To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS



10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.




RE NESAS Application Notes

RX Family C/C++ Compiler Package

Application Notes: Sample Project RX Migration Guide, M16C Edition

This document explains how to migrate the sample project created in M16C to RX.

Table of contents

1. Overview of the M16C SAMPLE PLOJECE......uvvieiiiiiieieiiieieee e eeeeeee e e e ee e e e e e e e e e aaneees 2
2. Migrating the M16C sample project t0 RX ......ooooiiiiiiiiiiiiiee e e e 3
2.1 Creating the RX PrOJECt......cooiiiiiiiiiie et e e e et e e e e e et ereeeeeeeenaenneees 3
2.2 Migrating source files for main ProCESSING .......ccoeivvrriiieeeeeeeeiiireee e e e eeeeccreeeeeeeeeeeeeitrreeeeeeeeeeeeennns 13
2.3  Building and checking M16C compatibility........cccoovuviiiiiiiiiiiiiiiieeee e eeeeecireee e e e eeeannes 16
2.4  Handling compatibility check INStrUCEIONS ........cooeiuviiiiiiei et eeeeearee e e e e eeannes 19
2.4.1 Specifying the size of double type variables.........ccooviviiiiiiiiiiiiiieeee e 19
2.4.2 Specifying #pragma BITADDRESS ... 20
2.4.3  Specifying #pragma PARAMETER...........ooooiiiiiiiiee et 21
2.4.4  Specifying #pragma ROM.........cccoooiiiiiiiiiiiie et ee et e e e e e e e e eaaeeaaeeeeeeeannns 22
2.4.5  Specifying INIINE KEYWOIAS ......vveiiiiiiieiiiiieeeie ettt eeeecctae e e e e e e et e e eeeeeeeeetaaaneeeaeeeeeeennenns 23
2.5 REDUILAIIG vt e e e et e e e e e e e ettt e e e e e e e e e eenarraaaaaeeeearrrraeens 24
2.6 Running the SIMULATOT ........oooiiiiiiiiii ettt e e e e eeeeare e e e e e e eeeeaanereeeeeeeeennnns 24
2.7 Handling invalid eXeCUtion FESULES.......cccovvviiiiii it eeeeecae e e e e e e etareeeeeeeeeeeeannns 26
2.7.1  Integer promotion SPECIFICATION........ccciivrreieeeeeeeeeiiiieeeeeeeeeeeiitrreeeeeeeeeeeetrreeeeeeeeeeeetsneeeeeeeeeenanannns 26
2.7.2 S1Z€ OF thE TN TP convevrieeeeee et e e e e e e e e e e e e e e ee et eaeeeeeeeeeararraaaaeeeans 27
2.7.3  Placing StruCtUIe IMEIMDEI'S .....veeiiiiiieeiiiiiieeeeeeeeecireee e e e eeeetetrreeeeeeeeeeeetaareeeeeeeeseettrseeeeeeeeeennnnenns 28
Web site and support <website and SUPPOITS.......cccuvviiiiiiiiiiiiiieeiee e e eeeeere e e e e eeeetrrreeeeeeeens 30

REJ06J0080-0100 /Rev.1.00 2009.10 Page 1 of 30



RE N ESAS Application Notes

This edition is a guide for migrating M16C sample projects for which operation can be confirmed in the simulator debugger, to RX.

1. Overview of the M16C sample project

The M16C sample project ‘M16C_Sample’ can be broadly divided into pre- and post-processing such as for initialization, and
main processing to perform central processing. This edition shows how to migrate the main processing to perform central processing
to an RX project, and check its operation. The following table shows the files that comprise main processing.

Table 1-1 List of main processing files

No Processing File name Reference
1 Depends on integer promotion specifications for the char type M16C_extended_integer.c 271
2 Depends on size of int type M16C_int_size.c 2.7.2
3 Depends on structure member placement M16C_struct_member.c 2.7.3
4 Depends on size of double type M16C_double_size.c 241
5 Depends on pragma BITADDRESS M16C_pragma_BITADDRESS.c 2.4.2
6 Depends on pragma ROM M16C_pragma_ROM.c 243
7 Depends on pragma PARAMETER M16C_pragma_PARAMETER.c 24.4
8 Depends on inline keywords M16C_inline_keywordl.c 245

M16C_inline_keyword2.c
9 Main function M16_Sample_main.c --

REJ06J0080-0100 /Rev.1.00 2009.10 Page 2 of 30



RE N ESAS Application Notes

2. Migrating the M16C sample project to RX

2.1 Creating the RX project

Create a new RX project workspace for the migration destination of the M16C sample project.

This section explains how to generate sample project in the project generator (launched from HEW by choosing the File menu and
then New workspace), according to the following procedures.

(1) Creating a new workspace

Select the “Application” project type.

Mew Project Workspace

Projects l
= Wiorkzpace Mame:
Project Tvpesz
@ licatiaon |R}{_‘tES‘t_M1EC
pplication
Demaonztration Project Name:
[y Empty Application |H}{_test_r'-'11ﬁl3
ﬂ Library
Directory:
|G:¥Wn:nrkspan:e_Evaluatin:nn_R}{¥ R test_M1GC Browze...
CPU famil:
|Rx ]
Tool chain:
|Rﬂnesas Fx Standard ﬂ
Properties..
]9 | Cancel
Figure 1-1

REJ06J0080-0100 /Rev.1.00 2009.10 Page 3 of 30



RE N ESAS Application Notes

(2) Selecting a CPU

Leave this set to the default value, and proceed.

Mew Project—1/10-Select Target CPU Toolchain version

Toolchain version :

1 000 -

Which CPU do wou want to use for this
project?

CPU Series:

—_—

CPU Twpe:

o

If there iz no CPU tvpe to be selected, zelect
the “GPU Type” that a similar to hardware
specification or select “Other” .

<Back [ Met> |  Finish Gancel

Figure 1-2

REJ06J0080-0100 /Rev.1.00 2009.10 Page 4 of 30



RENESAS

Application Notes

(3) Setting options

Leave this set to the default value, and proceed.

Mew Project—2/10-0ption Setting

Specify global options.
Endian :

RFound ta :
Precizion of double :
Sien of char :

Sien of bit field :
Bit field arder :

Little

I Mearest

!5 inele precizion

Iunsigned

Iunsigned

I Lower bit

Width of divereence of function : |24 bit

[1Denormalized number allowmer az a result
[IReplace from int with zhort

[Jenum =ize i= made the smallest

[(1Pack struct, union and clazs

[(U=e trv, throm and catch of G++

[MUze dvhamic cast and tvoeid of G+

<Back [ Mext> |

Finizh Cance|

Figure 1-3

Mew Project—2/10-0Option Setting

Specify global options.

MHone

Fast interrupt vector register :

.

— Baze regizter

Rk
INDne L'
F.a

I MHone ;I

Address :

|EI><EIEIEIEIEIEIEIEI

INn:nne ;‘

{Back [ Mext> |

Fimizh Cance|

Figure 1-4

REJ06J0080-0100 /Rev.1.00 2009.10

Page 5 of 30



RE N ESAS Application Notes

(4) Set up generated files

Select “Use 1/0 library”.
Specify “20” for “I/O stream count”.

Mew Project—4/10-Setting the Contents of Files to be Generated [? E|

hat kind of initialization routine
would vou like to create?

Mumber of A0 Streams:
20

v Uze Heap Memory

Heap Size: |I:Ix4EIEI

Generate maint) Function
IC zource file _v_]

=

[T Y0 Beeister Definition Files

Generate Hardware Setup
Functian

Ih'uruz ;I

Figure 1-5

REJ06J0080-0100 /Rev.1.00 2009.10 Page 6 of 30



RENESAS

Application Notes

(5) Set up the standard library

Leave this set to the default value, and proceed.

Mew Project—5/10-Setting the Standard Library

Library configuration :

|cicas) =l

—Library :

[Wliuntime : runtime routines (always ENE |
[Jetvpe WICER/599) : Handles and check
[Imath h{CB9A299) : Performs numerica = |
[Cmathf 890080 : Performs rumerics |
[J=tdarg h{C89,/C99) : Supports access -
[Wiztdio h{CB9,/C99) : Perfarms input/out
[Wstdlib h{CE9, 090 : Performs G progra
Wlstring W{C89/C99) : Performs string oo 3

—— " -

L »

Enable all | Disable all |

Finizh | Cance|

Figure 1-6

REJ06J0080-0100 /Rev.1.00

2009.10

Page 7 of 30



RE N ESAS Application Notes

(6) Set up the stack space

Leave this set to the default value, and proceed.

Mew Project—6/10-Setting the Stack Area

What are the stack settings?

~ Uzer Stack Painter :

Stack Size:
i[leEIEI

~Interrupt Stack Pointer :

Stack Size:
0100

{Back [ MNet> |  Finish Cancel

Figure 1-7

REJ06J0080-0100 /Rev.1.00 2009.10 Page 8 of 30



RENESAS

Application Notes

(7) Set up vectors

Leave this set to the default value, and proceed.

Mew Project—7/10-Setting the Vector

What supporting files would vou like
to create?

v Mector Defintion Files

YWector Handlers:

Handler I YWector

PowerOMN_Reset_.. Power On Rezet PG

< T—

[

<Back [ Mext> |  Finish Cancel

Figure 1-8

REJ06J0080-0100 /Rev.1.00

2009.10

Page 9 of 30



RE N ESAS Application Notes

(8) Set up the debugger

Select “RX600 Simulator”.

New Project-—B8/10-Setting the Target System for Debuseing

— Targets

LEAN0 Simulator

Target type : IR}{EDD _‘J
Tarest GPU: | All GPUs 2|

<Back [[ MNext> |  Finish Cancel |

Figure 1-9

REJ06J0080-0100 /Rev.1.00 2009.10 Page 10 of 30



RENESAS

Application Notes

(9) Set the debugger options

Select “Initial session”.

Mew Project—9/10-Setting the Debusser Options

Target name :

|RHA00 Simulatar

Care :

|<s ingle corer

Configuration name :

|SimDebue_Rx600

- Detail options :

Item | Settine [
Simulator LD enable

Simulator L0 addr.  0x0

Buz mode 1

Endian Little

| Mext > I

Fimizh Cance|

(10) Check the generated file names
Click “Finish”.

Figure 1-1

0

Mew Project—10/10-Chanzing the File Mames to be CGreated

The following source files will be

gererated:
File Ma.. I Ext.. I Dezcription

dbsct o Setting of B.R. Section
typedefine h Bliazes of hteger Tvpe

[ | Ere Proeram of Low level
[omzrc o Proeram of L0 Stream
zhrk o3 Proeram of shrk

intpre : Interrupt Program

vectthl o3 Thitialize of Wector Table
vect h Detfinition of Vector
resetpre © Fezet Program

R test . © Main Program

[ovwzre h Header file of 170 Stream f
zhrk. h Header file of =brk file
gtackzct  h Setting of Stack area

Sl Ll | E
et Fimizh | Cance|

Figure 1-11
REJ06J0080-0100 /Rev.1.00 2009.10 Page 11 of 30



RE N ESAS Application Notes

(11) Set up the simulator
Click “OK”.

aet Simulator

GPU Configuration l Peripheral Function Simulation ]

Endian:
-
Simulation Maode:

| [l

CPU Frequency:
100 MHz

[ Don't show this dialog box 0 I Cancel

Figure 1-12

REJ06J0080-0100 /Rev.1.00 2009.10 Page 12 of 30



RE N ESAS Application Notes

2.2 Migrating source files for main processing

Copy, and register with the created RX project, the files comprising main processing for the M16C sample project, as explained in
1. Overview of the M16C sample project.

(2)Copy files from the M16C sample project folder
Copy to the RX project the 10 files explained in 1. Overview of the M16C sample project.

[M16C_Sample project] [RX project]

|5 Debug =) Debue
I Debue_M1GC_RAG_Simulator |y Release
) Releaze I SimDebue 500
[£] Gommlog 1] dbscte
DefaultSession hef Defaultsession hsf
Bt 6C_double_zize o lﬂ intpre c

|£] lowalel 2

[2] lowsre o

|h] lowwsre

[Z] Readme txt

lﬂ resetprec

@ R _pragma_PARAMETER azmarc
C| R _test M1GC o

M1 6 hp

; ezt M1GC nay
MTEC _Sample hwp R _test MGG tpz
M16C Samplenay 2] sbrk =

|ﬂ zbrk h
; SimSessionFHE00 het

=] ne_defineinc |h] stackscth
|| ricrt0 230 | 0] typedefing h
[Z] Readme txt |h] vecth
@ R _pragma PARAMETER azmarc |c] vectthlc

=] sect3line
Seszionh 65 _REC_Simulator haf
:-}Sessinn M16C_REC_Simulatar ini

wtended_integer o

GC_inline_kewward] o

Figure 1-13

REJ06J0080-0100 /Rev.1.00 2009.10 Page 13 of 30



RE N ESAS Application Notes

(2)Register the copied files with the project

Register the copied files with the created RX project.
In HEW, choose Project and then Add files, and then select the following in the displayed dialog box.

Add files to project ‘RX¥_test M16G"

i ; - i -
Select the files to be registered ) RX fest M16C J 5
=] quﬁm\ ] resetpre
| ] lovesre b , (] i pragm,

|2] R¥_test_N Click the Add button
] =tekz | after selection

-.Iurn:l'l & |h] sbrk b
wmord |h] stackscth
i | >
File narne: |" M16G_struct_member =” “M16C _double_sizec” "M fidd
Files oftype: |Pr|:|ject Files ﬂ Cancel
[v Belative Path [~ Hide Project Files
Figure 1-14

REJ06J0080-0100 /Rev.1.00 2009.10 Page 14 of 30




1RENESAS

Application Notes

(3)Unregistering unnecessary files

Delete the ‘RX_test M16C.c’ file generated by the project generator for the main function. It is no longer necessary, because the

main function file was copied from the M16C sample project.

In HEW, choose Project and then Delete files, and then select the following in the displayed dialog box.

Remove FProject Files

Project files:

dbsctc

intpre

[l | zr

lowzre o

M1G6C double_size o
M16C_extended_inteser o

MGG _inline_keyword] o
M1GC_inline_keyword? o

MGG _int_zizec

M16C pragma_BITADDRESS o
M16C_pragma_PARAMETER
- o a_RioM

Select the file to be deleted |}z

t_member o

|

48 AMETER azmarc

vectthl o

|

-
|

Cancel

Remowve All

N

Click the Delete
button after selection

Figure 1-15

REJ06J0080-0100 /Rev.1.00 2009.10

Page 15 of 30



1RENESAS

Application Notes

2.3 Building and checking M16C compatibility

Build the RX project for which the main processing file was copied and registered. When a build is performed in HEW, since the

M16C compatibility check functionality is enabled, option specifications and source code that may impact compatibility can be
checked. This section explains how to enable M16C compatibility check functionality and perform a build, and then check the

displayed compatibility confirmation messages.

(1) Set up M16C compatibility check functionality

In HEW, choose Build and then RX Standard Toolchain, and then select the following in the displayed dialog box.

E Select the Compiler tab

Canfiguration :

| Debug ﬂ

=3 All Loaded Projects

SR Rl test MGG
[T & =ource file
[ G++ zource file
[ GAT++ —> Azzembly file
[ Assembly source file
[ Linkage symbal file

[ e o B

F'.sseml:nly | Lirk/Library | Standard Library | GPU | Too 41 ¥

Categary : |Su:uuru:e ﬂ
Show entries far :
|Su:uuru:e file ﬂ
Language :
G |

[~
[~

Cit+ (P : |G++

Ihput character code :
HE -]

[ Allow comment nest

_Interchaneeability check -
ING compilsr | Select NC compiler for
Mone Compatibility check

HE compiler

Options GG+

—cpu=rx800 —dbl_size=8 -int_to_short —pack —check=nc -
output=sro="${CONFIGDIFMEHFILELE AF) src” —debug —nologo

(0] 4 | Cancel

Figure 1-16

REJ06J0080-0100 /Rev.1.00

2009.10 Page 16 of 30




RENESAS

Application Notes

(2) Building

In HEW, choose Build and then Build to start the build. A message is displayed during the build, in the output window.

File Edit Wiew Praject

Debue  Setup  Tools Test Window Help

DEEg ‘é ‘ T Standard Toolchain '_;,m & h HJE 1 e ([Debug | “SlmSesslnnHXEDD | | 7t |
oW [E 0 8 ggfbubile e = =N ==

B

- RX _test_M16G
=53 Assembly s
Il
R prag

dhscte

intpre.c

lowsre ¢
M16GC do
M16G ex
MGG il
MI6G_inl
M1GC_in
M16G pr:
MGG pr:
MGG pr:

=33 G source file

£ Build all
Euild Multiple
Glean Current Project
& Glgan All Projects
Update All Dependencies

2% Stop Tool Execution Ciri+Break

Include/Exclude Build

Build Phases..

Build Gonfigurations

Linksge Order

Generate Makefile

shrkc
vectible

=123 Dependencie:
lowsrch
shrih

stacksct

MGG _Sampler

MI6C struct member ¢
resetprec

R test MI6G o

=423 Download modules
[ Rt test.MI6G abs - 0000DOO)

typedefineh

5

h

vecth
< I @
Eero | ETe | naw | B Test
o otalar|2tt|o|Emd|?
Connected
Build 4 Debug 4 Find in Files 1 )\ Find in Files 2 Macra p Test Wersion Control
Build out of date active project filss and out of date dependent project filss [ |Detaultl desktop [m— s | [ A

Figure 1-17

Hetotalat 218t 2| =W ?

2

Phase R# C/C++ Compile

Phase RY¥ Assenbler sta
Ci¥lorkspace_Evaluatio
Phase RX Assembler fin

Phase OptLinker starti
Error accessing file:
Phase will not be exec
Phase OptLinker finish

Build Finished
2 Errors, 21 Yarnings

1l |

r finished

rting
n_RE¥RE_test MIBCYRE _test _MIBCY¥ owlvl.src
ished

ng
C{¥Eorkspaae_Evaluat fon_RE¥RX test MIBCERX _test M1BCY¥Debug¥M1BC_pragma_BITADDRESS .obj
ute
ed

>

3

4 I DI\ Build ;( Debug )\ Find in Files 1 }\ Find in Files 2 )\ Macro }\ Test )\ Yersion Control f

[\

Figure 1-18
Output window

REJ06J0080-0100 /Rev.1.00

2009.10

Page 17 of 30




RE N ESAS Application Notes

(3) Checking compatibility check messages

The C1801 warning is displayed in the messages output to the output window, indicating that this area poses a compatibility
problem with M16C.

Herorarar At & BH

ANCERY _test _MIBC¥MIBC_inline_keywordl.c(l] @ GI1801 (W) Using “dbl_size=4" function at influence the code generation of “NC™ compiler ~
CH¥RY _test _MIBCYMIBC_inline_keyyordZ.c

ACURY test _MIBC¥MIBC inline_keyword2.c(1) = C1801 (W) Using “dhl_size=4" function at influence the code generation of "NC” compiler
CHRX _test MIGCH¥MIBC int_size.c

ACYRY test _WIBCY¥MIBC_ Iint_size.c(1) : C1801 (W) Using “dhl_size=4" function at influence the code generation of "NG” compiler
C¥RX_test _MIGC¥MIBC_prazma_BITADDRESS .c
C¥RY _test MIBCYMIBC prazma_BITADDRESS.c(]) : CI1801 (W) Using "dhl_size=4" function at influence the code zeneration of "NC” compiler
C¥RY_test _MIBCYMIBC prazna_BITADDRESS .c (4 1801 (W) Using "BITADDRESS™ function at influence the code gzeneration of “NC” compiler

5020 (E) Identifier "_Bool” is undefined
W
W

CERY test WIBC¥MIBC_pragma_BITADDRESS .c (4
CHRY_test WIBCY¥MIBC_pragma_PARAMETER.c(1] @ C1801 E

C¥RE test MIBCYMIBEC pragma_PARAMETER.c
C¥RY test MIGC¥MIBC pragna_PARAMETER.c(5] : C1801

CERY test _WIGCH¥MIBC orazma_ROM . c
C¥RX _test MIGC¥MIBC pragma_ROM.c(1) @ GIGO1 (W) Using "dbl size=4" function at influence the code generatjon of "NG” compiler
C¥RY_test _WIRCY¥MIBC pragma_ROM.ci3) @ CI1601 (W) Using "ROM™ function at influence the code generation of “NG™ compiler v
< ¥
\ Build A Debug )\ Find in Files 1 )\ Find in Files 2 }\Macro )\Test )\ WYersion Contral /

1 Using “dbl_size=4" function at influence the code generation of "NC” compiler
) Using "PARAMETER™ function at influence the code generation of "NC™ compiler

Figure 1-19

REJ06J0080-0100 /Rev.1.00 2009.10 Page 18 of 30



RE N ESAS Application Notes

2.4 Handling compatibility check instructions

The following explains how to check and deal with C1801 messages affecting compatibility, as given in 2.3 Building
and checking M16C compatibility. The target messages are as follows.

Table 1-2 List of C1801 messages

No Messages affecting compatibility Reference
1 Using "dbl_size=4" function at influence the code generation of "NC" compiler 24.1
2 Using "BITADDRESS" function at influence the code generation of "NC" compiler 2.4.2
3 Using "PARAMETER" function at influence the code generation of "NC" compiler 243
4 Using "ROM" function at influence the code generation of "NC" compiler 244
5 Using "inline" function at influence the code generation of "NC" compiler 245

2.4.1 Specifying the size of double type variables

The message ‘Using "dbl_size=4" function at influence the code generation of "NC" compiler’ indicates that a compatibility
problem exists with the specified “dbl_size=4" option. With M16C-family compilers, the size of the double type is 8 bytes, whereas
with RX-family compilers, the size of the double type is 4-byte because dbl_size=4 is specified in default. Since the size of the
double type is required to be 8 bytes based on how “M16C_double_size.c” was coded in the sample program, if the “dbl_size=4"
option is specified, the operation results will differ from M16C.

“M16C_double_size.c” in the sample program

Source code
double d1 = 1E30;
double d2 = 1E20;
void double_size(void)
{
dl = dl1 * di;
d2 = d2 * d2;
printf(*"(6) double type size : ");
if (d1 > d2) {
printf("'OK¥n™);
} else {
printf("'NG¥n™);
hs

When migrating to RX a program created with the requirement that the size of the double type is 8 bytes, specify the “dbl_size=8"
option. For details about specifying this option, see compiler users manual. Also, change the options specified in the created RX
project.

REJ06J0080-0100 /Rev.1.00 2009.10 Page 19 of 30



RE N ESAS Application Notes

2.4.2 Specifying #pragma BITADDRESS

The message ‘Using "BITADDRESS" function at influence the code generation of "NC" compiler’ indicates that a compatibility
problem exists with #pragma BITADDRESS in the source. M16C-family compiler support #pragma BITADDRESS, but RX-family
compilers do not.

Since “pragma_BITADDRESS.c” in the sample program contains code with #pragma BITADDRESS, it will not operate as
expected on RX. Programs using #pragma BITADDRESS can be migrated to RX replacing bit access processing with structure bit
fields. The following shows source code using #pragma BITADDRESS, and the same source code migrated to RX.

(Note that since the memory map differs between M16C and RX, absolutely specified addresses need to be changed as appropriate.
Use the following as an example.)

“pragma_BITADDRESS.c” sample program

M16C source code - RX source code
#pragma ADDRESS bit_data 410H . #pragma address bit_data 0x2000
int bit_data; . int bit_data;
#pragma BITADDRESS bit 0,410H - struct bit_address {
: unsigned char b0:1;
Bool bit; : unsigned char bl:1;
: unsigned char b2:1;
void pragma_bitaddress(void) : unsigned char b3:1;

: unsigned char b4:1;
printf(*"(6) pragma BITADDRESS : "); : unsigned char b5:1;
bit_data = 1; : unsigned char b6:1;

: unsigned char b7:1;
if (bit == 1) { .

printf("'OK¥n™); :
} else { - #define bit (((struct bit_address*)0x2000)->b0)

printf('NG¥n™); :
: void pragma_bitaddress(void)

printf(*"(6) pragma BITADDRESS : ");
bit_data = 1;
if (bit == 1) {
printf("'OK¥n"™);
} else {
printf('NG¥n™);
}

3

Notes

In addition to #pragma BITADDRESS, “pragma_BITADDRESS.c” also uses the “_Bool” type, which poses a problem for
ANSI-standard C89. To use the “_Bool” type in RX, specify the “lang=c99” option to use ANSI-standard C99. For details about
specifying this option, see compiler users manual.

REJ06J0080-0100 /Rev.1.00 2009.10 Page 20 of 30




RE N ESAS Application Notes

2.4.3 Specifying #pragma PARAMETER

The message ‘Using "PARAMETER" function at influence the code generation of "NC" compiler’ indicates that a compatibility
problem exists with #pragma PARAMETER in the source code. M16C-family compilers support #pragma PARAMETER, but
RX-family compilers do not.

Since “M16C_pragma_PARAMETER.c” in the sample program contains code with #pragma PARAMETER, it will not operate
as expected on RX. Programs using #pragma PARAMETER can be migrated to RX by changing the argument interface of the
assembler function specified by #pragma PARAMETER to conform to C/C++ generation rules.

For details about function interfaces, see compiler users manual.

Since #pragma PARAMETER is disregarded by RX compilers, “M16C_pragma_PARAMETER.c” does not need to be changed.

Sample assembler source code

M16C source code “M16C_pragma_PARAMETER asm.a30” : RX source code “RX_pragma_ PARAMETER_asm.src”

- Assembler source code

Assembler source code Specify code requiring

-FB 0 Code requiring passage : -GLB _asm_func passage with ‘i’ stored in R1

.glb _asm_func | with ‘i’ to be stored inRL |- .SECTION P,CODE o .

.section program d°1" to be stored in RO © _asm_func: and ’j’ stored in R2
_asm_func: and 'J" 1o be stored in RY, : ADD R2,R1

enter #02H by #pragma PARAMETER | : RTS

mov .w R1,-2[FB] : .END

add.w -2[FB],R0O
exitd
.end

Since “M16C_pragma_PARAMETER_asm.a30” in the assembler source code of the M16C sample project cannot be migrated as
is to the RX project, a new assembler source file needs to be created, and assembler code for RX needs to be added and registered.
Since the M16C sample project contains the “RX_pragma_PARAMETER_asm.src” file with assembler code for RX already coded,
register it with the RX project.

REJ06J0080-0100 /Rev.1.00 2009.10 Page 21 of 30




*LENESAS

Application Notes

2.4.4 Specifying #pragma ROM

The message ‘Using "ROM" function at influence the code generation of "NC" compiler’ indicates that a compatibility problem
exists with #pragma ROM in the source code. M16C-family compilers support #pragma ROM, but RX-family compilers do not.

Since “M16C_pragma_ROM.c” in the sample program contains code with #pragma ROM, it will not operate as expected on RX.
To migrate this to RX, specify const keywords for variable declarations for which #pragma ROM is specified.

“M16C_pragma_ROM.c” sample program

M16C source code

#pragma ROM rrr
unsigned short rrr = 100;

void pragma_rom(void)

- RX source code
- const unsigned short rrr = 100;

- void pragma_rom(void)

{ printf(""(7) pragma ROM : "™);
printf(*"(7) pragma ROM : ");
if (rrr == 100) {
it (rrr == 100) { printf("'OK¥n");
printf("'OK¥n™); } else {
} else { printf('NG¥n');
printf("'NG¥n™); : }
3
} R
Assembler source code . Assembler source code
_SECTION rom_FE,ROMDATA,align :
-glb _rrr _SECTION C_2,ROMDATA,ALIGN=2
_rrr: .glb _rrr
-word 0064H _rrr: ; static: rrr
.word 0064H
REJ06J0080-0100 /Rev.1.00 2009.10 Page 22 of 30



RE N ESAS Application Notes

2.4.5 Specifying inline keywords

The message ‘Using "inline" function at influence the code generation of "NC" compiler” indicates that a compatibility problem
exists with inline keywords in the source code. M16C-family compilers support inline keywords, but RX-family compilers is
specified lang=c by default, and, the way things are going, cannot recognize the inline key word. do not.

Since “M16C_inline_keyword2.c” in the sample program contains code with inline keywords, if it is built as is on the
ANSI-standard C89 for RX, a compiler error will occur. There are two ways to migrate programs with inline keywords to RX:

e When performing builds with ANSI-standard C89, change inline code to #pragma inline.
e Perform builds with ANSI-standard C99.

The following gives an example of code using #pragma inline. Change the RX sample project as follows.

“M16C_inline_keyword2.c” sample program

M16C source code - RX source code
inline int inline_func(void) - #pragma inline inline_func
{ - int inline_func(void)
return 4; {
} : return 4;
D}
int get_value() :
{ - int get_value(Q
return inline_func(Q); A{
} : return inline_func();
3
Notes

To use inline keywords without modifying the source, specify the “lang=c99” option to enable ANSI-standard C99. For details
about how to specify this option, see compiler users manual..
Note that C99 inline keywords require precaution due to the following two traits:

« Inline expansions are not always performed, such as when the “noinline” option is specified, or conditions are not met for the
“inline” option.
o The function specified by an inline keyword is internally linked, and therefore subject to deletion.

Since “M16C_inline_keyword2.c” in the sample program satisfies the above two conditions, when compilation is performed with the
“lang=c99” option, the definition of the inline_func function is deleted regardless of whether inline expansion is performed. As such,

a link error will occur because the inline_func function is undefined. Perform one of the following as a workaround.

e Replace inline keywords with #pragma inline, and perform unconditional inline expansion.
¢ Add inline functions to the extern specification, to be linked externally.

Example of changing inline functions to external linkage

RX source code
extern inline int inline_func(void) // The inline_func function is linked externally,
// and not deleted
{
return 4;
}
int get_value()
{
return inline_func(Q);
}

REJ06J0080-0100 /Rev.1.00 2009.10 Page 23 of 30



RE N ESAS Application Notes

2.5 Rebuilding

Once the specified options and source code causing compatibility problems have been changed as shown in 2.4
Handling compatibility check instructions, rebuild the project as shown in 2.3(2) Building. When the following dialog
box is displayed for a successful build, click Yes, and then download the load module.

Confirmation Reguest

i ) QF to download module: G¥Workspace Evaluation_FF¥RX_test M1GC¥RN test M1GC¥Debug¥ R test_M16C abs

[ Don't ask this question again

Mo ez to all Mo to all Cancel

Figure 1-20

2.6 Running the simulator
Execute the rebuilt load module in the simulator.
(1) Setting up I/O simulation

The program outputs the execution results to the standard output. The 1/0 Simulation window needs to be enabled to display the
standard output. From HEW, choose View, then CPU, and then I/O simulation to display the I/0 Simulation window.

X _test M16C — Hish—performance Embedded Warkshop — [M16G Sample cl

5+ File Edit Miew Project Build Debug Setup Tools Tegt Mindow Help -8 x
DG S B LR N |Debug | [simSessionFixB0n |
M B I0& 2 Bt EFELEEE PR O . |[|B R W & B @A a
lx
= R test MEC Efz]k=]
= [F RX_test M16C -
T2 Fassembly sourc fils Line | Source A G. 5. Source |
lowlvl sre 12 g e j
R pragima PARAMETER ssim.src 5 ¥ FILE M1BC_Samp |e.c X7
=& 4 + DATE tMon, fug 17, 2009 x/
5 + DESCRIPTION :main program file. xf
g ® CPU GROUP 62 *f
7 * o . #
W18 doubls siza s g ?; This file is zenerated by Renesas Project Generator (Ver.4.13). :5
MIGC extended integer o 10
MIBG_inling_keyword! 11
MIEC_inline keymord2e 12 oid extended_integer (void);
MGG int shen 13 ald int_size(void];
- 14 oid struct _member (void);
M16C pragma BITADDRESS & 13 oid double size(void];
MI16C praema_PARAMETER: 18 oid inline_keyword(void);
M16C pragma_ ROMc 17 oid pragna_bitaddress(void);
o 18 aid pragna_romlvoidl;
WI6C, struct membere ég ald pragna_parameter (void);
%12 FFFFBODC {oid main{void)
23 |FFFF30DC extended_integer();
- &3 Dowrload madul 24 |FFFFA0ED int_size(};
omnload modules 25 |FFFFE0E4 struct _member () ;
R test M16C sbs — 00000000 26 |FFFFI0ES double_sizel)s;
=123 Dependencies gg ;;F;gg%g inl ine_ll;g){waéd() G 0
li h pragma_hitaddress();
;";’:;‘D 78 |FFFF30F4 pragna_ron() ;
30 |FFFFS0F8 pragna_paraneter();
stackscth 3 !
typedetine h 32 . R R
vecth | 1/0 Simulation window
4
S projects [ B Templ... | havig... | & Test < MI60 Samp... /

=4

x b
A alar RIRT |2 B W i /-

Phase R¥ C/G++ Compiler starting ~
C:¥Workspace_Ewaluat ion_RR¥RE_test MIGC¥RE_test MIGC¥MIBC_pragma_BITADI

A C:¥Workspace Evaluat ion_RA¥RY test MIBCY¥RE _test WIGCYMIBC pragma_BITADI
Phase R¥ G/C++ Compiler finished

Phase RX Assembler starting
Mothing to do - skippinz
Phase R Assembler finished

Phase OptlLinker starting
Phase OptLinker finished

Build Finished
0 Errors, 1 Warning
~
< >
% Build /4 Dsbug Find in Files 1 Find in Files 2 Macra Test wersion Control
Ready IZ = B3] FF] [Default desktop Read-writs 70/ 19 NS
Figure 1-21

REJ06J0080-0100 /Rev.1.00 2009.10 Page 24 of 30



1RENESAS

Application Notes

(2) Running the simulator

From HEW, choose Debug and then Run after reset to run the program in the simulator, and display the program standard output
in the 1/0 Simulation window. Once the results are displayed, (1), (2), and (3) can be checked to see whether the values are invalid.

fj[lj integer extend : N&
(2} int type size : NG _/lrlnvalid execution resultsj
[3) struct member offset N
(4) doukhle type =ize (51
(5} inline keyword : OF
(5} pracgms BITADDRESS oK
(7] pragma ROM @ OF
[8) pracmws PARAMETER : OK

REJ06J0080-0100 /Rev.1.00 2009.10 Page 25 of 30



RE N ESAS Application Notes

2.7 Handling invalid execution results

Run the migrated sample project, check the contents of any invalid results, and troubleshoot any compatibility problems for
invalid results as shown in the following table.

No Invalid result Compatibility problem Reference
1 integer extend Integer promotion specification 271
int type size Size of the int type 2.7.2
struct member offset Placing structure members 273
2.7.1 Integer promotion specification

Under the ANSI standard, when char type data (such as signed char, unsigned char types) are evaluated, they are always promoted
to the int type. The RX specification conforms to the ANSI-standard, but to improve ROM efficiency, M16C does not promote char
type data to the int type when evaluating it. This may cause different results, such as code that would cause an overflow while
calculating char type data in M16C no longer doing so due to int type promotion after migration to RX. Code that relies on an
overflow occurring during calculation of char type data in M16C needs to be checked during migration to RX.

“M16C_extended_integer.c” sample program

M16C source code ; RX source code
void extended_integer(void) void extended_integer(void)
{ {

char cl: M16C over_flows the : char cl:

char c¢2 = 200; char type size for c2+c3, | : char c2 = 200;

char c¢3 = 200; = 200;

so that the result of char c¢3

cl = (c2+c3)/2% addition is not 400.

printf(""(1) inte extend : "); printf(*"(1) integer exte

if (cl 1= 200) { ©§f (cl 1= 200) {
printf('oK¥n™); RX promotes c2+c3t0 | . printf('OK¥n™); To match M16C, a char
Y else { the int type, for an : } else {

type cast is added to the
addition results.

printf("NG¥n™); printf('NG¥n™);

addition result of 400
without an overflow : }

Notes
M16C provides the following two options to promote char type data to the int type during evaluation. If either of these options is
specified, the difference in integer promotion specifications discussed here will not occur.

o -fansi
o -fextend_to_int

REJ06J0080-0100 /Rev.1.00 2009.10 Page 26 of 30



1RENESAS

Application Notes

2.7.2 Size of the int type

With M16C-family compilers, the size of the int type is 2 bytes, whereas with RX-family compilers, the size of the int type is 4
bytes. Since “M16C_int_size.c” in the sample program contains code based on the requirement that the size of the int type is 2 bytes,

the results operation of operation will differ from M16C.

“M16C _int_size.c” sample program

Source code

typedef union{
long data;
struct {
int dataH;
int datal;
1 s;
¥ UN;

void int_size(void)
{
UN u;
u.data = Ox7f6f5Ff4T;

printf(*"(2) int type size : ");
printf("'OK¥n™);

} else {
printf('NG¥n™);

1

if (u.s.dataH == Ox5Ff4f && u.s.dataL == Ox7f6F) {

To migrate to RX programs created based on the requirement that the size of the int type is 2 bytes, specify the “int_to_short”
option. For details about specifying this option, see 1.3 Specifying the size of int type variables in C/C++ Compiler Package for the
RX Family Application Notes: RX Migration Guide, M16C Edition. Also, change the options specified for the created RX project.

REJ06J0080-0100 /Rev.1.00

2009.10

Page 27 of 30



*LENESAS

Application Notes

2.7.3 Placing structure members

If 1-byte, 2-byte, and 4-byte members are mixed within a structure (as with shared structures and classes), free space may occur
between the placement of each member, according to each alignment count. M16C-family compilers place structure members using
alignment count 1, whereas RX-family compilers place structure members using the maximum alignment count. This means that
programs created based on M16C structure placement may not operate properly when migrated to RX.

Since “M16C_struct_member.c” in the sample program contains code that requires a structure alignment count of 1, it will not

operate properly as-is on RX. Perform one of the following to migrate the sample program to RX.

o Specify the “pack” option.
e Specify #pragma pack for structures.

For details about how to specify this option, see compiler users manual.

“M16C_struct_member.c” sample program

Source code
M16C member placement

#include <stdio.h>
#include <stddef.h>

void struct_member(void) | 3 | S

struct s {

char c;
short s;
} ss;

RX member placement

printf(""(3) struct member offset : ");
if (offsetof(struct s, s) == 1) {
printf("'OK¥n™);

} else { | c |free| s

printf('NG¥n™);

}

There is no free space, )
since the alignment count
is 1. The offset from the
start of member ’s’ is 1.

Free space exists to
match the alignment
count. The offset
from the start of
member ’s’ is 2.

Specify the “pack” option for the created RX project.

REJ06J0080-0100 /Rev.1.00 2009.10

Page 28 of 30



RE N ESAS Application Notes

After changing the options and code, perform rebuild as shown in 2.3(2) Building, and run the simulator as shown in 2.6 Running the
simulator to get the following execution results, and complete migration to the RX project.

fj[Sj struct member offset : NG ~
(4) doukhle type size @ OK

[5) inline keyword : OK

[5) pracms BITADDRESS : OK

(7] pragma ROM @ OF

(8] pracgms PARAMETER : OK

(1) integer extend : OK

[2) int type size @ OK

[3) struct member offset : QK

(4) doukhle type size @ OK

[5) inline keyword : OK

[5) pracms BITADDRESS : OK

(7] pragma ROM @ OF

(8] pracgms PARAMETER : OK

REJ06J0080-0100 /Rev.1.00 2009.10 Page 29 of 30



1RENESAS

Application Notes

Web site and support <website and support>
Web site for Renesas Technology

http://japan.renesas.com/

Contact information

http://japan.renesas.com/inquiry

csc@renesas.com

Revision history<revision history,rh>

Contents changed
Rev. Date issued Page Details
1.00 2009.10.1 -- Initial edition
REJ06J0080-0100 /Rev.1.00 2009.10 Page 30 of 30



http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

	1. Overview of the M16C sample project
	2.1 Creating the RX project
	2.4.1 Specifying the size of double type variables
	2.7.1 Integer promotion specification


