

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U13116EJ2V0UM00 (2nd edition)
Date Published July 2000 N CP(K)

Printed in Japan
© 1998

User’s Manual

µPD77016 Family
Digital Signal Processor

Instructions

µPD77015
µPD77016
µPD77017
µPD77018
µPD77018A
µPD77019
µPD77110
µPD77111
µPD77112
µPD77113
µPD77114

2 User's Manual U13116EJ2V0UM00

[MEMO]

User's Manual U13116EJ2V0UM00 3

 NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade

the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly

dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be

used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be

stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards

with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it

is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices

behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using

a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered

to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device

and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the

initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function

have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers.

Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-

on for devices having reset function.

4 User's Manual U13116EJ2V0UM00

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

License not needed: µPD77016, µPD77019-013, µPD77110

The customer must judge the µPD77015, µPD77017, µPD77018, µPD77018A, µPD77019,

the need for licence: µPD77111, µPD77112, µPD77113, µPD77114

M8E 00. 4

The information in this document is current as of February, 2000. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).

•

•

•

•

•

•

User's Manual U13116EJ2V0UM00 5

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

J99.1

6 User's Manual U13116EJ2V0UM00

Major Revisions in This Edition

Page Description

Throughout Addition of mPD77110, 77111, 77112, 77113, and 77114 as target devices

p. 78 3.4 Load/Store Instructions

Addition of description to Caution 1 of LSPA (parallel load/store instruction)

p. 84 3.4 Load/Store Instructions

Addition of description to Caution 1 of LSSE (section load/store instruction)

p. 109 3.8 Hardware Loop Instructions

Addition of Caution 2 of REP (repeat instruction)

p. 111 3.8 Hardware Loop Instructions

Addition of Caution 2 and change of Caution 3 of LOOP (loop instruction)

p. 113 3.9 Control Instructions

Change of description and addition of Caution 3 of STOP (stop instruction)

The mark shows major revised points.

7User's Manual U13116EJ2V0UM00

INTRODUCTION

Target Readers : This manual is intended for users who wish to understand the functions of the

µPD77016 Family devices and to design and develop software/hardware application

systems using these micocontrollers.

Purpose : This manual is intended to give users an understanding of the instruction functions

provided in µPD77016 Family devices, and is designed to be used as a reference

manual when developing software or hardware application systems using these

microcontrollers.

Organization : This manual consists of the following sections:

• CHAPTER 1 OUTLINE

• CHAPTER 2 INSTRUCTION CATEGORIES AND INSTRUCTION FUNCTIONS

• CHAPTER 3 EXPLANATION OF INSTRUCTIONS

• APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

• APPENDIX B INSTRUCTION SETS

• APPENDIX C INDEX

How to Use This Manual : It is assumed that the reader of this manual has general knowledge in the fields of

electrical engineering, logic circuits, and microcomputers.

The µPD77016 Family represents µPD7701x Family devices (µPD77016, 77015,

77017, 77018, 77018A, and 77019) and µPD77111 Family (µPD77110, 77111,

77112, 77113, and 77114). Unless there are differences in function or operation,

read the µPD77016 Family as the corresponding products. If there are differences

among family products, they are described under their respective names.

Legends : Data significance: Higher digits on the left and lower on the right

Note : Footnote for item marked with Note in the text

Caution : Information requiring particular attention

Remarks : Supplementary information

Bold text: Important items

Numerical representation: Binary ... 0bXXXX

Decimal ... XXXX

Hexadecimal ... 0xXXXX

{ }: Either of the items enclosed within { } can be

selected.

8 User's Manual U13116EJ2V0UM00

Related Documents: The related documents listed below may include preliminary versions. How-

ever, preliminary versions are not marked as such.

Documents Related to Devices

Document Name User’s Manual Application Note

Pamphlet Data Sheet
Product name Architecture Instructions Basic software

µPD77016 U12395E U10891E U10503E This document U11958E

µPD77015 U10902E

µPD77017

µPD77018

µPD77018A U11849E

µPD77019

µPD77019-013 U13053E

µPD77110 U12801E U14623E

µPD77111

µPD77112

µPD77113 U14373E

µPD77114

Documents Related to Development Tools

Document Name Document No.

IE-77016-98, IE-77016-PC User’s Manual Hardware U13044E

IE-11016-CM-LC User's Manual U14139E

RX77016 User's Manual Function U14397E

Configuration Tool U14404E

RX77016 Application Note HOST API U14371E

Caution The documents listed above are subject to change without notice. Be sure to use the latest

documents when designing.

9User's Manual U13116EJ2V0UM00

CONTENTS

CHAPTER 1 OUTLINE 13
1.1 Assembly Description 13

1.1.1 Coding instructions .. 13

1.1.2 Parallel coding ... 13

1.1.3 Coding trinomial operations ... 14

1.1.4 Pointer operations ... 14

1.1.5 Coding conditional instructions .. 14

1.1.6 Coding hardware loop instructions .. 14

1.2 Conventions Used for Instruction Descriptions ... 16
1.2.1 Symbols and corresponding registers ... 16

1.2.2 General-purpose register partition format ... 17

1.2.3 Data pointer modification ... 18

1.3 Description Format 19

CHAPTER 2 INSTRUCTION CATEGORIES AND INSTRUCTION FUNCTIONS 21
2.1 Classification by Instruction Word .. 21

2.1.1 Classification by instruction word format (category classification) .. 21

2.1.2 Classification by instruction function (functional classification) ... 21

CHAPTER 3 EXPLANATION OF INSTRUCTIONS .. 23
3.1 Trinomial Operation Instructions ... 2 3
3.2 Binomial Operation Instructions .. 3 6
3.3 Monomial Operation Instructions .. 57
3.4 Load/Store Instructions 74
3.5 Inter-Register Transfer Instructions .. 93
3.6 Immediate Value Set Instruction .. 9 6
3.7 Branch Instructions 99
3.8 Hardware Loop Instructions ... 1 07
3.9 Control Instructions 114

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS... 120
A.1 Three-Operand Instructions ... 1 21
A.2 Two-Operand Instructions .. 123
A.3 Immediate Value Operation Instructions ... 125
A.4 Load/Store Instructions 126
A.5 Inter-Register Transfer Instruction .. 129
A.6 Immediate Value Set Instruction .. 130
A.7 Branch Instructions 131
A.8 Hardware Loop Instructions ... 1 33
A.9 CPU Control Instructions 135
A.10 Conditional Instructions 136

10 User's Manual U13116EJ2V0UM00

APPENDIX B INSTRUCTION SETS 138

APPENDIX C INDEX ... 144

11User's Manual U13116EJ2V0UM00

LIST OF FIGURES

Figure No. Title Page

1-1 Partition Formats of General-Purpose Registers .. 17

A-1 Three-Operand Instruction Format ... 122

A-2 Two-Operand Instruction Format .. 124

A-3 Immediate Value Operation Instruction Format ... 125

A-4 Load/Store Instruction Format .. 127

A-5 Inter-Register Transfer Instruction Format ... 129

A-6 Immediate Value Set Instruction Format ... 130

A-7 Branch Instruction Format .. 132

A-8 Hardware Loop Instruction Format .. 134

A-9 CPU Control Instruction Format ... 135

A-10 Conditional Instruction Format ... 137

12 User's Manual U13116EJ2V0UM00

LIST OF TABLES

Table No. Title Page

1-1 Symbols and Corresponding Registers ... 16

1-2 Data Pointer Modify .. 18

A-1 Formats of Instruction Words ... 120

13User's Manual U13116EJ2V0UM00

 1

 2

 3

 4

 5

 6

 A

 B

 C

CHAPTER 1 OUTLINE

An instruction word in the µPD77016 Family is composed of 32 bits. Each instruction word is partitioned logically,

allowing plural functional instructions to be included in a single instruction word. All operation instructions and transfer

instructions are executed in one instruction cycle, while loop instructions and branch instructions are executed in two or

three instruction cycles. The µPD77016 has the following assembly instruction features.

• 32-bit instruction words

• Nine instruction function groups

• Plural instructions can be described in one instruction word.

• Flexible description of conditional operations by combining independent conditional instructions

1.1 Assembly Description

1.1.1 Coding instructions

The assembly language for the µPD77016 Family uses arithmetic symbols such as +, –, *, /, and =, instead of general

mnemonics such as ADD and MOV, for improved program readability.

This assembly language requires a semicolon “;” to indicate the end of each line in the same manner as the C language.

Note that this assembler treats all codes as one line until a semicolon, even though one instruction description may fill

several lines. A description example is provided below:

Description example:

• R1 = R0; Assigns the R0 register contents to the R1 register.

• R5 = *DP0; Assigns the X memory contents to the R5 register by using the DP0 register as a pointer.

• R4 = R2 + R3; Adds the R2 and R3 register contents, and assigns the result to the R4 register.

1.1.2 Parallel coding

To describe parallel operations of the µPD77016 Family, up to three instructions can be described in parallel: an

operation instruction (trinomial, binomial, monomial operation instructions) and two transfer instructions for data

movements via X and Y buses.

Description example:

R1 = R0 R2 = *DP0 *DP4 = R3H;

.......... Assigns the R0 register contents to the R1 register, then assigns the X memory contents to the R2 register using

the DP0 register as a pointer, and assigns the R3H register contents to the Y memory using the DP4 register as a pointer.

Remark In the example above, the µPD77016 Family first executes the operational instruction, then executes the

transfer instructions.

14

CHAPTER 1 OUTLINE

User's Manual U13116EJ2V0UM00

1.1.3 Coding trinomial operations

The µPD77016 Family supports trinomial instructions that use three operands to describe the operation of the incorporated

multiplier (the result obtained from multiplication by hardware is added to another register).

Description example:

R0 = R0 + R1L * R2L;

.......... Multiplies the R1L register and the R2L register contents, then adds the result to the R0 register contents, and

stores the sum in the R0 register.

1.1.4 Pointer operations

The µPD77016 Family is provided with instructions that add and subtract the pointer value after executing the transfer

instructions explained in 1.1.2 and 1.1.3 above.

For details on pointer operations, refer to µPD7701x Family User’s Manual Architecture or µPD77111 Family User’s

Manual Architecture .

Description example:

R1 = *DP0++ R2 = *DP4##;

.......... Executes transfer instructions using the DP0 and DP4 registers as pointers, adds 1 to the DP0 contents, and

adds the DN4 (supplement register) value to the DP4 contents.

1.1.5 Coding conditional instructions

The µPD77016 Family is provided with conditional instructions that can use a register value as the condition. These

instructions are executed only when the register value matches the specified condition. By using these instructions, the

number of branch (conditional) instructions required in conditional operation can be reduced. For details on the conditional

instructions, refer to section 3.9 Conditional instruction of control instruction (COND) .

Description example:

if (R0 < 0) R1L + = R2L;

.......... Adds the R2 register contents to the R1 register contents when the R0 register value is negative.

1.1.6 Coding hardware loop instructions

The µPD77016 Family is provided with hardware loop instructions, which enable instructions consisting of 1 to 255

lines to be repeatedly executed 1 to 32767 times. To describe this operation, either the REPEAT or LOOP instruction

is used depending on the number of repeated instruction lines. Nesting of loops is allowed (up to four levels).

15

CHAPTER 1 OUTLINE

User's Manual U13116EJ2V0UM00

Description example:

• To execute one line of instruction two or more times:

REPEAT 32

R0 = R0 + R1L * R2L R1 = *DP0++ R2 = *DP4++;

• To execute 2 to 255 lines of instructions two or more times:

LOOP R1L {

R0 = R0 + R1L * R2L;

•

•

•

R4 = R4 – 1;

};

• To execute a loop within a loop function (nesting of loops):

LOOP 64 {

R0 = R0 + R1L * R2L;

•

•

•

LOOP R1L {

R3 = R0 + R4;

•

•

•

};

R4 = R4 – 1;

R5 = R5 + 1;

NOP;

};

16

CHAPTER 1 OUTLINE

User's Manual U13116EJ2V0UM00

1.2 Conventions Used for Instruction Descriptions

1.2.1 Symbols and corresponding registers

In the following sections, registers are described in a generalized style using symbols. The relationship between the

symbols and the corresponding registers is shown in Table 1-1.

Table 1-1. Symbols and Corresponding Registers

Symbols Corresponding Registers

ro, ro' ro'' R0 to R7

rl, rl' R0L to R7L

rh, rh' R0H to R7H

re R0E to R7E

reh R0EH to R7EH

dp DP0 to DP7

dn DN0 to DN7

dm DMX and DMY

dpx DP0 to DP3

dpy DP4 to DP7

dpx_mod DPn, DPn++, DPn– –, DPn##, DPn%%, !DPn## (n = 0 to 3)

dpy_mod DPn, DPn++, DPn– –, DPn##, DPn%%, !DPn## (n = 4 to 7)

dp_imm DPn##imm (n = 0 to 7)

* xxx Memory contents with address xxx

Example

* DP0 indicates the contents of address 1000 when the contents of the DP0 register is 1000.

17

CHAPTER 1 OUTLINE

User's Manual U13116EJ2V0UM00

1.2.2 General-purpose register partition format

General-purpose registers can be partially accessed when an operation or transfer is executed. The partial access

methods are classified into the five formats shown in Figure 1-1.

Figure 1-1. Partition Formats of General-Purpose Registers

39 0

R0 to R7 D

39 16 15 0

R0EH to R7EH D X

39 32 31 0

R0E to R7E D X

39 32 31 16 15 0

R0H to R7H X D X

39 16 15 0

R0L to R7L X D

Remark D: Numeral

X: Invalid

18

CHAPTER 1 OUTLINE

User's Manual U13116EJ2V0UM00

1.2.3 Data pointer modification

If indirect addressing using a pointer (DPn) is executed, the data pointer is, in most cases, modified after memory access.

Table 1-2 shows the relationship between the descriptions of data pointer modify and the corresponding operations.

Table 1-2. Data Pointer Modify

Description Operation

DPn No operation (The value of DPn is not changed.)

DPn++ DPn ← DPn + 1

DPn– – DPn ← DPn – 1

DPn## DPn ← DPn + DNn

(Adds DP0 through DP7 values to DN0 through DN7 values, respectively.)

Example: DP0 ← DP0 + DN0

DPn%% (n = 0 to 3) DPn = ((DPL + DNn) mod (DMX + 1)) + DPH

(n = 4 to 7) DPn = ((DPL + DNn) mod (DMY + 1)) + DPH

!DPn## Accesses memory after bit reverse for DPn.

After memory access, DPn ← DPn + DNn

DPn##imm DPn ← DPn + imm

19

CHAPTER 1 OUTLINE

User's Manual U13116EJ2V0UM00

1.3 Description Format

Instruction symbol
Instruction type

MADD MADD
Trinomial operation

ro = ro + rh * rh'

Name of instruction : Multiply add

Mnemonic : ro = ro + rh * rh'

Example R1 = R1 + R0H * R4H

Explanation ← Details on instruction operations are described.
 Operation target is marked with solid line .

Instruction to add the product of 16-bit data x 16-bit data to 40-bit data.

39 32 31 30 16 15 0

ro S .

+

39 32 31 30 16 15 0

rh S .

x

39 32 31 30 16 15 0

rh' S .

=

39 32 31 30 16 15 0

ro S .

Execution cycle 1 ← Number of instruction execution cycles

 Instruction that can be described concurrently ← Instructions marked with “Yes” can
be described with this instruction .

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution ← Description that should be read carefully.

20 User's Manual U13116EJ2V0UM00

[MEMO]

21User's Manual U13116EJ2V0UM00

CHAPTER 2 INSTRUCTION CATEGORIES AND INSTRUCTION FUNCTIONS

An instruction is composed of 32 bits which are partitioned into several fields to concurrently manage various resources

in the device. Instructions can be classified into various formats according to the field partition methods. These formats

are further classified by function group into several categories to facilitate the use of instructions.

2.1 Classification by Instruction Word

This section describes two instruction classifications: category and functional classifications.

2.1.1 Classification by instruction word format (category classification)

Instructions can be classified by the format in which the instruction words are partitioned into fields. Such classification

is called category classification. Under this classification, categories are mutually exclusive. In other words, an instruction

which is described in a particular format cannot be used in any other format. If the entire program is described according

to this classification, the programmer can easily trace which functions are concurrently performed by a one-word instruction

execution. This also allows users to create bit patterns of instruction words by synthesizing element fields, and to analyze

concurrently performed functions based on the bit pattern of an instruction word.

Although this classification is closely related to the architecture of language processors including assemblers, programmers

do not necessarily have to be aware of these formats. The details of the category classification are provided in Appendix A.

2.1.2 Classification by instruction function (functional classification)

Classifying instructions according to their functions is called functional classification. This classification helps

programmers understand overall instructions and is convenient when creating application programs. In this manual,

instructions are classified into the following nine functional groups:

• Trinomial operation

• Binomial operation

• Monomial operation

• Load/store

• Inter-register transfer

• Immediate value set

• Branch

• Hardware loop

• Control

Remark : The classification indicated in 2.1.2 above does not imply that each instruction is exclusive within one word;

plural instructions may be concurrently described in the same instruction word. For details, refer to

CHAPTER 3 EXPLANATION OF INSTRUCTIONS .

22 User's Manual U13116EJ2V0UM00

[MEMO]

23User's Manual U13116EJ2V0UM00

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

This section describes instructions of the µPD77016 Family based on the functional classification. The following nine

types of instructions are provided:

3.1 Trinomial Operation Instructions

3.2 Binomial Operation Instructions

3.3 Monomial Operation Instructions

3.4 Load/Store Instructions

3.5 Inter-Register Transfer Instruction

3.6 Immediate Value Set Instruction

3.7 Branch Instructions

3.8 Hardware Loop Instructions

3.9 Control Instructions

3.1 Trinomial Operation Instructions

Instruction for specifying operations with the multiply-accumulator. Any three registers can be specified for the

operands (inputs) from the general-purpose register file, and any one of the registers specified for the operands can be

specified for the output destination.

The following trinomial operation instructions are provided (symbol in parentheses is an abbreviation of each

instruction).

Multiply add (MADD)

Multiply sub (MSUB)

Sign unsign multiply add (SUMA)

Unsign unsign multiply add (UUMA)

1-bit shift multiply add (MAS1)

16-bit shift multiply add (MAS16)

Trinomial operation

24

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MADD MADD

ro = ro + rh * rh'

Name of instruction: Multiply add

Mnemonic: ro = ro + rh * rh'

Example R1 = R1 + R0H * R4H

Explanation Instruction to add the product of 16-bit data x 16-bit data to 40-bit data.

The product of the value of bits 31 to 16 of the general-purpose register specified by rh multiplied

by the value of bits 31 to 16 of the general-purpose register specified by rh' is added to the value

of bits 39 to 0 of the general-purpose register specified by ro. The sum is stored in bits 39 to 0 of

the general-purpose register specified by ro. The 16-bit values specified by rh and rh' and the 40-

bit value specified by ro are data formats represented with two’s complement.

39 32 31 30 16 15 0

ro S .

+

39 32 31 30 16 15 0

rh S .

×

39 32 31 30 16 15 0

rh' S .

=

39 32 31 30 16 15 0

ro S .

On the assumption that a decimal point is located between bit 31 and bit 30 of the value of the

general-purpose registers specified by rh and rh', the product to be added to the value of the

general-purpose register specified by ro is a value with a decimal point located between bit 31 and

bit 30, sign-extended to bits 39 to 32 and with bit 0 set to 0.

Trinomial operation

25

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MADD MADD

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If the addition results in an overflow, the overflow flag ovf in the error status register ESR is

set to 1.

Trinomial operation

26

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MSUB MSUB

ro = ro – rh * rh'

Name of instruction: Multiply sub

Mnemonic: ro = ro – rh * rh'

Example R1 = R1 – R0H * R4H

Explanation Instruction to subtract the product of 16-bit data x 16-bit data from 40-bit data.

The product of bits 31 to 16 of register rh multiplied by bits 31 to 16 of register rh' is subtracted from

bits 39 to 0 of register ro. The 16-bit values specified by rh and rh' and the 40-bit value specified

by ro are data formats represented with two’s complement.

39 32 31 30 16 15 0

ro S .

—

39 32 31 30 16 15 0

rh S .

×

39 32 31 30 16 15 0

rh' S .

=

39 32 31 30 16 15 0

ro S .

On the assumption that a decimal point is located between bit 31 and bit 30 of the value of the

general-purpose registers specified by rh and rh', the product to be added to the value of the

general-purpose register specified by ro is a value with a decimal point located between bit 31 and

bit 30, sign-extended to bits 39 to 32 and with bit 0 set to 0.

Trinomial operation

27

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MSUB MSUB

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If the subtraction results in an overflow, the overflow flag ovf in the error status register ESR

is set to 1.

Trinomial operation

28

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

SUMA SUMA

ro = ro + rh * rl

Name of instruction: Sign unsign multiply add

Mnemonic: ro = ro + rh * rl

Example R1 = R1 + R0H * R4L

Explanation Instruction to add the product of 16-bit data x 16-bit data to 40-bit data.

The product of the value of bits 31 to 16 of the general-purpose register specified by rh multiplied

by the value of bits 15 to 0 of the general-purpose register specified by rl is added to the value of

bits 39 to 0 of the general-purpose register specified by ro. The sum is stored in bits 39 to 0 of the

general-purpose register specified by ro. The 16-bit value specified by rh and the 40-bit value

specified by ro are represented with two’s complement, and the 16-bit value specified by rl is a data

format of a positive integer value.

39 32 31 16 15 0

ro S .

+

39 32 31 16 15 0

rh S.

×

39 32 31 16 15 0

rl .

=

39 32 31 16 15 0

ro S .

On the assumption that a decimal point is located between bit 31 and bit 30 of the value of the

general-purpose register specified by rh and another decimal point is located below bit 0 of the value

of the general-purpose register specified by rl, the product to be added to the value of the general-

purpose register specified by ro is a value with a decimal point located between bit 16 and bit 15,

sign-extended to bits 39 to 32 and with bit 0 set to 0.

Trinomial operation

29

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

SUMA SUMA

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If the addition results in an overflow, the overflow flag ovf in the error status register ESR is

set to 1.

Trinomial operation

30

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

UUMA UUMA

ro = ro + rl * rl'

Name of instruction: Unsign unsign multiply add

Mnemonic: ro = ro + rl * rl'

Example R1 = R1 + R0L * R4L

Explanation Instruction to add the product of 16-bit data x 16-bit data to 40-bit data.

The product of the value of bits 15 to 0 of the general-purpose register specified by rl multiplied by

the value of bits 15 to 0 of the general-purpose register specified by rl' is added to the value of bits

39 to 0 of the general-purpose register specified by ro. The sum is stored into the general-purpose

register specified by ro. The 16-bit values specified by rl and rl' are positive integer values, and the

40-bit value specified by ro is a data format represented with two’s complement.

39 32 31 16 15 1 0

ro .

+

39 32 31 16 15 0

rl .

×

39 32 31 16 15 0

rl' .

=

39 32 31 16 15 1 0

ro .

On the assumption that a decimal point is located below bit 0 of the values of the general-purpose

registers specified by rl and rl', the product to be added to the value of the general-purpose register

specified by ro is a value with a decimal point located between bit 1 and bit 0 with bits 39 to 32 and

bit 0 set to 0.

Trinomial operation

31

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

UUMA UUMA

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Cautions 1. The result is treated as two’s complement data.

2. If the addition results in an overflow, the overflow flag ovf in the error status register ESR

is set to 1.

Trinomial operation

32

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MAS1 MAS1

ro = (ro >> 1) + rh * rh'

Name of instruction: 1-bit shift multiply add

Mnemonic: ro = (ro >> 1) + rh * rh'

Example R1 = (R1 >> 1) + R0H * R4H

Explanation Instruction to add the product of 16-bit data x 16-bit data to 40-bit data.

The product of the value of bits 31 to 16 of the general-purpose register specified by rh multiplied

by the value of bit 31 to 16 of the general-purpose register specified by rh' is added to the value of

bits 39 to 0 of the general-purpose register specified by ro arithmetically shifted to the right by one

bit. The sum is stored in bits 39 to 0 of the general-purpose register specified by ro. The 16-bit

values specified by rh and rh' and the 40-bit value specified by ro are data formats represented with

two’s complement.

39 32 31 30 16 15 0

ro S .

1-bit arithmetic right shift

39 32 31 30 16 15 0

SS .

+

39 32 31 30 16 15 0

rh S .

×

39 32 31 30 16 15 0

rh' S .

=

39 32 31 30 16 15 0

ro S .

On the assumption that a decimal point is located between bit 31 and bit 30 of the value of the

general-purpose registers specified by rh and rh', the product to be added to the value of the

general-purpose register specified by ro is a value with a decimal point located between bit 31 and

bit 30, sign-extended to bits 39 to 32 and with bit 0 set to 0.

Remark This function is efficient for executing FFT at high speed.

Trinomial operation

33

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MAS1 MAS1

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If an arithmetic right shift results in an underflow, the value is not corrected.

If 0xFF’FFFF’FFFF is arithmetically shifted to the right in the shift process, the value remains

0xFF’FFFF’FFFF (it is not set to 0x00’0000’0000).

Trinomial operation

34

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MAS16 MAS16

ro = (ro >> 16) + rh * rh'

Name of instruction: 16-bit shift multiply add

Mnemonic: ro = (ro >> 16) + rh * rh'

Example R1 = (R1 >> 16) + R0H * R4H

Explanation Instruction to add the product of 16-bit data x 16-bit data to 40-bit data.

The product of the value of bits 31 to 16 of the general-purpose register specified by rh multiplied

by the value of bits 31 to 16 of the general-purpose register specified by rh' is added to the value

of bits 39 to 0 of the general-purpose register specified by ro arithmetically shifted to the right by

16 bits. The sum is stored in bits 39 to 0 of the general-purpose register specified by ro. The 16-

bit values specified by rh and rh' and the 40-bit value specified by ro are data formats represented

with two’s complement.

39 32 31 16 15 0

ro S

16-bit arithmetic right shift

39 32 31 30 16 15 0

S S S S S S S S S. S S S S S S S S

+

39 32 31 30 16 15 0

rh S .

×

39 32 31 30 16 15 0

rh' S .

=

39 32 31 30 16 15 0

ro S .

On the assumption that a decimal point is located between bit 31 and bit 30 of the value of the

specified general-purpose registers specified by rh and rh', the product to be added to the value of

the general-purpose register specified by ro is a value with a decimal point located between bit 31

and bit 30, sign-extended to bits 39 to 32 and with bit 0 set to 0.

Remark This function is intended for high-speed double precision multiplication.

Trinomial operation

35

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MAS16 MAS16

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If an arithmetic right shift results in an underflow, the value is not corrected.

If 0xFF’FFFF’FFFF is arithmetically shifted to the right in the shift process, the value remains

0xFF’FFFF’FFFF (it is not set to 0x00’0000’0000).

36 User's Manual U13116EJ2V0UM00

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

3.2 Binomial Operation Instructions

Instructions for specifying operations using a multiply-accumulator, ALU, or the barrel shifter. Any two registers can

be specified for the operand (inputs) from the general register file. Also available are instructions to specify the immediate

value for one input instead of the general-purpose registers. Any one register can be specified for the output destination

from the general-purpose register file.

The following binomial operation instructions are provided:

Multiply (MPY)

Add (ADD)

Immediate add (IADD)

Sub (SUB)

Immediate sub (ISUB)

Arithmetic right shift (SRA)

Immediate arithmetic right shift (ISRA)

Logical right shift (SRL)

Immediate logical right shift (ISRL)

Logical left shift (SLL)

Immediate logical left shift (ISLL)

AND (AND)

Immediate AND (IAND)

OR (OR)

Immediate OR (IOR)

Exclusive OR (XOR)

Immediate exclusive OR (IXOR)

Less than (LT)

37

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MPY MPY

ro = rh * rh'

Name of instruction: Multiply

Mnemonic: ro = rh * rh'

Example R1 = R0H * R4H

Explanation Instruction to multiply two 16-bit data.

The value of bits 31 to 16 of the general-purpose register specified by rh is multiplied by the value

of bits 31 to 16 of the general-purpose register specified by rh'. The product is stored in bits 39 to

0 of the general-purpose register specified by ro. The 16-bit values specified by rh and rh' and the

40-bit value specified by ro are data formats represented with two’s complement.

39 32 31 30 16 15 0

rh S .

×

39 32 31 30 16 15 0

rh' S .

=

39 32 31 30 16 15 0

ro S S S S S S S S . 0

On the assumption that a decimal point is located between bit 31 and bit 30 of the value of the

general-purpose registers specified by rh and rh', the value to be stored to the general-purpose

register specified by ro is a value with a decimal point located between bit 31 and bit 30, sign-

extended to bits 39 to 32 and with bit 0 set to 0.

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution In the following case, bit 31 of the operation result is not a sign.

0x8000 x 0x8000 = 0x00’8000’0000

38

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ADD ADD

ro'' = ro + ro'

Name of instruction: Add

Mnemonic: ro'' = ro + ro'

Example R1 = R0 + R4

Explanation Instruction to add two 40-bit data. The value of bits 39 to 0 of the general-purpose register specified

by ro is added to that of bits 39 to 0 of the general-purpose register specified by ro'. The sum is stored

in bits 39 to 0 of the general-purpose register specified by ro". The 40-bit values specified by ro,

ro', and ro'' are data formats represented with two’s complement.

39 32 31 16 15 0

ro

+

39 32 31 16 15 0

ro'

=

39 32 31 16 15 0

ro"

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If the addition results in an overflow, the overflow flag ovf in the error status register ESR is

set to 1, but the value is not corrected.

Binomial operation

39

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

IADD IADD

ro' = ro + imm

Name of instruction: Immediate add

Mnemonic: ro' = ro + imm (imm = 0 to 0xFFFF (0 to 65535))

Example R1 = R0 + 0x10

Explanation Instruction to add two 40-bit data.

The 40-bit immediate value, zero-extended to bits 39 to 16 by specifying the values of bits 15 to 0

using imm, is added to the value of bits 39 to 0 of the general-purpose register specified by ro. The

sum is stored in bits 39 to 0 of the general-purpose register specified by ro'. The 40-bit values

specified by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro

+

39 32 31 16 15 0

0 imm

=

39 32 31 30 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Caution If the addition results in an overflow, the overflow flag ovf in the error status register ESR is

set to 1.

40

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

SUB SUB

ro'' = ro – ro'

Name of instruction: Sub

Mnemonic: ro'' = ro – ro'

Example R1 = R0 – R4

Explanation Instruction to subtract 40-bit data from 40-bit data.

The value of bits 39 to 0 of the general-purpose register specified by ro' is subtracted from the value

of bits 39 to 0 of the general-purpose register specified by ro. The difference is stored in bits 39 to

0 of the general-purpose register specified by ro''. The 40-bit values specified by ro, ro', and ro'' are

data formats represented with two’s complement.

39 32 31 16 15 0

ro

—

39 32 31 16 15 0

ro'

=

39 32 31 16 15 0

ro"

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If the subtraction results in an overflow, the overflow flag ovf in the error status register ESR

is set to 1.

41

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ISUB ISUB

ro' = ro – imm

Name of instruction: Immediate sub

Mnemonic: ro' = ro – imm (imm = 0 to 0xFFFF (0 to 65535))

Example R1 = R0 – 0x10

Explanation Instruction to subtract 40-bit data from 40-bit data.

The 40-bit immediate value, zero-extended to bits 39 to 16 by setting the value of bits 15 to 0 with

imm, is subtracted from the value of bits 39 to 0 of the general-purpose register specified by ro. The

difference is stored in bits 39 to 0 of the general-purpose register specified by ro'. The 40-bit values

specified by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro

—

39 32 31 16 15 0

0 imm

=

39 32 31 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Caution If the subtraction results in an overflow, the overflow flag ovf in the error status register ESR

is set to 1.

42

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

SRA SRA

ro' = ro SRA rl

Name of instruction: Arithmetic right shift

Mnemonic: ro' = ro SRA rl

Example R1 = R0 SRA R4L

Explanation Instruction to arithmetically shift 40-bit data to the right.

The value of bits 39 to 0 of the general-purpose register specified by ro is arithmetically shifted to

the right by the value of bits 5 to 0 of the general-purpose register specified by rl. The result is stored

in bits 39 to 0 of the general-purpose register specified by ro'. The values of 40 bits of the general-

purpose registers specified by ro and ro' are represented with two’s complement and the value of

6 bits of the general-purpose register specified by rl is a data format of a positive integer value.

39 32 31 16 15 0

ro S

Arithmetic right shift

39 32 31 16 15 0

ro' S S · ·

An arithmetic right shift is a shift accompanied by sign expansion. Bits 39 to 6 of the general-

purpose register specified by rl are ignored.

43

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

SRA SRA

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Cautions 1. If an arithmetic right shift results in an underflow, the value is not corrected.

For example, if 0xFF’FFFF’FFFF is arithmetically shifted to the right, the value remains

0xFF’FFFF’FFFF (it is not set to 0x00’0000’0000).

2. If a 40-bit or higher bits are arithmetically shifted to the right, the data is sign-extended to

bits 39 to 0.

44

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ISRA ISRA

ro' = ro SRA imm

Name of instruction: Immediate arithmetic right shift

Mnemonic: ro' = ro SRA imm (imm = 0 to 0x27 (0 to 39))

Example R1 = R0 SRA 0x10

Explanation Instruction to arithmetically shift 40-bit data to the right.

The value of bits 39 to 0 of the general-purpose register specified by ro is arithmetically shifted to

the right by the 6-bit immediate value. An arithmetic right shift is a right shift accompanied by sign

expansion.

Bits 5 to 0 of the immediate value are valid for shift and bits 15 to 6 are ignored.

The result is stored in bits 39 to 0 of the general-purpose register specified by ro'. The values of

40 bits in the general-purpose registers specified by ro and ro' are represented with two’s

complement and the 6-bit immediate value is a data format of a positive integer value.

39 32 31 16 15 0

ro S

Arithmetic right shift

39 32 31 16 15 0

ro' S S · ·

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Caution If an arithmetic right shift results in an underflow, the value is not corrected.

For example, if 0xFF’FFFF’FFFF is arithmetically shifted to the right, the value remains

0xFF’FFFF’FFFF (it is not set to 0x00’0000’0000).

45

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

SRL SRL

ro' = ro SRL rl

Name of instruction: Logical right shift

Mnemonic: ro' = ro SRL rl

Example R1 = R0 SRL R4L

Explanation Instruction to logically shift 40-bit data to the right.

The value of bits 39 to 0 of the general-purpose register specified by ro is logically shifted to the right

by the value of bits 5 to 0 of the general-purpose register specified by rl. A logical right shift is a shift

to insert 0 from the MSB by the shift amount. Bits 39 to 6 of the general-purpose register specified

by rl are ignored. The result is stored in bits 39 to 0 of the general-purpose register specified by

ro'. The values of 40 bits in the general-purpose registers specified by ro and ro' are logical values

and the value of 6 bits of the general-purpose register specified by rl is a data format of a positive

integer value.

39 32 31 16 15 0

ro

Logical right shift

39 32 31 16 15 0

ro' 0 0 · ·

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution If a 40-bit or higher logical right shift is specified, 0x00’0000’0000 is set.

46

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ISRL ISRL

ro' = ro SRL imm

Name of instruction: Immediate logical right shift

Mnemonic: ro' = ro SRL imm (imm = 0 to 0x27 (0 to 39))

Example R1 = R0 SRL 0x10

Explanation Instruction to logically shift 40-bit data to the right.

The value of bits 39 to 0 of the general-purpose register specified by ro is logically shifted to the right

by the 6-bit immediate value. A logical right shift is a right shift to insert 0 from the MSB by the shift

amount.

Bits 5 to 0 of the immediate value are valid for shift and bits 15 to 6 are ignored. The result is stored

in bits 39 to 0 of the general-purpose register specified by ro'. The values of 40 bits of the general-

purpose registers specified by ro and ro' are logical values and the 6-bit immediate value is a data

format of a positive integer value.

39 32 31 16 15 0

ro

Logical right shift

39 32 31 30 16 15 0

ro' 0 0 · ·

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

47

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

SLL SLL

ro' = ro SLL rl

Name of instruction: Logical left shift

Mnemonic: ro' = ro SLL rl

Example R1 = R0 SLL R4L

Explanation Instruction to logically shift 40-bit data to the left.

The value of bits 39 to 0 of the general-purpose register specified by ro is logically shifted to the left

by the value of bits 5 to 0 of the general-purpose register specified by rl. A logical left shift is a left

shift to insert 0 from the LSB by the shift amount. Bits 39 to 6 of the general-purpose register

specified by rl are ignored. The result is stored in bits 39 to 0 of the general-purpose register

specified by ro'. The values of 40 bits of the general-purpose registers specified by ro and ro' are

logical values and the value of 6 bits of the general-purpose register specified by rl is a data format

of a positive integer value.

39 32 31 16 15 0

ro

Logical left shift

39 32 31 16 15 0

ro' · · 0 0

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution 1. If a 40-bit or higher logical left shift is specified, 0x00’0000’0000 is set.

2. A logical left shift does not generate an overflow.

48

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ISLL ISLL

ro' = ro SLL imm

Name of instruction: Immediate logical left shift

Mnemonic: ro' = ro SLL imm (0 to 0x27 (0 to 39))

Example R1 = R0 SLL 0x10

Explanation Instruction to logically shift 40-bit data to the left.

The value of bits 39 to 0 of the general-purpose register specified by ro is logically shifted to the left

by the 6-bit immediate value. A logical left shift is a left shift to insert 0 from the LSB by the shift

amount.

Bits 5 to 0 of the immediate value are valid for shift and bits 15 to 6 are ignored. The result is stored

in bits 39 to 0 of the general-purpose register specified by ro'. The values of 40 bits of the general-

purpose registers specified by ro and ro' are logical values and the 6-bit immediate value is a data

format of a positive integer value.

39 32 31 16 15 0

ro

Logical left shift

39 32 31 16 15 0

ro' · · 0 0

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Caution A logical left shift does not generate an overflow.

49

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

AND AND

ro" = ro & ro'

Name of instruction: AND

Mnemonic: ro" = ro & ro'

Example R1 = R0 & R4

Explanation Instruction to obtain a logical AND of 40-bit data.

The logical AND is obtained from the value of bits 39 to 0 of the general-purpose register specified

by ro and the value of bits 39 to 0 of the general-purpose register specified by ro'. The result is stored

in bits 39 to 0 of the general-purpose register specified by ro". The values of 40 bits of the general-

purpose registers specified by ro, ro', and ro" are logical values.

39 32 31 16 15 0

ro

AND

39 32 31 16 15 0

ro'

=

39 32 31 16 15 0

ro"

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

50

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

IAND IAND

ro' = ro & imm

Name of instruction: Immediate AND

Mnemonic: ro' = ro & imm (imm = 0 to 0xFFFF (0 to 65535))

Example R1 = R0 & 0x10

Explanation Instruction to obtain a logical AND of 40-bit data.

The logical AND is obtained from the value of bits 39 to 0 of the general-purpose register specified

by ro and the 40-bit immediate value, zero-extended to bits 39 to 16 by setting the value of bits 15

to 0 with an instruction. The result is stored in bits 39 to 0 of the general-purpose register specified

by ro'. Bits 39 to 16 of the general-purpose register specified by ro' are set to 0. The value of the

40 bits specified by ro and ro' and the 16-bit immediate value are logical values.

39 32 31 16 15 0

ro

AND

39 32 31 16 15 0

0 imm

=

39 32 31 16 15 0

ro' 0

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

51

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

OR OR

ro" = ro | ro'

Name of instruction: OR

Mnemonic: ro" = ro | ro'

Example R1 = R0 | R4

Explanation Instruction to obtain a logical inclusive OR of 40-bit data.

The logical inclusive OR is obtained from the value of bits 39 to 0 of the general-purpose register

specified by ro and the value of bits 39 to 0 of the general-purpose register specified by ro'. The

result is stored in bits 39 to 0 of the general-purpose register specified by ro". The values of 40 bits

of the ro, ro', and ro" specified general-purpose registers are logical values.

39 32 31 16 15 0

ro

OR

39 32 31 16 15 0

ro'

=

39 32 31 16 15 0

ro"

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

52

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

IOR IOR

ro' = ro | imm

Name of instruction: Immediate OR

Mnemonic: ro' = ro | imm (imm = 0 to 0xFFFF (0 to 65535))

Example R1 = R0 | 0x10

Explanation Instruction to obtain a logical inclusive OR of 40-bit data.

The logical inclusive OR is obtained from the value of bits 39 to 0 of the general-purpose register

specified by ro and the 40-bit immediate value, zero-extended to bits 39 to 16 by setting the value

of bits 15 to 0 with an instruction. The result is stored in bits 39 to 0 of the general-purpose register

specified by ro'. Bits 39 to 16 of the general-purpose register specified by ro' become the same as

those of the general-purpose register specified by ro. The values of the 40 bits specified by ro and

ro' and the 16-bit immediate value are logical values.

39 32 31 16 15 0

ro

OR

39 32 31 16 15 0

0 imm

=

39 32 31 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

53

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

XOR XOR

ro" = ro /\ ro'

Name of instruction: Exclusive OR

Mnemonic: ro" = ro /\ ro'

Example R1 = R0 /\ R4

Explanation Instruction to obtain a logical exclusive OR of 40-bit data.

The logical exclusive OR is obtained from the value of bits 39 to 0 of the general-purpose register

specified by ro and the value of bits 39 to 0 of the general-purpose register specified by ro'. The

result is stored in bits 39 to 0 of the general-purpose register specified by ro". The values of 40 bits

of the general-purpose registers specified by ro, ro', and ro" are logical values.

39 32 31 16 15 0

ro

XOR

39 32 31 16 15 0

ro'

=

39 32 31 16 15 0

ro"

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

54

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

IXOR IXOR

ro' = ro /\ imm

Name of instruction: Immediate exclusive OR

Mnemonic: ro' = ro /\ imm (imm = 0 to 0xFFFF (0 to 65535))

Example R1 = R0 /\ 0x10

Explanation Instruction to obtain a logical exclusive OR of 40-bit data.

The logical exclusive OR is obtained from the value of bits 39 to 0 of the general-purpose register

specified by ro and the 40-bit immediate value, zero-extended to bits 39 to 16 by setting the value

of bits 15 to 0 with an instruction. The result is stored in bits 15 to 0 of the general-purpose register

specified by ro'. Bits 39 to 16 of the general-purpose register specified by ro' become the same as

those of the general-purpose register specified by ro. The values of the 40 bits specified by ro and

ro' and the 16-bit immediate value are logical values.

39 32 31 16 15 0

ro

XOR

39 32 31 16 15 0

0 imm

=

39 32 31 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

55

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

LT LT

ro" = LT (ro, ro')

Name of instruction: Less than

Mnemonic: ro" = LT (ro, ro')

Example R2 = LT (R1, R4)

Explanation Instruction to compare two 40-bit data.

If the value of bits 39 to 0 of the general-purpose register specified by ro is less than the value of

bits 39 to 0 of the register specified by ro', 0x00’0000’0001 is stored in bits 39 to 0 of the general-

purpose register specified by ro". If the value of bits 39 to 0 of the general-purpose register specified

by ro is greater than or equal to the value of bits 39 to 0 of the register specified by ro',

0x00’0000’0000 is stored in bits 39 to 0 of the general-purpose register specified by ro". The 40-

bit values specified by ro and ro' are data formats represented with two’s complement, whereas the

value of ro" can be taken as a boolean number format.

39 32 31 16 15 0

ro S

—

39 32 31 16 15 0

ro' S

Arithmetic representation if (ro < ro') {ro" = 1;}

else {ro" = 0;}

56

Binomial operation

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

LT LT

ro" = LT (ro, ro')

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No No

Caution When ro' is subtracted from ro, comparison of the size of data where an overflow occurs is

correctly performed.

The overflow flag will not change.

57

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

3.3 Monomial Operation Instructions

These are instructions for specifying ALU operations. Any one register can be specified for the operand (input) from

the general-purpose register file. Any one register can be specified for the output destination from the general-purpose

register file.

The following monomial operation instructions are provided:

Clear (CLR)

Increment (INC)

Decrement (DEC)

Absolute value (ABS)

One’s complement (NOT)

Two’s complement (NEG)

Clip (CLIP)

Round (RND)

Exponent (EXP)

Put (PUT)

Accumulate add (ACA)

Accumulate sub (ACS)

Divide (DIV)

Monomial operation

58

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

CLR CLR

CLR (ro)

Name of instruction: Clear

Mnemonic: CLR (ro)

Example CLR (R0)

Explanation Instruction to clear all bits of the general-purpose register specified by ro to 0.

39 32 31 16 15 0

ro 0

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Monomial operation

59

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

INC INC

ro' = ro + 1

Name of instruction: Increment

Mnemonic: ro' = ro + 1

Example R1 = R1 + 1

Explanation Instruction to add 1 to 40-bit data.

The incremented result of the value of bits 39 to 0 of the general-purpose register specified by ro

is stored in bits 39 to 0 of the general-purpose register specified by ro'. The 40-bit values specified

by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro

+

39 32 31 16 15 0

0 1

=

39 32 31 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution If the increment operation results in an overflow, the overflow flag ovf in the error status

register ESR is set to 1.

(0x7F’FFFF’FFFF + 1 → 0x80’0000’0000)

Monomial operation

60

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

DEC DEC

ro' = ro – 1

Name of instruction: Decrement

Mnemonic: ro' = ro – 1

Example R1 = R1 – 1

Explanation Instruction to subtract 1 from 40-bit data.

The decremented result of the value of bits 39 to 0 of the general-purpose register specified by ro

is stored in bits 39 to 0 of the general-purpose register specified by ro'. The 40-bit values specified

by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro

—

39 32 31 16 15 0

0 1

=

39 32 31 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution If the decrement operation results in an overflow, the overflow flag ovf in the error status

register ESR is set to 1.

 (0x80’0000’0000 – 1 → 0x7F’FFFF’FFFF)

Monomial operation

61

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ABS ABS

ro' = ABS (ro)

Name of instruction: Absolute value

Mnemonic: ro' = ABS (ro)

Example R2 = ABS (R1)

Explanation Instruction to obtain the absolute value of 40-bit data.

The absolute value of bits 39 to 0 of the general-purpose register specified by ro is stored in bits

39 to 0 of the general-purpose register specified by ro'. The 40-bit values specified by ro and ro'

are data formats represented with two’s complement.

39 32 31 16 15 0

ro

Absolute value

39 32 31 16 15 0

ro'

Arithmetic representation if (ro < 0) {ro' = –ro;}

else {ro' = ro;}

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution When the ro specified general-purpose register value is 0x80’0000’0000, the overflow flag ovf

in the error status register ESR is set to 1.

Monomial operation

62

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

NOT NOT

ro' =
~

 ro

Name of instruction: One’s complement

Mnemonic: ro' =
~

 ro

Example R2 =
~

 R1

Explanation Instruction to obtain one’s complement of 40-bit data.

One’s complement of the value of bits 39 to 0 of the general-purpose register specified by ro (with

0 and 1 of each bit inverted) is stored in bits 39 to 0 of the general-purpose register specified by ro'.

The 40-bit values specified by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro

One’s complement

39 32 31 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Monomial operation

63

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

NEG NEG

ro' = –ro

Name of instruction: Two’s complement

Mnemonic: ro' = –ro

Example R2 = –R1

Explanation Instruction to obtain two’s complement of 40-bit data.

Two’s complement (arithmetic negation) of the value of bits 39 to 0 of the general-purpose register

specified by ro is stored in bits 39 to 0 of the general-purpose register specified by ro'. The 40-bit

values specified by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro

Two’s complement

39 32 31 16 15 0

ro'

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution When the value of the general-purpose register specified by ro is 0x80’0000’0000, the overflow

flag ovf in the error status register ESR is set to 1.

Monomial operation

64

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

CLIP CLIP

ro' = CLIP (ro)

Name of instruction: Clip

Mnemonic: ro' = CLIP (ro)

Example R2 = CLP (R1)

Explanation Instruction to clip 40-bit data to 32 bits.

The value of bits 39 to 0 of the general-purpose register specified by ro and clipped to 32 bits (bits

31 to 0) is stored in bits 39 to 0 of the general-purpose register specified by ro'. The data is sign-

extended to bits 39 to 32 of the general-purpose register specified by ro'. The 40-bit values specified

by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro S

Clipping

39 32 31 16 15 0

ro' S S S S S S S S S

Arithmetic representation if (ro > 0x00’7FFF’FFFF) {ro' = 0x00’7FFF’FFFF;}

else if (ro < 0xFF’8000’0000) {ro' = 0xFF’8000’0000;}

else {ro' = ro;}

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution Even if saturation occurred due to CLIP execution, the overflow flag bit will not change.

Monomial operation

65

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

RND RND

ro' = ROUND (ro)

Name of instruction: Round

Mnemonic: ro' = ROUND (ro)

Example R2 = ROUND (R1)

Explanation Instruction to round and clip 40-bit data to 16-bit data.

Bits 15 to 0 of the general-purpose register specified by ro are rounded and clipped to 16 bits (bits

31 to 16) and then stored in bits 39 to 0 of the general-purpose register specified by ro'. The rounding

of bits 15 to 0 means an addition of 1 to bit 15 only. The data is sign-extended to bits 39 to 32 of

the general-purpose register specified by ro' and bits 15 to 0 are set to 0. The 40-bit values specified

by ro and ro' are data formats represented with two’s complement.

39 32 31 16 15 0

ro S

+

39 32 31 16 15 0

0 1 0

Clipping

39 32 31 16 15 0

ro' S S S S S S S S S 0

Arithmetic representation if (ro > 0x00’7FFF’0000) {ro' = 0x00’7FFF’0000;}

else if (ro < 0xFF’8000’0000) {ro' = 0xFF’8000’0000;}

else {ro' = (ro + 0x8000) & 0xFF’FFFF’0000;}

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution Even if saturation occurred due to RND execution, the overflow flag bit will not change.

Monomial operation

66

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

EXP EXP

ro' = EXP (ro)

Name of instruction: Exponent

Mnemonic: ro' = EXP (ro)

Example R2 = EXP (R1)

Explanation Instruction to obtain a left shift amount to normalize to 32 bits.

The left shift amount (0 to 31) is obtained to normalize the value of bits 31 to 0 of the general-purpose

register specified by ro. The result is stored in bits 39 to 0 of the general-purpose register specified

by ro'. Bits 39 to 5 of the general-purpose register specified by ro' are set to 0. The 32-bit value

specified by ro and the 40-bit value specified by ro' are data formats represented with two’s

complement.

39 32 31 16 15 0

ro SSS • • •

EXP

39 32 31 16 15 5 4 0

ro' 0 EXP

Here, normalization means the following operation.

Count the number of bits whose value is the same as the sign bit from bit 30 and lower to find the

first bit whose value is different from the sign bit. This number of bits is stored in ro' as n. After this,

shift to the left by n. This operation is called “normalization”. This keeps the value high-precision

if its value is small in case multiplication.

The n is set to ro' when EXP instruction is executed.

39 32 31 30

ro 0

n

0 1 D D

0

· ·0

sign

39 32 31 30

0 0 0

0

D · ·1 D· · · · ·

· · · · · · ·

· · · · · ·

n

· · · · ·

Monomial operation

67

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

EXP EXP

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Cautions 1. If the value of the general-purpose register specified by ro is 0x00’8000’0000 or more and

0xFF’7FFF’FFFF or less, the ro' value is not guaranteed.

2. If the value of the general-purpose register specified by ro is 0x00’0000’0000, the ro' value

is set to 0x00’0000’0000.

3. If the value of the general-purpose register specified by ro is 0xFF’FFFF’FFFF, the ro' value

is set to 0x1F.

4. Bits 31 to 0 of the general-purpose register specified by ro are evaluation targets.

Monomial operation

68

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

PUT PUT

ro' = ro

Name of instruction: Put

Mnemonic: ro' = ro

Example R2 = R1

Explanation Instruction to put the 40-bit data of a register into another register. The value of bits 39 to 0 of the

general-purpose register specified by ro are stored in bits 39 to 0 of the general-purpose register

specified by ro'. The 40-bit values specified by ro and ro' are data formats represented with two’s

complement.

39 32 31 16 15 0

ro S

PUT

39 32 31 16 15 0

ro' S

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Monomial operation

69

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ACA ACA

ro' + = ro

Name of instruction: Accumulate add

Mnemonic: ro' + = ro

Example R2 + = R1

Explanation Instruction to add two 40-bit data.

The value of bits 39 to 0 of the general-purpose register specified by ro is added to the value of bits

39 to 0 of the general-purpose register specified by ro'. The sum is stored in bits 39 to 0 of the

general-purpose register specified by ro'. The 40-bit values specified by ro and ro' are data formats

represented with two’s complement.

39 32 31 16 15 0

ro' S

+

39 32 31 16 15 0

ro S

=

39 32 31 16 15 0

ro' S

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution If the addition results in an overflow, the overflow flag ovf in the error status register ESR is

set to 1.

Monomial operation

70

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ACS ACS

ro' – = ro

Name of instruction: Accumulate subtract

Mnemonic: ro' – = ro

Example R2 – = R1

Explanation Instruction to subtract 40-bit data from 40-bit data.

The value of bits 39 to 0 of the general-purpose register specified by ro is subtracted from the value

of bits 39 to 0 of the general-purpose register specified by ro'. The difference is stored in bits 39 to

0 of the general-purpose register specified by ro'. The 40-bit values specified by ro and ro' are data

formats represented with two’s complement.

39 32 31 16 15 0

ro' S

—

39 32 31 16 15 0

ro S

=

39 32 31 16 15 0

ro' S

Monomial operation

71

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

ACS ACS

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution If the subtraction results in an overflow, the overflow flag ovf in the error status register ESR

is set to 1.

Monomial operation

72

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

DIV DIV

ro' / = ro

Name of instruction: Divide (1 bit)

Mnemonic: ro' / = ro

Example REP 16 (Example of division in 16-bit range)

R2 / = R1

Explanation Divide instruction to obtain a quotient bit-wise in one operation.

The following operations are carried out using the values of bits 39 to 0 of the general-purpose

registers specified by ro' and ro.

ro' and ro values with the same sign: ro' – ro

ro' and ro values with the different sign: ro' + ro

The calculated value is shifted to the left by one bit and one bit of the quotient is inserted into the

LSB. The result is stored in bits 39 to 0 of the general-purpose register specified by ro'. The 40-

bit values specified by ro and ro’ are data formats represented with two’s complement.

39 32 31 16 15 0

ro' S

— or +

39 32 31 16 15 0

ro S

=

39 0

 S

Left shift by 1 bit

39 0

ro' S

1 or 0

(Depends on result of operation)

Set the ro' and ro values as follows:

39 0

 (n + m) bits

ro' S S . . Dividend

39 0

 n bits m bits

ro S S . . Divisor 0

Monomial operation

73

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

DIV DIV

Repeating the DIV instruction m times produces a quotient and remainder at the following position

in the register specified by ro'.

39 0

 n bits m bits

ro' S S . . Remainder Quotient Note

Dividend
Note Quotient =

| Divisor |

Remark The value of bits 39 to 0 of the general-purpose register specified by ro is the same as the

value before operation.

Arithmetic representation : if (sign (ro') == sign (ro)) {ro' = ro' – ro;}

else {ro' = ro' + ro}

if (sign (ro') == 0) {ro' = (ro' << 1) + 1;}

else {ro' = ro' << 1;}

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No Yes No No Yes

Caution Specification of the same general-purpose register by ro and ro' is forbidden.

The absolute value of the dividend should be less than that of devisor.

74

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

3.4 Load/Store Instructions

These are instructions to specify 16-bit data transfer between the memory and the general-purpose registers. Load/

store operations consist of parallel load/store for simultaneously specifying an operation instruction, section load/store

for specifying the load/store target general-purpose register range, direct addressing load/store for specifying addresses

with instructions, and immediate index load/store for specifying the modify value using instructions. Any transfer target

(input/output) can be specified from the general-purpose register file.

The following are provided as load/store instructions:

Parallel load/store (LSPA) — Indirect addressing

Section load/store (LSSE)

Direct addressing load/store (LSDA)

Immediate value index load/store (LSIM)

75User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSPA LSPA

[ro = *dpx_mod] [ro' = *dpy_mod]
[*dpx_mod = rh] [*dpy_mod = rh']
[ro = *dpx_mod] [*dpy_mod = rh]
[*dpx_mod = rh] [ro = *dpy_mod]

Name of instruction: Parallel load/store

Mnemonic: [ro = *dpx_mod] [ro' = *dpy_mod]

[*dpx_mod = rh] [*dpy_mod = rh']

[ro = *dpx_mod] [*dpy_mod = rh]

[*dpx_mod = rh] [ro = *dpy_mod]

Example R0 = *DP0++ R1 = *DP4++

Explanation Instruction to load/store 16-bit data between the indirectly addressed X/Y memories and a general-

purpose register. It can be coded simultaneously with an operation instruction (except for the

immediate value operation).

The following four types of coding methods are available:

(1) [ro = *dpx_mod] [ro' = *dpy_mod]

The contents of X memory with the address specified by dpx_mod are loaded to the register ro, and

the contents of Y memory with the address specified by dpy_mod are loaded to the register ro'.

When loading 16-bit data, the memory contents are stored in bits 31 to 16 of the general-purpose

register. Bits 39 to 32 are sign-extended, and bits 15 to 0 are set to 0.

15 0 15 0

X memory Y memory

39 32 31 16 15 0 39 32 31 16 15 0

ro SSSSSSSS S 0 ro' SSSSSSSS S 0

76 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSPA LSPA

(2) [*dpx_mod = rh] [*dpy_mod = rh']

The contents of the register rh are loaded to X memory with the address specified by dpx_mod, and

the contents of the register rh' are loaded to Y memory with the address specified by dpy_mod.

When loading 16-bit data, the contents of the general-purpose register are stored in bits 15 to 0 of

the X and Y memories. Bits 39 to 32 and bits 15 to 0 are ignored.

39 32 31 16 15 0 39 32 31 16 15 0

rh rh'

15 0 15 0

X memory Y memory

(3) [ro = * dpx_mod] [* dpy_mod = rh]

The contents of X memory with the address specified by dpx_mod are loaded to the register ro, and

the contents of the register rh’ are loaded to Y memory with the address specified by dpy_mod.

When loading 16-bit data, the contents of X memory specified by ro are stored in bits 31 to 16 of

the general-purpose register. Bits 39 to 32 are sign-extended, and bits 15 to 0 are set to 0.

In the same way, the contents of the general-purpose register specified by rh' are stored in bits 15

to 0 of the Y memory. Bits 39 to 32 and bits 15 to 0 are ignored.

15 0 39 32 31 16 15 0

X memory rh

39 32 31 16 15 0 15 0

ro SSSSSSSS S 0 Y memory

77User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSPA LSPA

(4) [*dpx_mod = rh] [ro = *dpy_mod]

When loading 16-bit data, the contents of the general-purpose register specified by rh are stored

in bits 15 to 0 of the X memory. Bits 39 through 32 and bits 15 through 0 are ignored.

In the same way, the contents of Y memory specified by dpy_mod are stored in bits 31 to 16 of the

general-purpose register specified by ro. Bits 39 to 32 are sign-extended, and bits 15 to 0 are set

to 0.

39 32 31 16 15 0 15 0

rh Y memory

15 0 39 32 31 16 15 0

X memory ro SSSSSSSS S 0

Remarks 1. Load/store between the X memory and the general-purpose registers and load/store

between the Y memory and the general-purpose registers can be specified independently

or simultaneously. The data pointer and modifying method can be specified for X and Y

independently.

2. The load/store target address is the data pointer value before modification, except for

!DPn##. However, the data pointer set by the inter-register transfer instruction and the

immediate value set instruction can be specified for the pointer from next-but-one

instructions. It must not be specified for the pointer by the instruction just after the above

instruction. The data pointer modification result is validated from the succeeding instruction

onwards.

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Note Monomial Parallel Inter-register Branch Conditional
load/store transfer

Yes Yes Yes No No No No

Note Except for the immediate value operation

78 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSPA LSPA

Cautions 1. When load/store between the X memory and a general-purpose register and between the Y

memory and a general-purpose register is specified simultaneously, the following

combinations of addrx and addry are forbidden.

In the µPD7701x Family, if one of the following combinations occurs, the bus access error

flag is set to 1. Note that this flag is not provided in µPD77111 Family devices.

Forbidden Combinations

[µPD77016]

 External area and external area

 Peripheral area and peripheral area

[µPD77015, 77017, 77018, 77018A, 77019]

 Internal ROM and internal ROM

 Internal ROM and external area

 External area and external area

 Peripheral area and peripheral area

[µPD77110, 77111, 77112, 77113, 77114]

 External area and external area

 Peripheral area and peripheral area

2. The general-purpose register to be loaded from the X memory must not overlap the general-

purpose register to be loaded from the Y memory.

3. The general-purpose register to write back the operation result of the simultaneously-

described operation instruction must not overlap the general-purpose register to be loaded

from the memory.

4. It is forbidden to load/store by instruction just after a value has been set to the data pointer

with the same data pointer value set as an address.

Forbidden example 1: Inter-register transfer instruction

DP0 = R4L;

R0 = *DP0++;

 Forbidden example 2: Immediate value set instruction

DP0 = 0x1234;

R0 = *DP0++;

79User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSSE LSSE

[dest = *dpx_mod] [dest' = *dpy_mod]
[dest = *dpx_mod] [*dpy_mod = source]
[*dpx_mod = source] [dest = *dpy_mod]

[*dpx_mod = source] [*dpy_mod = source']

Name of instruction: Section load/store

Mnemonic: [dest = *dpx_mod] [dest' = *dpy_mod]

[dest = *dpx_mod] [*dpy_mod = source]

[*dpx_mod = source] [dest = *dpy_mod]

[*dpx_mod = source] [*dpy_mod = source']

Registers that can be specified are as follows. Any one of these registers may be specified.

dest, dest' = {ro, reh, re, rh, rl}

source, source' = {re, rh, rl}

Example R0EH = *DP0++ R0L = *DP4++

Explanation Instruction to load/store 16-bit data between the indirectly addressed X/Y memory and a general-

purpose register. The range of the general-purpose registers that are the target of the load/store

instruction can be specified.

(1) There are five ways to load 16-bit data from the memory specified by dpx_mod or dpy_mod to

the general-purpose register specified by dest or dest'.

(a) When R0 to R7 are specified for dest or dest', the value of the memory specified by dpx_mod

or dpy_mod is loaded to bits 31 to 16 of the general-purpose register, the data is sign-extended to

bits 39 to 32 and bits 15 to 0 are set to 0.

15 0

X memory S

39 32 31 16 15 0

ro SSSSSSSS S 0

80 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSSE LSSE

(b) When R0EH to R7EH are specified for dest or dest', the value of the memory specified by

dpx_mod or dpy_mod is loaded to bits 31 to 16 of the general-purpose register and the data is sign-

extended to bits 39 to 32. Bits 15 to 0 of the general-purpose register remain unchanged.

15 0

Memory S

39 32 31 16 15 0

reh SSSSSSSS S Unchanged

(c) When R0E to R7E are specified for dest or dest', the low-order 8 bits of the value of the memory

specified by dpx_mod or dpy_mod are loaded to bits 39 to 32 of the general-purpose register. Bits

31 to 0 of the general-purpose register remain unchanged. The high-order 8 bits of the memory

value are ignored.

 7 0

Memory Invalid Valid

39 32 31 0

re Unchanged

(d) When R0H to R7H are specified for dest or dest', the value of the memory specified by dpx_mod

or dpy_mod is loaded to bits 31 to 16 of the general-purpose register. Bits 39 to 32 and bits 15 to

0 of the general-purpose register remain unchanged.

15 0

Memory

39 32 31 16 15 0

rh Unchanged Unchanged

81User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSSE LSSE

(e) When R0L to R7L are specified for dest or dest', the value of the memory specified by dpx_mod

or dpy_mod is loaded at bits 15 to 0 of the general-purpose register. Bits 39 to 16 of the general-

purpose register remain unchanged.

15 0

Memory

39 16 15 0

rl Unchanged

When 16-bit data is loaded from the Y memory to the same general-purpose register as that to which

data is loaded from the X memory simultaneously, the general-purpose register value becomes as

follows. X memory and Y memory in the source general-purpose register are interchangeable.

• RnEH and RnL; (example: [reh = *dpx_mod] [rl = *dpy_mod])

 15 0 15 0

 Memory S X memory Y memory

39 32 31 16 15 0

ro SSSSSSSS S

 reh rl

• RnE and RnH; (example: [re = *dpx_mod] [rh = *dpy_mod])

7 0 15 0

Memory X memory Y memory

39 32 31 16 15 0

ro Unchanged

re rh

82 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSSE LSSE

• RnE and RnL; (example: [re = *dpx_mod] [rl = *dpy_mod])

7 0 15 0

Memory X memory Y memory

39 32 31 16 15 0

ro Unchanged

re rl

• RnH and RnL; (example: [rh = *dpx_mod] [rl = *dpy_mod])

15 0 15 0

Memory X memory Y memory

39 32 31 16 15 0

ro Unchanged

rh rl

Caution Other combinations are prohibited.

(2) There are three ways to store 16-bit data from the general-purpose register specified by source

or source' to the memory specified by dpx_mod or dpy_mod.

(a) When R0E to R7E are specified for source or source', the value of bits 39 to 32 of the general-

purpose register is stored in the low-order 8 bits of the memory specified by dpx_mod or dpy_mod.

The high-order 8 bits of the memory are set to 0. Bits 31 to 0 of the general-purpose register are

ignored.

39 32 31 16 15 0

source or source'

15 7 0

Memory 0

83User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSSE LSSE

(b) When R0H to R7H are specified for source or source', the value of bits 31 to 16 of the general

register is stored in the memory specified by dpx_mod or dpy_mod. Bits 39 to 32 and bits 16 to 0

of the general-purpose register are ignored.

39 32 31 16 15 0

source or source'

15 0

Memory

(c) When R0L to R7L are specified for source or source', the value of bits 15 to 0 of the general-

purpose register is stored in the memory specified by dpx_mod or dpy_mod. Bits 39 to 16 of the

general-purpose register are ignored.

39 16 15 0

source or source'

15 0

Memory

Remarks 1. Load/store between the X memory and a general-purpose register and load/store between

the Y memory and a general-purpose register can be specified independently or

simultaneously.

2. The data pointer and its modifying method can be specified for dpx_mod and dpy_mod

independently.

3. The load/store target address is the data pointer value before modification except for

!DPn##. The data pointer modification result is validated from the succeeding instruction

onward.

84 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSSE LSSE

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Cautions 1. When load/store between the X memory and a general-purpose register and between the Y

memory and a general-purpose register is specified simultaneously, the following

combinations of addrx and addry are forbidden.

In the µPD7701x Family, if one of the following combinations occurs, the bus access error

flag is set to 1. Note that this flag is not provided in µPD77111 Family devices.

[Forbidden Combinations]

[µPD77016]

 External area and external area

 Peripheral area and peripheral area

[µPD77015, 77017, 77018, 77018A, 77019]

 Internal ROM and internal ROM

 Internal ROM and external area

 External area and external area

 Peripheral area and peripheral area

[µPD77110, 77111, 77112, 77113, 77114]

 External area and external area

 Peripheral area and peripheral area

2. The data pointer that was set with the inter-register transfer instruction or immediate value

set instruction can be specified as a pointer with the next-but-one instruction from the

above instruction. It must not be specified for the pointer by the instruction just after the

above instruction. It is forbidden to load/store by instruction just after a value has been set

to the data pointer with the same data pointer value set as an address.

Forbidden example 1: Inter-register transfer instruction

DP0 = R4L;

R0E = *DP0++;

Forbidden example 2: Immediate value set instruction

DP0 = 0x1234;

R0H = *DP0++;

85User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSDA LSDA

dest = *addr
*addr = source

Name of instruction: Direct addressing load/store

Mnemonic: dest = *addr

*addr = source

Addresses that can be specified for addr (address):

X memory 0 to 0xFFFF (0 to 65535): X (X memory)

X memory 0 to 0xFFFF (0 to 65535): Y (Y memory)

Registers that can be specified are as follows. Any one of these registers may be specified.

dest = {ro, reh, re, rh, rl}

source = {re, rh, rl}

Example R0H = *0x1234: X

Explanation Instruction to load/store 16-bit data between the directly addressed X or Y memory and a general-

purpose register. The range of the general-purpose registers that are the target of the load/store

instruction can be specified.

(1) There are five ways to load 16-bit data from the memory specified by addr to the general-

purpose register specified by dest. In every case, the value loaded to the general-purpose register

will be validated from the next instruction.

(a) When R0 to R7 are specified for dest, the value of the memory specified by addr is loaded to

bits 31 to 16 of the general-purpose register, the data is sign-extended to bits 39 to 32, and bits 15

to 0 are set to 0.

15 0

Memory S

39 32 31 16 15 0

ro S S S S S S S S S 0

86 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSDA LSDA

(b) When R0EH to R7EH are specified for dest, the value of the memory specified by addr is loaded

to bits 31 to 16 of the general-purpose register and sign-extended to bits 39 to 32. Bits 15 to 0 of

the general-purpose register remain unchanged.

15 0

Memory S

39 32 31 16 15 0

reh SSSSSSSS S Unchanged

(c) When R0E to R7E are specified for dest, the low-order 8 bits of the value of the memory specified

by addr are loaded to bits 39 to 32 of the general-purpose register. Bits 31 to 0 of the general-

purpose register remain unchanged. The high-order 8 bits of the memory value are ignored.

15 8 7 0

Memory Invalid Valid

39 32 31 0

re Unchanged

(d) When R0H to R7H are specified for dest, the value of the memory specified by addr is loaded

to bits 31 to 16 of the general-purpose register. Bits 39 to 32 and bits 15 to 0 of the general-purpose

register remain unchanged.

15 0

Memory

39 32 31 16 15 0

rh Unchanged Unchanged

(e) When R0L to R7L are specified for dest, the value of the memory specified by addr is loaded

to bits 15 to 0 of the general-purpose register. Bits 39 to 16 of the general-purpose register remain

unchanged.

15 0

Memory

39 16 15 0

rl Unchanged

87User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSDA LSDA

(2) There are three ways to store 16-bit data from the general-purpose register specified by source

to the memory specified by addr.

(a) When R0E to R7E are specified for source, the value of bits 39 to 32 of the general-purpose

register is stored in the low-order 8 bits of the memory specified by addr. The high-order 8 bits of

the memory are set to 0. Bits 31 to 0 of the general-purpose register are ignored.

39 32 31 0

re

15 8 7 0

Memory 0

(b) When R0H to R7H are specified for source, the value of bits 31 to 16 of the general-purpose

register is stored into the memory specified by addr. Bits 39 to 32 and bits 15 to 0 of the general-

purpose register are ignored.

39 32 31 16 15 0

rh

15 0

Memory

(c) When R0L to R7L are specified for source, the values of bits 15 to 0 of the general-purpose

register are stored in the memory specified by addr. Bits 39 to 16 of the general-purpose register

are ignored.

39 16 15 0

rl

15 0

Memory

88 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSDA LSDA

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

89User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSIM LSIM

dest = *dp_imm
*dp_imm = source

Name of instruction: Immediate value index load/store

Mnemonic: dest = *dp_imm

*dp_imm = source (imm = 0 to 0xFFFF)

Registers that can be specified are as follows. Any one of these registers may be specified.

dest = {ro, reh, re, rh, rl}

source = {re, rh, rl}

Example R0H = *DP0## 0x10

Explanation Instruction to load/store 16-bit data between the indirectly addressed X or Y memory and a general-

purpose register. The range of the general-purpose registers that are the target of the load/store

instructions can be specified.

(1) There are five ways to load 16-bit data from the memory specified by dp_imm to the general-

purpose register specified by dest.

(a) When R0 to R7 are specified for dest, the value of the memory specified by dp_imm is loaded

to bits 31 to 16 of the general-purpose register, the data is sign-extended to bits 39 to 32, and bits

15 to 0 are set to 0.

15 0

Memory S

39 32 31 16 15 0

ro S S S S S S S S S 0

90 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSIM LSIM

(b) When R0EH to R7EH are specified for dest, the value of the memory specified by dp_imm is

loaded to bits 31 to 16 of the general-purpose register, and the data is sign-extended to bits 39 to

32. Bits 15 to 0 of the general-purpose register remain unchanged.

15 0

Memory S

39 32 31 16 15 0

reh SSSSSSSS S Unchanged

(c) When R0E to R7E are specified for dest, the low-order 8 bits of the value of the memory specified

by dp_imm are loaded to bits 39 to 32 of the general-purpose register. Bits 31 to 0 of the general-

purpose register remain unchanged. The high-order 8 bits of the memory value are ignored.

15 8 7 0

Memory Invalid Valid

39 32 31 0

re Unchanged

(d) When R0H to R7H are specified for dest, the value of the memory specified by dp_imm is loaded

to bits 31 to 16 of the general-purpose register. Bits 39 to 32 and bits 15 to 0 of the general-purpose

register remain unchanged.

15 0

Memory

39 32 31 16 15 0

rh Unchanged Unchanged

(e) When R0L to R7L are specified for dest, the value of the memory specified by dp_imm is loaded

in bits 15 to 0 of the general-purpose register. Bits 39 to 16 of the general-purpose register remain

unchanged.

15 0

Memory

39 16 15 0

rl Unchanged

91User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSIM LSIM

(2) There are three ways to store 16-bit data from the general-purpose register specified by source

in the memory specified by dp_imm.

(a) When R0E to R7E are specified for source, the value of bits 39 to 32 of the general-purpose

register is stored in the low-order 8 bits of the memory specified by dp_imm. The high-order 8 bits

of the memory are set to 0. Bits 31 to 0 of the general-purpose register are ignored.

39 32 31 16 15 0

re

15 8 7 0

Memory 0

(b) When R0H to R7H are specified for source, the value of bits 31 to 16 of the general-purpose

register is stored in the memory specified by dp_imm. Bits 39 to 32 and bits 15 to 0 of the general-

purpose register are ignored.

39 32 31 16 15 0

rh

15 0

Memory

(c) When R0L to R7L are specified for source, the value of bits 15 to 0 of the general-purpose

register is stored in the memory specified by dp_imm. Bits 39 to 16 of the general-purpose register

are ignored.

39 32 31 16 15 0

rl

15 0

Memory

Remark The load/store target address is the data pointer value before modification (except for

!DPn##). However, the data pointer set by the inter-register transfer instruction and the

immediate value set instruction can be specified for the pointer from the next instruction. The

data pointer modification result is validated from the succeeding instruction onwards.

92 User's Manual U13116EJ2V0UM00

Load/Store

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LSIM LSIM

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Caution It is forbidden to load/store by instruction just after a value has been set to the data pointer

with the same data pointer value set as an address.

Forbidden example 1: Inter-register transfer instruction

DP0 = R4L;

R0 = *DP0## 0xABCD;

Forbidden example 2: Immediate value set instruction

DP0 = 0x1234;

R0 = *DP0## 0xABCD;

93

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

3.5 Inter-Register Transfer Instructions

This is an instruction to transfer data between general-purpose registers and other registers via the main bus.

Inter-register transfer

94

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MOV MOV

dest = rl
rl = source

Name of instruction: Inter-register transfer

Mnemonic: dest = rl

rl = source

All registers other than general-purpose registers can be specified for dest and source.

Example DP0 = R0L

Explanation Instruction to transfer data between a general-purpose register and another register, via the main

bus.

The value of the register specified by source is transferred bottom-justified to the register specified

by dest via the main bus.

The following table shows the target registers of this instruction.

Register Name Assembler-Reserved Name

General-purpose register R0L to R7L (L part of R0 to R7)

Data pointer DP0 to DP7

Index register DN0 to DN7

Modulo register DMX, DMY

Stack STK

Stack pointer SP

Loop counterNote LC

Loop stack (LSTK) LSR1, LSR2, LSR3

Loop stack pointer LSP

Status register SR

Interrupt enable flag stack register EIR

Error status register ESR

Note This register is not specified as dest.

Inter-register transfer

95

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

MOV MOV

(1) When rl is specified for dest, the value in bits 15 to 0 of the general-purpose register is transferred

to the register specified by dest. When the valid bit length of the register specified by dest is m bits

(m<16), bits 15 to m of the general-purpose register are ignored.

39 16 15 0

rl

15 0

dest

(2) When rl is specified for source, the value of the register specified by source is transferred to bits

15 to 0 of the general-purpose register. Bits 39 to 16 of the general-purpose register remain

unchanged. When the bit length of the source register is n bits (n < 16) as in the ESR, bits 15 to

n of the general-purpose register are undefined.

15 0

source

39 16 15 0

rl Unchanged

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch ConditionalNote

load/store transfer

No No No No No No Yes

 Note Limited to DP0 to DP7, DN0 to DN7, DMX, and DMY for dest and source.

Cautions 1. If DP0 to DP7 are specified for dest, the transfer result can be specified for the load/store

pointer from next-but-one instruction.

2. Modulo index addition should not be executed after a value in the address range 0x8000 to

0xFFFF is transferred to DMX or DMY.

3. When modulo index addition (DPn%%) is executed, transfer a value in the address range 1 to

0x7FFF. When a value of 0, or 0x8000 or higher is transferred, DPn%% does not operate

correctly.

4. The value of bit 15 of LC is the loop flag (in/out loop). Do not change this flag.

5. Value between 0 and 0xF can be set for SP. Do not set this register to 0x10 to 0xFFFF.

6. Value between 0 and 4 can be set for LSP. Do not set this register to 0x5 to 0xFFFF.

7. Do not describe the RET or RETI instruction just after the MOV instruction to load from/ store

in STK or SP.

96

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

3.6 Immediate Value Set Instruction

This is an instruction to set the immediate value to the general-purpose registers and each address operation unit

register.

97User's Manual U13116EJ2V0UM00

Immediate value set

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LDI LDI

dest = imm

Name of instruction: Immediate value set

Mnemonic: dest = imm (imm = 0 to 0xFFFF (0 to 65535))

dest = {rl, dp, dn, dm}

Example DP0 = 0x1234

Explanation Instruction to set the 16-bit immediate value bottom-justified to the register specified by dest.

When R0L to R7L are specified for dest, the immediate value is set at bits 15 to 0 of the general-

purpose register. Bits 39 to 16 remain unchanged.

imm

39 15 0

dest

When DP0 to DP7, DN0 to DN7, DMX, or DMY is specified for dest, the 16-bit immediate value

becomes the register value.

imm

15 0

dest

98 User's Manual U13116EJ2V0UM00

Immediate value set

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

LDI LDI

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Cautions 1. The set value is validated with the succeeding instruction. However, if DP0 to DP7 are

specified for dest, the setting result can be specified for the load/store pointer from next-but-

one instruction; it must not be specified for the succeeding load/store instruction pointer.

2. When executing modulo index addition, do not specify 0 or one of 0x8000 to 0xFFFF for DMX

and DMY.

99

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

3.7 Branch Instructions

These are instructions to specify program branches. Branch instructions consist of branch, jump, subroutine call,

and return instructions.

Jump (JMP)

Register indirect jump (JREG)

Subroutine call (CALL)

Register indirect subroutine call (CREG)

Return (RET)

Interrupt return (RETI)

Branch

100

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

JMP JMP

JMP imm

Name of instruction: Jump

Mnemonic: JMP imm (imm = 0 to 0xFFFF (0 to 65535))

Example JMP 0x1234

Explanation Instruction to branch to all addresses in the instruction memory space of the µPD77016 Family. A

branch is executed in two cycles.

Note that no conditional branch instruction, which branches when a flag value is either 0 or 1, is

provided for the µPD77016 Family. Therefore, when a conditional branch is required, a conditional

instruction and a branch instruction should be combined as shown below. Consequently, in this

case, the conditional branch is executed in three cycles when the specified condition is satisfied,

and in one cycle when unsatisfied.

IF (R0 == 0) JMP LABEL or

IF (R2 > 0) JMP DP0 (Concerning "JMP DP0", an explanation is given in the description

 for the JREG instruction on the following page.)

Remarks The µPD77016 Family JMP and CALL instructions are actually instructions that branch

with a relative value in the range of +/– 32 K words. However, the user does not need to

consider the relative value because the assembler and linker performs relative address

calculations. The user should describe absolute addresses (actual jump destination

addresses) in the source program. If code with a relative address is required, put a “$” at

the beginning of an operand of the JMP instruction as shown below:

JMP $ + 2 Jumps to the next-but-one address.

JMP $ – 3 Jumps three addresses before source address.

Execution cycle 2 (When used with a conditional instruction: 3 when condition satisfied and 1 when condition

not satisfied.)

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No Yes

Caution Do not describe the JMP instruction as a repeat target instruction or within three instructions

of the loop end.

Branch

101

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

JREG JREG

JMP dp

Name of instruction: Register indirect jump

Mnemonic: JMP dp

Example JMP DP0

Explanation Instruction to branch to the address of the register value specified by dp (PC ← dp). The register

indirect branch is executed in three cycles.

For the coding method of a conditional jump instruction by means of the JREG instruction, refer to

the explanation for the JMP instruction. In this case, the conditional branch is executed in three

cycles when the specified condition is satisfied, and in one cycle when unsatisfied. Unlike the JMP

instruction, the execution cycles of the JREG instruction are unchanged regardless of use alone or

together with a conditional instruction.

Execution cycle 3 (When used with a conditional instruction, 3 when condition is satisfied and 1 when unsat-

isfied.)

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No Yes

Caution Do not describe the JREG instruction as a repeat target instruction or within three instruction

of the loop end.

Branch

102

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

CALL CALL

CALL imm

Name of instruction: Subroutine call

Mnemonic: CALL imm (imm = 0 to 0xFFFF (0 to 65535))

Example CALL 0x1234

Explanation Instruction that branches to a subroutine located at any address in the instruction memory space

of the µPD77016 Family. A subroutine call is executed in two cycles.

This instruction execution increments the stack pointer and stores the address of the next

instruction to the stack, then branches to the address specified by the operand (SP ← SP + 1,

STACK ← PC + 1, PC ← PC + imm).

To execute a conditional branch, a conditional instruction and a branch instruction should be

combined as shown below:

IF (R0! = 0) CALL LABEL

In the same way as the JREG instruction, the conditional branch is executed in three cycles when

the specified condition is satisfied, and in one cycle when unsatisfied.

Remarks The µPD77016 JMP and CALL instructions are actually instructions that branch with a

relative value in the range of +/– 32 K words. However, the user does not need to consider

the relative value because the assembler and linker performs relative address calculations.

The user should code absolute addresses (actual jump destination addresses) in the

source program. If code with a relative address is required, put a “$” at the beginning of

an operand of the CALL instruction as shown below:

CALL $ + 2 Jumps to the next-but-one address.

CALL $ – 3 Jumps three addresses before source address.

Branch

103

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

CALL CALL

Execution cycle 2 (When used with a conditional instruction: 3 when condition satisfied, and 1 when condition

not satisfied.)

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No Yes

Cautions 1. Do not describe the CALL instruction as a repeat target instruction or within three instructions

of the loop end.

2. Do not execute the CALL instruction when the SP value is within 0xF to 0x1F. If it is executed,

a stack underflow or overflow occurs, the return address undefined, although the subroutine

call is normally executed.

3. Do not describe the unconditional RET instruction or the unconditional RETI instruction, just

after a CALL instruction that is combined with a conditional instruction.

Branch

104

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

CREG CREG

CALL dp

Name of instruction: Register indirect subroutine call

Mnemonic: CALL dp

Example CALL DP0

Explanation Instruction that executes the same operation as that of the CALL instruction except that the

subroutine call address is specified with dp, and three cycles are taken for execution (SP ← SP +

1, STACK ← PC + 1, PC ← reg).

Execution cycle 3 (When used with a conditional instruction: 3 when condition satisfied, and 1 when condition

not satisfied.)

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No Yes

Cautions 1. Do not describe the CALL instruction as a repeat target instruction or within three instructions

of the loop end.

2. Do not execute the CALL instruction when the SP value is within 0xF to 0x1F. If it is executed,

a stack underflow or overflow occurs, rendering the return address undefined, although the

subroutine call is normally executed.

3. Do not describe the unconditional RET instruction or the unconditional RETI instruction just

after a CREG instruction that is combined with a conditional instruction.

Branch

105

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

RET RET

RET

Name of instruction: Return

Mnemonic: RET

Example RET

Explanation Instruction that returns processing from the subroutine to the main routine. The processing jumps

to the address specified by the stack value indicated by the stack pointer, and then the stack pointer

is decremented by one (PC ← STACK, SP ← SP – 1). A return is executed in two cycles.

To execute a conditional return, a conditional instruction and the RET instruction should be

combined in the same way as the JMP and CALL instructions, as shown below:

IF (R0 = = 0) RET;

Execution cycle 2 (When used with a conditional instruction: 3 when condition satisfied, and 1 when condition

not satisfied.)

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No Yes

Cautions 1. Executing the RET instruction for purposes other than to exit a subroutine also performs

branch and decrements the stack pointer.

2. Do not execute the RET instruction when the SP value is within 0x10 to 0x1F. If it is executed,

a stack underflow or overflow occurs, rendering the jump address undefined.

3. Do not describe the RET instruction just after the inter-register transfer instruction to load

from/store in STK or SP.

4. Do not describe the RET instruction just after a CALL instruction or CREG instruction that is

combined with a conditional instruction.

Branch

106

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

RETI RETI

RETI

Name of instruction: Interrupt return

Mnemonic: RETI

Example RETI

Explanation Instruction to exit interrupt servicing. The operation of this instruction is the same as that of the RET

instruction except that the interrupt enable flag returns to the last condition (PC ← STACK,

SP ← SP – 1, returns the interrupt enable flag to the last condition).

Execution cycle 2 (When used with a conditional instruction: 3 when condition satisfied and 1 when condition

not satisfied.)

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No Yes

Cautions 1. Do not describe the RETI instruction as a repeat target instruction or within three instructions

of the loop end.

2. Executing RETI instruction for purposes other than interrupt servicing also performs branch,

decrements the stack pointer, and changes the interrupt enable flag value (for bits 15 to 13 of

SR, and left shifts the EIR contents).

3. Do not execute the RETI instruction when the SP value is 0 or within 0x10 to 0x1F. If it is

executed, a stack underflow or overflow occurs, rendering the jump address undefined.

4. Do not describe the RETI instruction just after the inter-register transfer instruction to load

from/store in STK or SP.

5. Do not describe the RETI instruction just after a CALL instruction or CREG instruction that is

combined with a conditional instruction.

6. Do not describe the RETI instruction at the start address of each interrupt source in the vector

area.

107

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

3.8 Hardware Loop Instructions

These are instructions to specify repeated execution of one or several instructions. The following hardware loop

instructions are provided:

Repeat (REP)

Loop (LOOP)

Loop pop (LPOP)

Hardware loop

108

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

REP REP

REP count

Name of instruction: Repeat

Mnemonic: REP count

count = {1 to 0x7FFF, rl}

Example REP 0x1234

Explanation Instruction to repeat one instruction.

Repeats the succeeding instruction for the number of times specified by the count. During this time,

the next instruction is repeatedly fetched.

• Start

RC ← count REP count

• During repeat Repeats the shaded

PC ← PC instruction the count- 1 instruction word

RC ← RC – 1 specified times.

• End

PC ← PC + 1

When the repeat action is completed and the next instruction after the repeated instruction is

executed, there will be no overhead.

Hardware loop

109

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

REP REP

Execution cycle 2

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Cautions 1. A branch instruction (JMP, JREG, CALL, CREG, RET, RETI), or a REP, LOOP, LPOP, STOP,

or HALT instruction must not be specified as a repeat target instruction.

2. The loop instruction must not be described as a repeat target instruction.

3. During the execution and decoding cycles of the REP instruction and the repeated instruction,

no interrupt is acknowledged.

4. The number of repetitions must not be set to 0 or 0x8000 or higher.

Hardware loop

110

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

LOOP LOOP

LOOP count {
2 to 255 instruction words

};

Name of instruction: Loop

Mnemonic: LOOP count {

2 to 255 instruction words

};

count = {1 to 0x7FFF, rl}

Remarks The " { " " } " should also be entered.

Example LOOP 0x1234 {

R1 = R0 + R4 R0 = *DP0++ R4 = *DP4++;

 *DP1++ = R1

};

Explanation Instruction to repeat two or more instructions. For one instruction repeat, use the REP instruction.

Repeats the instructions from the succeeding instruction (loop starting address) to the instruction

(loop ending address) just before the loop end pseudo-instruction (}) for the number of times

specified by the count. The difference between the loop starting address and the loop ending

address can be set within the range of 2 to 255. Operations during the LOOP instruction execution

are as follows:

• Start • Loop end instruction fetch (during loop)

LSP ← LSP + 1 LC ← LC – 1

LSR1 ← LSA PC ← LSA

LSR2 ← LEA

LSR3 ← LC • Loop end instruction fetch (loop end)

LSA ← PC + 1 PC ← PC + 1

LEA ← PC + RLE (loop end relative address) LC ← LSR3

LC ← count LEA ← LSR2

LSA ← LSR1

LSP ← LSP – 1

LOOP count {

Repeats the shaded

instructions the count- 2 to 255 instruction words

specified times.

} ;

When branching from the loop ending address to the loop starting address, and when executing the

instruction just behind the loop end pseudo-instruction after completion of the loop operation, there

will be no overhead.

During the execution and decoding cycles of the LOOP instruction and the fetching cycle of the loop

end instruction, no interrupt is acknowledged.

Hardware loop

111

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

LOOP LOOP

Execution cycle 2

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Cautions 1. Do not describe branch instructions (JMP, JREG, CALL, CREG, RET, RETI), or the REP,

LOOP, LPOP, STOP, or HALT instruction, and a transfer instruction from LC within three

instructions of the loop end. Care must be taken not to overlap the loop end with a loop end

specified by another loop instruction.

Forbidden example 1:

LOOP 0x1234 {

:

:

Branch instruction

};

Forbidden example 2:

LOOP 0x1234 {

:

:

LOOP 0x2345 {

:

:

 };

 };

2. A transfer instruction from LC must not be described as the loop start.

3. Do not describe the repeat instruction within three instructions of the loop end.

4. Do not execute the LOOP instruction when LSP is 4 to 7, or a loop stack underflow or overflow

may occur.

5. The number of repetitions must not be set to 0 or 0x8000 or higher.

Hardware loop

112

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

LPOP LPOP

LPOP

Name of instruction: Loop pop

Mnemonic: LPOP

Example LPOP

Explanation Discards the present loop information and transfers the values of the loop stack indicated by the

loop stack pointer to LC, LEA, and LSA. Decrements the value of the loop stack pointer.

Operations during LOOP instruction execution are as follows:

LOOP count {

LC ← LSR3

LEA ← LSR2 IF (xxx) jmp _LOOP_LPOP;

LSA ← LSR1

LSP ← LSP – 1

}

 jmp $ + 2

_LOOP_LPOP:

 lpop

Hardware loop

113

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

LPOP LPOP

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Cautions 1. Do not describe the LPOP instruction within three instructions of the loop end.

2. The LPOP instruction should not be described as a repeat target instruction.

3. Do not execute the LPOP instruction when LSP is 0 or 5 to 7. If it is executed, loop stack

underflow or overflow occurs.

4. The LPOP instruction does not terminate a loop. It only decreases the loop stack pointer

(LSP).

114

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

3.9 Control Instructions

These are instructions to specify program control.

The following control instructions are provided:

No operation (NOP)

Halt (HALT)

Stop (STOP)

Forget interrupt (FINT)

Condition (COND)

Control

115

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

NOP NOP

NOP

Name of instruction: No operation

Mnemonic: NOP

Example NOP

Explanation Only updates the value of PC and executes nothing. This instruction is used to consume one

instruction cycle for timing.

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Control

116

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

HALT HALT

HALT

Name of instruction: Halt

Mnemonic: HALT

Example HALT

Explanation Stops the operation of the µPD77016 Family.

Remarks 1. In HALT mode, the pins, registers, and internal memory of the device retain the statuses

immediately before the HALT mode is set (refer to µPD7701x Family User's Manual

Architecture or µPD77111 Family User's Manual Architecture).

2. This mode is released by using an external/internal interrupt (which is not masked) or

hardware reset.

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Caution Do not describe the HALT instruction as a repeat target instruction or within three

instructions of the loop end.

Control

117

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

STOP STOP

STOP

Name of instruction: Stop

Mnemonic: STOP

Example STOP

Explanation Stops operation of the clock circuit and PLL of the µPD77016 Family (excluding the µPD77016).

Remarks 1. In the STOP mode, the device pins retain the statuses immediately before the STOP mode

is set (refer to µPD7701x Family User's Manual Architecture or µPD77111 Family

User’s Manual Architecture).

2. The STOP mode can be released by means of hardware reset or WAKEUP pin inputNote.

Note Releasing the STOP mode by means of WAKEUP pin input is available only for the µPD77111

Family.

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

Cautions 1. Do not describe the STOP instruction as a repeat target instruction or within three instruction

of the loop end.

2. In STOP mode, the output pin statuses are initialized by hardware reset. The output pin

statuses are not assured and go into a high-impedance state until the PLL becomes stable.

3. A NOP instruction must be inserted immediately before the STOP instruction for releasing

the STOP mode by means of WAKEUP pin input in µPD77111 Family devices.

Example)

nop; Required

stop; STOP instruction assuming release by means of WAKEUP pin input

Control

118

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

FINT FINT

FINT

Name of instruction: Forget interrupt

Mnemonic: FINT

Example FINT

Explanation Discards all existing interrupt requests.

This instruction is used to synchronize the program with the generation of the specified interrupt

factor when the servicing order of interrupts to be processed is limited.

Execution cycle 1

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No No No No No No

119

CHAPTER 3 EXPLANATION OF INSTRUCTIONS

User's Manual U13116EJ2V0UM00

COND COND

IF (ro cond)

Name of instruction: Condition

Mnemonic: IF (ro cond)

Conditions that can be described in cond (condition):

EVER: Unconditional (top description not necessary)

==0: = 0

!=0: ≠ 0

>0: > 0

<0: < 0

<=0: ≤ 0

>=0: ≥ 0

==EX: Extension (bits 39 to 31 are a mixture of 0 and 1)

!=EX: Without extension (bits 39 to 31 are all 0 or all 1)

Example IF (R1 >= 0) R0 = R0 + 1

Explanation Judges the condition.

The top specified general-purpose register is evaluated as 40-bit data represented with two’s

complement. Executes the instruction described in the same statement if the condition is true. If

the condition is false, there is no operation.

Execution cycle Number of cycles of the instruction described simultaneously (when the condition was true), or

1 (when the condition was false)

Instructions that can be described concurrently

Trinomial Binomial Monomial Parallel Inter-register Branch Conditional
load/store transfer

No No Yes No Yes Yes No

120 User's Manual U13116EJ2V0UM00

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

This section describes the features of each instruction category. Table A-1 lists the formats of instruction words.

Table A-1. Formats of Instruction Words

1 op1 op2opcode

opcode op1

opcode op1

opcode op1

op3

op2

op2

op2

dx

dx

dy

dy

dpx

dpx

modix

modix

rx (rxh)

rx (rxh)

dpy

dpy

modiy

modiy

ry (ryh)

ry (ryh)

– – – – – – – – – – – cond top

sufy dx dy dpx modix regx dpy modiy regysufx1 1 – –

– – imm

sufreg1 0 xy – – d direct

sufreg0 1 dp d imm

0source11 1 dest1 0 – – – – – – – – – cond top

1 source11 1 dest1 0 – – – – – – – – – – – – – – – –

0dest21 1 source2 1 – – – – – – – – – cond top

1dest21 1 source2 1 – – – – – – – – – – – – – – – –

dest11 0 – – – 0 imm

1 0 dest2 – – – – – – 1 imm

1 1 jc – – cond top

1 0 jc – – – – – dp – – – – – – – – – – cond top

0 1 rt – – – – – – – – – – – – – – – – – – cond top

1 1 – – – – – – – – – – 0 imm (Repeated times)

1 0 – rl

0 1 – – 0 imm (Repeated times)

rl0 0 – –

0123458910111213181920212223282930 2425262731 6714151617

– – – – – – – – – – – – –

Relative address

Loop end relative address

Loop end relative address

Remark –: Unused bits

0 1 01

0 1 0 1

0

1

0

1

0

1

0

1

0

1

0

10 1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

00 1 0

00 1 0

00 1 0

00 10

00 10

00 10

00 10

00 00

121

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.1 Three-Operand Instructions

A three-operand instruction uses three operands when an operation is executed between the MAC and ALU. Trinomial

and binomial instructions fall into this category, and are executed in the following formats:

• Format of trinomial instruction

OP3 = OP3 opm op1 OP1 op2 OP2;

where,

OP1: 1st operand (operation operand)

OP2: 2nd operand (operation operand)

OP3: 3rd operand (operation operand and result operand)

opm: Locally modifies OP3 under MSFT operation direction. Either “no direction”, “>>1 (1-bit arithmetic

right shift)”, or “>>16 (16-bit arithmetic right shift)”.

op1: ALU operation direction. “+” or “–”.

op2: MAC operation direction. Always “*”.

• Format of binomial instruction

(1) OP3 = OP1 op OP2;

(2) OP3 = oplt (OP1, OP2);

where,

OP1: 1st operand (operation operand)

OP2: 2nd operand (operation operand)

OP3: 3rd operand (result operand)

op: ALU or MAC operation direction

oplt: ALU operation direction. Always “LT”.

All binomial instructions, except LT (Less Than), are described in format (1). Only the LT instruction is described

in format (2).

With a three-operand instruction, parallel load and store instructions can be described simultaneously, so that data

can be exchanged between the X or Y memory and a general-purpose register while an operation of the ALU or MAC

is executed.

Figure A-1 shows the instruction word format of three-operand instructions.

122

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

Figure A-1. Three-Operand Instruction Format

opcode

op3 = lt (op1,op2)

op3 = op1h*op2h

op3 = op3 + op1h*op2h

op3 = op3 – op1h*op2h

op3 = op3 + op1h*op2l

op3 = op3 + op1l*op2l

op3 = op3 >> 1 + op1h*op2h

op3 = op3 >> 16 + op1h*op2h

op3 = op1 + op2

op3 = op1 – op2

op3 = op1 & op2

op3 = op1 | op2

op3 = op1 ^ op2

op3 = op1 sra op2l

op3 = op1 srl op2l

op3 = op1 sll op2l

op1, op2, op3

r0 (r0h, r0l)

r1 (r1h, r1l)

r2 (r2h, r2l)

r3 (r3h, r3l)

r4 (r4h, r4l)

r5 (r5h, r5l)

r6 (r6h, r6l)

r7 (r7h, r7l)

[rx = *dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)]
[*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)] = rxh]

[ry = *dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)]
[*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)] = ryh]

[
op

] []

1 op1 op2opcode op3 dx dy dpx modix rx (rxh) dpy modiy ry (ryh)

02358101113182021232830 242731 6714151617

XY parallel load/store (operation register memory) can be described simultaneously.

123

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.2 Two-Operand Instructions

Only the monomial instructions of the ALU (including NOP) are classified as two-operand instructions.

• Format of monomial instruction

(1) opn

(2) OP2 = OP1 op 1;

(3) OP2 opu = OP1;

(4) OP2 = opl OP1;

(5) OP2 = opf (OP1);

where

OP1: 1st operand (operation operand)

OP2: 2nd operand (result operand)

opn: “NOP” only

op: Operation direction to ALU. “+” or “–”.

opu: Operation instruction to ALU. Refer to the figure below.

opl: Operation direction to ALU. “–” or “ ~ ”.

opf: Operation direction to ALU. “CLIP”, “ROUND”, or “EXP”.

Caution “NOP” is a direction to the ALU and does not mean that the entire instruction word is “NOP”.

With a two-operand instruction, either of a parallel load/store instruction or a conditional instruction can be described

simultaneously so that data can be exchanged between the X or Y memory and a general-purpose register while

the ALU or MAC is executing an operation, or so that an ALU or MAC operation can be executed when a given

condition is satisfied.

Figure A-2 shows the instruction word format of two-operand instructions.

124

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

Figure A-2. Two-Operand Instruction Format

0231820212328 242731 6717

opcode

nop

clr (op2)

op2 = op1 + 1

op2 = op1 – 1

op2 = abs (op1)

op2 = op1

op2 = –op1

op2 = clip (op1)

op2 = round (op1)

op2 = exp (op1)

op2 = op1

op2 / = op1

op2 + = op1

op2 – = op1

op1, op2

r0

r1

r2

r3

r4

r5

r6

r7

Condition can be described simultaneously.
[if (top cond)] op

[rx = *dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)]
[*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)] = rxh]

[ry = *dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)]
[*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)] = ryh]

[
op

] []

XY parallel load/store (operation register memory) can be described simultaneously.

0 1 1 1 opcode op1 op2 dx dy dpx modix rx (rxh) dpy modiy ry (ryh)

023581011131820212328 242731 6714151617

0 1 1 0 opcode op1 op2 – – – – – – – – – – – cond top

~

125

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.3 Immediate Value Operation Instructions

Only the immediate binomial operation instruction of the ALU falls into the category of immediate value operation

instructions.

• Binomial operation instruction (immediate operation)

OP2 = OP1 op imm;

where,

OP1: 1st operand (operation operand)

OP2: 2nd operand (result operand)

op: ALU operation direction. Refer to Figure A-3 below.

imm: 16-bit immediate data

No other instruction can be described simultaneously with an instruction in this category. Figure A-3 shows the

instruction word format of immediate value operation instructions.

Figure A-3. Immediate Value Operation Instruction Format

01820212328 242731 151617

opcode

op2 = op1 + imm

op3 = op1 – imm

op2 = op1 & imm

op2 = op1 | imm

op2 = op1 ^ imm

op2 = op1 sra imm

op2 = op1 srl imm

op2 = op1 sll imm

op1, op2

r0

r1

r2

r3

r4

r5

r6

r7

op imm

imm

0 to 3fh/ffffh

0 1 0 1 opcode op1 op2 – – imm

126

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.4 Load/Store Instructions

Load/store instructions can be classified into the following four types:

• Parallel load/store instruction

This instruction loads or stores 16-bit data between X or Y memory and a general-purpose register. When accessing

the memory with this instruction, only the indirect addressing mode using DPn (n = 0 to 7) is valid. The important point

about this instruction is that it can be described with any of the following operation instructions:

• Trinomial operation instructions

• Binomial operation instructions (except immediate binomial operation)

• Monomial operation instructions

Therefore, preparing data in a general-purpose register for the next operation while executing an operation can be

executed with a single instruction.

• Partial load/store instruction

This instruction loads or stores 16-bit data between the X or Y memory and a general-purpose register. When accessing

the memory with this instruction, only the indirect addressing mode using DPn (n = 0 to 7) is valid. The important points

about this instruction are as follows:

• Any part of a general-purpose register can be specified for loading or storing data.

• 16-bit data can be loaded simultaneously from the X and Y memories (32-bit data load) to two parts of a general-purpose

register.

• No other instruction can be described with this instruction.

• Direct addressing load/store instruction

This instruction directly specifies the type of data memory and an address in the instruction word. The important points

about this instruction are as follows:

• The type of data memory and an address can be directly described in the instruction.

• Data can be loaded (from memory to a general-purpose register) to any one or two parts (Rn, RnEH: n = 0 to 7) of a

general-purpose register.

• Data can be stored (from a general-purpose register to memory) from any part of a general-purpose register.

• The X and Y memories cannot be accessed at the same time.

• No other instruction can be described simultaneously with this instruction.

• Immediate modify load/store instruction

This instruction employs the indirect addressing mode using DPn. However, DPn is modified by immediate data, instead

of DNn, after access. The important points about this instruction are as follows:

• Data modifying DPn is directly described in the instruction.

• Data can be loaded (from memory to a general-purpose register) to any one or two parts of a general-purpose register

(Rn, RnEH: n = 0 to 7).

• Data can be stored (from a general-purpose register to memory) in any part of a general-purpose register.

• The X and Y memories cannot be accessed at the same time.

• No other instruction can be described simultaneously with this instruction.

127

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

Figure A-4 shows the instruction word format of load/store instructions.

Figure A-4. Load/Store Instruction Format (1/2)

[op]

dpx, dpy

dp1, dp5

dp2, dp6

dp3, dp7

rx (rxh), ry (ryh)

r1 (r1h)

r2 (r2h)

r3 (r3h)

r5 (r5h)

r6 (r6h)

r7 (r7h)

r0 (r0h)

r4 (r4h)

dx, dy

rx (ry) =*dp

*dp = rxh (ryh)

modix, modiy

*dpx (y)

*dpx (y)++

*dpx (y)– –

*dpx (y)%%

*idpx (y)##

nop

*dpx (y)##

sufx + dx, sufy + dy

*dp = rx (y) h

*dp = rx (y) e

rx (y) l = *dp

rx (y) e = *dp

rx (y) eh = *dp

rx (y) = *dp

regx, regy

r1suf

r2suf

r3suf

r5suf

r6suf

r7suf

r0suf

r4suf

dp0, dp4

x load/store nop
rx = *dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)
*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##) = rxh

XY parallel load/store (operation register memory)
y load/store nop
ry = *dp (*dp++, *dp – –, *dp##, *dp%%, *!dp##)
*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##) = ryh

dpx, dpy

dp1, dp5

dp2, dp6

dp3, dp7

modix, modiy

*dpx (y)

*dpx (y)++

*dpx (y)– –

*dpx (y)%%

*idpx (y)##

nop

*dpx (y)##

dp0, dp4

rx (y) h = *dp

*dp = rx (y) l

0 1 1 1

1 op1 op2opcode

opcode op1

op3

op2

dx

dx

dy

dy

dpx

dpx

modix

modix

rx (rxh)

rx (rxh)

dpy

dpy

modiy

modiy

ry (ryh)

ry (ryh)

02358101113182021232830 242731 6714151617

x load/store nop
regxs = *dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)
*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##) = regxs

y load/store nop
regys = *dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##)
*dp (*dp++, *dp– –, *dp##, *dp%%, *!dp##) = regys

0 1 0 0 sufy dx dy dpx modix regx dpy modiy regysufx1 1 – –

02358101113181920222328 25262731 6714151617

Partial load/store

128

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

Figure A-4. Load/Store Instruction Format (2/2)

suf + d

*dp = regl

*dp = regh

*dp = rege

regl = *dp

regh = *dp

rege = *dp

regeh = *dp

reg = *dp

*dp##imm = rs

reg

r1suf

r2suf

r3suf

r5suf

r6suf

r7suf

r0suf

r4suf

xy

y

x

suf + d

*dp##imm = regh

*dp##imm = rege

regl = *dp##imm

rege = *dp##imm

regeh = *dp##imm

reg = *dp##imm

*dp##imm = regl

regh = *dp##imm

reg

r1suf

r2suf

r3suf

r5suf

r6suf

r7suf

r0suf

r4suf

dp

dp1

dp2

dp3

dp5

dp6

dp7

dp0

dp4

im

0 to ffffh

direct

0 to ffffh

[]

regs = *direct: x (y)
*direct: x (y) = regs[]

Direct addressing load/store

Immediate value modify load/store

0 1 0 0 sufreg1 0 xy – – d direct

0181920222328 25262731 151617

0 1 0 0 sufreg0 1 dp d imm

01920222328 25262731 151617

rs = *dp##imm

129

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.5 Inter-Register Transfer Instruction

This instruction transfers data between a general-purpose register and a register connected to the main bus. The

important points about this instruction are as follows:

• A general-purpose register must always be described at one end of transfer (i.e., as destination or source).

• Any register connected to the main bus can be specified as the destination or source.

• Because a conditional instruction can be described at the same time, conditional transfer can be executed.

Remark This instruction cannot be used to transfer data between two general-purpose registers. Use the monomial

instruction PUT to transfer data between general-purpose registers.

Figure A-5 shows the instruction word format of the inter-register transfer instruction.

Figure A-5. Inter-Register Transfer Instruction Format

source1, dest2

r0l

r1l

r2l

r3l

r4l

r5l

r6l

r7l

[if cond] dest = source

dest1, source2

dp0

dp7

dn0

dn1

dn7

dmx

dmy

dp1

sr

eir

stack

sp

lc

lsp

lsr1

lsr2

lsr3

esr

Conditional

Unconditional

Note source2 only

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0source11 1 dest1 0 – – – – – – – – – cond top

1 source11 1 dest1 0 – – – – – – – – – – – – – – – –

0dest21 1 source2 1 – – – – – – – – – cond top

1dest21 1 source2 1 – – – – – – – – – – – – – – – –

02321222328 25262731 67151617

Note

130

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.6 Immediate Value Set Instruction

This instruction sets immediate data to a general-purpose register or addressing register.

The important points about using this instruction are as follows:

• Specify the L part (R7L to R0L), DPn, PNn, or DMX/Y of a general-purpose register.

• No other instruction can be described at the same time.

Figure A-6 shows the instruction word format of the immediate value setting instruction.

Figure A-6. Immediate Value Set Instruction Format

dest2

r0l

r1l

r2l

r3l

r4l

r5l

r6l

r7l

reg = imm

imm

0 to ffffh

dest1

dp0

dp1

dp7

dn0

dn1

dn7

dmx

dmy

0 0 1 1

0 0 1 1

dest11 0 – – – 0 imm

1 0 dest2 – – – – – – 1 imm

0222328 25262731 151617

131

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.7 Branch Instructions

Branch instructions can be classified into the following three types:

• Relative address jump/relative address call

Instructions of this type implement branching by adding (subtracting) the difference from the targeted address to (from)

the current PC value. The difference is given as a 16-bit two’s complement; therefore, execution can be branched over

the entire 64-Kword instruction memory space. The important points about this instruction are as follows:

• The operand is a 16-bit two’s complement that indicates a difference from the branch destination address. (Note,

however, that the numeric value of the targeted address is described directly or as a label in assembly language.)

• A conditional instruction can be described at the same time.

• Indirect jump/indirect call

The branch destination address is given by using a register (DPn). At this time, the specified value of DPn is directly set

to the PC. The important points about this instruction are as follows:

• The operand is DPn (n: 0 to 7).

• A conditional instruction can be described at the same time.

• Return/interrupt return

The branch destination address is the difference from the data saved to STK (stack) and is added to (subtracted from)

the current PC value.

• There is no explicit operand, but STK is specified as an implicit operand. The value of STK is added to (subtracted

from) the current PC value as a two’s complement.

• A conditional instruction can be described at the same time.

Figure A-7 shows the instruction word format of branch instructions.

132

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

Figure A-7. Branch Instruction Format

jc

br

call

[if cond] jmp/call imm
Relative address jump/relative address call

[if cond] jmp/call dp

Jump/call relative address

jc

jp

callr

dp

dp0

dp1

[if cond] return/returni
Return/interrupt return

dp2

dp3

dp4

dp5

dp6

dp7

rt

ret

reti

023222328 2425262731 67

02328 2425262731 671920 1617

02328 2425262731 67

0 0 1 0 0 1 rt – – – – – – – – – – – – – – – – – – cond top

0 0 1 0 1 1 jc – – cond top

0 0 1 0 1 0 jc – – – – – dp – – – – – – – – – – cond top

Indirect jump/indirect call

133

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.8 Hardware Loop Instructions

Hardware loop instructions can be classified into the following two types:

• Repeat instruction

This instruction repeatedly executes a specified instructionNote. The important points about this instruction are as follows:

• The number of times the specified instruction is to be repeated can be described directly in the repeat instruction, or

as the L part (RnL: n = 0 to 7) of a general-purpose register.

• No other instruction can be described at the same time.

• Loop instruction

This instruction repeatedly executes a group of instructions. One group can consist of two to 255 instructions (see Note).

The important points about this instruction are as follows:

• The number of times the specified instructions are to be repeated can be described directly in the repeat instruction,

or as the L part (RnL: n = 0 to 7) of a general-purpose register.

• No other instruction can be described at the same time.

Note “Instruction” in this case is in units of one instruction word, and does not mean a function instruction, which is

a field element in an instruction word.

Figure A-8 shows the instruction word format of hardware loop instructions.

134

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

Figure A-8. Hardware Loop Instruction Format

repeat count
Repeat instruction

repeat rl

imm

1to7fffh

rl

r0l

r1l

loop imm { }

Loop instruction

r2l

r3l

r4l

r5l

r6l

r7l

imm

1to7fffh

rl

r0l

r1l

r2l

r3l

r4l

r5l

r6l

r7l

loop rl { }

0 0 0 1 1 1 – – – – – – – – – – 0 imm

028 25262731 141516

02328 25262731

0 0 0 1 0 1 0 imm

02328 2425262731 141516

023232425262731 1516

0 0 0 1 1 0 – rl

– –

0 0 0 1 rl0 0 – – – – – – – – – – – – – – –Loop end relative address

28

Loop end relative address

135

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.9 CPU Control Instructions

Instructions of this category do not use an operand. No other instruction can be described with these instructions.

Figure A-9 shows the instruction word format of CPU control instructions.

Figure A-9. CPU Control Instruction Format

31 28 27

nop

0

halt

lpop

fint

stop (except for PD77016)µ

0 0

31 28 27 0

0 1

31 28 27 0

0 1 0

31 28 27 0

0 1 0 0

31 28 27 0

0 1 0 0 1

136

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

A.10 Conditional Instructions

A conditional instruction is meaningful when used in combination with other function instructions.

• Description format

IF (ro cond) other instruction;

where

ro: any general-purpose register (R7 to R0)

cond: condition. The following conditions can be described:

==0: Judges =0

!=0: Judges ≠0

>0: Judges >0

<0: Judges <0

>=0: Judges ≥0

<=0: Judges ≤0

==ex: Extension (bits 39 to 31 are mixed 0 and 1)

!=ex: Without extension (bits 39 to 31 are all 0 or all 1)

• Other instructions that can be described in combination

Any of the following instructions can be described in combination with the conditional instruction:

• Monomial operation instruction

• Inter-register transfer instruction

• Branch instruction

Figure A-10 shows the instruction word format of conditional instructions.

137

APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS

User's Manual U13116EJ2V0UM00

Figure A-10. Conditional Instruction Format

top

r0

r1

r2

r3

r4

r5

r6

r7

if (cond) dest = source

cond
ever

==0

!=0

>0

<=0

<0

==ex

!=ex

>=0

if (cond) jmp/call dp
Indirect jump/indirect call

if (cond) return/returni

if (cond) op
Conditional operation

if (cond) jmp/call imm

Register-to-register transfer

Relative address jump/relative address call

Return/interrupt return

0 1 1 0 opcode op1 op2 – – – – – – – – – – – cond top

0 0 1 1

0 0 1 1

0source11 1 dest1 0

0dest21 1 source2 1 – – – – – – – – – cond top

0231820212328 242731 6717

02321222328 25262731 67151617

– – – – – – – – – cond top

0 0 1 0

02328 2427 23 2231 67

0 0 1 0 – – – – – – – – – – cond top

0232028 242731 67

0 0 1 0 cond top

02328 242731 67

– – Branch/call relative address 1 1 jc

2526

cond top

19

dp

1617

1 0 jc

2526

– – – – –

0 1

26

rt

25

– – – – – – – – – – – – – – – – – –

138 User's Manual U13116EJ2V0UM00

APPENDIX B INSTRUCTION SETS

Tr
in

om
ia

l
B

in
om

ia
l

Multiply add ro = ro + rh*rh’ ro ro + rh*rh’

Multiply subtract ro = ro – rh*rh’ ro ro – rh*rh’

Sign-unsign
multiply add

ro = ro + rh*rl
(rl is positive integer)

ro ro + rh*rl

1-bit shift
multiply add

ro = (ro >> 1) + rh*rh’
ro + rh*rh’

ro
2

16-bit shift
multiply add

ro = (ro >> 16) + rh*rh’
ro + rh*rh’

 ro
216

Unsign-unsign
multiply add

ro = ro + rl*rl'
(rl and rl' are
positive integer)

ro ro + rl*rl’

Multiply ro = rh*rh’ ro rh*rh’

Add ro” = ro + ro’ ro” ro + ro’

Immediate add ro’ = ro + imm ro’ ro + imm

Sub ro” = ro – ro’ ro” ro – ro’

Immediate sub ro’ = ro – imm ro’ ro – imm
(imm = 1)

Arithmetic
right shift ro’ = ro SRA rl ro’ ro >> rl

Immediate
arithmetic
right shift

ro’ = ro SRA imm ro’ ro >> imm

Logical right shift ro’ = ro SRL rl ro’ ro >> rl

Immediate logical
right shift

ro’ = ro SRL imm ro’ ro >> imm

Logical left shift ro’ = ro SLL rl ro’ ro << rl

Immediate logical
left shift

ro’ = ro SLL imm ro’ ro << imm

AND ro” = ro & ro’ ro” ro & ro’

Immediate AND ro’ = ro & imm ro’ ro & imm

OR ro” = ro | ro’ ro” ro | ro’

Immediate OR ro’ = ro | imm ro’ ro | imm

Exclusive OR ro” = ro ^ ro’ ro” ro ^ ro’

1

1

1

1

1

1

1

1

1

Status of overflow flag (OV)

–: Not affected
1: Set to 1 when overflow occurs

Operation

Flag

Page
OV

Simultaneously Describable

Mnemonic Instruction
Name

G
ro

up

T
rin

om
ia

l
B

in
om

ia
l

M
on

om
ia

l
Lo

ad
/s

to
re

T

ra
ns

fe
r

Im
m

ed
ia

te
B

ra
nc

h
Lo

op

C
on

di
tio

n

(imm = 1)

26

28

30

32

34

37

38

39

40

41

42

44

45

46

47

48

49

50

51

52

53

24

139

APPENDIX B INSTRUCTION SETS

User's Manual U13116EJ2V0UM00

B
in

om
ia

l
M

on
om

ia
l

Immediate
exclusive OR

ro’ = ro ^ imm

Less than ro” = LT (ro, ro’) if (ro < ro’)

 {ro” 0x0000000001}

else {ro” 0x0000000000}

1
ro

Absolute value ro’ = ABS (ro) if (ro < 0)

 {ro’ – ro}

else {ro’ ro}

One's complement ro’ = ~ ro ro’ ~ ro

Two's complement ro’ = – ro ro’ – ro

Clip ro’ = CLIP (ro) if (ro > 0x007FFFFFFF)

 {ro’ 0x007FFFFFFF}

else if (ro < 0xFF80000000)

 {ro’ 0xFF80000000}

else {ro’ ro}

Round ro’ = ROUND (ro) if (ro > 0x007FFF0000)

 {ro’ 0x007FFF0000}

else if (ro > 0xFF80000000)

 {ro’ 0xFF80000000}

else {ro’ (ro + 0x8000)

 & 0xFFFFFF0000}

Exponent ro’ = EXP (ro)
ro’ log

Put ro’ = ro ro’ ro

Accumulative
add

ro’ + = ro ro’ ro’ + ro

Accumulative
subtract

ro’ – = ro ro’ ro’ – ro

1

1

1

63

62

64

ro’ ro ^ imm

Clear CLR (ro) ro 0x0000000000

Increment ro’ = ro + 1 ro’ ro + 1

Decrement ro’ = ro – 1 ro’ ro – 1 1

1

59

60

61

1

1

1

65

66

68

69

70

2

Status of overflow flag (OV)

–: Not affected
1: Set to 1 when overflow occurs

Operation

Flag

Page
OV

Simultaneously Describable

Mnemonic Instruction
Name

G
ro

up

T
rin

om
ia

l
B

in
om

ia
l

M
on

om
ia

l
Lo

ad
/s

to
re

T

ra
ns

fe
r

Im
m

ed
ia

te
B

ra
nc

h
Lo

op

C
on

di
tio

n

54

55

58

140

APPENDIX B INSTRUCTION SETS

User's Manual U13116EJ2V0UM00

M
on

om
ia

l
Lo

ad
/s

to
re

Divide ro’/ = ro

ro = *dpx_mod

*dpy_mod = rh

ro *dpx, *dpy rh

Inter-register
transfer

dest = rl dest rl

rl = source rl source

if (sign (ro’) = = sign (ro))

 {ro’ (ro’ – ro) << 1}

else

 {ro’ (ro’ + ro) << 1}

if (sign (ro’) = = 0)

 {ro’ ro’ + 1}

Parallel
load/store

ro = *dpx_mod

ro’ = *dpy_mod

ro *dpx, ro’ *dpy

T
ra

ns
fe

r

*dpx_mod = rh

ro = *dpy_mod

*dpx rh, ro *dpy

*dpx_mod = rh

*dpy_mod = rh’

*dpx rh, *dpy rh’

dest = *dpx_mod

*dpy_mod = source

dest *dpx,

*dpy source

Section
load/store

dest = *dpx_mod

dest’ = *dpy_mod

dest *dpx,

dest’ *dpy

*dpx_mod = source

dest = *dpy_mod

*dpx source,

dest *dpy

*dpx_mod = source

*dpy_mod = source’

*dpx source,

dpy source’

Direct
addressing
load/store

dest = *addr dest *addr

*addr = source *addr source

Immediate value
index load/store

dest = *dp_imm dest *dp

*dp_imm = source *dp source

1 72

79

85

89

94

75

Status of overflow flag (OV)

–: Not affected
1: Set to 1 when overflow occurs

Operation

Flag

Page
OV

Simultaneously Describable

Mnemonic Instruction
Name

G
ro

up

T
rin

om
ia

l
B

in
om

ia
l

M
on

om
ia

l
Lo

ad
/s

to
re

T

ra
ns

fe
r

Im
m

ed
ia

te
B

ra
nc

h
Lo

op

C
on

di
tio

n

141

APPENDIX B INSTRUCTION SETS

User's Manual U13116EJ2V0UM00

Im
m

ed
ia

te
 s

et
B

ra
nc

h

Immediate
value set

rl = imm

 (imm = 0-0xFFFF)

JMP imm PC imm

rl imm

Jump

H
ar

dw
ar

e
lo

op

Register
indirect
subroutine call

CALL dp SP SP + 1

STK PC + 1

PC dp

Repeat REP count Start

Repeat

End

dp = imm

 (imm = 0-0xFFFF)

dp imm

dn = imm

 (imm = 0-0xFFFF)

dn imm

dm = imm

 (imm = 1-0xFFFF)

dm imm

JMP dp PC dpRegister
indirect jump

CALL imm SP SP + 1

STK PC + 1

PC imm

Subroutine call

Return RET PC STK

SP SP – 1

Interrupt return RETI PC STK

STK SP – 1

Restores IE flag.

100

97

104

108

101

102

105

106

RC count

RF 0

PC PC

RC RC – 1

PC PC + 1

RF 1

Status of overflow flag (OV)

–: Not affected
1: Set to 1 when overflow occurs

Operation

Flag

Page
OV

Simultaneously Describable

Mnemonic Instruction
Name G

ro
up

T
rin

om
ia

l
B

in
om

ia
l

M
on

om
ia

l
Lo

ad
/s

to
re

T

ra
ns

fe
r

Im
m

ed
ia

te
B

ra
nc

h
Lo

op

C
on

di
tio

n

142

APPENDIX B INSTRUCTION SETS

User's Manual U13116EJ2V0UM00

Operation

Flag

Page
OV

Simultaneously Describable

Mnemonic Instruction
Name

G
ro

up

T
rin

om
ia

l
B

in
om

ia
l

M
on

om
ia

l
Lo

ad
/s

to
re

T

ra
ns

fe
r

Im
m

ed
ia

te
B

ra
nc

h
Lo

op

C
on

di
tio

n

C
on

tr
ol

Loop

Forget interrupt FINT Discards interrupt
requests.

LPOP LC LSR3

LEA LSR2

LSA LSR1

LSP LSP – 1

HALT CPU stops.

No operation

LOOP count

(For repeating
instructions of 2 or
more lines)

RC count

RF 0

PC PC

RC RC – 1

PC PC + 1

RF 1

Start

Repeat

End

Loop pop

NOP PC PC + 1

Condition

STOP CPU, PLL, OSC stop.

Halt

IF (ro cond) Conditional judge

Stop

Status of overflow flag (OV)

–: Not affected
1: Set to 1 when overflow occurs

H
ar

dw
ar

e
lo

op

C
on

di
tio

n

110

119

118

117

116

112

115

143User's Manual U13116EJ2V0UM00

[MEMO]

144 User's Manual U13116EJ2V0UM00

APPENDIX C INDEX

[0]

1-bit shift multiply add .. 32

16-bit shift multiply add .. 34

One’s complement ... 62

Two’s complement ... 63

[A]

Absolute value .. 61

Accumulate add ... 69

Accumulate subtract .. 70

Add .. 38

AND .. 49

Arithmetic right shift ... 42

[C]

Clear ... 58

Clip .. 64

Condition .. 119

[D]

Decrement .. 60

Direct addressing load/store .. 85

Divide .. 72

[E]

Exclusive OR .. 53

Exponent ... 66

[F]

Forget interrupt ... 118

[H]

Halt .. 116

[I]

Immediate add .. 39

Immediate AND .. 50

Immediate arithmetic right shift 44

Immediate exclusive OR .. 54

Immediate logical left shift ... 48

Immediate logical right shift ... 46

Immediate OR .. 52

Immediate sub .. 41

Immediate value index load/store 89

Immediate value set ... 97

Increment .. 59

Inter-register transfer ... 94

Interrupt return ... 106

[J]

Jump ... 100

[L]

Less than .. 55

Logical left shift .. 47

Logical right shift .. 45

Loop pop ... 112

Loop .. 110

[M]

Multiply .. 37

Multiply add .. 24

Multiply sub .. 26

[N]

No operation ... 115

[O]

OR ... 51

[P]

Parallel load/store .. 75

Put ... 68

[R]

Register indirect jump .. 101

Register indirect subroutine call 104

145

APPENDIX C INDEX

User's Manual U13116EJ2V0UM00

Repeat .. 108

Return ... 105

Round ... 65

[S]

Section load/store .. 79

Sign unsign multiply add ... 28

Stop ... 117

Sub .. 40

Subroutine call ... 102

[U]

Unsign unsign multiply add ... 30

146 User's Manual U13116EJ2V0UM00

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 99.1

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Major Revisions in This Edition
	INTRODUCTION
	CHAPTER 1 OUTLINE
	1.1 Assembly Description
	1.1.1 Coding instructions
	1.1.2 Parallel coding
	1.1.3 Coding trinomial operations
	1.1.4 Pointer operations
	1.1.5 Coding conditional instructions
	1.1.6 Coding hardware loop instructions

	1.2 Conventions Used for Instruction Descriptions
	1.2.1 Symbols and corresponding registers
	1.2.2 General-purpose register partition format
	1.2.3 Data pointer modification

	1.3 Description Format

	CHAPTER 2 INSTRUCTION CATEGORIES AND INSTRUCTION FUNCTIONS
	2.1 Classification by Instruction Word
	2.1.1 Classification by instruction word format (category classification)
	2.1.2 Classification by instruction function (functional classification)

	CHAPTER 3 EXPLANATION OF INSTRUCTIONS
	3.1 Trinomial Operation Instructions
	3.2 Binomial Operation Instructions
	3.3 Monomial Operation Instructions
	3.4 Load/Store Instructions
	3.5 Inter-Register Transfer Instructions
	3.6 Immediate Value Set Instruction
	3.7 Branch Instructions
	3.8 Hardware Loop Instructions
	3.9 Control Instructions

	APPENDIX A CLASSIFICATION OF INSTRUCTION WORDS
	A.1 Three-Operand Instructions
	A.2 Two-Operand Instructions
	A.3 Immediate Value Operation Instructions
	A.4 Load/Store Instructions
	A.5 Inter-Register Transfer Instruction
	A.6 Immediate Value Set Instruction
	A.7 Branch Instructions
	A.8 Hardware Loop Instructions
	A.9 CPU Control Instructions
	A.10 Conditional Instructions

	APPENDIX B INSTRUCTION SETS
	APPENDIX C INDEX

