Version 0.1
Application Project Guide

Renesas SK-S7G2 with Clarinox Bluetooth Low Energy
Central and Peripheral Applications

Contents

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.
5.2.
5.3.

INEFOTUCTION ...t 3
[(T =0 [N SRR 3
REQUITEBIMENTS ... 3
Installation and Importing for €2 Studioceiiiiieiiiiiic e 3
Setting UP HardWareoovuuieiii et e e e e e e e e eaenes 4
Importing/Creating the ProjJECT........ ... uuiiiiiiiiiiiiii e 5
Configuring the ProJECL.........vvuiiii e e e e aanees 8
BUIlAING the PrOJECE... .. e 10
Running the appliCation ..o 11
Customizing the Application PrOJECEcoiiiiiieiiieeie e, 21
Application Source Files and PUIPOSEuviiiiiiiiiiiiiciie e 21
(O] oF=Tod 1q ¥ o1 1 (0] o 7SO 22
I 112 10 £ 22

1. Introduction

2. Prerequisites

This document describes building the application project on e2 Studio and running it on
Renesas Synergy SK-S7G2. This process requires the following prerequisites.

- Installing Renesas e2 studio and SSP Distribution on PC
- Installing “nRF Connect” app on Android mobile device
- Installing Clarinox Debugger tool on PC (Optional)

Installation instructions and the user guide for Clarinox debugger tool can be found in the
document “Clarinox Debugger User Manual’.

Also, being familiar with running applications on e2 studio and having Synergy SK-S7G2
platform tested for basic functionality would be useful. Users can run some sample
applications on the Synergy platform to check its functionality and to be familiar with the
process.

3. Requirements
This application has the following hardware requirements.

- Renesas Synergy SK-S7G2 kit
- Clarinox Joeyduino Shield Wireless module
- Smart Phone or mobile device

In order to use Clarinox Debugger over UART interface, the following is required.

- 1 USB-UART adapter
- 1 Mini USB cable
- Jumper wires to setup the serial connection

Installing, building and running the application require the following tools and software to
be pre-installed.

- e2 studio (tested with version 5 4 0 _015)
-SSP Distribution (tested with version 1.2.0)
- “nRF Connect” Android Mobile App

- Clarinox Debugger (tested with version 3.2.219)

4. Installation and Importing for e2 Studio

This section includes step-by-step process of importing the project and running the
application on Renesas Synergy SK-S7G2.

4.1.Setting up Hardware
The hardware setup for running the application is shown in Figure 01. The Clarinox
Joeyduino Shield wireless module should be connected on Renesas Synergy SK-S7G2
via Arduino interface available through J24-J27.

Figure 01: Renesas Synergy SK-S7G2 with Clarinox Joeyduino Shield

In order to debug the application, user can use Clarinox Debugger tool which comes with
a full detailed protocol analyzer when integrated with Wireshark allowing the users to
analyze Bluetooth and Wi-Fi messages.

This application uses JLINK interface available on Synergy SK-S7G2 for debugging.

When the board is powered up by connecting to the PC via J19 DEBUG_USB, Clarinox
Debugger can be configured for the J-Link debug connection via Tools -> Configuration -
> SEGGER JLINK RTT Interface. Configure the J-Link interface as shown in below screen
capture.

Configuration Manager X
General Configuration Parameter Value
Lua Command Line Pane
Message Browser Host Inteface USB
Basic Message Handler Jlink Emulator Serial Number 0
"C“lessagesDetE"T ,f-la“; JLink Emulator IP Address 127.00.1
arinox Symbal File Manager
TCP/IP Server Target Interface SWD
UART COM Port Target Device Name R7FS7G2TH
DP Server x = Target Interface Speed 64000
e E e RTT Control Block Address Range Start 120000
RTT Control Block Address Range End O 2007
Target RTT Channel 1
Factory Reset Ok | Cancel |

Figure 02: SEGGER J-Link Interface Configuration on Clarinox Debugger

After setting the configurations if the board is powered on, user can start the J-Link
debugger connection to the hardware via Connection -> Start -> SEGGER JLINK RTT
Interface. User can interact with the application via debugger virtual console. More details
on using Clarinox Debugger can be found in the document “Clarinox Debugger User
Manual”

4.2. Importing/Creating the project

The structure of the project folder is shown in the following figure.

——Api

—BSP
L—Common

—ClarinoxBlue
L—APT

———ClarinoxwLAN
L—API

——CommonAPI

——Demo

——APP

——BSP

— Dpebu

——Framewor

——Debug

——script

——src

——synergy

——synergy_cfg

——L1ib

__Source

—Bsp

— B luetooth

——JLinkRTT

——Source
L—Bluetooth

L wirelesssocC
L—Bluetooth

L—w11835
——GattServices

Figure 03: Project Folder Structure
Following table gives the details of the content of these folders.

Folder Content

Api Clarinox APIs for Bluetooth, WLAN, Common and BSP
Demo Project files and lib file for BleGattApp

Framework Renesas Synergy project S7G2_SK framework

Lib Clarinox Bluetooth and Softframe libraries

Source Project source code with BSP (J-link and UART) etc

Table 01: Project Folder Structure

Following steps describe how to import BLE Central and Peripheral application project
into e2 Studio workspace.

1. Click on File -> Import -> Existing Projects into Workspace

L
Import e
Select \“
Create new projects from an archive file or directory. | g E I

Select an import source:

type filter text

>

4 [General
JE Archive File
[«] CMSIS Pack
& Existing Projects into Workspace|
[} File System
i HEW Project
[T Preferences
=2 Rename & Import Existing C/C++ Project into Workspace
= Renesas CAT8KOR Project
1= Renesas Common Project File
4 (= C/C++
[c| C/C++ Executable
&% C/C++ Project Settings
Existing Code as Makefile Project
7= Inctall

m

@ T T Fnich

[§ F— — 4

Figure 04: Import Existing Project into Workspace

2. Select the root directory of the project and then two projects will appear under
“Projects”. Select all of them and click Finish. Then two projects named
“‘BleGattApp” and “S7G2_SK” will be loaded into the workspace.

r Import

Import Projects
Select a directory to search for existing Eclipse projects.

| o

@) Select root directory: D:\BleCentralAndPeripheralApplication v Browse...
(") Select archive file: Browse...
Projects:

[¥] BleGattApp (D:\BleCentralAndPeripheral Application\Demo) Select All

[¥] S7G2_SK (D:\BleCentralAndPeripheralApplication\FrameWork)
Deselect All

Refresh

Options

["| Search for nested projects

[Copy projects into workspace

["| Hide projects that already exist in the workspace

Working sets
[T Add project to working sets

‘orking set Select...

Finish] [Cancel I

S
I
w
1)
(al
=
o
~—

Figure 05: Locating the Project Root Directory

4.3.Configuring the project
In order to build the projects, the path for e2 Studio utilities should be set under project
environment variables. Right click on BleGattApp project and select properties. Then edit
“PATH?” variable under Environment as shown in the following figure. Click on “Edit” button

add or modify the existing path.

-
E Properties for BleGattApp

type filter text

> Resource
Builders
a4 C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
Tools Paths
[C/C++ General
Project References
Run/Debug Settings

Environment

4
4
4

Configuration: [Debug [Active]

)

'] [Manage Configurations...

Environment variables to set

Variable
AMS_KEEP_FILE

AMS_LICENSE_PATH

Value Origin
${synergyKeepFile} USER: PREFS
${synergyLicenseFile} USER: PREFS

QD LiBlacentrelzndberoh,, EULO S(STELT
PATH C:\Program Files (86)\... USER: CONFIG
PWD DA\BleCentralAndPeriph... BUILD SYSTEM

Select...

@ Append variables to native environment

() Replace native environment with specified one

Apply]

[Restore Defaults] [

J |

Cancel

®

[ok

Figure 06: Edit PATH Variable for BleGattApp

If the path for utilities folder is already added then check for the correct path, if not add
the correct path, eg: “D:\Renesas\e2_studio\Utilities”.

r R
Edit variable - @
Name: PATH
Value: SIS0 Renesas\ 2 studio\Utiities Il Variables |
[OK] [Cancel]

Figure 07: Add or Modify PATH Variable
The same should be added under PATH variable for S7G2_SK project as well.

The libraries and preprocessor definitions should already be included under BleGattApp
project’s build settings as shown below.

r B
E} Properties for BleGattApp Lﬂﬂ

type filter text Settings =R v v
Resource = i - —=
Builders & Tool Settings l 3 Toolchains | # Build Stepsl Build Artifactl [0ip Binary Parsers | €@ Error Parsers| A~
C/C++ Build -
4, “'_ o % LE—-”Target Processor Include paths (-) a8 8 iy
Build Variables B Optimization =~
N (=3 imizati -
Environment el "../../FrameWork/synergy/ssp/inc" -

(2 Warnings

Logging s _ "./../FrameWork/synergy/ssp/inc/bsp"
Settings (%2 Debugging "/ ./FrameWork/synergy/ssp/inc/bsp/cmsis/Include”
S 4) Cross ARM GNU Assembler "./../FrameWork/synergy/ssp/inc/driver/api"
Tool Chain Editor = w'rp " s "
(3 Preprocessor ../../FrameWork/synergy/ssp/inc/driver/instances

Tools Paths ® Includes "../../FrameWork/synergy_cfg/ssp_cfg/framework/el/tx"
C/C++ General .L;‘gs Wami "../../FrameWork/synergy/ssp/inc/framework/el"
Project References G amings "./../FrameWork/synergy_cfg/ssp_cfg/framework/el" =|

S Mi
(222 Miscellaneous

|
Run/Debug Settings «/../Source/Bsp/WirelessSOC/Bluetooth” ‘

4 %) Cross ARM C Compiler "../../Api/BSP/Common"
(% Preprocessor "././Source/Bsp/WirelessSOC/WLAN" A
(2 Includes "../../Source/Bsp/Boards/Utilities/Third_Party/IAP_ServerV1.0.0"

"./../Source/Bsp/Boards/Utilities/Third_Party/lwip_v1.3.2/src/include”

sy imizati
¢ Optimization "../../Source/Bsp/Boards/Utilities/Third_Party/lwip_v1.3.2/src/include/lwip"

(2 Warnings ".././Source/Bsp/Boards/Utilities/Third_Party/lwip_v1.3.2/src/include/netif" =l
‘L\E Miscellaneous "../../Source/Bsp/Boards/Utilities/Third_Party/lwip_v1.3.2/src/include/ipv4" -

4 1% Cross ARM C++ Compiler cra T T — e R e aeaer == — :
(% Preprocessor Include files (-include) & %

(2 Includes
(%2 Optimization
(% Warnings
(25 Miscellaneous
4) Cross ARM GNU Archiver
(22 General

(i)) [OK] [Cancel J

Figure 08: Included Libraries under BleGattApp Build Settings

4.4.Building the Project
The order of building two projects is as follows.

1. BleGattApp
2. S7G2_SK

In order to build the project, right click on BleGattApp project and select “Build Project”.
This should generate BleGattApp.a library in the debug folder of the project.

For S7S2_GK Project, copy the BleGattApp.a library generated above to the Lib folder in
the project which already contains Clarinox libraries for WLAN, Bluetooth, Softframe and
WiLink. This Lib folder and the libraries should be included to the project as shown in
Figure 09.

Right click on S7S2_GK Project and select “Build Project”
BleGattApp and S7G2_SK should build with few compiler warnings.

type filter text
Resource
Builders
v C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editc
C/C++ General
Project References
Run/Debug Settin

@

Properties for S7G2_SK

Settings

(2 Target Processor
Optimization

Warnings

2 Debugging

~ & Cross ARM GNU Assembler

(2 Preprocessor
¢ Includes
Warnings

Miscellaneous

~ & Cross ARM C Compiler

2 Preprocessor
2 Includes

Optimization
(2 Warnings

Miscellaneous

~ & Cross ARM C Linker

2 General
i Libraries

Miscellaneous

~ ® Cross ARM GNU Create Flash Image

2 General

~ & Cross ARM GNU Print Size

General

Libraries (-1) g8 85 #H
tx
BleGattApp
Clx18xx
ClxSoftFrame
ClxWlan
ClxBluetooth
supc++

Library search path (-1) a8 85 &
“../synergy/ssp/src/framework/el/tx/cmd_gcc”

*./../Demo/Debug”

"./Lib"
"$iworkspace_loc:/${ProjName}/synergy/ssp/src/bsp/cmsis/DSP_Lib/cm4_gec)”
"$iworkspace_loc:/${ProjName}/synergy/ssp/src/framework/el/bx/cmd_ged)”

Cancel

~

Figure 09: Included Libraries for S7G2_SK Project

4.5.Running the application

In order to run the application, the Synergy SK-S7G2 board should be assembled with
Joeyduino Shield as shown in Figure 01. Power on the board via DEBUG_USB by

connecting the micro-USB to PC.

To debug the application right click on S7G2_SK Synergy project and select Debug As -
> 2 Renesas GDB Hardware Debugging. User can also click on the debug icon on e2

studio to debug the application.

If this project is run for the first time then it will ask for the debug hardware. Click on the
J-Link ARM. Then select from the given list of devices as shown below. Then it will start

downloading the application on the Synergy SK-S7G2.

r[o__’] Renesas Hardware Debugging [I&l‘
No configuration exists. Please select target device:
R7FS12476 2
R7FS12477 A
R7FS12878 7
R7FS3A3TA
R7FS3A7
R7FS3AT7C
R7FS5D97C
R7FS5D97E
R7FS7G2
R7FS7G27G
R7FS7G27H
R75721000
R75721000_DualSPI
R75721001 -
'?) [OK l I Cancel]
A

Figure 10: Select the Device for Synergy SK-S7G2

If Clarinox Debugger is used for debugging the application make sure to start the J-Link
debugging connection just after downloading the program on Synergy SK-S7G2. Start
Clarinox Debugger connection via Start -> Connection -> SEGGER JLink RTT Interface.

When the application starts running on the hardware, a menu to choose between BLE
Peripheral and BLE Central applications will be displayed on the debugger console.
Following two sections describe how to run each of these sub-applications.

4.5.1 Running BLE Central

When the BLE Central Application is run on Synergy SK-S7G2, it first initializes the
Bluetooth stack. The stack initiates connection to the Controller via UART (or USB or any
other method specified) at this point. Then presents a menu to the user in the debugger
console. The selections will provide the user with options to use the central application
for termination Bluetooth stack, searching for Bluetooth devices, connecting to Bluetooth
devices and using the provided profiles (GAP/GATT). Below shows a typical screen
printed when the central application is executed.

Virtual Console v o X

select how to proceed:

1. Ble Central
2. Ble Peripheral

Select [1..2] - 1

ClarinoxBlue initialization completed
ClarinoxSoftFrame version: 4.4.2.0
ClarinoxBlue version: €.1.0.0
Local Device Address: 000000000000
Local Device HCI Version: 07

Local Device HCI Revision: 00

Local Device Manufacturer: 00

There are 1 GATT Clients available
The active client is the client 0

Enter your selection:

Start Scanning

Stop Scanning

. Connect to a discovered device

Bond to the active GATT client

Start Encryption

Disconnect from the device

Discover Primary Services

. Discover All Characteristics of a Service
. Discover All Descriptors of a Characteristic
. Enable Notifications for a Characteristic
. Enable Indications for a Characteristic

- Read Attribute Value

. Write Attribute Value

. Get active connection Details

. Delete paired device Info

. Delete All paired devices

. Terminate Bluetooth stack

1.
2.
3

4.
5.
6.
7.

Figure 11: Menu for BLE Central
Below steps show running of an example scenario with BLE central application.

Since Bluetooth stack has been initialized already, the user can start scanning for
available devices by pressing 1. This will allow searching for Bluetooth low energy devices
and listing the devices found in the vicinity. All advertised peripheral devices will be listed.
The signal strength is given in dBm for Bluetooth enabled devices. The signal strength
will be provided to the user of the discovered Bluetooth enabled devices. A typical screen
capture is provided below.

PE:c317Y =
Found : <null> (Advertising Type = 00) (Address Type = 00) (Address S52B793FB8E6R0) (RSSI

Found : <null> (Advertising Type = 00) (Address Type = 0l1l) (Address ES5898CS8D2E1) (RSSI

Found : <null> (Advertising Type = 00) (Address Type = 00) (Address 87CCC1lFBEGR0) (RSSI

Figure 12: Scanning and Listing nearby BLE Devices

In order to connect to a listed device user should stop scanning by pressing 2. Then the
general menu will appear and user can enter 3 to connect to a discovered device. This
will result in displaying all the discovered devices with a number so that user can choose
the device need to be connected as shown in the below image.

Select [1..17] : 3
Please select a device

- <null> (52B793F8EGRAD)
- <null> (ES5898CS8DZ2E1l)
- <null> (87CCClF8EGR0)
- Return to previous menu

Figure 13: Scanned Devices List

This allows a connection established between the local BLE Central and the selected BLE
peripheral device. Once a device is selected from the above list, connection with the
selected remote device will be established.

Then the user can discover all the primary services from the remote device by pressing
7. A typical screen capture is shown below.

Select [1..17]1 :- 7

The number of services found: 5
: First Handle: 0Ox1l Last Handle: 0x7 Uuid: 0x1800

: First Handle: 0x8 Last Handle: Oxb Uuid: 0x1801

: First Handle: Oxc Last Handle: Oxle Uuid: 0x180a

: First Handle: 0x1lf Last Handle: 0x2€ Uuid: 0x£f0002a00 (1€ byte)
: First Handle: 0x27 Last Handle: 0OxZ2e Uuid: 0x£f000aa20 (1€ byte)

Figure 14: Primary Services

User can find all the characteristics of a service discovered above by pressing 8 which
then prompt the user to enter the service index as show in above image. As an example,
the characteristics of the service with index O listed in above image are listed as shown
in the below picture.

Select [1..17] :- 8
Enter the index of the service (First service has index 0): 3

The number of characteristics found: 3

0: Declaration Handle: 0x20 Properties: 18 Value Handle: 0Ox21 Uuid: 0x£000za0l
1: Declaration Handle: 0x23 Properties: 10 Value Handle: 0x24 Uuid: 0x£000aa02
2: Declaration Handle: 0x25 Properties: 10 Value Handle: 0x26€ Uuid: 0x£0002a03

Figure 15: Characteristics of a Primary Service

Next the user can find all the descriptors for a characteristic. When executing this option
9, the console prompts the user to provide the characteristic index as input. The
characteristic indexes are already discovered using the option 8 above (Discover All
Characteristics of a Service). A typical screen capture resulting the descriptors is shown
below.

Select [1..17] :- S
Enter the index of the characteristic(First characteristic has index 0): 0

The number of descriptors found: 1
0: Handle: 0x22 Uuid: 0x2S502

Figure 16: Descriptors of a Characteristic

User can also read and write to the connected BEL device. The example shown here has
got a Tl Sensor tag connected as a device. So, when write “01” to the sensor it will start
the sensor and measurements. This can achieve with menu item 13, “Write attribute
value”. Following picture shows the result after writing “01” to the sensor.

Virtual Console v X
Select [1..17] :- 13
Enter handle of the attribute (hex) to write to: 24
Enter the Hex value for the characteristic - beware: NO SIZE CHECK:01l

Write completed with result CLX SUCCESS

Figure 17: Result After Writing a value to a Connected Device

Then the sensor will start giving the measured values. Using menu option 12 “Read
Attribute Value” the temperature value can be read as shown below.

Select [1..17]1 :- 12
Enter handle of the attribute (hex) to read:Z1l

Enter the beginning index to read from (enter 0 to read from the beginning):0

Enter the max size to read:4

Read completed Successfully: 4 bytes
Data: 5C 08 &0 0B

Figure 18: Result After Reading a value from a Connected Device

45.2 Running BLE Peripheral

When the BLE Peripheral Application is run on Synergy SK-S7G2, it first initializes the
Bluetooth stack. The stack initiates connection to the Controller via UART (or USB or any
other method specified) at this point. Then presents a menu to the user in the debugger
console. The selections will provide the user with options to use the application including
initialization and termination of Bluetooth stack, advertising, accepting the incoming
connections from Bluetooth devices, initiating the security request and using the provided

profiles (GAP and GATT).

Below shows a typical screen printed when the peripheral application is executed.

Virtual Console

select how to proceed:

1. Ble Central
2. Ble Peripheral

Select [1..2

} =2

ClarinoxBlue initialization completed
ClarinoxSoftFrame version: 4.4.2.0
version: €.1.0.0
Address: 000000000000
HCI Version: 07

HCI Revision: 00
Manufacturer: 00

ClarinoxBlue
Device
Device
Device
Device

GATT Server
The local
The local
The local

created
service
service
service

successfully

"GATT Custom Service" Created Successfully...

"Battery Service" Created Successfully...

"Device Information"™ Created Successfully...

Please select how to proceed:

WD -dou;mbs wh e

Select [1..1

Below steps show running of an example scenario with BLE peripheral application.

0]

. Start Advertising

- Stop Advertising

. Write Local Characteristics

Read Local Characteristics

. Initiate Security Request

Disconnect from paired device

Get current connection Details

Delete the oldest pairing information
. Delete all paired devices

0. Terminate Bluetcoth stack

Figure 19: Menu for BLE Peripheral

Similar to BLE central application since Bluetooth stack has been initialized already, the
user can start advertising the device by pressing 1 which allows the application to
advertise the device name “ClxBleCustomServicePeripheral”, so that any device which
searches for the discoverable devices, will be able to discover this device.

Any BLE Central, such as smart phones running nRF Connect (on Android phones) or
LightBlue (on iPhone/iPad) software can be used for connecting to this device.

This example uses nRF Connect app to scan, connect and browse Synergy SK-S7G2
running as a BLE peripheral.

User can find the peripheral device (Synergy SK-S7G2) by scanning. Once the device
“ClxBleCustomServicePeripheral” is found then press on the down arrow next to the
Connect button and tap on the “Connect with autoConnect” as shown in the below image.

B 6 BT Wl 11:10 AM

— Devices SCAN

SCANNER BONDED ADVERTISER

No filter v

TLCN130-93B752
AOQ:E6:F8:93:B7:52

NOT BONDED A-76dBm <103 ms
CixBlePeripheral
00:1B:D}NA-RN-ER

NOTBO | connect with autoConnect

MIBar 5
E1:D2:9¢

NOT BONDED A-82dBm <1291 ms

N/A
4E:9F:2D:FF:D2:9E
NOT BONDED

CONNECT 3

N/A
4C:3D:DD:38:90:B1
NOT BONDED

CONNECT ¢

AR ...

Figure 20: Connecting to Mobile Device via nRF Connect

Upon a connection, the connected remote device address will be printed on the console.

Select [1..10] :- 1

Start Advertising Success

Advertising the Scan Response Data Success
Please select how to proceed:

. Start Advertising

- Stop Advertising

Write Local Characteristics

. Read Local Characteristics

. Initiate Security Regquest

- Disconnect from paired device

. Get current connection Details

. Delete the oldest pairing information
. Delete all paired devices

0. Terminate Bluetooth stack

1
2
3.
4
5

~1 o

= w

Select [1..10] : Connection established to 016F4AEBS0D8

Figure 21: Connection Established with Mobile Device

On nRF Connect, the services will be listed as;

Generic Access
Generic Attribute
Unknown Service
Battery Service
Device Information

abhwhE

The characteristics values can be read from or written to the device. The Unknown
Service provides two characteristics.

Handle no:2 - read only
Handle no:4 - read and write

User can write values to BLE peripheral dvice (Synergy SK-S7G2) by tapping on up arrow
on handle 2 on nRF Connect as show in below Figure 22.

These received values by BLE peripheral will be shown on the debugger console as
shown in Figure 23.

B NGT Ll 14 2:51 PM

-6 ¥ NGT ¢l ll 11:15 AM

Devices DISCONNECT ¢

CLXBLEPERIPHERAL
ADVERTISER 00:1B:DC:06:5D:E5 X

CONNECTED
NOT BONDED
VUL VAT Ouu

PRIMARY SERVICE

CLIENT SERVER

Write value LOAD

Generic Attribute b
UUID: 0x1801 |0X a BYTEAR. ¥
PRIMARY SERVICE

. ADD VALUE
Unknown Service

UUID: 65f2c164-89ab-5238-65f2-c16489ab5238
PRIMARY SERVICE

Unknown Characteristic ¥

UUID: 65f2¢164-89ab-5239-652- Advanced ¥
c16489ah5239

Properties: NOTIFY, READ SAVE CANCEL SEND

Unknown Characteristic & @

UUID: 65f2¢c164-89ab-5237-65f2-
€16489ab5237

Properties: READ, WRITE

Battery Service
UUID: 0X180F
PRIMARY SERVICE

Figure 22: nRF Connect write characteristics

S. Delete all paired devices
10. Terminate Bluetooth stack

Select [1..10] : Connection established to 016F4AEBS0DS8
The wvalue of the handle 804 updated
The updated value of testData is: AB

Figure 23: Received values by BLE Peripheral

User can also write values from BLE peripheral to the mobile device. This can be achieved
by the menu option 3 “Write Local Characteristics”. Following screen captures show the
debugger console and nRF Connect results of writing the value “ff” and receiving this
value on the mobile device.

Virtual Console
[1..10]
the service:
GATT Custom Service
Battery Service

Device Information

Select [1..3] - 1
Enter the characteristic handle index: 4

Enter the Hex value for the characteristic - beware: NO SIZE

clxGattWriteLocal: status - CLX SUCCESS
Please select how to proceed:

1. Start Advertising
2. Stop Advertising
3. Write Local Characteristics
4_. Read Local Characteristics
5. Initiate Security Reguest
Disconnect from paired device
Get current connection Details
Delete the oldest pairing information
Delete all paired devices
Terminate Bluetooth stack

Select [1..10] =

Figure 24: Writing Local Characteristics

R NGZ 4l 14251 PM

Devices DISCONNECT ¢

CLXBLECUSTOMSERVICEPERIPHERA
ADVERTISER L

CONNECTED

NG BENDED CLIENT SERVER ¢

Generic Access
UUID: 0x1800
PRIMARY SERVICE

Generic Attribute
UUID: 0x1801
PRIMARY SERVICE

Unknown Service
UUID: 65f2c164-89ab-5238-65f2-c16489ab5238
PRIMARY SERVICE

Unknown Characteristic L

UUID: 65f2¢164-89ab-5239-65f2-
¢16489ab5239

Properties: NOTIFY, READ

Unknown Characteristic v 1

UUID: 65f2¢c164-89ab-5237-65f2-
c16489ab5237

Properties: READ, WRITE
Value: (0x) FF e
Battery Service

Figure 25: Value Received by Mobile Device

5. Customizing the Application Project
This section guides the user to exploit the complete functionality of the system.

5.1.Application Source Files and Purpose

Clarinox 10T Application source files in “source” folder are provided under three
categories;

1. Clarinox wireless application source files
2. Renesas Synergy platform support files
3. Third party interface files

5.1.1. Clarinox wireless application source files

Main.cpp file provides the Bluetooth low energy stack configuration and initialization
functionality. In addition, a console based simple menu allows basic advertisement, scan
and connection functionalities.

PeripheralMenu.cpp file provides the creation, deletion of the BLE custom GATT profile
in addition to a simple BLE menu to start/stop advertising.

CentralMenu.cpp file provides the functionality and a menu to scan, connect, bond and
discover profiles and read/write from/to characteristics of the remote peripheral devices.

Gatt.cpp file provides, a callback function for both central and peripheral to handle events
delivered by Clarinox middleware.

5.1.2. Renesas Synergy platform support files

BspOs.cpp file provides the Renesas platform ThreadX RTOS interface functionality.

Bsp.cpp file provides memory pool setup for Clarinox wireless components. In addition,
terminal input and console print functionalities can be configured in this file. Platform
specific setup of the Bluetooth configuration parameters are also set as part of the Board
Support Package (BSP) initialization. Other Renesas Synergy Starter Kit or HMI board
specific hardware settings can be found in this file.

5.1.3. Third party interface files

Segger JLINk/RTT files are used to provide a back channel for connecting the Renesas
Synergy platforms to PC based Clarinox debugger. An alternative mechanism is to use
of UART interface.

5.2.Callback functions

In Gatt.cpp file “stackMessageHandler” callback function is provided to handle Bluetooth
related events delivered by Clarinox middleware. Any events raised by GAP profile for
Bluetooth Low Energy or Bluetooth Classic causes this call-back function executed with
the associated event and parameters.

Users can customize this callback function to perform a task based on the type of
indication. For an example, when bonding to a remote device there is user confirmation
request Indication happens during which the user can confirm the passkey by pressing

y” or’n” and send the response back using “cIxGapBleUserConfirmationRequestReply”
API.

5.3.Threads

Threads are dynamically created as required, e.q. if the Bluetooth stack is started, then a
thread is created and the associated scheduler is run on this thread. Thread priorities and
Thread stack sizes are provided as part of the board support package (in Bsp.cpp file).

Configurable items are set by using “cIxConfiglnitintegerParam” function call, an example
is shown as follows;

clxConfigInitIntegerParam(&linkRequestTimeout, "LinkRequestTimeout", 16000,
configlList); /* Link request timeout is set to 16 * 1.25 seconds */

