

User’s Manual

Flash Self-programming
Library

FSL - T05

Flash Self-programming Library for V850 Single
Voltage Flash Devices

Document No. U20281EE1V0UM00

Date Published: 10.02.2010

 NEC Electronics (Europe) GmbH

 User’s Manual U20281EE1V0UM00 2

Legal Notes

The information in this document is current as of M arch 2010. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC
Electronics data sheets or data books, etc., for th e most up-to-date specifications of NEC
Electronics products. Not all products and/or types are available in every country. Please
check with an NEC Electronics sales representative for availability and additional
information.

No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors
that may appear in this document.

• NEC Electronics does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from the use of NEC Electronics
products listed in this document or any other liability arising from the use of such products. No
license, express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Electronics or others.

• Descriptions of circuits, software and other related information in this document are provided
for illustrative purposes in semiconductor product operation and application examples. The
incorporation of these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer. NEC Electronics
assumes no responsibility for any losses incurred by customers or third parties arising from
the use of these circuits, software and information.

• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC
Electronics products, customers agree and acknowledge that the possibility of defects thereof
cannot be eliminated entirely. To minimize risks of damage to property or injury (including
death) to persons arising from defects in NEC Electronics products, customers must
incorporate sufficient safety measures in their design, such as redundancy, fire-containment
and anti-failure features.

• NEC Electronics products are classified into the following three quality grades: "Standard",
"Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a
customer-designated "quality assurance program" for a specific application. The
recommended applications of an NEC Electronics product depend on its quality grade, as
indicated below. Customers must check the quality grade of each NEC Electronics product
before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement
equipment, audio and visual equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,
anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not
specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control
systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified
in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics
products in applications not intended by NEC Electronics, they must contact an NEC Electronics
sales representative in advance to determine NEC Electronics' willingness to support a given
application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also
includes its majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC
Electronics (as defined above).

 User’s Manual U20281EE1V0UM00 3

Table of Contents

Chapter 1 Introduction ...5

1.1 Naming Conventions..6

1.2 Flash versus EEPROM ..6

1.3 Dual Flash operation ..7

Chapter 2 FSL Architecture ...8

Chapter 3 FSL Implementation..9

3.1 File structure ..9

3.1.1 Overview ...9

3.1.2 Delivery package directory structure and files..10

3.2 FSL Linker sections..11

3.3 MISRA Compliance..12

Chapter 4 FSL Usage ..13

4.1 Flash Security ..13

4.1.1 Strategy...13

4.1.2 Configuration options..14

4.2 Flash Safety ...15

4.2.1 Hardware Protection ...15

4.2.2 Normal operation (Error Correction Circuit – ECC) ..16

4.2.3 Secure reprogramming using self-programming ..16

4.2.4 Flash Shield Window ..17

4.3 Code execution in RAM ...18

4.4 User code execution during self-programming ..19

4.5 Interrupts in RAM ...20

4.6 Self-programming performance ...20

4.7 Misc..21

4.7.1 Dual CPU operation..21

4.7.2 Option Byte ...22

Chapter 5 User Interface (API) ..23

5.1 Pre-compile configuration ..23

5.2 Data Types...24

5.3 Functions..25

5.3.1 Initialization ...25

5.3.2 Operation ..29

5.3.3 Security ...44

5.3.4 Administration ...58

Chapter 6 FSL Implementation into the user application ..76

6.1 First steps...76

6.1.1 Application sample..76

6.2 FSL life cycle..77

 User’s Manual U20281EE1V0UM00 4

6.2.1 Device reprogramming in user mode using FSL_Erase and FSL_Write..........................77

6.2.2 Device reprogramming in internal mode...78

6.2.3 Device reprogramming in user mode using FSL_EraseWrite ..79

6.3 Special considerations ...80

6.3.1 Library handling by the user application ...80

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 5

Chapter 1 Introduction

This user’s manual describes the internal structure, the functionality and
software interfaces (API) of the NEC V850 Flash Self-Programming Library
(FSL) type T05, designed for V850 Flash devices based on the UX6LF Flash
technology

The device features differ depending on the used Flash implementation and
basic technology node. Therefore, pre-compile and run-time configuration
options allow adaptation of the library to the device features and to the
application needs.

The libraries are delivered in source code. However it has to be considered
carefully to do any changes, as not intended behavior and programming faults
might be the result.

The development environments of the companies Green Hills (GHS), IAR and
NEC are supported. Due to the different compiler and assembler features,
especially the assembler files differ between the environments. So, the library
and application programs are distributed using an installer tool allowing
selecting the appropriate environment.

For support of other development environments, additional development effort
may be necessary. Especially, but maybe not only, the calling conventions to
the assembler code and compiler dependent section defines differ
significantly.

The libraries are delivered together with device dependent application
programs, showing the implementation of the libraries and the usage of the
library functions.

The different options of setup and usage of the libraries are explained in detail
in this document.

Caution:

Please read all chapters of the application note carefully.
Much attention has been put to proper conditions and limitations description.
Anyhow, it can never be ensured completely that all not allowed concepts of
library implementation into the user application are explicitly forbidden. So,
please follow exactly the given sequences and recommendations in this
document in order to make full use of the libraries functionality and features
and in order to avoid any possible problems caused by libraries misuse.

The Flash Self-Programming Libraries together with application samples, this
application note and other device dependent information can be downloaded
from the following URL:

http://www.eu.necel.com/updates

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 6

1.1 Naming Conventions

Certain terms, required for the description of the Flash Access are long and
too complicated for good readability of the document. Therefore, special
names and abbreviations will be used in the course of this document to
improve the readability.

These abbreviations shall be explained here:

Abbreviations /
Acronyms Description

Block Smallest erasable unit of a flash macro
Code Flash Embedded Flash where the application code is stored

Data Flash
Embedded Flash where mainly the data of the EEPROM
emulation are stored. Beside that also code operation
might be possible depending on the implementation.

Dual Operation

Dual operation is the capability to fetch code during
reprogramming of the flash memory. Current limitation is
that dual operation is only available between different
flash macros. Within the same flash macro it is not
possible! Please refer to the device user manual for Dual
Operation support.

Extra Area

A separate area of the Code Flash where protection flags
and other internal information are stored. The area is not
directly accessible by the application. Only the device
internal firmware has access to that area.

FMS Flash Macro Service
FSL Flash Self-Programming Library
FSS Flash Self-Programming System
FSW Flash Shield Window
FW Firmware

Flash
Electrical erasable nonvolatile memory. As distinguished
from ROM, this type of memory can be re-programmed
several times.

Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Flash Macro

A flash comprises of the cell array, the sense amplifier
and the charge pump (CP). For address decoding and
access some additional logic is needed. A certain number
of Flash blocks is grouped together in a Flash macro.

RAM
“Random access memory” - volatile memory with random
access

ROM
“Read only memory” - nonvolatile memory. The content of
that memory can not be changed.

Serial programming
The serial programming mode is used to program the
device with an external programmer tool.

Single Voltage

For the reprogramming of single voltage Flashes the
voltage needed for erasing and programming are
generated onboard of the microcontroller. No external
voltage needed like for dual- voltage flash types.

1.2 Flash versus EEPROM

Major difference between Flash and EEPROM (or E2PROM) is the
reprogramming granularity. EEPROM can be reprogrammed wordwise, where
the size of one word depends on the organization and interface. It can vary in
the wide range between 8 bit and 256 bytes.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 7

Depending on the implementation, Flash may also be programmed wordwise,
but the Erase can only be done on a complete block. This is the major
limitation of Flash against EEPROM, but due to that the memory hardware
effort can be reduced significantly, making the embedded non volatile memory
for program code affordable.

1.3 Dual Flash operation

Common for all Flash implementations is, that during Flash modification
operations (Erase/Write) a certain amount of Flash memory is not accessible
for any read operation (e.g. program execution or data read).

This does not only concern the modified Flash range, but a certain part of the
complete Flash system. The amount of not accessible Flash depends on the
device architecture.

A standard architectural approach is the separation of the Flash into Code
Flash and Data Flash. By that, it is possible to read from the Code Flash (to
execute program code or read data) while Data Flash is modified, and vice
versa.

If not mentioned otherwise in the device users manuals, UX6LF devices with
Data Flash are designed according to this standard approach.

Note:
It is not possible to modify Code Flash and Data Fl ash in parallel

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 8

Chapter 2 FSL Architecture

This chapter describes the function of all blocks belonging to the Flash Self-
Programming System.

Even though this manual describes the functional block FSL, a short
description of all concerned functional blocks and their relationship can be
beneficial for the general understanding.

Rough relationship between functional system blocks of the FSS

Application
The functional block “Application” is the user application (including a potential
bootloader) provided by the customer.

Flash Self-Programming Library (FSL)
The functional block “Flash Self-Programming Library” offers all functions and
commands necessary to reprogram the application in a user friendly C
language interface.

Flash Macro Service (FMS)
The “Flash Macro Service” provides the functionality to control the Flash
programming hardware (Sequencer). The FMS is part of the device internal
firmware.

Figure 1

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 9

Chapter 3 FSL Implementation

3.1 File structure

The library is delivered as a complete compilable sample project which
contains the FSL and in addition an application sample to show the library
implementation and usage in the target application.
The application sample initializes the FSL and does some dummy data set
Erase Write and Verify operations.

Differing from former Self-Programming Libraries, this one is realized not as a
IDE related specific sample project, but as a standard sample project which is
controlled by makefiles.

Following that, the sample project can be built in a command line interface and
the resulting elf file can be run in the debugger.

The delivery package contains dedicated directories for the library containing
the source and the header files.

3.1.1 Overview

The following picture contains the library and application related files:

Library and application file structure

The library code consists of different source files, starting with FSL_... The files
may not be touched by the user, independently, if the library is distributed as
source code or pre-compiled.

The file FSL.h is the library interface functions header file. It also includes
library interface parameters and types.

In case of source code delivery, the library must be configured for compilation.
The file FSL_Cfg.h contains defines for that. As it is included by the library
source files, the file contents may be modified by the user, but the file name
may not.

Figure 2

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 10

Note:
Wrong configuration of the FSL might lead to undefi ned results.

FSL_User.c and FSL_User.h do not belong to the libraries themselves, but to
the user application. These files reflect an example, how to activate the Flash
environment and handle the FLMD0 pin.

If overtaking the files FSL_User.c/h into the user application, only the file
FSL_User.c need to be adapted by the user, while FSL_User.h may remain
unchanged.

3.1.2 Delivery package directory structure and file s

[root]

Release.txt Installer package release notes

[root]\[make]

GNUPublicLicense.txt Make utility license file

libiconv2.dll DLL-File required by make.exe

libintl3.dll DLL-File required by make.exe

make.exe Make utility

[root]\[<device name>]\[compiler]

Build.bat Batch file to build the application sample

Clean.bat Batch file to clean the application sample

Makefile Makefile that controls the build and clean
process

[root]\ [<device name>]\[<compiler>]\[sample]

Main.c Main source code

target.h target device and application related
definitions

... device header files ... (GHS: df<device number>.h,
 io_macros.h, ...

 IAR: io_70f3xxx.h

 NEC: -)

... startup file ... (GHS: Startup_df<dev. num.>.850

 IAR: DF3xxx_HWInit.s85

 NEC: tbd)

... linker directive file ... (GHS: Df<device number>.ld

 IAR: lnk70f3xxx.xcl

 NEC: tbd)

[root]\[<device name>]\[<compiler>]\[sample]\[FSL]

FSL_Cfg.h Header file with definitions for library setup at
compile time

FSL.h Header file containing function prototypes,
error and status codes

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 11

FSL_User.h User file header including Flash environment
activation / deactivation and FLMD0
handling. To be edited by the user.

FSL_User.c User file including Flash environment
activation / deactivation and FLMD0
handling. Maybe modified by the user.

[root]\[<device name>]\[<compiler>]\[sample]\[FSL]\[lib]

FSL_Global.h Library internal defines, function prototypes
and variables

FSL_UserIF_Init.c Source code for the FSL initialization

FSL_UserIF_Operation.c Source code for the normal FSL operations

FSL_FirmwareIF.c Interface to the firmware

FSL_BasicFct.c Source code of basic functions used during
self-programming

FSL_BasicFct_Asm.s Assembler code of basic functions used
during self-programming

3.2 FSL Linker sections

The following sections are Flash Self-Programming Library related:

FSL data sections

• FSL_DATA
This section contains the variables required for FSL. It can be located
either in internal or in external RAM.

FSL code sections

• FSL_CODE_ROM
This section contains the code executed at the beginning of self-
programming. This code is executed at the original location, e.g.
internal Flash. The library initialization is part of this section.

• FSL_CODE_ROMRAM
The section contains the user interface. Depending on the library
configuration, code from this section need to be executed in RAM or
may be executed in Flash.

• FSL_CODE_RAM
This section contains the firmware interface and so need to be
executed outside the reprogrammed Flash area.

• FSL_CODE_RAM_USRINT
This section contains the interrupt functions.

• FSL_CODE_RAM_USR
This section contains user functions to be executed in RAM. User
functions may contain code for the self-programming control flow, e.g.

• FSL_CODE_RAM_EX_PROT
Dummy section to avoid prefetch errors at the borders of the copied
sections during RAM execution.

Note:
It is not allowed to place any section in between t he FSL code sections.
A violation of that rule or a reorder of the sectio ns will cause a crash of
the library.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 12

3.3 MISRA Compliance

The FSL has been tested regarding MISRA compliance.

The used tool is the QAC Source Code Analyzer which tests against the
MISRA 2004 standard rules.

All MISRA related rules have been enabled. Findings are commented in the
code while the QAC checker machine is set to silent mode in the concerning
code lines.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 13

Chapter 4 FSL Usage

4.1 Flash Security

4.1.1 Strategy

In most cases a application software contains important intellectual property
and/or data, that may not be distributed to others or manipulated by others. In
order to ensure Flash data integrity and to prevent unintended data read-out,
NEC implements a set of features and mechanisms into Flash devices.

As these mechanisms may also limit the flexibility required for the application
and the programming or reprogramming, it has to be decided carefully what
level of protection is intended.

Two major items to be considered in the protection concept are:

• Illegal read-out of Flash contents

• Illegal reprogramming of the Flash

In the following the strategies regarding these items are described in detail:

Illegal read-out of Flash contents
Read-out, legal and illegal, can be done on different ways. The following
describes major ways and the appropriate counter measures against illegal
operations:

• Direct read-out via on-chip debug interface

Some devices contain the N-Wire / Nexus interface. This is basically a
superset of the well known JTAG debug interface and allows full
control over all data stored in the device. It can be protected by a
password. As the protection is not directly a Flash feature, it is just
mentioned for reference. Please refer to the device user manual or the
N-Wire tools description for details.

• Direct read-out via programming interface

The standard programming interface (e.g. PG-FP5) supports a
command to read out the Flash contents on all current devices. This
feature helps a lot in the developing and debugging phase and for
failure analysis. This command can be disabled by a protection flag
(see chapter 4.1.2, “Configuration options” for details)

• Direct read-out by the application itself (via any interface)

E.g. a debug command in the application to dump memory. Please
ensure that this possibility is not implemented or at least protected in
your application.

• Indirect read-out by spy software, programmed into the internal Flash

Software can be programmed into Flash in two different ways:

o By the application itself using self-programming

Please ensure, that this possibility is not implemented or at
least protected in your application.

o By the programmer interface

In order to disable this feature, the commands Flash Write and
Flash Block Erase can be disabled (see chapter 4.1.2,
“Configuration options” for details). By doing so, Flash writing
via this interface is only possible after erasing the complete
Flash, but then no more data to be read is in the Flash any
more.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 14

Illegal or accidental reprogramming of Flash
For many applications protection against the illegal Flash read-out is already
sufficient. In other cases reprogramming the device either completely or partly
must be disabled. V850 devices provide features even for that:

• Partly reprogramming by the programmer interface
See “Illegal read-out of Flash contents ”

• Complete reprogramming by the programmer interface

If also the complete erasing and reprogramming by this interface shall
be disabled, in addition to Flash Write and Flash Block Erase
commands also the Chip Erase command can be disabled (see
chapter 4.1.2, “Configuration options” for details). By doing so the
reprogramming via programmer interface is no longer possible, neither
by unauthorized nor by authorized use. Reprogramming by the
application using self-programming is still possible.

• Reprogramming by the application using self-programming

It is also possible to disable reprogramming parts or the complete
Flash via the application (see chapter 4.1.2, ”Configuration options” for
details). This protection is block wise organized, starting from
0x00000000. So it is possible to protect e.g. a Bootloader or more
code and data up to the complete application.

In addition a Flash Shield Window is able to protect parts of the Flash.
This Window is configurable via self-programming. Only the Flash
blocks covered by the FSW can be reprogrammed via self-
programming.

Hardware protection of the complete Flash is also possible. Please
refer to 4.2.1, “Hardware Protection” for details.

Note:
When disabling reprogramming of blocks via the appl ication, the
secured part can no longer be reprogrammed in any w ay any more.

4.1.2 Configuration options

This chapter explains the protection relevant settings (stored in the Extra Area)
and mechanisms, implemented in UX6LF based Flash devices.

For the usage of these settings and the protection strategy, please refer to
section 4.1.1, “Strategy”.

The protection configuration can be set by the dedicated Flash programmers,
like PG-FP5 or via self-programming.

Note:
If set once, resetting is only possible by the Chip -Erase command using
a dedicated Flash programmer.

The following flags and settings are available:

• Read command disable (Programmer interface)

Reading the Flash contents via the programming interface is disabled.
It does not affect self-programming (see 5.3.3.7,
“FSL_SetReadProtectFlag”).

• Program command disable (Programmer interface)

Writing to Flash via programming interface is disabled. It does not
affect self-programming (see 5.3.3.5, “FSL_SetWriteProtectFlag”).

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 15

• Block Erase command disable (Programmer interface)

Erasing single blocks via programming interface is disabled. It does
not affect Chip Erase or self-programming. The Flag is valid for the
complete Flash (see 5.3.3.4, “FSL_SetBlockEraseProtectFlag”).

• Chip Erase command disable (Programmer interface)

Erasing the complete device via programming interface is disabled. It
does not affect self-programming (see 5.3.3.3,
“FSL_SetChipEraseProtectFlag”).

• Boot Cluster Protection

If set, erasing and writing on the Flash by the application using the
self-programming is disabled for the boot cluster (see 5.3.3.6,
“FSL_SetBootClusterProtectFlag”).

Flash access via N-Wire / Nexus interface can be secured via an internal ID.
The ID is stored in the Extra Area and has to match the configure ID in the N-
Wire interface configuration of the debugger to allow Flash access. For details
about the ID, please refer to chapter 5.3.4.12, “FSL_SetID”.

4.2 Flash Safety

All UX6LF based Flash devices are equipped with dedicated security features.
The features have to be separated for normal operation, where data retention
is important and for reprogramming, where secure reprogramming in case of
power fail or other problems is important.

4.2.1 Hardware Protection

Device Reprogramming is disabled if FLMD0 Pin is low. By using a port pin or
an external logic FLMD0 must be set to “1” to allow self-programming.
Additionally reprogramming can be enabled by a register if supported by the
device. Please refer to the device user manual for further details.

FLMD0 Sample circuit

Figure 3

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 16

In the sample circuit, the port pin is input on reset. By that FLMD0 is held to
VSS on reset. During self-programming the port is set to output and to the value
“1”. Then the FLMD0 pin is set to VDD.

4.2.2 Normal operation (Error Correction Circuit – ECC)

UX6LF based Flash devices contain Error Correction Circuits (ECC) to provide
correct Flash data. Beside the Flash data redundant ECC data is written into
additional Flash cells to correct detected Flash errors if possible. ECC is an
on-line method. That means from user point of view ECC has no impact on the
data read performance.

4.2.3 Secure reprogramming using self-programming

When talking about secure self-programming, this naming needs to be exactly
defined, as several different ways of understanding are possible.

Basic idea of secure self-programming is that if anything during
reprogramming process goes wrong, it must be possible to keep basic
application functionality alive. Usually it is solved by separation of the
application into the application that is updated and therefore temporarily not
valid during reprogramming, and a specific bootloader that must always be
executable somehow again after power up or reset.

Two major options with different advantages and disadvantages have to be
considered. Depending on the application and bootloader the appropriate
solution has to be selected:

• Secure self-programming without bootloader update

• Secure self-programming with bootloader update

4.2.3.1 Secure self-programming without bootloader update

The easiest way of secure self-programming is to occupy one or more
complete Flash blocks for the bootloader and do not reprogram them again. By
that it never happens, that an interruption of the reprogramming (e.g. power
fail) causes an invalid bootloader.

This method is only possible if data, that needs to be reprogrammed using
self-programming, is not located on one of the bootloader Flash blocks. This is
because as soon as data needs to be reprogrammed, the Flash block needs to
be erased and so part of the bootloader is temporarily not available.

Although this method might waste some space if the bootloader does not
occupy a complete Flash block, the handling of reprogramming is easy.

Furthermore, increased safety by protection against reprogramming the
bootloader due to program failures is possible. The block protection feature
can be used to protect the bootloader forever against any reprogramming. In
that case, please consider that the block cannot be reprogrammed in any way
any more.

4.2.3.2 Secure self-programming with bootloader update

Bootloader block update might be necessary due to the following items:

• Keep the option to fix bootloader bugs.

• Application code/data, that needs to be updated, is stored in the same
block as the bootloader.

If the bootloader has to be updated, it needs to be ensured, that always a
working version of the bootloader is available, even during the update
procedure. Furthermore, in case of a power failure the valid bootloader needs

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 17

to be detected and the program has to be started there. To fulfil these
requirements, the Boot Swap functionality is implemented.

Boot swap means, that two Flash blocks or cluster of blocks can be swapped
in the address range. This swapping is done depending on Boot Swap bits, set
in the corresponding Flash Extra Areas. When a valid bootloader is contained
in the corresponding block and the bits are set accordingly, the block is
automatically swapped to the address 0x00000000 on device start-up. By that
and by the correct reprogramming sequence can be ensured, that even a
block containing a bootloader can be updated securely.

Secure bootloader update

Old

User application

(invalid)

New bootloader

(boot cluster 1)

Old bootloader

(boot cluster 0)

Old

User application

(invalid)

Old bootloader

(boot cluster 0)

New bootloader

(boot cluster 1)

Swap

Step 2:

Old

User application

(valid)

Old bootloader

(boot cluster 0)

Step 1:

New

User application

(valid)

New bootloader

(boot cluster 1)

Step 3:

SwappedUnswapped

Two methods are implemented in the Library to swap the boot cluster. The first
method only temporary swaps the boot cluster, but the cluster will be
unswapped again after a device reset. For details, please refer to chapter
 5.3.4.6, “FSL_ChangeSwapState”.

The second method inverts the boot flag. Therefore the boot cluster is
changed after a reset. An additional parameter forces the device to swap the
boot cluster immediately in addition to changing the swap flag. Please refer to
 5.3.4.8, “FSL_ChangeSwapFlag”.

4.2.4 Flash Shield Window

Beside hardware protection by a dedicated pin, internal Flash is additionally
protected from accidental reprogramming by a shield window. This window is
configurable during runtime. It allows to program or to erase all Flash blocks
covered by the window and denies destructive access to all other blocks. Per
default all Flash blocks are covered by the Flash Shield Window. For details
how to configure the Flash Shield Window, please refer to chapter 5.3.3.9,
“FSL_SetFSW”.

Flash Shield Window

Figure 4

Figure 5

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 18

4.3 Code execution in RAM

The application, including the control program and the FSL are usually located
in the internal flash. As the memory location of the application is not
permanently available during self-programming, parts of the program need to
be copied to a “save” location, where they can be executed. This may be the
internal RAM, but also external RAM, if available, is acceptable.

To copy necessary code parts into available RAM, three different methods are
possible:

• C-Startup:

The code is linked to the destination address. The compiler startup routines
copy the code from a ROM image to the RAM. Please refer to the compiler
documentation, “ROM linker section attribute”, for details.

• FSL_CopySections

By calling FSL_CopySections all specified sections are copied to the
destination address.

• User specific

In case of a user specific implementation, the user is responsible for the
correct location of the sections.

Note:
During RAM execution as well as during ROM executio n, the device tries
to speed up execution time by a code prefetch mecha nism. This prefetch
mechanism is responsible for ECC errors in case of uninitialized RAM
areas. Therefore the user has to initialize 32 Byte s at the end of the RAM
placed code in case of a user specific implementati on.

Depending on the configured mode (see section 5.1, “Pre-compile
configuration”) following linker sections need to be copied to RAM:

User mode

• FSL_CODE_RAM_USRINT

• FSL_CODE_RAM_USR

• FSL_CODE_RAM

• FSL_CODE_ROMRAM

• FSL_CODE_EX_PROT

Internal mode

• FSL_CODE_RAM_USRINT

• FSL_CODE_RAM_USR

• FSL_CODE_RAM

• FSL_CODE_EX_PROT

For further information regarding the linker sections please refer to chapter
 3.2, “FSL Linker sections”.

Note:
Beside the mentioned sections, the Flash Self-Progr amming Library
needs additional 4kByte of RAM located on the top o f the RAM. These

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 19

RAM addresses are reserved for the Flash Macro Serv ices and the
internal firmware. The FSL will destroy the RAM con tent on these
addresses during self-programming.

4.4 User code execution during self-programming

The activation and deactivation of the Self-Programming Environment can be
handled by the FSL automatically or by the user application.

Especially activation is time consuming. In order to achieve fast
reprogramming the environment should be kept activated during the whole
reprogramming. On the other hand, during activated environment the program
execution cannot be done from Flash. So other memory like internal RAM or
external memory is required. If not sufficient memory is available, sequential
activation and deactivation is necessary and only small code parts are
executed from internal RAM.

Following two major scenarios can be considered for self-programming, that
are reflected by the library modes:

• User mode

Most parts of the Self-Programming Library are executed in the
internal RAM, additionally the reprogramming control functions and
other user code to be executed during self-programming. In order to
realise fast reprogramming the activation/deactivation sequence is
done only once for the complete reprogramming. Every code to be
executed between activation and deactivation needs to be executed
outside the Flash.

Reprogramming sequence in user mode

This sequence is best for devices with sufficient internal RAM. User
code execution is always possible during self-programming, because
a started FSL command returns to the user application right after the
command execution started. The user has to poll the command status
via the status check function. Interrupt as well as user code execution
is possible if all related functions are located in RAM.

To enable this mode, the library must be configured to use the user
mode (see 5.1, “Pre-compile configuration”).

• Internal mode

Only small parts of the library are executed in RAM, the rest is
executed in the Code Flash. Frequent activation and deactivation of
the Flash Environment is necessary and therefore programming time
will increase.

Figure 6

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 20

Basic RAM saving reprogramming sequence

Less internal RAM is used as only the device firmware interface need
to be executed in RAM. On the other hand, user code execution
during self-programming is impossible, because a FSL function
starting a command does not return until the operation is finished.
Therefore only interrupts are possible during self-programming.

To enable this mode, the library must be configured to use the internal
mode (see 5.1, “Pre-compile configuration”).

4.5 Interrupts in RAM

As mentioned before, Code Flash is not accessible during self-programming.
Therefore the interrupt vector table as well as interrupt handler routines, which
are normally located in the flash, are also not accessible. Interrupt
acknowledges have to re re-routed to external or internal RAM.

Two methods exist to execute interrupts from RAM:

• Single interrupt vector

All interrupts are mapped to the single interrupt vector of interrupt
channel 0. Based on this interrupt, the interrupt handler routine has to
handle all pending interrupts.

• Interrupt table mapped to RAM

The base address of the interrupt vector table is mapped to a different
location in RAM. In this case the offset of the different channels is
added to the new base address.

Regardless which method is used, interrupt service routines have to be
executed from and therefore copied to RAM. For details how to copy the
routines to RAM, please refer to chapter 4.3, “Code execution in RAM”.

Note:
Further information about interrupt handling from R AM can be found in
the device user manual and in the CPU architecture description (see
“ V850E2R-V3 Architecture”).

4.6 Self-programming performance

Depending on the specification, design and technology UX6LF Code Flash
based microcontrollers contain a certain number of Flash macros with a
certain size.

Each Flash macro consists of several sub-banks. Each sub-bank is subdivided
into several Flash blocks.

Figure 7

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 21

Flash structure example

During self-programming it is possible to access both macros simultaneously.
This feature is used to accelerate the standard sequence erase - write.

E.g. block 0 to 31 shall be reprogrammed during an application update. The
internal firmware erases SubBank 0 first. After that it erases SubBank1 and
rewrites SubBank 0 in parallel. Then it erases SubBank2 and writes SubBank
1 in parallel and then SubBank 3 and SubBank 2. The last step is to program
SubBank 3. Please refer to chapter 5.3.2.4, “FSL_EraseWrite” and 5.3.2.5,
“FSL_EraseWriteCont” for a detailed API description.

4.7 Misc

4.7.1 Dual CPU operation

In case of a dual CPU device the usage of the FSL is not limited to one CPU.
The Flash memory can be controlled by each CPU.

Dual CPU operation

Dual CPU operation causes some smaller restrictions. The service functions
are always located in RAM area of CPU1. Therefore the function response
time will increase in case of control by CPU2.

Figure 8

Figure 9

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 22

A second restriction is access control in general. To provide a fail safe
mechanism, only access by one CPU at a time is allowed. Simultaneous
access by the other CPU is prohibited. Access rights are controlled
automatically by the library.

4.7.2 Option Byte

The Extra Area contains user specific configuration data called Option Byte.
These configuration settings are adjustable via self-programming. Depending
on the used device, size of the Option Byte various between 4Byte and
36Byte. For details about possible configuration settings please refer to the
device user manual.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 23

Chapter 5 User Interface (API)

5.1 Pre-compile configuration

The pre-compile configuration of the FSL is located in the FSL_cfg.h. The user
has to configure all parameters and attributes by adapting the related constant
definition in that header-file.

The configuration contains the following elements:
FSL_STATUS_CHECK
defines whether the status check should be performed by the firmware or by
the user to allow execution of user code in between the status checks.

#define FSL_STATUS_CHECK FSL_STATUS_CHECK_INETRNAL

Following configuration options are possible:

• FSL_STATUS_CHECK_INTERNAL

• FSL_STATUS_CHECK_USER

As described in the previous chapter the library behavior changes depending
on the configure mode. Summarizing the following behavior is possible:

User mode (FSL_STATUS_CHECK_USER)
Advantages:

� less CPU time

� less activation / deactivation time

� user code execution during self-programming

Disadvantages:

� more RAM consumption

� polling necessary

Internal mode (FSL_STATUS_CHECK_INTERNAL)
Advantages:

� no polling necessary

� less RAM consumption

Disadvantages:

� more activation / deactivation time

� 100% CPU time during self-programming

� user code execution during self-programming not
possible

For details please refer to chapter 4.4, “User code execution during self-
programming”.

F
lash S

elf-program
m

ing Library

U

ser’s M
anual U

20281E
E

1V
0U

M
00

24

5.2
D

ata T
ypes

 F
S

L status and error codes

F
igure 10

Correct result
The operation has been started successfully and is still
running.

0XFFFSL_BUSY

The current erase and write flow
is suspended. After the update of
the buffer the flow can be
resumed.

The data buffer needs to be updated.0x40FSL_REQ_UPDBUF

A new function call is possibleNo operation is ongoing0x30FSL_IDLE

Correct resultThe operation finished successfully0X00FSL_OK

Current command rejected
A new operation should be initiated although the state
machine is still busy

0x1FFSL_ERR_FLOW

Current command aborted.The current operation stopped due to an error while
writing.

0x1CFSL_ERR_WRITE

Current command aborted.
The current operation stopped due to an error while
verifying.

0x1BFSL_ERR_IVERIFY

Current command aborted.The current operation stopped due to an error while
blank checking.

0x1BFSL_ERR_BLANKCHECK

Current command aborted.
The current operation stopped due to an error while
erasing.

0x1AFSL_ERR_ERASE

Current command rejectedA new operation should be initiated although this
operation is forbidden due to a security feature.

0x10FSL_ERR_PROTECTION

Current command rejected
A new operation should be initiated, but an error in the
given parameter occurred.

0x05FSL_ERR_PARAMETER

Current command rejectedThe FLMD0-Pin is not at a High level.0x01FSL_ERR_FLMD0

FSL ImpactExplanationValueError

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 25

5.3 Functions

Functions represent the application interface to the FSL which the user SW
can use.

5.3.1 Initialization

5.3.1.1 FSL_Init

Description
Function is executed before any execution other FSL function. It initializes
internal self-programming environment and internal variables.

Interface

void FSL_Init(void)

Arguments

None

Return types/values

None

Pre-conditions

None

Post-conditions

None

Example

/* Initialze and start Self-Programming Library */
FSL_Init();

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 26

5.3.1.2 FSL_CopySections

Description
Function is executed after FSL_Init and before execution of any other FSL
function. It copies FSL functions to a specific destination address. This
function is not neccessary if the FSL code is copied to RAM by a user defined
copy function or by the C-Startup. For details please refer to 4.3, “Code
execution in RAM”.

Interface

void FSL_CopySections(fsl_u32 addDest_u32)

Arguments

Type Argument Description

fsl_u32 addDest_u32
Destination address of Self-Programming
Library in RAM

Return types/values

None

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details).

Post-conditions

None

Example

/* Copy FSL to internal RAM address 0xffff7000 */
FSL_CopySections(0xffff7000);

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 27

5.3.1.3 FSL_FlashEnv_Activate

Description
Function initializes the Flash control macro and activates and prepares the
Flash environment. This function is only available in the user mode.

In internal mode, it is executed in the library, transparent for the user.

Interface

fsl_status_t FSL_FlashEnv_Activate(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t
Result of the function. Possible values are:
FSL_OK
FSL_ERR_FLOW

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).

Post-conditions

None

Example

/* Enable Flash environment */
fsl_status_t status_enu;

status_enu = FSL_FlashEnv_Activate();

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 28

5.3.1.4 FSL_FlashEnv_Deactivate

Description
Function deactivates the Flash environment after termination of all ongoing
Flash operations. This function is only available in the user mode.

In internal mode, it is executed in the library, transparent for the user.

Interface

fsl_status_t FSL_FlashEnv_Deactivate(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_FLOW

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, ”FSL_CopySections” for details).

Post-conditions

None

Example

/* Deactivate Flash environment */
fsl_status_t status_enu;

status_enu = FSL_FlashEnv_Deactivate();

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 29

5.3.2 Operation

5.3.2.1 FSL_BlankCheck

Description
Function checks wether a range of blocks is erased.

Interface

fsl_status_t FSL_BlankCheck(fsl_u32 blockNoStart_u32,
 fsl_u32 blockNoEnd_u32)

Arguments

Type Argument Description

fsl_u32 blockNoStart_u32 Starting block number of checked range

fsl_u32 blockNoEnd_u32 Ending block number of checked range

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK 1
FSL_BUSY 2
FSL_ERR_PARAMETER
FSL_ERR_FLOW
FSL_ERR_BLANKCHECK 1

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 30

Example

/* Blank check block 3 to 20 */
fsl_status_t status_enu;

status_enu = FSL_BlankCheck(3, 20);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 31

5.3.2.2 FSL_Erase

Description
Function erases a range of blocks.

Interface

fsl_status_t FSL_Erase(fsl_u32 blockNoStart_u32,
 fsl_u32 blockNoEnd_u32)

Arguments

Type Argument Description

fsl_u32 blockNoStart_u32
First block number to be erased. (It is not
the block address, but the number of the
Flash block.)

fsl_u32 blockNoEnd_u32
Last block number to be erased. (It is not
the block address, but the number of the
Flash block.)

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK 1
FSL_BUSY 2
FSL_ERR_PARAMETER
FSL_ERR_PROTECTION
FSL_ERR_FLOW
FSL_ERR_ERASE 1

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 32

Example

/* Erase block 3 to 20 */
fsl_status_t status_enu;

status_enu = FSL_Erase(3, 20);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 33

5.3.2.3 FSL_Write

Description
Function writes the specific number of words from a buffer to consecutive
Flash addresses starting at the specific adress.

Interface

fsl_status_t FSL_Write(fsl_u32 *pAddSrc_pu32,
 fsl_u32 addDest_u32,
 fsl_u32 length_u32)

Arguments

Type Argument Description

fsl_u32 pAddSrc_pu32
Pointer to source address of data to be
written

fsl_u32 addDest_u32
Destination address of data to be written
aligned 128 bit

fsl_u32 length_u32 Word length of data aligned 128 bit

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK 1
FSL_BUSY 2
FSL_ERR_PARAMETER
FSL_ERR_PROTECTION
FSL_ERR_FLOW
FSL_ERR_WRITE 1

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 34

Example

/* Write 64 words of data to address 0x00000000 onwords */
fsl_status_t status_enu;
fsl_u32 buf_u32[256];

/* fill buffer */
...

status_enu = FSL_Write(buf_u32, 0x00000000, 64);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 35

5.3.2.4 FSL_EraseWrite

Description
Function erases a range of blocks including all blocks within the range of start
and end address. Additionally the function writes the specific number of words
from a buffer to consecutive Flash addresses starting at the specific adress.
To accelerate, programming functionally of FSL_Erase and FSL_Write is
combined in one function and the operations are largely executed in parallel.
This function is only available in the user mode.

Interface

fsl_status_t FSL_EraseWrite(fsl_u32 *pAddSrc_pu32,
 fsl_u32 addStart_u32,
 fsl_u32 addEnd_u32,
 fsl_u32 bufSize_u32)

Arguments

Type Argument Description

fsl_u32 pAddSrc_pu32
Pointer to source address of data to be
written

fsl_u32 addStart_u32
Start address for erase and write operation
aligned 128 bit

fsl_u32 addEnd_u32
End address for erase and write operation
aligned 128 bit

fsl_u32 length_u32 RAM buffer size in bytes aligned 128 bit

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_BUSY
FSL_ERR_PARAMETER
FSL_ERR_PROTECTION
FSL_ERR_FLOW

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

When return value is equal to FSL_REQ_UPDBUF, update the write buffer
with data to write next and continue write (see 5.3.2.5,
“FSL_EraseWriteCont”).

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 36

Example

/* Erase and write from address 0x00000000 to address 0x000040000 */
fsl_status_t status_enu;
fsl_u32 buf_u32[256];

/* fill buffer */
...

status_enu = FSL_EraseWrite(&buf_u32[0], 0x00000000,
 0x00040000, 256);
while((status_enu == FSL_BUSY) ||
 (status_enu == FSL_REQ_UPDBUF))
{
 status_enu = FSL_StatusCheck();
 if(status_enu == FSL_REQ_UPDBUF)
 {
 /* Update buffer */
 ...
 status_enu = FSL_EraseWriteCont(); /* continue */
 }
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 37

5.3.2.5 FSL_EraseWriteCont

Description
Restarts erase and write procedure after updating the data buffer if requested.
For detaills of erase and write see chapter 5.3.2.4, “FSL_EraseWrite” 5.3.2.4.
This function is only available in the user mode.

Interface

fsl_status_t FSL_EraseWriteCont(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_BUSY
FSL_ERR_FLOW

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Calling the function is only valid if previous status check (see 5.3.2.8,
“FSL_StatusCheck”) of a preceding write (see 5.3.2.3, “FSL_Write”) or a
continued write (see 5.3.2.5, “FSL_EraseWriteCont”) ended with
FSL_REQ_UPDBUF.

Post-conditions

See chapter 5.3.2.4, “FSL_EraseWrite” 5.3.2.4.

Example

See chapter 5.3.2.4, “FSL_EraseWrite” 5.3.2.4.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 38

5.3.2.6 FSL_IVerify

Description
The function compares the Flash contents on erase level against the write
level.

Note:
The Internal Verify is a check for higher reliabili ty of the programming,
but no manipulation or operation on Flash cells is performed. It is not
mandatory but recommended on Code Flash in order to detect possible
problems that might occur during programming (e.g. noise, V DD / GND
bounce).

Interface

fsl_status_t FSL_IVerify(fsl_u32 blockNoStart_u32,
 fsl_u32 blockNoEnd_u32)

Arguments

Type Argument Description

fsl_u32 blockNoStart_u32
First block number to be verified. (It is not
the block address, but the number of the
Flash block.)

fsl_u32 blockNoEnd_u32
Last block number to be verified. (It is not
the block address, but the number of the
Flash block.)

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK 1
FSL_BUSY 2
FSL_ERR_PARAMETER
FSL_ERR_FLOW
FSL_ERR_IVERIFY 1

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 39

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Example

/* Verify block 3 to 20 */
fsl_status_t status_enu;

status_enu = FSL_IVerify(3, 20);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 40

5.3.2.7 FSL_Read

Description
Function reads the specified number of words from consecutive Flash
addresses starting at the specified address and writes it into a buffer.

Interface

fsl_status_t FSL_Read(fsl_u32 addSrc_u32,
 fsl_u32 *pAddDest_pu32
 fsl_u32 length_u32)

Arguments

Type Argument Description

fsl_u32 addSrc_u32 Source address of data to be read

fsl_u32 pAddDest_pu32
Pointer to destination address of data to be
read

fsl_u32 length_u32 Word length of data

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK 1
FSL_BUSY 2
FSL_ERR_PARAMETER
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 41

Example

/* Read 64 words from address 0x00000000 onwords */
fsl_status_t status_enu;
fsl_u32 buf_u32[256];

status_enu = FSL_Read(0x00000000, &buf_u32[0], 64);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 42

5.3.2.8 FSL_StatusCheck

Description
This function handles the complete state machine. It shall be called frequently,
by the user application.

Interface

void FSL_StatusCheck(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_IDLE
FSL_BUSY
FSL_ERR_ERASE
FSL_ERR_BLANKCHECK
FSL_ERR_IVERIFY
FSL_ERR_WRITE
FSL_ERR_FLOW
FSL_REQ_UPDBUF

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 43

Example
Status check called to check FSL_Erase operation result

/* Show FSL_StatusCheck usage */
fsl_status_t status_enu;

/* some FSL operation (e.g. FSL_Erase) */
status_enu = FSL_Erase(3, 20);

/* Status Check */
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 44

5.3.3 Security

5.3.3.1 FSL_GetSecurityFlags

Description
Function reads stored security information.

Interface

fsl_status_t FSL_GetSecurityFlags(fsl_u32 *pFlags_pu32)

Arguments

Type Argument Description

fsl_u32 pFlags_pu32
Pointer to destination address of security
information to be read

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pFlags_u32

Pointer to buffer filled with bit coded
security information:
1xxxx: Read permission
0xxxx: Read prohibition
x1xxx: Write permission
x0xxx: Write prohibition
xx1xx: Chip erase permission
xx0xx: Chip erase prohibition
xxx1x: Block erase permission
xxx0x: Block erase prohibition
xxxx1: Permission of boot block
cluster programming
xxxx0: Prohibition of boot block
cluster programming

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 45

Example

/* Read security flags */
fsl_status_t status_enu;
fsl_u32 flags_u32;

status_enu = FSL_GetSecurityFlags(&flags_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 46

5.3.3.2 FSL_ModeCheck

Description
Function checks wether the FLMD0 pin (hardware protection shield) is pulled
up or not. In case of pull down, no Flash programming is possible.

Interface

fsl_status_t FSL_ModeCheck(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_FLMD0
FSL_ERR_FLOW

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 47

Example

/* Check level of FLMD0 */
fsl_status_t status_enu;

status_enu = FSL_ModeCheck();

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 48

5.3.3.3 FSL_SetChipEraseProtectFlag

Description
Function enables chip erase protection by setting the according protection flag.

Note:
After setting the chip erase protection flag it is neither by the Flash Self-
Programming Library nor by an external programmer, e.g. PG-FP5,
possible to remove the flag again.

Interface

fsl_status_t FSL_SetChipEraseProtectFlag(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 49

Example

/* Set chip erase protection */
fsl_status_t status_enu;

status_enu = FSL_SetChipEraseProtectFlag();

while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 50

5.3.3.4 FSL_SetBlockEraseProtectFlag

Description
Function enables block erase protection by setting the according protection
flag.

Interface

fsl_status_t FSL_SetBlockEraseProtectFlag(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Example

/* Set block erase protection */
fsl_status_t status_enu;

status_enu = FSL_SetBlockEraseProtectFlag();

while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 51

5.3.3.5 FSL_SetWriteProtectFlag

Description
Function enables write protection by setting the according protection flag.

Interface

fsl_status_t FSL_SetWriteProtectFlag(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Example

/* Set write protection */
fsl_status_t status_enu;

status_enu = FSL_SetWriteProtectFlag();

while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 52

5.3.3.6 FSL_SetBootClusterProtectFlag

Description
Function enables boot cluster protection by setting the according protection
flag.

Note:
After setting the boot cluster protection flag it i s neither by the Flash
Self-Programming Library nor by an external program mer, e.g. PG-FP5,
possible to remove the flag again.

Interface

fsl_status_t FSL_SetBootClusterProtectFlag(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

In addition it is necessary to set the boot cluster size beforehand (please refer
to chapter 5.3.4.10, “FSL_SetBootClusterSize” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 53

Example

/* Set boot cluster protection */
fsl_status_t status_enu;

status_enu = FSL_SetBootClusterProtectFlag();

while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 54

5.3.3.7 FSL_SetReadProtectFlag

Description
Function enables read cluster protection by setting the according protection
flag.

Interface

fsl_status_t FSL_SetReadProtectFlag(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Example

/* Set read protection */
fsl_status_t status_enu;

status_enu = FSL_SetReadProtectFlag();

while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 55

5.3.3.8 FSL_GetFSW

Description
Function returns the start and the end block of the actual Flash shield window.

Interface

fsl_status_t FSL_GetFSW(fsl_u32 *pBlockNoStart_pu32,
 fsl_u32 *pBlockNoEnd_pu32)

Arguments

Type Argument Description

fsl_u32 pBlockNoStart_pu32
Pointer to buffer for starting block
number of FSW

fsl_u32 pBlockNoEnd_pu32
Pointer to buffer for ending block number
of FSW

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pBlockNoStart_pu32
Buffer containing starting block
number of FSW

fsl_u32 pBlockNoEnd_pu32
Buffer containing ending block
number of FSW

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read Flash Shield Window range */
fsl_status_t status_enu;
fsl_u32 blockStart_u32;
fsl_u32 blockEnd_u32;

status_enu = FSL_GetFSW(&blockStart_u32, &blockEnd_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 56

5.3.3.9 FSL_SetFSW

Description
Function sets a new Flash shield window to protect the range of blocks from
unwanted Flash operations.

Interface

fsl_status_t FSL_SetFSW(fsl_u32 blockNoStart_u32,
 fsl_u32 blockNoEnd_u32)

Arguments

Type Argument Description

fsl_u32 blockNoStart_u32 Starting block number of FSW

fsl_u32 blockNoEnd_u32 Ending block number of FSW

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_PARAMETER
FSL_ERR_PROTECTION
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 57

Example

/* Set Flash Shield Window for block 2 up to block 3 */
fsl_status_t status_enu;

status_enu = FSL_GetFSW(2, 3);

while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 58

5.3.4 Administration

5.3.4.1 FSL_GetVersionString

Description
This function returns a pointer to the library version string. The version string is
a zero terminated string identifying the library.

Interface

const fsl_u08* FSL_VersionString(void)

Arguments

None

Return types/values

Type Argument Description

fsl_u08

Pointer to version string. Version
string format:
"SV850T05xxxxyZabc"
with
 x = supported compiler
 y = compiler option
 Z = "E" for engineering version,
 "V" for final version#
 abc = Library version number Va.b.c

Pre-conditions

None

Post-conditions

None

Example

/* Get library version */
fsl_u08 *vstr_pu08;

vstr_pu08 = FSL_GetVersionString();

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 59

5.3.4.2 FSL_GetDevice

Description
Function returns the device number to identify the used device.

Interface

fsl_status_t FSL_GetDevice(fsl_u32 *pDeviceNo_pu32)

Arguments

Type Argument Description

fsl_u32 pDeviceNo_pu32 Pointer to buffer for device number

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible values
are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pDeviceNo_pu32

Buffer containing device number.
Device number format:
0000000000000000xxxxxxxxxxxxxxxx
(Example: uPD70F3377 → 3377 =
0x0D31 → xxxxxxxxxxxxxxxx =
000110100110001)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read device name */
fsl_status_t status_enu;
fsl_u32 device_u32;

status_enu = FSL_GetDevice(&device_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 60

5.3.4.3 FSL_GetBlockCnt

Description
Function returns the number of blocks of the device.

Interface

fsl_status_t FSL_GetBlockCnt(fsl_u32 *pBlockCnt_pu32)

Arguments

Type Argument Description

fsl_u32 pBlockCnt_pu32 Pointer to buffer for block count

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pBlockCnt_pu32 Buffer containing block count

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read block count */
fsl_status_t status_enu;
fsl_u32 cnt_u32;

status_enu = FSL_GetBlockCnt(&cnt_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 61

5.3.4.4 FSL_GetBlockEndAdd

Description
Function returns the end address of the specified block.

Interface

fsl_status_t FSL_GetBlockEndAdd(fsl_u32 blockNo_u32,
 fsl_u32 *pBlockEndAddr_pu32)

Arguments

Type Argument Description

fsl_u32 blockNo_u32 Block number

fsl_u32 pBlockEndAddr_pu32
Pointer to buffer for block end address
information

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pBlockEndAddr_pu32
Buffer containing block end
address

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read block end address of block 3 */
fsl_status_t status_enu;
fsl_u32 addr_u32;

status_enu = FSL_GetBlockEndAddr(3, &addr_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 62

5.3.4.5 FSL_GetSwapState

Description
Function returns the current swap status.

Interface

fsl_status_t FSL_GetSwapState(fsl_u32 *pSwapState_pu32)

Arguments

Type Argument Description

fsl_u32 pSwapState_pu32 Pointer to buffer for swap status

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pSwapState_pu32 Buffer containing swap status

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read boot cluster */
fsl_status_t status_enu;
fsl_u32 state_u32;

status_enu = FSL_GetSwapState(&state_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 63

5.3.4.6 FSL_ChangeSwapState

Description
Function swaps the boot cluster 0 and boot cluster 1 physically without setting
the boot flag. After reset the boot cluster will be activated again as defined by
the swap flag.

Interface

fsl_status_t FSL_ChangeSwapState(void)

Arguments

None

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PROTECTION
FSL_ERR_FLOW

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Swap boot cluster */
fsl_status_t status_enu;

status_enu = FSL_ChangeSwapState();

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 64

5.3.4.7 FSL_GetSwapFlag

Description
Function reads the current value of the boot swap flag from the Extra Area.

Interface

fsl_status_t FSL_GetSwapFlag(fsl_u32 *pSwapFlag_pu32)

Arguments

Type Argument Description

fsl_u32 pSwapFlag_pu32 Pointer to buffer for swap flag

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pSwapFlag_pu32

Buffer containing swap flag
Flag values:
0x00: not swapped
0x01: swapped

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read boot cluster */
fsl_status_t status_enu;
fsl_u32 flag_u32;

status_enu = FSL_GetSwapFlag(&flag_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 65

5.3.4.8 FSL_ChangeSwapFlag

Description
The function inverts the bootswap flag. Depending on the parameter,
additionally the current swap state is inverted.

Interface

fsl_status_t FSL_ChangeSwapFlag(fsl_u32 immediateSwap_u32)

Arguments

Type Argument Description

fsl_u32 immediateSwap_u32

Flag for swap boot cluster immediately:
Flag values:
0x00: do not swap boot cluster

0x01: swap boot cluster

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_PROTECTION
FSL_ERR_FLOW

fsl_u32 pSwapFlag_pu32

Buffer containing swap flag
Flag values:
0x00: not swapped
0x01: swapped

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 66

Example

/* Swap the boot flag, but do not generate a reset signal */
fsl_status_t status_enu;

status_enu = FSL_ChangeSwapFlag(0x00);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 67

5.3.4.9 FSL_GetBootClusterSize

Description
Function reads current size of protectable boot cluster.

Interface

fsl_status_t FSL_GetBootClusterSize (fsl_u32 *pSize_pu32)

Arguments

Type Argument Description

fsl_u32 pSize_pu32
Pointer to buffer for boot cluster size
information

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u32 pSize_pu32
Buffer containing boot cluster size
information

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read boot cluster size */
fsl_status_t status_enu;
fsl_u32 size_u32;

status_enu = FSL_GetBootClusterSize(&size_u32);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 68

5.3.4.10 FSL_SetBootClusterSize

Description
Function sets protectable boot cluster size and resulting boot swap cluster size.
Although the cluster size is variable, swapping is only possible on some
addresses.

Size value Boot cluster size Boot swap cluster size
0x00 4kByte 4kByte
0x01 8kByte 8kByte
0x02 12kByte 16kByte
0x03 16kByte 16kByte
0x04-0x07 20-32kByte 32kByte
0x08-0x0F 36-64kByte 64kByte
0x10-0x1F 68-128kByte 128kByte
0x20-0xFF 132-1024kByte 256kByte

Interface

fsl_status_t FSL_SetBootClusterSize (fsl_u32 size_u32)

Arguments

Type Argument Description

fsl_u32 size_u32 Boot cluster size (range: 0x00-0xFF)

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_PARAMETER
FSL_ERR_PROTECTION
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 69

Example

/* Set boot cluster size to 0x04 */
fsl_status_t status_enu;

status_enu = FSL_SetBootClusterSize(0x04);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 70

5.3.4.11 FSL_GetID

Description
Function reads current ID data information (12 bytes).

Interface

fsl_status_t FSL_GetID (fsl_u08 *pID_pu08)

Arguments

Type Argument Description

fsl_u08 pID_pu08 Pointer to buffer for ID information

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u08 pID_pu08 Buffer containing ID information

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read ID */
fsl_status_t status_enu;
fsl_u08 id_u08[12];

status_enu = FSL_GetID(&id_u08[0]);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 71

5.3.4.12 FSL_SetID

Description
Function writes new ID settings into the Extra Area (12 bytes).

Interface

fsl_status_t FSL_SetID (fsl_u08 *pID_pu08)

Arguments

Type Argument Description

fsl_u08 pID_pu08
Pointer to buffer containing ID
information

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_PARAMETER
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 72

Example

/* Write ID */
fsl_status_t status_enu;
fsl_u08 id_u08[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
 0x06, 0x07, 0x08, 0x09, 0x0A, 0x8B
 }; /* OCD on -> bit 95 = 1 */

status_enu = FSL_SetID(& id_u08[0]);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 73

5.3.4.13 FSL_GetOPB

Description
Function reads current OPB settings from the device. Depending on the device
the number of option bytes various. Please see also chapter 4.7.2 Option Byte
for details.

Interface

fsl_status_t FSL_GetOPB (fsl_u08 *pOPB_pu08)

Arguments

Type Argument Description

fsl_u08 pOPB_pu08
Pointer to buffer for option byte
information

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK
FSL_ERR_PARAMETER
FSL_ERR_FLOW

fsl_u08 pOPB_pu08
Buffer containing option byte
information

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

None

Example

/* Read option byte */
fsl_status_t status_enu;
fsl_u08 data_u08[4];

status_enu = FSL_GetOPB(&data_u08[0]);

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 74

5.3.4.14 FSL_SetOPB

Description
Function writes new OPB settings into the Extra Area.

Interface

fsl_status_t FSL_SetOPB (fsl_u08 *pID_pu08)

Arguments

Type Argument Description

fsl_u08 pOPB_pu08
Pointer to buffer containing option byte
information

Return types/values

Type Argument Description

fsl_status_t

Result of the function. Possible
values are:
FSL_OK1
FSL_BUSY2
FSL_ERR_WRITE1
FSL_ERR_PARAMETER
FSL_ERR_FLOW

1 Status check is performed internally by the firmware (internal mode)
2 Status check is performed by the user (user mode)

Pre-conditions

Library must be initialized (please refer to 5.3.1.1, “FSL_Init” for details) and
copied if necessary (please refer to 5.3.1.2, “FSL_CopySections” for details).
In user mode the Flash environment must be additionally activated (please
refer to 5.3.1.3, “FSL_FlashEnv_Activate” for details).

Post-conditions

In case of user mode call status check (see 5.3.2.8, “FSL_StatusCheck”) till
function return value is different from FSL_BUSY.

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 75

Example

/* Write option byte */
fsl_status_t status_enu;
fsl_u08 id_u08[4] = { 0xFF, 0xFF, 0xFF, 0xFF };

status_enu = FSL_SetOPB(& data_u08[0]);
while(status_enu == FSL_BUSY)
{
 status_enu = FSL_StatusCheck();
}

/* Error treatment */
...

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 76

Chapter 6 FSL Implementation into the user applica tion

6.1 First steps

It is very important to have theoretic background about the Code Flash and the
FSL in order to successfully implement the library into the user application.
Therefore it is important to read this user manual in advance. The best way
after initial reading of the user manual will be testing the FSL application
sample.

6.1.1 Application sample

After a first compile run, it will be worth playing around with the library in the
debugger. By that you will get a feeling for the source code files and the
working mechanism of the library.

Note:
Before the first compile run, the compiler path mus t be configured in the
application sample file “makefile”:
Set the variable COMPILER_INSTALL_DIR to the correc t compiler
directory

Later on, the sample might be reconfigured to use the internal mode to get a
feeling of the CPU load and execution time during different modes.

After this exercise it might be easier to understand and follow the
recommendations and considerations of this document

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 77

6.2 FSL life cycle

The following flow chart represents typical FSL life cycles during device
operation including the API functions to be used.

6.2.1 Device reprogramming in user mode using FSL_E rase and FSL_Write

Reprogramming flow - user mode using FSL_Erase and FSL_Write

Note:
Error treatment of the FSL function themselves are not detailed
described in the flow charts for simplification of the flow charts.

Figure 11

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 78

6.2.2 Device reprogramming in internal mode

Reprogramming flow – internal mode

All data written ?

Start reprogramming

FSL_InitInitialization

phase

Normal

operation

Y

Error treatment

FSL_Erase

Error == FSL_OK ?
N

Deactivation

phase

FSL_IVerify

Error == FSL_OK ?
N

Y

FSL_Write

Error == FSL_OK ?

N

Y

Error treatment

Error treatment

Fill buffer

N

Y

Stop reprogramming

FSL_CopySections

Note:
Error treatment of the FSL function themselves are not detailed
described in the flow charts for simplification of the flow charts.

Figure 12

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 79

6.2.3 Device reprogramming in user mode using FSL_E raseWrite

Reprogramming flow - user mode, FSL_EraseWrite comm and

Start reprogramming

FSL_Init

Initialization

phase

Normal

operation

FSL_FlashEnv_Activate

Y

FSL_StatusCheck ==

FSL_BUSY ?

Fill buffer

Y

FSL_StatusCheck ==

FSL_REG_UPDBUF ?

N

Deactivation

phase

FSL_StatusCheck ==

FSL_REG_UPDBUF ?

Y

Error == FSL_OK ?

N

N

FSL_FlashEnv_Deactivate

FSL_StatusCheck ==

FSL_BUSY ?

FSL_EraseWriteCont

Y

N

Y

Error treatment

FSL_EraseWrite

Fill buffer

Stop reprogramming

N

FSL_CopySections

Note:
Error treatment of the FSL function themselves are not detailed
described in the flow charts for simplification of the flow charts.

Figure 13

Flash Self-programming Library

 User’s Manual U20281EE1V0UM00 80

6.3 Special considerations

6.3.1 Library handling by the user application

6.3.1.1 Function re-entrancy

All functions are not reentrant. So, reentrant calls of any FSL functions must
be avoided

6.3.1.2 Entering power safe mode

Entering power safe modes is prohibited during self-programming.

6.3.1.3 Code Flash access during self-programming

Code Flash accesses during an active Self-Programming Environment are not
possible at all. The user application needs to be executed from other memory
during that time. Please refer to chapter 4.4, “User code execution during self-
programming” for further information.

