Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

16

H8/300H Series

Software Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Series

Renesas Electronics

Rev. 3.00 2004.12

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

General Precautions on Handling of Product

- 1. Treatment of NC Pins
- Note: Do not connect anything to the NC pins.

The NC (not connected) pins are either not connected to any of the internal circuitry or are used as test pins or to reduce noise. If something is connected to the NC pins, the operation of the LSI is not guaranteed.

- 2. Treatment of Unused Input Pins
- Note: Fix all unused input pins to high or low level.

Generally, the input pins of CMOS products are high-impedance input pins. If unused pins are in their open states, intermediate levels are induced by noise in the vicinity, a pass-through current flows internally, and a malfunction may occur.

- 3. Processing before Initialization
- Note: When power is first supplied, the product's state is undefined.

The states of internal circuits are undefined until full power is supplied throughout the chip and a low level is input on the reset pin. During the period where the states are undefined, the register settings and the output state of each pin are also undefined. Design your system so that it does not malfunction because of processing while it is in this undefined state. For those products which have a reset function, reset the LSI immediately after the power supply has been turned on.

4. Prohibition of Access to Undefined or Reserved Address

Note: Access to undefined or reserved addresses is prohibited. The undefined or reserved addresses may be used to expand functions, or test registers may have been be allocated to these address. Do not access these registers; the system's operation is not guaranteed if they are accessed.

Preface

The H8/300H Series is built around a 32-bit H8/300H CPU core with sixteen 16-bit registers, a concise, optimized instruction set designed for high-speed operation, and a 16-Mbyte linear address space. For easy migration from the H8/300 Series, the instruction set is upward-compatible with the H8/300 Series at the object-code level. Programs coded in the high-level language C can be compiled to high-speed executable code.

This manual gives details of the H8/300H CPU instructions and can be used with all microcontrollers in the H8/300H Series.

For hardware details, refer to the relevant microcontroller hardware manual.

Rev. 3.00 Dec 13, 2004 page v of xiv

Main Revisions for this Edition

	-	Revisions (See Manual for Details)
All	—	All references to Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names changed to Renesas Technology Corp.
		Designation for categories changed from "series" to "group"

Rev. 3.00 Dec 13, 2004 page vii of xiv

Contents

Secti	on 1	CPU	1
1.1	Overvie	2W	1
	1.1.1	Features	1
	1.1.2	Differences from H8/300 CPU	2
1.2	CPU O	perating Modes	3
1.3	Addres	s Space	7
1.4	Registe	r Configuration	8
	1.4.1	Overview	8
	1.4.2	General Registers	9
	1.4.3	Control Registers	10
	1.4.4	Initial Register Values	11
1.5	Data Fo	ormats	12
	1.5.1	General Register Data Formats	12
	1.5.2	Memory Data Formats	14
1.6	Instruct	ion Set	15
	1.6.1	Overview	15
	1.6.2	Instructions and Addressing Modes	16
	1.6.3	Tables of Instructions Classified by Function	18
	1.6.4	Basic Instruction Formats	26
	1.6.5	Addressing Modes and Effective Address Calculation	28
Secti	on 2	Instruction Descriptions	35
2.1	Tables	and Symbols	35
	2.1.1	Assembler Format	36
	2.1.2	Operation	37
	2.1.3	Condition Code	38
	2.1.4	Instruction Format	38
	2.1.5	Register Specification	39
	2.1.6	Bit Data Access in Bit Manipulation Instructions	40
2.2	Instruct	ion Descriptions	41
	2.2.1 (1) ADD (B)	42
	2.2.1 (2	2) ADD (W)	43
	2.2.1 (3	i) ADD (L)	44
	2.2.2	ADDS	45
	2.2.3	ADDX	46
	2.2.4 (1) AND (B)	47
	2.2.4 (2	2) AND (W)	48

Rev. 3.00 Dec 13, 2004 page ix of xiv

2.2.4 (3)	AND (L)	49
2.2.5	ANDC	50
2.2.6	BAND	51
2.2.7	Bcc	52
2.2.8	BCLR	54
2.2.9	BIAND	56
2.2.10	BILD	57
2.2.11	BIOR	58
2.2.12	BIST	59
2.2.13	BIXOR	60
2.2.14	BLD	61
2.2.15	BNOT	62
2.2.16	BOR	64
2.2.17	BSET	65
2.2.18	BSR	67
2.2.19	BST	69
2.2.20	BTST	70
2.2.21	BXOR	72
2.2.22 (1)	CMP (B)	73
2.2.22 (2)	CMP (W)	74
2.2.22 (3)	CMP (L)	75
2.2.23	DAA	76
2.2.24	DAS	78
2.2.25 (1)	DEC (B)	80
2.2.25 (2)	DEC (W)	81
2.2.25 (3)	DEC (L)	82
2.2.26(1)	DIVXS (B)	83
2.2.26 (2)	DIVXS (W)	85
2.2.26 (3)	DIVXS	87
2.2.27 (1)	DIVXU (B)	91
2.2.27 (2)	DIVXU (W)	92
2.2.28 (1)	EEPMOV (B)	97
2.2.28 (2)	EEPMOV (W)	98
2.2.29 (1)	EXTS (W)	100
2.2.29 (2)	EXTS (L)	101
2.2.30(1)	EXTU (W)	102
2.2.30 (2)	EXTU (L)	103
2.2.31 (1)	INC (B)	104
2.2.31 (2)	INC (W)	105
2.2.31 (3)	INC (L)	106

2.2.32	JMP 10)7
2.2.33	JSR)8
2.2.34 (1)	LDC (B) 11	0
2.2.34 (2)	LDC (W) 11	1
2.2.35 (1)	MOV (B)	3
2.2.35 (2)	MOV (W)	4
2.2.35 (3)	MOV (L) 11	5
2.2.35 (4)	MOV (B) 11	6
	MOV (W)	
2.2.35 (6)	MOV (L)	20
2.2.35 (7)	MOV (B)	22
2.2.35 (8)	MOV (W)	24
2.2.35 (9)	MOV (L)	26
2.2.36	MOVFPE12	28
2.2.37	MOVTPE	29
2.2.38 (1)	MULXS (B)	30
2.2.38 (2)	MULXS (W)	31
2.2.39 (1)	MULXU (B)	32
2.2.39 (2)	MULXU (W)	33
2.2.40 (1)	NEG (B)	34
2.2.40 (2)	NEG (W)	35
2.2.40 (3)	NEG (L)	36
2.2.41	NOP	37
2.2.42 (1)	NOT (B)	38
2.2.42 (2)	NOT (W)	39
2.2.42 (3)	NOT (L)	0
2.2.43 (1)	OR (B)	1
2.2.43 (2)	OR (W)	12
2.2.43 (3)	OR (L)	3
2.2.44	ORC	4
2.2.45 (1)	POP (W)	15
2.2.45 (2)	POP (L)	6
2.2.46 (1)	PUSH (W)	17
2.2.46 (2)	PUSH (L)	8
2.2.47 (1)	ROTL (B)	9
2.2.47 (2)	ROTL (W)	50
2.2.47 (3)	ROTL (L)	51
2.2.48 (1)	ROTR (B)	52
· · ·	ROTR (W)	
2.2.48 (3)	ROTR (L)	54

Rev. 3.00 Dec 13, 2004 page xi of xiv

	2.2.49 (1)	ROTXL (B)	155
	2.2.49 (2)	ROTXL (W)	156
	2.2.49 (3)	ROTXL (L)	157
	2.2.50(1)	ROTXR (B)	158
	2.2.50 (2)	ROTXR (W)	159
	2.2.50 (3)	ROTXR (L)	160
	2.2.51	RTE	161
	2.2.52	RTS	163
	2.2.53 (1)	SHAL (B)	164
	2.2.53 (2)	SHAL (W)	165
	2.2.53 (3)	SHAL (L)	166
	2.2.54 (1)	SHAR (B)	167
	2.2.54 (2)	SHAR (W)	168
	2.2.54 (3)	SHAR (L)	169
	2.2.55 (1)	SHLL (B)	170
	2.2.55 (2)	SHLL (W)	171
	2.2.55 (3)	SHLL (L)	172
	2.2.56(1)	SHLR (B)	173
	2.2.56 (2)	SHLR (W)	174
	2.2.56 (3)	SHLR (L)	175
	2.2.57	SLEEP	176
	2.2.58 (1)	STC (B)	177
	2.2.58 (2)	STC (W)	178
	2.2.59 (1)	SUB (B)	180
	2.2.59 (2)	SUB (W)	182
	2.2.59 (3)	SUB (L)	183
	2.2.60	SUBS	184
	2.2.61	SUBX	185
	2.2.62	TRAPA	186
	2.2.63 (1)	XOR (B)	187
	2.2.63 (2)	XOR (W)	188
	2.2.63 (3)	XOR (L)	189
	2.2.64	XORC	190
2.3	Instruction	1 Set Summary	191
2.4	Instruction	I Codes	205
2.5	Operation	Code Map	213
2.6	Number of	f States Required for Instruction Execution	217
2.7	Condition	Code Modification	228
2.8	Bus Cycle	s During Instruction Execution	233

Secti	on 3	Processing States	245
3.1	Overvie	- ew	245
3.2	Program	n Execution State	246
3.3	Excepti	ion-Handling State	246
	3.3.1	Types of Exception Handling and Their Priority	247
	3.3.2	Exception-Handling Sequences	248
3.4	Bus-Re	leased State	250
3.5	Reset S	tate	250
3.6	Power-	Down State	250
	3.6.1	Sleep Mode	250
	3.6.2	Software Standby Mode	250
	3.6.3	Hardware Standby Mode	251
Secti	on 4	Basic Timing	253
4.1		ew	
4.2	On-Chi	p Memory (RAM, ROM)	253
4.3		p Supporting Modules	
4.4		l Data Bus	

Section 1 CPU

1.1 Overview

The H8/300H CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward-compatible with the H8/300 CPU. The H8/300H CPU has sixteen 16-bit general registers, can address a 16-Mbyte linear address space, and is ideal for realtime control.

1.1.1 Features

The H8/300H CPU has the following features.

- Upward-compatible with H8/300 CPU
 - Can execute H8/300 object programs
- General-register architecture
 - Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- Sixty-two basic instructions
 - 8/16/32-bit arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, or @aa:24]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- 16-Mbyte address space
- High-speed operation
 - All frequently-used instructions execute in two to four states
 - Maximum clock frequency: 16 MHz
 - 8/16/32-bit register-register add/subtract: 125 ns
 - 8×8 -bit register-register multiply: 875 ns

- 16 ÷ 8-bit register-register divide: 875 ns
- 16×16-bit register-register multiply: 1375 ns
- 32 \div 16-bit register-register divide: 1375 ns
- Two CPU operating modes
 - Normal mode
 - Advanced mode
- Low-power mode
 - Transition to power-down state by SLEEP instruction

1.1.2 Differences from H8/300 CPU

In comparison to the H8/300 CPU, the H8/300H CPU has the following enhancements.

- More general registers Eight 16-bit registers have been added.
- Expanded address space
 Normal mode supports the same 64-kbyte address space as the H8/300 CPU.
 Advanced mode supports a maximum 16-Mbyte address space.
- Enhanced addressing

The addressing modes have been enhanced to make effective use of the 16-Mbyte address space.

• Enhanced instructions

Signed multiply/divide instructions and other instructions have been added.

1.2 CPU Operating Modes

The H8/300H CPU has two operating modes: normal and advanced. Normal mode supports a maximum 64-kbyte address space. Advanced mode supports up to 16 Mbytes. The mode is selected at the mode pins of the microcontroller. For further information, refer to the relevant hardware manual.

Figure 1.1 CPU Operating Modes

(1) Normal Mode

The exception vector table and stack have the same structure as in the H8/300 CPU.

Address Space: A maximum address space of 64 kbytes can be accessed, as in the H8/300 CPU.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit data registers, or they can be combined with the general registers (R0 to R7) for use as 32-bit data registers. When En is used as a 16-bit register it can contain any value, even when the corresponding general register (R0 to R7) is used as an address register. If the general register is referenced in the register indirect addressing mode with pre-decrement (@–Rn) or post-increment (@Rn+) and a carry or borrow occurs, however, the value in the corresponding extended register will be affected.

Instruction Set: All additional instructions and addressing modes of the H8/300 CPU can be used. If a 24-bit effective address (EA) is specified, only the lower 16 bits are used.

Exception Vector Table and Memory Indirect Branch Addresses: In normal mode the top area starting at H'0000 is allocated to the exception vector table. One branch address is stored per 16 bits (figure 1.2). The exception vector table differs depending on the microcontroller, so see the microcontroller hardware manual for further information.

Figure 1.2 Exception Vector Table (normal mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address to specify a memory operand that contains a branch address. In normal mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses can be stored in the top area from H'0000 to H'00FF. Note that this area is also used for the exception vector table.

Stack Structure: When the program counter (PC) is pushed on the stack in a subroutine call, and the PC and condition-code register (CCR) are pushed on the stack in exception handling, they are stored in the same way as in the H8/300 CPU. See figure 1.3.

Figure 1.3 Stack Structure (normal mode)

(2) Advanced Mode

In advanced mode the exception vector table and stack structure differ from the H8/300 CPU.

Address Space: Up to 16 Mbytes can be accessed linearly.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit data registers, or they can be combined with the general registers (R0 to R7) for use as 32-bit data registers. When a 32-bit register is used as an address register, the upper 8 bits are ignored.

Instruction Set: All additional instructions and addressing modes of the H8/300H can be used.

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top area starting at H'000000 is allocated to the exception vector table in units of 32 bits. In each 32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 1.4). The exception vector table differs depending on the microcontroller, so see the relevant hardware manual for further information.

Figure 1.4 Exception Vector Table (advanced mode)

Section 1 CPU

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address to specify a memory operand that contains a branch address. In advanced mode the operand is a 32-bit longword operand, of which the lower 24 bits are the branch address. Branch addresses can be stored in the top area from H'000000 to H'0000FF. Note that this area is also used for the exception vector table.

Stack Structure:When the program counter (PC) is pushed on the stack in a subroutine call, and the PC and condition-code register (CCR) are pushed on the stack in exception handling, they are stored as shown in figure 1.5.

Figure 1.5 Stack Structure (advanced mode)

1.3 Address Space

Figure 1.6 shows a memory map of the H8/300H CPU.

Figure 1.6 Memory Map

Section 1 CPU

1.4 Register Configuration

1.4.1 Overview

The H8/300H CPU has the internal registers shown in figure 1.7. There are two types of registers: general and extended registers, and control registers.

1	15	(07	07
Г	E	C	R0H	R0L
	E	1	R1H	R1L
	E	2	R2H	R2L
	E	3	R3H	R3L
	E	4	R4H	R4L
	E	5	R5H	R5L
	E	6	R6H	R6L
SP	E	7	R7H	R7L
Cont	rol registers (Cl	23	PC	7654004
		-	PC	7 6 5 4 3 2 1 CCR I U H U N Z V
Lege	nd:	-	PC	
Lege SP:	nd: Stack pointer	23	PC	
Lege SP: PC:	nd:	23	PC	
Lege SP: PC: CCR	nd: Stack pointer Program count : Condition code Interrupt mask	er eregister bit	PC	
Lege SP: PC: CCR I: U:	nd: Stack pointer Program count Condition code Interrupt mask User bit or inte	er eregister bit	PC	
Lege SP: PC: CCR I: U: H:	nd: Stack pointer Program count : Condition code Interrupt mask User bit or inte Half-carry flag	er eregister bit	PC	
Lege SP: PC: CCR I: U: H: N:	nd: Stack pointer Program count : Condition code Interrupt mask User bit or inte Half-carry flag Negative flag	er eregister bit	PC	
Lege SP: PC:	nd: Stack pointer Program count : Condition code Interrupt mask User bit or inte Half-carry flag	er eregister bit	PC	

Figure 1.7 CPU Registers

1.4.2 General Registers

The H8/300H CPU has eight 32-bit general registers. These general registers are all functionally alike and can be used without distinction between data registers and address registers. When a general register is used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. When the general registers are used as 32-bit registers or as address registers, they are designated by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R (R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit registers.

Figure 1.8 illustrates the usage of the general registers. The usage of each register can be selected independently.

Figure 1.8 Usage of General Registers

General register ER7 has the function of stack pointer (SP) in addition to its general-register function, and is used implicitly in exception handling and subroutine calls. Figure 1.9 shows the stack.

Figure 1.9 Stack

1.4.3 Control Registers

The control registers are the 24-bit program counter (PC) and the 8-bit condition-code register (CCR).

(1) **Program Counter (PC)**

This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 16 bits (one word) or a multiple of 16 bits, so the least significant PC bit is ignored. When an instruction is fetched, the least significant PC bit is regarded as 0.

(2) Condition Code Register (CCR)

This 8-bit register contains internal CPU status information, including the interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1. (NMI is accepted regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exception-handling sequence.

Bit 6—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions. This bit can also be used as an interrupt mask bit. For details see the relevant microcontroller hardware manual.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.

Bit 3—Negative Flag (N): Indicates the most significant bit (sign bit) of the result of an instruction.

Bit 2—Zero Flag (Z): Set to 1 to indicate a zero result, and cleared to 0 to indicate a non-zero result.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions. Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to the detailed descriptions of the instructions starting in section 2.2.1.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch (Bcc) instructions.

1.4.4 Initial Register Values

When the CPU is reset, the program counter (PC) is loaded from the vector table and the I bit in the condition-code register (CCR) is set to 1. The other CCR bits and the general registers and extended registers are not initialized. In particular, the stack pointer (extended register E7 and general register R7) is not initialized. The stack pointer must therefore be initialized by an MOV.L instruction executed immediately after a reset.

1.5 Data Formats

The H8/300H CPU can process 1-bit, 4-bit, 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

1.5.1 General Register Data Formats

Data type	Register number	Data format
1-bit data	RnH	7 0 7 6 5 4 3 2 1 0 Don't care
1-bit data	RnL	7 0 Don't care 7 6 5 4 3 2 1 0
4-bit BCD data	RnH	7 4 3 0 Upper Lower Don't care
4-bit BCD data	RnL	7 4 3 0 Don't care Upper Lower
Byte data	RnH	7 0 Don't care MSB LSB
Byte data	RnL	7 0 Don't care

Figure 1.10 shows the data formats in general registers.

Figure 1.10 General Register Data Formats

Figure 1.10 General Register Data Formats (cont)

1.5.2 Memory Data Formats

Figure 1.11 shows the data formats on memory. The H8/300H CPU can access word data and longword data on memory, but word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, no address error occurs but the least significant bit of the address is regarded as 0, so the access starts at the preceding address. This also applies to instruction fetches.

Data type	Data format									
	Address			_	<u> </u>	_				
1-bit data	Address L	7 7	6 5	5 4	4 :	3 2	2 1	0		
Byte data	Address L	MSB;	1	1	1	1	1	LSB		
Word data	Address 2M	MSB	1	1	1	1	1	1		
	Address 2M + 1	1	1	-	1	1	1	LSB		
Longword data	Address 2N	MSB:	1	1	1	1	1			
	Address 2N + 1			I I I			1			
	Address 2N + 2	1	1			1	1	1 1 1		
	Address 2N + 3		1				1	LSB		

Figure 1.11 Memory Data Formats

When ER7 is used as an address register to access the stack, the operand size should be word size or longword size.

1.6 Instruction Set

1.6.1 Overview

The H8/300H CPU has 62 types of instructions, which are classified by function in table 1.1. For a detailed description of each instruction see section 2.2, Instruction Descriptions.

Function	Instructions	Number
Data transfer	MOV, PUSH ^{*1} , POP ^{*2} , MOVTPE, MOVFPE	3
Arithmetic operations	ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA, DAS, MULXU, MULXS, DIVXU, DIVXS, CMP, NEG, EXTS, EXTU	18
Logic operations	AND, OR, XOR, NOT	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST	14
Branch	Bcc ^{*2} , JMP, BSR, JSR, RTS	5
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	9
Block data transfer	EEPMOV	1
	Total 62 types	

Table 1.1 Instruction Classification

Notes: The shaded instructions are not present in the H8/300 instruction set.

 POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn, @-SP.

2. Bcc is the generic designation of a conditional branch instruction.

1.6.2 Instructions and Addressing Modes

Table 1.2 indicates the instructions available in the H8/300H CPU.

Table 1.2 Instruction Set Overview

							Addres	ssing	Modes	;				
Function	Instruction	XX#	Rn	@ERn	@(d:16,ERn)	@(d:24,ERn)	@ERn+/@-ERn	@aa:8	@aa:16	@ aa:24	@(d:8,PC)	@(d:16,PC)	@ @ aa:8	I
Data	MOV	BWL	BWL	BWL	BWL	BWL	BWL	В	BWL	BWL	—	_	-	—
transfer	POP, PUSH		_	_	_	_	_		—	_	_	_		WL
	MOVFPE, MOVTPE		—	—	—	—	_	_	В	_		—		
Arithmetic	ADD, CMP	BWL	BWL	_	_	_	_		—	_	_	_		—
operations	SUB	WL	BWL	_	_	_	_		—	_	_	_		—
	ADDX, SUBX	В	В	—	—	—	_	—	—	_		—		—
	ADDS, SUBS		L*1	_	_	_	_	—	_	—	—	—	I	_
	INC, DEC	_	BWL	—	—	—	—	—	—	—	_	—	-	—
	DAA, DAS		В	—	—	—	_	—	—	_	_	_	l	—
	MULXU, DIVXU		BW	_	_	_	_	-	_	_	—	_		_
	MULXS, DIVXS	l	BW	_	_	_	_	_	_	_	—	_		—
	NEG		BWL	—	—	—	—	—	—	—	—	—		—
	EXTU, EXTS		WL	—	—	—	_	—	—	_	_	_	l	—
Logic operations	AND, OR, XOR	BWL	BWL	_	—	—	—	_	—	—	—	—	_	—
	NOT	_	BWL	—	—	—	—	—	—	—	_	—	—	—
Shift		_	BWL	—	—	—	—	—	—	—	_	—	—	—
Bit manipulat	tion	_	В	В	—	—	—	В	—	—	_	—	_	—

							Addre	ssing	Modes	5				
Function	Instruction	xx#	Rn	@ERn	@(d:16,ERn)	@(d:24,ERn)	@ERn+/@-ERn	@aa:8	@aa:16	@aa:24	@(d:8,PC)	@(d:16,PC)	@ @ aa:8	I
Branch	Bcc, BSR			—	—	—	—	_	_		0	0	_	—
	JMP, JSR	_	_	0	—	—	—	—		O^{*_2}			0	—
	RTS	_	_	—	—	—	—	—		_			—	0
System	TRAPA	_	_	—	—	—	—	—		_			—	0
control	RTE	_	_	—	—	—	—	—		_			—	0
	SLEEP	_	_	—	—	—	—	—		_			—	0
	LDC	В	В	W	W	W	W	—	V	W			—	—
	STC	_	В	W	W	W	W	—	V	W			—	—
	ANDC, ORC, XORC	В					_		-	_	-	_		
	NOP		_	—	_	_	—	—	_	—	_	—	—	0
Block data	EEPMOV.B	_	—	—	—	—	—	—	_	_	_		—	0
transfer	EEPMOV.W	—	—	—	—	—	—	—	_	—	_	—	—	0

Legend:

- B: Byte
- W: Word
- L: Longword

: Newly added instruction in H8/300H CPU

Notes: 1. The operand size of the ADDS and SUBS instructions of the H8/300H CPU has been changed to longword size. (In the H8/300 CPU it was word size.)

2. Because of its larger address space, the H8/300H CPU uses a 24-bit absolute address for the JMP and JSR instructions. (The H8/300 CPU used 16 bits.)

1.6.3 Tables of Instructions Classified by Function

Table 1.3 summarizes the instructions in each functional category. The notation used in table 1.3 is defined next.

Operation Notation

Rd	General register (destination)*		
Rs	General register (source)*		
Rn	General register*		
ERn	General register (32-bit register)		
(EAd)	Destination operand		
(EAs)	Source operand		
CCR	Condition code register		
N	N (negative) bit of CCR		
Z	Z (zero) bit of CCR		
V	V (overflow) bit of CCR		
С	C (carry) bit of CCR		
PC	Program counter		
SP	Stack pointer		
#IMM	Immediate data		
disp	Displacement		
+	Addition		
_	Subtraction		
×	Multiplication		
÷	Division		
^	AND logical		
V	OR logical		
\oplus	Exclusive OR logical		
\rightarrow	Move		
7	Not		
:3/:8/:16/:24	3-, 8-, 16-, or 24-bit length		
Note: * General r	edisters include 8-bit redisters (R0H/R0L to R7H/R7L) 16-bit redisters (R0 to		

Note: * General registers include 8-bit registers (R0H/R0L to R7H/R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

Туре	Instruction	Size*	Function
Data transfer	MOV	B/W/L	$(EAs) \rightarrow Rd, Rs \rightarrow (EAd)$
			Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.
	MOVFPE	В	$(EAs) \rightarrow Rd$
			Moves external memory contents (addressed by @aa:16) to a general register in synchronization with an E clock.
	MOVTPE	В	$Rs \rightarrow (EAd)$
			Moves general register contents to an external memory location (addressed by @aa:16) in synchronization with an E clock.
	POP	W/L	$@SP+ \rightarrow Rn$
			Pops a register from the stack. POP.W Rn is identical to MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.
	PUSH	W/L	$Rn \rightarrow @-SP$
			Pushes a register onto the stack. PUSH.W Rn is identical to MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, @–SP.
Arithmetic operations	ADD	B/W/L	$Rd \pm Rs \to Rd, Rd \pm \#IMM \to Rd$
	SUB		Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register. (Immediate byte data cannot be subtracted from data in a general register. Use the SUBX or ADD instruction.)
	ADDX	В	$Rd \pm Rs \pm C \to Rd, Rd \pm \#IMM \pm C \to Rd$
	SUBX		Performs addition or subtraction with carry or borrow on byte data in two general registers, or on immediate data and data in a general register.
	INC	B/W/L	$Rd \pm 1 \to Rd, Rd \pm 2 \to Rd$
	DEC		Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.)

Table 1.3 Instructions Classified by Function

Туре	Instruction	Size*	Function
Arithmetic operations	ADDS	L	$Rd \pm 1 \to Rd, Rd \pm 2 \to Rd, Rd \pm 4 \to Rd$
	SUBS		Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.
	DAA	В	Rd decimal adjust \rightarrow Rd
	DAS		Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4- bit BCD data.
	MULXS	B/W	Rd imes Rs o Rd
			Performs signed multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
	MULXU	B/W	$Rd \times Rs \to Rd$
			Performs unsigned multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
	DIVXS	B/W	$Rd \div Rs \to Rd$
			Performs signed division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16-bit remainder.
	DIVXU	B/W	$Rd \div Rs \to Rd$
			Performs unsigned division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16-bit remainder.
	CMP	B/W/L	Rd – Rs, Rd – #IMM
			Compares data in a general register with data in another general register or with immediate data, and sets the CCR according to the result.
	NEG	B/W/L	$0 - Rd \rightarrow Rd$
			Takes the two's complement (arithmetic complement) of data in a general register.
Туре	Instruction	Size*	Function
------------------	-------------	-------	---
Arithmetic	EXTS	W/L	Rd (sign extension) \rightarrow Rd
operations			Extends byte data in the lower 8 bits of a 16-bit register to word data, or extends word data in the lower 16 bits of a 32-bit register to longword data, by extending the sign bit.
	EXTU	W/L	Rd (zero extension) \rightarrow Rd
			Extends byte data in the lower 8 bits of a 16-bit register to word data, or extends word data in the lower 16 bits of a 32-bit register to longword data, by padding with zeros.
Logic operations	AND	B/W/L	$Rd \land Rs \to Rd, Rd \land \#IMM \to Rd$
			Performs a logical AND operation on a general register and another general register or immediate data.
	OR	B/W/L	$Rd \lor Rs \to Rd, Rd \lor \#IMM \to Rd$
			Performs a logical OR operation on a general register and another general register or immediate data.
	XOR	B/W/L	$Rd \oplus Rs \to Rd, Rd \oplus \#IMM \to Rd$
			Performs a logical exclusive OR operation on a general register and another general register or immediate data.
	NOT	B/W/L	$\neg (Rd) \to (Rd)$
			Takes the one's complement of general register contents.
Shift operations	SHAL	B/W/L	$Rd \text{ (shift)} \rightarrow Rd$
	SHAR		Performs an arithmetic shift on general register contents.
	SHLL	B/W/L	$Rd \text{ (shift)} \rightarrow Rd$
	SHLR		Performs a logical shift on general register contents.
	ROTL	B/W/L	Rd (rotate) $\rightarrow Rd$
	ROTR		Rotates general register contents.
	ROTXL	B/W/L	$Rd (rotate) \rightarrow Rd$
	ROTXR		Rotates general register contents through the carry bit.

Туре	Instruction	Size*	Function
Bit-manipulation	BSET	В	$1 \rightarrow (\text{ of })$
instructions			Sets a specified bit in a general register or memory operand to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
	BCLR	В	$0 \rightarrow (\text{ of })$
			Clears a specified bit in a general register or memory operand to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
	BNOT	В	\neg (<bit-no.> of <ead>) \rightarrow (<bit-no.> of <ead>)</ead></bit-no.></ead></bit-no.>
			Inverts a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
	BTST	В	\neg (<bit-no.> of <ead>) \rightarrow Z</ead></bit-no.>
			Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
	BAND	В	$C \land (of) \rightarrow C$
			ANDs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIAND	В	$C \land \neg$ (<bit-no.> of <ead>) $\rightarrow C$</ead></bit-no.>
			ANDs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
			The bit number is specified by 3-bit immediate data.

Туре	Instruction	Size*	Function
Bit-manipulation instructions	BOR	В	$C \lor (<\!bit\!-\!No.\!> of <\!\mathsf{E\!Ad\!\!>}) \to C$
			ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIOR	В	$C \lor [\neg (of)] \to C$
			ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
			The bit number is specified by 3-bit immediate data.
	BXOR	В	$C \oplus (of) \to C$
			Exclusive-ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIXOR	В	$C \oplus [\neg (of)] \to C$
			Exclusive-ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
			The bit number is specified by 3-bit immediate data.
	BLD	В	$(\text{stit-No.} \text{of } \text{$
			Transfers a specified bit in a general register or memory operand to the carry flag.
	BILD	В	\neg (<bit-no.> of <ead>) \rightarrow C</ead></bit-no.>
			Transfers the inverse of a specified bit in a general register or memory operand to the carry flag.
			The bit number is specified by 3-bit immediate data.
	BST	В	$C \rightarrow (\text{ of })$
			Transfers the carry flag value to a specified bit in a general register or memory operand.
	BIST	В	$\neg C \rightarrow (\text{ of })$
			Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand.
			The bit number is specified by 3-bit immediate data.

Туре	Instruction	Size*	Function			
Branching instructions	Bcc	_	Branches to a specified address if a specified condition is true. The branching conditions are listed below.			
			Mnemonic	Description	Condition	
			BRA(BT)	Always (true)	Always	
			BRN(BF)	Never (false)	Never	
			BHI	High	$C \lor Z = 0$	
			BLS	Low or same	C ∨ Z = 1	
			Bcc(BHS)	Carry clear (high or same)	C = 0	
			BCS(BLO)	Carry set (low)	C = 1	
			BNE	Not equal	Z = 0	
			BEQ	Equal	Z = 1	
			BVC	Overflow clear	V = 0	
			BVS	Overflow set	V = 1	
			BPL	Plus	N = 0	
			BMI	Minus	N = 1	
			BGE	Greater or equal	$N \oplus V = 0$	
			BLT	Less than	N ⊕ V = 1	
			BGT	Greater than	$Z \vee (N \oplus V) = 0$	
			BLE	Less or equal	$Z \lor (N \oplus V) = 1$	
	JMP	—	Branches unconditionally to a specified address.			
	BSR	_	Branches to a	subroutine at a speci	fied address.	
	JSR	_	Branches to a subroutine at a specified address.			
	RTS	_	Returns from a subroutine.			

Section 1 CPU

Туре	Instruction	Size*	Function
System control	TRAPA	_	Starts trap-instruction exception handling.
instructions	RTE	_	Returns from an exception-handling routine.
	SLEEP	_	Causes a transition to the power-down state.
	LDC	B/W	$(EAs) \rightarrow CCR$
			Moves the source operand contents to the condition code register. Byte transfer is performed in the #xx:8, Rs addressing mode and word transfer in other addressing modes.
	STC	B/W	$CCR \to (EAd)$
			Transfers the CCR contents to a destination location. Byte transfer is performed in the Rd addressing mode and word transfer in other addressing modes.
	ANDC	В	$CCR \land \#IMM \to CCR$
			Logically ANDs the condition code register with immediate data.
	ORC	В	$CCR \lor \#IMM \to CCR$
			Logically ORs the condition code register with immediate data.
	XORC	В	$CCR \oplus \#IMM \to CCR$
			Logically exclusive-ORs the condition code register with immediate data.
	NOP		$PC + 2 \rightarrow PC$
			Only increments the program counter.

Туре	Instruction	Size*	Function
Block data transfer instruction	EEPMOV.B	_	if R4L ≠ 0 then Repeat @ER5 +→ @ER6 + R4L - 1→R4L Until R4L = 0 else next;
	EEPMOV.W	_	if R4 \neq 0 then Repeat @ER5 + \rightarrow @ER6 + R4 - 1 \rightarrow R4L Until R4 = 0 else next;
			Transfers a data block according to parameters set in general registers R4L or R4, ER5, and R6.
			R4L or R4: size of block (bytes) ER5: starting source address R6: starting destination address
			Execution of the next instruction begins as soon as the transfer is completed.
Note: *	Size refers to the oper B: Byte W: Word	and size.	

L: Longword

Section 1 CPU

1.6.4 Basic Instruction Formats

The H8/300H instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (OP field), a register field (r field), an effective address extension (EA field), and a condition field (cc).

Operation Field: Indicates the function of the instruction, the effective address, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields.

Register Field: Specifies a general register. Address registers are specified by 3 bits, data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.

Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. A 24-bit address or a displacement is treated as 32-bit data in which the first 8 bits are 0.

Condition Field: Specifies the branching condition of Bcc instructions.

Figure 1.12 shows examples of instruction formats.

Figure 1.12 Instruction Formats

1.6.5 Addressing Modes and Effective Address Calculation

(1) Addressing Modes

The H8/300H CPU supports the eight addressing modes listed in table 1.4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or absolute (8-bit) addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

Addressing Mode	Symbol
Register direct	Rn
Register indirect	@ERn
Register indirect with displacement	@(d:16,ERn)/@(d:24,ERn)
Register indirect with post-increment	@ERn+
Register indirect with pre-decrement	@-ERn
Absolute address	@aa:8/@aa:16/@aa:24
Immediate	#xx:8/#xx:16/#xx:32
Program-counter relative	@(d:8,PC)/@(d:16,PC)
Memory indirect	@@aa:8
	Register direct Register indirect Register indirect with displacement Register indirect with post-increment Register indirect with pre-decrement Absolute address Immediate Program-counter relative

Table 1.4 Addressing Modes

1 Register Direct—Rn: The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

2 Register Indirect—@**ERn:** The register field of the instruction code specifies an address register (ERn), the lower 24 bits of which contain the address of a memory operand.

3 Register Indirect with Displacement—@(**d:16**, **ERn**) or @(**d:24**, **ERn**): A 16-bit or 24-bit displacement contained in the instruction is added to an address register (an extended register paired with a general register) specified by the register field of the instruction, and the lower 24 bits of the sum specify the address of a memory operand. A 16-bit displacement is sign-extended when added.

4 Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn:

• Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn), the lower 24 bits of which contain the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address register contents (32 bits) and the sum is stored in the address register. The value added is 1 for byte access, 2 for word access, or 4 for longword access. For word or longword access, the register value should be even.

Register indirect with pre-decrement—@–ERn
 The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field
 in the instruction code, and the lower 24 bits of the result becomes the address of a memory
 operand. The result is also stored in the address register. The value subtracted is 1 for byte
 access, 2 for word access, or 4 for longword access. For word or longword access, the resulting
 register value should be even.

5 Absolute Address—@**aa:8**, @**aa:16**, **or** @**aa:24**: The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), or 24 bits long (@aa:24). For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can access the entire address space. Table 1.5 indicates the accessible address ranges.

	Normal Mode	Advanced Mode
8 bits	H'FF00 to H'FFFF	H'FFFF00 to H'FFFFF
(@aa:8)	(65,280 to 65,535)	(16,776,960 to 16,777,215)
16 bits	H'0000 to H'FFFF	H'000000 to H'007FFF, H'FF8000 to H'FFFFFF
(@aa:16)	(0 to 65,535)	(0 to 32,767, 16,744,448 to 16,777,215)
24 bits	H'0000 to H'FFFF	H'00000 to H'FFFFF
(@aa:24)	(0 to 65,535)	(0 to 16,777,215)

Table 1.5 Absolute Address Access Ranges

For further details on the accessible range, see the relevant microcontroller hardware manual.

6 Immediate—#xx:8, #xx:16, or #xx:32: The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the second or fourth byte of the instruction, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in the second byte of the instruction, specifying a vector address.

Renesas

7 **Program-Counter Relative**—@(**d:8**, **PC**) or @(**d:16**, **PC**): This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit program counter (PC) contents to generate a branch address. The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should be an even number.

8 Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The second byte of the instruction specifies a memory operand by an 8-bit absolute address. This memory operand contains a branch address. The upper 8 bits of the absolute address are assumed to be 0 (H'00), so the address range is 0 to 255 (H'0000 to H'00FF in normal mode, H'000000 to H'000FF in advanced mode). In normal mode the memory operand is a word operand and the branch address is 16 bits long. In advanced mode the memory operand is a longword operand. The first byte is ignored and the branch address is 24 bits long. Note that the first part of the address range is also the exception vector area. For further details see the relevant microcontroller hardware manual.

Figure 1.13 Branch Address Specification in Memory Indirect Mode

If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0, causing access to be performed at the address preceding the specified address. [See (2) Memory Data Formats in section 1.5.2 for further information.]

(2) Effective Address Calculation

Table 1.6 indicates how effective addresses are calculated in each addressing mode. In normal mode the upper 8 bits of the effective address are ignored in order to generate a 16-bit address.

Section 1 CPU

Section 2 Instruction Descriptions

2.1 Tables and Symbols

This section explains how to read the tables describing each instruction. Note that the descriptions of some instructions extend over two pages or more.

Mnemonic (full name): Gives the full and mnemonic names of the instruction.

Type: Indicates the type of instruction.

Operation: Describes the instruction in symbolic notation. (See section 2.1.2, Operation.)

Assembly-Language Format: Indicates the assembly-language format of the instruction. (See section 2.1.1, Assembler Format.)

Operand Size: Indicates the available operand sizes.

Condition Code: Indicates the effect of instruction execution on the flag bits in the CCR. (See section 2.1.3, Condition Code.)

Description: Describes the operation of the instruction in detail.

Available Registers: Indicates which registers can be specified in the register field of the instruction.

Operand Format and Number of States Required for Execution: Shows the addressing modes and instruction format together with the number of states required for execution.

Notes: Gives notes concerning execution of the instruction.

Renesas

2.1.1 Assembler Format

The operand size is byte (B), word (W), or longword (L). Some instructions are restricted to a limited set of operand sizes.

The symbol <EA> indicates that two or more addressing modes can be used. The H8/300H CPU supports the eight addressing modes listed next. Effective address calculation is described in section 1.7, Effective Address Calculation.

Symbol	Addressing Mode
Rn	Register direct
@ERn	Register indirect
@(d:16, ERn)/@(d:24, ERn)	Register indirect with displacement (16-bit or 24-bit)
@ERn+, @-ERn	Register indirect with post-increment or pre-decrement
@aa:8/16/24	Absolute address (8-bit, 16-bit, or 24-bit)
#xx:8/16/32	Immediate (8-bit, 16-bit, or 32-bit)
@(d:8, PC)/@(d:16, PC)	Program-counter relative (8-bit or 16-bit)
@@aa:8	Memory indirect

2.1.2 Operation

The symbols used in the operation descriptions are defined as follows.

Symbol	Meaning
Rd	General destination register*
Rs	General source register*
Rn	General register*
ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
+	Addition of the operands on both sides
_	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
٨	Logical AND of the operands on both sides
V	Logical OR of the operands on both sides
\oplus	Logical exclusive OR of the operands on both sides
-	Logical NOT (logical complement)
() < >	Contents of effective address of the operand

2.1.3 Condition Code

The symbols used in the condition-code description are defined as follows.

Symbol	Meaning
\uparrow	Changes according to the result of the instruction
*	Undetermined (no guaranteed value)
0	Always cleared to 0
_	Not affected by execution of the instruction
Δ	Varies depending on conditions; see the notes.

2.1.4 Instruction Format

The symbols used in the instruction format descriptions are listed below.

Symbol	Meaning
IMM	Immediate data (2, 3, 8, 16, or 32 bits)
abs	Absolute address (8, 16, or 24 bits)
disp	Displacement (8, 16, or 24 bits)
rs, rd, rn	Register number (4 bits. The symbol rs corresponds to operand symbols such as Rs. The symbol rd corresponds to operand symbols such as Rd. The symbol rn corresponds to the operand symbol Rn.)
ers, erd, ern	Register number (3 bits. The symbol ers corresponds to operand symbols such as ERs. The symbol erd corresponds to operand symbols such as ERd and @ERd. The symbol ern corresponds to the operand symbol ERn.)

2.1.5 Register Specification

Address Register Specification: When a general register is used as an address register [@ERn, @(d:16, ERn), @(d:24, ERn), @ERn+, or @-ERn], the register is specified by a 3-bit register field (ers or erd). The lower 24 bits of the register are valid.

Data Register Specification: A general register can be used as a 32-bit, 16-bit, or 8-bit data register, which is specified by a 3-bit register number. When a 32-bit register (ERn) is used as a longword data register, it is specified by a 3-bit register field (ers, erd, or ern). When a 16-bit register is used as a word data register, it is specified by a 4-bit register field (rs, rd, or rn). The lower 3 bits specify the register number. The upper bit is set to 1 to specify an extended register (En) or cleared to 0 to specify a general register (Rn). When an 8-bit register is used as a byte data register, it is specified by a 4-bit register (Rn). The lower 3 bits specify the register field (rs, rd, or rn). The lower 3 bits specify a general register field (rs, rd, or rn). The lower 3 bits specify the register field (rs, rd, or rn). The lower 3 bits specify the register field (rs, rd, or rn). The lower 3 bits specify the register field (rs, rd, or rn). The lower 3 bits specify the register field (rs, rd, or rn). The lower 3 bits specify the register field (rs, rd, or rn). The lower 3 bits specify the register field (rs, rd, or rn). The lower 3 bits specify the register number. The upper bit is set to 1 to specify a low register (RnL) or cleared to 0 to specify a high register (RnH). This is shown next.

	ess Register bit Register	16-t	oit Register	8-b	it Register
Register Field	General Register	Register Field	General Register	Register Field	General Register
000	ER0	0000	R0	0000	R0H
001	ER1	0001	R1 R7	0001	R1H R7H
		1000 1001 1111	E0 E1 E7	1000 1001 1111	E0L E1L E7L

Renesas

2.1.6 Bit Data Access in Bit Manipulation Instructions

Bit data is accessed as the n-th bit (n = 0, 1, 2, 3, ..., 7) of a byte operand in a general register or memory. The bit number is given by 3-bit immediate data, or by the lower 3 bits of a general register value.

Example 1: To set bit 3 in R2H to 1

Example 2: To load bit 5 at address H'FFFF02 into the bit accumulator

The operand size and addressing mode are as indicated for register or memory operand data.

2.2 Instruction Descriptions

The instructions are described starting in section 2.2.1.

2.2.1 (1) ADD (B)

ADD (ADD binary)	Add Binary
Operation	Condition Code
$Rd + (EAs) \rightarrow Rd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	H: Set to 1 if there is a carry at bit 3;
Assembly-Language Format	otherwise cleared to 0.
ADD.B <eas>, Rd</eas>	N: Set to 1 if the result is negative; otherwise cleared to 0.
	Z: Set to 1 if the result is zero; otherwise cleared to 0.
Operand Size	V: Set to 1 if an overflow occurs; otherwise
-	cleared to 0.
Byte	C: Set to 1 if there is a carry at bit 7; otherwise cleared to 0.

Description

This instruction adds the source operand to the contents of an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	WITEHIOTIC	Operatius	1st byte	2nd byte	3rd byte	4th byte	States
Immediate	ADD.B	#xx:8, Rd	8 rd	IMM			2
Register direct	ADD.B	Rs, Rd	0 8	rs rd			2

Notes

$\textbf{2.2.1 (2)} \quad \textbf{ADD} \ \textbf{(W)}$

ADD (ADD binary)

Add Binary

Operation	Condition Code								
$Rd + (EAs) \rightarrow Rd$	I UI H U N Z V C								
	$ - - \updownarrow - \updownarrow \updownarrow \updownarrow \updownarrow $								
	H: Set to 1 if there is a carry at bit 11;								
Assembly-Language Format	otherwise cleared to 0. N: Set to 1 if the result is negative; otherwise cleared to 0.								
ADD.W <eas>, Rd</eas>									
	Z: Set to 1 if the result is zero; otherwise cleared to 0.								
Operand Size	V: Set to 1 if an overflow occurs; otherwise cleared to 0.								
Word	C: Set to 1 if there is a carry at bit 15; otherwise cleared to 0.								

Description

This instruction adds the source operand to the contents of a 16-bit register Rd (destination operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			Ins	struction Format			No. of	
Mode	WITEHTOTTIC	Operations	1st byte		2nd byte		3rd byte	4th byte	States	
Immediate	ADD.W	#xx:16, Rd	7	9	1	rd	IMM		4	
Register direct	ADD.W	Rs, Rd	0	9	rs	rd			2	

Notes

Renesas

2.2.1 (3) ADD (L)

ADD (ADD binary)	Add Binary
Operation	Condition Code
$ERd + (EAs) \rightarrow ERd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format ADD.L <eas>, ERd</eas>	 H: Set to 1 if there is a carry at bit 27; otherwise cleared to 0. N: Set to 1 if the result is negative; otherwise cleared to 0. Z: Set to 1 if the result is zero; otherwise cleared to 0.
Operand Size Longword	V: Set to 1 if an overflow occurs; otherwise cleared to 0.C: Set to 1 if there is a carry at bit 31; otherwise cleared to 0.

Description

This instruction adds the source operand to the contents of a 32-bit register ERd (destination operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Addressing Mode Mnemonic Operand	Onerende	Instruction Format								
Mode		Operands	1st I	byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	States	
Immediate	ADD.L	#xx:32, ERd	7	А	1 0 erd		IN	1M		6	
Register direct	ADD.L	Rs, ERd	0	А	1 ers 0 erd					2	

Notes

2.2.2 ADDS

ADDS (ADD with Sign extension)

Operation

 $\begin{array}{l} Rd+1 \rightarrow ERd \\ Rd+2 \rightarrow ERd \\ Rd+4 \rightarrow ERd \end{array}$

Assembly-Language Format

ADDS #1, ERd ADDS #2, ERd ADDS #4, ERd

Operand Size

Longword

Add Binary Address Data

Condition Code

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction adds the immediate value 1, 2, or 4 to the contents of a 32-bit register ERd. Differing from the ADD instruction, it does not affect the condition code flags.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of						
Mode	Wittemonic	Operations	1st	byte	2nd b	oyte	3rd byte	4th byte	States	
Register direct	ADDS	#1, ERd	0	В	0	0 erd			2	
Register direct	ADDS	#2, ERd	0	В	8	0 erd			2	
Register direct	ADDS	#4, ERd	0	В	9	0 erd			2	

Notes

Renesas

2.2.3 ADDX

Add with Carry

 $Rd + (EAs) + C \rightarrow Rd$

Assembly-Language Format

ADDX <EAs>, Rd

Operand Size

Byte

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
_		\Leftrightarrow		\updownarrow	\Leftrightarrow	\updownarrow	\leftrightarrow

- H: Set to 1 if there is a carry at bit 3; otherwise cleared to 0.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Previous value remains unchanged if the result is zero; otherwise cleared to 0.
- V: Set to 1 if an overflow occurs; otherwise cleared to 0.
- C: Set to 1 if there is a carry at bit 7; otherwise cleared to 0.

Description

This instruction adds the source operand and carry flag to the contents of an 8-bit register Rd (destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of						
Mode	winemonic	Operatius	1st byte		2nd byte		3rd byte	4th byte	States	
Immediate	ADDX	#xx:8, Rd	9	rd	IN	1M			2	
Register direct	ADDX	Rs, Rd	0	E	rs	rd			2	

Notes

2.2.4 (1) AND (B)

AND (AND logical)

Operation

 $Rd \land (EAs) \rightarrow Rd$

Assembly-Language Format

AND.B <EAs>, Rd

Operand Size

Byte

Logical AND

	Co	nditi	on C	ode					
		Ι	UI	Н	U	Ν	Ζ	V	С
		—	—	_	—	\uparrow	\$	0	
at	H:	Prev	vious	value	e rem	ains	uncha	angeo	1.
	N:		to 1 if red to		result	t is no	egativ	ve; ot	herwise
	Z:	Set	to 1 it	f the	result	t is ze	ero; o	therv	wise
		clea	red to	o 0.					

- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction ANDs the source operand with the contents of an 8-bit register Rd (destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	WITEITOTIC	Operatius	1st byte	2nd byte	3rd byte	4th byte	States
Immediate	AND.B	#xx:8, Rd	E rd	IMM			2
Register direct	AND.B	Rs, Rd	1 6	rs rd			2

Notes

2.2.4 (2) AND (W)

AND (AND logical)

Logical AND

Operation	Condition Code							
$Rd \land (EAs) \rightarrow Rd$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Assembly-Language Format AND.W <eas>, Rd</eas>	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.							
Operand Size Word	Z: Set to 1 if the result is zero; otherwise cleared to 0.V: Always cleared to 0.C: Previous value remains unchanged.							

Description

This instruction ANDs the source operand with the contents of a 16-bit register Rd (destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	winemonic	Operatius	1st byte	2nd byte	3rd byte	4th byte	States
Immediate	AND.W	#xx:16, Rd	7 9	6 rd	IMM		4
Register direct	AND.W	Rs, Rd	6 6	rs rd			2

Notes

2.2.4 (3) AND (L)

AND (AND logical)

Operation

 $ERd \land (EAs) \rightarrow ERd$

Assembly-Language Format

AND.L <EAs>, ERd

Operand Size

Longword

Logical AND

Co	onditi	on C	ode						
	Ι	UI	Н	U	Ν	Ζ	V	С	
	—	—		—	\uparrow	\uparrow	0	—	
	Set		f the				-	l. herwi	ise
	clea	red to	o 0.						

- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction ANDs the source operand with the contents of a 32-bit register ERd (destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instruction Format								
Mode	winemonic	Operations	1st byte		2nd byte		1st byte 2nd byte 3rd byte 4th byte 5th byte 6th		6th byte	States		
Immediate	AND.L	#xx:32, ERd	7	А	6	0 erd	IMM					6
Register direct	AND.L	Rs, ERd	0	1	F	0	6	6	0 ers 0 erd			4

Notes

2.2.5 ANDC

ANDC (AND Control register)

Operation

 $CCR \land \#IMM \rightarrow CCR$

Assembly-Language Format

ANDC #xx:8, CCR

Operand Size

Byte

Condition Code

Ι	UI	Н	U	Ν	Ζ	V	С
\updownarrow	\leftrightarrow	\Leftrightarrow	\updownarrow	\updownarrow	\Leftrightarrow	\Rightarrow	\leftrightarrow

I: Stores the corresponding bit of the result.

UI: Stores the corresponding bit of the result

H: Stores the corresponding bit of the result.

U: Stores the corresponding bit of the result

N: Stores the corresponding bit of the result.

Z: Stores the corresponding bit of the result.

V: Stores the corresponding bit of the result.

C: Stores the corresponding bit of the result.

Description

This instruction ANDs the contents of the condition-code register (CCR) with immediate data and stores the result in the condition-code register. No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Addressing Mnemonic		Operands	nde		Instructio	No. of		
Mode	winemonic	Operanus	1st	byte	2nd byte	3rd byte	4th byte	States
Immediate	ANDC	#xx:8, CCR	0	6	IMM			2

Notes

Logical AND with CCR

2.2.6 BAND

BAND (Bit AND)

Operat

 $C \land (<)$

Assem

BAND

Operat

Byte

Bit Logical AND

Condition Code
I UI H U N Z V C
H: Previous value remains unchanged.N: Previous value remains unchanged.
Z: Previous value remains unchanged.V: Previous value remains unchanged.C: Stores the result of the operation.

Description

This instruction ANDs a specified bit in the destination operand with the carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

R0L to R7L, R0H to R7H Rd: ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mode [*]	Mnemonic	Operands	Instruction Format							
	Witternottic		1st	byte	2nd byte	3rd	byte	4th by	te	States
Register direct	BAND	#xx:3.Rd	7	6	0 IMM rd					2
Register indirect	BAND	#xx:3.@ERd	7	С	0 erd 0	7	6	0 IMM	0	6
Absolute address	BAND	#xx:3.@aa:8	7	Е	abs	7	6	0 IMM	0	6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

See the corresponding LSI hardware manual for details on the access range for @aa : 8.

2.2.7 Bcc

Bcc (Branch conditionally)

Conditional Branch

If condition is true, then $PC + disp \rightarrow PC$ else next:

Assembly-Language Format

 $\begin{array}{l} B_{\underline{CC}} & \text{disp} \\ & \rightarrow \text{Condition field} \end{array}$

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
_				—	—	—	—

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Operand Size

Description

If the condition specified in the condition field (cc) is true, a displacement is added to the program counter (PC) and execution branches to the resulting address. The PC value used in the address calculation is the starting address of the instruction immediately following the Bcc instruction. The displacement is a signed 8-bit or 16-bit value. The branch destination address can be located in the range from -126 to +128 bytes or -32766 to +32768 bytes from the Bcc instruction.

Mnemonic	Meaning	cc	Condition	Signed/Unsigned*
BRA (BT)	Always (true)	0000	True	
BRn (BF)	Never (false)	0001	False	
BHI	Hlgh	0010	$C \lor Z = 0$	X > Y (unsigned)
BLS	Low or Same	0011	C ∨ Z = 1	$X \le Y$ (unsigned)
BCC (BHS)	Carry Clear (High or Same)	0100	C = 0	$X \ge Y$ (unsigned)
BCS (BLO)	Carry Set (LOw)	0101	C = 1	X < Y (unsigned)
BNE	Not Equal	0110	Z = 0	$X \neq Y$ (unsigned or signed)
BEQ	EQual	0111	Z = 1	X > Y (unsigned or signed)
BVC	oVerflow Clear	1000	V = 0	
BVS	oVerflow Set	1001	V = 1	
BPL	PLus	1010	N = 0	
BMI	Minus	1011	N = 1	
BGE	Greater or Equal	1100	$N \oplus V = 0$	$X \ge Y$ (signed)
BLT	Less Than	1101	N ⊕ V = 1	X < Y (signed)
BGT	Greater Than	1110	$Z \lor (N \oplus V) = 0$	X > Y (signed)
BLE	Less or Equal	1111	$Z \lor (N \oplus V) = 1$	$X \le Y$ (signed)

Note: * If the immediately preceding instruction is a CMP instruction, X is the destination operand and Y is the source operand.

Bcc (Branch conditionally)

Conditional Branch

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands	Instruction Format					
			1st	byte	2nd byte	3rd byte	4th byte	States
Program-counter relative	BRA (BT)	d:8	4	0	disp			4
		d:16	5	8	0 0	di	sp	6
Program-counter	BRN (BF)	d:8	4	1	disp			4
relative		d:16	5	8	1 0	di	sp	6
Program-counter	BHI	d:8	4	2	disp			4
relative		d:16	5	8	2 0	di	sp	6
Program-counter	BLS	d:8	4	3	disp			4
relative		d:16	5	8	3 0	di	sp	6
Program-counter	Bcc (BHS)	d:8	4	4	disp			4
relative		d:16	5	8	4 0	di	sp	6
Program-counter	BCS (BLO)	d:8	4	5	disp			4
relative		d:16	5	8	5 0	di	sp	6
Program-counter	BNE	d:8	4	6	disp			4
relative		d:16	5	8	6 0	di	sp	6
Program-counter	BEQ	d:8	4	7	disp			4
relative		d:16	5	8	7 0	di	sp	6
Program-counter	BVC	d:8	4	8	disp			4
relative		d:16	5	8	8 0	di	sp	6
Program-counter	BVS	d:8	4	9	disp			4
relative		d:16	5	8	9 0	di	sp	6
Program-counter	BPL	d:8	4	А	disp			4
relative		d:16	5	8	A 0	di	sp	6
Program-counter	BMI	d:8	4	В	disp			4
relative		d:16	5	8	B 0	di	sp	6
Program-counter relative	BGE	d:8	4	С	disp			4
		d:16	5	8	C 0	di	sp	6
Program-counter	BLT	d:8	4	D	disp			4
relative		d:16	5	8	D 0	di	sp	6
Program-counter	BGT	d:8	4	Е	disp			4
relative		d:16	5	8	E 0	di	sp	6
Program-counter	BLE	d:8	4	F	disp			4
relative		d:16	5	8	F 0	di	sp	6

Notes

- 1. The branch destination address must be even.
- 2. In machine language BRA, BRN, BCC, and BCS are identical to BT, BF, BHS, and BLO, respectively. The number of execution states for BRn (BF) is the same as for two NOP instructions.

2.2.8 BCLR

BCLR (Bit CLeaR)

Operation

 $0 \rightarrow (\langle bit No. \rangle of \langle EAd \rangle)$

Assembly-Language Format

BCLR #xx:3, <EAd> BCLR Rn, <EAd>

Operand Size

Byte

Description

This instruction clears a specified bit in the destination operand to 0. The bit number can be specified by 3-bit immediate data, or by the lower three bits of a general register (Rn). The specified bit is not tested. The condition-code flags are not altered.

Available Registers

Rd:R0L to R7L, R0H to R7HRn:R0L to R7L, R0H to R7HERd:ER0 to ER7

Condition Code

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

BCLR

BCLR (Bit CLeaR)

Bit Clear

Operand Format and Number of States Required for Execution

Addressing Mode [*]	Mnemonic	Operands	Instruction Format						
			1st	byte	2nd byte	3rd byte	4th byte	States	
Register direct	BCLR	#xx:3, Rd	7	2	0 IMM rd			2	
Register indirect	BCLR	#xx:3, @ERd	7	D	0 erd 0	7 2	0 IMM 0	8	
Absolute address	BCLR	#xx:3, @aa:8	7	F	abs	7 2	0 IMM 0	8	
Register direct	BCLR	Rn, Rd	6	2	rn rd			2	
Register indirect	BCLR	Rn, @ERd	7	D	0 erd 0	6 2	rn 0	8	
Absolute address	BCLR	Rn, @aa:8	7	F	abs	6 2	rn 0	8	

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.9 **BIAND**

BIAND (Bit Invert AND)

Operation

 $C \wedge [\neg ($

Assemb

BIAND

Operan

Byte

Bit Logical AND

on Condition Code									
$(<\!\!\text{bit No.}\!\!> \!\text{of} <\!\!\text{EAd}\!\!>)] \rightarrow C$	I UI H U N Z V C								
	$\boxed{- - - - - } \uparrow$								
bly-Language Format									
) #xx:3, <ead></ead>	H: Previous value remains unchanged.								
	N: Previous value remains unchanged.								
nd Size	Z: Previous value remains unchanged.								
	V: Previous value remains unchanged.								
	C: Stores the result of the operation.								

Description

This instruction ANDs the inverse of a specified bit in the destination operand with the carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

R0L to R7L, R0H to R7H Rd: ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mode [*]	Mnemonic	Operands	Instruction Format						
			1st	byte	2nd byte	3rd	byte	4th byte	States
Register direct	BIAND	#xx:3.Rd	7	6	1 IMM rd				2
Register indirect	BIAND	#xx:3.@ERd	7	С	0 erd 0	7	6	1 IMM 0	6
Absolute address	BIAND	#xx:3.@aa:8	7	E	abs	7	6	1 IMM 0	6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Rev. 3.00 Dec 13, 2004 page 56 of 258 REJ09B0213-0300

2.2.10 BILD

BILD (Bit Invert LoaD)

Operation

 \neg (<bit No.> of <EAd>) \rightarrow C

Assembly-Language Format

BILD #xx:3, <EAd>

Operand Size

Byte

Bit Load

	Condition Code
\rightarrow C	I UI H U N Z V C
	1
ormat	H: Previous value remains unchanged.N: Previous value remains unchanged.
	Z: Previous value remains unchanged.
	V: Previous value remains unchanged.
	C: Loaded with the inverse of the specified bit.

Description

This instruction loads the inverse of a specified bit from the destination operand into the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic	Operands	Instruction Format								No. of	
Mode*	winemonic	Operations	1st	byte	2nd l	oyte	3rd	byte	4th b	yte	States
Register direct	BILD	#xx:3.Rd	7	7	1 IMM	rd					2
Register indirect	BILD	#xx:3.@ERd	7	С	0 erd	0	7	7	1 IMM	0	6
Absolute address	BILD	#xx:3.@aa:8	7	E	ab	S	7	7	1 IMM	0	6
Note: * The addressing mode is the addressing mode of the destination operand <ead>.</ead>											

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.11 BIOR

BIOR (Bit Invert inclusive OR)

Operation

 $\mathbf{C} \lor [\neg (\langle bit \text{ No.} \rangle \text{ of } \langle EAd \rangle)] \to \mathbf{C}$

Assembly-Language Forma

BIOR #xx:3, <EAd>

Operand Size

Byte

Bit Logical OR

	CO	nann		oue						
$Ad>)] \rightarrow C$		Ι	UI	Н	U	Ν	Ζ	V	С	
		—	—						\uparrow	
rmat					1		1			
	H:	Prev	ious	value	e rem	ains	uncha	angec	l.	
	N:	Prev	ious	value	e rem	ains	uncha	angec	l.	
	Z:	Prev	ious	value	e rem	ains	uncha	angec	l.	
	V:	Prev	ious	value	e rem	ains	uncha	anged	l.	

Condition Code

C: Stores the result of the operation.

Description

This instruction ORs the inverse of a specified bit in the destination operand with the carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mr	Mnemonic	Operands			No. of			
Mode*	winemonic	Operands	1st byte		2nd byte	3rd byte	4th byte	States
Register direct	BIOR	#xx:3.Rd	7	4	1 IMM rd			2
Register indirect	BIOR	#xx:3.@ERd	7	С	0 erd 0	7 4	1 IMM 0	6
Absolute address	BIOR	#xx:3.@aa:8	7	E	abs	7 4	1 IMM 0	6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.12 BIST

BIST (Bit Invert STore)

Operation

 $\neg C \rightarrow (< bit)$

Assembly-L

BIST #xx:

Operand Siz

Byte

Bit Store

	Co	nditi	on C	ode					
t No.> of <ead>)</ead>		Ι	UI	Н	U	Ν	Ζ	V	С
					—				
Language Format									
:3, <ead></ead>	H: Previous value remains unchanged.								
·	N:	Prev	vious	value	e rem	ains	uncha	angec	1.
lize	Z:	Prev	vious	value	e rem	ains	uncha	ingec	1.
	V:	Prev	vious	value	e rem	ains	uncha	angec	1.
	C:	Prev	vious	value	e rem	ains	uncha	angec	1.

Description

This instruction stores the inverse of the carry bit in a specified bit location in the destination operand. The bit number is specified by 3-bit immediate data. Other bits in the destination operand remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mnemo	Mnomonic	Operands	Instruction Format								No. of
Mode*	Willemonic	Operatios	1st	byte	2nd b	yte	3rd	byte	4th I	oyte	States
Register direct	BIST	#xx:3,Rd	6	7	1 IMM	rd					2
Register indirect	BIST	#xx:3,@ERd	7	D	0 erd	0	6	7	1 IMM	0	8
Absolute address	BIST	#xx:3,@aa:8	7	F	abs	6	6	7	1 IMM	0	8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.13 BIXOR

BIXOR (Bit Invert eXclusive OR)

Operation

 $C \oplus [\neg (\langle bit \text{ No.} \rangle \text{ of } \langle EAd \rangle)] \rightarrow C$

Assembly-Language Format

BIXOR #xx:3, <EAd>

Operand Size

Byte

Bit Exclusive Logical OR

Ι	UI	Н	U	Ν	Ζ	V	С
							\updownarrow

H: Previous value remains unchanged.

Condition Code

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Stores the result of the operation.

Description

This instruction exclusively ORs the inverse of a specified bit in the destination operand with the carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mne	Mnemonic	Operands	Instruction Format							
Mode*	winemonic	Operands	1st	byte	2nd byte	3rd byte	4th byte	States		
Register direct	BIXOR	#xx:3,Rd	7	5	1 IMM rd			2		
Register indirect	BIXOR	#xx:3,@ERd	7	С	0 erd 0	7 5	1 IMM 0	6		
Absolute address	BIXOR	#xx:3,@aa:8	7	Е	abs	7 5	1 IMM 0	6		

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Rev. 3.00 Dec 13, 2004 page 60 of 258 REJ09B0213-0300

2.2.14 BLD

BLD (Bit LoaD)

Ope

(< Bi

Asse

BLD

Ope

Byte

Bit Load

eration	Co	nditi	on C	ode					
$\text{Bit No.> of < EAd>)} \rightarrow C$		Ι	UI	Н	U	Ν	Ζ	V	С
sembly-Language Format									\updownarrow
D #xx:3, <ead></ead>						ains		0	
te	Z: V:	Prev Prev	vious vious	value value	e rem e rem	ains ains ains ecifi	unch: unch:	anged anged	l.

Description

This instruction loads a specified bit from the destination operand into the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L. R0H to R7H ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic Opera	Operands			No. of				
Mode*	winemonic	Operands	1st byte		2nd byte	3rd byte	4th byte	States
Register direct	BLD	#xx:3,Rd	7	7	0 IMM rd			2
Register indirect	BLD	#xx:3,@ERd	7	С	0 erd 0	7 7	0 IMM 0	6
Absolute address	BLD	#xx:3,@aa:8	7	E	abs	7 7	0 IMM 0	6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.15 BNOT

BNOT (Bit NOT)

Operation

 $\neg (<\!\!\text{bit No.}\!\!> \!\text{of} <\!\!\!\text{EAd}\!\!>) \rightarrow (<\!\!\text{bit No.}\!\!> \!\text{of} <\!\!\!<\!\!\text{EAd}\!\!>)$

Assembly-Language Format

BNOT #xx:3, <EAd> BNOT Rn, <EAd>

Operand Size

Byte

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
—							

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction inverts a specified bit in the destination operand. The bit number is specified by 3bit immediate data or by the lower 3 bits of a general register. The specified bit is not tested. The condition code remains unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H Rn: R0L to R7L, R0H to R7H ERd: ER0 to ER7

BNOT

BNOT (Bit NOT)

Bit NOT

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands	Instruction Format								
Mode*	winemonic	Operations	1st byte		2nd byte	3rd byte	4th byte	States			
Register direct	BNOT	#xx:3, Rd	7	1	0 IMM rd			2			
Register indirect	BNOT	#xx:3, @ERd	7	D	0 erd 0	7 1	0 IMM 0	8			
Absolute address	BNOT	#xx:3, @aa:8	7	F	abs	7 1	0 IMM 0	8			
Register direct	BNOT	Rn, Rd	6	1	rn rd			2			
Register indirect	BNOT	Rn, @ERd	7	D	0 erd 0	6 1	rn 0	8			
Absolute address	BNOT	Rn, @aa:8	7	F	abs	6 1	rn 0	8			

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.16 BOR

BOR (bit inclusive OR)

Operation

 $C \lor [(<\!bit No.\!> of <\!\!EAd\!>)] \rightarrow C$

Assembly-Language Format

BOR #xx:3, <EAd>

Operand Size

Byte

Bit Logical OR

	Ι	UI	Н	U	Ν	Ζ	V	С				
	—	_	_	_	—	—		\updownarrow				
H:	Prev	vious	value	e rem	ains	uncha	anged	l.				
	-											

Condition Code

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Stores the result of the operation.

Description

This instruction ORs a specified bit in the destination operand with the carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			No. of						
Mode*	winemonic	Operanus	1st byte		2nd byte		3rd byte		4th byte		States
Register direct	BOR	#xx:3,Rd	7	4	0 IMM	rd					2
Register indirect	BOR	#xx:3,@ERd	7	С	0 erd	0	7	4	0 IMM	0	6
Absolute address	BOR	#xx:3,@aa:8	7	E	abs	8	7	4	0 IMM	0	6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.17 BSET

BSET (Bit SET)

Operation

 $1 \rightarrow (\langle bit No. \rangle of \langle EAd \rangle)$

Assembly-Language Format

BSET #xx:3, <EAd> BSET Rn, <EAd>

Operand Size

Byte

Co	nditi	on C	ode									
I UI H U N Z V C												
	_		_			_	_					
H:	Prev	vious	value	e rem	ains ı	incha	anged	l.				
N:	Prev	vious	value	e rem	ains ı	incha	anged	l.				
 Z:	Prev	vious	value	e rem	ains ı	incha	anged	l.				
V:	Prev	vious	value	e rem	ains ı	incha	anged	l.				

C: Previous value remains unchanged.

Description

This instruction sets a specified bit in the destination operand to 1. The bit number can be specified by 3-bit immediate data, or by the lower three bits of a general register. The specified bit is not tested. The condition code flags are not altered.

Available Registers

Rd: R0L to R7L, R0H to R7H Rn: R0L to R7L, R0H to R7H ERd: ER0 to ER7

RENESAS

Bit Set

BSET

BSET (Bit SET)

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			No. of			
Mode*	winemonic	Operands	1st	byte	2nd byte	3rd byte	4th byte	States
Register direct	BSET	#xx:3, Rd	7	0	0 IMM rd			2
Register indirect	BSET	#xx:3, @ERd	7	D	0 erd 0	7 0	0 IMM 0	8
Absolute address	BSET	#xx:3, @aa:8	7	F	abs	7 0	0 IMM 0	8
Register direct	BSET	Rn, Rd	6	0	rn rd			2
Register indirect	BSET	Rn, @ERd	7	D	0 erd 0	6 0	rn 0	8
Absolute address	BSET	Rn, @aa:8	7	F	abs	6 0	rn 0	8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual. <EAd> is byte data in a register or on memory.

2.2.18 BSR

BSR (Branch to SubRoutine)

Operation

 $PC \rightarrow @-SP$ $PC + disp \rightarrow PC$

Assembly-Language Format

BSR disp

Operand Size

Branch to Subroutine

Cor	Condition Code													
	Ι	UI	Н	U	Ν	Ζ	V	С						
N:	Prev	ious	value	e rem	ains	uncha	anged anged anged	l.						

V: Previous value remains unchanged.

C: Previous value remains unchanged.

Description

This instruction branches to a subroutine at a specified address. It pushes the program counter (PC) value onto the stack as a restart address, then adds a specified displacement to the PC value and branches to the resulting address. The PC value pushed onto the stack is the address of the instruction following the BSR instruction. The displacement is a signed 8-bit or 16-bit value, so the possible branching range is -126 to +128 bytes or -32766 to +32768 bytes from the address of the BSR instruction.

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			Inst		No. of States			
Mode	WITCHTOTTC	operanus	1st byte		2nd	byte	3rd byte	4th byte	Normal	Advanced
Program-counter	BSR	d:8	5	5	dis	sp			6	8
relative		d:16	5	С	0	0	di	sp	8	10

Renesas

BSR

BSR (Branch to SubRoutine)

Notes

The stack structure differs between normal mode and advanced mode. In normal mode only the lower 16 bits of the program counter are pushed on the stack.

The branch address must be even.

2.2.19 BST

BST (Bit STore)

Op

C –

Ass

BS

Op

Byt

Bit Store

peration	Co	nditi	on C	ode					
\rightarrow (<bit no.=""> of <ead>)</ead></bit>		Ι	UI	Н	U	Ν	Ζ	V	С
sembly-Language Format									
T #xx:3, <ead></ead>								angeo	
perand Size	Z: V:	Prev Prev	vious vious	value value	e rem e rem	ains ains	unch: unch:	angeo angeo angeo	1. 1.

Description

This instruction stores the carry bit in a specified bit location in the destination operand. The bit number is specified by 3-bit immediate data. Other bits in the destination operand remain unchanged.

Available Registers

R0L to R7L, R0H to R7H Rd: ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			No. of						
Mode*		Operations	1st byte		2nd byte		3rd byte		4th b	4th byte	
Register direct	BST	#xx:3,Rd	6	7	0 IMM	rd					2
Register indirect	BST	#xx:3,@ERd	7	D	0 erd	0	6	7	0 IMM	0	8
Absolute address	BST	#xx:3,@aa:8	7	F	ab	S	6	7	0 IMM	0	8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.20 BTST

BTST (Bit TeST)

Operation

 $\neg (<\!\!\text{Bit No.}\!\!> \!\text{of} <\!\!\text{EAd}\!\!>) \rightarrow Z$

Assembly-Language Format

BTST #xx:3, <EAd> BTST Rn, <EAd>

Operand Size

Byte

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
					\uparrow		

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Set to 1 if the specified bit is zero; otherwise cleared to 0.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction tests a specified bit in the destination operand and sets or clears the Z flag according to the result. The bit number can be specified by 3-bit immediate data, or by the lower three bits of a general register. The destination operand remains unchanged.

Available Registers

Rd: ROL to R7L, R0H to R7H Rn: ROL to R7L, R0H to R7H

ERd: ER0 to ER7

BTST

BTST (Bit TeST)

Bit Test

Operand Format and Number of States Required for Execution

Addressing	Mnomonio	Onerende			No. of						
Mode*	Mnemonic	Operands	1st	1st byte		2nd byte		byte	4th byte		States
Register direct	BTST	#xx:3, Rd	7	3	0 IMM	rd					2
Register indirect	BTST	#xx:3, @ERd	7	С	0 erd	0	7	3	0 IMM	0	6
Absolute address	BTST	#xx:3, @aa:8	7	E	at	DS	7	3	0 IMM	0	6
Register direct	BTST	Rn, Rd	6	3	rn	rd					2
Register indirect	BTST	Rn, @ERd	7	С	0 erd	0	6	3	rn	0	6
Absolute address	BTST	Rn, @aa:8	7	E	at)S	6	3	rn	0	6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.21 BXOR

BXOR (Bit eXclusive OR)

Operation

 $C \oplus (<\!\!\text{bit No.}\!\!> \text{of } <\!\!\text{EAd}\!\!>) \rightarrow C$

Assembly-Language Format

BXOR #xx:3, <EAd>

Operand Size

Byte

Bit Exclusive Logical OR

Ι	UI	Н	U	N	Ζ	V	С
_	—		—	_			\updownarrow

H: Previous value remains unchanged.

Condition Code

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Stores the result of the operation.

Description

This instruction exclusively ORs a specified bit in the destination operand with the carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			No. of				
Mode*	Mode*		1st	byte	2nd byte	3rd byte		4th byte	States
Register direct	BXOR	#xx:3,Rd	7	5	0 IMM rd				2
Register indirect	BXOR	#xx:3,@ERd	7	С	0 erd 0	7	5	0 IMM 0	6
Absolute address	BXOR	#xx:3,@aa:8	7	E	abs	7	5	0 IMM 0	6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

2.2.22 (1) CMP (B)

CMP (CoMPare)

Compare

Operation	Condition Code
Rd – (EAs), set or clear CCR	I UI H U N Z V C
Assembly-Language Format CMP.B <eas>, Rd</eas>	 ↓ - ↓ ↓ ↓ ↓ ↓ H: Set to 1 if there is a borrow at bit 3; otherwise cleared to 0. N: Set to 1 if the result is negative; otherwise cleared to 0. Z: Set to 1 if the result is zero; otherwise cleared to 0. V: Set to 1 if an overflow occurs; otherwise
Operand Size	cleared to 0.
Byte	C: Set to 1 if there is a borrow at bit 7; otherwise cleared to 0.

Description

This instruction subtracts the source operand from the contents of an 8-bit register Rd (destination register) and sets or clears the CCR bits according to the result. The destination register contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of					
	WITEITIOTTIC	Operatios	1st	byte	2nd	byte	3rd byte	4th byte	States
Immediate	CMP.B	#xx:8, Rd	А	rd	IN	1M			2
Register direct	CMP.B	Rs, Rd	1	С	rs	rd			2

Notes

Renesas

2.2.22 (2) CMP (W)

CMP (CoMPare)	Compare
Operation	Condition Code
Rd – (EAs), set CCR	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format	H: Set to 1 if there is a borrow at bit 11; otherwise cleared to 0.
CMP.W <eas>, Rd</eas>	N: Set to 1 if the result is negative; otherwise cleared to 0.
	Z: Set to 1 if the result is zero; otherwise cleared to 0.
Operand Size	V: Set to 1 if an overflow occurs; otherwise
Word	cleared to 0.
	C: Set to 1 if there is a borrow at bit 15; otherwise cleared to 0.

Description

This instruction subtracts the source operand from the contents of a 16-bit register Rd (destination register) and sets or clears the CCR bits according to the result. The contents of the 16-bit register Rd remain unchanged.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of					
Mode	WITEHIOTIC	Operatius	1st byte		2nd byte		3rd byte	4th byte	States
Immediate	CMP.W	#xx:16, Rd	7	9	2	rd	IM	М	4
Register direct	CMP.W	Rs, Rd	1	D	rs	rd			2

Notes

2.2.22 (3) CMP (L)

CMP (CoMPare)

Compare

Operation	Condition Code									
ERd – (EAs), set CCR	I UI H U N Z V C									
	$- \ - \ \updownarrow \ - \ \updownarrow \ - \ \updownarrow \ \updownarrow \ \updownarrow \ \updownarrow \ $									
	I: Previous value remains unchanged.									
Assembly-Language Format	H: Set to 1 if there is a borrow at bit 27;									
CMP.L <eas>, ERd</eas>	otherwise cleared to 0.									
,	N: Set to 1 if the result is negative; otherwise									
	cleared to 0.									
	Z: Set to 1 if the result is zero; otherwise									
Orneward Size	cleared to 0.									
Operand Size	V: Set to 1 if an overflow occurs; otherwise									
Longword	cleared to 0.									
	C: Set to 1 if there is a borrow at bit 31;									
	otherwise cleared to 0.									

Description

This instruction subtracts the source operand from the contents of a 32-bit register ERd (destination register) and sets or clears the CCR bits according to the result. The contents of the 32-bit register ERd remain unchanged.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnomonio	Inemonic Operands			Instructio	on Format			No. of
Mode	whemonic	Operatios	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	States
Immediate	CMP.L	#xx:32, ERd	7 A	2 0 erd		IN	IM		6
Register direct	CMP.L	ERs, ERd	1 F	1 ers 0 erd					2

Notes

Renesas

2.2.23 DAA

DAA (Decimal Adjust Add)

Decimal Adjust

Operation	Condition Code
Rd (decimal adjust) \rightarrow Rd	I UI H U N Z V C
	$\boxed{- - * - \updownarrow \updownarrow * \updownarrow}$
Assembly-Language Format	H: Undetermined (no guaranteed value).N: Set to 1 if the adjusted result is negative; otherwise cleared to 0.
	Z: Set to 1 if the adjusted result is zero; otherwise cleared to 0.
Operand Size	V: Undetermined (no guaranteed value).
Byte	C: Set to 1 if there is a carry at bit 7; otherwise left unchanged.

Description

Given that the result of an addition operation performed by an ADD.B or ADDX instruction on 4-bit BCD data is contained in an 8-bit register Rd (destination register) and the carry and half-carry flags, the DAA instruction adjusts the general register contents by adding H'00, H'06, H'60, or H'66 according to the table below.

C Flag before Adjustment	Upper 4 Bits before Adjustment	H Flag before Adjustment	Lower 4 Bits before Adjustment	Value Added (hexadecimal)	C Flag after Adjustment
0	0 to 9	0	0 to 9	00	0
0	0 to 8	0	A to F	06	0
0	0 to 9	1	0 to 3	06	0
0	A to F	0	0 to 9	60	1
0	9 to F	0	A to F	66	1
0	A to F	1	0 to 3	66	1
1	1 to 2	0	0 to 9	60	1
1	1 to 2	0	A to F	66	1
1	1 to 3	1	0 to 3	66	1

Available Registers

Rd: R0L to R7L, R0H to R7H

DAA

DAA (Decimal Adjust Add)

Decimal Adjust

Operand Format and Number of States Required for Execution

Addressing	nonic Operands		Instruction Format						
Mode	Witemonic	Operanus	1st byte		2nd byte		3rd byte	4th byte	States
Register direct	DAA	Rd	0	F	0	rd			2

Notes

Valid results (8-bit register Rd contents and C, V, Z, N, and H flags) are not assured if this instruction is executed under conditions other than those described above.

2.2.24 DAS

DAS (Decimal Adjust Subtract)

Operation

Rd (decimal adjust) \rightarrow Rd

Assembly-Language Format

DAS Rd

Operand Size

Byte

Description

Given that the result of a subtraction operation performed by a SUB.B, SUBX.B, or NEG.B instruction on 4-bit BCD data is contained in an 8-bit register Rd (destination register) and the carry and half-carry flags, the DAS instruction adjusts the general register contents by adding H'00, H'FA, H'A0, or H'9A according to the table below.

C Flag before Adjustment	Upper 4 Bits before Adjustment	H Flag before Adjustment	Lower 4 Bits before Adjustment	Value Added (hexadecimal)	C Flag after Adjustment
0	0 to 9	0	0 to 9	00	0
0	0 to 8	1	6 to F	FA	0
1	7 to F	0	0 to 9	A0	1
1	6 to F	1	6 to F	9A	1

Available Registers

Rd: R0L to R7L, R0H to R7H

RENESAS

Decimal Adjust

Ι	<u> </u>		U	÷ •		•	С
_	—	*	—	\uparrow	\uparrow	*	

H: Undetermined (no guaranteed value).

Condition Code

- N: Set to 1 if the adjusted result is negative; otherwise cleared to 0.
- Z: Set to 1 if the adjusted result is zero; otherwise cleared to 0.
- V: Undetermined (no guaranteed value).
- C: Previous value remains unchanged.

DAS

DAS (Decimal Adjust Subtract)

Decimal Adjust

Operand Format and Number of States Required for Execution

Addressing Mnemonic	Operands		Instruction Format						
Mode	Milenonic	1st by	byte	2nd	byte	3rd byte	4th byte	States	
Register direct	DAS	Rd	1	F	0	rd			2

Notes

Valid results (8-bit register Rd contents and C, V, Z, N, and H flags) are not assured if this instruction is executed under conditions other than those described above.

2.2.25 (1) DEC (B)

DEC (DECrement)	Decrement
Operation	Condition Code
$Rd - 1 \rightarrow Rd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	H: Previous value remains unchanged.
Assembly-Language Format	N: Set to 1 if the result is negative; otherwise cleared to 0.
DEC.B Ku	Z: Set to 1 if the result is zero; otherwise cleared to 0.
	V: Set to 1 if an overflow occurs (the
Operand Size	previous value in Rd was H'80); otherwise cleared to 0.
Byte	C: Previous value remains unchanged.

Description

This instruction decrements an 8-bit register Rd (destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	winemonic	Operatius	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	DEC.B	Rd	1 A	0 rd			2

Notes

An overflow is caused by the operation $H'80 - 1 \rightarrow H'7F$.

2.2.25 (2) DEC (W)

DEC (DECrement)

Operation

 $\begin{array}{l} Rd-1 \rightarrow Rd \\ Rd-2 \rightarrow Rd \end{array}$

Assembly-Language Format

DEC.W #1, Rd DEC.W #2, Rd

Operand Size

Word

Decrement

Co	Condition Code									
	Ι	UI	Н	U	Ν	Ζ	V	С		
	—	_	_	_	\updownarrow	\$	\uparrow			
——————————————————————————————————————	H: Previous value remains unchanged.									
	: Set to 1 if the result is negative; otherwise									
Z:	cleared to 0. Set to 1 if the result is zero; otherwise									
V:		red to 1 if		worfl	ow o	cours	the			
۷.	Set to 1 if an overflow occurs (the previous value in Rd was H'8000);									
	otherwise cleared to 0.									
C:	Prev	vious	value	e rem	ains	uncha	angeo	1.		

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 16-bit register Rd (destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of					
Mode	Milenonic	Operanus	1st byte		2nd byte		3rd byte 4th byte		States
Register direct	DEC.W	#1, Rd	1	В	5	rd			2
Register direct	DEC.W	#2, Rd	1	В	D	rd			2

Notes

An overflow is caused by the operations H'8000 – 1 \rightarrow H'7FFF, H'8000 – 2 \rightarrow H'7FFE, and H'8001 – 2 \rightarrow H'7FFF.

Renesas

2.2.25 (3) DEC (L)

DEC (DECrement)

Decrement

Operation	Co	nditi	on C	ode						
$ERd - 1 \rightarrow ERd$ $ERd - 2 \rightarrow ERd$		I 	UI	H —	U	N \$	Z \$	v ↓	C	
Assembly-Language Format DEC.L #1, ERd DEC.L #2, ERd	N:	Set t clear Set t	vious to 1 it red to to 1 it red to	f the 0 0. f the	resul	t is no	egati	ve; ot	herwise	e
Operand Size Longword		clea	to 1 if red to vious	o 0.				,	erwise 1.	

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 32-bit register ERd (destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Mnemonic Operands		Instruction Format							
Mode	WITEHIOTIC	Operatius	1st byte		2nd byte		3rd byte 4th byte		States		
Register direct	DEC.L	#1, ERd	1	В	7	0 erd			2		
Register direct	DEC.L	#2, ERd	1	В	F	0 erd			2		

Notes

An overflow is caused by the operations H'80000000 – 1 \rightarrow H'7FFFFFFF, H'80000000 – 2 \rightarrow H'7FFFFFFE, and H'80000001 – 2 \rightarrow H'7FFFFFFF.

2.2.26 (1) DIVXS (B)

DIVXS	(DIVide	eXtend	as Si	gned)
-------	---------	--------	-------	-------

Operation

 $Rd \div Rs \rightarrow Rd$

Assembly-Language Format

DIVXS.B Rs, Rd

Operand Size

Byte

Description

This instruction divides the contents of a 16-bit register Rd (destination register) by the contents of an 8-bit register Rs (source register) and stores the result in the 16-bit register Rd. The division is signed. The operation performed is 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder. The quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Valid results are not assured if division by zero is attempted or an overflow occurs. For information on avoiding overflow, see DIVXS Instruction, Zero Divide, and Overflow.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0L to R7L, R0H to R7H

Renesas

Divide Signed

- H: Previous value remains unchanged.
- N: Set to 1 if the quotient is negative; otherwise cleared to 0.
- Z: Set to 1 if the divisor is zero; otherwise cleared to 0.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

DIVXS (B)

DIVXS (DIVide eXtend as Signed)

Divide Signed

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Ins	structio	on Forr	nat			No. of
Mode	Witterfiorfic	Operanus	1st byte	2nd	2nd byte		3rd byte		byte	States
Register direct	DIVXS.B	Rs, Rd	0 1	D	0	5	1	rs	rd	16

Notes

The N flag is set to 1 if the dividend and divisor have different signs, and cleared to 0 if they have the same sign. The N flag may therefore be set to 1 when the quotient is zero.

2.2.26 (2) DIVXS (W)

DIVXS	(DIVide	eXtend	as	Signed)
-------	---------	--------	----	---------

Operation

 $\mathsf{ERd} \div \mathsf{Rs} \to \mathsf{ERd}$

Assembly-Language Format

DIVXS.W Rs, ERd

Operand Size

Word

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
_		—	—	\updownarrow	\$		

- H: Previous value remains unchanged.
- N: Set to 1 if the quotient is negative; otherwise cleared to 0.
- Z: Set to 1 if the divisor is zero; otherwise cleared to 0.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction divides the contents of a 32-bit register ERd (destination register) by the contents of a 16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The division is signed. The operation performed is 32 bits \div 16 bits \rightarrow 16-bit quotient and 16-bit remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The remainder is placed in the upper 16 bits (Ed).

Valid results are not assured if division by zero is attempted or an overflow occurs. For information on avoiding overflow, see DIVXS Instruction, Zero Divide, and Overflow.

Available Registers

ERd: ER0 to ER7 Rs: R0 to R7, E0 to E7

Renesas

Divide Signed

DIVXS (W)

DIVXS (DIVide eXtend as Signed)

Divide Signed

Operand Format and Number of States Required for Execution

Addressing	Mnemonic Operands		Instruction Format								No. of
Mode	Witemonic	Operanus	1st byte		2nd byte		3rd byte		4th byte		States
Register direct	DIVXS.W	Rs, ERd	0	1	D	0	5	3	rs	0 erd	24

Notes

The N flag is set to 1 if the dividend and divisor have different signs, and cleared to 0 if they have the same sign. The N flag may therefore be set to 1 when the quotient is zero.

2.2.26 (3) DIVXS

DIVXS (DIVide eXtend as Signed)

Divide Signed

DIVXS instruction, Division by Zero, and Overflow

Since the DIVXS instruction does not detect division by zero or overflow, applications should detect and handle division by zero and overflow using techniques similar to those used in the following program.

1. Programming solution for DIVXS.B R0L, R1

Example 1: Convert dividend and divisor to non-negative numbers, then use DIVXU programming solution for zero divide and overflow

	MOV.B BEQ ANDC BPL	ROL, ROL ZERODIV #AF, CCR L1	 Fest divisor Franch to ZERODIV if R0L = 0 Clear CCR user bits (bits 6 and 4) to 0 Franch to L1 if N flag = 0 (positive divisor)
	NEG.B	ROL	; Take 2's complement of R0L to make sign positive
	ORC	#10, CCR	; Set CCR bit 4 to 1
L1:	MOV.W	R1.R1	; Test dividend
	BPL	L2	For a basis is a basis in the second seco
	NEG.W	R1	; Take 2's complement of R1 to make sign positive
	XORC	#50, CCR	; Invert CCR bits 6 and 4
L2:	MOV.B	R1H, R2L	;
	EXTU.W	R2	;
	DIVXU.B	ROL, R2	; Use DIVXU.B instruction to divide non-negative dividend
	MOV.B	R2H, R1H	; by positive divisor
	DIVXU.B	ROL, R1	; 16 bits \div 8 bits \rightarrow quotient (16 bits) and remainder (8 bits)
	MOV.B	R2L, R2H	; (See DIVXU Instruction, Zero Divide, and Overflow)
	MOV.B	R1L, R2L	;
	STC	CCR, R1L	; Copy CCR contents to R1L
	BTST	#6, R1L	; Test CCR bit 6
	BEQ	L3	; Branch to L3 if bit 6 = 1
	NEG.B	R1H	; Take 2's complement of R1H to make sign of remainder negative
г3:	BTST	#4, R1L	; Test CCR bit 4
	BEQ	L4	; Branch to L4 if bit 4 = 1
	NEG.W	R2	; Take 2's complement of R2 to make sign of quotient negative
L4:	RTS		
ZER	DIV:		; Zero-divide handling routine

DIVXS

DIVXS (DIVide eXtend as Signed)

This program leaves a 16-bit quotient in R2 and an 8-bit remainder in R1H.

Example 2: Sign extend the 8-bit divisor to 16 bits, sign extend the 16-bit dividend to 32 bits, and then use DIVXS to divide

EXTS.W	R0
BEQ	ZERODIV
EXTS.L	ER1
DIVXS.L	R0,ER1
RTS	
ZERODIV:	

This program leaves the 16-bit quotient in R1 and the 8-bit remainder in E1 (in a 16-bit sign extended format).

DIVXS (DIVide eXtend as Signed)

Divide Signed

2. Programming solution for DIVXS.W R0, ER1

Example: Convert dividend and divisor to non-negative numbers, then use DIVXU programming solution for zero divide and overflow

	MOV.W	R0, R0	;	Test divisor
	BEQ	ZERODIV	;	Branch to ZERODIV if R0 = 0
	ANDC	#AF, CCR	;	Clear CCR user bits (bits 6 and 4) to 0
	BPL	L1	;	Branch to L1 if N flag = 0 (positive divisor)
	NEG.W	R0	;	Take 2's complement of R0 to make sign positive
	ORC	#10, CCR	;	Set CCR bit 4 to 1
L1:	MOV.L	ER1,ER1	;	Test dividend
	BPL	L2	;	Branch to L2 if N flag = 0 (positive dividend)
	NEG.L	ER1	;	Take 2's complement of ER1 to make sign positive
	XORC	#50,CCR	;	Invert CCR bits 6 and 4
L2:	MOV.W	E1, R2	;	
	EXTU.L	ER2	;	
	DIVXU.W	R0, E2	;	Use DIVXU.W instruction to divide non-negative dividend
	MOV.W	E2, R1	;	by positive divisor
	DIVXU.W	R0, ER1	;	32 bits \div 16 bits \rightarrow quotient (32 bits) and remainder
	MOV.W	R2, E2		(16 bits)
	MOV.W	R1, R2		(See DIVXU Instruction, Zero Divide, and Overflow)
	STC	CCR, R1L	;	Copy CCR contents to R1L
	BTST	#6, R1L	;	Test CCR bit 6
	BEQ	L3	;	Branch to L3 if bit $6 = 1$
	NEG.W	El	;	Take 2's complement of E1 to make sign of remainder negative
L3:	BTST	#4, R1L	;	Test CCR bit 4
	BEQ	L4	;	Branch to L4 if bit $4 = 1$
	NEG.L	ER2	;	Take 2's complement of ER2 to make sign of quotient negative
L4:	RTS			
ZERO	DDIV:		;	Zero-divide handling routine

DIVXS

DIVXS (DIVide eXtend as Signed)

This program leaves a 32-bit quotient in ER2 and a 16-bit remainder in E1.

The preceding two examples flag the status of the divisor and dividend in the UI and U bits in the CCR, and modify the sign of the quotient and remainder in the unsigned division result of the DIVXU instruction as shown next.

UI	U	Divisor	Dividend	Remainder	Quotient	Sign Modification
0	0	Positive	Positive	Positive	Positive	No sign modification
0	1	Negative	Positive	Positive	Negative	Sign of quotient is reversed
1	0	Negative	Negative	Negative	Positive	Sign of remainder is reversed
1	1	Positive	Negative	Negative	Negative	Signs of quotient and remainder are both reversed

2.2.27 (1) DIVXU (B)

DIVXU (DIVide eXtend as Unsigned)

Divide

Operation	Condition Code							
$Rd \div Rs \rightarrow Rd$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Assembly-Language Format DIVXU.B Rs, Rd	H: Previous value remains unchanged.N: Set to 1 if the divisor is negative; otherwise cleared to 0.							
Operand Size Byte	Z: Set to 1 if the divisor is zero; otherwise cleared to 0.V: Previous value remains unchanged.C: Previous value remains unchanged.							

Description

This instruction divides the contents of a 16-bit register Rd (destination register) by the contents of an 8-bit register Rs (source register) and stores the result in the 16-bit register Rd. The division is unsigned. The operation performed is 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder. The quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Valid results are not assured if division by zero is attempted or an overflow occurs. For information on avoiding overflow, see DIVXU Instruction, Zero Divide, and Overflow.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of					
			1st	byte	2nd	byte	3rd byte	4th byte	States
Register direct	DIVXU.B	Rs, Rd	5	1	rs	rd			14

Notes

2.2.27 (2) DIVXU (W)

DIVXU (DIVide eXtend as Unsigned)

 $ERd \div Rs \rightarrow ERd$

Assembly-Language Format

DIVXU.W Rs, ERd

Operand Size

Word

H: Previous value remains unchanged.

Condition Code

- N: Set to 1 if the divisor is negative; otherwise cleared to 0.
- Z: Set to 1 if the divisor is zero; otherwise cleared to 0.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction divides the contents of a 32-bit register ERd (destination register) by the contents of a 16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The division is unsigned. The operation performed is 32 bits \div 16 bits \rightarrow 16-bit quotient and 16-bit remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The remainder is placed in the upper 8 bits of (Ed).

Valid results are not assured if division by zero is attempted or an overflow occurs. For information on avoiding overflow, see DIVXU Instruction, Zero Divide, and Overflow.

Available Registers

ERd: ER0 to ER7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands	Instruction Format							No. of
			1st	byte	2n	d by	vte	3rd byte	4th byte	States
Register direct	DIVXU.W	Rs, ERd	5	3	rs	0	ERd			22

Notes
DIVXU (DIVide eXtend as Unsigned)

Divide

DIVXU Instruction, Zero Divide, and Overflow

Zero divide and overflow are not detected in the DIVXU instruction. A program like the following can detect zero divisors and avoid overflow.

1. Programming solutions for DIVXU.B R0L, R1

Example 1: Divide upper 8 bits and lower 8 bits of 16-bit dividend separately and obtain 16-bit quotient

CMP.B	#0, R0L	;	R0L = 0? (Zero divisor?)
BEQ	ZERODIV	;	Branch to ZERODIV if $R0L = 0$
MOV.B	R1H,R2L	;	Copy upper 8 bits of dividend to R2L and
EXTU.W	R2 (*1).	;	zero-extend to 16 bits
DIVXU.B	R0L, R2 (*2)	;	Divide upper 8 bits of dividend
MOV.B	R2H, R1H (*3)	;	$R2H \rightarrow R1H$ (store partial remainder in R1H)
DIVXU.B	R0L, R1 (*4)	;	Divide lower 8 bits of dividend (including repeated
			division of upper 8 bits)
MOV.B	R2L, R2H	;	Store upper part of quotient in R2H
MOV.B	R1L, R2L (*5)	;	Store lower part of quotient in R2L
RTS			
ZERODIV:		;	Zero-divide handling routine

DIVXU (DIVide eXtend as Unsigned)

Divide

The resulting operation is 16 bits \div 8 bits \rightarrow quotient (16 bits) and remainder (8 bits), and no overflow occurs. The 16-bit quotient is stored in R2, the 8-bit remainder in R1H.

DIVXU (DIVide eXtend as Unsigned)

Example 2: Zero-extend divisor from 8 to 16 bits and dividend from 16 to 32 bits before dividing

	EXTU.W	R0	;	Zero-extend 8-bit divisor to 16 bits				
	BEQ	ZERODIV	;	Branch to ZERODIV if R0 = 0				
	EXTU.L	ER1	;	Zero-extend 16-bit dividend to 32 bits				
	EXTU.W	R0, ER1	;	Divide using DIVXU.W				
	RTS							
ZERC	DIV:		;	Zero-divide handling routine				

Instead of 16 bits \div 8 bits, the operation performed is 32 bits \div 16 bits \rightarrow quotient (16 bits) and remainder (16 bits), and no overflow occurs. The 16-bit quotient is stored in R1 and the 8-bit remainder in the lower 8 bits of E1. The upper 8 bits of E1 are all 0.

RENESAS

Divide

DIVXU (DIVide eXtend as Unsigned)

Divide

2. Programming solution for DIVXU.W R0, ER1

Example 1: Divide upper 16 bits and lower 16 bits of 32-bit dividend separately and obtain 32-bit quotient

	MOV.W	R0, R0		;	R0 = 0? (Zero divisor?)
	BEQ	ZERODIV		;	Branch to ZERODIV if R0 = 0
	MOV.W	E1,E2		;	Copy upper 16 bits of dividend to R2 and
	EXTU.L	ER2	(*1)	;	zero-extend to 32 bits
	DIVXU.W	R0, ER2	(*2)	;	Divide upper 16 bits of dividend
	MOV.W	E2, E1	(*3)	;	$E2 \rightarrow E1$ (store partial remainder in E1)
	DIVXU.W	RO, ER1	(*4)	;	Divide lower 16 bits of dividend (including repeated
					division of upper 16 bits)
	MOV.W	R2, E2		;	Store upper part of quotient in E2
	MOV.W	R1, R2	(*5)	;	Store lower part of quotient in R2
	RTS				
ZERO	DDIV:			;	Zero-divide handling routine

The resulting operation is 32 bits \div 16 bits \rightarrow quotient (32 bits) and remainder (16 bits), and no overflow occurs. The 32-bit quotient is stored in ER2, the 16-bit remainder in E1.

Rev. 3.00 Dec 13, 2004 page 96 of 258 REJ09B0213-0300

Block Data Transfer

2.2.28 (1) EEPMOV (B)

EEPMOV (MOVe data to EEPROM)

Operation

if R4L \neq 0 then

repeat $@ER5+ \rightarrow @ER6+$

 $R4I - 1 \rightarrow R4L$

until R4L = 0

else next:

Assembly-Language Format

EEPMOV.B

Operand Size

Description

This instruction performs a block memory transfer. It moves data from the memory location specified in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements R4L, and repeats these operations until R4L reaches zero. Execution then proceeds to the next instruction. No interrupts are detected while the block transfer is in progress. When the EEPMOV instruction ends, R4L contains 0, and ER5 and ER6 contain the last transfer address + 1. The data transfer is performed a byte at a time, with R4L indicating the number of bytes to be transferred. The byte symbol in the assembly-language format designates the size of R4L (and limits the maximum number of bytes that can be transferred to 255).

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	WITEHIOTIC		1st byte	2nd byte	3rd byte	4th byte	States
—	EEPMOV.B		7 B	5 C	5 9	8 F	8+4n*

Note: * n is the initial value of R4L. Although n bytes of data are transferred, memory is accessed 2(n + 1) times, requiring 4(n + 1) states. (n = 0, 1, 2, ..., 255).

Notes

This instruction first reads the memory locations indicated by ER5 and ER6, then performs the data transfer. The number of states required for execution differs from the H8/300 CPU.

Renesas

CO	condition Code												
	Ι	UI	Н	U	Ν	Ζ	V	С					
	—	—		—	_	_							
TT.	D	•	.1			. 1		1					

H: Previous value remains unchanged.

Constitution Conto

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

2.2.28 (2) EEPMOV (W)

EEPMOV (MOVe data to EEPROM)

Operation

if $R4 \neq 0$ then

repeat $@ER5+ \rightarrow @ER6+$

 $R4 - 1 \rightarrow R4$

until $\mathbf{R4} = \mathbf{0}$

else next;

Assembly-Language Format

EEPMOV.W

Operand Size

Description

This instruction performs a block memory transfer. It moves data from the memory location specified in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements R4, and repeats these operations until R4 reaches zero. Execution then proceeds to the next instruction. No interrupts except NMI are detected while the block transfer is in progress. When the EEPMOV instruction ends, R4 contains 0, and ER5 and ER6 contain the last transfer address + 1. The data transfer is performed a byte at a time, with R4 indicating the number of bytes to be transferred. The word symbol in the assembly-language format designates the size of R4 (allowing a maximum 65535 bytes to be transferred).

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	winemonic		1st byte	2nd byte	3rd byte	4th byte	States
_	EEPMOV.W		7 B	D 4	59	8 F	8+4n

Note: n is the initial value of R4. Although n bytes of data are transferred, memory is accessed 2(n + 1) times, requiring 4(n + 1) states. (n = 0, 1, 2, ..., 65535).

Notes

This instruction first reads memory at the addresses indicated by ER5 and ER6, then carries out the block data transfer.

Block Data Transfer

	Ι	UI	Н	U	N	Z	v	С
		—		—			—	—
н۰	Prev	ious	value	rem	ains 1	inch	angeć	1

H: Previous value remains unchanged.

Condition Code

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

EEPMOV (W)

EEPMOV (MOVe data to EEPROM)

Block Data Transfer

EEPMOV.W Instruction and NMI Interrupt

If an NMI request occurs while the EEPMOV.W instruction is being executed, NMI interrupt exception handling is carried out at the end of the current read-write cycle. Register contents are then as follows:

- ER5: address of the next byte to be transferred
- ER6: destination address of the next byte
- R4: number of bytes remaining to be transferred

The program counter value pushed on the stack in NMI interrupt exception handling is the address of the next instruction after the EEPMOV.W instruction. Programs should be coded as follows to allow for NMI interrupts during execution of the EEPMOV.W instruction.

Example:

L1: EEPMOV.W MOV.W R4, R4 BNE L1

During execution of the EEPMOV.B instruction no interrupts are accepted, including NMI.

2.2.29 (1) EXTS (W)

EXTS (EXTend as Signed)

Sign Extension

Operation	Condition Code
$(<$ Bit 7> of Rd $) \rightarrow (<$ bits 15 to 8> of Rd>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.Z: Set to 1 if the result is zero; otherwise
Operand Size Word	cleared to 0. V: Always cleared to 0. C: Previous value remains unchanged.

Description

This instruction copies the sign of the lower 8 bits in a 16-bit register Rd in the upward direction (copies Rd bit 7 to bits 15 to 8) to extend the data to signed word data.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	winemonic		1st byte	2nd byte	3rd byte	4th byte	States
Register direct	EXTS.W	Rd	1 7	D rd			2

Notes

2.2.29 (2) EXTS (L)

EXTS (EXTend as Signed)

Operation

(<Bit 15> of ERd) \rightarrow (<bits 31 to 16> of ERd>)

Assembly-Language Format

EXTS.L ERd

Operand Size

Longword

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
		—		\Leftrightarrow	\updownarrow	0	

- I: Previous value remains unchanged.
- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction copies the sign of the lower 16 bits (general register Rd) in a 32-bit register ERd in the upward direction (copies ERd bit 15 to bits 31 to 16) to extend the data to signed longword data.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands -		No. of			
	winemonic		1st byte	2nd byte	3rd byte	4th byte	States
Register direct	EXTS.L	ERd	1 7	F 0 erd			2

Notes

RENESAS

Sign Extension

2.2.30 (1) EXTU (W)

EXTU (EXTend as Unsigned)

Operation

 $0 \rightarrow (< bits 15 \text{ to } 8 > of Rd >)$ Zero extend

Assembly-Language Format

EXTU.W Rd

Operand Size

Word

Description

This instruction extends the lower 8 bits in a 16-bit register Rd to word data by padding with zeros. That is, it clears the upper 8 bits of Rd (bits 15 to 8) to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode Mi	Mnemonic O	Operands		No. of			
			1st byte	2nd byte	3rd byte	4th byte	States
Register direct	EXTU.W	Rd	1 7	5 rd			2

Notes

Rev. 3.00 Dec 13, 2004 page 102 of 258 REJ09B0213-0300

RENESAS

Zero Extension

- H: Previous value remains unchanged.
- N: Always cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Condition Code

Ζ

0

2.2.30 (2) EXTU (L)

EXTU (EXTend as Unsigned)

Operation

 $0 \rightarrow (< bits 31 \text{ to } 16 > of ERd >)$ Zero extend

Assembly-Language Format

EXTU.L ERd

Operand Size

Longword

Description

This instruction extends the lower 16 bits (general register Rd) in a 32-bit register ERd to longword data by padding with zeros. That is, it clears the upper 16 bits of ERd (bits 31 to 16) to 0.

Condition Code

UI H U N

N: Always cleared to 0.

cleared to 0. V: Always cleared to 0.

H: Previous value remains unchanged.

C: Previous value remains unchanged.

Z: Set to 1 if the result is zero; otherwise

Ι

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Milenonie	operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	EXTU.L	ERd	1 7	7 0 erd			2

Notes

Zero Extension

0

Rev. 3.00	Dec 13, 2004	page 103 of 258
	R	EJ09B0213-0300

Renesas

2.2.31 (1) INC (B)

INC (INCrement)

Increment

Operation	Condition Code
$Rd + 1 \rightarrow Rd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format	 H: Previous value remains unchanged. N: Set to 1 if the result is negative; otherwise cleared to 0. Z: Set to 1 if the result is zero; otherwise
Operand Size	 Derive and the result is zero, onlerwise cleared to 0. V: Set to 1 if an overflow occurs; otherwise cleared to 0.
Byte	C: Previous value remains unchanged.

Description

This instruction increments an 8-bit register Rd (destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Witterfiorfic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	INC.B	Rd	0 A	0 rd			2

Notes

An overflow is caused by the operation $H'7F + 1 \rightarrow H'80$.

2.2.31 (2) INC (W)

INC (INCrement)

Operation

 $\begin{array}{l} Rd+1 \rightarrow Rd \\ Rd+2 \rightarrow Rd \end{array}$

Assembly-Language Format

INC.W #1, Rd INC.W #2, Rd

Operand Size

Word

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Set to 1 if an overflow occurs; otherwise cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction adds the immediate value 1 or 2 to the contents of a 16-bit register Rd (destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of					
Mode	WITEHTOTTC	Operatius	1st	byte	2nd	byte	3rd byte	4th byte	States
Register direct	INC.W	#1, Rd	0	В	5	rd			2
Register direct	INC.W	#2, Rd	0	В	D	rd			2

Notes

An overflow is caused by the operations H'7FFF + 1 \rightarrow H'8000, H'7FFF + 2 \rightarrow H'8001, and H'7FFE + 2 \rightarrow H'8000.

Rev. 3.00 Dec 13, 2004 page 105 of 258 REJ09B0213-0300

Renesas

Increment

2.2.31 (3) INC (L)

INC (INCrement)

Increment

Operation	Condition Code
$ERd + 1 \rightarrow ERd$ $ERd + 2 \rightarrow ERd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format INC.L #1, ERd INC.L #2, ERd	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.Z: Set to 1 if the result is zero; otherwise cleared to 0.
Operand Size Longword	V: Set to 1 if an overflow occurs; otherwise cleared to 0.C: Previous value remains unchanged.

Description

This instruction adds the immediate value 1 or 2 to the contents of a 32-bit register ERd (destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of					
Mode	WITEHIOTIC	Operatius	1st	byte	2nc	d byte	3rd byte	4th byte	States
Register direct	INC.L	#1, ERd	0	В	7	0 erd			2
Register direct	INC.L	#2, ERd	0	В	F	0 erd			2

Notes

An overflow is caused by the operations H'7FFFFFF + 1 \rightarrow H'80000000, H'7FFFFFFF + 2 \rightarrow H'80000001, and H'7FFFFFFE + 2 \rightarrow H'80000000.

2.2.32 JMP

JMP (JuMP)

Operation

Effective address \rightarrow PC

Assembly-Language Format

JMP <EA>

Operand Size

Unconditional Branch

I UI H U N Z V C - - - - - - - -

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction branches unconditionally to a specified address

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Onerende			Instructio	on Format	No. of States		
Mode	winemonic	Operands	1st	byte	2nd byte	3rd byte	4th byte	Normal	Advanced
Register indirect	JMP	@ERn	5	9	0 ern 0				4
Absolute address	JMP	@aa:24	5	А		abs			6
Memory indirect	JMP	@@aa:8	5	В	abs			8	10

Notes

The structure of the branch address and the number of states required for execution differ between normal mode and advanced mode.

The branch address must be even.

Renesas

2.2.33 JSR

JSR (Jump to SubRoutine)

Operation

 $PC \rightarrow @-SP$ Effective address $\rightarrow PC$

Assembly-Language Format

JSR <EA>

Operand Size

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
—							

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction pushes the program counter on the stack as a return address, then branches to a specified effective address. The program counter value pushed on the stack is the address of the instruction following the JSR instruction.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Onerende			Instructio	on Format	No. of States		
Mode	whemonic	Operands	1st	byte	2nd byte	3rd byte	4th byte	Normal	Advanced
Register indirect	JSR	@ERn	5	D	0 ern 0			6	8
Absolute address	JSR	@aa:24	5	Е		abs		8	10
Memory indirect	JSR	@@aa:8	5	F	abs			8	12

Jump to Subroutine

JSR

JSR (Jump to SubRoutine)

Jump to Subroutine

Notes

Note that the structures of the stack and branch addresses differ between normal and advanced mode. Only the lower 16 bits of the PC are saved in normal mode.

The branch address must be even.

2.2.34 (1) LDC (B)

LDC (LoaD to Control register)	LDC	(LoaD	to	Control	register)
--------------------------------	-----	-------	----	---------	-----------

Load CCR

Operation	Condition Code
$(EAs) \rightarrow CCR$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format	I: Loaded from the corresponding bit in the source operand.
LDC.B <eas>, CCR</eas>	H: Loaded from the corresponding bit in the source operand.
	N: Loaded from the corresponding bit in the
Operand Size	source operand.
Byte	Z: Loaded from the corresponding bit in the source operand.
	V: Loaded from the corresponding bit in the source operand.
	C: Loaded from the corresponding bit in the source operand.

Description

This instruction loads the source operand into the CCR.

Note that no interrupts, even NMI interrupts, will be accepted at the point that this instruction completes.

Available Registers

Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			Instructio	on Format		No. of
Mode	winemonic	Operations	1st	byte	2nd byte	3rd byte	4th byte	States
Immediate	LDC.B	#xx:8, CCR	0	7	IMM			2
Register direct	LDC.B	Rs, CCR	0	3	0 rs			2

Notes

2.2.34 (2) LDC (W)

LDC	(LoaD	to Control	register)
-----	-------	------------	-----------

Load CCR

Operation	Condition Code
$(EAs) \rightarrow CCR$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format	I: Loaded from the corresponding bit in the source operand.
LDC.W <eas>, CCR</eas>	H: Loaded from the corresponding bit in the source operand.
	N: Loaded from the corresponding bit in the source operand.
Operand Size Word	Z: Loaded from the corresponding bit in the source operand.
	V: Loaded from the corresponding bit in the source operand.
	C: Loaded from the corresponding bit in the source operand.

Description

This instruction loads the source operand contents into the condition-code register (CCR). Although CCR is a byte register, the source operand is word size. The contents of the even address are loaded into CCR.

No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Available Registers

ERs: ER0 to ER7

Addressing										Instructic	Instruction Format					No. of
Mode	Mnemonic	Operands	1st byte	yte	2nd byte	oyte	3rd byte	yte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte	States
Register indirect	LDC.W	@ ERs, CCR	0	-	4	0	9	6	0 ers 0							9
Register	LDC.W	@(d:16,ERs),CCR	0	-	4	0	9	ш	0 ers 0		disp					œ
displacement	LDC.W	@(d:24,ERs),CCR	0	-	4	0	~	æ	0.ers 0	۵ م	2 0	0 0		disp		12
Register indirect with post-increment	LDC.W	@ERs+,CCR	0	-	4	0	9	D	0.ers: 0							8
Absolute	LDC.W	@aa:16,CCR	0	-	4	0	9	в	0		abs					ø
ddress	LDC.W	@aa:24,CCR	0	-	4	0	9	۵	7	0		abs				10

Notes

Section 2 Instruction Descriptions

LDC (W)

LDC (LoaD to Control register)

2.2.35 (1) MOV (B)

MOV (MOVe data)

Move

Operation	Co	nditi	on C	ode					
$Rs \rightarrow Rd$		Ι	UI	Н	U	Ν	Ζ	V	С
						\uparrow	\$	0	—
Assembly-Language Format MOV.B Rs, Rd	N:	Set to othe	to 1 it rwise	f the e clea f the	e rem data ared to data	value 5 0.	is ne	egativ	
Operand Size	V:	Alw	ays c	leare	ed to ().			
Byte	C:	Prev	vious	valu	e rem	ains	unch	ange	d.

Description

This instruction transfers one byte of data from an 8-bit register Rs to an 8-bit register Rd, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Milenonie	operando	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	MOV.B	Rs, Rd	0 C	rs rd			2

Notes

2.2.35 (2) MOV (W)

Operation	Condition Code
$Rs \rightarrow Rd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format MOV.W Rs, Rd	H: Previous value remains unchanged.N: Set to 1 if the data value is negative; otherwise cleared to 0.Z: Set to 1 if the data value is zero; otherwise
Operand Size Word	cleared to 0. V: Always cleared to 0. C: Previous value remains unchanged.

Description

This instruction transfers one word of data from a 16-bit register Rs to a 16-bit register Rd, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Milenonic	operando	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	MOV.W	Rs, Rd	0 D	rs rd			2

Notes

Move

2.2.35 (3) MOV (L)

MOV (MOVe data)

Operation

 $\text{ERs} \rightarrow \text{ERd}$

Assembly-Language Format

MOV.L ERs, ERd

Operand Size

Longword

Description

This instruction transfers one longword of data from a 32-bit register ERs to a 32-bit register ERd, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	n Format		No. of
Mode	Milenonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	MOV.L	ERs, ERd	0 F	1 ers 0 erd			2

Notes

Rev. 3.00 Dec 13, 2004 page 115 of 258 REJ09B0213-0300

- N: Set to 1 if the data value is negative; otherwise cleared to 0.
- Z: Set to 1 if the data value is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

2.2.35 (4) MOV (B)

MOV (MOVe data)

Operation	Condition Code
$(EAs) \rightarrow Rd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format MOV.B <eas>, Rd</eas>	H: Previous value remains unchanged.N: Set to 1 if the data value is negative; otherwise cleared to 0.
	Z: Set to 1 if the data value is zero; otherwise cleared to 0.
Operand Size	V: Always cleared to 0.
Byte	C: Previous value remains unchanged.

Description

This instruction transfers the source operand contents to an 8-bit register Rs, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: R0L to R7L, R0H to R7H ERs: ER0 to ER7

RENESAS

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Operand Format and Number of States Required for Execution

- Mnemonic Uperands	-				Instructi	Instruction Format					No. of
	2	1st byte	ę	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	States
mmediate MOV.B #xx:8,Rd	p	ш	P	MMI							2
Register MOV.B @ERs,Rd indirect	g	9	8	0 ers rd							4
MOV:B @(d:16,ERs),Rd	s),Rd		о ш	0 ers rd		disp					g
displacement MOV.B @ (d:24,ERs),Rd	s),Rd	~	8	0.ers 0	9 9	7 Iq	0 0		disp		10
Register indirect with MOV.B @ERs+,Rd post-increment	PS	9	0 0	0.ers rd							9
MOV.B @aa:8,Rd	P	8	p	abs							4
Absolute MOV.B @aa:16.Rd	рS	9	<	р 0		abs					9
MOV.B @aa:24,Rd	PS	9	<	2	0		abs				œ

MOV (MOVe data)

2.2.35 (5) MOV (W)

MOV (MOVe data)

Operation	Condition Code
$(EAs) \rightarrow Rd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format MOV.W <eas>, Rd</eas>	H: Previous value remains unchanged.N: Set to 1 if the data value is negative; otherwise cleared to 0.Z: Set to 1 if the data value is zero; otherwise
Operand Size Word	cleared to 0.V: Always cleared to 0.C: Previous value remains unchanged.

Description

This instruction transfers the source operand contents to a 16-bit register Rd, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: R0 to R7, E0 to E7 ERs: ER0 to ER7

cecution
E
for
ired f
equi
R
states
ofS
Number (
and
Format
perand]

0

Addressing								Instructio	Instruction Format				No. of
Mode	Mnemonic	Operands	1st byte	yte	2nd byte	oyte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	States
Immediate	MOV.W	#xx:16,Rd	~	6	0	rd	≧	MMI					4
Register indirect	MOV.W	@ERs,Rd	9	თ	0 ers rd	р							4
Register	MOV.W	@(d:16,ERs),Rd	<u>ب</u>	ш	0 ers	P	.	disp					ڡ
displacement	MOV.W	@ (d:24, ERs), Rd	~	œ	0 ers	0	B o	7 7	0		disp		10
Register indirect with post-increment	MOV.W	@ERs+,Rd	9		0:ers rd	p							Q
Absolute	MOV.W	@aa:16,Rd	9	В	0	rd	a	abs					9
address	MOV.W	@aa:24,Rd	9	B	2	rd	0		abs				8

Notes

1. The source operand <EAs> must be located at an even address.

2. In machine language, MOV.W @R7+, Rd is identical to POP.W Rd.

MOV (MOVe data)

Move

2.2.35 (6) MOV (L)

MOV (MOVe data)

Operation	Condition Code
$(EAs) \rightarrow ERd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format MOV.L <eas>, ERd</eas>	H: Previous value remains unchanged.N: Set to 1 if the data value is negative; otherwise cleared to 0.Z: Set to 1 if the data value is zero; otherwise cleared to 0.
Operand Size Longword	V: Always cleared to 0.C: Previous value remains unchanged.

Description

This instruction transfers the source operand contents to a specified 32-bit register (ERd), tests the transferred data, and sets condition-code flags according to the result. The first memory word located at the effective address is stored in extended register Ed. The next word is stored in general register Rd.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

sing										Instruction Format	ion Fori	mat					No. of
Mode	Mnemonic	Operands	1st byte		2nd byte		3rd byte		4th byte	5th byte		6th byte	7th byte	8th byte	9th byte	10th byte	States
Immediate	MOV.L	#xx:32,Rd	7	∢	0 0 ers	S			MMI	5							9
	MOV.L	@ERs,ERd	0	-	0	9	ര		0 ers 0 erd								æ
Register	MOV.L	@(d:16,ERs),ERd	0	-	0	9	لد		0 ers 0 erd	7	disp						10
displacement	MOV.L	@(d:24,ERs),ERd	0	-	0	~	∞	0 ers	0	<u>م</u> س	2	0 erd	0		disp		14
Register indirect with post-increment	MOV.L	@ERs+,ERd	0	-	0 0	9	D		0 ers 0 erd								10
Absolute	MOV.L	@aa:16,ERd	0	-	0	9	Δ	0	0 erd	w	abs						10
	MOV.L	@aa:24,ERd	0	-	0 0	Q	<u> </u>	N	0 erd	0 0			abs				12

Notes

RENESAS

Rev. 3.00 Dec 13, 2004 page 121 of 258

REJ09B0213-0300

- 1. The source operand ${<}EAs{>}$ must be located at an even address.
- In machine language, MOV.L @ER7+, ERd is identical to POP.L ERd. ä

MOV (L)

MOV (MOVe data)

2.2.35 (7) MOV (B)

MOV (MOVe data)

Operation	Condition Code
$Rs \rightarrow (EAd)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format MOV.B Rs, <ead></ead>	H: Previous value remains unchanged.N: Set to 1 if the data value is negative; otherwise cleared to 0.
	Z: Set to 1 if the data value is zero; otherwise cleared to 0.
Operand Size	V: Always cleared to 0.
Byte	C: Previous value remains unchanged.

Description

This instruction transfers the contents of an 8-bit register Rs (source operand) to a destination location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: R0L to R7L, R0H to R7H ERd: ER0 to ER7

Renesas

Operand Format and Number of States Required for Execution

Addressing						Instruction Format	n Format					No. of
Mode	MINEMONIC	Operands	1st byte	-	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	States
Register indirect	MOV.B	Rs, @ERd	8 9		1 erd rs							4
Register	MOV.B	Rs, @(d:16,ERd)	ш 9	ш	1 erd	dis	disp					Q
displacement	MOV.B	Rs, @(d:24,ERd)	7 8	8	0 erd 0	9 9	A	0		disp		10
Register indirect with pre-decrement	MOV.B	Rs,@-ERd	с 9	ں 7	1 erd rs							9
	MOV.B	Rs, @aa:8	e S	6	abs							4
Absolute address	MOV.B	Rs,@aa:16	9 9		80 22	at	abs					Q
	MOV.B	Rs,@aa:24	6 6		A	0		abs				ø

Notes

- 1. The MOV.B Rs, @-ER7 instruction should never be used, because it leaves an odd value in the stack pointer (ER7). For details refer to section 3.3.2, Exception Processing, or to the hardware manual.
 - Execution of MOV.B RnL, @-ERn or MOV.B RnH, @-ERn first decrements ERn by one, then transfers the designated part (RnL or RnH) of the resulting ERn value. ä

MOV (MOVe data)

Move

2.2.35 (8) MOV (W)

MOV (MOVe data)

Operation	Condition Code
$Rs \rightarrow (EAd)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format MOV.W Rs, <ead></ead>	 H: Previous value remains unchanged. N: Set to 1 if the data value is negative; otherwise cleared to 0. Z: Set to 1 if the data value is zero; otherwise
Operand Size Word	cleared to 0.V: Always cleared to 0.C: Previous value remains unchanged.

Description

This instruction transfers the contents of a 16-bit register Rs (source operand) to a destination location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: R0 to R7, E0 to E7 ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing							Instructi	Instruction Format					No. of
Mode	MINEMONIC	Operands	1st byte	te	2nd byte	yte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	States
Register indirect	WOV:W	Rs,@ERd	ø	۰ ۵	1 erd	S							4
Register indiroct with	WOV.W	Rs,@(d:16,ERd)	9	ц.	1 erd	S	q	disp					9
displacement	WOV:W	Rs,@(d:24,ERd)	2	8	0 erd	0	В 9	A rs	0 0		disp		10
Register indirect with post-increment	MOV.W	Rs,@-ERd	9	0	1 erd	s							9
Absolute	MOV.W	Rs,@aa:16	9	۵	œ	S	Ø	abs					9
address	MOV.W	Rs,@aa:24	9	в	A	s	0 0		abs				8

Notes

- 1. The destination operand <EAd> must be located at an even address.
- 2. In machine language, MOV.W Rs, @-R7 is identical to PUSH.W Rs.
- Execution of MOV.W Rn, @-ERn first decrements ERn by 2, then transfers the resulting value. З.

MOV (MOVe data)

Move

REJ09B0213-0300

Rev. 3.00 Dec 13, 2004 page 125 of 258

Renesas

2.2.35 (9) MOV (L)

Operation	Condition Code
$\text{ERs} \rightarrow (\text{EAd})$	I UI H U N Z V C
Assembly-Language Format MOV.L ERs, <ead></ead>	H: Previous value remains unchanged.N: Set to 1 if the data value is negative; otherwise cleared to 0.Z: Set to 1 if the data value is zero; otherwise cleared to 0.
Operand Size Longword	V: Always cleared to 0. C: Previous value remains unchanged.

Description

This instruction transfers the contents of a 32-bit register ERs (source operand) to a destination location, tests the transferred data, and sets condition-code flags according to the result. The extended register (Es) contents are stored at the first word indicated by the effective address. The general register (Rs) contents are stored at the next word.

Available Registers

ERs: ER0 to ER7 ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing										Instructio	Instruction Format					No. of
Mode	MINEMONIC	Operands	1st byte	vte	2nd byte	yte	3rd byte	vte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte	States
Register indirect	MOV.L	ERs,@ERd	0	-	0	0	9	۰ ۵	1 erd 0 ers							œ
Register	MOV.L	ERs, @ (d: 16, ERd)	0	-	0	0	9	ш	1 :erd: 0:ers		disp					10
displacement	MOV.L	ERs, @ (d:24, ERd)	0	-	0	0	2	~	1 erd 0	B O	A 0 ers	0		disp		14
Register indirect with pre-decrement	MOV.L	ERs,@-ERd	0	-	0	0	9	D	1 erd:0 ers	8						10
Absolute	MOV.L	ERs,@aa:16	0	-	0	0	9	в	8 0 ers		abs					10
address	MOV.L	ERs,@aa:24	0	-	0	0	9	в	A 0 ers	0 0		abs				12

Notes

- The destination operand <EAd> must be located at an even address. <u>.</u>:
- In machine language, MOV.L ERs, @-ER7 is identical to PUSH.L ERs. ы . .
- Execution of MOVL ERn, @-ERn first decrements ERn by 4, then transfers the resulting value.

Section 2 Instruction Descriptions

MOV (L)

MOV (MOVe data)

Move

2.2.36 MOVFPE

MOVFPE (MOVe From Peripheral with E clock)

Operation

 $(EAs) \rightarrow Rd$ Synchronized with E clock

Assembly-Language Format

MOVFPE @aa:16, Rd

Operand Size

Byte

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
_				\uparrow	\updownarrow	0	

- H: Previous value remains unchanged.
- N: Set to 1 if the data value is negative; otherwise cleared to 0.
- Z: Set to 1 if the data value is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction transfers memory contents specified by a 16-bit absolute address to a general register Rd in synchronization with an E clock, tests the transferred data, and sets condition-code flags according to the result.

Note: Avoid using this instruction in microcontrollers not having an E clock output pin, or in single-chip mode.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
			1st byte	2nd byte	3rd byte	4th byte	States
Absolute address	MOVFPE	@aa:16, Rd	6 A	4 rd	abs		*

Notes

- 1. This instruction cannot be used with addressing modes other than the above, and cannot transfer word data or longword data.
- 2. Data transfer by this instruction requires 9 to 16 states, so the execution time is variable. For details, refer to the relevant microcontroller hardware manual.
2.2.37 MOVTPE

MOVTPE (MOVe To Peripheral with E clock)

Operation

 $Rs \rightarrow (EAd)$ Synchronized with E clock

Assembly-Language Format

MOVTPE Rs, @aa:16

Operand Size

Byte

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
		—		\uparrow	\updownarrow	0	

- H: Previous value remains unchanged.
- N: Set to 1 if the data value is negative; otherwise cleared to 0.
- Z: Set to 1 if the data value is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction transfers the contents of a general register Rs (source operand) to a destination location specified by a 16-bit absolute address in synchronization with an E clock, tests the transferred data, and sets condition-code flags according to the result.

Note: Avoid using this instruction in microcontrollers not having an E clock output pin, or in single-chip mode.

Available Registers

Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instruction Format						
Mode	Milenonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States			
Absolute address	MOVTPE	Rs, @aa:16	6 A	C rs	abs		*			

Notes

- 1. This instruction cannot be used with addressing modes other than the above, and cannot transfer word data or longword data.
- 2. Data transfer by this instruction requires 9 to 16 states, so the execution time is variable. For details, refer to the relevant microcontroller hardware manual.

Renesas

Move Data with E Clock

2.2.38 (1) MULXS (B)

Multiply Signed

Operation	Condition Code									
$Rd \times Rs \rightarrow Rd$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Assembly-Language Format	H: Previous value remains unchanged.									
MULXS.B Rs, Rd	N: Set to 1 if the result is negative; otherwise cleared to 0.									
	Z: Set to 1 if the result is zero; otherwise									
Operand Size	cleared to 0.									
Byte	V: Previous value remains unchanged.C: Previous value remains unchanged.									

Description

This instruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the contents of an 8-bit register Rs (source operand) as signed data and stores the result in the 16-bit register Rd. If Rd is a general register, Rs can be the upper part (RdH) or lower part (RdL) of Rd. The operation performed is 8-bit \times 8-bit \rightarrow 16-bit signed multiplication.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands			Ins	tructio	on Fori	nat			No. of
	winemonic	Operanus	1st	byte	2nd	byte	3rd	byte	4th	byte	States
Register direct	MULXS.B	Rs, Rd	0	1	С	0	5	0	rs	rd	16

Notes

2.2.38 (2) MULXS (W)

Operation

 $\text{ERd}\times\text{Rs}\rightarrow\text{ERd}$

Assembly-Language Format

MULXS.W Rs, ERd

Operand Size

Word

H: Previous value remains unchanged.

Condition Code

Ι

- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction multiplies the lower 16 bits of a 32-bit register ERd (destination operand) by the contents of a 16-bit register Rs (source operand) as signed data and stores the result in the 32-bit register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is 16-bit $\times 16$ -bit $\rightarrow 32$ -bit signed multiplication.

Available Registers

ERd: ER0 to ER7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		Instructio	on Format		No. of
	Willemonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	MULXS.W	Rs, ERd	0 1	C 0	5 2	rs 0 erd	24

Notes

RENESAS

Multiply Signed

2.2.39 (1) MULXU (B)

MULXU (MULtiply eXtend as Unsigned)

Multiply

Operation	Condition Code								
$Rd \times Rs \rightarrow Rd$		Ι	UI	Н	U	Ν	Ζ	V	С
							—	—	—
Assembly-Language Format MULXU.B Rs, Rd	N:	Prev	vious vious	value	e rem	ains	unch	angec	1.
Operand Size Byte	V:	Prev	vious vious vious	value	e rem	ains	unch	angec	1.

Description

This instruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the contents of an 8-bit register Rs (source operand) and stores the result in the 16-bit register Rd. If Rd is a general register, Rs can be the upper part (RdH) or lower part (RdL) of Rd. The operation performed is 8-bit \times 8-bit \rightarrow 16-bit multiplication.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	WITEHIOTIC	Operations	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	MULXU.B	Rs, Rd	5 0	rs rd			14

Notes

2.2.39 (2) MULXU (W)

MULXU (MULtiply eXtend as Unsigned)

Operation

 $ERd \times Rs \rightarrow ERd$

Assembly-Language Format

MULXU.W Rs, ERd

Operand Size

Word

H: Previous value remains unchanged.

Condition Code

- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

This instruction multiplies the lower 16 bits of a 32-bit register ERd (destination operand) by the contents of a 16-bit register Rs (source operand) and stores the result in the 32-bit register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is 16-bit \times 16-bit \rightarrow 32-bit multiplication.

Available Registers

ERd: ER0 to ER7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	n Format		No. of
Mode	winemonic	Operations	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	MULXU.W	Rs, ERd	5 2	rs 0 erd			22

Notes

Renesas

Multiply

2.2.40 (1) NEG (B)

NEG (NEGate)

Negate Binary Signed

Operation	Condition Code								
$0 - \mathrm{Rd} \rightarrow \mathrm{Rd}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Assembly-Language Format	H: Set to 1 if there is a borrow at bit 3; otherwise cleared to 0.								
NEG.B Rd	N: Set to 1 if the result is negative; otherwise								
	cleared to 0.								
	Z: Set to 1 if the result is zero; otherwise cleared to 0.								
Operand Size	V: Set to 1 if an overflow occurs; otherwise								
Byte	cleared to 0.								
-	C: Set to 1 if there is a borrow at bit 7; otherwise cleared to 0.								

Description

This instruction takes the two's complement of the contents of an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd (subtracting the register contents from H'00). If the original contents of Rd was H'80, however, the result remains H'80.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Witternottic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	NEG.B	Rd	1 7	8 rd			2

Notes

An overflow occurs if the previous contents of Rd was H'80.

2.2.40 (2) NEG (W)

NEG (NEGate)

Negate Binary Signed

Operation	Condition Code
$0 - \mathrm{Rd} \rightarrow \mathrm{Rd}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format	H: Set to 1 if there is a borrow at bit 11; otherwise cleared to 0.
NEG.W Rd	N: Set to 1 if the result is negative; otherwise
	cleared to 0.
	Z: Set to 1 if the result is zero; otherwise
	cleared to 0.
Operand Size	V: Set to 1 if an overflow occurs; otherwise
Word	cleared to 0.
	C: Set to 1 if there is a borrow at bit 15; otherwise cleared to 0.

Description

This instruction takes the two's complement of the contents of a 16-bit register Rd (destination operand) and stores the result in the 16-bit register Rd (subtracting the register contents from H'0000). If the original contents of Rd was H'8000, however, the result remains H'8000.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Milenonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	NEG.W	Rd	1 7	9 rd			2

Notes

An overflow occurs if the previous contents of Rd was H'8000.

Renesas

2.2.40 (3) NEG (L)	
NEG (NEGate)	Negate Binary Sig
Operation	Condition Code
$0 - \text{ERd} \rightarrow \text{ERd}$	I UI H U N Z V C
	$\boxed{- - \updownarrow - \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow}$
	H: Set to 1 if there is a borrow at bit 27;
Assembly-Language Format	otherwise cleared to 0.

NEG.L ERd

Operand Size

Longword

Description

This instruction takes the two's complement of the contents of a 32-bit register ERd (destination operand) and stores the result in the 32-bit register ERd (subtracting the register contents from H'00000000). If the original contents of ERd was H'80000000, however, the result remains H'8000000.

cleared to 0.

cleared to 0.

cleared to 0.

N: Set to 1 if the result is negative; otherwise

Z: Set to 1 if the result is zero: otherwise

C: Set to 1 if there is a borrow at bit 31;

otherwise cleared to 0.

V: Set to 1 if an overflow occurs: otherwise

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic Operands			No. of					
Mode	Milenonie	operando	1st byte		2nc	l byte	3rd byte	4th byte	States
Register direct	NEG.L	ERd	1	7	В	0 erd			2

Notes

An overflow occurs if the previous contents of ERd was H'80000000.

Negate Binary Signed

Renesas

2.2.41 NOP

NOP (No OPeration)

No Operation

Operation	Condition Code
$PC + 2 \rightarrow PC$	I UI H U N Z V C
Assembly-Language Format	H: Previous value remains unchanged.
NOP	N: Previous value remains unchanged.
	Z: Previous value remains unchanged.
Operand Size	C: Previous value remains unchanged.

Description

This instruction only increments the program counter, causing the next instruction to be executed. The internal state of the CPU does not change.

Available Registers

Operand Format and Number of States Required for Execution

1	Addressing	Mnemonic Operands		Instruction Format						No. of	
	Mode	Milenonie	operando	1st byte		te 2nd byte		3rd byte	4th byte	States	
		NOP		0	0	0	0			2	

Notes

RENESAS

2.2.42 (1) NOT (B)

NOT (NO	T = logical	complement)
---------	-------------	-------------

Operation

 $\neg Rd \rightarrow Rd$

Assembly-Language Format

NOT.B Rd

Operand Size

Byte

Description

This instruction takes the one's complement of the contents of an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			Ins	tructio	on Format		No. of
Mode	Witemonic	Operanus	1st byte		2nd	byte	3rd byte	4th byte	States
Register direct	NOT.B	Rd	1	7	0	rd			2

Notes

Rev. 3.00 Dec 13, 2004 page 138 of 258 REJ09B0213-0300

RENESAS

	Co	nditi	on C	ode						
		Ι	UI	Н	U	Ν	Ζ	V	С	
			—			\updownarrow	\updownarrow	0	—	
ıt		Set		f the				0	l. herwise	
		clea	red to	o 0.						

- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Logical Complement

2.2.42 (2) NOT (W)

NOT (**NOT** = logical complement)

Operation

 $\neg \operatorname{Rd} \rightarrow \operatorname{Rd}$

Assembly-Language Format

NOT.W Rd

Operand Size

Word

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero (the previous Rd value was H'FFFF); otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction takes the one's complement of the contents of a 16-bit register Rd (destination operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	WITEINDING	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	NOT.W	Rd	1 7	1 rd			2

Notes

Renesas

Logical Complement

2.2.42 (3) NOT (L)

Operation

 \neg ERd \rightarrow ERd

Assembly-Language Format

NOT.L ERd

Operand Size

Longword

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
_				\uparrow	\Leftrightarrow	0	

- I: Previous value remains unchanged.
- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction takes the one's complement of the contents of a 32-bit register ERd (destination operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	Wittemotific	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	NOT.L	ERd	1 7	3 0 erd			2

Notes

Logical Complement

2.2.43 (1) OR (B)

OR (inclusive **OR** logical)

Operation

 $Rd \lor (EAs) \rightarrow Rd$

Assembly-Language Format

OR.B <EAs>, Rd

Operand Size

Byte

Description

This instruction ORs the source operand with the contents of an 8-bit register Rd (destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L. R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of					
Mode			1st	byte	2nd	byte	3rd byte	4th byte	States
Immediate	OR.B	#xx:8, Rd	С	rd	IN	ΛM			2
Register direct	OR.B	Rs, Rd	1	4	rs	rd			2

Notes

Rev. 3.00 Dec 13, 2004 page 141 of 258 REJ09B0213-0300

RENESAS

- cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.

Condition Code

C: Previous value remains unchanged.

Logical OR

2.2.43 (2) OR (W)

OR (inclusive **OR** logical)

Logical OR

Operation	Condition Code							
$Rd \lor (EAs) \rightarrow Rd$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Assembly-Language Format OR.W <eas>, Rd</eas>	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.Z: Set to 1 if the result is zero; otherwise							
Operand Size Word	 2. Set to 1 if the result is zero, otherwise cleared to 0. V: Always cleared to 0. C: Previous value remains unchanged. 							

Description

This instruction ORs the source operand with the contents of a 16-bit register Rd (destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	WITEHIOTIC		1st byte	2nd byte	3rd byte	4th byte	States
Immediate	OR.W	#xx:16, Rd	7 9	4 rd	IMI	М	4
Register direct	OR.W	Rs, Rd	6 4	rs rd			2

Notes

2.2.43 (3) OR (L)

OR (inclusive **OR** logical)

Operation

 $ERd \lor (EAs) \rightarrow ERd$

Assembly-Language Format

OR.L <EAs>, ERd

Operand Size

Longword

Logical OR

Ι	UI	Н	U	Ν	Ζ	V	С
				\uparrow	\uparrow	0	

- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction ORs the source operand with the contents of a 32-bit register ERd (destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instruction Format								
Mode			1st	byte	2nd	byte	3rd	byte	4th byte	5th byte	6th byte	States
Immediate	OR.L	#xx:32,ERd	7	А	4	0 erd			IM	М		6
Register direct	OR.L	ERs, ERd	0	1	F	0	6	4	0 ers 0 erd			4

Notes

RENESAS

2.2.44 ORC

ORC (inclusive	OR Control	register)
----------------	-------------------	-----------

Operation

 $CCR \lor \#IMM \rightarrow CCR$

Assembly-Language Format

ORC #xx:8, CCR

Operand Size

Byte

Condition Code

_	Ι	UI	Н	U	Ν	Ζ	V	С
	\updownarrow	\leftrightarrow	\updownarrow	\updownarrow	\uparrow	\Leftrightarrow	\updownarrow	\leftrightarrow

I: Stores the corresponding bit of the result.

UI: Stores the corresponding bit of the result.

H: Stores the corresponding bit of the result.

U: Stores the corresponding bit of the result.

N: Stores the corresponding bit of the result.

Z: Stores the corresponding bit of the result.

V: Stores the corresponding bit of the result.

C: Stores the corresponding bit of the result.

Description

This instruction ORs the contents of the condition-code register (CCR) with immediate data and stores the result in the condition-code register. No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	WITEHIOTIC	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Immediate	ORC	#xx:8, CCR	0 4	IMM			2

Notes

Logical OR with CCR

2.2.45 (1) POP (W)

POP (POP data)

Pop Data from Stack

Operation

 $@SP+ \rightarrow Rn$

Assembly-Language Format

POP.W Rn

Operand Size

Word

Condition Code

I	UI	Н	U	Ν	Ζ	V	С
				\uparrow	\updownarrow	0	

- H: Previous value remains unchanged.
- N: Set to 1 if the data value is negative; otherwise cleared to 0.
- Z: Set to 1 if the data value is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction restores data from the stack to a 16-bit general register Rn, tests the restored data, and sets condition-code flags according to the result.

Available Registers

Rn: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Ī	Addressing	Addressing Mode Mnemonic	nemonic Operands		Instruction Format					
	Mode		operando	1st byte	2nd byte	3rd byte	4th byte	States		
l	—	POP.W	Rn	6 D	7 rn			6		

Notes

POP.W Rn is identical to MOV.W @SP+, Rn.

Renesas

2.2.45 (2) POP (L)

POP (POP data)

Pop Data from Stack

Operation

 $@SP+ \rightarrow ERn$

Assembly-Language Format

POP.L ERn

Operand Size

Longword

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the data value is negative; otherwise cleared to 0.
- Z: Set to 1 if the data value is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction restores data from the stack to a 32-bit general register ERn, tests the restored data, and sets condition-code flags according to the result.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Milenonic	operando	1st byte	2nd byte	3rd byte	4th byte	States
	POP.L	ERn	0 1	0 0	6 D	7 0 ern	10

Notes

POP.L ERn is identical to MOV.L @SP+, ERn.

2.2.46 (1) PUSH (W)

PUSH (PUSH data)

Push Data on Stack

 $Rn \rightarrow @-SP$

Assembly-Language Format

PUSH.W Rn

Operand Size

Word

Condition Code

Ι	UI	Н	U	Ν	Ζ	V	С
		—		\Leftrightarrow	\updownarrow	0	

- H: Previous value remains unchanged.
- N: Set to 1 if the data value is negative; otherwise cleared to 0.
- Z: Set to 1 if the data value is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction saves data from a 16-bit register Rn onto the stack, tests the saved data, and sets condition-code flags according to the result.

Available Registers

Rn: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Milenonie	operando	1st byte	2nd byte	3rd byte	4th byte	States
_	PUSH.W	Rn	6 D	F m			6

Notes

- 1. PUSH.W Rn is identical to MOV.W Rn, @-SP.
- 2. When PUSH.W R7 or PUSH.W E7 is executed, the value saved on the stack is the lower part (R7) or upper part (E7) of the value of ER7 before execution minus two.

Renesas

2.2.46 (2) PUSH (L)

PUSH (PUSH data)

Push Data on Stack

Operation

 $ERn \rightarrow @-SP$

Assembly-Language Format

PUSH.L ERn

Operand Size

Longword

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the data value is negative; otherwise cleared to 0.
- Z: Set to 1 if the data value is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction pushes data from a 32-bit register ERn onto the stack, tests the saved data, and sets condition-code flags according to the result.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

ĺ	Addressing	Mnemonic	Operands		Instructio	on Format		No. of
	Mode	Milenonie	operando	1st byte	2nd byte	3rd byte	4th byte	States
	_	PUSH.L	ERn	0 1	0 0	6 D	F 0 ern	10

Notes

- 1. PUSH.L ERn is identical to MOV.L ERn, @-SP.
- 2. When PUSH.L ER7 is executed, the value saved on the stack is the value of ER7 before execution minus four.

2.2.47 (1) ROTL (B)

ROTL (ROTate Left)

Rotate

Operation	Condition Code
Rd (left rotation) \rightarrow Rd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format ROTL.B Rd	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.Z: Set to 1 if the result is zero; otherwise
Operand Size Byte	cleared to 0.V: Always cleared to 0.C: Receives the previous value in bit 7.

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the left. The most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic Operands			No. of					
Mode	WITEINDING		1st	byte	2nd	byte	3rd byte	4th byte	States
Register direct	ROTL.B	Rd	1	2	8	rd			2

Notes

Renesas

2.2.47 (2) ROTL (W)

ROTL (ROTate Left)

Operation	Condition Code
Rd (left rotation) \rightarrow Rd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format ROTL.W Rd	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.
Operand Size Word	Z: Set to 1 if the result is zero; otherwise cleared to 0.V: Always cleared to 0.C: Receives the previous value in bit 15.

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the left. The most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic Operands			No. of					
Mode	Witterfiorfic	Operanus	1st byte		2nd byte		3rd byte	4th byte	States
Register direct	ROTL.W	Rd	1	2	9	rd			2

Notes

2.2.47 (3) ROTL (L)

ROTL (ROTate Left)

Rotate

Operation	Condition Code
ERd (left rotation) \rightarrow ERd	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format ROTL.L ERd	 H: Previous value remains unchanged. N: Set to 1 if the result is negative; otherwise cleared to 0. Z: Set to 1 if the result is zero; otherwise
Operand Size Longword	cleared to 0.V: Always cleared to 0.C: Receives the previous value in bit 31.

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the left. The most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Ī	Addressing Mode	Mnemonic	Operands		Instructio	on Format		No. of
		Witterfiorfic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
I	Register direct	ROTL.L	ERd	1 2	B 0 erd			2

Notes

Renesas

2.2.48 (1) ROTR (B)

ROTR (**ROTate Right**)

Operation	Condition Code						
Rd (right rotation) \rightarrow Rd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Assembly-Language Format ROTR.B Rd	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.						
Operand Size Byte	Z: Set to 1 if the result is zero; otherwise cleared to 0.V: Always cleared to 0.C: Receives the previous value in bit 0.						

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the right. The least significant bit is rotated to the most significant bit (bit 7), and also copied to the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		Instructio	on Format		No. of
	winemonic	Operations	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	ROTR.B	Rd	1 3	8 rd			2

Notes

2.2.48 (2) ROTR (W)

ROTR (ROTate Right)

Operatio

Rd (right

Assembl

ROTR.W

Operand

Word

Rotate

on	Condition Code							
t rotation) \rightarrow Rd	<u>I UI H U N Z V C</u>							
	1 + 1 + 0 + 1							
ly-Language Format	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.							
v Rd								
	Z: Set to 1 if the result is zero; otherwise							
d Size	cleared to 0.							
	V: Always cleared to 0.							
	C: Receives the previous value in bit 0.							

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the right. The least significant bit is rotated to the most significant bit (bit 15), and also copied to the carry flag.

Available Registers

Rd: R0 to R7. E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands			Ins	tructio	on Format		No. of
	Millemonic C	Operanus	1st	byte	2nd	byte	3rd byte	4th byte	States
Register direct	ROTR.W	Rd	1	3	9	rd			2

Notes

RENESAS

2.2.48 (3) ROTR (L)

ROTR (**ROTate Right**)

Operation	Condition Code
ERd (right rotation) \rightarrow ERd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format ROTR.L ERd	 H: Previous value remains unchanged. N: Set to 1 if the result is negative; otherwise cleared to 0. 7. Set to 1 if the result is gener otherwise.
Operand Size Longword	Z: Set to 1 if the result is zero; otherwise cleared to 0.V: Always cleared to 0.C: Receives the previous value in bit 0.

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the right. The least significant bit is rotated to the most significant bit (bit 31), and also copied to the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		Instructio	on Format		No. of
	winemonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	ROTR.L	ERd	1 3	B 0 erd			2

Notes

2.2.49 (1) ROTXL (B)

ROTXL (ROTate with eXtend carry Left)

Operation

Rd (left rotation through carry bit) \rightarrow Rd

Assembly-Language Format

ROTXL.B Rd

Operand Size

Byte

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Receives the previous value in bit 7.

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the left through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most significant bit rotates into the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Witemonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	ROTXL.B	Rd	1 2	0 rd			2

Notes

RENESAS

2.2.49 (2) ROTXL (W)

ROTXL (ROTate with eXtend carry Left)

Operation

Rd (left rotation through carry bit) \rightarrow Rd

Assembly-Language Format

ROTXL.W Rd

Operand Size

Word

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Receives the previous value in bit 15.

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the left through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most significant bit rotates into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		Instructio	on Format		No. of
	Witterfiorfic	Operations	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	ROTXL.W	Rd	1 2	1 rd			2

Notes

RENESAS

2.2.49 (3) ROTXL (L)

ROTXL (ROTate with eXtend carry Left)

Operation

ERd (left rotation through carry bit) \rightarrow ERd

Assembly-Language Format

ROTXL.L ERd

Operand Size

Longword

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Receives the previous value in bit 31.

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the left through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most significant bit rotates into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	WITEINOTIC	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	ROTXL.L	ERd	1 2	3 0 erd			2

Notes

RENESAS

2.2.50 (1) ROTXR (B)

ROTXR (ROTate with eXtend carry Right)

Operation

Rd (right rotation through carry bit) \rightarrow Rd

Assembly-Language Format

ROTXR.B Rd

Operand Size

Byte

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Receives the previous value in bit 0.

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the right through the carry flag. The carry flag is rotated into the most significant bit (bit 7). The least significant bit rotates into the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic Operands			No. of			
	whenome	Operatios	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	ROTXR.B	Rd	1 3	0 rd			2

Notes

RENESAS

2.2.50 (2) ROTXR (W)

ROTXR (ROTate with eXtend carry Right)

Operation

Rd (right rotation through carry bit) \rightarrow Rd

Assembly-Language Format

ROTXR.W Rd

Operand Size

Word

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Receives the previous value in bit 0.

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the right through the carry flag. The carry flag is rotated into the most significant bit (bit 15). The least significant bit rotates into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	nemonic Operands		Instruction Format				
	whethome (Operatios	1st byte	2nd byte	3rd byte	4th byte	States	
Register direct	ROTXR.W	Rd	1 3	1 rd			2	

Notes

RENESAS

2.2.50 (3) ROTXR (L)

ROTXR (ROTate with eXtend carry Right)

Operation

ERd (right rotation through carry bit) \rightarrow ERd

Assembly-Language Format

ROTXR.L ERd

Operand Size

Longword

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Receives the previous value in bit 0.

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the right through the carry flag. The carry flag is rotated into the most significant bit (bit 31). The least significant bit rotates into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	Willemonic	Operatios	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	ROTXR.L	ERd	1 3	3 0 erd			2

Notes

RENESAS

2.2.51 RTE

Operation

 $@SP+ \rightarrow CCR$ $@SP+ \rightarrow PC$

RTE

Operand Size

Return from Exception Handling

Condition Code

Ι	UI	Н	U	Ν	Ζ	V	С
\updownarrow	\Leftrightarrow	\updownarrow	\Rightarrow	\Leftrightarrow	\updownarrow	\Rightarrow	\Leftrightarrow

- I: Restored from the corresponding bit on the stack.
- UI: Restored from the corresponding bit on the stack.
- H: Restored from the corresponding bit on the stack.
- U: Restored from the corresponding bit on the stack.
- N: Restored from the corresponding bit on the stack.
- Z: Restored from the corresponding bit on the stack.
- V: Restored from the corresponding bit on the stack.
- C: Restored from the corresponding bit on the stack.

Description

This instruction returns from an exception-handling routine by restoring the condition-code register (CCR) and program counter (PC) from the stack. Program execution continues from the address restored to the program counter. The CCR and PC contents at the time of execution of this instruction are lost.

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Millenionic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
—	RTE		56	7 0			10

RENESAS

RTE

RTE (ReTurn from Exception)

Return from Exception Handling

Notes

The stack structure differs between normal mode and advanced mode.

2.2.52 RTS

RTS (ReTurn from Subroutine)

0

(a

A

R'

0

Return from Subroutine

Operation	Condition Code								
$@SP+ \rightarrow PC$		Ι	UI	Н	U	Ν	Ζ	V	С
		_	_				_		_
Assembly-Language Format					I	1	1		
RTS	H: Previous value remains unchanged.N: Previous value remains unchanged.						1.		
							l.		
Operand Size	Z:	Prev	vious	value	e rem	ains	uncha	anged	1.
	V:	Prev	ious	value	e rem	ains	uncha	angec	l.
_	C:	Prev	ious	value	e rem	ains	uncha	angec	1.
								U	

Description

This instruction returns from a subroutine by restoring the program counter (PC) from the stack. Program execution continues from the address restored to the program counter. The PC contents at the time of execution of this instruction are lost.

Available Registers

Operand Format and Number of States Required for Execution

Addressing	Minemonic	dressing Mnemonic Operar			Instructio	No. of States		
Mode		Operands		2nd byte	3rd byte	4th byte	Normal	Advanced
—	RTS		5 4	7 0			8	10

Notes

The stack structure and number of states required for execution differ between normal mode and advanced mode.

In normal mode, only the lower 16 bits of the program counter are restored.

Rev. 3.00 Dec 13, 2004 page 163 of 258 REJ09B0213-0300

RENESAS

2.2.53 (1) SHAL (B)

SHAL (SHift Arithmetic Left)

Shift Arithmetic

Operation	Condition Code
Rd (left arithmetic shift) \rightarrow Rd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assembly-Language Format SHAL.B Rd	 H: Previous value remains unchanged. N: Set to 1 if the result is negative; otherwise cleared to 0. Z: Set to 1 if the result is zero; otherwise cleared to 0.
Operand Size Byte	V: Set to 1 if an overflow occurs; otherwise cleared to 0.C: Receives the previous value in bit 7.

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the left. The most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	whethome	Operatios	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SHAL.B	Rd	1 0	8 rd			2

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

RENESAS
2.2.53 (2) SHAL (W)

SHAL (SHift Arithmetic Left)

Operation

Rd (left arithmetic shift) \rightarrow Rd

Assembly-Language Format

SHAL.W Rd

Operand Size

Word

Shift Arithmetic

_	Ι	UI	Η	U	Ν	Ζ	V	С
	_			_	\updownarrow	\updownarrow	\uparrow	\uparrow

- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Set to 1 if an overflow occurs; otherwise cleared to 0.
- C: Receives the previous value in bit 15.

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the left. The most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands	Instruction Format						No. of
	winemonic	Operations	1st	byte	2nd	byte	3rd byte	4th byte	States
Register direct	SHAL.W	Rd	1	0	9	rd			2

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

Renesas

2.2.53 (3) SHAL (L)

SHAL (SHift Arithmetic Left)

Shift Arithmetic

Operation	Condition CodeIUIHUNZVC $ \uparrow$ \uparrow \uparrow \uparrow \uparrow						
ERd (left arithmetic shift) \rightarrow ERd							
Assembly-Language Format	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.						
Operand Size Longword	Z: Set to 1 if the result is zero; otherwise cleared to 0.V: Set to 1 if an overflow occurs; otherwise cleared to 0.						
C C C C C C C C C C C C C C C C C C C	C: Receives the previous value in bit 31.						

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the left. The most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	witterflottic	Operatius	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SHAL.L	ERd	1 0	B 0 erd			2

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

2.2.54 (1) SHAR (B)

SHAR (SHift Arithmetic Right)

Operation

Rd (right arithmetic shift) \rightarrow Rd

Assembly-Language Format

SHAR.B Rd

Operand Size

Byte

Condition Code I UI H U N

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Set to 1 if an overflow occurs; otherwise cleared to 0.
- C: Receives the previous value in bit 0.

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the right. Bit 0 shifts into the carry flag. Bit 7 shifts into itself. Since bit 7 remains unaltered, the sign does not change.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	winemonic	Operatius	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SHAR.B	Rd	1 1	8 rd			2

Notes

Renesas

Shift Arithmetic

2.2.54 (2) SHAR (W)

SHAR (SHift Arithmetic Right)

Shift Arithmetic

Operation	Condition Code						
Rd (right arithmetic shift) \rightarrow Rd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Assembly-Language Format SHAR.W Rd	H: Previous value remains unchanged.N: Set to 1 if the result is negative; otherwise cleared to 0.						
Operand Size Word	Z: Set to 1 if the result is zero; otherwise cleared to 0.V: Set to 1 if an overflow occurs; otherwise cleared to 0.						
	C: Receives the previous value in bit 0.						

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the right. Bit 0 shifts into the carry flag. Bit 15 shifts into itself. Since bit 15 remains unaltered, the sign does not change.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands			No. of		
	witternottic	Operations	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SHAR.W	Rd	1 1	9 rd			2

Notes

2.2.54 (3) SHAR (L)

SHAR (SHift Arithmetic Right)

Operation

ERd (right arithmetic shift) \rightarrow ERd

Assembly-Language Format

SHAR.L ERd

Operand Size

Longword

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Set to 1 if an overflow occurs; otherwise cleared to 0.
- C: Receives the previous value in bit 0.

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the right. Bit 0 shifts into the carry flag. Bit 31 shifts into itself. Since bit 31 remains unaltered, the sign does not change.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		No. of			
Mode	winemonic	Operatius	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SHAR.L	ERd	1 1	B 0 erd			2

Notes

RENESAS

Shift Arithmetic

2.2.55 (1) SHLL (B)

SHLL (SHift Logical Left)

Shift Logical

Operation	Condition Code						
Rd (left logical shift) \rightarrow Rd	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Assembly-Language Format	H: Previous value remains unchanged.						
SHLL.B Rd	N: Set to 1 if the result is negative; otherwise cleared to 0.						
	Z: Set to 1 if the result is zero; otherwise						
Operand Size	cleared to 0.						
Byte	V: Always cleared to 0.C: Receives the previous value in bit 7.						

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the left. The most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		Instruction Format					
	Witterfiorfic	Operanus	1st	byte	2nd	byte	3rd byte	4th byte	States
Register direct	SHLL.B	Rd	1	0	0	rd			2

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

2.2.55 (2) SHLL (W)

SHLL (SHift Logical Left)

Shift Logical

Operation	Condition Code							
Rd (left logical shift) \rightarrow Rd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Assembly-Language Format	H: Previous value remains unchanged.							
SHLL.W Rd	N: Set to 1 if the result is negative; otherwise cleared to 0.							
	Z: Set to 1 if the result is zero; otherwise							
Operand Size	cleared to 0.							
Word	V: Always cleared to 0.							
	C: Receives the previous value in bit 15.							

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the left. The most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	Willemonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SHLL.W	Rd	1 0	1 rd			2

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

Renesas

2.2.55 (3) SHLL (L)

SHLL (SHift Logical Left)

Shift Logical

Operation	Condition Code						
ERd (left logical shift) \rightarrow ERd	I UI H U N Z V C						
	$ \uparrow \uparrow \uparrow \downarrow 0 \uparrow \downarrow$						
Assembly-Language Format	H: Previous value remains unchanged.						
SHLL.L ERd	N: Set to 1 if the result is negative; otherwise cleared to 0.						
	Z: Set to 1 if the result is zero; otherwise						
Operand Size	cleared to 0.						
Longword	V: Always cleared to 0.C: Receives the previous value in bit 31.						

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the left. The most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic Operands			Instruction Format						
Mode	Milenonie	operando	1st	byte	2n	d byte	3rd byte	4th byte	States	
Register direct	SHLL.L	ERd	1	0	3	0 erd			2	

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

2.2.56 (1) SHLR (B)

SHLR (SHift Logical Right)

Shift Logical

Operation	Condition Code						
Rd (right logical shift) \rightarrow Rd	I UI H U N Z V C						
	$ 0$ \updownarrow 0 \updownarrow						
Assembly-Language Format	H: Previous value remains unchanged.						
SHLR.B Rd	N: Set to 1 if the result is negative; otherwise cleared to 0.						
	Z: Set to 1 if the result is zero; otherwise						
Operand Size	cleared to 0.						
•	V: Always cleared to 0.						
Byte	C: Receives the previous value in bit 0.						

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the right. The least significant bit shifts into the carry flag. The most significant bit (bit 7) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

	Addressing	Mnemonic	Operands		Instructio	on Format		No. of
	Mode	Milenonie	operanus	1st byte	2nd byte	3rd byte	4th byte	States
F	Register direct	SHLR.B	Rd	1 1	0 rd			2

Notes

Renesas

2.2.56 (2) SHLR (W)

SHLR (SHift Logical Right)

Shift Logical

Operation	Co	nditi	on C	ode					
Rd (right logical shift) \rightarrow Rd		Ι	UI	Н	U	Ν	Ζ	V	С
						0	\updownarrow	0	\uparrow
Assembly-Language Format	H:	Prev	vious	value	e rem	ains	unch	angeo	1.
SHLR.W Rd	N:	Alw	ays c	leare	d to ().		-	
	Z: Set to 1 if the result is zero; otherwise								vise
		clea	red to	o 0.					
Operand Size	V:	Alw	ays c	leare	d to ().			
Word	C:	Rec	eives	the p	orevio	ous va	alue i	n bit	0.

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the right. The least significant bit shifts into the carry flag. The most significant bit (bit 15) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Anemonic Operands		Instruction Format							
Mode	Witterfiorfic	Operanus	1st	byte	2nd	byte	3rd byte	4th byte	States		
Register direct	SHLR.W	Rd	1	1	1	rd			2		

Notes

2.2.56 (3) SHLR (L)

SHLR (SHift Logical Right)

Shift Logical

Operation	Condition Code						
ERd (right logical shift) \rightarrow ERd	I UI H U N Z V C						
	$\boxed{- - - 0 \uparrow 0 \uparrow}$						
Assembly-Language Format	H: Previous value remains unchanged.						
SHLR.L ERd	N: Always cleared to 0.						
	Z: Set to 1 if the result is zero; otherwise						
	cleared to 0.						
Operand Size	V: Always cleared to 0.						
Longword	C: Receives the previous value in bit 0.						

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the right. The least significant bit shifts into the carry flag. The most significant bit (bit 31) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	n Format		No. of
Mode	Witemonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SHLR.L	ERd	1 1	3 0 erd			2

Notes

Renesas

2.2.57 SLEEP

SLEEP (SLEEP)

Power-Down Mode

Operation

Program execution state \rightarrow power-down mode

Assembly-Language Format

SLEEP

Operand Size

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
—							

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

Description

When the SLEEP instruction is executed, the CPU enters a power-down state. Its internal state remains unchanged, but the CPU stops executing instructions and waits for an exception-handling request. When it receives an exception-handling request, the CPU exits the power-down state and begins the exception-handling sequence. Interrupt requests other than NMI cannot end the power-down state if they are masked in the CPU.

Available Registers

Operand Format and Number of States Required for Execution

Addressing	Mnemonic Operands						No. of		
Mode	Milenonie	operando	1st byte		2nd byte		3rd byte	4th byte	States
	SLEEP		0	1	8	0			2

Notes

For information about the power-down state, see the relevant microcontroller hardware manual.

Store CCR

2.2.58 (1) STC (B)

STC (STore from Control register)

.. ~

Description

This instruction copies the CCR contents to an 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Willemonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	STC.B	CCR, Rd	0 2	0 rd			2

Notes

Operation	Condition Code						
$CCR \rightarrow Rd$	I UI H U N Z V C						
	- - - - - - - -						
Assembly-Language Format	H: Previous value remains unchanged.						
STC.B CCR, Rd	N: Previous value remains unchanged.						
	Z: Previous value remains unchanged.						
	V: Previous value remains unchanged.						
Operand Size	C: Previous value remains unchanged.						
Byte							

2.2.58 (2) STC (W)

STC (STore from Control register)

Operation

 $CCR \rightarrow (EAd)$

Assembly-Language Format

STC.W CCR, <EAd>

Operand Size

Word

Description

This instruction copies the CCR contents to a destination location. Although CCR is a byte register, the destination operand is a word operand. The CCR contents are stored at the even address.

Available Registers

ERd: ER0 to ER7

Store CCR

Ι	UI	Н	U	Ν	Ζ	V	С
—							

H: Previous value remains unchanged.

Condition Code

- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

ion	
or Executi	
Required fo	
of States R	
Number	
ormat and	
perand For	
0	

Addressina										Instrue	Instruction Format	⁻ ormat					No. of
Mode	Mnemonic	Mode Mnemonic Operands	1st byte		2nd byte		3rd byte		4th byte	5th byte		6th byte	7th byte	8th byte	9th byte	10th byte	
Register indirect	STC.W	CCR, @ERd	0	-	4	0	6 9		1 erd 0								و
Register	STC.W	CCR,@(d:16,ERd) 0	0	-	4	•	ш 	¥	1 erd 0		disp						∞
displacement	STC.W	STC.W CCR,@(d:24,ERd)	0	-	4	0	8		0.erd: 0	۵	4	0 V	0		disp		12
Register indirect with pre-decrement	STC.W	CCR,@-ERd	0	-	4	0	0 9		1 erd: 0								8
Absolute	STC.W	CCR,@aa:16	0	-	4	0	9 0		8		abs						8
ddress	STC.W	CCR, @ aa:24	0 1		4 0		6 6		0 V	0	c		abs				10

Notes

Rev. 3.00 Dec 13, 2004 page 179 of 258 REJ09B0213-0300

STC (W)

STC (STore from Control register)

Store CCR

2.2.59 (1) SUB (B)

SUB (SUBtract binary)

Subtract Binary

Operation	Condition Code
$Rd - Rs \rightarrow Rd$	I UI H U N Z V C
	$\boxed{- - \updownarrow - \updownarrow \updownarrow \updownarrow \updownarrow }$
Assembly-Language Format	H: Set to 1 if there is a borrow at bit 3;
SUB.B Rs, Rd	otherwise cleared to 0.
	N: Set to 1 if the result is negative; otherwise
	cleared to 0.
Operand Size	Z: Set to 1 if the result is zero; otherwise
Byte	cleared to 0.
byte	V: Set to 1 if an overflow occurs; otherwise
	cleared to 0.
	C: Set to 1 if there is a borrow at bit 7;
	otherwise cleared to 0.

Description

This instruction subtracts the contents of an 8-bit register Rs (source operand) from the contents of an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands		Instructio	on Format		No. of
Mode	Witemonic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Register direct	SUB.B	Rs, Rd	1 8	rs rd			2

SUB (B)

SUB (SUBtract binary)

Subtract Binary

Notes

The SUB.B instruction can operate only on general registers. Immediate data can be subtracted from general register contents by using the SUBX instruction. Before executing SUBX #xx:8, Rd, first set the Z flag to 1 and clear the C flag to 0. The following coding examples can also be used to subtract nonzero immediate data #IMM.

(1)	ORC	#H'05, CCR
		SUBX #(IMM-1), Rd
(2)	ADD	#(0-IMM), Rd
		XORC #H'01, CCR

2.2.59 (2) SUB (W)

SUB (SUBtract binary)

Subtract Binary

Operation	Condition Code
$Rd - (EAs) \rightarrow Rd$	I UI H U N Z V C
	$ - - \updownarrow - \updownarrow \updownarrow \updownarrow \updownarrow $
Assembly-Language Format	H: Set to 1 if there is a borrow at bit 11;
SUB.W <eas>, Rd</eas>	otherwise cleared to 0.
	N: Set to 1 if the result is negative; otherwise
	cleared to 0.
Operand Size	Z: Set to 1 if the result is zero; otherwise
Word	cleared to 0.
Word	V: Set to 1 if an overflow occurs; otherwise
	cleared to 0.
	C: Set to 1 if there is a borrow at bit 15;
	otherwise cleared to 0.

Description

This instruction subtracts a source operand from the contents of a 16-bit register Rd (destination operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			Ins	tructio	on Format		No. of
Mode	WITEHIOTIC	Operatius	1st	byte	2nd	byte	3rd byte	4th byte	States
Immediate	SUB.W	#xx:16, Rd	7	9	3	rd	IN	IM	4
Register direct	SUB.W	Rs, Rd	1	9	rs	rd			2

Notes

2.2.59 (3) SUB (L)

SUB (SUBtract binary)

Operation

 $ERd - \langle EAs \rangle \rightarrow ERd$

Assembly-Language Format

SUB.L <EAs>, ERd

Operand Size

Longword

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
		\updownarrow		\Leftrightarrow	\updownarrow	\Rightarrow	\Rightarrow

- H: Set to 1 if there is a borrow at bit 27; otherwise cleared to 0.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Set to 1 if an overflow occurs; otherwise cleared to 0.
- C: Set to 1 if there is a borrow at bit 31; otherwise cleared to 0.

Description

This instruction subtracts a source operand from the contents of a 32-bit register ERd (destination operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Maamania	Onerende			Instructio	n Format			No. of
Mode	whemonic	Operands	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	States
Immediate	SUB.L	#xx:32, ERd	7 A	3 0 erd		IN	M		6
Register direct	SUB.L	ERs, ERd	1 A	1 ers 0 erd					2

Notes

Renesas

Subtract Binary

2.2.60 SUBS

SUBS (SUBtract with Sign extension)

Operation

 $ERd - 1 \rightarrow ERd$ $ERd - 2 \rightarrow ERd$ $ERd - 4 \rightarrow ERd$

Assembly-Language Format

SUBS #1, ERd SUBS #2, ERd SUBS #4, ERd

Operand Size

Longword

Description

This instruction subtracts the immediate value 1, 2, or 4 from the contents of a 32-bit register ERd (destination register). Differing from the SUB instruction, it does not affect the condition-code flags.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing	Mnemonic	Operands			In	structio	n Format		No. of
Mode	whenonic	Operations	1st I	byte	2nc	d byte	3rd byte	4th byte	States
Register direct	SUBS	#1, ERd	1	В	0	0 erd			2
Register direct	SUBS	#2, ERd	1	В	8	0 erd			2
Register direct	SUBS	#4, ERd	1	В	9	0 erd			2

Notes

Rev. 3.00 Dec 13, 2004 page 184 of 258 REJ09B0213-0300

Subtract Binary Address Data

Condition Code

Ι	UI	Η	U	Ν	Ζ	V	С
—							

- H: Previous value remains unchanged.
- N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
- V: Previous value remains unchanged.
- C: Previous value remains unchanged.

2.2.61 SUBX

SUBX (SUBtract with eXtend carry)

Operation	Condition Code											
$Rd - (EAs) - C \rightarrow Rd$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Assembly-Language Format	H: Set to 1 if there is a borrow from bit 3; otherwise cleared to 0.											
SUBX <eas>, Rd</eas>	N: Set to 1 if the result is negative; otherwis cleared to 0.											
	Z: Set to 1 if the result is zero; otherwise cleared to 0.											
Operand Size	V: Set to 1 if an overflow occurs; otherwise cleared to 0.											
Byte	C: Set to 1 if there is a borrow from bit 7; otherwise cleared to 0.											

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands -		Instruction Format									
	WINEIHOINC		1st	byte	2nd byte	3rd byte	4th byte	States					
Immediate	SUBX	#xx:8, Rd	В	rd	IMM			2					
Register direct	SUBX	Rs, Rd	1	E	rs rd			2					

Notes

Rev. 3.00 Dec 13, 2004 page 185 of 258 REJ09B0213-0300

Renesas

Subtract with Borrow

2.2.62 TRAPA

TRAPA (TRAP Always)

Trap Unconditionally

Operation	Co	nditi	on Co	ode						
$PC \rightarrow @-SP$		Ι	UI	Н	U	Ν	Ζ	V	С	
$CCR \rightarrow @-SP$		1	Δ^{*1}							
$\langle \text{Vector} \rangle \rightarrow \text{PC}$										
	I:	Alw	ays s	et to	1.					
Assembly-Language Format	U: See notes.									
TRAPA #x:2	H:	Prev	ious	value	e rem	ains	uncha	anged	1.	
ΙΚΑΡΑ πλ.2	N: Previous value remains unchanged.									
	Z:	Prev	ious	value	e rem	ains	uncha	anged	1.	
Operand Size	V:	Prev	vious	value	e rem	ains	uncha	anged	1.	
—	C:	Prev	vious	value	e rem	ains	uncha	anged	1.	

Description

This instruction pushes the program counter (PC) and condition-code register (CCR) on the stack, then sets the I bit to 1 and branches to a new address. The new address is the contents of the vector address corresponding to the specified vector number. The PC value pushed on the stack is the starting address of the next instruction after the TRAPA instruction.

#x	Vector Address									
#X	Normal Mode	Advanced Mode								
0	H'0010 to H'0011	H'000020 to H'000023								
1	H'0012 to H'0013	H'000024 to H'000027								
2	H'0014 to H'0015	H'000028 to H'00002B								
3	H'0016 to H'0017	H'00002C to H'00002F								

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands	Instruction Format									
	Milenionie	operanas	1st byte	2nd byte	3rd byte	4th byte	States					
Register direct	TRAPA	#x:2	5 7	00 IMM 0			14					

Notes

- 1. CCR bit 6 is set to 1 when used as an interrupt mask bit, but retains its previous value when used as a user bit.
- 2. The stack and vector structure differ between normal mode and advanced mode.

2.2.63 (1) XOR (B)

XOR (eXclusive OR logical)

Operation

 $Rd \oplus (EAs) \rightarrow Rd$

Assembly-Language Format

XOR.B <EAs>, Rd

Operand Size

Byte

Exclusive Logical OR

-	01	 C	1,	Ζ	•	0
		_	\updownarrow	\$	0	

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.

Condition Code

C: Previous value remains unchanged.

Description

This instruction exclusively ORs the source operand with the contents of an 8-bit register Rd (destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		Instruction Format									
	Witternottic	Operatios	1st	byte	2nd byte	3rd byte	4th byte	States					
Immediate	XOR.B	#xx:8, Rd	D	rd	IMM			2					
Register direct	XOR.B	Rs, Rd	1	5	rs rd			2					

Notes

Renesas

2.2.63 (2) XOR (W)

XOR (eXclusive OR logical)

Operation

 $Rd \oplus (EAs) \rightarrow Rd$

Assembly-Language Format

XOR.W <EAs>, Rd

Operand Size

Word

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction exclusively ORs the source operand with the contents of a 16-bit register Rd (destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7 Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of					
	WINEIHOTHC		1st byt	е	2nd	byte	3rd byte	4th byte	States
Immediate	XOR.W	#xx:16, Rd	7 9	9	5	rd	IN	M	4
Register direct	XOR.W	Rs, Rd	6 5	5	rs	rd			2

Notes

Exclusive Logical OR

2.2.63 (3) XOR (L)

XOR (eXclusive OR logical)

Operation

 $\operatorname{ERd} \oplus (\operatorname{EAs}) \to \operatorname{ERd}$

Assembly-Language Format

XOR.L <EAs>, ERd

Operand Size

Longword

Condition Code

- H: Previous value remains unchanged.
- N: Set to 1 if the result is negative; otherwise cleared to 0.
- Z: Set to 1 if the result is zero; otherwise cleared to 0.
- V: Always cleared to 0.
- C: Previous value remains unchanged.

Description

This instruction exclusively ORs the source operand with the contents of a 32-bit register ERd (destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7 ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		Instruction Format										
	Witterfloring	Operatios	1st	byte	2nc	byte	3rd	byte	4th byte	5th byte	6th byte	States		
Immediate	XOR.L	#xx:32, ERd	7	А	5	0 erd		IMM				6		
Register direct	XOR.L	ERs, ERd	0	1	F	0	6	5	0 ers 0 erd			4		

Notes

Renesas

Exclusive Logical OR

XORC (eXclusive OR Control register)

2.2.64 XORC

Operation	Condition Code
$CCR \oplus \#IMM \rightarrow CCR$	IUIHUNZVC \updownarrow
Assembly-Language Format XORC #xx:8, CCR	I: Stores the corresponding bit of the result UI: Stores the corresponding bit of the result H: Stores the corresponding bit of the result U: Stores the corresponding bit of the result N: Stores the corresponding bit of the result
Operand Size Byte	Z: Stores the corresponding bit of the resultV: Stores the corresponding bit of the resultC: Stores the corresponding bit of the result

Description

This instruction exclusively ORs the contents of the condition-code register (CCR) with immediate data and stores the result in the condition-code register. No interrupt requests, including NMI, are accepted immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Addressing Mode	Mnemonic	Operands		No. of			
	Witterfiorfic	Operanus	1st byte	2nd byte	3rd byte	4th byte	States
Immediate	XORC	#xx:8, CCR	0 5	IMM			2

Notes

Exclusive Logical OR with CCR

2.3 Instruction Set Summary

Table 2.1 Instruction Set Summary

							Addres	ssing	Modes	;				
Function	Instruction	XX#	Rn	@ERn	@(d:16,ERn)	@(d:24,ERn)	@ERn+/@-ERn	@aa:8	@aa:16	@aa:24	@(d:8,PC)	@(d:16,PC)	@ @aa:8	I
Data	MOV	BWL	BWL	BWL	BWL	BWL	BWL	В	BWL	BWL	—		—	—
transfer	POP, PUSH	_	_	_	—	—	_		—	_	_	—	_	WL
	MOVFPE, MOVTPE	—	—	—	—	—	—	l	В		_	—	—	—
Arithmetic	ADD, CMP	BWL	BWL		—	_	_				_		—	—
operations	SUB	WL	BWL	_	—	_	_		_	_	_		_	—
	ADDX, SUBX	В	В	_	_	_	_		_		—	_	_	—
	ADDS, SUBS	_	L	_	_	—	_		_		—	—	_	—
	INC, DEC	—	BWL	—	—	—	—		—	_	_	—	—	—
	DAA, DAS	—	В	_	—	_	_		_		_		—	—
	MULXU, DIVXU, MULXS, DIVXS	_	BW	_	_	_	_		_	_	_		_	_
	NEG	_	BWL	_	—	_	_		_	_	_		_	—
	EXTU, EXTS	—	WL	—	—	—	—	_	—	—	—	—	—	—
Logic operations	AND, OR, XOR	BWL	BWL	—	—	—	—	_	—	—	—	—	—	—
	NOT	—	BWL	—	—	—	—	_	—	—	_	—	—	—
Shift operation	ons	—	BWL		—	—	—	—	—	—		—	—	—
Bit manipulat	ion	_	В	В	—		—	В			_		_	—

							Addre	ssing	Modes	6				
Function	Instruction	XX#	Rn	@ERn	@(d:16,ERn)	@(d:24,ERn)	@ERn+/@-ERn	@aa:8	@aa:16	@aa:24	@(d:8,PC)	@(d:16,PC)	@ @ aa:8	I
Branch	Bcc, BSR			—	—	—	—	—	—	—	0	0	—	—
	JMP, JSR	_		0	_	—	_	—	—	0	—	—	0	—
	RTS	_		—	_	—	_	—	—	—	—	—	—	0
System control	TRAPA, RTE, SLEEP	_	_	_	_	_	_	_	_	_	_	—	_	0
	LDC	В	В	W	W	W	W	—	W	W	—	_	—	_
	STC	_	В	W	W	W	W	—	W	W	—	_	—	—
	ANDC, ORC, XORC	В				_		_			_	_		_
	NOP	_	_	_	—	—	—	—	—	_	—	_	—	0
Block data tra	ansfer	—	_	—	—	—	—	—	—	—	—	—	—	В

Legend:

B: Byte

W: Word

L: Longword

Table 2.2Instruction Set

(1) Data Transfer Instructions

									de a h (b				с	on	ditio	on (Cod	le	No. of	States
	Mnemonic	Size	#xx	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @aa	1	Operation	I	н	N	z	v	с	Normal	Ad- vanced
MOV	MOV.B #xx:8,Rd	в	2									#xx:8→Rd8			\updownarrow	\updownarrow	0		2	2
	MOV.B Rs,Rd	в		2								Rs8→Rd8			\updownarrow	\updownarrow	0		2	2
	MOV.B @ERs,Rd	в			2							@ERs→Rd8	—		\updownarrow	\updownarrow	0		4	4
	MOV.B @(d:16, ERs), Rd	в				4						@(d:16,ERs)→Rd8			\updownarrow	\updownarrow	0		6	6
	MOV.B @(d:24,ERs),Rd	в				8						@(d24:,ERs24)→Rd8	—		\updownarrow	\updownarrow	0	_	10	10
	MOV.B @ERs+,Rd	в					2					$@ERs \rightarrow Rd8, ERs32+1 \rightarrow ERs32$	—		\updownarrow	\updownarrow	0		6	6
	MOV.B @aa:8,Rd	в						2				@aa:8→Rd8	-	_	\updownarrow	\updownarrow	0	_	4	4
	MOV.B @aa:16,Rd	в						4				@aa:16→Rd8			\updownarrow	\updownarrow	0	_	6	6
	MOV.B @aa:24,Rd	в						6				@aa:24→Rd8	-	_	\updownarrow	\updownarrow	0	_	8	8
	MOV.B Rs,@ERd	в			2							Rs8→@ERd24	-	_	\updownarrow	\updownarrow	0	-	4	4
	MOV.B Rs,@(d:16,ERd)	в				4						Rd8→@(d:16,ERd)			€	↕	0	_	6	6
	MOV.B Rs,@(d:24,ERd)	в				8						Rd8→@(d:24,ERd)			€	€	0		10	10
	MOV.B Rs,@-ERd	в					2					ERd32-1→ERd32,Rs8→@ERd			\$	≎	0		6	6
	MOV.B Rs,@aa:8	в						2				Rs8→@aa:8			\$	↕	0	_	4	4
	MOV.B Rs,@aa:16	в						4				Rs8→@aa:16			\$	↕	0	-	6	6
	MOV.B Rs,@aa:24	в						6				Rs8→@aa:24			€	↕	0		8	8
	MOV.W #xx:16,Rd	w	4									#xx:16→Rd16			\$	↕	0	_	4	4
	MOV.W Rs,Rd	w		2								Rs16→Rd16			€	€	0		2	2
	MOV.W @ERs,Rd	w			2							@ERs24→Rd16			\$	↕	0	_	4	4
	MOV.W @(d:16,ERs),Rd	w				4						@(d:16,ERs)→Rd16			€	€	0		6	6
	MOV.W @(d:24,ERs),Rd	w				8		-				@(d:24,ERs)→Rd16	_	_	\$	\$	0		10	10
	MOV.W @ERs+,Rd	w					2					@ERs→Rd16,ERs32+2→@ERd	_	_	\$	\$	0		6	6
	MOV.W @aa:16,Rd	w						4				@aa:16→Rd16	_	_	\$	\$	0		6	6
	MOV.W @aa:24,Rd	w						6				@aa:24→Rd16	_	_	\$	\$	0		8	8
	MOV.W Rs,@ERd	w			2			-				Rs16→@ERd	_	_	\$	\$	0		4	4
	MOV.W Rs,@(d:16,ERd)	w				4						Rs16→@(d:16,ERd)	_	_	\$	\$	0		6	6
	MOV.W Rs,@(d:24,ERd)	w			-	8					-	Rs16→@(d:24,ERd)	_	_	\$	\$	0		8	10
	MOV.W Rs,@-ERd	w					2	-				ERd32-2→ERd32,Rs16→@ERd24	_	_	\$	\$	0		6	6
	MOV.W Rs,@aa:16	w			-			4			-	Rs16→@aa:16	-	_	\$	\$	0		6	6
	MOV.W Rs,@aa:24	w						6				Rs16→@aa:24	_		\$	\$	0		8	8
	MOV.L #xx:32,ERd	L	6									#xx:32→ERd32	_		¢	÷ ↓	0		8	6
	MOV.L ERs,ERd	L	-	2		-				-		ERs32→ERd32	_	_	↓ ↓	↔	0		2	2
	MOV.L @ERs,ERd	L		\vdash	4	\vdash		-	-		\vdash	@ERs→ERd32	_		↓	÷ ¢	0		8	8

							•			and oyte:			c	on	diti	on	Cod	le	No. of	States
	Mnemonic	Size	XX#	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa	I	Operation	I	н	N	z	v	с	Normal	Ad- vanced
MOV	MOV.L @(d:16,ERs),ERd	L				6						@(d:16,ERs)→ERd32	—		\updownarrow	\updownarrow	0	—	10	10
	MOV.L @(d:24,ERs),ERd	L				10						@(d:24,ERs)→ERd32	-	—	\updownarrow	\updownarrow	0	—	14	14
	MOV.L @ERs+,ERd	L					4					$ERs{\rightarrow}ERd32,ERs32+4{\rightarrow}@ERs32$	-	—	\updownarrow	\updownarrow	0		10	10
	MOV.L @aa:16,ERd	L						6				@aa:16→ERd32	-	—	\updownarrow	\updownarrow	0		10	10
	MOV.L @aa:24,ERd	L						8				@aa:24→ERd32	-	—	\updownarrow	\$	0		12	12
	MOV.L ERs,@ERd	L			4							ERs32→@ERd24	—	—	\updownarrow	\updownarrow	0	—	8	8
	MOV.L ERs,@(d:16,ERd)	L				6						ERs32→@(d:16,ERd)	-	—	\updownarrow	\updownarrow	0		10	10
	MOV.L ERs,@(d:24,ERd)	L				10						ERs32→@(d:24,ERd)	-	—	\updownarrow	\updownarrow	0		14	14
	MOV.L ERs,@-ERd	L					4					$ERd32-4{\rightarrow}ERd32,ERs32{\rightarrow}@ERd$	-	—	\updownarrow	\updownarrow	0		10	10
	MOV.L ERs,@aa:16	L						6				ERs32→@aa:16	-	—	\updownarrow	\updownarrow	0		10	10
	MOV.L ERs,@aa:24	L						8				ERs32→@aa:24	-	—	\updownarrow	\updownarrow	0	—	12	12
POP	POP.W Rn	W									2	$@SP \rightarrow Rn16, SP+2 \rightarrow SP$	-	—	\updownarrow	\updownarrow	0		6	6
	POP.L ERn	L									4	$@SP \rightarrow ERn32, SP+4 \rightarrow SP$	—	—	\updownarrow	\updownarrow	0	—	8	10
PUSH	PUSH.W Rn	W									2	$SP-2 {\rightarrow} SP, Rn16 {\rightarrow} @SP$	-	—	\updownarrow	\updownarrow	0	—	6	6
	PUSH.L ERn	L									4	$SP-4 \rightarrow SP, ERn32 \rightarrow @SP$	-	_	\updownarrow	\updownarrow	0	—	8	10
MOVFPE	MOVFPE@aa:16,Rd	В						4				@aa:16→Rd (synchronized with E clock)	-	-	\$	\$	0	-	(6)	(6)
MOVTPE	MOVTPE Rs,@aa:16	В						4				$Rs \rightarrow @aa:16$ (synchronized with E clock)R	-	—	\$	\$	0	—	(6)	(6)

(2) Arithmetic Operation Instructions

			In	Ad			ng Ler						c	on	diti	on	Coc	le	No. of	States
	Mnemonic	Size	XX#	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @aa		Operation	I	н	N	z	v	с	Normal	Ad- vanced
ADD	ADD.B #xx:8,Rd	В	2									Rd8+#xx:8→Rd8	-	\$	\updownarrow	\updownarrow	\updownarrow	↕	2	2
	ADD.B Rs,Rd	В		2								Rd8+Rs8→Rd8	-	\$	\updownarrow	\updownarrow	\updownarrow	↕	2	2
	ADD.W #xx:16,Rd	W	4									Rd16+#xx:16→Rd16	-	(1)	\updownarrow	\updownarrow	\updownarrow	↕	4	4
	ADD.W Rs,Rd	W		2								Rd16+Rs16→Rd16	_	(1)	\updownarrow	\updownarrow	\updownarrow	\updownarrow	2	2
	ADD.L #xx:32,ERd	L	6									ERd32+#xx:32→ERd32	-	(2)	\updownarrow	\updownarrow	\updownarrow	\updownarrow	6	6
	ADD.L ERs,ERd	L		2								ERd32+ERs32→ERd32	_	(2)	\updownarrow	\updownarrow	\updownarrow	\updownarrow	2	2
ADDX	ADDX #xx:8,Rd	В	2									Rd8+#xx:8+C→Rd8	-	€	€	(3)	\updownarrow	\$	2	2
	ADDX Rs,Rd	В		2								Rd8+Rs8+C→Rd8	-	\$	\$	(3)	↕	\$	2	2
ADDS	ADDS.L #1,ERd	L		2								ERd32+1→ERd32	-	—	_	_	_		2	2
	ADDS.L #2,ERd	L		2								ERd32+2→ERd32	_						2	2
	ADDS.L #4,ERd	L		2								ERd32+4→ERd32	-						2	2
INC	INC.B Rd	В		2								Rd8+1→Rd8	_	_	\$	⊅	€		2	2
	INC.W #1,Rd	W		2								Rd16+1→Rd16	_	_	\$	\$	€		2	2
	INC.W #2,Rd	W		2								Rd16+2→Rd16	_	_	€	€	€		2	2
	INC.L #1,ERd	L		2								ERd32+1→ERd32	-		€	€	€		2	2
	INC.L #2,ERd	L		2								ERd32+2→ERd32	_		\$	\$	€		2	2
DAA	DAA Rd	В		2								Rd8 decimal adjust →Rd8	_	*	€	€	*	€	2	2
SUB	SUB.B Rs,Rd	В		2								Rd8–Rs8→Rd8	_	\$	⊅	€	€	€	2	2
	SUB.W #xx:16,Rd	W	4									Rd16–#xx:16→Rd16	_	(1)	€	€	€	≎	4	4
	SUB.W Rs,Rd	W		2								Rd16–Rs16→Rd16	_	(1)	€	€	↕	€	2	2
	SUB.L #xx:32,ERd	L	6									ERd32–#xx:32→ERd32	_	(2)	⊅	⊅	€	€	6	6
	SUB.L ERs,ERd	L		2								ERd32–ERs32→ERd32	_	(2)	€	€	€	€	2	2
SUBX	SUBX.B #xx:8,Rd	В	2									Rd8–#xx:8–C→Rd8	_	\$	\$	(3)	€	≎	2	2
	SUBX.B Rs,Rd	в		2								Rd8–Rs8–C→Rd8	_	€	⊅	(3)	€	€	2	2
SUBS	SUBS.L #1,ERd	L		2								Erd32–1→ERd32	_	_					2	2
	SUBS.L #2,ERd	L	-	2						\vdash	1	ERd32–2→ERd32	1_	1_	-	-	-	_	2	2
	SUBS.L #4,ERd	L	1	2						t	+	ERd32–4→ERd32	-	-	-	-	_	_	2	2
DEC	DEC.B Rd	В	1	2						t	+	Rd8–1→Rd8	1_	1_	€	€	€	_	2	2
	DEC.W #1,Rd	W	1	2				-		\vdash	1	Rd16–1→Rd16	_	1_	\$	\$	\$	_	2	2
	DEC.W #2,Rd	W	1	2						t	+	Rd16–2→Rd16	-	-	÷	÷	\$	_	2	2
	DEC.L #1,ERd	L	\vdash	2						t		ERd32–1→ERd32	_	-	÷ ¢	÷ ¢	¢		2	2
	DEC.L #2,ERd	L	\vdash	2						+	+	ERd32–2→ERd32	_	-	¢	¢	¢	_	2	2
DAS	DAS Rd	В	+	2		-			-	+	+	Rd8 decimal adjust →Rd8	_	*	¢	¢	*		2	2

			Ir						de i h (k		d es)		С	on	ditio	on	Coc	le	No. of	States
	Mnemonic	Size	#xx	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa		Operation	I	н	N	z	v	с	Normal	Ad- vanced
NEG	NEG.B Rd	В		2								0–Rd8→Rd8	_	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\$	2	2
	NEG.W Rd	W		2								0–Rd16→Rd16	—	↕	\updownarrow	↕	\updownarrow	\updownarrow	2	2
	NEG.L ERd	L		2								0-ERd32-ERd32	—	↕	\updownarrow	↕	\updownarrow	\updownarrow	2	2
CMP	CMP.B #xx:8,Rd	В	2									Rd8–#xx:8	—	€	\updownarrow	€	\updownarrow	\updownarrow	2	2
	CMP.B Rs,Rd	В		2								Rd8–Rs8	—	↕	\updownarrow	↕	\updownarrow	\updownarrow	2	2
	CMP.W #xx:16,Rd	W	4									Rd16-#xx:16	—	(1)	\updownarrow	↕	\updownarrow	\updownarrow	4	4
	CMP.W Rs,Rd	W		2								Rd16–Rs16	—	(1)	\updownarrow	↕	\updownarrow	\updownarrow	2	2
	CMP.L #xx:32,ERd	L	6									ERd32-#xx:32	—	(2)	\updownarrow	€	\updownarrow	\updownarrow	4	6
	CMP.L ERs,ERd	L		2								ERd32–ERs32		(2)	\updownarrow	€	\updownarrow	\updownarrow	2	2
MULXU	MULXU.B Rs,Rd	В		2								Rd8 × Rs8→Rd16 (unsigned operation)	—	—	—	—	—	_	14	14
	MULXU.W Rs,ERd	W		2								Rd16 × Rs16→ERd32 (unsigned operation)	—	_	—	_	—		22	22
MULXS	MULXS.B Rs,Rd	В		4								$Rd8 \times Rs8 \rightarrow Rd16$ (signed operation)	-	—	\updownarrow	≎	-	_	16	16
	MULXS.W Rs,ERd	W		4								$Rd16 \times Rs16 \rightarrow ERd32$ (signed operation)	—	—	\updownarrow	≎	—	_	24	24
DIVXU	DIVXU.B Rs,Rd	В		2								$Rd16 \div Rs8 \rightarrow Rd16$ (RdH: remainder, RdL: quotient) (unsigned operation)	—	_	(6)	(7)	—	_	14	14
	DIVXU.W Rs,ERd	W		2								$\label{eq:remainder} \begin{array}{l} ERd32 \div Rs16 \to ERd32 \\ (Ed: remainder, Rd: quotient) \mbox{ (unsigned operation)} \end{array}$			(6)	(7)			22	22
DIVXS	DIVXS.B Rs,Rd	В		4								$\begin{array}{l} Rd16 \div Rs8 \rightarrow Rd16 \ (RdH: remainder, \\ RdL: quotient) \ (signed \ operation) \end{array}$	—	_	(8)	(7)	—		16	16
	DIVXS.W Rs,ERd	w		4								$\begin{array}{l} ERd32 \div Rs16 \rightarrow ERd32 \\ (Ed: remainder, Rd: quotient) (signed operation) \end{array}$	-		(8)	(7)	-		24	24
EXTU	EXTU.W Rd	W		2						T		$0 \rightarrow$ (<bits 15="" 8="" to=""> of Rd16)</bits>	-	-	0	\updownarrow	0	_	2	2
	EXTU.L ERd	L		2						Γ		$0 \rightarrow$ (<bits 16="" 31="" to=""> of ERd32)</bits>	_	_	0	\updownarrow	0	_	2	2
EXTS	EXTS.W Rd	W		2								(<bit 7=""> of Rd16) \rightarrow (<bits 15="" 8="" to=""> of Rd16)</bits></bit>	-	_	\$	\$	0		2	2
	EXTS.L ERd	L		2								(<bit 15=""> of ERd32) \rightarrow (<bits 16="" 31="" to=""> of ERd32)</bits></bit>	-	_	\$	\$	0	_	2	2

(3) Logic Operation Instructions

									de h (l		d tes)	,		С	on	diti	on	Coc	le	No. of	States
	Mnemonic	Size	#xx	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	0023			Operation	I	н	И	z	v	с	Normal	Ad- vanced
AND	AND.B #xx:8,Rd	В	2										Rd8 ∧ #xx:8→Rd8	_	_	\updownarrow	\updownarrow	0	—	2	2
	AND.B Rs,Rd	В		2									$Rd8 \land Rs8 \rightarrow Rd8$	—		\updownarrow	\updownarrow	0	—	2	2
	AND.W #xx:16,Rd	W	4										Rd16 ∧ #xx:16→Rd16	—		\updownarrow	\updownarrow	0	—	4	4
	AND.W Rs,Rd	W		2									$Rd16 \land Rs16 \rightarrow Rd16$	—		\updownarrow	\updownarrow	0	—	2	2
	AND.L #xx:32,ERd	L	6										ERd32 ∧ #xx:32→ERd32	—		\updownarrow	\updownarrow	0	—	6	6
	AND.L ERs,ERd	L		4									$ERd32 \land ERs32 \rightarrow ERd32$	—		\updownarrow	\updownarrow	0	—	4	4
OR	OR.B #xx:8,Rd	В	2										Rd8 ∨ #xx:8→Rd8	—	—	\updownarrow	\updownarrow	0	—	2	2
	OR.B Rs,Rd	В		2									$Rd8 \lor Rs8 \rightarrow Rd8$	—	—	\updownarrow	\updownarrow	0		2	2
	OR.W #xx:16,Rd	W	4										Rd16 ∨ #xx:16→Rd16	—		\updownarrow	\updownarrow	0		4	4
	OR.W Rs,Rd	W		2									$Rd16 \lor Rs16 \rightarrow Rd16$	—	—	\updownarrow	\updownarrow	0	—	2	2
	OR.L #xx:32,ERd	L	6										ERd32 ∨ #xx:32→ERd32	-	—	\updownarrow	\updownarrow	0	—	6	6
	OR.L ERs,ERd	L		4									$ERd32 \lor ERs32 {\rightarrow} ERd32$	_		\$	\updownarrow	0		4	4
XOR	XOR.B #xx:8,Rd	В	2										Rd8⊕#xx:8→Rd8	—		\updownarrow	\updownarrow	0		2	2
	XOR.B Rs,Rd	В		2									Rd8⊕Rs8→Rd8	—		\updownarrow	\updownarrow	0		2	2
	XOR.W #xx:16,Rd	W	4										Rd16⊕#xx:16→Rd16	_		\$	\updownarrow	0		4	4
	XOR.W Rs,Rd	W		2									Rd16⊕Rs16→Rd16	—		\updownarrow	\updownarrow	0		2	2
	XOR.L #xx:32,ERd	L	6										ERd32⊕#xx:32→ERd32		_	\$	\$	0		6	6
	XOR.L ERs,ERd	L		4					1	T			ERd32⊕ERs32→ERd32		_	\updownarrow	\updownarrow	0	_	4	4
NOT	NOT.B Rd	В		2					1	T			¬Rd8→Rd8		-	\updownarrow	\updownarrow	0	_	2	2
	NOT.W Rd	W		2					1	T			¬Rd16→Rd16	_	_	\updownarrow	\updownarrow	0	-	2	2
	NOT.L ERd	L		2					1	T			¬Rd32→Rd32	_	_	↕	€	0	_	2	2

(4) Shift Instructions

				Ado stru							Condition Code	No. of States
	Mnemonic	Size	XX#	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	0.0.33	Operation I H N Z V C I	Ad- Normal vanced
SHAL	SHAL.B Rd	В		2								2 2
	SHAL.W Rd	w		2							MSB - LSB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2
	SHAL.L ERd	L		2								2 2
SHAR	SHAR.B Rd	В		2								2 2
	SHAR.W Rd	w		2								2 2
	SHAR.L ERd	L		2							$MSB \longrightarrow LSB C \longrightarrow 0 \uparrow$	2 2
SHLL	SHLL.B Rd	В		2								2 2
	SHLL.W Rd	W		2							S MSB ← LSB −− ↓ ↓ 0 ↓	2 2
	SHLL.L ERd	L		2								2 2
SHLR	SHLR.B Rd	В		2								2 2
	SHLR.W Rd	W		2							MSB → LSB C → ↓ ↓ 0 ↓	2 2
	SHLR.L ERd	L		2								2 2
ROTXL	ROTXL.B Rd	В		2								2 2
	ROTXL.W Rd	W		2								2 2
	ROTXL.L ERd	L		2							C MSB ← LSB	2 2
ROTXR	ROTXR.B Rd	В		2							— ‡ 0 ‡	2 2
	ROTXR.W Rd	W		2								2 2
	ROTXR.L ERd	L		2							MSB → LSB C → ↓ ↓ 0 ↓	2 2
ROTL	ROTL.B Rd	В		2								2 2
	ROTL.W Rd	w		2								2 2
	ROTL.L ERd	L		2							C MSB ← LSB 	2 2
ROTR	ROTR.B Rd	В		2								2 2
	ROTR.W Rd	w		2								2 2
	ROTR.L ERd	L		2							MSB → LSB C — — ↓ ↓ 0 ↓	2 2

(5) Bit Manipulation Instructions

			In			ssi ion	•				d es)		С	on	diti	on	Coc	le	No. of	States
	Mnemonic	Size	xx#	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa		Operation	ı	н	N	z	v	с	Normal	Ad- vanced
BSET	BSET #xx:3,Rd	в		2								(#xx:3 of Rd8)←1	_	-		_			2	2
	BSET #xx:3,@ERd	В			4							(#xx:3 of @ERd)←1	—						8	8
	BSET #xx:3,@aa:8	В						4				(#xx:3 of @aa:8)←1	—				—		8	8
	BSET Rn,Rd	В		2								(Rn8 of Rd8)←1	—		—		—		2	2
	BSET Rn,@ERd	В			4							(Rn8 of @ERd)←1	—				—		8	8
	BSET Rn,@aa:8	В						4				(Rn8 of @aa:8)←1	—		—		—		8	8
BCLR	BCLR #xx:3,Rd	В		2								(#xx:3 of Rd8)←0	—			—	—		2	2
	BCLR #xx:3,@ERd	В			4							(#xx:3 of @ERd)←0	-			—	—	_	8	8
	BCLR #xx:3,@aa:8	в						4				(#xx:3 of @aa:8)←0	_						8	8
	BCLR Rn,Rd	в		2								(Rn8 of Rd8)←0	—					_	2	2
	BCLR Rn,@ERd	В			4							(Rn8 of @ERd)←0	_						8	8
	BCLR Rn,@aa:8	В						4				(Rn8 of @aa:8)←0	-			—	—	_	8	8
BNOT	BNOT #xx:3,Rd	в		2								(#xx:3 of Rd8)←¬ (#xx:3 of Rd8)	_						2	2
	BNOT #xx:3,@ERd	в			4							(#xx:3 of @ERd) ←¬ (#xx:3 of @ERd)	_						8	8
	BNOT #xx:3,@aa:8	В						4				(#xx:3 of @aa:8)←¬ (#xx:3 of @aa:8)	_						8	8
	BNOT Rn,Rd	в		2								(Rn8 of Rd8)←¬ (Rn8 of Rd8)	_						2	2
	BNOT Rn,@ERd	в			4							(Rn8 of @ERd)←¬ (Rn8 of @ERd)	_						8	8
	BNOT Rn,@aa:8	В						4				(Rn8 of @aa:8)←¬ (Rn8 of @aa:8)	-			—	—	_	8	8
BTST	BTST #xx:3,Rd	В		2								(#xx:3 of Rd8)→Z	—			\updownarrow	—		2	2
	BTST #xx:3,@ERd	в				4						(#xx:3 of @ERd)→Z	_			\updownarrow			6	6
	BTST #xx:3,@aa:8	в						4				(#xx:3 of @aa:8)→Z	—			\updownarrow		_	6	6
	BTST Rn,Rd	В		2								(Rn8 of Rd8)→Z	—		—	\updownarrow	—		2	2
	BTST Rn,@ERd	В			4							(Rn8 of @ERd)→Z	—		—	\updownarrow	—		6	6
	BTST Rn,@aa:8	В						4				(Rn8 of @aa:8)→Z	—		—	\updownarrow	—		6	6
BLD	BLD #xx:3,Rd	в		2								(#xx:3 of Rd8)→C				_	-	↕	2	2
	BLD #xx:3,@ERd	в			4							(#xx:3 of @ERd)→C	-		—		—	\updownarrow	6	6
	BLD #xx:3,@aa:8	в						4				(#xx:3 of @aa:8)→C				_	-	↕	6	6
BILD	BILD #xx:3,Rd	в		2								¬ (#xx:3 of Rd8)→C	-		—		—	\updownarrow	2	2
	BILD #xx:3,@ERd	в			4							¬ (#xx:3 of @ERd24)→C		-		-	-	\updownarrow	6	6
	BILD #xx:3,@aa:8	в	1	1	1	1		4			1	¬ (#xx:3 of @aa:8)→C	_				_	↕	6	6

				Ad									c	Con	diti	on	Cod	de	No. of	States
	Mnemonic	Size	#xx	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa	I	Operation	I	н	N	z	v	с	Normal	Ad- vanced
BST	BST #xx:3,Rd	В		2								C→(#xx:3 of Rd8)	-	-			-		2	2
	BST #xx:3,@ERd	В			4							C→(#xx:3 of @ERd24)	-					_	8	8
	BST #xx:3,@aa:8	В						4				C→(#xx:3 of @aa:8)	-					_	8	8
BIST	BIST #xx:3,Rd	В		2								/C→(#xx:3 of Rd8)	-	-			-		2	2
	BIST #xx:3,@ERd	В			4							/C→(#xx:3 of @ERd24)	-					_	8	8
	BIST #xx:3,@aa:8	В						4				/C→(#xx:3 of @aa:8)	-					_	8	8
BAND	BAND #xx:3,Rd	В		2								C∧(#xx:3 of Rd8)→C	_	-			-	\updownarrow	2	2
	BAND #xx:3,@ERd	В			4							C∧(#xx:3 of @ERd24)→C	_	-			-	€	6	6
	BAND #xx:3,@aa:8	В						4				C∧(#xx:3 of @aa:8)→C	-					\updownarrow	6	6
BIAND	BIAND #xx:3,Rd	В		2								C∧¬ (/#xx:3 of Rd8)→C	-					\updownarrow	2	2
	BIAND #xx:3,@ERd	В			4							C∧¬ (/#xx:3 of @ERd24)→C	-	-			-	\updownarrow	6	6
	BIAND #xx:3,@aa:8	В						4				C∧¬ (/#xx:3 of @aa:8)→C	-					\updownarrow	6	6
BOR	BOR #xx:3,Rd	В		2								$C \lor (\#xx:3 \text{ of } Rd8) \rightarrow C$	-					\updownarrow	2	2
	BOR #xx:3,@ERd	В			4							$C \lor (\#xx:3 \text{ of } @ERd24) \rightarrow C$	-	-			-	\updownarrow	6	6
	BOR #xx:3,@aa:8	В						4				C ∨ (#xx:3 of @aa:8)→C	-					\updownarrow	6	6
BIOR	BIOR #xx:3,Rd	В		2								C ∨ ~(#xx:3 of Rd8)→C	-					\updownarrow	2	2
	BIOR #xx:3,@ERd	В			4							C ∨ ~(#xx:3 of @ERd24)→C	-	-			-	\updownarrow	6	6
	BIOR #xx:3,@aa:8	В						4				C ∨ ~(#xx:3 of @aa:8)→C	_	-				\updownarrow	6	6
BXOR	BXOR #xx:3,Rd	В		2								$C \oplus (\#xx:3 \text{ of } Rd8) {\rightarrow} C$	-	-	_	_	-	\$	2	2
	BXOR #xx:3,@ERd	В			4							C ⊕ (#xx:3 of @ERd24)→C	-	-	-	-		\$	6	6
	BXOR #xx:3,@aa:8	В						4				C ⊕ (#xx:3 of @aa:8)→C		-				\updownarrow	6	6
BIXOR	BIXOR #xx:3,Rd	В		2								C ⊕ ~(#xx:3 of Rd8) \rightarrow C		-				\$	2	2
	BIXOR #xx:3,@ERd	В			4							C ⊕ ~(#xx:3 of @ERd24) \rightarrow C	-	-	_	_	-	\$	6	6
	BIXOR #xx:3,@aa:8	В						4				C ⊕ ~(#xx:3 of @aa:8)→C	_	_	_	_	-	\$	6	6

(6) Branch Instructions

			In	Add stru										c	on	diti	on	Cod	le	No. of	States
	Mnemonic	Size	XX#	Rn	(CERI)	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa	1	Operation	Branch condition	I	н	N	z	v	с	Normal	Ad- vanced
Bcc	BRA d:8(BTd:8)	_							2			if condition is true then	Always	_						4	4
	BRA d:16(BTd:16)	_							4			PC←PC+d else next;		_				-		6	6
	BRN d:8(BFd:8)	_							2				Never	-				-		4	4
	BRN d:16(BFd:16)	_							4					_				-		6	6
	BHI d:8	_							2				C ∨ Z = 0	-				-		4	4
	BHI d:16	_							4					_						6	6
	BLS d:8	_							2		1	1	C ∨ Z = 1	-	_		_	_	_	4	4
	BLS d:16	—	1						4			1		=	-	-	-	-	-	6	6
	BCC d:8(BHS d:8)	_							2				C = 0	_				-		4	4
	BCC d:16(BHS d:16)	_							4					_				_		6	6
	BCS d:8(BLO d:8)	_							2				C = 1	—				-		4	4
	BCS d:16(BLO d:16)	_							4					_						6	6
	BNE d:8	_							2				Z = 0	_						4	4
	BNE d:16	_							4					_			_	_		6	6
	BEQ d:8	_							2				Z = 1	-				-		4	4
	BEQ d:16	_							4					_						6	6
	BVC d:8	_							2				V = 0	_						4	4
	BVC d:16	_							4					—				-		6	6
	BVS d:8	_							2				V = 1	_						4	4
	BVS d:16	_							4					_						6	6
	BPL d:8	_							2				N = 0	-				-		4	4
	BPL d:16	—							4			1		-	-			-	-	6	6
	BMI d:8	—							2			1	N = 1	_	-			-	-	4	4
	BMI d:16	_							4			1		-	-		_		-	6	6
	BGE d:8	-							2		1	1	$N \oplus V = 0$	-	-		-		-	4	4
	BGE d:16	_							4			1		-	-		_		-	6	6
	BLT d:8	—							2			1	$N \oplus V = 1$	-	-	_	-	-	-	4	4
	BLT d:16	_							4			1		-	-		_		-	6	6
	BGT d:8	_							2			1	$Z \vee (N \oplus V) = 0$	_	-		_		-	4	4
	BGT d:16	_							4		1	1		-	-				-	6	6
	BLE d:8	_							2			1	$Z \vee (N \oplus V) = 1$	_	-		_		-	4	4
	BLE d:16	_							4					-						6	6

			Ir	Ad										С	on	diti	on (Cod	le	No. of	States
	Mnemonic	Size	XX#	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa	1	Operation	Branch condition	I	н	N	z	v	с	Normal	Ad- vanced
JMP	JMP @ERn	_			2							PC←ERn		-				_	_	4	4
	JMP @aa:24	_	-					4				PC←aa:24		—	—					6	6
	JMP @@aa:8	_								2		PC←@aa:8		—						8	10
BSR	BSR d:8	-							2			PC→@-SP, PC←PC+d:8		-						6	8
	BSR d:16	-							4			PC→@-SP, PC←PC+d:16		-		_	—	_	_	8	10
JSR	JSR @ERn	-			2							PC→@-SP, PC←ERn				_		_	_	6	8
	JSR @aa:24	-						4				PC→@-SP, PC←aa:24		-	—		—			8	10
	JSR @@aa:8	-								2		PC→@-SP, PC←@aa:8		-	-	—	—	_	_	8	12
RTS	RTS	_									2	PC←@SP+		—	—	—				8	10

(7) System Control Instructions

						ssi ion	•						c	on	diti	on	Cod	le	No. of	States
	Mnemonic	Size	XX#	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa		Operation	I	н	N	z	v	с	Normal	Ad- vanced
TRAPA	TRAPA #x:2	-									2	$PC \rightarrow @-SP, CCR \rightarrow @-SP,$ <vector> $\rightarrow PC$</vector>	(1)	_	-	_	-	—	14	14
RTE	RTE	_										CCR←@SP+,PC←@SP+	\$	€	\updownarrow	€	≎	↕	10	10
SLEEP	SLEEP	-										Transition to power-down state	-	_	-	_			2	2
LDC	LDC #xx:8,CCR	в	2									#xx:8→CCR	\uparrow	↕	\updownarrow	↕	\updownarrow	\updownarrow	2	2
	LDC Rs,CCR	в		2								Rs8→CCR	\uparrow	\$	\updownarrow	\$	\updownarrow	\updownarrow	2	2
	LDC @ERs,CCR	W			4							@ERs→CCR	\uparrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	6	6
	LDC @(d:16,ERs),CCR	W				6						@(d:16,ERs)→CCR	\uparrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	8	8
	LDC @(d:16,ERs),CCR	W				10						@(d:24,ERs)→CCR	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	12	12
	LDC @ERs+,CCR	W					4					@ERs \rightarrow CCR,ERs32+2 \rightarrow ERs32	\uparrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	8	8
	LDC @aa:16,CCR	W						6				@aa:16→CCR	\uparrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	8	8
	LDC @aa:24,CCR	W						8				@aa:24→CCR	\uparrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	10	10
STC	STC CCR,Rd	в		2								CCR→Rd8	_		-				2	2
	STC CCR,@ERd	W			4							CCR→@ERd	—						6	6
	STC CCR,@(d:16,ERs)	W				6						CCR→@(d:16,ERs24)	_		-				8	8
	STC CCR,@(d:24,ERs)	W				10						CCR→@(d:24,ERs24)	-		-				12	12
	STC CCR,@-ERs	W					4					$ERd32-2{\rightarrow}ERd24, CCR{\rightarrow}@ERd24$	—		-				8	8
	STC CCR,@aa:16	W						6				CCR→@aa:16	_		-				8	8
	STC CCR,@aa:24	w						8				CCR→@aa:24	_	—	-	—	-		10	10
ANDC	ANDC #xx:8,CCR	в	2									CCR ∧#xx:8→CCR	\uparrow	\$	\updownarrow	\$	\updownarrow	\updownarrow	2	2
ORC	ORC #xx:8,CCR	в	2									CCR V#xx:8→CCR	\uparrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	2	2
XORC	XORC #xx:8,CCR	в	2									CCR⊕#xx:8→CCR	\$	\$	\updownarrow	\$	\$	\updownarrow	2	2
NOP	NOP	—									2	PC←PC+2	—	\updownarrow	-				2	2

(8) Block Transfer Instructions

							-			and byte			c	on	diti	on	Co	de	No. of	States
	Mnemonic	Size	#xx	Rn	@ERn	@(d,ERn)	@ERn+/@-ERn	@aa	@(d,PC)	@ @ aa	1	Operation	ı	н	N	z	v	с	Normal	Ad- vanced
EEPMOV	EEPMOV.B	-									4	if R4L \neq 0 Repeat @R5 \rightarrow @R6 R5+1 \rightarrow R5 R6+1 \rightarrow R6 R4L $-$ 1 \rightarrow R4L Until R4L = 0 else next;					-		8+4n*2	8+4n*2
	EEPMOV.W	_									4	if R4 ≠ 0 Repeat @R5→@R6 R5+1→R5 R6+1→R6 R4L-1→R4L Until R4 = 0 else next;					-		8+4n*2	8+4n*2

Notes: 1. The number of states is the number of states required for execution when the instruction and its operands are located in on-chip memory. For other cases see section 2.6, Number of States Required for Execution.

- 2. n is the value set in register R4L or R4.
- (1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
- (2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
- (3) Retains its previous value when the result is zero; otherwise cleared to 0.
- (4) Set to 1 when the adjustment produces a carry; otherwise retains its previous value.
- (5) The number of states required for execution of an instruction that transfers data in synchronization with the E clock is variable.
- (6) Set to 1 when the divisor is negative; otherwise cleared to 0.
- (7) Set to 1 when the divisor is zero; otherwise cleared to 0.
- (8) Set to 1 when the quotient is negative; otherwise cleared to 0.

		;						Instru	Instruction Format					
Instruction	Mnemonic	Size	1st	1st byte	2nd byte		3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ADD	ADD.B #xx:8,Rd	В	∞	2	MMI									
	ADD.B Rs,Rd	в	0	∞	s S	P								
	ADD.W #xx:16,Rd	M	4	6	·····	гq	ĭ	IMM						
	ADD.W Rs,Rd	×	0	ര 	<u>د</u>	P								
	ADD.L #xx:32,ERd	_	~	4	<u>، 0</u>	0 erd		4	IMM					
	ADD.L ERS,ERd	-	0	<	1 ers 0 erd	erd								
ADDS	ADDS #1,ERd	-	0	<u></u>	0	0 erd								
	ADDS #2,ERd	Г	0	e	8	0 erd								
	ADDS #4,ERd	-	0	<u>6</u>	6	0 erd								
ADDX	ADDX #xx:8,Rd	в	ი	2	MMI									
	ADDX Rs,Rd	в	0	ш	 S	P								
AND	AND.B #xx:8,Rd	В	ш	2	IMM									
	AND.B Rs,Rd	В	-	9	s	rd								
	AND.W #xx:16,Rd	×	2	ം 	9	Þ	≧	MMI						
	AND.W Rs,Rd	Μ	9	9	 SI	rd								
	AND.L #xx:32,ERd	_	4	₹	9	0 erd		VI	IMM					
	AND.L ERS, ERd	_	0	-	 ц	9	9	0 ers 0 erd						
ANDC	ANDC #xx:8,CCR	в	0	9	MMI									
BAND	BAND #xx:3,Rd	в	~	9	0 IMM	P								
	BAND #xx:3,@ERd	в	~	<u>о</u>	0 erd	0 7	9	0 IMMI 0						
	BAND #xx:3,@aa:8	в	2	ш	abs	7	9	0 MMI 0						
Bcc	BRA d:8 (BT d:8)	Ι	4	0	disp									
	BRA d:16 (BT d:16)	Ι	5	®	0	0	di	disp						
	BRN d:8 (BF d:8)	Ι	4	-	disp									
	BRN d:16 (BF d:16)	Ι	5	80 	•	0	di	disp						
	BHI d:8	-	4		disp									
	BHI d:16		5	8	2	0	dis	disp						
	BLS d:8	-	4	3	disp									
	BLS d:16	Ι	5	8	3	0	dis	disp						
	BCC d:8 (BHS d:8)	Ι	4	4	disp									
	BCC d:16 (BHS d:16)	Ι	5	∞ 	4	0	di	disp						
	BCS d:8 (BLO d:8)	Ι	4	. 5	disp									

2.4 Instruction Codes

Г

Table 2.3 Instruction Codes

		i					Inst	Instruction Format					
Instruction		azic	1st byte	yte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
Bcc	BCS d:16 (BLO d:16)	1	5	8	5 0	disp	ď						
	BNE d:8	Ι	4	9	disp								
	BNE d:16	Ι	2	8	6 0	disp	ď						
	BEQ d:8	Ι	4	7	disp								
	BEQ d:16	Ι	2	8	7 0	disp	ď						
	BVC d:8	Ι	4	8	disp								
	BVC d:16	Ι	5	8	8	disp	ď						
	BVS d:8	I	4	6	disp								
	BVS d:16	Ι	5	8	0 6	disp	d						
	BPL d:8	I	4	A	disp								
	BPL d:16	I	ъ	8	0 4	disp	ď						
	BMI d:8	I	4	m	disp								
	BMI d:16	Ι	5	8	B 0	disp	d						
	BGE d:8	Ι	4	с	disp								
	BGE d:16	Ι	2	8	0 0	disp	ď						
	BLT d:8	Ι	4	D	disp								
	BLT d:16	Ι	5	8	0 0	disp	dź						
	BGT d:8	Ι	4	ш	disp								
	BGT d:16	I	ŝ	8	о 	disp	ď						
	BLE d:8	I	4	ш	disp								
	BLE d:16	Ι	5	8	F 0	disp	dź						
BCLR	BCLR #xx:3,Rd	в	7	2	0 IMM rd								
	BCLR #xx:3,@ERd	В	7	D	0 erd 0	7 2	0 IMM 0						
	BCLR #xx:3,@aa:8	В	7	ш	abs	7 2	0 IMM 0						
	BCLR Rn,Rd	в	9	2	rd L								
	BCLR Rn,@ERd	в	7	۵	0 erd 0	6 2	0 11						
	BCLR Rn,@aa:8	ш	7	ш	abs	6 2	u. 0						
BIAND	BIAND #xx:3,Rd	В	7	. 9	1 IMM rd								
	BIAND #xx:3,@ERd	в	7	с U	0 erd 0	7 6	1 IMM 0						
	BIAND #xx:3,@aa:8	в	7	ш	abs	7 6	1 IMM 0						
BILD	BILD #xx:3,Rd	ш	2	~	1 IMM rd								
	BILD #xx:3, @ERd	ш	~	υ	0 erd 0	7 7	1 IMM 0						
	BILD #xx:3, @aa:8	в	7	ш	abs	7 7	1 IMM 0						

Rev. 3.00 Dec 13, 2004 page 206 of 258 REJ09B0213-0300

								Instru	Instruction Format					
Instruction	мпетопс	Size	1st byte	te	2nd byte	3rd byte	/te	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BIOR	BIOR #xx:3,Rd	в	2		1 IMM rd									
	BIOR #xx:3,@ERd	æ	7	с 0	0 erd 0	2	4	1 IMM 0						
	BIOR #xx:3,@aa:8	в	7	ш	abs	7	4	1 IMM 0						
BIST	BIST #xx:3,Rd	в	 9	7 1	1 IMM rd									
	BIST #xx:3, @ERd	в	7	D	0 erd 0	9	7 1	1 IMM 0						
	BIST #xx:3, @aa:8	в	7	ш	abs	. 9	7 1	1 IMM 0						
BIXOR	BIXOR #xx:3,Rd	в	7	5 1	1 IMM rd									
	BIXOR #xx:3,@ERd	в	7	c	0 erd 0	7	5 1	1 IMM 0						
	BIXOR #xx:3,@aa:8	в	7	ш	abs	7	5 1	1 IMM 0						
BLD	BLD #xx:3,Rd	ш	7	7 0	0 IMM rd									
	BLD #xx:3,@ERd	в	7	c	0 erd 0	7	7 0	0 IMM 0						
	BLD #xx:3,@aa:8	в	7	ш	abs	7	7	0 MMI 0						
BNOT	BNOT #xx:3,Rd	в	7	+	0 IMM rd									
	BNOT #xx:3,@ERd	В	7	D	0 erd 0	7	1 0	0 IMM 0						
	BNOT #xx:3,@aa:8	в	7	ш	abs	7	1 0	0 [IMM] 0						
	BNOT Rn,Rd	ш	9	-	n Td									
	BNOT Rn,@ERd	В	7	D	0 erd 0	9	1	m 0						
	BNOT Rn,@aa:8	в	7	ш	abs		+	n 0						
BOR	BOR #xx:3,Rd	в	7	4	0 IMM rd									
	BOR #xx:3,@ERd	ш	7	0 0	0 erd 0	2	4 0	0 MMI 0						
	BOR #xx:3,@aa:8	в	7	ш	abs	7	4 0	0 IMM 0						
BSET	BSET #xx:3,Rd	в	7	0	0 IMM rd									
	BSET #xx:3, @ERd	в	7	D	0 erd 0	7	0 0	0 IMM 0						
	BSET #xx:3, @aa:8	в	7	ш	abs	7	0	0 IMM 0						
	BSET Rn,Rd	в		0	rn rd									
	BSET Rn, @ERd	в	7	D	0 erd 0	9	0	0 11						
	BSET Rn, @aa:8	в	7	ш	abs	9	0	0 						
BSR	BSR d:8	Ι	2	5	disp									
	BSR d:16	Ι	5	С	0 0		disp							
BST	BST #xx:3,Rd	ш	 9	7 0	0 IMM rd									
	BST #xx:3,@ERd	в	7	D	0 erd 0	9	7 0	0 IMM 0						
	BST #xx:3,@aa:8	в	~	ш	abs	 9	7 0	0 [MMI] 0						

Г

Instruction	Mnemonic	Siza						lnst	Instruction Format					
		2	1st byte	oyte	2nd byte	rte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BTST	BTST #xx:3,Rd	в	7	3	0 IMM	Þ								
	BTST #xx:3,@ERd	۵	4	с 0	0 erd	0	7 3	0 IMM 0						
	BTST #xx:3, @aa:8	۵	~	ш	abs		7 3	0 IMM 0						
	BTST Rn,Rd	ю	9	с	٤	Þ								
	BTST Rn,@ERd	ш	~	0	0 erd	0	6 3	0 L						
	BTST Rn,@aa:8	۵	4	ш	abs		6 3	0 						
BXOR	BXOR #xx:3,Rd	в	7	5	0 IMM	p								
	BXOR #xx:3,@ERd	В	7	c	0 erd	0	7 5	0 IMM 0						
	BXOR #xx:3,@aa:8	В	7	ш	abs		7 5	0 IMM 0						
CMP	CMP.B #xx:8,Rd	в	A	rd	IMM	5								
	CMP.B Rs,Rd	в	-	υ	s	p								
	CMP.W #xx:16,Rd	W	7	6	2	rd	N	IMM						
	CMP.W Rs,Rd	Ν	1	D	rs	p								
	CMP.L #xx:32,ERd	_	7	٩	8	0 erd			IMM					
	CMP.L ERS, ERd	_	-	ц	1 ers (0 erd								
DAA	DAA Rd	в	0	ш	0	p								
DAS	DAS Rd	в	-	ш	0	rd								
DEC	DEC.B Rd	ю	-	۲	0	P								
	DEC.W #1,Rd	W	1	в	5	rd								
	DEC.W #2,Rd	Ν	1	в	D	p								
	DEC.L #1,ERd	L	+	в	7 :0	0 erd								
	DEC.L #2,ERd	_	-	в	 L	0 erd								
DIVXS	DIVXS.B Rs,Rd	m	0	-		0	5 1	rs rd						
	DIVXS.W Rs,ERd	Ν	0	٢	D	0	5 3	rs 0 erd	q					
DIVXU	DIVXU.B Rs,Rd	в	2	-	ي. ۲	Þ								
	DIVXU.W Rs,ERd	×	2	e	rs.	0 erd								
EEPMOV	EEPMOV.B	Ι	7	В	5	ပ	5 9	8 F						
	EEPMOV.W	Ι	7	в	۵	4	5 9	8 F						
EXTS	EXTS.W Rd	×	-	7	۵	rd								
	EXTS.L ERd	_	-	7	 L	0 erd								
EXTU	EXTU.W Rd	Ν	-	7	5	p								
	EXTU.L ERd	L	۰	7	7 :0	0 erd								
INC	INC.B Rd	в	0	۲	0	P								
	INC.W #1,Rd	W	0	В	5	rd								
	INC.W #2,Rd	≥	0	в	٥	p								

							lns	Instruction Format	lat				
Instruction	Mnemonic	Size	1st byte	-	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
INC	INC.L #1,ERd	_	0	в	7 0 erd								
	INC.L #2,ERd	L	0	в	F 0 erd								
JMP	JMP @ERn		2	6	0 ern 0								
	JMP @aa:24	Ι	م	A		abs							
	JMP @@aa:8	Ι	5	в	abs								
JSR	JSR @ERn	Ι	5	D 0	0 ern 0								
	JSR @aa:24	Ι	2 2	ш		abs							
	JSR @@aa:8	Ι	ىر م	ш	abs								
LDC	LDC #xx:8,CCR	в	0	7	IMM								
	LDC Rs, CCR	m	0	33	0 rs								
	LDC @ERs,CCR	≥	0	-	4	6 9	0 ers 0						
	LDC @(d:16,ERs),CCR	≥	0	-	4	9 9	0 ers 0		disp				
	LDC @(d:24,ERs),CCR	×	0	-	4	7 8	0 ers 0	9 9	2 0	0 : 0		disp	
	LDC @ERs+,CCR	≥	0	-	4 0	6 D	0 ers 0						
	LDC @aa:16,CCR	≥	0	-	4	9 9	0		abs				
	LDC @aa:24,CCR	≥	0	-	4	9 9	2	0		abs			
MOV	MOV.B #xx:8,Rd	в	 LL	p	MMI								
	MOV.B Rs, Rd	В	0	С	rs rd								
	MOV.B @ERs,Rd	В	9	8 0	0 ers rd								
	MOV.B @(d:16,ERs),Rd	в	 9	е о	0 ers rd	disp	dg						
	MOV.B @(d:24,ERs),Rd	m	7	8	0 ers 0	6 A	2 	0		disp			
	MOV.B @ERs+,Rd	m	9	0 0	0 ers rd								
	MOV.B @aa:8,Rd	в	5	rd	abs								
	MOV.B @aa:16,Rd	в		A	0 rd	ac	abs						
	MOV.B @aa:24,Rd	m	9	A	2 rd	00		abs					
	MOV.B Rs, @ERd	В	9	8 1	1 erd rs								
	MOV.B Rs, @(d:16,ERd)	в	9	Е 1	1 erd rs	disp	ds						
	MOV.B Rs, @(d:24,ERd)	в	7	8 0	0 erd 0	6 A	A	0		disp			
	MOV.B Rs, @-ERd	В	9	C 1	1 erd rs								
	MOV.B Rs, @aa:8	В	3	rs	abs								
	MOV.B Rs, @aa:16	в	9	A	8 IS	ac	abs						
	MOV.B Rs, @aa:24	В		A	A rs	0 0		abs					
	MOV.W #xx:16,Rd	≥	7	6	0 rd	M	IMM						
	MOV.W Rs,Rd	Ν	0	D	rs : rd								
	MOV.W @ERs,Rd	≥	9	6	0 ers rd								

]					Instr	Instruction Format	at .				
		ATIC	1st	1st byte	2nd byte	yte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
MOV	MOV.W @(d:16,ERs),Rd	>	9	Ŀ.	0 ers	p	đ	disp						
	MOV.W @(d:24,ERs),Rd	Ν	7	80	0 ers	0	6 B	2 rd	0 0		disp			
	MOV.W @ERs+,Rd	×	9		0 ers	p								
	MOV.W @aa:16,Rd	×	9	<u>6</u>	0	p	5 D	abs						
	MOV.W @aa:24,Rd	>	9	6	~	p	0		abs					
	MOV.W Rs,@ERd	>	9	6	1 erd	s								
	MOV.W Rs,@(d:16,ERd)	3	9	ш.	1 erd	2	đ	disp						
	MOV.W Rs,@(d:24,ERd)	>	7	∞	1 erd	0	9	A	0		disp			
	MOV.W Rs,@-ERd	>	9		1 erd	S								
	MOV.W Rs,@aa:16	Μ	9	e	∞	ſS	a	abs						
	MOV.W Rs,@aa:24	3	9	6	∢	2	0		abs					
	MOV.L #xx:32,Rd	_	7	4	0	0 erd			IMM					
	MOV.L ERS, ERd	_	0	ш.	1 ers	0 erd								
	MOV.L @ERS,ERd	_	0	-	0	0	6 9	0 ers 0 erd						
	MOV.L @ (d:16,ERs),ERd	Ч	0	-	0	0	9 9	0 ers 0 erd		disp				
	MOV.L @ (d:24,ERs),ERd	L	0	-	0	0	7 8	0 ers 0	9 9	2 0 erd	0 0		disp	
	MOV.L @ERs+,ERd	Г	0	-	0	0	6 D	0 ers 0 erd						
	MOV.L @aa:16,ERd	Г	0	-	0	0	6 B	0 0 erd		abs				
	MOV.L @aa:24,ERd	Ч	0	-	0	0	6 . B	2 0 erd	0		abs			
	MOV.L ERs,@ERd	L	0	-	0	0	6 9	1 erd 0 ers						
	MOV.L ERs, @ (d:16,ERd)	Г	0	-	0	0	6 E F	1 erd 0 ers		disp				
	MOV.L ERs, @ (d:24,ERd)	Г	0	-	0	0	7 8	0 erd 0	6 	A 0 ers	0 0		disp	
	MOV.L ERs,@-ERd	_	0	-	0	0	0 9	1 erd 0 ers						
	MOV.L ERs,@aa:16	L	0	-	0	0	6 B	8 0 ers		abs				
	MOV.L ERs,@aa:24	_	0	-	0	0	9 	A 0 ers	0		abs			
MOVFPE	MOVFPE @aa:16,Rd	в	9	A	4	rd	ä	abs						
MOVTPE	MOVTPE Rs,@aa:16	ш	9	4	U	S	ō	abs						
MULXS	MULXS.B Rs,Rd	ш	0	-	U	0	5 0	rs						
	MULXS.W Rs, ERd	×	0	-	υ	0	5 2	rs 0 erd						
MULXU	MULXU.B Rs,Rd	ш	5	0	s	p								
	MULXU.W Rs,ERd	Ν	5	2	rs	0 erd								
NEG	NEG.B Rd	в	٢	7	8	rd								
	NEG.W Rd	>	-	~	6	p								
	NEG.L ERd	_	-	7	ß	0 erd								
NOP	NOP	Ι	0	0	0	0								

Section 2 Instruction Descriptions

							Instru	Instruction Format					
Instruction	Mnemonic	Size	1st byte		2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
NOT	NOT.B Rd	в	1 7	0	rd								
	NOT.W Rd	≥	1 7	-	5								
	NOT.L ERd	_	1 7	3	0 erd								
OR	OR.B #xx:8,Rd	в	о С	-	MMI								
	OR.B Rs,Rd	ш	1	t Ls	g								
	OR.W #xx:16,Rd	≥	7 9	4	₽ 	2	IMM						
	OR.W Rs,Rd	Ν	6 4	t rs									
	OR.L #xx:32,ERd	Г	7 A	4	0 erd		IN	IMM					
	OR.L ERS, ERd	Ч	0 1	ш	0	6 : 4	0 ers 0 ers						
ORC	ORC #xx:8, CCR	в	0		IMM								
РОР	POP.W Rn	Ν	6 D	7 7	E								
	POP.L ERn	Ч	0	0	0	9 : D	7 0 ern						
PUSH	PUSH.W Rn	N	9 0	ч	£								
	PUSH.L ERn	Г	0	0	0	6 D	F 0 ern						
ROTL	ROTL.B Rd	в	1 2	8	гd								
	ROTL.W Rd	Ν	1 2	6									
	ROTL.L ERd	Г	1 2	B	0 erd								
ROTR	ROTR.B Rd	в	1 3	3 8	rd								
	ROTR.W Rd	Ν	1 3	6	p								
	ROTR.L ERd	_	1 3	В	0 erd								
ROTXL	ROTXL.B Rd	в	1 2	0	гq								
	ROTXL.W Rd	Ν	1 2	1									
	ROTXL.L ERd	_	1	e	0 erd								
ROTXR	ROTXR.B Rd	ш	1	0	9 								
	ROTXR.W Rd	≥	1	~	5								
	ROTXR.L ERd	_	1	3	0 erd								
RTE	RTE	Ι	5 6	5 7	0								
RTS	RTS	Ι	5 .4	1 7	0								
SHAL	SHAL.B Rd	В	1 0	8 8	p								
	SHAL.W Rd	>	1	6	5 								
	SHAL.L ERd	Г	1 0	B	0 erd								
SHAR	SHAR.B Rd	ш	-	∞	5								
	SHAR.W Rd	≥	-	6	9 								
	SHAR.L ERd	-		8	0 erd								

		;						Inst	Instruction Format					
Instruction	Mnemonic	Size	1st byte	yte	2nd byte	ŧ	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
SHLL	SHLL.B Rd	в	-	0	0	p								
	SHLL.W Rd	≥	-	0		p								
	SHLL.L ERd	L	1	0	3	0 erd								
SHLR	SHLR.B Rd	ш	-	-	0	P								
	SHLR.W Rd	×	-	٢	-	p								
	SHLR.L ERd	_		-	 ო	0 erd								
SLEEP	SLEEP	Ι	0	1	8	0								
STC	STC CCR,Rd	в	0	2	0	rd								
	STC CCR,@ERd	≥	0	-	4	0	6 9	1 erd 0						
	STC CCR, @(d:16, ERd)	≥	0	-	4	0	н 9	1 erd 0	q	disp				
	STC CCR,@(d:24,ERd)	×	0	-	4	0	7 8	0 erd 0	9 	A 0	0 : 0		disp	
	STC CCR, @-ERd	≥	0	-	4	0	9 9	1 erd 0						
	STC CCR, @aa:16	≥	0	-	4	0	в 9	8	9	abs				
	STC CCR,@aa:24R	≥	0	-	4	0	в 9	A 0	0		abs			
SUB	SUB.B Rs, Rd	m	-	æ	<u>ي</u>	Þ								
	SUB.W #xx:16,Rd	Ν	7	6	3	rd	N	IMM						
	SUB.W Rs,Rd	×	-	6	s	p								
	SUB.L #xx:32,ERd	_	7	٨	<u>с</u>	0 erd			IMM					
	SUB.L ERS, ERd	_	+	A 1	ers	0 erd								
SUBS	SUBS #1,ERd	_	-	в	0	0 erd								
	SUBS #2,ERd	_	1	В	8	0: erd								
	SUBS #4,ERd	_	-	ш	. <u>റ</u> റെ	:0 erd								
SUBX	SUBX #xx:8,Rd	в	в	p	MMI	_								
	SUBX Rs,Rd	В	1	ш	rs	rd								
TRAPA	TRAPA #x:2	Ι	2	7 0	00 IMM	0								
XOR	XOR.B #xx:8,Rd	в		p	IMM	_								
	XOR.B Rs,Rd	в	-	5	S	Þ								
	XOR.W #xx:16,Rd	×	7	6	 2	p	4	IMM						
	XOR.W Rs,Rd	×	9	5	ŝ	p								
	XOR.L #xx:32,ERd	_	7	A	4	0 erd		_	IMM					
	XOR.L ERS, ERd	_	0	1	 L	0	6 5	0 ers 0 erd	7					
XORC	XORC #xx:8,CCR	в	0	5	MMI	_								

Section 2 Instruction Descriptions

Legend:

. . .

IMM: Immediate data (2, 3, 8, 16, or 32 bits)

abs: Absolute address (8, 16, or 24 bits)

disp: Displacement (8, 16, or 24 bits)

- rs, rd, rn: Register field (4 bits specifying an 8-bit or 16-bit register. rs corresponds to operand symbols such as Rs, rd corresponds to operand symbols such as Rd, and rn corresponds to the operand symbol Rn.)
- ers, erd, ern: Register field (3 bits specifying a 32-bit register. ers corresponds to operand symbols such as ERs, erd corresponds to operand symbols such as ERd, and ern corresponds to the operand symbol ERn.)

The register fields specify general registers as follows.

	ess Register bit Register	16-k	oit Register	8-b	it Register
Register Field	General Register	Register Field	General Register	Register Field	General Register
000	ER0	0000	R0	0000	R0H
001	ER1	0001	R1	0001	R1H
		1000	E0	1000	ROL
		1001 	E1	1001	R1L

2.5 Operation Code Map

Tables 2.4 to 2.6 show an operation code map.

Renesas

2nd byte BH BL BH BL Instruction when most significant bit of BH is 0.	3 4 5 6 7 8 9 A B C D E F	C ORG XORG ANDC LDC ADD Table 2.5 Table 2.5 MOV ADDX Table 2.5	2.5 Table 2.5 OR.B XOR.B AND.B Table 2.5 SUB.B SUB.W Table 2.5 Table 2.5 CMP SUBX Table 2.5		MOVE	I BLS BCC BCS BNE BEQ BVC BVS BPL BMI BGE BLT BGT BLE	KU DIVXU RTS BSR RTE TRAPA Table 2.5 JMP BSR JSR		BIST BOR BXOR BAND BLD BIOR BIXOR BIAND	ADD	ADDX	CMP	SUBX	ß	XOR	AND	MOV
									N BXC								
	3	LDC				BLS	DIVXU	DTO TO									
1st byte	2	STC	Table 2.5			BHI	MULXU	ī	BCLK								
1st b AH	-	Table 2.5	Table 2.5			BRN	DIVXU	E E	DNG								
Operation Code:	0	NOP	Table 2.5			BRA	MULXU	L U U	DOF I								
Operati	AH	0	-	2	ю	4	5	9	7	8	6	A	ш	ပ	۵	ш	ш

Rev. 3.00 Dec 13, 2004 page 214 of 258 REJ09B0213-0300

Table 2.4Operation Code Map (1)

Table 2.5Operation Code Map (2)

Щ 2nd byte

표

AL 1st byte

ΗH

Operation Code:

AH AL	0	-	2	е	4	5	9	7	8	6	A	В	ပ	Δ	ш	ш
10	MOV				LDC STC				SLEEP				Table 2.6	Table 2.6		Table 2.6
OA	RC											AI	ADD			
OB	ADDS					INC		INC	ADDS	ADDS				NC		INC
0F	DAA									-		Ň	MOV			
10	SHLL			SHLL					SHAL	ЯГ		SHAL				
1	SHLR	а,		SHLR					SHAR	ЧR		SHAR				
12	ROTXL	,XL		ROTXL					ROTL	2		ROTL				
13	ROTXR	XR		ROTXR					ROTR	Ĕ		ROTR				
17	NOT	F		NOT		EXTU		EXTU	NEG	U		NEG		EXTS		EXTS
1A	DEC											N.	SUB			
18	SUBS					DEC		DEC	SUB	φ				DEC		DEC
1F	DAS											ō	CMP			
58	BRA	BRN	BHI	STB	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI	BGE	BLT	BGT	BLE
62	MOV	ADD	CMP	SUB	NO	XOR	AND									
TA	NOM	ADD	CMP	SUB	ß	XOR	AND									

Operation Code:

REJ09B0213-0300

Rev. 3.00 Dec 13, 2004 page 216 of 258

Operation Code:		1st byte	2nd byte	e.	3rd byte	/te	4th byte	yte			ļ	N	– Instructi	Instruction when most significant bit of DH is 0.	nost signi:	ficant bit c	of DH is 0
	AH	AL	ВН	BL	공	- с	Н	Ы			Ż		-Instructi	-Instruction when most significant bit of DH is 1.	nost signi	ficant bit c	of DH is 1
CL CL	0	+	2	3	4		5	9	7	8	6	A	В	С	D	Е	ч
01C05	WULXS		SXIUM														
01D05		DIVXS		DIVXS													
01F06					OR		XOR	AND									
7Cr06*1				BTST													
7Cr07*1				BTST	BOR	BIOR BXOR	V ()	BAND E BIAND	BID BILD								
7Dr06*1	BSET	BNOT	BCLR						BST BIST								
7Dr07*1	BSET	BNOT	BCLR														
7Eaa6 ^{*2}				BTST													
7Eaa7 ^{*2}				BTST	BOR	BIOR BIX	V R	BAND	BID BILD								
7Faa6* ²	BSET	BNOT	BCLR						BST BIST								
7Faa7*2	BSET	BNOT	BCLR														

RENESAS

aa is an absolute address field. Notes: 1. r is a register field. 2. aa is an absolute a

2.6 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction execution by the H8/300H CPU. Table 2.8 indicates the number of instruction fetch, data read/write, and other cycles occurring in each instruction. Table 2.7 indicates the number of states required for each size. The number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states = $I \times S_1 + J \times S_1 + K \times S_K + L \times S_K + M \times S_M + N \times S_N$

Examples: Advanced mode, stack located in external memory, on-chip supporting modules accessed with 8-bit bus width, external devices accessed in three states with one wait state and 16-bit bus width.

1. BSET #0, @FFFFC7:8

From table 2.8:

 $I = L = 2, \quad J = K = M = N = 0$

From table 2.7:

SI = 4, SL = 3

Number of states required for execution = $2 \times 4 + 2 \times 3 = 14$

2. JSR @@30

From table 2.8:

 $I=J=K=2, \quad \ L=M=N=0$

From table 2.7:

SI = SJ = SK = 4

Number of states required for execution = $2 \times 4 + 2 \times 4 + 2 \times 4 = 24$

Renesas

Table 2.7Number of States per Cycle

					Access C	onditions		
Cycle		On-Chip Memory	-	Supporting dule	8-Bi	t Bus	16-Bi	t Bus
		Memory	8-Bit Bus	16-Bit Bus	2-State Access	3-State Access	2-State Access	3-State Access
Instruction fetch	S,	2	6	3	4	6 + 2 m	2	3 + m*
Branch address read	S	-						
Stack operation	Sκ	-						
Byte data access	SL		3	-	2	3 + m		
Word data access	S _м		6	-	4	6 + 2 m		
Internal operation	S _N	1	1	1	1	1	1	1

Note: * For the MOVFPE and MOVTPE instructions, refer to the relevant microcontroller hardware manual.

Legend:

m: Number of wait states inserted into external device access

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	к	L	М	N
ADD	ADD.B #xx:8,Rd	1					
	ADD.B Rs,Rd	1					
	ADD.W #xx:16,Rd	2					
	ADD.W Rs,Rd	1					
	ADD.L #xx:32,ERd	3					
	ADD.L ERs,ERd	1					
ADDS	ADDS #1/2/4,ERd	1					
ADDX	ADDX #xx:8,Rd	1					
	ADDX Rs,Rd	1					
AND	AND.B #xx:8,Rd	1					
	AND.B Rs,Rd	1					
	AND.W #xx:16,Rd	2					
	AND.W Rs,Rd	1					
	AND.L #xx:32,ERd	3					
	AND.L ERs,ERd	2					
ANDC	ANDC #xx:8,CCR	1					
BAND	BAND #xx:3,Rd	1					
	BAND #xx:3,@ERd	2			1		
	BAND #xx:3,@aa:8	2			1		
Bcc	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					
	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					

Table 2.8 Number of Cycles in Instruction Execution

Section 2 Instruction Descriptions

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	к	L	М	Ν
Bcc	BGT d:8	2					
	BLE d:8	2					
	BRA d:16 (BT d:16)	2					2
	BRN d:16 (BF d:16)	2					2
	BHI d:16	2					2
	BLS d:16	2					2
	BCC d:16 (BHS d:16)	2					2
	BCS d:16 (BLO d:16)	2					2
	BNE d:16	2					2
	BEQ d:16	2					2
	BVC d:16	2					2
	BVS d:16	2					2
	BPL d:16	2					2
	BMI d:16	2					2
	BGE d:16	2					2
	BLT d:16	2					2
	BGT d:16	2					2
	BLE d:16	2					2
BCLR	BCLR #xx:3,Rd	1					
	BCLR #xx:3,@ERd	2			2		
	BCLR #xx:3,@aa:8	2			2		
	BCLR Rn,Rd	1					
	BCLR Rn,@ERd	2			2		
	BCLR Rn,@aa:8	2			2		
BIAND	BIAND #xx:3,Rd	1					
	BIAND #xx:3,@ERd	2			1		
	BIAND #xx:3,@aa:8	2			1		
BILD	BILD #xx:3,Rd	1					
	BILD #xx:3,@ERd	2			1		
	BILD #xx:3,@aa:8	2			1		
BIOR	BIOR #xx:8,Rd	1					
	BIOR #xx:8,@ERd	2			1		
	BIOR #xx:8,@aa:8	2			1		

			Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic		I	J	к	L	М	N
BIST	BIST #xx:3,Rd		1					
	BIST #xx:3,@E	ERd	2			2		
	BIST #xx:3,@a	aa:8	2			2		
BIXOR	BIXOR #xx:3,F	۲d	1					
	BIXOR #xx:3,@	2 ERd	2			1		
	BIXOR #xx:3,@	@aa:8	2			1		
BLD	BLD #xx:3,Rd		1					
	BLD #xx:3,@E	Rd	2			1		
	BLD #xx:3,@a	a:8	2			1		
BNOT	BNOT #xx:3,R	d	1					
	BNOT #xx:3,@	ERd	2			2		
	BNOT #xx:3,@	aa:8	2			2		
	BNOT Rn,Rd		1					
	BNOT Rn,@El	Rd	2			2		
	BNOT Rn,@aa	a:8	2			2		
BOR	BOR #xx:3,Rd		1					
	BOR #xx:3,@E	Rd	2			1		
	BOR #xx:3,@a	aa:8	2			1		
BSET	BSET #xx:3,Ro	b	1					
	BSET #xx:3,@	ERd	2			2		
	BSET #xx:3,@	aa:8	2			2		
	BSET Rn,Rd		1					
	BSET Rn,@EF	۶d	2			2		
	BSET Rn,@aa	:8	2			2		
BSR	BSR d:8	Advanced	2		2			
		Normal	2		1			
	BSR d:16	Advanced	2		2			2
		Normal	2		1			2
BST	BST #xx:3,Rd		1					
	BST #xx:3,@E	Rd	2			2		
	BST #xx:3,@a	a:8	2			2		

Section 2 Instruction Descriptions

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	к	L	М	N
BTST	BTST #xx:3,Rd	1					
	BTST #xx:3,@ERd	2			1		
	BTST #xx:3,@aa:8	2			1		
	BTST Rn,Rd	1					
	BTST Rn,@ERd	2			1		
	BTST Rn,@aa:8	2			1		
BXOR	BXOR #xx:3,Rd	1					
	BXOR #xx:3,@ERd	2			1		
	BXOR #xx:3,@aa:8	2			1		
CMP	CMP.B #xx:8,Rd	1					
	CMP.B Rs,Rd	1					
	CMP.W #xx:16,Rd	2					
	CMP.W Rs,Rd	1					
	CMP.L #xx:32,ERd	3					
	CMP.L ERs,ERd	1					
DAA	DAA Rd	1					
DAS	DAS Rd	1					
DEC	DEC.B Rd	1					
	DEC.W #1/2,Rd	1					
	DEC.L #1/2,ERd	1					
DIVXS	DIVXS.B Rs,Rd	2					12
	DIVXS.W Rs,ERd	2					20
DIVXU	DIVXU.B Rs,Rd	1					12
	DIVXU.W Rs,ERd	1					20
EEPMOV	EEPMOV.B	2			2n + 2*1		
	EEPMOV.W	2			2n + 2*1		
EXTS	EXTS.W Rd	1					
	EXTS.L ERd	1					
EXTU	EXTU.W Rd	1					
	EXTU.L ERd	1					
INC	INC.B Rd	1					
	INC.W #1/2,Rd	1					
	INC.L #1/2,ERd	1					

			Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic		I	J	к	L	М	N
JMP	JMP @ERn		2					
	JMP @aa:24		2					2
	JMP @@aa:8	Advanced	2	2				2
		Normal	2	1				2
JSR	JSR @ERn	Advanced	2		2			
		Normal	2		1			
	JSR @aa:24	Advanced	2		2			2
		Normal	2		1			2
	JSR @@aa:8	Advanced	2	2	2			
		Normal	2	1	1			
LDC	LDC #xx:8,CCF	२	1					
	LDC Rs,CCR		1					
	LDC @ERs,CC	R	2				1	
	LDC @(d:16,EI	Rs),CCR	3				1	
	LDC @(d:24,EF	Rs),CCR	5				1	
	LDC @ERs+,C	CR	2				1	2
	LDC @aa:16,C	CR	3				1	
	LDC @aa:24,C	CR	4				1	
MOV	MOV.B #xx:8,R	Rd	1					
	MOV.B Rs,Rd		1					
	MOV.B @ERs,	Rd	1			1		
	MOV.B @(d:16	,ERs),Rd	2			1		
	MOV.B @(d:24	,ERs),Rd	4			1		
	MOV.B @ERs+	⊦,Rd	1			1		2
	MOV.B @aa:8,	Rd	1			1		
	MOV.B @aa:16	6,Rd	2			1		
	MOV.B @aa:24	4,Rd	3			1		
	MOV.B Rs,@E	Rd	1			1		
	MOV.B Rs,@(c	1:16,ERd)	2			1		
	MOV.B Rs,@(c	1:24,ERd)	4			1		
	MOV.B Rs,@-I	ERd	1			1		2
	MOV.B Rs,@aa	a:8	1			1		
	MOV.B Rs,@aa	a:16	2			1		
	MOV.B Rs,@aa	a:24	3			1		

Section 2 Instruction Descriptions

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	к	L	М	N
MOV	MOV.W #xx:16,Rd	2					
	MOV.W Rs,Rd	1					
	MOV.W @ERs,Rd	1				1	
	MOV.W @(d:16,ERs),Rd	2				1	
	MOV.W @(d:24,ERs),Rd	4				1	
	MOV.W @ERs+,Rd	1				1	2
	MOV.W @aa:16,Rd	2				1	
	MOV.W @aa:24,Rd	3				1	
	MOV.W Rs,@ERd	1				1	
	MOV.W Rs,@(d:16,ERd)	2				1	
	MOV.W Rs,@(d:24,ERd)	4				1	
	MOV.W Rs,@-ERd	1				1	2
	MOV.W Rs,@aa:16	2				1	
	MOV.W Rs,@aa:24	3				1	
	MOV.L #xx:32,ERd	3					
	MOV.L ERs,ERd	1					
	MOV.L @ERs,ERd	2				2	
	MOV.L @(d:16,ERs),ERd	3				2	
	MOV.L @(d:24,ERs),ERd	5				2	
	MOV.L @ERs+,ERd	2				2	2
	MOV.L @aa:16,ERd	3				2	
	MOV.L @aa:24,ERd	4				2	
	MOV.L ERs,@ERd	2				2	
	MOV.L ERs,@(d:16,ERd)	3				2	
	MOV.L ERs,@(d:24,ERd)	5				2	
	MOV.L ERs,@-ERd	2				2	2
	MOV.L ERs,@aa:16	3				2	
	MOV.L ERs,@aa:24	4				2	
MOVFPE	MOVFPE @:aa:16,Rd	2			1* ²		
MOVTPE	MOVTPE Rs,@:aa:16	2			1* ²		
MULXS	MULXS.B Rs,Rd	2					12
	MULXS.W Rs,ERd	2					20
MULXU	MULXU.B Rs,Rd	1					12
	MULXU.W Rs,ERd	1					20

			Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic		I	J	к	L	М	N
NEG	NEG.B Rd		1					
	NEG.W Rd		1					
	NEG.L ERd		1					
NOP	NOP		1					
NOT	NOT.B Rd		1					
	NOT.W Rd		1					
	NOT.L ERd		1					
OR	OR.B #xx:8,Rd		1					
	OR.B Rs,Rd		1					
	OR.W #xx:16,F	Rd	2					
	OR.W Rs,Rd		1					
	OR.L #xx:32,E	Rd	3					
	OR.L ERs,ERc	I	2					
ORC	ORC #xx:8,CC	R	1					
POP	POP.W Rn		1				1	2
	POP.L ERn		2				2	2
PUSH	PUSH.W Rn		1				1	2
	PUSH.L ERn		1				2	2
ROTL	ROTL.B Rd		1					
	ROTL.W Rd		1					
	ROTL.L ERd		1					
ROTR	ROTR.B Rd		1					
	ROTR.W Rd		1					
	ROTR.L ERd		1					
ROTXL	ROTXL.B Rd		1					
	ROTXL.W Rd		1					
	ROTXL.L ERd		1					
ROTXR	ROTXR.B Rd		1					
	ROTXR.W Rd		1					
	ROTXR.L ERd		1					
RTE	RTE		2		2			2
RTS	RTS	Advanced	2		2			2
		Normal	2		1			2

Section 2 Instruction Descriptions

			Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic		I	J	к	L	М	N
SHAL	SHAL.B Rd		1					
	SHAL.W Rd		1					
	SHAL.L ERd		1					
SHAR	SHAR.B Rd		1					
	SHAR.W Rd		1					
	SHAR.L ERd		1					
SHLL	SHLL.B Rd		1					
	SHLL.W Rd		1					
	SHLL.L ERd		1					
SHLR	SHLR.B Rd		1					
	SHLR.W Rd		1					
	SHLR.L ERd		1					
SLEEP	SLEEP		1					
STC	STC CCR,Rd		1					
	STC CCR,@E	Rd	2				1	
	STC CCR,@(c	l:16,ERd)	3				1	
	STC CCR,@(c	l:24,ERd)	5				1	
	STC CCR,@-	ERd	2				1	2
	STC CCR,@a	a:16	3				1	
	STC CCR,@a	a:24	4				1	
SUB	SUB.B Rs,Rd		1					
	SUB.W #xx:16	,Rd	2					
	SUB.W Rs,Rd		1					
	SUB.L #xx:32,	ERd	3					
	SUB.L ERs,EF	Rd	1					
SUBS	SUBS #1/2/4,E	Rd	1					
SUBX	SUBX #xx:8,R	d	1					
	SUBX Rs,Rd		1					
TRAPA	TRAPA #x:2	Advanced	2	2	2			4
		Normal	2	1	2			4

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	к	L	М	N
XOR	XOR.B #xx:8,Rd	1					
	XOR.B Rs,Rd	1					
	XOR.W #xx:16,Rd	2					
	XOR.W Rs,Rd	1					
	XOR.L #xx:32,ERd	3					
	XOR.L ERs,ERd	2					
XORC	XORC #xx:8,CCR	1					

Notes: 1. When n bytes of data are transferred.

2.7 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used in the table is defined below.

m	31 for longword operands, 15 for word operands, 7 for byte operands
S _i	The i-th bit of the source operand
D	The i-th bit of the destination operand
R _i	The i-th bit of the result
D _n	The specified bit in the destination operand
_	Not affected
\uparrow	Modified according to the result of the instruction (see definition)
0	Always cleared to 0
1	Always set to 1
*	Undetermined (no guaranteed value)
Z'	Z flag before instruction execution
C'	C flag before instruction execution

Table 2.9	Condition Code Modification
-----------	------------------------------------

Instruction	Н	Ν	z	v	С	Definition
ADD	\uparrow	\uparrow	\updownarrow	\uparrow	\uparrow	$H = Sm - 4 \cdot Dm - 4 + Dm - 4 \cdot / Rm - 4 + Sm - 4 \cdot / Rm - 4$
						N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						$V = S m \cdot D m \cdot / R m + / S m \cdot / D m \cdot R m$
						$C = S m \cdot D m + D m \cdot / R m + S m \cdot / R m$
ADDS	—	—	—	—	—	
ADDX	\updownarrow	\updownarrow	\updownarrow	\uparrow	\uparrow	$H = Sm - 4 \cdot Dm - 4 + Dm - 4 \cdot / Rm - 4 + Sm - 4 \cdot / Rm - 4$
						N = R m
						$Z = Z' \cdot / R m \cdot \cdot / R 0$
						$V = S m \cdot D m \cdot / R m + / S m \cdot / D m \cdot R m$
						$C = S m \cdot D m + D m \cdot / R m + S m \cdot / R m$
AND	—	\updownarrow	\updownarrow	0	—	N = R m
						$Z = / R m \cdot / R m - 1 \cdot \cdot / R 0$
ANDC	\updownarrow	\$	\updownarrow	\uparrow	\uparrow	Stores the corresponding bits of the result
BAND	—	—	—	—	\updownarrow	$C = C' \cdot D n$
Bcc	—	—	_	—	—	
BCLR	-	—	-	—	—	
BIAND	—		—	—	\uparrow	C = C ' · / D n
BILD	—		—	—	\uparrow	C = / D n
BIOR	—		—	—	\uparrow	C = C ' + / D n
BIST	—	_	_	_	—	
BIXOR	—		—	—	\uparrow	$C = C' \cdot / D n + / C' \cdot / D n$
BLD	—		—	—	\uparrow	C = D n
BNOT	—	—	—	—	—	
BOR	—	—	—	—	\$	C = C ' + D n
BSET	—		—			
BSR	—	—	_	—	—	
BST	—		—			
BTST	—		\updownarrow			Z = / D n
BXOR	—		—		\uparrow	$C = C' \cdot / D n + / C' \cdot D n$

Instruction	Н	Ν	Z	v	С	Definition
CMP	\Leftrightarrow	\updownarrow	\uparrow	\uparrow	\uparrow	$H = S m - 4 \cdot / D m - 4 + / D m - 4 \cdot R m - 4 + S m - 4 \cdot R m - 4$
						N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						$V = / S m \cdot D m \cdot / R m + S m \cdot / D m \cdot R m$
						$C = S m \cdot / D m + / D m \cdot R m + S m \cdot R m$
DAA	*	\updownarrow	\$	*	\uparrow	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						C: decimal arithmetic carry
DAS	*	\updownarrow	\$	*	\$	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						C: decimal arithmetic borrow
DEC		\updownarrow	\uparrow	\$	—	N = R m
						Z = / R m· / R m – 1 · … · / R 0
						$V = D m \cdot / R m$
DIVXS	_	\uparrow	€	_	_	$N = S m \cdot / D m + / S m \cdot D m$
						Z = / S m · / S m – 1 · · / S 0
DIVXU	-	\updownarrow	↕	—	—	N = S m
						$Z = /Sm \cdot /Sm - 1 \cdot \cdot /S0$
EEPMOV	_	_	_	_	_	
EXTS	_	\uparrow	€	0	_	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
EXTU	_	0	\$	0	_	$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
INC	_	\updownarrow	\$	\$		N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						$V = D m \cdot / R m$
JMP	_	_				
JSR	_	_				
LDC	\updownarrow	\uparrow	\$	\$	\$	Stores the corresponding bits of the result
MOV	-	\updownarrow	\$	0	_	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
MOVFPE	_	\updownarrow	\$	0	—	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
MOVTPE	_	\$	\$	0		N = R m
		,	·			$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$

Rev. 3.00 Dec 13, 2004 page 230 of 258 REJ09B0213-0300

Instruction	н	Ν	Z	v	С	Definition
MULXS	—	\updownarrow	\uparrow	—	—	N = R 2 m
						$Z = R 2 m \cdot R 2 m - 1 \cdot \cdot / R 0$
MULXU	—	—	—	_	—	
NEG	\$	\updownarrow	\uparrow	\uparrow	\uparrow	H = Dm - 4 + Rm - 4
						N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot R0$
						$V = D m \cdot R m$
						C = D m + R m
NOP	—	—	—	—	—	
NOT	—	\updownarrow	\uparrow	0	—	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
OR	—	\updownarrow	\uparrow	0	_	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
ORC	\uparrow	\updownarrow	\uparrow	\uparrow	\uparrow	Stores the corresponding bits of the result
POP	—	\updownarrow	\uparrow	0	—	N = R m
						$Z = / R m \cdot / R m - 1 \cdot \cdot / R 0$
PUSH	—	\updownarrow	\uparrow	0	—	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
ROTL	—	\updownarrow	\updownarrow	0	\updownarrow	N = R m
						$Z = / R m \cdot / R m - 1 \cdot \cdot / R 0$
						C = D m
ROTR	—	\updownarrow	\uparrow	0	\updownarrow	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						C = D 0
ROTXL	—	\updownarrow	\uparrow	0	\uparrow	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						C = D m
ROTXR	-	\$	\uparrow	0	\$	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						C = D 0
RTS	—	—	—	—	—	
RTE	\$	\$	\uparrow	\uparrow	\uparrow	Stores the corresponding bits of the result

Instruction	Н	Ν	Z	۷	С	Definition
SHAL	—	\uparrow	\uparrow	\updownarrow	\uparrow	N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						$V = D m \cdot / D m - 1 + / D m \cdot D m - 1$
						C = D m
SHAR	—	\$	\uparrow	0	\uparrow	N = R m
						$Z = / R m \cdot / R m - 1 \cdot \cdot / R 0$
						C = D 0
SHLL	-	\updownarrow	\Leftrightarrow	0	\updownarrow	N = R m
						$Z = / R m \cdot / R m - 1 \cdot \cdot / R 0$
						C = D m
SHLR	—	\updownarrow	\uparrow	0	\uparrow	N = R m
						$Z = / R m \cdot / R m - 1 \cdot \cdot / R 0$
						C = D 0
SLEEP	—		—	_	—	
STC	-	—	-	-	—	
SUB	\uparrow	\updownarrow	\uparrow	\updownarrow	\uparrow	$H = Sm - 4 \cdot / Dm - 4 + / Dm - 4 \cdot Rm - 4 + Sm - 4 \cdot Rm - 4$
						N = R m
						$Z = /Rm \cdot /Rm - 1 \cdot \cdot /R0$
						$V = / S m \cdot D m \cdot / R m + S m \cdot / D m \cdot R m$
						$C = S m \cdot / D m + / D m \cdot R m + S m \cdot R m$
SUBS	-	—	-	-	—	
SUBX	\updownarrow	\updownarrow	\Leftrightarrow	\Leftrightarrow	\updownarrow	$H = S m - 4 \cdot / D m - 4 + / D m - 4 \cdot R m - 4 + S m - 4 \cdot R m - 4$
						N = R m
						$Z = Z' \cdot / R m \cdot \cdot / R 0$
						$V = / S m \cdot D m \cdot / R m + S m \cdot / D m \cdot R m$
						$C = S m \cdot / D m + / D m \cdot R m + S m \cdot R m$
TRAPA					_	
XOR	—	\$	\uparrow	0	—	N = R m
						$Z = / R m \cdot / R m - 1 \cdot \dots \cdot / R 0$
XORC	\uparrow	\updownarrow	\uparrow	\updownarrow	\uparrow	Stores the corresponding bits of the result

2.8 Bus Cycles During Instruction Execution

Table 2.10 indicates the bus cycles during instruction execution by the H8/300H CPU. For the number of states per bus cycle, see table 2.7, Number of States per Cycle.

How to read the table:

Legend

R:BByte-size readR:WWord-size readW:BByte-size writeW:WWord-size write2ndAddress of 2nd word (3rd and 4th bytes)3rdAddress of 3rd word (5th and 6th bytes)4thAddress of 4th word (7th and 8th bytes)5thAddress of 5th word (9th and 10th bytes)NEXTAddress of next instructionEAEffective addressVECVector address		
W:BByte-size writeW:WWord-size write2ndAddress of 2nd word (3rd and 4th bytes)3rdAddress of 3rd word (5th and 6th bytes)4thAddress of 4th word (7th and 8th bytes)5thAddress of 5th word (9th and 10th bytes)NEXTAddress of next instructionEAEffective address	R:B	Byte-size read
W:WWord-size write2ndAddress of 2nd word (3rd and 4th bytes)3rdAddress of 3rd word (5th and 6th bytes)4thAddress of 4th word (7th and 8th bytes)5thAddress of 5th word (9th and 10th bytes)NEXTAddress of next instructionEAEffective address	R:W	Word-size read
2ndAddress of 2nd word (3rd and 4th bytes)3rdAddress of 3rd word (5th and 6th bytes)4thAddress of 4th word (7th and 8th bytes)5thAddress of 5th word (9th and 10th bytes)NEXTAddress of next instructionEAEffective address	W:B	Byte-size write
3rdAddress of 3rd word (5th and 6th bytes)4thAddress of 4th word (7th and 8th bytes)5thAddress of 5th word (9th and 10th bytes)NEXTAddress of next instructionEAEffective address	W:W	Word-size write
4thAddress of 4th word (7th and 8th bytes)5thAddress of 5th word (9th and 10th bytes)NEXTAddress of next instructionEAEffective address	2nd	Address of 2nd word (3rd and 4th bytes)
5th Address of 5th word (9th and 10th bytes) NEXT Address of next instruction EA Effective address	3rd	Address of 3rd word (5th and 6th bytes)
NEXT Address of next instruction EA Effective address	4th	Address of 4th word (7th and 8th bytes)
EA Effective address	5th	Address of 5th word (9th and 10th bytes)
	NEXT	Address of next instruction
VEC Vector address	EA	Effective address
	VEC	Vector address

Renesas

Figure 2.1 shows timing waveforms for the address bus and the \overline{RD} and \overline{WR} (HWR or \overline{LWR}) signals during execution of the above instruction with an 8-bit bus, using 3-state access with no wait states.

Figure 2.1 Address Bus, RD, and WR (HWR or LWR) Timing (8-bit bus, 3-state access, no wait states)

Table 2.10 Bus States

Instruction	-	2	e	7	2	9	7	8
ADD.B #xx:8,Rd	R:W NEXT							
ADD.B Rs,Rd	R:W NEXT							
ADD.W #xx:16,Rd	R:W 2nd	R:W NEXT						
ADD.W Rs,Rd	R:W NEXT							
ADD.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT					
ADD.L ERS, ERd	R:W NEXT							
ADDS #1/2/4,ERd	R:W NEXT							
ADDX #xx:8,Rd	R:W NEXT							
ADDX Rs,Rd	R:W NEXT							
AND.B #xx:8,Rd	R:W NEXT							
AND.B Rs,Rd	R:W NEXT							
AND.W #xx:16,Rd	R:W 2nd	R:W NEXT						
AND.W Rs,Rd	R:W NEXT							
AND.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT					
AND.L ERS, ERd	R:W 2nd	R:W NEXT						
ANDC #xx:8,CCR	R:W NEXT							
BAND #xx:3,Rd	R:W NEXT							
BAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT					
BAND #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT					
BRA d:8 (BT d;8)	R:W NEXT	R:W EA						
BRN d:8 (BF d;8)	R:W NEXT	R:W EA						
BHI d:8	R:W NEXT	R:W EA						
BLS d:8	R:W NEXT	R:W EA						
BCC d:8 (BHS d;8)	R:W NEXT	R:W EA						
BCS d:8 (BLO d;8)	R:W NEXT	R:W EA						
BNE d:8	R:W NEXT	R:W EA						
BEQ d:8	R:W NEXT	R:W EA						
BVC d:8	R:W NEXT	R:W EA						
BVS d:8	R:W NEXT	R:W EA						
BPL d:8	R:W NEXT	R:W EA						
BMI d:8	R:W NEXT	R:W EA						

Section 2 Instruction Descriptions

CLR MACIAG RWMS/T MMS/T	Instruction	-	2	8	4	5	9	7	8
R:W Znd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R	BCLR #xx:3,Rd	R:W NEXT							
R:W Znd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT <td< td=""><td>BCLR #xx:3,@ERd</td><td>R:W 2nd</td><td>R:B EA</td><td>R:W NEXT</td><td>W:B EA</td><td></td><td></td><td></td><td></td></td<>	BCLR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:WNEXT R:WNEXT R:WZnd R:BEA R:WNEXT R:WZnd R:BEA R:WNEXT R:WNEXT R:BEA R:WNEXT <t< td=""><td>BCLR #xx:3,@aa:8</td><td>R:W 2nd</td><td>R:B EA</td><td>R:W NEXT</td><td>W:B EA</td><td></td><td></td><td></td><td></td></t<>	BCLR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W2nd R:BEA R:WNEXT R:W2nd R:BEA R:WNEXT R:W100 <	BCLR Rn,Rd	R:W NEXT							
R:W Znd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT <td>BCLR Rn,@ERd</td> <td>R:W 2nd</td> <td>R:B EA</td> <td>R:W NEXT</td> <td>W:B EA</td> <td></td> <td></td> <td></td> <td></td>	BCLR Rn,@ERd	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W NEXT R:W NEXT R:W Znd R:BEA R:W NEXT R:W Znd R:BEA R:W NEXT R:W NEXT R:D R:W NEXT R:W NEXT R:BEA R:W NEXT R:W NEXT R:W NEXT R:W NEXT	BCLR Rn,@aa:8	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W Znd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT	BIAND #xx:3,Rd	R:W NEXT							
E.W.Znd E.B.EA R:W.NEXT R:WNEXT R:B.EA R:WNEXT R:WNEXT R:B.EA R:WNEXT <td>BIAND #xx:3,@ERd</td> <td>R:W 2nd</td> <td>R:B EA</td> <td>R:W NEXT</td> <td></td> <td></td> <td></td> <td></td> <td></td>	BIAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:W NEXT R:W Zhd R:B EA R:W NEXT R:W Zhd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA	BIAND #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT					
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT	BILD #xx:3,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R	BILD #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:W NEXT R:W Znd R:B EA R:W NEXT R:W Znd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT	BILD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT					
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT	BIOR #xx:8,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W Znd R:B EA R:W NEXT R:W NEXT R:	BIOR #xx:8, @ERd	R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:W NEXT R:W Znd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT	BIOR #xx:8, @aa:8	R:W 2nd	R:B EA	R:W NEXT					
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R	BIST #xx:3,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W Znd R:B EA R:W NEXT R:W Znd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT	BIST #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W NEXT R:W NEXT R:W Znd R:BEA R:W NEXT R:W Znd R:BEA R:W NEXT R:W NEXT R:M NEXT R:M NEXT R:W NEXT R:BEA R:W NEXT R:W NEXT R:W NEXT R:W NEXT </td <td>BIST #xx:3,@aa:8</td> <td>R:W 2nd</td> <td>R:B EA</td> <td>R:W NEXT</td> <td>W:B EA</td> <td></td> <td></td> <td></td> <td></td>	BIST #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W Znd R:B EA R:W NEXT R:W Znd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT	BIXOR #xx:3,Rd	R:W NEXT							
R:W Znd R:B EA R:W NEXT R:W NEXT B:W NEXT B:W NEXT R:W NEXT R:W NEXT B:W NEXT R:W NEXT R:W NEXT B:W NEXT R:W Znd R:B EA R:W NEXT R:W Znd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT	BIXOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:B EA R:W NEXT R:W Znd R:B EA R:W NEXT R:W Znd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BIXOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT					
R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BLD #xx:3,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BLD #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:W NEXT R:M NEXT	BLD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT					
R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT	BNOT #xx:3,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BNOT #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W NEXT R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BNOT #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BNOT Rn,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BNOT Rn,@ERd	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W NEXT R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT	BNOT Rn,@aa:8	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W 2nd R:B EA R:W NEXT	BOR #xx:3,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:W NEXT R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT					
R:W 2nd R:B EA R:W NEXT R:W 2nd R:B EA R:W NEXT	BSET #xx:3,Rd	R:W NEXT							
R:W 2nd R:B EA R:W NEXT	BSET #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT	W:B EA				
	BSET #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT	W:B EA				

BET FILE BUNKIT EVENC	Instruction		-	2	3	4	5	9	7	8
RWNEXT RWNEXT WABEA RWNEXT WABEA MADEA RWNEXT RWNEXT WABEA WWNSBack(1) WWNSBack(1) MM <sback(1)< td=""> Abbrond RWNEXT RWEAT WWNSBack(1) WWNSBack(1) MM<sback(1)< td=""> Abbrond RWNEXT RWNEXT RWNEXT WWNSBack(1) WWNSBack(1) RWNEXT RWNEXT RWNEXT WWNSBack(1) WWNSBack(1) MM<sback(1)< td=""> RWNEXT RWNEXT WWNSBack(1) WWNSBack(1) WWNSBack(1) MM<sback(1)< td=""> RWNEXT RWNEXT WWNSBack(1) WWNSBack(1) WWNSBack(1) MM<sback(1)< td=""> RWNEXT RWNEXT WWSBack(1) WWSBack(1) WWNSBack(1) MM<sback(1)< td=""> RWNEXT RWNEXT WWSBack(1) WWSBack(1) MW<sback(1)< td=""> MM<sback(1)< td=""> RWNEXT RWNEXT WWSBack(1) WWSBack(1) MW<sback(1)< td=""> MM<sback(1)< td=""> RWNEXT RWNEXT WWSBack(1) WWSBack(1) MM<sback(1)< td=""> MM<sback(1)< td=""> RWNEXT RWNEXT RWNEXT</sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<></sback(1)<>	BSET Rn,Rd		R:W NEXT							
Image: Negative integrate inttegrate inttegrate inttegrate intttegrate inttegrate inttegrate	BSET Rn,@ERd		R:W 2nd	R:B EA	R:W NEXT	W:B EA				
Nomal R:Wuextr R:Wuextr <t< td=""><td>BSET Rn,@aa:8</td><td></td><td>R:W 2nd</td><td>R:B EA</td><td>R:W NEXT</td><td>W:B EA</td><td></td><td></td><td></td><td></td></t<>	BSET Rn,@aa:8		R:W 2nd	R:B EA	R:W NEXT	W:B EA				
Advanced R:WEXT R:WEA W:W Stack (L) W:W Stack (L) hommal R:W2nd Immal operation.2 setsic R:W Stack (L) W:W Stack (L) R:W2nd Immal operation.2 setsic R:W KI W:W Stack (L) W:W Stack (L) R:W2nd R:W2nd Immal operation.2 setsic R:W KI W:W Stack (L) W:W Stack (L) R:W2nd R:W2nd R:W KI W:W Stack (L) W:W Stack (L) W:W Stack (L) R:W2nd R:W KI W:W Stack (L) W:W Stack (L) W:W Stack (L) W:W Stack (L) R:W1 R:W1 R:W1 W:W Stack (L) W:W Stack (L) W:W Stack (L) R:W1 R:W1 R:W1 W:W2 R:W1 W:W Stack (L) M:W Stack (L) R:W1 R:W1 R:W1 W:W2 R:W1 M:W1 M:W Stack (L) R:W2 R:W2 R:W1 R:W1 M:W2 R:W1 M:W Stack (L) R:W1 R:W2 R:W1 R:W1 R:W1 R:W1 R:W1 R:W1 R:W1 R:W1 </td <td>BRS d:8</td> <td>Normal</td> <td>R:W NEXT</td> <td>R:WEA</td> <td>W:W Stack</td> <td></td> <td></td> <td></td> <td></td> <td></td>	BRS d:8	Normal	R:W NEXT	R:WEA	W:W Stack					
Nomal R.W.Znd Inerari Greation. 2 states R.W.W.Stack. (H) W.W.Stack. (L) Advanced R.W.WEXT R.B.E.A R.W.NEXT W.B.E.A W.W.Stack. (L) R.W.NEXT R.B.E.A R.W.NEXT R.B.E.A R.W.NEXT W.B.E.A R.W.NEXT R.B.E.A R.W.NEXT W.B.E.A W.W.Stack. (L) W.W.Stack. (L) R.W.NEXT R.B.E.A R.W.NEXT W.B.E.A W.W.Stack. (L) M.W.Stack. (L) R.W.NEXT R.B.E.A R.W.NEXT W.B.E.A M.W.Stack. (L) M.W.Stack. (L) R.W.NEXT R.W.NEXT R.W.NEXT W.B.E.A R.W.NEXT M.M.Stack. (L) R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEX		Advanced	R:W NEXT	R:W EA	W:W Stack (H)	W:W Stack (L)				
Advanced R.W.Tard Interval operation, 2 states R.W.K Stack (L) W.W. Stack (L) R.W.NEXT R.W.NEXT K.W.NEXT W.W. Stack (L) W.W. Stack (L) R.W.NEXT R.W.NEXT R.W.NEXT W.W. Stack (L) W.W. Stack (L) R.W.NEXT R.W.NEXT W.W. Stack (L) W.W. Stack (L) M.W. Stack (L) R.W.NEXT R.W.NEXT W.B.E.A R.W.NEXT W.S. Stack M.W. Stack (L) R.W.NEXT R.W.NEXT R.W.NEXT W.W.Stack (L) M.W. Stack (L) M.W. Stack (L) R.W.NEXT R.W.NEXT R.W.NEXT W.W.Stack (L) M.W. Stack (L) M.W. Stack (L) R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT M.W.Stack (L) M.W. Stack (L) R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT R.W.NEXT	BRS d:16	Normal	R:W 2nd	Internal operation, 2 states	R:WEA	W:W Stack				
R:WNEXT K:WNEXT W:BEA K:WNEXT W:BEA K:WNEXT W:BEA K:WNEXT W:BEA R:W2nd R:W2nd R:BEA R:WNEXT W:BEA R:WNEXT W:BEA R:W2nd R:BEA R:WNEXT W:BEA R:WNEXT M:BEA R:W2nd R:WEXT R:BEA R:WNEXT P:P P:P R:WNEXT R:WNEXT R:WNEXT P:P P:P P:P P:P R:WNEXT R:WNEXT R:WNEXT R:WNEXT P:P P:P P:P P:P R:WNEXT R:WNEXT R:WNEXT R:WNEXT R:WNEXT P:P P:P P:P R:WNEXT R:WNEXT R:WNEXT		Advanced	R:W 2nd	Internal operation, 2 states		W:W Stack (H)	W:W Stack (L)			
R.W.Drd R.B.EA R.W.NEXT W.B.EA R.W.NEXT R.M.B.T R.W.NEXT R.M.B.T R.W.NEXT R.M.B.T R.W.NEXT R.M.B.T R.W.NEXT R.M.B.T R.W.NEXT	BST #xx:3,Rd		R:W NEXT							
R.W.Znd R.B.EA R.W.NEXT W.B.EA R.W.NEXT W.B.EA R.W.NEXT W.B.EA R.W.NEXT M.B.EA M.B.EA <td>BST #xx:3,@ERd</td> <td></td> <td>R:W 2nd</td> <td>R:B EA</td> <td>R:W NEXT</td> <td>W:B EA</td> <td></td> <td></td> <td></td> <td></td>	BST #xx:3,@ERd		R:W 2nd	R:B EA	R:W NEXT	W:B EA				
R:W NEXT	BST #xx:3,@aa:8		R:W 2nd	R:B EA	R:W NEXT	W:B EA				
ded $R.W.DrdoR.W.Nerty$	BTST #xx:3,Rd		R:W NEXT							
8 R.W.Dad R.B.EA R.W.NEXT R.W.N	BTST #xx:3,@ERd		R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT	BTST #xx:3,@aa:8		R:W 2nd	R:B EA	R:W NEXT					
R.W.Znd R.B.BA R.W.NEXT R	BTST Rn,Rd		R:W NEXT							
R:W.DrdR:W.NEXTR:M.NEXTR:W.NEXTR:W.NEXTR:W.NEXTR:M.NEXTR:M.NEXTR:W.NEXTR:W.NEXTR:W.NEXTR:M.NEXTR:M.REXTR:W.NEXTR:W.NEXTR:M.NEXTR:M.REXTR:M.REXTR:W.NEXTR:W.NEXTR:M.NEXTR:M.REXTR:W.NEXTR:M.NEXTR:M.REXTR:M.REXTR:W.NEXTR:M.NEXTR:M.REXTR:M.REXTR:W.NEXTR:M.NEXTR:M.REXTR:M.REXTR:W.NEXTR:M.NEXTR:M.REXTR:M.REXTR:W.NEXTR:M.REXTR:M.REXTR:M.REXTR:W.NEXTR:M.REXTR:M.REXTR:M.REXTR:W.NEXTR:M.REXTR:M.REXTR:M.REXTR:W.NEXTR:M.REXTR:M.REXTR:M.REXTR:W.	BTST Rn,@ERd		R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:W NEXT R:W NEXT R:M SEA R:W NEXT R:M SEA R:M SEA </td <td>BTST Rn,@aa:8</td> <td></td> <td>R:W 2nd</td> <td>R:B EA</td> <td>R:W NEXT</td> <td></td> <td></td> <td></td> <td></td> <td></td>	BTST Rn,@aa:8		R:W 2nd	R:B EA	R:W NEXT					
ed $R.W.DrdR.B.EAR.W.NEXTR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.RATR.M.R$	BXOR #xx:3,Rd		R:W NEXT							
8 \mathbb{R} , \mathbb{N} , \mathbb{D} \mathbb{R} , \mathbb{N} , \mathbb{N} , \mathbb{N} \mathbb{R} , \mathbb{N} , \mathbb{N} , \mathbb{N} \mathbb{R} , \mathbb{N} , \mathbb{N} \mathbb{N} \mathbb{N} , \mathbb{N} <	BXOR #xx:3, @ERd		R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:M NEXT <t< td=""><td>BXOR #xx:3, @aa:8</td><td></td><td>R:W 2nd</td><td>R:B EA</td><td>R:W NEXT</td><td></td><td></td><td></td><td></td><td></td></t<>	BXOR #xx:3, @aa:8		R:W 2nd	R:B EA	R:W NEXT					
R:W NEXT R:W NEXT <t< td=""><td>CMP.B #xx:8,Rd</td><td></td><td>R:W NEXT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CMP.B #xx:8,Rd		R:W NEXT							
Image: Notice of the structure of the stru	CMP.B Rs,Rd		R:W NEXT							
B::::::::::::::::::::::::::::::::::::	CMP.W #xx:16,Rd		R:W 2nd	R:W NEXT						
d R:W NeXT R:W NeXT R:W NeXT R:W NEXT R:W NEXT R:M NEXT	CMP.W Rs,Rd		R:W NEXT							
R:W NEXT Internal operation. 13 states Internal operation. 20 states Internal operation. 20 states R:W NEXT R:W NEXT </td <td>CMP.L #xx:32,ERd</td> <td></td> <td>R:W 2nd</td> <td>R:W 3rd</td> <td>R:W NEXT</td> <td></td> <td></td> <td></td> <td></td> <td></td>	CMP.L #xx:32,ERd		R:W 2nd	R:W 3rd	R:W NEXT					
R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT N:W NEXT Internal operation. 13 states Internal operation. 20 states N:W NEXT N:W NEXT Internal operation. 20 states Internal operation. 20 states N:W NEXT	CMP.L ERS, ERd		R:W NEXT							
R:W NEXT R:W NEXT R:W NEXT R:M SAT	DAA Rd		R:W NEXT							
R:W NEXT R:W NEXT R:W NEXT R:M SAT R:M SAT Mathematical and a second of the	DAS Rd		R:W NEXT							
R:W NEXT R:W NEXT R:W NEXT Internal operation, 1 R:W NEXT R:W NEXT Internal operation, 12 states R:W NEXT R:W NEXT Internal operation, 20 states R:W NEXT R:W NEXT Internal operation, 20 states R:W NEXT R:W NEXT Internal operation, 20 states R:W NEXT R:W NEXT R:B EAs *1 R:B EAd *1 R:W Z W B EAd *2 W B EAd *2 R:W Z R:B EAs *1 R:B EAd *1 R:B EAd *2	DEC.B Rd		R:W NEXT							
R:W NEXT R:W NEXT Internal operation, 1 R:W 2nd R:W NEXT Internal operation, 2 R:W 2nd R:W NEXT Internal operation, 2 R:W NEXT R:W NEXT Internal operation, 2 R:W NEXT R:W NEXT Internal operation, 2 R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W States Internal operation, 20 states R:W NEXT R:B EAs *1 R:B EAs *2 W:B EAd *2 R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAd *2	DEC.W #1/2,Rd		R:W NEXT							
R:W2nd R:WNEXT Internal operation, 1 R:W2nd R:WNEXT Internal operation, 2 R:W NEXT R:MEXT Internal operation, 2 R:W NEXT R:MEXT Internal operation, 2 R:W NEXT R:MEXT R:MEXT R:W NEXT R:MEAT R:MEAT R:W NEXT R:MEAT R:MEAT R:W NEXT R:BEAs*1 R:BEA*2 W:BEAd*2 R:W2nd R:BEA*1 R:BEA*1 R:BEA*2 W:BEA*2	DEC.L #1/2,ERd		R:W NEXT							
R:W NEXT Internal operation, 2 R:W NEXT Internal operation, 2 states R:W NEXT Internal operation, 2 states R:W NEXT Internal operation, 2 states R:W NEXT R:B EAs *1 R:B EAs *2 R:W Znd R:B EAs *1 R:B EAs *2 W:B EAd *2 R:W Znd R:B EAs *1 R:B EAd *1 R:B EAd *2	DIVXS.B Rs, Rd		R:W 2nd	R:W NEXT			Internal operation,	12 states		
,Rd R:W NEXT Internal operation, 12 states s.ERd R:W NEXT Internal operation, 20 states s.ERd R:W NEXT N:W EAd *1 R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2	DIVXS.W Rs, ERd		R:W 2nd	R:W NEXT			Internal operation,	20 states		
S,ERd R:W NEXT Internal operation. 20 states R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2	DIVXU.B Rs,Rd		R:W NEXT			Internal c	operation, 12 states			
R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2	DIVXU.W Rs,ERd		R:W NEXT			Internal c	operation, 20 states			
R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2	EEPMOV.B		R:W 2nd	R:B EAs *1	R:B EAd *1	R:B EAs *2	W:B EAd *2	R:W NEXT		
	EEPMOV.W		R:W 2nd	R:B EAs *1	R:B EAd *1	R:B EAs *2	W:B EAd *2	R:W NEXT		

RENESAS

+
Internal operation, R:W EA 2 states
Internal operation, R:W EA 2 states
W:W Stack
W:W Stack (H) W:W Stack (L)
W:W Stack
W:W Stack (H)
W:W Stack R:W EA
W:W Stack (H)
R:W EA
R:W 5th
Internal operation, R:W EA 2 states
R:W EA
R:W NEXT

Instruction	-	2	3	4	5	9	7	8
MOV.B @ERs+,Rd	R:W NEXT	Internal operation, 2 states	R:B EA					
MOV.B @aa:8,Rd	R:W NEXT	R:B EA						
MOV.B @aa:16,Rd	R:W 2nd	R:W NEXT	R:B EA					
MOV.B @aa:24,Rd	R:W 2nd	R:W 3rd	R:W NEXT	R:B EA				
MOV.B Rs,@ERd	R:W NEXT	W:B EA						
MOV.B Rs, @ (d:16, ERd)	R:W 2nd	R:W NEXT	W:B EA					
MOV.B Rs, @ (d:24, ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:B EA			
MOV.B Rs,@-ERd	R:W NEXT	Internal operation, 2 states	W:B EA					
MOV.B Rs,@aa:8	R:W NEXT	W:B EA						
MOV.B Rs,@aa:16	R:W 2nd	R:W NEXT	W:B EA					
MOV.B Rs,@aa:24	R:W 2nd	R:W 3rd	R:W NEXT	W:B EA				
MOV.W #xx:16,Rd	R:W 2nd	R:W NEXT						
MOV.W Rs,Rd	R:W NEXT							
MOV.W @ERs,Rd	R:W NEXT	R:W EA						
MOV.W @(d:16,ERs),Rd	R:W 2nd	R:W NEXT	R:WEA					
MOV.W @(d:24,ERs),Rd	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:W EA			
MOV.W @ERs+,Rd	R:W NEXT	Internal operation, 2 states	R:W EA					
MOV.W @aa:16,Rd	R:W 2nd	R:W NEXT	R:W EA					
MOV.W @aa:24,Rd	R:W 2nd	R:W 3rd	R:W NEXT	R:B EA				
MOV.W Rs, @ERd	R:W NEXT	W:W EA						
MOV.W Rs, @(d: 16, ERd)	R:W 2nd	R:W NEXT	W:W EA					
MOV.W Rs, @(d:24, ERd)	R:W 2nd	R:W 3rd	R:E 4th	R:W NEXT	W:W EA			
MOV.W Rs, @-ERd	R:W NEXT	Internal operation, 2 states	W:W EA					
MOV.W Rs, @aa:16	R:W 2nd	R:W NEXT	W:W EA					
MOV.W Rs, @aa:24	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA				
MOV.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT					
MOV.L ERS, ERd	R:W NEXT							
MOV.L @ERs,ERd	R:W 2nd	R:W NEXT	R:WEA	R:W EA+2				
MOV.L @(d:16,ERs),ERd	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA	R:W EA+2			
MOV.L @(d:24,ERs),ERd	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	R:W EA	R:W EA+2	
MOV.L @ERs+,ERd	R:W 2nd	R:W NEXT	Internal operation, 2 states	R:W EA	R:W EA+2			
	_	-	-					

W:W EA +2 W:W EA +2 W:W EA +2 20 states
W:W EA+2 W:W EA+2 12 states 20 states
Internal operatio Internal operation peration, 12 states peration, 20 states
International operation
amal op
emal opera
Internal operation, 12 states
arral operation, 20 states

Instruction		-	2	3	4	5	9	7	8
PUSH.W Rn		R:W NEXT	Internal operation, W:W Stack 2 states	W:W Stack					
PUSH.L ERn		R:W 2nd	R:W NEXT	Internal operation, W:W Stack (L) 2 states	W:W Stack (L)	W:W Stack (H)			
ROTL.B.Rd		R:W NEXT							
ROTL.W Rd		R:W NEXT							
ROTL.L ERd		R:W NEXT							
ROTR.B Rd		R:W NEXT							
ROTR.W Rd		R:W NEXT							
ROTR.L ERd		R:W NEXT							
ROTXL.B Rd		R:W NEXT							
ROTXL.W Rd		R:W NEXT							
ROTXL.LERd		R:W NEXT							
ROTXR.B Rd		R:W NEXT							
ROTXR.W Rd		R:W NEXT							
ROTXR.L ERd		R:W NEXT							
RTE		R:W NEXT	R:W Stack (H)	R:W Stack (L)	Internal operation, 2 states	R:W (*4)			
RTS	Normal	R:W NEXT	R:W Stack	Internal operation, 2 states	R:W (*4)				
	Advanced	R:W NEXT	R:W Stack (H)	R:W Stack (L)	Internal operation, 2 states	R:W (*4)			
SHAL.B Rd		R:W NEXT							
SHAL.W Rd		R:W NEXT							
SHAL.L ERd		R:W NEXT							
SHAR.B Rd		R:W NEXT							
SHAR.W Rd		R:W NEXT							
SHAR.L ERd		R:W NEXT							
SHLL.B Rd		R:W NEXT							
SHLL.W Rd		R:W NEXT							
SHLL.L ERd		R:W NEXT							
SHLR.B Rd		R:W NEXT							
SHLR.W Rd		R:W NEXT							
SHLR.L ERd		R:W NEXT							
SLEEP		R:W NEXT							
STC CCR,Rd		R:W NEXT							

Section 2 Instruction Descriptions

7 8															(2*	Internal operation, R:W (*7) 2 states										(2*	Internal operation, R:W (*7)
9			W:W EA												2 states	R:W VEC+2 Interne 2 state										Internal operation, R:W (*7) 2 states	R:W VEC+2 Interna
5			R:W NEXT W			W:W EA									R:W VEC In 2	R:W VEC R										R:W VEC In 2	R:W VEC R
4		W:W EA	R:W 5th	W:W EA	W:W EA	R:W NEXT									W:W Stack (H)	W:W Stack (H)									R:W (*5)	W:W stack (H)	W:W stack (H)
e	W:W EA	R:W NEXT	R:W 4th	Internal operation, 2 states	R:W NEXT	R:W 4th				R:W NEXT					W:W Stack (L)	W:W Stack (L)					R:W NEXT			R:W (*5)	Internal operation, 2 states	W:W stack (L)	W:W stack (L)
2	R:W NEXT	R:W 3rd	R:W 3rd	R:W NEXT	R:W 3rd	R:W 3rd		R:W NEXT		R:W 3rd					Internal operation, 2 states	Internal operation, W:W Stack (L) 2 states			R:W NEXT		R:W 3rd	R:W NEXT		Internal operation, 2 states	R:W VEC+2	Internal operation, 2 states	Internal operation,
-	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W NEXT	R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT	R:W VEC	R:W VEC	R:W (*6)	R:W (*6)
 -		Rd)	Rd)												Normal	Advanced								Normal	Advanced	Normal	Advanced
Instruction	STC CCR,@ERd	STC CCR, @ (d: 16, ERd)	STC CCR, @ (d:24, ERd)	STC CCR, @-ERd	STC CCR,@aa:16	STC CCR,@aa:24	SUB.B Rs,Rd	SUB.W #xx:16,Rd	SUB.W Rs,Rd	SUB.L #xx:32,ERd	SUB.L ERs, ERd	SUBS #1/2/4,ERd	SUBX #xx:8,Rd	SUBX Rs,Rd	TRAPA #x:2		XOR.B #xx8,Rd	XOR.B Rs,Rd	XOR.W #xx:16,Rd	XOR.W Rs,Rd	XOR.L #xx:32,ERd	XOR.L ERS, ERd	XORC #xx:8,CCR	Reset exception handling		Interrupt exception handling	

- Notes: 1. EAs is the contents of ER5. EAd is the contents of R6.
 - EAs is the contents of ER5. EAd is the contents of R6. Both registers are incremented by 1 after execution of the instruction. n is the initial value of R4L or R4. If n = 0, these bus cycles are not executed.
 - 3. The number of states required for byte read or write varies from 9 to 16.
 - 4. Starting address after return.
 - 5. Starting address of the program.
 - 6. Prefetch address, equal to two plus the PC value pushed on the stack. In recovery from sleep mode or software standby mode the read operation is replaced by an internal operation.
 - 7. Starting address of the interrupt-handling routine.
 - 8. NEXT: Next address after the current instruction.
 - 2nd: Address of the second word of the current instruction.
 - 3rd: Address of the third word of the current instruction.
 - 4th: Address of the fourth word of the current instruction.
 - 5th: Address of the fifth word of the current instruction.
 - EA: Effective address.
 - VEC: Vector address.

Section 3 Processing States

3.1 Overview

The CPU has five main processing states: the program execution state, exception handling state, power-down state, reset state, and bus-released state. The power-down state includes sleep mode, software standby mode, and hardware standby mode. Figure 3.1 shows a diagram of the processing states. Figure 3.2 indicates the state transitions. For details, refer to the relevant microcontroller hardware manual.

Figure 3.1 Processing States

Figure 3.2 State Transitions

3.2 Program Execution State

In this state the CPU executes program instructions in normal sequence.

3.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal program flow due to a reset, interrupt, or trap instruction. The CPU fetches a starting address from the exception vector table and branches to that address. In interrupt exception handling the CPU references the stack pointer (ER7) and saves the program counter and condition-code register.

3.3.1 Types of Exception Handling and Their Priority

Exception handling is performed for resets, interrupts, and trap instructions. Table 3.1 indicates the types of exception handling and their priority.

Priority	Type of Exception	Detection Timing	Start of Exception Handling
High	Reset	Synchronized with clock	Exception handling starts immediately when RES changes from low to high
	Interrupt	End of instruction execution (see note)	When an interrupt is requested, exception handling starts at the end of the current instruction or current exception-handling sequence
 Low	Trap instruction	When TRAPA instruction is executed	Exception handling starts when a trap (TRAPA) instruction is executed

Table 3.1	Exception	Handling	Types	and Priority
-----------	-----------	----------	-------	--------------

Note: Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions, or immediately after reset exception handling.

Figure 3.3 classifies the exception sources. For further details about exception sources, vector numbers, and vector addresses refer to the relevant microcontroller hardware manual.

Figure 3.3 Classification of Exception Sources

3.3.2 Exception-Handling Sequences

Reset Exception Handling: Reset exception handling has the highest priority. The reset state is entered when the $\overline{\text{RES}}$ signal goes low. Then, if $\overline{\text{RES}}$ goes high again, reset exception handling starts when the reset condition is satisfied. Refer to the relevant microcontroller hardware manual for details about the reset condition. When reset exception handling starts the CPU fetches a start address from the exception vector table and starts program execution from that address. All interrupts, including NMI, are disabled during the reset exception-handling sequence and immediately after it ends.

Interrupt Exception Handling and Trap Instruction Exception Handling: When these exceptionhandling sequences begin, the CPU references the stack pointer (ER7) and pushes the program counter and condition-code register on the stack. Next, if the UE bit in the system control register (SYSCR) is set to 1, the CPU sets the I bit in the condition-code register to 1. If the UE bit is cleared to 0, the CPU sets both the I bit and the UI bit in the condition-code register to 1. Then the CPU fetches a start address from the exception vector table and execution branches to that address.

The program-counter value pushed on the stack and the start address fetched from the vector table are 16 bits long in normal mode and 24 bits long in advanced mode. Figure 3.4 shows the stack after the exception-handling sequence.

3.4 Bus-Released State

This is a state in which the bus has been released in response to a bus request from a bus master other than the CPU. While the bus is released, the CPU halts except for internal operations. For further details, refer to the relevant microcontroller hardware manual.

For further details, refer to the relevant microcontroller hardware manual.

3.5 Reset State

When the $\overline{\text{RES}}$ input goes low all current processing stops and the CPU enters the reset state. The I bit in the condition-code register is set to 1 by a reset. All interrupts are masked in the reset state. Reset exception handling starts when the $\overline{\text{RES}}$ signal changes from low to high.

3.6 Power-Down State

In the power-down state the CPU stops operating to conserve power. There are three modes: sleep mode, software standby mode, and hardware standby mode. For details, refer to the relevant microcontroller hardware manual.

3.6.1 Sleep Mode

A transition to sleep mode is made if the SLEEP instruction is executed while the software standby bit (SSBY) is cleared to 0.

CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU registers are retained.

3.6.2 Software Standby Mode

A transition to software standby mode is made if the SLEEP instruction is executed while the SSBY bit is set to 1.

The CPU and clock halt and all on-chip supporting modules stop operating. The on-chip supporting modules are reset, but as long as a specified voltage is supplied the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain in their existing states.

3.6.3 Hardware Standby Mode

A transition to hardware standby mode is made when the $\overline{\text{STBY}}$ input goes low.

As in software standby mode, the CPU and clock halt and the on-chip supporting modules are reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

Section 4 Basic Timing

4.1 Overview

The CPU is driven by a clock, denoted by the symbol ϕ . One cycle of the clock is referred to as a "state." The memory cycle or bus cycle consists of two or three states. Different methods are used to access on-chip memory, on-chip supporting modules, and external devices. Refer to the relevant microcontroller hardware manual for details.

4.2 On-Chip Memory (RAM, ROM)

For high-speed processing, on-chip memory is accessed in two states. The data bus is 16 bits wide, permitting both byte and word access. Figure 4.1 shows the on-chip memory access cycle. Figure 4.2 shows the pin states.

Figure 4.1 On-Chip Memory Access Cycle

Figure 4.2 Pin States during On-Chip Memory Access

4.3 On-Chip Supporting Modules

The on-chip supporting modules are accessed in three states. The data bus is 8 bits or 16 bits wide. Figure 4.3 shows the access timing for the on-chip supporting modules. Figure 4.4 shows the pin states.

Figure 4.3 On-Chip Supporting Module Access Cycle

Figure 4.4 Pin States during On-Chip Supporting Module Access

4.4 External Data Bus

The external data bus is accessed with 8-bit or 16-bit bus width in two or three states. Figure 4.5 shows the read timing for two-state or three-state access. Figure 4.6 shows the write timing for two-state or three-state access, wait states can be inserted by the wait-state controller or other means. For further details refer to the relevant microcontroller hardware manual.

Figure 4.5 External Device Access Timing (1) Read Timing

Figure 4.6 External Device Access Timing (2) Write Timing

Renesas 16-Bit Single-Chip Microcomputer Software Manual H8/300H Series

Publication Date:	1st Edition, August 1993
	Rev.3.00, December 13, 2004
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Technical Documentation & Information Department
	Renesas Kodaira Semiconductor Co., Ltd.

© 2004. Renesas Technology Corp. All rights reserved. Printed in Japan.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852- 2265-6688, Fax: <852- 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65- 6213-0200, Fax: <65- 6278-8001

http://www.renesas.com

H8/300H Series Software Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0213-0300