
Application Note

Self-Programming

32-/16-bit Single-Chip Microcontroller

Self-Programming Library for embedded Single
Voltage FLASH

Document No. U16929EE3V2AN00
Date Published May 2007

© NEC Electronics Corporation 2007
Printed in Germany

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between VIL (MAX) and
VIH (MIN).

HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must
be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as
much as possible, and quickly dissipate it when it has occurred. Environmental control must be
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the
reset signal is received. A reset operation must be executed immediately after power-on for devices
with reset functions.

POWER ON/OFF SEQUENCE
In the case of a device that uses different power supplies for the internal operation and external
interface, as a rule, switch on the external power supply after switching on the internal power supply.
When switching the power supply off, as a rule, switch off the external power supply and then the
internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal
elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related
specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE
Do not input signals or an I/O pull-up power supply while the device is not powered. The current
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and
the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

2 Application Note U16929EE3V2AN00

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
TEL: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai P.R. China P.C:200120
Tel: 021-5888-5400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

Seoul Branch
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

For further information,
please contact:

G05.11-1A

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielski Strasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52180
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Limburglaan 5
5616 HR Eindhoven
The Netherlands
Tel: 040 265 40 10

All (other) product, brand, or trade names used in this pamphlet are the trademarks or
registered trademarks of their respective owners.
Product specifications are subject to change without notice. To ensure that you have
the latest product data, please contact your local NEC Electronics sales office.
3 Application Note U16929EE3V2AN00

The information in this document is current as of March, 2006. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":
4 Application Note U16929EE3V2AN00

Table of Contents

Chapter 1 Introduction. 11

Chapter 2 Definition of Terms. 13

Chapter 3 Overview . 15
3.1 Process Technology and Flash Technology. 16
3.2 Technology Specific Chapters . 16

Chapter 4 Flash . 17
4.1 Block Structures . 17

4.1.1 Flash versus EEPROM. 17
4.1.2 Flash block structures. 17

4.2 Flash Protection. 18
4.2.1 Protection strategy . 18
4.2.2 Protection configuration settings. 20

4.3 Security. 21
4.3.1 Normal operation (Error Correction Circuit - ECC) . 21
4.3.2 Secure reprogramming using self-programming . 22
4.3.3 Secure self-programming without bootloader update . 22
4.3.4 Secure self-programming with bootloader update . 22

4.4 Simultaneous Operation During Self-Programming. 23
4.4.1 Stop application . 23
4.4.2 Execute in RAM or external memory . 23
4.4.3 Dual operation . 24

4.5 Other Features . 25
4.5.1 Variable reset vector. 25

Chapter 5 UC2 - Self-Programming . 27
5.1 Device Reprogramming Overview . 27
5.2 Basic Block Reprogramming Flow. 28
5.3 Extra Information Handling. 29
5.4 Secure Reprogramming Flow with Bootloader Update . 30
5.5 Library Sections. 33
5.6 Flash Environment. 34
5.7 Reprogramming Scenarios . 35

5.7.1 External memory sequence . 36
5.7.2 Time saving reprogramming sequence . 37
5.7.3 RAM saving reprogramming sequence . 38

5.8 Hardware Requirements . 39
5.9 User Application Execution During Self-Programming . 40

5.9.1 Interrupts. 41
5.9.2 Status polling . 43
5.9.3 Execution latencies. 44

Chapter 6 UC2 - SelfLib Configuration. 45
6.1 Used Resources. 45
6.2 Software Considerations. 45
6.3 Compiler Configuration. 46

6.3.1 Project settings . 46

Chapter 7 UC2 - SelfLib API . 49
7.1 Initialisation . 49

7.1.1 Library initialization . 49
7.1.2 New function address . 52
7.1.3 Register interrupts . 53
5 Application Note U16929EE3V2AN00

7.2 Flash Environment. 54
7.2.1 Activate environment . 54
7.2.2 Deactivate environment . 54

7.3 Basic Reprogramming. 55
7.3.1 Area Blank Check . 55
7.3.2 Area Erase . 56
7.3.3 Write . 57
7.3.4 Internal Verify . 58

7.4 Protection/Safety Related Operations . 59
7.4.1 Get protection flags. 59
7.4.2 Get block swapping flag . 59
7.4.3 Set protection flags . 60
7.4.4 Set protection flags and variable reset vector. 61

7.5 Miscellaneous Functions . 63
7.5.1 Get device number . 63
7.5.2 Get block count. 63
7.5.3 Get block end address . 63
7.5.4 Boot swap . 64
7.5.5 Status check . 64
7.5.6 Check mode (FLMD0) . 65

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming. 67
8.1 SelfLib Functionality . 67

8.1.1 Flash Environment . 67
8.2 Device Reprogramming Overview . 68
8.3 Basic Block Reprogramming Flow. 69
8.4 Extra Information Handling . 70
8.5 Secure Reprogramming Flow with bootloader Update . 71
8.6 Reprogramming Scenario . 74
8.7 SelfLib Sections . 75

8.7.1 Automatic section copy. 76
8.8 Hardware Requirements . 77
8.9 User Application Execution During Self-Programming . 78

8.9.1 Interrupt functions . 79

Chapter 9 SST (UX4/CZ6HSF) - SelfLib Configuration . 81
9.1 Used Resources. 81
9.2 Software Considerations. 81
9.3 Compiler Configuration. 82

9.3.1 Project settings . 82
9.4 Global SelfLib Defines - SelfLibSpecific.h. 84

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API. 85
10.1 Initialisation . 85

10.1.1 Library initialization . 85
10.1.2 New function address . 87

10.2 Basic Reprogramming. 88
10.2.1 Area Blank Check . 88
10.2.2 Area Erase . 89
10.2.3 Write . 90
10.2.4 Internal Verify . 91

10.3 Protection/Safety Related Operations . 92
10.3.1 Set protection flags and boot cluster size . 92

10.4 Get Device Dependent Information . 94
10.4.1 Get information . 94
10.4.2 Get protection flags. 96
10.4.3 Get block swapping flag . 97
10.4.4 Get device number . 97
6 Application Note U16929EE3V2AN00

10.4.5 Get block count. 98
10.4.6 Get block end address . 98

10.5 Miscellaneous Functions . 99
10.5.1 Boot swap . 99
10.5.2 Check mode (FLMD0) . 99
10.5.3 Read . 100

10.6 Alternative Function Names . 101

Chapter 11 SST (MF2/UX4) - Self-Programming . 103
11.1 SelfLib Functionality . 103

11.1.1 Flash Environment . 103
11.2 Device Reprogramming Overview . 104
11.3 Basic Block Reprogramming Flow. 105
11.4 Extra Information Handling. 106
11.5 Secure Reprogramming Flow with bootloader Update . 107
11.6 User Application Execution During Self-Programming . 110

11.6.1 Internal status check. 111
11.6.2 User status check . 112
11.6.3 Execution latencies. 113
11.6.4 Interrupt functions . 114

11.7 SelfLib Sections . 116
11.7.1 Automatic section copy. 117

11.8 Hardware Requirements . 118

Chapter 12 SST (MF2/UX4) - SelfLib Configuration . 119
12.1 Used Resources. 119
12.2 Software Considerations. 119
12.3 Compiler Configuration. 120

12.3.1 Project settings . 120
12.4 Global SelfLib Defines - SelfLibSetup.h . 122

Chapter 13 SST (MF2/UX4) - SelfLib API . 123
13.1 Initialisation . 123

13.1.1 Library initialization . 123
13.1.2 New function address . 125

13.2 Basic Reprogramming. 126
13.2.1 Area Blank Check . 126
13.2.2 Area Erase . 127
13.2.3 Write . 128
13.2.4 Internal Verify . 129

13.3 Protection/Safety Related Operations . 130
13.3.1 Set protection flags, boot cluster size and variable reset vector. 130

13.4 Get Device Dependent Information . 132
13.4.1 Get information . 132
13.4.2 Get protection flags. 134
13.4.3 Get block swapping flag . 135
13.4.4 Get device number . 135
13.4.5 Get block count. 136
13.4.6 Get block end address . 136
13.4.7 Get variable reset vector address. 137

13.5 Miscellaneous Functions . 138
13.5.1 Boot swap . 138
13.5.2 Check mode (FLMD0) . 138

13.6 Special functions . 139
13.6.1 Read . 139
13.6.2 Get traceability data . 140

13.7 User Status Check Related . 141
13.7.1 Activate environment . 141
7 Application Note U16929EE3V2AN00

13.7.2 Deactivate environment . 141
13.7.3 Status check . 142

13.8 Alternative Function Names . 143
8 Application Note U16929EE3V2AN00

9 Application Note U16929EE3V2AN00

List of Figures

Figure 4-1: Embedded Flash Configuration Samples.. 17
Figure 4-2: ECC Functionality.. 21
Figure 4-3: Dual Operation Flash .. 24
Figure 5-1: External Memory Reprogramming Sequence ... 36
Figure 5-2: Basic Time Saving Reprogramming Sequence... 37
Figure 5-3: Basic RAM Saving Reprogramming Sequence... 38
Figure 5-4: FLMD0 Sample Circuit .. 39
Figure 5-5: Interrupt Routine Execution in Internal RAM / External Memory................................. 41
Figure 5-6: Application Flow in Polling Mode... 43
Figure 7-1: Section Copy in SelfLib Initialisation ... 50
Figure 8-1: Firmware Execution Scenario ... 74
Figure 8-2: FLMD0 Sample Circuit .. 77
Figure 8-3: Interrupt Routine Execution in Internal RAM / External Memory................................. 79
Figure 10-1: Section Copy in SelfLib Initialisation ... 86
Figure 11-1: Execution Scenario on Internal Status Check ... 111
Figure 11-2: Execution Scenario on User Status Check ... 112
Figure 11-3: Interrupt Routine Execution in Internal RAM / External Memory............................... 114
Figure 11-4: FLMD0 Sample Circuit .. 118
Figure 13-1: Section Copy in SelfLib Initialisation ... 124

10 Application Note U16929EE3V2AN00

List of Tables

Table 5-1: Basic Steps... 27
Table 5-2: Block Reprogramming Sequence... 28
Table 5-3: UC2 Flash Secure Reprogramming Sequence Including Bootloader Update................ 30
Table 8-1: Basic Steps... 68
Table 8-2: Block Reprogramming Sequence... 69
Table 8-3: SST(UX4) Flash Secure Reprogramming Sequence Incl. bootloader Update............... 72
Table 10-1: Alternative function names ... 101
Table 11-1: Basic Steps... 104
Table 11-2: Block Reprogramming Sequence... 105
Table 11-3: SST(MF2) Flash Secure Reprogramming Sequence Incl. bootloader Update............. 108
Table 13-1: Alternative function names ... 143

Chapter 1 Introduction

In the history of microcontroller development the selection of appropriate non volatile memory always
played an important role. In the beginning only mask ROM and OTP (one time programmable) devices
were available. The later on developed external EEPROM and FLASH devices achieved a new level of
flexibility in the system development. However, the high price of these external solutions often made it
necessary for mass products to do a cost reduction step after development or after production ramp up.
The re-programmable memory was then replaced by mask ROM.

The further ongoing technology improvement and the possibility to embed non volatile memory into the
microcontroller silicon resulted in a new generation of applications concentrating all intelligence into
one single device.

The continuously increasing application complexity requires more and more, that program updates, bug
fixes or feature extensions are possible also during production or in the field. This requirement together
with the continuously closing price gap between embedded Flash and mask ROM leads to the clear
trend to use Flash in mass production.

NEC’s embedded Flash microcontrollers support this trend with their excellent quality and high sophis-
ticated features. Using our dedicated Flash programmer PG-FP4 or third party tools, Flash program-
ming is made easy from development to production. Data security is ensured by special protection
features, that can be set in different levels according to the application requirements. Partially or even
complete application update end of line or in the field is supported by our secure self-programming.

The Flash programming using dedicated Flash programmers is explained in the users manuals of the
programmers. Information with respect to the connection between the programmers and the devices or
special device treatment during programming can also be found in the devices users manuals.

This document concentrates on the wide field of self-programming. With respect to this, two basic tech-
nologies have to be differentiated. They differ regarding the Flash features, especially regarding self-
programming:

• Single voltage Flash
No dedicated programming voltage is required. Flash features and self-programming of Single
Voltage Flash is covered by this document.

• Dual voltage Flash
This Flash needs a dedicated Flash programming voltage (usually called VPP). A similar document
covering self-programming of dual voltage Flash is available on the internet too.
11 Application Note U16929EE3V2AN00

[MEMO]
12 Application Note U16929EE3V2AN00

Chapter 2 Definition of Terms

Bootloader
A piece of software located in the boot segment handling the reprogramming of the device.

BROM
Embedded Mask ROM that holds the device internal firmware and testing routines

Code Flash
Embedded Flash where the application code is stored.

Data Flash
Embedded Flash implemented for storage of the data of the EEPROM emulations. Beside that
also code operation is possible from Data Flash

DeviceInfo
The following chapters describe many features of the NEC’s embedded Flash devices
identified as system requirements. Due to technical reasons, like different device technology
and due to the cost impact not all devices contain every explained feature. Furthermore,
several device dependent data (latencies, programming times/sizes,...) is important for
self-programming.
The collection of all required information about the NEC devices, called DeviceInfo later on
in this document, can be found in the file “V850_SVF_DRL_Vxxx.pdf”, which can also
be loaded from the internet.

Note: The DeviceInfo is an important reference for this application note and so shall be loaded from
the internet too.

Dual Operation
Dual operation is the capability to fetch code during reprogramming of the flash memory.

Extra Area
A separate area of the Code Flash where protection flags and other internal information
are stored. The area is not directly accessible by the application. Only the device internal
firmware has access to that area. The size of the extra area is not included in the size of
the device. Means a 128kbyte flash device has 128kByte of flash available for the user.

Extra Data
Data stored in the device internal extra area(s). Part of the data are protection flags,
security flags and variable reset vector. All this is explained later on in the manual.

Firmware
Firmware is a piece of software that is located in an BROM and handling the interfacing
to the flash.

Flash
“Flash EPROM” - Electrical erasable nonvolatile memory. The difference to ROM is, that this
type of memory can be re-programmed several times

Flash Block
A flash block is the smallest erasable unit of the flash memory

Flash Environment
This is device internal hardware (charge pumps, sequencer,...), required to do any Flash
programming. It is not continuously activated, only for programming and self-programming.
Activation and deactivation is done by the SelfLib.
The re-programmed Flash is not accessible at all while the Flash environment is active. So parts
13 Application Note U16929EE3V2AN00

Chapter 2 Definition of Terms
of the SelfLib need to be executed outside the Flash (e.g. in embedded RAM). Copying
code to RAM is supported by the SelfLib and explained later in this document

Flash Macro
A flash comprises of the cell array, the sense amplifier and the charge pump (CP). For
address decoding and access some additional logic is needed

ROM
“Read only memory” - nonvolatile memory. The content of that memory can not be changed

RAM
“Random access memory” - volatile memory with random access

SelfLib
SelfLib is the short form of “Self-Programming Library”.

Self-Programming
Capability to re-program the embedded flash without external programming tool only via
control code running on the micro controller

Single Voltage
For the reprogramming of single voltage flashes the voltage needed for erasing and
programming are generated on-board of the micro controller. No external voltage needed like
for dual- voltage flash types
14 Application Note U16929EE3V2AN00

Chapter 3 Overview

This document describes the usage of the self-programming libraries for NEC’s microcontrollers with
embedded single voltage Flash.

The libraries provide a user friendly interface to the device internal firmware. The firmware itself initiates
and controls the different Flash programming steps (Erase, program,...), executed in background by a
dedicated hardware.

The libraries are delivered in source code. However it has to be considered carefully to do any changes,
as not intended behaviour and programming faults might be the result.

The development environments of the companies Green Hills (GHS) and IAR and NEC are supported.
Due to the different compiler and assembler features, especially the assembler files differ between the
environments. Therefore the library and application programs are distributed using an installer tool
allowing to select the appropriate environment

For support of other development environments, additional development effort may be necessary.
Especially, but maybe not only, the calling conventions with respect to the device internal firmware may
be different. As the device firmware is developed using the GHS tool chain, the firmware interface might
have to be adapted to call the firmware functions using the GHS calling conventions.

In addition to the library, demo programs are available, showing the implementation and usage of the
library. These programs are device and target hardware dependent.

The different options of set-up and usage of the SelfLib are explained in detail in this document.

Note: Please read all chapters of the application note carefully and follow exactly the given
sequences and recommendations. This is required in order to make full use of the high
level of security and safety provided by the devices.

The self-programming libraries with demo programs, this application note and device dependent infor-
mation can be downloaded from the following URL:

http://www.eu.necel.com/updates
15 Application Note U16929EE3V2AN00

Chapter 3 Overview
3.1 Process Technology and Flash Technology

NEC V850 devices are produced in different technologies and with different Flash implementations.
This results in slightly different self-programming interfaces, different timings and different support of
security and protection related features.

UC2 is a 0.25 µm process and as a successor of UC1 (0.35 µm process) it has been the first technology
to produce single voltage Flash that needs no dedicated external programming voltage. The Flash
implementation used for UC2 is NEC proprietary.

The other process technologies, such as MF2, CZ6HSF or UX4 use the SuperFlash® Flash implemen-
tation.

In several countries including the United States and Japan, SuperFlash® is a registered trademark of
Silicon Storage Technology.

In the course of this document the SuperFlash® implementation is called SST Flash.
The SST Flash technology differs from UC2 in the cell structure, what is transparent for the user, but
also in the block structure, what is relevant for the programming and self-programming strategies.
Furthermore, the timings and the protection features differ (See later chapters).

3.2 Technology Specific Chapters

Different device firmware implementations with corresponding self-programming interfaces have been
developed, in order to support self-programming on the different technologies and with the different
Flash implementation features in the best way.
With the self-programming interface also the self-programming libraries, containing the user application
interface, slightly differ. We have to distinguish between the following three implementations:

• UC2 Flash technology and UC2 style self-programming interface. The chapter names
corresponding to UC2 self-programming start with “UC2...”

• CZ6HSF or UX4 technology with SST Flash, featuring a self-programming interface originally
introduced on the first UX4 devices. The chapter names corresponding to devices supporting
this self-programming interface start with “SST (UX4/CZ6HSF)...”

• MF2 or UX4 technology with SST Flash, featuring a self-programming interface originally
introduced on MF2 devices. So, the chapter names corresponding to devices supporting this
self-programming interface start with “SST (MF2/UX4)...”

Please refer to the device documentation or to the DeviceInfo to select the correct library documenta-
tion chapters out of this manual for the selected device.
16 Application Note U16929EE3V2AN00

Chapter 4 Flash

4.1 Block Structures

4.1.1 Flash versus EEPROM

Major difference between Flash and EEPROM (or E2PROM) is the reprogramming granularity.
EEPROM can be reprogrammed wordwise, where the size of one word depends on the organisation
and interface. It can vary in the wide range between 8 bit and 256 bytes.
Depending on the implementation, Flash may also be programmed wordwise, but the Erase can only
be done on a complete block. This is the major limitation of Flash against EEPROM, but due to that the
memory hardware effort can be reduced significantly, making the embedded non volatile memory for
program code affordable.

4.1.2 Flash block structures

Depending on the specification, design and technology NEC’s embedded Flash microcontrollers con-
tain a certain number of Flash macros with a certain size.

Each Flash macro consists of several blocks and may contain one or more extra areas.
The blocks contain the user data. The extra area contains security and protection related information
(see 4.2 ”Flash Protection” on page 18 and 4.3 ”Security” on page 21), so called ExtraData. The
extra area is not accessible by normal read operations. Writing of the extra area contents is done by
special SelfLib commands which are part of the different reprogramming sequences. Handling of this
area is transparent for the user.

Depending on the Flash technology (e.g. UC2 or Super Flash®, licensed by SST) the block size differs
from 2 K up to 120 K.

Figure 4-1: Embedded Flash Configuration Samples

or

256 K Flash

macro 1

macro 0

0x0000 0000

0x0001 FFFF

0x0003 FFFF

Block 0
Block 1
Block 2
Block 3
Block 4

Block 60
Block 61
Block 62
Block 63 2 K

...

2 K
2 K
2 K

2 K
2 K
2 K
2 K
2 K

SST - 128 K
Flash Macro

UC2 - 128 K
Flash Macro

Extra area

E
xt

ra
 a

re
a

Block 0

Block 1

Block 2

Block 3

8 K

56 K

56 K

8 K
17 Application Note U16929EE3V2AN00

Chapter 4 Flash
4.2 Flash Protection

4.2.1 Protection strategy

In most cases an application software contains important intellectual property and/or data, that may not
be distributed to others or manipulated by others. In order to ensure the Flash data integrity and to pre-
vent unintended data read-out, NEC implements a set of features and mechanisms into the Flash
devices.

As these mechanisms may also limit the flexibility required for the application and the programming or
reprogramming, it has to be decided carefully what level of protection is intended.

The two major items to be considered in the protection concept are:

• Illegal read-out of the Flash contents

• Illegal reprogramming of the Flash

In the following the strategies regarding these items is described in detail.

(1) Illegal read-out of the Flash contents:

Read-out, legal and illegal, can be done on different ways. The following describes major ways
and the appropriate counter measures against illegal operations:

• Direct read-out via on-chip debug interfaces
Some devices contain the NEC’s N-Wire interface. This is basically a superset of the well known
JTAG debug interface and allows full control over all data stored in the device. It can be
protected by a password. Please refer to the DeviceInfo to check, whether the protected N-Wire
interface is available. As the protection is not directly related to a Flash feature, it is mentioned,
but not described here. Please refer to the device users manual or to the NEC N-Wire tools
description for that.

• Direct read-out via programming interface
The standard programming interface (e.g. for PG-FP4) supports a command to read out the
Flash contents on all current devices (Earlier UC2 devices don’t support the command. Please
check the DeviceInfo). This feature helps a lot in the development and debugging phase and for
failure evaluations. This command can be disabled by a protection flag (See 4.2.2 ”Protection
configuration settings” on page 20).

• Direct read-out by the application itself (via any interface)
e.g. a debug command in the application to dump memory. Please ensure, that this possibility is
not implemented or at least protected in your application.

• Indirect read-out by spy software, programmed into the internal Flash
Software can be programmed into the Flash in two ways:
- By the application itself using self-programming

Please ensure, that this possibility is not implemented or protected in your application (e.g.
Password mechanism).

- By the programmer interface
In order to disable this, the Flash Write and the Flash Block Erase commands can be
disabled (See 4.2.2 ”Protection configuration settings” on page 20). By doing so, Flash
writing via this interface is only possible after erasing the complete Flash, but then no more
data to be read is in the Flash any more.
18 Application Note U16929EE3V2AN00

Chapter 4 Flash
(2) Illegal or accidental reprogramming of the Flash:

For many applications protection against the illegal Flash read-out is already sufficient. In other
cases reprogramming the device either completely or partly must be disabled. NEC V850 devices
provide features even for that (See device information to check the individually supported fea-
tures):

• Partly reprogramming by the programmer interface
See “illegal read-out of the Flash contents”

• Complete reprogramming by the programmer interface
If also the complete erasing and reprogramming by this interface shall be disabled, in addition to
the Flash Write and the Block Erase commands also the Chip Erase command can be disabled
(See 4.2.2 ”Protection configuration settings” on page 20). By doing so the reprogramming via
programmer interface is no longer possible, neither by unauthorized nor by authorized use!
Reprogramming by the application using self-programming is still possible.

• Reprogramming by the application using the self-programming
It is also possible to disable reprogramming parts or the complete Flash via the application (See
4.2.2 ”Protection configuration settings” on page 20). This protection is block wise organized,
starting from 0x0000000. So it is possible to protect e.g. a Bootloader or more code and data up
to the complete application.

Caution: When disabling reprogramming of blocks via the application, the secured part can no
longer be reprogrammed in any way any more!!!
19 Application Note U16929EE3V2AN00

Chapter 4 Flash
4.2.2 Protection configuration settings

This chapter explains the protection relevant settings (Part of the ExtraData) and mechanisms, imple-
mented in NEC embedded Flash devices (See DeviceInfo to check, which features are supported by
which device).
For the usage of these settings and the protection strategy, please refer to section 4.2.1 ”Protection
strategy” on page 18.

The protection configuration can be set by the dedicated Flash programmers, like PG-FP4 or via self-
programming (In UC2 not change by self-programming).

Note: If set once, resetting is only possible by the Chip Erase using a dedicated Flash programmer
(SST Flash and UC2 Flash). Furthermore, in UC2 Flash the protection settings are made invalid
by erasing certain combinations of or all lower 4 Flash blocks (See 5.3 ”Extra Information Han-
dling” on page 29).

The following flags and settings are available:

• Read command disable (Programmer interface)
Reading the Flash contents via the programming interface is disabled. It does not affect self-
programming.

• Program command disable (Programmer interface)
Writing to Flash via programming interface is disabled. It does not affect self-programming.
The Flag is valid for the complete Flash.

• Block Erase command disable (Programmer interface)
Erasing single blocks via programming interface is disabled. It does not affect Chip Erase or
self-programming.
The Flag is valid for the complete Flash.

• Chip Erase command disable (Programmer interface)
Erasing the complete device via programming interface is disabled. It does not affect self-
programming
The Flag is valid for the complete Flash.

• Boot Cluster size definition (SST Flash devices only)
Boot cluster size information is relevant for the boot cluster protection (see below)

• Boot Cluster Protection (SST Flash devices only)
If set, erasing and writing on the Flash by the application using the self-programming is disabled
for the boot cluster.

Note: The Boot Cluster size determines just the number of blocks affected by the Boot Cluster Protec-
tion. Different from that, the later explained Bootswap mechanism affects a fix number of blocks.
This number of blocks is device dependent and can be found in the DeviceInfo.
20 Application Note U16929EE3V2AN00

Chapter 4 Flash
4.3 Security

NEC’s Flash devices are equipped with dedicated security features. The features have to be separated
for normal operation, where data retention is important and for reprogramming, where secure repro-
gramming in case of power fail or other problems is important.

4.3.1 Normal operation (Error Correction Circuit - ECC)

NEC’s Flash devices contain Error Correction Circuits (ECC) to provide correct Flash data even in case
of a single bit failure in the Flash cells.

ECC bases on the fact, that beside the Flash data redundant ECC data is written into additional Flash
cells. This data is then used to correct 1 bit failure per word.

Figure 4-2: ECC Functionality

During the write procedure the data to be written is encrypted in an ECC encryption matrix and the
resulting additional bit are written to additional Flash cells too. When reading during normal operation
the data word and the additional ECC bits are put into a decrypting matrix. The result of this matrix is
the original data word. One of the data or ECC bits might be wrong without affecting the correctness of
the resulting data word. ECC is an on-line method. That means, that from user point of view ECC has
NO impact on the data read performance.

ECCEncryptionLogic

ECCDecryptionLogic

Original Data

Flash cells with max. 1 bit
failure over the life time

ECC Decription Logic

ECC Encription Logic

ECC bits

1 61 32

Data bits

321

321

Flash
Programming

Flash
Read
21 Application Note U16929EE3V2AN00

Chapter 4 Flash
4.3.2 Secure reprogramming using self-programming

When talking about secure self-programming, this naming needs to be exactly defined, as several dif-
ferent ways of understanding are possible.
Basic idea of secure self-programming is that if anything during the reprogramming process goes
wrong, it must be possible to keep a basic application functionality alive. Usually it is solved by separa-
tion of the application into the application that is updated and therefore temporarily not valid during
reprogramming, and a specific bootloader that must always be executable somehow again after power
up/reset.

Two major options with different advantages and disadvantages have to be considered. Depending on
the application, bootloader and Flash technology (Flash block sizes) the appropriate solution has to be
selected:

• Secure self-programming without bootloader update

• Secure self-programming with bootloader update

4.3.3 Secure self-programming without bootloader update

The easiest way of secure self-programming is to occupy one or more complete Flash blocks for the
bootloader and do not reprogram them again. By that it never happens, that an interruption of the repro-
gramming (e.g. power fail) causes an invalid bootloader.
This method is only possible if no data, that needs to be reprogrammed using self-programming, is
located in one of the bootloader Flash blocks. This is because as soon as data needs to be repro-
grammed, the Flash block needs to be erased and so a part of the bootloader is temporarily not availa-
ble. Especially in case of big sized Flash blocks (UC2) use of this method needs to be considered
carefully, as it might result in waste of Flash memory, if the bootloader does not occupy a complete
Flash block.

On the other hand handling of this method is easy, as just one or more Flash blocks (application pro-
gram/data) are reprogrammed in a standard procedure.
If blocks with an attached extra area are affected (Blocks 0~3 in UC2 Flash devices), the secure self-
programming with bootloader update procedure is required, if any ExtraData has been set!

Furthermore, increased safety by protection against reprogramming the bootloader due to program fail-
ures is possible (SST flash only). The block protection feature (See section 4.2.2 ”Protection configu-
ration settings” on page 20) can be used to protect the bootloader forever against any reprogramming.
In that case, please consider, that the block cannot be reprogrammed in any way any more.

4.3.4 Secure self-programming with bootloader update

Bootloader block update might be necessary due to the following items:
Keep the option to fix bootloader bugs.
Application code/data, that needs to be updated, is stored in the same block as the bootloader. This
may be necessary if only few big blocks are available.

If the bootloader has to be updated, it needs to be ensured, that always a working version of the boot-
loader is available, even during the update procedure. Furthermore, in case of a power failure the valid
bootloader needs to be detected and the program has to be started there. NEC provides the Boot Swap
functionality for that.
Boot swap means, that two Flash blocks or clusters of blocks can be swapped in the address range.
This swapping is done depending on Boot Swap bits, that can be set in the corresponding Flash extra
areas. When a valid bootloader is contained in the corresponding block, the bits are set accordingly and
the block is automatically swapped to the address 0x00000000 on device start-up. By that and by the
correct reprogramming sequence can be ensured, that also a block containing a bootloader can be
updated securely.
22 Application Note U16929EE3V2AN00

Chapter 4 Flash
4.4 Simultaneous Operation During Self-Programming

The different self-programming steps, especially Erase, but also Write, Internal Verify,... consume time.
During that time it is usually not possible to stop the application, at least basic functionality is required.
As the at least the Flash area, that is reprogrammed, is not available during self-programming, special
provisions need to be taken.
Depending on the application requirements, different simultaneous operation scenarios are possible:

• Stop application

• Execute in RAM

• Dual operation

4.4.1 Stop application

When doing the self-programming steps the application is simply stopped. No operations, even no sim-
ple ones like Watchdog triggering are possible that time.
Disadvantage is, that the time for some self-programming operations is quite long. Especially the Erase
procedure may need several seconds, depending on the device, technology and block structure.

4.4.2 Execute in RAM or external memory

User applications can be executed in RAM (Or external memory, if available) during execution of the
self-programming functions. Additional software overhead to copy the functions to internal RAM or
external memory has to be considered.
Supported is given in two basic ways, which can be used even in parallel. The options are:

• Interrupts
Using interrupts to execute user functions, while self-programming.

• Polling (Not SST (CZ6HSF / UX4))
Initiate background self-programming functions and continue the user application, which then
polls the end of the user application.

For both options latencies have to be considered regarding user function execution. The latency for
interrupt functions is in the range of several hundred microseconds. The polling latency can be much
longer, as some library functions cannot be executed in background by a dedicated hardware.
Please also refer to chapters "User Application Execution During Self-Programming" for the different
technologies.
The device dependent latency times are quoted in the DeviceInfo.
23 Application Note U16929EE3V2AN00

Chapter 4 Flash
4.4.3 Dual operation

Execute code in one Flash area while do self-programming on another area.
Normally during self-programming the complete Flash is not available. However, when at least two
Flash areas (Macros) are on the device, dual operation could be implemented.
Anyhow, the hardware effort required for this feature exceeds other features effort by far. Therefore,
dual operation on Code Flash only is not supported.
Anyhow, if devices contain Data Flash, code can be executed on Data Flash while re-programming
Code Flash.

Figure 4-3: Dual Operation Flash

Block 3

Block 2

Block 1

Block 0

Erasing or
Programming

Instruction
Fetch

area 1

area 0
24 Application Note U16929EE3V2AN00

Chapter 4 Flash
4.5 Other Features

4.5.1 Variable reset vector

Most devices support configuration of the address of the first instruction executed after reset, the so
called variable reset vector.

The configuration is also part of the ExtraData and the handling of the configuration is the same as for
the protection flags. Configuration is possible either by a dedicated Flash programmer or by a SelfLib
instruction.

By the variable reset vector it is possible to place a bootloader in any Flash block of the device and so to
decouple the bootloader from the interrupt vector table, which is located in the 1st Flash block and
starts 0x00000000. So, the interrupt vector table can become an integral part of the application instead
of the bootloader.
This requires, that no secure bootloader update is required (Secure bootloader update requires the
boot swap mechanism, which uses the 1st Flash blocks) and that the bootloader does not use inter-
rupts.

Note: The variable reset vector only determines the program start after reset. The interrupt vector
table is not affected. It is always located at 0x00000000.
25 Application Note U16929EE3V2AN00

Chapter 4 Flash
[MEMO]
26 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming

5.1 Device Reprogramming Overview

First of all it is important to select the correct reprogramming flow. Please check with respect to your
application, whether secure reprogramming and secure bootloader update is required. The DeviceInfo
contains the information, if the boot swap feature (required for secure bootloader update) is supported
(See section 4.3.2 ”Secure reprogramming using self-programming” on page 22).
If secure bootloader update is required, please refer to 5.4 ”Secure Reprogramming Flow with Boot-
loader Update” on page 30 for the correct flow.

In the following, the basic reprogramming steps are explained. Standard block reprogramming and the
secure bootloader reprogramming is essential part of the next sub-chapters. The standard block repro-
gramming flow is also embedded in the secure bootloader reprogramming.

The following principle steps have to be executed for any device reprogramming:

Note: Especially for the first four blocks these basic steps need to be executed on one block com-
pletely before touching the next block. Only so the integrity of the extra information, like boot
swap flag, protection flags,... is ensured.

Table 5-1: Basic Steps

Step Function Description

1 Setup the user program Setup communication Interface, watchdog timer, FLMD0 voltage activation,...

2
Self-Programming
initialisation

See section 7.1 ”Initialisation” on page 49.

3 Reprogram the Flash

Take care to keep the correct sequence for reprogramming single Flash blocks
(see section 5.2 ”Basic Block Reprogramming Flow” on page 28) and for secure
bootloader reprogramming (see section 5.4 ”Secure Reprogramming Flow with
Bootloader Update” on page 30).

4 End Reprogramming Return to bootloader, start application, reset or...
27 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.2 Basic Block Reprogramming Flow

This is the standard flow, that shall be used to reprogram all Flash blocks.

Step four is required for the first four blocks, when either secure bootloader update (See 5.4 ”Secure
Reprogramming Flow with Bootloader Update” on page 30) is intended or if protection flags are set
(See 5.3 ”Extra Information Handling” on page 29).

To ensure, that the data is written correctly and the data retention is given it is important to keep the fol-
lowing sequence for block reprogramming. Whenever a function returns an error, you may not continue
the sequence because the next steps may not work correctly and the result is undefined.

Table 5-2: Block Reprogramming Sequence

Step Flash Lib. Function Description

1 Block Erase The Flash block is erased

2 Write Data is written to the Flash

3
Set security/protec-
tion flags

Security/protection related flags are set (1st four blocks only, see above)

4 Internal Verify

This step is executed after the last Write to a dedicated block to ensure the
specified data retention of the Flash

The Internal Verify is a check for higher reliability of the programming, but no
manipulation or operation on a flash cells is performed.
It is not mandatory but recommended on Code Flash in order to detect possi-
ble
problems that might occur during programming (e.g. noise, Vdd/Gnd bounce)
28 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.3 Extra Information Handling

The first four blocks are combined with an extra area each. The device internal firmware does a special
majority decision from these blocks on start-up in order to decide, if a protection flag is set, or not. An
extra area is erased together with the corresponding block. Special care has to be taken with respect to
the protection flags.
The flags are set/re-written using the library function 7.4 ”Protection/Safety Related Operations” on
page 59.

Setting protection flags of variable reset vector
UC2 Flash protection flags can only be set by a dedicated Flash programmer via the programming
interface (e.g. Using the PG-FP4). It is not possible, to change the settings by self-programming (e.g.
set or clear the Write protection flag). Following that, the decision for the protection need to be done on
virgin programming with the flash programmer.
However, due to the organisation of the UC2 Flash (extra area is erased together with the flash block) it
is necessary to re-write the security flags when reprogramming one of the first 4 blocks. Please refer to
5.2 ”Basic Block Reprogramming Flow” on page 28 for the correct sequence.

Note: Re-writing the flags need to be done before reprogramming the next block. By that the repro-
gramming flow does not enter an intermediate state, where the firmware cannot detect the cor-
rect flag setting in case of startup after reprogramming interruption.

Boot swap flag
The boot swapping feature can swap the blocks 0 and 1 with the blocks 2 and 3. All extra areas contain
a boot flag. To signal a valid bootloader in the corresponding blocks, the flags in the blocks 0 and 1
respectively in 2 and 3 need to be set both. The blocks with both flags set are swapped to 0x00000000.
If all 4 flags are set (e.g. after power fail during self-programming) the blocks with the flags set last are
swapped to 0x00000000. If no valid flag pair can be found (e.g. after initial programming), the block 0 is
swapped to 0x00000000.

Notes: 1. The boot flag is set by writing it to 0. After a Block Erase it is reset, the value is 1.

2. If the 2nd block (block 1) need to be reprogrammed, the secure reprogramming sequence
(See section 5.4 ”Secure Reprogramming Flow with Bootloader Update” on page 30) must
be used, if ever a secure reprogramming sequence with boot swap has been done before.
This is, because in case of a reprogramming interruption, the majority selection of the boot
swap feature does not work correctly, if block 1 does not contain a set boot flag.
29 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.4 Secure Reprogramming Flow with Bootloader Update

The basic feature allowing this way of secure reprogramming is, that on device start-up the internal
firmware checks, which block contains a valid bootloader. To do so the boot swap flags in the extra
area(s) are checked.
By the boot swap feature and the correct reprogramming sequence it can be assured, that always a
valid boot program is started to continue the reprogramming sequence in case that the reprogramming
algorithm was interrupted (Power fail, accidental reset).
The bootloader must be able to control the complete reprogramming sequence including data transfer
of the new Flash contents.

The sample configuration considers a device with 8 blocks and with boot swap capability, where the
blocks 0/1 can be swapped with 2/3.

Note: The block number in the diagrams below are the physical block numbers. They are always fix,
even after block swapping. E.g.: block 2 before boot swapping remains block 2 even after the
swap. This is done for better illustration.
When using the SelfLib functions, logical block numbers are used. On logical block numbers the
block on address 0x00000000 is always block 0, followed by block 1 and so on. This is valid
even after block swapping. E.g.: Block 2 before swapping is block 0 after swapping. By that soft-
ware development is easier, as the block numbers need not be modified depending on the
swapping.

Table 5-3: UC2 Flash Secure Reprogramming Sequence Including Bootloader Update (1/3)

Step
SelfLib

Function
Description Sample Configuration

1 Initial Status • Boot Program in the lower 2 areas
• Safety flags in the extra areas of the blocks

0 and 1 set (e.g. Write disable, Block
Erase disable)

• Boot flag in the extra areas of the blocks 0
and 1 is set

• Blocks 2~7 contain the application

2 Reprogram
block 2

Execute the complete block reprogramming
flow (See 5.2 ”Basic Block Reprogramming
Flow” on page 28):

• Erase
• Program

• Re-write security flags & set boot flag

• Internal Verify

When erasing the first application program
block the application is no longer valid and
able to run. In case of power fail, the boot-
loader handles the complete reprogramming
flow.

Block 0

Old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

S, B

S, B

S

S

Block 0

Invalid old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

S, B

S, B

Invalid new
Bootloader

S, B

S

30 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
3 Reprogram
block 3

Execute the complete block reprogramming
flow (See 5.2 ”Basic Block Reprogramming
Flow” on page 28):

• Erase
• Program

• Re-write security flags & set boot flag

• Internal Verify

Now the new bootloader is valid. Even though
all boot flags are set the new bootloader is
mapped to 0x00000000 in case of a Reset, as
a sequential number is also stored in the extra
area

4 Swap blocks 0/
1 and 2/3

After swapping the blocks, the begin of the
new bootloader (block 2) is located at
0x00000000

5 Reprogram
block 0

Execute the complete block reprogramming
flow (See 5.2 ”Basic Block Reprogramming
Flow” on page 28):
• Erase

• Program

• Re-write security flags
• Internal Verify

Note: Pass the logical block numbers (not
physical block numbers mentioned in the dia-
gram on the right side) as parameters to the
SelfLib functions requiring block numbers!

6 Reprogram
block 1

Execute the complete block reprogramming
flow (See 5.2 ”Basic Block Reprogramming
Flow” on page 28):

• Erase
• Program

• Re-write security flags

• Internal Verify

Note: Pass the logical block numbers (not
physical block numbers mentioned in the dia-
gram on the right side) as parameters to the
SelfLib functions requiring block numbers!

Table 5-3: UC2 Flash Secure Reprogramming Sequence Including Bootloader Update (2/3)

Step
SelfLib

Function
Description Sample Configuration

Block 0

Invalid old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

S, B

S, B

New
Bootloader

S, B

S, B

Block 2

Invalid old
Application

Old
Bootloader

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

S, B

S, B

New
Bootloader

S, B

S, B

Block 2

Invalid new
Application

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

S, B

S, B

New
Bootloader

S, B

S

Invalid old
Application

Invalid old
Bootloader

Block 2

Invalid new
Application

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

S, B

S, B

New
Bootloader

S

S

Invalid old
Application
31 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
7 Reprogram the
blocks 4~7

Execute the complete block reprogramming
flow for each block separately, without setting
security flags (See 5.2 ”Basic Block Repro-
gramming Flow” on page 28):

• Erase

• Program
• Internal Verify

Table 5-3: UC2 Flash Secure Reprogramming Sequence Including Bootloader Update (3/3)

Step
SelfLib

Function
Description Sample Configuration

Block 2

New
Application

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

S, B

S, B

New
Bootloader

S

S

32 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.5 Library Sections

In order to support the different environments and reprogramming sequences, the library is splitted up
into several sections. These sections have to be linked differently according to the execution environ-
ment of the library and the reprogramming program (See section 5.6 ”Flash Environment” on
page 34).

The following library sections exist:

• SelfLib_Rom
This section contains the code executed at the beginning of self-programming. This code is
executed at the original location, e.g. internal FLASH. The library initialisation is part of this
section.

• SelfLib_RomOrRam
This section contains the user interface. Depending on the reprogramming sequence (See
section 5.6 ”Flash Environment” on page 34) this section is executed in RAM or in Flash. If
executed in RAM, the copy procedure from Flash to RAM is automatically executed by the
library initialisation (See section 7.1.1 ”Library initialization” on page 49).
Especially in the Time saving sequence (See section 5.7.2 ”Time saving reprogramming
sequence” on page 37) the user self-programming control function should also be located in
this section. This ensures, that the function is copied automatically to the RAM by the SelfLib
initialisation.

• SelfLib_ToRam
This section always needs to be executed outside the Flash. As it is usually copied to the
internal RAM, it is called SelfLib_ToRam. The sections contains the device Firmware interface.

• SelfLib_RAM
This section contains the variables required for SelfLib. It can be located to internal or external
RAM.

• SelfLib_UsrIntToRam
This section contains the Interrupt functions. If interrupts are not used, the section is empty but
should exist, as address references to this section are used in the SelfLib initialisation.
If used, the section is copied to the RAM as the first SelfLib section.
If the standard interrupt handling procedure is supported by the device, the library sections to
be copied to RAM must be copied to the begin of the devices internal RAM (See section (1)”Fix
address jump” on page 42). If the registered interrupt handling is supported, the address may
be everywhere in the RAM.
33 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.6 Flash Environment

Several things need to be considered when working with the SelfLib. An important item is, that the com-
plete Flash is not accessible at all during certain steps of reprogramming.
This depends on the status of the so called Flash environment, which is device internal hardware
(charge pumps, sequencer,...), required to do any Flash programming. It is not continuously activated,
only for reprogramming. The Flash is not accessible when the Flash reprogramming environment is
active.

Flash environment activation and deactivation is handled by the SelfLib. Especially deactivation is time
consuming. In order to archive fast reprogramming the environment should be kept activated during the
whole reprogramming. On the other hand, during activated environment the program execution may not
be done from the Flash. So other memory like internal RAM or external memory is required. If not suffi-
cient memory is available, sequential activation and deactivation is necessary and only small code
parts (firmware interface) are executed from internal RAM.
Following that, 3 major scenarios can be considered for Flash self-programming, that are all supported
by the SelfLib:

• External memory sequence
The complete application must be located in external memory or internal RAM. As environment
activation/deactivation is required only once, the sequence is time saving. However, due to the
internal memory limitation either only a small application in iRAM is possible or bigger external
memory is necessary.

• Time saving reprogramming sequence
Most parts of the self-programming code are executed in the internal RAM, including the
reprogramming control functions. Only basic application and initialisation and de-initialisation of
the self-programming are done in the embedded Flash.

• RAM saving reprogramming sequence
Only a small part of the SelfLib is executed in the internal RAM, the rest is executed in the
embedded Flash. Frequent activation and deactivation of the Flash environment is necessary.

In the following chapter, these sequences are explained in detail.
34 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.7 Reprogramming Scenarios

The SelfLib contains all functions which are important for self-programming except the control program
which is application specific and therefore has to be made by the user:

• Flash environment Activation / DeActivation

• User interface
This contains the functions to be called by the Flash reprogramming control program, which has
to be written by the user

• Firmware interface

This functions are called in the different scenarios under different Flash related conditions and on differ-
ent locations.

The device internal reprogramming firmware is called via the firmware interface of the SelfLib. The
firmware is located in a mask ROM, called BROM. This firmware contains the actual Flash operations
which are tested and evaluated by NEC.
35 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.7.1 External memory sequence

The application, containing the SelfLib, is located in internal RAM or external Memory. All program code
is permanently available (Except interrupt vector table) at the linked location, even when the Flash envi-
ronment is activated.
Due to that the Flash environment can be activated during the complete reprogramming and therefore
the reprogramming sequence is time saving.

Figure 5-1: External Memory Reprogramming Sequence

It does not matter, if the program is linked to the destination address (position dependent) and stored
there or if it is linked to another address (position independent code) and just copied there (e.g. via a
serial interface).

Library handling
As the memory location of the application is permanently available during self-programming, nothing
need to be copied to a “save” location, but everything can be executed, where it is.
No copy action by the SelfLib initialisation is required (See section 7.1.1 ”Library initialization” on
page 49).

Firmware

SelfLib-Firmware
Interface

SelfLib-User
Interface

SelfLib-Flash-env.
Act. / Deact.

Control
Program

Application

Execution
in BROM

Execution
in int. RAM or
ext. memory

No Flash
access
possible

...
36 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.7.2 Time saving reprogramming sequence

The Flash environment activation is time consuming. In order to realise fast reprogramming, the activa-
tion/deactivation sequence is done only once for the complete reprogramming. Every code to be exe-
cuted between activation and deactivation needs to be executed outside the Flash.

This sequence is best for devices with bigger internal RAM. Otherwise small and simple communication
routines, interrupt routines, etc. have to be used.

Figure 5-2: Basic Time Saving Reprogramming Sequence

Library handling
The application, including the control program and the SelfLib are located in the internal Flash.
As the memory location of the application is not permanently available during self-programming, the
user interface, the firmware interface and the self-programming control program are copied to a “save”
location. This may be the internal RAM, but also external RAM, if available, is acceptable.
The Flash environment activation and deactivation need to be done explicitly by the control program
(done by the user).
Beside SelfLib_UsrIntToRam, the SelfLib_ToRAM and the SelfLib_RomOrRam sections need to be
copied. This is automatically done by the SelfLib initialisation routine (See section 7.1.1 ”Library initial-
ization” on page 49).
When the self-programming control function including all called sub-functions is also located in the
SelfLib_RomOrRam, this function is also copied there. NEC recommends to put the control function
into this section as by that the SelfLib user functions can be called directly without function pointers and
address recalculation.
For accessing the copied functions from outside the copied parts, please refer to the function
SelfLib_FunctionNewAddress (See section 7.1.2 ”New function address” on page 52).

Firmware

SelfLib-Firmware
Interface

SelfLib-User
Interface

SelfLib-Flash-env.
Act. / Deact.

Control
Program

Application

Execution
in BROM

Execution
in RAM

No Flash
access
possible

...

Execution
in Flash
37 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.7.3 RAM saving reprogramming sequence

The RAM saving sequence allows execution of most of the software in the Flash. This is only possible,
if the reprogramming environment is deactivated during program execution. The result is frequently
done environment activation and deactivation and so increased reprogramming time.

Figure 5-3: Basic RAM Saving Reprogramming Sequence

This sequence is best for memory consuming control programs in applications without external mem-
ory. Less internal RAM is used as only the device firmware interface and interrupt routines need to be
executed in RAM.

Library handling
The application, including the control program and the SelfLib are located in the internal Flash.
As the memory location of the application is not permanently available during self-programming, the
firmware interface (In SelfLib_ToRAM) is copied to a “save” location. This may be the internal RAM, but
also external RAM, if available, is acceptable.
It is automatically done by the SelfLib initialisation routine (See section 7.1.1 ”Library initialization” on
page 49).

The Flash environment activation and deactivation is done implicitly by the firmware interface functions.
Please do not call the environment activation/deactivation function supplied by the SelfLib. Please also
refer to the SelfLib initialisation function (See section 7.1.1 ”Library initialization” on page 49).

...

Firmware

SelfLib-Firmware
Interface

SelfLib-User
Interface

Control
Program

Application

No Flash
access

possible

No Flash
access
possible

Execution
in BROM

Execution
in RAM

Execution
in Flash
38 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.8 Hardware Requirements

The requirements of self-programming regarding the device external hardware is very low as no dedi-
cated external programming voltage is required.
However, it has to be considered, that a security concept against unintended reprogramming has been
set-up. It is required, that the devices FLMD0 pin is externally attached to VDD (I/O voltage) during self-
programming. FLMD0 should be attached to VDD immediately before or after SelfLib initialisation (See
ODO) and reset to VSS at the end of self-programming. Default state on reset is VSS.

Figure 5-4: FLMD0 Sample Circuit

In the sample circuit, the port pin is input on reset. By that FLMD0 is held to VSS on reset. During self-
programming the port is set to output and to the value “1”. Then the FLMD0 pin is set to VDD.

R

Vss

Port n / Pin m

FLMD0
39 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.9 User Application Execution During Self-Programming

The standard way to set-up a reprogramming flow is, that a self-programming control program controls
the complete reprogramming flow and the SelfLib calls. The SelfLib functions interact with the Flash.
According to the called SelfLib function the execution requires times from a few nanoseconds up to sev-
eral hundreds of milliseconds. In many applications it is acceptable, that no further software execution
during that time is possible. This is the easiest way of a reprogramming sequence.
However, for most applications it is not acceptable, that no more code can be executed during execution
of long lasting SelfLib functions (like the Erase function).

The NEC single voltage Flash devices are designed in a way, that Flash manipulation operations only
have to be initiated and then are executed in the background. Only completion of the operations need to
be checked in order to continue the self-programming. By that, in order to support application software
execution during self-programming the SelfLib can be set-up to offer two major options, if necessary
both in parallel:

• Interrupt function execution

• Execution status polling

The next sub-chapters will explain the two options and discuss the execution latencies which have to be
considered.
40 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.9.1 Interrupts

This sub-chapter explains the available Interrupt function options.
The interrupt vector table is not accessible when the Flash environment is activated. Following that nor-
mal jumps into the vector table are not possible during that time.

Therefore, the execution of interrupt functions in RAM or external memory is supported in a different
way.

Note: Special interrupt handling is done only while the Flash environment is activated. While not acti-
vated the normal user defined interrupt vector table is used.

Figure 5-5: Interrupt Routine Execution in Internal RAM / External Memory

To enable interrupt handling, two different approaches have been implemented into the different
devices. Depending on the devices either one of the approaches is implemented or both. If both
approaches are supported, the selection of the used option is done by the function SelfLib_RegisterInt
(See section 7.1.3 ”Register interrupts” on page 53).

• Fix address jump

• Registered interrupts

Please refer to the device information for the handling approach implemented into your device.

As the interrupts may not be executed in the embedded Flash, they shall be executed either in the inter-
nal RAM or in external memory. If executed in the internal RAM, it is recommended to place all func-
tions into the SelfLib_UsrIntToRam section, that is automatically copied into the RAM by the SelfLib
initialisation (See section 7.1.1 ”Library initialization” on page 49).

1 2 3 4

Int. RAM

Flash
temporarily

disabled during
reprogramming

Interrupt

Reprogramming
Program Flow

Jump to
Interrupt entry

(1st RAM address)

ISR execution Return to
Reprogramming

Flow
41 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
(1) Fix address jump

All interrupt vectors are relocated to one entry point in the internal RAM:

• New entry point of all non maskable interrupts is the 1st address of the internal RAM
(depending on the device, e.g. 0xFFFFE000). A handler routine must check the interrupt
source. The source can be read from the exception cause register ECR (See device users
manual).

• New entry point of all maskable interrupts is the word address following the non maskable
interrupt entry (depending on the device, e.g. 0xFFFFE004). A handler routine must check the
interrupt source. The source can be read from the exception cause register ECR (See device
users manual).

Notes: 1. If the handler routine is located in the SelfLib_UsrIntToRam section, please take care that
the destination address of this section is the 1st RAM address! If automatically copied by
the function SelfLib_Init, the parameter destAddSelfLib must be the 1st RAM address.
Furthermore, the handler routine must be located at the beginning of this section.

2. The handler routine needs to be compiled as an interrupt function (i.e. terminate with a
RETI instruction, save/restore all used registers,...)

(2) Registered interrupts

Interrupt handler routines to be executed on registered must be written as normal c functions (no
RETI instruction at the end), however need to save and restore all used registers. As this issue is
not supported by the c-compiler, a function prologue and epilogue in assembler is necessary (See
the sample program provided with the SelfLib).

The functions must be registered for the firmware (See section 7.1.3 ”Register interrupts” on
page 53) before activating the Flash environment. By that the interrupt functions are known by the
firmware and then called on interrupt request, when the Flash environment is activated.
42 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.9.2 Status polling

Most SelfLib functions with long execution times are Flash modification functions (e.g. Erase, Blank
Check,...). The basic flow of these functions is, that a Flash environment background operation is initi-
ated and then the status of the operation is polled. This status also returns the result of the background
operation.
Regarding handling of the status requests two options (Modes) can be used.

(1) Interrupt mode

In the Interrupt mode the status polling is done implicitly by the SelfLib functions. The SelfLib func-
tions are called and return after the background operation is finished. In that case these functions
can only be left by interrupts for user application execution. In this mode the reprogramming con-
trol program is smaller and the status polling by the SelfLib is well tested.

(2) Polling mode

In the polling mode the SelfLib functions (e.g. SelfLib_Erase) only initiate the background function
and return then to the user application, controlling the reprogramming. The user application does
the status polling and can meanwhile execute user code. As the polling is not time critical, no spe-
cial care has to be taken regarding execution time while polling the status.
The status polling is shifted from the well tested SelfLib to the user application.

Figure 5-6: Application Flow in Polling Mode

In the SelfLib initialization (See section 7.1.1 ”Library initialization” on page 49) the user can select, if
the polling is done implicitly in the library or if the polling is done in the user application.

Note: Depending on the selected option, the reprogramming program looks different. In the device
dependent application sample programs provided by NEC on the internet, both options are
implemented. Selection is done by a global define in the target.h. This is USER_APPLICATION.

1 2 3 4

Int. RAM

Flash
temporarily

disabled during
reprogramming

Initiate
background
operation

SelfLib SelfLib SelfLib SelfLib

. . .

SelfLibSelfLib SelfLib SelfLib

User application
execution with
status polling

User application
execution with
status polling

Continue
User application

Status
busy

Status
ready
43 Application Note U16929EE3V2AN00

Chapter 5 UC2 - Self-Programming
5.9.3 Execution latencies

The execution latencies for interrupt routines and other user routines differ quite a lot and therefore
have to be considered separately. In both cases the latency for most of the functions is quite low (below
100us). However, for a time critical application (e.g. triggering a watchdog) the worst case latency is of
interest. Following that, we have measured the maximum latency for a complete reprogramming flow at
the most common frequencies, using all SelfLib functions. The measured values can be found in the
device information.

(1) Interrupt routines

The execution latency of interrupt routines is quite low. The longest latency is caused by the
SelfLib functions Flash environment activation/deactivation (see section 7.2 ”Flash Environment”
on page 54).
Other routines do not disable interrupts for a longer time.

(2) Polling mode

In polling mode the latency for execution of user functions is determined by the run time of the
SelfLib functions. Depending on the device hardware, Flash technology and firmware implementa-
tion the execution times may differ from device to device. The worst execution time can be
expected in the Flash environment activation/deactivation or in the secure flag handling routines
SelfLib_GetInfo_GetSecFlags/SelfLib_SetSecFlags (See section 7.4 ”Protection/Safety Related
Operations” on page 59).
44 Application Note U16929EE3V2AN00

Chapter 6 UC2 - SelfLib Configuration

SelfLib implementation relevant issues are discussed in the following sub-chapters.

6.1 Used Resources

The only resources used by the self-programming, is memory.

Beside the SelfLib sections the stack is used. The stack usage is depending on the library and on the
used compiler environment. Furthermore, also the device firmware uses the stack.

The complete FLASH is not available at time during self-programming.

6.2 Software Considerations

This chapter lists up special issues to be considered when implementing self-programming into the
application.

DMA operation during self-programming
DMA operations during self-programming (While the Flash environment is activated) are not allowed at
all. Background is the fact, that accesses sequences to protected SFR registers may fail in case of DMA
accesses to the peripheral bus during this sequence

Run-Time Library calls
During Self-Programming (activated Flash Environment) It is not possible to call run-time library func-
tions, if the library is not copied to RAM together with the Self-Programming code.
In case of program failures during self-programming, the code should be explicitly checked for such
calls.

Switch instruction in C
In case of the user status check, the switch instruction should be avoided in all the code executed in
RAM. Depending on the used compiler this instruction may result in a call to a run-time library, which
has not been copied.
45 Application Note U16929EE3V2AN00

Chapter 6 UC2 - SelfLib Configuration
6.3 Compiler Configuration

As the SelfLib is delivered in source code, the user has to take care for the correct compiler settings in
his applications. Due to the huge amount of setting options, not all could be tested. The settings coming
along with the application samples should be taken as reference for the user application development.

6.3.1 Project settings

The most important settings for a successful application build shall be explained in the following:

Position independent code (PIC)
The SelfLib code shall be compiled position independent.

Inline function prologue and epilogue
In order to avoid any library calls for function prologue and epilogue into a section, not available during
self-programming (Flash), they need to be inlined.

V850E core instruction set
The extended instruction set of the V850E core is used for the assembler parts. So this core should be
selected.

The settings are only required for the complete SelfLib and all code added to the SelfLib sections. The
rest of the project may have different settings. However, it is recommended to use the same settings
project wide, if possible.

Green Hills (GHS) Multi 2000

To set the settings project wide, click on the project file in the project window to select it before entering
the menu.

• Select position independent code

• Select inline prologue

• Select the processor type "V850E1" resp. "V850E/MS1" for V850E core instruction set

Further required settings:

• Set the following driver options for the assembler files to ensure, that c-style preprocessing
directives are processed:
Click on an assembler file to select it. Then select the menu “Project -> File options”. In the
driver options field type in “-preprocess_assembly_files”. Do this for each assembler file.

• Disable usage of the callt instruction, as it results in calls to the run-time library, which is not
copied into the RAM in case of time saving scenario.

IAR Embedded Workbench

Using the IDE, the settings can be found in the menu “Project -> Options”. To set the settings project
wide, click on the top of the project tree in the project window before entering the menu.

• Category ICCV850: Optimize for speed. By that, the function prologue/epilogue is inlined

• Category general: Select CPU variant V850ES or V850E for the V850E core instruction set

No explicit setting required for position independent code.
46 Application Note U16929EE3V2AN00

Chapter 6 UC2 - SelfLib Configuration
NEC CA850

Using the IDE, the following can be configured in the menu “Tool -> Compiler Options” under the tab
“Others”. To set the settings project wide, click on the top of the project tree in the project window before
entering the menu.

• In the box "Any Option" type in “-Ot” for inline prologue/Epilogue

Using the IDE, the following can be configured in the menu “Tool -> Linker Options” under the tab
“Library”. To set the settings project wide, click on the top of the project tree in the project window before
entering the menu.

• De-select "Link standard library" and de-select "link mathematics library"

No explicit setting required for position independent code.
The core selection is done during project initialization by selecting the correct target device.
47 Application Note U16929EE3V2AN00

[MEMO]
48 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API

The SelfLib contains functions of several different categories. These are called by the user program in
the sequences as described in the last chapters. The function calls and parameters are explained in the
following.

7.1 Initialisation

Functions explained in this chapter are called at the beginning of the self-programming. They are nec-
essary for the SelfLib initialisation, but some functions can also be used for set-up of a reprogramming
control program.

7.1.1 Library initialization

Library call:
void SelfLib_Init (void *destAddSelfLib,

u32 frequency,
REPR_SCENARIO reprogScenario,
USR_APP usrApp)

Required parameters:
destAddSelfLib The Relocated Sections are copied to this location.

Depending on the reprogramming scenario (see below) these
are SelfLib_UsrIntToRam, SelfLib_ToRam and SelfLibRomOr-
Ram
The value is irrelevant and may be set to 0 only, if the external
memory scenario is used (See section 5.7.1 ”External memory
sequence” on page 36) and the SelfLib_UsrIntToRam section is
empty.

Caution: If the device supports the fix address jump interrupt handling (See section (1)”Fix
address jump” on page 42), the address must be set to the beginning of the internal
RAM (e.g. 0xFFFFE000), as the interrupt handler entry is there.

frequency The operation frequency of the device (Hz)
e.g.: crystal 5 MHz, internal PLL with the factor 10:
frequency=50,000,000

reprogScenario The following values are defined in the file selflib.h (Please refer
to section 5.7 ”Reprogramming Scenarios” on page 35 for the
explanation of the values):

 EXTERNAL_MEMORY: External memory scenario is used. Just the section
SelfLib_UsrIntToRam is copied to the address destAddSelfLib. If
empty, no copy action is executed

 TIME_SAVING: The SelfLib_ToRam, SelfLib_RomOrRam and the
SelfLib_UsrIntToRam section are copied to the address
destAddSelfLib

 RAM_SAVING: The SelfLib_ToRam, SelfLib_RomOrRam and the
SelfLib_UsrIntToRam section are copied to the address
destAddSelfLib.
49 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
usrApp The following values are defined in the file selflib.h (Please refer
to 5.9 ”User Application Execution During Self-Programming”
on page 40 for the explanation of the values):

 POLLING: The user control program need to poll the self-programming sta-
tus

 INTERRUPT: The SelfLib polls the self-programming status
Please also refer to the other functions description to check,
whether status polling is required or not

Returned value:
-

Function description:
The function copies the sections into the RAM if requested (see above).

Figure 7-1: Section Copy in SelfLib Initialisation

The SelfLib_UsrInt_to_RAM section is copied first (to destAddSelfLib), in order to enable the user to
place it on a defined address for easy interrupt handling support (See section (1)”Fix address jump” on
page 42).
Directly behind that SelfLib_to_RAM is copied, followed by SelfLib_ROM_or_RAM. The copy routine
doesn’t leave any gaps between the copied sections.

In addition to copying the sections, the SelfLib data and internal pointers are initialised.

Int. RAM

Flash

SelfLib_ROM_or_RAM

SelfLib_to_RAM

SelfLib_UsrInt_to_RAM
50 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
Function call sample:
The following function call samples shall explain the usage of the SelfLib_Init function. Depending
on the application one of the samples may be used. The parameters have to be adapted to the user
application.

(1) The program to control the reprogramming (e.g. bootloader or monitor program) including the
library is located in the device internal flash. The RAM saving reprogramming sequence is
selected (See section 5.7.3 ”RAM saving reprogramming sequence” on page 38). To do Flash
programming the Selflib_ToRAM section needs to be copied to internal RAM or external mem-
ory.
SelfLib_Init(SELFLIB_DEST, /* The copy destination address */

FREQUENCY, /* Operation frequency */
RAM_SAVING); /* Select the correct reprogramming scenario */

(2) The program to control the reprogramming (e.g. bootloader or monitor program) including the
library is located in the device internal flash. The fast reprogramming sequence is selected
(See section 5.7.2 ”Time saving reprogramming sequence” on page 37). To do Flash pro-
gramming the Selflib_ToRAM and SelfLib_RomOrRam sections need to be copied to internal
RAM or external memory.
SelfLib_Init(SELFLIB_DEST, /* The copy destination address */

FREQUENCY, /* Operation frequency */
TIME_SAVING); /* Select the correct reprogramming scenario */

(3) The program to control the reprogramming (e.g. bootloader or monitor program) including the
library is already located in the device internal RAM or external memory. Functions in the
SelfLib_ToRAM and SelfLib_RomOrRam section can be executed directly on their original loca-
tion and need not be copied. No interrupt routines copied to RAM during reprogramming are
used
SelfLib_Init(0, /* All functions are executed at the linked address */

FREQUENCY, /* Operation frequency */
EXTERNAL_MEMORY);/* Select the correct reprogramming scenario */

(4) Same as (3), except, that interrupt support is used. SELFLIB_DEST must be the 1st RAM
address.
SelfLib_Init(SELFLIB_DEST, /* All functions are executed at the linked address */

FREQUENCY, /* Operation frequency */
EXTERNAL_MEMORY);/* Select the correct reprogramming scenario */

Sample definitions (Depending on the application and the device):

#define SELFLIB_DEST 0xFFFFE000 /* e.g. Destination address 0xFFFFE000 */
#define FREQUENCY 16000000 /* e.g. System operation frequency 16MHz */
51 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.1.2 New function address

Library call:
void *SelfLib_FktNewAddress (void *addFct,

void *destAddSelfLib)

Required parameters:

addFkt Original Function address.
destAddSelfLib Destination address of the section SelfLib_RomOrRam.

Values see section 7.1.1 ”Library initialization” on page 49

Returned value:
Address of the function inside the SelfLib_RomOrRam or the SelfLib_UsrIntSection on its destina-
tion address.

Function description:
If a user function is located in the section SelfLib_RomOrRam (Only TIME_SAVING scenario) or the
SelfLib_UsrInt it is copied to a save RAM location by SelfLib_Init. If the function has then to be called
from outside of the section where it is located, the normally used relative function calls don’t work
any longer.Following that, it has to be called by a function pointer. To set-up the function pointer
SelfLib_FktNewAddress returns the new address of the function.
52 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.1.3 Register interrupts

Library call:
u32 SelfLib_RegisterInt (u16 handlerAddress,

u32 serJobAddress)

Required parameters:
handler Address Original interrupt table address.

Please be reminded, that neither the interrupt control register
address, nor the interrupt number is used, but the original inter-
rupt vector address in normal operation mode

serJobAddress Interrupt handler function addresses.
If the handler routine is copied to RAM, the RAM address need
to be registered!

Returned value:
SELFLIB_OK Registering was successful
SELFLIB_ERR_PARAMETER Error during registering (e.g. Max number of interrupts

exceeded)

Function description:
A maximum of ten (10) interrupts and their interrupt handler routines may be registered (See section
(2)”Registered interrupts” on page 42).
You may place the routines (And all subroutines!!!) in the SelfLib_UsrIntToRam section that is auto-
matically copied to the RAM (See section 7.1.1 ”Library initialization” on page 49). For calculation
of the new address in the RAM, please use the function described in section 7.1.2 ”New function
address” on page 52.

Sample:

 // functions to be registered are intfct1() and intfct2()
 err = SelfLib_registerInt(0x260, &intFct1);
 err = SelfLib_registerInt(0x340, &intFct2);

Note: If both, registered interrupts and fix address jumps are supported (See section 5.9.1
”Interrupts” on page 41) by the device, this function is used to select one of the methods.

For registered interrupts, call this function as explained before.
For fix address jumps call the function once in the following way:

 err = SelfLib_registerInt(0xFFFF, 0x00000000);
53 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.2 Flash Environment

The Flash environment functions are only necessary for the external memory sequence or the time sav-
ing sequence (See section 5.7 ”Reprogramming Scenarios” on page 35).

7.2.1 Activate environment

Library call:
u32 SelfLib_FlashEnv_Activate(void)

Required parameters:
-

Returned value:
SELFLIB_OK Block is blank
SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware

Requirements” on page 39)

Function description:
This function activates the Flash environment. After activation no normal Flash read access (e.g.
instruction fetch) is possible any more.

Note: During execution of this function no interrupts can be served. As the execution time is relatively
long (may exceed several hundreds of µs), measures against interrupt overrun have to be
taken.

7.2.2 Deactivate environment

Library call:
void SelfLib_FlashEnv_Deactivate(void)

Required parameters:
-

Returned value:
-

Function description:
This function deactivates the Flash environment. After deactivation normal Flash read access (e.g.
instruction fetch) is possible again.

Note: During execution of this function no interrupts can be served. As the execution time is relatively
long (may exceed several hundreds of µs), measures against interrupt overrun have to be
taken.
54 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.3 Basic Reprogramming

Basic reprogramming functions are related to the standard block reprogramming (See section 5.2
”Basic Block Reprogramming Flow” on page 28). These functions support the operations Blank

Check, Erase, Write, Internal Verify.

7.3.1 Area Blank Check

Library call:
u32 SelfLib_BlankCheck(u32 blockNo)

Required parameters:
blockNo Block number to be checked (Not block address, but number of

the flash block)

Returned value:
SELFLIB_OK Block is blank

SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware
Requirements” on page 39)

SELFLIB_ERR_PARAMETER Block with the block number blockNo does not exist

SELFLIB_ERR_FLASHPROCn (n = 0x0~0xA). Device not blank

Function description:
This function checks, if the block is blank (erased) or not

Remark for polling mode (See section 5.9 ”User Application Execution During Self-Programming”
on page 40):
In polling mode this function returns before the Blank Check is finished. The only return values then
are SELFLIB_OK to indicate a successful background function initiation, SELFLIB_ERR_FLMDO or
SELFLIB_ERR_PARAMETER.
The user control program need to do status checks (See section 7.5.5 ”Status check” on page 64)
to poll for the end of the operation and to receive the background operation result (SELFLIB_OK or
SELFLIB_ERR_FLASHPROCn).
55 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.3.2 Area Erase

Library call:
u32 SelfLib_Erase (u32 blockNo)

Required parameters:
blockNo Block number to be erased (Not block address, but number of

the flash block)

Returned value:
SELFLIB_OK Erasing was successfully. Block is blank now

SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware
Requirements” on page 39)

SELFLIB_ERR_PARAMETER Block with the block number blockNo does not exist

SELFLIB_ERR_FLASHPROCn (n = 0x0~0xA). Erase failed

Function description:
This function erases a complete Flash block.
The time required for erasing strongly depends on the used device, no. of already done erase
cycles, temperatures and other conditions. It is not constant and might last up to several seconds in
worst case.

Remark for polling mode (See section 5.9 ”User Application Execution During Self-Programming”
on page 40):
In polling mode this function returns before the Blank Check is finished. The only return values then
are SELFLIB_OK to indicate a successful background function initiation, SELFLIB_ERR_FLMDO or
SELFLIB_ERR_PARAMETER.
The user control program need to do status checks (See section 7.5.5 ”Status check” on page 64)
to poll for the end of the operation and to receive the background operation result (SELFLIB_OK or
SELFLIB_ERR_FLASHPROCn).
56 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.3.3 Write

Library call:
u32 SelfLib_Write (void *addSrc,

void *addDest,
u32 length)

Required parameters:
addSrc Address of the source data that has to be written into the Flash

addDest Destination where the data has to be written (The address align-
ment strongly depends on the used device. Please refer to the
device information for the alignment)

Length Number of WORDS to be written. According to the device and
the Flash technology dedicated limitations for the Write granular-
ity and maximum length are given. Please refer to the device
information for the exact limitations. Values working generally
are:
- All V850 devices: length = 64 words (*32 bits)

Returned value:
SELFLIB_OK Data is successfully written

SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware
Requirements” on page 39)

SELFLIB_ERR_PARAMETER Address parameter error

SELFLIB_ERR_FLASHPROCn (n = 0x0~0xA). Write failed

Function description:
Data is written to the Flash. This is done word wise

Remark for polling mode (See section 5.9 ”User Application Execution During Self-Programming”
on page 40):
In polling mode this function returns before the Write is finished. The only return values then are
SELFLIB_OK to indicate a successful background function initiation, SELFLIB_ERR_FLMDO or
SELFLIB_ERR_PARAMETER.
The user control program need to do status checks (See section 7.5.5 ”Status check” on page 64)
to poll for the end of the operation and to receive the background operation result (SELFLIB_OK or
SELFLIB_ERR_FLASHPROCn).
57 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.3.4 Internal Verify

Library call:
u32 SelfLib_IVerify (u32 blockNo)

Required parameters:
blockNo Block number to be checked (Not block address, but number of

the flash block)

Returned value:
SELFLIB_OK Internal Verify passed successfully

SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware
Requirements” on page 39)

SELFLIB_ERR_PARAMETER Block with the block number blockNo does not exist

SELFLIB_ERR_FLASHPROCn (n = 0x0~0xA). Internal Verify failed

Function description:
This function compares the Flash contents on erase level against the write level. See 5.2 ”Basic
Block Reprogramming Flow” on page 28

Remark for polling mode (See section 5.9 ”User Application Execution During Self-Programming”
on page 40):
In polling mode this function returns before the Internal Verify is finished. The only return values then
are SELFLIB_OK to indicate a successful background function initiation, SELFLIB_ERR_FLMDO or
SELFLIB_ERR_PARAMETER.
The user control program need to do status checks (See section 7.5.5 ”Status check” on page 64)
to poll for the end of the operation and to receive the background operation result (SELFLIB_OK or
SELFLIB_ERR_FLASHPROCn).
58 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.4 Protection/Safety Related Operations

The function for setting the flags is explained in this chapter.

7.4.1 Get protection flags

Library call:
u32 SelfLib_GetInfo_SecFlags(void)

Required parameters:
-

Returned value:
Bit 0: 0: Chip Erase disabled

1: Chip Erase enabled

Bit 1: 0: Block Erase disabled
1: Block Erase enabled

Bit 2: 0: Write disabled
1: Write enabled

Bit 3: 0: Read command disabled
1: Read command enabled

Bit 4~31: Reserved for future use

Unsupported Flags or reserved flags are set to 1

Function description:
This function returns a 32 bit value containing above mentioned security related bits. The meaning
of the bits is explained in 4.2.2 ”Protection configuration settings” on page 20.

7.4.2 Get block swapping flag

Library call:
u32 SelfLib_GetInfo_BootSwap(void)

Required parameters:
-

Returned value:
0: Boot swapping is not performed on device startup
1: Boot swapping is performed on device startup

Function description:
This function returns the value of the boot swap bit (See section 4.3 ”Security” on page 21).
59 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.4.3 Set protection flags

Library call:
u32 SelfLib_SetSecFlags(u32 SecFlags,

u32 blockNo)
Required parameters:

SecFlags 32-bit value containing the following bits:

Bit 0: 0: The affected two blocks are swapped to
0x0000000 on Reset
1: The affected two blocks are not swapped to
0x0000000 on Reset

Bit 1: 0: Chip Erase disabled
1: Chip Erase enabled

Bit 2: 0: Block Erase disabled
1: Block Erase enabled

Bit 3: 0: Write disabled
1: Write enabled

Bit 4: 0: Read command disabled
1: Read command enabled

Bits 5~31: Reserved for future use
Unsupported or reserved flags have to be set to 1

When using the result of the function
SelfLib_GetInfo_GetSecFlags for this parameter, please con-
sider the shifted bit position

blockNo Block number where the flags are set (Not block address, but
number of the flash block)

Returned value:
SELFLIB_OK Flag setting was successfully.
SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware

Requirements” on page 39)
SELFLIB_ERR_PARAMETER Block with the block number blockNo does not exist or the com-

mand is not supported by the device or wrong bits are set
SELFLIB_ERR_FLASHPROCn (n = 0x0~0xA). Setting security flags failed

Function description:
This function sets the security/safety related flags in the extra area (See section 4.2.2 ”Protection
configuration settings” on page 20).

Notes: 1. The security flags (Bits 1and higher) must be the same for 1st four blocks (See section 5.3
”Extra Information Handling” on page 29).

2. The boot flag must be set (’0’) for the two blocks mapped to 0x00000000 and following
addresses.

3. The protection flags and variable reset vector must be set during initial programming via the
programming interface (e.g. using PG-FP4). Changing the flags using this function (e.g. set-
ting an additional bit) is not possible. This function has to set the as they have been set by
the initial programming.

Remark for polling mode (See section 5.9 ”User Application Execution During Self-Programming”
on page 40):
In polling mode this function returns before the command background execution is finished. The only
return values then are SELFLIB_OK to indicate a successful background function initiation,
SELFLIB_ERR_FLMDO or SELFLIB_ERR_PARAMETER.
The user control program need to do status checks to poll for the end of the operation and to receive
the background operation result (SELFLIB_OK or SELFLIB_ERR_FLASHPROCn).
60 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.4.4 Set protection flags and variable reset vector

Library call:
u32 SelfLib_SetSecFlagsVRV(u32 SecFlags,

u32 resetVctAdr,
u32 blockNo)

Required parameters:
SecFlags 32-bit value containing the following bits:

Bit 0: 0: The affected two blocks are swapped to
0x0000000 on Reset
1: The affected two blocks are not swapped to
0x0000000 on Reset

Bit 1: 0: Chip Erase disabled
1: Chip Erase enabled

Bit 2: 0: Block Erase disabled
1: Block Erase enabled

Bit 3: 0: Write disabled
1: Write enabled

Bit 4: 0: Read command disabled
1: Read command enabled

Bits 5~31: Reserved for future use

Unsupported or reserved flags have to be set to 1

When using the result of the function
SelfLib_GetInfo_GetSecFlags for this parameter, please con-
sider the shifted bit position

resetVctAdr Reset vector address: Address of the first executed instruction
after Reset

blockNo Block number where the flags are set (Not block address, but
number of the flash block)

Returned value:
SELFLIB_OK Flag setting was successfully.
SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware

Requirements” on page 39)
SELFLIB_ERR_PARAMETER Block with the block number blockNo does not exist or the com-

mand is not supported by the device or wrong bits are set
SELFLIB_ERR_FLASHPROCn (n = 0x0~0xA). Setting security flags failed
61 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
Function description:
This function sets the security/safety related flags in the extra area (See section 4.2.2 ”Protection
configuration settings” on page 20).

Notes: 1. The security flags must be the same for 1st four blocks (See section 5.3 ”Extra Information
Handling” on page 29).

2. The boot flag must be set (’0’) for the two blocks mapped to 0x00000000 and following
addresses after RESET

3. The protection flags and variable reset vector must be set during initial programming via the
programming interface (e.g. using PG-FP4). Changing the flags using this function (e.g. set-
ting an additional bit) is not possible. This function has to set the as they have been set by
the initial programming.

4. If the variable reset vector has not been initialized via the programming interface (e.g. using
PG-FP4), this function cannot be used. Use the function SelfLib_SetSecFlags instead

Remark for polling mode (See section 5.9 ”User Application Execution During Self-Programming”
on page 40):
In polling mode this function returns before the command background execution is finished. The only
return values then are SELFLIB_OK to indicate a successful background function initiation,
SELFLIB_ERR_FLMDO or SELFLIB_ERR_PARAMETER.
The user control program need to do status checks to poll for the end of the operation and to receive
the background operation result (SELFLIB_OK or SELFLIB_ERR_FLASHPROCn).
62 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.5 Miscellaneous Functions

7.5.1 Get device number

Library call:
u32 SelfLib_GetInfo_Device(void)

Required parameters:
-

Returned value:
CPU number in decimal format
e.g. uPD70F3166 (V850ES/SA3) = 3166 (=0x0C5E)

Function description:
This function returns the CPU number, that is part of the device name, in decimal format

7.5.2 Get block count

Library call:
u32 SelfLib_GetInfo_BlockCnt(void)

Required parameters:
-

Returned value:
Number of Flash blocks in the device

Function description:
This function returns the number of Flash blocks in the device

7.5.3 Get block end address

Library call:
u32 SelfLib_GetInfo_BlockEndAdd(u32 blockNo)

Required parameters:
blockNo Block number to be checked (Not block address, but number of

the flash block)

Returned value:
End address of the selected block

Function description:
This function returns the end address of the block passed as a parameter.
63 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.5.4 Boot swap

Library call:
u32 SelfLib_BootSwap(void)

Required parameters:
-

Returned value:
0 ~ 4 Number of Flash block, that is located at 0x000000000 after

swap

SELFLIB_ERR_PARAMETER The command is not supported

Function description:
This function swaps the boot blocks and returns the new block number located at 0x00000000.
Please refer to 5.4 ”Secure Reprogramming Flow with Bootloader Update” on page 30.

7.5.5 Status check

This function is only required in polling mode (See section 5.9 ”User Application Execution During
Self-Programming” on page 40).

Library call:
u32 SelfLib_StatusCheck(void)

Required parameters:
-

Returned value:
SELFLIB_OK The background Flash operation terminated successfully

SELFLIB_ERR_FLASHPROCn (n = 0x0~0xA). The background Flash operation failed.

SELFLIB_BUSY The background Flash operation is still ongoing

Function description:
The function checks the status of started background Flash operations, like Erase, Write, Internal
Verify,...
Please refer to the functions description to see, whether status check is necessary for that function
in polling mode or not.
64 Application Note U16929EE3V2AN00

Chapter 7 UC2 - SelfLib API
7.5.6 Check mode (FLMD0)

Library call:
u32 SelfLib_ModeCheck(void)

Required parameters:
-

Returned value:
SELFLIB_OK VDD is applied at the pin FLMD0
SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 5.8 ”Hardware

Requirements” on page 39)

Function description:
This function explicitly checks the FLMD0 pin and returns the current status
65 Application Note U16929EE3V2AN00

[MEMO]
66 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming

8.1 SelfLib Functionality

Except the control program which is application specific and therefore has to be made by the user, the
SelfLib itself contains all functions important for self-programming:

• Flash environment Activation / Deactivation (See below)

• User interface
It contains the functions to be called by the user Flash reprogramming control program

• Firmware interface

The SelfLib calls the device internal firmware via the firmware interface, which then controls the Flash
environment for re-programming. The firmware is located in a device internal mask ROM. So, it is fix in
order to ensure, that as few as possible user changeable functions endanger the Flash and its contents.

8.1.1 Flash Environment

The Flash environment is additional hardware (charge pumps, sequencer,...), required to do the repro-
gramming. It is not continuously activated, but only for reprogramming.
Environment activation and deactivation is done by the library.

Note: The complete Flash is not accessible at all while the Flash environment is active. So parts of
the SelfLib need to be executed outside the Flash (e.g. in embedded RAM). Copying code to
RAM is supported by the SelfLib and explained later in this document
67 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.2 Device Reprogramming Overview

First of all it is important to select the correct reprogramming flow. Please check with the application and
with the DeviceInfo, whether secure reprogramming and secure bootloader update is required and
available or not (See section 4.3.2 ”Secure reprogramming using self-programming” on page 22).
If secure bootloader update is required, please refer to 8.5 ”Secure Reprogramming Flow with boot-
loader Update” on page 71 for the correct flow.

In the following, the basic steps are explained. The next sub chapters then explain the standard block
reprogramming and the secure bootloader reprogramming. The standard block reprogramming flow is
also embedded in the secure bootloader reprogramming.

The following principle steps have to be executed for any device reprogramming:

Table 8-1: Basic Steps

Step Function Description

1 Setup the user program - Setup communication Interface, watchdog timer, FLMD0 voltage activation,...

2
Self-Programming
initialisation

See section 10.1 ”Initialisation” on page 85.

3 Reprogram the Flash

Take care to keep the correct sequence for reprogramming single Flash blocks
(see section 8.3 ”Basic Block Reprogramming Flow” on page 69) and for secure
bootloader reprogramming (see section 8.5 ”Secure Reprogramming Flow with
bootloader Update” on page 71).

4 End Reprogramming Return to bootloader, start application, reset or...
68 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.3 Basic Block Reprogramming Flow

This is the standard flow, that shall be used to reprogram all Flash blocks.

To ensure, that the data is written correctly and the data retention is given it is important to keep the fol-
lowing sequence for block reprogramming. Whenever a function returns an error, you may not continue
the sequence because the next steps may not work correctly and the result is undefined.

Table 8-2: Block Reprogramming Sequence

Step Flash Lib. Function Description

1 Block Erase The Flash block is erased

2 Write Data is written to the Flash

3 Internal Verify

This step is executed after the last Write to a dedicated block to ensure the
specified data retention of the Flash

The Internal Verify is a check for higher reliability of the programming, but no
manipulation or operation on a flash cells is performed.
It is not mandatory but recommended on Code Flash in order to detect possi-
ble problems that might occur during programming (e.g. noise, Vdd/Gnd
bounce)
69 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.4 Extra Information Handling

Setting protection flags
It is possible to set the protection flags either during the initial programming with a dedicated Flash pro-
grammer (e.g. PG-FP4) or during self-programming using the SelfLib. Following that high flexibility dur-
ing development, but also during mass production is given.

Boot swap flag
If the flag is set to 0, a boot swap is executed. In that case the upper boot block cluster (See section
4.2.2 ”Protection configuration settings” on page 20) is swapped to 0x00000000, while the other clus-
ter is swapped to the upper location.

Extra information handling during self-programming
The extra area containing the different flags is treated completely independent. Following that the flags
need only be reprogrammed, when the boot swap flag is updated or when the protection settings are to
be changed. Differing from UC2, the extra area is not affected by any Block Erase operation.
Following that, when normal reprogramming is done without secure bootloader update (See section 8.3
”Basic Block Reprogramming Flow” on page 69), only the normal block reprogramming flow need to

be considered, even with respect to the protection flags.
See 10.3 ”Protection/Safety Related Operations” on page 92 for an example on how to set the flags

Notes: 1. In order only to increase the protection level, it is possible to set additional restrictions for
the Flash programming, not remove restrictions

• Any protection flag can only be set, not be cleared

• The boot cluster size can not be changed, if the block protection flag is set

• The boot swap flag can not be changed, if the block protection flag is set

2. A flag is set by writing it to 0 while a cleared flag has the value 1.
70 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.5 Secure Reprogramming Flow with bootloader Update

The basic feature allowing this way of secure reprogramming is, that on device start-up is checked
which block contains a valid bootloader. To do so the boot swap flag in the extra area(s) is analysed.
By the boot swap feature and the correct reprogramming sequence it can be assured, that always a
valid boot program is started to continue the reprogramming sequence in case that the reprogramming
algorithm was interrupted (Power fail, accidental reset).
The bootloader must be able to control the complete reprogramming sequence including data transfer
of the new Flash contents.

The sample configuration considers a device with 8 blocks and with boot swap capability, where the
blocks 0/1 can be swapped with 2/3.

Note: The block number in the diagrams below are the physical block numbers. They are always fix,
even after block swapping. E.g.: block 2 before boot swapping remains block 2 even after the
swap. This is done for better illustration.
When using the SelfLib functions, logical block numbers are used. On logical block numbers the
block on address 0x00000000 is always block 0, followed by block 1 and so on. This is valid
even after block swapping. E.g.: Block 2 before swapping is block 0 after swapping. By that soft-
ware development is easier, as the block numbers need not be modified depending on the
swapping.
71 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
Table 8-3: SST(UX4) Flash Secure Reprogramming Sequence Incl. bootloader Update

Step
SelfLib

Function
Description Sample Configuration

1 Initial Status

• Boot Program in the lower 2 areas

• Safety flags in the extra area set (e.g.
Write disable, Block Erase disable)

• Boot flag in the extra area not set. So
Blocks 0/1 are located at 0x0000000

• Blocks 2~7 contain the application

2

Reprogram
blocks 2/3
with the new
bootloader

The new bootloader is written to the blocks,
that shall be swapped to 0x0000000 later on

Execute the complete block reprogramming
flow for both blocks (See 8.3 ”Basic Block
Reprogramming Flow” on page 69):

• Erase

• Program
• Internal Verify (See also 8.3 ”Basic Block

Reprogramming Flow” on page 69)

When erasing the first application program
block the application is no longer valid and
able to run. In case of power fail, the boot-
loader handles the complete reprogramming
flow.

Block 0

Old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Extra areaS

Extra areaS

Block 0

Invalid old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

New
Bootloader
72 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
3
Rewrite secu-
rity flags

General rule regarding the boot flag is, that it
has to be inverted in order to swap the
blocks.
In this example the boot flag needs to be set
(Example in 4.3.1 ”Set protection flags and
boot cluster size” on page 32)

After writing the security flags and boot flag,
the new bootloader in blocks 2 and 3 would
be active in case of a device restart (e.g. due
to power failure)

4
Swap blocks
0/1 and 2/3

After swapping the blocks, the begin of the
new bootloader (block 2) is located at
0x00000000

5
Reprogram
the blocks 0,
1, 4~7

Execute the complete block reprogramming
flow for each block separately (See 8.3
”Basic Block Reprogramming Flow” on

page 69):

• Erase

• Program
• Internal Verify (See also 8.3 ”Basic Block

Reprogramming Flow” on page 69)

Note: Pass the logical block numbers (not
physical block numbers mentioned in the dia-
gram on the right side) as parameters to the
SelfLib functions requiring block numbers!

Step
SelfLib

Function
Description Sample Configuration

Extra areaS, B

Block 0

Invalid old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

New
Bootloader

Extra area

Block 2

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

S, B

Invalid old
Application

New
Bootloader

Old
Bootloader

Extra areaS, B

Block 2

New
Application

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

New
Bootloader
73 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.6 Reprogramming Scenario

The reprogramming scenario describes the way in which reprogramming background operations are
initiated and how the execution status is checked.

The scenario is explained in detail in the following.

Note: As different scenarios are under planning, the library is already prepared for different options.
The necessary set-up in the library is done by the global define “SELFLIB_EXESCEN” in the file
“SelfLibSpecific.h”. For the time being, the define may not be changed.

The user application, containing the re-programming control program initiates a programming operation
(e.g. Erase) by calling the appropriate SelfLib function. The SelfLib passes control to the device internal
firmware, which completely executes the operation and returns to the SelfLib at the end. The SelfLib
returns then control immediately the control program.
The Flash environment is being activated implicitly by the SelfLib functions. Therefore, (de-)activation
by the user program is not necessary and may lead to unpredictable program behaviour.

Figure 8-1: Firmware Execution Scenario

...

Firmware

SelfLib-Firmware
Interface

SelfLib-User
Interface

Control
Program

Application

No Flash
access

possible

No Flash
access

possible

Execution
in BROM

Execution
in RAM

Execution
in Flash

Execute
Operation

Execute
another Operation
74 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.7 SelfLib Sections

In order to support the different environments and reprogramming sequences, the library is splitted up
into several sections.

The following library sections exist:

• SelfLib_Rom
This section contains the code executed at the beginning of self-programming. This code is
executed at the original location, e.g. internal FLASH. The library initialisation is part of this
section.

• SelfLib_RomOrRam
This section contains the user interface. Depending on the reprogramming scenario (See
section 8.6 ”Reprogramming Scenario” on page 74) this section is copied into the RAM or not.
The copy procedure is automatically executed by the library initialisation (See section 10.1
”Initialisation” on page 85).

Note: This section has been introduced to gain flexibility for further device and SelfLib feature exten-
sions. Currently the section is not copied to RAM.

• SelfLib_ToRam
This section need to be executed outside the reprogrammed Flash. As it is usually copied to the
internal RAM, it is called SelfLib_ToRam. The sections contains the device Firmware interface.

• SelfLib_ToRamUsrInt
This section contains the Interrupt function entry during activated Flash environment.
The device internal firmware passes all acknowledged interrupts to the 1st RAM addresses,
where the interrupt function entry routine need to be located.
In order to achieve this, the SelfLib initialisation copies this section to the SelfLib destination
address first. The SelfLib destination address must be the first RAM address!

Even if not used and empty, the section must exist, as address references to this section are
used in the SelfLib initialisation.

• SelfLib_ToRamUsr
This section contains user functions to be executed in RAM, where it is copied by the SelfLib
initialisation
Part of these user functions are the Interrupt functions, called by the interrupt entry in the
SelfLib_ToRamUsrInt section. Furthermore, this section may also contain other user functions,
like the self-programming control program, etc.
Even if not used and empty, the section must exist, as address references to this section are
used in the SelfLib initialisation.

Note: Function calls on V850 devices are realized as relative jumps. Following that, the linked relative
address distance between SelfLib_ToRamUsrInt (Interrupt entry) and SelfLib_ToRamUsr (Inter-
rupt function) may not change before and after copy to RAM. As the section SelfLib_ToRamUsr
is copied immediately (4 Byte alignment) behind SelfLib_ToRamUsrInt by SelfLib_Init, the user
must also consider this section sequence in the linker directive file.

• SelfLib_RAM
This section contains the variables required for SelfLib. It can be located to internal or external
RAM.
75 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.7.1 Automatic section copy

The application, including the control program and the SelfLib are usually located in the internal Flash.
As the memory location of the application is not permanently available during self-programming, parts
of the program need to be copied to a “save” location, where they can be executed. This may be the
internal RAM, but also external RAM, if available, is acceptable. The control program, as well as the
user interface of the SelfLib may be located in Flash. Only the firmware interface of the SelfLib and user
interrupt functions must be located outside the Flash on execution.

If the copy functionality of the SelfLib_Init function is configured, the following sections, containing these
functions, are copied automatically to the destination address in RAM (See 4.1.1 ”Library initialization”
on page 25):

• SelfLib_ToRamUsrInt

• SelfLib_ToRamUsr

• SelfLib_ToRam

Notes: 1. The RAM destination address, passed to SelfLib_Init function must be the 1st RAM address
(interrupt entry on activated Flash environment) as the section SelfLib_ToRamUsrInt need
to copied there!

2. The copy functionality of the SelfLib_Init function has a drawback. As the code location dif-
fers from the linked position, source level debugging is not possible inside the copied code.
For the SelfLib code this is not a big problem, as it is well tested, but for user code this need
to be considered.
Alternative (for GHS) solution could be:
Similar to the.data section. Link the code to the destination address and use the possibility
of the GHS startup routines to copy the code to the RAM from a ROM image. Please refer to
the GHS documentation, "ROM linker section attribute".
76 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.8 Hardware Requirements

The requirements of self-programming regarding the device external hardware is very low as no dedi-
cated external programming voltage is required.
However, it has to be considered, that a security concept against unintended reprogramming has been
set-up. It is required, that the devices FLMD0 pin is externally attached to VDD (I/O voltage) during self-
programming. FLMD0 should be attached to VDD immediately before or after SelfLib initialisation (See
the device specific application sample software) and reset to VSS at the end of self-programming.
Default state on reset is VSS.

Figure 8-2: FLMD0 Sample Circuit

In the sample circuit, the port pin is input on reset. By that FLMD0 is held to VSS on reset. During self-
programming the port is set to output and to the value “1”. Then the FLMD0 pin is set to VDD.

R

Vss

Port n / Pin m

FLMD0
77 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.9 User Application Execution During Self-Programming

The reprogramming flow is set-up in the way, that a user written self-programming control program con-
trols the basic reprogramming flow and the SelfLib calls. The SelfLib functions interact with the Flash.
According to the called SelfLib function the execution requires times from a few nanoseconds up to sev-
eral seconds. In many applications it is acceptable, that no further software execution during that time is
possible. This is the easiest way of a reprogramming sequence.
However, for most applications it is not acceptable, that no more code can be executed during execution
of long lasting SelfLib functions (like the Erase function).

The NEC single voltage Flash devices are designed in a way, that the time consuming Flash manipula-
tion operations only have to be initiated and then are executed in the background. Completion of the
operations is then checked by the firmware in order to continue the self-programming or return to the
user application

This separates the time critical FLASH operations (executed in hardware in background) and non time
critical status check operations (executed by firmware). Due to the separation it is possible to execute
interrupt driven user functions during the complete self-programming.
78 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
8.9.1 Interrupt functions

This sub-chapter explains the Interrupt function execution during self-programming.

On deactivated Flash environment the interrupt vector table is available and the normal user defined
interrupt functions can be executed. When the environment is activated, this is not the case. As the
Flash including the interrupt vector table is not accessible at that time, normal jumps into the vector
table are not possible. Instead, the interrupt jump is handled by the device internal firmware in the fol-
lowing way:

• All interrupt vectors are relocated to an entry point in the internal RAM. No register handling or
mode change is done by the firmware. The user handler must be designed as interrupt function
including register save/restore and reti at the end

• New entry point of all non maskable interrupts is the 1st address of the internal RAM
(depending on the device, e.g. 0xFFFFE000). A user handler routine must check the interrupt
source. The source can be read from the exception cause register ECR (See device users
manual).

• New entry point of all maskable interrupts is the word address following the masked interrupt
entry (depending on the device, e.g. 0xFFFFE004). A user handler routine must check the
interrupt source. The source can also be read from the exception cause register (See device
users manual).

Figure 8-3: Interrupt Routine Execution in Internal RAM / External Memory

1 2 3 4

Int. RAM

Flash
temporarily

disabled during
reprogramming

Interrupt

Reprogramming
Program Flow

Jump to
Interrupt entry

(1st RAM address)

ISR execution Return to
Reprogramming

Flow

Firmware

App. +
Selflib

App. +
Selflib

App. +
Selflib

App. +
Selflib
79 Application Note U16929EE3V2AN00

Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
The SelfLib is designed in order to ease the interrupt user handler implementation. This is done by spe-
cial treatment of the two SelfLib sections SelfLib_ToRamUsrInt and SelfLib_ToRamUsr. These sections
are copied to the destination address by the SelfLib_Init function, if the copy functionality is configured.

• The section SelfLib_ToRamUsrInt is the first copied section. In the application sample it
contains the user interrupt entry as the only functionality.

• The section SelfLib_UsrInt is copied by SelfLib_Init immediately behind the SelfLib_UsrInt1st
(4Byte alignment). It is designed to contain the interrupt user function.

Notes: 1. The RAM destination address, passed to SelfLib_Init function must be the 1st RAM address
(interrupt entry on activated Flash environment) as the section SelfLib_ToRamUsrInt need
to copied there!

2. As Normal function calls from section SelfLib_UsrInt1st to SelfLib_UsrInt are intended, the
sections must also be linked immediately after another with a 4Byte alignment. Please set
up the linker control file accordingly!

3. The execution latency of interrupt routines on activated Flash environment is increased by
the fact, that the interrupts are passed to the first RAM addresses by the device internal
firmware. However, the increase is quite low and should not exceed 100us on maximum
device frequency.
80 Application Note U16929EE3V2AN00

Chapter 9 SST (UX4/CZ6HSF) - SelfLib Configuration

SelfLib implementation relevant issues are discussed in the following sub-chapters.

9.1 Used Resources

The only resources used by the self-programming, is memory.

Beside the SelfLib sections the stack is used. The stack usage is depending on the library and on the
used compiler environment. Furthermore, also the device firmware uses the stack.

The complete FLASH is not available at time during self-programming.

9.2 Software Considerations

This chapter lists up special issues to be considered when implementing self-programming into the
application.

DMA operation during self-programming
DMA operations during self-programming (While the Flash environment is activated) are not allowed at
all. Background is the fact, that accesses sequences to protected SFR registers may fail in case of DMA
accesses to the peripheral bus during this sequence

Run-Time Library calls
During Self-Programming (activated Flash Environment) It is not possible to call run-time library func-
tions, if the library is not copied to RAM together with the Self-Programming code.
In case of program failures during self-programming, the code should be explicitly checked for such
calls.

Switch instruction in C
In case of the user status check, the switch instruction should be avoided in all the code executed in
RAM. Depending on the used compiler this instruction may result in a call to a run-time library, which
has not been copied.
81 Application Note U16929EE3V2AN00

Chapter 9 SST (UX4/CZ6HSF) - SelfLib Configuration
9.3 Compiler Configuration

As the SelfLib is delivered in source code, the user has to take care for the correct compiler settings in
his applications. Due to the huge amount of setting options, not all could be tested. The settings coming
along with the application samples should be taken as reference for the user application development.

9.3.1 Project settings

The most important settings for a successful application build shall be explained in the following:

Position independent code (PIC)
The SelfLib code shall be compiled position independent.

Inline function prologue and epilogue
In order to avoid any library calls for function prologue and epilogue into a section, not available during
self-programming (Flash), they need to be unlined.

V850E core instruction set
The extended instruction set of the V850E core is used for the assembler parts. So this core should be
selected.

The settings are only required for the complete SelfLib and all code added to the SelfLib sections. The
rest of the project may have different settings. However, it is recommended to use the same settings
project wide, if possible.

System calls
The linkers can add small code fragments and appropriate labels for so called system calls. These calls
are required to do e.g. terminal-io or file-io. Whenever such an operation is required, the program jumps
to the special code. The debugger detects this by a debug break and executed special operations. As
partially device firmware is executed on the same addresses as the normal program code, the firmware
might run into the debug break too, resulting in unexpected program behaviour. This must be avoided
by disabling certain debug functionality.

Green Hills (GHS) Multi 2000

To set the settings project wide, click on the project file in the project window to select it before entering
the menu.

• Select position independent code

• Select inline prologue

• Select the processor type "V850E1" respectively. "V850E/MS1" for V850E core instruction set

Further required settings:

• Set the following driver options for the assembler files to ensure, that c-style preprocessing
directives are processed:
Click on an assembler file to select it. Then select the menu “Project -> File options”. In the
driver options field type in “-preprocess_assembly_files”. Do this for each assembler file.

• Disable usage of the callt instruction, as it results in calls to the run-time library, which is not
copied into the RAM in case of time saving scenario.

System calls can be avoided inside the debugger.

• Type in the debugger cmd window: target syscalls off
This can also be added to the .rc or the .mbs debugger control files.
82 Application Note U16929EE3V2AN00

Chapter 9 SST (UX4/CZ6HSF) - SelfLib Configuration
IAR Embedded Workbench

Using the IDE, the settings can be found in the menu “Project -> Options”. To set the settings project
wide, click on the top of the project tree in the project window before entering the menu.

• Category ICCV850: Optimize for speed. By that, the function prologue/epilogue is inlined

• Category general: Select CPU variant V850ES or V850E for the V850E core instruction set

• Category Linker->Output->”Debug Information for C-Spy”: Deselect “with runtime control
modules” to avoid system calls

No explicit setting required for position independent code.

NEC CA850

Using the IDE, the following can be configured in the menu “Tool -> Compiler Options” under the tab
“Others”. To set the settings project wide, click on the top of the project tree in the project window before
entering the menu.

• In the box "Any Option" type in “-Ot” for inline prologue/Epilogue

Using the IDE, the following can be configured in the menu “Tool -> Linker Options” under the tab
“Library”. To set the settings project wide, click on the top of the project tree in the project window before
entering the menu.

• De-select "Link standard library" and de-select "link mathematics library"

No explicit setting required for position independent code.
The core selection is done during project initialization by selecting the correct target device.

No explicit settings for system calls required, as these are not supported by the NEC compiler
83 Application Note U16929EE3V2AN00

Chapter 9 SST (UX4/CZ6HSF) - SelfLib Configuration
9.4 Global SelfLib Defines - SelfLibSpecific.h

The SelfLib is optimized for code size. This is realized by special device and environment dependent
defines. Setting these defines controls the compilation of the library. Differing from setting SelfLib
options by function parameters (like in the UC2 SelfLib), unused code will so be avoided and the code
size will be reduced.

The defines are located in the file SelfLibSpecific.h. This file is included in the different SelfLib c-mod-
ules and should there for be located in the same directory.

The defines as of today are explained in the following. Future extensions according to device changes
or customer requirements may be possible:

SELFLIB_SPECIFIC_OPTIONS
Different firmware implementations are available, especially but not only with respect to the different
basic technologies (UX4, CZ6HSF,...). These implementation require slightly different data structures
and set-up inside the SelfLib. Please set the define according to the used device. The following settings
are defined as of today. Please refer to the DeviceInfo for the correct setting for your device:

• SELFLIB_KX1_V1 Setting for 1st versions of the K_Line devices

• SELFLIB_PHOENIX_F Special setting for Phoenix-F

• SELFLIB_PROENIX_FS Special setting for Phoenix-FS

• SELFLIB_IX3 Special setting for V850E/Ix3 Devices

SELFLIB_STATUS_CHECK
This define is available for future extensions of the SelfLib. It may be used (modified) in case of future
enhanced device features with respect to execution of user applications during self-programming. As of
today only the first option (status check by the firmware) is supported.

• STATUS_CHECK_FW Hardware background operation is initiated by the device
 firmware. Status check is also done by the device firmware.

User application execution possible only using interrupt
functions (Similar to the “interrupt mode” in UC2)

• STATUS_CHECK_SELFLIB Hardware background operation is initiated by the device
firmware. Status check is done by the SelfLib. User application

 execution possible only using interrupt functions
(In UC2 this was called “interrupt mode”)

• STATUS_CHECK_USER Hardware background operation is initiated by the device
firmware. Status check is done by the User program. User
application execution is possible in the status check loop
(In UC2 this was called “polling mode”).
84 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API

The SelfLib contains functions of several different categories. These are called by the user program in
the sequences as described in the last chapters. The library function calls and parameters are
explained in the following.

10.1 Initialisation

Functions explained in this chapter are called at the beginning of the self-programming. They are nec-
essary for the SelfLib initialisation, but some functions can also be used for set-up of a reprogramming
control program.

10.1.1 Library initialization

Library call:
u32 SelfLib_Init(void *destAddSelfLib,

u32 frequency,
SECTION_COPY copy)

Required parameters:
destAddSelfLib The Relocated Sections are copied to this location.

Depending on the copy parameter (see below) these are
SelfLib_ToRamUsrInt, SelfLib_ToRamUsr, SelfLib_ToRam

Caution: If interrupt functions shall be executed during self-programing (See section 8.9
”User Application Execution During Self-Programming” on page 78), the address

must be set to the beginning of the internal RAM (e.g. 0xFFFFE000), as the interrupt
handler entry is there.

frequency The operation frequency of the device (Hz)
e.g.: crystal 5 MHz, internal PLL with the factor 10:
frequency=50,000,000

This parameter is used for CZ6HSF devices only. For other
devices it must be set to 0

copy SELFLIB_COPY: The Relocated Sections are copied to the
address, passed to SelfLib_Init by the parameter destAddSelfLib
(See above).
SELFLIB_DONT_COPY: The sections are not copied

Returned value:
SELFLIB_OK The initialisation was successful
SELFLIB_ERR_PARAMETER Wrong frequency parameter (e.g. frequency!= 0, when the

define for the Flash technology was set to default or to UX4. See
3.4 ”Global SelfLib Defines - SelfLibSpecific.h” on page 24)

Function description:
The function copies the sections into the RAM if requested (see above).

The SelfLib_ToRamUsrInt section is copied first (to destAddSelfLib), in order to enable the user to
place it on a defined address for easy interrupt handling support (See section 8.9.1 ”Interrupt func-
tions” on page 79).
Directly behind that SelfLib_ToRamUsr is copied, followed by SelfLib_ToRam and
SelfLib_RomOrRam. The copy routine doesn’t leave any holes between the copied sections.
85 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
In addition to the section copy the SelfLib data and internal pointers are initialised.

Figure 10-1: Section Copy in SelfLib Initialisation

Function call sample:
The following function call samples shall explain the usage of the SelfLib_Init function. Depending
on the application one of the samples may be used. The parameters have to be adapted to the user
application.

• The program to control the reprogramming (e.g. bootloader or monitor program) including the
library is located in the device internal flash. To do Flash programming the sections
SelfLib_ToRamUsrInt, SelfLib_ToRamUsr, SelfLib_ToRam and SelfLib_RomOrRam need to be
copied to internal RAM or external memory.
ret = SelfLib_Init (SELFLIB_DEST, /* The copy destination address */
 FREQUENCY, /* Operation frequency */
 COPY); /* Copy the sections to SELFLIB_DEST */

• The program to control the reprogramming (e.g. bootloader or monitor program) including the
library is already located in the device internal RAM or external memory. Functions in the
SelfLib_ToRamUsrInt, SelfLib_ToRamUsr, SelfLib_ToRam and SelfLib_RomOrRam sections
can be executed directly on their original location and need not be copied. No interrupt routines
copied to RAM during reprogramming are used
ret = SelfLib_Init (SELFLIB_DEST, /*The copy destination address */
 FREQUENCY, /* Operation frequency */
 DONT_COPY); /* Don’t copy the sections to SELFLIB_DEST */

Sample definitions (Depending on the application and the device):

#define SELFLIB_DEST 0xFFFFE000 /* e.g. Destination address 0xFFFFE000 */

For CZ6HSF devices:
#define FREQUENCY 16000000 /* e.g. System operation frequency 16MHz */
For UX4 devices:
#define FREQUENCY 0 /* No frequency setting necessary --> set to 0 */

Int. RAM

Flash

SelfLib_RomOrRam

SelfLib_ToRam

SelfLib_ToRamUsrInt

SelfLib_ToRamUsrInt1st
86 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.1.2 New function address

Library call:
u32 *SelfLib_FktNewAddress (void *addFct,

void *destAddSelfLib)

Required parameters:

addFkt Original Function address.
destAddSelfLib Destination address in RAM. See section 10.1.1 ”Library initial-

ization” on page 85

Returned value:
Address of the function inside the SelfLib_RomOrRam or the SelfLib_ToRamUsr Section on its des-
tination address.
If the function is not in any SelfLib section, 0x00000000 is returned as error value

Function description:
If a user function is located in the section SelfLib_RomOrRam or SelfLib_ToRamUsr it may be cop-
ied to a save RAM location by SelfLib_Init. If the function has then to be called from outside of the
section where it is located, the normally used relative function calls don’t work any longer.Following
that, it has to be called by a function pointer. To set-up the function pointer SelfLib_FktNewAddress
returns the new address of the function.
87 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.2 Basic Reprogramming

Basic reprogramming functions are related to the standard block reprogramming (See section 8.3
”Basic Block Reprogramming Flow” on page 69). These functions support the operations Blank

Check, Erase, Write, Internal Verify.

10.2.1 Area Blank Check

Library call:
u32 SelfLib_BlankCheck(u32 blockNoStart,

u32 blockNoEnd)
Required parameters:

blockNoStart First Block number to be checked (Not block address, but num-
ber of the flash block)

blockNoEnd Last Block number to be checked (Not block address, but num-
ber of the flash block)

Returned value:
SELFLIB_OK Blocks are blank

SELFLIB_ERR_PARAMETER blockNoStart or blockNoEnd is invalid

SELFLIB_ERR_FLASHPROCn (n = 0x00~0x2). At least one block is not blank

Function description:
This function checks, if a range of blocks is blank (erased) or not.

Note: The Blank Check confirms that all cells within the checked flash area still have the correct mar-
gin level (erase level). A failure of the Blank Check does not imply a flash problem as such, it
only indicates the necessity to perform an Erase operation to ensure proper start conditions
before the programming of the flash memory.
88 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.2.2 Area Erase

Library call:
u32 SelfLib_Erase (u32 blockNoStart,

u32 blockNoEnd)
Required parameters:

blockNoStart First Block number to be erased (Not block address, but number
of the flash block)

blockNoEnd Last Block number to be erased (Not block address, but number
of the flash block)

Returned value:
SELFLIB_OK Erasing was successfully. Blocks are blank now

SELFLIB_ERR_PARAMETER blockNoStart or blockNoEnd is invalid

SELFLIB_ERR_FLASHPROCn (n = 0x0~0x2). Erase failed

SELFLIB_ERR_PROTECTION Flash protection error. The error is generated, if the boot cluster
protection bit is set and the Erase shall be applied to a boot
block. See 10.3 ”Protection/Safety Related Operations” on
page 92

Function description:
This function erases a range of Flash blocks.

The time required for erasing strongly depends on the used device, no. of already done erase
cycles, temperatures and other conditions. It is not constant and might last up to several seconds in
worst case.

Note: Device internally, the Block Erase function can erase certain sets of blocks in parallel, reducing
the erase time significantly. If the blocks are within one Flash macro and the range is 2^n and
the alignment is according to the size, these blocks are erased in parallel.
If the range, passed to the SelfLib_Erase function, does not fit the criteria for parallel erase, the
range is split up automatically by the SelfLib and device firmware into fitting sub-ranges, which
are then erased sequentially. As this is done automatically, the user control program does not
have to take care for that.

Example:
blockNoStart = 3
blockNoEnd = 87
Erase is internally split up into: Erase 3 --> Erase 4~7 --> Erase 8~15 --> Erase 16~31 -->

Erase 32~63 --> Erase 64~79 --> Erase 80~87.
89 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.2.3 Write

Library call:
u32 SelfLib_Write (void *addSrc,

void *addDest,
u32 length)

Required parameters:
addSrc Address of the source data that has to be written into the Flash

addDest Destination where the data has to be written (The address align-
ment strongly depends on the used device. Please refer to the
device information for the alignment)

Length Number of WORDS to be written. According to the device and
the Flash technology dedicated limitations for the Write granular-
ity and maximum length are given. Please refer to the device
information for the exact limitations. Values working generally
are:
- All V850 devices: length = 64 words (*32 bits)

Returned value:
SELFLIB_OK Data is successfully written

SELFLIB_ERR_PARAMETER Address parameter error

SELFLIB_ERR_FLASHPROCn (n = 0x0~0x2). Write failed

SELFLIB_ERR_PROTECTION Flash protection error. The error is generated, if the boot cluster
protection bit is set and the Erase shall be applied to a boot
block. See 10.3 ”Protection/Safety Related Operations” on
page 92

Function description:
Data is written to the Flash. This is done word wise.
90 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.2.4 Internal Verify

Library call:
u32 SelfLib_IVerify (u32 blockNoStart,

u32 blockNoEnd)
Required parameters:

blockNoStart First Block number to be checked (Not block address, but num-
ber of the flash block)

blockNoEnd Last Block number to be checked (Not block address, but num-
ber of the flash block)

Returned value:
SELFLIB_OK Internal Verify passed successfully

SELFLIB_ERR_PARAMETER blockNoStart or blockNoEnd is invalid

SELFLIB_ERR_FLASHPROCn (n = 0x0~0x2). Internal Verify failed

Function description:
This function compares the Flash contents on erase level against the write level. See also 8.3
”Basic Block Reprogramming Flow” on page 69
91 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.3 Protection/Safety Related Operations

10.3.1 Set protection flags and boot cluster size

Library call:
u32 SelfLib_SetSecFlags(u32 SecFlags)

Required parameters:
SecFlags 32-bit value containing the following bits:

Bit 0: 0: The boot clusters are swapped on Reset
1: The boot clusters are not swapped on Reset

Bit 1: 0: Chip Erase disabled
1: Chip Erase enabled

Bit 2: 0: Block Erase disabled
1: Block Erase enabled

Bit 3: 0: Write disabled
1: Write enabled

Bit 4: 0: Read command disabled
1: Read command enabled

Bit 5: 0: Boot Cluster is protected
1: Boot Cluster is not protected

Bits 6~23: Reserved for future use
Bits 24~31: Last boot block number (=Number of blocks in the

boot cluster - 1)

Unsupported Flags or reserved flags have to be set to 1

Returned value:
SELFLIB_OK Flag setting was successfully.

SELFLIB_ERR_PARAMETER Block with the block number blockNo does not exist or the com-
mand is not supported by the device or wrong bits are set

SELFLIB_ERR_FLASHPROCn (n = 0x0~0x2). Setting security flags failed

SELFLIB_ERR_PROTECTION Flash protection error. The error is generated, if the boot cluster
protection bit is set and the Erase shall be applied to a boot
block. See 10.3 ”Protection/Safety Related Operations” on
page 92

Function description:
This function sets the security/safety related flags in the extra area (See 4.2 ”Flash Protection” on
page 18 and 8.4 ”Extra Information Handling” on page 70).
92 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
Notes: 1. Boot Swap handling:
The self-programming library offers 2 functions to swap the boot blocks:

Temporary boot swap:
The function SelfLib_BootSwap() (See 4.3.4 ”Secure self-programming with bootloader
update” on page 22) swaps the boot blocks immediately. As this function does not modify
the boot swap flag in the device extra area, the swap effect lasts only until the next RESET.
This function may be part of a secure reprogramming sequence with bootloader update
(See 8.5 ”Secure Reprogramming Flow with bootloader Update” on page 71), but addition-
ally the function SelfLib_SetInfo() is required for a permanent boot swap!

Permanent boot swap:
The function SelfLib_SetInfo() writes the boot swap flag in the Flash Extra Area. According
to the flag, the boot blocks are or are not swapped from the next RESET onward (not imme-
diately on the flag write!). The following sample code shows, how to invert the boot swap
flag and program it into the extra area again in order to swap the boot blocks on the next
RESET:
 /* Load the security flags except boot swap flag */
 secFlags = (SelfLib_GetInfo_SecFlags() & (~0x00000001));
 /* Additionally load the boot swap flag. Based on the API definition it is
 automatically inverted */
 secFlags |= (SelfLib_GetInfo_BootSwap() & 0x00000001);
 /* The boot cluster size may not be set to 0xFF, which is the default value if not touched
 before. If so, we explicitly set it to a reasonable value */
 if((secFlags >> 24) == 0xFF)
 secFlags &= 0x03FFFFFF;
 /* Write the modified boot security flags */
 ret = SelfLib_SetInfo(secFlags);

2. Once a protection flag has successfully been set either by this function or by the Flash pro-
grammer beforehand, it cannot be cleared again using this function. Only setting additional
flags is possible
The only possibility to clear a flag is to do a Chip Erase by the Flash programmer!

3. Setting the boot cluster protection flag reduces the flexibility in order to increase the Flash
protection
- Changing the boot swap flag is not longer allowed
- Boot cluster size cannot be changed any longer.
93 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.4 Get Device Dependent Information

One central firmware function is used to read device dependent information. The corresponding SelfLib
function is SelfLib_GetInfo. In order to simplify the information gathering for the user application, differ-
ent function like macros have been defined in SelfLib.h, calling SelfLib_GetInfo with appropriate param-
eters and corresponding result casting. 10.4.1 ”Get information” on page 94 describes the basic
function, while the other sub-chapters describe the function like macros.

10.4.1 Get information

Library call:
u32 SelfLib_GetInfo(u32 option)

Required parameters:
option 0: Get version information

1: Get implemented commands
2: Get CPU no. and block no.
3: Get protection flag information
4: Get boot area swap and Flash macro connection method
5~5+block no: Get last block address
94 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
Returned value:
Option 0: CCCCCCCCDDDDDDDDAAAAAAAABBBBBBBB

C: device version (high)
D: device version (low)
A: firmware version (high)
B: firmware version (low)

Option 1: Bit0: reserved (Always 0)
Bit1: reserved (Always 0)
Bit2: reserved (Always 0)
Bit3: Block Erase
Bit4: Write
Bit5: reserved (Always 0)
Bit6: Block Internal Verify
Bit7: reserved (Always 0)
Bit8: Block Blank Check
Bit9: Get flash information
Bit10: Set flash information
Bit11: reserved (Always 0)
Bit12: Boot swap
Bit13: reserved (Always 0)
Bit14: FLMD0 check
Bit15: Read
Bit16: reserved (Always 0)
Bit17: Chip Erase
Bit18: Extra area Read
Bit19: Extra area Write
Bit20: One word Write
Bit21: Internal Verify
Bit22: Blank Check
Bits23~31: reserved (0)

Option 2: AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB
A: CPU number
B: Block count

Option 3: AAAAAAAAxxxxxxxxxxxxxxxxxxSRWBCx
A: Last boot cluster block number
x: reserved
S: Boot Cluster Write (1: enable, 0: disable)
R: Read command (1: enable, 0: disable)
W: Write command (1: enable, 0: disable)
B: Block Erase command (1: enable, 0: disable)
C: Chip Erase command (1: enable, 0: disable)

Option 4: 0: Boot area is not swapped
1: Boot area is swapped

Option 5~5+Block no.:
End address of the block, specified by block no.

Function description:
This function returns device dependent information according to the option, passed to the function
95 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.4.2 Get protection flags

Library call:
u32 SelfLib_GetInfo_SecFlags(void)

Required parameters:
-

Returned value:
Bit 0: Reserved - Always 1

Bit 1: 0: Chip Erase disabled
1: Chip Erase enabled

Bit 2: 0: Block Erase disabled
1: Block Erase enabled

Bit 3: 0: Write disabled
1: Write enabled

Bit 4: 0: Read command disabled
1: Read command enabled

Bit 5: 0: Boot Cluster is protected
1: Boot Cluster is not protected

Bits 6~23: Reserved for future use

Bits 24~31: Last boot block number (=Number of blocks in the
boot cluster - 1)

Function description:
This function returns a 32 bit value containing above mentioned security related bits. The meaning
of the bits is explained in 4.2.2 ”Protection configuration settings” on page 20.
96 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.4.3 Get block swapping flag

Library call:
u32 SelfLib_GetInfo_BootSwap(void)

Required parameters:
-

Returned value:
0: Boot swapping is not performed on device startup
1: Boot swapping is performed on device startup

Function description:
This function returns the value of the boot swap bit (See section 4.3 ”Security” on page 21).

10.4.4 Get device number

Library call:
u32 SelfLib_GetInfo_Device(void)

Required parameters:
-

Returned value:
CPU number in decimal format
e.g. uPD70F3166 (V850ES/SA3) = 3166 (=0x0C5E)

Function description:
This function returns the CPU number, that is part of the device name, in decimal format
97 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.4.5 Get block count

Library call:
u32 SelfLib_GetInfo_BlockCnt(void)

Required parameters:
-

Returned value:
Number of Flash blocks in the device

Function description:
This function returns the number of Flash blocks in the device

10.4.6 Get block end address

Library call:
u32 SelfLib_GetInfo_BlockEndAdd(u32 blockNo)

Required parameters:
blockNo Block number to be checked (Not block address, but number of

the flash block)

Returned value:
End address of the selected block

Function description:
This function returns the end address of the block passed as a parameter.
98 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.5 Miscellaneous Functions

10.5.1 Boot swap

Library call:
u32 SelfLib_BootSwap(void)

Required parameters:
-

Returned value:
SELFLIB_OK Boot swap executed successfully

SELFLIB_ERR_PROTECTION Flash protection error

Function description:
This function swaps the boot blocks. See also 10.3 ”Protection/Safety Related Operations” on
page 92

10.5.2 Check mode (FLMD0)

Library call:
u32 SelfLib_ModeCheck(void)

Required parameters:
-

Returned value:
SELFLIB_OK VDD is applied at the pin FLMD0

SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 8.6 ”Reprogramming
Scenario” on page 74)

Function description:
This function explicitly checks the FLMD0 pin and returns the current status.
99 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.5.3 Read

Library call:
u32 SelfLib_Read(void *addSrc,

void *addDest,
u32 len)

Required parameters:

addSrc Source address in the Flash
addDest Destination address in RAM
len number of words (4 Bytes) to read

Note: On devices that can operate on frequencies >64MHz due to the Flash architecture, the granu-
larity of len is 2 words. So, valid values of len are 2, 4, 6, ... but not 1, 3, ...
Furthermore, on such devices addSrc must be aligned to an 8 Byte address

Returned value:
SELFLIB_OK The function has been executed successfully

SELFLIB_ERR_PARAMETER Wrong parameters passed to the function, e.g. wrong source
address or len

Function description:
The function reads the Flash contents from the device to the destination buffer.

Note: For normal self-programming this function is not required as it is faster to read the data directly
by normal memory accesses instead of using this function. This function has been implemented
for special serial programmer related applications.
100 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
10.6 Alternative Function Names

According to the different international requirements, definitions for alternative function names have
been implemented. These names are reflected by defines in the SelfLib header file SelfLib.h

Table 10-1: Alternative function names

SelfLib function name Alternative function name

SelfLib_BlankCheck FlashBlockBlankCheck

SelfLib_Erase FlashBlockErase

SelfLib_IVerify FlashBlockIVerify

SelfLib_BootSwap FlashBootSwap

SelfLib_Init FlashInit

SelfLib_ModeCheck FlashFLMDCheck

SelfLib_GetInfo FlashGetInfo

SelfLib_StatusCheck FlashStatusCheck

SelfLib_SetInfo FlashSetInfo

SelfLib_Write FlashWordWrite

SelfLib_Read FlashWordRead

SelfLib_LibVersion FlashLibVersion

SelfLib_FctNewAddress FlashFctNewAddress
101 Application Note U16929EE3V2AN00

Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
[MEMO]
102 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming

In addition to the Code Flash some devices are also equipped with Data Flash. The data Flash has dif-
ferent features to the Code Flash and is treated differently. The self-programming library is designed to
re-program the Code Flash only. For any operations on Data Flash, please refer to a special library
called DFALib and the appropriate documentation.

11.1 SelfLib Functionality

The SelfLib itself contains all functions important for self-programming except the control program
which is application specific and therefore has to be made by the user:

• Flash environment Activation / Deactivation (See below)

• User interface
This contains the functions to be called by the user Flash reprogramming control program

• Firmware interface

The SelfLib calls the device internal reprogramming firmware via the firmware interface. The firmware is
located in a device internal ROM or Flash, not visible in the normal address range. This firmware does
the really hardware related operations and is fix in order to ensure, that as few as possible user change-
able functions endanger the Flash and its contents.
If the firmware is located in Flash (e.g. on 70F3441/3444), the code is automatically copied to the
device RAM in order to be executed. This procedure is transparent for the user, but a certain RAM
address space is reserved during self-programming. The reserved address space is mentioned in the
device users manual or the DeviceInfo

11.1.1 Flash Environment

The Flash environment is additional hardware (charge pumps, sequencer,...), required to do the Flash
re-programming. When activated for Flash re-programming, the Flash is not accessible by normal read
accesses, so code execution is not possible from Flash.
Depending on the library setting, the Flash environment (de)activation is done either implicitly by the
library or need to be done explicitly by the user program. See also 11.6 ”User Application Execution
During Self-Programming” on page 110

Note: The Flash is not accessible for normal code and data fetches while the Flash environment is
active. So parts of the SelfLib (and firmware, see above) need to be executed outside the Flash
(e.g. in embedded RAM).
103 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.2 Device Reprogramming Overview

First of all it is important to select the correct reprogramming flow. Please check with the application and
with the DeviceInfo, whether secure reprogramming and secure bootloader update is required and
available or not (See section 4.3.2 ”Secure reprogramming using self-programming” on page 22).
If secure bootloader update is required, please refer to 11.5 ”Secure Reprogramming Flow with boot-
loader Update” on page 107 for the correct flow.

In the following, the basic steps are explained. The next sub chapters then explain the standard block
reprogramming and the secure bootloader reprogramming. The standard block reprogramming flow is
also embedded in the secure bootloader reprogramming.

The following principle steps have to be executed for any device reprogramming:

Table 11-1: Basic Steps

Step Function Description

1 Setup the user program - Setup communication Interface, watchdog timer, FLMD0 voltage activation,...

2
Self-Programming
initialisation

See section 13.1 ”Initialisation” on page 123.

3 Reprogram the Flash

Take care to keep the correct sequence for reprogramming single Flash blocks
(see section 11.3 ”Basic Block Reprogramming Flow” on page 105) and for
secure bootloader reprogramming (see section 11.5 ”Secure Reprogramming
Flow with bootloader Update” on page 107).

4 End Reprogramming Return to bootloader, start application, reset or...
104 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.3 Basic Block Reprogramming Flow

This is the standard flow, that shall be used to reprogram all Flash blocks.

To ensure, that the data is written correctly and the data retention is given it is important to keep the fol-
lowing sequence for block reprogramming. Whenever a function returns an error, you may not continue
the sequence because the next steps may not work correctly and the result is undefined.

Table 11-2: Block Reprogramming Sequence

Step Flash Lib. Function Description

1 Block Erase The Flash block is erased

2 Write Data is written to the Flash

3 Internal Verify

This step is executed after the last Write to a dedicated block to ensure the
specified data retention of the Flash

The Internal Verify is a check for higher reliability of the programming, but no
manipulation or operation on a flash cells is performed.
It is not mandatory but recommended on Code Flash in order to detect possi-
ble problems that might occur during programming (e.g. noise, Vdd/Gnd
bounce)
105 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.4 Extra Information Handling

Setting protection flags and variable Reset vector
It is possible to set the protection flags and the vector either during the initial programming with a dedi-
cated Flash programmer (e.g. PG-FP4) or during self-programming using the SelfLib. Following that
high flexibility during development, but also during mass production is given.

Boot swap flag
If the flag is set, a boot swap is executed. In that case the upper boot block cluster (See section 4.2.2
”Protection configuration settings” on page 20) is swapped to 0x00000000, while the other cluster is

swapped to the upper location.

Extra information handling during self-programming
The extra area containing the different flags is treated completely independent. Following that the flags
need only be reprogrammed, when the boot swap flag is updated or when the protection settings are to
be changed. Differing from UC2, the extra area is not affected by any Block Erase operation.
Following that, when normal reprogramming is done without secure bootloader update (See section
11.3 ”Basic Block Reprogramming Flow” on page 105), only the normal block reprogramming flow
need to be considered, even with respect to the protection flags.
See 13.3.1 ”Set protection flags, boot cluster size and variable reset vector” on page 130 for an exam-
ple on how to set the flags.

Notes: 1. In order to only increase the protection level set before, it is possible to set additional restric-
tions for the Flash programming but not to remove restrictions

• Any protection flag can only be set, not be cleared

• The boot cluster size can not be changed, if the block protection flag is set

• The boot swap flag can not be changed, if the block protection flag is set

2. A flag is set by writing it to 0 while a cleared flag has the value 1.
106 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.5 Secure Reprogramming Flow with bootloader Update

The basic feature allowing this way of secure reprogramming is, that on device start-up is checked
which block contains a valid bootloader. To do so the boot swap flag in the extra area(s) is analysed.
By the boot swap feature and the correct reprogramming sequence it can be assured, that always a
valid boot program is started to continue the reprogramming sequence in case that the reprogramming
algorithm was interrupted (Power fail, accidental reset).
The bootloader must be able to control the complete reprogramming sequence including data transfer
of the new Flash contents.

The sample configuration considers a device with 8 blocks and with boot swap capability, where the
blocks 0/1 can be swapped with 2/3.

Note: The block number in the diagrams below are the physical block numbers. They are always fix,
even after block swapping. E.g.: block 2 before boot swapping remains block 2 even after the
swap. This is done for better illustration.
When using the SelfLib functions, logical block numbers are used. On logical block numbers the
block on address 0x00000000 is always block 0, followed by block 1 and so on. This is valid
even after block swapping. E.g.: Block 2 before swapping is block 0 after swapping. By that soft-
ware development is easier, as the block numbers need not be modified depending on the
swapping.
107 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
Table 11-3: SST(MF2) Flash Secure Reprogramming Sequence Incl. bootloader Update (1/2)

Step
SelfLib

Function
Description Sample Configuration

1 Initial Status • Boot Program in the lower 2 areas

• Safety flags in the extra area set (e.g.
Write disable, Block Erase disable)

• Boot flag in the extra area not set. So
Blocks 0/1 are located at 0x0000000

• Blocks 2~7 contain the application

2 Reprogram
blocks 2/3 with
the new boot-
loader

The new bootloader is written to the blocks,
that shall be swapped to 0x0000000 later on

Execute the complete block reprogramming
flow for both blocks (See 11.3 ”Basic Block
Reprogramming Flow” on page 105):

• Erase

• Program
• Internal Verify (See also 11.3 ”Basic

Block Reprogramming Flow” on page 105)

When erasing the first application program
block the application is no longer valid and
able to run. In case of power fail, the boot-
loader handles the complete reprogramming
flow.

3 Rewrite secu-
rity flags

General rule regarding the boot flag is, that it
has to be inverted in order to swap the blocks.
In this example the boot flag needs to be set

After writing the security flags and boot flag,
the new bootloader in blocks 2 and 3 would be
active in case of a device restart (e.g. due to
power failure)

Block 0

Old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Extra areaS

Extra areaS

Block 0

Invalid old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

New
Bootloader

Extra areaS, B

Block 0

Invalid old
Application

Old
Bootloader

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

New
Bootloader
108 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
4 Swap blocks 0/
1 and 2/3

After swapping the blocks, the begin of the
new bootloader (block 2) is located at
0x00000000

5 Reprogram the
blocks 0, 1,
4~7

Execute the complete block reprogramming
flow for each block separately (See 11.3
”Basic Block Reprogramming Flow” on

page 105):

• Erase

• Program
• Internal Verify (See also 11.3 ”Basic

Block Reprogramming Flow” on page 105)

Note: Pass the logical block numbers (not
physical block numbers mentioned in the dia-
gram on the right side) as parameters to the
SelfLib functions requiring block numbers!

Table 11-3: SST(MF2) Flash Secure Reprogramming Sequence Incl. bootloader Update (2/2)

Step
SelfLib

Function
Description Sample Configuration

Extra area

Block 2

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

S, B

Invalid old
Application

New
Bootloader

Old
Bootloader

Extra areaS, B

Block 2

New
Application

Block 3

Block 0

Block 1

Block 4

Block 5

Block 6

Block 7

New
Bootloader
109 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.6 User Application Execution During Self-Programming

The reprogramming flow is set-up in the way, that a user written self-programming control program con-
trols the basic reprogramming flow and the SelfLib calls. The SelfLib functions interact with the Flash.
According to the called SelfLib function the execution requires times from a few nanoseconds up to sev-
eral seconds. In many applications it is acceptable, that no further software execution during that time is
possible. This is the easiest way of a reprogramming sequence.
However, for most applications it is not acceptable, that no more code can be executed during execution
of long lasting SelfLib functions (like the Erase function).

The MF2-SST Flash devices are designed in a way, that long lasting Flash manipulation operations only
have to be initiated and then are executed in the background. Completion of the operations need to be
checked in order to continue the self-programming. By that, in order to support application software
execution during self-programming the SelfLib can be set-up to offer two major options, if necessary
both in parallel:

• Interrupt function execution

• Function execution while self-programming status polling

The define SELFLIB_STATUS_CHECK (See 12.4 ”Global SelfLib Defines - SelfLibSetup.h” on
page 122) defines how the self-programming background operations are checked.
Two options are possible:

• Internal status check
The status is checked internally by the SelfLib. The operations (e.g. Erase) don’t return until the
Flash operation is finished. User code execution is possible only by interrupt functions.
The internal RAM usage for self-programming is low, as only the firmware interface and
interrupt functions are copied to the device RAM
This option is described in the chapter 11.6.1 ”Internal status check” on page 111.

• Status check by user
The status check is done in the user self-programming control program after initiating the Flash
background operations. User code can be executed in the loop that checks the self-
programming status.
Additionally execution of interrupt functions is possible too.
The RAM usage is higher, as the user self-programming control program, the SelfLib user and
firmware interface are executed in the RAM.
This option is described in the chapter 11.6.2 ”User status check” on page 112.
110 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.6.1 Internal status check

The user application, containing the re-programming control program initiates a programming operation
(e.g. Erase) by calling the appropriate SelfLib function. The SelfLib passes control to the device internal
firmware, which completely executes the operation and returns to the SelfLib at the end. The SelfLib
returns then control immediately the control program.
The Flash environment is being activated implicitly by the SelfLib functions. Therefore, (de-)activation
by the user program is not necessary and even more not allowed as it may lead to unpredictable pro-
gram behaviour.

As the Flash environment is always deactivated when returning to the normal user code, the SelfLib
user interface and the user self-programming control program need not be copied into the RAM. Only
the sections containing the interrupt functions and the firmware interface are automatically copied to the
RAM by the library initialisation if requested (See 13.1.1 ”Library initialization” on page 123). Following
that, the RAm usage is very low, depending on the user interrupt functions.

Figure 11-1: Execution Scenario on Internal Status Check

...

Firmware

SelfLib-Firmware
Interface

SelfLib-User
Interface

Control
Program

Application

No Flash
access

possible

No Flash
access

possible

Execution
in BROM

Execution
in RAM

Execution
in Flash

Execute
Operation

Execute
another Operation
111 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.6.2 User status check

The user application, containing the re-programming control program initiates a programming operation
(e.g. Erase) by calling the appropriate SelfLib function.
While functions with shorter execution time are completely executed within the library and firmware,
Flash operations with longer execution time are only initiated as background operations. The control is
then given back to the user program, that then calls the status check function to poll the status of the
background operation. While polling (e.g. in a loop) other user code can be executed.

The user self-programming control program including the status polling must be executed on activated
Flash environment. Following that, the user code, the SelfLib user and firmware interface are executed
in the RAM. Due to that, the RAM usage in this mode is higher.
Additionally the Flash environment activation and deactivation functions must be explicitly called by the
user program at the beginning respectively at the end of the self-programming.

Additionally to the code execution while status polling, also interrupt functions can be executed.

Figure 11-2: Execution Scenario on User Status Check

Firmware

SelfLib-Firmware
Interface

SelfLib-User
Interface

SelfLib-Flash-env.
Act. / Deact.

Control
Program

Application

Execution
in BROM

Execution
in RAM

No Flash
access
possible

...

Execution
in Flash

Firmware

SelfLib-Firmware
Interface

SelfLib-User
Interface

SelfLib-Flash-env.
Act. / Deact.

Control
Program

Application

Execution
in BROM

Execution
in RAM

No Flash
access
possible

...

Execution
in Flash
112 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.6.3 Execution latencies

The execution latencies of user functions during self-programming differ depending on, if the functions
are executed as interrupt functions or during status polling.

Interrupt functions
The interrupt function latency is determined by the time frame required to activate or deactivate the
Flash environment. During that time neither Flash nor the device internal firmware is available; no inter-
rupt service is possible, the interrupts are disabled by the SelfLib. A interrupt request is delayed until the
activation/deactivation is finished. The latency is measured on the different devices and mentioned in
the device information. However, it is always quite low (e.g. <50 µs on the V850ES/SA3).

Status polling
The latency during user status polling is determined by the execution time of the SelfLib functions.
Due to the fact, that many SelfLib functions initiate only background operations, most function execution
times are below 200 µs. However, a few functions need to be considered separately:
SelfLib_SetInfo
Around 5 ms have to be considered for the execution of this function.
As setting the security flags is not necessarily a part of the normal reprogramming flow, it need to be
checked case by case, whether the latency is relevant. This execution time is not mentioned as latency
in the device information.

SelfLib_Write
The Write function is no background operation. The control is given back to the calling user code after
the words are written. So, it is recommended to write only single words and return to the user code
afterwards. The maximum execution time of this function is determined by the maximum write time of
one Flash cell plus some software overhead. This time is mentioned as latency in polling mode in the
device information.
113 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.6.4 Interrupt functions

This sub-chapter explains the Interrupt function execution during self-programming.

On deactivated Flash environment the interrupt vector table is available and the normal user defined
interrupt functions can be executed. When the environment is activated, this is not the case. As the
Flash including the interrupt vector table is not accessible at that time, normal jumps into the vector
table are not possible. Instead, the interrupt jump is handled by the device internal firmware in the fol-
lowing way:

• All interrupt vectors are relocated to an entry point in the internal RAM. No register handling or
mode change is done by the firmware. The user handler must be designed as interrupt function
including register save/restore and reti at the end

• New entry point of all non maskable interrupts is the 1st address of the internal RAM
(depending on the device, e.g. 0xFFFFE000). A user handler routine must check the interrupt
source. The source can be read from the exception cause register ECR (See device users
manual).

• New entry point of all maskable interrupts is the word address following the masked interrupt
entry (depending on the device, e.g. 0xFFFFE004). An user handler routine must check the
interrupt source. The source can also be read from the exception cause register (See device
users manual).

Figure 11-3: Interrupt Routine Execution in Internal RAM / External Memory

1 2 3 4

Int. RAM

Flash
temporarily

disabled during
reprogramming

Interrupt

Reprogramming
Program Flow

Jump to
Interrupt entry

(1st RAM address)

ISR execution Return to
Reprogramming

Flow

Firmware

App. +
Selflib

App. +
Selflib

App. +
Selflib

App. +
Selflib
114 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
The SelfLib is designed in order to ease the interrupt user handler implementation. This is done by spe-
cial treatment of the two SelfLib sections SelfLib_ToRamUsrInt and SelfLib_ToRamUsr (See also 11.7
”SelfLib Sections” on page 116). These sections are copied to the destination address by the

SelfLib_Init function, if the copy functionality is configured.

• The section SelfLib_ToRamUsrInt is the first copied section. In the application sample it
contains the user interrupt entry as the only functionality.

• The section SelfLib_UsrInt is copied by SelfLib_Init immediately behind the SelfLib_UsrInt1st
(4Byte alignment). It is designed to contain the interrupt user function.

Notes: 1. The RAM destination address, passed to SelfLib_Init function must be the 1st RAM address
(interrupt entry on activated Flash environment) as the section SelfLib_ToRamUsrInt need
to copied there!

2. As Normal function calls from section SelfLib_UsrInt1st to SelfLib_UsrInt are intended, the
sections must also be linked immediately after another with a 4Byte alignment. Please set
up the linker control file accordingly!

3. The execution latency of interrupt routines on activated Flash environment is increased by
the fact, that the interrupts are passed to the first RAM addresses by the device internal
firmware. However, the increase is quite low and should not exceed 100us on maximum
device frequency.
115 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.7 SelfLib Sections

In order to support the different environments and reprogramming sequences, the library is splitted up
into several sections.

The following library sections exist:

• SelfLib_Rom
This section contains the code executed at the beginning of self-programming. This code is
executed at the original location, e.g. internal FLASH. The library initialisation is part of this
section.

• SelfLib_RomOrRam
This section contains the user interface. Depending on the reprogramming scenario (See
section 11.6 ”User Application Execution During Self-Programming” on page 110) this section
is copied into the RAM or not. The copy procedure is automatically executed by the library
initialisation (See section 10.1 ”Initialisation” on page 85).

• SelfLib_ToRam
This section contains the firmware interface and so need to be executed outside the
reprogrammed Flash. As it is usually copied to the internal RAM, it is called SelfLib_ToRam.

• SelfLib_ToRamUsrInt
This section contains the Interrupt function entry during activated Flash environment.
The device internal firmware passes all acknowledged interrupts to the 1st RAM addresses,
where the interrupt function entry routine need to be located.
In order to achieve this, the SelfLib initialisation copies this section to the SelfLib destination
address first. Following that, the SelfLib destination address must be the first RAM address!

Even if not used and empty, the section must exist, as address references to this section are
used in the SelfLib initialisation.

• SelfLib_ToRamUsr
This section contains user functions to be executed in RAM, where it is copied by the SelfLib
initialisation
Part of these user functions are the Interrupt functions, called by the interrupt entry in the
SelfLib_ToRamUsrInt section. Furthermore, this section may also contain other user functions,
like the self-programming control program, etc.
Even if not used and empty, the section must exist, as address references to this section are
used in the SelfLib initialisation.

Note: Function calls on V850 devices are realized as relative jumps. Following that, the linked relative
address distance between SelfLib_ToRamUsrInt (Interrupt entry) and SelfLib_ToRamUsr (Inter-
rupt function) may not change before and after copy to RAM. As the section SelfLib_ToRamUsr
is copied immediately (4 Byte alignment) behind SelfLib_ToRamUsrInt by SelfLib_Init, the user
must also consider this section sequence in the linker directive file.

• SelfLib_RAM
This section contains the variables required for SelfLib. It can be located to internal or external
RAM.
116 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.7.1 Automatic section copy

The application, including the control program and the SelfLib are usually located in the internal Flash.
As the memory location of the application is not permanently available during self-programming, parts
of the program need to be copied to a “save” location, where they can be executed. This may be the
internal RAM, but also external RAM, if available, is acceptable. The control program, as well as the
user interface of the SelfLib may be located in Flash. Only the firmware interface of the SelfLib and user
interrupt functions must be located outside the Flash on execution.

If the copy functionality of the SelfLib_Init function is configured, the following sections, containing these
functions, are copied automatically to the destination address in RAM (See 13.1.1 on page 123):

• SelfLib_ToRamUsrInt

• SelfLib_ToRamUsr

• SelfLib_ToRam

• SelfLib_RomOrRam (If user status polling is activated. See 11.6.2 ”User status check” on
page 112)

Notes: 1. The RAM destination address, passed to SelfLib_Init function must be the 1st RAM address
(interrupt entry on activated Flash environment) as the section SelfLib_ToRamUsrInt need
to copied there!

2. The copy functionality of the SelfLib_Init function has a drawback. As the code location dif-
fers from the linked position, source level debugging is not possible inside the copied code.
For the SelfLib code this is not a big problem, as it is well tested, but for user code this need
to be considered.
Alternative (for GHS) solution could be:
Similar to the .data section. Link the code to the destination address and use the possibility
of the GHS startup routines to copy the code to the RAM from a ROM image. Please refer to
the GHS documentation, “ROM linker section attribute”.
117 Application Note U16929EE3V2AN00

Chapter 11 SST (MF2/UX4) - Self-Programming
11.8 Hardware Requirements

The requirements of self-programming regarding the device external hardware is very low as no dedi-
cated external programming voltage is required.
However, it has to be considered, that a security concept against unintended reprogramming has been
set-up. It is required, that the devices FLMD0 pin is externally attached to VDD (I/O voltage) during self-
programming. FLMD0 should be attached to VDD immediately before or after SelfLib initialisation (See
the device specific self-programming application sample) and reset to VSS at the end of self-program-
ming. Default state on reset is VSS.

Figure 11-4: FLMD0 Sample Circuit

In the sample circuit, the port pin is input on reset. By that FLMD0 is held to VSS on reset. During self-
programming the port is set to output and to the value “1”. Then the FLMD0 pin is set to VDD.

R

Vss

Port n / Pin m

FLMD0
118 Application Note U16929EE3V2AN00

Chapter 12 SST (MF2/UX4) - SelfLib Configuration

SelfLib implementation relevant issues are discussed in the following sub-chapters.

12.1 Used Resources

The only resources used by the self-programming, is memory.

Beside the SelfLib sections the stack is used. The stack usage is depending on the library and on the
used compiler environment. Furthermore, also the device firmware uses the stack.

The complete FLASH is not available at time during self-programming.

12.2 Software Considerations

This chapter lists up special issues to be considered when implementing self-programming into the
application.

DMA operation during self-programming
DMA operations during self-programming (While the Flash environment is activated) are not allowed at
all. Background is the fact, that accesses sequences to protected SFR registers may fail in case of DMA
accesses to the peripheral bus during this sequence

Run-Time Library calls
During Self-Programming (activated Flash Environment) It is not possible to call run-time library func-
tions, if the library is not copied to RAM together with the Self-Programming code.
In case of program failures during self-programming, the code should be explicitly checked for such
calls.

Switch instruction in C
In case of the user status check, the switch instruction should be avoided in all the code executed in
RAM. Depending on the used compiler this instruction may result in a call to a run-time library, which
has not been copied.
119 Application Note U16929EE3V2AN00

Chapter 12 SST (MF2/UX4) - SelfLib Configuration
12.3 Compiler Configuration

As the SelfLib is delivered in source code, the user has to take care for the correct compiler settings in
his applications. Due to the huge amount of setting options, not all could be tested. The settings coming
along with the application samples should be taken as reference for the user application development.

12.3.1 Project settings

The most important settings for a successful application build shall be explained in the following:

Position independent code (PIC)
The SelfLib code shall be compiled position independent.

Inline function prologue and epilogue
In order to avoid any library calls for function prologue and epilogue into a section, not available during
self-programming (Flash), they need to be unlined.

V850E core instruction set
The extended instruction set of the V850E core is used for the assembler parts. So this core should be
selected.

The settings are only required for the complete SelfLib and all code added to the SelfLib sections. The
rest of the project may have different settings. However, it is recommended to use the same settings
project wide, if possible.

System calls
The linkers can add small code fragments and appropriate labels for so called system calls. These calls
are required to do e.g. terminal-io or file-io. Whenever such an operation is required, the program jumps
to the special code. The debugger detects this by a debug break and executed special operations. As
partially device firmware is executed on the same addresses as the normal program code, the firmware
might run into the debug break too, resulting in unexpected program behaviour. This must be avoided
by disabling certain debug functionality.

Green Hills (GHS) Multi 2000

To set the settings project wide, click on the project file in the project window to select it before entering
the menu.

• Select position independent code

• Select inline prologue

• Select the processor type "V850E1" resp. "V850E/MS1" for V850E core instruction set

Further required settings:

• Set the following driver options for the assembler files to ensure, that c-style preprocessing
directives are processed:
Click on an assembler file to select it. Then select the menu “Project -> File options”. In the
driver options field type in “-preprocess_assembly_files”. Do this for each assembler file.

• Disable usage of the callt instruction, as it results in calls to the run-time library, which is not
copied into the RAM in case of time saving scenario.

System calls can be avoided inside the debugger.

• Type in the debugger cmd window: target syscalls off
This can also be added to the .rc or the .mbs debugger control files.
120 Application Note U16929EE3V2AN00

Chapter 12 SST (MF2/UX4) - SelfLib Configuration
IAR Embedded Workbench

Using the IDE, the settings can be found in the menu “Project -> Options”. To set the settings project
wide, click on the top of the project tree in the project window before entering the menu.

• Category ICCV850: Optimize for speed. By that, the function prologue/epilogue is inlined

• Category general: Select CPU variant V850ES or V850E for the V850E core instruction set

• Category Linker->Output->”Debug Information for C-Spy”: Deselect “with runtime control
modules” to avoid system calls

No explicit setting required for position independent code.

NEC CA850

Using the IDE, the following can be configured in the menu “Tool -> Compiler Options” under the tab
“Others”. To set the settings project wide, click on the top of the project tree in the project window before
entering the menu.

• In the box "Any Option" type in “-Ot” for inline prologue/Epilogue

Using the IDE, the following can be configured in the menu “Tool -> Linker Options” under the tab
“Library”. To set the settings project wide, click on the top of the project tree in the project window before
entering the menu.

• De-select "Link standard library" and de-select "link mathematics library"

No explicit setting required for position independent code.
The core selection is done during project initialization by selecting the correct target device.

No explicit settings for system calls required, as these are not supported by the NEC compiler
121 Application Note U16929EE3V2AN00

Chapter 12 SST (MF2/UX4) - SelfLib Configuration
12.4 Global SelfLib Defines - SelfLibSetup.h

The SelfLib is optimized for code size. This is realized by scenario dependent defines. Setting these
defines controls the compilation of the library. Differing from setting SelfLib options by function parame-
ters (like in the UC2 SelfLib), unused code will so be avoided and the code size will be reduced.

The defines are located in the file SelfLibSetup.h. This file is included in the different SelfLib c-modules
and should therefor be located in the same directory.

SELFLIB_STATUS_CHECK
As explained in chapter 11.6 ”User Application Execution During Self-Programming” on page 110, this
define configures the status check for Flash background operations.

• STATUS_CHECK_INTERNAL Defines the internal status check. User code execution during
self-programming is possible by interrupt functions only

• STATUS_CHECK_USER Defines the user status check. User code execution during
self-programming is possible by interrupt functions or in the
status polling loop

SELFLIB_SECTIONS

This define configures whether the sections to be executed outside the Flash (e.g. SelfLib_ToRam,....)
are automatically copied to another location by the function SelfLib_Init (See 11.7.1 ”Automatic section
copy” on page 117 and 13.1.1 ”Library initialization” on page 123).

• SELFLIB_COPY The sections are automatically copied by the SelfLib_Init
 function

• SELFLIB_DONT_COPY The sections are not copied.
122 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API

The SelfLib contains functions of several different categories. These are called by the user program in
the sequences as described in the last chapters. The library function calls and parameters are
explained in the following.

13.1 Initialisation

Functions explained in this chapter are called at the beginning of the self-programming. They are nec-
essary for the SelfLib initialisation, but some functions can also be used for set-up of a reprogramming
control program.

13.1.1 Library initialization

Library call:
The function call is different, depending on the SelfLib setup (See 12.4 ”Global SelfLib Defines -
SelfLibSetup.h” on page 122).

SELFLIB_SECTIONS defined as SELFLIB_COPY
void SelfLib_Init(void *destAddSelfLib)

SELFLIB_SECTIONS defined as SELFLIB_DONT_COPY
void SelfLib_Init(void)

Required parameters:
destAddSelfLib The Relocated Sections are copied to this location.

See 11.7 ”SelfLib Sections” on page 116

Caution: If interrupt functions shall be executed during self-programing (See section 11.6
”User Application Execution During Self-Programming” on page 110), the address

must be set to the beginning of the internal RAM (e.g. 0xFFFFE000), as the interrupt
handler entry is there.

Returned value:
 -

Function description:
The function copies the sections into the RAM if requested (see above).

The SelfLib_ToRamUsrInt section is copied first (to destAddSelfLib), in order to enable the user to
place it on a defined address for easy interrupt handling support (See section 11.6.4 ”Interrupt
functions” on page 114).
Directly behind that SelfLib_ToRamUsr is copied, followed by SelfLib_ToRam and
SelfLib_RomOrRam. The copy routine doesn’t leave any holes between the copied sections.

In addition to the section copy the SelfLib data and internal pointers are initialised.
123 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
Figure 13-1: Section Copy in SelfLib Initialisation

Int. RAM

Flash

SelfLib_RomOrRam

SelfLib_ToRam

SelfLib_ToRamUsrInt

SelfLib_ToRamUsrInt1st
124 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.1.2 New function address

Library call:
u32 *SelfLib_FktNewAddress (void *addFct,

void *destAddSelfLib)

Required parameters:

addFkt Original Function address.
destAddSelfLib Destination address in RAM. See section 13.1.1 ”Library initial-

ization” on page 123

Returned value:
Address of the function inside the SelfLib_RomOrRam or the SelfLib_ToRamUsr Section on its des-
tination address.
If the function is not in any SelfLib section, 0x00000000 is returned as error value.

Function description:
If a user function is located in the section SelfLib_RomOrRam or SelfLib_ToRamUsr it may be cop-
ied to a save RAM location by SelfLib_Init. If the function has then to be called from outside of the
section where it is located, the normally used relative function calls don’t work any longer.Following
that, it has to be called by a function pointer. To set-up the function pointer SelfLib_FktNewAddress
returns the new address of the function.
125 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.2 Basic Reprogramming

Basic reprogramming functions are related to the standard block reprogramming (See section 11.3
”Basic Block Reprogramming Flow” on page 105). These functions support the operations Blank

Check, Erase, Write, Internal Verify.

13.2.1 Area Blank Check

Library call:
u32 SelfLib_BlankCheck(u32 blockNoStart,

u32 blockNoEnd)
Required parameters:

blockNoStart First Block number to be checked (Not block address, but num-
ber of the flash block)

blockNoEnd Last Block number to be checked (Not block address, but num-
ber of the flash block)

Returned value:
The possible return values differ depending on the configured status check scenario (See 11.6 ”User
Application Execution During Self-Programming” on page 110 and 12.4 ”Global SelfLib Defines -
SelfLibSetup.h” on page 122).
In case of user status check, this function only initiates a Flash background operation. Afterwards, the
user control program need to do status checks to poll for the end of the background operation and to
receive the operation result (SELFLIB_OK or SELFLIB_ERR_FLASHPROCn).
If the Flash operation is not called or called not long enough, a following Flash operation will return
SELFLIB_ERR_FLOW.

SELFLIB_OK In case of internal status check: Blocks are blank
In case of user status check: Background operation started

SELFLIB_ERR_PARAMETER blockNoStart or blockNoEnd is invalid

SELFLIB_ERR_FLASHPROCn Only possible in case of internal status check:
(n = 0x00~0x2). At least one block is not blank

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function checks, if a range of blocks is blank (erased) or not.

Note: The Blank Check confirms that all cells within the checked flash area still have the correct mar-
gin level (erase level). A failure of the Blank Check does not imply a flash problem as such, it
only indicates the necessity to perform an Erase operation to ensure proper start conditions
before the programming of the flash memory.
126 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.2.2 Area Erase

Library call:
u32 SelfLib_Erase (u32 blockNoStart,

u32 blockNoEnd)
Required parameters:

blockNoStart First Block number to be erased (Not block address, but number
of the flash block)

blockNoEnd Last Block number to be erased (Not block address, but number
of the flash block)

Returned value:
The possible return values differ depending on the configured status check scenario (See 11.6 ”User
Application Execution During Self-Programming” on page 110 and 12.4 ”Global SelfLib Defines -
SelfLibSetup.h” on page 122).
In case of user status check, this function only initiates a Flash background operation. Afterwards, the
user control program need to do status checks to poll for the end of the background operation and to
receive the operation result (SELFLIB_OK or SELFLIB_ERR_FLASHPROCn). If the Flash operation is
not called or called not long enough, a following Flash operation will return SELFLIB_ERR_FLOW.

SELFLIB_OK In case of internal status check: Blocks are erased successfully
In case of user status check: Background operation started

SELFLIB_ERR_PARAMETER blockNoStart or blockNoEnd is invalid

SELFLIB_ERR_PROTECTION Flash protection error. The error is generated, if the boot cluster
protection bit is set and the Erase shall be applied to a boot
block. See 4.2.2 ”Protection configuration settings” on page 20

SELFLIB_ERR_FLASHPROCn Only possible in case of internal status check:
(n = 0x00~0x2). At least one block could not be erased

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function erases a range of Flash blocks.

The time required for erasing strongly depends on the used device, no. of already done erase
cycles, temperatures and other conditions. It is not constant and might last up to several seconds in
worst case.

Note: Device internally, the Block Erase function can erase certain sets of blocks in parallel, reducing
the erase time significantly. If the blocks are within one Flash macro and the range is 2^n and
the alignment is according to the size, these blocks are erased in parallel.
If the range, passed to the SelfLib_Erase function, does not fit the criteria for parallel erase, the
range is split up automatically by the SelfLib and device firmware into fitting sub-ranges, which
are then erased sequentially. As this is done automatically, the user control program does not
have to take care for that.
Example:
blockNoStart = 3
blockNoEnd = 87
Erase is internally split up into: Erase 3 --> Erase 4~7 --> Erase 8~15 --> Erase 16~31 -->

Erase 32~63 --> Erase 64~79 --> Erase 80~87
127 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.2.3 Write

Library call:
u32 SelfLib_Write (void *addSrc,

void *addDest,
u32 length)

Required parameters:
addSrc Address of the source data that has to be written into the Flash

addDest Destination where the data has to be written (The address align-
ment strongly depends on the used device. Please refer to the
device information for the alignment)

Length Number of WORDS to be written. According to the device and
the Flash technology dedicated limitations for the Write granular-
ity and maximum length are given. Please refer to the device
information for the exact limitations. Values working generally
are:
- All V850 devices: length = 64 words (*32 bits)

Returned value:
SELFLIB_OK Data is successfully written

SELFLIB_ERR_PARAMETER Address parameter error

SELFLIB_ERR_FLASHPROCn (n = 0x0~0x2). Write failed

SELFLIB_ERR_PROTECTION Flash protection error. The error is generated, if the boot cluster
protection bit is set and the Erase shall be applied to a boot
block. See 13.3.1 ”Set protection flags, boot cluster size and
variable reset vector” on page 130

SELFLIB_ERR_FLOW Only possible in case of user status check (See 11.6 ”User
Application Execution During Self-Programming” on page 110
and 13.7.3 ”Status check” on page 142):
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
Data is written to the Flash. This is done word wise.
128 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.2.4 Internal Verify

Library call:
u32 SelfLib_IVerify (u32 blockNoStart,

u32 blockNoEnd)
Required parameters:

blockNoStart First Block number to be checked (Not block address, but num-
ber of the flash block)

blockNoEnd Last Block number to be checked (Not block address, but num-
ber of the flash block)

Returned value:
The possible return values differ depending on the configured status check scenario (See 11.6 ”User
Application Execution During Self-Programming” on page 110 and 12.4 ”Global SelfLib Defines -
SelfLibSetup.h” on page 122).
In case of user status check, this function only initiates a Flash background operation. Afterwards, the
user control program need to do status checks to poll for the end of the background operation and to
receive the operation result (SELFLIB_OK or SELFLIB_ERR_FLASHPROCn). If the Flash operation is
not called or called not long enough, a following Flash operation will return SELFLIB_ERR_FLOW.

SELFLIB_OK In case of internal status check: Int. Verify passed successfully
In case of user status check: Background operation started

SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 11.8 ”Hardware
Requirements” on page 118)

SELFLIB_ERR_PARAMETER blockNoStart or blockNoEnd is invalid

SELFLIB_ERR_FLASHPROCn Only possible in case of internal status check:
(n = 0x00~0x2). Internal Verify failed

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function compares the Flash contents on erase level against the write level. See also 11.3
”Basic Block Reprogramming Flow” on page 105
129 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.3 Protection/Safety Related Operations

13.3.1 Set protection flags, boot cluster size and variable reset vector

Library call:
u32 SelfLib_SetInfo(u32 SecFlags,

u32 resetVctAdr)

Required parameters:
SecFlags 32-bit value containing the following bits:

Bit 0: 0: The boot clusters are swapped on Reset
1: The boot clusters are not swapped on Reset

Bit 1: 0: Chip Erase disabled
1: Chip Erase enabled

Bit 2: 0: Block Erase disabled
1: Block Erase enabled

Bit 3: 0: Write disabled
1: Write enabled

Bit 4: 0: Read command disabled
1: Read command enabled

Bit 5: 0: Boot Cluster is protected
1: Boot Cluster is not protected

Bits 6~23: Reserved for future use
Bits 24~31: Last boot block number (=Number of blocks in the

boot cluster - 1)

Unsupported Flags or reserved flags have to be set to 1

resetVctAdr Reset vector address: Address of the first executed instruction
after Reset.

Returned value:
The possible return values differ depending on the configured status check scenario (See 11.6 ”User
Application Execution During Self-Programming” on page 110 and 12.4 ”Global SelfLib Defines -
SelfLibSetup.h” on page 122).
In case of user status check, this function only initiates a Flash background operation. Afterwards, the
user control program need to do status checks to poll for the end of the background operation and to
receive the operation result (SELFLIB_OK or SELFLIB_ERR_FLASHPROCn). If the Flash operation is
not called or called not long enough, a following Flash operation will return SELFLIB_ERR_FLOW.

SELFLIB_OK In case of internal status check: Flag setting was successful
In case of user status check: Background operation started

SELFLIB_ERR_PARAMETER e.g.: Already set flags shall be cleared or resetVctAdr is set to
0xffffffff

SELFLIB_ERR_PROTECTION Flash protection error. The error is generated, if the boot cluster
protection bit is set and the Erase shall be applied to a boot
block. See 4.2.2 ”Protection configuration settings” on page 20

SELFLIB_ERR_FLASHPROCn Only possible in case of internal status check:
(n = 0x00~0x2). Setting security flags failed

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.
130 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
Function description:
This function sets the security/safety related flags in the extra area (See 4.2 ”Flash Protection” on
page 18 and 11.4 ”Extra Information Handling” on page 106).

Notes: 1. Boot Swap handling:
The self-programming library offers 2 functions to swap the boot blocks:

Temporary boot swap:
The function SelfLib_BootSwap() (See 4.3.4 ”Secure self-programming with bootloader
update” on page 22) swaps the boot blocks immediately. As this function does not modify
the boot swap flag in the device extra area, the swap effect lasts only until the next RESET.
This function may be part of a secure reprogramming sequence with bootloader update
(See 11.5 ”Secure Reprogramming Flow with bootloader Update” on page 107), but addi-
tionally the function SelfLib_SetInfo() is required for a permanent boot swap!

Permanent boot swap:
The function SelfLib_SetInfo() writes the boot swap flag in the Flash Extra Area. According
to the flag, the boot blocks are or are not swapped from the next RESET onward (not imme-
diately on the flag write!). The following sample code shows, how to invert the boot swap
flag and program it into the extra area again in order to swap the boot blocks on the next
RESET:
 /* Load the security flags except boot swap flag */
 secFlags = (SelfLib_GetInfo_SecFlags() & (~0x00000001));
 /* Additionally load the boot swap flag. Based on the API definition it is
 automatically inverted */
 secFlags |= (SelfLib_GetInfo_BootSwap() & 0x00000001);
 /* The boot cluster size may not be set to 0xFF, which is the default value if not touched
 before. If so, we explicitly set it to a reasonable value */
 if((secFlags >> 24) == 0xFF)
 secFlags &= 0x03FFFFFF;
 /* Write the modified boot security flags */
 ret = SelfLib_SetInfo(secFlags);

2. Once a protection flag has successfully been set either by this function or by the Flash pro-
grammer beforehand, it cannot be cleared again using this function. Only setting additional
flags is possible
The only possibility to clear a flag is to do a Chip Erase by the Flash programmer!

3. Setting the boot cluster protection flag reduces the flexibility in order to increase the Flash
protection
- Changing the boot swap flag is not longer allowed
- Boot cluster size cannot be changed any longer.
131 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.4 Get Device Dependent Information

One central firmware function is used to read device dependent information. The corresponding SelfLib
function is SelfLib_GetInfo. In order to simplify the information gathering for the user application, differ-
ent function like macros have been defined in SelfLib.h, calling SelfLib_GetInfo with appropriate param-
eters and corresponding result casting. 13.4.1 ”Get information” on page 132 describes the basic
function, while the other sub-chapters describe the function like macros.

13.4.1 Get information

Library call:
u32 SelfLib_GetInfo(u32 option)

Required parameters:
option 0: Get version information

1: Get implemented commands
2: Get CPU no. and block no.
3: Get protection flag information
4: Get boot area swap and Flash macro connection method
5: Get reset vector address
6~6+block no: Get last block address
132 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
Returned value:
Option 0: xxxxxxxxxxxxxxxxAAAAAAAABBBBBBBB

x: reserved
A: firmware version (high)
B: firmware version (low)

Option 1: Bit0: Block Erase
Bit1: Write
Bit2: Block Internal Verify
Bit3: Block Blank Check
Bit4: Get flash information
Bit5: Set flash information
Bit6: Boot swap
Bit7: FLMD0 check
Bit8: Chip Erase
Bit9: Extra area Read
Bit10: Extra area Write
Bit11: Get block unit
Bit12: Dual Operation init
Bit13: Pre-set flash information
Bits14~31: reserved (0)

Option 2: AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB
A: CPU number
B: Block count

Option 3: AAAAAAAAxxxxxxxxxxxxxxxxxxSRWBCx
A: Last boot cluster block number
x: reserved
S: Boot Cluster Write (1: enable, 0: disable)
R: Read command (1: enable, 0: disable)
W: Write command (1: enable, 0: disable)
B: Block Erase command (1: enable, 0: disable)
C: Chip Erase command (1: enable, 0: disable)

Option 4: xxxxxxxxxxxxRODMBBBBBBBBBBBBBBBB
x: reserved
D: Data Flash (0: Supported, 1: Not supported)
R: Variable Reset vector (0: Supported, 1: Not sup-
ported)
O: Dual Operation (0: Supported, 1: Not supported)
M: Block Size (0: 2kByte, 1: 4kByte)
B: Boot Area Swap (0: not swapped, 1: swapped)

Option 5: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
A: Variable reset vector address

Option 6~6+Block no.:
End address of the block, specified by block no.

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function returns device dependent information according to the option, passed to the function
133 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.4.2 Get protection flags

Library call:
u32 SelfLib_GetInfo_SecFlags(void)

Required parameters:
-

Returned value:
Bit 0: Reserved - Always 1

Bit 1: 0: Chip Erase disabled
1: Chip Erase enabled

Bit 2: 0: Block Erase disabled
1: Block Erase enabled

Bit 3: 0: Write disabled
1: Write enabled

Bit 4: 0: Read command disabled
1: Read command enabled

Bit 5: 0: Boot Cluster is protected
1: Boot Cluster is not protected

Bits 6~23: Reserved for future use

Bits 24~31: Last boot block number (=Number of blocks in the
boot cluster - 1)

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function returns a 32 bit value containing above mentioned security related bits. The meaning
of the bits is explained in 4.2.2 ”Protection configuration settings” on page 20.
134 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.4.3 Get block swapping flag

Library call:
u32 SelfLib_GetInfo_BootSwap(void)

Required parameters:
-

Returned value:
0: Boot swapping is not performed
1: Boot swapping is performed

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function returns the value of the boot swap bit (See section 4.3 ”Security” on page 21).

13.4.4 Get device number

Library call:
u32 SelfLib_GetInfo_Device(void)

Required parameters:
-

Returned value:
CPU number in decimal format
e.g. uPD70F3166 (V850ES/SA3) = 3166 (=0x0C5E)

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function returns the CPU number, that is part of the device name, in decimal format
135 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.4.5 Get block count

Library call:
u32 SelfLib_GetInfo_BlockCnt(void)

Required parameters:
-

Returned value:
Number of Flash blocks in the device

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function returns the number of Flash blocks in the device

13.4.6 Get block end address

Library call:
u32 SelfLib_GetInfo_BlockEndAdd(u32 blockNo)

Required parameters:
blockNo Block number to be checked (Not block address, but number of

the flash block)

Returned value:
End address of the selected block

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function returns the end address of the block passed as a parameter.
136 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.4.7 Get variable reset vector address

Library call:
u32 SelfLib_GetInfo_ResetVectorAdd(void)

Required parameters:
-

Returned value:
Address of the variable reset vector

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function returns variable reset vector address (See 4.5.1 ”Variable reset vector” on page 25).
137 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.5 Miscellaneous Functions

13.5.1 Boot swap

Library call:
u32 SelfLib_BootSwap(void)

Required parameters:
-

Returned value:
SELFLIB_OK Boot swap executed successfully

SELFLIB_ERR_PROTECTION Flash protection error

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function swaps the boot blocks and returns the new block number located at 0x00000000.
Please refer to 5.4 ”Secure Reprogramming Flow with Bootloader Update” on page 30.

13.5.2 Check mode (FLMD0)

Library call:
u32 SelfLib_ModeCheck(void)

Required parameters:
-

Returned value:
SELFLIB_OK VDD is applied at the pin FLMD0

SELFLIB_ERR_FLMD0 Error, no VDD on FLMD0 pin (See section 8.6 ”Reprogramming
Scenario” on page 74

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
This function explicitly checks the FLMD0 pin and returns the current status.
138 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.6 Special functions

The functions mentioned in this chapter are not available on all devices. Please refer to the device doc-
umentation or to the DeviceInfo to check whether the selected device supports these.

13.6.1 Read

Library call:
u32 SelfLib_Read(void *addSrc,

void *addDest,
u32 len)

Required parameters:

addSrc Source address in the Flash
addDest Destination address in RAM
len number of words (4 Bytes) to read

Returned value:
SELFLIB_OK The function has been executed successfully

SELFLIB_ERR_PARAMETER Wrong parameters passed to the function, e.g. wrong source
address or len

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
The function reads the Flash contents from the device to the destination buffer.

Note: For normal self-programming this function is not required as it is faster to read the data directly
by normal memory accesses instead of using this function. This function has been implemented
for special serial programmer related applications.
139 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.6.2 Get traceability data

Library call:
u32 SelfLib_GetTRCD(void *addDest)

Required parameters:
addDest Destination address of the data read from the device

Returned value:
SELFLIB_OK The function has been executed successfully

SELFLIB_ERR_UNSUPPORTED The operation is not supported by the device

SELFLIB_ERR_FLOW Only possible in case of user status check:
Error in the flow of calling self-programming functions. A preced-
ing Flash operation has not yet finished.

Function description:
The function reads traceability data words from the device to the destination buffer. The number of
words is defined by the contents of the traceability data and so, device dependent. E.g. The
70F3441 has 3 data words.
Please refer to the device documentation regarding the data meaning and count.
140 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.7 User Status Check Related

The functions in this sub-chapter are only necessary and available, if the user status check is config-
ured (See section 11.6 ”User Application Execution During Self-Programming” on page 110 and 12.4
”Global SelfLib Defines - SelfLibSetup.h” on page 122).

13.7.1 Activate environment

Library call:
void SelfLib_FlashEnv_Activate(void)

Required parameters:
-

Returned value:
 -

Function description:
This function activates the Flash environment. After activation no normal Flash read access (e.g.
instruction fetch) is possible any more.

Note: During execution of this function no interrupts can be served. Although the execution time is rel-
atively short (<50 µs), measures against interrupt overrun have to be taken.

13.7.2 Deactivate environment

Library call:
void SelfLib_FlashEnv_Deactivate(void)

Required parameters:
-

Returned value:
-

Function description:
This function deactivates the Flash environment. After deactivation normal Flash read access (e.g.
instruction fetch) is possible again.

Note: During execution of this function no interrupts can be served. Although the execution time is rel-
atively short (<50 µs), measures against interrupt overrun have to be taken.
141 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.7.3 Status check

Library call:
u32 SelfLib_StatusCheck (void)

Required parameters:
 -

Returned value:

SELFLIB_BUSY The initiated background operation is still ongoing

SELFLIB_OK The initiated background operation (e.g. Erase) finished suc-
cessfully

SELFLIB_ERR_FLASHPROCn (n = 0x00~0x2). The initiated background operation (e.g. Erase)
finished with an error

Function description:
This function checks the status of a previously initiated Flash background operation.

Note: This function need to be called frequently, as on some Flash background operations also device
internal state machines need to be handled by the status check command in order to finish the
operations.
142 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
13.8 Alternative Function Names

According to the different international requirements, definitions for alternative function names have
been implemented. These names are reflected by defines in the SelfLib header file SelfLib.h

Table 13-1: Alternative function names

SelfLib function name Alternative function name

SelfLib_BlankCheck FlashBlockBlankCheck

SelfLib_Erase FlashBlockErase

SelfLib_IVerify FlashBlockIVerify

SelfLib_BootSwap FlashBootSwap

SelfLib_Init FlashInit

SelfLib_ModeCheck FlashFLMDCheck

SelfLib_GetInfo FlashGetInfo

SelfLib_GetTRCD FlashGetTRCD

SelfLib_StatusCheck FlashStatusCheck

SelfLib_SetInfo FlashSetInfo

SelfLib_Write FlashWordWrite

SelfLib_Read FlashWordRead

SelfLib_LibVersion FlashLibVersion

SelfLib_FctNewAddress FlashFctNewAddress

SelfLib_FlashEnv_Activate FlashEnv(1)

SelfLib_FlashEnv_Deactivate FlashEnv(0)
143 Application Note U16929EE3V2AN00

Chapter 13 SST (MF2/UX4) - SelfLib API
[MEMO]
144 Application Note U16929EE3V2AN00

Appendix A Revision History

Item
Date

published
Document No. Comment

1 November 2003 U16929EE1V1AN00 Initial Release

2 June 2004 U16929EE2V0AN00

- Self-Programming chapters separated for UC2 Flash and SST
Flash
- Updated/Modified UC2 secure reprogramming flow
- Extended/Reworked explanations and pictures in all chapters

3 August 2005 U16929EE3V0AN00

- Minor fixes in all chapters
- Added SST(MF2) Flash support. Therefore, separated SST
Flash programming chapters into SST(CZ6HSF/UX4) and
SST(MF2)

4 February 2006 U16929EE3V1AN00 - Minor fixes in all chapters

5 May 2007 U16929EE3V2AN00

- Bug fixes in the API chapters
- Some chapter reordering for better readability
- Improved explanations
- Added API functions for MF2 API
- Extended the chapters on "Software considerations"
- Added alternative function names explanations
- Changed chapter naming for the different technologies
145 Application Note U16929EE3V2AN00

[MEMO]
146 Application Note U16929EE3V2AN00

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics America Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Marketing Services & Publishing
Fax: +49(0)-211-6503-1344

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-6250-3583

Japan
NEC Semiconductor Technical Hotline

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 99.1

Name

Company

From:

Tel. FAX

Facsimile Message

Fax: +81- 44-435-9608

148 Application Note U16929EE3V2AN00

[MEMO]

	Table of Contents
	Chapter 1 Introduction
	Chapter 2 Definition of Terms
	Chapter 3 Overview
	3.1 Process Technology and Flash Technology
	3.2 Technology Specific Chapters

	Chapter 4 Flash
	4.1 Block Structures
	4.1.1 Flash versus EEPROM
	4.1.2 Flash block structures
	Figure 4-1: Embedded Flash Configuration Samples

	4.2 Flash Protection
	4.2.1 Protection strategy
	4.2.2 Protection configuration settings

	4.3 Security
	4.3.1 Normal operation (Error Correction Circuit - ECC)
	Figure 4-2: ECC Functionality

	4.3.2 Secure reprogramming using self-programming
	4.3.3 Secure self-programming without bootloader update
	4.3.4 Secure self-programming with bootloader update

	4.4 Simultaneous Operation During Self-Programming
	4.4.1 Stop application
	4.4.2 Execute in RAM or external memory
	4.4.3 Dual operation
	Figure 4-3: Dual Operation Flash

	4.5 Other Features
	4.5.1 Variable reset vector

	Chapter 5 UC2 - Self-Programming
	5.1 Device Reprogramming Overview
	Table 5-1: Basic Steps

	5.2 Basic Block Reprogramming Flow
	Table 5-2: Block Reprogramming Sequence

	5.3 Extra Information Handling
	5.4 Secure Reprogramming Flow with Bootloader Update
	Table 5-3: UC2 Flash Secure Reprogramming Sequence Including Bootloader Update (1/3)

	5.5 Library Sections
	5.6 Flash Environment
	5.7 Reprogramming Scenarios
	5.7.1 External memory sequence
	Figure 5-1: External Memory Reprogramming Sequence

	5.7.2 Time saving reprogramming sequence
	Figure 5-2: Basic Time Saving Reprogramming Sequence

	5.7.3 RAM saving reprogramming sequence
	Figure 5-3: Basic RAM Saving Reprogramming Sequence

	5.8 Hardware Requirements
	Figure 5-4: FLMD0 Sample Circuit

	5.9 User Application Execution During Self-Programming
	5.9.1 Interrupts
	Figure 5-5: Interrupt Routine Execution in Internal RAM / External Memory

	5.9.2 Status polling
	Figure 5-6: Application Flow in Polling Mode

	5.9.3 Execution latencies

	Chapter 6 UC2 - SelfLib Configuration
	6.1 Used Resources
	6.2 Software Considerations
	6.3 Compiler Configuration
	6.3.1 Project settings

	Chapter 7 UC2 - SelfLib API
	7.1 Initialisation
	7.1.1 Library initialization
	Figure 7-1: Section Copy in SelfLib Initialisation

	7.1.2 New function address
	7.1.3 Register interrupts

	7.2 Flash Environment
	7.2.1 Activate environment
	7.2.2 Deactivate environment

	7.3 Basic Reprogramming
	7.3.1 Area Blank Check
	7.3.2 Area Erase
	7.3.3 Write
	7.3.4 Internal Verify

	7.4 Protection/Safety Related Operations
	7.4.1 Get protection flags
	7.4.2 Get block swapping flag
	7.4.3 Set protection flags
	7.4.4 Set protection flags and variable reset vector

	7.5 Miscellaneous Functions
	7.5.1 Get device number
	7.5.2 Get block count
	7.5.3 Get block end address
	7.5.4 Boot swap
	7.5.5 Status check
	7.5.6 Check mode (FLMD0)

	Chapter 8 SST (UX4/CZ6HSF) - Self-Programming
	8.1 SelfLib Functionality
	8.1.1 Flash Environment

	8.2 Device Reprogramming Overview
	Table 8-1: Basic Steps

	8.3 Basic Block Reprogramming Flow
	Table 8-2: Block Reprogramming Sequence

	8.4 Extra Information Handling
	8.5 Secure Reprogramming Flow with bootloader Update
	Table 8-3: SST(UX4) Flash Secure Reprogramming Sequence Incl. bootloader Update

	8.6 Reprogramming Scenario
	Figure 8-1: Firmware Execution Scenario

	8.7 SelfLib Sections
	8.7.1 Automatic section copy

	8.8 Hardware Requirements
	Figure 8-2: FLMD0 Sample Circuit

	8.9 User Application Execution During Self-Programming
	8.9.1 Interrupt functions
	Figure 8-3: Interrupt Routine Execution in Internal RAM / External Memory

	Chapter 9 SST (UX4/CZ6HSF) - SelfLib Configuration
	9.1 Used Resources
	9.2 Software Considerations
	9.3 Compiler Configuration
	9.3.1 Project settings

	9.4 Global SelfLib Defines - SelfLibSpecific.h

	Chapter 10 SST (UX4/CZ6HSF) - SelfLib API
	10.1 Initialisation
	10.1.1 Library initialization
	Figure 10-1: Section Copy in SelfLib Initialisation

	10.1.2 New function address

	10.2 Basic Reprogramming
	10.2.1 Area Blank Check
	10.2.2 Area Erase
	10.2.3 Write
	10.2.4 Internal Verify

	10.3 Protection/Safety Related Operations
	10.3.1 Set protection flags and boot cluster size

	10.4 Get Device Dependent Information
	10.4.1 Get information
	10.4.2 Get protection flags
	10.4.3 Get block swapping flag
	10.4.4 Get device number
	10.4.5 Get block count
	10.4.6 Get block end address

	10.5 Miscellaneous Functions
	10.5.1 Boot swap
	10.5.2 Check mode (FLMD0)
	10.5.3 Read

	10.6 Alternative Function Names
	Table 10-1: Alternative function names

	Chapter 11 SST (MF2/UX4) - Self-Programming
	11.1 SelfLib Functionality
	11.1.1 Flash Environment

	11.2 Device Reprogramming Overview
	Table 11-1: Basic Steps

	11.3 Basic Block Reprogramming Flow
	Table 11-2: Block Reprogramming Sequence

	11.4 Extra Information Handling
	11.5 Secure Reprogramming Flow with bootloader Update
	Table 11-3: SST(MF2) Flash Secure Reprogramming Sequence Incl. bootloader Update (1/2)

	11.6 User Application Execution During Self-Programming
	11.6.1 Internal status check
	Figure 11-1: Execution Scenario on Internal Status Check

	11.6.2 User status check
	Figure 11-2: Execution Scenario on User Status Check

	11.6.3 Execution latencies
	11.6.4 Interrupt functions
	Figure 11-3: Interrupt Routine Execution in Internal RAM / External Memory

	11.7 SelfLib Sections
	11.7.1 Automatic section copy

	11.8 Hardware Requirements
	Figure 11-4: FLMD0 Sample Circuit

	Chapter 12 SST (MF2/UX4) - SelfLib Configuration
	12.1 Used Resources
	12.2 Software Considerations
	12.3 Compiler Configuration
	12.3.1 Project settings

	12.4 Global SelfLib Defines - SelfLibSetup.h

	Chapter 13 SST (MF2/UX4) - SelfLib API
	13.1 Initialisation
	13.1.1 Library initialization
	Figure 13-1: Section Copy in SelfLib Initialisation

	13.1.2 New function address

	13.2 Basic Reprogramming
	13.2.1 Area Blank Check
	13.2.2 Area Erase
	13.2.3 Write
	13.2.4 Internal Verify

	13.3 Protection/Safety Related Operations
	13.3.1 Set protection flags, boot cluster size and variable reset vector

	13.4 Get Device Dependent Information
	13.4.1 Get information
	13.4.2 Get protection flags
	13.4.3 Get block swapping flag
	13.4.4 Get device number
	13.4.5 Get block count
	13.4.6 Get block end address
	13.4.7 Get variable reset vector address

	13.5 Miscellaneous Functions
	13.5.1 Boot swap
	13.5.2 Check mode (FLMD0)

	13.6 Special functions
	13.6.1 Read
	13.6.2 Get traceability data

	13.7 User Status Check Related
	13.7.1 Activate environment
	13.7.2 Deactivate environment
	13.7.3 Status check

	13.8 Alternative Function Names
	Table 13-1: Alternative function names

	Appendix A Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

