

ENHANCING ENDPOINT INTELLIGENCE

With Embedded Artificial Intelligence (e-AI) from Renesas

Real-time Intelligence without Cloud Lag

Artificial Intelligence is rapidly driving growth in the information technology (IT) and operational technology (OT) domains. For years, Renesas has been a leader in OT endpoint applications with microprocessor and microcontroller solutions. Leveraging that experience, Renesas' e-AI solutions are enhancing OT-based systems and products that we use around us every day by placing AI where it matters the most – at the endpoint – while decoupling dependency on the Cloud for real-time decisions and real-time action. Additionally, Renesas will expand e-AI application possibilities with the use of its exclusive extreme low-power process technology, Silicon On Thin Buried Oxide or SOTB[™], to enable batteryless solutions powered only by harvested ambient energy. Think of the possibilities.

e-Al: Local Real-time Al by Inference

- Traditional statistical AI applications execute completely in the Cloud
- Real-time applications cannot tolerate cloud lag at the endpoint
- e-AI takes immediate action locally through inference from cloud-trained AI neural networks

e-AI Capability Advancements

- Renesas is evolving e-AI. From MCU to MPU and then to Embedded-AI MPU, AI performance improves with each step
- Exclusive Dynamically Reconfigurable Processor (DRP) technology accelerates image processing, object recognition, AI, and cognitive decision making
- Each advance in DRP (see below) brings 10 times the computing power of the previous generation

Dynamically Reconfigurable Processor (DRP)

- DRP
 - Dynamically reconfigurable acceleration hardware
 - Offloads burden of specialized tasks from main
- processor
- Extreme Efficiency
 - Higher performance and lower power than use of CPU, GP-GPU, DSP, or FPGAs
- Flexibility
 - It is possible to execute different tasks by switching DRP libraries, even while the MPU is operating
 - Continuous new functions available to previously shipped products extend product life
- Acceleration
 - Image processing: edge detection, gray level, feature extraction, and more
 - Next: Al acceleration

Accelerate Video Processing with DRP

Process	Execution Time (ms)	
	DRP	CPU
Canny Edge Detection	9.3	138.3*
Harris Corner Detection	13.8	294.1*
QR Marker Detection	31.3	223.0**

* CPU: Using OpenCV (cv::medianBlur+cv::Canny) ** QR Marker detection: ZBar (cv::medianBlur+Zbar detection)

Image size: 800x480 WVGA Image color: Grayscale 8BPP CPU: RZ/A2M Cortex*-A9 @ 528 MHz DRP: Frequency 33 MHz ~ 66 MHz

RZ/A2M Microprocessor with DRP – Hardware Acceleration for e-AI

New in RZ/A2

Performance and Flexibility

- Ideal for Human Machine Interface (HMI)
 - Multiple video output standards
 - Multiple graphics engines
- Accelerate Image Recognition
 - Boost image processing x10 with DRP
 - MIPI CSI camera interface
- Advanced Security
 - Secure boot, communication, and update

Software Package for AI+HMI

- RTOS, drivers, and middleware
- DRP tools, libraries, and application layer
- Smart configurator for SDK
- Quick and efficient camera/display graphical configuration with real-time feedback
- Seamless integration with TES Guiliani GUI framework

RZ/A2M Evaluation Platform

- Supports DRP evaluation
- MIPI Camera Module (MIPI CSI)
- HyperMCP with HyperFlash[™] and HyperRAM[™]
- RGB conversion board for HDMI display
- 2ch Ethernet communication
- Other peripheral functions, such as SDHI and USB

Kit Part Number: RTK7921053S00000BE

Learn more: https://www.renesas.com/RZA2M

RZ/A2M Microprocessor Block Diagram

System	CPU		Interfaces
16 × DMAC	Arm Cortex [®] -A9 528 MHz (1320 DMIPS)		$4 \times I^2 C$
Interrupt Controller			2 × SCI
PLL/SSCG	1.20V (Core), 3.3V (I/O), 1.8V (I/O)		$5 \times \text{SCIF}$ (UART)
On-chip Debug	NEON	FPU	3 × RSPI
Arm Coresight	Momory		$2 \times \text{CAN-FD}$
Standby (Sleep/Software/Deep/Module)	Memory SRAM: 4 MB		2 × Ethernet MAC (100M: IEEE1588)
OTP (Option) (One Time Programmable)	I CACHE: 32 KB	D Cache: 32 KB	$1 \times IrDA$
Timers	L2 Cache: 128 KB		$1 \times \text{SPDIF}$
2×32 -bit OSTM			$4 \times SSI (I^2S)$
	Graphics		1 × BSC (Ext. Bus I/F)
1 × 32-bit MTU3	1 × VDC6 (LCDC) Timing Controller Digital Input w/Sprite Engine	Camera In	w/SDRAM (132 MHz)
8 × 16-bit MTU3		(CMOS, MIPI)	1 × HyperFlash/RAM
8 × 32-bit PWM		2D Graphics Engine	(133 MHz DTR, 8-bit)
$1 \times WDT$		Distortion Correction	1 × SPI Multi I/O (DTR)
1 × RTC	LVDS	JPEG Codec Engine	(QSPI/HyperFlash)
Analog	Security (Option)		1 × NAND (ONFI1.0, ECC)
8 × 12-bit ADC	Secure Boot	Device Unique ID	2 × USB2.0 High Speed (Host/Peripheral/OTG)
DRP	Crypto Engine	JTAG Disable	2 × SDHI (UHS-I)/MMC
Custom Functions	TRNG	Arm TrustZone	GPIO

e-AI Use Cases

e-AI Failure Prediction for Motors

- Detects previously invisible faults in real time by minutely analyzing oscillation waveforms from motors through current, vibration, or sound
- Predicts failure before it occurs to enable early warning
- Improves service quality, avoids downtime, and reduces maintenance costs

e-AI Multimodal Biometrics Authentication by Image Recognition

e-AI Deployed at Renesas Semiconductor Factory

Smart Factory moves from Preventive Maintenance to Predictive Maintenance

- Successfully detected defective wafers using e-AI, same as human experts could do
- Reduced false alarms from 50 incidents per month to ZERO
- Anomaly detection rate improved by 6x
- Reduced engineering resources required to respond
- Eliminated requirement to set statistical thresholds

Renesas installed over **150 AI units** into one of its own semiconductor factories, with **3,000** more AI units on the way

Add-on Al Units

Learn more about Renesas e-AI solutions at:

https://www.renesas.com/e-ai

Corporate Headquarters TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Arm[®] and Cortex[®] are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/