
BASICS OF THE RENESAS
SYNERGY TM PLATFORM
Richard Oed

2020.04

CONTENTS

8 HELLO WORLD! – HELLO BLINKY! 03

8.1 Your First Project Using e2 studio 04
 8.1.1 Creating a Project with the Project Configurator 04
 8.1.2 Setting Up the Runtime Environment with the Synergy Configurator 06
 8.1.3 Writing the First Lines of Code 07
 8.1.4 Compiling the First Project 09
 8.1.5 Downloading and Debugging the First Project 10

8.2 Your First Project Using IAR Embedded Workbench® for Renesas Synergy™ 12
 8.2.1 Creating a New Project 12
 8.2.2 Setting Up the Runtime Environment with the Synergy Configurator 14
 8.2.3 Writing the First Lines of Code 15
 8.2.4 Compiling the First Project 17
 8.2.5 Downloading and Debugging the First Project 17

Disclaimer 19

02

CHAPTER 8
HELLO WORLD! –
HELLO BLINKY!

8 HELLO WORLD! – HELLO BLINKY!

The very first program most newcomers to a programming language wrote (and still write) is the one, which simply puts the string

“Hello World” to the standard output device. For me, it was typing “Writeln (‘Hello World’)” into the editor, as I started with Pascal.

Ever since then, I wrote similar lines in several other languages, mostly as a sanity check for the installation of a new development

environment.

When I moved on to program embedded systems in the late 1980’s, there was no screen where the string could be sent to. So how

to instruct the processor to give signs of life? LEDs were barely found in these systems, so toggling one of the very few I/O-pins and

observing the waveform with an oscilloscope was the way to go. Over the years, LEDs became a commodity item and we placed plenty

of them on our boards, using their blinking as the new “Hello World”.

And this is also the objective for this chapter: Toggle an LED on a Promotion Kit (PK), using everything you learned in the chapters

before: You will write the code (nearly) from scratch, create a new project using the configurators, employ the APIs of the Synergy

Software Package (SSP) and finally download, debug and run the code. This exercise brings everything together.

As a prerequisite, e2 studio or the IAR Embedded Workbench® for Renesas

Synergy™ (IAR EW for Synergy), as well as the SSP (and the Synergy

Standalone Configurator (SSC) if IAR EW for Synergy is used), should be

installed on your Windows® workstation (see chapter 4 for details) and you

should have verified that your setup is working (as described in chapter 7).

And those of you doing the previous hands-on exercises: Please bear with the

author, as he decided to cover again some of the topics already discussed for

the sake of those of you moving directly from the foreword to this chapter.

And if you do not want to do all the coding on your own: The complete project is

available from the book’s website (https://www.renesas.com/synergy-book)

for both development environments.

For this exercise, we will again use the PK-S5D9, which is extremely well

suited for tasks like this, as it allows you to explore the Synergy microcontroller

and all its peripherals instantly. External hardware can be easily attached,

as more than 80% of the pins are accessible through connectors. And with

the Synergy S5D9 Group MCU being the superset device of the S5 Series of

Synergy MCUs, every feature of this Series can be evaluated and the results

later on applied to the smaller siblings of the Synergy MCU Family as well.

Figure 8-1 shows the block diagram of the board, highlighting the main

features of it.

What you will learn in this chapter:

 ¡ How to create a project for the Renesas Synergy™ Promotion Kit PK-S5D9 from scratch.

 ¡ How to change settings for the Synergy Software Package (SSP) in the Synergy Configurator.

 ¡ Write code to toggle the LEDs on the PK.

 ¡ How to download and test code

03

Figure 8-1: Block diagram of the PK-S5D9 Promotion Kit

https://www.renesas.com/synergy-book

Figure 8-2: First step is to call the Project Configurator

8.1 Your First Project Using e2 studio

8.1.1 Creating a Project with the Project Configurator

If not already done, start e2 studio from your Windows® workstation Start Menu. Once the ISDE is up and running, dismiss

the Welcome screen, if it shows, as it would block other windows from viewing.

Writing a new program for a microcontroller in e2 studio always requires to create new project first, so this is the first step

you need to take.

For this, go either to File → New → Synergy C/C++ Project, or right-click in the Project Explorer and select New → Synergy

C/C++ Project. Both ways will bring up a dialog asking for the template to be used. Select Renesas Synergy C Executable

Project and click on Next.

Once the Project Configuration window shows, give the project a name, for example MyBlinkyProject and check if the

GCC ARM® Embedded is highlighted under Toolchains. Next, verify that a license for the SSP installed. If the field with the

License Details is empty, click on Change license file and the dialog window appearing will guide you to the directory

where the evaluation license was placed during installation. If you installed e2 studio and the Synergy Software Package

with the Platform Installer, the path will be C:\Renesas\Synergy\e2studio_v7.5.1_ssp_v1.7.0\internal\projectgen\licenses.

If you used the Standalone installers, you will find the license file in the C:\Renesas\e2_studio\internal\projectgen\arm\licenses

directory. Select the file (there should only be this one) named SSP_License_Example_EvalLicense_20180725.xml

(or similar). If you already requested and received a development and production license either from Renesas or from the

Super User of your company, point the file selector to the correct path for that one. Once loaded, you can examine the

permissions for the different components of the SSP inside the License Details frame. With this done, click on the Next

button to move on to the Board Selection screen.

Under Device Selection look out for the field called SSP version: It should show the same version of the Synergy Software

Package you downloaded before. Under Board, select S5D9 PK, as this is the hardware we want to use for our small

»Hello World« program. Verify that R7S5D97E3A01CFC is shown beside Device, it should have been automatically selected.

If not, navigate through the drop down list until you found it. In the Select Tools frame, verify that Toolchain, Toolchain

version and Debugger read GCC ARM® Embedded, 7.2.1.20170904 and J-Link ARM®. These fields should be pre-

populated for you. If not, modify them to match the values given above.

04

Figure 8-3: The first screen of the Project Configurator mainly asks for the project’s name

With this done, click on Next to open the Project Template Selection screen. A project template may include several items, at

least it includes the correct Board Support Package for the selected board / device combination. Some templates even include

a complete example project. In our case, select the BSP entry, which will load the Board Support Package for the Promotion

Kit. Click on Finish.

Figure 8-4: Selecting the BSP entry will load the correct Board Support Package

05

The Project Configurator will close and will create all the necessary files for the project in a last step. Once this post-processing

is complete, you will be asked if you want to open the Synergy Configuration perspective. Select Yes.

Figure 8-5: The post-processing step of the Project Configurator will create the settings and files for our project

8.1.2 Setting Up the Runtime Environment with the Synergy Configurator

Once the Synergy Configurator has started, it presents you a summary of the project and a short overview over the Synergy

microcontroller selected. It also provides a convenient shortcut to the Renesas Synergy Support page on Renesas.com,

where you can access the documentation, the Knowledge Base and the Renesas Rulz Forum.

The following tab, called BSP, allows you to view and edit aspects of the board setup, while in the Clocks tab, the initial

clock configuration for the project can be set. Any potential problem will be highlighted in red and hovering with the

mouse over a highlight will display an explanation. The fourth tab in the configurator, called Pins is covering the initial

pin setup of the Synergy device in the project, including the logic level they should have at startup. Pins can be listed either

based on ports or peripherals. A package view, again with error marking, is available just at the right hand side of the

configurator, reducing possible mistakes to a minimum.

The Threads tab, allows to add and configure different components. Since we do not use an RTOS in this project, there is

only a HAL/Common entry, showing the necessary basic modules. In the Messaging tab following, you can configure the

Messaging Framework for ThreadX® based projects. The final tab Components displays the elements available in the SSP

and which of them are currently included in the project. It also allows to switch between different versions of the same module,

 in case you have multiple versions of the SSP installed. Modifications like adding or removing components shouldn’t be

made here, but preferably in the Threads tab, as they can be configured there as well.

For our project there is no need to change anything in this configurator, as all necessary settings have been done for us

already by the Project Configurator. As the final step in the Synergy Configuration, additional source code based on the

current configuration needs to be created. Click on the Generate Project Content button at the top right hand side of the

Synergy configurator. With that, the required files will be extracted from the SSP, adjusted to the settings made in the

configurator and added to the project.

06

http://Renesas.com

8.1.3 Writing the First Lines of Code

With all the automatically generated files being now in place, it is time to have a look on what was created. The Project

Explorer at the left hand side of the ISDE lists everything currently included. The src folder contains a subfolder called

synergy_gen, holding configuration sets such as channel number etc. The src folder also includes a file named hal_entry.c.

This is the one you will edit later on. Please note that while there is a file called main.c in the synergy_gen folder, your

user code must go to hal_entry.c. Otherwise you will loose your changes, if you make modifications in the Synergy

Configurator and re-created the project contents, as this file will be overwritten each time you click on Generate Project Content.

Figure 8-6: The summary tab of the Synergy Configurator

The project also contains several directories with »synergy« in the name, containing source-, include- and configuration

files for the SSP. It is a general rule that the contents of these folders (and subfolders) should not be modified. They contain

files generated by the configurator and any modification made there will be lost the next time the project content is generated or

refreshed. The user editable source files are those directly in the root of the \src folder or any other folder added by you.

Now it is time for you to write the first real Synergy Platform source code. The plan is to alternate between the green LED1

and the orange LED3 on the S5D9 Promotion Kit every second, so you will have to add code for turning them on and off

and for a delay loop. How to do that?

07

There are actually two options for that: One is using the API of the Hardware Abstraction Layer directly and one is using the

HAL together with the BSP. Which one do you think is the better one? You can review chapter 2, if you are unsure about the

answer.

Looking at the code in the file \src\synergy_gen\common_data.c, we find that there is the following definition for the I/O port

driver instance g_ioport:

 const ioport_instance_t g_ioport =

 { .p_api = &g_ioport_on_ioport, .p_cfg = NULL };

g_ioport_on_ioport is a structure, which declares the possible actions for the ports and is assigned to the API-

pointer of the g_ioport instance. The contents of the structure can easily be viewed by hovering with the mouse over it,

which will reveal that one of its members, .pinWrite, is a pointer to the pin write function.

So turning an LED on, you could write:

 g_ioport.p_api->pinWrite(ioport_port_pin_t pin,

 IOPORT_LEVEL_LOW);

But this means that you would actually need to know which I/O-ports LED1 and LED3 are connected to and how many LEDs

are available for use! For that, we could either read the documentation of the board or scrutinize the schematics to find the

correct port. Or simply use the BSP API, which provides the structure bsp_leds_t for that purpose. Calling the BSP

function:

 R_BSP_LedsGet(bsp_leds_t * p_leds);

will then populate a user defined variable of the type bsp_leds_t (e.g. Leds) with the necessary values.

This means that you can turn on LED1 by writing:

 g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED1],

 IOPORT_LEVEL_LOW);

This statement needs to be followed by a second one to turn LED3 off by setting its pin-level to high.

Finally, you need to provide a delay to have the LEDs toggle in a user friendly way. For that, again call a BSP_API:

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

This will create a one second delay loop. The macro BSP_DELAY_UNITS_SECONDS defines the units for the delay, either

in seconds, milliseconds or microseconds, while the 1 stands for the number of units to delay. More information about each

function call or variable in the code can be viewed by using the Smart Manual feature of e2 studio.

All what is needed once this is done, is to copy/paste the three lines of code and to reverse the pin-levels of the LEDs in the

second set. And finally, as we want to run the program indefinitely, a while(1)-loop needs to be created around the code.

08

09

void hal_entry(void)

{

 bsp_leds_t Leds;

 R_BSP_LedsGet(&Leds);

 while (1)

 {

 g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED1],

 IOPORT_LEVEL_HIGH);

 g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED3],

 IOPORT_LEVEL_LOW);

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED1],

 IOPORT_LEVEL_LOW);

 g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED3],

 IOPORT_LEVEL_HIGH);

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 }

}

While writing the code, you can always use the auto-completion feature of e2 studio. Just press <ctrl>-<space> and

a window displaying possible completions for the structure or function will appear. If you click on an entry, it will be

automatically inserted into the code.

Another helpful tool while writing your code is the Developer Assistance, which can be accessed from the Project Explorer.

After having configured the software stacks for your project with the Synergy Configurator, this tool supports you in getting

started quickly with your application code. To access the Developer Assistance, first expand your project the Project Explorer

so that the tool is shown. With the tool visible, expand the tree further until you see the stack module and its APIs of your

choice. Select the API you want to use and drag and drop the call to it into your source file.

It is now your turn: Please enter the lines of code above into the hal_entry.c file in your project. For that, expand the src folder

of your project and double-click on the file. This will open it in the editor. If you do not want to type everything, you can also

download a complete project from the Website of this book (www.renesas.com/synergy-book).

8.1.4 Compiling the First Project

What is left now, is to insert the following lines of code into the hal_entry.c file:

When you did all the typing, the program is ready to be built. There are two different configurations for a build: Debug and

Release. The Debug configuration will include all information necessary for debugging a program, like variable and function

names and will also turn off certain optimizations of the compiler, for example loop unrolling. This makes debugging easier,

http://www.renesas.com/synergy-book

10

For your first test, the Debug configuration, which is also the default, is the way to go. To build your project, click on the build-

button on the main menu bar and the process will start. If you did everything right, the compilation will finish with 0 errors

and 0 warnings. If there are compile-errors, you need to go back to your code and double-check, if you entered everything

correctly. If not, change your code accordingly.

After the build succeeds the output file MyBlinkyProject.elf has been created, which needs to be downloaded to the processor

before we can run and debug it.

Figure 8-7: Pressing <ctrl>-<space> at a variable or function will activate the code completion feature
of the editor

8.1.5 Downloading and Debugging the First Project

The next step will be to actually run the program on the Promotion Kit. And this is now the right moment to connect the

kit to your Windows® workstation: Insert the micro-B end of the USB-cable delivered with the board into the connector

called DEBUG_USB (J19) and the other end into the PC. The green LED4 above the top right hand corner of the LCD-display

should be lit, indicating that the board has power. If the kit just came out of the box, the pre-programmed demo will run,

signalling that everything is working as expected. Windows® might display a dialogue indicting the installation of the

J-Link® OB Debugger, which should be completed automatically. Additionally, a window asking for the update of the

J-Link® Debug Probe may appear. It is strongly recommended to allow this update to happen.

DOWNLOADING

To download our program, we will have to create a debug configuration first. Click on the small arrow beside the Debug

symbol and select Debug Configurations from the drop down list.

In the window showing up, highlight MyBlinkyProject Debug under Renesas GDB Hardware Debugging. Finally click on Debug at the

lower right corner of the window. This will launch the debugger, download the code to the Synergy device and will ask you, if you

want to want to switch to the Debug perspective. Answer Yes. The Debug perspective will open and the program counter is set to

but will create larger and slower code. The Release configuration will strip all this information from the output file and turn

on full optimization, thereby creating smaller and faster code, but you will no longer, for example, be able to view variables,

unless you know their addresses in memory.

The final step is to disconnect the debugger from the board by clicking on the Terminate button , stopping the execution of

the program.

11

CONGRATULATIONS!
You mastered your first program for the Synergy Platform!

Figure 8-8: Once MyBlinkyProject is selected, no change needs to be made on the different tabs

RUNNING

Click on the Resume button and the next stop will be at main(), at the call to hal_entry(). Click again and the

program continues to execute, toggling the green and the orange LED on the Promotion Kit in a one second interval as intended.

WATCHING THE RESULTS

If everything is working as expected, click on the Suspend button on the main menu bar. This will stop the execution of

the program without terminating it. In the editor view, activate the tab with the file hal_entry.c, and right-click in one of the

lines with a write to the ports; in the menu showing, select Run to line. Execution will resume and the program will stop at the

line you clicked in. Now have a look at the view with the variables tab at the right. You will see the Leds structure listed.

Expand it and browse and analyse the different fields. This view will come handy when debugging a larger project

Figure 8-9: Variables and their values can be observed in the variables tab

the entry point of the program, the reset handler. This configuration needs to be done only once. The next time you can start

the debugger by only clicking on the Debug symbol.

8.2 Your First Project Using IAR Embedded Workbench® for Renesas Synergy™

8.2.1 Creating a New Project

If not already done, start IAR Embedded Workbench® for Renesas Synergy™ (EW for Synergy) from your Windows® workstation

Start Menu. Once the IDE is up and running, you might want to dismiss the Information Center by clicking on the X at the far

right hand side, as you do not need it for this exercise.

Writing a new program for a microcontroller in EW for Synergy requires you to create a new project first, so this is the first step

you need to take.

For this, go to Renesas Synergy → New Synergy Project and the Save Workspace As dialog will show. Navigate to a directory

of your choice and give the workspace a name, for example MyBlinkyWorkspace. Click on OK. Next, a new dialog named

Renesas Synergy Settings will show. If you did the previous exercises, all necessary settings should have been already

made, otherwise you need to fill in the information required. First, you need to enter the directory, into which the Renesas

Synergy™ Standalone Configurator (SSC) has been installed. If you used the Platform Installer, this was C:\Renesas\

Synergy\ssc_v7.5.1_ssp_v1.7.0 by default, or if you decided to go for the Standalone Installer it was C:\Renesas\Synergy\

SSC_v7_5_1_V20190813. If you used your own path, enter this one. If you are unsure, refer to chapter 4 for more details.

Next you need to provide the correct path to the license file for the Synergy Software Package (SSP). The navigation

button will guide you to the directory where the evaluation license was placed during installation. You can find it in the

\internal\projectgen\licenses subdirectory of one of the installation directories given above (see Figure 8-10). Select the file

(there will be only one) named SSP_License_Example_EvalLicense_20190725.xml (or similar). If you already requested and

received a development and production license either from Renesas or from the Super User of your company, point the file

selector to the correct path for that one. Once one of the license files is loaded, you can examine the permissions for the

different components of the SSP inside the License Information frame.

The last item in the dialog asks you whether or not you want to like to replace any encrypted source files with decrypted ones.

As this option is only applicable, if your license is a Renesas Synergy development and production license, you can leave

this item unchecked, Click on OK.

12

A second Save As dialog will show, where you need to provide a location and a name for your project. It is important to create

a new directory named for example MyBlinky and not to reuse one of the previous exercises. Give the project a name, maybe

MyBlinkyProject. Click on Save and the SSC will start. Be patient, this might take a couple of seconds.

Figure 8-10: You will need to enter the correct paths for the SSC and the license file

In the Synergy Standalone Configurator look out under Device Selection for the field called SSP version: It should show the

same version of the Synergy Software Package you downloaded before. Under Board, select S5D9 PK, as this is the

hardware we want to use for our small »Hello World« program. Verify that R7FS5D97E3A01CFC is shown beside Device;

it should have been automatically selected. If not, navigate through the drop down list until you found it. With this done,

click on Next to open the Project Template Selection screen (see Figure 8-12). A project template may include several

Figure 8-11: Make sure to select the S5D9 PK, as this is the board used for the exercise

13

The Project Configurator will close and will create all the necessary files for the project as a last step. Once this postprocessing

is complete, the SSC will open its Synergy Configuration perspective.

items; at the very least it includes the correct Board Support Package for the selected board / device combination. Some

templates even include a complete example project. In our case, select BSP, which will load the Board Support Package for the

Promotion Kit. Click on Finish.

Figure 8-12: Selecting the BSP entry will load the correct Board Support Package

8.2.2 Setting Up the Runtime Environment with the Synergy Configurator

Once the Synergy Configurator has started, it presents you a summary of the project and a short overview over the Synergy

microcontroller selected (refer to Figure 8-6 for a screenshot). It also provides a convenient shortcut to the support page on the

Renesas Internet site, from where you can access various help features.

The following tab, called BSP, allows you to view and edit aspects of the board setup, while in the Clocks tab, the initial clock

configuration for the project, can be set. Any potential problem will be highlighted in red, and hovering the mouse over a

highlight will display an explanation. The fourth tab in the configurator, called Pins, covers the initial pin setup of the Synergy

device in the project. Pins can be listed either based on ports or peripherals.

A package view, again with error marking, is available just at the right hand side of the configurator, reducing possible mistakes

to a minimum. The Threads tab, allows you to add and configure different components. Since we do not use an RTOS in this project,

there is only a HAL/Common entry, showing the necessary basic modules. In the Messaging tab following, you can configure the

Messaging Framework for ThreadX® based projects. The final tab Components displays the elements available in the SSP and

which of them are currently included in the project. It also allows you to switch between different versions of the same module, in

case you have multiple versions of the SSP installed. Modifications like adding or removing components shouldn’t be made here,

but preferably in the Threads tab, as they can be configured there as well.

For our project, there is no need to change anything in this configurator, as all necessary settings have been done for us already

by the Project Configurator. As a final step in the Synergy Configuration, additional source code based on the current configuration

needs to be created. Click on the Generate Project Content button at the top right hand side of the Synergy Configurator.

14

With all the automatically generated files now in place, it is time to have a look on what was created. The Workspace window

at the left hand side of the IDE lists everything currently included. Expand all entries under Synergy. The src folder contains a

subfolder called synergy_gen, holding configuration sets such as channel number etc. The src folder also includes a file named

hal_entry.c. This is the one you will edit later on. Please note that while there is a file called main.c in the synergy_gen folder,

your user code must go to hal_entry.c. Otherwise you will loose your changes if you make modifications in the Synergy Configurator

and re-created the project contents, as this file will be overwritten each time you click on Generate Project Content.

The project also contains several directories with »synergy« in the name, containing source-, include- and configuration files

for the SSP. It is a general rule that the contents of these folders (and subfolders) should not be modified. They contain files

generated by the configurator and any modification made there will be lost the next time the project contents are generated or

refreshed. The user editable source files are those directly in the root of the \src folder or any other folder added by you.

Now it is time for you to write the first real Synergy Platform source code. The plan is to alternate between the green LED1 and

orange LED3 on the S5D9 Promotion Kit every second, so you will have to add code for turning them on and off and for a delay

loop. How to do that?

There are actually two options for that: One is using the API of the Hardware Abstraction Layer directly and one is using the HAL

together with the BSP. Which one do you think is the better one? You can review chapter 2, if you are unsure about the answer.

Looking at the code in the file \src\synergy_gen\common_data.c, we find that there is the following definition for the

I/O port driver instance g_ioport:

const ioport_instance_t g_ioport =

{ .p_api = &g_ioport_on_ioport, .p_cfg = NULL };

g_ioport_on_ioport is a structure, which declares the possible actions for the ports and is assigned to the API-pointer

of the g_ioport instance. The contents of the structure can easily be viewed by hovering with the mouse over it, which will

reveal that one of its members, (.pinWrite), is a pointer to the pin write function.

So turning an LED on, you could write:

g_ioport.p_api -> pinWrite(ioport_port_pin_t pin,

IOPORT_LEVEL_LOW);

With that, the required files will be extracted from the SSP, adjusted to the settings made in the configurator and added to

the project. Once this process has finished, close the SSC by clicking on the close button of the window (the ‘X’ at the top right

hand side). This will get you back to the IAR Embedded Workbench® for Renesas Synergy™ and will update the workspace of

the IDE. You can open the SSC anytime again by clicking on the Synergy Configuration icon on the toolbar, selecting

Renesas Synergy → Configurator in the menu or by right-clicking on the Synergy entry in the project tree and selecting Open

Renesas Synergy Configurator.

8.2.3 Writing the First Lines of Code

15

But this means that you would actually need to know which I/O-ports LED1 and LED3 are connected to and how many LEDs are

available for use! For that, we could either read the documentation of the board or scrutinize the schematics to find the correct

port. Or simply use the BSP API, which provides the structure bsp_leds_t for that purpose. Calling the BSP function:

 R_BSP_LedsGet(bsp_leds_t * p_leds);

will then populate an user defined variable of the type bsp_leds_t (e.g. Leds) with the necessary values.

This means that you can turn on LED1 by writing:

 g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED1],

IOPORT_LEVEL_LOW);

You will need a second statement right after this, turning LED3 off, by setting its pin-level to high.

Finally, you need to provide a delay to have the LEDs toggle in a user friendly way. For that, call again a BSP API:

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

This will create a one second delay loop. The macro BSP_DELAY_UNITS_SECONDS defines the units for the delay,

either in seconds, milliseconds or microseconds, while the 1 stands for the number of units to delay.

All what is needed once this is done, is to copy/paste the three lines of code and to reverse the pin-levels of the LEDs in the

second set. And finally, as we want to run the program indefinitely, a while(1)-loop needs to be created around the code.

What is left now is to insert the following lines of code into the hal_entry.c:

void hal_entry(void)

{

 bsp_leds_t Leds;

 R_BSP_LedsGet(&Leds);

 while (1)

 {

g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED1],

IOPORT_LEVEL_HIGH);

g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED3],

IOPORT_LEVEL_LOW);

R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED1],

IOPORT_LEVEL_LOW);

g_ioport.p_api->pinWrite(Leds.p_leds[BSP_LED_LED3],

IOPORT_LEVEL_HIGH);

R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 }

}

16

While writing the code, you can always use th auto-completion feature of the editor. Just press <ctrl>-<space> and a

window displaying possible completions for the function or structure will appear. If you click on an entry, it will automatically

inserted into the code.

It is your turn now. Please enter the lines of code above into the hal_entry.c file in your project. For that, expand the src

folder of your project and double-click on the file. This will open it in the editor. If you do not want to type everything, you

can also download a complete project from the Website of this book (https://www.renesas.com/synergy-book).

8.2.4 Compiling the First Project

When you did all the typing, the program is ready to be built. There are two different configurations for a build: Debug and

Release. The Debug configuration will include all information necessary for debugging a program, like variable and function

names, and will also turn off certain optimizations of the compiler, for example loop unrolling. This makes debugging easier,

but will create larger and slower code. The Release configuration will strip all this information from the output file and turn

on full optimization, thereby creating smaller and faster code, but you will no longer, for example, be able to view variables,

unless you know their address in memory.

For your first test, the Debug configuration, which is also the default, is the way to go. To build your project, click either on

the make-button on the toolbar, or select Project → Make or simply hit the F7-key and the process will start.

If you did everything right, the compilation will finish with 0 errors and 0 warnings. If there are compile-errors, you need to

go back to your code and double-check that you entered everything correctly. If not, change your code accordingly.

After the build succeeds, the output file MyBlinkyProject.out is created, which needs to be downloaded to the processor before

we can run and debug it.

8.2.5 Downloading and Debugging the First Project

The next step will be to actually run the program on the Promotion Kit. And this is now the right moment to connect the kit

to your Windows® workstation: Insert the micro-B end of the USB-cable delivered with the board into the connector called

DEBUG_USB (J19), and the other end into the PC. The green LED4 at the top right hand corner of the PCB should be lit,

indicating that the board has power. If the kit just came out of the box, the pre-programmed demo will run, signaling that

everything is working as expected. Windows® might display a dialog indicating the installation of the J-Link® OB Debugger,

which should be completed automatically. Additionally, a window asking for the update of the J-Link® Debug Probe might

show. It is strongly recommended to allow this update to happen.

To start your debugging session, select either Project → Download and Debug from the menu or click on the Download and

Debug icon on the toolbar. The IAR Embedded Workbench® for Renesas Synergy™ will download your code, switch to the

debugger and stop at the entry point of the program, the call to main().

17

Click twice on the Step Into icon on the toolbar of the debugger and you will enter the routine hal_entry(). Next step

is to finally run the program. For that, click on the Go icon on the debugger toolbar and the program continues to execute,

toggling the green and the orange LED on the Promotion Kit at a one second interval as programmed.

If everything is working as expected, click on the Break button on the debugging toolbar. This will stop the execution of the

program without terminating it. In the editor window, activate the tab with the file hal_entry.c, and right-click in one of the

lines with a write to the ports; in the menu showing, select Run to Cursor. Execution will resume and the program will stop

at the line you clicked in. Now call up one additional window to watch the local variables. Click on View → Locals in the

main menu and a window displaying the Leds structure will show. Expand it and browse and analyze the different fields.

This view will come handy when debugging a larger project.

Figure 8-13: Local variables and their values can be observed in this window

The final step is to terminate the debugging session by clicking on the Stop Debugging icon on the toolbar of the debugger.

This will remove the debugger from the target, which now runs freely and returns the IDE to editing mode.

CONGRATULATIONS!
You mastered your first program for the Synergy platform!

Points to take away from this chapter:

 ¡ The Project Configurator creates all files and settings necessary for a new project.

 ¡ The Synergy Configurator allows the Synergy Software Package and the runtime environment to be configured

easily based on a graphical user interface.

 ¡ A Debug Configuration is necessary for debugging the project, but it is created automatically.

 ¡ Only very few lines are needed for the implementation of the actual code.

18

19

Copyright: © 2020 Renesas Electronics Corporation

Disclaimer:

This volume is provided for informational purposes without any warranty for correctness and completeness. The contents are not intended to be

referred to as a design reference guide and no liability shall be accepted for any consequences arising from the use of this book.

	BASICS OF THE RENESAS SYNERGY™ PLATFORM (Richard Oed)
	8 HELLO WORLD! – HELLO BLINKY!
	8 HELLO WORLD! – HELLO BLINKY!
	8.1 Your First Project Using e2 studio
	8.1.1 Creating a Project with the Project Configurator
	8.1.2 Setting Up the Runtime Environment with the Synergy Configurator
	8.1.3 Writing the First Lines of Code
	8.1.4 Compiling the First Project
	8.1.5 Downloading and Debugging the First Project

	8.2 our First Project Using IAR Embedded Workbench® for Renesas Synergy™
	8.2.1 Creating a New Project
	8.2.2 Setting Up the Runtime Environment with the Synergy Configurator
	8.2.3 Writing the First Lines of Code
	8.2.4 Compiling the First Project
	8.2.5 Downloading and Debugging the First Project

	Disclaimer

