ \
31 BSEL Register bank selection v \ \
Notes 1. Only bits 31 to 6 are protected. Even if a write access is made while these bits are protected, a system
register protection violation is not detected. For details, refer to CHAPTER 5 SYSTEM REGISTER
PROTECTION in PART 3.
2. These are debug functions for development tools.

Remark V: Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of
“System Register Protection”, this symbol indicates that the register is protected.
x: Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column
of “System Register Protection”, this symbol indicates that the register is not protected.

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 27 of 473

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.3.1 EIPC and EIPSW - Status save registers when acknowledging El level
exception

The El level exception status save registers include EIPC and EIPSW.

When an El level exception (El level software exception, El level interrupt (INT), etc.) has occurred, the address of the
instruction that was being executed when the El level exception occurred, or of the next instruction, is saved to the EIPC
register (see Table 6-1 Exception Cause List). The current PSW information is saved to the EIPSW register.

Since there is only one pair of El level exception status save registers, when processing multiple exceptions, the
contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the EIPC register. An odd-numbered address must not be specified.

If PSW bits are specified to be set to 0, the same bits in the EIPSW register must also be set to 0.

31 0
T .
- Initial value
(PC contents) Undefined
31
T T T T T Initial value
EIPSW (PSW contents) 00000020H

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 of EIPC is automatically set to bits 31 to 29.

2.3.2 FEPC and FEPSW - Status save registers when acknowledging FE level

exception

The FE level exception status save register include FEPC and FEPSW.

When an FE level exception (FE level software exception, FE level interrupt (FEINT or FENMI), etc.) has occurred,
address of the instruction that was being executed when the FE level exception occurred, or of the next instruction, is
saved to the FEPC register (see Table 6-1 Exception Cause List). The current PSW information is saved to the FEPSW
register.

Since there is only one pair of FE level exception status save registers, when processing multiple exceptions, the
contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the FEPC register. An odd-numbered address must not be specified.

If PSW bits are specified to be set to 0, the same bits in the FEPSW register must also be set to 0.

31 0
rrrrrrrrrrrrrrrrrr T T T T T T -
Initial value
FEPC (PC contents) Undefined
31 0
rrrrrrrrrrrrrrrrrr T T Initial value
FEPSW, (PSW contents) 00000020H

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 of FEPC is automatically set to bits 31 to 29.

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 28 of 473

V850E2M

PART 2 CHAPTER 2 REGISTER SET

2.3.3 ECR - Exception cause

When an exception has occurred, the ECR register retains the cause of the exception. These values retained in the

ECR are exception codes corresponding to individual exception causes (see Table 6-1 Exception Cause List). Since

this is a read-only register, the LDSR instruction cannot be used to write data to this register.

Caution The ECR register is for upward compatibility and is prohibited from being used in principle.
For programs other than existing programs that do not enable modification, use a program that uses
either the EIIC register or the FEIC register to overwrite all parts that were using the ECR register.

31 16 15
T T T T T T T 17 T T T T T \ Initial value
ECR FECC EICC 00000000H
Bit position | Bit name Description
31to 16 FECC Exception code for FE level exception (initial value: 0)
15to 0 EICC Exception code for El level exception (initial value: 0)

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 29 of 473

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.3.4 PSW - Program status word

PSW (program status word) is a set of flags that indicate the program status (instruction execution result) and bits that
indicate the operation status of the CPU (flags are bits in the PSW that are referenced by a condition instruction (Bcond,
CMOV, etc.)).

When the LDSR instruction is used to change the contents of various bits in a register, the changed contents become
valid once execution of the LDSR instruction is completed.

Bits 31 to 6 are subject to system register protection. When system register protection is enabled, the contents of bits
31 to 6 cannot be changed by using the LDSR instruction (see CHAPTER 5 SYSTEM REGISTER PROTECTION in PART
3).

Bits 31 to 20, 15 to 12, and 8 are reserved for future function expansion, and be sure to set them to 0. Values are

undefined when read“*®.

Note Use of bits 19 to 16 is described in PART 3 PROCESSOR PROTECTION FUNCTIONS (see PART 3
PROCESSOR PROTECTION FUNCTION).
Bit 11 to 9 are reserved for debug function for development tools. The LDSR instruction cannot be used to

change these bits in user program.

(1/3)
31 2019 16 15 121110 9 8 7 6 5 4 3 2 1 0
NI D|I S "
P S|S|S NIE| I cl|O Initial value
PSw|0|0|0|0|0|0O|0O|0O|0O|0O|O|O P/M/M|O|0O|O|O 0 A S|z
\ PV\PP \ SBEN PPDTY~V~ 00000020H
Bit position |Bit or flag name Description
19 PP This bit indicates a state of peripheral device protection.

It indicates whether the CPU trusts an access to a peripheral device by the program
currently being executed.

0: T state (CPU trusts an access to the peripheral device.) (initial value)

1: NT state (CPU does not trust an access to the peripheral device.)
The peripheral device protection function limits accesses when the PP bit indicates the T
state. When the PP bit indicates the NT state, it strictly limits accesses.

18 NPV This bit indicates a state of system register protection.
It indicates whether the CPU trusts an access to a system register by the program currently
being executed.

0: T state (CPU trusts an access to the system register.) (initial value)

1: NT state (CPU does not trust an access to the system register.)
The system register protection function does not limit accesses when the NPV bit indicates
the T state. When the NPV bit indicates the NT state, it limits accesses.

RO1USO0001EJ0100 Rev.1.00 Page 30 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

@13

Bit position| Flag name Description

17 DMP This bit indicates a state of memory protection against a data access (to a data area).
It indicates whether the CPU trusts a data access by the program currently being executed.
0: T state (CPU trusts the data access.) (initial value)
1: NT state (CPU does not trust the data access.)
The memory protection function does not limit data accesses when the DMP bit indicates the
T state. When the DMP bit indicates the NT state, it limits data accesses.

16 IMP This bit indicates a state of memory protection in a program area. It indicates whether the
CPU trusts an access to the program area by the program currently being executed.

0: T state (CPU trusts the access to the program area.) (initial value)

1: NT status (CPU does not trust the access to the program area.)
The memory protection function does not limit accesses to the program area when the IMP
bit indicates the T state. When the IMP bit indicates the NT state, it limits accesses to the
program area

11 SS Debug function for development tools.

10 SB Debug function for development tools.

9 SE Debug function for development tools.

7 NP This bit indicates when FE level exception processing is in progress. When an FE level
exception is acknowledged, this bit is set (1), which prohibits occurrence of multiple
exceptions .

0: FE level exception processing is not in progress. (initial value)
1: FE level exception processing is in progress.

6 EP This bit indicates that an exception other than an interrupt"°® is being processed. It is set (1)

when the corresponding exception occurs. This bit does not affect acknowledging an
exception request even when it is set (1).

0: An interrupt is being processed (initial value).

1: An exception other than an interrupt is being processed.

5 ID This bit indicates that an El-level exception is being processed. It is set (1) when an El level
exception is acknowledged, disabling generation of multiple exceptions. This bit is also used
to disable El level exceptions from being acknowledged as a critical section while an
ordinary program or interrupt is being processed. It is set (1) when the DI instruction is
executed, and cleared (0) when the El instruction is executed.
0: El level exception is being processed or the section is not a critical section (after
execution of El instruction).
1: El level exception is being processed or the section is a critical section (after execution
of Dl instruction). (initial value)

Note For details of interrupts, see 6.1.2 Types of exceptions.

RO1USO0001EJ0100 Rev.1.00 Page 31 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

(3/3)

Bit position | Flag name Description

4 SATN® This bit indicates that the operation result is saturated because the result of a saturated
operation instruction operation has overflowed. This is a cumulative flag, so when the operation
result of the saturated operation instruction becomes saturated, this bit is set (1), but
it is not later cleared to 0 when the operation result for a subsequent instruction is not saturated.
This bit is cleared (0) by the LDSR instruction. This bit is neither set (1) nor cleared (0) when an
arithmetic operation instruction is executed.

0: Not saturated (initial value)

1: Saturated

3 CYy This bit indicates whether a carry or borrow has occurred in the operation result.
0: Carry and borrow have not occurred (initial value).
1: Carry or borrow has occurred.

2 oV This bit indicates whether or not an overflow has occurred during an operation.
0: Overflow has not occurred (initial value).
1: Overflow has occurred.

1 ghote This bit indicates whether or not the result of an operation is negative.
0: Result of operation is positive or 0 (initial value).
1: Result of operation is negative.

0 Z This bit indicates whether or not the result of an operation is 0.
0: Result of operation is not 0 (initial value).
1: Result of operation is 0.

Note The operation result of the saturation processing is determined in accordance with the contents of the OV flag and S
flag during a saturated operation. When only the OV flag is set (1) during a saturated operation, the SAT flag is set

(1).
Operation result status Flag status Operation result after
SAT oV s saturation processing
Exceeded positive maximum value 1 1 0 7FFFFFFFH
Exceeded negative maximum value 1 1 1 80000000H
Positive (maximum value not exceeded) | Value priorto |0 0 Operation result itself
Negative (maximum value not opel.'ation is 1
exceeded) retained.
RO1USO0001EJO0100 Rev.1.00 Page 32 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.3.5 SCCFG - SYSCALL operation setting

This register is used to set operations related to the SYSCALL instruction. Be sure to set an appropriate value to this
register before using the SYSCALL instruction. Be sure to set O to bits 31 to 8.

Caution Do not place the SYSCALL instruction immediately after the LDSR instruction that changes the
contents of the SCCFG register.

31

sccrGl|o/olo|o|o/olo|o|ololo|ojo|ololo/olololo]ojololo Initial value
Undefined

Bit position | Bit name Description

7t00 SIZE These bits specify the maximum number of entries of a table that the SYSCALL instruction

references. The maximum number of entries the SYSCALL instruction references is 1 if SIZE
is 0, and 256 if SIZE is 255. By setting the maximum number of entries appropriately in

accordance with the number of functions branched by the SYSCALL instruction, the memory
area can be effectively used.

If a vector exceeding the maximum number of entries is specified for the SYSCALL
instruction, the first entry is selected. Place an error processing routine at the first entry.

2.3.6 SCBP — SYSCALL base pointer

The SCBP register is used to specify a table address of the SYSCALL instruction and generate a target address. Be
sure to set an appropriate value to this register before using the SYSCALL instruction.
Be sure to set a word address to the SCBP register.

Note that bits 1 and 0 are fixed to 0.

SCBP

Initial value

(Base address) Undefined

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 of SCBP is automatically set to bits 31 to 29.

RO1USO0001EJ0100 Rev.1.00 Page 33 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.3.7 EIIC - El level exception cause
The EIIC register retains the cause of any El level exception that occurs. The value retained in this register is an

exception code corresponding to a specific exception cause (see Table 6-1 Exception Cause List).

Initial value
EliC 00000000H

2.3.8 FEIC — FE level exception cause
The FEIC register retains the cause of any FE level exception that occurs. The value retained in this register is an

exception code corresponding to a specific exception cause (see Table 6-1 Exception Cause List).

FEIC Initial value
00000000H

2.3.9 CTPC and CTPSW - Status save registers when executing CALLT

These are the status save registers when executing CALLT are CTPC and CTPSW.

When a CALLT instruction is executed, the address of the next instruction after the CALLT instruction is saved to CTPC
and the contents of the PSW (program status word) is saved to CTPSW.

Be sure to set bit 0 of the CTPC register to 0.
Whenever a PSW bit is specified to be set to 0, the same bit in the CTPSW register must also be set to 0.

31\ 1T T 1T T 1T T 1 T T 11 T T T 2

CTPC (PC contents) ‘Unaefined
31\ r 1 T 1 11T 11+ rr 1111111111 T 1T T T T T 0

CTPSW (PSW contents) gggglo\(l)azlgs

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 of CTPC is automatically set to bits 31 to 29.

RO1USO0001EJ0100 Rev.1.00 Page 34 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 2 REGISTER SET

2.3.10 CTBP — CALLT base pointer

The CTBP register is used to specify table addresses of the CALLT instruction and generate target addresses.

Be sure to set the CTBP register to a halfword address.

Note that bit O is fixed to 0.

CTBP

(Base address)

Initial value
Undefined

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 of CTBP is automatically set to bits 31 to 29.

2.3.11 EIWR - El level exception working register
The EIWR register is used as working register when an El level exception has occurred.

The EIWR register can always be referenced, regardless of which bank is selected.

EIWR

Initial value
00000000H

2.3.12 FEWR - FE level exception working register
The FEWR register is used as a working register when an FE level exception has occurred.

The FEWR register can always be referenced, regardless of which bank is selected.

FEWR

Initial value
00000000H

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 35 of 473

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.3.13 DBIC — DB level exception cause
The DBIC register is related to debug function.

The DBIC register is a debug function for development tools.

2.3.14 DBPC and DBPSW - Status save registers when acknowledging DB level
exception
The status save registers when acknowledging the DB level exception are DBPC and DBPSW.

The DBPC and DBPSW register are debug functions for development tools.

2.3.15 DBWR - DB level exception working register
The DBWR register is related to debug function.

The DBWR register is a debug a function for development tools.

2.3.16 DIR — Debug interface register
The DIR register controls and indicates the status of debug function.
The DIR register and other debug function-related registers (system registers 22 to 27) are debug functions for

development tools.

RO1USO0001EJ0100 Rev.1.00 Page 36 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.4 CPU Function Group/Exception Handler Address Switching
Function Banks

Exception handler switching function banks 0 and 1 are selected when 00000010H and 00000011H are set to the
BSEL register by LDSR instructions (see 2.2.1 BSEL — Register bank selection).
System registers 28 to 31 are system registers for all banks, and EIWR, FEWR, DBWR, and BSEL registers in the CPU

function bank are referenced regardless of the settings in the BSEL register.

e Exception handler switching function bank O
(Group number 00H, bank number 10H, abbreviated as EHSWO bank)
o Exception handler switching function bank 1

(Group number 00H, bank number 11H, abbreviated as EHSW1 bank)

RO1USO0001EJ0100 Rev.1.00 Page 37 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

Table 2-3. System Register Bank

Group CPU Function (00H)
Bank Exception Handler Switching Function Bank 0 (10H) Exception Handler Switching Function Bank 1 (11H)
Bank label EHSWO EHSW1
Register Name Function Able to Specify Name Function Able to Specify
No. Operands? o Operands? 5
B B
(o)) [o))
(7] [0
o o4
LDSR | STSR | & LDSR | STSR |§
1% 7]
Instruction|Instruction| Instruction | Instruction| 7
0 SW_CTL | Exception v \ \ | Reserved for future function x x \/
handler address expansion
switching control
1 SW_CFG | Exception v «/ \' | EH_CFG | Exception x v J
handler address handler
switching configuration
configuration
2 Reserved for future function x x v | EH_RESE | Reset address X v \/
expansion register
3 SW_BASE | Exception handler v \ \' | EH_BASE |Exception handler x v J
address switching base address
base address
41027 | Reserved for future function X X \ | Reserved for future function x x J
expansion expansion
28 EIWR El level exception working register \ v S
29 FEWR FE level exception working register \ v S
30 DBWR"™ | DB level exception working register \ v \/
31 BSEL Register bank selection S v \/

Note The DBWR register is a debug function for development tools.
Remark +: Indicates in the column of “Able to specify Operands?” that the register can be specified. In the column of
“System Register Protection”, this symbol indicates that the register is protected.
x: Indicates in the column of “Able to specify Operands?” that the register cannot be specified. In the column of
“System Register Protection”, this symbol indicates that the register is not protected.

RO1USO0001EJ0100 Rev.1.00 Page 38 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.4.1 SW_CTL - Exception handler address switching control

This register controls the exception handler address switching functions.
Be sure to set bits 31 to 1 to “0".

31

SW_CTLOO\O\OOOOOO\O0000\000000\0000

10
ololololololo E Initial value
T | 00000000H

Bit position | Bit name Description

0 SET When the SET bit is set (1), values in the SW_CFG and SW_BASE registers are transferred to

EH_CFG and EH_BASE. After these transfers are completed, the SET bit is cleared (0).

2.4.2 SW_CFG — Exception handler address switching configuration

This register specifies settings for the exception handler address switching function.
Be sure to set bits 31 to 1 to “0”.

31

SW_CFGOOOO\O\OOOOO\OOOOO\O\OOOOO\OOOO0.0.0

Initial value
0000000xH

o

o

o
RINT [©

Bit position | Bit name Description

0 RINT When the SW_CTL.SET bit is set (1), values in the SW_CFG register are transferred to the

EH_CFG register.

2.4.3 SW_BASE - Exception handler address switching base address

This register specifies the base address for the exception handler addresses used by the exception handler address
switching function.

Be sure to set bits 12 to 0 to “0".

SW_BASE SW_BASE31 to SW_BASE13 \ 0

Initial value
Undefined

o
o
o
o

Bit position Bit name Description

31to 13 SW_BASE31to | When the SW_CTL.SET bit is set (1), the contents of the SW_BASE register are
SW_BASE13 transferred to the EH_BASE register.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512

MB, a value resulting from a sign-extension of bit 28 of SW_BASE is automatically set to bits
31to 29.

RO1USO0001EJ0100 Rev.1.00 Page 39 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.4.4 EH_CFG - Exception handler configuration

This register indicates the current settings of the exception handler address switching function.
Bits 31 to 1 are fixed to O.

31 10
[..
EH_CFG (0|0 o\o\o\o\o 0|0 0\0 olo o\o\o\o\o 00 o\o 0|0 o.o.o 0|0 o0|o|Z| nital value
| 0000000xH
Bit position | Bit name Description
0 RINT When the RINT bit is set (1), exception handler addresses INTO to INT255 are reduced to a

single handler address (INT0). When this bit is cleared (0), INTO to INT255 are held as
independent exception handler addresses. The EH_CFG register is set to the initial value
defined for each product at reset. This register cannot be overwritten directly by an LDSR
instruction. When the SW_CTL.SET bit is set (1), the contents of SW_CFG are transferred.

2.4.5 EH_BASE - Exception handler base address

This register indicates the base addresses of the current exception handler address for the exception handler address
switching function.

Bits 12 to O are fixed to O.

31 2928 13 12 0
T T T T T T T T T T T T T .
EH_BASE EH_BASE31 to EH_BASE13 olojololololo|o|olo|o]|o]|o] nitialvalue
Undefined
Bit position Bit name Description
31to 13 EH_BASE31to | Addresses are changed by adding an offset address for each exception to the base
EH_BASE13 addresses of exception handler routines specified in this register.

The EH_BASE register is set to the initial value defined for each product at reset. This
register cannot be overwritten directly by an LDSR instruction. When the SW_CTL.SET bit
is set (1), the contents of SW_BASE are transferred.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 of EH_BASE is automatically set to bits 31 to 29.

RO1USO0001EJ0100 Rev.1.00

Page 40 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.4.6 EH _RESET — Reset address

This register indicates the reset address when the current reset is input.

Bits 12 to O are fixed to O.

31 2928 1312 0
T T T T T T T T T T T T -
EH_RESET EH_RESET31 to EH_RESET13 olojojolojo|o|o|o|o|o]|o]o]nitial value
Undefined
Bit position Bit name Description

31to 13 EH_RESET31 to | The values in the EH_RESET register do not change except when initialized by a reset.
EH_RESET13 For details, see the User's Manual of each product or CPU.

Caution For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a
value resulting from a sign-extension of bit 28 of EH_RESET is automatically set to bits 31 to 29.

RO1USO0001EJ0100 Rev.1.00 Page 41 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 2 REGISTER SET

2.5 User Group

The user group is selected when 0000FFOQOH is set by an LDSR instruction to the BSEL register (see 2.2.1 BSEL -
Register bank selection). System registers in the user group are maps of the registers in the main bank and FPU status

bank. The user group includes the following two banks.

e User 0 bank (see Table 2-4)

e User compatible bank (see Table 2-5)

Caution The user compatible bank is defined for backward compatibility with the V850E1 and V850E2
architectures, and its use is generally prohibited. Use the user 0 bank unless manipulating a system
register for which no uncorrectable program exists in the bank.

Table 2-4. System Register List (User 0 Bank)

System Symbol Function Able to Specify System Register
Register No. Operands? Protection
LDSR STSR

Oto4 (Reserved for future function expansion (operation is not x x \
guaranteed when accessed))

5 PSW Program status word \ J Jhotet

6,7 (Reserved for future function expansion (operation is not x x \
guaranteed when accessed))

8 FPST Floating-point operation status v S x

9 FPCC Floating-point operation comparison result v N x

10 FPCFG | Floating-point function configuration v \/ x

11to 15 (Reserved for future function expansion (operation is not x x v
guaranteed when accessed))

16 CTPC Status save register when executing CALLT

17 CTPSW | Status save register when executing CALLT

18,19 (Reserved for future function expansion (operation is not x x
guaranteed when accessed))

20 CTBP CALLT base pointer v S x

21to 27 (Reserved for future function expansion (operation is not x x v
guaranteed when accessed))

28 EIWR El level exception working register

29 FEWR FE level exception working register

30 DBWR DB level exception working register

Note2
31 BSEL Register bank selection v S \

Notesl. Only bits 31 to 6 are protected.
2. The DBWR register is a debug function for development tools.
Remark +: Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of
“System Register Protection”, this symbol indicates that the register is protected.
x: Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

RO1USO0001EJ0100 Rev.1.00 Page 42 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 2 REGISTER SET

Table 2-5. System Register List (User Compatible Bank)

System Symbol Function Able to Specify Operands? | System
Register LDSR STSR Register
No. Protection
0 EIPC Status save register when acknowledging El level exception v \ v
1 EIPSW Status save register when acknowledging El level exception N \ N
2 FEPC Status save register when acknowledging FE level exception v \ v
3 FEPSW | Status save register when acknowledging FE level exception N \ N
4 ECR Exception cause x \ v
5 PSW Program status word v \ hetet
6,7 (Reserved for future function expansion (operation is not X x N
guaranteed when accessed))
8 FPST Floating-point operation status v \ x
9 FPCC Floating-point operation comparison result N \ x
10 FPCFG Floating-point function configuration v \ x
11,12 (Reserved for future function expansion (operation is not x x \/
guaranteed when accessed))
13 ElIC El level exception cause
14 FEIC FE level exception cause
15 (Reserved for future function expansion (operation is not x x
guaranteed when accessed))
16 CTPC Status save register when executing CALLT
17 CTPSW Status save register when executing CALLT N
18, 19 (Reserved for future function expansion (operation is not X x
guaranteed when accessed))
20 CTBP CALLT base pointer v \ x
21to 27 (Reserved for future function expansion (operation is not X x N
guaranteed when accessed))
28 EIWR El level exception working register v \ v
29 FEWR FE level exception working register N \ N
30 DBWR "**?| DB level exception working register v \ v
31 BSEL Register bank selection v \ v

Notesl. Only bits 31 to 6 are protected.
2. The DBWR register is a debug function for development tools.

Remark +: Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

X:

“System Register Protection”, this symbol indicates that the register is protected.

Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 43 of 473

V850E2M PART 2 CHAPTER 3 DATATYPES

CHAPTER 3 DATA TYPES

3.1 Data Formats

The V850E2M CPU handles data in little endian format. This means that byte O of a halfword or a word is always the

least significant (rightmost) byte.

The supported data format is as follows.

Byte (8-bit data)
Halfword (16-bit data)
Word (32-bit data)

Bit (1-bit data)

3.1.1 Byte

A byte is 8 consecutive bits of data that starts from any byte boundary. Numbers from 0 to 7 are assigned to these bits,

with bit O as the LSB (least significant bit) and bit 7 as the MSB (most significant bit). The byte address is specified as “A”.

Data

mwn |~
ownr|o

A Addresses

3.1.2 Halfword
A halfword is two consecutive bytes (16 bits) of data that starts from any byte boundaryNOte. Numbers from 0 to 15 are

assigned to these bits, with bit 0 as the LSB and bit 15 as the MSB. The bytes in a halfword are specified using address

“A”, so that the two addresses comprise byte data of “A” and “A+1".

Data

w5
oo

A+l A Addresses

Note During word access, the V850E2M CPU can be accessed at all byte boundaries. See 3.3 Data
Alignment.

RO1USO0001EJ0100 Rev.1.00 Page 44 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 3 DATATYPES

3.1.3 Word

A word is four consecutive bytes (32 bits) of data that starts from any byte boundaryNOte.

Numbers from 0 to 31 are
assigned to these bits, with bit O as the LSB (least significant bit) and bit 31 as the MSB (most significant bit). A word is

specified by address “A” and consists of byte data of four addresses: “A”, “A+1”, “A+2”, and “A+3".

ownr|o

Data

wnZ X

A+3 A+2 A+1 A Addresses

Note During word access, the VB50E2M CPU can be accessed at all byte boundaries.
See 3.3 Data Alignment.

3.1.4 Bit
A bit is bit data at the nth bit within 8-bit data that starts from any byte boundary. Each bit is specified using its byte

address “A” and its bit number “n” (n = 0 to 7).

7 n 0 Bit number
[T T
Address “A” byte e Data
A Address
R0O1USO0001EJ0100 Rev.1.00 Page 45 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 3 DATA TYPES

3.2 Data Representation

3.2.1 Integers

Integers are represented as binary values using 2’s complement, and are used in one of three lengths: 32 bits, 16 bits,
or 8 bits. Regardless of the length of an integer, its place uses bit 0 as the LSB, and this place gets higher as the bit
number increases. Since this is a 2’'s complement representation, the MSB is used as a signed bit.

The integer ranges for various data lengths are as follows.

e Word (32 bits): —2147483648 to +2147483647
e Halfword (16 bits): —32768 to +32767
e Byte (8 hits): -128 to +127

3.2.2 Unsigned integers

In contrast to “integers” which are data that can take either a positive or negative sign, “unsigned integers” are never
negative integers. Like integers, unsigned integers are represented as binary values, and are used in one of three
lengths: 32 bits, 16 bits, or 8 bits. Also like integers, the place of unsigned integers uses bit 0 as the LSB and gets higher
as the bit number increases. However, unsigned integers do not use a sign bit.

The unsigned integer ranges for various data lengths are as follows.

e Word (32 bhits): 0 to 4294967295
e Halfword (16 bits): 0 to 65535
e Byte (8 bits): 0 to 255

3.2.3 Bits

Bit data are handled as single-bit data with either of two values: cleared (0) or set (1). There are four types of bit-

related operations (listed below), which target only single-byte data in the memory space.

e Set
e Clear
e |nvert

e Test

RO1USO0001EJ0100 Rev.1.00 Page 46 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 3 DATA TYPES

3.3 Data Alignment

The V850E2M CPU allows misaligned placement of data.

When the data to be processed is in halfword format, misaligned access indicates the access to an address that is not

at the halfword boundary (where the address LSB = 0), and when the data to be processed is in word format, misaligned

access indicates the access to an address that is not at the word boundary (where the lower two bits of the address = 0).

Regardless of the data format (byte, halfword, or word), data can be allocated at all addresses.

However, in the case of halfword data or word data, if the data is not aligned, at least one extra bus cycle will occur,

which increases the execution time for the instruction.

Figure 3-1. Example of Data Placement for Misaligned Access

XXXXXX07H
XXXXXX06H W
XXXXXX05H W
XXXXXX04H \
XXXXXX03H L HW
XXXXXX02H v }
HW —
XXXXXX01H 1 HW 1
XXXXXXO0H v
Aligned Misaligned
access access

Remark W: word data
HW: halfword data

<« Halfword boundary/Word boundary

<« Halfword boundary

<« Halfword boundary/Word boundary

« Halfword boundary

« Halfword boundary/Word boundary

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 47 of 473

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

CHAPTER 4 ADDRESS SPACE

The V850E2M CPU supports a linear address space of up to 4 GB. Both memory and I/0O are mapped to this address
space (using the memory mapped I/O method). The CPU outputs a 32-hit address for memory and 1/O, in which the
highest address number is “2%2 - 1”.

The byte data placed at various addresses is defined with bit 0 as the LSB and bit 7 as the MSB. When the data is
comprised of multiple bytes, it is defined so that the byte data at the lowest address is the LSB and the byte data at the
highest address is the MSB (i.e., in little endian format).

This manual stipulates that, when representing data comprised of multiple bytes, the right edge must be represented as

the lower address and the left side as the upper address, as shown below.

31 24 23 16 15 8 7 0
Word data at \\\\\\\!!ii!\\\\\\\\\\\\\\\\Data
address “A”.......
A+3 A+2 A+l A Address
15 8 7 0
T T T 1T T T
Halfword data at
AAAIESS “A ... e Data
A+l A Address
7 0
T T 1T T T
Byte data at
AAAIESS ‘A ..ot e e e e e e et e e e e e e e ——e e e e e e e e ——aeaeeeaabaaaaaeesaanraaes Data
A Address

RO1USO0001EJ0100 Rev.1.00 Page 48 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

4.1 Memory Map

The V850E2M CPU is 32-bit architecture and supports a linear address space of up to 4 GB. The whole range of this 4

GB address space can be addressed by instruction addressing (instruction access) and operand addressing (data access).

Caution Instruction addressing is possible in a range of 64 MB with the V850E1 CPU and of 512 MB with the

V850E2 CPU.

A memory map is shown in Figure 4-1.

Figure 4-1. Memory Map (Address Space)

TFFFFFFFH =~ ” A
OOO00000H | pataarea |__|Program area| __ 3
FFFFFFFFH <
80000000H Y

Address space

RO1USO0001EJ0100 Rev.1.00 Page 49 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

Caution For the V850E2M CPU, the range of the 4 GB program area that can be actually addressed is
limited because of physical restrictions of registers that hold an instruction address (such as
the program counter). The following registers hold an instruction address.

e PC (program counter)

e EIPC and FEPC (exception context)

e SCBP, CTBP, and CTPC (table branch/exception instruction)

e SW_BASE, EH_BASE, and EH_RESET (exception handler selection function)

e FPEPC (floating-point operation function)

¢ VSADR (processor protection function)
With a CPU whose addressable range of the program area is limited by the product specification
to 512 MB, the higher 3 bits of these registers are automatically set to values resulting from a
sign-extension of bit 28. Therefore, the addressable ranges are 00000000H to OFFFFFFEH and
FOO00000H to FFFFFFFEH (the least significant bit is always 0).

31 30 29 28 0
| extselr?snion ‘ S ‘ ‘ O |

(Instruction address register with limitation of 512 MB)

The memory map in this case is shown below.

7FFFFFFFH

Non-
addressable
range

OFFFFFFFH]

" 256 MB

00000000H | pata area
FFFFFFFFH

-] Program area |_

i
4GB

256 MB |

FOOOOOO0OH __ !

Non-
addressable
range

80000000H __

Address space
(Memory map with 512 MB limitation)
When the memory map with a 512 MB limitation is used, be sure to place a table that is referenced by

instructions and the SWITCH, CALLT, and SYSCALL instructions in a range that can be addressed by
instruction addressing. The other data may be placed anywhere in the 4 GB space.

RO1USO0001EJ0100 Rev.1.00 Page 50 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

4.2 Addressing Modes

Two types of addresses are generated: instruction addresses that are used for instructions involved in branch

operations, and operand addresses that are used for instructions that access data.

4.2.1 Instruction address
The instruction address is determined based on the contents of the program counter (PC), and is automatically
incremented according to the number of bytes in the executed instruction. When a branch instruction is executed, the

addressing shown below is used to set the branch destination address to the PC.

(1) Relative addressing (PC relative)
Signed N-bit data (displacement: disp N) is added to the instruction code in the program counter (PC). In this case,
displacement is handled as 2's complement data, and the MSB is a signed bit (S).
If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The JARL, JR, and Bcond instructions are used with this type of addressing.

Figure 4-2. Relative Addressing

(a) JARL disp22, reg?2 instruction, and JR disp22 instruction

31 0
T T T T T T T T T T T T T T
PC 0
+
31 22 21 0
T T T T 1T T 11 T T T T T T T T T T T T
Sign extension S disp22 0
31 ‘ 0
T T T T T T T T T T T T T T
PC 0
Instruction
(branch destination)

Remark This is an example of 22-bit displacement.

RO1USO0001EJ0100 Rev.1.00 Page 51 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

(2) Register addressing (register indirect)
The contents of the general-purpose register (regl) or system register (reglD) specified by the instruction are
transferred to the program counter (PC).
The JMP, CTRET, EIRET, FERET, RETI, and DISPOSE instructions are used with this type of addressing.

Figure 4-3. Register Addressing

rrrrrrrrrrrrrrrrrrrrrrrTr T T T T T T
regl or reglD

Instruction
(branch destination)

(3) Based addressing
Contents that are specified by the instruction in the general-purpose register (regl) and that include the added
N-bit displacement (dispN) are transferred to the program counter (PC). At this time, the displacement is handled
as a 2's complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits
are sign-extended (N differs from one instruction to another).

The JMP instruction is used with this type of addressing.

Figure 4-4. Based Addressing

31 0
ot rrrrrrrtr -ttt Tt T T
regl
+
31 0
ot rrrrrrrtr -ttt Tt T T
S disp32 0
31 ‘ 0
0 rrrrrrrtrtrr -ttt T
PC 0
Instruction
(branch destination)

RO1USO0001EJ0100 Rev.1.00 Page 52 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

(4) Other addressing
A value specified by an instruction is transferred to the program counter (PC). How a value is specified is
explained in Operation or Description of each instruction.
The CALLT, SYSCALL, TRAP, FETRAP, and RIE instructions, and branch in case of an exception are used
with this type of addressing.

RO1USO0001EJ0100 Rev.1.00 Page 53 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address

The following methods can be used to access the target registers or memory when executing an instruction.

(1) Register addressing
This addressing method accesses the general-purpose register or system register specified in the general-
purpose register field as an operand.

Any instruction that includes the operand regl, reg2, reg3, or reglD are used with this type of addressing.

(2) Immediate addressing
This address mode uses arbitrary size data as the operation target in the instruction code.

Any instruction that includes the operand immb5, imm16, vector, or cccc are used with this type of addressing.

Remark vector: This is immediate data that specifies the exception vector (OOH to 1FH), and is an operand
used by the TRAP, FETRAP, and SYSCALL instructions. The data width differs from one
instruction to another.

ccce: This is 4-bit data that specifies a condition code, and is an operand used in the CMOV
instruction, SASF instruction, and SETF instruction. One bit (0) is added to the higher position

and is then assigned to an opcode as a 5-bit immediate data.

(3) Based addressing

There are two types of based addressing, as described below.

(&) Type1l
The contents of the general-purpose register (regl) specified at the addressing specification field in the
instruction code are added to the N-bit displacement (dispN) data sign-extended to word length to obtain the
operand address, and addressing accesses the target memory for the operation. At this time, the
displacement is handled as a 2's complement data, and the MSB is a signed bit (S). If the displacement is
less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The LD, ST, and CAXI instructions are used with this type of addressing.

Figure 4-5. Based Addressing (Type 1)

31 0
et rrrrrrrrrrrrrrrrr -ttt T
regl
+
31 16 15 0
T T

Sign extension S disp16

Target memory for
operation

Remark This is an example of 16-bit displacement.

RO1USO0001EJ0100 Rev.1.00 Page 54 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 4 ADDRESS SPACE

(b) Type 2

This addressing accesses a memory to be manipulated by using as an operand address the sum of the
contents of the element pointer (r30) and N-bit displacement data (dispN) that is zero-extended to a word

length.

instruction to another).

The SLD instruction and SST instruction are used with this type of addressing.

Figure 4-6. Based Addressing (Type 2)

If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one

ot rrrrrr T
r30 (element pointer)

+

e rrrrrrrrrrtrrTr T T T T T T/
0 (zero extension)

disp8

Remark This is an example of 8-bit displacement.

Target memory for
operation

(4) Bit addressing

The contents of the general-purpose register (regl) are added to the N-bit displacement (dispN) data sign-
extended to word length to obtain the operand address, and bit addressing accesses one bit (as specified by 3-bit

data “bit #3") in one byte of the target memory space.

At this time, the displacement is handled as a 2's

complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits are sign-

extended (N differs from one instruction to another).

The CLR1, SET1, NOT1, and TST1 instructions are used with this type of addressing.

Figure 4-7. Bit Addressing

31 0
e rrrrrrrrrrrr 1t T T Tt
regl
+
31 16 15 0
T Tt

Sign extension S disp16

Remark n: Bit position specified by 3-bit data (bit #3) (n =0 to 7)
In case of 16-bit displacement

Target memory for

operation
n

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 55 of 473

V850E2M PART 2 CHAPTER 4 ADDRESS SPACE

(5) Other addressing
This addressing is to access a memory to be manipulated by using a value specified by an instruction as the
operand address. How a value is specified is explained in [Operation] or [Description] of each instruction.

The SWITCH, CALLT, SYSCALL, PREPARE, and DISPOSE instructions are used with this type of addressing.

RO1USO0001EJ0100 Rev.1.00 Page 56 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

CHAPTER 5 INSTRUCTIONS

5.1 Opcodes and Instruction Formats

The V850E2M CPU has two types of instructions: CPU instructions, which are defined as basic instructions, and

coprocessor instructions, which are defined according to the application.

5.1.1 CPU instructions

Instructions classified as CPU instructions are allocated in the opcode area other than the area used in the format of
the coprocessor instructions shown in 5.1.2 Coprocessor instructions.

CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several instructions that use
option data to add bits, enabling the configuration of 48-bit and 64-bit instructions. For details, see the opcode of the
relevant instruction in 5.3 Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions are reserved for future

function expansion and cannot be used. For details, see 5.1.3 Reserved instructions.

(1) reg-reg instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general-purpose register specification fields.

(2) imm-reg instruction (Format I1)
A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a general-purpose register

specification field.

RO1USO0001EJ0100 Rev.1.00 Page 57 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(3) Conditional branch instruction (Format Il1)

A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

(4) 16-bit load/store instruction (Format V)
A 16-bit instruction format consists of a 4-bit opcode field, a general-purpose register specification field, and a 7-bit

displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

15 11 10 7 6 10
T

reg2 opcode disp

L disp/sub-opcode

A 16-bit instruction format consists of a 7-bit opcode field, a general-purpose register specification field, and a 4-bit

displacement field.

(5) Jump instruction (Format V)
A 32-hit instruction format consists of a 5-bit opcode field, a general-purpose register specification field, and a 22-

bit displacement field.

RO1USO0001EJ0100 Rev.1.00 Page 58 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(6) 3-operand instruction (Format VI)
A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit immediate field.

(7) 32-bit load/store instruction (Format VII)
A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

disp/sub-opcode —J

(8) Bit manipulation instruction (Format VIII)
A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a

general-purpose register specification field, and a 16-bit displacement field.

15 14 13 11 10 5 4 0 31 16
e r oyt

sub bit # opcode regl disp

RO1USO0001EJ0100 Rev.1.00 Page 59 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(9) Extended instruction format 1 (Format IX)
This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and handles the other bits as a sub-opcode field.

Caution Extended instruction format 1 may use part of the general-purpose register specification field of the
sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

reg2 opcode regl sub-opcode 0

(10) Extended instruction format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub-opcode field.

Caution Extended instruction format 2 may use part of the general-purpose register specification field of the
sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

15 ‘ll 10‘ 5 4 0 31 ‘17 16

1 1 ““‘sub‘-opdode‘““““““‘
sub-opcode opcode imm/vector sub-opcode 0

(11) Extended instruction format 3 (Format XI)
This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose register specification

fields, and uses the other bits as a sub-opcode field.

Caution Extended instruction format 3 may use part of the general-purpose register specification field or the
sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

15\ 1 \11 10\ T 1 \5 4\ 1 \0 31\ 1 \27 26\ T T T T 1 \17 16
reg2 opcode regl reg3 sub-opcode 0
RO1USO001EJ0100 Rev.1.00 Page 60 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

(12) Extended instruction format 4 (Format XllI)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and uses the other bits as a sub-opcode field.

Caution Extended instruction format 4 may use part of the general-purpose register specification field of the
sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, refer to the description of each instruction in 5.3 Instruction Set.

sub-opcode

sub-opcode

(13) Stack manipulation instruction format (Format XIlIl)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, 5-bit sub-

opcode field, and one general-purpose register specification field (or 5-bit sub-opcode field).

The general-purpose register specification field is used as a sub-opcode filed, depending on the format of the

instruction.

15 11 10
| |

6 5

T 1
sub-opcode

1
opcode

(14) Load/store instruction 48-bit format (Format XIV)

This is a 48-bit instruction format that has a 6-bit opcode field, two general-purpose register specification fields,

and a 23-bit displacement field, and uses the other bits as a sub-opcode field.

15 11 10
T T

31

27 26
T T

20 19
T T

16

L —
sub-opcode

T
reg3

T T 1
disp (low)

sub-opcode

disp (high)

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 61 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

5.1.2 Coprocessor instructions

Instructions in the following format are defined as coprocessor instructions.

15 11 10 9 8 7 6 5 4 0 31 27 26 25 17 16
T T T T T T T T T T T T T T T T
reg3 1 opcode 0

\— opcode or regl

Coprocessor instructions define the functions of each coprocessor.
In the VB50E2M CPU, floating-point operation functions are defined as coprocessors.

For the instruction format of floating-point operation instructions, see CHAPTER 4 INSTRUCTIONS in PART 4.

(1) Coprocessor unusable exception
If an attempt is made to execute a coprocessor instruction defined by an opcode that refers to a nonexistent
coprocessor or a coprocessor that cannot be used due to the operational status of the device, a coprocessor
unusable exception (UCPOP) immediately occurs.

For details, see CHAPTER 7 COPROCESSOR UNUSABLE STATUS.

5.1.3 Reserved instructions

An opcode reserved for future function extension and for which no instruction is defined is defined as a reserved

instruction.

It is defined by the product specification that either of the following two types of operations is performed on the opcode

of a reserved instruction.

e Areserved instruction exception occurs

e The reserved instruction is executed as an instruction

In the V850E2M CPU, the following opcodes define the RIE instruction, which always causes a reserved instruction

exception to occur.

e RIE instruction (16 bits)

15\ T T \1110\ T T T \54\ T T \0

00 0 0O0O|O O OOW11O0)0 0 0 0O

¢ RIE instruction (32 bits)

15 11 10 5 4 0 31 16
T T

X x x x x|1 1 1 1 1 1|1 x x x x|/0 0 0 0 0O 0 O O O O O O 0O o o0 o
(x = Either 0 or 1)

RO1USO0001EJ0100 Rev.1.00 Page 62 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

5.2 Overview of Instructions

(1) Load instructions:

Execute data transfer from memory to register. The following instructions (mnemonics) are provided.

(@) LD instructions

e LD.B: Load byte

e LD.BU: Load byte unsigned

e LD.H: Load halfword

e LD.HU: Load halfword unsigned
e LD.W: Load word

(b) SLD instructions

e SLD.B: Short format load byte

e SLD.BU: Short format load byte unsigned

e SLD.H: Short format load halfword

e SLD.HU: Short format load halfword unsigned
e SLD.W: Short format load word

(2) Store instructions:

Execute data transfer from register to memory. The following instructions (mnemonics) are provided.

(@) ST instructions

e ST.B: Store byte
e ST.H: Store halfword
e ST.W: Store word

(b) SST instructions

e SST.B: Short format store byte
e SST.H: Short format store halfword
e SST.W: Short format store word
R0O1US0001EJ0100 Rev.1.00 Page 63 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(3) Multiply instructions:

Execute multiplication in 1 clock with on-chip hardware multiplier. The following instructions (mnemonics) are

provided.
e MUL: Multiply word
e MULH: Multiply halfword
e MULHI: Multiply halfword immediate
e MULU: Multiply word unsigned

(4) Multiply-accumulate instructions

After a multiplication operation, a value is added to the result. The following instructions (mnemonics) are

available.
e MAC: Multiply word and add
o MACU: Multiply word unsigned and add

(5) Arithmetic instructions:

Add, subtract, divide, transfer, or compare data between registers. The following instructions (mnemonics) are

provided.
e ADD: Add
e ADDI: Add immediate
o CMP: Compare
e MOV: Move
e MOVEA: Move effective address
e MOVHI: Move high halfword
e SUB: Subtract
e SUBR: Subtract reverse

(6) Conditional arithmetic instructions

Add and subtract operations are performed under specified conditions. The following instructions (mnemonics)

are available.
e ADF: Add on condition flag
e SBF: Subtract on condition flag
R0O1US0001EJ0100 Rev.1.00 Page 64 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

(7) Saturated operation instructions:

Execute saturated addition and subtraction.

(TFFFFFFFH), 7FFFFFFFH retums.

If the operation result exceeds the maximum positive value

If the operation result exceeds the maximum negative value (80000000H),

80000000H returns. The following instructions (mnemonics) are provided.

e SATADD:
e SATSUB:
e SATSUBI:
SATSUBR:

(8) Logical instructions:

Saturated add

Saturated subtract

Saturated subtract immediate

Saturated subtract reverse

Include logical operation instructions. The following instructions (mnemonics) are provided.

e AND:
e ANDI:
e NOT:
e OR:
e ORI
e TST:
e XOR:
e XORI:

AND

AND immediate
NOT

OR

OR immediate
Test

Exclusive OR

Exclusive OR immediate

(9) Data manipulation instructions:

Include data manipulation instructions and shift instructions with arithmetic shift and logical shift. Operands can be

shifted by multiple bits in one clock cycle through the on-chip barrel shifter. The following instructions (mnemonics)

are provided:

e BSH:
e BSW:
e CMOV:
e HSH:
o HSW:
e SAR:
e SASF:
e SETF:
e SHL:
e SHR:
e SXB:
e SXH:
e ZXB:
o ZXH:

Byte swap halfword
Byte swap word
Conditional move
Halfword swap halfword
Halfword swap word
Shift arithmetic right
Shift and set flag condition
Set flag condition

Shift logical left

Shift logical right
Sign-extend byte
Sign-extend halfword
Zero-extend byte

Zero-extend halfword

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 65 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(10) Bit search instructions

The specified bit values are searched among data stored in registers.

e SCHOL: Search zero from left
e SCHOR: Search zero from right
e SCHIL: Search one from left
e SCHI1R: Search one from right

(11) Divide instructions:
Execute division operations. Regardless of values stored in a register, the operation can be performed using a

constant number of steps. The following instructions (mnemonics) are provided.

e DIV: Divide word

e DIVH: Divide halfword

e DIVHU: Divide halfword unsigned
e DIVU: Divide word unsigned

(12)High-speed divide instructions
These instructions perform division operations. The number of valid digits in the quotient is determined in
advanced from values stored in a register, so the operation can be performed using a minimum number of steps.

The following instructions (mnemonics are provided).

e DIVQ: Divide word quickly
e DIVQU: Divide word unsigned quickly

(13)Branch instructions:
Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch instruction (Bcond) which
accommodates the flag status to switch controls. Program control can be transferred to the address specified by a

branch instruction. The following instructions (mnemonics) are provided.

e Bcond: Branch on condition code (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH,
BNL, BNV, BNZ, BP, BR, BSA, BV, BZ)

e JARL: Jump and register link

e JMP: Jump register

o JR: Jump relative

(14)Bit manipulation instructions:
Execute logical operation on memory bit data. Only a specified bit is affected. The following instructions

(mnemonics) are provided.

e CLRI: Clear bit
e NOTI1: Not bit
e SETI: Set bit
e TSTI1: Test bit
R0O1US0001EJ0100 Rev.1.00 Page 66 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

(15) Special instructions:

Include instructions not provided in the categories of instructions described above. The following instructions

(mnemonics) are provided.

CALLT:
CAXI:
CTRET:
DlI:
DISPOSE:
El:

EIRET:
FERET:
FETRAP:
HALT:
LDSR:
NOP:
PREPARE:
RETI:

RIE
STSR:
SWITCH:
TRAP:
SYNCM:
SYNCP:
SYNCE:
SYSCALL:

Call with table look up
Compare and exchange for interlock
Return from CALLT

Disable interrupt

Function dispose

Enable interrupt

Return from trap or interrupt
Return from trap or interrupt
Software trap

Halt

Load system register

No operation

Function prepare

Return from trap or interrupt
Reserved instruction exception
Store system register

Jump with table look up
Trap

Synchronize memory
Synchronize pipeline
Synchronize exceptions

System call

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 67 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

5.3 Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

e Instruction format: Indicates the description and the instruction operand (for symbols, refer to Table 5-1).

e Operation: Indicates the function of the instruction (for symbols, refer to Table 5-2).

e Format: Indicates the instruction format (refer to 5.1 Opcodes and Instruction Formats).

e Opcode: Indicates the bit field of the instruction opcode (for symbols, refer to Table 5-3).

e Flag: Indicates the change of flags of PSW (program status word) after the instruction execution.

“0” is to clear (reset), “1” to set, and “--" to remain unchanged.

e Description: Describes the operation of the instruction.
e Remark: Provides supplementary information on instruction.
e Caution: Provides precautionary notes.

Table 5-1. Conventions of Instruction Format

Symbol Meaning
regl General-purpose register (as source register)
reg2 General-purpose register (primarily as destination register with some as source registers)
reg3 General-purpose register (primarily used to store the remainder of a division result and/or the
higher 32 bits of a multiplication result)
bit#3 3-bit data to specify bit number
immx x-bit immediate data
dispx x-bit displacement data
regiD System register number
vectorx Data to specify vector (x indicates the bit size)
cond Condition code (refer to Table 5-4 Condition Codes)
ccee 4-bit data to specify condition code (refer to Table 5-4 Condition Codes)
sp Stack pointer (r3)
ep Element pointer (r30)
list12 Lists of registers
RO1USO0001EJO0100 Rev.1.00 Page 68 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

Table 5-2. Conventions of Operation

Symbol Meaning
«— Assignment
GR[] General-purpose register
SR] System register

zero-extend (n)

Zero-extends “n” to word

sign-extend (n)

Sign-extends “n” to word

load-memory (a, b)

Reads data of size b from address a

store-memory (a, b, ¢)

Writes data b of size ¢ to address a

extract-bit (a, b)

Extracts value of bit b of data a

set-bit (a, b)

Sets value of bit b of data a

not-bit (a, b)

Inverts value of bit b of data a

clear-bit (a, b)

Clears value of bit b of data a

saturate (n)

Performs saturated processing of “n.”
If n > 7FFFFFFFH, n = 7FFFFFFFH.
If n < 80000000H, n = 80000000H.

result Outputs results on flag
Byte Byte (8 bits)

Halfword Halfword (16 bits)
Word Word (32 bits)

+ Add

- Subtract

Il Bit concatenation

X Multiply

= Divide

% Remainder of division results
AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by

Logical left-shift

logically shift right by

Logical right-shift

arithmetically shift right by

Arithmetic right-shift

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 69 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS
Table 5-3. Conventions of Opcode
Symbol Meaning
R 1-bit data of code specifying regl or regiD
r 1-bit data of code specifying reg2
w 1-bit data of code specifying reg3
D 1-bit data of displacement (indicates higher bits of displacement)
d 1-bit data of displacement
| 1-bit data of immediate (indicates higher bits of immediate)
i 1-bit data of immediate
Vv 1-bit data of code specifying vector (indicates higher bits of vector)
v 1-bit data of code specifying vector
ccee 4-bit data for condition code specification (Refer to Table 5-4 Condition Codes)
bbb 3-bit data for bit number specification
1-bit data of code specifying general-purpose register in register list
S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list
P 1-bit data of code specifying PSW in register list

Table 5-4. Condition Codes

Condition Code (cccc) Condition Name Condition Formula
0000 \% ov=1
1000 NV ov=0
0001 C/L Cy=1
1001 NC/NL Cy=0
0010 z Z=1
1010 NZ Z=0
0011 NH (CYorz)=1
1011 H (CYorz)=0
0100 S/N S=1
1100 NS/P S=0
0101 T always (Unconditional)
1101 SA SAT=1
0110 LT (Sxorov)=1
1110 GE (S xor OV) =0
0111 LE ((SxorOV)orz)=1
1111 GT ((SxorOV)orz)=0

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 70 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

Add register/immediate

ADD
Add
[Instruction format] (1) ADD regl, reg2
(2) ADD immb5, reg2
[Operation] (1) GR[reg2] « GR [reg2] + GR [regl]
(2) GR[reg2] « GR [reg2] + sign-extend (immb5)
[Format] (1) Format |
(2) Format I
[Opcode] 15 0
(1) |rrrrrO01110RRRRR
15 0
(2) |rrrrrO010010idididi
[Flags] CY “1" if a carry occurs from MSB; otherwise, “0”.
oV “1" if overflow occurs; otherwise, “0”.
S “1” if the operation result is negative; otherwise, “0".
Z “1” if the operation result is “0”; otherwise, “0”".
SAT -
[Description] (1) Adds the word data of general-purpose register regl to the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register
regl is not affected.
(2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2.

RO1USO0001EJ0100 Rev.1.00 Page 71 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

Add immediate

ADDI

Add immediate

[Instruction format] ~ ADDI imm16, regl, reg2

[Operation] GR [reg2] « GR [regl] + sign-extend (imm16)
[Format] Format VI
[Opcode] 15 031 16

rrrrr110000RRRRR| I NN NMRNNITNITI

[Flags] cY “1” if a carry occurs from MSB; otherwise, “0”.
oV “1" if overflow occurs; otherwise, “0".
S “1” if the operation result is negative; otherwise, “0".
z “1” if the operation result is “0”; otherwise “0".
SAT -
[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register regl and stores the result in general-purpose register reg2. General-purpose register regl

is not affected.

RO1USO0001EJ0100 Rev.1.00 Page 72 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Conditional Operation Instructions>

ADF

Add on condition flag

Conditional add

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

ADF cccc, regl, reg2, reg3

if conditions are satisfied

then GR [reg3] « GR [regl] + GR [reg2] +1
else GR [reg3] < GR [regl] + GR [reg2] +0

Format Xl

15 031 16

rrrrr111111RRRRR{wwwww011101ccccO

CY “1" if a carry occurs from MSB; otherwise, “0”".

oV “1” if overflow occurs; otherwise, “0".

S “1” if the operation result is negative; otherwise, “0".
Z “1” if the operation result is “0”; otherwise, “0”".

SAT -

Adds 1 to the result of adding the word data of general-purpose register regl to the word data of
general-purpose register reg2 and stores the result of addition in general-purpose register reg3, if
the condition specified as condition code “cccc” is satisfied.

If the condition specified as condition code “cccc” is not satisfied, the word data of general-purpose
register regl is added to the word data of general-purpose register reg2, and the result is stored in
general-purpose register reg3.

General-purpose registers regl and reg2 are not affected. Designate one of the condition codes

shown in the following table as [cccc]. (cccce is not equal to 1101.)

Condition Name Condition Formula Condition Name Condition Formula
Code Code
0000 Y, ov=1 0100 SIN S=1
1000 NV ov=0 1100 NS/P S=0
0001 C/L Cy=1 0101 T always
(Unconditional)
1001 NC/NL Cy=0 0110 LT (Sxorov)=1
0010 z z=1 1110 GE (Sxor0OV)=0
1010 NZ Z=0 0111 LE ((SxorOV)orz)=1
0011 NH (CYorz)=1 1111 GT ((SxorOV)orz)=0
1011 H (CYorz)=0 (1101) Setting prohibited
RO1USO0001EJO0100 Rev.1.00 Page 73 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

AND
AND
AND
[Instruction format] AND reg1, reg2
[Operation] GR [reg2] < GR [reg2] AND GR [regl]
[Format] Format |
[Opcode] 15 0
rrrrrO01010RRRRR
[Flags] CcY --
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".
SAT -
[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register regl and stores the result in general-purpose register reg2. General-purpose register regl

is not affected.

RO1USO0001EJ0100 Rev.1.00 Page 74 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

AND immediate

ANDI

AND immediate

[Instruction format] ~ ANDI imm16, regl, reg2

[Operation] GR [reg2] < GR [regl] AND zero-extend (imm16)
[Format] Format VI
[Opcode] 15 031 16

rrrrr110110RRRRR| I INNNMRNNITNITT

[Flags] CcY --
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".
SAT -
[Description] ANDs the word data of general-purpose register regl with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register

regl is not affected.

RO1USO0001EJ0100 Rev.1.00 Page 75 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond

Conditional branch

[Instruction format] Bcond disp9

[Operation] if conditions are satisfied

then PC « PC + sign-extend (disp9)

[Format] Format Il
[Opcode] 15 0
ddddd1011dddcccc

dddddddd is the higher 8 bits of disp9.
cccc is the condition code of the condition indicated by cond (refer to Table 5-5 Bcond

Instructions).

[Flags] CY --
oV --
S -
Z -
SAT -

[Description] Checks each PSW flag specified by the instruction and branches if a condition is met; otherwise,
executes the next instruction. The PC of branch destination is the sum of the current PC value and

the 9-bit displacement (= 8-bit immediate data shifted by 1 and sign-extended to word length).

[Comment] Bit 0 of the 9-bit displacement is masked to “0”. The current PC value used for calculation is the
address of the first byte of this instruction. The displacement value being “0” signifies that the

branch destination is the instruction itself.

RO1USO0001EJ0100 Rev.1.00 Page 76 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

Table 5-5. Bcond Instructions

Instruction Condition Code Flag Status Branch Condition
(ccee)
Signed BGE 1110 (Sxor0OV) =0 Greater than or equal to signed
integer BGT 1111 ((S xor OV) or z) = 0 Greater than signed
BLE 0111 ((SxorOV)orz)=1 Less than or equal to signed
BLT 0110 (Sxorov)=1 Less than signed
Unsigned BH 1011 (CYorz)=0 Higher (Greater than)
integer BL 0001 Cy=1 Lower (Less than)
BNH 0011 (CYorz)=1 Not higher (Less than or equal)
BNL 1001 CY=0 Not lower (Greater than or equal)
Common BE 0010 zZ=1 Equal
BNE 1010 Z=0 Not equal
Others BC 0001 Cy=1 Carry
BF 1010 Z=0 False
BN 0100 S=1 Negative
BNC 1001 Cy=0 No carry
BNV 1000 ov=0 No overflow
BNZ 1010 Z=0 Not zero
BP 1100 S=0 Positive
BR 0101 - Always (unconditional)
BSA 1101 SAT=1 Saturated
BT 0010 zZ=1 True
BV 0000 ov=1 Overflow
BZ 0010 z=1 Zero
Caution The branch condition loses its meaning if a conditional branch instruction is executed on a
signed integer (BGE, BGT, BLE, or BLT) when the saturated operation instruction sets “1”
to the SAT flag. In normal operations, if an overflow occurs, the S flag is inverted (0 > 1
or 1 —» 0). This is because the result is a negative value if it exceeds the maximum positive
value and it is a positive value if it exceeds the maximum negative value. However, when a
saturated operation instruction is executed, and if the result exceeds the maximum
positive value, the result is saturated with a positive value; if the result exceeds the maximum
negative value, the result is saturated with a negative value. Unlike the normal operation, the
S flag is not inverted even if an overflow occurs.

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 77 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Byte swap halfword
BSH

Byte swap of halfword data

[Instruction format] BSH reg2, reg3

[Operation] GR [reg3] « GR [reg2] (23:16) || GR [reg2] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)
[Format] Format XII
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101000010

[Flags] CY “1” when there is at least one byte value of zero in the lower halfword of the operation result;

otherwise; “0".

ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”".
z “1” when lower halfword of operation result is “0”; otherwise, “0”.
SAT -
[Description] Executes endian swap.
R0O1US0001EJ0100 Rev.1.00 Page 78 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Byte swap word

BSW

Byte swap of word data

[Instruction format] BSW reg2, reg3

[Operation] GR [reg3] <« GR [reg2?] (7:0) || GR [reg2] (15:8) | GR [reg2] (23:16) || GR [reg2] (31:24)
[Format] Format XII
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101000000

[Flags] CY “1” when there is at least one byte value of zero in the word data of the operation result;

otherwise; “0".

ov o0
S “1” if operation result word data MSB is “1”; otherwise, “0”".
z “1” if operation result word data is “0”; otherwise, “0".
SAT -
[Description] Executes endian swap.
R0O1US0001EJ0100 Rev.1.00 Page 79 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

CALLT

Call with table look up

Subroutine call with table look up

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

CAL

LT imm6

CTPC « PC + 2 (return PC)
CTPSW « PSW

adr « CTBP + zero-extend (immé6 logically shift left by 1)

PC « CTBP + zero-extend (Load-memory (adr, Halfword))

Format Il

15

CY

ov

SAT

The

1)
)

@)

(4)
®)

following steps are taken.

Transfers the contents of both return PC and PSW to CTPC and CTPSW.

Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and zero-extended
to word length, to generate a 32-bit table entry address.

Loads the halfword entry data of the address generated in step (2) and zero-extend to word
length.

Adds the CTBP value to the data generated in step (3) to generate a 32-bit target address.

Jumps to the target address.

Cautions 1. When an exception occurs during CALLT instruction execution, the execution is aborted
after the end of the read/write cycle.
2. In the CALLT instruction memory read operation executed in order to read the table,
processor protection is performed.
3. When memory protection (PSW.DMP = 1) or peripheral device protection (PSW.PP = 1) is
enabled, loading the data for generating a target address from a table allocated in an area
to which access from a user program is prohibited cannot be performed.

RO1USO0001EJ0100 Rev.1.00 Page 80 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

CAXI

Compare and exchange for interlock

Comparison and swap

[Instruction format] CAXI [regl], reg2, reg3

[Operation] adr « GR[reg1]""*

token « Load-memory (adr, Word)

result < GR[reg2] — token

If result ==

then Store-memory (adr, GR[reg3], Word)
GR[reg3] « token

else Store-memory(adr, token, Word)

GR[reg3] « token

Note The lower 2 bits of GR [regl] is masked to 0 as adr.

[Format] Format XI

[Opcode] 15

031 16

rrrrr111111RRRRR|wwwww00011101110

[Flags] CY “1” if a borrow occurs in the result operation; otherwise, “0”
(0)Y] “1” if overflow occurs in the result operation; otherwise, “0”
S “1” if result is negative; otherwise, “0”
z “1” if result is O; otherwise, “0”
SAT -
[Description] First, the data in general-purpose register regl is read and the lower two bits are masked to “0”,

then a 32-bit address aligned to the word boundary is generated. Word data is read from the

generated address, then is compared with the word data in general-purpose register reg2, and the

result is indicated by flags in the PSW. Comparison is performed by subtracting the read word data

from the word data in general-purpose register reg2. If the comparison result is “0”, word data in

general-purpose register reg3 is stored in the generated address, otherwise the read word data is

stored in the generated address.

Afterward, the read word data is stored in general-purpose

register reg3. General-purpose registers regl and reg2 are not affected.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the
period between read and write operations, the target address is not affected by access due to

any other cause.

RO1USO0001EJ0100 Rev.1.00
Oct 17, 2012

Page 81 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

Clear bit

CLR1

Bit clear

[Instruction format] (1) CLR1 bit#3, displ16 [regl]
(2) CLR1 reg2, [regl]

[Operation] (1) adr « GR [regl] + sign-extend (disp16)
token « Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, bit#3))
token « clear-bit (token, bit#3)
Store-memory (adr, token, Byte)

(2) adr « GR [regl]

token « Load-memory (adr, Byte)
Z flag < Not (extract-bit (token, reg2))
token « clear-bit (token, reg2)

Store-memory (adr, token, Byte)

[Format] (1) Format VI
(2) Format IX

[Opcode] 15 031 16
(1) [10bbb111110RRRRR|dddddddddddddddd

15 031 16
(2) |rrrrr111111RRRRR|0000000011100100

[Flags] CY --
ov -

z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1".
SAT -

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Byte data is read from the generated
address, then the bits indicated by the 3-bit bit number are cleared (0) and the data is written
back to the original address.

(2) Reads the word data of general-purpose register regl to generate a 32-bit address. Byte data
is read from the generated address, the bits indicated by the lower three bits of reg2 are cleared

(0), and the data is written back to the original address.

RO1USO0001EJ0100 Rev.1.00 Page 82 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

[Comment] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is executed,

and does not indicate the content of the specified bit after this instruction is executed.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the
period between read and write operations, the target address is not affected by access due to
any other cause.

RO1USO0001EJ0100 Rev.1.00 Page 83 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

CMOV

Conditional move

Conditional transfer

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

1)
@)

@)

@)

CMOV ccce, regl, reg2, reg3
CMOV cccc, immb, reg2, reg3

if conditions are satisfied

then GR [reg3] < GR [regl]

else GR [reg3] « GR [reg2]

if conditions are satisfied

then GR [reg3] « sign-extended (immb5)
else GR [reg3] « GR [reg?]

(1) Format XI
(2) Format XIl
15 031 16
(1) |[rrrrr111111RRRRR|wwwww01100lccccO
15 031 16
2 |[rrrrri11111§iiii|wwwww011000ccccO
cYy -
ov -
S -
Z -
SAT -

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 84 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

[Description]

[Comment]

(1) When the condition specified by condition code “cccc” is met, data in general-purpose register
regl is transferred to general-purpose register reg3. When that condition is not met, data in
general-purpose register reg?2 is transferred to general-purpose register reg3. Specify one of

the condition codes shown in the following table as “cccc”.

Condition Name Condition formula Condition Name Condition formula
code code
0000 \Y ov=1 0100 SIN S=1
1000 NV ov=0 1100 NS/P S=0
0001 C/L Cy=1 0101 T Always (unconditional)
1001 NC/NL [CY=0 1101 SA SAT=1
0010 z z=1 0110 LT (S xor OV) =1
1010 NZ Z=0 1110 GE (S xor OV) = 0
0011 NH (CYorz)=1 0111 LE ((SxorOV)orz)=1
1011 H (CYorz)=0 1111 GT ((SxorOV)orz)=0

(2) When the condition specified by condition code “cccc” is met, 5-bit immediate data sign-
extended to word-length is transferred to general-purpose register reg3. When that condition is
not met, the data in general-purpose register reg2 is transferred to general-purpose register

reg3. Specify one of the condition codes shown in the following table as “cccc”.

Condition Name Condition formula Condition Name Condition formula
code code
0000 \Y ov=1 0100 SIN S=1
1000 NV ov=0 1100 NS/P |[S=0
0001 C/L Cy=1 0101 T Always (unconditional)
1001 NC/NL [CY=0 1101 SA SAT=1
0010 z z=1 0110 LT (S xorOV) = 1
1010 Nz Z=0 1110 GE (SxoroVv)=0
0011 NH (CYorz)=1 0111 LE ((SxorOV)orz)=1
1011 H (CYorz)=0 1111 GT ((S xor OV) or 2) =0

See the description of the SETF instruction.

RO1USO0001EJ0100 Rev.1.00 Page 85 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

Compare register/immediate (5-bit)

CMP
Compare
[Instruction format] (1) CMP regl, reg2
(2) CMP immb, reg2
[Operation] (1) result « GR [reg2] — GR [regl]
(2) result < GR [reg2] — sign-extend (imm5)
[Format] (1) Format |
(2) Formatll
[Opcode] 15 0
(1) |rrrrrO01111RRRRR
15 0
(2) |rrrrrO10011idiii
[Flags] CY “1" if a borrow occurs from MSB; otherwise, “0".
oV “1" if overflow occurs; otherwise, “0”.
S “1” if the operation result is negative; otherwise, “0".
Z “1” if the operation result is “0”; otherwise, “0”".
SAT -
[Description] (1) Compares the word data of general-purpose register reg2 with the word data of general-

purpose register regl and outputs the result through the PSW flags. Comparison is performed
by subtracting the regl contents from the reg2 word data. General-purpose registers regl and
reg2 are not affected.

(2) Compares the word data of general-purpose register reg2 with the 5-bit immediate data, sign-
extended to word length, and outputs the result through the PSW flags. Comparison is
performed by subtracting the sign-extended immediate data from the reg2 word data. General-

purpose register reg2 is not affected.

RO1USO0001EJ0100 Rev.1.00 Page 86 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Return from CALLT

CTRET

Return from subroutine call

[Instruction format] CTRET

[Operation] PC « CTPC
PSW « CTPSW

[Format] Format X

[Opcode] 15 031 16
0000011111100000{0000000101000100

[Flags] CY Value read from CTPSW is set.
ov Value read from CTPSW is set.
S Value read from CTPSW is set.
z Value read from CTPSW is set.
SAT Value read from CTPSW is set.

[Description] Loads the return PC and PSW from the appropriate system register and returns from a routine
under CALLT instruction. The following steps are taken:
(1) The return PC and PSW are loaded from the CTPC and CTPSW.

(2) The values are restored in PC and PSW and the control is transferred to the return address.

RO1USO0001EJ0100 Rev.1.00 Page 87 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Disable interrupt

DI

Disable El level maskable exception

[Instruction format] DI

[Operation] PSW.ID « 1 (Disables EIl level maskable interrupt)
[Format] Format X
[Opcode] 15 031 16

0000011111100000{0000000101100000

[Flags] CcY --

[Description] Sets “1” to the ID flag of the PSW to immediately disable the acknowledgement of El level

maskable exceptions.

[Comment] Overwrite of flags in the PSW by this instruction becomes valid as of the next instruction.

RO1USO0001EJ0100 Rev.1.00 Page 88 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

DISPOSE

Function dispose

Stack frame deletion

[Instruction format] (1)

)

[Operation] (2)

)

DISPOSE immb5, list12
DISPOSE immb, list12, [regl]

adr « sp + zero-extend (immb5 logically shift left by 2)
foreach (all regs in list12) {
GRJreg in list12] « Load-memory (adr, Word)"°*®
adr «— adr + 4
}
Sp « adr
adr « sp + zero-extend (immb5 logically shift left by 2)
foreach (all regs in list12) {
GRJreg in list12] « Load-memory (adr, Word)"°*®
adr «— adr + 4
}

Sp « adr

PC « GRJregl]

Note When loading to memory, the lower 2 bits of adr are masked to 0.

[Format] Format Xl
[Opcode] 15 031 16
(1) |0000011001s#idiiL|LLLLLLLLLLLOOOOO

@)

15 031 16

0000011001 amanaL|LLLLLLLLLLLRRRRR

RRRRR = 00000 (Do not specify r0 for regl.)

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for

example, the “L” at bit 21 of the opcode corresponds to the value of bit21 in list12).

list12 is a 32-bit register list, defined as follows.

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 89 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

[Flags]

[Description]

CY
ov

SAT

1)

)

31 30 29 28 27 26 25 24 23 22 21 20..1 0

r24 | r25 [r26 | r27 | r20 | r21 | r22 | r23 | r28 | r29 | r31 -- r30

Bits 31 to 21 and bit O correspond to general-purpose registers (r20 to r31), so that when any
of these bits is set (1), it specifies a corresponding register operation as a processing target.
For example, when r20 and r30 are specified, the values in list12 appear as shown below

(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

o When all of the register’s non-corresponding bits are “0”: 08000001H
o When all of the register’s non-corresponding bits are “1”: 081FFFFFH

Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to
sp; returns to general-purpose registers listed in listl2 by loading the data from the address
specified by sp and adds 4 to sp.

Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to
sp; returns to general-purpose registers listed in list12 by loading the data from the address
specified by sp and adds 4 to sp; and transfers the control to the address specified by general-

purpose register regl.

[Comment] General-purpose registers in listl2 are loaded in descending order (r31, r30, ... r20). The imm5
restores a stack frame for automatic variables and temporary data. The lower 2 bits of the address
specified by sp is always masked to “0” and aligned to the word boundary.

Cautions 1. If an exception occurs while this instruction is being executed, execution of the

instruction may be stopped after the read/write cycle and the register value write
operation are completed, but sp will retain its original value from before the start of
execution. The instruction will be executed again later, after a return from the exception.
For instruction format (2) DISPOSE immb5, list12, [regl], do not specify rO for regl.

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 90 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Divide instruction>

DIV

Divide word

Division of (signed) word data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

[Comment]

DIV regl, reg2, reg3

GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format XI

15 031 16

rrrrr111111RRRRR|wwwww01011000000

CY --

ov “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0".
z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT -

Divides the word data of general-purpose register reg2 by the word data of general-purpose register
regl and stores the quotient to general-purpose register reg2 with the remainder set to general-
purpose register reg3. General-purpose register regl is not affected. When division by zero occurs,

an overflow results and all operation results except for the OV flag are undefined.

Overflow occurs when the maximum negative value (80000000H) is divided by —1 with the quotient
= 80000000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIV instruction execution, the execution is aborted to process
the exception. The execution resumes at the original instruction address upon returning from the
exception. General-purpose register regl and general-purpose register reg2 retain their values prior

to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

RO1USO0001EJ0100 Rev.1.00 Page 91 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Divide instruction>

DIVH

Divide halfword

Division of (signed) halfword data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)

@)
@)

DIVH regl, reg2
DIVH regl, reg2, reg3

GR [reg2] « GR [reg2] + GR [regl]
GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] < GR [reg2] % GR [regl]

(1) Format |
(2) Format XI

15 0
(1) [rrrrrOO0010RRRRR

RRRRR == 00000 (Do not specify r0 for regl.)
rrrrr = 00000 (Do not specify r0 for reg2.)

15 031 16
(2) |rrrrr111111RRRRR|wwwww01010000000
CY --
ov “1” if overflow occurs; otherwise, “0”.
S “1” if the operation result quotient is negative; otherwise, “0".
z “1” if the operation result quotient is “0”; otherwise, “0”.
SAT -

(1) Divides the word data of general-purpose register reg2 by the lower halfword data of general-

@)

purpose register regl and stores the quotient to general-purpose register reg2. General-

purpose register regl is not affected. When division by zero occurs, an overflow results and all

operation results except for the OV flag are undefined.

Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register regl and stores the quotient to general-purpose register reg2 with the

remainder set to general-purpose register reg3. General-purpose register regl is not affected.

When division by zero occurs, an overflow results and all operation results except for the OV

flag are undefined.

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 92 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

[Comment]

1)

@)

The remainder is not stored. Overflow occurs when the maximum negative value (80000000H)
is divided by —1 with the quotient = 80000000H and when the data is divided by 0 with quotient
being undefined.

When an exception occurs during the DIVH instruction execution, the execution is aborted to
process the exception. The execution resumes at the original instruction address upon
returning from the exception. General-purpose register regl and general-purpose register reg2
retain their values prior to execution of this instruction.

Overflow occurs when the maximum negative value (80000000H) is divided by -1 with the
quotient = 80000000H and when the data is divided by 0 with quotient being undefined.
If reg2 and reg3 are the same register, the remainder is stored in that register.
When an exception occurs during the DIVH instruction execution, the execution is aborted to
process the exception. The execution resumes at the original instruction address upon
returning from the exception. General-purpose register regl and general-purpose register reg2

retain their values prior to execution of this instruction.

Cautions 1.

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.
2. Do not specify r0 as regl and reg?2 for DIVH regl and reg2 in instruction format (1).

RO1USO0001EJ0100 Rev.1.00 Page 93 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Divide instruction>

DIVHU

Divide halfword unsigned

Division of (unsigned) halfword data

[Instruction format] DIVHU regl, reg2, reg3

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format XI

15 031 16
rrrrr111111RRRRR|wwwww01010000010

CY -

ov “1” if overflow occurs; otherwise, “0”.

S “1" when the operation result quotient word data is “1”; otherwise, “0”
z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT -

Divides the word data of general-purpose register reg2 by the lower halfword data of general-
purpose register regl and stores the quotient to general-purpose register reg2 with the remainder
set to general-purpose register reg3. General-purpose register regl is not affected. When division

by zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Comment] Overflow occurs by division by zero (with the operation result being undefined).
If reg2 and reg3 are the same register, the remainder is stored in that register.
When an exception occurs during the DIVHU instruction execution, the execution is aborted to
process the exception. The execution resumes at the original instruction address upon returning
from the exception. General-purpose register regl and general-purpose register reg2 retain their
values prior to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.
RO1US0001EJ0100 Rev.1.00 Page 94 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<High-speed divide instructions>

DIVQ

Divide word quickly

Division of (signed) word data (variable steps)

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

[Comment]

DIVQ regl, reg2, reg3

GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format XI

15

031 16

rrrrr111111RRRRR|wwwww01011111100

CY --

oV “1" when overflow occurs; otherwise, “0".

S “1” when operation result quotient is a negative value; otherwise, “0”".
z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT -

Divides the word data in general-purpose register reg2 by the word data in general-purpose register

regl

, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register regl is not affected.

The
then

resu

@

)

minimum number of steps required for division is determined from the values in regl and reg2,
this operation is executed. When division by zero occurs, an overflow results and all operation
Its except for the OV flag are undefined.

Overflow occurs when the maximum negative value (80000000H) is divided by -1 (with the
guotient = 80000000H) and when the data is divided by 0 with the quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After
exception processing is completed, the execution resumes at the original instruction address
when returning from the exception. General-purpose register reg1l and general-purpose
register reg2 retain their values prior to execution of this instruction.

The smaller the difference in the number of valid bits between regl and reg2, the smaller the
number of execution cycles. In most cases, the number of instruction cycles is smaller than
that of the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit
integer type data, the difference in the number of valid bits is 15 or less, and the operation is
completed within 20 cycles.

Cautions 1.

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

For the accurate number of execution cycles, refer to C.2 Clock Requirements.

If the number of execution cycles must always be constant to guarantee real-time
features, use the ordinary division instruction.

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 95 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<High-speed divide instructions>

DIVQU

Divide word unsigned quickly

Division of (unsigned) word data (variable steps)

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

[Comment]

DIVQU regl, reg2, reg3

GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format XI

15

031 16

rrrrr111111RRRRR|wwwww01011111110

CY --

oV “1" when overflow occurs; otherwise, “0".

S “1” when operation result quotient is a negative value; otherwise, “0”".
z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT -

Divides the word data in general-purpose register reg2 by the word data in general-purpose register

regl

, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register regl is not affected.

The
then

resu

1)

@)

minimum number of steps required for division is determined from the values in regl and reg2,
this operation is executed. When division by zero occurs, an overflow results and all operation
Its except for the OV flag are undefined.

An overflow occurs when there is division by zero (the operation result is undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After
exception processing is completed, using the return address as this instruction’s start address,
the execution resumes when returning from the exception. General-purpose register regl and
general-purpose register reg2 retain their values prior to execution of this instruction.

The smaller the difference in the number of valid bits between regl and reg2, the smaller the
number of execution cycles. In most cases, the number of instruction cycles is smaller than
that of the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit
integer type data, the difference in the number of valid bits is 15 or less, and the operation is
completed within 20 cycles.

Cautions 1.

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

For the accurate number of execution cycles, refer to C.2 Clock Requirements.

If the number of execution cycles must always be constant to guarantee real-time
features, use the ordinary division instruction.

RO1USO001EJO10
Oct 17, 2012

0 Rev.1.00 Page 96 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Divide instruction>

DIivU

Divide word unsigned

Division of (unsigned) word data

[Instruction format] DIVU regl, reg2, reg3

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format XI

15 031 16
rrrrr111111RRRRR |wwwww01011000010

CY -

ov “1” if overflow occurs; otherwise, “0”.

S “1” when operation result quotient word data MSB is “1”; otherwise, “0”.
z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT -

Divides the word data of general-purpose register reg2 by the word data of general-purpose register
regl and stores the quotient to general-purpose register reg2 with the remainder set to general-
purpose register reg3. General-purpose register regl is not affected. When division by zero occurs,

an overflow results and all operation results except for the OV flag are undefined.

[Comment] When an exception occurs during the DIVU instruction execution, the execution is aborted to
process the exception.
If reg2 and reg3 are the same register, the remainder is stored in that register.
The execution resumes at the original instruction address upon returning from the exception.
General-purpose register regl and general-purpose register reg2 retain their values prior to
execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.
RO1US0001EJ0100 Rev.1.00 Page 97 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Enable interrupt

El

Enable El level maskable exception

[Instruction format] El

[Operation] PSW.ID « 0 (enables El level maskable exception)
[Format] Format X
[Opcode] 15 031 16

1000011111100000{0000000101100000

[Flags] CcY --

[Description] Clears the ID flag of the PSW to “0” and enables the acknowledgement of maskable exceptions

starting the next instruction.

RO1USO0001EJ0100 Rev.1.00 Page 98 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

EIRET

Return from trap or interrupt

Return from EL level exception

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

EIRET

PC « EIPC
PSW « EIPSW

Format X

15 031 16

0000011111100000{0000000101001000

CYy Value read from EIPSW is set
ov Value read from EIPSW is set
S Value read from EIPSW is set
z Value read from EIPSW is set
SAT Value read from EIPSW is set

Returns execution from an El level exception. The return PC and PSW are loaded from the EIPC

and EIPSW registers and set in the PC and PSW, and control is passed. When EP = 0, completed

execution of the exception routine is reported externally (to the interrupt controller, etc.).

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

Page 99 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

FERET

Return from trap or interrupt

Return from FE level exception

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

FERET

PC « FEPC
PSW « FEPSW

Format X

15 031 16

0000011111100000{0000000101001010

CY Value read from FEPSW is set
ov Value read from FEPSW is set
S Value read from FEPSW is set
z Value read from FEPSW is set
SAT Value read from FEPSW is set

Returns execution from an FE level exception. The return PC and PSW are loaded from the FEPC

and FEPSW registers and set in the PC and PSW, and control is passed. When EP = 0, completed

execution of the exception routine is reported externally (to the interrupt controller and elsewhere).

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 100 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

FETRAP

FE-level Trap

FE level software exception

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

FETRAP vector4

FEPC « PC + 2 (return PC)

FEPSW « PSW

ECR.FECC « exception code (31H-3FH)

FEIC « exception code (31H-3FH)

PSW.EP « 1

PSW.ID « 1

PSW.NP « 1

If (MPM.AUE==1) is satisfied
then PSW.IMP « 0

PSW.DMP « 0
PSW.NPV « 0
PSW.PP « 0

PC « 00000030H

Format |
15 0
Ovvvv00001000000

Where vvvv is vector4.

Do not set OH to vector4 (vvvv # 0000).

CY --
ov --

SAT -

Saves the contents of the return PC (address of the instruction next to the FETRAP instruction) and
the current contents of the PSW to FEPC and FEPSW, respectively, stores an exception source
code in the FEIC register and ECR.FECC bit, and sets (1) the PSW.NP, EP, and ID bits. If the
MPM.AUE bit is set (1), it clears (0) the PSW.PP, NPV, DMP, and IMP bits.
Execution then branches to the exception handler address (00000030H) and exception processing

is started.

RO1US0001EJ0100 Rev.1.00 Page 101 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

HALT

Halt

Halt

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

HALT

Instruction execution is halted until the HALT state release request is generated.

Format X

15 031 16

0000011111100000{0000000100100000

ov --

SAT -

Places the system in the HALT state.

Occurrence of the HALT state release request will return the system to normal execution status.

If an exception is acknowledged while the system is in HALT state, the return PC of that exception
is the PC of the instruction that follows the HALT instruction.

A HALT state release request is input when the following exception requests occur.

¢ Reset input (RESET)

o El level maskable interrupt input (INTO to INT255)

¢ FE level maskable interrupt input (FEINT)

¢ FE level non-maskable interrupt input (FENMI)

e Peripheral device protection exception (PPI)

¢ Timing monitoring exception (TSI)

e System error exception (SYSERR)

Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID or NP
value), as long as a HALT mode release request exists, HALT state is released (for example, even
if ID =1, HALT state is released when INTO occurs).

[Comment] The HALT status is not released if interrupt inputs (INTO to INT255, FEINT, and FENMI) are
“disabled” by the following registers of the interrupt controller.
e El level interrupt control registers (EICO to EIC255)
o El level interrupt mask registers (IMRO to IMR15)

R0O1US0001EJ0100 Rev.1.00 Page 102 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instructions>

Halfword swap halfword
HSH

Halfword swap of halfword data

[Instruction format] HSH reg2, reg3

[Operation] GR [reg3] « GR [reg?2]
[Format] Format XII
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101000110

[Flags] CY “1” if the lower halfword of the operation result is “0”; otherwise, “0".
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the lower halfword of the operation result is “0”; otherwise, “0".
SAT -
[Description] Stores the content of general-purpose register reg2 in general-purpose register reg3, and stores the

flag judgment result in PSW.

RO1US0001EJ0100 Rev.1.00 Page 103 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Halfword swap word

HSW

Halfword swap of word data

[Instruction format] HSW reg2, reg3

[Operation] GR [reg3] « GR [reg2?] (15:0) || GR [reg2] (31:16)
[Format] Format XII
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101000100

[Flags] CY “1” when there is at least one halfword of zero in the word data of the operation result;

otherwise; “0".

ov 0
S “1” if operation result word data MSB is “1”; otherwise, “0”".
z “1” if operation result word data is “0”; otherwise, “0".
SAT -
[Description] Executes endian swap.
R0O1US0001EJ0100 Rev.1.00 Page 104 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Branch instruction>

JARL

Jump and register link

Branch and register link

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)

@)

@)

@)
)

JARL disp22, reg2
JARL disp32, regl

GR [reg2] « PC +4

PC « PC + sign-extend (disp22)
GR [regl] «~ PC + 6

PC « PC + disp32

Format V

Format VI

15 031 16

@)

rrrrr11110dddddd|dddddddddddddddO

ddddddddddddddddddddd is the higher 21 bits of disp22.

rrrrr = 00000 (Do not specify rO for reg2.)

15 031 16 47

32

)

00000010111RRRRR|ddddddddddddddd0|DDDDDDDDDDDDDDDD

CY
ov

SAT

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

RRRRR = 00000 (Do not specify r0 for reg1.)

(1) Saves the current PC value + 4 in general-purpose register reg2, adds the 22-bit displacement

data, sign-extended to word length, to PC; stores the value in and transfers the control to PC.

Bit O of the 22-bit displacement is masked to “0”".

(2) Saves the current PC value + 6 in general-purpose register regl, adds the 32-bit displacement

data to PC and stores the value in and transfers the control to PC. Bit 0 of the 32-bit

displacement is masked to “0".

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 105 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself. The
jump destination is this instruction with the displacement value = 0. JARL instruction corresponds to
the call function of the subroutine control instruction, and saves the return PC address in either regl
or reg2. JMP instruction corresponds to the return function of the subroutine control instruction, and
can be used to specify general-purpose register containing the return address as regl to the return

PC.

Caution Do not specify r0 for reg2 in instruction format (1) JARL disp22, reg?2.
Do not specify r0 for regl in instruction format (2) JARL disp32, regl.

RO1USO001EJ0100 Rev.1.00 Page 106 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Branch instruction>

Jump register

JMP

Unconditional branch (register relative)

[Instruction format] (1) JMP [regl]
(2) JMP disp32 [regl]

[Operation] (1) PC « GR [regl]
(2) PC « GR [regl] + disp32

[Format] (1) Format |
(2) Format VI

[Opcode] 15 0
(1) |00000000011RRRRR

15 031 16 47 32
(2) [00000110111RRRRR|ddddddddddddddd0|{DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --
oV -

SAT -

[Description] (1) Transfers the control to the address specified by general-purpose register regl. Bit O of the
address is masked to “0".
(2) Adds the 32-bit displacement to general-purpose register regl, and transfers the control to the

resulting address. Bit O of the address is masked to “0”".

[Comment] Using this instruction as the subroutine control instruction requires the return PC to be specified by

general-purpose register regl.

RO1US0001EJ0100 Rev.1.00 Page 107 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Branch instruction>

JR

Jump relative

Unconditional branch (PC relative)

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

(1) JR disp22
(2) JR disp32

(1) PC « PC + sign-extend (disp22)
(2) PC « PC + disp32

(1) FormatV
(2) Format VI

15 031 16
(1) |10000011110dddddd|dddddddddddddddO

ddddddddddddddddddddd is the higher 21 bits of disp22.

15 031 16 47 32
(2) [0000001011100000|ddddddddddddddd0|{DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

CY --
ov --

SAT -

(1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC and stores
the value in and transfers the control to PC. Bit O of the 22-bit displacement is masked to “0".
(2) Adds the 32-bit displacement data to the current PC and stores the value in PC and transfers

the control to PC. Bit 0 of the 32-bit displacement is masked to “0”.

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself. The
displacement value being “0” signifies that the branch destination is the instruction itself.
R0O1US0001EJ0100 Rev.1.00 Page 108 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

LD.B

Load byte

Load of (signed) byte data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

(1) LD.B disp16 [regl], reg2
(2) LD.B disp23 [regl], reg3

(1) adr < GR [regl] + sign-extend (disp16)

GR [reg2] « sign-extend (Load-memory (adr, Byte))
(2) adr « GR [regl] + sign-extend (disp23)

GR [reg3] « sign-extend (Load-memory (adr, Byte))

(1) Format Vil
(2) Format XIV

15 031 16
(1) [rrrrr111000RRRRR|dddddddddddddddd

15 031 1647 32
(2) ([00000111100RRRRR|wwwwwddddddd0101(DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
ddddddd is the lower 7 bits of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

CY --
ov --

SAT -

(1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Byte data is read from the generated
address, sign-extended to word length, and stored in general-purpose register reg2.

(2) Adds the word data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in general-purpose register reg3.

RO1US0001EJ0100 Rev.1.00 Page 109 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

LD.BU

Load byte unsigned

Load of (unsigned) byte data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

@)
@)

@)

@)

@)
@)

@

@

CY
ov
S

z
SAT

LD.BU disp16 [regl] , reg2
LD.BU disp23 [regl] , reg3

adr < GR [regl] + sign-extend (disp16)

GR [reg2] « zero-extend (Load-memory (adr, Byte))
adr < GR [regl] + sign-extend (disp23)

GR [reg3] « zero-extend (Load-memory (adr, Byte))

Format VII
Format XIV

15 031 16
rrrrr11110bRRRRR|(dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16, and b is bit O of disp16.
rrrrr = 00000 (Do not specify rO for reg2.)

15 031 1647 32
00000111101RRRRR|wwwwwddddddd0101|DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
ddddddd is the lower 7 bits of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

(1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-

@)

extended to word length, to generate a 32-bit address. Byte data is read from the generated
address, zero-extended to word length, and stored in general-purpose register reg2.

Adds the word data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, zero-extended to word length, and stored in general-purpose register reg3.

Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00 Page 110 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

LD.H

Load halfword

Load of (unsigned) halfword data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)

@)

@)

@)
)

@)

@)

CY

oV

SAT

LD.H displ6 [regl], reg2
LD.H disp23 [regl] , reg3

adr «+ GR [regl] + sign-extend (disp16)

GR [reg2] « sign-extend (Load-memory (adr, Halfword))
adr « GR [regl] + sign-extend (disp23)

GR [reg3] « sign-extend (Load-memory (adr, Halfword))

Format VII
Format XIV

15 031 16
rrrrr111001RRRRR|(dddddddddddddddO

Where ddddddddddddddd is the higher 15 bits of disp16.
15 031 1647 32
00000111100RRRRR|wwwwwdddddd00111|{DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

(1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-

)

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit
address, sign-extended to word length, and stored in general-purpose register reg2.

Adds the word data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit

address, sign-extended to word length, and stored in general-purpose register reg3.

RO1US0001EJ0100 Rev.1.00 Page 111 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

LD.HU

Load halfword unsigned

Load of (signed) halfword data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

@)
@)

@)

@)

1)
@)

@

@

CY
ov

SAT

LD.HU disp16 [regl], reg2
LD.HU disp23 [regl], reg3

adr < GR [regl] + sign-extend (disp16)

GR [reg2] <« zero-extend (Load-memory (adr, Halfword))
adr < GR [regl] + sign-extend (disp23)

GR [reg3] « zero-extend (Load-memory (adr, Halfword))

Format VII
Format XIV

15 031 16
rrrrr111111RRRRR|dddddddddddddddl

Where ddddddddddddddd is the higher 15 bits of disp16.

rrrrr = 00000 (Do not specify rO for reg2.)

15 031 1647 32
00000111101RRRRR|wwwwwdddddd00111|DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 tol of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

(1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-

)

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit
address, zero-extended to word length, and stored in general-purpose register reg2.

Adds the word data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Halfword data is read from this address,

zero-extended to word length, and stored in general-purpose register reg3.

Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00 Page 112 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

Load word

LD.W

Load of word data

[Instruction format] (1) LD.W disp16 [regl], reg2
(2) LD.W disp23 [regl], reg3

[Operation] (1) adr « GR [regl] + sign-extend (disp16)
GR [reg2] < Load-memory (adr, Word)

(2) adr <« GR [regl] + sign-extend (disp23)
GR [reg3] <« Load-memory (adr, Word)

[Format] (1) Format Vil
(2) Format XIV

[Opcode] 15 031 16
(1) |[rrrrr111001RRRRR|dddddddddddddddl

Where ddddddddddddddd is the higher 15 bits of disp16.
15 031 1647 32
(2) |00000111100RRRRR|wwwwwdddddd01001|{DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --
ov --

SAT -

[Description] (1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Word data is read from this 32-bit
address, and stored in general-purpose register reg2.

(2) Adds the word data of general-purpose register regl to the 23-bit displacement data, sign-
extended to word length, to generate a 32-bit address. Word data is read from this address,

and stored in general-purpose register reg3.

RO1US0001EJ0100 Rev.1.00 Page 113 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Load to system register

LDSR

Load to system register

[Instruction format] LDSR reg2, reglD

[Operation] SR [regID] < GR [reg2]
[Format] Format IX
[Opcode] 15 031 16

rrrrrl111111RRRRR|0000000000100000

Caution The fields to define regl and reg2 are swapped in this instruction. “RRR” is normally used for
regl that is the source operand, and “rrr” is represented by reg2 that is the destination
operand. In this instruction, “RRR” is used for the source operand that is represented by
reg2, and “rrr” is used for the register destination.

rrrrr: reglD specification

RRRRR: reg2 specification

[Flags] CcY --

ov --

SAT -

[Description] Loads the word data of general-purpose register reg2 to a system register specified by the system

register number (reglD). General-purpose register reg2 is not affected.

Caution The system register number regID is to identify a system register. Accessing system registers

that are reserved or write-prohibited is prohibited.

RO1US0001EJ0100 Rev.1.00 Page 114 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Multiply-accumulate instruction>

Multiply and add word
MAC

Multiply-accumulate for (signed) word data

[Instruction format] MAC regl, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] <« GR [reg2] x GR [regl] + GR [reg3+1] || GR [reg3]
[Format] Format XI
[Opcode] 15 031 16

rrrrr111111RRRRR|wwww0011110mmmmO

[Flags] CcY --
ov -

SAT -

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose
register regl, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of
general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this
would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit
data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are
stored in general-purpose register reg4.

The contents of general-purpose registers regl and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register regl, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered
register (r0, r2, r4, ..., r30). The result is undefined if an odd-numbered register (rl, r3, ..., r31)

is specified.

RO1US0001EJ0100 Rev.1.00 Page 115 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Multiply-accumulate instruction>

Multiply and add word unsigned

MACU

Multiply-accumulate for (unsigned) word data

[Instruction format] MACU regl, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] <« GR [reg2] x GR [regl] + GR [reg3+1] || GR [reg3]
[Format] Format XI
[Opcode] 15 031 16

rrrrr111111RRRRR|wwww0011111mmmmO

[Flags] CcY --
ov -

SAT -

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose
register regl, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of
general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this
would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit
data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are
stored in general-purpose register reg4.

The contents of general-purpose registers regl and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register rel, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered
register (r0, r2, r4, ..., r30). The result is undefined if an odd-numbered register (rl, r3, ..., r31)

is specified.

RO1US0001EJ0100 Rev.1.00 Page 116 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

Move register/immediate (5-bit) /immediate (32-bit)
MOV

Data transfer

[Instruction format] (1) MOV regl, reg2
(2) MOV immb5, reg2
(3) MOV imm32, regl

[Operation] (1) GR[reg2] < GR [regl]
(2) GR [reg2] « sign-extend (imm5)
(3) GR[regl] <« imm32

[Format] (1) Format |
(2) Formatll
(3) Format VI

[Opcode] 15 0
(1) |rrrrrOOOO00ORRRRR

rrrrr = 00000 (Do not specify r0 for reg2.)
15 0

(2) [rrrrrO10000WdiiQ

rrrrr = 00000 (Do not specify rO for reg2.)
15 031 16 47 32
(3) |OOOOO1100O01RRRRR|iiNEGEREAERATRRA|(IINNNINNLINTLNTI

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.
1 (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

[Flags] CY --
ov --

SAT -

[Description] (1) Copies and transfers the word data of general-purpose register regl to general-purpose
register reg2. General-purpose register regl is not affected.
(2) Copies and transfers the 5-bit immediate data, sign-extended to word length, to general-
purpose register reg2.
(3) Copies and transfers the 32-bit immediate data to general-purpose register regl.

Caution Do not specify r0 as reg2 in MOV regl, reg2 for instruction format (1) or in MOV immb5, reg2 for

instruction format (2).

RO1US0001EJ0100 Rev.1.00 Page 117 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

MOVEA

Move effective address

Effective address transfer

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

[Comment]

MOVEA imm16, regl, reg2

GR [reg2] « GR [regl] + sign-extend (imm16)

Format VI
15 031 16
rrrrr110001RRRRR{FdTTTIRITRININTITT

rrrrr = 00000 (Do not specify r0 for reg2.)

CY --
ov --

SAT -

Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register regl and stores the result in general-purpose register reg2. Neither general-purpose

register regl nor the flags is affected.

This instruction is to execute a 32-bit address calculation with the PSW flag value unchanged.

| Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 118 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

MOVHI

Move high halfword

Higher halfword transfer

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

[Comment]

MOVHI imm16, regl, reg2

GR [reg2] « GR [regl] + (imm16 || 016)

Format VI
15 031 16
rrrrr110010RRRRR{FTTTIRITTININTTT

rrrrr = 00000 (Do not specify rO for reg2.)

CY --
ov --

SAT -

Adds the word data with its higher 16 bits specified as the 16-bit immediate data and the lower 16

bits being “0” to the word data of general-purpose register regl and stores the result in general-

purpose register reg2. Neither general-purpose register regl nor the flags is affected.

This instruction is to generate the higher 16 bits of a 32-bit address.

| Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 119 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

MUL

Multiply word by register/immediate (9-bit)

Multiplication of (signed) word data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

(1) MUL reqg1l, reg2, reg3
(2) MUL imm9, reg2, reg3

(1) GR[reg3d] || GR [reg2] « GR [reg2] x GR [regl]
(2) GR[reg3] || GR [reg2] < GR [reg2] x sign-extend (imm9)

(1) Format XI
(2) Format XII

15 031 16
Q) [rrrrri111111RRRRR|wwwww01000100000

15 031 16

2) [rrrrri11l11daanas|wwwww01001111100

1111 are the higher 4 bits of 9-bit immediate data.

CY --
oV --

SAT -

(1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose
register regl, then stores the higher 32 bits of the result (64-bit data) in general-purpose
register reg3 and the lower 32 bits in general-purpose register reg2.

The contents of general-purpose registers regl and reg2 are handled as 32-bit signed integers.
General-purpose register regl is not affected.

(2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, extended to

word length, then stores the higher 32 bits of the result (64-bit data) in general-purpose register

reg3 and the lower 32 bits in general-purpose register reg2.

[Comment] When general-purpose register reg2 and general-purpose register reg3 are the same register, only
the higher 32 bits of the multiplication result are stored in the register.
R0O1USO0001EJ0100 Rev.1.00 Page 120 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

MULH

Multiply halfword by register/immediate (5-bit)

Multiplication of (signed) halfword data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

[Comment]

(1) MULH regl, reg2
(2) MULH immb5, reg2

(1) GR[reg?] (32) « GR [reg2?] (16) x GR [reg1] (16)
(2) GR[reg2] « GR [reg2] x sign-extend (immb5)

(1) Format |
(2) Formatll

15 0
(1) |rrrrrO00111RRRRR

rrrrr = 00000 (Do not specify r0 for reg2.)
15 0

(2) [rrrrrOl011lidiii

CY --
ov --

SAT -

(1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of
general-purpose register regl and stores the result in general-purpose register reg2. General-
purpose register regl is not affected.

(2) Multiplies the lower halfword data of general-purpose register reg2 by the 5-bit immediate data,

sign-extended to halfword length, and stores the result in general-purpose register reg2.

In the case of a multiplier or a multiplicand, the higher 16 bits of general-purpose registers regl and

reg2, are ignored.

| Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00 Page 121 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

Multiply halfword by immediate (16-bit)
MULHI

Multiplication of (signed) halfword immediate data

[Instruction format] ~ MULHI imm16, regl, reg2

[Operation] GR [reg2] « GR [regl] x imm16
[Format] Format VI
[Opcode] 15 031 16

rrrrr110111RRRRR| I NN NMRNNITNITT

rrrrr = 00000 (Do not specify rO for reg2.)

[Flags] CcY --

ov --

SAT -

[Description] Multiplies the lower halfword data of general-purpose register regl by the 16-bit immediate data

and stores the result in general-purpose register reg2. General-purpose register regl is not affected.

[Comment] In the case of a multiplicand, the higher 16 bits of general-purpose register regl are ignored.

| Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00 Page 122 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

MULU

Multiply word unsigned by register/immediate (9-bit)

Multiplication of (unsigned) word data

[Instruction format]

1)
)

[Operation] (2)

)

[Format]

1)
)

[Opcode]
)

)

[Flags]

SAT

[Description]

@)

[Comment]

MULU regl, reg2, reg3

MULU imm9, reg2, reg3

GR [reg3] || GR [reg2] <« GR [reg2] x GR [regl]

GR [reg3] || GR [reg2] « GR [reg2] x zero-extend (imm9)

Format XI

Format XIlI

15

031

16

rrrrr111111RRRRR

wwwww01000100010

15 0

31 16

wwwwwO1001111110

CY
oV

(1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register regl, then stores the higher 32 bits of the result (64-bit data) in general-purpose

register reg3 and the lower 32 bits in general-purpose register reg2. General-purpose register

regl is not affected.

Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, zero-

extended to word length, then stores the higher 32 bits of the result (64-bit data) in general-

purpose register reg3 and the lower 32 bits in general-purpose register reg2.

When general-purpose register reg2 and general-purpose register reg3 are the same register, only

the higher 32 bits of the multiplication result are stored in the register.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 123 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

No operation

NOP

No operation

[Instruction format] NOP

[Operation] PC for this instruction is incremented by +2 (nothing else is done).
[Format] Format |
[Opcode] 15 0

0000000000000000
[Flags] CcY --

ov -

S -

Z -

SAT -
[Description] PC for this instruction is incremented by +2 (nothing else is done).
[Comment] The opcode is the same as that of MOV r0, r0.
R0O1US0001EJ0100 Rev.1.00 Page 124 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

NOT
NOT

Logical negation (1's complement)

[Instruction format] NOT reg1, reg2

[Operation] GR [reg2] <« NOT (GR [regl])
[Format] Format |
[Opcode] 15 0
rrrrrOO0001RRRRR
[Flags] CcY --
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".
SAT -
[Description] Logically negates the word data of general-purpose register regl using 1's complement and stores

the result in general-purpose register reg2. General-purpose register regl is not affected.

RO1US0001EJ0100 Rev.1.00 Page 125 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

NOT1

NOT bit

NOT bit

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

@
)

1)

@)

1)
@)

@)

)

CYy
ov
S

4
SAT

NOT1 bit#3, displ6 [regl]
NOT1 reg2, [regl]

adr < GR [regl] + sign-extend (disp16)
token < Load-memory (adr, Byte)

Z flag < Not (extract-bit (token, bit#3))
token « not-bit (token, bit#3)
Store-memory (adr, token, Byte)

adr < GR [regl]

token « Load-memory (adr, Byte)

Z flag < Not (extract-bit (token, reg2))
token « not-bit (token, reg2)
Store-memory (adr, token, Byte)

Format VIl

Format IX

15 031 16
01bbb111110RRRRR|dddddddddddddddd
15 031 16
rrrrr111111RRRRR|0000000011100010

“1” if bit specified by operand = “0”, “0” if bit specified by operand = “1".

(1) Adds the word data of general-purpose register regl to the 16-bit displacement data, sign-

@)

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, then the bits indicated by the 3-bit bit number are inverted (0 » 1, 1 — 0) and the

data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0".

Reads the word data of general-purpose register regl to generate a 32-bit address. Byte data

is read from the generated address, then the bits specified by lower 3 bits of general-purpose

register reg2 are inverted (0 — 1, 1 — 0) and the data is written back to the original address.
If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1", the Z flag is cleared to “0".

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 126 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

[Comment] The Z flag of PSW indicates the status of the specified bit (O or 1) before this instruction is executed
and does not indicate the content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the

period between read and write operations, the target address is not affected by access due to

any other cause.

RO1USO001EJ0100 Rev.1.00 Page 127 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

OR
OR
OR
[Instruction format] OR reg1l, reg2
[Operation] GR [reg2] « GR [reg2] OR GR [regl]
[Format] Format |
[Opcode] 15 0
rrrrrO0O1000RRRRR
[Flags] CcY --
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".
SAT -
[Description] ORs the word data of general-purpose register reg2 with the word data of general-purpose register

regl and stores the result in general-purpose register reg2. General-purpose register regl is not

affected.

RO1US0001EJ0100 Rev.1.00 Page 128 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

OR immediate (16-bit)

ORI

OR immediate

[Instruction format] ORI imm16, regl, reg2

[Operation] GR [reg2] < GR [regl] OR zero-extend (imm16)
[Format] Format VI
[Opcode] 15 031 16

rrrrr110100RRRRR| I I INNNIRNNIINITI

[Flags] CcY --
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".
SAT -
[Description] ORs the word data of general-purpose register regl with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register

regl is not affected.

RO1US0001EJ0100 Rev.1.00 Page 129 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

PREPARE

Function prepare

Create stack frame

[Instruction format]

[Operation]

[Format]

[Opcode]

1)

(2) PREPARE list12, immb5, sp/imm

PREPARE list12, imm5

Note

Note The sp/imm values are specified by bits 19 and 20 of the sub-opcode.

1)

adr < sp

foreach (all regs in list12) {

adr < adr-4

Store-memory (adr, GR[reg in list12], Word)

Note

Note

}
sp « adr — zero-extend (immb5 logically shift left by 2)
(2) adr <« sp
foreach (all regs in list12) {
adr « adr—4
Store-memory (adr, GR[reqg in list12], Word)
}
sp « adr — zero-extend (immb5 logically shift left by 2)
case
ff=00: ep « sp
ff = 01: ep « sign-extend (imm16)
ff = 10: ep « imm16 logically shift left by 16
ff=11. ep « imm32
Note When storing to memory, the lower 2 bits of adr are masked to 0.
Format XIllI
15 031 16
(1) |0000011110# ddiL|LLLLLLLLLLLOOOOL
15 031 16

)

LLLLLLLLLLLFFO11

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32 and

bits 63 to 48 are the higher 16 bits of imm32.

ff = 00: sp is loaded to ep

ff = 01: Sign-extended 16-bit immediate data (bits 47 to 32) is loaded to ep

ff = 10: 16-bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep

ff = 11: 32-bit immediate data (bits 63 to 32) is loaded to ep

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 130 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS
The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for
example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in list12).
list12 is a 32-bit register list, defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20...1 0
124 | r25 | r26 | r27 | r20 | r21 | r22 | r23 | 128 | 129 | r31 - r30
Bits 31 to 21 and bit O correspond to general-purpose registers (r20 to r31), so that when any
of these bits is set (1), it specifies a corresponding register operation as a processing target.
For example, when r20 and r30 are specified, the values in list12 appear as shown below
(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).
o When all of the register’s non-corresponding bits are “0”: 08000001H
o When all of the register’s non-corresponding bits are “1”: 081FFFFFH
[Flags] CcY --
ov --
S -
Z -
SAT -

[Description]

[Comment]

(1) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the
data is stored in that address). Next, subtracts 5-bit inmediate data, logically left-shifted by 2
bits and zero-extended to word length, from sp.

(2) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the
data is stored in that address). Next, subtracts 5-bit immediate data, logically left-shifted by 2
bits and zero-extended to word length, from sp.

Then, loads the data specified by the third operand (sp/imm) to ep.

list12 general-purpose registers are saved in ascending order (r20, r21, ..., r31).
immb5 is used to create a stack frame that is used for auto variables and temporary data.

The lower two bits of the address specified by sp are masked to 0 and aligned to the word boundary.

Caution

If an exception occurs while this instruction is being executed, execution of the instruction
may be stopped after the read cycle and the register value write operation are completed, but
sp will retain its original value from before the start of execution. The instruction will be

executed again later, after a return from the exception.

RO1US0001EJ0100 Rev.1.00 Page 131 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

RETI

Return from trap or interrupt

Return from El level software exception or interrupt

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

RETI

if PSW.EP =1
then PC « EIPC
PSW « EIPSW
else if PSW.NP =1
then PC « FEPC
PSW « FEPSW
else PC « EIPC
PSW « EIPSW

Format X

15 031 16

0000011111100000{0000000101000000

CY Value read from FEPSW or EIPSW is set.
ov Value read from FEPSW or EIPSW is set.
S Value read from FEPSW or EIPSW is set.
z Value read from FEPSW or EIPSW is set.
SAT Value read from FEPSW or EIPSW is set.

Reads the return PC and PSW from the appropriate system register and returns from a software
exception or interrupt routine. The following steps are taken:
(1) If the EP bit of PSW is “1”, the return PC and PSW are read from EIPC and EIPSW, regardless
of the status of the NP bit of PSW.
If the EP bit of PSW is “0” and the NP bit of PSW is “1”, the return PC and PSW are read from
FEPC and FEPSW.
If the EP bit of PSW is “0” and the NP bit of PSW is “0”, the return PC and PSW are read from
EIPC and EIPSW.
(2) The values are restored in PC and PSW and the control is transferred to the return address.
When EP = 0, completed execution of the exception routine is reported externally (to the interrupt

controller or elsewhere).

RO1US0001EJ0100 Rev.1.00 Page 132 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

Cautions 1. The RETI instruction is defined for backward compatibility with the V850E1 and V850E2
CPU. Therefore, in principle, use of the RETI instruction is prohibited. Except for
existing programs that cannot be revised, all RETI instructions should be replaced with
EIRET or FERET instructions.
If the RETI instruction is used, the operation is undefined except when returning from an
interrupt or El level software exception.

2. To enable normal restoration of the PC and PSW when returning (via a RETI instruction)
from an FE level non-maskable interrupt exception (FENMI), FE level maskable interrupt
exception (FEINT), or an El level software exception (TRAP), the NP and EP bits must be
set as follows just before executing the RETI instruction.

e When using RETI instruction to return from FE level non-maskable interrupt exception
(FENMI): NP=1and EP =0

e When using RETI instruction to return from FE level maskable interrupt exception
(FEINT): NP=1and EP =0

e When using RETI instruction to return from El level software exception
(EITRAPO/EITRAPL): EP =1

RO1US0001EJ0100 Rev.1.00 Page 133 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Reserved instruction exception

RIE

Reserved instruction exception

[Instruction format] (1) RIE
(2) RIE imm5, imm4

[Operation] FEPC « PC (return PC)
FEPSW « PSW
ECR.FECC « exception code
FEIC « exception code
PSW.NP « 1
PSW.EP « 1
PSW.ID « 1
If (MPM.AUE==1) is satisfied
then PSW.IMP « 0
PSW.DMP « 0
PSW.NPV « 0
PSW.PP « 0
PC « 00000030H

[Format] (1) Format |
(2) Format X

[Opcode] 15 0
(1) |0000000001000000

15 031 16
(2) [1§T1§11112111111{0000000000000000

[Flags] CY -
ov -
S —
Z —
SAT -

[Description] Saves the contents of the return PC (address of the RIE instruction) and the current contents of the
PSW to FEPC and FEPSW, respectively, stores an exception source code in the FEIC register and
ECR.FECC bit, and sets (1) the PSW.NP, EP, and ID bits. If the MPM.AUE bit is set (1), it clears
(0) the PSW.PP, NPV, DMP, and IMP bits.
Execution then branches to the exception handler address (00000030H) and exception processing
is started.

RO1US0001EJ0100 Rev.1.00 Page 134 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

SAR

Shift arithmetic right by register/immediate (5-bit)

Arithmetic right shift

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)
®)

@)
@)
®)

SAR regl, reg2
SAR immb5, reg2
SAR regl, reg2, reg3

GR [reg2] < GR [reg?2] arithmetically shift right by GR [regl]

GR [reg2] « GR [reg2] arithmetically shift right by zero-extend
GR [reg3] « GR [reg2] arithmetically shift right by GR [reg1]

(1) Format IX
(2) Formatll
(3) Format XI
15 031 16
(1) |rrrrr111111RRRRR|{0000000010100000
15 0
(2) |rrrrrOl0l101iiiii
15 031 16
(3) [rrrrr111111RRRRR|wwwww00010100010
CY “1" if the last bit shifted out is “1”; otherwise, “0” including non-shift.
ov o0
S “1” if the operation result is negative; otherwise, “0".
Z “1” if the operation result is “0”; otherwise, “0".
SAT -

(1) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

@)

position specified by the lower 5 bits of general-purpose register regl, by copying the pre-shift

MSB value to the post-shift MSB. The result is written to general-purpose register reg2. When

the number of shifts is 0, general-purpose register reg2 retains the value prior to execution of

instructions. General-purpose register regl is not affected.

Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by copying the

pre-shift MSB value to the post-shift MSB. The result is written to general-purpose register reg2.

When the number of shifts is 0, general-purpose register reg2 retains the value prior to

execution of instructions.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 135 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(3) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the lower 5 bits of general-purpose register regl, by copying the pre-shift
MSB value to the post-shift MSB. The result is written to general-purpose register reg3. When
the number of shifts is 0, general-purpose register reg3 retains the value prior to execution of

instructions. General-purpose registers regl and reg2 are not affected.

RO1USO001EJ0100 Rev.1.00 Page 136 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Shift and set flag condition

SASF

Shift and flag condition setting

[Instruction format] SASF cccc, reg2

[Operation] if conditions are satisfied
then GR [reg2] <« (GR [reg2] Logically shift left by 1) OR 00000001H
else GR [reg2] < (GR [reg2] Logically shift left by 1) OR 00000000H

[Format] Format IX

[Opcode] 15 031 16
rrrrr1111110cccc|0000001000000000

[Flags] CY --
ov -

SAT -

[Description] When the condition specified by condition code “cccc” is met, logically left-shifts data of general-
purpose register reg2 by 1 bit, and sets (1) the least significant bit (LSB). If a condition is not met,
logically left-shifts data of reg2 and clears the LSB.

Designate one of the condition codes shown in the following table as [cccc].

Condition Name Condition formula Condition Name Condition formula
code code

0000 \Y ov=1 0100 S/N S=1

1000 NV ov=0 1100 NS/P S=0

0001 C/L Cy=1 0101 T always (unconditional)

1001 NC/NL CY=0 1101 SA SAT=1

0010 z z=1 0110 LT (S xor OV) =1

1010 NZ Z=0 1110 GE (S xor OV) = 0

0011 NH (CYorz)=1 0111 LE ((SxorOV)orz)=1

1011 H (CYorz)=0 1111 GT ((SxorOV)orz)=0
[Comment] Refer to the SETF instruction.
RO1USO0001EJO100 Rev.1.00 Page 137 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Saturated operation instructions>

SATADD

Saturated add register/immediate (5-bit)

Saturated addition

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

@
)
®)

1)
)
®)

1)
)
®)

1)

@)

®)

CY
ov
S

z
SAT

SATADD regl, reg2
SATADD immb5, reg2

SATADD reg1, reg2, reg3

GR [reg2] « saturated (GR [reg2] + GR [regl])
GR [reg2] « saturated (GR [reg2] + sign-extend (imm5))
GR [reg3] « saturated (GR [reg2] + GR [regl])

Format |

Format Il

Format XI

15 0
rrrrrOO0110RRRRR

rrrrr = 00000 (Do not
15 0

specify r0 for reg2.)

rrrrr = 00000 (Do not
15 0

specify r0 for reg2.)
31 16

rrrrr111111RRRRR

wwwww(01110111010

“1" if a carry occurs from MSB; otherwise, “0”".

“1" if overflow occurs; otherwise, “0".

“1” if saturated operation result is negative; otherwise, “0”.

“1” if saturated operation result is “0”; otherwise, “0".

“1”if OV = 1, otherwise, does not change.

(1) Adds the word data of general-purpose register regl to the word data of general-purpose

)

register reg2, and stores the result in general-purpose register reg2. However, when the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2, and when it
exceeds the maximum negative value 80000000H, 80000000H is stored in reg2; then the SAT

flag is set (1). General-purpose register reg1l is not affected.

Adds the 5-bit immediate data, sign-extended to the word length, to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. However, when

the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2,

and when it exceeds the maximum negative value 80000000H, 80000000H is stored in reg2;

then the SAT flag is set

Q).

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 138 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(3) Adds the word data of general-purpose register regl to the word data of general-purpose
register reg2, and stores the result in general-purpose register reg3. However, when the result
exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3, and when it
exceeds the maximum negative value 80000000H, 80000000H is stored in reg3; then the SAT

flag is set (1). General-purpose registers regl and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to
“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1".

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
2. Do not specify r0 as reg?2 in instruction format (1) SATADD reg1l, reg2 and in instruction
format (2) SATADD immb5, reg2.

RO1US0001EJ0100 Rev.1.00 Page 139 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Saturated operation instruction>

SATSUB

Saturated subtract

Saturated subtraction

[Instruction format] (1) SATSUB regl, reg2
(2) SATSUB regl, reg2, reg3
[Operation] (1) GR [reg2] « saturated (GR [reg2] — GR [regl])
(2) GR [reg3] « saturated (GR [reg2] — GR [regl])
[Format] (1) Format |
(2) Format XI
[Opcode] 15 0
(1) [rrrrrO00101RRRRR
rrrrr = 00000 (Do not specify r0 for reg2.)
15 031 16
(2 [rrrrr111111RRRRR|wwwww01110011010
[Flags] CcY “1” if a borrow occurs from MSB; otherwise, “0".
oV “1" if overflow occurs; otherwise, “0”.
S “1” if saturated operation result is negative; otherwise, “0".
z “1” if saturated operation result is “0”; otherwise, “0".
SAT “1"if OV = 1, otherwise, does not change.

[Description]

(1) Subtracts the word data of general-purpose register regl from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. If the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result
exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag

is set to “1". General-purpose register regl is not affected.

@)

Subtracts the word data of general-purpose register regl from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg3. However, when

the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3,

and when it exceeds the maximum negative value 80000000H, 80000000H is stored in reg3;

then the SAT flag is set (1). General-purpose registers regl and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to
“0" even if the result of the subsequent operation is not saturated. The saturated operation
instruction is executed normally, even with the SAT flag set to “1".
Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 as reg2 in instruction format (1) SATSUB regl, reg2.

RO1US0001EJ0100 Rev.1.00
Oct 17, 2012

Page 140 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Saturated operation instruction>

SATSUBI

Saturated subtract immediate

Saturated subtraction

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SATSUBI imm16, regl, reg2

GR [reg2] « saturated (GR [regl] — sign-extend (imm16))

Format VI

15 031 16

rrrrr110011RRRRR|EENINNDMRNNIONITI

rrrrr = 00000 (Do not specify rO for reg2.)

CcY “1" if a borrow occurs from MSB; otherwise, “0".

ov “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0".
z “1” if saturated operation result is “0”; otherwise, “0".

SAT “17if OV = 1; otherwise, does not change.

Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of general-

purpose register regl and stores the result in general-purpose register reg2. If the result exceeds

the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the
maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register regl is not affected.

[Comment] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to
“0” even if the result of the subsequent operation is not saturated. The saturated operation
instruction is executed normally, even with the SAT flag set to “1".
Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
2. Do not specify r0 for reg2.
R0O1US0001EJ0100 Rev.1.00 Page 141 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR

Saturated reverse subtraction

[Instruction format] SATSUBR regl, reg2

[Operation] GR [reg2] « saturated (GR [regl] — GR [reg2])
[Format] Format |
[Opcode] 15 0

rrrrrO0O0100RRRRR

rrrrr = 00000 (Do not specify rO for reg2.)

[Flags] CcY “1” if a borrow occurs from MSB; otherwise, “0".
ov “1” if overflow occurs; otherwise, “0”.
S “1” if saturated operation result is negative; otherwise, “0".
z “1” if saturated operation result is “0”; otherwise, “0".

SAT “17if OV = 1; otherwise, does not change.

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register regl and stores the result in general-purpose register reg2. If the result exceeds the

maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the
maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1".

General-purpose register regl is not affected.

[Comment] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to
“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1".

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
2. Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00 Page 142 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Conditional operation instructions>

SBF

Subtract on condition flag

Conditional subtraction

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SBF cccc, regl, reg2, reg3

if conditions are satisfied

then GR [reg3] « GR [reg2] — GR [regl] -1
else GR [reg3] < GR [reg2] — GR [regl] -0

Format XI

15 031 16

rrrrr111111RRRRR|wwwww011100ccccO

CcY “1” if a borrow occurs from MSB; otherwise, “0”.
ov “1” if overflow occurs; otherwise, “0”.

S “1” if operation result is negative; otherwise, “0".
Z “1” if operation result is “0”; otherwise, “0".

SAT -

Subtracts 1 from the result of subtracting the word data of general-purpose register regl from the
word data of general-purpose register reg2, and stores the result of subtraction in general-purpose
register reg3, if the condition specified by condition code “cccc” is satisfied.

If the condition specified by condition code “cccc” is not satisfied, subtracts the word data of
general-purpose register regl from the word data of general-purpose register reg2, and stores the
result in general-purpose register reg3.

General-purpose registers regl and register 2 are not affected. Designate one of the condition

codes shown in the following table as [cccc]. (However, cccc cannot equal 1101.)

Condition Name Condition Formula Condition Name Condition Formula
Code Code
0000 \Y ov=1 0100 SIN S=1
1000 NV ov=0 1100 NS/P S=0
0001 C/L Cy=1 0101 T always (Unconditional)
1001 NC/NL CY=0 0110 LT (S xorOV) =1
0010 z Z=1 1110 GE (SxoroVv)=0
1010 NZ Z=0 0111 LE ((SxorOV)orz)=1
0011 NH (CYorz)=1 1111 GT ((SxorOV)orz)=0
1011 H (CYorz)=0 (1101) Setting prohibited
RO1USO0001EJO100 Rev.1.00 Page 143 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Bit search instructions>

Search zero from left

SCHOL

Bit (0) search from MSB side

[Instruction format] SCHOL reg2, reg3

[Operation] GR [reg3] « search zero from left of GR [reg2]
[Format] Format IX
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101100100

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.
oV 0
S 0
z “1” if bit (0) is not found; otherwise, “0".
SAT -
[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose
register reg3 (e.g., when bit 31 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (0)
is eventually found, the CY flag is set (1).

RO1US0001EJ0100 Rev.1.00 Page 144 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Bit search instructions>

Search zero from right

SCHOR

Bit (0) search from LSB side

[Instruction format] SCHOR reg2, reg3

[Operation] GR [reg3] « search zero from right of GR [reg2]
[Format] Format IX
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101100000

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.
oV 0
S 0
z “1” if bit (0) is not found; otherwise, “0".
SAT -
[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose
register reg3 (e.g., when bit 0 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (0)
is eventually found, the CY flag is set (1).

RO1US0001EJ0100 Rev.1.00 Page 145 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Bit search instructions>

Search one from left

SCHI1L

Bit (1) search from MSB side

[Instruction format] SCH1L reg2, reg3

[Operation] GR [reg3] « search one from left of GR [reg2]
[Format] Format IX
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101100110

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.
oV 0
S 0
z “1” if bit (0) is not found; otherwise, “0".
SAT -
[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose
register reg3 (e.g., when bit 31 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, O is written to reg3, and the Z flag is simultaneously set (1). When bit (1)
is eventually found, the CY flag is set (1).

RO1US0001EJ0100 Rev.1.00 Page 146 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Bit search instructions>

Search one from right

SCH1R

Bit (1) search from LSB side

[Instruction format] SCH1R reg2, reg3

[Operation] GR [reg3] « search one from right of GR [reg2]
[Format] Format IX
[Opcode] 15 031 16

rrrrr11111100000|wwwww01101100010

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.
oV 0
S 0
z “1” if bit (0) is not found; otherwise, “0".
SAT -
[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose
register reg3 (e.g., when bit 0 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, O is written to reg3, and the Z flag is simultaneously set (1). When bit (1)
is eventually found, the CY flag is set (1).

RO1US0001EJ0100 Rev.1.00 Page 147 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

SET1

Set bit

Bit setting

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

@
@)

1)

@)

SET1 bit#3, displ16 [regl]
SET1 reg2, [regl]

adr < GR [regl] + sign-extend (disp16)
token « Load-memory (adr, Byte)

Z flag < Not (extract-bit (token, bit#3))
token « set-bit (token, bit#3)
Store-memory (adr, token, Byte)

adr < GR [regl]

token « Load-memory (adr, Byte)

Z flag < Not (extract-bit (token, reg2))
token « set-bit (token, reg2)
Store-memory (adr, token, Byte)

(1) Format VIl
(2) Format IX
15 031 16
(1) |00bbb111110RRRRR|dddddddddddddddd
15 031 16
(2 [rrrrr111111RRRRR|0000000011100000
CY --
ov -
S --
z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1".
SAT -

(1) Adds the word data of general-purpose register regl to the16-bit displacement data, sign-

)

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, the bits indicated by the 3-bit bit number are set (1) and the data is written back to the

original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1", the Z flag is cleared to “0".

Reads the word data of general-purpose register regl to generate a 32-bit address. Byte data

is read from the generated address, the lower 3 bits indicated of general-purpose register reg2

are set (1) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0".

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 148 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

[Comment] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate the

content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the
period between read and write operations, the target address is not affected by access due to

any other cause.

RO1USO001EJ0100 Rev.1.00 Page 149 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Set flag condition

SETF

Flag condition setting

[Instruction format] SETF cccc, reg2

[Operation] if conditions are satisfied
then GR [reg2] <« 00000001H
else GR [reg2] <~ 00000000H

[Format] Format IX

[Opcode] 15 031 16
rrrrr1111110cccc|0000000000000000

[Flags] CY --
ov -

SAT -

[Description] When the condition specified by condition code “cccc” is met, stores “1” to general-purpose register

reg2 if a condition is met and stores “0” if a condition is not met.

Designate one of the condition codes shown in the following table as [cccc].

Condition Name Condition formula Condition Name Condition formula
code code
0000 \% ov=1 0100 SIN S=1
1000 NV ov=0 1100 NS/P S=0
0001 C/L Cy=1 0101 T Always (unconditional)
1001 NC/NL Cy=0 1101 SA SAT=1
0010 z Z=1 0110 LT (Sxorov)=1
1010 Nz Z=0 1110 GE (Sxor0oVv)=0
0011 NH (CYorz)=1 0111 LE ((SxorOV)orz)=1
1011 H (CYorz)=0 1111 GT ((SxorOV)orz)=0
RO1USO0001EJO100 Rev.1.00 Page 150 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS
[Comment] Examples of SETF instruction:
(1) Translation of multiple condition clauses
If A of statement if (A) in C language consists of two or greater condition clauses (a1, az,
as, and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object code
executes “conditional branch” by checking the result of evaluation equivalent to an. Since a
pipeline operation requires more time to execute “condition judgment” + “branch” than to
execute an ordinary operation, the result of evaluating each condition clause if (an) is stored in
register Ra. By performing a logical operation to Ran after all the condition clauses have been
evaluated, the pipeline delay can be prevented.
(2) Double-length operation
To execute a double-length operation, such as “Add with Carry”, the result of the CY flag can
be stored in general-purpose register reg2. Therefore, a carry from the lower bits can be
represented as a numeric value.
RO1USO0001EJO100 Rev.1.00 Page 151 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

SHL

Shift logical left by register/immediate (5-bit)

Logical left shift

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)
®)

@)
@)
®)

@)
)
®)

SHL regl, reg2
SHL immb5, reg2
SHL regl, reg2, reg3

GR [reg2] < GR [reg?2] logically shift left by GR [reg1l]
GR [reg2] « GR [reg2] logically shift left by zero-extend (immb5)
GR [reg3] « GR [reg2] logically shift left by GR [reg1]

Format IX
Format Il

Format XI

15 031 16

@)

rrrrr111111RRRRR|0000000011000000

15 0

)

15 031 16

©)

rrrrr111111RRRRR|{wwwww00011000010

CY
ov
S

z
SAT

@

)

“1" if the last bit shifted out is “1”; otherwise, “0” including non-shift.
0
“1” if the operation result is negative; otherwise, “0".

“1” if the operation result is “0”; otherwise, “0".

Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position
specified by the lower 5 bits of general-purpose register regl, by shifting “0” to LSB. The result
is written to general-purpose register reg2. When the number of shifts is 0, general-purpose
register reg?2 retains the value prior to execution of instructions. General-purpose register regl
is not affected.

Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position
specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to LSB. The
result is written to general-purpose register reg2. When the number of shifts is 0, general-

purpose register reg2 retains the value prior to execution of instructions.

RO1US0001EJ0100 Rev.1.00 Page 152 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(3) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position
specified by the lower 5 bits of general-purpose register regl, by shifting “0” to LSB. The result
is written to general-purpose register reg3. When the number of shifts is 0, general-purpose
register reg3 retains the value prior to execution of instructions. General-purpose registers regl

and reg2 are not affected.

RO1USO001EJ0100 Rev.1.00 Page 153 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

SHR

Shift logical right by register/immediate (5-bit)

Logical right shift

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)
®)

@)
@)
®)

@)
)
®)

SHR reg1, reg2
SHR immb5, reg2
SHR regl, reg2, reg3

GR [reg2] < GR [reg?2] logically shift right by GR [reg1]
GR [reg2] « GR [reg2] logically shift right by zero-extend(imm5)
GR [reg3] « GR [reg2] logically shift right by GR [reg1]

Format IX
Format Il

Format XI

15 031 16

@)

rrrrr111111RRRRR|0000000010000000

15 0

)

15 031 16

©)

rrrrr111111RRRRR|{wwwwwO0010000010

CY
ov
S

z
SAT

@

)

“1" if the last bit shifted out is “1”; otherwise, “0” including non-shift.
0
“1” if the operation result is negative; otherwise, “0".

“1” if the operation result is “0”; otherwise, “0".

Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the lower 5 bits of general-purpose register regl, by shifting “0” to MSB.
The result is written to general-purpose register reg2. When the number of shifts is 0, general-
purpose register reg2 retains the value prior to execution of instructions. General-purpose
register regl is not affected.

Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to
MSB. The result is written to general-purpose register reg2. When the number of shifts is 0,

general-purpose register reg?2 retains the value prior to execution of instructions.

RO1US0001EJ0100 Rev.1.00 Page 154 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

(3) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the
position specified by the lower 5 bits of general-purpose register regl, by shifting “0” to MSB.
The result is written to general-purpose register reg3. When the number of shifts is 0, general-
purpose register reg3 retains the value prior to execution of instructions. General-purpose

registers regl and reg2 are not affected.

RO1USO001EJ0100 Rev.1.00 Page 155 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.B

Short format load byte

Load of (signed) byte data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SLD.B disp7 [ep] , reg2

adr « ep + zero-extend (disp7)

GR [reg2] « sign-extend (Load-memory (adr, Byte))

Format IV

15 0

rrrrr0110ddddddd

CY --
ov --

SAT -

Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to generate

a 32-bit address. Byte data is read from the generated address, sign-extended to word length, and

stored in reg2.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 156 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.BU

Short format load byte unsigned

Load of (unsigned) byte data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SLD.BU disp4 [ep] , reg2

adr « ep + zero-extend (disp4)

GR [reg2] « zero-extend (Load-memory (adr, Byte))

Format IV
15 0
rrrrr0000110dddd

rrrrr = 00000 (Do not specify rO for reg2.)

ov --

SAT -

Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to generate

a 32-bit address. Byte data is read from the generated address, zero-extended to word length, and

stored in reg2.

Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 157 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.H

Short format load halfword

Load of (signed) halfword data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SLD.H disp8 [ep] , reg2

adr « ep + zero-extend (disp8)

GR [reg2] « sign-extend (Load-memory (adr, Halfword))

Format IV
15 0
rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.

ov --

SAT -

Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Halfword data is read from this 32-bit address, sign-extended to word length, and

stored in general-purpose register reg2.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 158 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

Short format load halfword unsigned

SLD.HU

Load of (unsigned) halfword data

[Instruction format] SLD.HU disp5 [ep] , reg2

[Operation] adr « ep + zero-extend (disp5)

GR [reg2] « zero-extend (Load-memory (adr, Halfword))

[Format] Format IV
[Opcode] 15 0
rrrrro000111dddd

rrrrr = 00000 (Do not specify rO for reg2.)
dddd is the higher 4 bits of disp5.

[Flags] CY --

ov --

SAT -

[Description] Adds the element pointer to the 5-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Halfword data is read from this 32-bit address, zero-extended to word length, and

stored in general-purpose register reg2.

Caution Do not specify r0 for reg2.

RO1US0001EJ0100 Rev.1.00 Page 159 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.W

Short format load word

Load of word data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SLD.W disp8 [ep] , reg2

adr « ep + zero-extend (disp8)

GR [reg2] < Load-memory (adr, Word)

Format IV
15 0
rrrrr1010ddddddo

dddddd is the higher 6 bits of disp8.

ov --

SAT -

Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Word data is read from this 32-bit address, and stored in general-purpose register

reg2.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 160 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Store instruction>

SST.B

Short format store byte

Storage of byte data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SST.B reg2, disp7 [ep]

adr « ep + zero-extend (disp7)

Store-memory (adr, GR [reg2] , Byte)

Format IV

15 0

rrrrrO0l1llddddddd

CY --
ov --

SAT -

Adds the element pointer to the 7-bit displacement data, zero-extended to word length, to generate

a 32-bit address and stores the data of the lowest byte of reg2 to the generated address.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 161 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Store instruction>

SST.H

Short format store halfword

Storage of halfword data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SST.H reg2, disp8 [ep]

adr « ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Halfword)

Format IV
15 0
rrrrr100l1ddddddd

ddddddd is the higher 7 bits of disp8.

ov --

SAT -

Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address, and stores the lower halfword data of reg2 to the generated 32-bit address.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 162 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Store instruction>

SST.W

Short format store word

Storage of word data

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SST.W reg2, disp8 [ep]

adr « ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Word)

Format IV
15 0
rrrrr1010ddddddi

dddddd is the higher 6 bits of disp8.

ov --

SAT -

Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address and stores the word data of reg2 to the generated 32-bit address.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 163 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Store instruction>

Store byte

ST.B

Storage of byte data

[Instruction format] (1) ST.B reg2, displ6 [regl]
(2) ST.B reg3, disp23 [regl]

[Operation] (1) adr« GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Byte)

(2) adr« GR [regl] + sign-extend (disp23)
Store-memory (adr, GR [reg3], Byte)

[Format] (1) Format Vil
(2) Format XIV

[Opcode] 15 031 16
(1) |[rrrrr111010RRRRR|dddddddddddddddd

15 031 1647 32
(2) [00000111100RRRRR|wwwwwddddddd1101{DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
ddddddd is the lower 7 bits of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CcY --
ov -

SAT -

[Description] (1) Adds the data of general-purpose register regl to the 16-bit displacement data, sign-extended
to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose
register reg2 to the generated address.

(2) Adds the data of general-purpose register regl to the 23-bit displacement data, sign-extended
to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose

register reg3 to the generated address.

RO1US0001EJ0100 Rev.1.00 Page 164 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Store instruction>

ST.H

Storage of halfword data

Store halfword

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)

@)

@)

@)
)

@

@

CY

oV

SAT

ST.H reg2, displ6 [regl]
ST.H reg3, disp23 [regl]

adr « GR [regl] + sign

-extend (disp16)

Store-memory (adr, GR [reg2], Halfword)

adr < GR [regl] + sign

-extend (disp23)

Store-memory (adr, GR [reg3], Halfword)

Format VII
Format XIV

15

031

16

rrrrr111011RRRRR

dddddddddddddddO

1647

Where ddddddddddddddd is the higher 15 bits of disp16.
15 031

32

00000111101RRRRR

wwwwwdddddd01101

DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

(1) Adds the data of general-purpose register regl to the 16-bit displacement data, sign-extended

purpose register reg2 to the generated address.

to word length, to generate a 32-bit address and stores the lower halfword data of general-

(2) Adds the data of general-purpose register regl to the 23-bit displacement data, sign-extended

purpose register reg3 to t

he generated address.

to word length, to generate a 32-bit address and stores the lowest halfword data of general-

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 165 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Store instruction>

Store word

ST.W

Storage of word data

[Instruction format] (1) ST.W reg2, disp16 [regl]
(2) ST.W reg3, disp23 [regl]

[Operation] (1) adr « GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Word)

(2) adr < GR [regl] + sign-extend (disp23)
Store-memory (adr, GR [reg3], Word)

[Format] (1) Format Vil
(2) Format XIV

[Opcode] 15 031 16
(1) |[rrrrri111011RRRRR|dddddddddddddddl

Where ddddddddddddddd is the higher 15 bits of disp16.
15 031 1647 32
(2) |[00000111100RRRRR|wwwwwdddddd01111(DDDDDDDDDDDDDDDD

Where RRRRR = regl, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --
ov --

SAT -

[Description] (1) Adds the data of general-purpose register regl to the 16-bit displacement data, sign-extended
to word length, to generate a 32-bit address and stores the word data of general-purpose
register reg2 to the generated 32-bit address.

(2) Adds the data of general-purpose register regl to the 23-bit displacement data, sign-extended
to word length, to generate a 32-bit address and stores the lowest word data of general-

purpose register reg3 to the generated 32-bit address.

RO1US0001EJ0100 Rev.1.00 Page 166 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Store contents of system register

STSR

Storage of contents of system register

[Instruction format] STSR reglID, reg2

[Operation] GR [reg2] « SR [regID]
[Format] Format IX
[Opcode] 15 031 16

rrrrrl111111RRRRR|{0000000001000000

[Flags] CcY --

ov --

SAT -

[Description] Stores the system register contents specified by the system register number (reglD) to general-

purpose register reg2. The system-register contents are not affected.

Caution The system register number regID is to identify a system register. Operation is not

guaranteed if the reserved system register ID is specified.

RO1US0001EJ0100 Rev.1.00 Page 167 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

Subtract
SUB
Subtraction
[Instruction format] SUB reg1, reg2
[Operation] GR [reg2] « GR [reg2] — GR [regl]
[Format] Format |
[Opcode] 15 0
rrrrrOO1101RRRRR
[Flags] CcY “1” if a borrow occurs from MSB; otherwise, “0”.
oV “1” if overflow occurs; otherwise, “0".
S “1” if the operation result is negative; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".
SAT -
[Description] Subtracts the word data of general-purpose register regl from the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register regl

is not affected.

RO1US0001EJ0100 Rev.1.00 Page 168 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Arithmetic instruction>

SUBR

Subtract reverse

Reverse subtraction

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SUBR reg1, reg2

GR [reg2] «—GR [regl] — GR [reg2]

Format |

15 0

rrrrrO0O1100RRRRR

CcY “1" if a borrow occurs from MSB; otherwise, “0".
oV “1" if overflow occurs; otherwise, “0".

S “1” if the operation result is negative; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".

SAT -

Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register regl and stores the result in general-purpose register reg2. General-purpose register regl

is not affected.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 169 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

SWITCH

Jump with table look up

Jump with table look up

[Instruction format] SWITCH regl

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

adr « (PC + 2) + (GR [regl] logically shift left by 1)
PC « (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Format |
15 0
0O0000000010RRRRR

RRRRR = 00000 (Do not specify r0 for regl.)

ov --

SAT -

The following steps are taken.

(1) Adds the start address (the one subsequent to the SWITCH instruction) to general-purpose

register regl, logically left-shifted by 1, to generate a 32-bit table entry address.
(2) Loads the halfword entry data indicated by the address generated in step (1).

(3) Adds the table start address after sign-extending the loaded halfword data and logically left-
shifting it by 1 (the one subsequent to the SWITCH instruction) to generate a 32-bit target

address.

(4) Jumps to the target address generated in step (3).

Cautions 1.
2.

Do not specify r0 for regl.

In the SWITCH instruction memory read operation executed in order to read the table,
processor protection is performed.

When memory protection (PSW.DMP = 1) or peripheral device protection (PSW.PP = 1) is
enabled, loading the data for generating a target address from a table allocated in an area
to which access from a user program is prohibited cannot be performed.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 170 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Sign extend byte

SXB

Sign-extension of byte data

[Instruction format] SXB regl

[Operation] GR [regl] « sign-extend (GR [regl] (7:0))
[Format] Format |
[Opcode] 15 0
00000000101RRRRR
[Flags] CcY --
ov -
S -
Z -
SAT -
[Description] Sign-extends the lowest byte of general-purpose register regl to word length.
R01US0001EJ0100 Rev.1.00 Page 171 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Sign extend halfword

SXH

Sign-extension of halfword data

[Instruction format] SXH regl

[Operation] GR [regl] « sign-extend (GR [reg1] (15:0))
[Format] Format |
[Opcode] 15 0
00000000111RRRRR
[Flags] CcY --
ov -
S -
Z -
SAT -
[Description] Sign-extends the lower halfword of general-purpose register regl to word length.
R01US0001EJ0100 Rev.1.00 Page 172 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Synchronize exceptions

SYNCE

Exception synchronization instruction

[Instruction format] SYNCE

[Operation] Starts execution when exceptions are synchronized, and increments PC by +2 without executing
anything.
[Format] Format |
[Opcode] 15 0
0000000000011101
[Flags] CY --
ov -
S -
Z -
SAT -
[Description] Waits for the synchronization of all preceding exceptions before starting execution.

It does not perform any operation but is completed when its execution is started.

“Exception synchronization” means that all exceptions that are generated by the preceding
instructions are notified to the CPU and are kept waiting until their priority is judged. If a condition
of acknowledging exceptions is satisfied before this instruction is executed, therefore, all imprecise
exceptions (FPI and PPl exceptions) that are generated because of the preceding instructions are
always acknowledged before execution of this instruction is completed. This instruction can be
used to guarantee completion of exception processing by the preceding task before a task is

changed or terminated in a multi-processing environment.

RO1US0001EJ0100 Rev.1.00 Page 173 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

Synchronize memory

SYNCM

Memory synchronize instruction

[Instruction format] SYNCM

[Operation] Starts execution when accesses to the memory device are synchronized, and increments PC by +2

without executing anything.

[Format] Format |

[Opcode] 15 0
0000000000011110

[Flags] CcY --
ov -

SAT -

[Description] Waits for the synchronization of all preceding memory accesses before starting execution.
“Synchronization” refers to the status where the result of preceding memory accesses can be
referenced by any master device within the system.

In cases such as when buffering is used to delay memory accesses and synchronization of all
memory accesses has not occurred, the SYNCM instruction does not complete and waits for the
synchronization.

The subsequent instructions will not be executed until the SYNCM instruction execution is complete.

RO1US0001EJ0100 Rev.1.00 Page 174 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

SYNCP

Synchronize pipeline

Pipeline synchronize instruction

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SYNCP

Starts execution when pipeline is synchronized, and increments PC by +2 without executing

anything.

Format |

15 0

0000000000011111

ov --

SAT -

Waits until execution of all previous instructions is completed before being executed. Execution of

this instruction increments PC by +2.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 175 of 473

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

SYSCALL

System call

System call exception

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

SYSCALL vector8

EIPC « PC + 4 (return PC)
EIPSW « PSW
EIIC « exception code (8000H-80FFH)
ECR.EICC « exception code (8000H-80FFH)
PSW.EP « 1
PSW.ID « 1
If (MPM.AUE==1) is satisfied
then PSW.IMP « 0
PSW.DMP « 0
PSW.NPV « 0
PSW.PP « 0
if (vector8 <= SCCFG.SIZE) is satisfied
then adr «— SCBP + zero-extend (vector8 logically shifted left by 2)
else adr « SCBP
PC « SCBP + Load-memory (adr, Word)

Format X

15 031 16

11010111111vvvvv|00VVV00101100000

where VVV is the higher 3 bits of vector8 and vvvvv is the lower 5 bits of vector8.

ov --

SAT -

This instruction calls the system service of an OS.

<1> Saves the contents of the return PC (address of the instruction next to the SYSCALL
instruction) and PSW to EIPC and EIPSW.

<2> Stores the exception code corresponding to vector8 to the EIIC register and ECR.EICC bit.
The exception code is the value of vector8 plus 8000H.

<3> Sets (1) the PSW.ID and EP bits.

RO1US0001EJ0100 Rev.1.00 Page 176 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<4>

<5>

<6>
<7>

<8>

Clears (0) the PSW.PP, NPV, DMP, and IMP bits when the MPM.AUE bit is 1.

Generates a 32-bit table entry address by adding the value of the SCBP register and vector8
that is logically shifted 2 bits to the left and zero-extended to a word length.

If vector8 is greater than the value specified by the SIZE bit of system register SCCFG;
however, vector8 that is used for the above addition is handled as 0.

Loads the word of the address generated in <5>.

Generates a 32-bit target address by adding the value of the SCBP register to the data in <6>.

Branches to the target address generated in <7>.

3.

Cautions 1. This instruction is dedicated to calling the system service of an OS. For how to use it in
the user program, refer to the Function Specification of each OS.

In the SYSCALL instruction memory read operation executed in order to read the table,
processor protection is not performed.

When memory protection (PSW.DMP = 1) or peripheral device protection (PSW.PP = 1) is
enabled, loading the data for generating a target address from a table allocated in an area
to which access from a user program is prohibited can be performed.

RO1US0001EJ0100 Rev.1.00 Page 177 of 473

Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Special instruction>

TRAP

Trap

Software exception

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

TRAP vector5

EIPC « PC + 4 (return PC)

EIPSW « PSW

ECR.EICC « exception code (40H to 5FH)
EIIC « exception code (40H to 5FH)

PSW.EP « 1
PSW.ID <1

If (MPM.AUE==1) is satisfied
then PSW.IMP « 0
PSW.DMP « 0
PSW.NPV « 0
PSW.PP <0
PC « 00000040H (when vector5: 00H to OFH (exception code: 40H to 4FH))

00000050H (when vector5: 10H to 1FH (exception code: 50H to 5FH))

Format X
15 031 16
00000111111vvvvv|{0000000100000000

VVVVV = vectorb

ov --

SAT -

Saves the contents of the return PC (address of the instruction next to the TRAP instruction) and

the current contents of the PSW to EIPC and EIPSW, respectively, stores the exception source
code in the EIIC register and ECR.EICC bit, and sets (1) the PSW.EP and ID bits. If the MPM.AUE
bit is set (1), it clears (0) the PSW.PP, NPV, DMP, and IMP bits.

It then branches to an exception handler address corresponding to the vector (O0H to 1FH)

specified as “vector5” and starts exception processing.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 178 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

Test
TST
Test
[Instruction format] TST regl, reg2
[Operation] result « GR [reg2] AND GR [regl]
[Format] Format |
[Opcode] 15 0
rrrrrO0O1011RRRRR
[Flags] CcY --
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, 0.
SAT -
[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register regl. The result is not stored with only the flags being changed. General-purpose registers

regl and reg2 are not affected.

RO1US0001EJ0100 Rev.1.00 Page 179 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

TST1

Test bit

Bit test

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

1)
)

@)

@)

@)
@)

TST1 bit#3, displ6 [regl]
TST1 reg2, [regl]

adr « GR [regl] + sign-extend (disp16)
token « Load-memory (adr, Byte)

Z flag < Not (extract-bit (token, bit#3))
adr « GR [regl]

token « Load-memory (adr, Byte)

Z flag « Not (extract-bit (token, reg2))

1)

Format VIl

Format IX

15 031 16
11bbb111110RRRRR|dddddddddddddddd
15 031 16
rrrrr111111RRRRR|{0000000011100110

)

CY
ov

SAT

“1” if bit specified by operand = “0”, “0” if bit specified by operand = “1".

(1) Adds the word data of general-purpose register regl to thel6-bit displacement data, sign-

)

extended to word length, to generate a 32-bit address; checks the bit specified by the 3-bit bit

number at the byte data location referenced by the generated address. If the specified bit is “0”,

“1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is cleared to “0”. The byte data,

including the specified bit, is not affected.

Reads the word data of general-purpose register regl to generate a 32-bit address; checks the

bit specified by the lower 3 bits of reg2 at the byte data location referenced by the generated

address. If the specified bit is “0”, “1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is

cleared to “0". The byte data, including the specified bit, is not affected.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 180 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

Exclusive OR

XOR

Exclusive OR

[Instruction format] XOR reg1l, reg2

[Operation] GR [reg2] « GR [reg2] XOR GR [regl]
[Format] Format |
[Opcode] 15 0
rrrrrO0O1001RRRRR
[Flags] CcY --
oV 0
S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".
SAT -
[Description] Exclusively ORs the word data of general-purpose register reg2 with the word data of general-

purpose register regl and stores the result in general-purpose register reg2. General-purpose

register regl is not affected.

RO1US0001EJ0100 Rev.1.00 Page 181 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 5 INSTRUCTIONS

<Logical instruction>

XORI

Exclusive OR immediate (16-bit)

Exclusive OR immediate

[Instruction format]

[Operation]

[Format]

[Opcode]

[Flags]

[Description]

XORI imm16, regl, reg2

GR [reg2] < GR [regl] XOR zero-extend (imm16)

Format VI

15 031 16

rrrrr110101RRRRR|FITTIRITTININTITT

CY --

oV 0

S “1” if operation result word data MSB is “1”; otherwise, “0".
z “1” if the operation result is “0”; otherwise, “0".

SAT -

Exclusively ORs the word data of general-purpose register regl with the 16-bit immediate data,

zero-extended to word length, and stores the result in general-purpose register reg2. General-

purpose register regl is not affected.

RO1US0001EJ0100 Rev.1.00

Oct 17, 2012

Page 182 of 473

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Zero extend byte

ZXB

Zero-extension of byte data

[Instruction format] ZXB regl

[Operation] GR [regl] « zero-extend (GR [regl] (7:0))
[Format] Format |
[Opcode] 15 0
00000000100RRRRR
[Flags] CY --
ov --
S --
Z -
SAT -
[Description] Zero-extends the lowest byte of general-purpose register regl to word length.
RO1US0001EJ0100 Rev.1.00 Page 183 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 5 INSTRUCTIONS

<Data manipulation instruction>

Zero extend halfword

ZXH

Zero-extension of halfword data

[Instruction format] ZXH regl

[Operation] GR [regl] « zero-extend (GR [regl] (15:0))
[Format] Format |
[Opcode] 15 0
00000000110RRRRR
[Flags] CcY --
ov -
S -
Z -
SAT -
[Description] Zero-extends the lower halfword of general-purpose register regl to word length.
R01US0001EJ0100 Rev.1.00 Page 184 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPTIONS

CHAPTER 6 EXCEPTIONS

An exception is an unusual event that forces a branch operation from the current program to another program, due to
certain causes.

A program at the branch destination of each exception is called an “exception handler’. The exception handler start
address is set by the exception handler address switching function (see 6.4 Exception Handler Address Switching
Function).

| Caution The V850E2M CPU handles interrupts of the V850E1 and V850E2 CPU as types of exceptions.

6.1 Outline of Exceptions

The following describes the elements that assign properties to exceptions, and shows how exceptions work.

e Exception cause list

e Exception types

o Exception processing flow

e Interrupts

o Priority of exception acknowledgment
o Exception acknowledgment condition
e Resume and restoration

e Exception level and context saving

e Return instructions

6.1.1 Exception cause list
The V850E2M CPU supports the following types of exceptions.

RO1US0001EJ0100 Rev.1.00 Page 185 of 473
Oct 17, 2012

PART 2 CHAPTER 6 EXCEPTIONS

V850E2M

aJe 1aW UdaQ aABY SUONIPUOI JUBWBBpa|MOoUYIR By YdIyMm J0) pue alWi) sWes ayl 1e paiinddo aAey Jeyl suondaoxa Yolym Ul Japio syl o) siajal Aold ‘a|qel syl uj

‘pabpajmousoe

yleway

"Jonpo.d ay) Jo uoneluswaldwi ayy uo puadap YHISAS 8Y1 Jo sesned syl “/
"pauljep SI ‘10.id BIep B Sk YyoNns ‘Uoionasul Ue Jo 8snedad Sindd0 Jey Jodle ue Ji asioaidwi aq Aew)1 Ing SNouoJyouAse si asned ay) ‘Ajlelauso

1onpo.d ayi Jo uoneuawajdwi sy uo Buipuadap ‘asioaidwi 10 snouodyduAse aq Aew asned yoeg 9

‘0 = ANV WA uaym abueyod jou seop]l T = INV INCIN Usym O 01 Sabueyd [aAs] uonndaxa ayl °§

"OLNI wou stindul -y

'€ 1LdVd Ul TIATT NOILNDIAXT ¥ 4ILdVHD 98S ‘|9A8] UONNIAXa 8y} JO S|ie1dp 104 '€

‘uonauny Buiyoums Jsjpuey uondaosxa ayl Aq 18S SI ssaippe aseq ayl ‘¢

‘(uononasul
JUBLIND :DdIUaLINg ‘UoNINNSUI IXaU :Ddixau) (34 1o [3) |9A3] uondaaxa ayr Agq payioads are uoneunsap abelols sapod uondaoxa ayl pue ‘MSd pue Dd ulnal ayl ‘T S910N
HOLOT+ HO0L0T0000
: : (ggz 010 =U) 1dnuayul
134913 T 0 s G 810N HO800+ | Ddiua.LInd | HO8000000 0 0 MO MO 1dnusu| 13 6 »aonNAUT ULNI LNI a|gessew [and] |3
(as10a1dwi) uondaoxa
134913 T T s G 810N HOZ00+ | Ddiua1nd | HZ.000000 0 0 ON MO asioaldw| 13 8 uononisul Nd4 |dd | uoneiado juiod-Buneol4
1dnuaul
134934 T 0 T g 810N HOTOO0+ | Ddiua.nd | HOTO00000 0 x MO MO 1dnusu| 34 L paonNdUN INI3S | INI3S a|gevsew [9As| 34
uone|oIn uondaoxa
134934 T T T 0 HOE00+ | DdIUaLINd | HEEY00000 0 x MO MO |snouociyouhsy | 34 9 Bunoyuow Buiwi L ISt Buuoyuow Buiw |
uonejoiA uondsayosd dd uondaoxa uonoayoid
13934 T T T 0 HOE00+ | DdiUaLINd | HZEY00000 0 x ON MO asioaldw| EE| S 20I1Ap [esaydisad 301nap [esayduiad
HEEZ00000
134934 1 T T G 810N HOE00+ | Ddiua.LINd | HOEZ00000 x x ON ON 9 810N EE| ¥ |, ooy NAUL HHISAS | HHISAS | uondaoxe 1ol waishs
ydnuajul
134934 T 0 T g 910N H0Z00+ | Ddiuaind | H0Z000000 x x ON ON 1dnuau| 34 € yaonMdUIINNIS | INN3 | dlgeysew-uou [9A3] 34
9UON T 0 0 0 HO000+ 9UON 9UON X X ON ON w:OcoEoc\Aw«\ - T SQC_ 19s9y 13S3d uonezieniul Ndo
mmSz_®>®|_
al d3 | dN |uomnoax3| - 4aso dN al
MSd 18|pueH MSd
uononasuj taondd | {aon@POO (T J0 0 i) uonpuod [onaT
uinay (anes :s) anjeA ysauay Jaisibay uiney uondaoxy | wawbpamouydy |uonelolsay [awnsay adA1 uondaox3 | Auoud ashe) loquiAs aweN

(2/1) 1817 8sney uondaoxy "T-9 a|gel

Page 186 of 473

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

PART 2 CHAPTER 6 EXCEPTIONS

V850E2M

‘pabpajmouoe
aJle 18w uUsa(g aAeY SUORIPUOD JUsWBBpaMOoUNI. BUl YdIYyMm J0) pue awil swes ayl Je palinddo aAey Jeyl suondadxa yoiym ui Japio syl 0] siayal Aliold ‘s|gel ayl Ul Meway
"18S UOIIONAISU| €°G Ul UONONAISU| TIVISAS 998S ‘uoifeunsap youelq ayl o4 'g
‘pakosap aq Aew 218 ‘MSd ‘Od uinial [eulblio syl ul Sanfea ‘|aAa] uondadxa awes ay) e Uoi10as [ed1d e Bulinp SINd20 SIYl Usympy /L
‘0 = ANV WA uaym abueyd jou seopll ‘T = INV INCIN Uaym o 01 sabueyd [aAa] uonndaxa ayl 9
"uonINJISUI yaes Jo Japio uoneiado ay) 03 Buiplodde Jndd0 sasned asayl ‘G
"19Nnpoid yoes Jo [enuely S,1asn alempJieH ayl 8as ‘Indul Joila SSa298 UonoNISul 8yl 104 'y
'€ 1¥Vvd Ul 73A3T NOILNDIXT ¥ 4ALdVHD 93S ‘|9A3] UOIINJaXa 3y} JO S|ielsp 104 ¢
‘uonauny Buiyoums Jgjpuey uondaosxs ay) Aq 19s SI ssaippe aseq ayl ‘¢
‘(uononasul
1UB1IND :DdIUaLIND ‘UoNdNAISUI 1Xau :Ddixau) (34 1o |3) |ona] uondadxa ayl Ag palioads ale uoieunsap abelols apod uondaoxa ay) pue ‘MSd pue Od ulnial ayl T S910N
H44080000
: (H-4d 01 HOO = J0108n) X
13413 T T S 9 910N 8 910N DdIxau [HO0080000 X x yaondO | a0 9sldald 13 uononasul TIVOSAS | 3TIVOSAS |uondaoxs |[eo walsAs
H4S000000
: (H4T 01 HOT = 10308n) uondaoxa
13413 T T S 9 810N HOS00+ OdIXau [HOS000000 X X yoond0 |y o0 9s193.d 13 uononisul uTdvd L Tdvdll3 9JeM)JOs [9A9] |3
Hd1000000
: (HH0 031 00 = 103037) uondaoxa
13413 T T S 9 810N HOY00+ OdIXau [HO7000000 X X yoond0 |y o0 9s193.d 13 uondonJsul updvyd L 0dvdll3 9JeM)JOs [9A9] |3
H4€000000
: (H4 01 HT = J0103n) uondaoxa
13434 T T T 9 810N HOE00+ OdIXau [HTE000000 X X yoond0 |y a0 9s193ld 34 uononisul dvd134 | X3dvdl3d 9JeM}JOs [9A3] 34
uondaoxa
134934 T T T 9 810N HOE00+ | Ddualind [HOETO0000 X X y a0 |} a0 9s1d3ld 34 uononJsul paniasay X31Y | uononsul paaiesay
H.ES00000
: uononisul uondaoxa a|gqesnun
13434 T T T 9 810N HOE00+ | Ddualind [HOES00000 X x yaondO | a0 as1dald 34 10ss8001d0D d0donN 10ss8001d0D
(os102.1d)
uondaoxa uonelado
13413 T T S 9 910N HO0.00+ | Ddualind [HTZ000000 X x yaondO | a0 as1dald 13 uononisul Nd4d ddd 1uiod-6ureo|4
uone|[oA uondaoxa
13434 T T T 0 HOE00+ | DdIUa1INd | HTEY00000 x x paodO |y a0 | Osiaud| 34 1saon€T uonoajoud ereg danw uonosjoud ereg
HEEE00000
: s aonindut 1o uondaoxe
134934 T T T 9 910N HOEO0+ | Ddiualind [HOEEO0000 X x poonON | ;o ON 9s1dald 34 13 $S800€ uononisu| d3an 10118 Aowa
uone|[oIA uondaoxa
13434 T T T 0 HOE00+ | Ddiualind | HOEY00000 X X T (O Fpsvn(©) 9s193ld 34 1T uonoajold uonnaaxy dIW | uonoajoid uonnoaxgy
fooxa
al d3 dN i 3 2oon}SHO dN al
MSd J3|pueH MSd
uononJsu| taondd | 1a0y@P00 [(T 40 0 :x) uonipuod lena
winay (enes :s) anjeA ysauay Jaisibay uiney uondaoxg | juswbpamouxdy |uoneloisay |swnsay| adAL uondaox3 | Auoud asne) loquiAs aweN

(2/2) 111 esney uondaoxy "T-9 a|gel

Page 187 of 473

RO1USO0001EJ0100 Rev.1.00

Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.1.2 Types of exceptions

The V850E2M CPU classifies exceptions into the following four types by their timing of generation and characteristics.

Precise exception

e Imprecise exception

Asynchronous exception

Interrupt

(1) Precise exception
This exception is precise in that it is generated in synchronization with an instruction that has caused it. Examples
of this instruction are a software exception that is always generated as result of executing an instruction, and an
exception that is immediately generated if the result of instruction execution is illegal. Because execution can
branch to exception processing before the following instruction is executed in case of a precise exception, the
Note

original processing can be correctly executed after exception processing in many cases .

The following exceptions are classified as precise exceptions.

e Execution protection exception

e Memory error exception

o Data protection exception

o Floating-point operation exception (precise)
e Coprocessor unusable exception

o Reserved instruction exception

o FE level software exception

o El level software exception

e System call exception

Note If a memory error exception occurs, the original processing cannot be restored because the timing of generation
of this exception cannot be controlled.

RO1USO001EJ0100 Rev.1.00 Page 188 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

(2) Imprecise exception
This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction.
This is an imprecise exception that is belatedly generated if the result of executing the instruction preceding the
instruction that is to be aborted is illegal. In case of an imprecise exception, the original processing cannot be
restored and re-executed after processing of the exception because the instruction following the instruction that
has caused the imprecise exception may have already been completed, and because the status of the CPU when
the exception was caused is not saved.

The following exceptions are classified as imprecise exceptions.

o Peripheral device protection exceptions

¢ Floating-point operation exceptions (imprecise)

(3) Asynchronous exception
This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction. It is
not generated as a result of executing the current instruction but is generated independently of the instruction.

The following exceptions are classified as asynchronous exceptions.

e CPU initialization
e System error exception (Each source depends on the implementation.)

¢ Timing supervision exception

(4

~

Interrupt

This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction. It is
not generated as a result of executing the current instruction but is generated independently of the instruction. An
interrupt is an exception to execute any user program via interrupt controller.

The following exceptions are classified as interrupts.

e FE level non-maskable interrupt
o FE level maskable interrupt

e El level maskable interrupt

Unlike the other exceptions, the PSW.EP bit is cleared (0) when an interrupt is generated. Consequently,
termination of the exception handler routine is reported to the external interrupt controller when the return
instruction is executed. Be sure to execute an instruction that returns execution from an interrupt while the

PSW.EP bit is cleared (0).

Caution The PSW.EP bit is cleared (0) only when an interrupt (INTO to INT255, FEINT, or FENMI) is
acknowledged. Itis set (1) when any other exception occurs.
If an instruction to return execution from the exception handler routine that has been started
by generation of an interrupt is executed while the PSW.EP bit is set (1), the resources on the
external interrupt controller may not be released, causing malfunctioning.

RO1USO001EJ0100 Rev.1.00 Page 189 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.1.3 Exception processing flow
The handling flow for exceptions in relation to instruction execution and results is reflected (by writing to registers, etc.)

as shown below.

o D

Execute instruction

Acknowledge Yes

precise exception?

Reflect result of normal .
execution Reflect exception result

(via register, PC, etc.) (via register, PC, etc.)

-l ‘
g

D

Acknowledgment or non-acknowledgment of an interrupt, asynchronous exception, and imprecise exception is decided
before an instruction is executed. If the exception can be acknowledged, processing branches to exception processing.
After exception handing, if the current instruction execution that has been aborted must be executed again, the return PC
therefore stores the current instruction (Current PC).

By contrast, when a precise exception occurs, processing branches to exception processing unconditionally, as the
instruction execution result. If multiple causes of precise exceptions exist at the same time, only the one with the highest
priority is acknowledged. The return PC is determined according to that exception properties, and in cases where the
instruction does not have to be re-executed after an exception, such as with a software trap or single step exception, the
next instruction (Next PC) is stored. When re-execution is required, such as with a memory protection exception, the

current instruction (Current PC) is stored.

RO1USO001EJ0100 Rev.1.00 Page 190 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.1.4 Exception acknowledgment priority and pending conditions

Exception acknowledgment is when processing branches to the exception handler corresponding to the exception
cause after an exception has occurred due to that exception cause. The CPU is able to acknowledge only one exception
at a time. The following priority is used to determine which exception will be acknowledged. When multiple exceptions
occur at the same time, exceptions that are not acknowledged are held pending (Except for CPU initialization. For details,

refer to 6.2.5 Special operations).

Table 6-2. Exception Priority

Priority Exception Timing
High CPU initialization (RESET) Before instruction
A FE level non-maskable interrupt (FENMI) execution

System error exception (SYSERR)

Peripheral device protection exception (PPI)
Timing monitoring exception (TSI)

FE level maskable interrupt (FEINT)

Floating-point operation exception (imprecise) (FPI)

El level maskable interrupt (INT)

Execution protection exception (MIP) After instruction

Memory error exception (MEP) execution

Data protection exception (MDP)**®

Floating-point operation exception (precise) (FPP)"°*

Coprocessor unusable exception (UCPOP)"**

Reserved instruction exception (RIEX)""*
FE level software exception (FETRAPEX)""*
v El level software exception (EITRAPO/EITRAP1)"*

System call exception (SYSCALLEX)"**

Low

Note The priority is the same, and the exception occurs based on the instruction operations.

6.1.5 Exception acknowledgment conditions

The acknowledgment of some exceptions may be held pending according to certain conditions.

Exceptions that are listed in Table 6-1 with “0” in the acknowledgment condition column can be acknowledged only
when the relevant bit value is “0”. When one of these exceptions has a relevant bit value of “1”, acknowledgment of the

exception is held pending until the relevant bit value becomes “0”, at which time the exception can be acknowledged.

RO1USO001EJ0100 Rev.1.00 Page 191 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.1.6 Resume and restoration
When exception processing has been performed, it may affect the original program that was interrupted by the

acknowledged exception. This effect is indicated from two perspectives: “Resume” and “Restoration”.

e Resume: Indicates whether or not the original program can be resumed from where it was interrupted.
* Restoration: Indicates whether or not the processor status (status of processor resources such as general-
purpose registers and system registers) can be restored as they were when the original program was

interrupted.

6.1.7 Exception level and context saving

(1) Exception level
The V850E2M CPU manages exception causes in three exception levels (El level, FE level, and DB level). When
an exception occurs, the exception cause, return PC, and return PSW are automatically stored in the
corresponding return register according to each level (Except for CPU initialization. For details, refer to 6.2.5

Special operations).

Table 6-3. Exception Levels

Note

El Level Exceptions FE Level Exceptions DB Level Exceptions
El level maskable interrupt System error exception Debug exceptionNote
El level software exception FE level maskable interrupt

Floating-point operation exception FE level non-maskable interrupt
System call exception FE level software exception

Reserved instruction exception
Memory error exception

Execution protection exception

Data protection exception

Peripheral device protection exception
Timing monitoring exception

Coprocessor unusable exception

Note The DB level exceptions are used by the debug function for development tools

RO1USO001EJ0100 Rev.1.00 Page 192 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

(2) Context saving
Exceptions with certain acknowledgment conditions may not be acknowledged at the start of exception processing,
based on the pending bits (PSW.ID and NP bits) that are automatically set when another exception is
acknowledged.
To enable processing of multiple exceptions of the same level that can be acknowledged again, certain information
about the corresponding return registers and exception causes must be saved, such as to a stack. This
information that must be saved is called the “context”.
In principle, before saving the context, caution is needed to avoid the occurrence of exceptions at the same level.
The work system registers that can be used for work to save the context, and the system registers that must be at
least saved to enable multiple exception processing are called basic context registers.

These basic context registers are provided for each level.

Table 6-4. Basic Context Registers

Exception Level Basic Context Registers
El level EIPC, EIPSW, EIIC, EIWR
FE level FEPC, FEPSW, FEIC, FEWR
DB level"™® pBPCM®, DBPSW"®, DBIC"™®, DBWR""®

Note The DB level exceptions are used by the debug function for development tools

6.1.8 Return instructions

To return from exception processing, execute the return instruction (EIRET, FERET) corresponding to the relevant
exception level.

When a context has been saved, such as to a stack, the context must be restored before executing the return
instruction. When execution is returned from an irrecoverable exception, the status before the exception occurs in the
original program cannot be restored. Consequently, the execution result may be different from that when the exception

does not occur.

(1) EIRET instruction
The EIRET instruction is used to return from exception processing of El level.
When the EIRET instruction is executed, the CPU performs the following processing and then passes control to

the return PC address.

<1> Return PC and PSW are loaded from the EIPC and EIPSW registers.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

When EP = 0, reports that the exception handler routine execution has been ended to the external units (interrupt

controllers, etc.).

A return from El level exception processing is illustrated below.

RO1USO001EJ0100 Rev.1.00 Page 193 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

Figure 6-1. EIRET Instruction

(EIRET instruction)

PC « EIPC
PSW « EIPSW

Gump to return PC addres;

(2) FERET instruction
To return from FE level exception processing, execute the FERET instruction.

When the FERET instruction is executed, the CPU performs the next processing and then passes control to the
return PC address.

<1> Return PC and PSW are loaded from the FEPC and FEPSW registers.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

Figure 6-2. FERET Instruction

C FERET instruction)

PC « FEPC
PSW « FEPSW

1 Jump to return PC addresg

RO1USO001EJ0100 Rev.1.00

Page 194 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

(3) Execute the RETI instruction to return from an interrupt or El level software exception (EITRAPO/EITRAP1)

Caution The RETI instruction is defined for backward compatibility with the V850E1 and V850E2 CPU.
Therefore, in principle, use of the RETI instruction is prohibited. Except for existing
programs that cannot be revised, all RETI instructions should be replaced with EIRET or
FERET instructions.

If the RETI instruction is used, the operation is undefined except when returning from an
interrupt or El level software exception (EITRAPO/EITRAP1).

Execute the RETI instruction to return from an interrupt or El level software exception (EITRAPO/EITRAP1).
When the RETI instruction is executed, the CPU performs the next processing and then passes control to the

return PC address.

<1> When the PSW.EP bit is 0 and the PSW.NP bit is 1, the return PC and PSW are loaded from FEPC and
FEPSW. Otherwise, the return PC and PSW are read from EIPC and EIPSW.
<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

When returning from any type of exception processing, the LDSR instruction must be used just before the RETI
instruction to correctly restore the PC and PSW, and the flags for the PSW.NP and PSW.EP bits must be set to the

following status.

o When returning from FE level maskable interrupt servicingNOte : PSW.NP bit =1, PSW.EP bit=0
e When returning from El level maskable interrupt servicing : PSW.NP bit = 0, PSW.EP bit =0
e When returning from El level software exception (EITRAPO/EITRAP1) processing :PSW.EP bit=1

Note The RETI instruction cannot be used to return from FENMI. After exception processing, perform a

system reset. FENMI is acknowledged even when the PSW.NP bit is set (1).
The following figure illustrates return processing using the RETI instruction.

Figure 6-3. RETI Instruction

RET!I instruction

<Return from El level software
exception (EITRAPO/EITRAP1)>

<Return from FE level non-

No maskable interrupt>

PSW.NP =0 ?

Yes

<Return from El level
maskable interrupt>

PC <« EIPC PC < FEPC
PSW « EIPSW PSW « FEPSW

‘Jump to return PC address’

RO1USO001EJ0100 Rev.1.00 Page 195 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.2 Operations When Exception Occurs

6.2.1 El level exception without acknowledgment conditions

This exception can always be acknowledged because it cannot be disabled by changing the instruction or status of the
PSW from being acknowledged.

If an El level exception without acknowledgment conditions occurs, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Saves the return PC to EIPC.

<2> Saves the current PSW to EIPSW.

<3> Writes the exception code to EIIC register"°®.

<4> Sets (1) the PSW.ID bit.

<5> Sets (1) the PSW.EP bit.

<6> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,
DMP, and IMP bits will not be updated.

<7> Sets an exception handler address to the PC and transfers control to the exception handler routine.

Note Although the exception code is also written to the lower 16 bits (EICC) of the ECR register, the EIIC register

should be used except when using an existing program that cannot be revised.

EIPC and EIPSW are used as status save registers. An El level exception without acknowledgment conditions is
acknowledged even if it occurs while another El level exception is being processed (while the PSW.NP or PSW.ID bit is 1).
If an El level exception without acknowledgment conditions occurs before the context of the El level exception is saved,
therefore, the original PC and PSW may be damaged.

Because only one pair of EIPC and EIPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an El level exception without acknowledgment conditions is illustrated below.

RO1USO001EJ0100 Rev.1.00 Page 196 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 6 EXCEPITIONS

Figure 6-4. Processing Format of El Level Exception Without Acknowledgment Conditions

(Occurrence of exception)

EIPC < Return PC
EIPSW <« PSW

ElIC <« Exception code
PSW.ID «1

PSW.EP « 1

MPM.AUE =1

Yes

No

Clears (0) PSW.PP, NPV,
DMP, and IMP bits.

PC « Handler address

(Exception processing)

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 197 of 473

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.2.2 El level exception with acknowledgment conditions
This exception can be held pending by the PSW.ID and NP bits from being acknowledged.
If an El level exception with acknowledgment conditions is generated, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Holds the exception pending if the PSW.NP bit is set (1).

<2> Holds the exception pending if the PSW.ID bit is set (1).

<3> Saves the return PC to EIPC.

<4> Saves the current PSW to EIPSW.

<5> Writes an exception code to EIICN®.

<6> Sets (1) the PSW.ID bit.

<7> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<8> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,
DMP, and IMP bits will not be updated.

<9> Sets an exception handler address to the PC and transfers control to the exception handler.

Note Although the exception code is also written to the lower 16 bits (EICC) of the ECR register, the EIIC register

should be used except when using an existing program that cannot be revised.

EIPC and EIPSW are used as status save registers. An El level exception with acknowledgment conditions that has
occurred is held pending while other El level exception is being processed (while the PSW.NP or PSW.ID bit is 1). In this
case, if the PSW.NP and ID bits are cleared (0) by using the LDSR or El instruction, the El-level exception with
acknowledgment conditions which have been held pending is acknowledged.

Because only one pair of EIPC and EIPSW is available, the context must be saved in advance by the program before

multiple exceptions are enabled.

The format of processing of an El level exception with acknowledgment conditions is illustrated below.

RO1USO001EJ0100 Rev.1.00 Page 198 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

Figure 6-5. Processing Format of El Level Exception with Acknowledgment Conditions

(Occurrence of exception)

A

EIPC « Return PC
EIPSW <« PSW
ElIC <« Exception code

PSW.ID « 1
Interrupt? Other than interrupt
Interrupt
Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.
MPM.AUE = 1 ves

No
Clears (0) PSW.PP, NPV,
DMP, and IMP bits.

PC « Handler address

cheption processing pendina (Exception processing)

RO1USO001EJ0100 Rev.1.00 Page 199 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.2.3 FE level exception without acknowledgment conditions

This exception cannot be disabled by an instruction or by changing the status of PSW from being acknowledged and
can always be acknowledged.

If an FE level exception without acknowledgment conditions is generated, the CPU performs the following processing

and transfers control to the exception handler routine.

<1> Saves the return PC to FEPC.

<2> Saves the current PSW to FEPSW.

<3> Writes the exception code to FEICN* .

<4> Sets (1) the PSW.NP and ID bits.

<5> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<6> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,
DMP, and IMP bits will not be updated"“°* 2.

<7> Sets an exception handler address to the PC and transfers control to the handler.

Notes 1. Although the exception code is also written to the higher 16 bits (FECC) of the ECR register, the FEIC
register should be used except for when using the existing program that cannot be revised.
2. The PSW.PP, NPV, DMP, and IMP bits are always cleared (0) if an exception related to processor

protection (MDP or MIP exception) occurs.

FEPC and FEPSW are used as status save registers. An FE level exception without acknowledgment conditions is
acknowledged even if it occurs while other FE level exception is being processed (while the PSW.NP bit is 1). If the
exception occurs before the context of the FE exception level is saved, therefore, the original PC and PSW may be
damaged.

Because only one pair of FEPC and FEPSW is available, the context must be saved in advance by a program before
multiple exceptions are enabled.

The format of processing of an FE level exception without acknowledgment conditions is illustrated below.

RO1USO001EJ0100 Rev.1.00 Page 200 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 6 EXCEPITIONS

Figure 6-6. Processing Format of FE Level Exception Without Acknowledgment Conditions

(Occurrence of exception)

FEPC

FEIC

<« Return PC

FEPSW <« PSW

<« Exception code

PSW.NP « 1
PSW.ID «1

Interrupt?

Interrupt

Other than interrupt

Clears (0) PSW.EP bit.

Sets (1) PSW.EP bit.

MPM.AUE = 1V

No

Yes

Clears (0) PSW.PP, NPV, DMP,
and IMP bits.

PC « Handler address

(Exception processing

)

Note If a processor protection exception (MDP or MIP) occurs, the PSW.PP, NPV, DMP, and IMP bits

are always cleared (0) regardless of the status of MPM.AUE.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 201 of 473

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.2.4 FE level exception with acknowledgment conditions
This exception can be held pending by the PSW.NP bit from being acknowledged.
If an FE level exception with acknowledgment conditions is generated, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Holds the exception pending if the PSW.NP bit is set (1).

<2> Saves the return PC to FEPC.

<3> Saves the current PSW to FEPSW.

<4> \Writes an exception code to FEICN*?,

<5> Sets (1) the PSW.NP and ID bits.

<6> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<7> Clears (0) the PSW.PP, NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.PP, NPV,
DMP, and IMP bits will not be updated"“°* 2.

<8> Sets an exception handler address to the PC and transfers control to the exception handler.

Notes 1. Although the exception code is also written to the lower 16 bits (FECC) of the ECR register, the FEIC
register should be used except for when using the existing program that cannot be revised.
2. The PSW.PP, NPV, DMP, and IMP bits are always cleared (0) if an exception related to processor

protection (PPl or TSI exception) occurs.

FEPC and FEPSW are used as status save registers. An FE level exception with acknowledgment conditions that has
occurred is held pending while an other FE level exception is being processed (while the PSW.NP is 1). In this case, if the
PSW.NP bit is cleared (0) by using the LDSR instruction, the FE-level exception with acknowledgment conditions which
has been held pending is acknowledged.

Because only one pair of FEPC and FEPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an FE level exception with acknowledgment conditions is illustrated below.

RO1USO001EJ0100 Rev.1.00 Page 202 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

Figure 6-7. Processing Format of FE Level Exception with Acknowledgment Conditions

(Occurrence of exception)

PSW.NP =0

No

Yes

FEPC <« Return PC
FEPSW <« PSW
FEIC <« Exception code

PSW.NP « 1
PSW.ID « 1
Other than interrupt
Interrupt?
Interrupt
Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.

Yes

MPM.AUE = 1"°*

No Clears (0) PSW.PP, NPV, DMP,
and IMP bits.

PC « Handler address

(Exception processing pendina (Exception processing)

Note If a processor protection exception (PPl or TSI) occurs, the PSW.PP, NPV, DMP, and IMP bits are
always cleared (0), regardless of the status of MPM.AUE.

RO1USO001EJ0100 Rev.1.00 Page 203 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.2.5 Special operations

@

@)

EP bit of PSW register

If an interrupt is acknowledged, the PSW.EP bit is cleared (0). If an exception other than an interrupt is
acknowledged, the PSW.EP bit is set (1).

Depending on the status of the EP bit, the operation changes when the EIRET, FERET, or RETI instruction is
executed. If the EP bit is cleared (0), the end of the exception processing routine is reported to the external
interrupt controller. This function is necessary for correctly controlling the resources on the interrupt controller
when an interrupt is acknowledged or when execution returns from the interrupt.

To return from an interrupt, be sure to execute the return instruction with the EP bit cleared (0).

PP, NPV, DMP, and IMP bits of PSW register

If a processor protection exception is acknowledged, the PSW.PP, NPV, DMP, and IMP bits are unconditionally
cleared (0). If an exception other than the processor protection exception is acknowledged, the operation differs
depending on the setting of the MPM.AUE bit. If the MPM.AUE bit is set (1) (if the execution level auto transition
function is enabled), the PSW.PP, NPV, DMP, and IMP bits are cleared (0). If the MPM.AUE bit is cleared (0) (if
the execution level auto transition function is disabled), the value of the PSW.PP, NPV, DMP, and IMP bits is not

updated but the previous value is retained.

(3) Coprocessor unusable exception

The generated opcode of the coprocessor unusable exception changes depending on the function specification
of the product.

If an opcode defined as a coprocessor instruction is not implemented on the product or if its use is not enabled
depending on the operation status, the coprocessor unusable exception (UCPOP) immediately occurs when an
attempt to execute the coprocessor instruction is made.

For details, refer to CHAPTER 7 COPROCESSOR UNUSABLE STATUS.

(4) Reserved instruction exception

If an opcode that is reserved for future function extension and for which no instruction is defined is executed, a
reserved instruction exception (RIEX) occurs.
However, which of the following two types of operations each opcode is to perform may be defined by the

product specification.

e Reserved instruction exception occurs.

e Operates as a defined instruction.

An opcode for which a reserved instruction exception occurs is always defined as an RIE instruction.

RO1USO001EJ0100 Rev.1.00 Page 204 of 473
Oct 17, 2012

V850E2M

PART 2 CHAPTER 6 EXCEPITIONS

(5) System call exception

For a system call exception, a table entry to be referenced is selected by the value of a vector specified by the

opcode and the value of the SSCFG.SIZE bit, and the exception handler address is calculated in accordance with

the contents of that table entry and the value of the SCBP register.

If table size n is specified by SSCFG.SIZE, for example, a table entry is selected as follows. Note that, where n

< 255, table entry 0 is referenced from vector n+1 to 255.

Vector Exception Code Table Entry to Be Referenced

0 0000 8000H Table entry O

1 0000 8001H Table entry 1

2 0000 8002H Table entry 2
(omitted)

n-1 0000 8000H + (n-1) H Table entry n-1
n 0000 8000H + nH Table entry n
N+1 0000 8000H + (n+1) H Table entry O
(omitted)

254 0000 80FEH Table entry O
255 0000 80FFH Table entry 0

Caution Place an error processing routine at table entry 0 because it is also selected when a vector
exceeding n specified by SCCFG.SIZE is specified.

(6) Reset

An operation which is the same as an exception is performed to initialize the CPU by reset. However, reset

does not belong to any of El level exception, FE level exception. The reset operation is the same that of an

exception without acknowledgment conditions, but the value of each register is changed to the default value. In

addition, execution does not return from the reset status.

All exceptions that have occurred at the same time as CPU initialization are canceled and not acknowledged

even after CPU initialization.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 205 of 473

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.3 Exception Management

The VB850E2M CPU has the following functions to manage exceptions in order to prevent mutual interference between

tasks during multi-programming.

¢ Exception synchronization function when exception is acknowledged or when execution returns
e Exception synchronization instruction (SYNCE)
e Function to check pending exception

e Function to cancel pending exception

The VB850E2M CPU defines imprecise exceptions that have a delay time until the exception processing is started after
the cause of the exception has been generated, and asynchronous exceptions that are generated asynchronously with
instruction execution though they are linked with a task. The imprecise exception and asynchronous exception that are
generated for a specific task must be processed when a task is changed or terminated, so that the next task is not
executed without the exception being processed.

The VB850E2M CPU has an exception management function to wait for all exceptions caused by a task before the task
is changed or terminated, so that the exceptions are sequentially processed. This prevents the influence of illegal
processing of a certain task from reaching the other tasks. It also prevents termination processing of a task from being
completed without the exceptions being processed.

Exceptions must be managed in the following cases.

(1) To abort and terminate a task causing exceptions

If two or more exceptions are simultaneously generated for a task, care must be exercised in processing these
exceptions. In accordance with the exception priority, one of the exceptions is acknowledged first and processed.
While this exception is being processed, the other exception that is held pending must be managed. Consequently,
exceptions that are generated, caused by a task, must be synchronized until the task is terminated.

For example, if a floating-point exception (FPI exception) and a peripheral device protection exception (PPI
exception) are generated at the same time, peripheral device protection violation is acknowledged first, according
to the exception priority, and the other floating-point exception is held pending. The peripheral device protection
exception may be a relatively serious error and a situation where its task is forcibly terminated is assumed. In this
case, if execution returns from the peripheral device protection exception simply because the task has been
terminated, the pending floating-point exception is acknowledged as soon as execution of another task is started.
However, the task that has caused this floating-point exception has already been terminated and deleted from the
management table of the OS. Consequently, it may be mistakenly recognized that another task has caused the
exception.

If a task is terminated by exception processing related to that task, therefore, exception synchronization
processing is performed and then the other exception related to the task which has been held pending must be

canceled.

RO1USO001EJ0100 Rev.1.00 Page 206 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

Figure 6-8. To Terminate Task Causing Exception

Exception 2 related to Task A [If PPI exception related to a task

I and TSI exception due to deadline
violation related to that task are
generated

Exception 1 related to Task A [

OS scheduler - .

I Synchronization of exceptions

(2) If exception occurs immediately before task is terminated
If an imprecise exception or asynchronous exception occurs immediately before a task is terminated, the
termination processing is started before the exception is acknowledged. As a result, it may be wrongly recognized
that the task, which should be judged to have caused an abnormality, has been correctly terminated.
To terminate a task, therefore, exception synchronization processing must be performed to process the

exception first or the other exception that has been held pending must be canceled.

Figure 6-9. If Exception Occurs Immediately Before Task Is Terminated

To cancel an exception after checking it.
May be canceled by starting exception
processing with software after checking.

Exception related to Task A |

TerminateTask() ! L

Task A _—:_x """"""""""""""""""""""""

A

OS scheduler------=-=-=--=-=-=-----— b |
| Synchronization of exceptions

RO1USO001EJ0100 Rev.1.00 Page 207 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.3.1 Synchronizing exception when exception is acknowledged or when execution
returns

When the CPU acknowledges an El level or FE level exception or when it returns from an El level or FE level exception,

it waits for the next imprecise exception or asynchronous exception, and acknowledges the exceptions that can be

acknowledged in accordance with their priority.

e Peripheral device protection exception (PPI exception)
o Floating-point exception (FPI exception)

e Timing supervision exception in run-time supervision mode (TSI exception)

These exceptions are linked to a specific task. The CPU waits for and synchronizes the exceptions when it
acknowledges an El level or FE level exception that triggers switching the task or when it returns from the El level or FE

level exception. As a result of the CPU’s synchronizing the exceptions, the software can easily manage the exceptions.

6.3.2 EXxception synchronization instruction
The peripheral device protection exception and floating-point exception are synchronized by the SYNCE instruction. To

acknowledge these imprecise exceptions at any point of time, follow this procedure.

(1) Mask the acknowledgment conditions of the imprecise exception to be acknowledged (by clearing PSW.ID
and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this point, all the imprecise exceptions
that are generated by the instructions preceding the SYNCE instruction have always been reported to the
CPU. However, acknowledging an exception may be masked by the acknowledgment condition set in (1)
and the exception may have been held pending.

(3) As a result of (2), an exception that is not masked is acknowledged. If there are two or more sources of
exceptions, the exceptions are sequentially acknowledged in accordance with their priority.

6.3.3 Checking and cancelling pending exception

To check if there is an exception that is held pending, follow this procedure.

(1) Set a mask so that the acknowledgment conditions of the imprecise exception to be checked are not
satisfied (by setting PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise exceptions that
are generated by the instructions preceding the SYNCE instruction have always been reported to the CPU.
The exception to be checked is not acknowledged but held pending because of the mask set in (1).
However, the other exceptions may be acknowledged.

(3) Read the exception report bit of the exception to be checked. If the bit is 1, the exception has been held
pending.

(4) Clear the mask set in (1) as necessary.

RO1USO001EJ0100 Rev.1.00 Page 208 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

To not acknowledge but cancel a pending exception without executing exception processing, follow this procedure.

(1) Set a mask so that the acknowledgment conditions of the imprecise exception to be canceled are not
satisfied (by setting PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise exceptions that
are generated by the instructions preceding the SYNCE instruction have always been reported to the CPU.
The exception to be canceled is not acknowledged but held pending because of the mask set in (1).
However, the other exceptions may be acknowledged.

(3) Clear the exception report bit of the exception to be canceled.

(4) Perform waiting processing until cancellation is completed. The instruction sequence of the waiting
processing is defined as the product specification. Refer to the manuals of each product and hardware.

(5) When cancellation has been completed, clear the mask set in (1) as necessary.

The function to cancel each exception is provided by the following registers.

Exception Cause Cancelling Bit Remark

FPI exception | FPU instruction FPU bank If this bit is cleared, disabling the
FPEC register succeeding FPU instruction is canceled.
FPIVD bit

PPI exception | Instruction involving| Peripheral /O area If this bit is cleared, disabling the

memory access PPEC register succeeding access instruction is canceled.

PPVD bit

TSI exception | Timing supervision | Peripheral /O area -
TSUCFGn register (n=0to 5)
VS bit

RO1USO0001EJ0100 Rev.1.00 Page 209 of 473

Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.4 Exception Handler Address Switching Function

The V850E2M CPU can use the exception handler address switching function to change the exception handler address.
The exception handler address where processing is passed after an exception is determined by the value set by this
exception handler switching function.

The exception handler address switching function uses the following two banks among the system register banks. For
details, see 2.4 CPU Function Bank/Exception Handler Address Switching Function Banks.

The exception handler address are divided into the following three types.

e CPU initialization (RESET)
o El level maskable interrupts (INTO to INT255)

o All other types of exceptions

6.4.1 Determining exception handler addresses
The current exception handler address is indicated by the register assigned to exception handler switching function
bank 1 (ESWH1).

(1) Start address for CPU initialization (RESET)
This address is indicated by the EH_RESET register.

(2) El level maskable interrupt (INTO to INT255)

This interrupt is indicated by the EH_BASE register and the RINT bit in the EH_CFG register. The settings in
this register can be changed by software.

When the RINT bit is cleared (0), 256 different exception handler addresses that include the EH_BASE register
and offset addresses are used as the exception handler addresses for INTO to INT255.

When the RINT bit is set (1), the exception handler addresses for INTO to INT255 are reduced and a single
exception handler address specified by adding 0080H to EH_BASE is used.

Once an 4096-byte address range has been reserved for INTO to INT255 exception handler addresses,

reduction to 16 bytes can be performed by setting (1) the RINT bit.

Caution Even when using a reduced exception handler address, exception codes can be used to

distinguish among exception causes for INTO to INT255.

(3) Exception handler addresses for other types of exceptions
These addresses are indicated by the EH_BASE register. Offset addresses for each exception are added to
addresses indicated in the EH_BASE register to create the address that is used as the particular exception handler

address. The settings in this register can be changed by software.

RO1USO001EJ0100 Rev.1.00 Page 210 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 6 EXCEPITIONS

6.4.2 Purpose of exception handler address switching

Exception handler address switching setting is made by software after startup.

(1) Switch according to software
After system startup, addresses can be switched to set up a temporary consistent instruction address area
when instructions are not consistent at addresses near the exception handler address, for various reasons (such

as a flash memory rewrite).

6.4.3 Settings for exception handler address switching function

(1) Switch according to software
The following methods can be used to change the exception handler address via the following steps while the

CPU is operating.

Switch bank to EHSWO bank

Set SW_BASE register

Write 1 to SW_CTL.SET

=

When switching exception handler addresses, try to prevent exceptions from occurring between when the
switch is started and ended (or, if an exception does occur, try to prevent any problems it would cause). For
example, this can be done by prohibiting exceptions, by using control to prevent system-wide exceptions from
occurring, or by assigning only programs that operate normally to the exception handler addresses before and

after the switch.

Caution The CPU initialization (RESET) start address cannot be changed by software.

RO1USO001EJ0100 Rev.1.00 Page 211 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 7 COPROCESSOR UNUSABLE STATUS

CHAPTER 7 COPROCESSOR UNUSABLE STATUS

The V850E2M CPU defines a function limited to a specific application as a coprocessor. The V850E2M CPU can

implement a floating-point operation function (FPU) as a coprocessor.

7.1 Coprocessor Unusable Exception

A coprocessor unusable exception (UCPOP) occurs in the following cases if an opcode defined as a coprocessor

instruction is to be executed.

o If the coprocessor function is not defined
o If the coprocessor function is not implemented for the product

o If the coprocessor function is disabled by a function of the product

The coprocessor unusable exception is assigned an exception code for each coprocessor function. The

correspondence between the coprocessor functions and exception causes is shown in the following table.

Coprocessor Function Exception to Occur Exception Code
Single-precision FPU extension function UCPOPO 530H
Double-precision FPU extension function UCPOP1 531H

Undefined UCPOPO to UCPOP7"* 530H to 537H"®

Note Which exception occur for an undefined opcode is defined by the product specification. For details,
refer to the manuals of each product.

7.2 System Registers

System registers are defined as a part of some coprocessor functions. The operation of the system register of the

corresponding coprocessor function is undefined in the following cases because of the architecture.

o If the coprocessor function is not implemented on the product

o If the coprocessor function is disabled by a function of the product

RO1USO001EJ0100 Rev.1.00 Page 212 of 473
Oct 17, 2012

V850E2M PART 2 CHAPTER 8 RESET

CHAPTER 8 RESET

8.1 Status of Registers After Reset

If a reset signal is input by a method defined by the product specification, the program registers and system registers
are placed in the status shown in Table 8-1, and program execution is started. Initialize the contents of each register to an

appropriate value in the program.

Table 8-1. Status of Registers After Reset

Register Status After Reset (Initial Value)
Program registers | General-purpose register (r0) 00000000H (fixed)
General-purpose registers (rl to r31) Undefined
Program counter (PC) 00000000H
System registers | EIPC — Status save register when acknowledging El level exception Undefined
EIPSW - Status save register when acknowledging El level exception 00000020H
FEPC - Status save register when acknowledging FE level exception Undefined

FEPSW - Status save register when acknowledging FE level exception 00000020H

ECR - Exception cause 00000000H
PSW — Program status word 00000020H
SCCFG — SYSCAL operation configuration Undefined
SCBP — SYSCALL base pointer Undefined
EIIC - El level exception cause 00000000H
FEIC - FE level exception cause 00000000H
DBICN® — DB level interrupt cause 00000000H
CTPC — CALLT execution status save register Undefined
CTPSW — CALLT execution status save register 00000020H
CTBP — CALLT base pointer Undefined

EIWR - El level exception working register

FEWR - FE level exception working register

BSEL - Register bank selection 00000000H

Note The DBIC register is used by the debug function for development tools.

8.2 Start

The CPU executes a reset to start execution of a program from the reset address specified by the exception handler
address switching function.
INT exceptions are not acknowledged immediately after a reset. If the program will use INT exceptions, be sure to

clear (0) the PSW.ID bit.

RO1USO001EJ0100 Rev.1.00 Page 213 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 1 OVERVIEW

PART 3 PROCESSOR PROTECTION FUNCTION

RO1USO001EJ0100 Rev.1.00 Page 214 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 1 OVERVIEW

CHAPTER 1 OVERVIEW

The V850E2M CPU conforms to the V850E2v3 Architecture and supplies a processor protection function that detects
or prevents illegal use of system resources and inappropriate possession of the CPU execution time by non-trusted

programs or program loops, thereby enabling a highly-reliable system to be set up.

‘ Caution The available processor protection functions vary depending on the product.

1.1 Features

(1) Resource access control

The V850E2M CPU supplies a function to control accesses to the following four types of resources.

e System register protection

Damage to the system registers by a non-trusted program can be prevented.

e Memory protection
Up to five instruction or constant protection areas and six data protection areas can be placed on the address
space. As a result, execution or data manipulation by the user program that is not allowed is detected, so
that illegal execution or data manipulation can be prevented. Each area is specified using both upper-limit

and lower-limit addresses, so that the address space can be efficiently used with fine detail.

e Peripheral device protection

An illegal access defined for each system to a peripheral device can be detected and prevented.

e Timing supervision
Inappropriate CPU time possession by a non-trusted program can be prevented, and resources and time of

disabling interrupts can be managed.

(2) Management by execution level
The V850E2M CPU has more than one status bit to control accesses to the resources, and combinations of these
status bits are defined as execution levels.
The user can control accesses in accordance with a situation by selecting an execution level in accordance with
the situation, or by using an execution level auto transition function that automatically changes when some special

instructions are executed if an exception occurs or when execution returns from an exception.

RO1USO001EJ0100 Rev.1.00 Page 215 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 1 OVERVIEW

(3) Selectable and scalable specification
To use the execution level auto transition function, the OS (and programs similar to it), common library, and user
task must comply with a specific program model.
The V850E2M CPU employs scalable specification that allows processor protection to be used even when the
execution level auto transition function is not selected. Therefore, the processor protection can be easily
introduced to the existing software resources. Moreover, the operation can be performed, in a status without a

processor protection function as usual.

RO1USO001EJ0100 Rev.1.00 Page 216 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 2 REGISTER SET

CHAPTER 2 REGISTER SET

2.1 System Register Bank

Table 2-1 shows the system register banks related to the processor protection function.

The processor protection setting bank, the processor protection violation bank and the software paging bank are
selected by setting 00001001H, 00001000H and 00001010H to a system register (BSEL) by using an LDSR instruction.

System registers numbered 28 to 31 are shared by the banks, and the EIWR, FEWR, DBWRNOte, and BSEL registers of

the CPU function bank are referenced regardless of the set value of the BSEL register.

Note The DBWR register is used by the debug function for development tools.

e Processor protection violation bank
(Group number: 10H, Bank number: 00H, Abbreviation: MPV/PROTO0O0 bank, Stores processor protection
violation registers.)

e Processor protection setting bank
(Group number: 10H, Bank number: 01H, Abbreviation: MPU/PROTO1 bank, Stores processor protection setting
registers.)

e Software paging bank
(Group number: 10H, Bank number: 10H, Abbreviation: PROT10 bank, Stores processor protection

setting/violation registers.)
The following system register of the CPU function bank is used as a register related to the processor protection function.

e PSW register

RO1USO001EJ0100 Rev.1.00 Page 217 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 2

REGISTER SET

Table 2-1. System Register Bank

Group Processor Protection Function (10H)
Bank Processor protection violation (O0H) Processor protection setting (01H) Software paging (10H)
Bank label MPV, PROTO00 MPU, PROTO1 PROT10
Register No. Name Function Name Function Name
0 VSECR | System register protection violation MPM Setting of processor protection operation MPM
cause mode
1 VSTID System register protection violation task | MPC Specification of processor protection MPC
identifier command
2 VSADR | System register protection violation TID Task identifier TID
address
3 Reserved for function expansion Reserved for function extension VMECR
4 VMECR | Memory protection violation cause VMTID
5 VMTID Memory protection violation task identifier VMADR
6 VMADR | Memory protection violation address IPAOL Instruction/constant protection area 0 IPAOL
lower-limit address
7 Reserved for function expansion IPAOU Instruction/constant protection area 0 IPAOU
upper-limit address
8 IPALL Instruction/constant protection area 1 IPA1L
lower-limit address
9 IPALU Instruction/constant protection area 1 IPA1U
upper-limit address
10 IPA2L Instruction/constant protection area 2 IPA2L
lower-limit address
11 IPA2U Instruction/constant protection area 2 IPA2U
upper-limit address
12 IPA3L Instruction/constant protection area 3 IPA3L
lower-limit address
13 IPA3U Instruction/constant protection area 3 IPA3U
upper-limit address
14 IPA4L Instruction/constant protection area 4 IPA4L
lower-limit address
15 IPA4U Instruction/constant protection area 4 IPA4U
upper-limit address
16 DPAOL Data protection area 0 lower-limit address | DPAOL
(for stack)
17 DPAQU Data protection area 0 upper-limit address | DPAOU
(for stack)
18 DPAILL Data protection area 1 lower-limit address | DPA1L
19 DPA1U Data protection area 1 upper-limit address | DPA1U
20 DPA2L Data protection area 2 lower-limit address | DPA2L
21 DPA2U Data protection area 2 upper-limit address | DPA2U
22 DPA3L Data protection area 3 lower-limit address | DPA3L
23 DPA3U Data protection area 3 upper-limit address | DPA3U
24 MCA Memory protection setting check address | DPA4L Data protection area 4 lower-limit address | DPA4L
25 MCS Memory protection setting check size DPA4U Data protection area 4 upper-limit address | DPA4U
26 MCC Memory protection setting check DPA5L Data protection area 5 lower-limit address | DPA5L
command (2" specification only)
27 MCR Memory protection setting check result DPA5U Data protection area 5 upper-limit address | DPA5U
(2" specification only)
28 EIWR Work register for El level exception
29 FEWR Work register for FE level exception
30 DBWR"®" | Work register for DB level exception
e
31 BSEL Selection of register bank

Note The DBWR register is used by the debug function for development tools.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 218 of 473

V850E2M PART 3 CHAPTER 2 REGISTER SET

2.2 System Registers

(1) Processor protection setting registers
The processor protection setting registers select a processor protection mode and specifies a subject to protection.
A system register can be read or written by the LDSR or STSR instruction, by specifying one of the system register
numbers shown in this table.
Table 2-2 lists the processor protection setting registers.

Table 2-2. Processor Protection Setting Registers

System Name Function Able to Specify System
Register Operands? Register
Number LDSR STsr | Protection™**®
0 MPM Setting of processor protection operation mode \/ v \/
1 MPC Specification of processor protection command \/ v N
2 TID Task identifier \/ 3 J
3to5 (Reserved for future function expansion (Operation is not guaranteed if x x S
these registers are accessed.))
6 IPAOL Instruction/constant protection area 0 lower-limit address \ v S
7 IPAOU Instruction/constant protection area 0 upper-limit address \/ v N
8 IPALL Instruction/constant protection area 1 lower-limit address \ v S
9 IPALU Instruction/constant protection area 1 upper-limit address \/ v \/
10 IPA2L Instruction/constant protection area 2 lower-limit address N v N
11 IPA2U Instruction/constant protection area 2 upper-limit address \/ v \/
12 IPA3L Instruction/constant protection area 3 lower-limit address \ v N
13 IPA3U Instruction/constant protection area 3 upper-limit address \ v S
14 IPA4L Instruction/constant protection area 4 lower-limit address \/ v N
15 IPA4U Instruction/constant protection area 4 upper-limit address N v N
16 DPAOL Data protection area 0 lower-limit address \/ v \/
17 DPAOU Data protection area 0 upper-limit address N v \/
18 DPAIL Data protection area 1 lower-limit address S v J
19 DPA1U Data protection area 1 upper-limit address \ v \/
20 DPA2L Data protection area 2 lower-limit address S v J
21 DPA2U Data protection area 2 upper-limit address \/ v \/
22 DPA3L Data protection area 3 lower-limit address N v N
23 DPA3U Data protection area 3 upper-limit address \/ v \/
24 DPA4L Data protection area 4 lower-limit address \ v N
25 DPA4U Data protection area 4 upper-limit address \ v S
26 DPA5L Data protection area 5 lower-limit address \ v N
27 DPA5U Data protection area 5 upper-limit address N v \/

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.
Remark V: Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of
“System Register Protection”, this symbol indicates that the register is protected.
x: Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

RO1USO001EJ0100 Rev.1.00 Page 219 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 2 REGISTER SET

(2) Processor protection violation registers

The processor protection violation registers (memory protection violation report registers) report a violation causes,

violation task identifiers, and violation addresses. A system register can be read or written by the LDSR or STSR

instruction, by specifying one of the system register numbers shown in this table.

Table 2-3 lists the processor protection violation registers.

Table 2-3. Processor Protection Violation Registers

System Name Function Able to Specify System
Register Operands? Register
Number LDSR STSR |Protection™*
0 VSECR System register protection violation cause v v v
1 VSTID System register protection violation task identifier N N v
2 VSADR System register protection violation address v v v
3 (Reserved for future function expansion (Operation is not guaranteed if X x v
this register is accessed.))
4 VMECR Memory protection violation cause V y \
5 VMTID Memory protection violation task identifier v v v
6 VMADR Memory protection violation address N N v
71023 (Reserved for future function expansion (Operation is not guaranteed if x x v
these registers are accessed.))
24 MCA Memory protection setting check address N N v
25 MCS Memory protection setting check size N N v
26 MCC Memory protection setting check command v v v
27 MCR Memory protection setting check result v y \
Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark +: Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

X

“System Register Protection”, this symbol indicates that the register is protected.

Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 220 of 473

V850E2M PART 3 CHAPTER 2 REGISTER SET

(3) Software paging registers
The software paging registers realize software paging operation using memory protection. These registers are
maps of the processor protection setting registers and processor protection violation registers.
With the V850E2M CPU, it is a general rule to set a fixed memory protection area for each task to protect the
memory. However, an operation that sequentially changes protection setting by an exception program that is
started by a processor protection exception if a memory access is requested when the program accesses the
memory is assumed to provide for a case where the number of memory protection areas runs short in an
extremely large software system. This operation method is called software paging, and a bank consisting of
system registers suitable for this operation is defined as a software paging bank.
By using this bank, the switching of the bank can be reduced to once during a processor protection exception
processing. As a result, the software overhead can be reduced by decreasing the number of general-purpose
registers necessary for software paging and by reducing the execution cycles necessary for saving or restoring the
context.
Table 2-4 lists the software paging registers. A system register can be read or written by the LDSR or STSR

instruction, by specifying one of the system register numbers shown in the following table.

RO1USO001EJ0100 Rev.1.00 Page 221 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 2 REGISTER SET

Table 2-4. Software Paging Registers

System Name Function Able to Specify System

Register Operands? Register

Number LDSR STSR |Protection™
0 MPM Setting of processor protection operation mode N v \
1 MPC Specification of processor protection command S v <
2 TID Task identifier \/ \ J
3 VMECR Memory protection violation cause \/ y J
4 VMTID Memory protection violation task identifier S v N
5 VMADR Memory protection violation address \/ v \
6 IPAOL Instruction/constant protection area 0 lower-limit address \/ v <
7 IPAOU Instruction/constant protection area 0 upper-limit address N v \
8 IPALL Instruction/constant protection area 1 lower-limit address \/ v <
9 IPALU Instruction/constant protection area 1 upper-limit address \/ v N
10 IPA2L Instruction/constant protection area 2 lower-limit address N v S
11 IPA2U Instruction/constant protection area 2 upper-limit address \/ v \
12 IPA3L Instruction/constant protection area 3 lower-limit address N v \
13 IPA3U Instruction/constant protection area 3 upper-limit address \/ v <
14 IPA4L Instruction/constant protection area 4 lower-limit address N v \
15 IPA4U Instruction/constant protection area 4 upper-limit address N v S
16 DPAOL Data protection area O lower-limit address \/ v N
17 DPAOU Data protection area 0 upper-limit address N v S
18 DPA1L Data protection area 1 lower-limit address \ v <
19 DPA1U Data protection area 1 upper-limit address N v \
20 DPA2L Data protection area 2 lower-limit address \ v <
21 DPA2U Data protection area 2 upper-limit address \/ v \
22 DPA3L Data protection area 3 lower-limit address \/ y J
23 DPA3U Data protection area 3 upper-limit address \/ v \
24 DPA4L Data protection area 4 lower-limit address N v \
25 DPA4U Data protection area 4 upper-limit address \/ v <
26 DPA5L Data protection area 5 lower-limit address N v \
27 DPA5U Data protection area 5 upper-limit address \/ v S

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark V: Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

X:

“System Register Protection”, this symbol indicates that the register is protected.

Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column
of “System Register Protection”, this symbol indicates that the register is not protected.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 222 of 473

V850E2M PART 3 CHAPTER 2 REGISTER SET

2.2.1 PSW - Program Status Word

Bits related to the processor protection function are assigned to bits 16 to 19 of the PSW register in the CPU function

bank.

Figure 2-1. Memory Protection Operation Status Bits in PSW

31 1918 17 16 15 1211109 8 7 6 5 4 3 2 1 0
NID I S .
P S|S|S NIE| I c|O Initial value
PSw|o|o0|l0|0|0|0|0O|0O|O|0O|0O|O PMIM|0|/0O|0]|O 0 A S|z
PlviPlp S BIE|"|PPDT|YV 00000020H
Bit Position | Bit Name Description
19 PP Status bit of peripheral device protection.

This bit indicates whether the CPU trusts an access by the program currently under execution

to a peripheral device.
0: T state (CPU trusts the access to the peripheral device.) (initial value)
1: NT state (CPU does not trust the access to the peripheral device.)

The peripheral device protection function limits accesses if the PP bit indicates the T state. If

it indicates the NT state, it strictly limits accesses.

18 NPV Status bit of system register protection.

This bit indicates whether the CPU trusts an access by the program currently under execution

to the system register.
0: T state (CPU trusts the access to the system register.) (initial value)
1: NT state (CPU does not trust the access to the system register.)

The system register protection function does not limit accesses if the NPV bit indicates the T

state. If it indicates the NT state, it limits the accesses.

17 DMP Status bit of memory protection for data access (data area).

This bit indicates whether the CPU trusts a data access by the program currently under

execution. (initial value: 0)
0: T state (CPU trusts data access.) (initial value)
1: NT state (CPU does not trust data access.)

The memory protection function does not limit data access if the DMP bit indicates the T state.

If it indicates the NT state, it limits data access.

16 IMP Status bit of memory protection for program area
This bit indicates whether the CPU trusts an access by the program currently under execution

to a program area. (initial value: 0)
0: T state (CPU trusts the access to the program area.) (initial value)
1: NT state (CPU does not trust the access to the program area.)

The memory protection function does not limit an access to the program area if the IMP bit

indicates the T state. If it indicates the NT state, it limits an access to the program area.

RO1USO001EJ0100 Rev.1.00 Page 223 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 2 REGISTER SET

2.2.2 MPM - Setting of processor protection operation mode

The processor protection mode register determines the basic operation status of the processor protection function.

Usually, a value is set to this register only once when the system is started and is not changed arbitrarily as the program is

executed.
Be sure to set bits 31 to 3 to “0”.
(2/2)
31 210
|v|P|v|oooooooooooooooooooooooooooooEQEI (')rggg'o‘gga
Bit Position | Bit Name Description
2 SPS This bit enables or disables stack inspection of the memory protection function (initial value: 0).
By setting the SPS bit (1), a range accessible by an instruction that executes sp indirect
access can be limited to an area specified by the DPAOL/DPAOU register.
Depending on the set value of the SPS bit, the DPANL.S and IPANL.S bits take the following
value.
SPS bit=0 SPShit=1
IPANL.S bit 1 0
DPAOL.S bit"®* 1 1
DPAmML.S bit 1 0
Remark n=0to4, m=1to5
1 AUE This bit automatically changes the execution level if an exception occurs, and sets a function
to update the PSW.PP, NPV, DMP, and IMP bits (initial value: 0).
0: Does not automatically update.
The value of the PSW.PP, NPV, DMP, and IMP bits are not changed even if an
exception occurs™*® %2,
1: Automatically updates.
The value of the PSW.PP, NPV, DMP, and IMP bits is cleared to O if an exception
occurs.
Notes 1. The area specified by the DPAOL/DPAOU register can always be accessed in sp indirect
access mode.
2. The exception that changes the execution level to the DB level and the processor protection
violation exceptions (MDP, MIP, PPI, and TSI exceptions) are excluded. When these
exceptions are acknowledged, the PSW.PP, NPV, DMP, and IMP bits are always updated to 0
under any circumstances.
3. The PSW.NPV bit is fixed to 0 and cannot be changed if the MPM.AUE bit is cleared (0).
RO1USO0001EJ0100 Rev.1.00 Page 224 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 2 REGISTER SET

(212)
Bit Position | Bit Name Description
0 MPE This bit enables or disables the operation of the processor protection function (initial value: 0).
0: Processor protection function disabled
e PSW.PP bitis fixed to 0.
The peripheral device protection function limits accesses and detects only
violation of a special peripheral device. The PPI exception does not occur"®®,
e PSW.NPV bit is fixed to 0.
The system register protection function is disabled and access to all the system
registers is enabled.
e PSW.DMP and IMP bits are fixed to 0.
The memory protection function is disabled and all memory accesses are
enabled. The MIP and MDP exceptions does not occur.
e TSCCFGN.TSCCFGNACT bhit (n =0to 5) is fixed to 0.
The timing supervision function is disabled. The TSI exception does not
occur™®®,
1: Processor protection function enabled
e Updating the PSW.PP bit is enabled.
The peripheral device protection function strictly limits accesses and detects
violation in accordance with the setting. The PPI exception may occur.
e Updating the PSW.NPV bit is enabled.
The system register protection function is enabled and detects violation in
accordance with the setting.
e Updating the PSW.DMP and IMP bits is enabled.
The memory protection function is enabled and detects violation in accordance
with setting. The MIP and MDP exceptions may occur.
e Updating the TSCCFGN.TSCCFGNACT bit (n =0 to 5) is enabled.
The timing supervision function is enabled and operates in accordance with
setting. The TSI exception may occur.
Note However, the PPl or TSI exception that has been detected before the MPE bit is cleared to O
may be held pending. In this case, the PPI or TSI exception may be acknowledged when the
PSW.NP bit is cleared to O even if the MPE bit is O.
Remark For details on the PP, NPV, IMP, and DMP bits, refer to 2.2.1 PSW — Program Status Word.
RO1USO001EJ0100 Rev.1.00 Page 225 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 2 REGISTER SET

2.2.3 MPC - Specification of processor protection command
This register consists of bits that are used for special operation of the processor protection function.

Be sure to set bits 31 to 1 to “0".

31 10

AL]| Initial value
DS{ 00000000H

MpC|0|0|0O/0O|O/O|O|O/O|O|O|O|O|O|O|O|O|O|O|O|0O|O|O|0O|O|O|0O|O|0O|0Q]|O

Bit Position | Bit Name Meaning

0 ALDS When this bit is set (1), the protection operation bits of the entire memory protection area is
immediately cleared (0). The target bits are as follows.

IPAML.E bit (m =0to 4)
DPAnNL.E bit (n = 0to 5)
When all these bits have been cleared (0), the ALDS bit is also cleared (0).

Caution Even when the bits cleared (0) by the function of the ALDS bit are set (1) by the LDSR instruction
immediately after the LDSR instruction that has set the ALDS bit (1), the result in accordance
with the execution sequence of the instruction can be obtained (the target bits are set (1)).

2.2.4 TID - Task identifier

This register is used to set an identifier of a task under execution. The TID register setting is not automatically changed.

Be sure to set an appropriate value to the TID register by program when switching the task.

31 0
. rrrrrrrrrrrrrrtrrrrrrr -t T T T T Initial value
TID 00000000H
Bit Position | Bit Name Meaning
31to0 TID These bits set an identifier of a task under execution.

2.2.5 Other system registers
For details on the other system registers, refer to CHAPTER 5 SYSTEM REGISTER PROTECTION, CHAPTER 6
MEMORY PROTECTION, and CHAPTER 11 SPECIAL FUNCTION.

RO1USO001EJ0100 Rev.1.00 Page 226 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 3 OPERATION SETTING

CHAPTER 3 OPERATION SETTING

To use the processor protection function, an operation related to overall processor protection must be first set.
Switch the system register bank to the processor protection setting bank (group number: 10H, bank number: 01H) and
set an appropriate value to the MPM register.

3.1 Starting Use of Processor Protection Function

To enable the processor protection function, first the MPM.MPE bit must be set (1). If the MPE bit is cleared (0), the
PSW.PP, NPV, DMP, and IMP bits, and TSCCFGn.TSCCFGNnACT bit (n = 0 to 5) are fixed to 0, and each function of the
processor protection function does not operate. When the MPM.MPE bit is set (1), use of the processor protection
function is started as follows.

e The PSW.PP, NPV, DMP, and IMP bits can be updated.
(The system register protection function, memory protection function, and peripheral device protection function
can be used.)

e The TSCCFGNACT bit of the setting register (TSCCFGn) of each counter of the timing supervision function can
be updated.(The timing supervision function can be used.)

3.2 Setting of Execution Level Auto Transition Function

A function to automatically change the execution level is enabled by setting the MPM.AUE bit (1). To operate a system
with a program model that automatically changes the execution level, be sure to set the AUE bit before using the
processor protection function.

For details, refer to CHAPTER 4 EXECUTION LEVEL.

3.3 Stopping Use of Processor Protection Function

To disable the processor protection function that has been once enabled, clear (0) the MPM.MPE bit. As a result, the
PSW.PP, NPV, DMP, and IMP bits, and TSCCFGn.TSCCFGnACT bit (n = 0 to 5) are fixed to 0, and use of the processor
protection function is stopped as follows.

e The PSW.PP, NPV, DMP, and IMP bits are fixed to 0.
(The system register protection function, memory protection function, and peripheral device protection function
cannot be used.)

e The TSCCFGNACT bit of the setting register (TSCCFGn) of each counter of the timing supervision function is fixed
to 0.(The timing supervision function cannot be used.)

Caution When use of the processor protection function has been stopped, some processor protection
exceptions (PPl and TSI exceptions) that have been detected before the MPE bit is cleared to 0
may be held pending. In this case, these exceptions are acknowledged when the PSW.NP bit is
cleared to 0, even after the MPE bit has been changed to 0.

RO1USO001EJ0100 Rev.1.00 Page 227 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 4 EXECUTION LEVEL

CHAPTER 4 EXECUTION LEVEL

The V850E2M CPU indicates the reliability status of the program currently under execution and a right of access to the

resources of the program by controlling the following 4 bits of the PSW (Program Status Word). These bits are called

protection bits, and specific combinations of these bits are called execution levels.

e PP hit:

Indicates whether the CPU trusts an access by the program under execution to the peripheral device.

e NPV bit:

Indicates whether the CPU trusts an access by the program under execution to the system registers.

e DMP bit:

Indicates whether the CPU trusts data access by the program under execution.

e [MP bit:

Indicates whether the CPU trusts an access by the program under execution to the program area.

4.1 Nature of Program

Programs under execution are classified into “trusted programs” and “non-trusted programs” according to their design

quality. Generally, the “trusted programs” are programs that do not pose any threat to systems such as OS (and programs

similar to it) and device derivers. The “non-trusted programs” have not yet been confirmed that they do not pose any

threat to systems such as user programs under development and programs of third parties.

For each of the following four protected subjects; system registers, data area, program area, and peripheral devices,

PSW.PP, NPV, DMP, and IMP bits are defined as information by which the hardware can distinguish between the

operation of a trusted program and the operation of a non-trusted program. These bits have the following meaning for the

related resources, and are set to an appropriate value by the OS (and programs similar to it) before execution of each

program is started.

Status of Protection Bit

Status Name

Program Quality

0

T state

Trusted (trusted program)

1

NT state

Not trusted (non-trusted program)

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 228 of 473

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

4.2 Protection Bits on PSW

Protection bits (PP, NPV, DMP, and IMP bits) that indicate the reliability status of the program under execution on the
resources subject to processor protection are placed on PSW. Bits 19, 18, 17, and 16 of the PSW are defined as PP,

NPV, DMP, and IMP bits. Set these bits appropriately when using the processor protection function.

Caution The PSW.PP, NPV, DMP, and IMP bits are fixed to 0 when the MPM.MPE bit is 0. Because these
bits are subject to system register protection, they cannot be written when the NPV bit is 1.

4.2.1 T state (trusted state)

Set 0 to the protection bits if the operation of the program under execution on the resource corresponding to each bit
can be fully trusted and if the program does not perform an illegal operation. The state in which O is set to each of the
protection bits is considered as a state in which operation on the resource corresponding to the bit is “trusted” and is called
a T state.

Usually, when a program is in the T state, no violation is detected and the program performs a privileged operation.

Cautions 1. The peripheral device protection function detects violation of an operation on only
special peripheral devices even in the T state.

2. The concept of trusted state does not apply to the timing supervision function.

4.2.2 NT state (non-trusted state)

Set 1 to each of the protection bits if an operation by the program under execution on the resource corresponding to the
bit cannot be trusted and if the program may perform an illegal operation. A state in which each bit is set to 1 is
considered as a state in which the operation on the resource corresponding to the bit “cannot be trusted” and is called an
NT state.

If a program is in the NT state, violation is detected in accordance with setting and, in some cases, an exception occurs.

4.3 Definition of Execution Level

The V850E2M CPU assumes that some combinations of the statuses of the PSW.PP, NPV, DMP, and IMP bits which
are typically used are defined and used as execution levels. Use with any combinations other than these is possible but
not recommended.

Table 4-1 shows the execution levels and examples of their use.

Table 4-1. Execution Level

Execution PP Bit NPV Bit DMP Bit IMP Bit Example of Use of Execution Level
Level (peripheral device | (system register |(memory protection|(memory protection
protection) protection) data area) program area)
0 0 0 0 0 Exception handler, OS kernel, etc.
1 1 0 0 0 Device driver, etc.
2 1 0 1 1 Common library, etc.
3 1 1 1 1 User task
RO1USO0001EJ0100 Rev.1.00 Page 229 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

4.4 Transition of Execution Level

With the VB50E2M CPU, the execution level is mainly changed in the following three ways.

e Execution of write instruction to system registers
e Occurrence of exception

e Execution of return instruction

While the MPM.MPE bit is cleared (0), the PSW.PP, NPV, DMP, and IMP bits are fixed to 0 in any of the above cases,

and the execution level does not change from O.

Caution For the V850E2M CPU, executing the CALLT instruction does not cause a transition of the
execution level. Common subroutines called as a result of executing this instruction operate
with the same processor protection status as the caller.

4.4.1 Transition by execution of write instruction to system register
The PSW.PP, NPV, DMP, and IMP bits can be rewritten by executing a write instruction (LDSR instruction) to a system
register, so that the user can change the execution level to any level. The rewritten execution level becomes valid when

the next instruction is executed.

Cautions 1. When the PSW.NPV bit is set (1), the PSW.PP, NPV, DMP, and IMP bits cannot be
changed because the system registers are protected. Consequently, the execution
level is not changed (refer to CHAPTER 5 SYSTEM REGISTER PROTECTION).

2. When the MPM.AUE bit is cleared (0), the PSW.NPV bit is fixed to 0 and cannot be
changed.

3. If the setting of the PSW.IMP bit is changed by using the LDSR instruction, it may take
several instructions to reflect the new setting. In this case, the new setting can be
accurately reflected by performing a branch by executing the EIRET or FERET
instruction.

RO1USO001EJ0100 Rev.1.00 Page 230 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

4.4.2 Transition as result of occurrence of exception
The execution level auto transition function is enabled when the MPM.AUE bit is set (1). If an exception occurs in this

status, the PSW.PP, NPV, DMP, and IMP bits are automatically cleared (0) and the execution level changes to level 0.

Caution If an exception that causes the execution level to change to the DB level or a memory
protection exception (MDP, MIP, PPI, or TSI) occurs, the PSW.PP, NPV, DMP, and IMP bits are
automatically cleared (0) regardless of the setting of the AUE bit.

4.4.3 Transition by execution of return instruction

When a return instruction (RETI, EIRET, FERET, or CTRET) to return execution from an exception or the CALLT
instruction is executed, the value of the return PSW (EIPSW, FEPSW, or CTPSW) corresponding to the executed return
instruction is copied to the PSW. If the MPM.MPE bit is set (1) at this time, the value of the bits corresponding to the PP,
NPV, DMP, and IMP bits of the register that stores the value of the return PSW is copied to the PP, NPV, DMP, and IMP
bits of the PSW. The value of the PSW.PP, NPV, DMP, and IMP bits do not change if the MPE bit is cleared (0). The
NPV bit is always fixed to 0.

If an exception occurs, the value of the PSW before the exception occurs is saved for each exception level. If the value
of the register that stores the value of the return PSW is not changed while the exception is processed, the PP, NPV, DMP,
and IMP bits are restored to the status before occurrence of the exception when the exception return instruction is
executed. When viewed from the program that is interrupted by the exception, therefore, the execution level does not

change before and after the exception processing.

Cautions 1. The PSW.PP, NPV, DMP, and IMP bits are updated by the return instruction even when
the execution level auto transition function is disabled.

2. The execution level also changes when execution is returned by the CTRET
instruction from a subroutine that has been called by the CALLT instruction. However,
the value of the PSW when the CALLT instruction has been executed is saved to
CTPSW, and CTPSW is protected by the system register protection function.
Therefore, the state will not change to the T state even if the user illegally changes the
bit corresponding to the protected bit of CTPSW.

4.5 Program Model

By using the execution level auto transition function, two program models each having a different execution level

management policy can be selected. Select a program model suitable for your system.

e Program model that automatically changes execution level
The execution level auto transition function is enabled and the execution level is changed if an exception occurs.
This program model is suitable for being used by an OS (and programs similar to it) or a program that is

hierarchically managed.

e Program model that always operates at constant execution level
The execution level auto transition function is disabled and the execution level is not changed even when an
exception is acknowledged. The execution level is changed only by a special instruction executed by the user

program, so that processor protection can be easily applied to the existing software resources.

RO1USO001EJ0100 Rev.1.00 Page 231 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 4 EXECUTION LEVEL

4.6 Task ldentifier

The VB50E2M CPU is equipped with a register that identifies to which group the program currently being executed
belongs when two or more different program groups are executed. This group of programs is called a task. An identifier
for each task is defined as a task identifier and set to the TID register.

The processor protection function uses this task identifier as one piece of violation information when an exception

occurs.

RO1USO001EJ0100 Rev.1.00 Page 232 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

CHAPTER 5 SYSTEM REGISTER PROTECTION

The V850E2M CPU can control accesses to specific system registers to protect the setting of the system from being
illegally changed by a program that is not trusted (non-trusted program).

If a system register protection violation occurs, the violation information is saved in the system registers of the MPU
violation bank.

RO1USO001EJ0100 Rev.1.00 Page 233 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

5.1 Register Set

Table 5-1 shows the system registers related to the system register protection function.

Table 5-1. System Register Bank

Group Processor Protection Function (10H)
Bank Processor protection violation (O0H) Processor protection setting (01H) Software paging (10H)
Bank label MPV, PROT00 MPU, PROTO1 PROT10
Register No.| Name Function Name Function Name
0 VSECR | System register protection violation cause | MPM Setting of processor protection operation mode MPM
1 VSTID |[System register protection violation task MPC Specification of processor protection command MPC
identifier
2 VSADR | System register protection violation TID Task identifier TID
address

3 Reserved for function expansion Reserved for function expansion VMECR

4 VMECR | Memory protection violation cause VMTID

5 VMTID |Memory protection violation task identifier VMADR

6 VMADR | Memory protection violation address IPAOL [Instruction constant protection area O lower- IPAOL
limit address

7 Reserved for function expansion IPAOU [Instruction constant protection area 0 upper- IPAQU
limit address

8 IPALL [Instruction constant protection area 1 lower- IPALL
limit address

9 IPA1U |[Instruction constant protection area 1 upper- IPALU
limit address

10 IPA2L [Instruction constant protection area 2 lower- IPA2L
limit address

11 IPA2U |[Instruction constant protection area 2 upper- IPA2U
limit address

12 IPA3L |Instruction constant protection area 3 lower- IPA3L
limit address

13 IPA3U [Instruction constant protection area 3 upper- IPA3U
limit address

14 IPA4L [Instruction constant protection area 4 lower- IPA4L
limit address

15 IPA4U |Instruction constant protection area 4 upper- IPA4U
limit address

16 DPAOL |Data protection area 0 lower-limit address (for |DPAOL
stack)

17 DPAOQU [Data protection area 0 upper-limit address (for | DPAOU
stack)

18 DPAILL |Data protection area 1 lower-limit address DPA1L

19 DPA1U | Data protection area 1 upper-limit address DPA1U

20 DPA2L |Data protection area 2 lower-limit address DPA2L

21 DPA2U | Data protection area 2 upper-limit address DPA2U

22 DPA3L |Data protection area 3 lower-limit address DPA3L

23 DPA3U |Data protection area 3 upper-limit address DPA3U

24 MCA Memory protection setting check address DPA4L |Data protection area 4 lower-limit address DPA4L

25 MCS Memory protection setting check size DPA4U | Data protection area 4 upper-limit address DPA4U

26 MCC Memory protection setting check command [DPASL |Data protection area 5 lower-limit address (2" | DPA5L
specification only)

27 MCR Memory protection setting check result DPAS5U |Data protection area 5 upper-limit address (2" |DPA5U
specification only)

RO1USO001EJO0100 Rev.1.00
Oct 17, 2012

Page 234 of 473

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

5.1.1 VSECR - System register protection violation cause

This register indicates the number of times violation has been detected by the system register protection function.

Be sure to set 0 to bits 31 to 8.

31 8 7 0
Initial value
VSECR
o|0j0|0|O0]|O o|ojoj0|0f0O|O|O|O|O|O|O|O|O|0O|0O]|O VSEC 00000000H
Bit Position | Bit Name Description
7t00 VSEC These bits save the number of times the system register protection violation has been

detected.

When the value of the VSEC bit has reached 255, it is not incremented any longer and
remains as 255. When violation processing has been performed, clear the VSECR register
by program.

5.1.2 VSTID - System register protection violation task identifier

This register saves the contents of the task identifier (TID) when the first instruction that is detected by the system

register protection function as violation is executed.

31 0
Initial value
VSTID
VSTID Undefined
Bit Position | Bit Name Description
31to0 VSTID These bits store the value of the TID register (in the processor protection setting bank) if

system register protection violation is detected while the VSEC bit of the VSECR register is 0.

The VSTID register saves the identifier of the task that first violates system register protection
after violation processing.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 235 of 473

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

5.1.3 VSADR - System register protection violation address

This register saves the PC of the first instruction that is detected as violation by the system register protection function.
Bit 0 is fixed to 0.

31 0
e rrrrrrrrrrrrr ittt T .
Initial value
VSADR
VSADR Undefined
Bit Position | Bit Name Description
31to0 VSADR These bits store the PC of the instruction if system register protection violation is detected

while the VSEC bit of the VSECR register is 0.

The VSADR register saves the PC of the instruction that first violates system register
protection after violation processing.

Caution For a CPU whose instruction addressing range is partially limited to 512 MB, a value resulting from
a sign-extension of bit 28 of the VSADR register is automatically set to bits 31 to 29.

RO1USO001EJ0100 Rev.1.00 Page 236 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

5.2 Access Control

Note

A write access to the system register is controlled by the PSW.NPV bit

When the PSW.NPV bit is cleared (0) (T state), all the system registers that can be specified by the LDSR instruction
can be written. On the other hand, when the NPV bit is set (1) (NT state), a write access by the LDSR instruction to
specific system registers that are protected and to specific bits of such registers is blocked, and the written value is not
reflected on the registers.

By controlling write accesses in this way, the setting of the system registers can be protected from being changed by a
program that is not trusted (non-trusted program).

Note Only the write access by the LDSR instruction is controlled. The El, DI, and return instructions (EIRET, FERET,
and RETI) and operations to update the other system registers are not subject to access control.

Cautions 1. When the execution level auto transition function is disabled (AUE = 0), the NPV bit is fixed
to 0. As a result, write operations are not blocked by the system register protection
function.

2. Note that the PSW.NPV bit itself is also subject to system register protection. If the
PSW.NPV bit has been once set (1), it cannot be cleared (0) unless an exception occurs.

5.3 Registers to Be Protected
Refer to the item of system register protection on the list of the system register of below.

¢ Main banks
PART2 Table 2-2. System Register List (Main Banks)
e Exception handler switching function 0, 1
PART2 Table 2-3. System Register Bank
e User 0 bank
PART2 Table 2-4. System Register List (User 0 Bank)
e Processor Protection setting bank
PART3 Table 2-2. Processor Protection Setting Registers
¢ Processor Protection violation bank
PART3 Table 2-3. Processor Protection Violation Registers
e Software Paging bank
PART3 Table 2-4. Software Paging Registers
¢ FPU status bank
PART4 Table 2-1. System Register Bank

Caution All system register numbers for which no function is defined are subject to system register
protection.

RO1USO001EJ0100 Rev.1.00 Page 237 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

5.4 Detection of Violation

If the program under execution is not trusted (non-trusted program), set the PSW.NPV bit (1) so that the CPU operates
in the NT state. If a write access is made by the LDSR instruction to a system register protected by the system register
protection function while the CPU operates in the NT state, system register protection violation is immediately detected.

The following operations are performed when the system register protection violation has been detected.

e The write access operation by the LDSR instruction is blocked (the written value is not reflected on the register
value).

¢ If the value of the VSECR register is 0, the following operations are performed.
e The value of the TID register when the LDSR instruction is executed is stored in the VSTID register.
e The PC of the LDSR instruction is stored in the VSADR register.

e The value of the VSECR register is incremented by 1.

Caution The PSW register has bits that are protected and bits that are not protected. Therefore, it does not
detect violation even if an illegal write access is made to it. However, the write access to the

protected bits is blocked and the written value is not reflected on the value of these bits.

5.5 Operation Method

Check the status of detection of system register violation by using the VSECR, VSTID, and VSADR registers and take
an appropriate action each time the task has been changed by the OS (and programs similar to it) or at a specific interval.
If system register violation has been detected more than once, the chances are the system registers have been illegally
accessed between the previous check and the latest check.

In addition, be sure to clear the VSECR register before returning to the normal processing.

RO1USO001EJ0100 Rev.1.00 Page 238 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

CHAPTER 6 MEMORY PROTECTION

The V850E2M CPU can control accesses to the following two areas on the address space; the program area that is
referenced when an instruction is executed (instruction access) and the data area that is referenced when an instruction
that accesses the memory is executed (data access), to protect the system from illegal accesses by a program that is not
trusted (non-trusted program).

For memory protection for the VB50E2M CPU, memory protection areas are specified using a maximum and minimum
address. Areas that have a granularity of 16 bytes can be specified. Therefore, suitable protection can be set up by using
only a few areas. The specified addresses are retained in 32-bit system registers, and they completely cover a 4 GB

logical address space.

RO1USO001EJ0100 Rev.1.00 Page 239 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.1 Register Set

Table 6-1 lists the system registers related to the memory protection function.

Table 6-1. System Register Bank

Group Processor Protection Function (10H)
Bank Processor protection violation (O0H) Processor protection setting (01H) Software
paging (10H)
Bank label MPV, PROTOO MPU, PROTO1 PROT10
Register No.| Name Function Name Function Name

0 VSECR |System register protection violation cause |MPM Setting of processor protection operation mode MPM

1 VSTID |System register protection violation task |MPC Specifying processor protection command MPC
identifier

2 VSADR |System register protection violation TID Task identifier TID
address

3 Reserved for function expansion Reserved for function expansion VMECR

4 VMECR |Memory protection violation cause VMTID

5 VMTID |Memory protection violation task identifier VMADR

6 VMADR |Memory protection violation address IPAOL |Instruction/constant protection area 0 lower-limit address |IPAOL

7 Reserved for function expansion IPAOU |Instruction/constant protection area 0 upper-limit address |IPAOU

8 IPALL |Instruction/constant protection area 1 lower-limit address |IPA1L

9 IPALU |Instruction/constant protection area 1 upper-limit address [IPA1U

10 IPA2L |Instruction/constant protection area 2 lower-limit address |IPA2L

11 IPA2U |Instruction/constant protection area 2 upper-limit address |IPAZU

12 IPA3L |Instruction/constant protection area 3 lower-limit address |IPA3L

13 IPA3U |Instruction/constant protection area 3 upper-limit address [IPA3U

14 IPA4L |Instruction/constant protection area 4 lower-limit address |IPA4L

15 IPA4U |Instruction/constant protection area 4 upper-limit address |IPA4U

16 DPAOL |Data protection area 0 lower-limit address (for stack) DPAOL

17 DPAOU |Data protection area 0 upper-limit address (for stack) DPAOU

18 DPAILL |Data protection area 1 lower-limit address DPA1L

19 DPA1U |Data protection area 1 upper-limit address DPA1U

20 DPA2L |Data protection area 2 lower-limit address DPA2L

21 DPA2U |Data protection area 2 upper-limit address DPA2U

22 DPA3L |Data protection area 3 lower-limit address DPA3L

23 DPA3U |Data protection area 3 upper-limit address DPA3U

24 MCA Memory protection setting check address |DPA4L |Data protection area 4 lower-limit address DPA4L

25 MCS Memory protection setting check size DPAA4U |Data protection area 4 upper-limit address DPA4U

26 MCC Memory protection setting check DPASL |Data protection area 5 lower-limit address (2" specification |DPA5L
command only)

27 MCR Memory protection setting check result DPA5U |Data protection area 5 upper-limit address (2" DPA5U

specification only)
RO1USO001EJO100 Rev.1.00 Page 240 of 473

Oct 17, 2012

V850E2M

PART 3 CHAPTER 6 MEMORY PROTECTION

6.1.1 IPANL — Instruction/constant protection area n lower-limit address (n = 0 to 4)

This register is used to set the lower-limit address and operation of the instruction/constant protection area.

Be sure to set bit 3 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IPANL AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL 0 T S E Initial value
15 14 13 12 11 10 9 8 7 6 5 4 00000002H
Bit Position | Bit Name Description
31to4 AL31 to These bits set the lower-limit address or base address of the protection area depending on
AL4 the protection area specification mode set by the T bit.
Because bits 3 to O of the IPANL register are used for the other setting of the protection area,
bits 3 to 0 (AL3 to 0) of the lower-limit address or base address are implicitly 0.
2 T This bit selects a mode to specify a range of the protection area.
When the T bit is cleared (0), an upper-limit/lower-limit specification mode is selected. When
it is set (1), a mask/base specification mode is selected.
0: Upper-limit/lower-limit specification mode
(AU31 to 0 specify an upper-limit address and AL31 to 0 specify a lower-limit address.)
1: Base/mask specification mode
(AU31 to 0 specify a mask address and AL31 to O specify a base address.)

1 ghote This bit enables or disables data access to the protection area in the sp (r3) register indirect
access mode. When the S bit is cleared (0), accessing data placed in the protection area of
the data area in the sp (r3) register indirect access mode is prohibited.

If an instruction that accesses the access-prohibited protection area is executed, data
protection violation is detected, and MDP exception is immediately acknowledged.

0: Disables data access to protection area in sp (r3) register indirect access mode.

1: Enables data access to protection area in sp (r3) register indirect access mode.

0 E This bit enables or disable the setting of the protection area.

When the E bit is cleared (0), the contents of all the other setting bits are invalid, and no
protection area is set.
0: Invalid (Instruction/constant protection area n is not used.)
1: Valid (Instruction/constant protection area n is used.)
Note The S bit is fixed to 0 or 1 depending on the set value of the MPM.SPS bit. For details, refer to
2.2.2 MPM - Setting of processor protection operation mode.
Remark n=0to 4

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 241 of 473

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.1.2 IPANU - Instruction/constant protection area n upper-limit address (n =0 to 4)
This register is used to set the upper-limit address of the instruction/constant protection area.

Be sure to set bits 3 and 2 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IPANU|AU31|AU30|AU29| AU28| AU27|AU26| AU25 | AU24| AU23| AU22|AU21| AU20|AU19|AU18|AU17 |AU16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AU15|AUL4| AUL3| AU12| AUL1|AU10| AUS | AUS | AU7 | AU6 | AUS |AU4| 0 | 0 | R | x [IMitialvalue
00000000H
Bit Position | Bit Name Description
3lto4 AU31 to | These bits set the upper-limit address or mask value of the protection area, depending on the
AU4 protection area specification mode set by the T bit.

Because bits 3 to 0 of the IPAnU register are used for the other setting of the protection area,
bits 3 to 0 (AU3 to 0) of the upper-limit address or mask value are implicitly 1.

To specify a mask value, be sure to set a value of consecutive 1's from the least significant bit
(the operation cannot be guaranteed if a value having 1 and 0 alternately placed, such as
000050FFH, is specified).

1 R This bit enables or disables a read access to the protection area.

When the R bit is cleared (0), a read access to the data placed in the protection area of the
data area is prohibited.

If an instruction that reads the access-prohibited protection area is executed, data protection
violation is detected and the MDP exception is immediately acknowledged.

0: Disables read access to the protection area.

1: Enables read access to the protection area.

0 X This bit enables or disables instruction execution for the protection area.

When the X bit is cleared (0), execution of the program placed in the protection area of the
program area is prohibited.

If an instruction is executed for the protection area, instruction protection violation is detected
and the MIP exception is immediately acknowledged.

0: Disables instruction execution for the protection area.

1: Enables instruction execution for the protection area.

Remark n=0to4

RO1USO001EJ0100 Rev.1.00 Page 242 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.1.3 DPAnNL — Data protection area n lower-limit address (n = 0 to 5)
This register is used to set the lower-limit address and operation of the data protection area.

Be sure to set bit 3 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ppanL| AL AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL | AL 0 T S E Initial value
15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 Note 1
Bit Position | Bit Name Description
31to 4 AL31 to These bits set the lower-limit address or base address of the protection area depending on
AL4 the protection area specification mode set by the T bit.
Because bits 3 to 0 of the DPANL register are used for the other setting of the protection area,
bits 3 to 0 (AL3 to ALO) of the lower-limit address or base address are implicitly 0.
2 T This bit selects a mode to specify a range of the protection area.
When the T bit is cleared (0), an upper-limit/lower-limit specification mode is selected. When
itis set (1), a mask/base specification mode is selected.
0: Upper-limit/lower-limit specification mode
(AU31 to AUO specify an upper-limit address and AL31 to ALO specify a lower-limit
address.)
1: Base/mask specification mode
(AU31 to AUO specify a mask address and AL31 to ALO specify a base address.)

1 ghote 2 This bit enables or disables data access to the protection area in the sp (r3) register indirect
access mode. When the S bit is cleared (0), accessing data placed in the protection area of
the data area in the sp (r3) register indirect access mode is prohibited.

If an instruction that accesses the access-prohibited protection area for data is executed, data
protection violation is detected and MDP exception is immediately acknowledged.

0: Disables data access to protection area in sp (r3) register indirect access mode.

1: Enables data access to protection area in sp (r3) register indirect access mode.

0 E This bit enables or disable the setting of the protection area.

When the E bit is cleared (0), the contents of all the other setting bits are invalid, and no
protection area is set.
0: Invalid (Data protection area n is not used.)
1: Valid (Data protection area n is used.)
Notes 1. The default value differs depending on the channel.
DPAOL to DPA4L: 0000 0002H, DPAS5L: 0000 0006H
2. The S bitis fixed to 0 or 1 depending on the set value of the MPM.SPS bit. For details, refer to
2.2.2 MPM — Setting of processor protection operation mode.
Remark n=0to5

RO1USO001EJ0100 Rev.1.00 Page 243 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.1.4 DPAnNU — Data protection area n upper-limit address (n = 0to 5)
This register is used to set the upper-limit address of the data protection area.

Be sure to set bits 3 and 0 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DPANU AU\AU AU\AU\AU AU\AU\AU AU AU\AU AU AU\AU AU\AU
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AU\AU AU\AU\AU AU \AU \AU AU | AU \AU AU | \ w | R \ o | 'mital value
15 14 13 12 11 10 9 8 7 6 5 4 Note
Bit Position | Bit Name Description
31to4 AU31 to| These bits set the upper-limit address or mask value of the protection area, depending on the
AU4 protection area specification mode set by the T bit.
Because bits 3 to 0 of the DPANU register are used for the other setting of the protection area,
bits 3 to 0 (AU3 to AUO) of the upper-limit address or mask value are implicitly 1.
To specify a mask value, be sure to set a value of consecutive 1's from the least significant bit
(the operation cannot be guaranteed if a value having 1 and O alternately placed, such as
000050FFH, is specified).
2 W This bit enables or disables a write access to the protection area.
When the W bit is cleared (0), a write access to the data placed in the protection area of the
data area is prohibited.
If an instruction that writes data to the access-prohibited protection area is executed, data
protection violation is detected and the MDP exception is immediately acknowledged.
0: Disables write access to the protection area.
1: Enables write access to the protection area.
1 R This bit enables or disables a read access to the protection area.
When the R bit is cleared (0), a read access to the data placed in the protection area of the
data area is prohibited.
If an instruction that reads the protection area is executed, data protection violation is
detected and the MDP exception is immediately acknowledged.
0: Disables read access to the protection area.
1: Enables read access to the protection area.
Note The initial value differs depending on the channel.
DPAOQOU: 0000 0006H, DPA1U to DPA5U: 0000 0000H
Remark n=0to5

RO1USO001EJ0100 Rev.1.00 Page 244 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.1.5 VMECR - Memory protection violation cause

The VMECR register indicates a protection violation cause in case the MIP or MDP exception occurs.

Be sure to set bits 31 to 7 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VMECR| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

oo o |o|o|lo|o|o| o wms M vmsvmwvmrvmx| o | !ntalvalue

RMW 00000000H
Bit Position | Bit Name Description
6 VMMS This bit indicates whether a data protection exception occurs. It is set (1) if a data protection

exception occurs during misaligned access by the LD, ST, SLD, or SST instruction.
Otherwise, this bit is cleared (0).

5 VMRMW | This bit indicates whether a data protection exception occurs. It is set (1) if a data protection
exception occurs during access by the SET1, CLR1, NOT1, or CAXI instruction. Otherwise,
this bit is cleared (0).

4 VMS This bit is set if an MDP exception occurs due to sp indirect access violation. Otherwise, it is
cleared (0).

If this bit is set (1), the VMX bit is always cleared (0). This bit may be set (1) together with the
VMR and VMW bits.

3 VMW This bit is set (1) if an MDP exception occurs due to write access violation. Otherwise, it is
cleared (0).

If this bit is set (1), the VMX and VMR bits are always cleared (0). This bit may be set (1)
together with the VMS bit.

2 VMR This bit is set (1) if an MDP exception occurs due to read access violation. Otherwise, it is
cleared (0).

If this bit is set (1), the VMX and VMW bits are always cleared (0). This bit may be set (1)
together with the VMS bit.

1 VMX This bit is set if an MIP exception occurs due to instruction execution violation. Otherwise, it
is cleared (0).

If this bit is set (1), the VMR, VMW, and VMS bits are always cleared (0).

Remark For the status of each bit in case of an exception, refer to 9.3 Identifying Violation Cause.

RO1USO001EJ0100 Rev.1.00 Page 245 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 6 MEMORY PROTECTION

6.1.6 VMTID — Memory protection violation task identifier

The VMTID register stores the identifier of a task in case of the MIP or MDP exception.

31 0
I P et rrrrrrrrr T L
Initial value
VMTID
VMTID Undefined
Bit Position | Bit Name Description
31to0 VMTID These bits store the contents of the identifier of the task (value of the TID register) when an

instruction that causes either execution protection violation or data protection violation is
executed.

6.1.7 VMADR — Memory protection violation address

The VMADR register stores the address when the MIP or MDP exception has occurred.

31 0
I P e rrrrrrrr-rrr -t T T L
Initial value
VMADR
VMADR Undefined
Bit Position | Bit Name Description
31to0 VMADR These bits store the PC of the instruction that violates execution protection if execution

protection violation is detected, or the address of a data access if data protection violation is
detected.

Caution The PC value of the instruction that has detected execution protection violation may not match
the address of the instruction that has actually violated execution protection if the former
instruction is placed, extending from one address to another.

RO1USO001EJ0100 Rev.1.00 Page 246 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.2 Access Control

The PSW.IMP bit controls accesses to the program area that is referenced when an instruction is executed. If the IMP
bit is cleared (0) (T state), instruction execution in the entire program area is enabled, and an instruction at any position
can be freely executed. On the other hand, if the IMP bit is set (1) (NT state), an execution of instruction to the entire
program area is prohibited in general, and only instructions to a range enabled as a protection area where instruction
execution is enabled.

The PSW.DMP bit controls accesses to the data area that is referenced when an instruction that accesses the memory
is executed. If the DMP bit is cleared (0) (T state), memory access in the entire data area is enabled, and data at any
position can be freely read and written. On the other hand, if the DMP bit is set (1) (NT state), memory access to the
entire data area is disabled in general, and only the data in a range enabled as a protection area can be manipulated. In
addition, access control that considers writing, reading and stack manipulation is performed.

By these access control features, illegal instruction execution or data access by a program not trusted (non-trusted

program) can be prevented.

6.3 Setting Protection Area

In principle, the program area or data area is prohibited from being accessed. To use memory protection, a protection
area where access is enabled is specified in these areas for each program not trusted (non-trusted program). The
protection area can be enabled or disabled depending on the type of the access (execution, read, or write).

The V850E2M CPU uses the following two registers as a pair to set a protection area.

e IPANL/IPANU (n = 0 to 4)
« DPAML/DPAMU (m =0 to 5)

Each protection area is set by two combinations of registers: an upper-limit register and a lower-limit register. The
registers defined for the V850E2M CPU allow the placement of up to 11 protection areas, including up to five program
protection areas and six data protection areas.

The settings that can be specified for each area are shown in Table 6-2 below. Note that, depending on the register,

the values of some bits are fixed.

RO1USO001EJ0100 Rev.1.00 Page 247 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

Table 6-2. Setting Protection Area

Register xPAnU xPANL
Bits 31 to 4 Bit 3 Bit 2 Bit 1 Bit 0 Bits 31 to 4 Bit 3 Bit 2 Bit 1 Bit 0
Field Upper-limit address | (RFU) | Write Read |Execution| Lower-limit address | (RFU) Area sp Area
function (mask value) enable | enable | enable (base address) specification| indirect | enable
mode access
enable
Field name AU w R X AL T S E
IPAQU/L | Instruction | Upper-limit address 0 0 0) 0) Lower-limit address 0 0 o1 (0)
IPALU/L | Protection [ypper-limit address 0 0 (0) (0) Lower-limit address 0 0 o/ (0)
IPA2U/L | 2183 SEUNG [her fimit address | O 0 ©) ©) | Lowerlimitaddress | 0 0o o™ [(o
IPA3U/L Upper-limit address 0 0 0) 0) Lower-limit address 0 0 o/ 0)
IPA4U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 0 oo (0)
DPAOQU/L Data Upper-limit address 0 1 1 0 Lower-limit address 0 0 1 ©)
protection
area setting
(for stack)
DPA1U/L Data Upper-limit address 0 0) 0) 0 Lower-limit address 0 0 oo 0)
DPA2U/L | Protection | ypper-limit address | 0 (0) (0) 0 Lower-limit address 0 0 o0/1"*® (0)
area settin
DPA3U/L 9 Upper-limit address 0 0) 0) 0 Lower-limit address 0 0 oo 0)
DPA4U/L Upper-limit address 0 (0) (0) 0 Lower-limit address 0 0 o/ (0)
DPA5U/L Mask value 0 (0) (0) 0 Base address 0 1 oo (0)

Note S =1ifthe MPM.SPS bitis 0. S =0 if the MPM.SPS bit is 1.
Remark 0: Be sure to set this bit to 0.
1: Be sure to set this bit to 1.
(0): This bit may be set by the user. The value in parentheses indicates the initial value.

Therefore, the program and data areas are correlated with setting registers as follows.

Program area (enabling/disabling instruction execution)

e IPANL/IPANU (n =0 to 4)

Data area (enabling/disabling read or write execution)

e IPANL/IPANU (n =0to 4) ... Enables only read.

e DPAOL/DPAOU ... Always enables sp indirect access. Always enables read and write.
e DPANL/DPANU (n = 1 to 4)

e DPA5SL/DPA5SU ... Mask/base specification mode

The IPAnL/IPANU registers can be used to set up the protection areas for instruction execution permission and read
access permission. These permissions must be specified if the SWITCH and CALLT instructions are used to jump to
tables and there are tables placed in the instruction code.

For data areas, only the DPAOL/DPAOQU register is always permitted sp relative access. This is because there is only

one stack referenced during program execution and only one area for which sp relative access is performed.

RO1USO001EJ0100 Rev.1.00 Page 248 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

The default value of each register is as follows.

Register Initial Value
IPAOL to IPA4L 0000 0002H
IPAQOU to IPA4U 0000 0000H
DPAOL 0000 0002H
DPAOU 0000 0006H
DPALL to DPA4L 0000 0002H
DPA1U to DPA4U 0000 0000H
DPAS5L 0000 0006H
DPA5U 0000 0000H

The function of each bit is described below.

6.3.1 Valid bit (E bit)

This bit indicates whether setting of a protection area is enabled or disabled.

When the E bit is cleared (0), all the contents of the other setting bits are invalid, and a protection area is not set.

6.3.2 Execution enable bit (X bit)
This bit enables or disables instruction execution for the protection area.
When the X bit is cleared (0), execution of a program placed in the protection area of the program area is disabled.
If an instruction for the protection area is executed, an instruction protection violation is detected and the MIP exception

is immediately acknowledged.

6.3.3 Read enable bit (R bit)
This bit enables or disables a read access to the protection area.
When the R bit is cleared (0), a read access to data placed in the protection area of the data area is prohibited.
If an instruction that reads the access-prohibited protection area is executed, data protection violation is detected and

the MPD exception is immediately acknowledged.

6.3.4 Write enable bit (W bit)
This bit enables or disables a write access to the protection area.
When the W bit is cleared (0), a write access to data placed in the protection area of the data area is prohibited.
If an instruction that writes data to the protection area is executed, data protection violation is detected and the MPD

exception is immediately acknowledged.

RO1USO001EJ0100 Rev.1.00 Page 249 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.3.5 sp indirect access enable bit (S bit)

This bit enables or disables a data access in the sp (r3) register indirect access mode to the protection area.

When the S bit is cleared (0), a data access in the sp (r3) register indirect access mode to data placed in the protection
area of the data address space is prohibited.

If an instruction that accesses the protection area for data in the sp (r3) register indirect access mode is executed, data

protection violation is detected and the MPD exception is immediately acknowledged.

Caution The S bit of each register is fixed to 0 or 1 depending on the set value of the MPM.SPS bit. For
details, refer to 2.2.2 MPM — Processor protection operation mode.

6.3.6 Protection area specification mode bit (T bit)
This bit selects a mode of specifying a range of the protection area.
When the T bit is cleared (0), an upper-limit/lower-limit specification mode is selected. When it is set (1), a mask/base

specification mode is selected.

(1) Upper-limit/lower-limit specification mode
This mode specifies a range of the protection area by specifying the upper-limit address with the AU31 to AUO bits
and the lower-limit address with the AL31 to ALO bits. If a value greater than the upper-limit address is set, the

protection area is invalid.

(2) Mask/base specification mode

This mode specifies a range of the protection area by specifying a mask value with the AU31 to AUO bits and a
base address with the AL31 to ALO bits. An address range specified by masking the specified base address with
the mask value is the protection area.
The protection area is of size of the power of 2 that is indicated by the upper-limit and lower-limit addresses as
follows.

Lower-limit address = (AL31 to ALO and (not AU31 to AUO))

Upper-limit address = (AL31 to ALO or AU31 to AUO)

6.3.7 Protection area lower-limit address (AL31 to ALO bits)

The lower-limit address or base address of the protection area is indicated by the set protection area specification
mode (T bit).

Because the bits 3 to 0 of the IPAnL and DPAML registers are used for the other setting of the protection area, the bits

310 0 (AL3 to ALO) of the lower-limit address or base address are implicitly 0 (n=0to 4, m=0to 5).

6.3.8 Protection area upper-limit address (AU31 to AUO bits)

The upper-limit address or mask value of the protection area is indicated by the protection area specification mode set
by the T bit.

Because the bits 3 to 0 of the IPAnU and DPAmU registers are used for the other setting of the protection area, the bits
3 to 0 (AU3 to AUO) of the upper-limit address or mask value are implicitly 1.

When specifying a mask value, be sure to set a value of consecutive 1's from the least significant bit (the operation is

not guaranteed if a value having 1 and O alternately placed, such as 000050FFH, is specified) (n = 0to 4, m = 0 to 5).

RO1USO001EJ0100 Rev.1.00 Page 250 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.4 Notes on Setting Protection Area

6.4.1 Crossing of protection area boundaries
If the range of a protection area is set in duplicate, regardless of whether in an instruction/constant protection area or

data protection area, setting access control of the crossing part takes precedence.

(1) Instruction/constant protection area
If two or more protection area are set at certain addresses and if execution is enabled in one of the protection

areas, enabling execution is assumed. If read is enabled in one of the areas, enabling read is assumed.

(2) Data protection area
If two or more protection areas are set at certain addresses and if read is enabled in one of the protection areas,
enabling read is assumed.

The same applies to enabling write and sp indirect access.

6.4.2 Invalid protection area setting

Setting of a protection area is invalid in the following case.

¢ If a value greater than the upper-limit address is set to the lower-limit address

6.5 Stack Inspection Function

The VB50E2M CPU prescribes use of a general-purpose register r3 as a stack pointer (sp) for a program model in
terms of stack manipulation. It also defines instructions to generate and delete a stack frame that implicitly uses sp as the
stack pointer. To support this program model and to strictly manage the stack, a stack inspection function is provided.

Stack indirect access can be enabled or disabled in each protection area by using the S bit of each protection area
setting register"°®.

If a memory access instruction that executes an indirect access using sp as the base register is executed in a
protection area where sp indirect access is disabled (S bit is 0), that access is detected as violation. If an indirect access
using a register other than sp as the base register is executed in the same area, the access is controlled in accordance
with the read enable bit (R bit) and write enable bit (W bit).

In a protection area where sp indirect access is enabled (S bit is 1), the access is controlled in accordance with the
read enable bit (R bit) and write enable bit (W bit) in any case.

This stack inspection function detects an sp indirect access violation in other protection areas if the value of sp is
incorrect with a program model that places only one protection area where sp indirect access is enabled, so that the

memory can be protected more powerfully.

Note The V850E2M CPU controls the value of the S bit of each protection area all at once in accordance with the
value of the MPM.SPS register.

RO1USO001EJ0100 Rev.1.00 Page 251 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION
Figure 6-1. Example of Stack Inspection Function
(a) Example where stack inspection function is enabled (SPS bit = 1)
|
1
1
1 [Rw disabled | [R/w disabled | A
RWS | | RIW enabled | | R/W enabled
T
1 | R/W disabled
4 -] ,1,
1
W | W enabled
1
XR | | .. R/W enabled
1 R enabled 0
************* I 0]
1
| R/W disabled | |¥
|
1
| I N I - o
X 1 .
,,,,,,,,,,,,,,,, o1}] R/IWdisabled [|
1
|
|
|
! \/
- - - . [N J \ J
Setting by Setting by Setting by Setting by | Y Y
IPAOL/IPAOU IPALIL/IPAIU DPALL/DPALU DPAOL/DPAOU 1 Instruction not Instruction
| executingsp executing sp
+ indirect access indirect access
)
'
Data area
(b) Example where stack inspection function is disabled (SPS bit = 0)
|
1
1
.| RIW disabled | | R/W disabled | A
RWS I | RIW enabled | | R/W enabled
L
I | R/W disabled R/W disabled
4 -] ,1,
! W enabled
WS | W enabled
1
XRS | " R/W enabled R/W enabled
1 R enabled R enabled
B e — I T)
1 O]
1 <
|
1
3 I I AR i - o
XS | | 1l ! | R/W disabled | | RIW disabled
|
1
1
1
! \J
Setting by Setting by Setting by Settingby 1 ™ /N /
IPAOL/IPAQOU IPA1L/IPAIU DPA1L/DPA1U DPAOL/DPAQU : Instruction not Instruction
| executing sp executing sp
' indirect access indirect access
- J
~
Data area
Remark X: Execution enabled
R: Read enabled
W: Write enabled
S: spindirect access enabled

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 252 of 473

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.6 Special Memory Access Instructions

The V850E2M CPU has instructions that access the memory more than once while one of the instructions is executed.
For these instructions, the memory protection function performs a special operation. Instructions subject to special
protection operations are described below.

¢ Load and store instructions that execute misaligned access (LD, ST, SLD, and SST)
e Some bit manipulation instructions (SET1, NOT1, and CLR1) and CAXI instruction

e Stack frame manipulation instructions (PREPARE and DISPOSE)

e SYSCALL instruction

6.6.1 Load and store instructions executing misaligned access

With the VB50E2M CPU, data can be allocated at all addresses regardless of the data format (byte, halfword, or word).
A misaligned access indicates an access to an address other than a halfword boundary (the least significant bit of the
address is 0) when the data to be processed is in the halfword format, and an access to an address other than the word
boundary when the data to be processed is in a word format.

When a misaligned access is made, access is enabled if all the addresses to be accessed are in one protection area,
and if read is enabled when the load instruction is executed or if write is enabled when the store instruction is executed.

Caution Even if two protection areas are defined at consecutive addresses without overlapping each other,
a misaligned access extending between the two protection areas is judged as protection violation.

6.6.2 Some bit manipulation instructions and CAXI instruction
Some bit manipulation instructions (SET1, NOT1, and CLR1) and CAXI instruction detect data protection violation if the

address to be accessed is enabled from being read but not from being written.

6.6.3 Stack frame manipulation instructions

The stack frame manipulation instructions (PREPARE and DISPOSE) generates as many memory accesses as the
number of registers specified. The memory protection function detects violation of each of these memory accesses and,
as soon as it has detected violation, it aborts execution of the stack frame manipulation instruction at occurrence of a data
protection exception. However, memory accesses preceding the memory access from which violation has been detected
are executed. The DISPOSE instruction writes a general-purpose register corresponding to the executed memory access.
If the access has been aborted, sp is not updated.

The stack frame manipulation instruction that has been aborted is executed from the beginning again when execution
returns from the exception. Consequently, the same memory access as that which was executed once before execution
was aborted is executed again.

6.6.4 SYSCALL instruction
The SYSCALL instruction is used to call a service supplied by a management program such as an OS (and programs
similar to it). The service is a trusted program and the address table to branch to the service is also trusted. Therefore,
memory protection is not applied to the memory access by the SYSCALL instruction even if the PSW.DMP bit is set (1).
Consequently, the MDP exception is never detected while the SYSCALL instruction is executed.

RO1USO001EJ0100 Rev.1.00 Page 253 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 6 MEMORY PROTECTION

6.7 Protection Violation and Exception

If an instruction is executed on or a data access is made to an address that is not enabled, instruction protection
violation or data protection violation is detected. If violation is detected, the following operations are performed.
For details of the MIP and MDP exceptions, refer to CHAPTER 9 PROCESSOR PROTECTION EXCEPTION.

(1) Ifinstruction protection violation is detected
e Execution of the instruction placed at the address where instruction protection violation has been detected does
not start.
e An access to the address where instruction protection violation has been detected does not make any request to
the outside of the CPU.

e The MIP exception occurs and exception processing starts immediately.

(2) If data protection violation is detected
e Execution of the instruction that accesses the address where data protection violation has been detected is
aborted.
e An access to the address where data protection violation has been detected does not make any request to the
outside of the CPU.

e The MDP exception occurs and exception processing starts immediately.

RO1USO001EJ0100 Rev.1.00 Page 254 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

CHAPTER 7 PERIPHERAL DEVICE PROTECTION

Peripheral device protection controls access to protect peripheral devices (areas) from illegal access by untrusted
programs.

The VB850E2M CPU assumes that the connected peripheral devices (such as 1/0O devices and small scale memory)
differ for each application system. If there are many such devices, they are placed at discrete addresses that are finer than
the granularity of areas subject to memory protection.

When using peripheral device protection, different settings can be specified for each peripheral device, and protection
is possible using a granularity that is not possible by using protection areas, the number of which is limited by memory
protection.

7.1 Register Set

Table 7-1 lists the peripheral device registers related to the peripheral device protection function.

For the VB850E2M CPU, the register set used for peripheral device protection is placed in the peripheral device register
area. The base address for the peripheral device protection registers is defined by hardware and is FFFF5100H for the
V850E2M CPU. The PPSn, PPPn, PPVn, and PPTn registers make up one set and can be used to set up protection for
32 peripheral devices, with each bit corresponding to one peripheral device. Multiple sets might be available, depending
on the number of peripheral devices for a product and the peripheral device protection policy. A total of nine sets are
provided for the V850E2M CPU, and they are specified by suffixing a value from 0 to 8 to the register names.

Caution These registers related to the peripheral device protection function are also subject to peripheral
device protection. For details, refer to 7.9 Protection Setting for Peripheral Device Protection
Setting Registers.

Table 7-1. Peripheral Device Protection Function Register Set

Register Name Offset Address Accessible Size Initial Value
1 8 16 | 32

PPM +00H J \ \' | 00000000H

PPEC +04H v N | 00000000H
VPNECR +10 v | Undefined"**®
VPNADR +14 v | Undefined"°*
VPNTID +18 v | Undefined"**®
VPTECR +20 V| Undefined"°*
VPTADR +24 v | Undefined"*
VPTTID +28 v | Undefined"°*
PPVn +40H + (n*10h) + OH \ v v \ | Refer to Table 7-2.
PPTN +40H + (n*10h) + 4H \ v N \ | Refer to Table 7-2.
PPPn +40H + (n*10h) + 8H \ v v \ | Refer to Table 7-2.
PPSn +40H + (n*10h) + CH \ v v \' | Refer to Table 7-2.

Note This register is not initialized and its previous value is retained following a reset. The initial value is undefined.
Remark n=0to8

RO1USO001EJ0100 Rev.1.00 Page 255 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

The names, addresses, initial values, and protection target addresses of the PPSn, PPPn, PPVn, and PPTn registers
for the V850E2M CPU are shown in Table 7-2. For a list peripheral devices that the register bits correspond to, see
APPENDIX D PERIPHERAL DEVICE PROTECTION AREAS.

Table 7-2. PPSn, PPPn, PPVn, PPTn registers of V850E2M CPU

Register Address Reset Protection Setting Target
Name Value Address
PPVO FFFF5140H |00030000H [CPU specific peripheral devices
PPTO FFFF5144H [00030000H |2d
PPPO FFFF5148H 100030000H CPU system peripheral devices
PPSO FFFF514CH |00000000H
PPV1 FFFF5150H |00000000H [FF400000 to FF5FFFFFH
PPT1 FFFF5154H |00000000H
PPP1 FFFF5158H |00000000H
PPS1 FFFF515CH |00000000H
PPV2 FFFF5160H |00000000H |FF600000 to FF7FFFFFH
PPT2 FFFF5164H |00000000H
PPP2 FFFF5168H |00000000H
PPS2 FFFF516CH |00000000H
PPV3 FFFF5170H |00000000H (FF800000 to FF81FFFFH
PPT3 FFFF5174H |00000000H
PPP3 FFFF5178H |00000000H
PPS3 FFFF517CH |00000000H
PPV4 FFFF5180H [00000000H |FF820000 to FF83FFFFH
PPT4 FFFF5184H |00000000H
PPP4 FFFF5188H |00000000H
PPS4 FFFF518CH |00000000H
PPVS FFFF5190H |00000000H |[FFFF8000 to FFFFOFFFH
PPT5 FFFF5194H |00000000H
PPPS FFFF5198H |00000000H
PPS5 FFFF519CH |00000000H
PPV6 FFFF51A0H [00000000H |FFFFAOQO0O to FFFFBFFFH
PPT6 FFFF51A4H |00000000H
PPP6 FFFF51A8H |00000000H
PPS6 FFFF51ACH |00000000H
PPV7 FFFF51BOH |00000000H [FFFFCO000 to FFFFDFFFH
PPT7 FFFF51B4H |00000000H
PPP7 FFFF51B8H |00000000H
PPS7 FFFF51BCH |00000000H
PPV8 FFFF51COH |00000000H |FFFFE00O to FFFFFFFFH
PPT8 FFFF51C4H |00000000H
PPP8 FFFF51C8H |00000000H
PPS8 FFFF51CCH |00000000H
RO1USO0001EJ0100 Rev.1.00 Page 256 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.1 PPM - Setting of peripheral device protection operation mode

This register is used to set an operation mode related to the peripheral device protection function. It can be accessed
in units of 32, 16, 8, or 1 bit.

Be sure to set bits 31 to 1 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PPM| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PPM -
oo o|lolo|ololo|o|olo|o|o o]o|pp]| Mnualvaue
msk | 00000000H
Bit Position | Bit Name Description
0 PPMPP This bit selects whether a peripheral device protection exception (PPl exception) is to be
MSK used.

0: Uses PPI exception (initial value).

1: Does not use PPI exception.

When the PPMPPMSK bit is set (1), the PPEC.PPECPPVD bit remains unchanged even if
peripheral device protection violation is detected in the NT state. Therefore, the PPI
exception is not reported and the PPI exception does not occur.

Be sure to manipulate the PPMPPMSK bit while the PSW.PP bit is 0 and PPEC.PPECPPVD
bit is 0.

RO1USO001EJ0100 Rev.1.00

Page 257 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.2 PPEC - Controlling peripheral device protection exception

This register controls the report status of an exception. It can be accessed in units of 32, 16, or 8 bits.
Be sure to set bits 31 to 1 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PPEC| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPEC iti
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |povs Initial value
00000000H

Bit Position | Bit Name Description
0 PPEC This bit indicates the report status of the PPI exception.
PPVD"*

When this bit is set (1), the PPl exception is reported to the CPU and the PPI exception is not

acknowledged. This bit is automatically cleared (0) as soon as the CPU has acknowledged
the PPI exception.

When the PPM.PPMPPMSK bit is set (1), this bit is automatically set (1) and the PPI
exception is reported if peripheral device protection violation is detected during operation in
the NT state. When the PPMPPMSK bit is 1, the value will not automatically change.

When the PPECPPVD bit is set and when PSW.PP = 1, data access of all instructions that
access memory is disabled (except data access by the SYSCALL instruction).
When the PPECPPVD bit is set (1), report of the PPI exception can be canceled by clearing

(0) the PPECPPVD bit by program. When report of the PPI exception has been canceled, the
CPU does not acknowledge the PPI exception.

0: PPI exception is not reported (Initial value).

1: PPI exception is reported.

Note The PPECPPVD bit can only be cleared (0) by a write operation. It cannot be set (1).

RO1USO001EJ0100 Rev.1.00 Page 258 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.3 VPNECR - Peripheral device protection NT state violation cause

This 32-bit register saves information on an access that has violated peripheral device protection in the NT state. It can
be accessed in units of 32 bits.

Be sure to set bits 31 to 16, 11, 7, 6, and 3 to 1 to “0".

3T 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
VPNECR| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPN | VPN | VPN | VPN VPN VPN VPN VPN | VPN VPN | |nitial value
ECR | ECR| ECR| ECR| o | ECR| ECR|ECR | 0 0 |ECR |ECR| 0 0 0 |ECR '
SP | OP | RWP| WP WD | HW | BY RD | WR VD Undefined
Bit Position | Bit Name Description
15 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is an access to a
SP special peripheral device when the peripheral device protection violation is detected in the NT
state. Otherwise, it is cleared (0).
14 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is an access to an OS
oP peripheral device when the peripheral device protection violation is detected in the NT state.
Otherwise, it is cleared (0).
13 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is an access to a
RWP general peripheral device that is protected from write and read accesses when the peripheral
device protection violation is detected in the NT state. Otherwise, it is cleared (0).
12 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is an access to a
WP general peripheral device that is protected from write accesses when the peripheral device
protection violation is detected in the NT state. Otherwise, it is cleared (0).
10 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is a word access when
WD the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).
9 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is a halfword access
HW when the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared
(0).
8 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is a byte access when
BY the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).
5 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is a read access when
RD the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).
4 VPNECR | This bit is set (1) if an access that has violated peripheral device protection is a write access when
WR the peripheral device protection violation is detected in the NT state. Otherwise, it is cleared (0).
0 VPNECR | This bit indicates that peripheral device protection violation has been detected in the NT state. Itis
VD set (1) if peripheral device protection violation is detected during an access to a peripheral device
in the NT state. If the VPNECRVD bit is set, the VPNECR, VPNADR, and VPNTID registers are
not updated but retained even if new peripheral device protection violation is detected in the NT
state. Be sure to clear (0) the VPNECRVD bit after completion of the exception processing.
Also be sure to clear (0) the VPNECRVD bit when using the peripheral device protection function.

RO1USO001EJ0100 Rev.1.00 Page 259 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.4 VPNADR - Peripheral device protection NT state violation address
This 32-bit register saves an address to which an access that has violated peripheral device protection is made when

the peripheral device protection violation is detected in the NT state. It can be accessed in 32-bit units.

Caution The address saved to this register differs depending on the bus system of the product. For the
correspondence between the address stored in this register and the logical address of the

architecture, refer to the manual of the product.

31 0
rrrrrrrrrrrtr+r+rtrrr -t rr -ttt Tt T T T T T T T .
Initial value

VPNADR .

VPNADR Undefined
Bit Position | Bit Name Description
31to0 VPNADR | If peripheral device protection violation is detected in the NT state, these bits store the memory

address at which the violation has occurred.

7.1.5 VPNTID - Peripheral device protection NT state violation task ID
This 32-bit register saves the ID of the task under execution when peripheral device protection violation is detected in

the NT state. It can be accessed in 32-bit units.

31 0
rrrrrrrrrrrr -ttt T ai
Initial value
VPNTID
VPNTID Undefined
Bit Position | Bit Name Description
31to0 VPNTID These bits store the contents of the identifier (value of the TID register) of the task that is executed
when the instruction that violates peripheral device protection is executed in the NT state.

RO1USO001EJ0100 Rev.1.00 Page 260 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.6 VPTECR - Peripheral device protection T state violation cause
This 32-bit register saves information on the access that has violated peripheral device protection when the peripheral
device protection violation is detected in the T state. It can be accessed in 32-bit units. Be sure to set 0 to bits 31 to 16,

14to 11, 7, 6, and 3 to 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
VPTECR| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPT VPT [VPT [VPT VPT | VPT VPT i
ECR, 0 | 0 | 0 | 0 ECR ECR| ECR| o | 0 |ECR|ECR| o | o | o |Ecr [Initialvalue
SP WD | HW | BY RD | WR VD Undefined
Bit Position | Bit Name Description
15 VPTECR | This bit is set (1) if an access that has violated peripheral device protection is an access to a special
SP peripheral device when the peripheral device protection violation is detected in the T state.
Otherwise, it is cleared (0).
10 VPTECR | This bit is set (1) if an access that has violated peripheral device protection is a word access when
WD the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).
9 VPTECR | This bit is set (1) if an access that has violated peripheral device protection is a halfword access
HW when the peripheral device protection violation is detected in the T state. Otherwise, it is cleared
(0).
8 VPTECR | This bit is set (1) if an access that has violated peripheral device protection is a byte access when
BY the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).
5 VPTECR | This bit is set (1) if an access that has violated peripheral device protection is a read access when
RD the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).
4 VPTECR | This bit is set (1) if an access that has violated peripheral device protection is a write access when
WR the peripheral device protection violation is detected in the T state. Otherwise, it is cleared (0).
0 VPTECR | This bit indicates that peripheral device protection violation has been detected in the T state. It is
VD set (1) if peripheral device protection violation is detected during an access to a peripheral device in
the T state. If the VPTECRVD bit is set, the VPTECR, VPTADR, and VPPTID registers are not
updated but retained even if new peripheral device protection violation is detected in the T state. Be
sure to clear (0) the VPTECRVD bit after completion of the exception processing.
Also be sure to clear (0) the VPTECRVD bit when using the peripheral device protection function.

RO1USO001EJ0100 Rev.1.00 Page 261 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.7 VPTADR - Peripheral device protection T state violation address
This 32-bit register saves an address to which the access that has violated peripheral device protection is made when

the peripheral device protection violation is detected in the T state. It can be accessed in 32-bit units.

Caution The address saved to this register differs depending on the bus system of the product. For the
correspondence between the address stored in this register and the logical address of the
architecture, refer to the manual of the product.

31 0
rrrrrrrrrrrrrrrrrrrr- T Tt T T L
Initial value
VPTADR
VPTADR Undefined
Bit Position | Bit Name Description
31to0 VPTADR | If peripheral device protection violation is detected in the T state, these bits store the memory
address at which the violation has occurred.

7.1.8 VPTTID — Peripheral device protection T state violation task ID
This 32-hit register saves the ID of the task under execution when peripheral device protection violation is detected in

the T state. It can be accessed in 32-bit units.

31 0
1 1 1 1 11T 11T 11T T T T T T T T T T T T T]
Initial value
VPTTID
VPTTID Undefined
Bit Position | Bit Name Description
31to0 VPTTID These bits store the contents of the identifier (value of the TID register) of the task that is executed
when the instruction that violates peripheral device protection is executed in the T state.

RO1USO001EJ0100 Rev.1.00 Page 262 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.9 PPSn - Specification of special peripheral device
This register specifies a peripheral device corresponding to each of its bits as a special peripheral device. It can be

accessed in units of 32, 16, 8, or 1 bit. This register is set to the initial value defined for each product at reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PPSn|PPSn PPSn PPSn|PPSn|PPSn|PPSNn|PPSNn|PPSNn|PPSN|PPSN PPSn PPSn|PPSn|PPSn|PPSN
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16

PPSN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 __ 0
PPSn|PPSn|PPSn|PPSn|PPSn|PPSNn|PPSn|PPSNn|PPSNn|PPSn PPSn|PPSn|PPSn|PPSn|PPSn PPsn| Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Refer to
Table 7-2
Bit Position | Bit Name Description
31to0 PPSn31 to Each of these bits specifies a corresponding peripheral device as a special peripheral device.

PPSn0 When this bit is set to 1, it is recommended to set the bit of the PPPn, PPVn, and PPTn registers
corresponding to this bit to 1.

The special peripheral device detects all accesses as peripheral device protection violation even
while a trusted program is being executed (T state).

0: Peripheral device corresponding to this bit is not a special peripheral device.
1: Peripheral device corresponding to this bit is a special peripheral device.

The initial value is defined as the product specification in accordance with each system requirement,
and may be fixed to a specific value.

RO1USO001EJ0100 Rev.1.00 Page 263 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.10 PPPn — Specification of OS peripheral device
This register specifies a peripheral device of an area corresponding to each of its bits as an OS peripheral device. It

can be accessed in units of 32, 16, 8, or 1 bit. This register is set to the initial value defined for each product after reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PPPn|PPPn PPPn|PPPn PPPn|PPPn PPPn|PPPn PPPNn|PPPn|PPPn|PPPn|PPPh|PPPn|PPPN|PPPN
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16

PPPn

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPPn|PPPn|PPPn|PPPn|PPPn|PPPn|PPPn|PPPn|PPPn|PPPn PPPn PPPn|PPPn PPPN PPPn PPPn| INitial value
15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 | 4 3 2 1 0 Refer to
Table 7-2
Bit Position | Bit Name Description
31to0 PPPnN31 to| Each of these bits specifies a corresponding peripheral device as an OS peripheral device.
PPPRO

When this bit is set to 1, it is recommended to set the bit of the PPVn and PPTn register
corresponding to this bit to 1. If the specified peripheral device has already been specified as a
special peripheral device by the PPSn register, setting this bit to 1 is recommended.

The OS peripheral device can be accessed only by a trusted program (T state). All accesses to the
OS peripheral device from a program not trusted (NT state) are detected as peripheral device
protection violation.

0: Peripheral device corresponding to this bit is not an OS peripheral device.
1: Peripheral device corresponding to this bit is an OS peripheral device.

The initial value is defined as the product specification in accordance with each system requirement,
and may be fixed to a specific value.

RO1USO001EJ0100 Rev.1.00 Page 264 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.11 PPVn — Validating general peripheral device protection
This register specifies whether an access to a general peripheral device is detected as violation. It can be accessed in

units of 32, 16, 8, or 1 bit. This register is set to the initial value defined for each product at reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PPVNn | PPVNn|PPVN|PPVNPPVN PPVNIPPVN|PPVN PPVN PPVNn PPVNn|PPVNn PPVn PPVNnPPVn PPVn
31 | 30 29 | 28 | 27 | 26 | 25 24 | 23 | 22 | 21 | 20 19 | 18 | 17 | 16

PPVn

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPVn|PPVn|PPVNn|PPVNn PPVn|PPVNn|PPVNn PPVn|PPVnPPVn|PPVNn|PPVNnPPVn| PPVnPPVNn PPVn

Refer to
15 14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 7-2

Initial value

Bit Position | Bit Name Description

31to0 PPVN31 These bits validate or invalidate the access limitation of a non-trusted program under execution if
to the peripheral device corresponding to each of these bits is a general peripheral device.

PPVNO If the peripheral device has already been specified as a special peripheral device by the PPSn
register or as an OS peripheral device by the PPPn register, it is recommended to set this bit to 1.

An access to a general peripheral device is not limited and violation is not detected if this bit is
cleared (0). If this bit is set (1), violation may be detected in accordance with the specification of the
corresponding bit of the PPTn register.

0: Access to the general peripheral device corresponding to this bit is not limited.
1: Access to the general peripheral device corresponding to this bit is limited.

The initial value is defined as the product specification in accordance with each system requirement,
and may be fixed to a specific value.

RO1USO001EJ0100 Rev.1.00 Page 265 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.1.12 PPTn — Specification protection type of general peripheral device
This register sets details of violation protection of an access to a general peripheral device. It can be accessed only by

reading, in units of 32, 16, 8, or 1 bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ppTH [PPTN PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn PPTn| Initial value
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Refer to
Table 7-2
Bit Position | Bit Name Description
31to0 PPTn31 to These bits indicate the contents of the access limit of a non-trusted program under execution if the
PPTNO peripheral device corresponding to each of these bits is a general peripheral device.
If the peripheral device has already been specified as a special peripheral device by the PPSn
register or as an OS peripheral device by the PPPn register, it is recommended to set this bit to 1.
If the access is limited by a bit of the PPVn register, an access to the specified peripheral device is
limited as follows.
0: A read access to the general peripheral device corresponding to this bit is not limited.
A write access to the general peripheral device corresponding to this bit is assumed as
violation.
1: A read access to the general peripheral device corresponding to this bit is assumed as
violation.
A write access to the general peripheral device corresponding to this bit is assumed as
violation.
The initial value is defined as the product specification in accordance with each system requirement,
and may be fixed to a specific value.
RO1USO0001EJ0100 Rev.1.00 Page 266 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.2 Standing of Memory Protection and Peripheral Device
Protection

The V850E2M CPU uses memory mapped 1/O, which means that memory protection is equally applied to the data
areas in the CPU address space. Therefore, memory protection and peripheral device protection are applied each time the
data in a peripheral device is accessed. This is because the V850E2M CPU employs memory-mapped I/O architecture
and because memory protection is equally applied to the data area in the address space of the cPuUNe®,

The CPU first makes a judgment, by using the memory protection function, whether a data access to a peripheral
device is enabled or disabled, and detects violation. If the CPU judges that the access is disabled and detects violation,
peripheral device protection does not operate and the MDP exception immediately occurs. If the CPU judges that the
access is enabled, it makes a judgment, by using the peripheral device protection function, whether this access is enabled
or disabled, and detects violation. If the CPU judges that the access is disabled and detects violation, the PPl exception

may be generated in some cases, in accordance with the operation setting of peripheral device protection and the status

of the CPU. If the CPU judges that the access is enabled, a data access to the peripheral device is executed.

Note Peripheral device protection is not applied to instruction accesses that occur as a result of program execution or
branch.

Figure 7-1 shows the relationship between memory protection and peripheral device protection.

RO1USO001EJ0100 Rev.1.00 Page 267 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

Figure 7-1. Standing of Memory Protection and Peripheral Device Protection

(a) Peripheral device protection to program area

Start of instruction
access

(b) Peripheral device protection to data area

(Start of data access)

Detection of violation of
memory protection in
program area

Detection of violation of
memory protection in
data area

Violation detected? Violation detected?

No

MIP exception

4 MDP exception
generate

generated

Detection of violation of
peripheral device
protection

Violation detected?

Execution of instruction
access (access to peripheral

device generated)

Operation when peripheral
device protection violation is
detected

Execution of data access
(access to peripheral
device generated)

7.3 Types of Peripheral Devices

Generally, the user of a peripheral device is defined or the situation where the peripheral device is to be used is

restricted in accordance with the usage assumed for each system. Peripheral device protection classifies each peripheral

device (or a group of peripheral devices) into the following three categories for management.

e Special peripheral device

e OS peripheral device

e General peripheral device

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 268 of 473

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.3.1 Setting types of peripheral devices
A combination of the bits of the same number of the PPSn and PPPn registers indicate the type of each peripheral
device. Table 7-2 shows which type of peripheral device protection is applied depending on the combination of these bits.
Do not change the PPS and PPP registers while the system is operating except when initializing the system or OS (and
programs similar to it).

Table 7-2. Types of Peripheral Devices

Bit of PPSn Bit of PPPn Type
1 Oor 1 (1isrecommended) Special peripheral device
0 1 OS peripheral device
0 0 General peripheral device

(1) Special peripheral device
Of the peripheral devices, the ones that control the most basic environment for the processor to operate are
especially called special peripheral devices. For example, peripheral devices that control clock or power supply
should be prevented from an inadvertent access under any circumstances. Against this background, a peripheral
device specified as a special peripheral device is controlled so that it cannot be accessed even by a “trusted

program” unless a specific procedure is followed.

(2) OS peripheral device
Of the peripheral devices, the ones that can be accessed only by a “trusted program” are treated as “OS peripheral
devices” because the OS is the representative trusted program. Specify peripheral devices important for OS (and
programs similar to it) to at least guarantee its own operation as OS peripheral devices. For example, peripheral
devices, such as an interrupt controller and a DMA controller, that make the system unstable if they are used
inadvertently should be specified as OS peripheral devices. An OS peripheral device is not enabled to be
accessed by a user application that is a “non-trusted program”. Therefore, the OS (and programs similar to it) can

guarantee its own operation no matter what operation the user application may perform.

(3) General peripheral device
Peripheral devices that can be accessed even by a “non-trusted program” are treated as “general peripheral
devices”. All peripheral devices that are neither special peripheral devices nor OS special devices are treated as
general peripheral devices. Assign peripheral devices that have little influence on the overall system even if they
are treated with relatively loose regulations, such as general-purpose timers, A/D converters, and macros for
communication, as general peripheral devices. For general peripheral devices, a mechanism to perform different
access control for each user application is provided.

For details, refer to 7.3.2 Detailed protection setting of general peripheral device.

RO1USO001EJ0100 Rev.1.00 Page 269 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.3.2 Detailed protection setting of general peripheral device

All accesses from a non-trusted program to special peripheral devices and OS peripheral devices are detected as
violation. However, a right to access a general peripheral device can be specified for each program under execution.
Therefore, detailed protection policy must be specified for the general peripheral device by using combinations of the bits
of the PPVn and PPTn registers.

The OS (and programs similar to it) can set a value appropriate for each program to the PPVn register before execution
of the program is

started. As a result, accesses to the general peripheral device, which are different from one program to another under
execution, can be controlled, and precise peripheral device protection can be realized.

In addition to the PPVn register, the OS (and programs similar to it) can change the PPTn register value. However, it is
recommended not to frequently change the PPTn register during system operation in order to avoid a degradation in

performance when switching tasks.

Table 7-3. Controlling Access to General Peripheral Device

Bit of PPVn Bit of PPTn Access Control of General Peripheral Device
0 Oor 1 (1is recommended) Read enabled/write enabled
1 0 Read enabled/write disabled
1 1 Read disabled/write disabled
RO1USO001EJ0100 Rev.1.00 Page 270 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.4 Peripheral Device Protection Violation in T State

The CPU indicates the T state (PSW.PP bit = 0) when it executes a trusted program. In this state, peripheral device
protection violation is detected only if an access to a special peripheral device is made. If a violation is detected in the T

state, the peripheral device protection function performs the following operations.

¢ Blocks the access that has caused the violation and does not output it to the peripheral device.

e Stores information on the access that has caused the violation in the VPTECR, VPTTID, and VPTADR registers.

To avoid interrupting critical processing that might be performed while in the T state, exceptions are not generated.
During operation, check the violation information stored in the VPTECR, VPTTID, and VPTADR registers at the
appropriate times, and perform processing for any violations that occur.

When execution is blocked due to a read access violation detected in the peripheral device, the destination register of

the load command is updated. At this time, the value stored in the destination register is defined as a product specification.

7.5 Peripheral Device Protection Violation in NT State

The CPU indicates the NT state (PSW.PP bit = 1) when it executes a program that is not trusted. In this state,
peripheral device protection violation is detected when an access is made to any of the special peripheral, OS peripheral,
and general peripheral devices. If violation is detected in the NT state, the peripheral device protection function performs

the following operations that are different from those performed in the T state.

e The access that caused the violation is blocked to prevent effects on peripheral devices.

¢ Stores information on the access that has caused violation in the VPNECR, VPNTID, and VPNADR registers.

¢ Reports the PPl exception to the CPU and waits for the start of the PPI exception processing.

o Until the PPI exception processing is started, invalidates all the subsequent memory accesses in the NT state

(not only accesses to the peripheral devices but also all accesses to the memory).

For invalidation, refer to 7.5.1 Invalidating subsequent accesses.

RO1USO001EJ0100 Rev.1.00 Page 271 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.5.1 Invalidating subsequent accesses

If a peripheral device protection violation by an untrusted program running in the NT state is detected, continuing to
execute that program can be judged to be dangerous, and exception processing can be started by using a PPI exception
to call the OS (and programs similar to it).

However, due to hardware limitations, the PPI exception is not reported immediately, and there might be a delay before
the exception processing starts. At the same time, if there is software processing being performed that cannot be broken
up, it might be undesirable to start exception processing. In cases like these, untrusted programs might continue to
execute instructions from when the peripheral device protection violation is detected until the PPI exception processing
starts.

To resolve this problem, all succeeding memory access is disabled from when a peripheral device protection violation
is detected using the NT state until the PPl exception processing starts. After this access is disabled, the system is
handled as though memory access requests do not exist, so updates to CPU-external resources by instructions issued
after an instruction caused a peripheral device protection violation can be prevented.

Access is typically disabled until the PPI exception processing starts, but, if an interrupt or some other process causes
the system to start executing a different program that is in the T state, access is not disabled while the program is in this

state. If return processing is performed and the system again enters the NT state, memory access is again disabled.

Figure 7-2. Invalidating Subsequent Memory Accesses

PPI exception reported

Violation >
detected " | Exception acknowledged
v -
[Program Exception processing]
Execution
| blocked Imvalidated* Invalidated
A A 4 A4
Peripheral Peripheral Peripheral Peripheral
| device 1 | device 2 | RAM | | device 3 device 2 | R |

P Time

This specification assumes that “non-trusted programs” are scheduled by the OS (and programs similar to it) and that,
before other “non-trusted program” is executed, the OS (and programs similar to it) always performs PPl exception
processing and then execute the other “non-trusted program”. By controlling the programs in this way, invalidation that
took place in a “non-trusted program (NT state)” can be prevented from affecting the other “non-trusted program (NT
state)”. “Trusted programs (T state)” are not invalidated in the first place.

When execution is blocked or invalidated due to a read access violation detected in the peripheral device, the

destination register of the load instruction is updated.

RO1USO001EJ0100 Rev.1.00 Page 272 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.6 Handling PPI Exception

If peripheral device protection violation is detected in a “non-trusted program” that operates in the NT state, it is judged
that continuing execution of that program is dangerous, the OS (and programs similar to it) is called through PPI exception,

and the exception processing is immediately started.

7.6.1 Canceling PPl exception

Acknowledging the PPI exception may be delayed because of delayed report or indivisible atomic operations of the
program. Before processing of the PPl exception is started, the program that has generated the PPI exception may
execute termination processing. To avoid this problem, be sure to cancel the PPl exception by using the SYNCE
instruction and the PPECPPVD bit of the PPEC register to cancel invalidation before the termination processing. For

details, refer to 6.3 Exception Management in PART 2.

7.6.2 Operation method not using PPl exception
Depending on the application, the generation of an exception during operation can mess up a program sequence and
lead to loss. For cases like this, operation in which peripheral device protection does not cause PPI exceptions is possible.
To perform such operation, set the PPM.PPMPPMSK bit to 1. If this bit is set, the PPEC.PPECPPVD bit is no longer
set to 1 when a peripheral device protection violation is detected, and PPl exceptions do not occur. During operation,
check the violation information stored in the VPNECR, VPNTID, and VPNADR registers at the appropriate times, and

perform processing for any violations that occur.

7.6.3 Operation to be performed by PPl exception processing

When exception processing has been performed, clear the VPNECR.VPNECRVD bit so that violation information is
correctly saved after execution is returned from the exception processing and when the next violation is detected. If this
bit is not cleared, violation information corresponding to a memory access that has caused the next violation is not stored

even if the next violation is detected.

RO1USO001EJ0100 Rev.1.00 Page 273 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.7 List of Results of Detection of Peripheral Device Protection
Violation

The results of detecting violations in the NT and T states, and the types of peripheral device protections can be

summarized as shown in Table 7-4.

Table 7-4. Results of Detecting Peripheral Device Protection Violation

Type of Peripheral PPSn PPPN PPTn PPVN Trusted Program |Non-trusted Program
Device (T state) (NT state)
PSW.PP =0 PSW.PP =1
Read Write Read Write

Special peripheral| 1 Oorl(lis Oorl(lis Oorl(lis Violation | Violation | Violation | Violation

device recommended) | recommended) | recommended)

OS peripheral 0 1 Oorl(lis Oorl(lis - - Violation | Violation

device recommended) | recommended)

General 0 0 1 1 - - Violation | Violation

peripheral device 0 - - - Violation
Oorl(lis 0 - - - -
recommended)

Operations after detection of violation can be summarized as follows.

Table 7-5. Operations After Detection of Peripheral Device Protection Violation

Status on Violation Detection T State NT State
PSW.PP 0 1
PPM.PPMPPMSK Oorl 0 ‘ 1
Blocking violating access Blocked Blocked

Saving violation information

Stored in VPTECR/VPTTID/VPTADR

Stored in VPNECR/VPNTID/VPNADR

PPI exception

Does not occur

Occurs ‘ Does not occur

Invalidation of successive accesses

Not invalidated

Invalidated

7.8

Usually, violation by an access to a special peripheral device is detected and blocked in both the NT and T states. To

Accessing Special Peripheral Devices

access special peripheral devices in order to control the system behavior, perform the following procedure.

<1> Transfer execution to a trusted program that operates in the T state.

<2> Clear the bits of the PPSn register corresponding to the special peripheral device to be accessed, and

temporarily change the device to an OS peripheral device.

<3> Access the peripheral device.

<4> Restore the bits of the PPSn register which have been changed in <2> to the original status (set).

Caution The system security can be increased by making it impossible to access special peripheral
devices by using procedures other than the above. Because changing special peripheral
devices to OS peripheral devices reduces the system security, it is recommended to
minimize how much time is spent making changes by using the above procedure.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 274 of 473

V850E2M PART 3 CHAPTER 7 PERIPHERAL DEVICE PROTECTION

7.9 Protection Setting of Peripheral Device Protection Setting
Registers

The peripheral 1/O registers that set peripheral device protection itself are subject to peripheral device protection. The
peripheral device protection setting registers are protected by either of the following policies.

e The peripheral device protection setting registers are implicitly OS peripheral devices.

¢ Define the PPSn, PPPn, PPVn, and PPTn bits corresponding to the peripheral device protection setting registers.

Cautions 1. However, be sure to fix the bits on the PPSn corresponding to the peripheral device
protection setting registers to 0.

2. The bits on PPPn, PPVn, and PPTn corresponding to the peripheral device protection

setting registers may be fixed to any value or could be variable bits. However, if a

peripheral device other than an OS peripheral device is indicated by these bits, there

is no guarantee that the OS (and programs similar to it) will offer protection functions.

7.10 Special Peripheral Device Access Instruction

7.10.1 SYSCALL instruction

The SYSCALL instruction is used to call a service supplied by a management program such as an OS.

The service is a trusted program and the address table to branch to the service is also trusted. Therefore, peripheral
device protection is not applied to the peripheral device access by the SYSCALL instruction even if the PSW.PP bit is set
Q).

Consequently, the PPI exception is never detected while the SYSCALL instruction is executed.

Because the exception is not detected, peripheral device protection and the SYSCALL instruction can also be used, for

example, when test code is placed in the peripheral device area during debugging.

RO1USO001EJ0100 Rev.1.00 Page 275 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

CHAPTER 8 TIMING SUPERVISION FUNCTION

Timing supervision function is performed to manage times such as program execution time and to prevent the CPU

execution time from being excessively monopolized.

The timing supervision function provides the following six types of supervision functions by operating six counters each

having the same function in accordance with a specific operation method.

¢ Runtime supervision function

¢ Deadline supervision function

e Resource supervision function

¢ Global interrupt lock supervision function

e Software interrupt lock supervision function

e Supervising number of times of interrupt arrival

Each counter has a 28-bit count width and counts in each clock cycle of the CPU. It also has a divided count function

of 1 to 1024 and a count range of up to 1.34 seconds at an accuracy of the CPU clock cycle, or up to 1374 seconds (about

23 minutes) at an accuracy 1024 times the CPU clock cycle (where the CPU frequency is 200 MHz).

If violation is detected as a result of supervising the CPU status by each counter in accordance with setting, a TSI

exception occurs. The TSI exception is defined as an FE level exception, and can forcibly start exception processing even

while an ordinary user application is in a critical section (period during which the PSW.ID bit is 1 and interrupts are not

acknowledged). For the TSI exception, refer to 8.5 Handling of TSI Exception.
8.1 Register Set

Table 8-1 lists the peripheral device registers related to the timing supervision function.

All registers related to timing supervision function are placed in the peripheral device register area. The base address

for the timing supervision function register set is defined by hardware and is FFFF5000H for the VB50E2M CPU.

Table 8-1. Timing Supervision Function Register Set

Register Name Address Accessible Size Initial Value
1 8 16 | 32
TSEC 00H \ v Y| 00000000H
TSECR 04H y v | 00000000H
TSCCFGn 20H + (n*10H) + OH v v | 00000000H
TSCCNTn 20H + (n*10H) + 4H \ | Refer to Table 8-2.
TSCCMPn 20H + (n*10H) + 8H S Refer to Table 8-2.
TSCRLDn 20H + (n*10H) + CH \ | Refer to Table 8-2.
Remark n=0to5

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 276 of 473

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

The names, addresses, and initial values of the timing supervision function counter registers for the V8B50E2M CPU (the

TSCCFGn, TSCCNTn, TSCCMPnN, and TSCRLDn registers) are shown in Table 8-2.

Table 8-2. Timing Supervision Function Cunter Register of V850E2M CPU

Register Address Initial Value TSU counter
Name
TSCCFGO FFFF5020H [00000000H |TSU counter O
TSCCNTO FFFF5024H |00000000H
TSCCMPO FFFF5028H |00000000H
TSCRLDO FFFF502CH |00000000H
TSCCFG1 FFFF5030H |00000000H |TSU counter 1
TSCCNT1 FFFF5034H |[00000000H
TSCCMP1 FFFF5038H |00000000H
TSCRLD1 FFFF503CH |00000000H
TSCCFG2 FFFF5040H [00000000H |TSU counter 2
TSCCNT2 FFFF5044H |00000000H
TSCCMP2 FFFF5048H |00000000H
TSCRLD2 FFFF504CH |00000000H
TSCCFG3 FFFF5050H |00000000H |TSU counter 3
TSCCNT3 FFFF5054H |[00000000H
TSCCMP3 FFFF5058H |00000000H
TSCRLD3 FFFF505CH |00000000H
TSCCFG4 FFFF5060H [00000000H |TSU counter 4
TSCCNT4 FFFF5064H |00000000H
TSCCMP4 FFFF5068H |00000000H
TSCRLDA4 FFFF506CH |00000000H
TSCCFG5 FFFF5070H |00000000H |TSU counter 5
TSCCNT5 FFFF5074H |00000000H
TSCCMP5 FFFF5078H |00000000H
TSCRLD5 FFFF507CH |00000000H

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 277 of 473

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.1.1 TSEC - Controlling timing supervision

This register has function bits that control the timing supervision function. It can be accessed in units of 32, 16, 8, or 1
bit.

Be sure to set bits 31 to 1 to “0".

31 30 29 28 27 2625 24 23 22 21 20 19 18
TSEC| O 0 0 0 0 0 0 0 0 0

17 16

15 14 13 12 11 10 9 8 7 6 5

TSE iti
0 0 0 0 0 0 0 0 0 0 0 0 0 0 OEguglnltlalvalue
00000000H

Bit Position | Bit Name Description

0 TSECES

While the TSECESUP bit is set, the timing supervision counter is kept from making a request.
UP

The TSECESUP bit is automatically set (1) as soon as the TSI exception has been
acknowledged, and report of the TSI exception is controlled. As a result, starting another TSI
exception is prevented while the first TSI exception is being processed. A TSI exception that

occurs while the TSECESUP bit is held pending. After the TSECESUP bit is cleared, the TSI
exception is not lost but requested again.

Be sure to clear (0) the TSECESUP bit before completion of TSI exception processing.

RO1USO001EJ0100 Rev.1.00 Page 278 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.1.2 TSECR - Timing supervision exception cause

This is an exception cause register of timing supervision exception (TSI exception). It can be accessed in units of 32,
16, or 8 bits.

Be sure to set bits 31 to 6 to “0”.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TSECR| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oo oo o| o 0|0 0| o | es ess|ese]est|eso] apoao
Bit Position | Bit Name Description
5 TSECR This is the exception cause bit of timing supervision counter 5.
ESS It is a mapping bit of the TSCCFG5.TSCCFG5ES bit.
4 TSECR This is the exception cause bit of timing supervision counter 4.
ES4 It is a mapping bit of the TSCCFG4. TSCCFGA4ES bit.
3 TSECR This is the exception cause bit of timing supervision counter 3.
ES3 It is a mapping bit of the TSCCFG3. TSCCFG3ES bit.
2 TSECR This is the exception cause bit of timing supervision counter 2.
ES2 It is a mapping bit of the TSCCFG2. TSCCFG2ES bit.
1 TSECR This is the exception cause bit of timing supervision counter 1.
ES1 It is a mapping bit of the TSCCFG1. TSCCFGI1ES bit.
0 TSECR This is the exception cause bit of timing supervision counter 0.
ESO It is a mapping bit of the TSCCFGO. TSCCFGOES bit.
RO1USO0001EJ0100 Rev.1.00 Page 279 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.1.3 TSCCFGn — Setting of timing supervision function counter n (n =0 to 5)

This register is used to set counter n for timing supervision (n = 0 to 5). It can be accessed in units of 32, 16, or 8 bits.

Be sure to set 0 to bits 31 to 27, 23, 22, 19, 15to0 11, and 7 to 4.

The TSCCFGn register allocates each of its fields at a 1-byte boundary. Therefore, to access any of the fields, a partial
operation can be performed by accessing a byte (for example, to clear only a status, write a byte to an address of offset +
1H).

(1/3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
\ \ \ TSC | TSC | TSC
TSCCFGn| 0 0 0 0 0 | TSCCFGnRES | 0 0 | TSCCFGn| 0 [CFGn |CFGn|CFGn
CTM ARM | EXM | UDM
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TSC | TSC [TSC TSC | TSC [TSC [TSC | jnitial value
0 0 0 0 0 |CFGn|CFGn|CFGn| 0 0 0 0 |CFGn|CFGn|CFGn|CFGn
oS ES VS RLD | FE |EIACT| ACT | 00000000H
Bit Position | Bit Name Description
26to 24 TSCCFGn | These bits select the resolution of the timing supervision counter.
RES 000: Counts every 1 clock cycle.

001: Counts every 4 clock cycles.
010: Counts every 16 cock cycles.
011: Counts every 64 clock cycles.
100: Counts every 256 clock cycles.

101: Counts every 1024 clock cycles.

110: RFU
111: RFU
21,20 TSCCF These bits select an operation mode.
GnCTM 00: Normal mode

01: Global interrupt lock supervision mode
10: Runtime supervision mode
11: RFU
e Normal mode
The timing supervision counter operates as an ordinary counter in this mode. The counter is not
automatically started or stopped.
e Global interrupt lock supervision mode
In this mode, the value of the TSCRLDN.TSCRLDnVAL bit is automatically transferred to the
TSCCNTNn.TSCCNTnVAL bit when the PSW.ID bit changes from 0 to 1. After that,
TSCCFGNACT is updated to 1, and the counter starts counting. TSCCFGnACT is automatically
updated to 0 and the counter is stopped when the PSW.ID bit changes from 1 to 0.
e Runtime supervision mode
In this mode, the value of TSCCFGNnACT is automatically transferred to TSCCFGNnEIACT/
TSCCFGNnFEACT when an El level or FE level exception is acknowledged. TSCCFGNnACT is

updated to 0 and the counter is stopped.

When the EIRET/FERET instruction is executed, the value of TSCCFGnEIACT/
TSCCFGNFEACT bit is automatically transferred to TSCCFGnACT. If TSCCFGnACT is setto 1

as a result, counting is resumed.

RO1USO001EJ0100 Rev.1.00 Page 280 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

(213)
Bit Position | Bit Name Description
18 TSCCFGn | Enables or disables auto reloading.
ARM This bit selects whether the value of the TSCRLDn. TSCRLDnVAL bit is to be transferred to the

TSCCNTNn.TSCCNTnVAL bit or not if violation is detected (if TSCCNTn.TSCCNTnVAL and
TSCCMPN.TSCCMPNVAL bits match).

0: Does not execute auto reloading (disabled).

1: Executes auto reloading (enabled).

17 TSCCFGn | This bit selects an exception mode.

EXM It selects whether the TSI exception is reported if violation is detected (if TSCCNTn.VAL and
TSCCMPN.VAL bits match).
0: Mode not to report TSI exception. TSI exception is not reported.

1: Mode to report TSI exception. TSI exception is reported.

16 TSCCFGn | This bit selects a counting direction of the counter.

UDM 0: Counter operates as an up counter (addition).

1: Counter operates as a down counter (subtraction).

10 TSCCFGn | This is the overflow bit of the counter.

Not¢
0s™"* Itis set if the TSCCNTN.VAL bit overflows or underflows.
0: This counter does not overflow or underflow.

1: This counter overflows or underflows.

9 TSCCFGn | This is an exception cause bit.
Notte
ES™" It is set if the TSI exception is acknowledged when the exception mode is the “mode to report TSI
exception (TSCCFGnEXM = 1)". Be sure to clear (0) this bit before completion of the TSI exception
processing.

0: This counter is not the cause of the TSI exception currently under processing.

1: This counter is the cause of the TSI exception currently under processing.

8 TSCCFGn | This bit detects violation.
VSNote) .)
0: Violation is not detected.
1: Violation is detected.
This bit is set if violation is detected (if TSCCNTn.VAL and TSCCMPn.VAL match).

The TSI exception is requested if the exception mode is the “mode to report TSI exception
(TSCCFGNEXM = 1)" and this bit is set.

This bit is cleared if the TSI exception is acknowledged while the counter is requesting the TSI
exception.

If this bit is cleared by software processing, the request for the TSI exception by the counter can be

canceled.
3 TSCCFGn| This is a reload command bit.
RLD If this bit is set (1), the TSCTSCCFGnRLDN.VAL bit is transferred to the TSCCNTn.VAL bit.

This bit is always 0 when read.

Note The TSCCFGnOS, TSCCFGnVS, and TSCCFGNES bits can only be cleared (0) by a write operation.
They cannot be set (1).

RO1USO001EJ0100 Rev.1.00 Page 281 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

(3/3)
Bit Position | Bit Name Description
2 TSCCFGn | This bit saves the content of the TSCCFGnACT bit when an FE level exception is acknowledged.
FEACT

e In runtime supervision mode

This bit transfers the content of the TSCCFGnACT bit to the TSCCFGnFEACT bit and clears (0)
the TSCCFGNACT bit when an FE level exception is acknowledged.

It transfers the content of the TSCCFGnFEACT bit to the TSCCFGnACT bit when the FERET
instruction is executed.

e In mode other than runtime supervision mode

The content of the TSCCFGNFEACT bit is not transferred to the TSCCFGnACT bit even when
the FERET instruction is executed.

1 TSCCFGn | This bit saves the content of the TSCCFGnACT bit when an El level exception is acknowledged.

EIACT e In runtime supervision mode
This bit transfers the content of the TSCCFGnACT bit to the TSCCFGNEIACT bit and clears (0)
the TSCCFGNACT bit when an El level exception is acknowledged.

It transfers the content of the TSCCFGNEIACT bit to the TSCCFGnACT bit when the EIRET
instruction is executed.

e In mode other than runtime supervision mode

The content of the TSCCFGNEIACT bit is not transferred to the TSCCFGnACT bit even when
the EIRET instruction is executed.

0 TSCCFGn | This bit indicates that the counter is operating or stopped. By setting (1) this bit, the counter
ACT operation can be started. By clearing (0) it, the counter can be stopped.
0: Stopped
1: Operating

The value of this bit automatically changes in the runtime supervision mode and global interrupt lock
supervision mode. For details, refer to the description of the TSCCFGnCTM bit.

This bit is fixed to 0 if the MPM.MPE bit is 0. As a result, the timing supervision counter does not
operate, and does not detect violation and request the TSI exception.

RO1USO001EJ0100 Rev.1.00 Page 282 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.1.4 TSCCNTn — Count value of timing supervision counter n (n =0 to 5)

This is the count register of timing supervision counter n (n = 0 to 5). It can be accessed in 32-bit units.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TSC | TsC | TSC | TSC T T T T T T T T T
TSCCNTn[CNTn | cNTh| CNTn| CNTR TSCCNTnVAL
RLD FEACTEIACT| ACT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ ‘ ‘ ‘ ‘ ‘ T‘SCCN‘TnVAL‘ ‘ ‘ ‘ ‘ Initial v_alue
Undefined
Bit Position | Bit Name Description
31 TSCCNTn | This is a reload command bit.
RLD Itis a mapping bit of the TSCCFGN.TSCCFGNRLD bit.
30 TSCCNTn | This bit saves the content of the TSCCFGnACT bit when an FE level exception is acknowledged.
FEACT It is a mapping bit of the TSCCFGN. TSCCFGNFEACT bit.
29 TSCCNTn | This bit saves the content of the TSCCFGnACT bit when an El level exception is acknowledged.
EIACT It is a mapping bit of the TSCCFGN.TSCCFGNEIACT bit.
28 TSCCNTn | This bit indicates whether the counter is operating or stopped.
ACT Itis a mapping bit of the TSCCFGN.TSCCFGNACT bit.
27100 TSCCNTn | These bits indicate the current value of the counter.
VAL Violation is detected if TSCCNTn.TSCCNTnVAL and TSCCMPn. TSCCMPNVAL match.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 283 of 473

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.1.5 TSCCMPn — Comparison value of timing supervision counter n (n =0 to 5)

This is a compare register of the timing supervision counter (n = 0 to 5). It can be accessed in 32-bit units.

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16
TSC | TSC | TSC | TSC I I I I I I I I I I
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
I I I I I I I TS(\:CMPn\VAL I I I I I Initial \{alue
Undefined
Bit Position | Bit Name Description
31 TSCCMPn | This is a reload command bit.
RLD It is a mapping bit of the TSCCFGN. TSCCFGNRLD bit.
30 TSCCMPnN | This bit saves the content of the TSCCFGNACT bit when an FE level exception is acknowledged.
FEACT It is a mapping bit of the TSCCFGN.TSCCFGNFEACT bit.
29 TSCCMPnN | This bit saves the content of the TSCCFGNACT bit when an El level exception is acknowledged.
EIACT It is a mapping bit of the TSCCFGN.TSCCFGNEIACT bit.
28 TSCCMPnN | This bit indicates whether the counter is operating or stopped.
ACT It is a mapping bit of the TSCCFGn. TSCCFGnACT bit.
27t00 TSCCMPn | These bits indicate the comparison value of the counter.
VAL Violation is detected if TSCCNTN.TSCCNTnVAL and TSCCMPn.TSCCMPNnVAL match.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 284 of 473

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.1.6 TSCRLDnN — Reload value of timing supervision counter n (n =0 to 5)

This is a reload register of timing supervision counter n (n = 0 to 5). It can be accessed in 32-bit units.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TSCR| TSCR|[TSCR|TSCR | | | | | | | I I I I
TSCRLDn| LDn | LDn | LDn | 1Dn TSCRLDnVAL
RLD |[FEACTEIACT| ACT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I I I I I I I I I I I I I I I .
TSCRLDNVAL Initial \{alue
Undefined
Bit Position | Bit Name Description
31 TSCRLDn | This is a reload command bit.
RLD It is @ mapping bit of the TSCCFGn.TSCCFGnRLD bit.
30 TSCRLDn | This bit saves the content of the TSCCFGnACT bit when an FE level exception is acknowledged.
FEACT It is @ mapping bit of the TSCCFGN.TSCCFGnFEACT bit.
29 TSCRLDn | This bit saves the content of the TSCCFGnACT bit when an El level exception is acknowledged.
EIACT It is @ mapping bit of the TSCCFGn.TSCCFGNEIACT bit.
28 TSCRLDn | This bit indicates whether the counter is operating or stopped.
ACT It is @ mapping bit of the TSCCFGn.TSCCFGnACT bit.
27t00 TSCRLDn | These bits indicate the value to be transferred from the TSCRLDn.TSCRLDnVAL bit to the
VAL TSCCNTNn.TSCCNTNnVAL bit during reloading.
Reloading is performed in the following cases.
o When the TSCCFGn.TSCCFGNRLD bit is set (1)
o If violation is detected when the TSCCFGn.TSCCFGNnARM bit is set (1)
o If the PSW.ID bit changes from 0 to 1 when the TSCCFGn.TSCCFGnCTM bits are 01 (global
interrupt lock supervision mode)

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 285 of 473

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.2 Counter Functions

Six identical counters are provided for monitoring the timing. Each counter has a 28-bit count width, is incremented on
a CPU clock cycle basis, and can be set to one of six resolutions in the range from 1 to 1,024. During timing supervision
function, violations are detected when a counter value matches a pre-specified comparison value. When a timing

supervision function violation is detected, a TSI exception request is reported to the CPU in accordance with settings.

8.2.1 Resolution

The resolution of each one count of the counter is set by the TSCCFGn.TSCCFGNnRES bit. The resolution indicates
the number of clock cycles for one counter (TSCCNTn.TSCCNTnVAL). For example, if the resolution is 1, the count value
1 indicates 1 clock. If the resolution is 1024, the count value 1 indicates 1024 clocks.

Each counter can separately select the resolutions in Table 8-2.

Table 8-2. Resolutions

Value of Operation
TSCCFGn.TSCCFGNnRES Bit
000 Counts every 1 clock.
001 Counts every 4 clocks.
010 Counts every 16 clocks.
011 Counts every 64 clocks.
100 Counts every 256 clocks.
101 Counts every 1024 clocks.

Others RFU

Caution If the resolution is other than 1, a count error of the number of clocks up to two times higher
than the resolution occurs. Note this error when using a low resolution.

8.2.2 Counting direction
An up counter mode or a down counter mode can be selected by using the TSCCFG.TSCCFGnUDM bit. The count

value can be incremented or decremented in 1 unit of the count operation.

(1) Up counter mode
Increments the count value (TSCCNTN.TSCCNTnVAL) each time the counter counts.

(2) Down counter mode

Decrements the count value (TSCCNTn.TSCCNTnVAL) each time the counter counts.

RO1USO001EJ0100 Rev.1.00 Page 286 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.2.3 Exception mode

The TSCCFGn.TSCCFGnEXM bit can be used to select whether the TSI exception is to be reported or not if the count
value (TSCCNTn.TSCCNTnVAL) matches a specified comparison value (TSCCMPn.TSCCMPnVAL) and violation is
detected. A mode to report the TSI exception is used for the normal timing supervision usage. However, when the

counter is used for other usage, a mode not to report the TSI exception may be used depending on the purpose.

(1) Mode not to report TSI exception
This mode does not report the TSI exception if the counter detects violation (if the count value matches the

comparison value).

(2) Mode to report TSI exception
This mode reports the TSI exception if the counter detects violation (if the count value matches the comparison

value).

8.2.4 Auto reloading

The TSCCFGn.TSCCFGNnARM bit can be used to select whether a reloading value (TSCRLDN.TSCCNTnVAL) is to be
automatically transferred to the counter if the count value (TSCCNTNn.TSCCNTnVAL) matches a specified comparison
value (TSCCMPn.TSCCMPNVAL) and violation is detected. Enable auto reloading to immediately start the next counting

as soon as violation has been detected, such as when periodically measuring time.

(1) When auto reloading is disabled
A value is not automatically reloaded to the counter when the counter detects violation (when the count value

matches the comparison value). The counter continues counting from the current value.

(2) When auto reloading is enabled
A value is automatically reloaded to the counter when the counter detects violation (when the count value matches

the comparison value). The counter continues counting from the reloaded value.

8.2.5 Counter mode

The counter has special counter modes that are used for specific purposes. Global interrupt lock supervision mode
and runtime supervision mode, as well as the normal counter mode, can be selected by using the
TSCCFGNn.TSCCFGNnCTM bit.

(1) Normal mode
The counter operates as an ordinary counter in this mode. It is not automatically started or stopped, and is
controlled by software’s manipulation of the TSCCFGNACT bit. Be sure to set this mode when global interrupt lock

supervision or runtime supervision is not performed.

Caution To stop the counter operating in the global interrupt lock supervision mode or runtime
supervision mode, be sure to change the mode to normal mode. If the counter remains in
the global interrupt lock supervision mode or runtime supervision mode, its operation may
automatically be resumed by execution of another program.

RO1USO001EJ0100 Rev.1.00 Page 287 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

(2) Global interrupt lock supervision mode

Set this mode to perform global interrupt lock supervision. Global interrupt lock supervision supervises the user
application so that it does not illegally extend a critical section and hinder the operations of the other programs of
the CPU. As a global interrupt lock period, time during which the PSW.ID bit is set (1) is supervised, and violation
is detected if a specified time is exceeded.

Because the user application can start or end a critical section by using the DI or El instruction without the need of
an extra procedure, the status of the PSW.ID bit is supervised and the counter is automatically started, stopped, or

reloaded.

The operations in the global interrupt lock supervision mode are listed below.

Table 8-3. Operations in Global Interrupt Lock Supervision Mode

Bit

When PSW.ID Changes from 0 to 1

When PSW.ID Changes from 1 to O

TSCCFGnACT

Updated to 1

Updated to O

TSCCNTN.TSCCNTNnVAL

Value of TSCRLDnN.VAL is transferred.

Not updated

(3) Runtime

supervision mode

Set this mode to perform runtime supervision. In the runtime supervision mode, the counter is automatically

stopped when other task is started because of generation of an exception, in order to strictly manage the time

budget of the program currently under execution. At this time, the content of the bit indicating the operation status

of the counter (TSCCFGN.TSCCFGNACT bhit) is saved for each exception level

(TSCCFGN.TSCCFGNEIACT/TSCCFGNFEACT). When the return instruction (EIRET/FERET) is executed, the

saved content is restored to the TSCCFGnACT bit, so that the counting operation is automatically resumed

immediately after execution has returned from the exception processing. Appropriately save and restore the

counter value at the beginning and end of each exception.

The operations in the runtime supervision mode are shown in Table 8-4.

Table 8-4. Operations in Runtime Supervision Mode

Bit When El level Exception Is|When EIRET Instruction Is| When FE level Exception |When FERET Instruction Is
Acknowledged Executed Is Acknowledged Executed
TSCCFGnACT Updated to O Value of TSCCFGNEIACT| Updated to O Value of
is transferred TSCCFGNFEACT is
transferred
TSCCFGNEIACT | Value of TSCCFGNACT is| Not updated Not updated Not updated
transferred
TSCCFGNFEACT| Not updated Not updated Value of TSCCFGNACT is| Not updated
transferred

TSCCNTn. Not updated Not updated Not updated Not updated
TSCCNTnVAL

Caution None of the above bits is updated when the CALLT or CTRET instruction is executed.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 288 of 473

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.3 Operation Modes of Counter and CPU

Each counter of the timing supervision function performs the following operations depending on the operation status of

each CPU.

Table 8-5. Operation Modes of Counter and CPU

V850E2M Operation System MPM.MPE Program under Execution | TSCCFGNACT | Operation Status of TSU
Mode Clock Bit Counter

Normal/HALT status"®*!| Supplied | 0 Don't care Fixed to O Counter stop when
TSCCFGnACT =0
1 Normal (task)/ 0 Counter stop when
El level exception/ TSCCFGNnACT =0

FE level exception 1 Counter opereiton when
TSCCFGnACT =0

Standby mode Stopped | Previous value | Don't care Previous value | Stops because supply of

retained retained"°*? CPU clock is stopped.
Notes 1. The HALT status is released as a result of occurrence of the TSI exception, and the exception is

acknowledged in accordance with the acknowledgment condition.

2. Stop the timing supervision function by clearing (0) the TSCCFGNnACT bit in advance before stopping the

clock.

8.4 Detecting Violation

Violation related to the timing supervision function is detected when the count value (TSCCNTn.TSCCMPnVAL)
matches the comparison value (TSCCMPn.TSCCMPnVAL). When violation has been detected, the violation detection bit

(TSCCFGN.TSCCFGnNVS) of the corresponding counter is set (1).

8.4.1

Each counter of the timing supervision function does not have information that indicates the cause of violation. Manage

Identifying violation cause

the contents supervised by each counter by software and perform appropriate violation processing.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 289 of 473

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.5 Handling of TSI Exception

The timing supervision function reports the TSI exception in accordance with setting if it detects a violation.

8.5.1 Reporting TSI exception

If the exception mode is the “mode to report the TSI exception (TSCCFGn.TSCCFGnEXM = 1)" when a violation is
detected, the TSI exception is immediately reported to the CPU. The TSI exception reported is acknowledged
immediately if PSW.NP is cleared (0).

As soon as the TSI exception has been acknowledged, the violation detection bit (TSCCFGn.TSCCFGNnVS)
corresponding to the counter reporting the TSI exception is saved to the exception cause bit (TSCCFGn. TSCCFGnNES).
Therefore, the TSCCFGNES bit of that counter is set (1) and TSCCFGnVS bhit is cleared (0).

Because the content of the TSCCFGNVS bit of the counter that reports the TSI exception is saved to the TSCCFGnES
bit as soon as the TSI exception has been acknowledged, new timing supervision violation that is detected while the timing
supervision counter continues operating during TSI exception processing and the violation that has caused the ongoing

TSI exception processing can be distinguished from each other.

Caution The TSCCFGNVS bit of the counter operating in the "mode not to report the TSI exception”
is not changed when the TSI exception is acknowledged.

As soon as the TSI exception has been acknowledged, the TSEC.TSECESUP bit is also set (1), suppressing reporting
of the TSI exception under processing. As a result, occurrence of multiple exceptions which takes place if the TSI
exception is reported again when the other counter detects violation while the first TSI exception is being processed is

prevented.

Caution To acknowledge the next TSI exception, be sure to clear the TSCCFGn.TSCCFGNnES and
TSEC.TSECESUP bits of counters for which violation processing was performed to 0 before
the TSI exception processing finishes. If the bits are not cleared before the system returns
from this exception processing, it will not be possible to acknowledge the next TSI

exception.

RO1USO001EJ0100 Rev.1.00 Page 290 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

Figure 8-1. Report of TSI Exception

Time : : : : : N
: ; : : : - D
| Task TSI exception processing Task
PSW.NP | 0 [1 0 1 0
TSEC.TSECESUP | 0 | | 1 | (l)
TSCCFGLTSCCFGIvs [0 | 1 | . . 0 . .
TSCCFG1.TSCCFGIES | 0 | 1 | 0
TSCCFG2.TSCCFG2VS | . 0 1 .
TSCCFG2.TSCCFG2ES | 0
i k E Periogd during which TSI qixception is not acknowledgedi J

Violation is | [Tsiexceptionis Violation is TSECESUP and Restore
detected by| |acknowledged. | NP mask detected by TSCCFGIES are cleared
counter 1. is cleared. counter 2. (by software).

TSI exception caused by this violation is
acknowledged after execution restores
from the current exception processing.

8.5.2 Identifying exception cause
Each counter of the timing supervision function does not have information that indicates the cause of exception.

Manage the contents supervised by each counter by software and perform appropriate exception processing.

8.5.3 Canceling TSI exception

If a program that is subject to measurement by a counter is terminated as a result of processing other exception, and if

the TSI exception is reported by that counter and has not been acknowledged yet, cancel the TSI exception in the

following procedure. For the situation where this processing is necessary, refer to 6.3 Exception Management in PART

2.

<1>
<2>
<3>

<4>

Set (1) the PSW.NP bhit.

Clear (0) the TSCCFGn.TSCCFGNACT bit of the counter in question.

Change the mode of the counter to the normal mode by using the TSCCFGn.TSCCFGnCTM bit.
Clear (0) the TSCCFGn.TSCCFGnVS bit of the counter.

Remark The TSCCFGn register can be accessed in 32-bit units, and <2> to <4> can be performed at the
same time.

RO1USO001EJ0100 Rev.1.00 Page 291 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.6 Setting Counter Corresponding to Each Supervision

Function

Set the operation of the counter in accordance with each supervision content. This section shows a recommended

example of setting the register corresponding to each supervision function.

accordance with each OS (and programs similar to it) or purpose for the actual operation.

8.6.1 Global interrupt lock supervision

Global interrupt lock supervision supervises the PSW.ID bit so that the critical section of the user application does not

continue, exceeding specified time.

Appropriately adjust the set value in

If the ID bit remains 1 longer than specified time, exception processing is started.

Consequently, the system can be prevented from being deadlocked due to a design error of the user application.

Table 8-6. Global Interrupt Lock Supervision

Register Bit Example of Recommended Setting
TSCCFGn TSCCFGnUDM Don't care
TSCCFGnEXM| 1 (TSI exception occurs.)
TSCCFGnARM]| 0 (Auto reloading is not performed.)
TSCCFGNCTM| 1 (Global interrupt lock supervision mode)
TSCCFGnRES| Don't care
TSCCNTn - Don't care
TSCCMPn - Maximum permissible lock time for up counter
0 for down counter
TSCRLDn - 0 for up counter
Maximum permissible lock time for down counter

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 292 of 473

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

8.6.2 Runtime supervision

Runtime supervision is to supervise the execution time budget given to a task under execution and perform exception
processing when the budget is used up. If a preemption occurs due to interrupt, the counter is automatically stopped or
resumed when an interrupt is acknowledged or execution restores from the interrupt, so that the time of the CPU clock
cycle is accurately and delicately supervised.

To supervise part of time of the task under execution, appropriately select one of the set values listed in Table 8-7 in
accordance with the purpose.

To measure time during which a task acquires a resource, for example, make the setting in Table 8-7, start the task by
software when the resource is acquired, and stop the task by software when the resource is released. In this way, the
execution time during which the task acquires the resource can be accurately supervised even if a preemption due to an

interrupt occurs while the task is acquiring the resource.

Table 8-7. Runtime Supervision

Register Bit Example of Recommended Setting

TSCCFGn TSCCFGnUDM, Don't care

TSCCFGnEXM| 1 (TSI exception occurs.)

TSCCFGnARM]| 0 (Auto reloading is not performed.)

TSCCFGNCTM| 2 (Runtime supervision mode)

TSCCFGNRES | Don't care

TSCCNTn 0 for up counter
Execution time budget for down counter

TSCCMPn Execution time budget for up counter
0 for down counter

TSCRLDn - Not used

8.6.3 Supervising number of times of interrupt reaches a specific value

Supervising the number of times of interrupt arrival is to supervise the number of times a specific interrupt occurs in a
specific frame time. If the interrupt has occurred more than the specified number of times, it is disabled from being
acknowledged and the processing time of the CPU is released to other programs. The disabled interrupt is enabled to be
acknowledged again each time a specific period has elapsed. As a trigger of this periodic operation, a counter of the
timing supervision function is used. Because the counter operates as a periodic counter, the counter that is used to
supervise the number of times the interrupt reaches a specific value uses the auto reloading feature, and when the count
value reaches a specific value, an exception is requested and the counter starts counting the next time frame.

To start a supervising program at specific intervals, change the set value shown in Table 8-8 appropriately in

accordance with the purpose like when supervising the number of times interrupt reaches a specific value.

RO1USO001EJ0100 Rev.1.00 Page 293 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 8 TIMING SUPERVISION FUNCTION

Table 8-8. Supervising Number of Times of Interrupt Arrival

Register Bit Example of Recommended Setting

TSCCFGn TSCCFGnUDM| Don't care

TSCCFGnEXM| 1 (TSI exception occurs.)

TSCCFGnhARM]| 1 (Auto reloading is performed.)

TSCCFGnCTM| 0 (Normal mode)

TSCCFGNRES| Don't care

Don't care (TSCCFGNACT bit is set as soon as reloading is executed to start

TSCCNTn -)
counting.)

TSCCMPn - Unit frame time to be supervised for up counter
0 for down counter

TSCRLDn - 0 for up counter

Unit frame time to be supervised for down counter

8.6.4 Supervising time lapse

To supervise a certain time from occurrence of an event that serves as a reference, basically set the counter as shown

in Table 8-9. By making this setting, basic supervision of the counter can be performed by starting and stopping the

counter by software.

For example, to supervise deadline, acquisition time of a specific resource, or the time during which a specific interrupt

source is masked, appropriately change the set value in Table 8-9.

Table 8-9. Supervising Time Lapse

Register Bit Example of Recommended Setting

TSCCFGn TSCCFGnUDM, Don't care

TSCCFGnEXM| 1 (TSI exception occurs.)

TSCCFGnARM]| 0 (Auto reloading is not performed.)

TSCCFGnCTM| 0 (Normal mode)

TSCCFGNRES| Don't care

TSCCNTn - 0 for up counter
Target time for down counter

TSCCMPn - Target time for up counter
0 for down counter

TSCRLDn - Not used

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 294 of 473

V850E2M PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

This chapter describes different types of processor protection violations and exceptions. For details about processing

for each exception, see CHAPTER 6 EXCEPTIONS, which is in PART 2.

9.1 Types of Violations

The V850E2M CPU detects violation in accordance with the setting of each protection function and, as necessary,
generates an exception defined by each protection function. This section explains in detail the relationship between
violations and exceptions.

The following five types of violations are detected in accordance with the setting defined by the processor protection

function.

e System register protection violation

e Execution protection violation

e Data protection violation

¢ Peripheral device protection violation

¢ Timing supervision violation

9.1.1 System register protection violation
This violation is detected if a system register is illegally accessed. No exception occurs even when this violation is

detected. For the processing to be performed if this violation is detected, refer to 5.5 Operation Method.

9.1.2 Execution protection violation
This violation may be detected when an instruction is executed. The execution protection violation is detected if an
attempt is made to execute an instruction allocated in an area of the program area where execution is not enabled.

If the execution protection violation is detected, the MIP exception is always generated.

9.1.3 Data protection violation
This violation may be detected when an instruction accesses data. It is detected if a memory access instruction reads
or writes data from or to an area of the data area that is not enabled to be accessed.

If the data protection violation is detected, the MDP exception always occurs.

9.1.4 Peripheral device protection violation

This violation may be detected when an instruction accesses a data. It is detected if a memory access instruction is
enabled by the memory protection function and an operation not permitted by an access control based on the peripheral
device protection setting defined for each system is performed.

If the peripheral device protection violation is detected, the PPI exception occurs in accordance with the setting.

RO1USO001EJ0100 Rev.1.00 Page 295 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

9.1.5 Timing supervision violation
This violation is detected by the timing supervision function. It is detected when each counter of the timing supervision
function counts in accordance with the operation setting and satisfies a specified status.

If the timing supervision violation is detected, the TSI exception occurs in accordance with the setting.

9.2 Types of Exceptions

The V850E2M CPU generates four types of exceptions defined by the processor protection function. If an exception
occurs, execution branches to the exception handler (00000030H) and violation information defined for each source is

stored in a register.

9.2.1 MIP exception

This exception occurs when an execution protection violation has been detected. This exception is a precise exception
that occurs if execution of an instruction allocated at an address that is not permitted to be accessed is attempted. It can
also be resumed and restored because the original processing can be correctly continued from the instruction that has

generated this exception.

9.2.2 MDP exception
This exception occurs if a data protection violation is detected. This exception is a precise exception that occurs if data
allocated at an address not permitted to be accessed is read or written. It can also be resumed and restored because the

original processing can be correctly continued from the instruction that has caused this exception.

9.2.3 PPI exception

This exception occurs if peripheral device protection violation is detected. It is an imprecise exception that may occur
lagging behind the event that has caused the violation, and that is held pending when the PSW.NP bit is set (1). This
exception can be resumed but cannot be restored, which makes it difficult to continue execution from the instruction that
has caused the violation, because the exception processing is performed after the instruction that has caused the violation
has already been completed and the subsequent instructions have been executed.

A PPl exception is synchronized with exceptions when they are acknowledged or returned from, and the
synchronization is performed by the exception synchronization instruction SYNCE. For details, see 6.3.1 Synchronizing
exception when exception is acknowledged or when execution returns and 6.3.2 Exception synchronization

instruction, which are in PART 2.

9.2.4 TSI exception

This exception occurs if a timing supervision violation is detected. The timing supervision violation is caused by a
counter that operates with the clock input of the CPU. Therefore, it occurs at an unspecific timing, like interrupts. For this
reason, occurrence of the exception is held pending if the PSW.NP bit is set (1) in order to prevent the exception from
being acknowledged when it is impossible to acknowledge exceptions. A TSI exception is synchronized with exceptions
when they are acknowledged or returned from. For details, see 6.3.1 Synchronizing exception when exception is

acknowledged, which is in PART 2.

RO1USO001EJ0100 Rev.1.00 Page 296 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

9.3 Identifying Violation Cause

If protection violation is detected, an exception cause that indicates which exception, MIP, MDP, PPI, or TSI, has
caused a branch to the exception handler is stored in the system register FEIC of the CPU bank. Because the exception
handler address is shared with the other exceptions, branching processing by the exception cause is necessary. As
shown in Table 9-1, auxiliary information indicating the cause of each exception is stored in a specific system register of
the MPV bank.

Table 9-1. Identifying Violation Cause

FEIC Exception Type Violation Violation Information Register
Violation related to | 00000430H | MIP exception Execution protection violation VMECR, VMADR, VMTID
processor protectionf n500p431H | MDP exception | Data protection violation VMECR, VMADR, VMTID

00000432H | PPI exception Peripheral device protection violation | VPNECR, VPNADR, VPNTID|

00000433H | TSI exception Timing supervision violation TSECR

Other exceptions - - - _

9.3.1 MIP exception

00000430H is stored in the FEIC register. The contents of the TID register when this exception occurs are stored in the
VMTID register, and the PC of the instruction that has caused the exception is stored in the VMADR register. The VMX bit
of the VMECR register is set (1), and the other bits are cleared (0).

Because the MIP and MDP exceptions never occur at the same time, the MIP exception share the violation information

registers (VMECR, VMTID, and VMADR registers) with the MDP exception.

Table 9-2. VMECR Set Value When MIP Exception Occurs

Register VMECR
Bit number 6 5 4 3 2 1 0
Bit name VMMS VMRMW VMS VMW VMR VMX -
All instructions 0 0 0 0 0 1 0

9.3.2 MDP exception

00000431H is stored in the FEIC register. The contents of the TID register when this exception occurs are stored in the
VMTID register, and the address of a memory access that has caused the exception is stored in the VMADR register.

In accordance with the contents of the violation detected, the VMR, VMW, and VMS bits of the VMECR register are set
(1) and the VMX bit is cleared (0).

Because the MIP and MDP exceptions never occur at the same time, the MDP exception shares the violation
information registers (VMECR, VMTID, and VMADR registers) with the MIP exception.

RO1USO001EJ0100 Rev.1.00 Page 297 of 473
Oct 17, 2012

V850E2M

PART 3 CHAPTER 9 PROCESSOR PROTECTION EXCEPTION

Table 9-3. VMECR Set Value When MDP Exception Occurs

Register VMECR
Bit number 6 5 4 3 2 1 0
Bit name VMMS | VMRMW VMS VMW VMR VMX -
Read instruction (aligned)*** 0 0 o/aheres 0 1 0 0
Write instruction (aligned)™**2 0 0 o/t 1 0 0 0
Read instruction (misaligned)"*** 1 0 o/aheres 0 1 0 0
Write instruction (misaligned)"°*? 1 0 o/aNeres 1 0 0 0
CAXI/SET1/NOT1/CLR1 instruction™*** 0 1 o/Noe® 0 1 0 0
PREPARE instruction 0 0 1 1 0 0 0
DISPOSE instruction 0 0 1 0 1 0 0

Notes 1. LD/SLD/CALLT/SWITCH/TST1 instruction

2. ST/SST instruction
3. LD/SLD instruction

4. When an instruction that performs a read-modify-write operation is executed, violation occurs only during the

read operation because enabling the write operation is checked in the read cycle.

5. 1if sp indirect access is executed in accordance with the operand specification of an instruction; otherwise, 0.

9.3.3 PPI exception

00000432H is stored in the FEIC register. The task ID when the violation has been detected is stored in the VPNTID
register and the address of the memory access that has caused the violation is stored in the VPNADR register. In the

VPNECR register, information on the access that has caused the exception and on the peripheral device accessed is

stored.

State.

is detected in the T state.

system of each product.
VPNADR register and the logical address of the architecture, refer to the manual of
each product.

Cautions 1. The PPI exception does not occur when special peripheral device protection violation
The violation information in that case is stored in the
VPTECR, VPTTID, and VPTADR registers, rather than the above VPNECR, VPNTID, and
VPNADR registers. For details, refer to 7.4 Peripheral Device Protection Violation in T

2. The address saved in the VPNADR register is an address dependent upon the bus
For correspondence between the address stored in the

9.3.4 TSI exception

00000433H is stored in the FEIC register.

The exception cause bit (each bit of the TSECR register or

TSCCFGN.TSCCFGNES bit) corresponding to the counter that has detected violation when the TSI exception is

acknowledged is set (1).

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 298 of 473

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

CHAPTER 10 MEMORY PROTECTION SETTING CHECK
FUNCTION

A memory protection settings check is performed in advance to provide service protection by checking whether the
data areas for which operations are requested by user applications running on the OS (and programs similar to it) are
permitted by the access permissions of the application that requested the service. The OS (and programs similar to it) can
check the validity of the parameters for a system service supplied by the user. This check processing can be completed in

a shorter time than repeating a reading and comparing area settings by software.

RO1USO001EJ0100 Rev.1.00 Page 299 of 473
Oct 17, 2012

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

10.1 Register Set

The registers used for the memory protection setting check function are listed below.

Table 10-1. System Register Bank

Group Processor Protection Function (10H)
Bank Processor protection violation (O0H) Processor protection setting (01H) Software
paging (10H)
Bank label MPV, PROTOO MPU, PROTO1 PROT10
Register No.| Name Function Name Function Name
0 VSECR |System register protection violation MPM Setting processor protection operation mode MPM
cause
1 VSTID |System register protection violation MPC Specifying processor protection command MPC

task identifier

2 VSADR |System register protection violation TID Task identifier TID
address
3 Reserved for function expansion Reserved for function expansion VMECR
4 VMECR | Memory protection violation cause VMTID
5 VMTID |Memory protection violation task identifier VMADR
6 VMADR | Memory protection violation address IPAOL [Instruction/constant protection area O lower-limit address [IPAOL
7 Reserved for function expansion IPAOU [Instruction/constant protection area 0 upper-limit address [IPAQU
8 IPA1L [Instruction/constant protection area 1 lower-limit address [IPALL
9 IPA1U [Instruction/constant protection area 1 upper-limit address [IPA1U
10 IPA2L [Instruction/constant protection area 2 lower-limit address [IPA2L
11 IPA2U [Instruction/constant protection area 2 upper-limit address [IPA2U
12 IPA3L [Instruction/constant protection area 3 lower-limit address [IPA3L
13 IPA3U [Instruction/constant protection area 3 upper-limit address [IPA3U
14 IPA4L [Instruction/constant protection area 4 lower-limit address [IPA4L
15 IPA4U [Instruction/constant protection area 4 upper-limit address [IPA4U
16 DPAOL [Data protection area 0 lower-limit address (for stack) DPAOL
17 DPAOU [Data protection area 0 upper-limit address (for stack) DPAOU
18 DPAILL |Data protection area 1 lower-limit address DPAILL
19 DPA1U |Data protection area 1 upper-limit address DPA1U
20 DPA2L |Data protection area 2 lower-limit address DPA2L
21 DPA2U [Data protection area 2 upper-limit address DPA2U
22 DPA3L [Data protection area 3 lower-limit address DPA3L
23 DPA3U [Data protection area 3 upper-limit address DPA3U
24 MCA Memory protection setting check DPAA4L |Data protection area 4 lower-limit address DPA4L
address
25 MCS Memory protection setting check size |DPA4U |Data protection area 4 upper-limit address DPA4U
26 MCC Memory protection setting check DPAS5L |Data protection area 5 lower-limit address (2" specification [DPA5L
command only)
27 MCR Memory protection setting check result | DPA5U | Data protection area 5 upper-limit address (2" specification | DPA5SU
only)
RO1USO001EJO100 Rev.1.00 Page 300 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

10.1.1 MCA — Memory protection setting check address

This register specifies the base address of an area where memory protection setting is to be checked.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MCA MCA | MCA | MCA | MCA| MCA | MCA | MCA | MCA | MCA | MCA | MCA | MCA | MCA | MCA | MCA | MCA
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MCA | MCA | MCA | MCA |MCA | MCA | MCA | MCA | MCA | MCA | MCA | MCA [MCA | MCA | MCA | MCA| Initial value
15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0 | undefined
Bit Position | Bit Name Description
31to0 MCA31to | These bits specify in bytes the start address of the memory area where memory protection
MCAO setting is to be checked.

10.1.2 MCS - Memory protection setting check size

This register specifies the size of an area where memory protection setting is to be checked.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MCS MCS |MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS |MCS
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 18 | 17 | 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MCS |MCS | MCS | MCS | MCS | MCS | MCS | MCS | MCS |MCS | MCS | MCS |MCS | MCS | MCS | MCS| Initial value
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Undefined
Bit Position | Bit Name Description
31to0 MCS31to | These bits specify in bytes the size of the target area for which the size of the memory area
MCSO0 where memory protection setting is to be checked is specified. Because the specified size is
treated as an unsigned integer, the area cannot be checked in the direction in which the
address value is decremented from the value of the MCA register.
Do not set the MCS register to 00000000H.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 301 of 473

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

10.1.3 MCC - Memory protection setting check command

This is a command register to start checking memory protection setting.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MCC MCC |MCC |MCC |[MCC | MCC |MCC | MCC |MCC |MCC |MCC | MCC|MCC|MCC |MCC |MCC|MCC
31 30 | 29 | 28 27 | 26 25 24 | 23 | 22 21 20 | 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MCC |MCC |MCC |[MCC | MCC | MCC|MCC | MCC | MCC | MCC |MCC | MCC |MCC | MCC|MCC |MCC| Initial value
15 | 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 00000000H

Bit Position | Bit Name Description
31to0 MCC31to| When any value is written to the MCC register, checking memory protection settings is
MCCO started. By setting the MCA/MCS register in advance and by writing this register, the result is

stored in MCR.

Because checking is started with an arbitrarily written value, checking can be started without
additional registers, by using rO as the source register. Checking reflects the result in
accordance with the setting of each area, regardless of the status of the PSW.DMP and IMP
bits.

The value read from the MCC register is always 00000000H.

10.1.4 MCR — Memory protection setting check result
This register stores the result of checking memory protection setting.
Be sure to set bits 31t0 9, 7 to 5, and 3 to “0".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MCR| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oo o|lo|o|o0o ojov|o o|o|SE|l o |we|RE|xe|mtalvalue
00000000H
Bit Position | Bit Name Description
8)] 1 is stored in this bit when the specified area extends to 00000000H or 7FFFFFFFH.
Otherwise, 0 is stored.
4 SE 1 is stored in this bit if the specified area fits in one of the protection areas and if the stack
protection setting of the protection area is enabled. Otherwise, 0 is stored.
2 WE 1 is stored in this bit if the specified area fits in one of the protection areas and if that
protection area is enabled to be written. Otherwise, 0 is stored.
1 RE 1 is stored in this bit if the specified area fits in one of the protection areas and if that
protection area is enabled to be read. Otherwise, O is stored.
0 XE 1 is stored in this bit if the specified area fits in one of the protection areas and if that
protection area is executable. Otherwise, O is stored.
RO1USO0001EJ0100 Rev.1.00 Page 302 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION

10.2 Sample Code

An example of how to check the memory protection settings is shown below. If the area to be checked extends over
00000000H, it is judged that the specified area is incorrect, and the MCR.QV bit is set (1). To reference the check result,
therefore, be sure to check the MCR.OV bit, confirm that the result is not illegal (OV = 0), and then use the other check

results.

_service_protection:

ori 0x1000, rO, ri2

ldsr rl2, BSEL // Selecting MPV/PROTOO0 bank

mov ADDRESS, r10 /7 Storing in r10 the start address of area to be checked
mov SIZE, ril // Storing in rl11 the size of area to be checked

di

ldsr r10, MCA // Setting address
ldsr rll, MCS // Setting size

Idsr r0, MCC // Starting check
stsr MCR, r12 // Acquiring result

el
andi 0x0100, rl12, rO
be _overflow // Processed with input value assumed to be illegal if OV =1
br _result_check // Otherwise, judging the result.
RO1USO001EJ0100 Rev.1.00 Page 303 of 473

Oct 17, 2012

V850E2M PART 3 CHAPTER 11 SPECIFAL FUNCTON

CHAPTER 11 SPECIFAL FUNCTON

This chapter explains the special function related to the processor protection function.

11.1 Clearing Memory Protection Setting All at Once

By setting (1) the MPC.ALDS bit, the following memory protection setting bits are cleared (0) all at once in the cycle
next to the one in which the MPC.ALDS bit is set.

e |PANL.E bit (n=0to 4)
e DPANL.E bit (n = 0to 5)

RO1USO001EJ0100 Rev.1.00 Page 304 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 1 OVERVIEW

PART 4 FLOATING-POINT OPERATION FUNCTION

RO1USO001EJ0100 Rev.1.00 Page 305 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 1 OVERVIEW

CHAPTER 1 OVERVIEW

The floating-point unit (FPU) of the V850E2M CPU conforms to the V850E2v3 architecture and operates as a CPU
coprocessor that executes floating-point operation instructions.

Either single-precision (32-bit) or double-precision (64-bit) data can be used. In addition, floating-point values and
fixed-point values can be converted.

The V850E2M CPU FPU conforms to ANSI/IEEE standard 754-1985 (IEEE binary floating-point operation standard).

1.1 Features

(1) Floating-point instructions

e Conform to ANSI/IEEE standard 754-1985 (IEEE binary floating-point operation standard).

e Supports single-precision (32-bit) and double-precision (64-bit).

e Supports the basic addition, subtraction, multiplication, and division instruction, multiply-add instruction,
Maximum/Minimum instruction, and square root instruction.

e Supports the flag transfer instruction which transfers the floating-point configuration/status register’s condition
bits to the Z flag of the PSW register
TRFSR

e Supports conditional transfer instruction, to accelerate conditional branch
CMOVF.S, CMOVF.D

e Supports unsigned conversion instructions which efficiently execute format conversions with unsigned integers.

e Supports the CEIL and FLOOR instructions, which efficiently execute conversion of the format to the nearest
integer.

e Supports condition bits (8 bits) for storing floating-point comparison results

e Supports two FPU execution modes: precise mode and imprecise mode

(2) Reqister set
o Floating-point operation register: Uses general-purpose registers
(not special-purpose register for floating-point operations)
o Floating-point system register: FPSR — Floating-point configuration/status
FPEPC - Floating-point exception program counter
FPST - Floating-point status
FPCC - Floating-point comparison result
FPCFG - Floating-point configuration

FPEC - Floating-point exception control

RO1USO001EJ0100 Rev.1.00 Page 306 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 1 OVERVIEW

1.2 Implementing Floating-point Operation Function

The V850E2M CPU assumes the floating-point operation function as a coprocessor that can be implemented or not as

follows. It depends on the products. Refer to Hardware User’s Manual of each product.

(1) Notimplemented
If the floating-point operation function is not implemented, all the floating-point instructions cannot be used. If an
attempt is made to execute such an instruction, a coprocessor unusable exception occurs. In addition, the
operation of all the floating-point system registers is undefined. Therefore, do not manipulate these registers by

LDSR and STSR.

(2) Implementing single precision and double precision
All the floating-point instructions can be used when floating-point instructions of single precision and double
precision are implemented. All the floating-point system registers supply the functions described in CHAPTER 2

REGISTER SET.

RO1USO001EJ0100 Rev.1.00 Page 307 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 2 REGISTER SET

CHAPTER 2 REGISTER SET

2.1 Floating-point Operation Registers

The FPU uses the CPU general-purpose registers (r0 to r31). There are no register files used only for floating-point

operations.

* Single-precision floating-point instruction:
32 registers (32 bits each) can be specified. These general-purpose registers correspond to r0 to r31.

* Double-precision floating-point instruction:
16 registers (64 bits each) can be specified. Paired general-purpose registers are used as register pairs ({r1, r0},
{r3, r2} ... {r31, r30}). Each register pair is specified in the instruction format with an even numbered register.
Since r0 is a zero register (always holds “0”), in principle {r1, r0} cannot be used by a double-precision floating-

point instruction.
2.2 Floating-point System Registers

The FPU status bank (bank with group #20 and bank number O0H) of the system register bank includes 28 control
registers. The FPU status bank is selected when the LDSR instruction sets 0x2000 to the BSEL register.

Six system registers can be used by the FPU.

e FPSR: This register is used to control and monitor exceptions. It also holds the result of compare operations,
and sets the FPU operation mode. Its bits are used to set condition code, exception mode,
denormalized number flash enable, rounding mode control, cause, exception enable, and preservation.

e FPEPC: This register stores the program counter value for the instruction where a floating-point operation
exception has occurred.

e FPST: This register indicates the same information as the RM and XE bits of the FPSR register.

e FPCC: This register indicates the same information as the CC(7:0) bits of the FPSR register.

e FPCFG: This register indicates the same information as the RM and FS bits of the FPSR register.

e FPEC: Controls checking and canceling the pending status of the FPI exception.

System registers in the FPU bank other than the above are reserved for future expansion. These registers are write-
prohibited. Also, their values are undefined when read. System registers can be accessed by the LDSR, STSR, or
TRFSR instruction.

Table 2-1 shows the system register bank configuration. System register numbers 28 to 31 are used by all banks, and
the CPU function bank’s EIWR, FEWR, DBWR, BSEL registers can be referenced regardless of the settings in the BSEL

register.

RO1USO001EJ0100 Rev.1.00 Page 308 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 2 REGISTER SET

Table 2-1. System Register Bank

System System Register Name Able to Specify Operands? | System
Register No. LDSR STSR Register
Instruction Instruction Protection

0to5 Reserved for future function expansion. (Operation is not guaranteed if x x \/
these registers are accessed.)

6 FPSR — Floating-point configuration/status S S

7 FPEPC - Floating-point exception program counter N N

8 FPST — Floating point status N N x

9 FPCC — Floating-point comparison result \/ \/ x

10 FPCFG - Floating-point configuration N N x

11 FPEC — Floating-point exception control S S

12to 26 Reserved for future function expansion. (Operation is not guaranteed if x x \/
these registers are accessed.)

28 EIWR — Working register for El level exception S S S

29 FEWR — Working register for FE level exception \/ \/ \/

30 DBWR — Working register for DB level exception \/ \/ \/

31 BSEL — Selection of register bank \/ \/ \/

Remark +: Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.
Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column
of “System Register Protection”, this symbol indicates that the register is not protected.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 309 of 473

V850E2M

PART 4 CHAPTER 2 REGISTER SET

2.2.1 FPSR - Floating-point configuration/status
The FPSR register indicates the execution status of floating-point operations and any exceptions that occur.

For exception, see CHAPTER 6 EXCEPTIONS in PART 2.

Bits 23 and 22 are reserved for future function expansion, and writing of non-zero values is prohibited. Operation is

undefined when a non-zero value is written. Also, values are undefined when read.

(1/2)

31

30

29

28 27 26 25 24 23 22 21 20 19 18 17 16

FPSR| CC7

CC6

CC5

[

CC4 | CC3 | cCc2 DEM | SEM RM FS | PR

CCl\CCO\ 0 0

15

14

13

12 11 10 9 8 7 6 5 4 3 2 1 0

Cause Bits (XC)
Elv]|z]olu|li1 |v]z|]oJul|li1|v]z]o]|u]l.

Initial value
Note

EnaBIe bits‘(XE) Preservation bits (XI5)

Bit position

Bit name

Description

31to 24

CC(7:0)

These are the CC (condition) bits. They store the results of floating-point comparison instructions.
The CC(7:0) bits are not affected by any instructions except the comparison instruction and LDSR
instruction. The initial values are undefined.

0: Comparison result is false

1: Comparison result is true

21

DEM

This bit indicates double-precision operation exception mode. When the DEM bit is 1, any exception
that occurs during execution of a double-precision (Double) instruction is handled as a precise
exception. For description of double-precision instructions, see 4.2 Overview of Floating-point
Instruction. The initial value is 0.

20

SEM

This bit indicates single-precision operation exception mode. When the SEM bit = 1, any exception
that occurs during execution of a single-precision (Single) instruction is handled as a precise
exception. For description of single-precision instructions, see 4.2 Overview of Floating-point
Instruction. The initial value is 0.

19, 18

RM

These are the rounding mode control bits. The RM bits define the rounding mode that the FPU uses
for all floating-point instructions. The initial value is 0. Be sure to set these bits to “00”.

RM bit

Mnemonic

Description

Bit 19

Bit 18

0

0

RN

Rounds the result to the nearest representable value.
If the value is exactly in-between the two nearest
representable values, the result is rounded toward the
value whose least significant bit is 0.

Other than above

Setting prohibited

Note See the description of individual bits.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 310 of 473

V850E2M PART 4 CHAPTER 2 REGISTER SET

(212)
17 FS The FS bit enables flushing of values that cannot be normalized (denormalized numbers). If this bit is
set, the result of a denormalized number does not cause an unimplemented operation exception (E)
but is flushed instead. Whether the denormalized number that has been flushed is 0 or the minimum
normalized value depends on the rounding mode. The initial value is 1.
Be sure to set FS bit to “1”.
Result of denormalized number Rounding mode of flushed result (RN)
Positive +0
Negative -0
16 PR If the exception mode of the instruction that has caused the floating-point operation exception is
imprecise exception mode, this bit is cleared to 0. If it is precise exception mode, this bit is set to 1.
The initial value is undefined.
15to 10 XC These are the cause bits. The initial values are undefined. For details, see 2.2.1 (1) Cause bits
(E,V,Z,0,U,1) | (XC).
9to 5 XE These are the enable bits. The initial values are 0. For details, see 2.2.1 (2) Enable bits (XE).
V,Z,0,U,1)
4100 XP These are the preservation bits. The initial values are undefined. For details, see 2.2.1 (3)
(V,Z,0,U,1) | Preservation bits (XP).

(1) Cause bits (XC)

@

Bits 15 to 10 of the FPSR register are cause bits, which indicate the occurrence and cause of a floating-point
operation exception. If an exception defined by IEEE754 is generated, when an enable bit is set (1) corresponding
to the exception, a cause bit is set, and the exception then occurs. When two or more exceptions occur during a
single instruction, each corresponding bit is set (1).

If two or more exceptions are detected, as long as the enable bit corresponding to one of the exceptions is set (1),
the exception occurs. In this case, the cause bits of all the detected exceptions, including exceptions whose enable
bits are cleared (0), are set (1).

The cause bits are rewritten by a floating-point operation instruction (except the TRFSR instruction) where the
floating-point operation exception occurred. The E bit is set (1) when software emulation is required, otherwise it is
cleared (0). Other bits are set (1) or cleared (0) depending on whether or not an IEEE754-defined exception has
occurred.

When a floating-point operation exception has occurred, the operation result is not stored, and only the cause bits
are affected.

When the cause bits are set (1) by an LDSR instruction, a floating-point operation exception does not occur.

Enable bits (XE)

Bits 9 to 5 of the FPSR register are the enable bits, which enable floating-point operation exceptions. When an
IEEE754-defined exception occurs, a floating-point operation exception occurs if the enable bit corresponding to
the exception has been set (1).

There are no enable bits corresponding to an unimplemented operation exception (E). An unimplemented
operation exception (E) always occurs as a floating-point operation exception.

If the corresponding enable bit has not been set (1), no exception occurs and the default result defined by IEEE754

is stored.

RO1USO001EJ0100 Rev.1.00 Page 311 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 2 REGISTER SET

(3) Preservation bits (XP)
Bits 4 to 0 of the FPSR register are preservation bits. These bits store and indicate the detected exception after
reset. An exception defined by IEEE754 occurs, and if the corresponding enable bit is not set (1), the preservation
bit is set (1), otherwise it does not change. The preservation bits are not cleared (0) by the floating-point operation.
However, these bits can be set and cleared by software when an LDSR instruction is used to write a new value to
the FPSR register.
There are no preservation bits corresponding to unimplemented operation exceptions (E). An unimplemented

operation exception (E) always occurs as a floating-point operation exception.

Remark For description of the exception types and how they relate to particular bits, see Figure 5-1 Cause,
Enable, and Preservation Bits of FPSR Register.

2.2.2 FPEPC - Floating-point exception program counter

When an exception that is enabled by an enable bit occurs, the program counter (PC) of the instruction that caused the
exception is stored.

For bits 31 to 29 and 0, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is

written.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
\ T 1 T I T 1 [T 1 \ T 1 T 1

EPEPC (PC) Initial value

Undefined

Caution For a CPU whose instruction addressing range is limited by the product specification to 512
MB, a value resulting from a sign-extension of bit 28 is automatically set to bits 31 to 29 of
FPEPC.

RO1USO001EJ0100 Rev.1.00 Page 312 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 2 REGISTER SET

2.2.3 FPST - Floating-point operation status
These bits indicate the same information as the PR, XC, and XP bits of the FPSR register.

For bits 31 to 16, 14, and 7 to 5, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is

written.

31. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPST| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR 0 dause Bits (Xé) 0 0 0 Preservation bits (XI5) Initial value
Elv]z|lo]uli V| z | o] Ul I | undefined

Bit position | Bit name Description
15 PR This bit indicates the exception mode of the instruction where the floating-point operation exception

occurred. The initial values are undefined.

The value written to this bit is reflected in PR bit of FPSR.
0: Imprecise exception
1: Precise exception

13t0 8 XC These are cause bits. The initial values are undefined. For details, see 2.2.1 (1) Cause bits (XC).
(E, V, Z, O, | Values written to these bits are reflected in XC bits of FPSR.
U,)

4100 XP These are preservation bits. The initial values are undefined. For details, see 2.2.1 (3) Preservation

(V,Z,0, U,)| bits (XP). Values written to these bits are reflected in XP bits of FPSR.

2.2.4 FPCC - Floating-point operation comparison result
These bits indicate the same information as the CC(7:0) bits of the FPSR register.

For bits 31 to 8, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is written.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPCC| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o ol ol o| o] o] o] o |cc7lcce|cecs|ccalces|ce2|cct| ccolnitalvalue
Undefined

Bit position | Bit name Description

7t00 CC(7:0) These are CC (condition) bits. They store the result of a floating-point comparison instruction. The
CC(7:0) bits are not affected by any instructions except the comparison instruction and LDSR
instruction. The initial values are undefined. Values written to these bits are reflected in CC(7:0) bits
of FPSR.

0: Comparison result is false
1: Comparison result is true

RO1USO001EJ0100 Rev.1.00 Page 313 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 2 REGISTER SET

2.2.5 FPCFG - Floating-point operation configuration

These bits indicate the same information as the RM and XE bits of the FPSR register.

For bits 31 to 10 and 7 to 5, writing of non-zero values is prohibited. Operation is undefined when a non-zero value is

written.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FPCFG| 0 0 0 0 0 0 \ 0 0 0 0 \ 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! Enable bits (XE) iti
Initial value
0 0 0 0 0 0 RM 0 0 0
\ \ v]zl ol ul 1 |ooooooooH
Bit position | Bit name Description
9,8 RM These are rounding mode control bits. The RM bits define the rounding mode that the FPU uses for
all floating-point instructions. The initial value is 0. Be sure to set these bits to “00”. Values set to
these bits are reflected in RM bits of FPSR.
RM bit Mnemonic Description
Bit 9 Bit 8
0 0 RN Rounds the result to the nearest representable value.
If the value is exactly in-between the two
representable values, the result is rounded toward the
value whose least significant bit is 0.
Other than above Setting prohibited
4100 XE These are enable bits. The initial value is 0. For details, see 2.2.1 (2) Enable bits (XE).
(V,Z,0, U,)| Also, values written to these bits are reflected in XE bits of FPSR.

RO1USO001EJ0100 Rev.1.00

Page 314 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 2 REGISTER SET

2.2.6 FPEC - Floating-point exception control
This register controls the floating-point operation exception.

Writing a value other than 0 to bits 31 to 1 is prohibited. If a value other than 0 is written to these bits, the operation is
undefined.

Caution For how to handle the FPEC register, refer to 6.3 Exception Management in PART 2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPEC | O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPI | Initial value
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VD | 00000000H

Bit Position | Bit Name Meaning

0 FPIVD"® This bit indicates the status of reporting the FPI exception.

If this bit is set (1), the FPI exception is reported to the CPU but is not acknowledged. It is
automatically cleared (0) when the CPU acknowledges the FPI exception.

While this bit is set (1), all the floating-point instructions are invalidated.

Report of the FPI exception can be canceled by clearing (0) this bit by the LDSR instruction while it

is set (1). When report of the LDSR instruction is canceled, the CPU does not acknowledge the FPI
exception.

0: FPI exception is reported.

1: FPI exception is reported.

Note The FPIVD bit can only be cleared (0) by the write operation of the LDSR instruction. It cannot be set
).

RO1USO001EJ0100 Rev.1.00

Page 315 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 3 DATA TYPES

CHAPTER 3 DATA TYPES

3.1 Data Formats

3.1.1 Floating-point format
The FPU supports 32-bit (single precision) and 64-bit (double precision) IEEE754 floating-point operations.

The single-precision floating-point format consists of a 24-bit signed mantissa (s + f) and an 8-bit exponent (e), as
shown in Figure 3-1.

Figure 3-1. Single-precision Floating-point Format

31 30 23 22 0
S e f
Sign Exponent Mantissa
1 8 23

The double-precision floating-point format consists of a 53-bit signed mantissa (s + f) and an 11-bit exponent (e), as
shown in Figure 3-2.

Figure 3-2. Double-precision Floating-point Format

63 62 52 51 0
s e f
Sign Exponent Mantissa
1 11 52

A numerical value in the floating-point format includes the following three areas.

e Sign bit: s
e Exponent: e = E + bias value

e Mantissa: f = .bibz...be-1 (value lower than the first decimal place)

The bias value for the single-precision format is 127. For double-precision format, the bias value is 1023.

The range of the exponent value E when unbiased covers all integers from Emin to Emax, along with two reserved
values, Emin -1 (£0 or denormalized number), and Emax +1 (xc0 or NaN: not-a-number). A numeric value other than 0 is
represented in one format, depending on the single-precision and double-precision formats.

The numeric value (v) represented in this format can be calculated by the expression shown in Table 3-1.

RO1USO001EJ0100 Rev.1.00 Page 316 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 3 DATA TYPES
Table 3-1. Calculation Expression of Floating-point Value
Type Calculation Expression
NaN (not-a-number) IfE=Emax+1landf=0 then v = NaN regardless of s
+oo (infinite number) IfE=Emx+1landf=0 then v = (-1)°x
Normalized number If Emin < E < Emax then v = (-1)°2F (1.f)
Denormalized number If E=Emn—1andf=0 then v = (=1)°25™" (0.f)
+0 (zero) IfE=Emn—landf=0 then v = (-1)°0

e NaN (not-a-number)

IEEE754 defines a floating-point value called NaN (not-a-number). Because this value is not a numerical value, it

does not have any “greater than” or “less than” relationships to other values.

If v is NaN in all of the floating-point formats, it may be either SignalingNaN (S-NaN) or QuietNaN (Q-NaN),

depending on the value of the most significant bit of f. If the most significant bit of f is set, v is QuietNaN; if the most

significant bit is cleared, it is SignalingNaN.

Table 3-2 lists the value of each parameter defined in floating-point formats.

Table 3-2. Floating-point Formats and Parameter Values

Parameter Format

Single Precision Double Precision
Emax +127 +1023
Emin -126 -1022
Exponent bias value +127 +1023
Exponent length (number of bits) 8 11
Integer bits Cannot be seen Cannot be seen
Length of mantissa (number of bits) 23 52
Length of format (hnumber of bits) 32 64

Table 3-3 shows the minimum and maximum values that can be represented in floating-point formats.

Table 3-3. Floating-point Minimum and Maximum Values

Type

Value

Minimum value of single-precision floating point 1.40129846e — 45

Minimum value of single-precision floating point (normal) 1.17549435e - 38

Maximum value of single-precision floating point 3.40282347e + 38

Minimum value of double-precision floating point

4.9406564584124654e — 324

Minimum value of double-precision floating point (normal)

2.2250738585072014e — 308

Maximum value of double-precision floating point

1.7976931348623157e + 308

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 317 of 473

V850E2M PART 4 CHAPTER 3 DATA TYPES

3.1.2 Fixed-point formats

The value of a fixed point is held in the format of 2's complement. Figure 3-3 shows a 32-bit fixed-point format and

Figure 3-4 shows a 64-bit fixed-point format. No signed bits exist in the unsigned fixed-point format, and all bits represent

the integer value.

Figure 3-3. 32-bit Fixed-Point Format

31 30 0
s f
Sign Mantissa
1 31
s: Sign bit

i Integer value (2's complement)

Figure 3-4. 64-bit Fixed-Point Format

63 62 0
S f
Sign Mantissa
1 63
s: Sign bit

i Integer value (2's complement)

RO1USO001EJ0100 Rev.1.00 Page 318 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

CHAPTER 4 INSTRUCTIONS

4.1 Instruction Formats

All floating-point instructions are in 32-bit format.

When an instruction is actually saved to memory, it is placed as shown below.

e Lower part of instruction format (including bit 0) — Lower address side

e Higher part of instruction format (including bit 15 or bit 31) — Higher address side

(1) Format F:I
The 32-bit long floating-point instruction format includes a 6-bit opcode field, 4-bit sub-opcode field, three fields that

specify general-purpose registers, a 3-bit category field, and a 2-bit type field.

15 11 10 5 4 0 31 27 26 16
I I

reg2 opcode regl reg3 sub-opcode

4.2 Overview of Floating-point Instructions

Floating-point instructions are divided into single-precision instructions (single) and double-precision instructions

(double), and include the following instructions (mnemonics).

(1) Basic operation instructions

e ABSF.D: Floating-point Absolute Value (Double)
e ABSF.S: Floating-point Absolute Value (Single)
o ADDF.D: Floating-point Add (Double)

e ADDF.S: Floating-point Add (Single)

e DIVF.D: Floating-point Divide (Double)

e DIVF.S: Floating-point Divide (Single)

o MAXF.D: Floating-point Maximum (Double)

o MAXF.S: Floating-point Maximum (Single)

o MINF.D: Floating-point Minimum (Double)

o MINF.S: Floating-point Minimum (Single)

e MULF.D: Floating-point Multiply (Double)

e MULF.S: Floating-point Multiply (Single)

¢ NEGF.D: Floating-point Negate (Double)

e NEGF.S: Floating-point Negate (Single)

¢ RECIPF.D: Reciprocal of a floating-point value (Double)
e RECIPF.S: Reciprocal of a floating-point value (Single)

RO1USO001EJ0100 Rev.1.00 Page 319 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

¢ RSQRTF.D: Reciprocal of the square root of a floating-point value (Double)
¢ RSQRTF.S: Reciprocal of the square root of a floating-point value (Single)
¢ SQRTF.D: Floating-point Square Root (Double)

e SQRTF.S: Floating-point Square Root (Single)

e SUBF.D: Floating-point Subtract (Double)

e SUBF.S: Floating-point Subtract (Single)

(2) Extended basic operation instructions

e MADDF.S: Floating-point Multiply-Add (Single)

¢ MSUBF.S: Floating-point Multiply-Subtract (Single)

e NMADDF.S: Floating-point Negate Multiply-Add (Single)

¢ NMSUBF.S: Floating-point Negate Multiply-Subtract (Single)

RO1USO001EJ0100 Rev.1.00 Page 320 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

(3) Conversion instructions

o CEILF.DL: Floating-point Truncate to Long Fixed-point Format, rounded toward +o (Double)
e CEILF.DW: Floating-point Truncate to Single Fixed-point Format, rounded toward +o (Double)
e CEILF.SL: Floating-point Truncate to Long Fixed-point Format, rounded toward +o (Single)
o CEILF.SW: Floating-point Truncate to Single Fixed-point Format, rounded toward + (Single)
e CEILF.DUL: Floating-point Truncate to Unsigned Long, rounded toward +c (Double)

o CEILF.DUW: Floating-point Truncate to Unsigned Word, rounded toward + (Double)

o CEILF.SUL: Floating-point Truncate to Unsigned Long, rounded toward +o (Single)

e CEILF.SUW: Floating-point Truncate to Unsigned Word, rounded toward + (Single)

e CVTF.DL: Floating-point Convert to Long Fixed-point Format (Double)

e CVTF.DS: Floating-point Convert to Single Floating-point Format (Double)

e CVTF.DUL: Floating-point Convert Double to Unsigned-Long (Double)

o CVTF.DUW: Floating-point Convert Double to Unsigned-Word (Double)

o CVTF.DW: Floating-point Convert to Single Fixed-point Format (Double)

e CVTF.LD: Floating-point Convert to Single Floating-point Format (Double)

e CVTF.LS: Floating-point Convert to Single Floating-point Format (Single)

e CVTF.SD: Floating-point Convert to Double Floating-point Format (Double)

e CVTF.SL: Floating-point Convert to Long Fixed-point Format (Single)

e CVTF.SUL: Floating-point Convert Single to Unsigned-Long (Single)

o CVTF.SUW: Floating-point Convert Single to Unsigned-Word (Single)

o CVTF.SW: Floating-point Convert to Single Fixed-point Format (Single)

e CVTF.ULD: Floating-point Convert Unsigned-Long to Double (Double)

e CVTF.ULS: Floating-point Convert Unsigned-Long to Single (Single)

o CVTF.UWD: Floating-point Convert Unsigned-Word to Double (Double)

¢ CVTF.UWS: Floating-point Convert Unsigned-Word to Single (Single)

e CVTF.WD: Floating-point Convert to Single Floating-point Format (Double)

e CVTF.WS: Floating-point Convert to Single Floating-point Format (Single)

e FLOORF.DL: Floating-point Truncate to Long Fixed-point Format, rounded toward - (Double)
¢ FLOORF.DW: Floating-point Truncate to Single Fixed-point Format, rounded toward -0 (Double)
¢ FLOORF.SL: Floating-point Truncate to Long Fixed-point Format, rounded toward -« (Single)

¢ FLOORF.SW: Floating-point Truncate to Single Fixed-point Format, rounded toward -« (Single)

o FLOORF.DUL: Floating-point Truncate to Unsigned Long, rounded toward -co (Double)
o FLOORF.DUW: Floating-point Truncate to Unsigned Word, rounded toward - (Double)
¢ FLOORF.SUL: Floating-point Truncate to Unsigned Long, rounded toward - (Single)

¢ FLOORF.SUW: Floating-point Truncate to Unsigned Word, rounded toward -o (Single)

e TRNCF.DL:

Floating-point Truncate to Long Fixed-point Format, rounded to zero (Double)

e TRNCF.DUL: Floating-point Truncate Double to Unsigned-Long (Double)

e TRNCF.DUW: Floating-point Truncate Double to Unsigned-Word (Double)

e TRNCF.DW: Floating-point Truncate to Single Fixed-point Format, rounded to zero (Double)
e TRNCF.SL: Floating-point Truncate to Long Fixed-point Format, rounded to zero (Single)

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 321 of 473

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

¢ TRNCF.SUL: Floating-point Truncate Single to Unsigned-Long (Single)
e TRNCF.SUW: Floating-point Truncate Single to Unsigned-Word (Single)
e TRNCF.SW: Floating-point Truncate to Single Fixed-point Format, rounded to zero (Single)

(4) Comparison instructions

e CMPF.S: Compares floating-point values (Single)
e CMPF.D: Compares floating-point values (Double)

(5) Conditional transfer instructions

¢ CMOVF.S: Floating-point conditional move (Single)
o CMOVF.D: Floating-point conditional move (Double)

(6) Condition bit transfer instruction
e TRFSR: Transfers specified CC bit to Zero flag in PSW (Single)

4.3 Conditions for Comparison Instructions

Floating-point comparison instructions (CMPF.D and CMPF.S) perform two floating-point data compare operations.
The result is determined based on the comparison condition contained in the data and code. Table 4-1 lists the
mnemonics for conditions that can be specified by comparison instructions.

The comparison instruction result is transferred by the TRFSR instruction to the Z flag of PSW (program status word),
and when performing a conditional branch, the condition logic is inverted and then can be used. Table 4-2 shows logic
inversion based on the true/false status of conditions. In a 4-bit condition code for a floating-point comparison instruction,
the condition is specified in the “True” column of the table. The conditional branch instruction BT performs a branch when

the comparison result is true, while BF performs a branch when the result is false.

RO1USO001EJ0100 Rev.1.00 Page 322 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS
Table 4-1. List of Conditions for Comparison Instructions

Mnemonic Definition Inverted Logic
F Always false () Always true
UN Unordered (OR) Ordered
EQ Equal (NEQ) Not equal
UEQ Unordered or equal (OLG) Ordered and less than or greater than
OLT Ordered and less than (UGE) Unordered or greater than or equal to
ULT Unordered or less than (OGE) Ordered and greater than or equal to
OLE Ordered and less than or equal to (UGT) Unordered or greater than
ULE Unordered or less than or equal to (OGT) Ordered and greater than
SF Signaling and false (ST) Signaling and true
NGLE Not greater than, not less than, and not (GLE) Greater than, less than, or equal to

equal to
SEQ Signaling and equal to (SNE) Signaling and not equal to
NGL Not greater than and not less than (GL) Greater than or less than
LT Less than (NLT) Not less than
NGE Not greater than and not equal to (GE) Greater than or equal to
LE Less than or equal to (NLE) Not less than and not equal to
NGT Not greater than (GT) Greater than
Table 4-2. Definitions of Condition Code Bits and Their Logical Inversions

Mnemonic | Condition Code Bit Definition of Condition Code fcond[3 to 0]

(True) fecond Invalid operation Inverted

Less than Equal to Unordered exception occurs Logic
when unordered? | (False)
Decimal| Binary fcond[2] fcond[1] fcond[0] fcond[3]

F 0 0b0000 F F F No)
UN 1 0b0001 F F T No (OR)
EQ 2 0b0010 F T F No (NEQ)
UEQ 3 0b0011 F T T No (OLG)
OLT 4 0b0100 T F F No (UGE)
ULT 5 0b0101 T F T No (OGE)
OLE 6 0b0110 T T F No (UGT)
ULE 7 0b0111 T T T No (OGT)
SF 8 0b1000 F F F Yes (ST)
NGLE 9 0b1001 F F T Yes (GLE)
SEQ 10 0b1010 F T F Yes (SNE)
NGL 11 | 0b1011 F T T Yes (GL)
LT 12 0b1100 T F F Yes (NLT)
NGE 13 | 0b1101 T F T Yes (GE)
LE 14 0b1110 T T F Yes (NLE)
NGT 15 Ob1111 T T T Yes (GT)

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 323 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

4.4 Instruction Set

This section describes the following items in each instruction (based on alphabetical order of instruction mnemonics).

e Instruction format: Describes the instruction coding method and operands used (symbols are listed in Table 4-3).

o Operation:
e Format:

* opcode:

o Description:

e Supplement:

Indicates instruction function (symbols are listed in Table 4-4).

Indicates the instruction format (see 4.1 Instruction Formats).

Indicates the instruction opcode in bit fields (symbols are listed in Table 4-5).
Describes the instruction operations.

Provides a supplementary description of the instruction.

Table 4-3. Instruction Format

Symbol Explanation
regl General-purpose register
reg2 General-purpose register
reg3 General-purpose register
reg4 General-purpose register
fchit Specifies the bit number of the condition bit that stores the result of a floating-point comparison
instruction.
imm x x bit immediate data
fcond Specifies the mnemonic or condition code of the comparison condition of a comparison
instruction (for details, refer to 4.3 Conditions for Comparison Instructions).
RO1USO0001EJ0100 Rev.1.00 Page 324 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

Table 4-4. Operations

Symbol Explanation
«— Assignment (input for)
GR[] General-purpose register
SR] System register
result Result is reflected in flag.
+ Add
- Subtract
I Bit concatenation
X Multiply
= Divide
abs Absolute value
ceil Rounding in +oo direction
compare Comparison
cvt Converts type according to rounding mode
floor Rounding in —w direction
max Maximum value
min Minimum value
neg Sign inversion
round Rounding to closest value
sqrt Square root
trunc Rounding in zero direction
Table 4-5. Opcodes
Symbol Explanation
R Single bit data of code specifying regl
r Single bit data of code specifying reg2
w Single bit data of code specifying reg3
w Single bit data of code specifying reg4
| Single bit data of immediate data (indicates higher bit of immediate data)
i Single bit data of immediate data
fff 3-bit data that specifies the bit number (fcbit) of the condition bit that stores the result of a
floating-point comparison instruction
FFFF 4-bit data corresponding to the mnemonic or condition code (fcond) of the comparison condition

of a comparison instruction

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 325 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

ABSF.D

Floating-point absolute value (double precision)

Floating-point Absolute Value (Double)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

[Floating-point operation exceptions]

[Operation result]

ABSF.D reg2, reg3

reg3 « abs (reg2)

Format F:l

15 1110 5 4 0 31 27 26 25 23222120 17 16

rrrr0/21111100000wwww®O0|1/000|10({121100/|0
reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction takes the absolute value from the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores it in the register pair

specified by general-purpose register reg3.

The absolute value operation is performed arithmetically. In other words, when the operand is S-

NaN, an IEEE754-defined invalid operation exception (V) is detected.

Inexact exception (1)

When FPSR.FS =1

Invalid operation exception (V)

reg2 +Normal | —Normal +0 -0 +o0 —0 Q-NaN S-NaN
Operation result
. +Normal +0 +00 Q-NaN |Q-NaN [V]
[exception]
Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 326 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

ABSF.S

Floating-point Absolute Value (Single)

Floating-point absolute value (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

[Floating-point operation exceptions]

[Operation result]

ABSF.S reg2, reg3

reg3 « abs (reg2)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100000wwwww/1000/20/0100|0

reg2 reg3 ‘ ’category‘ type ’ sub-op | ’
This instruction takes the absolute value from the single-precision floating-point format contents of

general-purpose register reg2, and stores it in general-purpose register reg3.
The absolute value operation is performed arithmetically. In other words, when the operand is S-

NaN, an IEEE754-defined invalid operation exception (V) is detected.

Invalid operation exception (V)

Inexact exception (1)

When FPSR.FS =1

reg2 +Normal | —Normal +0 -0 +o0 —o0 Q-NaN S-NaN
Operation result
. +Normal +0 +00 Q-NaN |Q-NaN [V]
[exception]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 327 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

ADDF.D

Floating-point add (double precision)

Floating-point Add (Double)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

ADDF.D regl, reg2, reg3

reg3 « reg2 + regl

Format F:l
15 1110 5 4 0 31 272625 23222120 1716
rrrro0/111111RRRROwwwwO|1/000|11/1000|0
reg2 regl reg3 ‘ ’category‘ type ’ sub-op | ’

This instruction adds the double-precision floating-point format contents of the register pair

specified by general-purpose register regl with the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

When FPSR.FS =1

regl (A)

reg2 (B)

+Normal —Normal +0 -0 +00

—00

Q-NaN

S-NaN

+Normal

—Normal

+0

A+B

Q-NaN [V]

—00

—0 Q-NaN [V]

—00

Q-NaN

Q-NaN

S-NaN

Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 328 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

ADDF.S

Floating-point add (single precision)

Floating-point Add (Single)

[Instruction format] ADDF.S regl, reg2, reg3

[Operation] reg3 « reg2 + regl

[Format] Format F:l

[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rr rri111111RRRRRwwwww{1/000(11/0000|0

reg2

regl

reg3

‘ ’category‘ type’ sub-op | ’

[Description] This instruction adds the single-precision floating-point format contents of general-purpose

register regl with the single-precision floating-point format contents of general-purpose register

reg2, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions]

Invalid operation exception (V)
Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS =1

reg2 (B)
regl (A)

+Normal

—Normal +0 -0

Q-NaN

S-NaN

+Normal

—Normal

+0

A+B

—00

+o0

Q-NaN [V]

Q-NaN [V]

Q-NaN

Q-NaN

S-NaN

Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 329 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.DL

Floating-point Ceiling to Long Fixed-point Format (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.DL reg2, reg3

reg3 « ceil reg2 (double — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/171111100010wwwwO0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the
result in the register pair specified by general-purpose register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 330 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.DUL

Floating-point Ceiling to Unsigned Long Fixed-point Format (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.DUL reg2, reg3

reg3 « ceil reg2 (double — unsigned long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/171111110010wwwwO0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and
stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 | Q-NaN ‘ S-NaN
Operation result]) Max U-Int
A (integer 0 0 (integer 0
[exception] (integer) v (integer) V] M

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 331 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.DUW

Floating-point Ceiling to Unsigned Single Fixed-point Format (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.DUW reg2, reg3

reg3 « ceil reg2 (double — unsigned word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121111/20010wwwww/1000/20/2000/0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and
stores the result in general-purpose register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 1t0 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 | Q-NaN ‘ S-NaN
Operation result]) Max U-Int
A (integer 0 0 (integer 0
[exception] (integer) v (integer) V] M

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 332 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.DW

Floating-point Ceiling to Single Fixed-point Format (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.DW reg2, reg3

reg3 « ceil reg2 (double — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100010wwwww/1000/20/2000/0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the
result in general-purpose register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 2% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 333 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.SL

Floating-point Ceiling to Long Fixed-point Format (Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.SL reg2, reg3

reg3 « ceil reg2 (single — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrri1721111100010wwwwO0/1/000|1210/0010|0

reg2 reg3 ‘ ’category‘ type ’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair
specified by general-purpose register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%% s returned.

[Floating-point operation exceptions]

[Operation result]

Invalid operation exception (V)

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 Q-NaN S-NaN
Operation result
P . A (integer) 0 (integer) +Max Int [V] —Max Int [V]
[exception]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 334 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.SUL

Floating-point Ceiling to Unsigned Long Fixed-point Format (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.SUL reg2, reg3

reg3 « ceil reg2 (single — unsigned long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121111/20010wwwww/1000/20/0010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents specified
by general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the
register pair specified by general-purpose register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +00 —o0 ‘ Q-NaN ‘ S-NaN
Operation resultf) Max U-Int
A (integer 0 0 (integer 0
[exception] (integer) M (integer) V] v

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 335 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.SUW

Floating-point Ceiling to Unsigned Single Fixed-point Format (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.SUW reg2, reg3

reg3 « ceil reg2 (single — unsigned word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121111/20010wwwww/1000/20/0000|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and
stores the result in general-purpose register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —0 ‘ Q-NaN ‘ S-NaN
Operation result]) Max U-Int
A (integer 0 0 (integer 0
[exception] (integer) M (integer) V] M

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 336 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CEILF.SW

Floating-point Ceiling to Single Fixed-point Format (Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CEILF.SW reg2, reg3

reg3 « ceil reg2 (single — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{1212111100010wwwww/1000/20/0000|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose
register reg3.

The result is rounded in the +o direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 2% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 337 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Conditional Move (Double)

CMOVF.D

Conditional transfer (double precision)

[Instruction format] CMOVF.D fcbit, regl, reg2, reg3

[Operation] if FPSR.CCn == 1 then
reg3 < regl
else
reg3 « reg2

endif

Remark n = fcbit

[Format] Format F:l

[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rrrro0/111111RRRROwwwwO|1/00O0|0O0|1 Ff f f|0O

Note

reg3 ‘ ’category‘ type ’ sub-op | ’
Note reg3: wwww! =0
wwww = 0000 (do not set reg3 to r0)
Remark fcbit: fff
[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data from

the register pair specified by regl is stored in the register pair specified by reg3. When these bits
are false (0), data from the register pair specified by reg2 is stored in the register pair specified by

reg3.

[Floating-point operation exceptions] None

‘ Caution Do not set reg3 to r0.

RO1USO001EJ0100 Rev.1.00 Page 338 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point condition instruction >

CMOVF.S

Floating-point Conditional Move (Single)

Conditional transfer (single precision)

[Instruction format] CMOVFE.S fcbit, regl, reg2, reg3

[Operation] if FPSR.CCn == 1 then
reg3 < regl

else
reg3 « reg2

endif

Remark n = fcbit

[Format] Format F:l

[opcode] 15 1110 5 4

0 31

272625 23222120 17 16

111111 RRRRR

wwwww|l

00O0(0OOOTf f f|O

Note reg3: wwwww! =0

reg3

wwwww = 00000 (do not set reg3 to r0)

Remark fcbit: fff

[Description]

Note

‘ ’category‘ type’ sub-op | ’

When the CC(7:0) bits of the FPSR register specified by fchit in the opcode are true (1), data from

regl is stored in reg3. When these bits are false (0), the reg2 data is stored in reg3.

[Floating-point operation exceptions] None

‘ Caution Do not set reg3 to r0.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 339 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CMPF.D

Floating-point Compare (Double)

Floating-point comparison (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CMPF.D fcond, reg2, regl, fcbit
CMPE.D fcond, reg2, regl

if isNaN(regl) or isNaN(reg2) then
result.less < 0
result.equal < 0
result.unordered « 1
if fcond[3] == 1 then

Invalid operation exception is detected.

endif

else
result.less « reg2 <regl
result.equal < reg2 ==regl
result.unordered « 0

endif

FPSR.CCn « (fcond[2] & result.less) | (fcond[1] & result.equal) | (fcond[0] & result.unordered)

Remark n: fchit

Format F:l

15 1110 5 4 0 31 272625 23222120 1716

rrrro0/111111RRRRR|OFFFF|1/000|012 f f f|O

reg2 regl ‘ ’category‘ type’ sub-op | ’
Remark fcond: FFFF
fbit: fff

This instruction compares the double-precision floating-point format contents of the register pair
specified by general-purpose register reg2 with the double-precision floating-point format contents
of the register pair specified by general-purpose register regl, based on the condition “fcond”, and
sets the result (1 if true, 0 if false) to the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR
register specified by fcbit in the opcode. If fcbit is omitted, the result is set to the CCO bit (bit 24).
For description of the comparison condition “fcond” code, see Table 4-6 Comparison

Conditions.

RO1USO001EJ0100 Rev.1.00 Page 340 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS
If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has been
set, an IEEE754-defined invalid operation exception is detected. If invalid operation exceptions
are enabled, the comparison result is not set and processing is passed to the exception.

If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR
register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.
When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point operation
instruction (including a comparison), it is regarded as an invalid operation condition. When using
only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid operation, it is simpler
to use a program in which any NaN results in an error. In other words, there is no need to insert
code that explicitly checks for Q-NaN that would result in an unordered result. Instead, the
exception processing system should perform error processing when an exception occurs after
detecting an invalid operation. The following shows a comparison that checks for equivalence of
two numerical values and triggers an error when an unordered result is detected.
Table 4-6. Comparison Conditions
Comparison Invalid operation
Conditions Definition Description exception occurs
fcond when unordered?
F 0 FALSE Always false No
UN 1 Unordered One of regl and reg2 is not-a-number No
EQ 2 reg2 =regl Ordered (both regl and reg?2 is not not-a-number) and equal No
UEQ| 3 reg2 ? =regl | Unordered (at least, one of regl and reg2 is not-a-number) or equal No
OLT 4 | reg2<regl Ordered (both regl and reg2 are not not-a-number) and less than No
ULT 5 reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than or equal to No
OLE 6 reg2 <regl Ordered (both regl and reg?2 are not not-a-number) and less than or equal to No
ULE 7 reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than or equal to No
SF 8 FALSE Always false Yes
NGLE| 9 Unordered One of regl and reg2 is not-a-number Yes
SEQ | 10 |reg2=regl Ordered (both regl and reg2 are not not-a-number) and equal Yes
NGL | 11 |reg2? =regl | Unordered (one of regl and reg2 is not-a-number) or equal Yes
LT 12 |reg2 <regl Ordered (both regl and reg2 are not not-a-number) and less than Yes
NGE | 13 |reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than Yes
LE 14 |reg2 <regl Ordered (both regl and reg2 are not not-a-number) and less than or equal to Yes
NGT | 15 |[reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than or equal to Yes

Remark ?: Unordered (invalid comparison)

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 341 of 473

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

When explicitly testing Q-NaN
CMPF.D OLT, r12, rl1l4, O # Check if rl12 < ri4

CMPF.D UN, r12, r14, 1 # Check if unordered

TRFSR 0

BT L2 # If true, go to L2

TRFSR 1

BT ERROR # 1T true, go to error processing
Enter code for processing when neither unordered nor r12 <rl14

L2:

Enter code for processing when r12 <rl14

When using a comparison to detect Q-NaN

CMPF.D LT, r12, r14, 0 # Check if ri12 ?< ri4

TRFSR 0

BT L2 # 1T true, go to L2
Enter code for processing when not r12 <rl4

L2:

Enter code for processing when r12 <rl4

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result] When FPSR.FS =1
[Condition code (fcond) = 0 to 7]
regl (B)
+Normal | —Normal +0 -0 +00 —0 Q-NaN S-NaN
reg2 (A)
+Normal
0 Stores result of comparison (true or false) under comparison condition
— (fcond) in FPSR.CCn bit (n = fcbit)
+oo
Q-NaN
Unordered
S-NaN
[Condition code (fcond) = 8 to 15]
regl (B)
+Normal | —Normal +0 -0 +00 —0 Q-NaN S-NaN
reg2 (A)
+Normal
0 Stores result of comparison (true or false) under comparison condition
— (fcond) in FPSR.CCn bit (n = fcbit)
+o0
Q-NaN
Unordered [V]
S-NaN
RO1USO0001EJ0100 Rev.1.00 Page 342 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Compare (Single)
CMPE.S

Floating-point comparison (single precision)

[Instruction format] CMPFE.S fcond, reg2, regl, fcbit
CMPE.S fcond, reg2, regl

[Operation] if isNaN(regl) or isNaN(reg2) then
result.less < 0
result.equal « 0
result.unordered « 1
if fcond[3] == 1 then
Invalid operation exception is detected.

endif

else
result.less « reg2 < regl
result.equal < reg2 ==regl
result.unordered « 0

endif

FPSR.CCn « (fcond[2] & result.less) | (fcond[1] & result.equal) | (fcond[0] & result.unordered)

Remark n: fchit

[Format] Format F:l

[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rrrrr/l111111RRRRR|OFFFF|[1/000/010Tf fflO

reg2 regl ‘ ’category‘ type ’ sub-op | ’
Remark fcond: FFFF
fcbit: fff

[Description] This instruction compares the single-precision floating-point format contents of general-purpose
register reg2 with the single-precision floating-point format contents of general-purpose register
regl, based on the comparison condition “fcond”, then sets the result (1 if true, O if false) to the
condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register specified by fcbit in the opcode.
If fchit is omitted, the result is set to the CCO bit (bit 24).
For description of the comparison condition “fcond” code, see Table 4-7 Comparison

Conditions.

RO1USO001EJ0100 Rev.1.00 Page 343 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS
If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has been
set, an |IEEE754-defined invalid operation exception is detected. If invalid operation exceptions
are enabled, the comparison result is not set and processing is passed to the exception.

If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR
register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.
When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point operation
instruction (including a comparison), it is regarded as an invalid operation condition. When using
only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid operation, it is simpler
to use a program in which any NaN results in an error. In other words, there is no need to insert
code that explicitly checks for Q-NaN that would result in an unordered result. Instead, the
exception processing system should perform error processing when an exception occurs after
detecting an invalid operation. The following shows a comparison that checks for equivalence of
two numerical values and triggers an error when an unordered result is detected.
Table 4-7. Comparison Conditions
Comparison Invalid operation
Conditions Definition Description exception occurs
fcond when unordered?
F 0 FALSE Always false No
UN 1 Unordered One of regl and reg2 is not-a-number No
EQ 2 reg2 =regl Ordered (both regl and reg?2 is not not-a-number) and equal No
UEQ| 3 reg2 ? =regl | Unordered (at least, one of regl and reg2 is not-a-number) or equal No
OLT 4 | reg2<regl Ordered (both regl and reg2 are not not-a-number) and less than No
ULT 5 reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than or equal to No
OLE 6 reg2 <regl Ordered (both regl and reg?2 are not not-a-number) and less than or equal to No
ULE 7 reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than or equal to No
SF 8 FALSE Always false Yes
NGLE| 9 Unordered One of regl and reg2 is not-a-number Yes
SEQ | 10 |reg2=regl Ordered (both regl and reg2 are not not-a-number) and equal Yes
NGL | 11 |reg2? =regl | Unordered (one of regl and reg2 is not-a-number) or equal Yes
LT 12 |reg2 <regl Ordered (both regl and reg2 are not not-a-number) and less than Yes
NGE | 13 |reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than Yes
LE 14 |reg2 <regl Ordered (both regl and reg2 are not not-a-number) and less than or equal to Yes
NGT | 15 |[reg2 ? <regl | Unordered (one of regl and reg2 is not-a-number) or less than or equal to Yes

Remark ?: Unordered (invalid comparison)

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 344 of 473

V850E2M PART 4 CHAPTER 4

INSTRUCTIONS

When explicitly testing Q-NaN
CMPF.S OLT, ri12, r13, O # Check if ri12 < ri4
CMPF.S UN, r12, r13, 1 # Check if unordered

TRFSR 0

BT L2 # 1T true, go to L2

TRFSR 1

BT ERROR # 1T true, go to error processing

Enter code for processing when neither unordered nor r12 < rl14
L2:

Enter code for processing when r12 < r14

When using a comparison to detect Q-NaN

CMPF.S LT, r12, r13, 0 # Check if rl12 ?< ril4
TRFSR O
BT L2 # If true, go to L2

Enter code for processing when not r12 < rl4
L2:

Enter code for processing when r12 < r14

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result] When FPSR.FS =1

[Condition code (fcond) = 0 to 7]

regl (B)
+Normal | —Normal +0 -0 +o0 —0 Q-NaN S-NaN
reg2 (A)
+Normal

0 Stores result of comparison (true or false) under comparison condition

- (fcond) in FPSR.CChn bit (n = fcbit)

+o0

Q-NaN
Unordered
S-NaN
[Condition code (fcond) = 8 to 15]
regl (B)
+Normal | —Normal +0 -0 +00 —o0 Q-NaN S-NaN
reg2 (A)
+Normal

0 Stores result of comparison (true or false) under comparison condition

— (fcond) in FPSR.CCn bit (n = fcbit)

+o0

Q-NaN
Unordered [V]
S-NaN

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 345 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.DL

Floating-point Convert to Long Fixed-point Format (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.DL reg2, reg3

reg3 « cvt reg2 (double — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111100100wwwwO0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 64-bit fixed-point format, in accordance
with the current rounding mode, and stores the result in the register pair specified by general-
purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 346 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.DS

Floating-point Convert to Single Floating-point Format (Double)

Conversion to floating-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.DS reg2, reg3

reg3 « cvt reg2 (double — single)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/171111100011fwwwww/1/000|20/1001|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to single-precision floating-point format,
and stores the result in general-purpose register reg3. The result is rounded in accordance with

the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —0 Q-NaN S-NaN

Operation result
[exception]

A(Single) +0 -0 +00 -0 Q-NaN | Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 347 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.DUL

Floating-point Convert to Unsigned Long Fixed-point Format (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.DUL reg2, reg3

reg3 « cvt reg2 (double — unsigned long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111110100wwwwO0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, in
accordance with the current rounding mode, and stores the result in the register pair specified by
general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 | Q-NaN ‘ S-NaN
Operation result]) Max U-Int
A (integer 0 0 (integer 0
[exception] (integer) v (integer) V] M

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 348 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.DUW

Floating-point Convert to Unsigned Single Fixed-point Format (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.DUW reg2, reg3

reg3 « cvt reg2 (double — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrrj{1211111/20100wwwww/1/000/20/2000/0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and
stores the result in general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

e Source is a positive number outside the range of 2% - 1100, or +o0: 2% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 | Q-NaN ‘ S-NaN
Operation result| Max U-Int
P) A (integer) 0[V] 0 (integer) 0[V]
[exception] V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 349 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.DW

Floating-point Convert to Single Fixed-point Format (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.DW reg2, reg3

reg3 « cvt reg2 (double — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100100wwwww/1000/20/2000/0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the
result in general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +o0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2*%is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 350 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.LD

Floating-point Convert to Double Floating-point Format (Double)

Conversion to floating-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.LD reg2, reg3

reg3 « cvt reg2 (long-word — double)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111100001(fwwww©0/1/000|20/1001|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair
specified by general-purpose register reg2 to double-precision floating-point format in accordance
with the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 351 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.LS

Floating-point Convert to Single Floating-point Format (Single)

Conversion to floating-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.LS reg2, reg3

reg3 « cvt reg2 (long-word — single)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/171111100001fwwwww/1/000|120/0001|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair
specified by general-purpose register reg2 to single-precision floating-point format, and stores the
result in general-purpose register reg3. The result is rounded in accordance with the current

rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 352 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Convert to Double Floating-point Format (Double)

CVTF.SD

Conversion to floating-point format (double precision)

[Instruction format] CVTF.SD reg2, reg3

[Operation] reg3 « cvt reg2 (single — double)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrri1721111100010wwwwO0/1/000|20/1001|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to double-precision floating-point format, in accordance with the
current rounding mode, and stores the result in the register pair specified by general-purpose

register reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (1)

[Operation result] When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —0 Q-NaN S-NaN

Operation result

A (Double +0 -0 + - -NaN -NaN
[exception] () * * Q Q vl

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 353 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.SL

Floating-point Convert to Long Fixed-point Format(Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

[Floating-point operation exceptions]

CVTF.SL reg2, reg3

reg3 « cvt reg2 (single — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100100wwwww/1000/20/0010|0

reg2 reg3 ‘ ’category‘ type ’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, in accordance with the current rounding
mode, and stores the result in the register pair specified by general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +o0: 2% — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%%is returned.

Invalid operation exception (V)

Inexact exception (1)

When FPSR.FS =1

[Operation result]

reg2 (A) +Normal | —Normal +0 -0 +00 —o0 Q-NaN S-NaN
Operation result A (integer) 0 (integer) +Max Int [V] Max Int [V]
[exception] g g
Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 354 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.SUL

Floating-point Convert to Unsigned Long Fixed-point Format (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.SUL reg2, reg3

reg3 « cvt reg2 (single — unsigned long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrrj{12121111/20100wwwww/1/000/20/0010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 64-bit fixed-point format, in accordance with the current
rounding mode, and stores the result in the register pair specified by general-purpose register
reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +0 —o0 ‘ Q-NaN | S-NaN
Operation result Max U-Int
P . A (integer) 0[V] 0 (integer) 0[V]
[exception] V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 355 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Convert to Unsigned Single Fixed-point Format (Single)

CVTF.SUW

Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.SUW reg2, reg3

[Operation] reg3 « cvt reg2 (single — unsigned word)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121111/20100wwwww/1/000/20/0000|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

e Source is a positive number outside the range of 2% - 1100, or +o0: 2% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (1)

[Operation result] When FPSR.FS =1
reg2 (A) +Normal | —Normal +0 -0 +o0 —0 ‘ Q-NaN | S-NaN
O ti It Max U-Int
pera |on.resu A (integer) 0[V] 0 (integer) axHn 0[V]
[exception] [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 356 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.SW

Floating-point Convert to Single Fixed-point Format (Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.SW reg2, reg3

reg3 « cvt reg2 (single — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100100wwwww/1000/20/0000|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose
register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +o0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2*%is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 357 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.ULD

Floating-point Convert to Double Fixed-point Format (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.ULD reg2, reg3

reg3 « cvt reg2 (unsigned long-word — double)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111110001(fwwww©0/1/000|20/1001/|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the
register pair specified by general-purpose register reg2 to double-precision floating-point format in
accordance with the current rounding mode, and stores the result in the register pair specified by

general-purpose register reg3.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 358 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.ULS

Floating-point Convert to Single Fixed-point Format (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.ULS reg2, reg3

reg3 « cvt reg2 (unsigned long-word — single)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/171111110001fwwwww/1/000|120/0001|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the
register pair specified by general-purpose register reg2 to single-precision floating-point format,
and stores the result in general-purpose register reg3. The result is rounded in accordance with

the current rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 359 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.UWD

Floating-point Convert to Double Fixed-point Format (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.UWD reg2, reg3

reg3 « cvt reg2 (unsigned word — double)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{1271211121/20000wwwww/1/000/20/2001/|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-
purpose register reg2 to double-precision floating-point format, in accordance with the current
rounding mode, and stores the result in the register pair specified by general-purpose register
reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation exceptions] Inexact exception (l)

[Operation result]

When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 360 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Convert to Single Fixed-point Format (Single)

CVTF.UWS

Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.UWS reg2, reg3

[Operation] reg3 « cvt reg2 (unsigned word — single)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrrj{121211121/20000wwwww/1000/20/0001|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-
purpose register reg2 to single-precision floating-point format, and stores the result in general-

purpose register reg3. The result is rounded in accordance with the current rounding mode.
[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result

) A (Normal) +0
[exception]

Remark Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 361 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

CVTF.WD

Floating-point Convert to Double Floating-point Format (Double)

Conversion to floating-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

CVTF.WD reg2, reg3

reg3 <« cvt reg2 (word — double)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100000wwwww/1000/20/2001/|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose
register reg2 to double-precision floating-point format, in accordance with the current rounding
mode, and stores the result in the register pair specified by general-purpose register reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

Remark Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 362 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Convert to Single Floating-point Format (single)

CVTF.WS

Conversion to floating-point format (single precision)

[Instruction format] CVTF.WS reg2, reg3

[Operation] reg3 « cvt reg2 (word — single)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100000wwwww/1000/20/0001|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose
register reg2 to single-precision floating-point format, and stores the result in general-purpose

register reg3. The result is rounded in accordance with the current rounding mode.
[Floating-point operation exceptions] Inexact exception (I)

[Operation result] When FPSR.FS =1

reg2 (A) +Integer —Integer 0 (integer)

Operation result

) A (Normal) +0
[exception]

Remark Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 363 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

DIVF.D

Floating-point Divide (Double)

Floating-point division (double precision)

[Instruction format] DIVF.D regl, reg2, reg3
[Operation] reg3 « reg2 + regl
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rrrro0/111111RRRROwWwwwO0|1/000|21(1111|0
reg2 reg3 ‘ ‘category‘ type‘ sub-op | ‘
[Description] This instruction divides double-precision floating-point format contents of the register pair specified

by general-purpose register reg2 by the double-precision floating-point format contents of the

register pair specified by general-purpose register regl, and stores the result in the register pair

specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions]

[Operation result]

Invalid operation exception (V)

Inexact exception (1)

Division-by-zero exception (2)

Overflow exception (O)

Underflow exception (U)

When FPSR.FS =1

reg2 (B)
Normal —Normal +0 -0 +00 —0 Q-NaN S-NaN
regl (A)
Normal +00 —0
B+A

—Normal —0 +00

+0 +00 —o0

to0 [Z] Q-NaN [V]
-0 —0 +00
+00 +0 -0 +0 -0
Q-NaN [V]

—o0 -0 +0 -0 +0
Q-NaN Q-NaN
S-NaN Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 364 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

DIVF.S

Floating-point Divide (Single)

Floating-point division (single precision)

[Instruction format]

DIVF.S regl, reg2, reg3

[Operation] reg3 « reg2 + regl
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rr rrji111111RRRRRjwwwww(1/000(11/0111|0
reg2 reg3 ‘ ‘category‘ type‘ sub-op | ‘
[Description] This instruction divides the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

regl, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions]

[Operation result]

Inexact exception (1)

Invalid operation exception (V)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

When FPSR.FS =1

reg2 (B)
Normal —Normal +0 -0 +0 —o0 Q-NaN S-NaN
regl (A)
Normal +00 —0
B+A
—Normal -0 +00
+0 +00 —o0
+w0 [Z] Q-NaN [V]
-0 -0 +00
+00 +0 -0 +0 -0
Q-NaN [V]
-0 -0 +0 -0 +0
Q-NaN Q-NaN
S-NaN Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 365 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.DL

Floating-point Truncate, rounded toward the direction of — (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.DL reg2, reg3

reg3 « floor reg2 (double — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/171111100011fwwww©0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the
result in the register pair specified by general-purpose register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +00 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 366 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.DUL

Floating-point Truncate to Unsigned, rounded toward the direction of —o (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.DUL reg2, reg3

reg3 « floor reg2 (double — unsigned long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/171111110011fwwww0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and
stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 ‘ Q-NaN ‘ S-NaN
Operation result Max U-Int
P . A (integer) 0[V] 0 (integer) 0[V]
[exception] WY

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 367 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.DUW

Floating-point Truncate to Unsigned, rounded toward the direction of —o (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.DUW reg2, reg3

reg3 « floor reg2 (double — unsigned word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrrf{171211111/20011jwwwww/1/000/20/2000/0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and
stores the result in general-purpose register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0[V] 0 (integer) Max U-Int [V] 0[V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 368 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.DW

Floating-point Truncate, rounded toward the direction of — (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.DW reg2, reg3

reg3 « floor reg2 (double — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrrj{12121112100011jwwwww/1/000/20/2000/0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the
result in general-purpose register reg3.

The result is rounded in the —o direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 2% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +00 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 369 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.SL

Floating-point Truncate, rounded toward the direction of —o (Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.SL reg2, reg3

reg3 « floor reg2 (single — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrri1721111100011fwwww0/1/000|120/0010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair
specified by general-purpose register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +00 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 370 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.SUL

Floating-point Truncate to Unsigned, rounded toward the direction of —o (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.SUL reg2, reg3

reg3 « floor reg2 (single — unsigned long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrri{l1712111120011jwwwww/1/000/20/0010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the
register pair specified by general-purpose register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +o0 —o0 ‘ Q-NaN ‘ S-NaN
Operation result Max U-Int
P . A (integer) 0[V] 0 (integer) 0[V]
[exception] vl

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 371 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.SUW

Floating-point Truncate to Unsigned, rounded toward the direction of -« (Single)

Conversion to unsigned fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.SUW reg2, reg3

reg3 « floor reg2 (single — unsigned word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrri{l17121111/20011jwwwww/1/000/20/0000|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.
e Source is a positive number outside the range of 2% _ 1100, or +o0; 2*2 — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +o0 —o0 ‘ Q-NaN ‘ S-NaN
Operation result Max U-Int
P . A (integer) 0[V] 0 (integer) 0[V]
[exception] WY

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 372 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

FLOORF.SW

Floating-point Truncate, rounded toward the direction of -o (Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

FLOORF.SW reg2, reg3

reg3 « floor reg2 (single — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrrf12121112100011jwwwww/1/000/20/0000|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose
register reg3.

The result is rounded in the —co direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 2% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) +Normal | —Normal +0 -0 +00 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) +Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 373 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Multiply-add (Single)
MADDF.S

Floating-point fused-multiply-add operation (single precision)

[Instruction format] MADDF.S regl, reg2, reg3, reg4

[Operation] reg4 « reg2 x regl + reg3
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrril11111RRRRRjwwwww/101WO0O0OWWWWO0

reg2 regl reg3 o | Sl type Note 2
s |3
Notes 1. category
2. reg4 (The least significant bit of reg4 is bit 23.)
[Description] This instruction multiples the contents of general-purpose register reg2 by the contents of general-

purpose register regl, then adds the result with the contents of floating-point register reg3 and
stores the result in general-purpose register reg4. The operation is executed as if it were of

infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)
Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

RO1USO001EJ0100 Rev.1.00 Page 374 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

[Operation result] When FPSR.FS =1

reg2 (B)
+Normal | —Normal +0 -0 +00 -0 Q-NaN S-NaN
reg3(C) regl (A)
+Normal +0 —0
—Normal MADD(A, B, C) -0 +00
+Normal +0 Q-NaN [V]
+o0 +o0 —o0 +o0 —0
Q-NaN [V]
—0 —00 +00 —00 +o0
+Normal +o0 —0
—Normal MADD(A, B, C) —o +o0
40 10 Q-NaN [V]
+o0 +o0 —o0 +o0 —0
Q-NaN [V]
—00 —0 +00 —00 +00
+Normal +o0 Q-NaN [V]
—Normal +oo Q-NaN [V] +o0
+o0 +0 Q-NaN [V]
+0 +00 Q-NaN [V] +00 Q-NaN [V]
Q-NaN [V]
—o0 Q-NaN [V] +00 Q-NaN [V] +o0
+Normal Q-NaN [V] -0
—Normal —0 —0 Q-NaN [V]
—0 +0 Q-NaN [V]
+00 Q-NaN [V] -0 Q-NaN [V] —o0
Q-NaN [V]
—o0 —o0 Q-NaN [V] -0 Q-NaN [V]
+Normal
Q-NaN +0 Q-NaN
+o0
Not S-NaN| Q-NaN Q-NaN
Don'tcare| S-NaN
Q-NaN [V]
S-NaN | Don't care

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

[Supplement] An exception occurs based on the multiplication result in the following case.
¢ When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

RO1USO001EJ0100 Rev.1.00 Page 375 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

MAXF.D

Floating-point Maximum (Double)

Floating-point maximum value (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

MAXF.D regl, reg2, reg3

reg3 < max (reg2, regl)

Format F:l

15 1110 5 4 0 31 272625 23222120 1716
rrrro0/111111RRRROwWwwwO|1/000|11(1100|0

reg2 regl reg3 ‘ ‘category‘ type‘ sub-op | ‘

This instruction extracts the maximum value from the double-precision floating-point format data in
the register pair specified by general-purpose registers regl and reg2, and stores it in the register

pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

When the FS bit of the FPSR register has been set, both regl and reg2 contain denormalized

numbers, and the maximum value is either +0 or -0, +0 or -0 is stored in reg3.

[Floating-point operation exceptions]

Invalid operation exception (V)

[Supplement] When the FS bit of the FPSR register has been set, both regl and reg2 contain denormalized

numbers, and the maximum value is either +0 or -0, it is undefined whether+0 or -0 is stored in

reg3.

[Operation result] When FPSR.FS =1

reg2 (B)
regl (A)

+Normal

—Normal

+0

+o0

Q-NaN

S-NaN

+Normal

—Normal

+0

—00

MAX (A, B)

Q-NaN

Q-NaN

S-NaN

Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 376 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

MAXF.S

Floating-point maximum value (single precision)

Floating-point Maximum (Single)

[Instruction format] MAXF.S regl, reg2, reg3

[Operation] reg3 « max (reg2, regl)

[Format] Format F:l

[opcode] 15 1110 5 4 031 272625 23222120 1716
rr rri111111RRRRRwwwww/1/000|11/0100|0

reg2

regl reg3

‘ ’category‘ typﬁ’ sub-op | ’

[Description] This instruction extracts the maximum value from the single-precision floating-point format data in

general-purpose registers regl and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected.

occurs.

If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

When the FS bit of the FPSR register has been set, and both regl and reg2 contain denormalized

numbers, the maximum value is either +0 or -0, +0 or -0 is stored in reg3.

[Floating-point operation exceptions]

[Supplement]

Invalid operation exception (V)

When the FS bit of the FPSR register has been set, and both regl and reg2 contain denormalized

numbers, the maximum value is either +0 or -0, it is undefined whether +0 or -0 is stored in reg3.

[Operation result]

When FPSR.FS =1

reg2 (B)
regl (A)

Normal

—Normal

+0 -0

—00

Q-NaN

S-NaN

Normal

—Normal

+0

MAX (A, B)

Q-NaN

Q-NaN

S-NaN

Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 377 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

MINF.D

Floating-point minimum value (double precision)

Floating-point Minimum (Double)

[Instruction format]

MINF.D reg1l, reg2, reg3

[Operation] reg3 < min (reg2, regl)
[Format] Format F:|
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rrrro0/111111RRRROwWwwwO0|1/000|11(1101]|0
reg2 regl reg3 ‘ ’category‘ type’ sub-op | ’

[Description]

This instruction extracts the minimum value from the double-precision floating-point format data in

the register pair specified by general-purpose registers regl and reg2, and stores it in the register

pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

When the FS bit of the FPSR register has been set, and both regl and reg2 contain denormalized

numbers, and the minimum value is either +0 or -0, +0 or -0 is stored in reg3.

[Floating-point operation exceptions]

[Supplement]

Invalid operation exception (V)

When the FS bit of the FPSR register has been set, and both regl and reg2 contain denormalized

numbers, and the minimum value is either +0 or -0, whether +0 or -0 is stored in reg3 is

undefined.

[Operation result]

When FPSR.FS =1

reg2 (B)
regl (A)

Normal

—Normal

+0 -0

—00

Q-NaN

S-NaN

Normal

—Normal

+0

MIN (A, B)

Q-NaN

Q-NaN

S-NaN

Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 378 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

MINF.S

Floating-point minimum value (single precision)

Floating-point Minimum (Single)

[Instruction format] MINF.S regl, reg2, reg3

[Operation] reg3 < min (reg2, regl)
[Format] Format F:|
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rr rrji111111RRRRRwwwww/1/000(11/0101|0
reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description]

This instruction extracts the minimum value from the single-precision floating-point format data in

general-purpose registers regl and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected.

occurs.

If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

When the FS bit of the FPSR register has been set, both regl and reg2 contain denormalized

numbers, and the minimum value is either +0 or -0, +0 or -0 is stored in reg3.

[Floating-point operation exceptions]

[Supplement]

Invalid operation exception (V)

When the FS bit of the FPSR register has been set, both regl and reg2 contain denormalized

numbers, and the minimum value is either +0 or -0, whether +0 or -0 is stored in reg3 is

undefined.

[Operation result]

When FPSR.FS =1

reg2 (B)
regl (A)

Normal

—Normal

+0

+o0

Q-NaN

S-NaN

Normal

—Normal

+0

MIN (A, B)

Q-NaN

Q-NaN

S-NaN

Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 379 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

MSUBF.S

Floating-point Multiply-subtract (Single)

Floating-point fused-multiply-add operation (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

MSUBF.S regl, reg2, reg3, reg4

reg4 < reg2 x regl —reg3

Format F:l

15 1110 5 4 0 31 27 26 25 23222120 17 16
rrrrril11111RRRRRwwwww/101WO01WWWW|O0

reg2 regl reg3 type | Note 2

Note 1
Note 2

Notes 1. category

2. reg4 (The least significant bit of reg4 is bit 23.)

This instruction multiples the single-precision floating-point format contents of general-purpose
register reg2 by the single-precision floating-point format contents of general-purpose register
regl, then subtracts the single-precision floating-point format contents of general-purpose register
reg3, and stores the result in general-purpose register reg4. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)
Overflow exception (O)

Underflow exception (U)

RO1USO001EJ0100 Rev.1.00 Page 380 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

[Operation result] When FPSR.FS =1
reg2 (B)
+Normal | —Normal +0 -0 +00 -0 Q-NaN S-NaN
reg3(C) regl (A)
+Normal +0 —0
—Normal MUSB(A, B, C) —0 +o0
+Normal +0 Q-NaN [V]
+o0 +00 —00 +o0 —00
Q-NaN [V]
—0 —0 +00 —00 +00
+Normal +o0 —0
—Normal MUSB(A, B, C) —o +o0
+0 +0 Q-NaN [V]
+o0 +o0 —o0 +o0 -0
Q-NaN [V]
—00 —00 +00 —00 +o0
+Normal Q-NaN [V] —0
—Normal —00 —00 Q-NaN [V]
+00 +0 Q-NaN [V]
+00 Q-NaN [V] —0 Q-NaN [V] —o0
Q-NaN [V]
-0 —o0 Q-NaN [V] -0 Q-NaN [V]
+Normal +o0 Q-NaN [V]
—Normal +o0 Q-NaN [V] +o0
—0 +0 Q-NaN [V]
+00 +0o0 Q-NaN [V] +00 Q-NaN [V]
Q-NaN [V]
—o0 Q-NaN [V] +o0 Q-NaN [V] +00
Q-NaN +Normal
+0 Q-NaN
+oo
Not S-NaN| Q-NaN Q-NaN
Don’'t care| S-NaN
Q-NaN [V]
S-NaN | Don't care

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

[Supplement] An exception occurs based on the multiplication result in the following case.
e When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

RO1USO001EJ0100 Rev.1.00 Page 381 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

MULF.D

Floating-point multiplication (double precision)

Floating-point Multiply (Double)

[Instruction format] MULF.D regl, reg2, reg3

[Operation] reg3 « reg2 x regl
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rrrro0/111111RRRROwWwwwO0|1/000|11(1010|0
reg2 regl reg3 ‘ ’category‘ type’ sub-op | ’
[Description] This instruction multiplies double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 by the double-precision floating-point format contents

of the register pair specified by general-purpose register regl, and stores the result in general-

purpose register reg3.

[Floating-point operation exceptions]

Invalid operation exception (V)

Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS =1
reg2 (B)
Normal —Normal +0 -0 +00 —0 Q-NaN S-NaN
regl (A)
Normal +00 —0
—Normal —o0 +00
AxB
+0
Q-NaN [V]
-0
+o0 +o0 —o0 +00 —o0
Q-NaN [V]

—0 —0 +00 —00 +o0
Q-NaN Q-NaN
S-NaN Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 382 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

MULF.S

Floating-point Multiply (Single)

Floating-point multiplication (single precision)

[Instruction format] MULF.S regl, reg2, reg3

[Operation] reg3 « reg2 x regl
[Format] Format F:l
[opcode] 15 11 10 5 4 0 31 272625 23222120 17 16
rrrrr|/211111RRRRRwwwww|1/00O0|11{0010|0
reg2 regl reg3 ‘ ’category‘ type ’ sub-op | ’

[Description]

This instruction multiplies the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

regl, and stores the result in general-purpose register reg3.

[Floating-point operation exceptions]

Invalid operation exception (V)

Inexact exception (1)

Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS =1

reg2 (B)
Normal —Normal +0 -0 +00 -0 Q-NaN S-NaN
regl (A)
Normal +00 —0
—Normal -0 +00
AxB
+0
Q-NaN [V]
-0
+o0 +o0 —o0 +00 —0
Q-NaN [V]
—00 —0 +00 —00 +oo
Q-NaN Q-NaN
S-NaN Q-NaN [V]
Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 383 of 473

V850E2M PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

NEGF.D

Floating-point Negate (Double)

Floating-point sign inversion (double precision)

[Instruction format] NEGF.D reg2, reg3

[Operation] reg3 « neg reg2
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111100001(fwwww©0/1/000|20/1100|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description] This instruction inverts the sign of double-precision floating-point format contents of the register

pair specified by general-purpose register reg2, and stores the result in general-purpose register

reg3.

Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (1)

[Operation result] When FPSR.FS =1
reg2 +Normal | —Normal +0 -0 +0 —o0 Q-NaN S-NaN
Operation result
. —Normal | +Normal -0 +0 —0 +0 Q-NaN | Q-NaN [V]
[exception]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 384 of 473

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

NEGF.S

Floating-point Negate (Single)

Floating-point sign inversion (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

NEGF.S reg2, reg3

reg3 < neg reg2

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100001jwwwww/1/000/20/0100|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction inverts the sign of the single-precision floating-point format contents of general-
purpose register reg2, and stores the result in general-purpose register reg3.
Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 +Normal | —Normal +0 -0 +00 —o0 Q-NaN S-NaN

Operation result
[exception]

—Normal | +Normal -0 +0 —o0 +00 Q-NaN |Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 385 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Negate Multiply-add (Single)
NMADDF.S

Floating-point fused-multiply-add operation (single precision)

[Instruction format] NMADDEF.S regl, reg2, reg3, reg4

[Operation] reg4 < neg (reg2 x regl + reg3)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrril11111RRRRRwwwww/{101W1l1O0WWWWO0

reg2 regl reg3 o || type Note 2
o |5
z |z
Notes 1. category
2. reg4 (The least significant bit of reg4 is bit 23.)
[Description] This instruction multiplies the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register
regl, then adds the result to the single-precision floating-point format contents of general-purpose
register reg3. Next, it inverts the sign of the result and stores it in general-purpose register reg4.
The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance
with the current rounding mode.

Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)
Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

RO1USO001EJ0100 Rev.1.00 Page 386 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

[Operation result] When FPSR.FS =1
reg2 (B)
+Normal | —Normal +0 -0 +00 -0 Q-NaN S-NaN
reg3(C) regl (A)
+Normal —0 +0
—Normal NMADD (A, B, C) +00 —0
+Normal +0 Q-NaN [V]
+o0 —0 +00 —o0 +o0
Q-NaN [V]
—0 +00 —00 +00 —00
+Normal —o0 +00
—Normal NMADD (A, B, C) +0 —o
+0 +0 Q-NaN [V]
+o0 —0 +00 —o0 +o0
Q-NaN [V]
—0 +o0 —0 +o0 —0
+Normal —0 Q-NaN [V]
—Normal —0 Q-NaN [V] —o0
+00 +0 Q-NaN [V]
+00 —o0 Q-NaN [V] —o0 Q-NaN [V]
Q-NaN [V]
—o0 Q-NaN [V] —o0 Q-NaN [V] —o0
+Normal Q-NaN [V] +o0
—Normal +00 +0 Q-NaN [V]
0 +0 Q-NaN [V]
+00 Q-NaN [V] +00 Q-NaN [V] +o0
Q-NaN [V]
—o0 +00 Q-NaN [V] +0 Q-NaN [V]
+Normal
Q-NaN +0 Q-NaN
+oo
Not S-NaN| Q-NaN Q-NaN
Don'tcare| S-NaN
Q-NaN [V]
S-NaN | Don't care

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

[Supplement] An exception occurs based on the multiplication result in the following case.
e When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

RO1USO001EJ0100 Rev.1.00 Page 387 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Negate Multiply-subtract (Single)

NMSUBF.S

Floating-point fused-multiply-add operation (single precision)

[Instruction format] NMSUBF.S regl, reg2, reg3, reg4

[Operation] reg4 < neg (reg2 x regl-reg3)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrrifl11111RRRRRjwwwww/{101W1l11WWWWO0

reg2 regl reg3 o || type Note 2
o |5
z |z
Notes 1. category
2. reg4 (The least significant bit of reg4 is bit 23.)
[Description] This instruction multiplies the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register
regl, then subtracts from this result the single-precision floating-point format contents of general-
purpose register reg3. Next, it inverts the sign of the result and stores it in general-purpose
register reg4. The operation is executed as if it were of infinite accuracy, and the result is rounded
in accordance with the current rounding mode.

Sign inversion is performed arithmetically. This means that when the operand is S-NaN, an

IEEE754-defined invalid operation exception is detected.

[Floating-point operation exceptions] Invalid operation exception (V)
Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

RO1USO001EJ0100 Rev.1.00 Page 388 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

[Operation result] When FPSR.FS =1
reg2 (B)
+Normal | —Normal +0 -0 +00 -0 Q-NaN S-NaN
reg3(C) regl (A)
+Normal —0 +0
—Normal NMSUB(A, B, C) +00 —0
+Normal +0 Q-NaN [V]
+00 - +0 —0 +oo
Q-NaN [V]
—o0 +00 —00 +o0 —00
+Normal —o0 +00
—Normal NMSUB(A, B, C) +0 —o
+0 +0 Q-NaN [V]
+o0 —0 +00 —o0 +o0
Q-NaN [V]
—0 +o00 —o0 +o0 —00
+Normal Q-NaN [V] +00
—Normal +00 +00 Q-NaN [V]
+00 +0 Q-NaN [V]
+00 Q-NaN [V] +00 Q-NaN [V] +o0
Q-NaN [V]
—o0 +00 Q-NaN [V] +0 Q-NaN [V]
+Normal -0 Q-NaN [V]
—Normal —0 Q-NaN [V] —o0
0 +0 Q-NaN [V]
+00 —o0 Q-NaN [V] —0 Q-NaN [V]
Q-NaN [V]
-0 Q-NaN [V] —o0 Q-NaN [V] —o0
+Normal
Q-NaN +0 Q-NaN
+oo
Not S-NaN| Q-NaN Q-NaN
Don'tcare| S-NaN
Q-NaN [V]
S-NaN | Don't care

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

[Supplement] An exception occurs based on the multiplication result in the following case.
e When the multiplication operation results in an overflow and the addition operation does not

cause an invalid operation exception.

RO1USO001EJ0100 Rev.1.00 Page 389 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

RECIPF.D

Reciprocal of a Floating-point Value (Double)

Reciprocal (double precision)

[Instruction format]

RECIPF.D reg2, reg3

[Operation] reg3 « 1 + reg2
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rrrr0/21111100001fwwwwO0|1|/00O0|10(2111|0
reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description]

This instruction approximates the reciprocal of the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions]

[Supplement]

Invalid operation exception (V)

Inexact exception (1)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

When underflow exceptions are prohibited, the initial value is determined according to the sign of

the intermediate value in the approximation calculation, so whether or not the sign will be the

same as the source is not guaranteed.

[Operation result]

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +00 -0 Q-NaN S-NaN
Operation result VAT 2] 2] +0 0 Q-NaN | Q-NaN [V]
o —» _ - -
[exception]
Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 390 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

RECIPF.S

Reciprocal of a Floating-point Value (Single)

Reciprocal (single precision)

[Instruction format]

RECIPF.S reg2, reg3

[Operation] reg3 « 1 + reg2
[Format] Format F:l
[opcode] 15 11 10 5 4 0 31 272625 23222120 17 16
rrrrr|211112100001wwwww|1/00O0{10{0111|0
reg2 reg3 ‘ ’category‘ type ’ sub-op | ’

[Description]

This instruction approximates the reciprocal of the single-precision floating-point format contents

of general-purpose register reg2, and stores the result in general-purpose register reg3. The

operation is executed as if it were of infinite accuracy, and the result is rounded in accordance

with the current rounding mode.

[Floating-point operation exceptions]

[Supplement]

Invalid operation exception (V)

Inexact exception (1)

Division-by-zero exception (Z)

Overflow exception (O)

Underflow exception (U)

When underflow exceptions are prohibited, the default is determined according to the sign of the

intermediate value in the approximation calculation, so whether or not the sign will be the same as

the source is not guaranteed.

[Operation result]

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +00 -0 Q-NaN S-NaN
Operation result VAT o [2]] +0 0 Q-NaN | Q-NaN [V]
o0 =00 —| - -
[exception]
Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 391 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

RSQRTF.D

Reciprocal of the Square Root of a Floating-point Value (Double)

Reciprocal of square root (double precision)

[Instruction format] RSQRTF.D reg2, reg3

[Operation] reg3 < 1 + (sqrt reg2)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rrrro0/1211111100010wwwwO0[1/000(20/21111|0
reg2 reg3 ‘ ’category‘ type’ sub-op | ’
[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-point

format contents of the register pair specified by general-purpose register reg2, then approximates

the reciprocal of this result and stores the result in the register pair specified by general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is rounded

in accordance with the current rounding mode.

[Floating-point operation exceptions]

Invalid operation exception (V)
Inexact exception (1)
Division-by-zero exception (Z)
Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS =1
reg2 (A) Normal —Normal +0 -0 +o00 -0 Q-NaN S-NaN
Operation result] - Q-NaN [V]| +»[Z] (2] 40 |Q-NaN[V]| Q-NaN |Q-NaN[V]
- 00 —00 - - -
[exception] N AT

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 392 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

RSQRTF.S

Reciprocal of the Square Root of a Floating-point Value (Single)

Reciprocal of square root (single precision)

[Instruction format] RSQRTF.S reg2, reg3

[Operation] reg3 < 1 + (sqrt reg2)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rr rrif11111100010wwwww/1/000{200111|0
reg2 reg3 ‘ ’category‘ type’ sub-op | ’
[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-point

format contents of general-purpose register reg2, then approximates the reciprocal of this result

and stores it in general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions]

Invalid operation exception (V)
Inexact exception (1)
Division-by-zero exception (Z)
Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS =1
reg2 (A) Normal —Normal +0 -0 +o00 -0 Q-NaN S-NaN
Operation result] - Q-NaN[V]| +0[Z] [1Z] +0 |o-NaN[v]| Q-NaN |Q-NaN[v]
- 0 —0 - - -
[exception] VA

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 393 of 473

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Square Root (Double)
SQRTF.D

Square root (double precision)

[Instruction format] SQRTF.D reg2, reg3

[Operation] reg3 « sqrt reg2
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111100000wwwwO0/1/000(20/1111|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-point
format contents of the register pair specified by general-purpose register reg2, and stores the
result in the register pair specified by general-purpose register reg3. The operation is executed as
if it were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode. When the source operand value is -0, the result becomes -0.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (1)

[Operation result] When FPSR.FS =1

reg2 (A) Normal -Normal +0 -0 +o0 —0 Q-NaN S-NaN

Operation result

. N A Q-NaN [V] +0 -0 +00 Q-NaN [V]| Q-NaN |[Q-NaN [V]
[exception]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 394 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

SQRTF.S

Floating-point Square Root (Single)

Square root (single precision)

[Instruction format]

SQRTF.S reg2, reg3

[Operation] reg3 « sqrt reg2
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16
rr rrji121111100000wwwww(1/000(20/01110
reg2 reg3 ‘ ’category‘ type ’ sub-op | ’

[Description]

This instruction obtains the arithmetic positive square root of the single-precision floating-point

format contents of general-purpose register reg2, and stores it in general-purpose register reg3.

The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance

with the current rounding mode. When the source operand value is -0, the result becomes -0.

[Floating-point operation exceptions]

[Operation result]

Invalid operation exception (V)

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +00 —o0 Q-NaN S-NaN
Operationresultl | o nanpvy| +0 0 4 Q-NaN[v]| Q-NaN |Q-NaN [V]
N _ © N . N
[exception] A

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 395 of 473

V850E2M

PART 4 CHAPTER 4

INSTRUCTIONS

<Floating-point instruction>

SUBF.D

Floating-point subtraction (double precision)

Floating-point Subtract (Double)

[Instruction format] SUBF.D regl, reg2, reg3

[Operation] reg3 « reg2 —regl
[Format] Format F:l
[opcode] 15 1110 5 4 031 272625 23222120 1716
rrrroOf2111111RRRROwwwwO|1/000|11/1001|0
reg2 regl reg3 ’ ‘category| type ‘ sub-op ‘ |

[Description]

This instruction subtracts the double-precision floating-point format contents of the register pair

specified by general-purpose register regl from the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions]

[Operation result]

Invalid operation exception (V)

Inexact exception (1)

Overflow exception (O)

Underflow exception (U)

When FPSR.FS =1

reg2 (B)
regl (A)

Normal

—Normal

+0 -0

—00

Q-NaN

S-NaN

Normal

—Normal

+0

+00

—00

Q-NaN [V]

—00

Q-NaN [V]

Q-NaN

Q-NaN

S-NaN

Q-NaN [V]

Remarks 1.

[]indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 396 of 473

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Subtract (Single)

SUBF.S

Floating-point subtraction (single precision)

[Instruction format] SUBF.S regl, reg2, reg3

[Operation] reg3 « reg2 —regl
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrril11111RRRRRwwwww{1/000/21/0001|0

reg2 regl reg3 ‘ ’category‘ type’ sub-op | ’

[Description] This instruction subtracts the single-precision floating-point format contents of general-purpose
register regl from the single-precision floating-point format contents of general-purpose register
reg2, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Invalid operation exception (V)
Inexact exception (1)
Overflow exception (O)

Underflow exception (U)

[Operation result] When FPSR.FS =1

reg2 (B)

Normal —Normal +0 -0 +o00 —0 Q-NaN S-NaN
regl (A)

Normal

—Normal

+0 —0

+0 —o0 Q-NaN [V]
—0 +0 Q-NaN [V]
Q-NaN Q-NaN
S-NaN Q-NaN [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 397 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Transfer Floating Flags

TRFSR

Flag transfer

[Instruction format] TRFSR fcbit

TRFSR
[Operation] PSW.Z « fchit
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 1716

000O0O0O(111111/00000/00000/2/000|0O0|0TF f f|O

reg3 ‘ ‘category‘ type‘ sub-op | ‘
Remark fchit: fff

[Description] This instruction transfers the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register
specified by fcbit to the Z flag in the PSW. If fcbit is omitted, this instruction transfers the CCO bit
(bit 24).

[Floating-point operation exceptions] None

RO1USO001EJ0100 Rev.1.00 Page 398 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

TRNCF.DL

Floating-point Truncate to Long Fixed-point Format, rounded to zero (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

TRNCF.DL reg2, reg3

reg3 « trunc reg2 (double — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111100001(fwwww©0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the
result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +o0 —0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] -Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 399 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

TRNCF.DUL

Floating-point Truncate to Unsigned Long Fixed-point Format, rounded to zero (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

TRNCF.DUL reg2, reg3

reg3 « trunc reg2 (double — unsigned long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrro0/11111110001(fwwww©0/1/000|20/1010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and
stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2%~ 110 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +o0 —0 ‘ Q-NaN | S-NaN
Operation result|) Max U-Int
A (integer 0 0 (integer o[V
[exception] (integer) vl (integer) M [\

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 400 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

TRNCF.DUW

Floating-point Truncate to Unsigned Single Fixed-point Format, rounded to zero (Double)

Conversion to unsigned fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

TRNCF.DUW reg2, reg3

reg3 « trunc reg2 (double — unsigned word)

Format F:l

15 1110 5 4 0 31 272625 23222120 1716

rrrrrj{1211111/20001jwwwww/1/000/20/2000/|0

reg2 reg3 ‘ ‘category‘ type‘ sub-op | ‘

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and
stores the result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2% — 1 to 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2% — 1 to 0, or +w: 2*% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +o0 —0 ‘ Q-NaN | S-NaN
Operation result A (integer) oM 0 (integer) Max U-Int 0V
[exception] g g V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 401 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

TRNCF.DW

Floating-point Truncate to Single Fixed-point Format, rounded to zero (Double)

Conversion to fixed-point format (double precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

TRNCF.DW reg2, reg3

reg3 « trunc reg2 (double — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100001jwwwww/1/000/20/2000/0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the double-precision floating-point format contents of the
register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the
result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 2% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +o0 —0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 402 of 473

Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

TRNCF.SL

Floating-point Truncate to Long Fixed-point Format, rounded to zero (Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

TRNCF.SL reg2, reg3

reg3 « trunc reg2 (single — long-word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrri1721111100001(fwwww©0/1/000|120/0010|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair
specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2°° — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 2°* — 1 is returned.

e Source is a negative number, not-a-number, or —oo: —2%% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal —Normal +0 -0 +00 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00 Page 403 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Truncate to Unsigned Long Fixed-point Format, rounded to zero (Single)
TRNCF.SUL

Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUL reg2, reg3

[Operation] reg3 « trunc reg?2 (single — unsigned long-word)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrri21111110001(fwwww0/1/000|1210/0010|0

reg2 reg3 ‘ ‘category‘ type‘ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point format contents of
general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the
register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative value, or when the rounded result
is outside the range of 2% _ 110 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2°* — 1 to 0, or +w: 2%* — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (I)

[Operation result] When FPSR.FS =1
reg2 (A) Normal —Normal +0 -0 +00 —o0 ‘ Q-NaN | S-NaN
Operation result A (integer) 0] 0 (integer) Max U-Int 0]
[exception] g 9 vl

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 404 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

Floating-point Truncate to Unsigned Single Fixed-point Format, rounded to zero (Single)
TRNCF.SUW

Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUW reg2, reg3

[Operation] reg3 « trunc reg?2 (single — unsigned word)
[Format] Format F:l
[opcode] 15 1110 5 4 0 31 272625 23222120 17 16

rrrrrf{121111120001jwwwww/1/000/20/0000|0

reg2 reg3 ‘ ‘category‘ type‘ sub-op | ‘

[Description] This instruction arithmetically converts the single-precision floating-point number format contents
of general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in
general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded
result is outside the range of 2% — 1 to 0, an IEEE754-defined invalid operation exception is
detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number outside the range of 2% — 1 to 0, or +w: 2*% — 1 is returned.

e Source is a negative number, not-a-number, or —o: 0 is returned.

[Floating-point operation exceptions] Invalid operation exception (V)

Inexact exception (1)

[Operation result] When FPSR.FS =1
reg2 (A) Normal -Normal +0 -0 +00 —o0 ‘ Q-NaN ‘ S-NaN
Operation result A (integen) oM 0 (integer) Max U-Int oM
[exception] g g V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0".

RO1USO001EJ0100 Rev.1.00 Page 405 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 4 INSTRUCTIONS

<Floating-point instruction>

TRNCF.SW

Floating-point Truncate to Single Fixed-point Format, rounded to zero (Single)

Conversion to fixed-point format (single precision)

[Instruction format]

[Operation]

[Format]

[opcode]

[Description]

TRNCF.SW reg2, reg3

reg3 « trunc reg?2 (single — word)

Format F:l

15 1110 5 4 0 31 272625 23222120 17 16

rrrrr{12121112100001jwwwww/1/000/20/0000|0

reg2 reg3 ‘ ’category‘ type’ sub-op | ’

This instruction arithmetically converts the single-precision floating-point number format contents
of general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-
purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the
range of 2*! — 1 to 2%, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is
set as an invalid operation and no exception occurs. The return value differs as follows, according
to differences among sources.

« Source is a positive number or +w0: 23! — 1 is returned.

e Source is a negative number, not-a-number, or —oo: 2% s returned.

[Floating-point operation exceptions] Invalid operation exception (V)

[Operation result]

Inexact exception (1)

When FPSR.FS =1

reg2 (A) Normal -Normal +0 -0 +00 —o0 Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] —Max Int [V]

Remarks 1. []indicates an exception that must occur.

2. Denormalized numbers are flushed and handled as “0”.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 406 of 473

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

This chapter describes how the FPU processes floating-point operation exceptions.

5.1 Types of Exceptions

When floating-point operations or processing of operation results cannot be done using the ordinary method, a floating-
point operation exception occurs.

One of the following two operations is performed when a floating-point operation exception has occurred.

* When exceptions are enabled
The cause bit is set in the floating-point configuration/status register (FPSR), and processing (by software) is
passed to the exception handler routine.

* When exceptions are prohibited
The preservation bit is set in the floating-point configuration/status register (FPSR), an appropriate value (initial
value) is stored in the FPU destination register, then execution is continued.

The FPU uses cause bits, enable bits, and preservation bits (status flags) to support the following five types of

IEEE754-defined exception causes.

o Inexact operation (1)
e Overflow (O)

o Underflow (U)

¢ Division-by-zero (2)

 Invalid operation (V)

A sixth type of exception cause is unimplemented operation (E), which causes an exception when a floating-point
operation cannot be executed. This exception requires processing by software. An unimplemented operation exception
(E) occurs when exceptions are always enabled, rather than by using properties, enable bits, or preservation bits.

Figure 5-1 shows the FPSR register bits that are used to support exceptions.

RO1USO001EJ0100 Rev.1.00 Page 407 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

Figure 5-1. Cause, Enable, and Preservation Bits of FPSR Register

Bit 15 14 13 12 11 10
E \% z (0] U | Cause bit (XC)

Bit 9 8 7 6 5
Vv Z (0] u | Enable bit (XE)

Bit 4 3 2 1 0

\% z (0] U | Preservation bit (XP)

Inexact exception

Underflow
Overflow
Division-by-zero operation

Invalid operation
Unimplemented operation

The five exceptions (V, Z, O, U, and 1) defined by IEEE754 are enabled when the corresponding enable bits are set.
When an exception occurs, if the corresponding enable bit has been set, the FPU sets the corresponding cause bit. If the
exception can be acknowledged, processing is passed to the exception handler routine. If exceptions are prohibited, the

exception corresponding preservation bit is set, and processing is not passed to the exception handler routine.

5.2 Exception Processing

When a floating-point operation exception occurs, the cause bits of the FPSR register indicate the cause of the floating-

point operation exception.

5.2.1 Status flag

A corresponding preservation bit is available for each IEEE754-defined exception. The preservation bit is set when the
corresponding exception is prohibited but the exception condition has been detected. The preservation bit is set or reset
whenever new values are written to the FPSR register by the LDSR instruction.

If an exception is prohibited by an enable bit, predetermined processing is performed by the FPU. This processing
provides a initial value as the result, rather than a floating-point operation result. This initial value is determined according
to the type of exception. For an overflow exception or underflow exception, the initial value also differs depending on the

current rounding mode. Table 5-1 lists the initial values provided for each of the FPU IEEE754-defined exceptions.

RO1USO001EJ0100 Rev.1.00 Page 408 of 473
Oct 17, 2012

V850E2M

PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

Table 5-1. FPU Initial Values for IEEE754-defined Exceptions

Area Description Rounding mode Initial value
\% Invalid operation - Uses quiet not-a-number (Q-NaN)
z Division-by-zero - Uses correctly signed o«
(@) Overflow RN oo with sign of intermediate result
U Underflow RN 0 with sign of intermediate result

Inexact operation

Uses rounded result

5.3 Exception Details

The following describes the conditions under which each of the FPU exceptions occurs and the FPU responses.

5.3.1

Inexact exception (I)

In the following cases, the FPU detects an inexact exception.

e When the precision of the rounded result is dropped

¢ When the rounded result overflows while overflow exceptions are prohibited

e When the rounded result underflows while underflow exceptions are prohibited

o When the operand denormalized number is flushed, neither an invalid operation exception (V) nor a division-by-

zero exception (Z) is detected, and the other operands are not Q-NaN

(1) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved, and an inexact

exception occurs.

(2) If exception is not enabled

If no other exception occurs, the rounded result or the result that underflows or overflows is stored in the

destination register.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 409 of 473

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

5.3.2 Invalid operation exception (V)

An invalid operation exception occurs when one of both of the operands is invalid.

« Addition/subtraction or fused-multiply-add operation"°':

Addition or subtraction of infinite values (+w) + (—) or (o) — (—x)

e Multiplication or fused-multiply-add operation: +0 x oo

e Division: +0 + +0 or o0 + Fw

e Comparison: With condition codes 8 15, if the operand is unordered (see Table 4-2 Definitions of Condition

Code Bits and Their Logical Inversions)

e Arithmetic operation with S-Nan included in operands. The conditional transfer instruction (cmov) is not handled
as an arithmetic operation, but the absolute value (ABS), arithmetic negation (NEG), minimum value (MIN), and
maximum value (MAX) operations are handled as arithmetic operations.

e Comparison when operand includes S-NaN and conversion to floating-point format.

e Conversion to integer when source is outside of integer range.

e Square root: When operand is less than 0

Note When the multiplication result is rounded to infinity or when adding or subtracting between infinities, i.e., (+o)
+ (-o0) or (—e0) — (—0)

(1) If exception is enabled
The contents of the destination register are not changed, contents of the source register are saved, and an invalid

operation exception occurs.

(2) If exception is not enabled
If no other exception occurs, and the destination is a floating-point format, Q-NaN is stored in the destination
register. If the destination has an integer format, refer to the operation result description of each instruction for the

value to be stored in the destination register.

5.3.3 Division-by-zero exception (2)

A division-by-zero exception occurs when a divisor is 0 and a dividend is a finite number other than 0.

(1) If exception is enabled
The contents of the destination register are not changed, contents of the source register are saved, and a division-

by-zero exception occurs.

(2) If exception is not enabled

If no other exception occurs, a correctly signed infinite number (xo) is stored in the destination register.

RO1USO001EJ0100 Rev.1.00 Page 410 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

5.3.4 Overflow exception (O)
An overflow exception is detected if the exponent range is infinite and if the result of the rounded floating point is

greater than maximum finite number in the destination format.

(1) If exception is enabled
The contents of the destination register are not changed, the contents of the source register are saved, and an

overflow exception occurs.

(2) If exception is not enabled
If no other exception occurs, the initial value that is determined by the rounding mode and the sign of the
intermediate result is stored in the destination register (see Table 5-1 FPU Initial Values for IEEE754-defined

Exceptions).

5.3.5 Underflow exception (U)

An underflow exception is detected in the following two cases.

Emin Emin

o [f the operation resultis -2~ to +2= (but not zero)

e |f precision is dropped due to an operation between small numbers that are not normalized

Although IEEE754 defines several methods for detecting an underflow, the same method should be used to detect
underflows, regardless of the processing to be performed.
The following two methods can be used to detect an underflow.
e The result calculated after rounding and using an infinite exponent range is not zero and is within +2EMN
e The result calculated before rounding and using an infinite exponent range and precision is not zero and is within

iZEmin.

This FPU detects an underflow before rounding.

The following two methods can be used to detect a drop in precision.

e Denormalized loss (when a given result differs from the result calculated when the exponent range is infinite)
e Inexact result (when a given result differs from the result calculated when the exponent range and precision are

infinite)
This FPU detects a drop in precision as an inexact result.

(1) If exception is enabled
When the FS bit of the FPSR register has been set, if exceptions are enabled, an underflow exception (U) occurs.
When the FS bit of the FPSR register has been set, if exceptions are not enabled but inexact exceptions are

enabled, an inexact exception (I) occurs.

RO1USO001EJ0100 Rev.1.00 Page 411 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

(2) If exception is not enabled
If the FS bit of the FPSR register has been set, the initial value determined according to the rounding mode and
intermediate result sign is stored in the destination register (see Table 5-1 FPU Initial Values for IEEE754-

defined Exceptions).

5.3.6 Unimplemented operation exception (E)

The E bit is set and an unimplemented operation exception occurs when an attempt is made to execute an instruction
using an operation code that is reserved for future expansion. The operand and destination register contents do not
change. Usually, the unimplemented instruction is emulated by software. If an IEEE754-defined exception occurs from an
emulated operation, that exception should be emulated.

If the FS bit of the FPSR register has been set, an unimplemented operation exception (E) will not occur in any defined

FPU instruction.

RO1USO001EJ0100 Rev.1.00 Page 412 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

5.4 Precise Exceptions and Imprecise Exceptions

Each floating-point operation exception can be specified as an exception that occurs precisely (precise exception) or
imprecisely (imprecise exception).

The default setting is that imprecise exceptions occur for both single-precision instructions and double-precision
instructions. Precise exceptions can be specified to occur by setting the SEM and DEM bits of the FPSR register. The
SEM bit specifies a single-precision instruction exception mode and the DEM bit specifies a double-precision instruction
exception mode. For a description of single-precision instructions and double-precision instructions, see 4.2 Overview of

Floating-point Instructions.

5.4.1 Precise exceptions

When a precise exception is specified, the CPU does not start execution of any subsequent instructions until the
already started floating-point instruction has been completed. Consequently, when an exception occurs, the program can
continue after emulation by software.

The program counter for the instruction where a floating-point operation exception has occurred is stored in the EIPC
register and FPEPC register. When returning from emulation processing, an EIRET instruction is executed. Any floating-
point operation exception that has occurred during precise exception mode is acknowledged immediately, regardless of

the status of the ID bit or NP bit of PSW.

5.4.2 Imprecise exceptions

When an imprecise exception is specified, the CPU is able to start execution of subsequent instructions even before
the already started floating-point instruction has been completed. Consequently, when an exception occurs, the
subsequent instructions are executed speculatively, so if an exception occurs, emulation becomes difficult but the
throughput of instruction execution can be greatly increased.

When a floating-point operation exception occurs for a floating-point instruction executed in imprecise exception mode,
the results of subsequent floating-point instructions (except for a TRFSR instruction) are not reflected in the general-
purpose register after the exception is acknowledged and until processing of the exception handler routine starts, and no
other floating-point operation exceptions occur. This is called an “invalidating instruction”.

The program counter for the instruction where a floating-point operation exception has occurred is stored in the
FPEPC register, and the program counter for an instruction that is interrupted when an exception is acknowledged is
stored in the EIPC register.

A floating-point operation exception that has occurred in imprecise exception mode is held pending when the ID bit of
PSW =1 or when the NP bit = 1. In such cases, when an LDSR instruction is used to set the PSW.NP bit and ID bit as “0”,

the pending exception is acknowledged.

RO1USO001EJ0100 Rev.1.00 Page 413 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

5.5 Saving and Returning Status

When a floating-point operation exception occurs, the PC and PSW are saved to the EIPC and EIPSW registers
respectively, and the exception code is saved to the EIIC register.

A floating-point operation exception code is 0x00000071 for a precise exception and 0x00000072 for an imprecise
exception. For the sake of compatibility, the lower 16 bits of the ECR register is also used to store the lower 16 bits of the
exception code.

When an El level exception is acknowledged while processing a floating-point operation exception, an EIPC register
override occurs, which prevents the returning to the instruction that caused the floating-point operation exception to occur.
When acknowledgment of El level exceptions is required, the contents of the EIPC, EIPSW, ECR, and EIIC registers must
be saved, such as to a stack.

When a floating-point instruction is used in a floating-point operation exception handler routine, the FPSR and FPEPC
registers will override if another floating-point operation exception occurred. In such cases, the FPSR and FPEPC
registers should be saved at the start of the floating-point operation exception handler processing, and should be returned
at the end of the handler processing.

With the floating-point operation exception handler, the PR bit of the FPSR register can be checked to determine
whether a precise exception or imprecise exception has occurred.

The cause bits and PR bit of the FPSR register hold the results from only one enabled exception. In any case, the
previous results are held until the next enabled exception occurs.

When accessing the FPSR or FPEPC register, note with caution that the FPU function system register bank must be
selected via the BSEL register. If an exception occurs during exception processing, the exception processing may
overwrite the BSEL register. Therefore, it is recommended that the BSEL register be saved as a program context prior to
exception processing.

An example of the floating-point operation exception handler code is shown below.

000 .offset 0x70 -- FPU exception

001 jr _fpu_exception_handler

002

003

004 _fpu_exception_handler:

005 -- Save basic context

006 addi -100, sp, sp

007 st.w r31, 96[spl

008 st.w rl, 92[spl

009 stsr 31, rl1 -- Save BSEL

010 st.w rl, 8[sp]

011 ldsr zero, 31 -- Select CPU bank

012 stsr 13, rl -- Save EIIC

013 st.w rl, 28[spl

014 stsr 1, rl -- Save EIPSW

015 st.w rl, 24[sp]

016 stsr 0, rl1 -- Save EIPC

017 st.w rl, 20[spl

018 ei -- EI level maskable exception enable

019 stsr 17, rl -- Save CTPSW

020 st.w rl, 16[sp]

021 stsr 16, rl -- Save CTPC
RO1USO001EJ0100 Rev.1.00 Page 414 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

022 st.w rl, 12[sp]
023 movea 0x2000, r0, rl1-- Select FPU status bank
024 ldsr rl, 31
025 stsr 6, rl -- Save FPSR
026 st.w rl, 4[spl
027 stsr 7, rl -- Save FPEPC
028 st.w rl, O[sp]
029
030 -- Determination of precise exception or imprecise exception
031 Id.w 28[sp], r1
032 addi -0x72, rl, rO -- Is ElIIC exception cause code 0x72?
033 be _imprecise_fpe
034
035 -- Floating-point operation exception processing
036
037 -- Basic context restoration
038 movea 0x2000, r0O, rl1-- Select FPU status bank
039 ldsr rl, 31
040 Id.w O[sp], r31
041 Id.w 4[sp], r1
042 ldsr r3i, 7 -- FPEPC restoration
043 Idsr rl, 6 -- FPSR restoration
044 ldsr zero, 31 -- Select CPU bank
045 Id.w 12[sp], r31
046 Id.w 16[sp], r1
047 ldsr r31, 16 -- CTPC restoration
048 ldsr rl, 17 -- CTPSW restoration
049 di -- EI level maskable exception prohibited
050 Id.w 24[sp], r31
051 Id.w 28[sp], ri
052 ldsr r3i, 1 -- EIPSW restoration
053 ldsr rl, 1 -- EIIC restoration
054 -- Set restoration address (for precise exception)
055 Id.w 20[sp], r1 -- Load EIPC to be saved
056 add 4, rl -- Add 4 to r1 (all FPU instructions are four bytes)
057 ldsr rl, O -- Set r1 (next instruction PC) to EIPC
058 Id.w 8[sp], rl1 -- BSEL restoration
059 ldsr rl, 31
060 Id.w 92[sp], rl
061 Id.w 96[sp], r31
062 addi 100, sp, sp
063 eiret
064
065 _imprecise_fpe:
066 -- Basic context restoration
067 ... Omitted ...
068
069 -- Store restoration point address to EIPC
070 Id.w 8[sp]l, r1 -- BSEL restoration
071 Idsr ri, 31
072 Id.w 92[sp], ri
073 addi 100, sp, sp
074 eiret
RO1USO001EJ0100 Rev.1.00 Page 415 of 473

Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

5.6 Selection of Floating-point Operation Model

5.6.1 When accurate operations are required
With this FPU, when an attempt is made to execute an operation code that is reserved for future expansion or an
instruction with invalid format code, the E bit is set and an unimplemented operation exception (E) occurs. The operand

and destination register do not change.

When strictly accurate operations are required, any instruction where an exception occurs is emulated by software. If
IEEE754-defined exceptions occur during an emulated operation, these exceptions should be emulated. If the program
must be resumed after emulation, set the SEM and DEM bits of the FPSR register and specify the precise exception in
advance.

IEEE754 recommends an exception handler that can store calculation results in the destination register regardless of
which of the five standard exceptions occurs.

The exception handler can search instructions using the FPEPC register in order to determine the following.

e Instruction being executed

e Format of destination

To obtain the correctly rounded result when an overflow exception, underflow exception (except conversion instruction),
or inexact exception occurs, the exception handler must have software that checks the source register and emulates
instructions.

If an invalid operation exception or division-by-zero exception occurs or if an overflow exception or underflow exception
occurs during floating-point conversion, the exception handler should have software that can obtain the value of the
operand by checking the source register of the instruction.

IEEE754 recommends that, if possible, the overflow and underflow exceptions should have a priority higher than
inexact exceptions. This priority is set by software. The hardware sets the bits of both the overflow and the underflow

exceptions, as well as the inexact exception.

RO1USO001EJ0100 Rev.1.00 Page 416 of 473
Oct 17, 2012

V850E2M PART 4 CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS

5.6.2 When operation performance is emphasized

For this FPU, one operation model emphasizes processing performance by preventing as much as possible the
occurrence of exceptions due to execution of floating-point operations. For applications that require real-time processing
or cases where operations do not have to be strictly precise, this model can be used to eliminate the emulation processing
overhead related to exceptions that occur.

The following settings are recommended when operation performance is emphasized.

e Clear (0) the FPSR register enable bit to prohibit exceptions.
e Use single-precision floating-point format for processing that does not require high precision.

e Use the SEM and DEM bits of the FPSR register to specify imprecise exception mode.

During processing of operations, prohibit exceptions when floating-point operation exceptions can be ignored, so that
the operation can continue using initial values. Single-precision instructions generally require a small number of execution
clocks (low latency).

For this FPU, an unimplemented operation exception (E) does not occur when the FS bit of the FPSR register is set (1)
and flushing of denormalized numbers is enabled. When flushing is enabled, flushing occurs before storage even when

the operation result has underflowed, so the results are not held as denormalized results.

RO1USO001EJ0100 Rev.1.00 Page 417 of 473
Oct 17, 2012

V850E2M

APPENDIX A LIST OF INSTRUCTIONS

APPENDIX A LIST OF INSTRUCTIONS

A.1 Basic Instructions

Table A-1 shows an alphabetized list of basic instruction functions.

Table A-1. Basic Instruction Function List (Alphabetic Order) (1/4)
Mnemonic Operand Format Flag Function of Instruction
CY |OV| S Z |SAT
ADD regl, reg2 | 0/1 |0/1 |0/1 |0/1 |- |Add
ADD immb5, reg2 1l 0/1 |0/1 |0/1 |0/1 |- Add
ADDI imm16, regl, reg2 \ 0/1 |0/1 |0/1 |O/1 |- |Add
ADF ccee, regl, reg2, reg3 | Xl 0/1 |0/1 |0/1 |01 |- Conditional add
AND regl, reg2 | - o/1 |0/1 |- AND
ANDI imm16, regl, reg2 VI - 0 o/1 |0/1 |- AND
Bcond disp9 1] - - |- - - Conditional branch
BSH reg2, reg3 Xl 0/1 |0 |0/1 |01 |- Byte swap of halfword data
BSW reg2, reg3 Xl 0/1 |0 |0/1 |01 |- Byte swap of word data
CALLT imm6 1] - - |- - - Subroutine call with table look up
CAXI [regl], reg2, reg3 IX 0/1 |0/1 |0/1 |0/1 |- Comparison and swap
CLR1 bit#3, disp16 [regl] VI - - |- 0/l |- Bit clear
CLR1 reg2, [regl] IX - - |- 01 |- Bit clear
CMOV ccee, regl, reg2, reg3 | XI - - |- - - Conditional transfer
CMOV ccee, immb, reg2, reg3 | XII - - - - - Conditional transfer
CMP regl, reg2 | 0/1 |0/1 |0/1 |0/1 |- Comparison
CMP immb5, reg2 I 0/1 |0/1 |0/1 |O/1 |- Comparison
CTRET (None) X 0/1 |0/1 |0/1 |0/1 |0O/1 |Return from subroutine call
DI (None) X - |- |- |- |- Disable El level maskable exception
DISPOSE |immb, list12 Xl - |- |- |- |- |Stack frame deletion
DISPOSE |immb, list12, [regl] X - - - - - Stack frame deletion
DIV regl, reg2, reg3 XI - 0/1 |0/1 |01 |- Division of (signed) word data
DIVH regl, reg2 | - 0/1 |0/1 |01 |- Division of (signed) halfword data
DIVH regl, reg2, reg3 Xl - 0/1 |0/1 |01 |- Division of (signed) halfword data.
DIVHU regl, reg2, reg3 XI - 0/1 |0/1 |0/1 |- Division of (unsigned) halfword data
DIVQ regl, reg2, reg3 XI - 0/1 |0/1 |01 |- Division of (signed) word data (variable steps)
DIVQU regl, reg2, reg3 Xl - 0/1 |0/1 |01 |- Division of (unsigned) word data (variable steps)
DIVU regl, reg2, reg3 Xl - 0/1 |0/1 |01 |- Division of (unsigned) word data

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 418 of 473

V850E2M

APPENDIX A LIST OF INSTRUCTIONS

Table A-1. Basic Instruction Function List (Alphabetic Order) (2/4)

Mnemonic Operand Format Flag Function of Instruction
Cy|OV| S Z |SAT

El (None) X - - - - - Enable El level maskable exception
EIRET (None) X 0/1 |0/1 |0/1 |0/1 |0O/1 |Return from El level exception
FERET (None) X 0/1 |0/1 |0/1 |0/1 |0/1 |Return from FE level exception
FETRAP |vector | - - - - - FE level software exception instruction
HALT (None) X - - - - - Halt
HSH reg2, reg3 Xl 0/1 |0 0/1 (0/1 |- Halfword swap of halfword data
HSW reg2, reg3 Xl 0/1 |0 o0/1 (0/1 |- Halfword swap of word data
JARL disp22, reg2 \% - - - - - Branch and register link
JARL disp32, regl VI - - - - - Branch and register link
JMP [regl] | - - - - - Unconditional branch (register relative)
JMP disp32 [regl] VI - - - - - Unconditional branch (register relative)
JR disp22 \% - - - - - Unconditional branch (PC relative)
JR disp32 VI - - - - - Unconditional branch (PC relative)
LD.B disp16 [regl], reg2 Wi - - - - - Load of (signed) byte data
LD.B disp23 [regl], reg3 XV |- - - - - Load of (signed) byte data
LD.BU disp16 [regl], reg2 Vil - |- - |- |- Load of (unsigned) byte data
LD.BU disp23 [regl], reg3 XV |- - - - - Load of (unsigned) byte data
LD.H disp16 [regl], reg2 \i - - - - - Load of (signed) halfword data
LD.H disp23 [regl], reg3 XV |- - - - - Load of (signed) halfword data
LD.HU disp16 [regl], reg2 VIl - - - - - Load of (unsigned) halfword data
LD.HU disp23 [regl], reg3 XV |- - - - - Load of (unsigned) halfword data
LD.W disp16 [regl], reg2 VIl - - - - - Load of word data
LD.W disp23 [regl], reg3 XV |- - - - Load of word data
LDSR reg2, reglD IX - |- - |- |- Load to system register
MAC regl, reg2, reg3, regd | XI - - - - - Multiply-accumulate for (signed) word data
MACU regl, reg2, reg3, reg4d | XI - - - - - Multiply-accumulate for (unsigned) word data
MOV regl, reg2 | - - - - - Data transfer
MOV immb5, reg2 Il - |- - |- |- Data transfer
MOV imm32, regl VI - - - - - Data transfer
MOVEA imm16, regl, reg2 \ - - - - - Effective address transfer
MOVHI imm16, regl, reg2 VI - - - - - Higher halfword transfer
MUL regl, reg2, reg3 Xl - - - - - Multiplication of (signed) word data
MUL imm9, reg2, reg3 Xl - - - - - Multiplication of (signed) word data
MULH regl, reg2 | - - - - - Multiplication of (signed) halfword data
MULH immb5, reg2 Il - - - - - Multiplication of (signed) halfword data
MULHI imm16, regl, reg2 VI - - - - - Multiplication of (signed) halfword immediate data

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 419 of 473

V850E2M

APPENDIX A LIST OF INSTRUCTIONS

Table A-1. Basic Instruction Function List (Alphabetic Order) (3/4)
Mnemonic Operand Format Flag Function of Instruction
Cy|OV| S Z |SAT
MULU regl, reg2, reg3 Xl - - - - - Multiplication of (unsigned) word data
MULU imm9, reg2, reg3 Xl - - - - - Multiplication of (unsigned) word data
NOP (None) | - |- - |- |- Nothing else is done.
NOT regl, reg2 | - 0 0/1 (0/1 |- Logical negation (1's complement)
NOT1 bit#3, disp16 [regl] vie |- |- |- [0/l |- [NOT bit
NOT1 reg2, [regl] IX - - - o1 |- NOT bit
OR regl, reg2 | - 0 0/1 (0/1 |- OR
ORI imm16, regl, reg2 VI - 0 0/1 (0/1 |- OR immediate
PREPARE |list12, imm5 Xl - - - - - Create stack frame
PREPARE |list12, imm5, sp/imm X1 - - - - - Create stack frame
RETI (None) X 0/1 |0/1 [0/1 [0/1 |0/1 |Return from El level software exception or interrupt
RIE (None) I/X - - - - - Reserved instruction exception
SAR regl, reg2 IX 0/1 |0 0/1 (0/1 |- Arithmetic right shift
SAR immb5, reg2 1l 0/1 |0 0/1 (0/1 |- Arithmetic right shift
SAR regl, reg2, reg3 Xl 0/1 |0 0/1 |0/1 |- Arithmetic right shift
SASF ccce, reg2 IX - - - - - Shift and flag condition setting
SATADD |regl, reg2 | 0/1 {0/1 [0/1 |0/1 |0/1 |Saturated addition
SATADD |immb5, reg2 1l 0/1 {0/1 [0/1 |0/1 |0/1 |Saturated addition
SATADD |regl, reg2, reg3 Xl 0/1 |0/1 [0/1 [0/1 |0/1 |Saturated addition
SATSUB |regl, reg2 | 0/1 [0/1 |[0/1 |0/1 |0/1 |Saturated subtraction
SATSUB |regl, reg2, reg3 Xl 0/1 [0/1 [0/1 |0/1 |0/1 |Saturated subtraction
SATSUBI |imm16, regl, reg2 VI 0/1 [0/1 |[0/1 |0/1 |0/1 |Saturated subtraction
SATSUBR |regl, reg2 | 0/1 |0/1 {0/1 [0/1 |0O/1 |Saturated reverse subtraction
SBF ccee, regl, reg2, reg3 | XI 0/1 (0/1 {0/1 |0/1 |- Conditional subtraction
SCHOL reg2, reg3 IX o/1 |0 0 o1 |- Bit (0) search from MSB side
SCHOR reg2, reg3 IX o/1 |0 0 o1 |- Bit (0) search from LSB side
SCHI1L reg2, reg3 IX 0/1 |0 0 o1 |- Bit (1) search from MSB side
SCHI1R reg2, reg3 IX 0/1 |0 0 o/l |- Bit (1) search from LSB side
SET1 bit#3, disp16 [regl] VIl - - - o1 |- Bit setting
SET1 reg2, [regl] IX - - - o1 |- Bit setting
SETF ccce, reg2 IX - |- - |- |- Flag condition setting
SHL regl, reg2 IX 0/1 |0 0/1 (0/1 |- Logical left shift
SHL immb5, reg2 1l 0/1 |0 0/1 (0/1 |- Logical left shift
SHL regl, reg2, reg3 Xl o/1 |0 0/1 |0/1 |- Logical left shift

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 420 of 473

V850E2M

APPENDIX A LIST OF INSTRUCTIONS

Table A-1. Basic Instruction Function List (Alphabetic Order) (4/4)
Mnemonic Operand Format Flag Function of Instruction
CYy|OV| S Z |[SAT
SHR regl, reg2 IX 0/1 |0 0/1 {0/1 |- Logical right shift
SHR immb5, reg2 Il 0/1 |0 0/1 {0/1 |- Logical right shift
SHR regl, reg2, reg3 Xl 0/1 |0 0/1 {0/1 |- Logical right shift
SLD.B disp7 [ep], reg2 \% - - - - - Load of (signed) byte data
SLD.BU disp4 [ep], reg2 \ - - - - - Load of (unsigned) byte data
SLD.H disp8 [ep], reg2 \ - - - - - Load of (signed) halfword data
SLD.HU disp5 [ep], reg2 v - |- |- |- |- Load of (unsigned) halfword data
SLD.W disp8 [ep], reg2 \% - - - - - Load of word data
SST.B reg2, disp7 [ep] \ - - - - - Storage of byte data
SST.H reg2, disp8 [ep] \ - - - - - Storage of halfword data
SST.W reg2, disp8 [ep] \Y - |- |- |- |- Storage of word data
ST.B reg2, disp16 [regl] VIl - - - - - Storage of byte data
ST.B reg3, disp23 [regl] XV |- - - - - Storage of byte data
ST.H reg2, disp16 [regl] Wi - - - - - Storage of halfword data
ST.H reg3, disp23 [regl] XV |- - - - - Storage of halfword data
ST.W reg2, disp16 [regl] VIl - - - - - Storage of word data
ST.W reg3, disp23 [regl] XV |- - - - - Storage of word data
STSR reglD, reg2 IX - - - - - Storage of contents of system register
SUB regl, reg2 | 0/1 |0/1 |0/1 |0O/1 |- Subtraction
SUBR regl, reg2 | 0/1 |0/1 |0/1 |0O/1 |- Reverse subtraction
SWITCH |regl | - - - - - Jump with table look up
SXB regl | - - - - - Sign-extension of byte data
SXH regl | - - - - - Sign-extension of halfword data
SYNCE (None) | - - - - - Exception synchronize instruction
SYNCM (None) | - - - - - Memory synchronize instruction
SYNCP (None) | - - - - - Pipeline synchronize instruction
SYSCALL |vector8 X - |- |- |- |- System call exception
TRAP vectorb X - - - - - Software exception
TST regl, reg2 | - 0 0/1 {0/1 |- Test
TST1 bit#3, disp16 [regl] VIl - - - o1 |- Bit test
TST1 reg2, [regl] IX - |- |- |01 |- Bit test
XOR regl, reg2 | - 0 0/1 [0/1 |- Exclusive OR
XORI imm16, regl, reg2 \ - 0 0/1 {0/1 |- Exclusive OR immediate
ZXB regl | - - - - - Zero-extension of byte data
ZXH regl | - |- |- |- |- |Zero-extension of halfword data

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 421 of 473

V850E2M

APPENDIX A LIST OF INSTRUCTIONS

A.2 Floating-point Instructions

Table A-2 shows a list of floating-point instruction functions.

Table A-2. Floating-point Instruction Function List (1/3)

Mnemonic Operand Format Function of Instruction

ABSF.D reg2, reg3 Double precision Floating-point absolute value
ABSF.S reg2, reg3 Single precision Floating-point absolute value
ADDF.D regl, reg2, reg3 Double precision Floating-point add
ADDF.S regl, reg2, reg3 Single precision Floating-point add
CEILF.DL reg2, reg3 Double precision Conversion to fixed-point format
CEILF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format
CEILF.DUW reg2, reg3 Double precision Conversion to unsigned fixed-point format
CEILF.DW reg2, reg3 Double precision Conversion to fixed-point format
CEILF.SL reg2, reg3 Single precision Conversion to fixed-point format
CEILF.SUL reg2, reg3 Double precision Conversion to unsigned fixed-point format
CEILF.SUW reg2, reg3 Double precision Conversion to unsigned fixed-point format
CEILF.SW reg2, reg3 Single precision Conversion to fixed-point format
CMOVF.D cc, regl, reg2, reg3 Double precision Conditional transfer
CMOVF.S cc, regl, reg2, reg3 Single precision Conditional transfer
CMPF.D cond, reg2, regl, fchit | Double precision Floating-point comparison

cond, regl, reg2
CMPF.S cond, reg2, regl, fchit | Single precision Floating-point comparison

cond, reg2, regl
CVTF.DL reg2, reg3 Double precision Conversion to fixed-point format
CVTF.DS reg2, reg3 Double precision Conversion to floating-point format
CVTF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format
CVTF.DUW reg2, reg3 Double precision Conversion to unsigned fixed-point format
CVTF.DW reg2, reg3 Double precision Conversion to fixed-point format
CVTF.LD reg2, reg3 Double precision Conversion to floating-point format
CVTF.LS reg2, reg3 Single precision Conversion to floating-point format
CVTF.SD reg2, reg3 Double precision Conversion to floating-point format
CVTF.SL reg2, reg3 Single precision Conversion to fixed-point format
CVTF.SUL reg2, reg3 Single precision Conversion to unsigned fixed-point format
CVTF.SUW reg2, reg3 Single precision Conversion to unsigned fixed-point format
CVTF.SW reg2, reg3 Single precision Conversion to fixed-point format
CVTF.ULD reg2, reg3 Double precision Conversion to floating-point format
CVTF.ULS reg2, reg3 Single precision Conversion to floating-point format
CVTF.UWD reg2, reg3 Double precision Conversion to floating-point format
CVTF.UWS reg2, reg3 Single precision Conversion to floating-point format
CVTF.WD reg2, reg3 Double precision Conversion to floating-point format
CVTF.WS reg2, reg3 Single precision Conversion to floating-point format

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 422 of 473

V850E2M APPENDIX A LIST OF INSTRUCTIONS
Table A-2. Floating-point Instruction Function List (2/3)

Mnemonic Operand Format Function of Instruction
DIVF.D regl, reg2, reg3 Double precision Floating-point division
DIVF.S regl, reg2, reg3 Single precision Floating-point division
FLOORF.DL reg2, reg3 Double precision Conversion to fixed-point format
FLOORF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format
FLOORF.DUW | reg2, reg3 Double precision Conversion to unsigned fixed-point format
FLOORF.DW reg2, reg3 Double precision Conversion to fixed-point format
FLOORF.SL reg2, reg3 Single precision Conversion to fixed-point format
FLOORF.SUL reg2, reg3 Single precision Conversion to unsigned fixed-point format
FLOORF.SUW | reg2, reg3 Single precision Conversion to unsigned fixed-point format
FLOORF.SW reg2, reg3 Single precision Conversion to fixed-point format
MADDF.S regl, reg2, reg3, regs Single precision Floating-point fused-multiply-add operation
MAXF.D regl, reg2, reg3 Double precision Floating-point maximum value
MAXF.S regl, reg2, reg3 Single precision Floating-point maximum value
MINF.D regl, reg2, reg3 Double precision Floating-point minimum value
MINF.S regl, reg2, reg3 Single precision Floating-point minimum value
MSUBF.S regl, reg2, reg3, reg4 Single precision Floating-point fused-multiply-add operation
MULF.D regl, reg2, reg3 Double precision Floating-point multiplication
MULF.S regl, reg2, reg3 Single precision Floating-point multiplication
NEGF.D reg2, reg3 Double precision Floating-point sign inversion
NEGF.S reg2, reg3 Single precision Floating-point sign inversion
NMADDF.S regl, reg2, reg3, regs Single precision Floating-point fused-multiply-add operation
NMSUBF.S regl, reg2, reg3, regs Single precision Floating-point fused-multiply-add operation
RECIPF.D reg2, reg3 Double precision Reciprocal
RECIPF.S reg2, reg3 Single precision Reciprocal
RSQRTF.D reg2, reg3 Double precision Reciprocal of square root
RSQRTF.S reg2, reg3 Single precision Reciprocal of square root
SQRTF.D reg2, reg3 Double precision Square root
SQRTF.S reg2, reg3 Single precision Square root
SUBF.D regl, reg2, reg3 Double precision Floating-point subtraction
SUBF.S regl, reg2, reg3 Single precision Floating-point subtraction
TRFSR cc#3 Single precision Flag transfer
TRNCF.DL reg2, reg3 Double precision Conversion to fixed-point format
TRNCF.DUL reg2, reg3 Double precision Conversion to unsigned fixed-point format
TRNCF.DUW reg2, reg3 Double precision Conversion to unsigned fixed-point format
TRNCF.DW reg2, reg3 Double precision Conversion to fixed-point format
TRNCF.SL reg2, reg3 Single precision Conversion to fixed-point format
TRNCF.SUL reg2, reg3 Single precision Conversion to unsigned fixed-point format
TRNCF.SUW reg2, reg3 Single precision Conversion to unsigned fixed-point format
TRNCF.SW reg2, reg3 Single precision Conversion to fixed-point format

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 423 of 473

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

APPENDIX B INSTRUCTION OPCODE MAP

B.1 Basic Instruction Opcode Map

The following shows opcode maps for the basic instruction code.

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (1/4)

Mnemonic Operand Format opcode Remark
15 11 10 5 4 0 |31 27| 26 21 20 16

NOP I 00000|00000O0O|000O0O

SYNCE | 00000|000000|1112012

SYNCM I 00000|00000O0O|211110

SYNCP I 00000|00000O0|11111

MOV regl, reg2 | rrrrrflO0O0OO0OO0O0O(RRRRR rrrrr = 00000

NOT regl, reg2 | rrrrrilO0OOO0OO01(RRRRR

RIE I 00000|000O010|00000

SWITCH regl I OOO0OOO|0O0O0010|RRRRR

FETRAP vector4 I Oiiii|000010|00000 iiii # 0000

DIVH regl, reg2 | rrrrrilO0O0OO0O10(RRRRR rrrrr = 00000,
RRRRR # 00000

IJMP [regl] I |000000{000011|RRRRR

SLD.BU disp4 [ep], reg2 IV |rrrrrj000011|0dddd rrrrr = 00000

SLD.HU disp5 [ep],reg2 IV |rrrrrj000011|{1dddd rrrrr = 00000

ZXB regl | OOOOO|0O0O0100|RRRRR

SXB regl | OOOOO(0O0O0101{RRRRR

ZXH regl | OOOOO(0O0O0110(RRRRR

SXH regl | OOOOO(0O00111{RRRRR

SATSUBR |regl, reg2 | rrrrriO0O0O100(RRRRR rrrrr = 00000

SATSUB regl, reg2 | rrrrrflOO0O101(RRRRR rrrrr = 00000

SATADD regl, reg2 | rrrrr|/O0O0O110(RRRRR rrrrr = 00000

MULH regl, reg2 | rrrrrfO0O0111(RRRRR rrrrr = 00000

OR regl, reg2 | rrrrrilO0O01000(RRRRR

XOR regl, reg2 | rrrrrfl0O0O01001(RRRRR

AND regl, reg2 | rrrrr|/O01010(RRRRR

TST regl, reg2 | rrrrrf0O01011(RRRRR

SUBR regl, reg2 | rrrrr|fO0O01100(RRRRR

SuB regl, reg2 | rrrrrf0O0O01101(RRRRR

ADD regl, reg2 | rrrrr|]O01110(RRRRR

CMP regl, reg2 | rrrrrf0O01111(RRRRR

MOV immb5, reg2 | rrrrr(010000(8 0001 rrrrr = 00000

RO1USO0001EJ0100 Rev.1.00 Page 424 of 473

Oct 17, 2012

V850E2M

APPENDIX B

INSTRUCTION OPCODE MAP

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (2/4)

Mnemonic Operand Format opcode Remark
15 11 10 5 4 0 |31 27| 26 21 20 16

SATADD imm5, reg2 | rrrrr(0O10001|iidiii rrrrr = 00000

ADD imm5, reg2 | rrrrr(0O10010(0diii

CMP imm5, reg2 | rrrrr|010012(iidiidii

CALLT immé I [00O0OOO|0O100O0i|idiii

SHR immb5, reg2 1] rrrrr(0O10100(8idiii

SAR imm5, reg2 Il rrrrr(0O10101|iidiii

SHL imm5, reg2 1l rrrrr|010110(8idiidii

MULH immb5, reg2 1] rrrrr|(O10121|iidiii rrrrr = 00000

JR disp32 VI ([00000{010111|/00000|ddddd|dddddd|ddddO0|See Table B-2

JARL disp32, regl Vi 00000|010111|RRRRR|ddddd|dddddd|ddddO0|See Table B-2

RRRRR = 00000

SLD.B disp7 [ep], reg2 IV |rrrrr|0110dd|{ddddd

SST.B reg2, disp7 [ep] IV |rrrrr|0111dd|{ddddd

SLD.H disp8 [ep], reg2 IV |rrrrr{1000dd|{ddddd

SST.H reg2, disp8 [ep] IV |rrrrr|{1001ddfddddd

SLD.W disp8 [ep], reg2 IV |rrrrr{1010dd{ddddO

SST.W reg2, disp8 [ep] IV |rrrrr{1010dd|{dddd1

Bcond disp9 I} ddddd{i1011dd{dCCCC

ADDI imm16, regl, reg2 VI rrrrr|110000(RRRRR|ibiNIN|idibdiijfiiiaii

MOV imm32, regl Vi OO0OOOO|110001(RRRRRIIIILL|[ITINELL|[LITNINI]|SeeTableB-2

MOVEA imm16, regl, reg2 \ rrrrr(l10001|RRRRR|iFddb|(iddiid|iiiii|rrrrr = 00000

MOVHI imm16, regl, reg2 VI rrrrr(l110010(RRRRR|IFdFdN|(ididbiid|iiiii|rrrrr = 00000

SATSUBI imm16, regl, reg2 VI rrrrr|1100112(RRRRR|idddi|iddiiijiiiii|rrrrr = 00000

DISPOSE |immb5, list12 Xl {0o0o00OO|11001 | ddLfLLLLL(LLLLLL|OOOOO

DISPOSE |immb5, list12, [regl] Xl |J00000|11001#|i i i iLJLLLLL|LLLLLL|RRRRR|RRRRR % 00000

ORI imm16, regl, reg2 VI rrrrr(l10100(RRRRR|IITIR|[IddNdId|ibnidili

XORI imm16, regl, reg2 VI rrrrr|110101(RRRRR|idNIR|[IHTITII|[ITITId

ANDI imm16, regl, reg2 VI rrrrr|(l10110(RRRRR|iFddN|[iddniajiniii

MULHI imm16, regl, reg2 VI rrrrr|(l10111|RRRRR|iFddb|(idddid|iiiii|rrrrr = 00000

JMP imm32 [regl] \Y| 00000|110111|RRRRR|ddddd|dddddd|ddddO0|See Table B-2

LD.B disp16 [regl], reg2 VII [rrrrr|111000/RRRRR|ddddd|{dddddd|{ddddd

LD.H disp16 [regl], reg2 VI |[rrrrr|{111001|RRRRR|ddddd|{dddddd|{ddddO

LD.W disp16 [regl], reg2 VI |[rrrrr|111001|RRRRR|ddddd|{dddddd|{dddd1

ST.B reg2, disp16 [regl] VI |[rrrrr|111010/RRRRR|ddddd|{dddddd|{ddddd

ST.H reg2, disp16 [regl] VII |[rrrrr|{111011|RRRRR|ddddd|{dddddd|{ddddO

ST.W reg2, disp16 [regl] VI |[rrrrr|{111011|RRRRR|ddddd|{dddddd|{dddd1

PREPARE |list12, imm5 Xl |ooooo0Of11110w|{iFdiLfLLLLL{LLLLLL|{OOOO2

PREPARE |list12, imm5, sp/imm Xl [oooo0O0Of11110w|iiiiiL|LLLLL|LLLLLL|{FFOL11|Note

Note See Table B-2 when ff = 01 or 10, and see Table B-3 when ff = 11.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 425 of 473

V850E2M

APPENDIX B

INSTRUCTION OPCODE MAP

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (3/4)

Mnemonic Operand Format opcode Remark
15 11 10 5 4 0 |31 27| 26 21 | 20 16

LD.B disp23[reg1], reg3 XIV |00000|{111100|RRRRRR|wwwww|dddddd|d0101|See Table B-2

LD.H disp23[regl], reg3 XIV |00000|{111100|RRRRRR|wwwww|dddddd|00111|See Table B-2

LD.W disp23[regl], reg3 XIV [00000(111100|RRRRRR|wwwww|dddddd|01001|See Table B-2

ST.B reg3, disp23[regl] XIV |00000|{111100|RRRRRR|wwwww|dddddd|d1101|See Table B-2

ST.W reg3, disp23[regl] XIV |00000|{111100|RRRRRR|wwwww|dddddd|01111|See Table B-2

LD.BU disp23[reg1], reg3 XIV |00000|{111101|RRRRRR|wwwww|dddddd|d0101|See Table B-2

LD.HU disp23[regl], reg3 XIV |00000|{111101|RRRRRR|wwwww|dddddd|00111|See Table B-2

ST.H reg3, disp23[regl] XIV |00000|{111101|RRRRRR|wwwww|dddddd|01101|See Table B-2

JR disp22 V |00000|11110D|DDDDD|ddddd|dddddd|ddddO

JARL disp22, reg2 \% rrrrr{11110D|DDDDD|ddddd|{dddddd|{ddddO|rrrrr = 00000

LD.BU disp16 [regl], reg2 VI |[rrrrr{11110b|RRRRR|ddddd|{dddddd|{dddd1

SET1 bit3#, disp16 [regl] VIl |0O0Obbb{111110/{RRRRR|ddddd|{dddddd|ddddd

NOT1 bit#3, disp16 [regl] VIl [01bbb{111110/RRRRR|ddddd|{dddddd|ddddd

CLR1 bit3#, disp16 [regl] VI |110bbb(111110{RRRRR|ddddd{dddddd|ddddd

TST1 bit3#, disp16 [regl] VIl [11bbb{111110/RRRRR|ddddd|{dddddd|ddddd

LD.HU disp16 [regl], reg2 VII |[rrrrr|{111111|RRRRR|ddddd|{dddddd|{dddd1|rrrrr = 00000

SETF cond, reg2 IX |rrrrr{111111/0CCCC|00000{000000|000O0O

RIE X Ixxxxx|111111|1xxxx|00000{000000|00000

LDSR reg2, reglD IX |rrrrr{111111/RRRRR|0O0000{000001|00000

STSR srl, reg2 IX rrrrr|111111/RRRRR|00000|{000010(0000O0

SHR regl, reg2 IX |rrrrr(111111/RRRRR|00000{000100|00000

SHR regl, reg2, reg3 IX rrrrr{111111/RRRRR|wwwww|{000100(00010

SAR regl, reg2 IX |[rrrrr|111111|RRRRR[00000(000101{00000

SAR regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|000101{00010

SHL regl, reg2 IX rrrrr|111111/RRRRR|00000(000110(00000

SHL regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|000110({00010

SET1 reg2, [regl] IX |[rrrrr|111111|RRRRR[00000(000111|{00000

NOT1 reg2, [regl] IX |rrrrr{111111/RRRRR|00000{000111|00010

CLR1 reg2, [regl] IX |rrrrr{111111/RRRRR|00000{000111|00100

TST1 reg2, [regl] IX |rrrrr{2111111/RRRRR|00000{0002111|00110

CAXI [regl], reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|{000111{01110

TRAP imm5 X |]00000|111111|iiiii|]0O0000{00100|00000

HALT X |00000{111121(iii§1i§/00000{001001|{00000

RETI X]00000|111111|iiiii|00000{001010|00000

CTRET X]00000|111111|iiiii|00000{001010|00100

EIRET X |]00000|111111|iiiii|00000{001010|01000

FERET X |]00000|111111|iiiii|00000{001010|01010

DI X 100000{1111211(00000/00000|{0010121|00000

El X 110000/111111/00000|00000{001011|00000

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 426 of 473

V850E2M APPENDIX B INSTRUCTION OPCODE MAP

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (4/4)

Mnemonic Operand Format opcode Remark
15 11 10 5 4 0 |31 27| 26 21 20 16
SYSCALL |vector8 X [11010f(111111|vvvvv|OoOVvVV|001011({00000
SASF cccc, reg2 IX rrrrr{111111(0cccc|00000({010000(0O00O0O0
MUL regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|(010001{00000
MULU regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|(010001{00010
MUL imm9, reg2, reg3 Xl |[rrrrr|l212121|didiiijwvwww|(0120021|11100
MULU imm9, reg2, reg3 Xl |lrrrrr|112121|idiidijwvwww|{0O100201|11110
DIVH regl, reg2, reg3 XI rrrrr{111111/RRRRR|wwwww|({010100(00000
DIVHU regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|(010100{00010
DIV regl, reg2, reg3 XI rrrrr{111111/RRRRR|wwwww|{010110(00000
DIVQ regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|010111({11100
DIVU regl, reg2, reg3 XI rrrrr{111111/RRRRR|wwwww|({010110(00010
DIVQU regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|010111({11110
CMoV ccce, immb, reg2, reg3| Xl rrrrr{1121111{idiiifwwwww|(011000(ccccO
CMOoV cccce, regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|011001f{ccccO
BSW reg2, reg3 Xl [rrrrr|111111(00000{wwwww|{011010(00000
BSH reg2, reg3 Xl |[rrrrr{111111|{00000|wwwww|{011010{00010
HSW reg2, reg3 Xl |[rrrrr{111111|00000|wwwww|011010|00100
HSH reg2, reg3 Xl |[rrrrr{111111{00000|wwwww|{011010|{00110
SCHOR reg2, reg3 IX rrrrr{111111(00000|wwwww|{011011(00000
SCH1R reg2, reg3 IX rrrrr{111111/{00000f{wwwww|011011{00010
SCHOL reg2, reg3 IX rrrrr{111111(00000|wwwww|{011011(00100
SCH1L reg2, reg3 IX |rrrrr{111111/00000|wwwww|{011011|00110
SBF ccce, regl, reg2, reg3 XI rrrrr|111111/RRRRR|wwwww|{011100(ccccOf|cccc = 1101
SATSUB regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|011100({11010
ADF ccce, regl, reg2, reg3 XI rrrrr|{111111/RRRRR|wwwww|{011101|ccccOfcccc = 1101
SATADD regl, reg2, reg3 Xl rrrrr{111111/RRRRR{wwwww|011101({11010
MAC regl, reg2, reg3, reg4 XI rrrrr{111111/RRRRR|jwwww0[{0112110(mmmmO
MACU regl, reg2, reg3, reg4 Xl rrrrr{111111/RRRRR{wwwwO(011111{mmmmO
RO1USO0001EJ0100 Rev.1.00 Page 427 of 473

Oct 17, 2012

V850E2M

APPENDIX B INSTRUCTION OPCODE MAP

Table B-2. Basic Instruction Opcodes (48-bit Instructions)

Mnemonic Operand Format opcode

1511 | 10 5 4 0 (3127 |26 21| 20 16 | 47 43 | 42 37 | 36 32
JR disp32 Vi 00000(010111|00000|ddddd|dddddd{ddddo|DDDDD|DDDDDDIDDDDD
JARL disp32, regl Vi 00000|010111RRRRR|ddddd|{dddddd|{ddddOo|DDDDD|DDDDDD|DDDDD
MOV imm32, regl Vi OOOOO|110001|RRRRRjiFiid|ji i i afinnagfrrnrrproeoennnrnoninl
JMP disp32 [regl] Vi 00000110111 RRRRR|ddddd|dddddd{ddddo|DDDDD|DDDDDDIDDDDD
PREPARE | list12, imm5, sp/imm Xl [000O0O|1121210i|iianiL|LLLLL{LLLLLL|FRe=012(0 R R R0 ntntl
LD.B disp23[reg1l], reg3 XIV |00000(111100|RRRRRRlwwwww|/dddddd{d0101|DDDDD|DDDDDDIDDDDD
LD.H disp23[reg1], reg3 XIV |[00000{111100|RRRRRRlwwwww|dddddd|{00111|DDDDDIDDDDDD|DDDDD
LD.W disp23[regl], reg3 XIV |00000(111100|RRRRRRlwwwww|/dddddd{01001|DDDDD|DDDDDDIDDDDD
ST.B reg3, disp23[regl] XIV |[00000{111100|RRRRRRlwwwww|dddddd|d1101|DDDDDIDDDDDD|DDDDD
ST.W reg3, disp23[regl] XIV |00000(111100|RRRRRRlwwwww|dddddd{011121|DDDDD|DDDDDDIDDDDD
LD.BU disp23[regl], reg3 XIV |00000(111101|RRRRRRlwwwww|dddddd{d0101|DDDDD|DDDDDDIDDDDD
LD.HU disp23[reg1], reg3 XIV |00000(111101|RRRRRRlwwwww|dddddd{001121|DDDDD|DDDDDDIDDDDD
ST.H reg3, disp23[regl] XIV |00000(111101|RRRRRRlwwwww|/dddddd{01101|DDDDD|DDDDDDIDDDDD

Note ff=01, 10

Table B-3. Basic Instruction Opcode Map (64-bit Instruction)

Mnemonic Operand Format opcode Remark
15 11 10 5 4 0 31 27 | 26 21 | 20 16
PREPARE listl2, imm5, sp/imm X1 00OOOf111210d|iidmiLfLLLLL{LLLLLL|1I1012
a7 32 |63 48

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 428 of 473

V850E2M

APPENDIX B

INSTRUCTION OPCODE MAP

B.2 Floating-point Instruction Opcode Map

The following is an opcode map for floating-point instruction codes.

Table B-4. Floating-point Instruction Opcodes (1/2)

Mnemonic Operand Format opcode Remark
15 11| 10 5 | 4 0 |31 27| 26 21 |20 16
ABSF.D reg2, reg3 Double precision|rrrr0{111111|{00000|wwww0|{100010|11000
ABSF.S reg2, reg3 Single precision |rrrrr{111111|/00000|wwwww|{100010|{01000
ADDF.D regl, reg2, reg3 Double precision|rrrrO{111111|RRRRO|wwww0|100011({10000
ADDF.S regl, reg2, reg3 Single precision |rrrrr|{111111|RRRRR{wwwww|{100011|{00000
CEILF.DL reg2, reg3 Double precision|rrrr0{111111|{00010|wwww0|{100010|{10100
CEILF.DUL reg2, reg3 Double precision|rrrr0{1111211{10010|wwww0|{100010(10100
CEILF.DUW reg2, reg3 Double precision|rrrr0{111111{10010|wwwww|100010(10000
CEILF.DW reg2, reg3 Double precision|rrrr0{111111{00010|wwwww|100010({10000
CEILF.SL reg2, reg3 Single precision |rrrrr|{111111(00010|wwww0|{100010{00100
CEILF.SUL reg2, reg3 Single precision |rrrrr{111111(10010|wwww0{100010|{00100
CEILF.SUW reg2, reg3 Single precision |rrrrr|{111111(10010|wwwww|{100010|{00000
CEILF.SW reg2, reg3 Single precision |rrrrr{111111|(00010|wwwww|{100010|{00000
CMOVF.D cc, regl, reg2, reg3 | Double precision| rrrr0|111111|RRRRO[wwwwO|100000 |1FfFFO|wwww = 0000
CMOVEF.S cc, regl, reg2, reg3 |Single precision |rrrrr|111111(RRRRR{wwwww|100000|0FfFFO|wwwww = 00000
CMPF.D cond, reg2, regl, cc#3 | Double precision| rrrrO|111111 {RRRRR|OFFFF|100001|1FfFfO
CMPF.S cond, regl, reg2, cc#3 | Single precision |rrrrr|111111{RRRRR|OFFFF|{100001|0FffO
CVTF.DL reg2, reg3 Double precision|rrrr0{111111|{00100|wwww0|{100010|10100
CVTF.DS reg2, reg3 Double precision|rrrr0{111111{00011|wwwww|100010(10010
CVTF.DUL reg2, reg3 Double precision|rrrr0{111111{10100|wwww0|100010(10100
CVTF.DUW reg2, reg3 Double precision|rrrr0{111111{10100|wwwww|100010({10000
CVTF.DW reg2, reg3 Double precision|rrrr0{111111|{00100|wwwww|100010|{10000
CVTF.LD reg2, reg3 Double precision|rrrr0{111111{00001|wwww0|100010(10010
CVTF.LS reg2, reg3 Single precision |rrrr0{111111|/00001|wwwww|{100010|{00010
CVTF.SD reg2, reg3 Double precision|rrrrr{111111{00010|wwww0|100010(10010
CVTF.SL reg2, reg3 Single precision |rrrrr|111111({00100|{wwww0|{100010{00100
CVTF.SUL reg2, reg3 Single precision |rrrrr{111111(10100|wwww0{100010|{00100
CVTF.SUW reg2, reg3 Single precision |rrrrr{111111(10100|wwwww|{100010|{00000
CVTF.SW reg2, reg3 Single precision |rrrrr{111111|/00100|wwwww|{100010|{00000
CVTF.ULD reg2, reg3 Double precision|rrrr0{111111|{10001|wwww0|{100010|10010
CVTF.ULS reg2, reg3 Single precision |rrrr0{111111(10001|wwwww|{100010|{00010
CVTF.UWD reg2, reg3 Double precision|rrrrr{111111{10000|wwww0|100010(10010
CVTF.UWS reg2, reg3 Single precision |rrrrr{111111(10000|wwwww|{100010|{00010
CVTF.WD reg2, reg3 Double precision|rrrrr{111111|{00000|wwww0|{100010|10010
CVTF.WS reg2, reg3 Single precision |rrrrr{111111|/00000|wwwww|{100010|{00010
DIVF.D regl, reg2, reg3 Double precision|rrrrO{111111|RRRRO|wwww0|100011(11110
DIVF.S regl, reg2, reg3 Single precision |rrrrr{111111|RRRRR{wwwww|{100011|{01110

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 429 of 473

V850E2M

APPENDIX B

INSTRUCTION OPCODE MAP

Table B-4. Floating-point Instruction Opcodes (2/2)

Mnemonic Operand Format opcode Remark

15 11| 10 5 | 4 0 |31 27| 26 21 |20 16
FLOORF.DL reg2, reg3 Double precision|rrrr0{111111{00011|wwww0|100010(10100
FLOORF.DUL |reg2, reg3 Double precision|rrrr0{111111{10011|wwww0|100010(10100
FLOORF.DUW |reg2, reg3 Double precision| rrrr0|{111111|10011|wwwww|100010|10000
FLOORF.DW reg2, reg3 Double precision|rrrr0{111111{00011|wwwww|100010(10000
FLOORF.SL reg2, reg3 Single precision |rrrrr|111111|00011|wwww0{100010|{00100
FLOORF.SUL |reg2, reg3 Single precision |rrrrr|111111(10011|wwww0{100010|{00100
FLOORF.SUW |reg2, reg3 Single precision |[rrrrr|111111(10011|wwwww|{100010{00000
FLOORF.SW reg2, reg3 Single precision |rrrrr|111111|00011|wwwww|{100010|{00000
MADDF.S regl, reg2, reg3, reg4 | Single precision [rrrrr|(111111{RRRRR{wwwww|101WOO|WWWWO
MAXF.D regl, reg2, reg3 Double precision|rrrrO{111111|RRRRO|wwww0|100011(11000
MAXF.S regl, reg2, reg3 Single precision |[rrrrr|{111111 | RRRRR|{wwwww|100011{01000
MINF.D regl, reg2, reg3 Double precision|rrrrO{111111|RRRRO|wwww0|100011(11010
MINF.S regl, reg2, reg3 Single precision |rrrrr|111111|RRRRR|{wwwww|{100011|{01010
MSUBF.S regl, reg2, reg3, reg4 | Single precision [rrrrr|111111{RRRRR{wwwww|101WO1|WWWWO
MULF.D regl, reg2, reg3 Double precision| rrrr0|111111|RRRRO|wwww0|{100011|10100
MULF.S regl, reg2, reg3 Single precision |rrrrr|111111|RRRRR{wwwww|{100011|{00100
NEGF.D reg2, reg3 Double precision|rrrr0{111111{00001|wwww0|100010(11000
NEGF.S reg2, reg3 Single precision |rrrrr|111111|00001|wwwww|{100010|{01000
NMADDEF.S regl, reg2, reg3, reg4 | Single precision | rrrrr|111111|RRRRR|{wwwww|101W10|WWWWO
NMSUBF.S regl, reg2, reg3, reg4 | Single precision [rrrrr|{111111{RRRRR{wwwww|101W11|WWWWO
RECIPF.D reg2, reg3 Double precision|rrrr0{111111{00001|wwww0|100010(11110
RECIPF.S reg2, reg3 Single precision |rrrrr|111111|00001 |wwwww|{100010|{01110
RSQRTF.D reg2, reg3 Double precision|rrrr0{111111{00010|wwww0|100010(11110
RSQRTF.S reg2, reg3 Single precision |rrrrr|111111|/00010|wwwww|{100010|{01110
SQRTF.D reg2, reg3 Double precision|rrrr0{111111{00000|wwww0|100010(11110
SQRTF.S reg2, reg3 Single precision |rrrrr|111111|(00000|wwwww|{100010|{01110
SUBF.D regl, reg2, reg3 Double precision| rrrr0|111111|RRRRO|wwww0|{100011|10010
SUBF.S regl, reg2, reg3 Single precision |rrrrr|111111|RRRRR|{wwwww|{100011|{00010
TRFSR cc#3 Single precision [00000(111111{00000/00000|100000|0FFffO
TRNCF.DL reg2, reg3 Double precision|rrrr0{111111{00001|wwww0|100010(10100
TRNCF.DUL reg2, reg3 Double precision| rrrr0|{111111|10001|wwww0|{100010|10100
TRNCF.DUW reg2, reg3 Double precision|rrrr0{111111{10001|wwwww|100010(10000
TRNCF.DW reg2, reg3 Double precision|rrrr0{111111{00001|wwwww|100010(10000
TRNCF.SL reg2, reg3 Single precision |rrrrr|111111|(00001|wwww0{100010|{00100
TRNCF.SUL reg2, reg3 Single precision |rrrrr|111111({10001|wwww0O{100010{00100
TRNCF.SUW reg2, reg3 Single precision |rrrrr|111111(10001|wwwww|{100010|{00000
TRNCF.SW reg2, reg3 Single precision |rrrrr|111111(00001|wwwww|{100010|{00000

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 430 of 473

V850E2M APPENDIX C PIPELINES

APPENDIX C PIPELINES

The V850E2M CPU, which is based on RISC architecture, uses seven-stage pipeline control to execute almost all
types of instructions in just one clock cycle. The instruction execution sequence normally includes seven stages, from
instruction fetch (IF) to writeback (WB). The execution time per stage differs depending on factors such as the type of
instruction and the type of memory to be accessed. As an example of pipeline operations, Figure C-1 shows processing
by the CPU when 12 typical instructions are executed consecutively.

RO1USO001EJ0100 Rev.1.00 Page 431 of 473
Oct 17, 2012

V850E2M

APPENDIX C PIPELINES

Figure C-1. Example of Consecutive Execution of 12 Typical Instructions

<l> | <2> | <3> | <4>

<5> | <6>

<7>

<8>

<0> |<10>|<11>{<12>

Time flow

Internal system clock I|||||||I|I|I|I|I|I|I|I|I

Processing performed

simultaneously by CPU ! ! ! i i i
Instruction 1 ID | EX | AT | DF W8 |
IF | DP : : : : : :

Instruction 2 ID EX |WB | i i i i i

1 1 1 1 1

Instruction 3 ID | EX | AT | DF (wB| | | | | |
. IF | DP : : : : :

Instruction 4c....... ID | EX |WB i | | | |
INSEIUCHON 5 +evevoeevneereeeneenne. ID | EX | AT | DF wB| | ! ! !
. IF | DP ; ; ; ;

INStruction 6cccccveeieeienns ID EX \wWB ! ! ! !
INSEFUCHON 7 vvvovooeeeeveereeeeereeeesesenenns D | EX | AT | DF (wB| ! i i
, IF | DP i i !

INSLrUCLION 8 wevvveeeeiiieeee e ID EX |WB i i i
INSHUCHON 9 ..o ID | EX | AT | OF |wg| | |
. IF | DP | |

INSEIUCHON 10 ..t ID | EX |WB | |
INSEIUCHION 11 wevvveneeeiieerieeee e it ee e e et e e eeeeees i 1D EX AT DF |WB i
: | IF | DP i

Y INSIFUCHION 12 «eeveeeeeerriiieeeeeeeiiie e ee et eeeeaaaans 4: ID EX |WB i i i
: : | | | | | i i :

{ Endot | Endof | Endof | Endof | Endof | Endof ! Endof | Endof !

i Instnéctlon 1 instruction { instructiong instructions|instructioninstructions instruction instruction !

! i P

| ! !

IF (instruction fetch):
DP (dispatch):

ID (instruction decode):

EX (execution using ALU, multiplier, or barrel shifter):
AT (address transfer):

DF (data fetch):

WB (writeback):

o
-

4 | land6 | 3and8 | 5and10} 7and12i 9

Execution of instructions per clock cycle

Fetches instruction and increments fetch pointer.
Checks instruction type and dependencies, then sends

to corresponding pipeline.

Decodes instruction, generates immediate data, and

reads registers.
Executes decoded instructions.

Transfers address to target memory.

Reads data from target memory.
Writes execution result to register.

<1>to <12> are CPU states. For typical instructions, two instructions can be executed (EX) in parallel per clock cycle.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 432 of 473

V850E2M APPENDIX C PIPELINES

C.1 Features

Figure C-2 shows the pipeline configuration of the CPU assumed by the V850E2M CPU. The CPU has the following
three independent pipelines, detects dependency relationship of instructions, and can issue up to two instructions at the
same time.

e Instruction fetch pipeline (Fpipe)
e Instruction execution pipeline left (Lpipe)

e Instruction execution pipeline right (Rpipe)

Figure C-2. Pipeline Configuration

Instruction fetch pipeline (Fpipe)

Instruction bus -

Instruction fetch unit

/

Instruction buffer

/

Dispatch unit

Instruction execution Instruction execution
pipeline left (Lpipe) ' v pipeline right (Rpipe)
Instruction decode unit L Instruction decode unit R
A ¢
Register file

A J ¢

, , v v v
Data bus < Ve ynit ALU unit MUL unit ALU unit BSFT unit
Y
Writeback unit [|
RO1US0001EJ0100 Rev.1.00 Page 433 of 473

Oct 17, 2012

V850E2M

APPENDIX C PIPELINES

(1) Instruction fetch pipeline (Fpipe)

)

®)

(4)

(5)

This pipeline includes the following three units.

(@)

(b)

(©

Instruction fetch unit
Up to eight instructions (when each instruction is 16 bits) can be fetched from a 128-bit fetch bus (iLB) during

one cycle.

Dispatch unit
This unit includes a 128-bit x 3-stage instruction queue, which is used to detect instruction dependencies, and

which enables up to two instructions to be efficiently issued at once to the instruction execution pipeline.

Instruction buffer
Fetched instructions are stored by the instruction fetch unit.

Instruction execution pipeline left (Lpipe)

This pipeline includes the following three units.

(@)

(b)

©

Instruction decode unit L
This unit decodes instructions issued from the dispatch unit.

ALU unit
This unit issues instructions that perform integer operations and/or logic operations.

MEM unit
This unit executes instructions (such as load and store instructions) that perform memory access.

Instruction execution pipeline right (Rpipe)

This pipeline includes the following three units.

@)

(b)

(©

Instruction decode unit R
This unit decodes instructions issued from the dispatch unit.

ALU unit
This unit issues instructions that perform integer operations and/or logic operations.

BSFT unit
This unit performs data manipulation instructions.

MUL unit
This unit executes instructions that perform integer multiplications.

Writeback unit
This unit controls writeback to register files.

RO1USO001EJ0100 Rev.1.00 Page 434 of 473
Oct 17, 2012

V850E2M

APPENDIX C PIPELINES

C.2 Clock Requirements

C.2.1 Clock requirements for basic instructions
Table C-1 lists clock requirements for basic instructions.

combination of instructions. For details, see C.3 Pipeline for Basic Instructions.

Table C-1. Clock Requirements for Basic Instructions (1/4)

The clock requirements may differ according to the

Instruction Type Mnemonic Operand Byte No. of Execution Clocks Parallel
Count | issue | repeat | latency | Execution™®*
Load instructions | LD.B disp16 [regl] , reg2 4 1 1 3hote2 Yes (L)
LD.B disp23 [regl] , reg3 6 1 1 3hote2
LD.BU disp16 [regl] , reg2 4 1 1 3hote2 Yes (L)
LD.BU disp23 [regl] , reg3 6 1 1 ghote2
LD.H disp16 [regl] , reg2 4 1 1 3hote2 Yes (L)
LD.H disp23 [regl] , reg3 6 1 1 3hote2
LD.HU disp16 [regl] , reg2 4 1 1 3hote2 Yes (L)
LD.HU disp23 [regl] , reg3 6 1 1 ghote2
LD.W disp16 [regl] , reg2 4 1 1 3hote2 Yes (L)
LD.W disp23 [regl] , reg3 6 1 1 3hote2
SLD.B disp7 [ep] , reg2 2 1 1 3hote2 Yes (L)
SLD.BU disp4 [ep] , reg2 2 1 1 ghote2 Yes (L)
SLD.H disp8 [ep] , reg2 2 1 1 3hote2 Yes (L)
SLD.HU disp5 [ep] , reg2 2 1 1 3hoe2 Yes (L)
SLD.W disp8 [ep] , reg2 2 1 1 3hote2 Yes (L)
Store instructions | ST.B reg2, displ16 [regl] 4 1 1 1 Yes (L)
ST.B reg3, disp23 [regl] 6 1 1 1
ST.H reg2, displ6 [regl] 4 1 1 1 Yes (L)
ST.H reg3, disp23 [regl] 6 1 1 1
ST.W reg2, displ6 [regl] 4 1 1 1 Yes (L)
ST.W reg3, disp23 [regl] 6 1 1 1
SST.B reg2, disp7 [ep] 2 1 1 1 Yes (L)
SST.H reg2, disp8 [ep] 2 1 1 1 Yes (L)
SST.W reg2, disp8 [ep] 2 1 1 1 Yes (L)
Multiply MUL regl, reg2, reg3 4 1 1 3 Yes (L)
instructions MUL imm9, reg2, reg3 4 1 1 3 Yes (L)
MULH regl, reg2 2 1 1 3 Yes (L)
MULH immb5, reg2 2 1 1 3 Yes (L)
MULHI imm16, regl, reg2 4 1 1 3 Yes (L)
MULU regl, reg2, reg3 4 1 1 3 Yes (L)
MULU imm9, reg2, reg3 4 1 1 3 Yes (L)
Multiply-accumulate | MAC regl, reg2, reg3, reg4 4 1 1 3
instructions MACU regl, reg2, reg3, reg4 4 1 1 3

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 435 of 473

V850E2M

APPENDIX C PIPELINES

Table C-1. Clock Requirements for Basic Instructions (2/4)

Instruction Type Mnemonic Operand Byte No. of Execution Clocks Parallel
Count | issue repeat | latency | Execution“”®*
Arithmetic ADD regl, reg2 2 1 1 1 Yes (R/L)
operation ADD immb5, reg2 2 1 1 1 Yes (R/L)
instructions ADDI imm16, reg1, reg2 4 1 1 1 Yes (R/L)
CMP regl, reg2 2 1 1 1 Yes (R/L)
CMP immb5, reg2 2 1 1 1 Yes (R/L)
MOV regl, reg2 2 1 1 1 Yes (R/L)
MOV immb5, reg2 2 1 1 1 Yes (R/L)
MOV imm32, regl 6 1 1 1 No
Arithmetic MOVEA imm16, regl, reg2 4 1 1 1 Yes (R/L)
operation MOVHI imm16, regl, reg2 4 1 1 1 Yes (R/L)
instructions SuB regl, reg2 2 1 1 1 Yes (R/L)
SUBR regl, reg2 2 1 1 1 Yes (R/L)
Conditional operation | ADF cccce, regl, reg2, reg3 4 1 1 1 No
instructions SBF cccc, regl, reg2, reg3 4 1 1 1 No
Saturated SATADD regl, reg2 2 1 1 1 Yes (R/L)
operation SATADD immb5, reg2 2 1 1 1 Yes (R/L)
instructions SATADD regl, reg2, reg3 4 1 1 1 Yes (R/L)
SATSUB regl, reg2 2 1 1 1 Yes (R/L)
SATSUB regl, reg2, reg3 4 1 1 1 Yes (R/L)
SATSUBI imm16, regl, reg2 4 1 1 1 Yes (R/L)
SATSUBR regl, reg2 2 1 1 1 Yes (R/L)
Logic operation AND regl, reg2 2 1 1 1 Yes (R/L)
instructions ANDI imm16, regl, reg2 4 1 1 1 Yes (R/L)
NOT regl, reg2 2 1 1 1 Yes (R/L)
OR regl, reg2 2 1 1 1 Yes (R/L)
ORI imm16, regl, reg2 4 1 1 1 Yes (R/L)
TST regl, reg2 2 1 1 1 Yes (R/L)
XOR regl, reg2 2 1 1 1 Yes (R/L)
XORI imm16, regl, reg2 4 1 1 1 Yes (R/L)
Data BSH reg2, reg3 4 1 1 1 Yes (R)
manipulation BSW reg2, reg3 4 1 1 1 Yes (R)
instructions CMOoV cccc, regl, reg2, reg3 4 1 1 1 Yes (R)
CcMoV ccce, immb, reg2, reg3 4 1 1 1 Yes (R)
HSH reg2, reg3 4 1 1 1 Yes (R)
HSW reg2, reg3 4 1 1 1 Yes (R)
SAR regl, reg2 4 1 1 1 Yes (R)
SAR imm5, reg2 2 1 1 1 Yes (R)
SAR regl, reg2, reg3 4 1 1 1 Yes (R)
SASF cccce, reg2 4 1 1 1 Yes (R)
SETF ccce, reg2 4 1 1 1 Yes (R)
SHL regl, reg2 4 1 1 1 Yes (R)
SHL immb5, reg2 2 1 1 1 Yes (R)
SHL regl, reg2, reg3 4 1 1 1 Yes (R)

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 436 of 473

V850E2M

APPENDIX C PIPELINES

Table C-1. Clock Requirements for Basic Instructions (3/4)

Instruction Type Mnemonic Operand Byte No. of Execution Clocks Parallel
Count | issue | repeat | latency | Execution“***

Data SHR regl, reg2 4 1 1 1 Yes (R)
manipulation SHR imm5, reg2 2 1 1 1 Yes (R)
instructions SHR regl, reg2, reg3 4 1 1 1 Yes (R)
Data SXB regl 2 1 1 1 No
manipulation SXH regl 2 1 1 1 No
instructions ZXB regl 2 1 1 1 No

ZXH regl 2 1 1 1 No
Bit search SCHOL reg2, reg3 4 1 1 1 Yes (R)
instructions SCHOR reg2, reg3 4 1 1 1 Yes (R)

SCH1L reg2, reg3 4 1 1 1 Yes (R)

SCH1R reg2, reg3 4 1 1 1 Yes (R)
Divide DIv regl, reg2, reg3 4 36 36 36 No
instructions DIVH regl, reg2 2 36 36 36 No

DIVH regl, reg2, reg3 4 36 36 36 No

DIVHU regl, reg2, reg3 4 35 35 35 No

DIVU regl, reg2, reg3 4 35 35 35 No
High-speed DIVQ regl, reg2, reg3 4 N+5Ve3 | N+5Noe3 | N+sNoeS | Ng
divide DIVQU regl, reg2, reg3 4 N+4"3 | N+4"3 | N+4N"2 | No
instructions
Branch Bcond disp9 (when condition is met) 2 grere s ghote grere s Yes (RIL)
instructions disp9 (when condition is not | 2 1 1 1 Yes (R/L)

met)

JARL disp22, reg2 4 4 4 4 Yes (R/L)

JARL disp32, regl 6 4 4 4 No

JMP [regl] 2 4 4 4 Yes (R/L)

JMP disp32 [regl] 6 5 5 5 No

JR disp22 4 4 4 4 Yes (R/L)

JR disp32 6 4 4 4 No
Bit manipulation | CLR1 bit#3, disp16 [regl] 4 ghores ghores ghores No
instructions CLR1 reg2, [regl] 4 ghete® ghotes ghetes No

NOT1 bit#3, disp16 [regl] 4 ghores ghores ghores No

NOT1 reg2, [regl] 4 geres gores geres No

SET1 bit#3, disp16 [regl] 4 gheres ghetes gheres No

SET1 reg2, [regl] 4 geres geres geres No

TST1 bit#3, disp16 [regl] 4 ghetes ghetes ghetes No

TST1 reg2, [regl] 4 gheres ghores gheres No
Special CALLT imm6 2 10 10 10 No
instructions CAXI [regl], reg2, reg3 4 gheres ghetes gheres No

CTRET - 4 7 7 7 No

DI - 4 2 2 2 No

DISPOSE | imms, list12 4 n+2Ne 0 | papNoted | pypheted | Ng

DISPOSE | imm5, list12, [regl] 4 n+6M®® | n+6™ ¢ | n+6NE | No

El - 4 2 2 2 No

EIRET - 4 7 7 7 No

FERET - 4 7 7 7 No

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 437 of 473

V850E2M APPENDIX C PIPELINES

Table C-1. Clock Requirements for Basic Instructions (4/4)

Instruction Type Mnemonic Operand Byte No. of Execution Clocks Parallel
Count | issue repeat | latency | Execution“®*
Special FETRAP vector 2 7 7 7 No
instruction HALT - 4 1 1 1 No
LDSR reg2, reglD (BSEL register, 4 4 4 4 No
MCC register)
reg2, reglD (MPU group (except |4 1 1 1 Yes (R)
for MCC register))
reg2, reglD (FPU group, user 4 3 3 3 No
group)
reg2, reglD (other defined bank) |4 2 2 2 No
NOP - 2 1 1 1 No
PREPARE | list12, imm5 4 n+2N 0 | naNel | py Mol | Ng
PREPARE | list12, imm5, sp 4 n+2N0ee | naNoee | ppphoed | Ng
PREPARE | list12, imm5, imm16 6 N2V | n42Ne | ngpNee i NG
PREPARE | list12, imm5, imm16<<16 6 n+2Ne 0 | n4Nes | py Mol | Ng
PREPARE | list12, imm5, imm32 8 n+2N 0 | naN8 | py Mol | Ng
RETI - 4 7 7 7 No
RIE - 4 7 7 7 No
STSR reglD, reg2 4 1 1 1 No
SWITCH regl 2 8 8 8 No
SYNCE - 2 Undefined | Undefined | Undefined | No
SYNCM - 2 Undefined | Undefined | Undefined | No
SYNCP - 2 Undefined | Undefined | Undefined | No
SYSCALL vector8 4 10 10 10 No
TRAP vectorb 4 7 7 7 No
Undefined instruction code (operates as RIE instruction) 4 7 7 7 No

Notes 1. “Yes” indicates that the instruction can be issued in parallel with other instructions, “No” indicates that the
instruction cannot be issued in parallel with other instructions (the instruction must be issued individually). The
pipeline used for parallel issuance (L: Lpipe, R: Rpipe, R/L: Rpipe or Lpipe) is shown in parentheses.
Instructions that use the same pipeline cannot be issued in parallel. For details, refer to C.3 Pipeline for Basic
Instructions.

2. When there are no wait states (3 + number of read access wait states)

3. N = (Number of valid bits of dividend) — (Number of valid bits of divisor)
However, if N is negative, it is assumed that N = 0.

4. Four clocks even when an instruction that rewrites the PSW register content is placed immediately before. A
parallel issuance is also possible even when the instruction immediately before rewrites the PSW register.

5. When there are no wait states (4 + number of read access wait states)

6. nis the total number of registers specified in list x (depends on the number of wait states. When there are no
wait states, n matches with the number of registers specified in list x).
Supplement: 4 clocks when n =0 or 1 (8 clocks for DISPOSE instruction with JMP).

RO1US0001EJ0100 Rev.1.00 Page 438 of 473

Oct 17, 2012

V850E2M APPENDIX C PIPELINES

Remarks 1. Description of operands

Symbol Description

regl General-purpose register (used as source register)

reg2 General-purpose register (mainly used as the destination register, but used as a
source register for some instructions)

reg3 General-purpose register (mainly stores remainders from division results and the
higher 32 bits from multiplication results)

bit#3 3-bit data for specifying bit number

imm x x bit immediate data

disp x x bit displacement data

regiD System register number

vector x Data specifying vector (x indicates the bit size)

cond Condition name (see Table 5-4 Condition Codes in PART 2).

ccee 4-bit data indicating condition code (see Table 5-4 Condition Codes in PART 2)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Register list

2. Description of execution clocks

Symbol Description
issue When next instruction is executed immediately after previous instruction
repeat When same instruction is executed again immediately after its first execution
latency When execution result of the current instruction is used by the immediate next
instruction
RO1USO001EJO100 Rev.1.00 Page 439 of 473

Oct 17, 2012

V850E2M

APPENDIX C PIPELINES

C.2.2 Clock requirements for floating-point instructions

Table C-2 lists the number of execution clocks for single-precision floating-point instructions, and Table C-3 lists the
number of execution clocks for double-precision floating-point instructions. The clock requirements vary depending on the
combination of instructions.

Table C-2. Clock Requirements for Single-precision Floating-point Instructions (1/2)

Mnemonic Operand Byte No. of Execution Clocks Parallel
Imprecise Precise Execution"
issue | repeat |latency | issue repeat | latency
ABSF.S reg2, reg3 4 1 1 4 4 4 4 No
ADDF.S regl, reg2, reg3 4 1 1 4 4 4 4 No
CEILF.SL reg2, reg3 4 1 1 4 4 4 4 No
CEILF.SUL reg2, reg3 4 1 1 4 4 4 4 No
CEILF.SUW reg2, reg3 4 1 1 4 4 4 4 No
CEILF.SW reg2, reg3 4 1 1 4 4 4 4 No
CMOVF.S cc, regl, reg2, reg3 4 1 1 4 4 4 4 No
CMPF.S cond, regl, reg2, cc 4 1 1 4 4 4 4 No
CVTF.LS reg2, reg3 4 1 1 4 4 4 4 No
CVTF.SL reg2, reg3 4 1 1 4 4 4 4 No
CVTF.SUL reg2, reg3 4 1 1 4 4 4 4 No
CVTF.SUW reg2, reg3 4 1 1 4 4 4 4 No
CVTF.SW reg2, reg3 4 1 1 4 4 4 4 No
CVTF.ULS reg2, reg3 4 1 1 4 4 4 4 No
CVTF.UWS reg2, reg3 4 1 1 4 4 4 4 No
CVTF.WS reg2, reg3 4 1 1 4 4 4 4 No
DIVF.S regl, reg2, reg3 4 14 14 17 17 17 17 No
FLOORF.SL reg2, reg3 4 1 1 4 4 4 4 No
FLOORF.SUL reg2, reg3 4 1 1 4 4 4 4 No
FLOORF.SUW | reg2, reg3 4 1 1 4 4 4 4 No
FLOORF.SW reg2, reg3 4 1 1 4 4 4 4 No
MADDF.S regl, reg2, reg3, reg4 4 2 2 5 5 5 5 No
MAXF.S regl, reg2, reg3 4 1 1 4 4 4 4 No
MINF.S regl, reg2, reg3 4 1 1 4 4 4 4 No
MSUBF.S regl, reg2, reg3, regd 4 2 2 5 5 5 5 No
MULF.S regl, reg2, reg3 4 1 1 4 4 4 4 No
NEGF.S reg2, reg3 4 1 1 4 4 4 4 No
NMADDF.S regl, reg2, reg3, reg4 4 2 2 5 5 5 5 No
NMSUBF.S regl, reg2, reg3, reg4 4 2 2 5 5 5 5 No
RECIPF.S reg2, reg3 4 10 10 13 13 13 13 No
RSQRTF.S reg2, reg3 4 13 13 16 16 16 16 No
SQRTF.S reg2, reg3 4 14 14 17 17 17 17 No
SUBF.S regl, reg2, reg3 4 1 1 4 4 4 4 No

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 440 of 473

V850E2M

APPENDIX C PIPELINES

Table C-2. Clock Requirements for Single-precision Floating-point Instructions (2/2)
Mnemonic Operand Byte No. of Execution Clocks Parallel
Imprecise Precise Execution"”"
issue | repeat | latency | issue repeat | latency
TRFSR cc 4 1 1 1 1 1 1 Yes
TRNCF.SL reg2, reg3 4 1 1 4 4 4 4 No
TRNCF.SUL reg2, reg3 4 1 1 4 4 4 4 No
TRNCF.SUW | reg2, reg3 4 1 1 4 4 4 4 No
TRNCF.SW reg2, reg3 4 1 1 4 4 4 4 No
Table C-3. Clock Requirements for Double-precision Floating-point Instructions (1/2)
Mnemonic Operand Byte No. of Execution Clocks Parallel
Imprecise Precise Execution"*"®
issue | repeat |latency | issue repeat | latency
ABSF.D reg2, reg3 4 1 1 4 4 4 4 No
ADDF.D regl, reg2, reg3 4 1 1 4 4 4 4 No
CEILF.DL reg2, reg3 4 1 1 4 4 4 4 No
CEILF.DUL reg2, reg3 4 1 1 4 4 4 4 No
CEILF.DUW reg2, reg3 4 1 1 4 4 4 4 No
CEILF.DW reg2, reg3 4 1 1 4 4 4 4 No
CMOVF.D cc, regl, reg2, reg3 4 1 1 4 4 4 4 No
CMPF.D cond, regl, reg2, cc 4 1 1 4 4 4 4 No
CVTF.DL reg2, reg3 4 1 1 4 4 4 4 No
CVTF.DS reg2, reg3 4 1 1 4 4 4 4 No
CVTF.DUL reg2, reg3 4 1 1 4 4 4 4 No
CVTF.DUW reg2, reg3 4 1 1 4 4 4 4 No
CVTF.DW reg2, reg3 4 1 1 4 4 4 4 No
CVTF.LD reg2, reg3 4 1 1 4 4 4 4 No
CVTF.SD reg2, reg3 4 1 1 4 4 4 4 No
CVTF.ULD reg2, reg3 4 1 1 4 4 4 4 No
CVTF.UWD reg2, reg3 4 1 1 4 4 4 4 No
CVTF.WD reg2, reg3 4 1 1 4 4 4 4 No
DIVF.D regl, reg2, reg3 4 29 29 32 32 32 32 No
FLOORF.DL reg2, reg3 4 1 1 4 4 4 4 No
FLOORF.DUL reg2, reg3 4 1 1 4 4 4 4 No
FLOORF.DUW | reg2, reg3 4 1 1 4 4 4 4 No
FLOORF.DW reg2, reg3 4 1 1 4 4 4 4 No
MAXF.D regl, reg2, reg3 4 1 1 4 4 4 4 No
MINF.D regl, reg2, reg3 4 1 1 4 4 4 4 No
MULF.D regl, reg2, reg3 4 2 2 5 5 5 5 No
NEGF.D reg2, reg3 4 1 1 4 4 4 4 No
RECIPF.D reg2, reg3 4 22 22 25 25 25 25 No

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 441 of 473

V850E2M APPENDIX C PIPELINES
Table C-3. Clock Requirements for Double-precision Floating-point Instructions (2/2)
Mnemonic Operand Byte No. of Execution Clocks Parallel
Imprecise Precise Execution"”"
issue | repeat | latency | issue repeat | latency
RSQRTF.D reg2, reg3 4 30 30 33 33 33 33 No
SQRTF.D reg2, reg3 4 29 29 32 32 32 32 No
SUBF.D regl, reg2, reg3 4 1 1 4 4 4 4 No
TRNCF.DL reg2, reg3 4 1 1 4 4 4 4 No
TRNCF.DUL reg2, reg3 4 1 1 4 4 4 4 No
TRNCF.DUW reg2, reg3 4 1 1 4 4 4 4 No
TRNCF.DW reg2, reg3 4 1 1 4 4 4 4 No

Note

“Yes” indicates that the instruction can be issued in parallel with other instructions, “No” indicates that the

instruction cannot be issued in parallel with other instructions (the instruction must be issued individually). The

pipeline used for parallel issuance (L: Lpipe, R: Rpipe, R/L: Rpipe or Lpipe) is shown in parentheses.

Instructions that use the same pipeline cannot be issued in parallel.

Remarks 1. Table C-2 and Table C-3 can be updated.

2. Convention of execution clocks

Symbol Description
issue When next instruction is executed immediately after previous instruction
repeat When same instruction is executed again immediately after its first execution
latency When execution result of the current instruction is used by the immediate next instruction

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 442 of 473

V850E2M APPENDIX C PIPELINES

C.3 Pipeline for Basic Instructions

C.3.1 Load instructions

Load instructions are executed by the instruction execution pipeline left (Lpipe) MEM unit.

[Target instructions] LD.B, LD.H, LD.W, LD.BU, LD.HU, SLD.B, SLD.BU, SLD.H, SLD.HU, and SLD.W

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8>

Load instruction IF DP ID EX AT DF |WB

Next instruction IF DP ID EX AT DF |WB
[Description] The pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. This figure shows

an operation where a load instruction is executed by Lpipe, and the next instruction is issued to
Lpipe. The instruction execution pipeline right (Rpipe) executes processing independently
when it has no dependency on the load instruction. However, if an instruction that uses the
execution result is placed immediately after the multiply instruction, a data wait period may be

generated.
Load instruction can be executed in parallel with another instruction.

C.3.2 Store instructions
Store instructions are executed by the instruction execution pipeline left (Lpipe) MEM unit.

[Target instructions] ST.B, ST.H, ST.W, SST.B, SST.H, and SST.W

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8>
Store instruction IF DP ID EX AT DF wB i
Next instruction IF DP ID EX AT DF WB
[Description] This pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. However, since
data cannot be written to registers, nothing is done at the WB stage.

This figure shows an operation where a store instruction is executed by Lpipe, and the next

instruction is issued to Lpipe. The instruction execution pipeline right (Rpipe) executes

processing independently when it has no dependency on

Store instruction can be executed in parallel with another instruction.

the store instruction.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 443 of 473

V850E2M

APPENDIX C PIPELINES

C.3.3 Multiply instructions

Multiply instructions are executed by the instruction execution pipeline left (Lpipe) MUL unit.

[Target instructions]

[Pipeline]

[Description]

MUL, MULH, MULHI, and MULU

(@) When the next instruction is not a multiply instruction (or a multiply-accumulate instruction)

<1> <2> <3> <4> <5> <6> <7> <8>
_ Multiply | =, DP ID EX1 EX2 DF |wB
instruction
Next instruction IF bP ID EX AT DF wB

(b) When the next instruction is a multiply instruction (or a multiply-accumulate instruction)

<1> <2> <3> <4> <5> <6> <7> <8>
_Multiply | DP ID EX1 | EX2 DF |WB
instruction 1
Multiply IF DP ID EX1 EX2 DF WB

instruction 2

The pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. The EX stage
requires two clocks, and EX1 and EX2 operate independently. Accordingly, even if the multiply
instruction (or the multiply-accumulate instruction) is repeated, the number of execution clocks
becomes one.

This figure shows an operation where a multiply instruction is executed by Lpipe, and the next
instruction is issued to Lpipe. The instruction execution pipeline right (Rpipe) executes
processing independently when it has no dependency on the multiply instruction. However, if
an instruction that uses the execution result is placed immediately after the multiply instruction,
a data wait period may be generated.

Multiply instruction can be executed in parallel with another instruction.

RO1USO001EJ0100 Rev.1.00 Page 444 of 473

Oct 17, 2012

V850E2M APPENDIX C PIPELINES

C.3.4 Multiply-accumulate instructions

Multiply-accumulate instructions are executed by the instruction execution pipeline left (Lpipe) MUL unit.

[Target instructions] MAC and MACU

[Pipeline] (@) When the next instruction is not a multiply instruction (or a multiply-accumulate instruction)
<1> <2> <3> <4> <5> <6> <7> <8>
Multiply-accumulate
instruction IF DP ID EX1 EX2 DF |wB
Next instruction IF DP ID EX AT DF WB

(b) When the next instruction is a multiply instruction (or a multiply-accumulate instruction)

<1> <2> <3> <4> <5> <6> <7> <8>
Multiply-accumulate
instruction IF DP ID EX1 EX2 DF |wWB
Multiply instruction IF DP ID EX1 EX2 DF |wB
[Description] The pipeline has seven stages: the IF, DP, ID, EX, AT, DF, and WB stages. The EX stage

requires two clocks, and EX1 and EX2 operate independently. Accordingly, even if the multiply
instruction (or the multiply-accumulate instruction) is repeated, the number of execution clocks
becomes one.

This figure shows an operation where a multiply instruction is executed by Lpipe, and the next
instruction is issued to Lpipe. The instruction execution pipeline right (Rpipe) executes
processing independently when it has no dependency on the multiply instruction. However, if
an instruction that uses the execution result is placed immediately after the multiply instruction,
a data wait period may be generated.

Multiply-accumulate instruction is issued individually.

C.3.5 Arithmetic operation instructions
Arithmetic operation instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU
unit.

[Target instructions] ADD, ADDI, CMP, MOV, MOVEA, MOVHI, SUB, and SUBR

[Pipeline] <1> <2> <3> <4> <5> <6>
Arithmetic operation IE DP D EX WB
instruction
Next instruction IF P D EX WB
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where an arithmetic operation instruction is executed by Rpipe,
and the next instruction is issued to Rpipe. Lpipe executes processing independently when it
has no dependency on the arithmetic operation instruction.

All arithmetic operation instructions except the MOV imm32 and reg1 instructions can be
executed in parallel with another instruction (the MOV imm32 and reg1 instruction are issued
individually).

RO1USO001EJ0100 Rev.1.00 Page 445 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

C.3.6 Conditional operation instructions
Conditional operation instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Target instructions] ADF and SBF

[Pipeline] <1> <2> <3> <4> <5> <6>
Conditional operation IF DP D EX WB
instruction
Next instruction IF DP ID EX |WB
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where an arithmetic operation instruction is executed by Rpipe,
and the next instruction is issued to Rpipe.
Conditional operation instruction is issued individually.

C.3.7 Saturated operation instructions
Saturated operation instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU

unit.

[Target instructions] SATADD, SATSUB, SATSUBI, and SATSUBR

[Pipeline] <1> <> <3> <a> <5> <6>
Saturated operation
instruction IF bP ID EX |WB
Next instruction IF DP ID EX |wB
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a saturated operation instruction is executed by Rpipe,
and the next instruction is issued to Rpipe. Lpipe executes processing independently when it
has no dependency on the saturated operation instruction.

Saturated operation instructions can be executed in parallel with another instruction.

RO1USO001EJ0100 Rev.1.00 Page 446 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

C.3.8 Logic operation instructions
Logic operation instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU unit.

[Target instructions] AND, ANDI, NOT, OR, ORI, TST, XOR, and XORI

[Pipeline] <1> <2> <3> <4> <5> <6>
Logic operation IE DP D EX WB
instruction
Next instruction IF DP ID EX wB
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a logic operations instruction is executed by Rpipe, and
the next instruction is issued to Rpipe. Lpipe executes processing independently when it has
no dependency on the logic operation instruction.

Logic operation instructions can be executed in parallel with another instruction.

C.3.9 Data manipulation instructions
Data manipulation instructions are executed by the instruction execution pipeline right (Rpipe) BSFT unit.

[Target instructions] BSH, BSW, CMOV, HSH, HSW, SAR, SASF, SETF, SHL, SHR, SXB, SXH, ZXB, and ZXH

[Pipeline] <1> <2> <3> <4> <5> <6>
Data manipulation IE DP D EX WEB
instruction
Next instruction IF DP ID EX |WB
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a data manipulation instruction is executed by Rpipe,
and the next instruction is issued to Rpipe. The instruction execution pipeline left (Lpipe)
executes processing independently when it has no dependency on the data manipulation
instruction.

The data manipulation instructions SXB, SXH, ZXB and ZXH are issued individually.

All other data manipulation instructions can be executed in parallel with another instruction.

RO1USO001EJ0100 Rev.1.00 Page 447 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

C.3.10 Bit search instructions
Bit search instructions are executed by the instruction execution pipeline right (Rpipe) BSFT unit.

[Target instructions] SCHOL, SCHOR, SCHI1L, and SCH1R

[Pipeline] <1> <2> <3> <4> <5> <6>
Bit search instruction IF DP ID EX |wWB
Next instruction IF DP ID EX WB
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where a data manipulation instruction is executed by Rpipe,
and the next instruction is issued to Rpipe. The instruction execution pipeline left (Lpipe)
executes processing independently when it has no dependency on the data manipulation
instruction.

Bit search instructions can be executed in parallel with another instruction.

C.3.11 Divide instructions
Divide instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Target instructions] DIV, DIVH, DIVHU, and DIVU

[Pipeline] (@) DIV and DIVH
<1> <2> <3> <4> <5> N <37> <38> <39> <40> <41> <42>
Divide instruction IF DP ID | EX1 | EX2 EX34 | EX35|EX36 WB
2 1
Next instruction IF DP - - _ _ ID EX |wB
pl
T
Instruction after IF - - - - DP ID EX |WB

next instruction Za

—: Idle inserted for wait period

(b) DIVU and DIVHU
<1> <2> <3> <4> <5> N <37> <38> <39> <40> <41>

Divide instruction IF DP ID | EX1 | EX2 EX34 [EX35 WBE
2 1
Next instruction IF | DP | - - - ID | EX wB
pl
T
Instruction after IF - - - DP ID EX |(wB
next instruction <

—: Idle inserted for wait period

[Description] For a DIV or DIVH instruction, the pipeline has 40 stages: IF, DP, ID, EX1 to EX36, and WB, and
for the DIVU and DIVHU instructions, it has 39 stages: IF, DP, ID, EX1 to EX35, and WB.
This figure shows an operation where a divide instruction is executed by Rpipe, and the next
instruction is issued to Rpipe.
However, for the divide instruction, during instruction decoding at the ID stage and during
instruction execution at the EX stage, the dispatch unit does not issue instructions.
Divide instruction is issued individually.

RO1USO001EJ0100 Rev.1.00 Page 448 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

C.3.12 High-speed divide instructions
High-speed divide instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.
This instruction automatically determines the minimum number of steps required for the operation.

[Target instructions] DIVQ and DIVQU

[Pipeline] (&) DIVQ
<1> <2> <3> <4> <5> . <N+5> <N+6> <N+7> <N+8> <N+9> <N+10><N+11>
DIVQ instruction | IF | DP | ID | EXL | EX2 k) 02y | s | o | ons) WE
Next instruction IF | DP | - | - - - ID | EX WwB
Instruction after IF - - (: - - - DP | ID | EX wB

next instruction

—: Idle inserted for wait period

(b) DIVQU
<l1> <2> <3> <4> <5> N <N+5> <N+6> <N+7><N+8> <N+9> <N+10>
. , Cl EX | EX | EX

DIVQU instruction IF DP ID | EX1 | EX2 L) | (vee) | (ves) \WH

Next instruction IF | DP | - - - - ID | EX wB

C
Instruction after IF - - - - DP | ID | EX (wB
next instruction S
—: Idle inserted for wait period
[Description] For the DIVQ instruction, the pipeline has N + 9 stages: IF, DP, ID, EX1 to EX(N + 5), and WB,

and for the DIVQU instruction, it has N +8 stages: IF, DP, ID, EX1 to EX(N+4), and WB.
This figure shows the operation where a high-speed divide instruction is executed by Rpipe,
and the next instruction is issued to Rpipe.

During instruction decoding at the ID stage and during instruction execution at the EX stage,
the dispatch unit does not issue instructions.

Each instruction is issued individually.

Remark N = (Number of valid bits of dividend) — (Number of valid bits of divisor)
However, if N is negative, it is assumed that N = 0.

RO1USO001EJ0100 Rev.1.00 Page 449 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

C.3.13 Branch instructions
Branch instructions are executed by the instruction execution pipeline left or right (Lpipe or Rpipe) ALU unit.

(1) Conditional branch instruction (except BR instruction)

[Target instructions] Bcond instruction

[Pipeline] (@) When condition has not been met

<1> <2> <3> <4> <5> <6> <7> <8> <9>

Conditional branch
instruction IF bP ID EX
Next instruction IF DP ID EX AT DF |wB
Instruction after F |lpP!| D | Ex| AT | DF wB
next instruction

(b) When condition has been met

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11>

Conditior_]al brar]ch IF DP D EX
instruction
. . When condition is met, branch is confirmed and
Next instruction IF DP | <4— instruction is flushed
Instruction after next IF |« When condition is met, branch is confirmed and
instruction instruction is flushed
Branch destination IF DP ID EX | AT | DF |WB|
instruction
[Description] This figure shows an operation where a Bcond instruction is executed by the instruction

execution pipeline right (Rpipe).

Branch instructions can be executed in parallel with another instruction.

(2) BR instruction and unconditional branch instructions (except JMP instruction)

[Target instructions] BR, JARL, and JR instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11>
BR instruction, unconditional
branch instruction

IF DP ID EX |wg|

Next instruction IF DP | €— Unconditional branch occurs, so instruction is flushed
Instruction_ after nfext IF | 44— Unconditional branch occurs, so instruction is flushed
instruction

Branch destination instruction IF bpP ID EX | AT DF |WB

[Description] This figure shows an operation where the Bcond instruction is executed by the instruction
execution pipeline right (Rpipe), and all instructions are executed by the instruction
execution pipeline left (Lpipe).

BR and unconditional branch instructions can be executed in parallel with another

instruction.

RO1USO001EJ0100 Rev.1.00 Page 450 of 473
Oct 17, 2012

V850E2M

APPENDIX C PIPELINES

(3) JMP instructions

(@) JMP [regl] instruction

[Pipeline]
JMP [regl] instruction
Next instruction

Instruction after next
instruction

Branch destination
instruction

[Description]

(Lpipe).

<l> <2> <3> <4> <5> <6> <7> <8> <9> <10> 11>
IF DP ID EX

IF DP | «— Unconditional branch occurs, so instruction is flushed

|IF | <— Unconditional branch occurs, so instruction is flushed

IF DP ID EX | AT | DF (wB

This instruction can be executed in parallel with other instructions.

(b) JMP dip32 [regl] instruction

[Pipeline]
JMP disp32 [regl] instruction
Next instruction

Instruction after next
instruction

Branch destination
instruction

[Description]

(Lpipe).

<1> <2> <3> <4> <5> <6> <7> <8>
IF DP ID EX | AT
IF DP | <— Unconditional branch occurs, so instruction is flushed
IF | <— Unconditional branch occurs, so instruction is flushed

This figure shows an operation where a JMP is executed by the instruction execution
pipeline right (Rpipe), and all instructions are executed by instruction execution pipeline left

<9> <10> <11> <12>

IF DP ID EX | AT

DF

WB

This instruction can be executed in parallel with other instructions.

This figure shows an operation where a JMP is executed by the instruction execution
pipeline right (Rpipe) and all instructions are executed by instruction execution pipeline left

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 451 of 473

V850E2M

APPENDIX C PIPELINES

C.3.14 Bit manipulation instructions

Bit manipulation instructions are executed by the instruction execution pipeline left (Lpipe) ALU unit.

(1) CLR1, NOT1, and SET1 instructions

[Pipeline] <1> <2> <3> <4> <5> <G> <7> <8> <9> <10> <11>
Bit manipulation @ IF | DP | ID | EX | AT | DF [WB: B
instruction | 5y ol " ex [a7 | oF e
Next instruction IF | DP | - - - ID | EX | AT | DF |wB

—: Idle inserted for wait period

[Description]

At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, followed by the store instruction that includes bit manipulation. However, since
no data is written to a register, nothing is done at the WB stage. This figure shows an
operation where a bit manipulation instruction is executed by Lpipe and the next instruction
is issued to Lpipe. During instruction decoding at the ID stage, the dispatch unit issues

instruction to Lpipe.

Bit manipulation instruction is issued individually.

(2) TST1 instruction

[Pipeline] <1>

Bit manipulation @ IF

instruction
(2

Next instruction

<2> <3> <4> <5> <6> _§?> <8> <9> <10> <11>
DP | ID | EX | AT | DF WBE

D | - | - |Ex WB-E
F |pP| - | - | - | D |EX|AT | DF |ws

—: Idle inserted for wait period

[Description]

At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, following by the store instruction that includes bit manipulation. However, since
no data is written to a register, nothing is done at the WB stage. This figure shows an
operation where a TST1 instruction is executed by Lpipe and the next instruction is issued
to Lpipe. During instruction decoding at the ID stage, the dispatch unit does not issue an

instruction to Lpipe.

TST1 instruction is issued individually.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 452 of 473

V850E2M APPENDIX C PIPELINES

C.3.15 Special instructions

(1) CALLT and SYSCALL instruction
The CALLT and SYSCALL instructions are executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline]
<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12> <13> <14>

CALLT,SYSCALL | (1) | IF | DP | ID | EX | AT | DF |WB
instructions '

) D | - - | EX1|EX2 | EX3 | EX4

Next instruction (cancel) | (IF)

Branch destination IF DP ID EX
instruction

—: ldle inserted for wait period
(IF): Invalid instruction fetch

[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is
executed, followed by execution of the CTBP or CTBP relative branch instruction.
However, since no data is written to a register, nothing is done at the WB stage. This
figure shows an operation where the CALLT or SYSCALL instruction is executed by the
Lpipe, and then the instruction is fetched from the branch destination.
This instruction is issued individually.

(2) CAXI instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11>
CAXI @ | IF |DP | ID | EX | AT | DF [wai
manipulation H —
instruction @) D | - | - | EX | AT | DF [|wBi
Next IF DP - - - ID EX AT DF |wB
instruction

—: Idle inserted for wait period

[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is
executed, followed by the store instruction. This figure shows an operation where a CAXI
instruction is executed by Lpipe, and the next instruction is issued to Lpipe. During
instruction decoding at the ID stage, the dispatch unit does not issue instructions to Lpipe.
Each instruction is issued individually.

RO1USO001EJ0100 Rev.1.00 Page 453 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

(3) CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions
The CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions are executed by the instruction

execution pipeline right (Rpipe) .

[Pipeline]
<]1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12> <13> <14>
Instruction°*® IF DP ID | EX1 | EX2 | EX3 | EX4

Next instruction IF DP | <— Unconditional branch occurs, so instruction is flushed

Instruction after IF | €= Unconditional branch occurs, so instruction is flushed

next instruction

Branch destination IF bP ID EX | AT | DF |wB
instruction
Note CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions

[Description] This figure shows an operation where each instruction is executed by the instruction

execution pipeline right (Rpipe) and all instructions are issued by Lpipe.
CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions are issued
individually.

(4) DI, El, and LDSR instructions

The DI, El, and LDSR instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
DLELand | e | pp | o | EX |\we| < Update syst ist
LDSR pdate system register
ID EX — | 4= Dummy slot
Next instruction IF DP - ID EX | AT | DF |wB
—: Idle inserted for wait period
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where the DI, El, and LDSR instructions are executed by
Rpipe and all instructions are issued by Rpipe.
DI, El, and LDSR instructions are issued individually.

RO1USO001EJ0100 Rev.1.00 Page 454 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

(5) DISPOSE instruction

The DISPOSE instruction is executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline] (& No branch
<l> <2> <3> <4> <5> <6> <7> eoe <n+3><n+4><n+5><n+6><n+7>
g
2) IF DP ID EX | AT | DF W8
) ID EX | AT | DF wB
DISPOSE .
instruction e
(n+1) ID | EX | AT | DF |wB
(n+2) ID | EX |wB
p

IF | DP | — | - - - - | - - | Ib | EX

Next instruction

—: Idle inserted for wait period

(b) Branch

<1> <2> <3> <4> <5> <6> <7>) <n+3><n+4><n+5><n+6><n+7><n+8><n+9><n+10>

DISPOSE instruction
owmpy | IF | DP | ID | EX | AT | DF W8

) ID | EX | AT | DF |wB
DISPOSE : ‘
instruction (n + 1) D EX AT DE |wB
(n+2) ID | EX |wB
Unconditional branch occurs, so
Next instruction (IF) | <= instruction is flushed
Branch destination IF DP ID EX
instruction
—: Idle inserted for wait period
(IF): Invalid instruction fetch
Remark n is the number of registers specified by the register list (list12).

[Description] At the ID stage, this instruction is divided into n + 2 instructions, then n load instructions
are executed, followed by an instruction that writes to the stack pointer (SP). This figure
shows an operation where the DISPOSE instruction is executed by the Lpipe and the next
instruction is issued to the Lpipe. The instruction execution pipeline right (Rpipe) executes
processing independently when it has no dependency on the DISPOSE instruction.

This instruction is issued individually.
RO1USO001EJ0100 Rev.1.00 Page 455 of 473

Oct 17, 2012

V850E2M

APPENDIX C PIPELINES

(6) HALT instruction

The HALT instruction is executed by the instruction execution pipeline right (Rpipe).

[Pipeline]

[Description]

(7) NOP instruction

<1> <2>

<3>

HALT instruction IF DP

HALT canceled

v

Next instruction IF

DP

ID

EX

WwB

Instruction after
next instruction

IF

DP

EX

WwB

—: Idle inserted for wait period

When a HALT instruction is detected at the DP stage, issuing of instructions to the ID
stage is stopped until the HALT instruction has been canceled. Accordingly, the next
instruction is delayed at the ID stage until the HALT instruction is canceled. This figure
shows an operation where the HALT instruction is executed by the instruction execution
pipeline right (Rpipe), and the next instruction is issued to Rpipe.
This instruction is issued individually.

The NOP instruction is executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Pipeline]

[Description]

<]1> <2> <3> <4> <5> <6>
NOP instruction | IF DP ID EX iWB|
Next IF DP ID EX |WB
instruction

The pipeline has five stages: IF, DP, ID, EX, and WB, but since no operations are
performed and there is no writing of data to registers, nothing is done at the EX and WB

stages.

This instruction is issued individually.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 456 of 473

V850E2M APPENDIX C PIPELINES

(8) PREPARE instruction
The PREPARE instruction is executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline]
<1> <2> <3> <4> <5> <6> <T7> eee <nN+2><nN+3><n+4><n+5><n+6><n+7>
s -3
1) IF DP ID EX | AT | DF WBE
@) DP | ID | EX | AT | DF |wel
PREPARE . T
instruction . : o
(h+1) DP | ID | EX | AT | DF [wsl
(n+2) DP | ID | EX (wB
p]
Next instruction‘ IF ‘ bP ‘ - ‘ - ‘ - ‘ - ‘ N - - - ID EX
—: Idle inserted for wait period
Remark n is the number of registers specified in the register list (list12).
[Description] At the ID stage, this instruction is divided into n + 2 instructions, then n store instructions

are executed, followed by an instruction that writes to the stack pointer (SP). Since this

store instruction does not write data to a register, nothing is done at the WB stage. This
figure shows an operation where the PREPARE instruction is executed by Lpipe and the
next instruction is issued to Lpipe.

This instruction is issued individually.

(9) STSR instruction
The STSR instruction is executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Pipeline] <1> <2> <3> <4> <5> <6>
STSR instruction IF DP ID EX |wB
Next instruction IF DP ID EX |wB
[Description] The pipeline has five stages: the IF, DP, ID, EX, and WB stages.

This figure shows an operation where the STSR instruction is executed by Rpipe and the
next instruction is issued to Rpipe. The instruction execution pipeline left (Lpipe) executes
processing independently when it has no dependency on the STSR instruction.

This instruction is issued individually.

RO1USO001EJ0100 Rev.1.00 Page 457 of 473
Oct 17, 2012

V850E2M APPENDIX C PIPELINES

(10) SWITCH instruction

The SWITCH instruction is executed by the instruction execution pipeline left (Lpipe) ALU unit.

[Pipeline]
<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12>
SWITCH (1) IF DP ID EX | AT | DF WBE
instruction @) D B B Ex | AT
Next instruction (cancel) | (IF)
Branch destination IF DP ID EX
instruction
—: Idle inserted for wait period
(IF): Invalid instruction fetch
[Description] At the ID stage, the instruction is divided into two instructions, then the load instruction is

executed, followed by execution of the PC relative branch instruction. However, since no
data is written to a register, nothing is done at the WB stage. This figure shows an
operation where a SWITCH instruction is executed by Lpipe, and the next instruction is
issued to Lpipe. The instruction execution pipeline right (Rpipe) performs processing
independently when it has no dependency on the SWITCH instruction.

This instruction is issued individually.

(11) Synchronization instructions

The synchronization instructions are executed by the instruction execution pipeline right (Rpipe) ALU unit.

[Target instructions] SYNCE, SYNCM, SYNCP

[Pipeline] <1> <2> <3>
Synchronization \/:/“:
instructions | IF | DP | - N ID | EX W8
Next instruction IF - N - DP ID EX | EX
[Description] This figure shows an operation where the synchronization instructions are executed by

Rpipe and all instructions are issued by the instruction execution pipeline left (Lpipe).
Each instruction is issued individually.

The synchronization instructions are not issued until processing of all instructions held
pending by the CPU has been completed.

RO1USO001EJ0100 Rev.1.00

Page 458 of 473
Oct 17, 2012

V850E2M APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION
AREAS

Each bit of the peripheral device protection setup registers (PPCO to PPC8) for the V850E2M CPU corresponds to a

peripheral device.

For the V850E2M CPU, the bits PPx2, PPx4 to PPx6, PPx12 to PPx15, PPx18, and PPx19, which correspond to the
areas in the PPCO register set enclosed in parentheses, are fixed to 0. In addition, PPx16 and the reserved area PPx17,
where the setup registers for system protection (peripheral device protection and timing monitoring) are placed, are fixed
to 1 as OS peripheral devices.

RO1USO001EJ0100 Rev.1.00 Page 459 of 473
Oct 17, 2012

V850E2M

APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

PPCO (PPS0, PPPO, PPVO, PPTO0)

Bit Name [Area Name Address Range Remarks
PPx0 INTC FFFF6000 to FFFF645FH INTC

PPx1 Fcache FFFF6480 to FFFF6487H FlashCache
PPx2 (R.F.U) R.F.U Reserved

PPx3 SEG FFFF64B0 to FFFF64B3H | System error
PPx4 (R.F.U) R.F.U Reserved

PPx5 (R.F.U) FFFF6500 to FFFF65FFH Reserved

PPx6 (R.F.U) FFFF6600 to FFFF66FFH Reserved

PPx7 EXTBRK | FFFF6700 to FFFF67FFH Debbug function
PPx8 MIR FFFF6800 to FFFF687FH Inter-PE interrupts
PPx9 MEV FFFF6900 to FFFF697FH MEV

PPx10 MEC FFFF6980 to FFFF699FH MEC

PPx11 PEG FFFF69A0 to FFFF69BFH | PE guard
PPx12 (SPB12) FFFF6A00 to FFFF6AFFH | Reserved
PPx13 (SPB13) FFFF6B00 to FFFF6BFFH | Reserved
PPx14 (SPB14) FFFF6CO00 to FFFF6DFFH | Reserved
PPx15 (SPB15) FFFF6EQO to FFFF6EFFH | Reserved
PPx16 SPF FFFF5000 to FFFF53FFH TSU/PPU
PPx17 (R.F.U) FFFF5400 to FFFF57FFH Reserved
PPx18 (R.F.U) FFFF5800 to FFFF5BFFH Reserved
PPx19 (R.F.U) FFFF5CO00 to FFFF5FFFH | Reserved

PPx20 EXT20 FFFF7000 to FFFF70FFH

Area for expansion

PPx21 EXT21 FFFF7100 to FFFF71FFH

Area for expansion

PPx22 EXT22 FFFF7200 to FFFF72FFH

Area for expansion

PPx23 EXT23 FFFF7300 to FFFF73FFH

Area for expansion

PPx24 EXT24 FFFF7400 to FFFF74FFH

Area for expansion

PPx25 EXT25 FFFF7500 to FFFF76FFH

Area for expansion

PPx26 EXT26 FFFF7700 to FFFF78FFH

Area for expansion

PPx27 EXT27 FFFF7900 to FFFF7AFFH

Area for expansion

PPx28 EXT28 FFFF7B00 to FFFF7CFFH

Area for expansion

PPx29 EXT29 FFFF7DO00 to FFFF7EFFH

Area for expansion

PPx30 EXT30 FFFF7F00 to FFFF7F7FH

Area for expansion

PPx31 EXT31 FFFF7F80 to FFFF7FFFH

Area for expansion

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 460 of 473

V850E2M

APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS

PPC1 (PPS1, PPP1, PPV1, PPT1)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FF400000 to FF40FFFFH | 64 KB PPx16 FF500000 to FF50FFFFH | 64 KB
PPx1 FF410000 to FF41FFFFH | 64 KB PPx17 FF510000 to FF51FFFFH | 64 KB
PPx2 FF420000 to FF42FFFFH | 64 KB PPx18 FF520000 to FF52FFFFH | 64 KB
PPx3 FF430000 to FF43FFFFH | 64 KB PPx19 FF530000 to FF53FFFFH | 64 KB
PPx4 FF440000 to FF44FFFFH | 64 KB PPx20 FF540000 to FF54FFFFH | 64 KB
PPx5 FF450000 to FF45FFFFH | 64 KB PPx21 FF550000 to FF55FFFFH | 64 KB
PPx6 FF460000 to FF46FFFFH | 64 KB PPx22 FF560000 to FF56FFFFH | 64 KB
PPx7 FF470000 to FF47FFFFH | 64 KB PPx23 FF570000 to FF57FFFFH | 64 KB
PPx8 FF480000 to FF48FFFFH | 64 KB PPx24 FF580000 to FF58FFFFH | 64 KB
PPx9 FF490000 to FF49FFFFH | 64 KB PPx25 FF590000 to FF59FFFFH | 64 KB
PPx10 FF4A0000 to FF4AFFFFH | 64 KB PPx26 FF5A0000 to FF5AFFFFH | 64 KB
PPx11 FF4B0000 to FF4BFFFFH | 64 KB PPx27 FF5B0000 to FF5BFFFFH | 64 KB
PPx12 FF4C0000 to FFACFFFFH| 64 KB PPx28 FF5C0000 to FF5CFFFFH| 64 KB
PPx13 FF4D0000 to FF4DFFFFH| 64 KB PPx29 FF5D0000 to FF5DFFFFH| 64 KB
PPx14 FF4E0000 to FF4EFFFFH | 64 KB PPx30 FF5E0000 to FF5EFFFFH | 64 KB
PPx15 FF4F0000 to FF4FFFFFH | 64 KB PPx31 FF5F0000 to FF5FFFFFH | 64 KB
PPC2 (PPS2, PPP2, PPV2, PPT2)

Bit Name Address Range Remarks Bit Name Address Range Remarks
PPx0 FF600000 to FF60FFFFH | 64 KB PPx16 FF700000 to FF70FFFFH | 64 KB
PPx1 FF610000 to FF61FFFFH | 64 KB PPx17 FF710000 to FF71FFFFH | 64 KB
PPx2 FF620000 to FF62FFFFH | 64 KB PPx18 FF720000 to FF72FFFFH | 64 KB
PPx3 FF630000 to FF63FFFFH | 64 KB PPx19 FF730000 to FF73FFFFH | 64 KB
PPx4 FF640000 to FF64FFFFH | 64 KB PPx20 FF740000 to FF74FFFFH | 64 KB
PPx5 FF650000 to FF65FFFFH | 64 KB PPx21 FF750000 to FF75FFFFH | 64 KB
PPx6 FF660000 to FF66FFFFH | 64 KB PPx22 FF760000 to FF76FFFFH | 64 KB
PPx7 FF670000 to FF67FFFFH | 64 KB PPx23 FF770000 to FF77FFFFH | 64 KB
PPx8 FF680000 to FF68FFFFH | 64 KB PPx24 FF780000 to FF78FFFFH | 64 KB
PPx9 FF690000 to FF69FFFFH | 64 KB PPx25 FF790000 to FF79FFFFH | 64 KB
PPx10 FF6A0000 to FF6AFFFFH | 64 KB PPx26 FF7A0000 to FF7AFFFFH | 64 KB
PPx11 FF6B0000 to FF6BFFFFH | 64 KB PPx27 FF7B0000 to FF7BFFFFH | 64 KB
PPx12 FF6C0000 to FF6CFFFFH| 64 KB PPx28 FF7C0000 to FF7CFFFFH| 64 KB
PPx13 FF6D0000 to FF6DFFFFH| 64 KB PPx29 FF7D0000 to FF7DFFFFH| 64 KB
PPx14 FF6E0000 to FF6EFFFFH | 64 KB PPx30 FF7E0000 to FF7EFFFFH | 64 KB
PPx15 FF6F0000 to FF6FFFFFH | 64 KB PPx31 FF7F0000 to FF7FFFFFH | 64 KB

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 461 of 473

V850E2M

APPENDIX D LIST

OF PERIPHERAL DEVICE PROTECTION AREAS

PPC3 (PPS3, PPP3, PPV3, PPT3)

Bit Name Address Range Remarks Bit Name Address Range Remarks
PPx0 FF800000 to FF800FFFH | 4 KB PPx16 FF810000 to FF810FFFH | 4 KB
PPx1 FF801000 to FF801FFFH | 4 KB PPx17 FF811000 to FF811FFFH | 4 KB
PPx2 FF802000 to FF802FFFH | 4 KB PPx18 FF812000 to FF812FFFH | 4 KB
PPx3 FF803000 to FF803FFFH | 4 KB PPx19 FF813000 to FF813FFFH | 4 KB
PPx4 FF804000 to FF804FFFH | 4 KB PPx20 FF814000 to FF814FFFH | 4 KB
PPx5 FF805000 to FF805FFFH | 4 KB PPx21 FF815000 to FF815FFFH | 4 KB
PPx6 FF806000 to FF806FFFH | 4 KB PPx22 FF816000 to FF816FFFH | 4 KB
PPx7 FF807000 to FF807FFFH | 4 KB PPx23 FF817000 to FF817FFFH | 4 KB
PPx8 FF808000 to FF808FFFH | 4 KB PPx24 FF818000 to FF818FFFH | 4 KB
PPx9 FF809000 to FF809FFFH | 4 KB PPx25 FF819000 to FF819FFFH | 4 KB
PPx10 FF80A000 to FFBOAFFFH | 4 KB PPx26 FF81A000 to FF81AFFFH | 4 KB
PPx11 FF80B000 to FF8OBFFFH | 4 KB PPx27 FF81B000 to FF81BFFFH | 4 KB
PPx12 FF80CO000 to FF8OCFFFH | 4 KB PPx28 FF81CO000 to FF81CFFFH| 4 KB
PPx13 FF80DO000 to FF8ODFFFH| 4 KB PPx29 FF81D000 to FF81DFFFH| 4 KB
PPx14 FF80EO00 to FF80EFFFH | 4 KB PPx30 FF81EO000 to FF81EFFFH | 4 KB
PPx15 FF80F000 to FF8OFFFFH | 4 KB PPx31 FF81F000 to FF81FFFFH | 4 KB
PPC4 (PPS4, PPP4, PPV4, PPT4)
Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FF820000 to FF820FFFH | 4 KB PPx16 FF830000 to FF830FFFH | 4 KB
PPx1 FF821000 to FF821FFFH | 4 KB PPx17 FF831000 to FF831FFFH | 4 KB
PPx2 FF822000 to FF822FFFH | 4 KB PPx18 FF832000 to FF832FFFH | 4 KB
PPx3 FF823000 to FF823FFFH | 4 KB PPx19 FF833000 to FF833FFFH | 4 KB
PPx4 FF824000 to FF824FFFH | 4 KB PPx20 FF834000 to FF834FFFH | 4 KB
PPx5 FF825000 to FF825FFFH | 4 KB PPx21 FF835000 to FF835FFFH | 4 KB
PPx6 FF826000 to FF826FFFH | 4 KB PPx22 FF836000 to FF836FFFH | 4 KB
PPx7 FF827000 to FF827FFFH | 4 KB PPx23 FF837000 to FF837FFFH | 4 KB
PPx8 FF828000 to FF828FFFH | 4 KB PPx24 FF838000 to FF838FFFH | 4 KB
PPx9 FF829000 to FF829FFFH | 4 KB PPx25 FF839000 to FF839FFFH | 4 KB
PPx10 FF82A000 to FF82AFFFH | 4 KB PPx26 FF83A000 to FF83AFFFH | 4 KB
PPx11 FF82B000 to FF82BFFFH | 4 KB PPx27 FF83B000 to FF83BFFFH | 4 KB
PPx12 FF82C000 to FF82CFFFH| 4 KB PPx28 FF83C000 to FF83CFFFH| 4 KB
PPx13 FF82D000 to FF82DFFFH| 4 KB PPx29 FF83DO000 to FF83DFFFH| 4 KB
PPx14 FF82E000 to FF82EFFFH | 4 KB PPx30 FF83EO000 to FF83EFFFH | 4 KB
PPx15 FF82F000 to FF82FFFFH | 4 KB PPx31 FF83F000 to FF83FFFFH | 4 KB

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 462 of 473

V850E2M

APPENDIX D LIST

OF PERIPHERAL DEVICE PROTECTION AREAS

PPC5 (PPS5, PPP5, PPV5, PPT5)

Bit Name Address Range Remarks Bit Name Address Range Remarks

PPx0 FFFF8000 to FFFF80FFH 256 byte PPx16 FFFF9000 to FFFFOO0FFH 256 byte
PPx1 FFFF8100 to FFFF81FFH 256 byte PPx17 FFFF9100 to FFFF91FFH 256 byte
PPx2 FFFF8200 to FFFF82FFH 256 byte PPx18 FFFF9200 to FFFF92FFH 256 byte
PPx3 FFFF8300 to FFFF83FFH 256 byte PPx19 FFFF9300 to FFFF93FFH 256 byte
PPx4 FFFF8400 to FFFF84FFH 256 byte PPx20 FFFF9400 to FFFF94FFH 256 byte
PPx5 FFFF8500 to FFFF85FFH 256 byte PPx21 FFFF9500 to FFFF95FFH 256 byte
PPx6 FFFF8600 to FFFF86FFH 256 byte PPx22 FFFF9600 to FFFF96FFH 256 byte
PPx7 FFFF8700 to FFFF87FFH 256 byte PPx23 FFFF9700 to FFFF97FFH 256 byte
PPx8 FFFF8800 to FFFF88FFH 256 byte PPx24 FFFF9800 to FFFF98FFH 256 byte
PPx9 FFFF8900 to FFFF89FFH 256 byte PPx25 FFFF9900 to FFFF99FFH 256 byte
PPx10 FFFF8AOQO to FFFF8AFFH 256 byte PPx26 FFFF9AO0O0 to FFFFOAFFH 256 byte
PPx11 FFFF8BO0O0 to FFFF8BFFH 256 byte PPx27 FFFF9BOO0 to FFFF9BFFH 256 byte
PPx12 FFFF8CO00 to FFFF8CFFH | 256 byte PPx28 FFFF9CO00 to FFFFOCFFH 256 byte
PPx13 FFFF8DO00 to FFFF8DFFH | 256 byte PPx29 FFFFODO00 to FFFFODFFH 256 byte
PPx14 FFFF8EOO to FFFF8EFFH 256 byte PPx30 FFFF9EOO to FFFF9EFFH 256 byte
PPx15 FFFF8FO00 to FFFF8FFFH 256 byte PPx31 FFFFOFO00 to FFFFOFFFH 256 byte
PPC6 (PPS6, PPP6, PPV6, PPT6)

Bit Name Address Range Remarks Bit Name Address Range Remarks
PPx0 FFFFAO00 to FFFFAOFFH 256 byte PPx16 FFFFBO00O to FFFFBOFFH 256 byte
PPx1 FFFFA100 to FFFFA1FFH 256 byte PPx17 FFFFB100 to FFFFB1FFH 256 byte
PPx2 FFFFA200 to FFFFA2FFH 256 byte PPx18 FFFFB200 to FFFFB2FFH 256 byte
PPx3 FFFFA300 to FFFFA3FFH 256 byte PPx19 FFFFB300 to FFFFB3FFH 256 byte
PPx4 FFFFA400 to FFFFA4FFH 256 byte PPx20 FFFFB400 to FFFFB4FFH 256 byte
PPx5 FFFFA500 to FFFFASFFH 256 byte PPx21 FFFFB500 to FFFFB5FFH 256 byte
PPx6 FFFFAG00 to FFFFAGFFH 256 byte PPx22 FFFFB600 to FFFFB6FFH 256 byte
PPx7 FFFFA700 to FFFFA7FFH 256 byte PPx23 FFFFB700 to FFFFB7FFH 256 byte
PPx8 FFFFAB800 to FFFFA8FFH 256 byte PPx24 FFFFB800 to FFFFB8FFH 256 byte
PPx9 FFFFA900 to FFFFA9FFH 256 byte PPx25 FFFFB900 to FFFFBI9FFH 256 byte
PPx10 FFFFAAOQO to FFFFAAFFH 256 byte PPx26 FFFFBAOO to FFFFBAFFH 256 byte
PPx11 FFFFABOO to FFFFABFFH 256 byte PPx27 FFFFBBOO to FFFFBBFFH 256 byte
PPx12 FFFFACOO0 to FFFFACFFH 256 byte PPx28 FFFFBCOO0 to FFFFBCFFH 256 byte
PPx13 FFFFADOO to FFFFADFFH 256 byte PPx29 FFFFBDOO to FFFFBDFFH 256 byte
PPx14 FFFFAEOQO to FFFFAEFFH 256 byte PPx30 FFFFBEOO to FFFFBEFFH 256 byte
PPx15 FFFFAFOO to FFFFAFFFH 256 byte PPx31 FFFFBFOO to FFFFBFFFH 256 byte

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 463 of 473

V850E2M

APPENDIX D LIST

OF PERIPHERAL DEVICE PROTECTION AREAS

PPC7 (PPS7, PPP7, PPV7, PPT7)

Bit Name Address Range Remarks Bit Name Address Range Remarks
PPx0 FFFFCO000 to FFFFCOFFH | 256B PPx16 FFFFDOOO to FFFFDOFFH | 256B
PPx1 FFFFC100 to FFFFC1FFH | 256B PPx17 FFFFD100 to FFFFD1FFH | 256B
PPx2 FFFFC200 to FFFFC2FFH | 256B PPx18 FFFFD200 to FFFFD2FFH | 256B
PPx3 FFFFC300 to FFFFC3FFH | 256B PPx19 FFFFD300 to FFFFD3FFH | 256B
PPx4 FFFFC400 to FFFFC4FFH | 256B PPx20 FFFFD400 to FFFFD4FFH | 256B
PPx5 FFFFC500 to FFFFC5FFH | 256B PPx21 FFFFD500 to FFFFD5FFH | 256B
PPx6 FFFFC600 to FFFFC6FFH | 256B PPx22 FFFFD600 to FFFFD6FFH | 256B
PPx7 FFFFC700 to FFFFC7FFH | 256B PPx23 FFFFD700 to FFFFD7FFH | 256B
PPx8 FFFFCB800 to FFFFC8FFH | 256B PPx24 FFFFD800 to FFFFD8FFH | 256B
PPx9 FFFFC900 to FFFFCOFFH | 256B PPx25 FFFFD900 to FFFFD9FFH | 256B
PPx10 FFFFCAOO to FFFFCAFFH | 256B PPx26 FFFFDAOO to FFFFDAFFH | 256B
PPx11 FFFFCBOO to FFFFCBFFH | 256B PPx27 FFFFDBOO to FFFFDBFFH | 256B
PPx12 FFFFCCOO0 to FFFFCCFFH| 256B PPx28 FFFFDCOO to FFFFDCFFH | 256B
PPx13 FFFFCDOO to FFFFCDFFH| 256B PPx29 FFFFDDOO to FFFFDDFFH | 256B
PPx14 FFFFCEOO to FFFFCEFFH | 256B PPx30 FFFFDEOO to FFFFDEFFH | 256B
PPx15 FFFFCFOO to FFFFCFFFH | 256B PPx31 FFFFDFOO to FFFFDFFFH | 256B
PPC8 (PPS8, PPP8, PPV8, PPT8)

Bit Name Address Range Remarks Bit Name Address Range Remarks
PPx0 FFFFEOOQO to FFFFEOFFH | 256B PPx16 FFFFFO000 to FFFFFOFFH | 256B
PPx1 FFFFEL00 to FFFFELFFH | 2568 PPx17 FFFFF100 to FFFFF1FFH | 2568
PPx2 FFFFE200 to FFFFE2FFH | 256B PPx18 FFFFF200 to FFFFF2FFH | 256B
PPx3 FFFFE300 to FFFFE3FFH | 256B PPx19 FFFFF300 to FFFFF3FFH | 256B
PPx4 FFFFE400 to FFFFE4FFH | 256B PPx20 FFFFF400 to FFFFF4FFH | 256B
PPx5 FFFFES500 to FFFFESFFH | 256B PPx21 FFFFF500 to FFFFFSFFH | 256B
PPx6 FFFFE600 to FFFFEGFFH | 2568 PPx22 FFFFF600 to FFFFF6FFH | 2568
PPx7 FFFFE700 to FFFFE7FFH | 256B PPx23 FFFFF700 to FFFFF7FFH | 256B
PPx8 FFFFE800 to FFFFESFFH | 256B PPx24 FFFFF800 to FFFFF8FFH | 256B
PPx9 FFFFEQ00 to FFFFE9FFH | 2568 PPx25 FFFFF900 to FFFFFOFFH | 2568
PPx10 FFFFEAQO to FFFFEAFFH | 256B PPx26 FFFFFAQ0 to FFFFFAFFH | 256B
PPx11 FFFFEBOO to FFFFEBFFH | 256B PPx27 FFFFFBOO to FFFFFBFFH | 256B
PPx12 FFFFECO00 to FFFFECFFH | 256B PPx28 FFFFFCOO to FFFFFCFFH | 256B
PPx13 FFFFEDOO to FFFFEDFFH | 256B PPx29 FFFFFDOO to FFFFFDFFH | 256B
PPx14 FFFFEEOQO to FFFFEEFFH | 256B PPx30 FFFFFEQO to FFFFFEFFH | 256B
PPx15 FFFFEF00 to FFFFEFFFH | 256B PPx31 FFFFFFOO to FFFFFFFFH | 256B

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 464 of 473

V850E2M APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS

APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND
OTHER CPUS

E.1 Difference Between V850E1 and V850E2

(1/3)
Item V850E2M ‘ V850E2 V850E1

Instructions |ADF cccc, regl, reg2, reg3 Provided Not provided
(including HSH reg2, reg3

operands) [jaAR| disp32, regl

JMP disp32, [regl]

JR disp32

MAC regl, reg2, reg3, reg4
MACU regl, reg2, reg3, reg4

SAR regl, reg2, reg3
SATADD reg1, reg2, reg3
SATSUB regl, reg2, reg3

SBF cccc, regl, reg2, reg3
SCHOL regl, reg2
SCHOR reg1, reg2
SCHIL regl, reg2
SCHI1R reg1l, reg2

SHL regl, reg2, reg3

SHR reg1l, reg2, reg3

CAXI [regl], reg2, reg3 Provided Not provided
DIVQ regl, reg2, reg3
DIVQU regl, reg2, reg3
EIRET

FERET

FETRAP vectord
RIE

SYNCM

SYNCP

SYNCE

SYSCALL vector8

LD.B disp23 [regl] , reg3
LD.BU disp23 [regl] , reg4
LD.H disp23 [regl] , reg3
LD.HU disp23 [regl] , reg3
LD.W disp23 [regl] , reg3
ST.B reg3, disp23 [regl]
ST.H reg3, disp23 [reg2]
ST.W reg3, disp23 [reg3]

RO1USO001EJ0100 Rev.1.00 Page 465 of 473
Oct 17, 2012

V850E2M APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS

2/13)

Item

V850E2M

V850E2

V850E1

(including
operands)

Instructions Floating to point operation exception

Provided

Not provided

Number of instruction execution clocks

Varies among certain instructions.

Exception handler address switching function bank 0
Exception handler address switching function bank 1

MPU violation bank

MPU setting bank

Software paging bank

FPU status bank

FPEC

User 0 bank

Program area 4 gt 512 MB 64 MB
Valid bits in program counter (PC) 32 bits"e* Lower 29 bits Lower 26 bits
Data area 4GB 256 M/64 MB
System register bank Provided Not provided
Main bank Provided Provided"°*?
PSW Functions differ.
ECR Provided (use is Provided
generally prohibited)

EIWR Provided Not provided

FEWR

ElIC

FEIC

BSEL

SCCFG

SCBP

Notes 1. For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a value

resulting from a sign to extension of bit 28 of EIPC is automatically set to bits 31 to 29.

2. Bank configuration is not employed and only system registers equivalent to the main bank are available.

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 466 of 473

V850E2M

APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS

(3/3)
Item V850E2M V850E2 V850E1
Processor protection function Functions differ Not provided
Exceptions FE level non to maskable exception |[FENMI NMmi2Ne
FE level maskable exception FEINT NMIO, NMILNote
El level maskable exception INT INT
Memory protection exception Provided (30H) Not provided
Floating to point operation exception |Provided (70H) Not provided
Return from FE level exception FERET RETI
Return from El level exception EIRET
Checking and cancelling exception |Provided Not provided
Execution of undefined opcodes Reserved instruction lllegal instruction exception
exception DB level exception (60H)
FE level exception (30H)
Operation mode |Misaligned access enable setting Always enabled Can be set as enabled or disabled
Pipeline 7 stages 5 stages

Pipeline flow varies for each instruction.

Note Some specifications such as exception handler addresses and exception code are different.

RO1USO001EJ0100 Rev.1.00

Oct 17, 2012

Page 467 of 473

V850E2M

APPENDIX F

INSTRUCTION INDEX

APPENDIX F INSTRUCTION INDEX

F.1 Basic Instructions

[A] [F]
ADD ...ovvevieiiie. 71 FERET....ccoocviviieenns 100
ADDIcoovvieieiiennn 72 FETRAPcccceeee.. 101
ADF....ccveevieeiiiien. 73
ANDccooovviiieiiieen 74 [H]
ANDI ..o, 75 HALT i 102
HSH......ooiii 103
[B] HSW .. 104
Bcond........cccooiuiinennn. 76
BSH ..o, 78 [J]
BSW...oooeeeiieeeieen 79 JARL....cccviiiiieeeis 105
IMP i 107
[C] JR i, 108
CALLT....ccevviieeees 80
CAXI oo 81 [L]
CLRI.....ccoviiiiieen. 82 [D 1 = 109
CMOVcocovevireenen 84 LD.BU......ocovvvrerennnn 110
CMP ..o, 86 (D - I 111
CTRET ..o 87 LD.HU......ocovvvveee 112
LD.W i 113
[D] (DTS 114
D] IR 88
DISPOSE.................. 89 [M]
DIVt 91 1Y VAN © 115
DIVH ... 92 MACU.....ccovviiiiiens 116
DIVHU.....ccoooiieiiienn 94 MOV ..o 117
(D] 1Y/ @ I 95 MOVEAcccooneene 118
DIVQUccovcvveviiennn. 96 MOVHLI.....cocveiiiirns 119
DIVU ... 97 MUL ..o 120
MULH ..o 121
[E] MULHI ... 122
El oo 98 MULU ..o 123
EIRET .. 929

NOP ..o 124
NOT ..o 125
NOTL ..o 126
OR .o 128
ORI oo, 129
PREPARE............... 130
RETI..oooiiiiieeeis 132
RIE......ccois 134
SAR e 135
SASF ... 137
SATADDccceeevnns 138
SATSUB.........ccee 140
SATSUBI........ceenne 141
SATSUBR............... 142
SBF .ot 143
SCHOLcceeeees 144
SCHOR........oeviine 145
SCHILccoiiiis 146
SCHIR....ccooiiiers 147
SETL....oiiiiiiiiis 148
SETF ..ot 150
SHL ..., 152
SHR ..., 154
SLDB ..o 156

SLD.BUcocvvirn. 157
SLD.H. ..o 158
SLD.HU ... 159
SLD.W .. 160
SSTB..oiiiiiiii, 161
SSTH..coois 162
SSTW..ooiiiiiiii, 163
STB . 164
STH. i, 165
STW s 166
STSR...cooiiiiiii, 167
SUB ... 168
SUBR ..., 169
SWITCH ... 170
SXB .o, 171
SXH . s 172
SYNCE......ccovrinen. 173
SYNCM ... 174
SYNCPoovvvirien. 175
SYSCALL 176
[T]
TRAP ..o 178
TST .o 179
TSTLiiiiiiiiiiiiens 180
[X]
XOR...ooiiiieiiins 181
XORI.coviiiiiiiiiiiiens 182
ZXB .o 183
ZXH .o 184

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 468 of 473

V850E2M

APPENDIX F INSTRUCTION INDEX

F.2 Floating to point Operation Instructions

[A]
ABSF.D......cooee 326
ABSF.S.....ccocvernnn. 327
ADDF.Dcccuveeee. 328
ADDF.S......cc..oounee. 329
[C]
CEILFDL.......c... 330
CEILF.DUL 331
CEILF.DUW............. 332
CEILF.DW.............. 333
CEILF.SL................ 334
CEILF.SUL.............. 335
CEILF.SUW 336
CEILF.SW............... 337
CMOVF.D............... 338
CMOVF.S ..o 339
CMPED...ccccceevnnnnn 340
CMPF.S ... 343
CVTEDL....ceeevnnn 346
CVTEDS 347
CVTF.DUL.............. 348
CVTF.DUW............. 349
CVTF.DW 350
CVTF.LD........couee 351
CVTF.LS......ccceee 352
CVTE.SD 353
CVTF.SL....ooviine 354
CVTE.SUL 355
CVTF.SUW............. 356
CVTE.SW............... 357

CVTF.ULD.............. 358
CVTFR.ULS 359
CVTF.UWD............. 360
CVTF.UWS............ 361
CVTF.WD. 362
CVTF.WS 363
[D]
DIVED........coounnnnn. 364
DIVE.S....ccccoiie 365
[F]
FLOORF.DL 366
FLOORF.DUL.......... 367
FLOORF.DUW 368
FLOORF.DW.......... 369
FLOORF.SL............ 370
FLOORF.SUL......... 371
FLOORF.SUW........ 372
FLOORF.SW.......... 373
[M]
MADDF.S 374
MAXF.D.....ooonen 376
MAXF.S ..o 377
MINF.Dcccovvnnnnn. 378
MINF.S ..o 379
MSUBF.S................ 380
MULF.D.......ooceee 382
MULF.S ... 383

[N]
NEGF.D......coovernne. 384
NEGF.S...coovvvrrrenne. 385
NMADDFS............. 386
NMSUBF.S.............. 388
[R]
RECIPF.D 390
RECIPF.S....c.co...... 391
RSQRTF.D.............. 392
RSQRTF.S ...o.......... 393
[S]
SQRTF.D ..ccooevvean.. 394
SQRTF.S...covvceir. 395
SUBF.D..ooovrrerrn. 396
SUBF.S ..ocovvirrn. 397
[T]
TRFSR ..o, 398
TRNCF.DL 399
TRNCF.DUL............ 400
TRNCF.DUW........... 401
TRNCF.DW............ 402
TRNCF.SL.....co....... 403
TRNCF.SUL............ 404
TRNCF.SUW........... 405
TRNCF.SW 406

RO1USO001EJ0100 Rev.1.00
Oct 17, 2012

Page 469 of 473

REVISION HISTORY

V850E2M Preliminary User’'s Manual: Architecture

Rev. Date Description
Page Summary
0.01 Dec 09, 2009 — First Edition issued
0.02 Aug 31, 2010 p.89 Modification of PART2 5.3 Instruction Set DISPOSE [Operation]
p.180 | Modification of PART2 5.3 Instruction Set TST1 [Operation]
p.255 | Modification of PART3 Table 7-1. Peripheral Device Protection Function
Register Set
p.279 | Modification of PART3 8.1.2 TSECR - Timing supervision exception cause
p.403 | Modification of PART4 4.4 Instruction Set TRNCF.SL [opcode]
p.404 | Modification of PART4 4.4 Instruction Set TRNCF.SUL [opcode]
p.425 | Modification of Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction)
pp.429, | Modification of Table B-4. Floating-point Instruction Opcodes
430
pp.435 | Modification of Table C-1. Clock Requirements for Basic Instructions
to 438
1.00 Oct 17, 2012 p.186 | Addition of Note 7 in PART 2, Table 6-1 Exception Cause List
p.263 | Modification of the destination for reference to initial values in PART 3, 7.1.9 PPSn —
Specification of special peripheral device
p.264 | Modification of the destination for reference to initial values in PART 3, 7.1.10 PPPn —
Specification of OS peripheral device
p.265 | Modification of the destination for reference to initial values in PART 3, 7.1.11 PPVn —
Validating general peripheral device protection
p.266 | Modification of the destination for reference to initial values in PART 3, 7.1.12 PPTn —

Specification protection type of general peripheral device

V850E2M User’'s Manual: Architecture

Publication Date: Rev.1.00 Oct 17,2012

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 1.3

V850E2M

LENESANS

Renesas Electronics Corporation RO1US0001EJ0100

	Cover
	Notice
	NOTES FOR CMOS DEVICES
	How to Use This Manual
	Table of Contents
	PART 1 OVERVIEW
	CHAPTER 1 FEATURES
	1.1 Basic function
	1.2 Processor protection function
	1.3 Floating-point operation function

	PART 2 BASIC FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.2 System Register Bank
	2.2.1 BSEL (Register bank selection

	2.3 CPU Function Group/Main Bank
	2.3.1 EIPC and EIPSW (Status save registers when acknowledging EI level exception
	2.3.2 FEPC and FEPSW (Status save registers when acknowledging FE level exception
	2.3.3 ECR (Exception cause
	2.3.4 PSW (Program status word
	2.3.5 SCCFG (SYSCALL operation setting
	2.3.6 SCBP (SYSCALL base pointer
	2.3.7 EIIC (EI level exception cause
	2.3.8 FEIC (FE level exception cause
	2.3.9 CTPC and CTPSW (Status save registers when executing CALLT
	2.3.10 CTBP (CALLT base pointer
	2.3.11 EIWR (EI level exception working register
	2.3.12 FEWR (FE level exception working register
	2.3.13 DBIC (DB level exception cause
	2.3.14 DBPC and DBPSW (Status save registers when acknowledging DB level exception
	2.3.15 DBWR (DB level exception working register
	2.3.16 DIR (Debug interface register

	2.4 CPU Function Group/Exception Handler Address Switching Function Banks
	2.4.1 SW_CTL (Exception handler address switching control
	2.4.2 SW_CFG (Exception handler address switching configuration
	2.4.3 SW_BASE (Exception handler address switching base address
	2.4.4 EH_CFG (Exception handler configuration
	2.4.5 EH_BASE (Exception handler base address
	2.4.6 EH_RESET (Reset address

	2.5 User Group

	CHAPTER 3 DATA TYPES
	3.1 Data Formats
	3.1.1 Byte
	3.1.2 Halfword
	3.1.3 Word
	3.1.4 Bit

	3.2 Data Representation
	3.2.1 Integers
	3.2.2 Unsigned integers
	3.2.3 Bits

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Modes
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Opcodes and Instruction Formats
	5.1.1 CPU instructions
	5.1.2 Coprocessor instructions
	5.1.3 Reserved instructions

	5.2 Overview of Instructions
	5.3 Instruction Set

	CHAPTER 6 EXCEPTIONS
	6.1 Outline of Exceptions
	6.1.1 Exception cause list
	6.1.2 Types of exceptions
	6.1.3 Exception processing flow
	6.1.4 Exception acknowledgment priority and pending conditions
	6.1.5 Exception acknowledgment conditions
	6.1.6 Resume and restoration
	6.1.7 Exception level and context saving
	6.1.8 Return instructions

	6.2 Operations When Exception Occurs
	6.2.1 EI level exception without acknowledgment conditions
	6.2.2 EI level exception with acknowledgment conditions
	6.2.3 FE level exception without acknowledgment conditions
	6.2.4 FE level exception with acknowledgment conditions
	6.2.5 Special operations

	6.3 Exception Management
	6.3.1 Synchronizing exception when exception is acknowledged or when execution returns
	6.3.2 Exception synchronization instruction
	6.3.3 Checking and cancelling pending exception

	6.4 Exception Handler Address Switching Function
	6.4.1 Determining exception handler addresses
	6.4.2 Purpose of exception handler address switching
	6.4.3 Settings for exception handler address switching function

	CHAPTER 7 COPROCESSOR UNUSABLE STATUS
	7.1 Coprocessor Unusable Exception
	7.2 System Registers

	CHAPTER 8 RESET
	8.1 Status of Registers After Reset
	8.2 Start

	PART 3 PROCESSOR PROTECTION FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features

	CHAPTER 2 REGISTER SET
	2.1 System Register Bank
	2.2 System Registers
	2.2.1 PSW – Program Status Word
	2.2.2 MPM – Setting of processor protection operation mode
	2.2.3 MPC – Specification of processor protection command
	2.2.4 TID – Task identifier
	2.2.5 Other system registers

	CHAPTER 3 OPERATION SETTING
	3.1 Starting Use of Processor Protection Function
	3.2 Setting of Execution Level Auto Transition Function
	3.3 Stopping Use of Processor Protection Function

	CHAPTER 4 EXECUTION LEVEL
	4.1 Nature of Program
	4.2 Protection Bits on PSW
	4.2.1 T state (trusted state)
	4.2.2 NT state (non-trusted state)

	4.3 Definition of Execution Level
	4.4 Transition of Execution Level
	4.4.1 Transition by execution of write instruction to system register
	4.4.2 Transition as result of occurrence of exception
	4.4.3 Transition by execution of return instruction

	4.5 Program Model
	4.6 Task Identifier

	CHAPTER 5 SYSTEM REGISTER PROTECTION
	5.1 Register Set
	5.1.1 VSECR – System register protection violation cause
	5.1.2 VSTID – System register protection violation task identifier
	5.1.3 VSADR – System register protection violation address

	5.2 Access Control
	5.3 Registers to Be Protected
	5.4 Detection of Violation
	5.5 Operation Method

	CHAPTER 6 MEMORY PROTECTION
	6.1 Register Set
	6.1.1 IPAnL – Instruction/constant protection area n lower-limit address (n = 0 to 4)
	6.1.2 IPAnU – Instruction/constant protection area n upper-limit address (n = 0 to 4)
	6.1.3 DPAnL – Data protection area n lower-limit address (n = 0 to 5)
	6.1.4 DPAnU – Data protection area n upper-limit address (n = 0 to 5)
	6.1.5 VMECR – Memory protection violation cause
	6.1.6 VMTID – Memory protection violation task identifier
	6.1.7 VMADR – Memory protection violation address

	6.2 Access Control
	6.3 Setting Protection Area
	6.3.1 Valid bit (E bit)
	6.3.2 Execution enable bit (X bit)
	6.3.3 Read enable bit (R bit)
	6.3.4 Write enable bit (W bit)
	6.3.5 sp indirect access enable bit (S bit)
	6.3.6 Protection area specification mode bit (T bit)
	6.3.7 Protection area lower-limit address (AL31 to AL0 bits)
	6.3.8 Protection area upper-limit address (AU31 to AU0 bits)

	6.4 Notes on Setting Protection Area
	6.4.1 Crossing of protection area boundaries
	6.4.2 Invalid protection area setting

	6.5 Stack Inspection Function
	6.6 Special Memory Access Instructions
	6.6.1 Load and store instructions executing misaligned access
	6.6.2 Some bit manipulation instructions and CAXI instruction
	6.6.3 Stack frame manipulation instructions
	6.6.4 SYSCALL instruction

	6.7 Protection Violation and Exception

	CHAPTER 7 PERIPHERAL DEVICE PROTECTION
	7.1 Register Set
	7.1.1 PPM – Setting of peripheral device protection operation mode
	7.1.2 PPEC – Controlling peripheral device protection exception
	7.1.3 VPNECR – Peripheral device protection NT state violation cause
	7.1.4 VPNADR – Peripheral device protection NT state violation address
	7.1.5 VPNTID – Peripheral device protection NT state violation task ID
	7.1.6 VPTECR – Peripheral device protection T state violation cause
	7.1.7 VPTADR – Peripheral device protection T state violation address
	7.1.8 VPTTID – Peripheral device protection T state violation task ID
	7.1.9 PPSn – Specification of special peripheral device
	7.1.10 PPPn – Specification of OS peripheral device
	7.1.11 PPVn – Validating general peripheral device protection
	7.1.12 PPTn – Specification protection type of general peripheral device

	7.2 Standing of Memory Protection and Peripheral Device Protection
	7.3 Types of Peripheral Devices
	7.3.1 Setting types of peripheral devices
	7.3.2 Detailed protection setting of general peripheral device

	7.4 Peripheral Device Protection Violation in T State
	7.5 Peripheral Device Protection Violation in NT State
	7.5.1 Invalidating subsequent accesses

	7.6 Handling PPI Exception
	7.6.1 Canceling PPI exception
	7.6.2 Operation method not using PPI exception
	7.6.3 Operation to be performed by PPI exception processing

	7.7 List of Results of Detection of Peripheral Device Protection Violation
	7.8 Accessing Special Peripheral Devices
	7.9 Protection Setting of Peripheral Device Protection Setting Registers
	7.10 Special Peripheral Device Access Instruction
	7.10.1 SYSCALL instruction

	CHAPTER 8 TIMING SUPERVISION FUNCTION
	8.1 Register Set
	8.1.1 TSEC – Controlling timing supervision
	8.1.2 TSECR – Timing supervision exception cause
	8.1.3 TSCCFGn – Setting of timing supervision function counter n (n = 0 to 5)
	8.1.4 TSCCNTn – Count value of timing supervision counter n (n = 0 to 5)
	8.1.5 TSCCMPn – Comparison value of timing supervision counter n (n = 0 to 5)
	8.1.6 TSCRLDn – Reload value of timing supervision counter n (n = 0 to 5)

	8.2 Counter Functions
	8.2.1 Resolution
	8.2.2 Counting direction
	8.2.3 Exception mode
	8.2.4 Auto reloading
	8.2.5 Counter mode

	8.3 Operation Modes of Counter and CPU
	8.4 Detecting Violation
	8.4.1 Identifying violation cause

	8.5 Handling of TSI Exception
	8.5.1 Reporting TSI exception
	8.5.2 Identifying exception cause
	8.5.3 Canceling TSI exception

	8.6 Setting Counter Corresponding to Each Supervision Function
	8.6.1 Global interrupt lock supervision
	8.6.2 Runtime supervision
	8.6.3 Supervising number of times of interrupt reaches a specific value
	8.6.4 Supervising time lapse

	CHAPTER 9 PROCESSOR PROTECTION EXCEPTION
	9.1 Types of Violations
	9.1.1 System register protection violation
	9.1.2 Execution protection violation
	9.1.3 Data protection violation
	9.1.4 Peripheral device protection violation
	9.1.5 Timing supervision violation

	9.2 Types of Exceptions
	9.2.1 MIP exception
	9.2.2 MDP exception
	9.2.3 PPI exception
	9.2.4 TSI exception

	9.3 Identifying Violation Cause
	9.3.1 MIP exception
	9.3.2 MDP exception
	9.3.3 PPI exception
	9.3.4 TSI exception

	CHAPTER 10 MEMORY PROTECTION SETTING CHECK FUNCTION
	10.1 Register Set
	10.1.1 MCA – Memory protection setting check address
	10.1.2 MCS – Memory protection setting check size
	10.1.3 MCC – Memory protection setting check command
	10.1.4 MCR – Memory protection setting check result

	10.2 Sample Code

	CHAPTER 11 SPECIFAL FUNCTON
	11.1 Clearing Memory Protection Setting All at Once

	PART 4 FLOATING-POINT OPERATION FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features
	1.2 Implementing Floating-point Operation Function

	CHAPTER 2 REGISTER SET
	2.1 Floating-point Operation Registers
	2.2 Floating-point System Registers
	2.2.1 FPSR (Floating-point configuration/status
	2.2.2 FPEPC (Floating-point exception program counter
	2.2.3 FPST (Floating-point operation status
	2.2.4 FPCC - Floating-point operation comparison result
	2.2.5 FPCFG (Floating-point operation configuration
	2.2.6 FPEC (Floating-point exception control

	CHAPTER 3 DATA TYPES
	3.1 Data Formats
	3.1.1 Floating-point format
	3.1.2 Fixed-point formats

	CHAPTER 4 INSTRUCTIONS
	4.1 Instruction Formats
	4.2 Overview of Floating-point Instructions
	4.3 Conditions for Comparison Instructions
	4.4 Instruction Set

	CHAPTER 5 FLOATING-POINT OPERATION EXCEPTIONS
	5.1 Types of Exceptions
	5.2 Exception Processing
	5.2.1 Status flag

	5.3 Exception Details
	5.3.1 Inexact exception (I)
	5.3.2 Invalid operation exception (V)
	5.3.3 Division-by-zero exception (Z)
	5.3.4 Overflow exception (O)
	5.3.5 Underflow exception (U)
	5.3.6 Unimplemented operation exception (E)

	5.4 Precise Exceptions and Imprecise Exceptions
	5.4.1 Precise exceptions
	5.4.2 Imprecise exceptions

	5.5 Saving and Returning Status
	5.6 Selection of Floating-point Operation Model
	5.6.1 When accurate operations are required
	5.6.2 When operation performance is emphasized

	APPENDIX A LIST OF INSTRUCTIONS
	A.1 Basic Instructions
	A.2 Floating-point Instructions

	APPENDIX B INSTRUCTION OPCODE MAP
	B.1 Basic Instruction Opcode Map
	B.2 Floating-point Instruction Opcode Map

	APPENDIX C PIPELINES
	C.1 Features
	C.2 Clock Requirements
	C.3 Pipeline for Basic Instructions

	APPENDIX D LIST OF PERIPHERAL DEVICE PROTECTION AREAS
	APPENDIX E DIFFERENCES BETWEEN V850E2M CPU AND OTHER CPUS
	E.1 Difference Between V850E1 and V850E2

	APPENDIX F INSTRUCTION INDEX
	F.1 Basic Instructions
	F.2 Floating to point Operation Instructions

	REVISION HISTORY
	COLOPHON
	Addresslist
	BACKCOVER

