To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’'s Manual

17K Series

4-bit Singlechip Microcontrollers

Instructions

Document No. U12986EJ2VOUMOO (2nd edition)
(Previous No. |EU-1312)
Date Published September 1997

© NEC Corporation 1991
Printed in Japan

[MEMO]

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property righis of NEC Corporation or others.

While NEC Corporation has been making continucus effort io enhance the refiability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special®, and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program” for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the gquality grade of each device
before using it in a particutar appfication.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual eqguipment, home efectronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, elc.), traiffic control systems, anti-disaster
systems, anti-~crime systems, safety equipment and medical equipment {(not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard” unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radicactive design is not implemented in this product.

M7 96.5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

+ Device availability

« Ordering information

Product release schedule

- Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voliages, and so forth)

- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country o country.

NEC Electronics inc. {U.8.)
Santa Clara, California

Tel: 800-366-9782

Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 02118503 02

Fax: 0211-65 03 490

NEC Electronics (UK) Lid.
Milion Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.1.
Miiano, Haly

Tel: 02-66 75 41

Fax: 02-66 75 42 89

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

fax: 040-2444580

NEC Electronics (France) S.A,
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 89

NEC Electronics {France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Lid.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Lid.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEG Electronics Singapore Ple. Ltd.
United Square, Singapore 1130
Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

J86. 8

Major Revigions in This Version

Section

Description

Whole manual

All program examples amended and added

2-1 Addition of Chapter 2 "Program Memory (ROM)"
3-1 Addition of Chapter 3 "Program Counter (PC)"
5-109 Addition of 5.40 "SYSCAL entry"

Intended
readership

Purpose :

Organization:

PREFACE

This manual is intended for engineers who require
an understanding of 17K series functions prior to
designing an application system using this

software,

The purpose of this manual is to help engineers to
understand the various instruction functions with

which the 17K series is provided.

This manual broadly consists of the following

contents.

. General description

. Program memory {ROM)

. Program counter (PC)

. Data memory address specification method

. Instruction set

CONTENTS

CHAPTER 1. GENERAL DESCRIPTION+scveceas T T 1-1
1.1 OUELINE v v evteessaaracacssrosnssssssasonssensessnns 1-1
1.2 Instruction Configurationcceeveeeevncccann va 1-2

CHAPTER 2. PROGRAM MEMORY (ROM) c.vecvvrevccsnscsnnsononns 2-1
2.1 Program Memory Configurationccccceean. 2-1
2.2 Program Memory Functionscceeivenerencnanns 2-4
2.3 Program Memory FIOW .eeeeveciitrtennneenarennnansn 2-5

CHAPTER 3. PROGRAM COUNTER (PC) ...verivrrrencsonncacnnsna .. 3-1
3.1 Program Counter Configurationc.c....... 3-1
3.2 Program Counter Operationceceeveceeccunns . 3-2

CHAPTER 4. DATA MEMORY ADDRESS SPECIFICATION METHODS 4-1

. Data Memory Direct AddresSsSing-.cceeeveceness 4-1
. General Register Addressing sresenana 4-3
. Data Memory Index Modification Addressing 4-4
4.4 Data Memory General Register Indirect
AdAreSSing ..veveesseccaascsssssssnasnsascsssscans . 4-6
CHAPTER 5. INSTRUCTION SET ..cveenocensvesen sev e vene s 5-1
ADD I, M &t v v eccecrosocnasssansssssassmsnansetsssas 5-3
. ADD M, Hi tvueeeeseecatreassnsnassssssnasas cecccaa 5-9
. ADDC T, M 4 ivveoucccssosnansansssssssassansnnansssan 5-12
. ADDC m, #1 4. ivivineranacacssossanassnaacssoa secenes 9=17
. SUB T, Ml ceveannaoneassssssnmansssssssnsroanacssasss 5-20
. SUB M, F1 vuveeevvnonsnnasssssesanssssssssnnsnsnesnos 5-24
- SUBC r, M 4 et a e v s s cesssssssascssss0ssssrm PR R B NN 5""27
.8 SUBC M, HFI cvvvearanceasssnnnssannssssssss traamaaae 5-31

- iii -

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44

INC IZ i it et rsonmsnacacesnasnnsssssnsssssssssssans 5-37
SKE M, #i veveeneeesastassssnssnnssnsssnsncsssasnnanas 5-39
SKGE M, H1l it eseotsocenmaneasessssosssnssasnnnsssss 5-40
SKLT M, Hl 4eeveceeeunseoseesssnssscsssssossnssnsssa 5-41
SKNE M, #1 ceeceeoeesnsocsssaas Gt e eresestsecave s 5-43
AND M, #i ..uiiiiieirosssnsnonasccsasessnasssnnsasss 5-45
AND T, M tvuesvavansrsansssasacssannossns tescassns ese D2~47
OR m, #1i ..iuivinnenriennnnnn e assarres ceeaamseses 5-48
OR I', T tuvuwenseaanasanasasncncs et seresssaannn cee e 5-50
ROR m, #1 vt ennesnrnnan Cesiseneraenn trasesenas 5-51
KOR £, M v evanscascnacasnsosssnosns s ecev s e e anaans 5-52
ID I, I vuseeesnsnsrannmansaasesasnsnessnasnscassssnoens 5-54
ST M, I cveeeceeaacacensessnsnsasaassvsssscsonacecsss 5-59
MOV @, T 4 v teeernsrnnsccsenssansssssssasssasssonsasa 5-62
MOV M, BT vvveseosnssasomasnassanonsnansnnssasscsssss 5-66
POV M, H1l veveneennceennssonnessccssasanenssnnnns . 5-71
MOVT DBF, QAR ... iireeceenceransssesrsnscasssesna .. 5-73
PUSH AR . i v it veasettsssenasnsnnncssssssssnssnanresas 5-78
POP AR ... ceneieaveannsnnns R R R R 5-80
PEEK WR, If +vvveneann e saeaceseanaeae s 5-82
POKE Tf, WR .4 ieieenrennccnctcnssnnrsnscsssanssnns 5-83
GET DBF, D wevecesvconnnans evsessesnssesnranmacans 5-85
PUT P, DBF i itecsenncanssssanscasssnssssaasensns ... D-87
SKT M, HIN 4 e et eeeeeteeeancaosssonnnascsoasanscnnss 5-89
SKF M, HIl 4t verevenenssssonsnsasacascsssanancassssns 5-91
BR BAAT t1vreerarasrsssnssnsasssssssssssssnsssnnsnns 5-93
BR BAR .4t eeeeeeeunnssssacnsssssnssrsasssacsssansnnss 5-97
RORC I tiveecerecacnossneevansssnsonnnsaassnannsnnns 5-100
CALL @3dr .t v it itmeneeissssonnnsacnssssosnsannsnssns 5-102
CALL @BAR . ittt vetenanssssonosenannsancsasosnsanncncss 5-105
SYSCAL @NEIY v vt vneecnssvsrsssarsncasccasosnssaasns 5-109
RET ..uivveonnnne eaaee hesearsenann senesenenne eewes 5-111
RETSK et esne e crresesassns veeeeesas 5=112
RETI seeesssennenn veeeeann cererescsencssss 5-114
Bl ittt ivsassenssssscsassanusasnsansnsssnssssssnmens 5-116

- iv -

5.45
5.46
5.47
5.48

APPENDIX.

CHAPTER 1. GENERAIL DESCRIPTION

OUTLINE

17K series instructions all have a single 16-bit word
structure, allowing efficient programming. The
instruction set comprises 47 frequently used instructions,

offering the following features:

(1) Single-step memory-to-memory operations
(2) Binary operations and decimal operations
(3) Table referencing in program memory (ROM)

(4) Ability to perform branching and subroutine calls

using a register value as the address
(5) Systematic set comprising 47 instructions

This manual describes 17K series instructions. Since the
manual includes instructions which cannot be used with
certain products and instructions with restricted use, the
Data Sheet for the product used should always be consulted

when programming is carried out.

INSTRUCTION CONFIGURATION

17K series operation codes are of three kinds:

(1)

(2)

(3)

Zero~operand instructions

These are instructions such as "INC AR", "PUSH AR",
"RET", etc., in which the operand is fixed or there

is no operand.

Single-~operand instructions

Instructions such as "RORC r", "STOP s", etc., in
which an address or immediate data is written as the
operand.

Two-operand instructions

Instructions such as "ADD r, m", “"ADD m, #i", etc.,

in which two addresses or an address and immediate

data are written as the operands.

CHAPTER 2. PROGRAM MEMORY (ROM)

Store the "program" which the CPU executes and the predetermined

"constant data" in the program memory (ROM).
2.1 PROGRAM MEMORY CONFIGURATION
Figure 2-1 shows the program memory configuration.

As shown in Figure 2-1, the program memory consists of a

maximum of 64K steps x 16 bits.

"addresses” are allocated in 16-bit units in the program
memory ranging from OOOOH to FFFFH. In addition, the
program memory is divided into segments of 8K steps and

each segment is divided into pages of 2K steps.

One of the segments is a special segment called "system
segment". Which segment is designated as the system
segment depends on the product. There may be no system

segment in certain products.

Figure 2-2 shows the system segment configuration. As
shown in this figure, system segment entry addresses are

allocated in system segment page 0.

Figure 2-1 Program Memory Configuration

Address

Program Memory {ROM)

bs] bie

bu’b12|bn‘bm]bglb3|b;Jb6 bsib‘

000CH

67FFH
60800H

OFFFH
1060H

17FFH
1800H

1FFFH
2000H

Z7FFH
Z2800H

ZFFFH
3000H

37FFH
3800H

3FFFH
4000H

DFFFH
EGOO0H

ETFFH
E800H

EFFFH
FOOOH

F7FFH
F8490H

FFFFH

i6 Bits

8K

6K

Figure 2-2

System Segment Configuration (Page O0)

When the system segment is allocated in segment 1

ZO0FFH

2000H]

2100H

System Segment Entry Address

Part) 16 Steps x 8

PROGRAM MEMORY FUNCTIONS
Program memory has two major functions.

(1} Storing program
(2) Storing constant data

The program consists of a group of instructions which
operate the CPU. The CPU performs processing sequentially
in accordance with the instructions written in the
program. That is, the CPU reads sequentially the
instructions from the program stored in the program

memory and performs processing according to each

instruction.

Since every "instruction" is a 16-bit "one-word"
instruction, one instruction can be stored at one program

memory address.

The constant data is the predetermined data such as

digplay pattern.

The constant data can read data from the program memory to
the data buffer (DBF) on the data memory (RAM) by using
the "MOVT DBF, @AR" special instruction. Reading the
constant data on the program memory in such a way is

called "table reference".

The program memory is a read only memory and cannot be
rewritten by an "instruction". Therefore, the program
memory and ROM (Read Only Memory) are used as having the

same meaning.

PROGRAM MEMORY FLOW

The program stored in the program memory is normally
executed one address at a time starting from COOO0H.
However, if, for example, a different program is executed
under a certain condition, it is necessary to branch the

program flow. In such a case, a branch instruction (BR)

is used.

When the same program is to be executed repeatedly, if the
same program is used every time, the program memory
efficiency drops. In that case, the same program can be
executed by calling it by the "CALL" and "SYSCAL" special
instructions which were placed in the same location in

advance. This program is called "subroutine".

In contrast to the subroutine, the program which is

normally executed is called "main routine”.

When the program is executed one address at a time, if the
last address (address 1FFFH in case of segment 0) is
executed, the address of the program to be executed next

is not the start address (address 20000H in case of segment
0) but the start address (address Q0000H in case of segment
0) of the same segment. Therefore, ensure that a branch
instruction is described at the last address of each
segment. When the program with different segment is
executed, an indirect branch instruction or indirect
subroutine call instruction or system subroutine call

ingtruction is used.

If there is a program which is to be executed when a
certain condition is established irrespective of the
program flow, an interrupt function is used. When the
condition is met, the interrupt function can be branched
to the predetermined address (interrupt vector address)

irrespective of the current program flow.

The program flow described above is controlled by the
program counter (PC) which specifies the program memory

address.

CHAPTER 3. PROGRAM COUNTER (PC)

The program counter (PC) is used to specify program memory

addresses.

3.1 PROGRAM COUNTER CONFIGURATION

The program counter, as shown in Figure 3-1, consists of a
total of 16 bits: a 13-bit binary counter and & 3-bit

segment register (SGR).

|

The 13-bit binary counter is incremented each time an
instruction is executed. However, nc carry from 13-bit

binary counter to the segment register is performed.

The program counter performs a data transfer between the

address stack and the address register in 16-bit units.

At this time, those bits of the program counter which are

outside the program memory address range are fixed at 0.

Figure 3-1 Program Counter Configuration

MSB LSB MSB LSB
PCIS{PC14|PC13]]P012|PCI1|P61G pCo | pcs | pC7 | PCS | PCS 904] PC3 | ?cz| PC1 | PCO

. SGR i i Page !

PC

Figure 3-2

PROGRAM COUNTER OPERATION

Normally, the program counter is automatically incremented
When a branch

each time an instruction is executed.

instruction,
subroutine call instruction,
reference instruction is executed, or when an interrupt is

subroutine call instruction,

system

return instruction or table

acknowledged, or after a reset, the values specified for

the program counter are set.

' The program counter values after each instruction is

executed are shown in Figure 3-2.

Program Counter Values after Instruction is Executed

pProgram Program Counter (PC) Contents
Counter
Instructions pcislpcudfpeisjperzpenipciel pcs] pes| PC7 | pCs| PCs | PCY |pcs]pcz|pei | peo
i rage O 0 0
Page 1 0 4
BR addr oo Invariable i---f---ee Instruction operand {addr)
Page 2 1 0
Page 3 1)1
CALL addr Invariable! 0] Instruction operand (addr)
sSyst Instruction Instruction
SYSCAL entry sggngt 0 | 0o joperand 0 el ot o operand
entryy entryy,
BR @AR
CALL €AR Address register contents
MOVT DBF, € AR
RET
RETSK Address stack register {(ASR} contents specified by
RETI stack pointer (SP) (return address)
MOVT DBF. @ AR
égﬁﬁiﬁfgggment Interrupt vector address

After reset

ojofo]o

G

o | o ol 0| 0

G

CHAPTER 4. DATA MEMORY ADDRESS SPECIFICATION METHODS

A data memory address consists of 3 items: Bank (4 bits), row
address (3 bits), and column address (4 bits).

In this manual, an address written as "0.43H", for example,

indicates bank 0, row address 4, and column address 3.

4.1 DATA MEMORY DIRECT ADDRESSING
When directly specifying data memory, the bank is
specified by the BANK system register (bank register:
79H), and the row address and column address are specified
by the instruction operand m (7 bits).
Example:

When BANK = O

MEMO43 MEM 0.43H
MOV MEMO43, #2H

Immediate data

L —m: Address (column address = 3, row

address = 4)

0
1
Bank 1 ¢
2
of 1
3
Yo
o 4
w 2 |
@
& 5
'03!
s
=< 6
= 4 It
2 7
5
+
6
7

Column Address -+
4 5 6 7 8 8 A B C D E F

74H to 7FH are s
bank specificati

ystem registers irrespective of the
on.

4.2

GENERAL REGISTER ADDRESSING
When a general register is specified, the bank and row
address are specified by the RPH and RPL system registers
(register pointer: 7DH, 7EH), and the column address is
specified by the instruction operand r (4 bits).
Example:
When BANK = 0, RPH = 0, RPL = 2 {(RP = 0000C01)
MEMO0O2 MEM O.02H
MEM0Q43 MEM 0.43H
ST MEM043, MEMO0OO2
L r: General register column
address (0.02B)
Address (0.43H)
REL RfH Column Address -+
Bank 00 1 2 3 4 5 6 7 8 % A B € D E F
0
~ General
1 Registers
Bank 1 9O
2
0
3
1
o) 4
un 2 |
5 s
g 3l
=< 6
5z 4
0
& 7
5
+

74H to 7FH are system registers irrespective of the
bank specification.

DATA MEMORY INDEX MODIFICATION ADDRESSING

When system register IXE (index enable flag: 7FH.Q) is
set to "1", the address specified by the BANK system
register (bank register: 79H) and the instruction operand
m (7 bits) is ORed with the contents of system registers
IXH, IXM and IXL (index registers:. 7AH, 7BH, 7CH), and
the result is used as the specified data memory address.

Therefore, when performing data manipulation in memory,
when IXE is set to "1" and the start address of the area
to be manipulated is set by IXH, IXM and IXL, & method
similar to relative addressing can be used, facilitating

address modification in the program.
Example:
When BANK = 0, IXE = 1, IXH = 0, IXM = OEH, IXL = 8
MEM0O43 MEM 0.43H
MOV MEM043, #2H

|————-Immec‘iia*l:e data
m: Address (C.43H)

[BANK, m] OR [IXH, IXM, IXL]

{0000 1000011B]1 OR [000 1110 1000B]
{0001 1101011B]

6BH in bank 1

]

Data memory address

: Column Address -+
Bank00123456789ABCD8F

0
1
Bank 1 0
2
o |
3
by
4
/1]
o 2 |
0
5 5
o3 {
e
= 6
-
7
% g
+
6
7

74H to 7FH are system registers irrespective of the
bank specification.

4.4

DATA MEMORY GENERAL REGISTER INDIRECT ADDRESSING

The data memory address specification method used when
executing a "MOV @r, m" or "MOV m, @r" general register

indirect transfer instruction is described below.

In memory indirect addressing, MPE (the memory pointer
enable flag) must be set in addition to IXE.

(1) MPE = 0, IXE = 0

When MPE = (0, an indirect transfer is performed
between locations with the same row address in the
same bank. The bank for direct specification by the
operand m is specified by the BANK system register
(bank register: 79H), and the row address and column
address are specified by the instruction operand m (7
bits).

The bank for indirect specification by the operand @r
is specified by the BANK system register (bank
register: 79H), and the row address is specified by
the high-order 3 bits of the operand m. The column
address is specified by the value of a general
register. In this case, the general register bank
and row address are specified by the RPH and RPL
‘system registers (register pointer: 7DH, 7EH), and
the column address is specified by the instruction

operand r (4 bits).

Example:

When BANK = 0, RPH = 0, RPL = 0, and the value of
address 0.02H is 8H

MEMO43 MEM 0.43H
MEM0O02 MEM 0.02H
MOV MEM043, @MEMOOZ
|————r: Indirect

specification
address (0.02H)
-—-m: Direct specification address
{0.43H)

[BANK, m]
= [0000 10000118}
= 43H in bank 0O

Direct specification address

Indirect specification address = [BANK, my, (R)]
= [0000 100 1000B]
= 48H in bank ©

REL REH Column Address -+
Bank 0 ¢ 1 2 3 4 5 6 7 8 9 A B C D E F
0 8+
1
Bank 1 0
2
o1 i
3
Lo
4
22]
& 5
T 3
! i
< 6
341 ..
2 7
5
+
6
7

74H to 7FH are system registers irrespective of the
bank specification.

(2)

MPE = 1, IXE = O

When MPE = 1, an indirect transfer can be performed

between any data memory locations.

The bank for direct specification by the operand m is
specified by the BANK system register (bank register:
79H), and the row address and column address are
specified by the instruction operand m (7 bits).

The bank and row address for indirect specification
by the operand @r are specified by the MPH and MPL
gystem registers (memory pointer: 7AH, 7BH), and the
column address is specified by the value of a general
register. In this case, the general register bank
and row address are specified by the RPH and RPL
system registers (register pointer: 7DH, 7EH}, and
the column address is specified by the instruction

operand r (4 bitsg).

Example:

it
o«

When BANK = 0, MPH = O, MPL = 3, RPH = 0, RPL
and the value of address. 0.02H is 8H

MEM0O43 MEM (0.43H
MEMOGC2 MEM 0.02H
MOV MEM0O43, @MEMOD2
L—-r: Indirect

gpecification
address (0.02H)
m: Direct specification address
(0.43H)

It

[BANK, m]
{0000 1000011B]
434 in bank 0

Direct specification address

it

it

Indirect specification address

[000 0011 1000B]
3BH in bank 0

Column Address -+

Bank 0 0 1 2 3 4 5 6 7 8 $ A B C D E F

Bank

(3)

+ Row Address

0 8H

—
e s Ll N

foen D

74H to 7FH are system registers irrespective of the
bank specification.

MPE = 0, IXE =1

When MPE = 0, an indirect transfer is performed
between locations with the same row address in the

same bank.

For the bank, row address and column address for
direct specification by the operand m, the data
memory address specified is the result of ORing the
address specified by the BANK system register (bank
register: 79H) and the instruction operand m (7
bits) with the contents of the IXH, IXM and IXL
system registers (index registers: 7AH, 7BH, 7CH).

The bank and row address for indirect specification
by the operand @r are specified by the result of
ORing the address specified by the BANK system
register (bank register: 79H) and the high-order 3
bits of the instruction operand m with the contents
of the IXH and IXM system registers (index registers:
7AH, 7BH), and the column address is specified by the
value of a general register. In this case, the
general register bank and row address are specified
by the RPH and RPL system registers (register
pointer: 7DH, 7EH), and the column address is
specified by the instruction operand r (4 bits).

Example:

When BANK = 0, IXH = 0, IXM = 2, IXL = 4, RPH = 0,
RPL = 0, and the value of address 0.02H is 8H

MEMO43 MEM 0.43H
MEMOOZ MEM 0.02H
MOV MEM043, @MEMO0OZ
L—r: Indirect

specification
address (0.02H)
m: Direct specification address
(0.43H)

Direct gspecification address

[BANK, m] OR [IXH, IXM, IXL]

[O000 1000011B] OR {000 0010 0100B}
[O000 1100111B]

67H in bank O

H

It

Indirect specification address

= [BANK, mp, (R)Y] OR [IXH, IxM, 0]
0000 100 1000B] OR [0C00 0010 0000B]
[0000 110 1000B]
68H in bank O

L

It

Column Address

Bank 0 ¢ @ 2 3 4 5 6 7 & % A B C D E F

Bank

+« Row Address

(4)

0 8H

[oh]
) e O e 0 L e e L [D

74H to 7FH are system registers irrespective of the
bank specification.

MPE = 1, IXE = 1

When MPE = 1, an indirect transfer can be performed

" between any data memory locations.

For the bank, row address and column address for
direct specification by the operand m, the data
memory address specified is the result of ORing the
address specified by the BANK system register (bank
register: 79H) and the instruction operand m (7
bits) with the contents of the IXH, IXM and IXL
system registers (index registers: 7AH, 7BH, 7CH).

The bank and row address for indirect specification
by the operand @r are specified by the MPH and MPL
system registers (memory pointer: 7AH, 7BH), and the
column address is specified by the value of a general
register. In this case, the general register bank
and row address are specified by the RPH and RPL
system registers (register pointer: 7DH, 7EH), and
the column address is specified by the instruction

operand r (4 bits).
Example:

When BANK = O, IXH (MPH) = O, IXM (MPL) = 2, IXL = 4,
RPH = 0, RPL = 0, and the value of address 0.02H is
8H

MEM0O43 MEM (0.43H
MEMOO2 MEM O0.02H
MOV MEM043, @MEMOOZ
L—r: Indirect

gspecification
address (0.02H)
m: Direct specification address
{(0.43H)

Direct épecification address .

[BANK, m] OR [IXH, IXM, IXL]

{0000 1000011B] OR {000 0010 0100B]
[0000 1100111B]

67H in bank 0

Indirect specification address

[MPH, MPL, (R)]

[0000 0010 1000B]

28H in bank 0

H

Bank

Column Address -+

Bank 0 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 8H
1.

0
2
I
3
I
4
!
5
!
6
!
7

+ Row Address

74H to 7FH are system registers irrespective of the

bank specification.

CHAPTER 5. INSTRUCTION SET

This chapter covers the instruction set. The symbols used in

explanation of the instruction set are detailed below.

Legend

AR

ASR
(AR} rom
addr
BANK
CMP

CY

DBF
entry
entryy
entryy,

INTEF
INTR
INTSK
IX
IXE

MPE

PAGE
PC
PE

e

e

[T

X3

.

33

(L]

[

(3]

(13

Address register

Address stack register indicated by stack pointer
program memory data indicated by address register
Program memory address {low-order 11 bits)

Bank register

Compare flag

Carry flag

Data buffer

Program memory address (bits 10 to 8, bits 3 to 0)
Program memory address (bits 10 to 8)

Program memory address (bits 3 to 0)

Halt release condition

Interrupt enable flag

Register saved to interrupt stack

Interrupt stack register

Index register

Index enable flag

Immediate data (4 bits)

Data memory address

When IXE = 0, M [(BANK}, my, myg]

When IXE = 1, M [(BANK), my, my] OR (IX)

Data memory address excluding bank

Data memory row address {3 bits)

Data memory column address (4 bits)
Data memory row address pointer
Memcry pointer enable flag

Bit position (4 bits)

Page (program counter bits 12 and 11)
Program counter

Peripheral register

Peripheral address

5-1

Py :
Py, :
R :
r :
RP :
RF :
rf :
rfy :
rf :
SGR :
Sp :
SYSSEG :
s :
WR :

e

[]
()

"

NOTE:

Peripheral address (high-order 3 bits)
Peripheral address (low-order 4 bits)
General register address R = [(RP), r]
General register column address

General register pointer

Register file

Register file address

Register file address (high-order 3 bits)
Register file address (low-order 4 bits)
Segment register (program counter bits 15 to 13)
Stack peointer

System segment address

Stop release condition

Window register

Data memory or register address

Data memory or register value

In the feollowing text, unless otherwise specified the

settings of the main registers are as follows:

BANK = 0
RPH = 0, RPL = O
IXE = 0O

5.1 ADD r, m Add data memory to general.register

@

@

Operation code

00000 My iy, r

Function
When CMP = 0: R, CY <« (R} + (M)

Adds the contents of the data memory addressed by M
to the contents of the general register indicated
by R, and stores the result in the general register

indicated by R.
When CMP = 1: CY <« (R) + (M)

The result is not stored in the register, but the
carry flag (CY) and zero flag (Z) are changed

according to the result.

If a carry is generated as a result of the addition
the carry flag (CY) is set; if no carry is generated
the carry flag (CY) is reset.

If the result of the addition is non-zerc, the zero
flag (Z) is reset without regard to the compare flag
(CMP}.

If the result of the addition is zero when the
compare flag is reset (CMP = 0), the zero flag (Z) is

set.

If the result of the addition is zero when the
compare flag is set (CMP = 1), the zero flag (Z) is

not changed.

There are two kinds of addition, binary and BCD
operationg; which kind is performed is specified by

the BCD flag (BCD) in the PSW.

Example 1

To add the contents of address 0.2FH to the contents
of address 0.03H and store the result of the addition
in address 0.03H when bank 0 row address O (0.CCH to
0.0FH) is specified as general registers (RPH = 0O,
RPL = 0).

0.03H + (0.03H) + (0.2FH)
MEMO003 MEM 0.03H
MEMOZF MEM 0.2FH
MOV BANK, #00H ; Data memory bank set to O
MOV RPH, #00H ; General register bank set to O
MOV RPL. #00H : General register row address set to O

’

ADD MEMO003, MEMOZF

Example 2

To add the contents of address 0.2FH to the contents
of address 1.23H and store the result of the addition
in address 1.23H when bank 1 row address 2 (1.20H to
1.2FH) is specified as general registers (RPH = 1,

RPL = 4).

1.23H « (1.23H) + (0.2FH)
MEMI123 MEM 1.23H
MEMO2F MEM 0.2FH
MOV BANK. #00H ; Data memory bank set to 0
MOV RPH. #0iH ; General register bank set toc 1*
MOV RPL, #04H ; General register row address set to 2

ADD MEMIZ3, MEMOZF

*
Reg- RP
ister RPH RPL
Bits |{by|bzibi|boibsbz|b:]bo
 Bank i B
D t H N M . :
ata Row : : ¢
address: p

The RP (general register pointer) allocation in the

system register is shown in the figure above.

Therefore, to set bank 1 row address 2 for the
general registers, O1H must be stored in RPH and O04H

in RPL.

Since the BCD flag is reset in this case, subsequent

arithmetic operations are hexadecimal operations.

Example 3

To add the contents of address 0.6FH to the contents
of address 0.03H and store the result of the addition
in address 0.03H. If IXE = 1, IXH = 0, IXM = 4 and
IXL = O, that is IX = 0.40H, data memory 0.6FH can be
specified by making the data memory address 2ZFH.

0.03H < (0.03H} + (0.6FHD)

Address obtained by ORing index
register contents 0.40H and data
memory address 0.2FH

MEMG03 MEM ©.03H
MEMO2ZF MEM ¢.2FH

MOV BANK, #00H . Data memory bank set to O

MOV RPH, #00H ; General register bank set to 0

MOV RPL, #00H . General register row address set to 0
MOV IXH, #00H ; IX 000010000008

MOV IXM, #04H ;
MOV IXL, #00H ;
SET! IXE y IXE flag +« 1

ADD MEMG03, MEMOZF ; IX 000910000008 (0. 40H)
; Bank operand OR)00000101111B(0.2FH)

. Specified address 00001101111B(0.6FH)

Example 4

To add the contents of address 2.3FH to the contents
of address 0.03H and store the result of the addition
in address 0.03H. 1If IXE = 1, IXH = 1, IXM = 1 and
IXL = 0, that is IX = 2.10H, data memory Z2.3FH can be
specified by making the data memory address 2FH.

0.03H « (0.03H) + (2.3FH)
Address obtained by ORing index registér

contents 2.10H and data memory
address 0.2FH

MEM003 MEM 0.03H
MEM22F MEM 2.2FH
MOV BANK, #00H

MOV RPH, #00H ; General register bank set to O
MOV RPL, &£00E ; General register row address set to 0
MOV IXH, #01H : IX + 00100010000B (2.10H)*

MOV IXM. %01H
MOV IXL, =00H

SET1 IXE ; IXE flag + 1
ADD MEMO0063, MEM22F ; IX 001000100008 (2.10H)
; Bank operand (OR)000001011131B(0.2FH)
; Specified 00100111211B(2.3FH)
address
*
Reg- IX
ister IXH XM IXL

Bits |bs{by{by{bs|bs!bs{by{bo|bs by [by { bo

Bank

Data [P !

R ress | coltmn
;address olumn :
L T address

The IX (index register) allocation in the system

register is shown in the figure above.

Therefore, to set IX = 2.10H, 01H must be stored in
IXH, 01H in IXM, and OOH in IXL.

5=-7

Since the MPE (memory pointer enable) flag is reset
in this case, the MP (memory pointer) in a general

register indirect transfer is invalid.
Note

The first operand of the "ADD r, m" instruction is
the general register column address. Thus, when the
following coding is used, the general register column
address is O3H.

MEM0O13 MEM O0.13H
MEMOZF MEM O0.2FH
ADD MEMO13, MEMO2F
Indicates the general register
column address: The low-order 4
bits (03H in this case) are

valid.

When the CMP flag = 1, the result of the addition is

not stored.

When the BCD flag 1, the result of a decimal

addition is stored.

5-8

5.2 ADD m, #i Add immediate data to data memory

)

Operation code

10000 M my i _J

Function
When CMP = 0: M, CY <« (M) + 1

Adds the immediate data i to the contents of the
data memory addressed by M, and stores the result

in the data memory addressed by M.
When CMP = 1: CY¥ +« (M) + 1

The result is not stored in the data memory, but
the carry flag (CY) and zero flag (Z2) are changed

according to the result.

If a carry is generated as a result of the addition
the carry flag (CY) is set; if no carry is generated
the carry flag (CY) is reset.

1f the result of the addition is non-zero, the zero
flag (Z) is reset without regard to the compare flag
{CMP).

If the result of the addition is zero when the
compare flag is reset (CMP = 0), the zero flag {Z) is

set.
If the result of the addition is zero when the

compare flag is set (CMP = 1), the zero flag (Z) is

not changed.

5-9

There are two kinds of addition, binary and BCD:
which kind is performed is specified by the BCD flag

{BCD) in the PSW.

Example 1

To add 5 to the contents of address 0.2FH and store
the result in address 0.Z2FH.

0.2FH « (0.2FH) +05H

MEMO02F MEM 0.2FH
MOV BANEK, #00E . Data memory bank set to O

ADD MEMO2F, #05H

Example 2

To add 5 to the contents of address 0.6FH and store
the result in address 0.6FH. If IXE = 1, IXH = O,
IX¥M = 4 and IXL = 0, that is IX = 0.40H, data memory
0.6FH can be specified by making the data memory
address Z2FH.

0.6FH «— (0.6FH) +05H

Address obtained by ORing index register
contents 0.40H and data memory address 0.2FH

MEMOZF MEM 0.2FH

MOV BANK, #00H ; Data memory bank set to O
MOV IXH, #00H ; IX 000010000008 (0.40H)

MOV IXM, #04H '
MOV IXL, #00H

SET1 IXE ; IXE flag < 1

ADD MEMO2F, #05H :IX 000010000008 (0. 40H)
; Bank operand OR)00000101111B(0.2FH)
H ggggg;’ed 000011013118 (0.6FH)

Example 3

To add 5 to the contents of address 2.2FH and store
the result in address 2.2FH. If IXE = 1, IXH = 1,
IXM = 0 and IXL = 0, that is IX = 2.00H, data memory
2.2FH can be specified by making the data memory
address 2FH.

2.2FH « (2.2FH} +05H

Address cbtained by ORing index register
contents 2.00H and data memory address 0.2FH

MEM22F MEM 2.2FH
MOV BANK, #00H ; Data memory bank set to O

MOV IXH, #01H : IX <00100000600B
MOV IXM, #00H
MOV IXL, #00H

SET1 IXE ; IXE flag +« 1
ADD MEM22F, #05H ;IX 001000000008 (2. 00H)
; Bank operand QR)00000101111B{0.2FH)
; ggggégéed 00100101111B(2.2FH)
@ Note

wWwhen the CMP flag the result of the addition is

not stored.

il
[
N

the result of a decimal

It
[
-

When the BCD flag
. addition is stored.

5.3

ADDC T, m Add data memory to general register with carry

@

flag

Operation code

[00010 -] mo |]

Function
When CMP = 0: R, CY <« (R) + (M) + (CY)

Adds the contents of the data memory addressed by M
and the value of the carry flag (CY) to the
contents of the general register indicated by R,
and stores the result in the general register

indicated by R.
When CMP = 1: CY <« (R} + (M) + (CY)

The result is not stored in the register, but the
carry flag (CY) and zero flag (Z) are changed

according to the result.

Use of this "ADDC" instruction facilitates the

addition of two or more words.

If a carry is generated as a result of the addition
the carry flag (CY) is set; if no carry is generated

the carry flag (CY) is reset.

If the result of the addition is non-zerc, the zero
flag (2) is reset without regard to the compare flag
(CMP).

If the result of the addition is zero when the

compare flag is reset (CMP = 0), the zero flag (Z) is

set.

5-12

If the result of the addition is zero when the
compare flag is set (CMP = 1), the zero flag (Z) is

not changed.

- There are two Kinds of addition, binary and BCD
operations; which kind is performed is specified by
the BCD flag (BCD) in the PSW. '

Example 1

To add the contents of the 12 bits from address 0.2DH
to address 0.2FH to the contents of the 12 bits from
address 0.0DH to address 0.0FH and store the result
in the 12 bits from address 0.0DH to address 0.0FH
when bank 0 row address 0 (0.00H to 0.0FH) is

specified as general registers.

0.0FH « (§.0FH) + (0.2FH)
0.0EH < (0.0EH) + {(0.2EH) +CY
0.0DH «— (0.0DH) + (0.2DH) +CY
MEMO0OOD MEM ©¢.0DH
MEMOIE MEM 0.0EH
MEMOOF MEM .0.0FH
MEMO02D MEM 0.2DH
MEMO2E MEM 0.2EH
MEMOZF MEM 0.2FH
MOV BANK, #00H; Data memory bank set to O
MOV RPH, #00H : General register bank set to 0
MOV RPL, #00H ; General register row address set to 0
ADD MEMOOF, MEMO2F
ADDC MEMOOE, MEMOZE
ADDC MEMOOD, MEMO2ZD

Example 2

7o shift the contents of the 12 bits from address
1.2DH to address 1.2FH including the carry flag one
bit to the left when bank 1 row address 2 (1.20H to

1.2FH) is specified as general registers.

Cy Bank 1 Bank 1 Bank 1 cY
(Carry Flag) Address 2DH Address 2EH Address 2FH (Carry Flag)
MEMI12D MEM 1.2DH
MEMIi2E MEM 1.2EH
MEMI12F MEM 1.2FH
MOV BANK, #01H - Data memory bank set to 1
MOV RPH, #01H . General register bank set to 1
MOV RPL, #04H . General register row address set to 2

ADDC MEMI2F, MEMI2F
ADDC MEMIZE, MEMIZE
ADDC MEMI1ZD, MEMI1ZD

Ezample 3

To add the contents of addresses 0.40H through 0.4FH
to the contents of address 0.0FH and store the result

in address 0.0FH.

0.0FH « (0.0FH) + (0.40H) + (0.41H) +--~+ (0.4FH)

MEMOOF MEM

MEM000 MEM
MOV
MOV
MOV
MOV
MOV
MOV

LOOP1 :
SET1
ADD
CLRI1
INC
SKE
MP

0.0FH

0.00H
BANK, #00H
RPH, #00H
RPL, =00H
IXH, #00H
IXM, #04H
IX1, #00H
IXE
MEMOOF, MEMO000
IXE

IX

IXL, %0
LOOP!

; Data memory bank set to 0

; General register bank set to 0

; General register row address
set to O
s IX +00001000000B (0.40H)

; IXE flag +« 1

: IXE flag = O

FIX—IX+ 1

Example 4

To add the contents of the 12 bits from address 0.0DH
to address 0.0FH to the contents of the 12 bits from
address 1.40H to address 1.42H and store the result
in the 12 bits from address 0.0DH to address 0.0FH.
At this time, if IXE = 1, IXH = 0, IXM = OCH, IXL =
0, that is, IX = 1.40H, data memory 1.40H, 1.41H and
1.42H can be specified by setting the data memory
address to 0.00H, 0.01H and 0.02H, respectively.

G.0FH <« (0.0FH) + (1.42H)
0.0EH < (0_0EH) + (1.41H)} +CY
0.0DH « (0.0DH) + (1.46H) +CY

Address determined by index register
contents 1.40H ORed with data memory
address 0.02H

MEMO00 MEM 0.00H
MEMOC1 MEM 0.01H
MEMO002 MEM 0.02H
MEMOOD MEM 0.0DH
MEMOE MEM 0.0EH
MEMOOF MEM 0.0FH

MOV BANK, #00H : Data memory bank set to O

MOV RPH, #00H ; General register bank set to 0

MOV RPL, #00H : General register row address set to O
MOV IXH, #00H ; IX 00011000000 (1.40H)

MOV IXM, #O0CH

MOV IXL, #00H

SET1 IXE ; IXE flag « 1

ADD MEMOOF, MEMO002 ; 6.0FH < (0.0FH) + {(1.42H)
ADDC MEMOOE, MEMOOL ; ¢.0EH — (0.0EH) + {1.41H)
ADDC MEMOOD, MEMOGO ; 0.0DH « (0.0DH) + (1.40H)

5.4

ADDC m, #i Add immediate data to data memory with carry

@

flag

Operation code

10010 my my t

Function

When CMP = 0: M, CY <« (M) + 1 + {(CY)

Adds the immediate data i and the carry flag (CY)
to the contents of the data memory addressed by M,
and stores the result in the data memory addressed

by M.

When CMP = 1: C(CY <« (M) + i + (CY)

The result is not stored in the data memory, but
the carry f£flag (CY) and zero flag (Z)} are changed

according to the result.

If a carry is generated as a result of the addition
the carry flag (CY) is set; if no carry is generated

the carry flag (CY) is reset.

If the result of the addition is non-zero, the zero
flag (Z) is reset without regard to the compare flag
{CMP).

If the result of the addition is zero when the
compare flag is reset (CMP = 0), the zero flag (Z)} is

set.

If the result of the addition is zero when the
compare flag is set (CMP = 1), the zero flag (Z) is

not changed.

There are two kinds of addition, binary and BCD
operations; which kind is performed is specified by
the BCD flag (BCD) in the PGSW.

Example 1

To add 5 to the contents of the 12 bits from address
0.0DH to address 0.0FH and store the result in
addresses 0.0DH to 0.0FH.

0.0FH « (0.9FH) +05H
0.0EH « {0.0EH) +CY
0.0DH « {(0.0DH) +CY
MEMOOD MEM 0.0DH
MEMOOE MEM 0.0EH
MEMOOF MEM 0.0FH
MOV BANK, #00H : bata memory bank set to 0O
ADD MEMOOF, =#05H
ADDC MEMOOE, #00H
ADDC MEMOOD, +00H

Example 2

To add 5 to the contents of the 12 bits from address
0.4PH to address 0.4FH and store the result in
addresses 0.4DH to 0.4FH. At this time, if IXE = 1,
IXH = 0, IXM = 4, IXL = 0, that is, IX = 0.40H, data
memory 0.4DH, 0.4EH and 0.4FH can be specified by
setting the data memory address to 0.0DH, 0.0EH and
0.0FH, respectively.

0.4FH — (0.4FH) +05H
0 4EH « (04EH) +CY
" 0.4DH — (0.4DH)} +CY

L Address determined by index register contents
0.40H ORed with data memory address 0.0DH

MEMO0D MEM 0.0DH

MEMOE MEM 0.0EH

MEMOOF MEM 0.0FH
MOV BANK, #00H ; Data memory bank set to 0
MOV IXH, #00H ; IX 000010000008 (0.40 H)
MOV XM, #04H
MOV XL, #00H

SET1 IXE ; IXE flag + 1
ADD MEMOOF, #5 ; 0.4FH < (0.4FH) +5H
ADDC MEMOOE, #0 i 0_4EH <~ (0.4EH) +CY
ADDC MEMOGD, #0 ;0.4DH «- (0.4DH) +CY

5-19

5.5 SUB r, m Subtract data memory from general register

(1) oOperation code

(oo [[o []

(@) Function
When CMP = 0: R, CY < (R) - (M)

Subtracts the contents of the data memory addressed
by M from the contents of the general register
indicated by R, and stores the result in the

general register indicated by R.
When CMP = 1: CY < (R) - (M)

The result is not stored in the register, but the
carry flag (CY) and zero flag (z) are changed

according to the result.

If a borrow is generated as a result of the
subtraction the carry flag (CY) is set; if no borrow

is generated the carry flag (CY) is reset.

If the result of the subtraction is non-zero, the
zero flag (Z) is reset without regard to the compare

flag (CMP).

If the result of the subtraction is zero when the
compare flag is reset (CMP = 0), the zero flag (2) is

set.

If the result of the subtraction is zero when the
compare flag is set (CMP = 1), the zero flag (2) is

not changed.

There are two kinds of subtraction, binary and BCD
operations; which kind is performed is specified by
the BCD flag (BCD) in the PSH.

Example 1

To subtract the contents of address 0.2FH from the
contents of address 0.03H and store the result of the
subtraction in address 0.03H when bank 0 row address
0 (0.00H to 0.0FH) is specified as general registers
(RPH = 0, RPL = 0).

0.03H < (0.03H) - (0.2FH)

MEM®03 MEM 0.03H
MEMO02F MEM 0.2FH

MEM123
MEMO2F

MOV BANEK, #00H : Data memory bank set to 0
MOV RPH, #00H ; General register bank set to 0
MOV RPL, #00H ; General register row address set to O

SUB MEMO03, MEMOZF

Example 2

To subtract the contents of address 0.2FH from the
contents of address 1.23H and store the result of the
subtraction in address 1.23H when bank 1 row address
2 (1.20H to 1.2FH) is specified as general registers
(RPH = 1, RPL = 4).

1.23H « (1.23H) — (0.2FH)

MEM 1.23H

MEM 0.2FH

MOV BANK, #00H ; Data memory bank set to O

MOV RPH, =#01H ; General register bank set to 1

MOV RPL. Z04H ; General register row address set to 2

SUB MEMI123, MEMOZF

Example 3

7o subtract the contents of address 0.6FH from the
contents of address 0.03H and store the result of the
subtraction in address 0.03H. If IXE = 1, IXH = 0,
IXM = 4 and IXL = 0, that is IX = 0.40H, data memory
0.6FH can be specified by making the data memory
address 2FH.

0.03H «— (0.03H) — (0.6FH)
Address determined by index register

contents 0.40H ORed with data memory
address 0.2FH

MEMO003 MEM (.03H
MEMO2F MEM 0.2FH

MOV BANK, #00H . Data memory bank set to 0

MOV RPH, #00H . General register bank set to 0

MOV RPL, #00H : General register row address set to O
MOV IXH., #00H © 1% 000010000008 (0.40H)

MOV IXM, #HO4H
MOV XL, #00H ;
SET1 iXE 1 IXE flag + 1

SUB MEMO003, MEMO2F ; IX 0000106000080, 40H)
OR)00000101111B(9.2FH)

; Bank operand
. Specified address 00001101111R(0_6FH)

*

Example 4

To subtract the contents of address 2.3FH from the
contents of address 0.03H and store the result of the

subtraction in address 0.03H. If IXE =1, IXH = 1,
IXM = 1 and IXL = 0, that is IX = 2.10H, data memory

2.3FH can be specified by making the data memory
address Z2FH.

0.03H — (0.03H) — {(2.3FH)

MEMO03 MEM
MEMOZE MEM
MOV
MOV
MOV
MOV
MOV
MOV
SETI
SUB

@ Note

Address determined by index register
contents 2.10H CRed with data memory
address 0.2FH

0.03H

0.2FH

BANK, #00H : Data memory bank set to O

RPH. #00H ; General register bank set to O

RPL, #00H ; General register row address set to 0
{XH, £01H ; IX «-001000100008 (2.10H})

IXM, #01H ;

IXL, %00H

IXE i IXE flag + 1

MEMO003, MEMOZE ; IX 001000100008 (2. 10H)

; Bank operand OR) 00001011118 (0. 2FH)

: Specified address 00100111111B(2.3FH)

The first operand of the "SUB r, m" instruction must

be the general register address. Thus, when the

following coding is used, address 0.03H is specified

as the register.

MEMO013 MEM

MEMG2EF MEM
MOV
MOV
MOV
SUB

When the CMP flag

0.13H

0.2FH

BANK, #Z00H ; Data memory bank set to 0O

RPH, #00H i General register bank set to O

RPL., =00H . .+ General register row address set to O

MEMO013, MEMO2ZF

The general register address must be in the range
Q0H to OFH (register pointer set to other than row

address 1).

1, the result of the subtraction

is not stored.

When the BCD flag

the result of a decimal

Il

1

r

operation is stored.

5.6 SUB m, #i Subtract immediate data from data memory

@

Operation code

[10001 | - | my] ; J

Function
When CMP = 0: M, CY + (M) - 1

Subtracts the immediate data i from the contents of
the data memory addressed by M, and stores the

result in the data memory addressed by M.
When CMP = 1: CY <« (M) - i

The result is not stored in the data memory, but
the carry flag (CY) and zero flag (Z) are changed

according to the result.

If a borrow is generated as a result of the
subtraction the carry flag (CY) is set; if no borrow

is generated the carry flag (CY) is reset.

If the result of the subtraction is non-zero, the
zero flag (Z) is reset without regard to the compare
flag (CMP).

If the result of the subtraction is zero when the
compare flag is reset (CMP = 0), the zero flag (Z) is
set.

If the result of the subtraction is zero when the
compare flag is set (CMP = 1), the zero flag (Z) is
not changed.

There are two kinds of subtraction, binary and BCD
operations:; which kind is performed is specified by

the BCD flag (BCD)} in the PSW.
C) Example 1

To subtract 5 from the contents of address 0.2FH and

store the result in address (.2FH.

0.28H « (0.2FH) —05H
MEMOZF MEM 0.2FH

MOV BANK, H00H ; Data memory bank set to O

SUB MEMOZF, #05H

Example 2

To subtract 5 from the contents of address 0.6FH and
store the result in address O0.6FH. If IXE = 1, IXH =
O, IXM = 4 and IXL = 0, thet is IX = 0.40H, data
memory O.6FH can be specified by making the data

memory address Z2FH.

0.6FH +~ (0.6FH) — 05H

Address obtained by ORing index register
contents 0.40H and data memory address (0.2FH

MEMOZF MEM 0.2FH
MOV BANK, 200H ; Data memory bank set to O

MOV IXH, =#006H ; IX ~—00001000000B (0.40H)
MOV IXM, #04H :
MOV IXL, #G0H

e

SET! IXE ; IXE flag < 1

SUB MEMO2F, #05H ;IX 000010000008 (0. 40H)
; Bank operand OR)00000101111B{0.2FH)
; iggggéeé 000021101111R (0. 6FH)

Example 3

To subtract 5 from the contents of address 2.2FH and
store the result in address 2.2FH. If IXE = 1, IXH =
1, IXM = 0 and IXL = 0, that is IX = 2.00H, data
memory 2.2FH can be specified by making the data

memory address 2FH.

2.2FH « (2.2FH) —(5H

Address obtained by ORing index register
contents 2.00H and data memory address 0.2FH

MEMO2F MEM 0.2FH
MOV BANKO0, #00H ; Data memory bank set to O

MOV IXH, #01H : IX «00100000000B (2.00H)

MOV IXM, #00H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag < 1

SUB MEMO2F, #05H ;IX 001000000008 (2.00H)
: Bank operand - OR)000001011118(0.2FH)
; ggggég;e.d . 00100101111B{2.2FH)

@ Note

When the CMP flag 1, the result of the subtraction

is not stored.

the result of a decimal

When the BCD flag 1

operation is stored.

r

5.7

SUBC r, m Subtract data memory from general register

®

Phase-out/D
with carry flag

Operation code

00011 my my r

Function
When CMP = 0: R, CY + (R) - (M) - (CY)

Subtracts the contents of the data memory addressed
by M and the value of the carry flag (CY) from the
contents of the general register indicated by R,
and stores the result in the general register
indicated by R. Use of this SUBC instruction

facilitates a subtraction of two or more words.
When CMP = 1: CY < (R) - (M) - (CY¥)

The result is not stored in the register, but the
carry flag {CY) and zero flag (Z) are changed

according to the result.

If a borrow is generated as a result of the
subtraction the carry flag (CY) is set; if no borrow

is generated the carry flag (CY) is reset.

If the result of the subtraction is non-zero, the
zero flag (Z) is reset without regard to the compare
flag {(CMP).

If the result of the subtraction is zero when the
compare flag is reset (CMP = 0), the zero flag (Z) is

set.

If the result of the subtraction is zero when the
compare flag is set (CMP = 1), the zero flag (Z) is
not changed.

There are two kinds of subtraction, binary and BCD
operations; which kind is performed is specified by
the BCD flag (BCD) in the PSW.

® Example 1

To subtract the contents of the 12 bits from address
0.2DH to address 0.2FH from the contents of the 12
bits from address 0.0DH to address 0.0FH and store
the result in the 12 bits from address 0.0DH to
address 0.0FH when bank O row address 0 (0.00H to

O.0FH) is specified as general registers.

0.0FH « (0.0FH} — (0.2FH)
0.0EH < (0.0EH) — (0.2EH) —CY
0.0DH « (0.0DH) — (0.2DH) —-CY

MEMOD MEM 0.0DH
MEMOOE MEM 0.0EH
MEMOOF MEM 0.6FH
MEMO0Z2D MEM 0.2DH
MEMOZE MEM 0.2EH
MEMO2F MEM 0.2FH

MOV BANK, #00H ; Data memory bank set to O
MOV RPH, #00H » General register bank set to O
MOV RPL, #00H ; General register row address set to 0

SUB MEMOOF, MEMO2F
SUBC MEMOOE, MEMOZE
SUBC MEMO0D, MEMO2D

Example 2

To subtract the contents of the 12 bits from address
1.40H to address 1.42H from the contents of the 12
bits from address 0.0DH to address 0.0FH and store
the result in the 12 bits from address 0.0DH to
address O0.0FH. At this time, if IXE = 1, IXH = 0,
IXM = OCH, IXL = 0, that is, IX = 1.40H, data memory
1.40H, 1.41H and 1.42H can be specified by setting
the data memory address to 0.00H, 0.0l1R and 0.02H,

respectively.

0.0FH < (0.0FH) ~ {(1.42H)
0.0EH « (0.0EH) — (1.41H) —-CY
0.00H « (0.00H) + (1.40H) ~CY

Address determined by index register
conterits 1.40H ORed with data memoTy
address 0.00H

MEMO000 MEM 0.00H
MEMO0l MEM 0.01H
MEM002 MEM 0.02H
MEM0OD MEM 0.0DH
MEMOOE MEM 0.0EH
MEMOOF MEM 0.0FH

MOV BANK, #00H . Data memory bank set to O

MOV RPH, #00H . General register bank set to O

MOV RPL, #00H . General register row address set to 0
MOV IXH, #00H o I¥X 000110000008 (1.40H)

MOV IXM. #0CH 5

MOV IXL, #00H ;

SET! I[XE i IXE flag <« 1

SUB MEMOOF, MEMO02 ; 0.0FH <« (0.0FH) — (1.42H)
SUBC MEMOOE, MEM001 ; 0.0EH < (0.0EH} — (1.41H)
SUBC MEMOCD, MEMO00 ; 0.0DH + (0.0DH) — (1.40H)

Example 3

To compare the contents of the 16 bits from address
0.00H to address 0.03H with the contents of the 16
bits from address 0.0CH to address 0.0FH, and jump to

LAB1 if they are the same or to LABZ if not the same.

MEMO000
MEMO001
MEM002
MEMO003
MEM06C
MEMO0D
MEMOOE
MEMOOF

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MOV
MOV
MOV
SET2
SUB
SUBC
SUBC
SUBC
SKF1
BR
BR

LABL:

LAB2:

0.00H
0.01H
6G.02H
0.03H
0.06CH
0.0DH
.0EH
0.0FH

BANK, #00H ;
RPH, #00H ;
RPL., ¥00H

CMP, Z
MEMUG00,
MEMO01,
MEMO002,
MEMO003,
VA

LAB1
LAB2

MEMO0OC ;
MEMOOD ;}
MEMOOE ;
MEMOOF ;

)

H

5-30

Data memory bank set to O
General register bank set to 0
General register row address set to 4]

cMp flag « 1, Z flag « 1

since CMP flag is set, address contents
0.00H to 0.03H not changed

1f compared contents are the same,
z flag = 1; if different, Z flag = 0

5.8

SUBC m, #i Subtract immediate data from data memory with

@

carry flag

Operation code

l 10011 My my i
Function
When CMP = 0: M, CY <« (M) - i - {CY)

Subtracts the immediate data i and the carry flag
(CY) from the contents of the data memory addressed
by M, and stores the result in the data memory

addressed by M.
When CMP = 1: CY <« (M)} - 1 - (CY)

The result is not stored in the data memory, but
the carry flag (CY) and zero flag (Z) are changed

according to the result.

If a borrow is generated as a result of the
subtraction the carry flag (CY) is set; if no borrow

is generated the carry flag (CY)} is réset.

If the result of the subtraction is non-zero, the
zero flag (Z) is reset without regard to the compare
flag (CMP).

If the result of the subtraction is zero when the
compare flag is reset (CMP = 0), the zero flag (2Z)

is set.

If the result of the subtraction is zero when the
compare flag is set (CMP = 1), the zero flag (Z) is

not changed.

There are two kinds of subtraction, binary and BCD;
which kind is performed is specified by the BCD flag
(BCD) in the PSW.

Example 1

To subtract 5 from the contents of the 12 bits from
address 0.0DH to address 0.0FH and store the result
in addresses 0.0DH to 0.0FH.

0.0FH « {(0.0FH) —05H
0.0EH < (0.0EH) —CY
0.0DH <« (0.0DH)} —CY
MEMOOD MEM 0.0DH
MEMOOE MEM 0.0EH
MEMOOF MEM 0.0FH
MOV BANK. #00H . Data memory bank set to 0
SUB MEMOOF, #05H
SUBC MEMOOE, #00H
SUBC MEMO0OD, #00H

Example 2

To subtract 5 from the contents of the 12 bits from
address 0.4DH to address 0.4FH and store the result
in addresses 0.4DH to 0.4FH. At this time, if IXE =
1, IXH = 0, IXM = 4, IXL = 0O, that is, IX = 0.40H,
data memory O0.4DH, 0.4EH and 0.4FH can be specified
by setting the data memory address to 0.0DH, (0.0QEH
and 0.0FH, respectively.

0.4FH « (0.4FH) —05H
0.4EH «— (0.4EH} —CY
0.4DH « {0.4DH) —CY

Address determined by index register contents
0.40H CRed with data memory address 0.0DH

MEMOOD MEM 0.0DH

MEMOOE MEM 0.0EH

MEMOGF MEM 0.0FH
MOV BANK, ®00H ; Data memory bank set to O
MOV IXH, #00H ; IX 000010000008 (0.40H)
MOV IXM, #04H
MOV IX1., #00H
SET1 IXE ; IXE flag « 1
MOV BANK, #00H | Data memory bank set to O
SUB MEMOOF, #05H ; {0.4FH) « (0.4FH) —05H
SUBC MEMO0E, #00H ; (0.4EH) « (0.4EH) —-CY
SUBC MEMOOD, #00H : (0.4DH) < (0.4DH) —-CY

5-33

Example 3

To compare the immediate data OA3FH with the contents
of the 16 bits from address 0.00H to address 0.03H,
and jump to LABl if they are the same or to LAB2 if
not the same.

MEM@0 MEM 0.00H
MEMO00I MEM 0.01H
MEM002Z MEM 0.02H
MEM003 MEM 0.03H
MOV BANK, #00H : Data memory bank set to ©
SET2 CMP, Z ; CMP flag + 1, 2 flag « 1
SUB MEMO0O, #O0H)gince cmp flag is set, address contents 0.00H
SUBC MEMO01, #0AH ;} to 0.03# not changed
SUBC MEMO002, #3H ;
SUBC MEMO003, #0FH ;

SKF1 2 ' If compared values are the same,
BR L ABL : Z flag = 1; if different, 2 flag ~ C
BR LAB2Z

LABI:

LABZ:

5.9 INC AR

@

Operation code

Phe

Increment address register

60111 000 1601

0000

Function

AR + (AR} +

1

Increments the address register (AR).

Example 1

To add 1 to the contents of the 16 bits from AR3 to

ARO (address register) in the system register and
store the result in AR3 to ARO.

ARO+—ARO+1

AR1+ ARl +CY

AR2+—AR2+CY

AR3+~ AR3 + CY
INC AR

This operation can also be performed using add

instructions,

ADD ARO, #01H
ADDC AR1, #00H
ADDC AR2, #00H
ADDC AR3, #00H

as follows:

Example 2

To transfer table data 16 bits (one address) at a
time to the DBF (data buffer) using the table
reference instruction (see the description of the
MOVT instruction in 5.26 for details).

v Address Table data
010H DW OF3FFH
011H DW 0A123H
012H DW 0FFFIH
013H DW OFFF5H
014H DW 0FFi1H
MOV AR3, #0H : Table data address
MOV AR2Z, #0H ;}Set 0010H in address
ister.
MOV AR1, #£1H) Fegrs
MOV ARO, #0H
LOCP :
MovT DBE. @AR } Table data read in DBF
Processing which references
’ table data
INC AR ;} Address register incremented
by 1
BR LOOP 0o
@ Note

The number of bits which can be used in the address
register (AR3 to ARQ) varies from product to
product: Please refer to the Data Sheet for the
product concerned when using this register.

5-36

INC IX Increment index register

Operation code

(0111 900 1600 2000

Function

IX « {(IX) + 1

Increments the index register (IX).

Example 1

To add 1 to the contents cof the 11 bits of IXH,
IXM and IXL (index register} in the system register
and store the result in IXH, IXM and IXL.

IXL—IXL +1

XM« IXM + CY

IXH<—IXH + CY
INC IX

This operation can also be performed using add

instructions, as follows:

ADD IXL, #0IH
ADDC IXM, #00H
ADDC IXH, #00H

RAM clear:
MEMO000

Example 2

To zeroize the entire contents of data memory
addresses 0.00H to 0.73H using the index register.

MOV BANK, #00H ; pData memory bank set to O

MOV IXH, #00H . Set index register coatents to OOH of bank O.
MOV IXM. #00H ;

MOV IXL, #00H

MEM 0.00H
SET1 IXE ; IXE flag < 1

MOV MEMO000, #00H ; Writes 0 to data memory indicated
by the index register

CLR1 IXE ; IXE flag « O
INC X

SKNE IXM, #07H '] Loop until index register contents
SKE KL, #04H [become 74H of bank €.

BR RAM clear

5.11 SKE m, #i Skip if data memory equal to immediate data

(@) Operation code

I 01001 M my, i]

@) Function
{M) - 1, skip if zero

Skips the next instruction if the contents of the
data memory addressed by M are equal to the immediate

data 1i.

3 Example

If the address (0.24H contents are 0, OFH is
transferred to address 0.24H and if not 0, it is
branched to OPEl.

MEMO024 MEM 0.24H

MOV BANK, #00H ; Data memory bank set to O
SKE MEMO024, #00H
BR OPE1

MOV MEMOG24, #0FH
OPE!

5.12

SKGE m, #i Skip if data memory greater than or equal to

®

immediate data

Operation code

i 11001 mmy i my l i _J

Function

(M) - i, skip if not borrow

Skips the next instruction if the contents of the
data memory addressed by M are equal to or greater
than the value of the immediate data i.

Example

If the address 0.1FH contents are greater than
immediate data '7', OlH is stored at address 0.0FH

and if smaller, 02H is stored.

MEMOOF MEM 0.0FH
MEMOF MEM 0.1FH
MOV BANK, #00H : Data memory bank set to O
MOV MEMOOF, #01H
SKGE MEMOIF, #07H
MOV MEMOOF, #02H

5.13

SKLT m, #i Skip if data memory less than immediate data

Q)

Operation code

l 11011 my my i
Function
(M) - i, skip if borrow

Skips the next instruction if the contents of the
data memory addressed by M are less than the value of

the immediate data i.

Example

If the 8-bit data stored at address 0.10H {(high) and
address 0.20H (low) is greater than '1l6H', it isg
RETed and if smaller, it is RETSKed,

MEMO10 MEM 0.10H
MEMO026 MEM - 0.20H

MOV BANK, #00H ; Data memory bank set to O
SKGE MEMO010, #01H
RETSK

SKNE MEMO10, #01H
SKLT MEMO020, #06H-+01H
RET

RETSK

The same contents as above are performed as follows

using the compare flag (CMP) and carry flag (CY).

MEMO1¢ MEM 0.10H
MEMO20 MEM 0.20H

MOV BANK, #00H

SET1I CMP

SUB MEMO020, $#06H+01H
SUBC MEM010, #01H

SKTT CY
RET
RETSK

; Data memory bank set to O

5.14

SKNE m, #i Skip if data memory not equal to immediate

)

data

Operation code

61011 my my, 1

Function
{M) - 1, skip if not zero

Skips the next instruction if the contents of the
data memory addressed by M are not equal to the

immediate data i.
Example

This program jumps to XYZ if the contents of address
0.1FH are 1 and the contents of address 0.1EH are 3,
or otherwise jumps to ABC.

For an 8-bit comparison, the following combination is

used.

3 1

MEMCIE MEM 0.1EH
MEMOIF MEM ¢.1FH
MOV BANK. #00H ; Data memory bank set to O
SKNE MEMOIF, #0IH
SKE MEMOIE, #03H
BR ABC
BR XYZ

The above processing can be coded as shown below

using the compare flag and zero flag.

MEMOE MEM

MEMOIF MEM
MOV
SETZ
SUB
SUBC
SKT1
BR
BR

0.1EH
0.1FH

BANK, #00H

CMP,

MEMOIF, #01H
MEMOIE, #03H

Z
ABC
XYZ

Z

; Data memory bank set to 0

: CMp flag + 1, 2 flag « 1

5.15 AND m, #i AND between data memory and immediate data

C) Operation code

i 10100 my My i]

2) Function
M < (M) AND i

Finds the logical product (AND) of the contents of
the data memory addressed by M and the immediate data

i, and stores the result in the data memory addressed

r

by M.
@) Example 1

To reset bit 3 (MSB) of address 0.03H.

0.03H « (0.03H) AND 0111B

Address 0.03H

0l x| x XJ % : don't care

MEM003 MEM 0.03H
MOV BANK, #00H ; Data memory bank set to 0
AND MEMO003, #0111B

Example 2

All the address 0.03H bits should be reset for the

following two instructions.

MEMO003 MEM
MOV
AND

or
MEMO03 MEM
MOV
MOV

0.038
BANEK, #00H
MEMO003, #0000B

0.03H
BANK, #00H
MEMO003, #00H

; Data memory bank set to O

; Data memory bank set to O

5.16 AND r, m AND between general register and data memory

(@) Operation

) Function

code
l 00100 my mp T
R « {R) AND (M)

Finds the logical product {(AND) of the contents of

the general register indicated by R and the contents

of the data memory addressed by M, and stores the

result in the general register indicated by R.

() Example 1

To AND the contents (101CB) of address 0.03H and the
contents (0110B) of address 0.2FH, and store the
result (0010B) in address 0.03H.

0.03H « (0.03H) AND (0.2FH)

n Address 0O3H
nn Address 2ZFH
nnn address O3H

MEMO003 MEM
MEMOZF MEM
MOV
MOV
MOV
AND

0.03H

0.2FH

BANK, #00H ;
MEMO003, #1010B

MEMO2F, #0110B

MEM003, MEMOZF

Data memory bank set to 0

5.17 OR m, #i OR between data memory and immediate data

C) Operation code

[10110 | my | m [;]

@ Function
M <« (M) OR i

Finds the logical sum (OR) of the contents of the
data memory addressed by M and immediate data i, and
stores the result in the data memory addressed by M.

® Example 1

To set bit 3 (MSB) of address O;O3H.

0.03H — (0.03H) OR 1000B

Address 0.03H

¥ | X I X X : don't care

MEMO003 MEM 0.03H
MOV BANK, #00H . Data memory bank set to 0O
OR MEMO003, #1000B

Example 2

All the address 0.03H bits should be reset for the

following two instructions.

MEMO00Z MEM
MOV
OR
or
MEM003 MEM
MOV
MOV

0.03H
BANK, #00H
MEMO003, #1111B

0.03H
BANK, #00H
MEMO003, #0FH

» Data memory bank set to O

> Data memory bank set to C

@

m OR between general register and data memory

Operation code

] 00110 - | m, | r J

Function
R « (R) OR (M)

Finds the logical sum (OR) of the contents of the
general register indicated by R and the contents of
the data memory addressed by M, and stores the result

in the general register indicated by R.
Example 1

To OR the contents (1010B) of address 0.03H and the
contents (0111B) of address 0.2FH, and store the
result (1111B) in address 0.03H.

0.03H < (0.03H) OR (0.2FH)

n Address (03H
OR

E): Address 2FH
4

Il 11171 f Address 03H

MEMOO3 MEM 0.03H
MEMO2F MEM 0.2FH
MOV BANK. #00H ; Data memory bank set tc O
MOV MEMO003, #1010B
MOV MEMO2F, £0111B
OR MEMO003, MEMGZF

5.19 XOR m, #i Exclusive OR between data memory and immediate
data

() Operation code

10102 my my i

2 Function
M < (M) XOR i
Finds the exclusive logical sum (XOR} of the contents
of the data memory addressed by M and the immediate
data i, and stores the result in the data memory
addressed by M.

3@ Example

7o invert bit 1 and bit 3 of address 0.03H and store
the result in address (03H.

[1 1 }0 0] Address 03H

[1]o]1]0]

[TiTile) eeress o
l Inverted Bits

MEMO003 MEM 0.03H
MOV BANK, #00H ; Data memory bank set to O
XOR MEMO003, #1010B

5.20 XOR r, m Exclusive OR between general register and data

@

memnory

Operation code

00201 Ny mny T

Function
R +« (R) XOR (M)

Finds the exclusive logical sum (XOR) of the contents
of the general register indicated by R and the
contents of the data memory addressed by M, and
stores the result in the general register indicated
by R.

Example 1

This program compares the contents of address 0.03H
with the contents of address 0.0FH, sets differing
bits, and stores the result in address 0.03H; if all
bits of address 0.03H are reset (the contents of
address 0.03H and address 0.0FH are the same) the
program jumps to LBL1, otherwise it jumps to LBL2.

This example can be used, for instance, to compare
the alternate switch status {(contents of address
0.03H) with the internal status {contents of address
0.0FH), and jump to processing for a switch which has

changed.

Address 0O3H

1 n Address OFH

[1i1]0 01 adéress QSH

I—T———M Changed Bits

MEMO003 MEM 0.03H

MEMOCF MEM 0.0FH
MOV BANK, #00H ; Data memory bank set to O
XOR MEMO003, MEMOOF
SKNE MEMOGS, #00H

=1 =]
-
|

BR LBL1
BR LBL2Z
'Example 2

To clear the contents of address 0.03H.

XOR
[o]:1]0i1] address o3
!

[0}0 0 0[Address 03H

MEMO003 MEM 0.03H
MOV BANK, #00H
XOR MEMO03, MEMOG03

5.21 ID r, m Load data memory to general register

1 Operation code

I 01000 ! gy l mp f .]

2 Function
R « (M)

Stores the contents of the data memory addressed by M

in the general register indicated by R.

3 Example 1

To store the contents of address 0.2FH in address

0.03H.

0.03H <« (0.2FH)

MEMO003 MEM ¢.03H

MEMO2F MEM 6.2FH
MOV BANK, #00H ; Data memory bank set to O
LD MEMOE03, MEMOZF

Bank O

9 1 2 3 45 6 % 8 9 ABCDETF
200 ‘ General
ERENN Registers

=1 O N b L N =

System Register

Example 2

To store the contents of address 0.2FH in address
1.23H when bank 1 row address 2 (1.20H to 1.2FH) is
specified as general registers (RPH = 1, RPL = 4).

1.23H « (0.2FH)
MEMI23 MEM 1.23H
MEMO2F MEM 0.2FH

MOV BANK, #00H . Data memory bank set to 0
MOV RPH, #01H ; General register bank set to 1
MOV RPL, #04H ; General register row address set to 2

LD MEMI123, MEMO2ZF

Bank 0O
01 2 3 4 5 6 7 8 ¢ A B CDEF
0 |
i
2
3
4
: 1]
6 BN
7 I System Register /
Bank 1
¢ 1 2 3 4 5 6 7 8 9 A B D E F
0 NP
1 b
2 i — General
3 § Registers
4 |
5 |
6 | 1 ||
7 l i System Register

Example 3

To store the contents of address 0.6FH in address
0.03H. If IXE = 1, IXH = 0, IXM = 4 and IXL = O,
that is 1IX = 0.40H, data memory 0.6FH can be
specified by making the data memory address 2FH.

IXH < 00H

IXM — 04H

IXL < 00H

IXE flag ~ 1
0.03H «— (0.6FH)

Address obtained by ORing index register
contents 0.40H and data memoxry 0.2FH

MEMO003 MEM 06.03H

MEMOZF MEM 0.2FH
MOV BANK, #00H ; Data memory bank set to O
MOV IXH, #00H ; IX « 000010000008 (0.40H)
MOV XM, #M4H
MOV IXL., #00H
SET1 IXE ; IXE flag < 1
LD MEMO003, MEMO2F

Bank G
0 1 2 3 4 56 7 8 8§ ABCDEF

+— General
Registers

P NS S U

System Register

Example 4

To store the contents of address 2.3FH in address
0.03H. If IXE = 1, IXH = 1, IXM = 1 and IXL = 0,
that is IX = 2.10H, data memory 2.3FH can be
specified by making the data memory address 2FH.

0.03H «— (2.3FH)

Address obtained by ORing index register
contents 2.10H and data memory 0.2FH

MEMOG3 MEM 0.03H

MEMO2F MEM 0.2FH
MOV BANK, #00H : Data memory bank set to 0
MOV IXH, #01H : IX — 001000160008 (2.10H)
MOV IXM, #0iH
MOV XL, #00H
SET:? iXE ; IXE flag + 1
LD MEMO003, MEMOZF

Bank O
6 1 2 3 4 5 6 7 8 9 ABCDETF
0 5 | E — General
) 1| I Registers
2) |
3
4
5
6 \
7] System Register
Bank 2
01 2 3 4 6 7 8 3 A B CDEF
0
1
2 ™~
3 R
4
5
6
7 System Register

@ Note

The first operand of the "LD r, m" instruction is the

general register column address. Thus, when the

following coding is used, the general register column

address is 03H.

MEM013 MEM 0.13H
MEMO2ZF MEM 0.2FH

LD

ME!

Mol3, MEMOZF

Indicates the general register column
address: The low-order 4 bits are
valid. 1In this case, if bank 0

row address 0 is specified as the
general registers, address O3H is
specified.

@

r Store general register to data memory

Operation code

11000 my my, r

Function
M + (R)

Stores the contents of the general register indicated

by R in the data memory addressed by M.

Example 1

To store the contents of address 0.03H in address
O0.2FH.

MEMO0O03 MEM 003H
MEMO02F MEM 0.2FH
MOV BANK, #00H ; Data memory bank set to 0

ST MEMOG2F, MEMO003 ; Transfer general register contents
to data memory.

Bank 0
6 1 2 3 4 5 6 7 8 9 ABCDEF

Footnnd

General
Registers

N3 B W N = O

System Register

Example 2

To store the contents of address 1.13H in address
0.2FH. The general registers are specified as bank 1
row address 1 (1.10H to 1.1FH) by the register

pointer.

{0.2FH) « (1.13H)
MEMO02F MEM 0.2FH
MEMI113 MEM 1.13H

MOV BANK, #00H i Data memory bank set to O
MOV RPH, #01H . General register bank set to 1
MOV RPL, #02H i General register row address set to 1

ST MEMO2F, MEMIil13; Transfer general register contents to
data memory.

Bank (O
0 1 2 3 4 5 6 7 8 9 A B CDETF

Do R W N e O
.

System Register /

~1

Bank 1

0 1 2 3 4 5 6 7 8 9 A C DEF
L~

/

o] ~— General

— Registers

= ot B W N O

System Register

Example 3

To store the contents of address 0.00H in addresses
0.18H through 0.1FH. The data memory (18H to 1FH) is

specified by the index register.

(0.18H) « (0.00H}
(0.19H) « {0.0CH)

(0.1FH) « {(0.00H)

MOV BANK., #00H ; Data memory bank set to 0
MOV IXH., ®0C0H ; IX < Q00000000008 (0.00H)
MOV IXM, #06H

= .Address 0.00H specified as
MOV IXL, #00H v et

MEM©18 MEM 0.18H
MEMOS0 MEM 0.00H

LOOP? :
SET] IXE ; IXE flag <« 1
ST MEMO01S, MEMO0O ; (0.I1xH) « (0.00H)
CLR} IXE ; IXE flag + O
INC IX ; Index register + 1
SKGE IXE, #08H
BR LOOPI
Bank 0

01 2 3 45 6 7 8 9 ABCDEF

«—— General
Registers

System Register

~ N b W RN = O

5.23

@

MOV @r, m

Move data memory to destination indirect

Operation code

[- 01010 f - | my r

Function

When MPE = 1

[(MP), (R)] < (M)

When MPE = 0O

[my, (R)] < (M)
Stores the contents of the data memory addressed by M
in the data memory indicated by the general register
R.

When MPE = 0, the transfer is performed between

locations with the same row address- in the same bank.

Example 1

To store the contents of address 0.20H in address
0.2FH. The storage destination data memory is
specified by the column address indicated by the
general register (0O0OH) and the data memory (20H) row

address.

(0.2FH) <« (0.208)
MEMO0O00 MEM 0.00H

MEMO020 MEM 0.20H
MOV BANK, #00H : Data memory bank set to O
CLR1 MPE i MPE flag « O
MOV MEMO000, #0FH ; Column address set in general
register
MOV @MEMO000, MEMO20 ; Store contents.

5-62

+— General

Registers

0 1 2 3 4 5 6 7 8 9 A B CDEF

e

1

N:

3

4

5

6

7 System Register
Example 2

To store the contents of address 0.20H in address

0.3FH. The storage destination data memory is

specified by the column address indicated by the

general register (OOH) and the row address indicated

by the memory pointer (MP).

(6.3FH) «— (0.20H)

MEMG00 MEM
MEMO020 MEM
MOV
MOV
MOV
MOV
MOV
MOV
s SETI
MOV

0. 00H
0.20H
BANK, #00H . Pata memory bank set to O
RPH. #00H ; General register bank set to O
RPL. #00H . General register row address set
’ " to O
MEMO0OD, $#0FH . Column address set in general
register
MPH, #08H ;
: Set bank 0 and row address 3 in
MPL, 203H ;] memory pointer.
MPE ; MPE fiag (bit 3 of MPH) + 1

@MEMO000, MEMO020 ; Store contents.

Bank ©

6 1 2 3 4 5 6

7 89 A BCDETF

~—General
Registers

System Register

Example 3

To store the contents of address 0.10H in addresses
1.10H through 1.1FH.

(1.10H) «— (0.10H)
(1.11H) « (0.10H)

(1.JFH) « {0.10H)

MEMO0G MEM

MEMG10 MEM
MOV
MOV
MOV
MOV
MOV
MOV
; SET1

LOOP: -
MOV
ADD
SKTI
BR

0.00H

0.10H

BANK, #00H ;
RPH, #00H ;
RPL, #00H ;
MEMO000, #00H :
MPH, #08H :
MPL, #09H ;}
MPE ;

Data memory bank set to O

General register bank set te O
General register row address set
to O

Column address set in general
register

Set bank 1 and row address 1 in
memory pointer.

MPE flag {bit 3 of MPH) « 1

@MEMO000, MEMO0I0 ; { (MP), (00H)] « (10H)

MEMOG0, #01H ;
CY ;
LOOP1

Column address + 1

Finished up to address 1FH in
bank 17

Bank 0
01 2 3 4 8 6 7 8 9 A BCDETF

~ General
Registers

\

System Register

Bank 1

T

| L L]

| ! l System Register

=N M A e W e O

5.24 MOV m, @r Move data memory to destination indirect

@ Operation code

11010 Iy - my, r

(@ Function
When MPE = 1
(M) « [(MP), (R)]
When MPE = 0
(M) « [my, (R)]
Stores the contents of the data memory indicated by
the general register R in the data memory addressed

by M.

When MPE = 0, the transfer is performed between
locations with the same row address in the same bank.

366

Example 1

To store the contents of address .2FH in address

0.20H. The storage destination data memory is

specified by the column address indicated by the

general register (O0H) and the data memory (20H) row

address.

(0.20H) < (0.2FH)

MEMOO MEM
MEMO02¢0 MEM
MOV
CLRI
MOV
MOV

0.08H

¢.20H

BANK, #00H
MPE

MEMO000, #C0FH

; Data memory bank set to O

; MPE flag + O

. Column address set in general
' register

MEMO020, @MEMO000 ; Store contents.

Bank 0

0

1

2 3 4 5 6

7 8 8 ABCDEF

General

Registers

= O ol W N e O

System Register

Example 2

To store the contents of address 0.3FH in address
0.20H. The storage destination data memory is
specified by the column address indicated by the
general register (0O0OH) and the row address indicated
by the memory pointer (MP).

(0.20H) < (0.3FH)
MEMO00O0 MEM 0.00H
MEM020 MEM 0.20H

MOV BANK, #00H . Data memory bank set to O

. Column address set in general
MOV~ MEMO00, #OFH ;5 22 58 .2
MOV MPH, #08H '} Set bank 0 and row address 3 in
MOV MPL. #03H { memory poainter.
; SET1 MPE : MPE flag (bit 3 of MPH) +« 1

MOV MEMO020, @ MEMO000 ; store contents.

Bank O

01 2 3 456 78 9ABCDETF

General
Registers

~ Gt s W N e O

System Register

Example 3

To store the contents of address 0.20H through 0.2FH
in addresses 1.10H through 1.1FH. The storage data
memory is specified by the column address indicated
by the general register (00H) and the memory pointer
(MP) or data memory (20H) row address.

{1.10H) < (0.20H)
(1.11H) < (0.21H)
(1.12H)Y < (0.22H)

(1.1FH) « (0.ZFH)
MEMO00¢ MEM 0.00H
MEMO020 MEM 0.20H

MOV BANK, #00H : Data memory bank set to O
MOV MEMO000, #00H Column address set in general
register

MOV MPH, #00H ‘| set bank 1 and row address 1 in

MOV~ MPL, #08H } memory pointer-

; CLR1 MPE ; MPE flag (bit 3 of MPH} +« O
LOOPL:

MOV MEMO020, @MEMO000; (20H) < [2, (00H)]

SET1I MPE ;7 MPE flag < 1

MOV~ @MEMO000, MEMO020; [(MP), (00H)] « (20H)

CLR1 MPE ; MPE flag +« O

ADD MEMO000, #01H ; Column address + 1

SKT1 C(CY ; Finished up to 1FH in bank I

BR L.OOP1

=~ B N B W B s

System Register

~
1 ~

2 3456789 ABCTDE

w

B S s e Bt CEE I
=)
~

=t S W bk W N e O

System Register

~—-General Registers
In this case, data is
transferred via 20H.

5.25 MOV m, #i Move immediate data to data memory

(@ Operation code

11101 my my i

@ Function
(M} « 1

Stores the immediate data i in the data memory

addressed by M.
@ Example 1

To store the immediate data OAH in address 0.50H

specified as data memory.

0.50H «0AH
MEMO050 MEM 0.50H
MOV BANK., #00H ; Data memory bank set to 0
MOV MEM050, #0AH

Example 2

Immediate data O7H is stored as address 0.32H
contents. At this time, if IXE = 1, IXH = 0, IXM =
3, IXL = 2, that is, IX = 0.32H, data memory 0.32H
can be specified by setting the data memory address
to 0.00H.

0.32H «07H

Address determined by index register contents 0.32H
ORed with data memory address Q.00H.

MEMOO0 MEM 0.00H
MOV IXH. #00H . IX — 000001100108 (0.32H)

MOV BANK, #00H . Data memory bank set to O
MOV IXM, #03H

MOV IXL, #02H

SET1 IXE ; IXE flag + 1

MOV MEMO00), #07H

5.26 MOVT DBF, (AR Move program memory data specified by AR
to DBF

() Operaticn code

00111 000 0001 6000

2) Function

Sp +« (8P} - 1,
ASR + PC,

PC + (AR),
DBF <« {(AR) rom,
PC <« (ASR),

SP <« (8P) + 1

Stores the contents of the program memory addressed
by the address register AR in the data buffer DBF.

Since this instruction temporarily uses one stack
level, care is required concerning nesting of

subroutines, interrupts, etc.

3 Example 1

To transfer 16-bit table data determined by the value
of the address register (AR3, AR2, AR1l, ARO) in the
system register to the data buffer (DBF3, DBF2, DBF1,
DBFO).

;*
; ¥ % Table data
Pk
Address ORG 0010H
0010H DW (000000000000000B ; (000CH)
0011H DW 1010101111001101B ; (OABCDH)

HE

* * Table reference program

e

M2

MOV AR3, #00H ; AR3«00H Sets 0011H in address
register
MOV AR2, #00H ;: AR2 «- 00H
MOV ARI1, #01H : AR1 - 0IH
MOV ARO, #01H : ARO - 01H
MOVT DBY, @AR : Transfers data in address 0011H
to DBF

In this case, the data shown below is stored in the

DBF.

DBF3 = 0AH
DBF2 = (0BH
DBF1 = 0CH
DBF0 = 0DH

Example 2

Set the channel number as data memory to addresses

0.10H and 0.11H.

According to those contents, obtain

the PLL frequency division value (N value) and
transfer it to the PLL data register (PLLR).

However, it is presumed that the intermediate

frequency is 10.7 MHz and 25 kHz is selected as a

reference frequency.

Address
0010H
0011H
0012H
0013H
0014H
0015H
f0i6H
0017H

MEMO10
MEMO11

)k
;
ORG
DW
DW
DW
DW
DwW
DW
DwW
DwW

V¥

$010H

OF58H
0FSCH
0r60H
0F64H
OF68H
JF6CH
F70H
O0F74H

T

© % % N value table data

87 5 MHz (Lowest freguency Channel 00}

; 87.6 MHz
; 87.7 MHz
; 87.8 MHz
; B7.9 MHz
; 88.0 MHz
; 88.1 MHz
; 88.2 MHz

;% % N value setting program

M
MEM
MEM
MOV
MOV
MOV
MOV

MOV

0.10H
0.11H

BANK, #00H

RPH, #00H
RPL, #OEH
AR3, #00H
AR2, #00H

, Data memory bank set to O

; RPH «— 00H
Set row address 7 (0.70H

- RPL+~ 0EH; to 0.7FH} as general
registers.

i AR3« 0
y AR2<0

LD AR1, MEMO10 :AR1+<10H High-order channel data
1D AR0O, MEMO11 ; AR0« 11H Low-order channel data.
ADD AR1, #0IH ;
As table data start address is
ADDC AR2, £00H :} 0010H, OO1O0H is added to address
register
ADDC ARS3, #00H
MOVT DBF, @AR . Store table data in DBF.
" . oransfer N value to PLL data
PUT PLLR. DBF . r]e:egist?ar {PLLR).
;X
;% % Table Data
sk
0010H DW GFSSH ; 87.5MHz
0011H DW OF5CH . 87.6 MHz \
G012H DwW O0F60H : 87.7MH=z
0013H DW 0F64H : 87.8 MH:z
00144 DW 0F68H : 87.9 MHz

01 2 3 45 6 7 8\9 ABCDETF

|

P T T O R

System Register

Note 1

The number of bits which can be used in the address
register (AR3 to ARQ) varies from product to product:
Refer to the Data Sheet for the product concerned

when using this register.

Note 2

When the "MOVT" instruction is executed, level 1 is
used as the stack. Therefore special attention must
be paid to the stack level when this instruction is

used in a subroutine or interrupt service routine.

Note 3

It takes 2 machine cycles to execute one instruction
only in the case of the "MOVT" instruction. Special
care is required when creating a program which uses

the software timer.

5.27

PUSH AR Push address register

D

S I« PR S N N T e

‘Operation code

[00111 I_ 000 ’ 102 | 0000]

Function

SP « (8SP) - 1,
ASR < (AR)

Decrements the stack pointer (SP), then stores the
value of the address register (AR) in the stack.

Example 1

To set O003FH in the address register and store it in

the stack.

MOV AR3, #00H
MOV AR2, #00H
MOV ARY, #03H
MOV ARQ, #0FH
PUSH AR

Bank 0

0

1 2 3 45 6 7 8 9% ABCDEF

S TACK

0i0:3iF

System Register

Example 2

To set the subroutine return address in the address
register when there is a data table at the end of the

subroutine, and return to the address.

Address g
0010H CALL SUBI —
; * SUB1:
; #% DATA TABLE
HE
0011H DW 1A1FH
0012H DW 002FH POP AR =~
0013H DW 010AH I
0014H DW 0555H i
: i
; !
: 1
MOV AR3, #00H | |
002FH DW 0FFFH MOV AR2, #00H ;
0030H _ MOV ARI, 203 | |
: MOV ARG, #00H | |
PUSH AR |
RET
;

If a "POP" instruction is
executed at this point, the
contents of the address
register are "O0llH" {address
after CALL instruction).

POP AR Pop address register

Operation code

[o011l | 000] 100 | 0000 _J
Function
AR + (ASR),

8P ¢ (SP) + 1

Fetches the stack contents into the address register

(AR), then increments the stack pointer (SP).
Example

In this example, if the PSW is changed within the
interrupt service routine when interrupt servicing is
performed, at the start of the interrupt service
routine the contents of the PSW are transferred to
the address register via the WR, and saved to the
stack by a "PUSH" instruction, and before returning
are restored to the address register by a "POP"
instruction and transferred to the PSW via the WR.

Interrupt Service
Routine

: PEEK WR, PSW
£1 POKE ARO, WR
: PUSH AR

Interrupt —
Source :
Generation

POP AR
PEEK WR, ARO
POKE PSW, WR
RET (or RETI)

5.29

PEEK WR, rf

@

Cperation code

[00111 { iy |

001t

iy

Function

WR < (RF)

Peek register file to window register

Stores the register file contents addressed by rf in

the window register WR.

Example 1

To store in the window register the contents of the

stack pointer (SP)
file.

PEEK WR, SP

Bank 0

in address 01H in the register

¢ 1 2 3 4 58 6 7 8 9 ABCTDEF

= W sk W N D

SR

System Register

¢ 12 3 4 5 6 78 9 ABCDETF

SE

L3 N - O

Register File

5~-82

5.30 POKE rf, WR Poke window register to register file

@ Operation code

I 00111 T 0010 o, J

(@) Function
RF <« (WR)

Stores the contents of the window register WR in the

register file location addressed by rf.

@ Example 1

To store immediate data OFH in register file POABIO
via the window register.
POABIO MEM 0.0B7H

MOV WR, #0FH
POKE POABIO, WR Set POAg, POAj, POAy, POA3 to output mode.

Bank O

01 2 3 456 7 8 9 ABCDEF

=~ O o B W = O

System Register

01 2 3 4 5 6 7 8 9 ABCDEF

W o O

Register File POABIO

@ Note

in addition to the register file, "PEEK" and "POKE"
instructions can be used to access addresses 40H

through 7FH of all data memory banks. For example,
these instructions may be used in the following way.

MEMOSF MEM 0.5FH

PEEK WR., PSW ; Stores contents of PSW (7FH) in
system register in WR

POKE MEMUOSF, WR ; Stores WR contents in data memory
address 5FH

Bank O
0 1 2 3 45 6 7 8 9 A BCUDEF

o -
1 .
Register
2 File
3
4 POKE MEMOSF,WR
[i
4 Data Memory
6 {
7 RS 2 PSW

PEEK WR, PSW
System Register

5.31 GET DBF, p Get peripheral data to data buffer

@1 operation code

00111 Dy 1011 oL

2) Function
DBF + {PE)

Stores the contents of the peripheral circuit
addressed by p in the data buffer DBF.

@) Example 1

To store the contents (8 bits) of the shift register
{85I0SFR) peripheral circuit in data buffer locations
DBF(O, DBF1.

GET DBF, SIOSFR

Bank O

6 1 2 3 45 6 78 9 ABCDEF
| DBF

Peripheral
Circuit

e SIOSFR 12H

=1 G o b L B O

System Register

Note 1

The data buffer is allocated to addresses OCH, ODH,
OEH and OFH in data memory bank O irrespective of the

value of the bank register.

Bank 0
01 2 3 ¢4 5 6 78 8 ABCDETF

~1 N R W R O

System Register

Note 2

The data buffer comprises 16 bits in total, but the
number of bits used as the input/output unit differs
depending on the peripheral circuit accessed by the
"GET" instruction. It should be noted, therefore,
that when the "GET" instruction is executed for a
peripheral circuit which uses an 8-bit input/output
unit, for example, the data is stored in the low-
order 8 bits (DBF1l, DBF0) of the data buffer DBF.

5.32 PUT p, DBF Put data buffer to peripheral

L Operation code

[00111 . 1010 pL

@) Function
PE <« (DBF)

Stores the contents of the data buffer DBF in the

peripheral circuit addressed by p.

3@ Example 1

To set OAH and 05H in data buffer locations DBFl1 and
DBFO respectively, and transfer this data to the
serial 1/0 shift register (SIOSFR) peripheral circuit.

MOV BANK, #00H ; Dpata memory bank set to O
MOV DBF0, #05H
MOV DBF1, #0AH
PUT SIOSFR, DBF

Bank 0
0 1 2 3 45 6 78 9 ABCUDEF
- f*“'} DBF

Peripheral
Circuit

SIOSFR 0ASH

w1 b N e O

System Register

MOV
MOV
MOV
MOV
MOV
PUT

NG B W N e S

Example 2

To set the data 0758H in data buffer locations DBFO
through DBF3 as PLL data, and transfer this data to
the PLL data register (PLLR) peripheral circuit.

BANEK, #00H ; Data memory bank set to O
DBF3, #00H
DBF2, #407H
DBF1, #405H
DBFO, #08H
PLLR, DBF

Bank 0
6 1 2 3 4 5 6 7 8 89 A BCDEF

DBF

System Register

Peripheral
Circuit

\\‘—-PLLR 0758H

Note

The data buffer comprises 16 bits in total, but the
number of bits used as the input/output unit differs
depending on the peripheral circuit accessed by the
"PUT" instruction. It should be noted, therefore,
that when the "PUT" instruction is executed for the
serial I/0 shift register, for example, which uses an
8-bit input/ocutput unit, the contents of the .low-
order 8 bits (DBFl, DBF0) of the data buffer DBF are
transferred to the peripheral circuit (the contents
of DBF3 and DBF2 are not transferred).

5~-88

5.33 SKT m, #n Skip next instruction if data memory bits are

true

@ Operation code

] 131110 My my n

2) Function
CMP « O, if (M) AND n = n, then skip

Skips the next instruction if the logical product of
the contents of the data memory addressed by M and

+he immediate data n is not O.

@ Example 1

To jump to AARA if bit O of address 0.03H is "1", or
jump to BBB if "O".

MEMO003 MEM 0.03H

MOV BANK, #00H : Data memory bank set to O
SKT MEMO003, #000iB
BR BBB
BR AAA
Example 2

To skip the next instruction if both bit 0 and bit 1
of address 0.03H are "1".

MEMO0O02 MEM 0.03H
MOV BANK. #00H . Data memory bank set to 0
SKT MEMO003, #0011B

B; B, B B

Skip Condition G3H _ X ; don’t care

Example 3

The result of executing the following two

instructions is identical.

MEMO013 MEM 0.13H
SKT MEMOI3, #1111B
SKE MEMO013, #0FH

5.34 SKF m, #n Skip next instruction if data memory bits are

@

false

Operation code

11111 my my, n

Function
CMP < (0, if (M) AND n = 0, then skip

Skips the next instruction if the logical product of
the contents of the data memory addressed by M and

the immediate data n is 0.

Example 1

This program stores the immediate data OOH in data
memory address 0.0FH if bit 2 of address 0.13H is
"O", or jumps to ABC if "1".

MEMO13 MEM 0.13H
MEMOOF MEM 0.0FH

MOV BANEK, #00H : Data memory bank set to O
SKF MEMO013, $#0100B
BR ABC

MOV MEMOOF, #00H

Example 2

To skip the next instruction if both bit 3 and bit 0
of address 0.29H are "0".

MEM029 MEM 0.29H
MOV BANEK, #00H © Data memory bank set to O

SKF MEMUO029, #1001B

B; B; B, By
gkip Condition 29H n x ; don't care

5-91

Example 3

The result of executing the following two

instructions is identical.

MEM034 MEM 0.34H
‘SKF MEMO034, #1111B
SKE MEMO034, #00H

5.35 BR addr Branch to the address

) Operation code

01100

011401

addr
01110

01111

() Function

if branch to paged, PAGE+ 0, PC (10-0) < addr
if branch to pagel, PAGE< 1, PC (10-0) «- addr
if branch to page? PAGE« 2, PC (10-0) < addr
if branch to page3, PAGE <3, PC (10-0) « addr

Branches to the address indicated by addr.

The address range to which this instruction can
branch directly comprises the 8K steps from address
0000H to address 1FFFH.

To branch to address 2000H or above, the "BR @AR"

instruction described below should be used.

©)

@

BExample
FLY LAB 0FH ; Define FLY = OFH.
BR FLY ; Branch to address OF.
BR LOOP1 ; Branch to LOOP1.
BR g+ 2 i Jump to 2 addresses below current
address.
BR § -~ 3 ;. Jump to 3 addresses above current
address.
LOOPL :

Note

The operation codes for a direct branch inst:uction
to inner page 0, inner page 1, inner page 2 and
inner page 3 are different from each other. The
operation codes for a direct branch instruction to
inner page 0, inner page 1, inner page 2 and inner
page 3 are 'OCH', 'ODH', 'OEH' and 'OFH',

respectively.

This is because direct branch instruction operand
addr is 11 bits and uses the operation code low-
order 2 bits as an address of the branch destination.
When the 17K serieé assembler {AS17K) checks these
operation codes and references the branch destination
specified by a label, the operation code bits are
automatically converted to the branch destination

page address.

0000H

07FFH
0800H

OFFFH
1000H

17FFH
1800H

1FFFH

0000H

07FFH
0800H

OFFFH |

1000H

17FFH
1800H

1FFFH

Operation Code = 0OC
(Branch Destination
Address in Page Q)

BR ADDI
LAPDL: -

BR ADDI

BR ADDI

BR ADDI

Operation Code = 0OE
(Jump Destination
Address in Page 2)

BR ADD1
BR ADD1
S U :
BR ADDI
ADD1
BR ADD1

Page

Page 1

Page 2

Page

Page

Page 1

Page

Page

0000H

07FFH
0800H

0FFFH
1000H

17FFH
1800H

IFFrd

0060H

G07FFH
PEOOH

OFFFH |

1000H

17FFH
1800%

IFFFH

Cperation Code = 0D

{ Branch Destination
Address in Page 1)

BR ADD1
BR ADD1
BR ADDI
BR ADDI1

Operation Code = 0OF
(Jump Destination

Address in Page 3)

ADD1

BR

BR ADD1

Page O

Page 1

Page 2

Page 3

Page 0

Page 1

Page 2

Page 3

When patch corrections are made during debugging,
conversion of "QC", "OD", "QE" and "OF" must be

performed by a user.

Also, address translation is necessary when the
pranch destination of the BR instruction is in the
address range O000H to O?FFH,.OBOOH to OFFFH, 1000H
to 17FFH, and 1800H to 1FFFH respectively. That is,
address 0000H, OBOQOH, 1000H or 1B00H is made address
O00H and subsegquent addresses are each incremented by

one.

Machine Code
0GO0H (1-4-3-4-4 Format)

BR ADD1 ——— 0C500
BR ADD2 —F+— 0D501

0500H ADD1:

07FFH
0800H

BR ADD3 ———0E60A

0DGIH ADD2:

GFFFH BR ADD4 —f—OF6FF
10008
BR ADDI —f— 0C500
160AH | ADD3:

17FFH
1800H

BR ADD3 ~—4——0E60A

IEFFH | ADD4:
1FFFH

The number of pages varies from product to product
in the 17K series: Refer to the Data Sheet for the

product used.

5.36 BR (@AR Branch to the address specified by address

register

@ Operation code

060111 000 0100 0000

C) Function
PC + (AR)

Branches to the address indicated by the address

register (AR).
® Example 1

To set 003FH in the address register AR (ARC to AR3),
and jump to address 0O03FH using the "BR @AR"

instruction.

MOV AR3, £00H ; AR3+00H
MOV ARZ, #00H ; AR2+ 00H
MOV ARI, #03H ; AR1 < 03H
MOV ARO, #0FH ; ARO+— OFH

BR @AR ; Jumps to address QO3FH

Example 2

To change the branch destination as shown below
according to the contents of data memory address

0.10H.
CeiTines EEEGR Pestinesso
00H - AAA
01H — BBEB
0ZH - CCC
03H — DDD
04H — EEE
G5H — FFF
06K - GGG
07H — HHH

08H-0FH - Z7Z
HE

; * % Jump table

Address H S
0010H BR AAA
0011H BR BBB
0012H BR CCcC
0013H BR DDD
0014H BR EEE
0015H BR FFFE
0016H BR GGG

- 0017H BR HHH
0018H BR ZZZ

MEM010 MEM 0.10H
MOV RPH, #00H ; General register bank set to 0

MOV RPL, #02H ; General register row address set to 1
MOV AR3, #00H ;AR3+00H AR set to 0O0ixH

MOV AR2, &00H : AR2 < 00H

MOV AR1, #01H ; ARl < 01H

5-98

ST ARO, MEMOIC ; AR0<0.10H

SKF AR0, #1000B : If ARO contents are greater than 08H,
ARQO contents are set to 08H

AND AR0, H1000B

BR @AR

Note

The number of bits which can be used in the address
register (AR3, ARZ, ARl, ARO) varies from product to
product: Please refer to the Data Sheet for the
product concerned when using this register.

5-99

5.37 RORC r Rotate right general register with carry flag

() Operation code

Foor [oo | on [¢]

@ Function
(CY) > R3 > R2Z > R1 -+ RO » CY

Shifts the contents of the general register indicated
by R including the carry flag one bit to the right.

() Example 1

When bank 0 row address O (0.00H to O0.0Q0FH) is
specified as general registers (RPH = 0, RPL = 0),
this program shifts the value of address 0.00H
(1000B) one bit to the right, giving Cl0O0B.

0.00H «~ (0.00H) +2

MEMO0O MEM 0.00H
MOV RPH, #00H ; General register bank set to O
MOV RPI, #00H , General register row address set to O
CLRI CY ; Carry flag < O

RORC MEMUO00

5-100

Example 2

When bank 0 row address 0 (0.00H to 0.0FH) is
specified as general registers (RPH = O, RPL = 0),
this program shifts the data buffer (DBF) value
OFAS2H one bit to the right, giving 7DZ28H.

Cy 0CH 0DH OEH 0FH Cy

[o] EIENENER [1jof1]o] [o[x]o]1] [ofo]1]o0]

NIRRT NIRRT

fofafit] (1]1fols] [ofoj1]o] 1iojol1] o]

MOV RPH, #00H ; ceneral register bank set to O
MOV RPL. #00H ; General register row address set to 0
CLR1 CY . Carry flag « 0

RORC DBF3

RORC DBF2

RORC DBF1

RORC DBF0

5-101

5.38 CALL addr Call subroutine

() Operation code

17 11100 l addr]

() Function

SP <« (sP) - 1,
ASR <« PC + 1,
PAGE <+ O,

PC (10 to 0) <« addr

Increments the program counter (PC) value and stores
it in the stack, then branches to the subroutine

indicated by addr.

The subroutine called by this instruction must be
within the 2K steps from address 0000H to address
O07FFH. It is therefore useful to locate frequently
used subroutines within the range from address 0000H

to address (O7FFH.

o call a subroutine located in address 0800H onward,
the "CALL @AR" instruction described next should be

used.

() Example 1

MAIN

v / B
CALL ~ SUB

! |

RET

5-102

Example 2

MAIN
: ///////r SUB1 - SUB2 : SUB3 :

CALL = SUBI 5 : / :

l CALL SUB2 CALL SUB3 3

: \ RET RET RET

() Note

When the "“CALL" instruction is used, the address
called, that is the subroutine start address, must be
located in page 0 (addresses OQ00H to O7FFH). To
call a subroutine with a start address outside page
0, the "CALL @AR" instruction should be used.

Example with Subroutine Start Address in Page 0

0000H 000011
CALL SUB1 CALL SUB2
SUBI :
7 Page O ¢ Page O
RET
SUB2
¢7FFH ‘“_______________“__“_/ O7FFH |} P /
0800H \ 0800Y : N
CALL SUB1 RET
rPage 1 r Page 1
CALL SUB2
OFFFH} % OFFFH}
1000H N 1000H TN
1 1]
1 1] 1
| H ' !

5-103

If the subroutine start address is in page 0, as
shown above, it does not matter if the subroutine end
address ("RET" or "RETSK" instruction) is outside
page O.

As long as the subroutine start address is in page 0O,
the "CALL" instruction can be used without regard to
the page concept. If it is not ﬁossible to locate
the subroutine start address in page 0 when writing
the program, the following method can be used to

advantage.
$000H
CALL SUBZ
Page O
SUBZ2 :BR SUB1
07FFH /
0800H
SUB1: .
: Page 1
RE’I‘/ g
CALL §UB2
/
OFFFH | __
1000H 3
t
i 1
H f

Here, a "BR" instruction is placed in page 0, and the
actual subroutine is called via this "BR"
instruction.

5-104

5.39

CALL @AR Call subroutine specified by address register

@

Operation code

00111 000 | 0101 [0000 i

Function

SP « (SP) - 1,
ASR + PC + 1,
PC < (AR)

Increments the program counter {(PC) value and stores
it in the stack, then branches to the subroutine

indicated by the address register (AR).

Example 1

To set O0Z20H in the address register AR (ARD to AR3),
and call the subroutine at address (0020H by means of

the "CALL @AR" instruction.

MOV AR3, #00H ; AR3 < 00H

MOV AR2Z, #00H y ARZ+—00H
MOV ARI, #Gﬂ{ i AR1+ 02H
MOV ARO, #00H ; ARO «— 00H
CALL @AR ; Calls subroutine at address 002CH

5-105

Example 2

To call the subroutines shown below according to the
contents of data memory address 0.10H.

0.10H
Contents

00H
1H
0ZH
03H
04H
05H
06H
07H
08H-0FH

Subroutine

Name

—p

—

—

SUB1
SUB2
SUB3
SUB4
SUBS
SUB6
sUB?
SUB8
SUBS

5-106

;X

; ¥ % Subroutine jump table

address K3
0010H BR SUB1
0011H BR SUB2 v ~
0012H BR SUR3 y i "
0013H BR SUB4 SUB1: SUB2: SUB3:
0014H EBR SUBS5 .. :
0015H BR SUB6 _;\\
0026 BR SUB? :
0017H BR SUBS :
0018H BR SUB9
RET RET RET
_/
(/— 1 1 4\\ TN
SUB4: | SUB5: sSUB6: | SUB7 ! SUB8: SUB9 :
RET RET RET RET RET RET
MEMOI0 MEM 0.10H
MOV RPH, #00H ; General register bank set to 0O
MOV RPL. #02H i General register row address set to 1
MOV AR3, #O00H ; AR3«— 00H Address register set to 001xH
MOV AR2, H00H , ARZ2 +— 00H
MOV ARL, #01H i AR« 0IH
ST ARO, MEMOW0 ; ARO—0.10H
SKF ARO. 10008 ;} If ARD contents are greater than 08H, ARO
AND ARO, #1000R contents are set to 08H
CALL To jump table

AR

\ Return here upon execution

of "RET" instruction by
respective subroutine.

5-107

Note

The number of bits which can be used in the address
register (AR3 to AR0O) varies according to the type of
device: Refer to the device manual when using this

register.

5-108

5.40 SYSCAL entry Call system segment entry address

@

Operation code

[00111 entryy 0000 entryy

Function

Sp < (SP) - 1, ASR +« PC + 1,
SGR < SYSSEG, PAGE <+ O, PC (10 to 8) « entryH,
PC (7 to 4) <« 0, PC (3 to 0) <« entryy

After incrementing the program counter (PC) value and
storing it in the stack, this instruction branches it
to the subroutine indicated by "entry" which is in

system segment page 0.

The subroutine which can be called by this
instruction is 256 steps of the system segment entry

address which is in system segment page 0.

Example 1
MAIN :
SYSCAL 34H
CSEG n
ORG 304H
RET

{n: System segment)

5-109

Example 2

MAIN :
éYSCAL DL.(U(ENTRY SHR 4 AND 0070H)OR{ENTRY AND 000FH})
ENTRY :
RET
Note

For the "SYSCAL" operand do not describe a label type
symbol but a data type symbol. If the operand value
exceeds 7 bits, the assembler (AS17K) generates an

error.

In Example 2 of (3) above, even though the "ENTRY"
address is not in the system segment entry address,
the assembler does not generate an error. In this
case, the branch destination by the "SYSCAL"
instruction is different from the address for which
the user intended and therefore special care is

regquired in debugging.

5-110

Return to the main program from subroutine

Operation code

] (0111 050 1110 (000

Function

PC +« (ASR),
SP + (SP) + 1

This instruction is used to return to the main

program from a subroutine.

The return address saved to the stack by the CALL

instruction is restored to the program counter.

Example

5-~111

5.42 RETSK Return to the main program then skip next

@

instruction

Operation code

] oo | ool | 110 | 0000 !

Function

PC « (ASR),
sp < (SP) + 1,
and skip

This instruction is used to return to the main

program from a subroutine.

The instruction following the "CALL" instruction is

skipped.

That is, the program counter (PC) is incremented
after the return address saved to the stack by the

CALL instruction is restored to the program counter.
Example

In this example, when the value of the LSB {least
significant bit) of data memory (RAM) address 25H is
"O", a "RET" instruction is exeéuted and control
returns to the instruction following the "CALL"
instruction, and when "1", a "RETSK" instruction is
executed and control returns to the instruction
following the instruction after the "CALL"
instruction (in this case ADD 03H, 16H).

5-112

SUB1:

CALL SUBI

BR LOOP \ SKF 25H, #0001B
ADD 03H, 16H RETSK ; LSB of 25H = "1*

RET ; LSB of 25H = "o

5-113

5.43

RETI

@

Return to the main program from interrupt service

routine

Operation code

I 00111 | 100 l 1110 | 000 J

Function

PC +« (ASR),
SP + (SP)Y + 1,
INTR + (INTSK)

This instruction is used to return to the main

program from an interrupt service routine.

The return address saved to the stack by the vectored

intefrupt is restored to the program counter.

Depending on the device, some system registers may
also be restored to their status prior to generation

of the vectored interrupt.

Example

In this example a vectored interrupt is generated
when the data memory is in bank 1, and since data

memory bank 0 is required for interrupt servicing the

bank must be saved.

5-114

Interrupt Service

Routine
: ; BANKG i
EI . .
- ' ‘\
-)
: : !
- . i
. ¥
BANK]1 : !
- . §
N 1
. 1
M 1
: 1
- 1
N |
. 1
N 1
: ;
. 1
Interrupt — . !
Source : : !
Generation : At the point of : !
: return the bank is RETI !
restored to its = ;
pre-interrupt-servicing J
status: In this case, S
bank 1. T
When the program flow changes
to an interrupt service
: routine, note that in some
BANKO devices the bank, etc. is
: reset.
@ Note I

The system register contents automatically saved by
an interrupt (and restorable by the "RETI™
instruction) vary depending on the product: Please
take special care in consulting the relevant Data
Sheet.

Note 2

If the "RETI" instruction is used instead of the
"RETY instruction in a normal subroutine, the bank
etc. {items saved by the interrupt) are restored upon
return to the return address, and what kKind of state
is set is undefined. Therefore, the "RET" (or
"RETSK") instruction must always be used to return

from a subroutine.

5-115

enable Interrupt

Operation code

[porir | ose | 11l [000044J

Function

INTEF <« 1

Enablegs vectored interrupts.

interrupts are enabled after execution of the

ingtruction following the "EI" instruction.

Example 1

As can be seen from the following example, when an
interrupt request is acknowledged the flow changes to
the vector address after execution of the instruction
(excluding an instruction which manipulates the
program counter) following acknowledgment is

complete.*1

5-116

Interrupt
Regquest
Generation —

Interrupt
Reguest
Generation -

*71:

MEMO0A MEM 0.6AH
MEMOOB MEM . 0.0BH
MEMO0C MEM DBF3
Interrupt

E? Service Routine

MOV MEMOOA, $#00H
ADD MEMO0OB, #01H

ADD MEMO0OC, #01H ; El
: / RETI
r //
: !f I//
DI "' }//
El
MOV MEMOOA, #01H

SUB MEMO0B, #01H

The vector address depends on the interrupt
acknowledged: Refer to the Data Sheet for

the product used for details.

Interrupts which can be acknowledged here
(for which an interrupt is generated after
execution of the EI instruction, followed
by a change of flow to an interrupt service
routine) are those for which the
corresponding interrupt permission flag
(IPxxx) is set. An interrupt request
generated after execution of the EI
instruction when no interrupt permission
flags are set will not result in a change
in the program flow (the interrupt will not
be acknowledged). However, since the
interrupt request flag (IRQxxx) is set, the
interrupt will be acknowledged as soon as
the interrupt permission flag is set. (See
the Data Sheet for the relevant product for

details.)

5-117

Example 2

In the following example an interrupt is generated by
an interrupt request acknowledged during execution of
an instruction which manipulates the program counter

(PC).

MEMUOOA MEM 0.0AH

MEMOOB MEM 0.0BH Interrupt
El Service Routine
{Vector Address)
Interrupt
Reguest :
Generation — BER ABC
EI
o RETI
ABC:

MOV MEMO0A, #00H
ADD MEMO0B, #01H

5-118

Disable interrupt

Operation code

00111 D01 1111 0000

Function

INTEF + O

Disables wvectored interrupts.

Example

See Example 1 under 5.44 "EI".

Note 1

Executing the "DI" instruction sets an interrupt
acknowledge disable (DI) state and no program flow is
changed even though an interrupt request is
generated. However, an interrupt request flag
{IROxxx) is set. Therefore, by executing the "EI"
instruction, immediately after execution of an
instruction following the "EI" instruction, an
interrupt is acknowledged and the program flow is
shifted to the interrupt vector address. In this
case, it is necessary that the corresponding

interrupt enable flag (IPxxx)} has been set.

5-119

Note 2

An interrupt is acknowledged without execution the
"DI" instruction and when the program flow is shifted
to the interrupt vector address, the DI state is
automatically set. Therefore, ensure that the "EI"
instruction is executed immediately before execution
of the "RETI" instruction returned from the interrupt
servicing in order to set such software that always

enables interrupt acknowledgment in the main routine.

5-120

5.46

STOF s Stop CPU and release by condition s

@

Phe

Operation code

IOOlll ‘ 010 | 1111 s

Function

stop clock

Stops the main clock and places the device into the

STOP mode.

Placing the device into the STOP mode enables the

consumption current to be kept to a minimum.

The condition for releasing the STCOP mode and
starting main clock coscilliation is specified by the

operand "s".
The stop release condition "s" varies from product to

product: Please refer to the Data Sheet for the

product concerned when using this instruction.

5-121

5.47

HALT h Halt CPU and release by condition h

@

Operation code

| 00111 i 011 | 1111 | h]

Function

halt CPU

Places the device into the HALT mode. In the HALT

mode, the CPU executes no instruction.

Placing the device into the HALT mode enables the

consunption current to be reduced.

The condition for releasing the HALT mode is

specified by the operand "h".

The halt release condition "h" varies from product to
product: Please refer to the Data Sheet for the

product concerned when using this instruction.

5-122

Operation code

No operation

! 0011% 166 1111

Function

no operation

Expends one machine cycle without performing any

operation.

APPENDIX. INDEX OF INSTRUCTIONS

Instruction Page Instruction Page
ADD m, #i 5-9 PEEK WR, rf 5-82
ADD r, m 5-3 POKE rf, WR 5-83
ADDC m, #i 5-17 POP AR 5«80
ADDC r, m 5-12 | PUSH AR 5-78
AND m, #i 5-45 PUT p, DBF 5-87
AND r, m 5-47 RET 5-111
BR addr 5-83 RETI 5-114
BR QAR 5-97 RETSK 5-112
CALL addr 5-102 | RORC r 5-100
CALL @AR 5-105 | SKE m, #i 5-39
DI 5-119 | SKF m, fin 5-91
EI 5-116 { SKGE m, #i 5-40
GET DBF, p 5-85 SKLT m, #i 5-41
HALT h 5122 | SKNE m, #i 5-43
INC AR 5-35 SKT m, #n 5-89
INC IX 5-37 ST m, r 5-59
LD r, m 5-54 STOP s 5-121
MOV m, #i 5-71 SUB m, #i 5-24
MOV m, @r 5-66 SUB r, m 5-20
MOV @r, m 5-62 SUBC m, #i 5-31
MOVT DBF, @AR| 5-73 SUBC r, m 5-27
NCOP 5-123 | 8YSCAL entry 5-109
OR m, #i 5-48 XOR m, #i 5-51
OR r, m 5-50 XOR r, m 5-52

[EXEINITE Message

Although NEC has taken all possible steps
to ensure that the documentation supplied
10 our customers is complete, bug free
and up-te-date, we readily accept that

rom: ;

Fro errors may oceur. Despite afl the care and
precautions we've taken, you may

Name encounter problems in the documentation.
Please complete this form whenever

Company you'd like to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Etectronics Hong Kong Lid. NEG Electronics Singapore Pte. Ltd.

Corporate Communicaticns Dept. Fax: +852-2886-9022/9044
Fax: 1-800-729-9288
1-408-588-6130

Europe

NEG Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

Korea

NEC Electronics Hong Kong Lid.
Seoul Branch

Fax: 02-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-880-1689 Fax: 02-719-5951

Fax: +65-250-3583

Japan

NEC Corporation

Semiconductor Solution Engineering Division
Technical information Support Dept.

Fax: 044-548-7900

1 would like to report the following error/make the following suggestion:

Document title:

Bocument number:

Page number:

if possible, please fax the referenced page or drawing.

Document Rating St EH Good
Clarity a Qa
Technical Accuracy W])

Organization Q 2

Acceptable Poor
a 4
a a
W Qa

	COVER
	Major Revisions in This Version
	PREFACE
	CHAPTER 1. GENERAL DESCRIPTION
	1. 1 Outline
	1. 2 Instruction Configuration

	CHAPTER 2. PROGRAM MEMORY (ROM)
	2. 1 Program Memory Configuration
	2. 2 Program Memory Functions
	2. 3 Program Memory Flow

	CHAPTER 3. PROGRAM COUNTER (PC)
	3. 1 Program Counter Configuration
	3. 2 Program Counter Operation

	CHAPTER 4. DATA MEMORY ADDRESS SPECIFICATION METHODS
	4. 1 Data Memory Direct Addressing
	4. 2 General Register Addressing
	4. 3 Data Memory Index Modification Addressing
	4. 4 Data Memory General Register Indirect Addressing

	CHAPTER 5. INSTRUCTION SET

