

R20UT4014EJ0100 2017.3.16 Page 1 of 35

Development Environment Migration Guide
Migrating from V850 to RH850 (Compiler Guide)

This document describes the main points to note in migration from the V850 compiler (CA850) to the RH850
family compiler (CC-RH).

Contents

Chapter 1 Option .. 2

1.1 Compiler Options ... 2
1.2 Assembler Options .. 8
1.3 Linker Options ... 10
1.4 Hex Converter Options .. 14

Chapter 2 Intrinsic Functions ... 15

Chapter 3 Predefined Macros ... 17

Chapter 4 Extended Language Specifications..................................... 19

Chapter 5 Assembler Directives ... 21

Chapter 6 Peripheral I/O Registers ... 24

6.1 Peripheral I/O Registers in CA850 ... 24
6.2 Peripheral I/O Registers in CC-RH .. 24

Chapter 7 Interrupts and Exceptions ... 26

7.1 Interrupts and Exceptions in CA850 .. 26
7.2 Interrupts and Exceptions in CC-RH .. 27

Chapter 8 ROMization .. 30

8.1 ROMization Processing in CA850 ... 30
8.2 ROMization Processing in CC-RH ... 31

Chapter 9 Section Allocation .. 34

9.1 Section Allocation in CA850... 34
9.2 Section Allocation in CC-RH .. 35

R20UT4014EJ0100
Rev.1.00

2017.3.16

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 2 of 35

Chapter 1 Option

This chapter gives comparison tables listing correspondences between options for the CC-RH and CA850
compilers.

CC-RH is case-sensitive to characters for compiler and assembler options but not to those for linker options.
CA850 is case-sensitive to characters in all types of options.

1.1 Compiler Options

Classification Description CA850(ca850.exe) CC-RH(ccrh.exe)

Version/help
display/operation
status

Outputs the version information of the C
compiler to the standard error output. -V -V
Outputs option descriptions to the standard
error output. -help -h
Outputs the execution status of the C
compiler to the standard error output in detail. -v None.

Output file
specification

Specifies where an intermediate language file
is to be saved. -Fic None.

Specifies where an object file is to besaved. -Fo -Xobj_path
Specifies where an assembly language file is
to be saved. -Fs -Xasm_path

Specifies where an assemble list file is to be
saved. -Fv -Xasm_option=-Xprn

_path

Specifies the output file. -o -o

Specifies the work folder. -temp None.

Controlling
source debugger

Prohibits replacing the ld.w/ld.h and st.w/st.h
instructions with 1-bit manipulation
instructions.

-Xno_word_bitop None. (note1)

Outputs symbol information for the source
debugger. -g -g

Device
specification

Treats the memory space as having 256 MB. -X256M None.

Sets the higher address of the programmable
peripheral I/O register. -Xbpc None.

Embeds the magic number common to V850
core. -cn

None. Embeds the magic number common to
V850Ex core.

-cnv850e

Embeds the magic number common to
V850E2 core.

-cnv850e2

Specifies the target device. -cpu
None. (note2)

Specifies the folder to search device files. -Xdev_path

Compiler control
specification

Outputs the assembler source file without
executing any modules after the assembler.

-S -S

Outputs an assemble list. -a -Xasm_option=-Xprn
_path

Outputs the object file without starting the
linker.

-c -c

Executes the only front end, generates an .ic
file, and then terminates processing.

-m None.

ROMization
control

This option is necessary when creating a
ROMization object.

-Xr -Xlk_option=-rom

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 3 of 35

Classification Description CA850(ca850.exe) CC-RH(ccrh.exe)

Preprocessor
processing
setting

Includes source program comments in the
preprocessing output.

-C -Xprerocess=comme
nt

Assumes that #define is entered before the C
source program.

-D -D

Executes preprocessing only for a C source
program and outputs the results to the
standard output.

-E None.

Specifies the folder to search the header file
of the C source program.

-I -I

Executes preprocessing only for a C source
program and outputs the results to a file.

-P -P

Assumes that #undef is entered before the C
source program.

-U -U

Assumes that .set is entered before the
assembler source.

-Wa,-D -D

Specifies the folder to search the header file
of the assembler source file.

-Wa,-I, -I

In addition to ordinary comments, interprets
all characters that appear after "//" and before
the end of the line as comments.

-Xcxxcom Always in effect

Outputs a warning message in response to
initialization of a pointer type external
variable which uses a variable address that is
not an automatic variable or which uses a
function address.

-Xd None.

Specifies the upper limit for the number of
macro identifiers.

-Xm None. (note3)

Replaces a trigraph sequence. -t Always in effect

Memory saving
during
compilation

Reduces the memory capacity used in the
pre-optimizer phase during compiling.

-Wp,-D

None. Reduce the memory capacity used in the
machine dependent optimization phase
during compiling.

-Wi,-D

Error output
specification

Adds and saves error messages to the file. +err_file None.

Overwrites and saves error messages to the
file.

-err_file -Xerror_file

Specifies the maximum number of error
messages to be output.

-err_limit None. (note4)

Expansion
function
specification

Enables the expansion functions compatible
with the 78K microcontrollers C compiler
CC78Kx.

-cc78k None. (note5)

Optimization

This is the optimize for debugging option. -Od -Onothing

This is the default optimization option. -Ob -Odefault

This is the standard optimization option. -Og None.

This is the Level 1 advanced optimization. -O None.

This is the Level 2 advanced optimization
option (object size precedence).

-Os -Osize

This is the Level 2 advanced optimization
option (execution speed precedence).

-Ot -Ospeed

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 4 of 35

Classification Description CA850(ca850.exe) CC-RH(ccrh.exe)

Target code
optimization

Analyzes the data flow strictly and perform
the most advanced optimization.

-Wi,-O4 None.

Prevents optimization that allows branch
destination labels to be aligned.

-Wi,-P
This optimization is
suppressed by
default (note6)

File merging Merges the files when two or more files are
specified at the same time.

-Om -Xmerge_files

Inline expansion
optimization
control

Restricts the stack size for a function subject
to inline expansion in the intermediate
language so that inline expansion is not
performed for the large value.

-Wp,-G None.

Restricts the intermediate language size for a
function subject to inline expansion so that
inline expansion is not performed for the
large value.

-Wp,-N -Oinline_size (note7)

Performs inline expansion of a static function
that is referenced only once unconditionally.

-Wp,-S None.

Outputs function information to the standard
output or additionally outputs to the file.

-Wp,-l None.

Performs inline expansion of only a function
for which #pragma inline is specified.

-Wp,-inline -Oinline=1

Suppresses inline expansion of all functions,
including the function for which #pragma
inline is specified.

-Wp,-no_inline -Oinline=0

Deletes unnecessary functions from the
functions called from an entry function after
inline expansion.

-Wp,-r None.

Loop expansion
optimization
control

Expands a loop the specified times using
"for" and "while".

-Wo,-Ol -Ounroll

Expands a loop by fixing the number of times
of expanding the loop.

-Wo,-Xlo None.

strcpy, strcmp
expansion

Sets a 4-byte alignment condition for arrays
and structures and performs inline expansion
of strcpy() or strcmp() function calls.

-Xi -Xinline_strcpy (note8)

External variable
sort

Rearranges external variables starting from
the largest alignment size.

-Wo,-Op None.

Branch
instruction control

Arranges and outputs branch instructions,
giving precedence to the code size.

-Wo,-XFo None.

Register use
control

Allocates the specified external variable to
the specified register.

-r None.

Limits the number of registers used by the C
compiler.

-reg -Xreg_mode (note9)

Uses the mask register function. -Xmask_reg None. (note10)

Prologue/epilogu
e processing
control

Specifies whether or not to perform
prologue/epilogue processing of the function
based on runtime library function calls.

-Xpro_epi_runtime None. (note11)

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 5 of 35

Classification Description CA850(ca850.exe) CC-RH(ccrh.exe)

signed/unsigned
control

Specifies whether int type bit fields that do
not indicate the type specifier are handled as
signed or unsigned.

-Xbitfield None.

Specifies whether char type that do not
indicate the type specifier are handled as
signed or unsigned.

-Xchar None. (note12)

Specifies which integer type the enumeration
type matches.

-Xenum_type -Xenum_type (note13)

Variable
placement
control

Allocates data of less than the specified bytes
to the .sdata or .sbss section.

-G

-Xsection (note14)
Allocates const attribute data and character
string literals to the .sconst section.

-Xsconst

Outputs the frequency information file for the
variables used by the section file generator.

-Xcre_sec_data

-Omap
-Osmap (note15) -Xcre_sec_data_only

Specifies the name of the section file that is
used to specify section allocation of data
when the C compiler is activated.

-Xsec_file

Switch-case
statement output
code control

Specifies a mode in which the code of a
switch statement is to be output.

-Xcase -Xswitch

Generates one 4-byte branch table per case
label in a switch statement.

-Xword_switch None. (note16)

Structure packing
control

Specifies indirect address access to a
structure in byte units.

-Xbyte None.

Specifies alignment of structure members. -Xpack -Xpack

Far jump output
control

Uses jmp directive to branch to the specified
function.

-Xfar_jump -Xfar_jump

Uses the jmp instruction for an ordinary
interrupt function defined in C language.

-Xj None. (note17)

Comment output Outputs the C source program as a comment
to the assembler source file.

-Xc -Xpass_source

ANSI standard

Uses runtime library, without using the mulh
and divh directives for integers corresponding
to data that is 16 bits or less.

-Xe None.

Treats tentative definition of variables as
definition.

-Xdefvar None.

Makes C compiler processing comply strictly
with the ANSI standard and outputs an error
or warning for a specification that violates the
standard.

-ansi -Xansi

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 6 of 35

Notes:

*1: Regarding rules for the generation of bit manipulation instructions, refer to section 11.3, Controlling the
Output of Bit Manipulation Instructions (in V1.05.00 and later versions), in the CC-RH Compiler User’s
Manual (R20UT3516EJ0102).

*2: The CC-RH compiler does not support device files.

*3: The upper limit depends on the amount of memory on the host machine on which the program is to run.

*4: There is no upper limit on the number of error messages to be output.

*5: There is an option “-Xcheck=shc” for checking C source files which have been coded for SHC.

*6: Alignment is enabled by specifying the -Xalign4=all option.

*7: This is specified with the degree to which the code size can be increased as a percentage by inline
expansion.

*8: The memcpy and memset functions are also targets for inline expansion.

*9: CC-RH does not have a 26-register mode.

*10: The RH850 does not have mask register functions since zero extension is handled on the hardware side.

*11: Runtime library function calls are not always used in prologue and epilogue processing for functions.

*12: Variables without signs that are simply declared as char are always handled as signed.

*13: Integer types cannot be specified; they are automatically determined.

*14: This option was added in CC-RH V1.02.00; it collectively changes the default allocation of variables to
sections.

*15: There are no section files. When the -Omap or -Osmap option is specified, variables that are frequently

Classification Description CA850(ca850.exe) CC-RH(ccrh.exe)

Library
specification

Specifies the folder to search libraries. -L None. (note18)

Specifies the startup module to be used when
startup goes as far as the linker.

-R None.

Specifies the archive file that is referenced by
the linker.

-l -Xlk_option=-library=
file

Warning
message control

Specifies the level, output, and suppression
of a warning message.

-w None.

Outputs a warning message of the specified
number.

-won None.

Suppresses a warning message of the
specified number.

-woff -Xno_warning

Command file
specification Handles the specified file as a command file. @ @

CPU bug patch

Specifies the -p option for the assembler for
an assembler source file output by the C
compiler to output a code corresponding to a
CPU fault.

-Xv850patch -Xpatch

Each module Specifies options to each module. -W -Xasm_option
-Xlk_option (note19)

Other Performs advanced optimization. +Oc None.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 7 of 35

accessed are optimized for EP-relative one-instruction accesses.

*16: The widths of branch tables are automatically determined.

*17: The user must define the vector table.

*18: The library specified with the -library option is preferentially linked. If there is an unresolved symbol, the
library is found in order of the environment variables HLNK_LIBRARY1, HLNK_LIBRARY2, and
HLNK_LIBRARY3.

*19: -Xasm_option and -Xlk_option lead to the passing of arguments to the assembler and linker,
respectively.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 8 of 35

1.2 Assembler Options

Classification Description CA850(as850.exe) CC-RH(asrh.exe)

File

Generates an assemble list. -a -Xprn_path (note1)

Adds and saves error messages to the file. +err_file None.

Overwrites and saves error messages to the
file.

-err_file -Xerror_file

If the -a option is specified, an assemble list
generated is saved.

-l -Xprn_path

Assembler

Specifies the macro name to be defined. -D -D

Generates a machine language instruction on
the assumption that the data that is less than
the specified bytes is allocated to sections
with the sdata or sbss attribute in response to
external label access.

-G None. (note2)

Specifies the folder where the file specified
by the file input quasi directive is given
precedence to searching.

-I -l

Generates an object file that includes
information noting use of the mask register
function.

-m None. (note3)

Performs optimization that rearranges
instructions to avoid register/flag hazards.

-O None.

Outputs the execution status of the
assembler to the standard error output in
detail.

-v None.

Specifies the level, output, and suppression
of a warning message.

-w None.

Specifies far jump for branch instructions
(jarl, jr) that do not include 22/32.

-Xfar_jump -Xasm_far_jump

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 9 of 35

Notes:

*1: A file is not output to the standard output stream but to an assembler listing file.

*2: Generation of machine language instructions cannot be controlled with an option; it is solely determined by
the source code.

*3: The RH850 does not have mask register functions since zero extension is handled on the hardware side.

*4: The CC-RH compiler does not support device files.

Classification Description CA850(as850.exe) CC-RH(asrh.exe)

Device
Treats the memory space as having 256 MB. -X256M None.

Sets the higher address of the programmable
peripheral I/O register.

-bpc None.

Warning
message control

Suppresses a warning message of the
specified number.

-woff -Xno_warning

Other

Embeds the magic number common to V850
core.

-cn

None. Embeds the magic number common to
V850Ex core.

-cnv850e

Embeds the magic number common to
V850E2 core.

-cnv850e2

Specifies the target device. -cpu
None. (note4)

Specifies the folder where device files are
stored.

-F

Outputs debug information. -g -g

Specifies the name of the object file to be
assembled and output.

-o -o

Outputs code that avoids CPU faults. -p None.

Outputs the version information of the
assembler to the standard error output.

-V -V

Performs assembly processing on the
flash/external ROM side.

-zf None.

Handles the specified file as a command file. @ @

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 10 of 35

1.3 Linker Options

Classification Description CA850(ld850.exe) CC-RH(rlink.exe)

Input file

Performs linking according to the specified
link directive in link directive file.

-D
-start (note1)

Selects the compatibility of the format of the
link directive file with old versions.

-Xolddir

Output file

Adds and saves error messages to the file. +err_file None.

Overwrites and saves error messages to the
file.

-err_file None. (note2)

Specifies the name of the object file to be
generated.

-o -output

Outputs a link map that indicates allocation of
the input and output sections to the memory
space.

-m -list
-show

Outputs a link map that indicates allocation of
the input and output sections to the memory
space in the format of products older than
CA850 Ver. 2.60.

-mo -list
-show

Library

Searches the archive file (library file)
specified by the -l option from the specified
folder, standard folder in that order.

-L None. (note3)

Links the standard library of the compiler
(libc.a).

-lc
-library (note4)

Links the mathematical library of the compiler
(libm.a).

-lm

References the specified archive file when
resolving an unresolved external symbol
reference.

-l -library

Flash

Generates an object file for the flash/external
ROM relink function using the value specified
as the start address value of the branch
table.

-ext_table

None. (note5)
Generates the flash area object file from the
specified object file as the boot area object
file.

-zf

Device

Treats the memory space as having 256 MB. -X256M None.

Sets the security ID of an on-chip flash
memory device.

-Xsid None.

Suppress the option byte that is generated by
default.

-Xob=none None. (note6)

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 11 of 35

Classification Description CA850(ld850.exe) CC-RH(rlink.exe)

Linker

Outputs as the standard output the
information that can be used as a yardstick
for the sdata/sbss data allocation option that
is specified for the ca850 and as850.

-A None.

Performs linking in the 2-pass mode. -B None.

Outputs a warning message, not an error
message, and continues linking if an illegality
is found during relocation processing.

-E -change_message
(note7)

Outputs a message for all multi-defined
external symbols and stops link processing.

-M None.

Does not check the size and alignment
condition when linking an external symbol.

-T None.

Controls checking when the internal
ROM/RAM overflows.

-Ximem_overflow=w
arning -cpu (note8)

Regards the specified symbol value as the
entry point address value for the object file to
be generated.

-e -entry

Specifies the filling value for align holes
between sections of the generated object.

-f -space

Checks whether or not the files that use the
mask register function are mixed with files
that do not use this function.

-mc None. (note9)

Outputs detailed information when register
modes are mixed for all input object files.

-rc None. (note10)

Re-references the library file specified by the
-l option.

-rescan Re-reference is the
default behavior

Does not check for the allocation to the
internal ROM area.

-romless None. (note11)

Generates an object file in which the debug
information, line number information, and
global pointer table have been removed.

-s -nodebug
-strip

Does not check the size and alignment
condition of the symbol when linking an
undefined external symbol.

-t None.

Outputs the execution status of the linker in
detail.

-v None.

Does not output a warning messages. -w

-change_message=i
nformation=<number
>
-nomessage (note12)

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 12 of 35

Notes:

*1: Linkage directive files are not supported.

*2: Error messages are displayed in the linkage map file.

*3: The library specified with the -library option is preferentially linked. If there is an unresolved symbol, the
library is found in order of the environment variables HLNK_LIBRARY1, HLNK_LIBRARY2, and
HLNK_LIBRARY3.

*4: The configuration of the standard libraries differs between V1.02.00 and earlier versions and versions later
than that. In addition, the names of libraries that are specified as arguments also differ according to library
functions or conditions imposed by options in use. For details, section 7.1, Supplied Libraries, in the
CC-RH Compiler User’s Manual.

*5: No relinking function is provided.

*6: Option bytes cannot be specified with CC-RH. Specify OPTB0 as a [Flash Options] property on the [Flash
Options Setting] tabbed page.

*7: The -change_message option can change an error message to a warning message and continue
processing.

*8: Specify an address as the argument. Since an error message is output by default, change the error
number to a warning number by using -change_message.

*9: The RH850 does not have mask register functions since zero extension is handled on the hardware side.

Classification Description CA850(ld850.exe) CC-RH(rlink.exe)

Other

Searches a device file from the specified
folder.

-F

None. (note13)
Reads the device file for the target device
specified.

-cpu

Outputs the version information of the C
compiler to the standard error output.

-V

None. (note14)
Outputs option descriptions to the standard
error output.

-help

Checks whether or not the old function calling
and the calling specification of the current
version are mixed for all input object files.

-fc None.

References the library for a mask register
function.

-mask_reg None. (note9)

Generates a relocatable object file. -r

-form=relocate
Generates a relocatable object file in the old
mapping mode (CA850 Ver.2.30 or earlier).

-ro

References the corresponding register mode
library.

-reg None. (note15)

Handles the specified file as a command file. @ -subcommand

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 13 of 35

*10: Input of a file having a different register mode leads to an E0562408 error.

*11: Allocation to the internal ROM area is not checked by default.

*12: This option can be hidden by using the -change_message option to change a warning message to an
information message and using the -nomessage option to suppress information messages.

*13: The CC-RH compiler does not support device files.

*14: Display in the same way as is selected by these options is obtained by entering the rlink command and
pressing the [ENTER] key on the command line.

*15: Standard libraries are not provided for individual register modes. Reference is always to the standard
library generated by -Xreg_mode=common.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 14 of 35

1.4 Hex Converter Options

Notes:

*1: Error messages are displayed in the linkage map file.

*2: This option is only valid when Intel HEX files are specified.

*3: A section section is specified in the format -output=file=section.

*4: An address address is specified in the format -output=file=address1-address2.

*5: The CC-RH compiler does not support device files.

*6: For CC-RH, the linker (rlink.exe) handles conversion of HEX files. Information on the rlink version is
displayed by entering the rlink command on the command line and pressing the [ENTER] key.

Classification Description CA850(hx850.exe) CC-RH(rlink.exe)

File

Adds and saves error messages to the file. +err_file None.

Overwrites and saves error messages to the
file.

-err_file None. (note1)

Outputs the hex-converted result to the
specified file.

-o -output

Format

Regards the specified value as the maximum
block length.

-b -byte_count (note2)

Specifies the offset of the address to be
output.

-d None.

Specifies the hex format. -f -form

Converts and outputs code in the specified
section.

-l -output (note3)

Converts and outputs a symbol table. -S None.

Converts into hex format and outputs all the
codes in the area specified by the specified
address to the specified size.

-U -output (note4)
-space

When converts and outputs the symbol table,
also converts and outputs local symbols.

-x None.

Disables use of the information of the internal
ROM area defined by the device file when
the -U option is specified.

-rom_less None. (note4) (note5)

Generates as many null characters (¥0) as
the size of a section for a section with the
section type NOBITS and section attribute A.

-z None.

Other

Searches a device file from the specified
folder.

-F None. (note5)

Outputs the version information of the C
compiler to the standard error output.

-V None. (note6)

Handles the specified file as a command file. @ -subcommand

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 15 of 35

Chapter 2 Intrinsic Functions

This chapter gives a comparison table listing correspondences between intrinsic functions for the CC-RH and
CA850 compilers.

If an intrinsic function which is for CA850 rather than CC-RH is called, CC-RH compiles it as an ordinary
function. If there is no definition, an error will occur during linking.

Instruction Description CA850 CC-RH

di
Disables interrupts

void __DI(void); void __DI(void);

ei
Enables interrupts

void __EI(void); void __EI(void);

nop
No operation

void __nop(void); void __nop(void);

halt
Stops the processor

void __halt(void); void __halt(void);

satadd
Saturated addition

long a, b;
long __satadd(a, b);

long a, b;
long __satadd(a, b);

satsub
Saturated subtraction long a, b;

long __satsub(a, b);
long a, b;
long __satsub(a, b);

bsh
Halfword data byte swap

long a;
long __bsh(a);

long a;
long __bsh(a);

bsw
Word data byte swap long a;

long __bsw(a);
long a;
long __bsw(a);

hsw
Word data halfword swap

long a;
long __hsw(a);

long a;
long __hsw(a);

sxb
Byte data sign extension

char a;
long __sxb(a); None.

sxh
Halfword data sign extension short a;

long __sxh(a); None.

mul

Instruction that assigns the
higher 32 bits of
multiplication result
to a variable using
mul32 instruction

long a, b;
long __mul32(a, b);

long a, b;
long __mul32(a, b);

mulu

Instruction that assigns the
higher 32 bits of unsigned
multiplication result
to a variable using
mul32u instruction

unsigned long a, b;
unsigned long __mul32u(a,b);

unsigned long a, b;
unsigned long __mul32u(a,
b);

sasf Flag condition setting with
logical left shift

long a; unsigned int b;
long __sasf(a, b); None.

― Controls interrupt level (note1)
int NUM;
void __set_il(NUM,
“interrupt-request name”);

int NUM;
void* ADDR;
void __set_il_rh(NUM,
ADDR);

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 16 of 35

note1：In the CA850, a character string defined in the device file should be specified as “interrupt-request
name". In the CC-RH, specify the address of the interrupt control register as ADDR.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 17 of 35

Chapter 3 Predefined Macros
This chapter gives a comparison table listing correspondences between predefined macros for the CC-RH
and CA850 compilers.

CA850 Macro Name CA850 Definition CC-RH Macro Name

__LINE__ Line number of source line at that point
(decimal). __LINE__

__FILE__ Name of assumed source file (character
string constant). __FILE__

__DATE__ Decimal constant 1 (defined when -ansi
option is specified) __DATE__

__TIME__ Translation time of source file __TIME__

__STDC__ Decimal constant 1. (Defined when the
-Xansi option is specified) __STDC__ (note1)

__v800
__v800__
__v850
__v850__
__v850e
__v850e__
__v850e2
__v850e2__

Decimal constant 1.

__RH850
__RH850__
__v850e3v5
__v850e3v5__ (note2)

__CA850
__CA850__ Decimal constant 1. __CCRH

__CCRH__ (note2)

__CHAR_SIGNED__
Decimal constant 1. (Defined when signed
is specified by the -Xchar option or when
the -Xchar option is not specified).

__CHAR_SIGNED__ (note2)

__CHAR_UNSIGNED__ Decimal constant 1 (Defined when
unsigned is specified by the -Xchar option) None.

__DOUBLE_IS_32BITS__
_DOUBLE_IS_32BITS Decimal constant 1. __DOUBLE_IS_32BITS__

(note2) (note3)

__CPUmacro__

Macro indicating the target CPU. Decimal
constant 1. A character string indicated by
"product type specification" in the device
file with "_ _" prefixed and "_" or "_
_"suffixed is defined.

None. (note4)

__reg32__
Decimal constant 1.
(Defined when the -reg=32 option is
specified)

__reg32__ (note2) (note5)

__reg26__
Decimal constant 1.
(Defined when the -reg=26 option is
specified)

None.

__reg22__
Decimal constant 1.
(Defined when the -reg=22 option is
specified)

__reg22__ (note2) (note6)

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 18 of 35

Notes:

*1: This option is defined when the -Xansi option is specified.

*2: Values are not set.

*3: This macro is only valid when -Xdbl_size=4 is specified.

*4: The CC-RH compiler does not support device files.

*5: This macro is defined when the -Xreg_mode=32 option is specified.

*6: This macro is defined when the -Xreg_mode=22 option is specified.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 19 of 35

Chapter 4 Extended Language Specifications
This chapter gives a comparison table listing correspondences between extended language specifications for
the CC-RH and CA850 compilers.

Notes:

*1: CA850 uses an extended statement when assembler instructions are embedded in functions written in the
C language. CC-RH treats the function itself as an assembler instruction and inline expands
assembly-language functions declared with #pragma inline_asm at the sites of function calls.

*2: The specifiable types and attribute strings of sections differ between the CA850 and CC-RH compilers.

Description CA850 CC-RH

Description with
assembler instruction
(note1)

#pragma asm
assembler instruction
#pragma endasm

#pragma inline_asm function-name [,
function-name ...]

__asm(“assembler instruction”); None.

Inline expansion
specification

#pragma inline function-name
[, function-name ...]

#pragma inline function-name [,
function-name ...]

Data memory allocation
(note2)

#pragma section section-type begin
Variable declarations and definitions
#pragma section section-type end

#pragma section attribute strings
Variable declarations and definitions
#pragma section default

#pragma section section-type
“ section-name” begin
Variable declarations and definitions
#pragma section section-type
“section-name” end

#pragma section attribute strings
["section name"]
Variable declarations and definitions
#pragma section default

Program memory
allocation

#pragma text “section-name”
function-name #pragma section text ["section name"]

Variable definitions
#pragma section default pragma text “ section-name”

Peripheral I/O register
name validation
specification (note3)

#pragma ioreg None.

Interrupt/exception
handler specification
(note4)

#pragma interrupt
interrupt-request-name function-name
allocation-method
__interrupt function-definition,
or function-declaration

#pragma interrupt function-name
[interrupt specification]

#pragma interrupt
interrupt-request-name function-name
allocation-method
__multi_interrupt function-definition,
or function-declaration

#pragma interrupt function-name
 (enable=true, [interrupt specification])

Interrupt disable
function specification

#pragma block_interrupt
function-name

#pragma block_interrupt
function-name

Task specification #pragma rtos_task function-name None.

Structure type packing
specification #pragma pack ([1|2|4|8]) #pragma pack ([1|2|4])

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 20 of 35

*3: CC-RH does not support device files; access is by including “iodefine.h”, the header file for peripheral I/O
registers.

*4: With the CA850 compiler, branch instructions for functions written as interrupt functions are automatically
allocated to the interrupt handler addresses. With CC-RH, the user must define and allocate interrupt and
exception vectors.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 21 of 35

Chapter 5 Assembler Directives
This chapter gives a comparison table listing correspondences between assembler directives for the CC-RH
and CA850 compilers. Directives are handled directly by the assembler executing a sequence of processing
and do not become machine code.

Description CA850 CC-RH

Section Definition Quasi
Directives

.bss .dseg bss

.const .cseg const

.data .dseg data

.previous None.

.sbss .dseg sbss

.sconst .cseg zconst

.sdata .dseg sdata

.sebss .dseg ebss

.section .section

.sedata .dseg edata

.sibss .dseg ebss

.sidata .dseg edata

.text .cseg text

.tibss

.tibss.byte

.tibss.word

.dseg tbss4

.dseg tbss5

.dseg tbss7

.dseg tbss8

.tidata

.tidata.byte

.tidata.word

.dseg tdata4

.dseg tdata5

.dseg tdata7

.dseg tdata8

vdbstrtab None.

.vdebug None.

.vline None.

Symbol Control Quasi
Directives

.ext_ent_size None. (note1)

.ext_func None.

.file .file

.frame None.

.set .set

.size None.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 22 of 35

Description CA850 CC-RH

Location Counter
Control Quasi Directives

.align .align

.org .offset (note2)

Area Allocation Quasi
Directives

.byte .db

.hword .db2
.dhw

.shword .dshw

.word .db4
.dw

.float .float

.lcomm None.

.space .ds

.str .db

Program Linkage Quasi
Directives

.globl .public

.extern .extern

.comm None.

Assembler Control
Quasi Directive

.option reg_mod $REG_MODE

.option nomacro $NOMACRO

.option macro $MACRO

.option data $DATA

.option sdata $SDATA

.option nowarning $NOWARNING

.option warning $WARNING

File Input Control Quasi
Directives

.binclude $binclude

.include $include

Repetitive Assembly
Quasi Directives

.irepeat .irp

.repeat .rept

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 23 of 35

Notes:

*1: No relinking function is provided.

*2: In the CC-RH assembler, “.org” is a directive that indicates the start of an absolute address section.

Description CA850 CC-RH

Conditional Assembly
Quasi Directives

.else $else

.elseif $elseif

.elseifn $elseifn

.endif $endif

.if $if

.ifdef $ifdef

.ifn $ifn

.ifndef $ifndef

Skip Quasi Directives
.exitm .exitm

exitma .exitma

Macro Quasi Directives

.macro .macro

.local .local

.endm .endm

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 24 of 35

Chapter 6 Peripheral I/O Registers

This chapter describes the handling of peripheral I/O registers by the CA850 and CC-RH compilers.

6.1 Peripheral I/O Registers in CA850

For the CA850 compiler, when the #pragma ioreg directive is added, access to peripheral I/O registers in the
C language is possible by using the names of the registers. These names and the corresponding addresses
are registered in a device file and the names are converted into addresses during assembly. The names of
registers that are registered in a device file are described in the user’s manual for each MCU.

6.2 Peripheral I/O Registers in CC-RH

Rather than having device files, the CC-RH compiler supports access to peripheral I/O registers through the
inclusion of “iodefine.h”, a list of the names of peripheral I/O registers and the corresponding addresses.
When a new project is created in the CS+, the CS+ generates an I/O header file "iodefine.h" for the target
MCU specified in the project and registers it as a source file in the project. The I/O header file defines the
names of the registers provided in the MCU and their addresses. The header file can also be generated by
right-clicking the [CC-RH (Build Tool)] node in the CS+ project tree and then clicking [Generate I/O Header
File].

When accessing a register in a C-language program, include the I/O header file. By specifying the header file
as a parameter for the –Xpreinclude option, the #include specification can be omitted from the source file. The
–Xpreinclude option can be specified by selecting the [Compile Options] tab => [Preprocess] category =>
[Include files at head of compiling units]. In this property setting, specify the I/O header file for the target MCU.

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 25 of 35

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 26 of 35

Chapter 7 Interrupts and Exceptions

This chapter describes interrupt and exception handlers for the CA850 and CC-RH compilers.

7.1 Interrupts and Exceptions in CA850

The CA850 compiler places branch instructions for functions specified with ‘function-name’ at the handler
address corresponding to ‘interrupt-request-name’ specified by the #pragma interrupt directive. Specify the
name of an interrupt request registered in the device file as ‘interrupt-request-name’. The details of
‘interrupt-request-name’ are described in the user’s manual for each MCU.

When the __interrupt qualifier is added, the function is compiled as an interrupt function.

When the __multi_interrupt qualifier is added, the function is compiled as a function for multiple interrupts.

For example, the handler address for the interrupt request with the name “INTP0” for the V850ES/FJ3 is 0xA0.
In this case, using the following #pragma interrupt directive places a jr_funcint instruction from 0xA0. In
addition, the #pragma interrupt directive compiles the intfunc function as the interrupt function and outputs
processing for saving and restoring registers around the interrupt and exception handlers.

#pragma interrupt interrupt-request-name function-name allocation-method

#pragma interrupt INTP0 intfunc
__interrupt void intfunc(void) {
 …;
}

__interrupt function-definition, or function-declaration

__multi_interrupt function-definition, or function-declaration

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 27 of 35

7.2 Interrupts and Exceptions in CC-RH

When a #pragma interrupt directive is specified, the CC-RH compiles the function specified in "function name"
according to the specification in "interrupt specification".

For example, the "func" function is compiled as an interrupt function according to the #pragma interrupt
directive shown below. In addition, the processing for saving and restoring the ctpc, ctpsw, fpepc, and fpsr
and the ei and di instructions are output according to the interrupt specifications.

Note that the user should define and allocate interrupt and exception vectors in the CC-RH. When a new
project file is created in the CS+, the "vecttbl.asm" file is registered as a source file and it defines the format
for interrupt/exception vectors. Customize the file as necessary and allocate vectors to appropriate addresses
in accordance with the target MCU. The following describes the interrupt/exception vectors in "vecttbl.asm".

a. RESET

The following definition embeds the "jr32 __start" instruction at the head of the RESET section.

For example, when a new project is created for the RH850/F1L by the CS+, the "-start" linkage editor option
specifies the allocation of the RESET section at address 0x00 that is, the "jr32 __start" instruction is
embedded at address 0x00.

b. Interrupts and exceptions in direct vector method

The base location for handler addresses is obtained by adding the base address indicated by the RBASE or
EBASE register and the offset specific to the exception source. Either the RBASE or EBASE register is
selected through the PSW.EBV bit. The following definition assumes RBASE as the base address and
allocates interrupt/exception handlers immediately after RESET.

#pragma interrupt function-name [interrupt specification]

#pragma interrupt func (enable=true, callt=true, fpu=true)
void func (unsigned long eiic)
{
 …;
}

.section "RESET", text
 .align 512
 jr32 __start ; RESET

.section "RESET", text
 .align 512
 jr32 __start ; RESET

 .align 16
 jr32 _Dummy ; SYSERR

 .align 16
 jr32 _Dummy ; HVTRAP
 ・・・

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 28 of 35

In the "vecttbl.asm" file, an instruction for branching to the dummy function "_Dummy" is specified at the offset
locations corresponding to SYSERR, HVTRAP, FETRAP, etc. The "_Dummy" function is a routine that
repeats branches to itself. Customize it as necessary.

Modify "_Dummy" to "_interrupt-function name" at the offset locations corresponding to the exceptions and
interrupts that should be customized. In addition, define the interrupt functions through the #pragma interrupt
directive. The following shows an example for executing the interrupt function "func" when an exception
"SYSERR" occurs.

c. Interrupts and exceptions in table lookup method

Interrupts can be specified in the table lookup method, which is an extended specification for interrupts. In the
direct vector method, only one handler address is assigned to each priority level of EI-level interrupts; for all
interrupt channels having the same priority level, execution therefore branches to the same interrupt handler
address. However, there will be cases where the application requires a separate code area to be used for
each interrupt handler. To implement this, the CC-RH provides the table lookup method.

In the "vecttbl.asm" file, an interrupt/exception table for the table lookup method is defined in the EIINTTBL
section. When a new project file is created for the RH850/F1L by the CS+, the "-start" linkage editor option
specifies allocation of the table immediately after the RESET section.

The addresses where the dummy function "_Dummy_EI" is stored are specified in areas offset from the head
of the EIINTTBL section by an address of a multiple of four. Thus, execution branches to _Dummy_EI when
an exception/interrupt at interrupt priority level n in the table lookup method occurs. The "_Dummy_EI"
function is a routine that repeats branches to itself. Customize it as necessary.

.section "RESET", text
 .align 512
 jr32 __start ; RESET

 .align 16
 jr32 _func ; SYSERR

 .align 16
 jr32 _Dummy ; HVTRAP
 ・・・

#pragma interrupt func (priority=SYSERR, callt=true, fpu=true)
void func1(unsigned long feic)
{
 …;
}

 .section "EIINTTBL", const
 .align 512
 .dw #_Dummy_EI ; INT0
 .dw #_Dummy_EI ; INT1
 .dw #_Dummy_EI ; INT2
 .rept 288 - 3
 .dw #_Dummy_EI ; INTn
 .endm

Modify "_Dummy" to "_interrupt-function name".

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 29 of 35

Modify "#_Dummy_EI" to "#_interrupt-function name" at the offset locations corresponding to the channels
that should be customized. In addition, define the interrupt functions through the #pragma interrupt directive.
The following shows an example for executing the interrupt function "func" when a channel-9 interrupt
"EIINT9" occurs.

Note that the direct vector method is the default exception/interrupt method in the RH850; to switch to the
table lookup method, modify the interrupt control register value.

 .section "EIINTTBL", const
 .align 512
 .dw #_Dummy_EI ; INT0
 .dw #_Dummy_EI ; INT1
 .dw #_Dummy_EI ; INT2
 .dw #_Dummy_EI ; INT3
 .dw #_Dummy_EI ; INT4
 .dw #_Dummy_EI ; INT5
 .dw #_Dummy_EI ; INT6
 .dw #_Dummy_EI ; INT7
 .dw #_Dummy_EI ; INT8
 .dw #_func ; INT9
 .rept 288 - 10
 .dw #_Dummy_EI ; INTn

#pragma interrupt func (channel=9 enable=true, callt=true, fpu=true)

void func (unsigned long eiic)
{
 …;
}

Modify "#_Dummy_EI" to
"#_interrupt-function name".

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 30 of 35

Chapter 8 ROMization

The data for variables with initial values should be stored in ROM and then copied to RAM before such
variables are accessed after the MCU is reset. This sequence is called ROMization. The ROMization
processing differs between the CA850 and CC-RH. This section describes ROMization processing in the CX
and CC-RH.

8.1 ROMization Processing in CA850

For the CA850 compiler, a section (.sdata or .data) to which variables having initial values are allocated will
be ROMized by default. The initial-value data are allocated to addresses in ROM to which ROMization area
reservation code (rompcrt.o) has been allocated and copied from ROM to RAM using the _rcopy function.
Addresses for the copy destination (addresses for the .sdata or .data section) are specified by a link directive
file (*.dir).

The following shows an example of C source code calling the copy function when rompcrt.o is used for
ROMization.

The symbol ‘_S_romp’ is defined in the ROMization area reservation code file (rompcrt.o). ‘&_S_romp’ is the
address where the initial-value data which have been stored in ROM start and is automatically determined by
the linker.

int _rcopy(unsigned long *, long);
extern unsigned long _S_romp;

void main(void) {

int ret;
ret = _rcopy(&_S_romp, -1);

 …;
}

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 31 of 35

8.2 ROMization Processing in CC-RH

a. Specifying ROMization
In the CC-RH, the target sections for ROMization should be specified through the "–rom" linkage editor option.
<ROM-section name> is a target section for ROMization. Use the "–start" linkage editor option to allocate the
sections specified as <ROM-section name> to ROM and those specified as <RAM-section name> to RAM.

In the CS+, select the [Link Options] tab => [Section] category, click the [...] button at the right end of the
[ROM to RAM mapped section] row, and specify the sections to be copied from ROM to RAM in the format of
<ROM-section name>=<RAM-section name> with one section per line.

When a new project is created by the CS+, the following options are specified by default.

When an additional section other than the .data section is specified to store variables with initial values, use
the "–rom" option to add this section to the target sections for ROMization. The following shows an example
when the .sdata23 section is added as a target of ROMization (the RAM section name is .sdata.R).

-rom=<ROM-section name>=<RAM-section name>

-rom=.data=.data.R

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 32 of 35

b. Defining the initialization table
In the CC-RH, the ROMized data should be copied from ROM to RAM by using the "_INITSCT_RH" function.
When a new project file is created by the CS+, the startup routine "cstartm.asm" is registered as a source file
and it defines the initialization table to be used to copy the data of variables with initial values as follows.

The initialization table is allocated to the .INIT_DSEC.const section, and a 4-byte area is allocated to each of
the .data section start address, .data section end address, and .data.R section start address in that order.

Prefixing a section name with "__s" generates a reserved symbol that has the start address of the section as
its value. Likewise, prefixing a section name with "__e" generates a reserved symbol that has the end address
of the section as its value. Using these reserved symbols is recommended for additional specifications to the
initialization table.

When an additional section is specified to store variables with initial values, add the start and end addresses
of the section in this initialization table.

In the CC-RH, the "_INITSCT_RH" function can also be used to initialize with zero the sections where
variables without initial values are to be stored. The startup routine "cstartm.asm" defines the
zero-initialization table.

;---
; section initialize table
;---
 .section ".INIT_DSEC.const", const
 .align 4
 .dw #__s.data, #__e.data, #__s.data.R

;---
; section initialize table
;---
 .section ".INIT_DSEC.const", const
 .align 4
 .dw #__s.data, #__e.data, #__s.data.R
 .dw #__s.sdata23, #__e.sdata23, #__s.sdata23.R

 .section ".INIT_BSEC.const", const
 .align 4
 .dw #__s.bss, #__e.bss

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 33 of 35

The zero-initialization table is allocated to the .INIT_BSEC.const section, and a 4-byte area is allocated to
each of the .bss section start address and .bss section end address in that order. When an additional section
other than the .bss section is specified to store variables without initial values, add the addresses of the
section in the same format as the existing settings.

c. Calling the copy function
The "_INITSCT_RH" function is called from the startup routine "cstartm.asm". This processing initializes the
sections defined in each table.

mov #__s.INIT_DSEC.const, r6
 mov #__e.INIT_DSEC.const, r7
 mov #__s.INIT_BSEC.const, r8
 mov #__e.INIT_BSEC.const, r9
 jarl32 __INITSCT_RH, lp ; initialize RAM area

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 34 of 35

Chapter 9 Section Allocation

This chapter describes how to allocate sections with the CA850 and CC-RH compilers.

9.1 Section Allocation in CA850

With the CA850 compiler, addresses for the allocation of sections are stated in a link directive file (*.dir).
When a link directive file is input to the linker, the addresses for the allocation of sections are specified. The
following shows the format of link directive files for the CA850 compiler.

As shown below, the .const section is allocated to 0x1000 and .pro_epi_runtime and .text sections in order
are allocated to rising address ranges from the end of the .const section. After that, .data, .sdata, .sbss,
and .bss sections are allocated to rising addresses in order from 0xfedf6000.

CONST:!LOAD ?R V0x1000 {
.const = $PROGBITS ?A .const ;

};

TEXT:!LOAD ?RX {

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime ;

.text = $PROGBITS ?AX .text ;
};

DATA:!LOAD ?RW V0xfedf6000 {

.data = $PROGBITS ?AW .data ;

.sdata = $PROGBITS ?AWG .sdata ;

.sbss = $NOBITS ?AWG .sbss ;

.bss = $NOBITS ?AW .bss ;
};

Segment name: !segment type ?segment attribute Vaddress {

Output-section name=$section type ?section attribute input-section name;
Output-section name=$section type ?section attribute input-section name;
…

} ;

Migrating from V850 to RH850 (Compiler Guide)

R20UT4014EJ0100 2017.3.16 Page 35 of 35

9.2 Section Allocation in CC-RH

In the CC-RH, section allocation addresses should be specified through the "-start" linkage editor option; the
link directive file in the CX or the like is not used. The following shows an example for specifying the "–start"
option in the CC-RH. For details, refer to the user's manual for the build process.

Through the above option settings, allocation of the RESET section begins from address 0x00. Allocation of
the EIINTTBL, .const, .INIT_DSEC.const, .INIT_BSEC.const, .text, and .data sections begins after the end of
the RESET section and proceeds toward higher addresses in that order. Allocation of the .data.R, .bss,
and .stack.bss sections begins from address 0xFEDE0000 and proceeds toward higher addresses in that
order.

In the CS+, section allocation can be specified through the GUI; select the [Link Options] tab => [Section]
category, and click the [...] button at the right end of the [Section start address] row.

The Section Settings dialog box will open; addresses and sections can be added and modified through
manipulation in this dialog box.

-start=RESET,EIINTTBL,.const,.INIT_DSEC.const,.INIT_BSEC.const,.text,.data/00000000,
.data.R,.bss,.stack.bss/FEDE0000

	Chapter 1　 Option
	1.1 Compiler Options
	1.2 Assembler Options
	1.3 Linker Options
	1.4 Hex Converter Options

	Chapter 2　 Intrinsic Functions
	Chapter 3　 Predefined Macros
	Chapter 4　 Extended Language Specifications
	Chapter 5　 Assembler Directives
	Chapter 6　 Peripheral I/O Registers
	6.1 Peripheral I/O Registers in CA850
	6.2 Peripheral I/O Registers in CC-RH

	Chapter 7　 Interrupts and Exceptions
	7.1 Interrupts and Exceptions in CA850
	7.2 Interrupts and Exceptions in CC-RH

	Chapter 8　 ROMization
	8.1 ROMization Processing in CA850
	8.2 ROMization Processing in CC-RH

	Chapter 9　 Section Allocation
	9.1 Section Allocation in CA850
	9.2 Section Allocation in CC-RH

