
1

Abstract
The need for reducing power is ever increasing with demands
for a greener environment, and as such battery powered
designs are coming under increasing pressure to reduce
power and make the battery last longer.
Many applications such as heating controllers, meters and
remote sensors etc. are required to work in a repetitive way,
where the MCU can idle for large periods of the time
waking periodically to make measurements, adjustments
or communication, while in other applications increased
levels of performance are required which is not an ideal
combination for saving power. This does raise a question
for these applications:
“Can a modern 32-bit MCU providing higher performance
still have sufficiently low power operation when compared
to a similar generation 16-bit product?”

Introduction
This paper, the third in a series of four whitepapers
examining the various low power design techniques based
on specific examples using the Renesas 16-bit RL78
(RL78/L12) and the 32-bit RX100 (RX111) as outlined in
whitepaper 1 (powering your system from a lemon!). While
the results may vary slightly the principles in this paper apply
equally to the other RL78 and RX microcontroller families.
In this paper we examine the effects on average power
consumption of running the MCU at lower clock frequencies
(“de-clocking”) compared to using the MCU standby (sleep)
modes during periods of inactivity. Note that the maximum
frequency used in the calculated examples below is 8 MHz
representing a “medium” performance level, whereas the
maximum clock speeds of the RL78/L12 and RX111 is
24 MHz and 32 MHz respectively. It would be relatively
straight forward to calculate the average power of these
products if it was necessary to operate at full speed.

Sleep Modes vs De-Clocking to save power
Whitepapers 1 and 2 have analysed the different sleep
(standby) modes and some of the effects of lowering the
system clock frequencies, but the question analysed in this
paper is
“Is it better to use standby operation or run the MCU
permanently at a slower clock frequency”?
First let’s consider what is meant by the term “de-clocking”.
To some extent the question has been already answered
above and perhaps is considered relatively obvious, however
two possible scenarios are considered for the purposes of
this paper:

2015.05

1. Running the MCU at a low fixed clock frequency but not
changing frequency nor using standby during system
idle times.

2. Running the MCU at a low frequency but using a slower
clock during system idle times, but not using any standby
modes.

By way of example this paper will consider a basic scenario
where the MCU runs a foreground process and an idle period.
The ratio of foreground to idle time is ~1% over a repetitive
period of 1 second as shown in figure 1 below. The
foreground time of 1% (1 ms) assumes a main clock
frequency of 1 MHz, with the foreground times for the
other clock frequencies scaled accordingly as the total
period time is fixed at 1s regardless of frequency.
The results are then compared against using standby
modes such as HALT/SLEEP and STOP/SW STANDBY as
provided by the RL78 and RX100 families.

The average current calculations used in the tables below
are based on the equation from white paper 2

 (Iave = ((AC1 * AT1) + (IC * IT)) / P),

where the foreground processing power consumption is
set by Active Current 1 and Active Time 1 (AC1 & AT1)
with the Idle Time and Idle Current are set by IC and IT.
Normal peripheral operation is assumed during foreground
processing and no peripheral operation during idle times
with the exception of the RTC.
A nominal 3 Volt supply is used for all currents and applies
to both RL78/L12 and RX111 calculations.

Whitepaper 3: De-Clocking vs MCU Standby
for Low Power Design

 Figure 1 – System Operation Example

www.renesas.eu2

RL78 Average Current Calculations
The figures calculated in table 1 are based on using a fixed clock frequency with no change during idle times.

Whitepaper 3: De-Clocking vs MCU Standby for Low Power Design

Table 1 – RL78 (fixed clock frequency)

Clock Frequency Foreground Time Foreground Current Idle Time Idle Current Average Current

8 MHz 125 µs 1.8 mA 999.87 ms 1.2 mA 1.20 mA

4 MHz 250 µs 1.7 mA 999.75 ms 1.2 mA 1.20 mA

1 MHz 1 ms 1.19 mA 999 ms 0.9 mA 0.90 mA

32 kHz 32 ms 5.0 µA 968 ms 3.7 µA 3.74 µA

The figures calculated in table 2 below are based on using two frequencies, a high speed clock for foreground processing
and the sub-clock (32 KHz) during the idle times.

Table 2 – RL78 (HS clock for foreground, LS clock during idle time)

Clock Frequency Foreground Time Foreground Current Idle Time Idle Current (32 KHz) Average Current

8 MHz 125 µs 1.8 mA 999.87 ms 3.7 µA 3.92 µA

4 MHz 250 µs 1.7 mA 999.75 ms 3.7 µA 4.12 µA

1 MHz 1 ms 1.19 mA 999 ms 3.7 µA 4.89 µA

From the results in the table 1 above, operating from a single frequency does not provide any significant power reduction
except when using low clock speeds.
Not surprisingly using the low speed sub-clock clock during the large idle period (table 2) makes a big difference when
using the higher clock frequencies during the foreground operation, but again running at the fixed sub-clock still provides
a lower average current.
However if we factor in the use of the standby operation during the idle period into the calculations, (table 3 below) we
can see a big change to in the average current figures.

Table 3 – RL78 (HS clock for foreground, Standby during idle time)

Clock
Frequency

Foreground
Time

Foreground
Current Idle Time HALT Current

(32 KHz)
STOP Current

(32 KHz)
Average Current

(HALT)
Average Current

(STOP)

8 MHz 125 µs 1.8 mA 999.87 ms 0.56 µA 0.23 µA 0.785 µA 0.455 µA

4 MHz 250 µs 1.7 mA 999.75 ms 0.56 µA 0.23 µA 0.985 µA 0.655 µA

1 MHz 1 ms 1.19 mA 999 ms 0.56 µA 0.23 µA 1.749 µA 1.420 µA

32 kHz 32 ms 5.0 µA 968 ms 0.56 µA 0.23 µA 0.702 µA 0.383 µA

From the results in table 3, we now see that for all clock frequencies utilising HALT or STOP provides dramatic power
savings where again the low speed sub-clock still offering the best overall average current consumption.
Although interestingly, using the higher foreground clock and the low speed in standby produces results very close to
running the system permanently at the sub clock frequency (32 KHz).

3

RX111 Examples
Now let’s examine the same scenarios but with the more powerful 32-bit MCU, the RX111.

Whitepaper 3: De-Clocking vs MCU Standby for Low Power Design

Table 4 – RX111 (Fixed clock frequency)

Clock Frequency Foreground Time Foreground Current Idle Time Idle Current Average Current

8 MHz 125 µs 3.5 mA 999.87 ms 1.3 mA 1.30 mA

4 MHz 250 µs 2.35 mA 999.75 ms 1 mA 1.00 µA

1 MHz 1 ms 1.2 mA 999 ms 750 µA 0.75 µA

32 kHz 32 ms 11.5 mA 968 ms 4.0 µA 4.24 µA

The figures in table 4 are based on using a fixed frequency with no change during the idle time.

Table 5 – RX111 (HS clock for foreground, LS clock during idle time)

Clock Frequency Foreground Time Foreground Current Idle Time Idle Current (32 KHz) Average Current

8 MHz 125 µs 3.5 mA 999.87 ms 4.0 µA 4.44 mA

4 MHz 250 µs 2.35 mA 999.75 ms 4.0 µA 4.59 µA

1 MHz 1 ms 1.2 mA 999 ms 4.0 µA 5.20 µA

The figures in table 5 are based on using two frequencies, a high speed clock for foreground processing and the 32 KHz
sub-clock during the idle time.
The RX111 results in tables 4 and 5 above show a very similar picture to that of the RL78 where operating from a single
frequency provides little power reduction, but using the low speed sub-clock makes a big difference.
However if we again factor in the use of standby operation during the idle periods (table 6) into the calculations then we
see similar levels of power reduction and current when using the higher speed main clock and low speed sub clock
combination, as shown for the RL78.

Table 6 – RX111 (HS clock for foreground, Standby during idle time)

Clock
Frequency

Foreground
Time

Foreground
Current Idle Time Deep Sleep

Current (32 KHz)
SW Standby

Current (32 KHz)
Average Current

(Deep Sleep)
Average Current

(SW Standby)

8 MHz 125 µs 3.5 mA 999.87 ms 1.8 µA 0.35 µA 2.237 µA 0.787 µA

4 MHz 250 µs 2.35 mA 999.75 ms 1.8 µA 0.35 µA 2.387 µA 0.937 µA

1 MHz 1 ms 1.2 mA 999 ms 1.8 µA 0.35 µA 2.998 µA 1.550 µA

32 kHz 32 ms 11.5 µA 968 ms 1.8 µA 0.35 µA 2.110 µA 0.707 µA

Conclusion
The theme of this paper was to consider the effects on
power consumption when applications operate on repetitive
cycle basis and the different results of operating the MCU
at a lower fixed clock frequency, using a low speed “sub
clock” during the system idle times and lastly to compare
these results against the use of the MCU standby modes
during the idle periods.
While a continuous fixed clock frequency unsurprisingly
showed little usable power reduction for both of our sample
families, changing the operating clock to use a sub-clock
showed some good improvements for both MCU’s and in
some applications could possibly be used as a solution.
However it is clear that for both MCU families the answer
to the question

”Is it better to use standby operation or run the MCU
permanently at a slower clock frequency?”
is that using standby modes during idle times provides the
lowest average current and confirms that this is still the best
design approach wherever possible to make the battery
last the longest.
Interestingly the combination of using a higher main clock
frequency during the foreground processing together with
the sub clock and standby operation during the idle periods
shows very similar results to that of running the design at
low speed. This allows a choice depending on the needs
of the applications such that where the processing needs
are low such as the “lemon” demonstration concept
(whitepaper 1) the lowest current consumption is achieved

www.renesas.eu4

with everything operating from a low speed clock and using
standby. When foreground processing demands are higher,
operating with a faster main clock (i.e. 8 MHz) together
with standby produces a very small increase in current
consumption, such that in our calculated examples above
the increase was only 72 nA for the RL78/L12 and 80 nA
for the RX111.
The other question posed at the start of thiswhite paper was
“Can a modern 32-bit MCU providing higher performance
still have sufficiently low power operation when compared
to a similar generation 16-bit product?”
Well the answer is yes, that when employing standby
operation a modern 32-bit MCU family such as the RX100
(RX111) can produce very low average currents close to
that of the 16-bit RL78 (RL78/L12), combining low power
with higher performance and functionality when applications
demand more from the design.

Whitepaper 3: De-Clocking vs MCU Standby for Low Power Design

Document No. R01PF0080ED0200

Before purchasing or using any Renesas Electronics products listed herein, please refer to the latest product manual and/or data sheet in advance.

© 2015 Renesas Electronics Europe.
All rights reserved. Printed in Germany.

For further information it is recommended to read the other
whitepapers in this series (highlighted below) and please
visit the Renesas design resources centre.
Whitepaper 1: Lemon Powered Design
An example of what can be achieved with the right product
and modes of operation
Whitepaper 2: The Rules of Low Power MCU Design
Analysis of many techniques to provide the lowest power
consumption possible
Whitepaper 4: Maximise Your Battery Life
Analysis of systems that are designed to spend long
periods in standby operation

Written by: David Parsons - Consultant to Renesas Electronics (Europe) GmbH

David can be contacted at DCP Electronics and Software Services.

