

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 1 of 30

RX Family C/C++ Compiler Package
Application Notes: Sample Project RX Migration Guide, M16C Edition

This document explains how to migrate the sample project created in M16C to RX.

Table of contents

1. Overview of the M16C sample project..2

2. Migrating the M16C sample project to RX ..3
2.1 Creating the RX project...3
2.2 Migrating source files for main processing ..13
2.3 Building and checking M16C compatibility...16
2.4 Handling compatibility check instructions ..19
2.4.1 Specifying the size of double type variables ...19
2.4.2 Specifying #pragma BITADDRESS..20
2.4.3 Specifying #pragma PARAMETER...21
2.4.4 Specifying #pragma ROM..22
2.4.5 Specifying inline keywords..23
2.5 Rebuilding ..24
2.6 Running the simulator ..24
2.7 Handling invalid execution results...26
2.7.1 Integer promotion specification...26
2.7.2 Size of the int type ...27
2.7.3 Placing structure members ...28
Web site and support <website and support>...30

Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 2 of 30

This edition is a guide for migrating M16C sample projects for which operation can be confirmed in the simulator debugger, to RX.

1. Overview of the M16C sample project
The M16C sample project ‘M16C_Sample’ can be broadly divided into pre- and post-processing such as for initialization, and

main processing to perform central processing. This edition shows how to migrate the main processing to perform central processing
to an RX project, and check its operation. The following table shows the files that comprise main processing.

Table 1-1 List of main processing files
No Processing File name Reference
1 Depends on integer promotion specifications for the char type M16C_extended_integer.c 2.7.1
2 Depends on size of int type M16C_int_size.c 2.7.2
3 Depends on structure member placement M16C_struct_member.c 2.7.3
4 Depends on size of double type M16C_double_size.c 2.4.1
5 Depends on pragma BITADDRESS M16C_pragma_BITADDRESS.c 2.4.2
6 Depends on pragma ROM M16C_pragma_ROM.c 2.4.3
7 Depends on pragma PARAMETER M16C_pragma_PARAMETER.c 2.4.4
8 Depends on inline keywords M16C_inline_keyword1.c

M16C_inline_keyword2.c
2.4.5

9 Main function M16_Sample_main.c --

Application Notes

2. Migrating the M16C sample project to RX

2.1 Creating the RX project
Create a new RX project workspace for the migration destination of the M16C sample project.
This section explains how to generate sample project in the project generator (launched from HEW by choosing the File menu and

then New workspace), according to the following procedures.

(1) Creating a new workspace

Select the “Application” project type.

Figure 1-1

REJ06J0080-0100 /Rev.1.00 2009.10 Page 3 of 30

Application Notes

(2) Selecting a CPU

Leave this set to the default value, and proceed.

Figure 1-2

REJ06J0080-0100 /Rev.1.00 2009.10 Page 4 of 30

Application Notes

(3) Setting options

Leave this set to the default value, and proceed.

Figure 1-3

Figure 1-4

REJ06J0080-0100 /Rev.1.00 2009.10 Page 5 of 30

Application Notes

(4) Set up generated files

 Select “Use I/O library”.
 Specify “20” for “I/O stream count”.

Figure 1-5

REJ06J0080-0100 /Rev.1.00 2009.10 Page 6 of 30

Application Notes

(5) Set up the standard library

Leave this set to the default value, and proceed.

Figure 1-6

REJ06J0080-0100 /Rev.1.00 2009.10 Page 7 of 30

Application Notes

(6) Set up the stack space

Leave this set to the default value, and proceed.

Figure 1-7

REJ06J0080-0100 /Rev.1.00 2009.10 Page 8 of 30

Application Notes

(7) Set up vectors

Leave this set to the default value, and proceed.

Figure 1-8

REJ06J0080-0100 /Rev.1.00 2009.10 Page 9 of 30

Application Notes

(8) Set up the debugger

Select “RX600 Simulator”.

Figure 1-9

REJ06J0080-0100 /Rev.1.00 2009.10 Page 10 of 30

Application Notes

(9) Set the debugger options

Select “Initial session”.

REJ06J0080-0100 /Rev.1.00 2009.10 Page 11 of 30

Figure 1-10

(10) Check the generated file names

Click “Finish”.

Figure 1-11

Application Notes

(11) Set up the simulator

Click “OK”.

Figure 1-12

REJ06J0080-0100 /Rev.1.00 2009.10 Page 12 of 30

Application Notes

2.2 Migrating source files for main processing
Copy, and register with the created RX project, the files comprising main processing for the M16C sample project, as explained in

1. Overview of the M16C sample project.

(1)Copy files from the M16C sample project folder

Copy to the RX project the 10 files explained in 1. Overview of the M16C sample project.

 [M16C_Sample project] [RX project]

Figure 1-13

REJ06J0080-0100 /Rev.1.00 2009.10 Page 13 of 30

Application Notes

(2)Register the copied files with the project

Register the copied files with the created RX project.
In HEW, choose Project and then Add files, and then select the following in the displayed dialog box.

Click the Add button
after selection

Select the files to be registered

Figure 1-14

REJ06J0080-0100 /Rev.1.00 2009.10 Page 14 of 30

Application Notes

(3)Unregistering unnecessary files
Delete the ‘RX_test_M16C.c’ file generated by the project generator for the main function. It is no longer necessary, because the

main function file was copied from the M16C sample project.
In HEW, choose Project and then Delete files, and then select the following in the displayed dialog box.

Click the Delete
button after selection

Select the file to be deleted

Figure 1-15

REJ06J0080-0100 /Rev.1.00 2009.10 Page 15 of 30

Application Notes

2.3 Building and checking M16C compatibility
Build the RX project for which the main processing file was copied and registered. When a build is performed in HEW, since the

M16C compatibility check functionality is enabled, option specifications and source code that may impact compatibility can be
checked. This section explains how to enable M16C compatibility check functionality and perform a build, and then check the
displayed compatibility confirmation messages.

(1) Set up M16C compatibility check functionality

In HEW, choose Build and then RX Standard Toolchain, and then select the following in the displayed dialog box.

REJ06J0080-0100 /Rev.1.00 2009.10 Page 16 of 30

Select the Compiler tab

Select NC compiler for
Compatibility check

Figure 1-16

Application Notes

(2) Building

In HEW, choose Build and then Build to start the build. A message is displayed during the build, in the output window.

REJ06J0080-0100 /Rev.1.00 2009.10 Page 17 of 30

Figure 1-17

Output window
Figure 1-18

Application Notes

(3) Checking compatibility check messages

The C1801 warning is displayed in the messages output to the output window, indicating that this area poses a compatibility
problem with M16C.

Figure 1-19

REJ06J0080-0100 /Rev.1.00 2009.10 Page 18 of 30

Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 19 of 30

2.4 Handling compatibility check instructions
The following explains how to check and deal with C1801 messages affecting compatibility, as given in 2.3 Building

and checking M16C compatibility. The target messages are as follows.

Table 1-2 List of C1801 messages
No Messages affecting compatibility Reference
1 Using "dbl_size=4" function at influence the code generation of "NC" compiler 2.4.1
2 Using "BITADDRESS" function at influence the code generation of "NC" compiler 2.4.2
3 Using "PARAMETER" function at influence the code generation of "NC" compiler 2.4.3
4 Using "ROM" function at influence the code generation of "NC" compiler 2.4.4
5 Using "inline" function at influence the code generation of "NC" compiler 2.4.5

2.4.1 Specifying the size of double type variables
The message ‘Using "dbl_size=4" function at influence the code generation of "NC" compiler’ indicates that a compatibility

problem exists with the specified “dbl_size=4” option. With M16C-family compilers, the size of the double type is 8 bytes, whereas
with RX-family compilers, the size of the double type is 4-byte because dbl_size=4 is specified in default. Since the size of the
double type is required to be 8 bytes based on how “M16C_double_size.c” was coded in the sample program, if the “dbl_size=4”
option is specified, the operation results will differ from M16C.

“M16C_double_size.c” in the sample program
Source code

double d1 = 1E30;
double d2 = 1E20;

void double_size(void)
{
 d1 = d1 * d1;
 d2 = d2 * d2;

 printf("(5) double type size : ");

 if (d1 > d2) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

When migrating to RX a program created with the requirement that the size of the double type is 8 bytes, specify the “dbl_size=8”

option. For details about specifying this option, see compiler users manual. Also, change the options specified in the created RX
project.

Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 20 of 30

2.4.2 Specifying #pragma BITADDRESS
The message ‘Using "BITADDRESS" function at influence the code generation of "NC" compiler’ indicates that a compatibility

problem exists with #pragma BITADDRESS in the source. M16C-family compiler support #pragma BITADDRESS, but RX-family
compilers do not.

Since “pragma_BITADDRESS.c” in the sample program contains code with #pragma BITADDRESS, it will not operate as
expected on RX. Programs using #pragma BITADDRESS can be migrated to RX replacing bit access processing with structure bit
fields. The following shows source code using #pragma BITADDRESS, and the same source code migrated to RX.
(Note that since the memory map differs between M16C and RX, absolutely specified addresses need to be changed as appropriate.
Use the following as an example.)

“pragma_BITADDRESS.c” sample program
M16C source code
#pragma ADDRESS bit_data 410H

int bit_data;

#pragma BITADDRESS bit 0,410H

Bool bit;

void pragma_bitaddress(void)
{
 printf("(6) pragma BITADDRESS : ");
 bit_data = 1;

 if (bit == 1) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

RX source code
#pragma address bit_data 0x2000

int bit_data;

struct bit_address {
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
};

#define bit (((struct bit_address*)0x2000)->b0)

void pragma_bitaddress(void)
{
 printf("(6) pragma BITADDRESS : ");
 bit_data = 1;

 if (bit == 1) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

Notes

In addition to #pragma BITADDRESS, “pragma_BITADDRESS.c” also uses the “_Bool” type, which poses a problem for
ANSI-standard C89. To use the “_Bool” type in RX, specify the “lang=c99” option to use ANSI-standard C99. For details about
specifying this option, see compiler users manual.

Application Notes

2.4.3 Specifying #pragma PARAMETER
The message ‘Using "PARAMETER" function at influence the code generation of "NC" compiler’ indicates that a compatibility

problem exists with #pragma PARAMETER in the source code. M16C-family compilers support #pragma PARAMETER, but
RX-family compilers do not.

Since “M16C_pragma_PARAMETER.c” in the sample program contains code with #pragma PARAMETER, it will not operate
as expected on RX. Programs using #pragma PARAMETER can be migrated to RX by changing the argument interface of the
assembler function specified by #pragma PARAMETER to conform to C/C++ generation rules.

For details about function interfaces, see compiler users manual.

Since #pragma PARAMETER is disregarded by RX compilers, “M16C_pragma_PARAMETER.c” does not need to be changed.

Sample assembler source code
M16C source code “M16C_pragma_PARAMETER_asm.a30”

Assembler source code
 .FB 0
 .glb _asm_func

REJ06J0080-0100 /Rev.1.00 2009.10 Page 21 of 30

 .section program
_asm_func:
 enter #02H
 mov.w R1,-2[FB]
 add.w -2[FB],R0
 exitd
 .end

RX source code “RX_pragma_PARAMETER_asm.src”

Assembler source code
 .GLB _asm_func
 .SECTION P,CODE
_asm_func:
 ADD R2,R1
 RTS
 .END

Since “M16C_pragma_PARAMETER_asm.a30” in the assembler source code of the M16C sample project cannot be migrated as

is to the RX project, a new assembler source file needs to be created, and assembler code for RX needs to be added and registered.
Since the M16C sample project contains the “RX_pragma_PARAMETER_asm.src” file with assembler code for RX already coded,
register it with the RX project.

Specify code requiring
passage with ‘i’ stored in R1
and ’j’ stored in R2

Code requiring passage
with ‘i’ to be stored in R1
and ’j’ to be stored in R0,
by #pragma PARAMETER

Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 22 of 30

2.4.4 Specifying #pragma ROM
The message ‘Using "ROM" function at influence the code generation of "NC" compiler’ indicates that a compatibility problem

exists with #pragma ROM in the source code. M16C-family compilers support #pragma ROM, but RX-family compilers do not.
Since “M16C_pragma_ROM.c” in the sample program contains code with #pragma ROM, it will not operate as expected on RX.

To migrate this to RX, specify const keywords for variable declarations for which #pragma ROM is specified.

“M16C_pragma_ROM.c” sample program
M16C source code

#pragma ROM rrr
unsigned short rrr = 100;

void pragma_rom(void)
{

printf("(7) pragma ROM : ");

if (rrr == 100) {
printf("OK¥n");

} else {
printf("NG¥n");

 }
}

Assembler source code
 .SECTION rom_FE,ROMDATA,align
 .glb _rrr
_rrr:
 .word 0064H

RX source code

const unsigned short rrr = 100;

void pragma_rom(void)
{

printf("(7) pragma ROM : ");

if (rrr == 100) {
printf("OK¥n");

} else {
printf("NG¥n");

 }
}

Assembler source code

 .SECTION C_2,ROMDATA,ALIGN=2
 .glb _rrr
_rrr: ; static: rrr
 .word 0064H

Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 23 of 30

2.4.5 Specifying inline keywords
The message ‘Using "inline" function at influence the code generation of "NC" compiler’ indicates that a compatibility problem

exists with inline keywords in the source code. M16C-family compilers support inline keywords, but RX-family compilers is
specified lang=c by default, and, the way things are going, cannot recognize the inline key word. do not.

Since “M16C_inline_keyword2.c” in the sample program contains code with inline keywords, if it is built as is on the
ANSI-standard C89 for RX, a compiler error will occur. There are two ways to migrate programs with inline keywords to RX:

 • When performing builds with ANSI-standard C89, change inline code to #pragma inline.
 • Perform builds with ANSI-standard C99.

The following gives an example of code using #pragma inline. Change the RX sample project as follows.

“M16C_inline_keyword2.c” sample program
M16C source code

inline int inline_func(void)
{

return 4;
}

int get_value()
{

return inline_func();
}

RX source code

#pragma inline inline_func
int inline_func(void)
{

return 4;
}

int get_value()
{

return inline_func();
}

Notes

To use inline keywords without modifying the source, specify the “lang=c99” option to enable ANSI-standard C99. For details
about how to specify this option, see compiler users manual..

Note that C99 inline keywords require precaution due to the following two traits:

• Inline expansions are not always performed, such as when the “noinline” option is specified, or conditions are not met for the

“inline” option.
• The function specified by an inline keyword is internally linked, and therefore subject to deletion.

Since “M16C_inline_keyword2.c” in the sample program satisfies the above two conditions, when compilation is performed with the
“lang=c99” option, the definition of the inline_func function is deleted regardless of whether inline expansion is performed. As such,
a link error will occur because the inline_func function is undefined. Perform one of the following as a workaround.

 • Replace inline keywords with #pragma inline, and perform unconditional inline expansion.
 • Add inline functions to the extern specification, to be linked externally.

Example of changing inline functions to external linkage
RX source code

extern inline int inline_func(void) // The inline_func function is linked externally,

// and not deleted
{

return 4;
}

int get_value()
{

return inline_func();
}

Application Notes

2.5 Rebuilding
Once the specified options and source code causing compatibility problems have been changed as shown in 2.4

Handling compatibility check instructions, rebuild the project as shown in 2.3(2) Building. When the following dialog
box is displayed for a successful build, click Yes, and then download the load module.

Figure 1-20

2.6 Running the simulator
Execute the rebuilt load module in the simulator.

(1) Setting up I/O simulation
The program outputs the execution results to the standard output. The I/O Simulation window needs to be enabled to display the

standard output. From HEW, choose View, then CPU, and then I/O simulation to display the I/O Simulation window.

I/O Simulation window

Figure 1-21

REJ06J0080-0100 /Rev.1.00 2009.10 Page 24 of 30

Application Notes

(2) Running the simulator
From HEW, choose Debug and then Run after reset to run the program in the simulator, and display the program standard output

in the I/O Simulation window. Once the results are displayed, (1), (2), and (3) can be checked to see whether the values are invalid.

Invalid execution results

REJ06J0080-0100 /Rev.1.00 2009.10 Page 25 of 30

Application Notes

2.7 Handling invalid execution results
Run the migrated sample project, check the contents of any invalid results, and troubleshoot any compatibility problems for

invalid results as shown in the following table.

No Invalid result Compatibility problem Reference
1 integer extend Integer promotion specification 2.7.1
2 int type size Size of the int type 2.7.2
3 struct member offset Placing structure members 2.7.3

2.7.1 Integer promotion specification
Under the ANSI standard, when char type data (such as signed char, unsigned char types) are evaluated, they are always promoted

to the int type. The RX specification conforms to the ANSI-standard, but to improve ROM efficiency, M16C does not promote char
type data to the int type when evaluating it. This may cause different results, such as code that would cause an overflow while
calculating char type data in M16C no longer doing so due to int type promotion after migration to RX. Code that relies on an
overflow occurring during calculation of char type data in M16C needs to be checked during migration to RX.

“M16C_extended_integer.c” sample program
M16C source code

void extended_integer(void)
{
 char c1;
 char c2 = 200;
 char c3 = 200;

RX source code

REJ06J0080-0100 /Rev.1.00 2009.10 Page 26 of 30

 c1 = (c2+c3)/2;

 printf("(1) integer extend : ");
 if (c1 != 200) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

void extended_integer(void)
{
 char c1;
 char c2 = 200;
 char c3 = 200;

 c1 = ((char)(c2+c3))/2;

 printf("(1) integer extend : ");
 if (c1 != 200) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

Notes

M16C provides the following two options to promote char type data to the int type during evaluation. If either of these options is
specified, the difference in integer promotion specifications discussed here will not occur.

• -fansi

RX promotes c2+c3 to
the int type, for an
addition result of 400
without an overflow

M16C overflows the
char type size for c2+c3,
so that the result of
addition is not 400.

To match M16C, a char
type cast is added to the
addition results.

• -fextend_to_int

Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 27 of 30

2.7.2 Size of the int type
With M16C-family compilers, the size of the int type is 2 bytes, whereas with RX-family compilers, the size of the int type is 4

bytes. Since “M16C_int_size.c” in the sample program contains code based on the requirement that the size of the int type is 2 bytes,
the results operation of operation will differ from M16C.

“M16C_int_size.c” sample program
Source code

typedef union{
 long data;
 struct {
 int dataH;
 int dataL;
 } s;
} UN;

void int_size(void)
{
 UN u;
 u.data = 0x7f6f5f4f;

 printf("(2) int type size : ");

 if (u.s.dataH == 0x5f4f && u.s.dataL == 0x7f6f) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

To migrate to RX programs created based on the requirement that the size of the int type is 2 bytes, specify the “int_to_short”

option. For details about specifying this option, see 1.3 Specifying the size of int type variables in C/C++ Compiler Package for the
RX Family Application Notes: RX Migration Guide, M16C Edition. Also, change the options specified for the created RX project.

Application Notes

2.7.3 Placing structure members
If 1-byte, 2-byte, and 4-byte members are mixed within a structure (as with shared structures and classes), free space may occur

between the placement of each member, according to each alignment count. M16C-family compilers place structure members using
alignment count 1, whereas RX-family compilers place structure members using the maximum alignment count. This means that
programs created based on M16C structure placement may not operate properly when migrated to RX.

Since “M16C_struct_member.c” in the sample program contains code that requires a structure alignment count of 1, it will not
operate properly as-is on RX. Perform one of the following to migrate the sample program to RX.

 • Specify the “pack” option.
 • Specify #pragma pack for structures.

For details about how to specify this option, see compiler users manual.

“M16C_struct_member.c” sample program

Source code
 M16C member placement

REJ06J0080-0100 /Rev.1.00 2009.10 Page 28 of 30

#include <stdio.h>
#include <stddef.h>

void struct_member(void)
{

struct s {
char c;
short s;

} ss;
 RX member placement

printf("(3) struct member offset : ");
if (offsetof(struct s, s) == 1) {

printf("OK¥n");
} else {

printf("NG¥n");
 }
}

There is no free space,
since the alignment count
is 1. The offset from the
start of member ’s’ is 1.

c s

Free space exists to
match the alignment
count. The offset
from the start of
member ’s’ is 2. freec s

Specify the “pack” option for the created RX project.

Application Notes

After changing the options and code, perform rebuild as shown in 2.3(2) Building, and run the simulator as shown in 2.6 Running the
simulator to get the following execution results, and complete migration to the RX project.

REJ06J0080-0100 /Rev.1.00 2009.10 Page 29 of 30

Application Notes

REJ06J0080-0100 /Rev.1.00 2009.10 Page 30 of 30

Web site and support <website and support>
Web site for Renesas Technology

http://japan.renesas.com/

Contact information

http://japan.renesas.com/inquiry

csc@renesas.com

Revision history<revision history,rh>
Contents changed

Rev.

Date issued Page Details
1.00 2009.10.1 -- Initial edition

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

	1. Overview of the M16C sample project
	2.1 Creating the RX project
	2.4.1 Specifying the size of double type variables
	2.7.1 Integer promotion specification

