Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD78F0988

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F0988 is a member of the μ PD780988 Subseries of the 78K/0 Series that substitute flash memory for the internal ROM of the μ PD780988. Flash memory can be written or erased electrically without having to remove it from board. Therefore, the μ PD78F0988 is best suited for evaluation in system development, small-scale production, or systems likely to be upgraded frequently.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD780988 Subseries User's Manual: U13029E 78K/0 Series Instructions User's Manual: U12326E

FEATURES

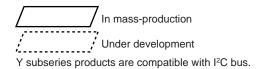
- Pin-compatible with mask ROM version (except VPP pin)
- Flash memory: 60 Kbytes^{Note 1}
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 1024 bytes^{Note 2}
- Operable in the same supply voltage range as the mask ROM version (VDD = 4.0 to 5.5 V)
- Notes 1. The capacity of the flash memory can be changed with the internal memory size switching register (IMS).
 - 2. The capacity of the internal expansion RAM can be changed with the internal expansion RAM size switching register (IXS).

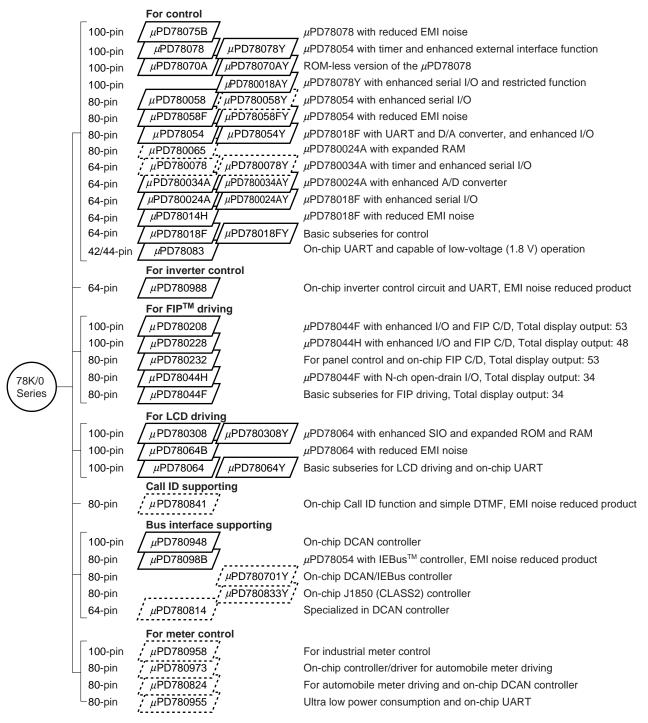
Remark For the differences between the flash memory versions and the mask ROM versions, refer to

1. DIFFERENCES BETWEEN μ PD78F0988 AND MASK ROM VERSIONS.

ORDERING INFORMATION

Part Number	Package
μPD78F0988CW	64-pin plastic shrink DIP (750 mil)
μ PD78F0988GC-AB8	64-pin plastic QFP (14 \times 14 mm)


The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.


Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 78K/0 SERIES LINEUP

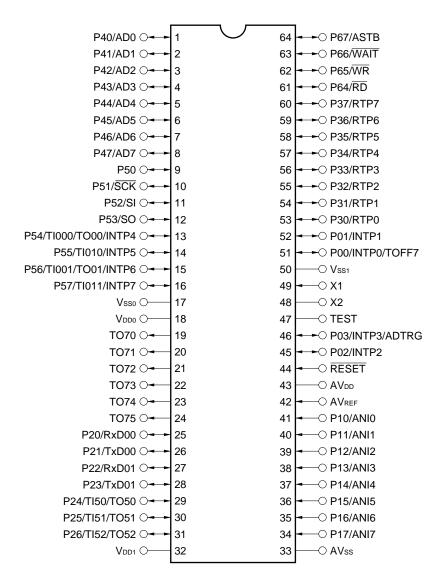
The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

The major functional differences among the subseries are listed below.

Function ROM		Timer		8-bit 10-bit	1	Serial	I/O	V _{DD}	External				
Subseries	s Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Interface		Value	Expansion
For	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	√
control	μPD78078	48 K to 60 K											
	μPD78070A	ı									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							_	4 ch (UART: 1 ch)	60	2.7 V	
	μPD780078	48 K to 60 K		2 ch			_	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	μPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	μPD780024A						8 ch	-					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		_	_					1 ch (UART: 1 ch)	33		_
For	μPD780988	16 K to 60 K	3 ch	Note	_	1 ch	_	8 ch	_	3 ch (UART: 2 ch)	47	4.0 V	√
inverter													
control													
For FIP	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	2 ch	74	2.7 V	-
driving	μPD780228	48 K to 60 K	3 ch	_	_					1 ch	72	4.5 V	
	μPD780232	16 K to 24 K					4 ch			2 ch	40		
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
For LCD	μPD780308	48 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (time-division UART: 1 ch)	57	2.0 V	_
driving	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Call ID	μPD780841	24 K to 32 K	2 ch	_	1 ch	1 ch	2 ch	-	_	2 ch (UART: 1 ch)	61	2.7 V	-
supporting													
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	_	_	3 ch (UART: 1 ch)	79	4.0 V	√
interface	μPD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	-
supporting	μPD780814	32 K to 60 K		2 ch			12 ch		_	2 ch (UART: 1 ch)	46	4.0 V	
For meter	μPD780958	48 K to 60 K	4 ch	2 ch	_	1 ch	_	_	_	2 ch (UART: 1 ch)	69	2.2 V	_
control	μPD780973	24 K to 32 K	3 ch	1 ch	1 ch		5 ch				56	4.5 V	
	μPD780824	32 K to 60 K									59	4.0 V	
	μPD780955	40 K	6 ch		_		1 ch			2 ch (UART: 2 ch)	50	2.2 V	

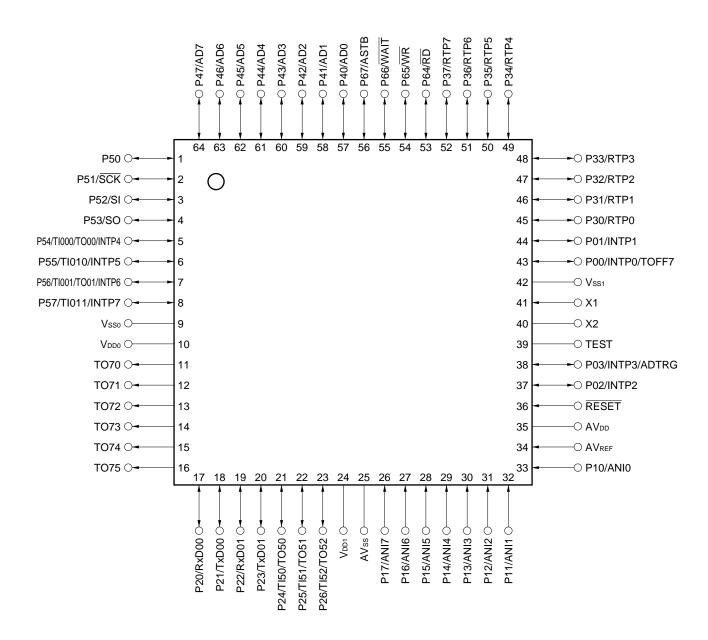
Note 16-bit timer: 2 channels 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS


Item		Function					
Internal	Flash memory	60 Kbytes ^{Note 1}					
memory	High-speed RAM	1024 bytes					
	Expansion RAM	24 bytes ^{Note 2}					
Memory sp	ace	64 Kbytes					
General-pu	irpose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Instruction	cycle	On-chip instruction execution time variable function					
		0.24 μs/0.48 μs/0.96 μs/1.9 μs/3.8 μs (@ 8.38-MHz operation with system clock)					
Instruction	set	16-bit operation					
		Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits)					
		Bit manipulation (set, reset, test, Boolean operation)					
		BCD adjust, etc.					
I/O ports		Total: 47					
		• CMOS inputs: 8					
		• CMOS I/Os: 39					
Real-time of	output ports	• 8 bits × 1 or 4 bits × 2					
		• 6 bits × 1 or 4 bits × 1					
A/D conver	ter	• 10-bit resolution × 8 channels					
		Power supply voltage: AVDD = 4.0 to 5.5 V					
Serial inter	face	UART mode: 2 channels					
		• 3-wire serial I/O mode: 1 channel					
Timer		16 bit timer/event counter: 2 channels					
		8-bit timer/event counter: 3 channels					
		10-bit inverter control timer: 1 channel					
		Watchdog timer: 1 channel					
Timer output		11 (general-purpose outputs: 5 and inverter control outputs: 6)					
Vectored							
interrupt	Non-maskable	Internal: 1					
sources	Software	1					
Power supp	ply voltage	V _{DD} = 4.0 to 5.5 V					
Operating a	imbient temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$					
Package		• 64-pin plastic shrink DIP (750 mil)					
		• 64-pin plastic QFP (14 × 14 mm)					

- **Notes 1.** The capacity of the flash memory can be changed with the internal memory size switching register (IMS).
 - 2. The capacity of the internal expansion RAM can be changed with the internal expansion RAM size switching register (IXS).

PIN CONFIGURATION (Top View)


 64-Pin Plastic Shrink DIP (750 mil) μPD78F0988CW

★ Caution In the normal operation mode, connect the VPP pin directly to Vsso.

Remark When the μPD78F0988 is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

• 64-Pin Plastic QFP (14 \times 14 mm) μ PD78F0988GC-AB8

★ Caution In the normal operation mode, connect the VPP pin directly to Vsso.

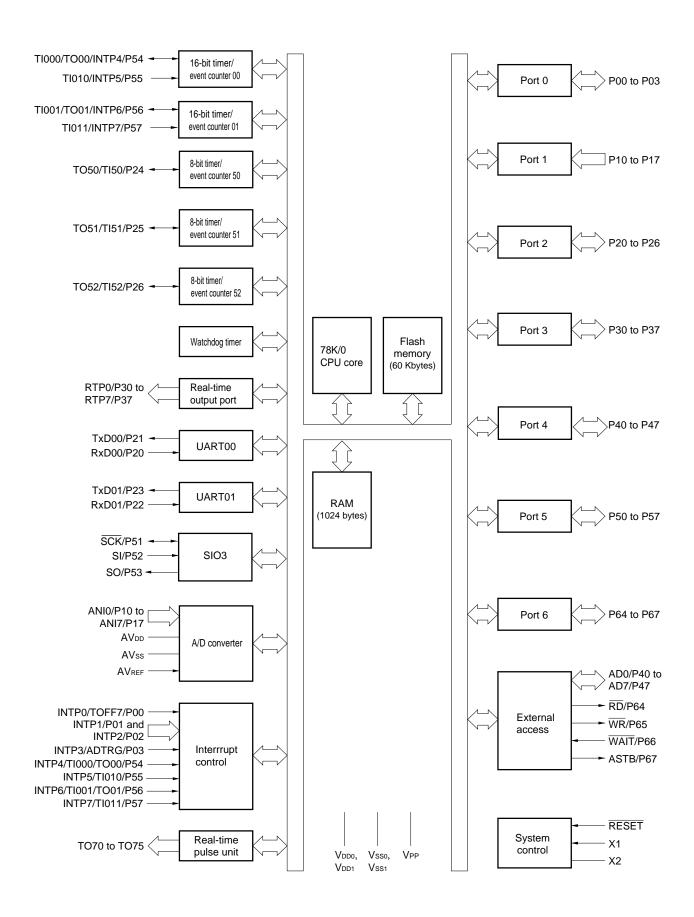
Remark When the μ PD78F0988 is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended.

RxD00, RxD01: Receive Data AD0 to AD7: Address/Data Bus SCK: Serial Clock ADTRG: **AD Trigger Input** SI: Serial Input ANI0 to ANI7: Analog Input SO: Serial Output ASTB: Address Strobe

AV_{DD}: Analog Power Supply TI000, TI001, AV_{REF}: Analog Reference Voltage TI010, TI011,

AVss: Analog Ground TI50 to TI52: Timer Input

INTP0 to INTP7: External Interrupt Input TO00, TO01, P00 to P03: Port 0 TO50 to TO52,


TO70 to TO75: **Timer Output** P10 to P17: Port 1 P20 to P26: Port 2 TOFF7: Timer Output Off TxD00, TxD01: Transmit Data P30 to P37: Port 3 V_{DD0}, V_{DD1}: Power Supply P40 to P47: Port 4

P50 to P57: Port 5 VPP: Programming Power Supply

 $\overline{\text{RESET}}$: Reset $\overline{\text{WR}}$: Write Strobe RTP0 to RTP7: Real-time Port X1, X2: Crystal

BLOCK DIAGRAM

CONTENTS

	1.	DIFFERENCES BETWEEN μ PD78F0988 AND MASK ROM VERSIONS	10
	2.	PIN FUNCTIONS	11
		2.1 Port Pins	11
		2.2 Non-Port Pins	
		2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	14
	3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	16
	4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	17
	5.	FLASH MEMORY PROGRAMMING	18
		5.1 Selection of Communication Mode	18
		5.2 Flash Memory Programming Functions	19
		5.3 Connection of Flashpro II and Flashpro III	19
7	6.	ELECTRICAL SPECIFICATIONS	21
	7.	PACKAGE DRAWINGS	36
	AF	PPENDIX A. DEVELOPMENT TOOLS	38
	AF	PPENDIX B. RELATED DOCUMENTS	40

1. DIFFERENCES BETWEEN µPD78F0988 AND MASK ROM VERSIONS

The μ PD78F0988 is a product with a flash memory which enables on-board writing, erasing and rewriting of programs.

Except for flash memory specifications, the same functions as those of mask ROM versions can be obtained by setting the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS).

Table 1-1 shows the differences between the flash memory version (μ PD78F0988) and mask ROM versions \star (μ PD780982, 780983, 780984, 780986, 780988).

Table 1-1. Differences between μ PD78F0988 and Mask ROM Versions

Item	μPD78F0988	Mask ROM Versions
Internal ROM structure	Flash memory	Mask ROM
Internal ROM capacities	60 Kbytes	μPD780982: 16 Kbytes μPD780983: 24 Kbytes μPD780984: 32 Kbytes μPD780986: 48 Kbytes μPD780988: 60 Kbytes
Internal expansion RAM capacities	1024 bytes	μPD780982: None μPD780983: None μPD780984: None μPD780986: 1024 bytes μPD780988: 1024 bytes
Change of internal ROM capacity with internal memory size switching register (IMS)	Available ^{Note 1}	Not available
Change of internal expansion RAM capacity with internal expansion RAM size switching register (IXS)	Available ^{Note 2}	Not available
TEST pin	Not provided	Provided
VPP pin	Provided	Not provided

Notes 1. Flash memory capacity becomes 60 Kbytes by RESET input.

2. Internal expansion RAM capacity becomes 0 byte by RESET input.

Caution

There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM versions.

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0	Input	INTP0/TOFF7
P01		4-bit I/O port		INTP1
P02	7	Input/output can be specified in 1-bit units.		INTP2
P03		An on-chip pull-up resistor can be specified by means of software.		INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port	Input	ANI0 to ANI7
P20	I/O	Port 2	Input	RxD00
P21		7-bit I/O port		TxD00
P22		Input/output can be specified in 1-bit units.		RxD01
P23		An on-chip pull-up resistor can be specified by means of		TxD01
P24		software.		TI50/TO50
P25				TI51/TO51
P26				TI52/TO52
P30 to P37	I/O	Port 3 8-bit I/O port Input/output can be specified in 1-bit units.	Input	RTP0 to RTP
		An on-chip pull-up resistor can be specified by means of software.		
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.	Input	AD0 to AD7
P50	I/O	Port 5	Input	<u> </u>
P51	-	8-bit I/O port	'	SCK
P52	7	Input/output can be specified in 1-bit units.		SI
P53	=	LEDs can be driven directly.		SO
P54	1	An on-chip pull-up resistor can be specified by means of		INTP4/TI000/TO00
P55	1	software.		INTP5/TI010
P56	1			INTP6/TI001/TO01
P57	7			INTP7/TI011
P64	I/O	Port 6	Input	RD
P65	7	4-bit I/O port		WR
P66	7	Input/output can be specified in 1-bit units.		WAIT
P67		An on-chip pull-up resistor can be specified by means of software.		ASTB

11

2.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge	Input	P00/TOFF7
INTP1		(rising edge, falling edge, or both rising and falling	Input	P01
INTP2		edges) can be specified	Input	P02
INTP3			Input	P03/ADTRG
INTP4			Input	P54/TI000/TO00
INTP5			Input	P55/TI010
INTP6			Input	P56/TI001/TO01
INTP7			Input	P57/TI011
TI50	Input	External count clock input to 8-bit timer (TM50)	Input	P24/TO50
TI51		External count clock input to 8-bit timer (TM51)	Input	P25/TO51
TI52		External count clock input to 8-bit timer (TM52)	Input	P26/TO52
TI000		External count clock input to 16-bit timer (TM00)	Input	P54/INTP4/TO00
		Capture trigger input to capture register (CR000, CR010) of 16-bit timer (TM00)	·	
TI010		Capture trigger input to capture register (CR000) of 16-bit timer (TM00)	Input	P55/INTP5
TI001		External count clock input to 16-bit timer (TM01) Capture trigger input to capture register (CR001, CR011) of 16-bit timer (TM01)	Input	P56/INTP6/TO01
TI011		Capture trigger input to capture register (CR001) of 16-bit timer (TM01)	Input	P57/INTP7
TO50	Output	8-bit timer (TM50) output	Input	P24/TI50
TO51		8-bit timer (TM51) output	Input	P25/TI51
TO52		8-bit timer (TM52) output	Input	P26/TI52
TO00		16-bit timer (TM00) output	Input	P54/INTP4/TI000
TO01		16-bit timer (TM01) output	Input	P56/INTP6/TI001
RTP0 to RTP7	Output	Real-time output port that outputs pulses in synchronization with trigger signals outputs from the real-time pulse unit	Input	P30 to P37
TxD00	Output	Asynchronous serial interface serial data output	Input	P21
TxD01			Input	P23
RxD00	Input	Asynchronous serial interface serial data input	Input	P20
RxD01			Input	P22
SCK	I/O	Serial interface serial clock input/output	Input	P51
SI	Input	Serial interface serial data input	Input	P52
SO	Output	Serial interface serial data output	Input	P53
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	External trigger signal input to the A/D converter	Input	P03/INTP3
TO70 to TO75	Output	Timer output for the 3-phase PWM inverter control	Hi-Z	_
TOFF7	Input	Timer output (TO70 to TO75) stop external input	Input	P00/INTP0
AD0 to AD7	I/O	Address/data bus for expanding memory externally	Input	P40 to P47
RD	Output	Strobe signal output for reading from external memory	Input	P64
WR		Strobe signal output for writing to external memory	Input	P65
WAIT	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output that externally latches address information output to ports 4 and 5 to access external memory	Input	P67
AVREF	Input	A/D converter reference voltage input	_	_
AV _{DD}	_	A/D converter analog power supply	_	_

2.2 Non-Port Pins (2/2)

 \star

I/O	Function	After Reset	Alternate Function
_	A/D converter ground potential	-	_
Input	System reset input	-	_
Input	Connecting crystal resonator for system clock oscillation	_	_
-		-	_
-	Positive power supply for ports	_	_
-	Ground potential for ports	_	_
-	Positive power supply except for ports	-	-
_	Ground potential except for ports	_	-
-	High-voltage application during program write/verify.	_	-
	– Input	- A/D converter ground potential Input System reset input Input Connecting crystal resonator for system clock oscillation - Positive power supply for ports - Ground potential for ports - Positive power supply except for ports - Ground potential except for ports	- A/D converter ground potential - Input System reset input - Input Connecting crystal resonator for system clock oscillation Positive power supply for ports - Ground potential for ports - Positive power supply except for ports - Ground potential except for ports - High-voltage application during program write/verify

\star 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

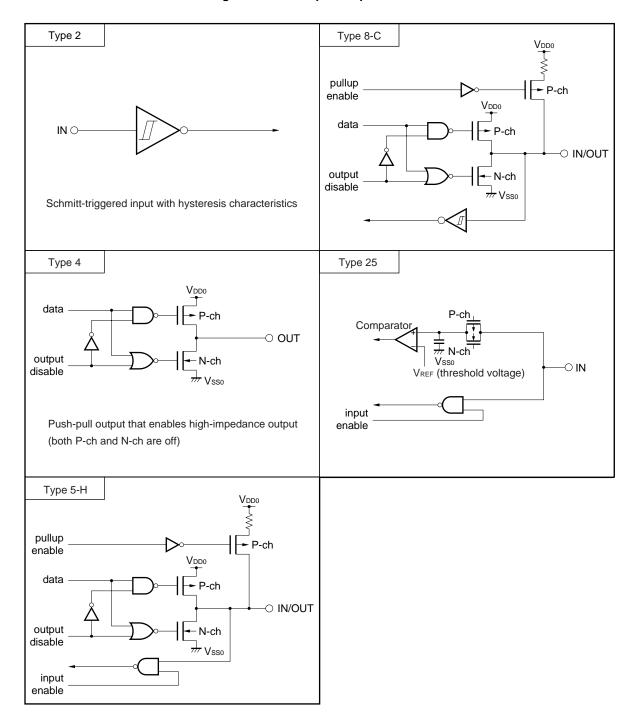

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, refer to Figure 2-1.

Table 2-1. Types of Pin Input/Output Circuits

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0/TOFF7	8-C	Input/output	Independently connect to Vsso via a resistor.
P01/INTP1			
P02/INTP2			
P03/INTP3/ADTRG			
P10/ANI0 to P17/ANI7	25	Input	Independently connect to VDD0 or VSS0 via a resistor.
P20/RxD00	8-C	Input/output	
P21/TxD00	5-H		
P22/RxD01	8-C		
P23/TxD01	5-H		
P24/TI50/TO50	8-C		
P25/TI51/TO51			
P26/TI52/TO52			
P30/RTP0 to P37/RTP7	5-H		
P40/AD0 to P47/AD7			
P50			
P51/SCK	8-C		
P52/SI	5-H		
P53/SO			
P54/INTP4/TI000/TO00			
P55/INTP5/TI010			
P56/INTP6/TI001/TO01			
P57/INTP7/TI011			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
TO70 to TO75	4	Output	Leave open.
RESET	2	Input	-
AV _{DD}	_	-	Connect to VDDO.
AVREF			Connect to Vsso.
AVss			
VPP			Connect directly to Vsso.

Figure 2-1. Pin Input/Output Circuits

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

This register is set by software not to use a part of internal memory. The memory mapping can be made the same as that of mask ROM versions with different types of internal memory capacity by setting IMS.

IMS is set with an 8-bit memory manipulation instruction.

IMS is set to CFH by RESET input.

Figure 3-1. Format of Internal Memory Size Switching Register

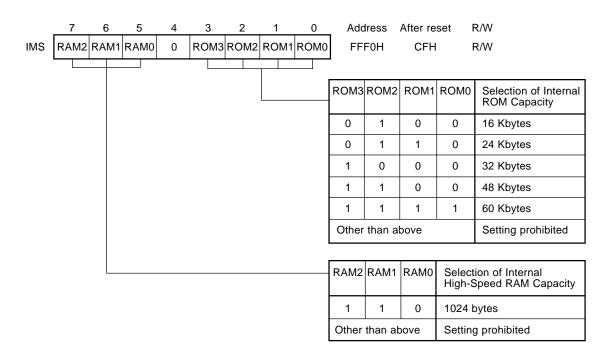


Table 3-1 shows the IMS setting values to make the memory mapping the same as those of mask ROM versions.

Table 3-1. Setting Value of Internal Memory Size Switching Register

Target Mask ROM Versions	IMS Setting Value
μPD780982	C4H
μΡD780983	С6Н
μPD780984	С8Н
μPD780986	ССН
μPD780988	CFH

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to set internal expansion RAM capacity by software. The memory mapping can be made the same as that of mask ROM versions with different types of internal expansion RAM capacity by setting IXS.

Figure 4-1. Format of Internal Expansion RAM Size Switching Register

IXS is set with an 8-bit memory manipulation instruction. IXS is set to 0CH by $\overline{\text{RESET}}$ input.

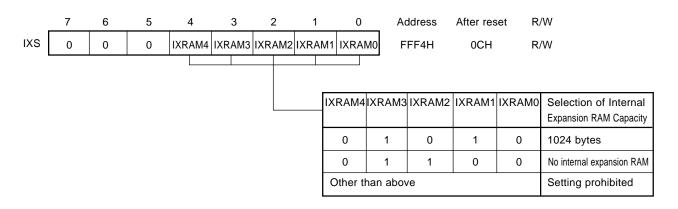


Table 4-1 shows the IXS setting values to make the memory mapping the same as those of mask ROM versions.

Table 4-1. Setting Value of Internal Expansion RAM Size Switching Register

Target Mask ROM Versions	IXS Setting Value
μPD780982	осн
μPD780983	
μPD780984	
μPD780986	0AH
μPD780988	

5. FLASH MEMORY PROGRAMMING

On-board writing of flash memory (with device mounted on target system) is supported. On-board writing is done * after connecting a dedicated flash programmer (Flashpro II (part number FL-PR2), Flashpro III (part numbers FL-PR3 and PG-FP3)) to the host machine and target system. Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to Flashpro II or Flashpro III.

* Remark FL-PR2 and FL-PR3 are products of NAITO DENSEI MACHIDA MFG. CO., LTD.

5.1 Selection of Communication Mode

Writing to flash memory is performed using Flashpro II and III with a serial communication mode. Select the communication mode for writing from Table 5-1. For the selection of the communication mode, a format like the one shown in Figure 5-1 is used. The communication modes are selected using the VPP pulse numbers shown in Table 5-1.

Number of Number of Communication Mode Pin Used Channels **VPP** Pulses SCK/P51 3-wire serial I/O 0 1 SI/P52 SO/P53 **UART** 1 RxD00/P20 8 TxD00/P21 P24/TI50/TO50 (Serial data input) Pseudo 3-wire serial I/O 1 12 modeNote P25/TI51/TO51 (Serial data output) P26/TI52/TO52 (Serial clock input)

Table 5-1. Communication Mode List

Note Serial transfer is performed by controlling ports with software.

Caution Always select the communication mode according to the number of VPP pulses shown in Table 5-1.

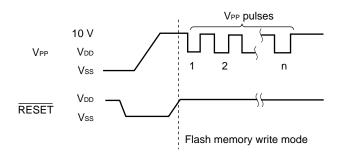
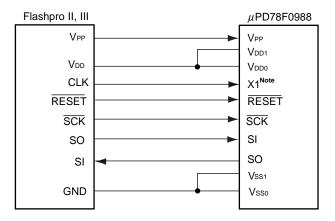


Figure 5-1. Communication Mode Selection Format

5.2 Flash Memory Programming Functions

Flash memory writing is performed through command and data transmit/receive operations using the selected communication mode. The main functions are listed in Table 5-2.


Table 5-2. Main Functions of Flash Memory Programming

Function	Description	
Batch erase	Erases the contents of the entire memory.	
Batch blank check	Checks that the entire memory has been deleted.	
Data write	Performs writing to flash memory according to the write start address and the number of the data to be written (the number of bytes).	
Batch verify	Compares the contents of the entire memory and the input data.	

5.3 Connection of Flashpro II and Flashpro III

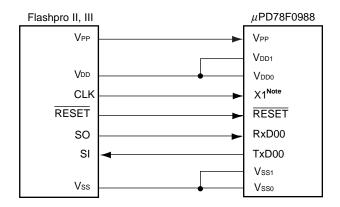

The connection of the Flashpro II, Flashpro III and the μ PD78F0988 differs depending on the communication mode. Each type of connection is shown in Figures 5-2, 5-3, and 5-4, respectively.

Figure 5-2. Connection of Flashpro II and Flashpro III Using 3-Wire Serial I/O Mode

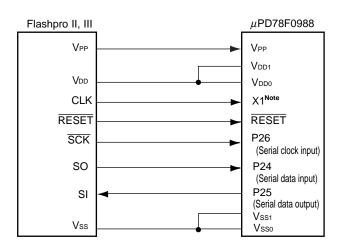

Note For input to X1, not CLK but a normal oscillator can also be used.

Figure 5-3. Connection of Flashpro II and Flashpro III Using UART Mode

Note For input to X1, not CLK but a normal oscillator can also be used.

Figure 5-4. Connection of Flashpro II and Flashpro III Using Pseudo 3-Wire Serial I/O Mode

Note For input to X1, not CLK but a normal oscillator can also be used.

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +6.5	V
	V _{PP}			-0.3 to +10.5	V
	AV _{DD}			-0.3 to V _{DD} + 0.3	V
	AVREF			-0.3 to V _{DD} + 0.3	V
	AVss			-0.3 to +0.3	V
Input voltage	Vı	P00 to P03, P10 to P17, P20 to P26	, P30 to P37, P50	-0.3 to V _{DD} + 0.3	V
		to P57, P64 to P67, TO70 to TO75	, X1, X2, RESET		
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17 Ana	log input pin	AVss - 0.3 to AVREF + 0.3	V
				and -0.3 to V _{DD} + 0.3	
Output current, high	Іон	Per pin		-10	mA
		P00, P01, P30 to P37, P40 to P47, P50 to F	57, P64 to P67 total	-15	mA
		P02, P03, P20 to P26, TO70 to T0	75 total	-15	mA
Output current, low	OLNote	P00 to P03, P10 to P17, P20 to P2	6, Peak value	20	mA
		P30 to P37, P40 to P47, P64 to P67 per p	in rms value	10	mA
		P50 to P57, TO70 to TO75 per pin	Peak value	30	mA
			rms value	15	mA
		P00, P01, P30 to P37, P40 to P47, P64 to F	67 Peak value	50	mA
		total	rms value	20	mA
		P02, P03, P20 to P26 total	Peak value	30	mA
			rms value	15	mA
		TO70 to TO75 total	Peak value	100	mA
			rms value	70	mA
		P50 to P57 total	Peak value	100	mA
			rms value	70	mA
Operating ambient temperature	ТА			-40 to +85	°C
Storage temperature	T _{stg}			-40 to +125	°C

Note The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz Unmea			15	pF	
I/O capacitance	Сю	f = 1 MHz	P00 to P03, P20 to P26, P30			15	pF
		Unmeasured pins	to P37, P40 to P47, P50 to				
		returned to 0 V	P57, P64 to P67, TO70 to TO75				

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 4.0 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx)Note 1		1.0		8.38	MHz
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal resonator		Oscillation frequency (fx) ^{Note 1}		1.0		8.38	MHz
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			10	ms
External clock	X2 X1	X1 input frequency (fx)Note 1		1.0		8.38	MHz
	μPD74HCU04 Δ	X1 input high-/low- level width (tхн, tхь)		50		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release.

Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Recommended Oscillator Constant

System clock: Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	Frequency	Recommended	Circuit Constant	Oscillation Vo	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg.	CSA2.00MG040	2.00	100	100	4.0	5.5
Co., Ltd.	CST2.00MG040	2.00	On-chip	On-chip	4.0	5.5
	CSA3.58MG	3.58	30	30	4.0	5.5
	CST3.58MGW	3.58	On-chip	On-chip	4.0	5.5
	CSA4.00MG	4.00	30	30	4.0	5.5
	CST4.00MGW	4.00	On-chip	On-chip	4.0	5.5
	CSA4.19MG	4.19	30	30	4.0	5.5
	CST4.19MGW	4.19	On-chip	On-chip	4.0	5.5
	CSA4.91MG	4.91	30	30	4.0	5.5
	CST4.91MGW	4.91	On-chip	On-chip	4.0	5.5
	CSA5.00MG	5.00	30	30	4.0	5.5
	CST5.00MGW	5.00	On-chip	On-chip	4.0	5.5
	CSA7.37MTZ	7.37	30	30	4.0	5.5
	CST7.37MTW	7.37	On-chip	On-chip	4.0	5.5
	CSA8.00MTZ	8.00	30	30	4.0	5.5
	CST8.00MTW	8.00	On-chip	On-chip	4.0	5.5
	CSA8.38MTZ	8.38	30	30	4.0	5.5
	CST8.38MTW	8.38	On-chip	On-chip	4.0	5.5
	CSA10.0MTZ	10.0	30	30	4.0	5.5
	CST10.0MTW	10.0	On-chip	On-chip	4.0	5.5

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

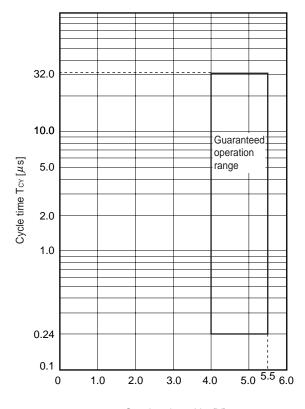
DC Characteristics (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol		Conditions				TYP.	MAX.	Unit
Input voltage,	V _{IH1}	P10 to P17, P21, P2	23, P30 to P37	7, P40 to I	P47, P50, P53,	0.7V _{DD}		VDD	V
high		P64 to P67							
	V _{IH2}	RESET, P00 to P03	3, P20, P22, P2	24 to P26	, P51, P52,	0.8V _{DD}		V _{DD}	V
		P54 to P57							
	VIH3	X1, X2				V _{DD} - 0.5		V _{DD}	V
Input voltage, low	V _{IL1}	P10 to P17, P21, P2 P64 to P67	23, P30 to P37	7, P40 to I	P47, P50, P53,	0		0.3V _{DD}	V
	V _{IL2}	RESET, P00 to P03 P54 to P57	3, P20, P22, P2	24 to P26	, P51, P52,	0		0.2V _{DD}	V
	V _{IL3}	X1, X2				0		0.4	V
Output voltage,	V _{OH1}	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$, Iон = -1 mA			V _{DD} - 1.0		V _{DD}	V
high		I он = $-100 \mu A$				V _{DD} - 0.5		V _{DD}	V
Output voltage,	V _{OL1}	P50 to P57, TO70 t	o TO75	5.0 V ≤ '	V _{DD} ≤ 5.5 V,		0.4	2.0	V
low				IoL = 15	mA				
		P00 to P03, P20 to	P26,	5.0 V ≤ '	$V_{DD} \leq 5.5 V$,			0.4	V
		P30 to P37, P40 to	P47,	IOL = 1.6	mA				
		P64 to P67							
	V _{OL2}	$I_{OL} = 400 \ \mu A$						0.5	V
Input leakage	ILIH1	VIN = VDD		P00 to F	03, P10 to P17,			3	μΑ
current, high					26, P30 to P37,				
				P40 to F	247, P50 to P57,				
				P64 to F	967,				
				TO70 to	TO75, RESET				
	ILIH2		X1, X2					20	μΑ
Input leakage	ILIL1	$V_{IN} = 0 V$			203, P10 to P17,			-3	μΑ
current, low					26, P30 to P37,				
					P47, P50 to P57,				
				P64 to F	•				
				-	TO75, RESET				
	ILIL2	., .,		X1, X2				-20	μΑ
Output leakage	Ісон	Vout = Vdd						3	μΑ
current, high		V 0.V						-	
Output leakage	ILOL	Vout = 0 V						-3	μΑ
current, low	R ₂	Vin = 0 V				15	30	90	kΩ
Software pull-up resistor	K2	P00 to P03, P20 to	D26 D20 to D	27 D40 +	D47 D50 to	15	30	90	KS2
resistor		P57, P64 to P67	F20, F30 10 F	37, F40 K	5 F47, F50 to				
Power supply	I _{DD1}	8.38-MHz crystal	V _{DD} = 5.0 V ±	-1∩0/ ₆ Note 2	When A/D		15	30	mA
current ^{Note 1}	1001	oscillation	V DD = 3.0 V 1	1070	converter		10		111/4
Current		operating mode			stopped				
		operating mode			When A/D		16	32	mA
					converter		10	02	1117
					operating				
	I _{DD2}	8.38-MHz crystal	V _{DD} = 5.0 V ±	10%Note 2	When peripheral		1.3	2.6	mA
		oscillation HALT	0.0 • -		function			0	
		mode			stopped			1	
					When peripheral			7.3	mA
					function operating			1	
	I _{DD3}	STOP mode	V _{DD} = 5.0 V ±	-10%	1 1,1 1,11		0.1	30	μΑ
	.555		0.0 /	• , •			<u> </u>		, ,

Notes 1. Refers to the total current flowing to the internal power supply (V_{DD0} and V_{DD1}). The peripheral operation current is included however, the current flowing to the pull-up resistor of ports and AV_{REF} pin is not included.

2. High-speed mode operation (when processor clock control register (PCC) is set to 00H).

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.


AC Characteristics

(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Tcy	Operating with system clock	0.24		32	μs
(Min. instruction						
execution time)						
TI000, TI001,	fтю		0		fx/64	MHz
TI010, TI011						
input frequency						
TI000, TI001,	t тіно		2/f _{sam} +			μs
TI010, TI011	t TILO		0.1 Note			
input high-/						
low-level width						
TI50, TI51, TI52	f T15	8-/16-bit precision	0		4	MHz
input frequency						
TI50, TI51, TI52	t тін5	8-/16-bit precision	100			ns
input high-/	tTIL5					
low-level width						
Interrupt request	tinth	INTP0 to INTP7	1			μs
input high-/	tintl					
low-level width						
TOFF input	t TOFFH		2			μs
high-/low-level	t TOFFL					
width						
RESET input	trsL		10			μs
low-level width						

Note Selection of $f_{sam} = f_x$, $f_x/4$, $f_x/32$ is possible with bits 0 and 1 (PRM000, PRM001) of prescaler mode register 00 (PRM00) or with bits 0 and 1 (PRM010, PRM011) of prescaler mode register 01 (PRM01). Note that when selecting TI000 (TM00) or TI001 (TM01) valid edge as the count clock, $f_{sam} = f_x/16$.

Tcy vs VDD (System clock operation)

(2) Read/write operation (T_A = -40 to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Data input time from address	tADD1			(2 + 2n)tcy - 54	ns
	tADD2			(3 + 2n)tcy - 60	ns
Address output time from RD↓	trdad		0	100	ns
Data input time from RD↓	trdd1			(2 + 2n)tcy - 87	ns
	tRDD2			(3 + 2n)tcy - 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 33		ns
	tRDL2		(2.5 + 2n)tcy - 33		ns
WAIT↓ input time from RD↓	trdwt1			tcy - 43	ns
	trdwt2			tcy - 43	ns
WAIT↓ input time from WR↓	twrwt			0.5tcy - 25	ns
WAIT low-level width	twTL		(0.5 + 2n)tcy + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twoн		6		ns
WR low-level width	twrL		(1.5 + 2n)tcy - 15		ns
RD↓ delay time from ASTB↓	tastrd		6		ns
WR↓ delay time from ASTB↓	tastwr		2tcy - 15		ns
ASTB↑ delay time from RD↑ at external fetch	trdast		0.8tcy - 15	1.2tcy	ns
Write data output time from RD↑	trowd		40		ns
Write data output time from WR↓	twrwd		10	60	ns
RD↑ delay time from WAIT↑	twtrd		0.8tcy	2.5tcy + 25	ns
WR↑ delay time from WAIT↑	twrwr		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- 3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of AD0 to AD7, \overline{RD} , \overline{WR} , \overline{WAIT} , and ASTB pins.)

(3) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$)

(a) 3-wire serial I/O mode (SCK... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkCY1		954			ns
SCK high-/low-level width	t кн1		tkcy1/2 - 50			ns
	t _{KL1}					
SI setup time (to SCK↑)	tsıĸ1		100			ns
SI hold time (from SCK↑)	tksi1		400			ns
SO output delay time from SCK↓	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SCK and SO output lines.

(b) 3-wire serial I/O mode (SCK... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2		800			ns
SCK high-/low-level width	t KH2		400			ns
	t _{KL2}					
SI setup time (to SCK↑)	tsık2		100			ns
SI hold time (from SCK↑)	tks12		400			ns
SO output delay time	t KSO2	C = 100 pF ^{Note}			300	ns
from SCK↓						

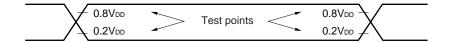
Note C is the load capacitance of the \overline{SCK} and SO output lines.

(c) UART mode (UART00) (Dedicated baud rate generator output)

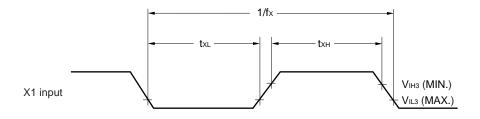
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					125000	bps

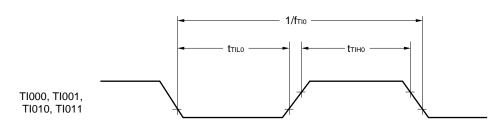
(d) UART mode (UART00) (Infrared data transfer mode)

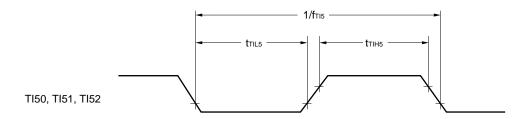
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					115200	bps
Bit rate allowable error					±0.87	%
Output pulse width			1.2		0.24/fbr ^{Note}	μs
Input pulse width			4/fx			μs


Note fbr: Set baud rate

(e) UART mode (UART01) (Dedicated baud rate generator output)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					38400	bps

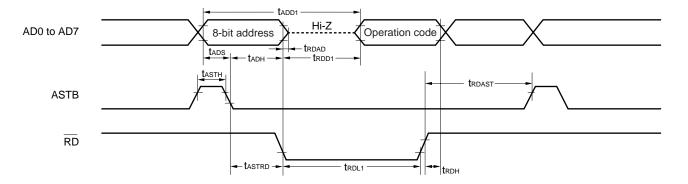

AC Timing Test Points (excluding X1 input)

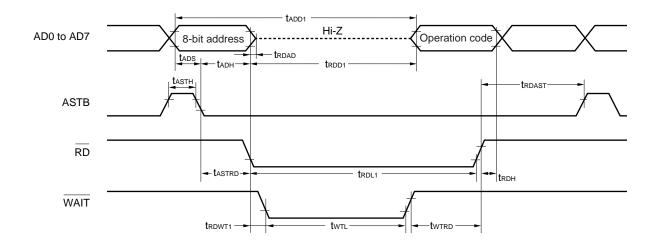


Clock Timing



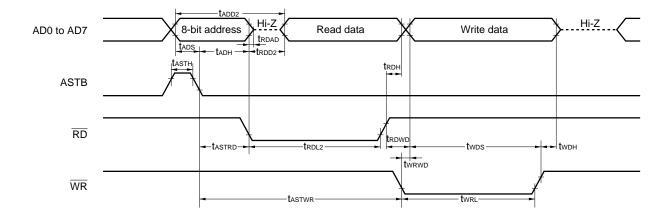
TI Timing


TOFF Timing

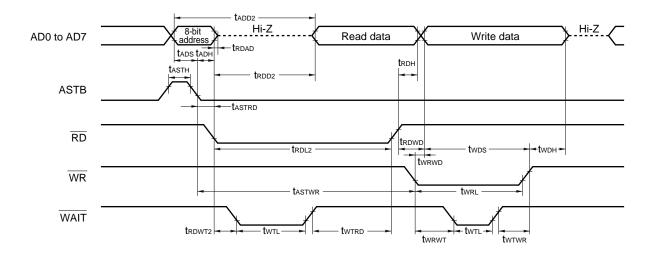


Read/Write Operation

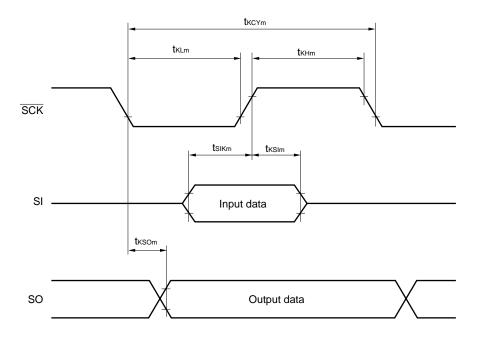
External fetch (no wait):



External fetch (wait insertion):



External data access (no wait):



External data access (wait insertion):

Serial Transfer Timing

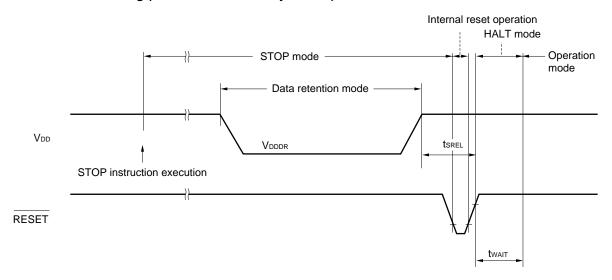
3-wire serial I/O mode:

m = 1, 2

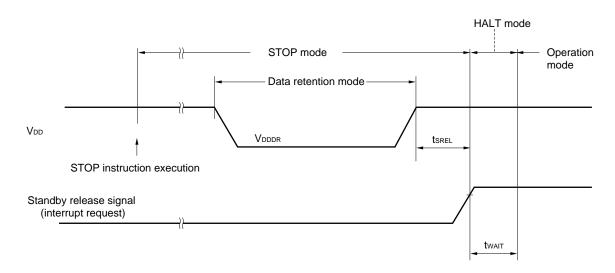
A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 4.0 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

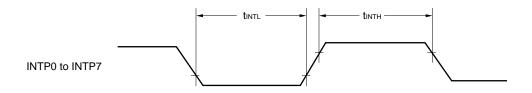
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		4.0 V ≤ AV _{REF} ≤ 5.5 V		±0.2	±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$		±0.3	±0.6	%FSR
Conversion time	tconv	$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$	14		96	μs
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$	19		96	μs
Zero-scale offsetNote		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
Full-scale offset ^{Note}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
Non-linearity error		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±2.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±4.5	LSB
Differential non-linearity error		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±1.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±2.0	LSB
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		2.7		AVDD	V
Resistance between AVREF and AVss	RREF	When A/D converter is not operating	20	40		kΩ

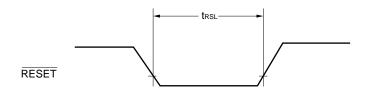
Note Excludes quantization error ($\pm 1/2$ LSB). It is indicated as a ratio to the full-scale value.


Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		2.0		5.5	V
Data retention power supply current	IDDDR	VDDDR = 2.0 V		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt request		Note		ms


Note Selection of 2^{12} /fx and 2^{14} /fx to 2^{17} /fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

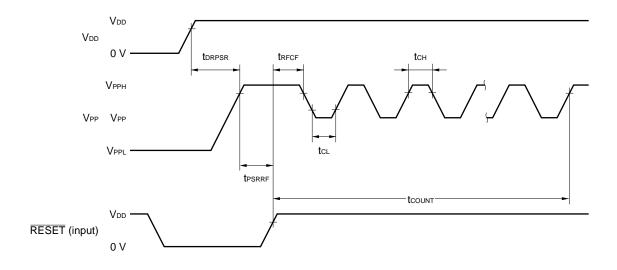

Data Retention Timing (STOP mode release by RESET)


Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

Interrupt Request Input Timing

RESET Input Timing

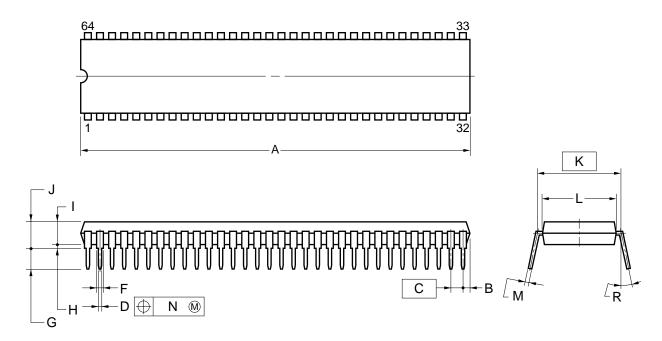
Flash Memory Programming Characteristics (VDD = 4.0 to 5.5 V, Vss = 0 V, VPP = 9.7 to 10.3 V)


(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operation frequency	fx		1.0		8.38	MHz
Supply voltage	V _{DD}		4.0		5.5	V
	V _{PPL}	When V _{PP} low-level is detected	0		0.2VDD	V
	V _{PP}	When VPP high-level is detected	0.8VDD	V _{DD}	1.2V _{DD}	V
	V _{PPH}	When VPP high-voltage is detected	9.0	10.0	10.5	V
		When programming	9.7	10.0	10.3	V
VPP power supply current	IPP	V _{PP} = 10.0 V		50	100	mA
Write time (per 1 byte)	Twrt		50		500	μs
Number of rewrites	Cwrt				20	Times
Erase time	TERASE		1		20	s
Programming temperature	T _{PRG}		10		40	°C

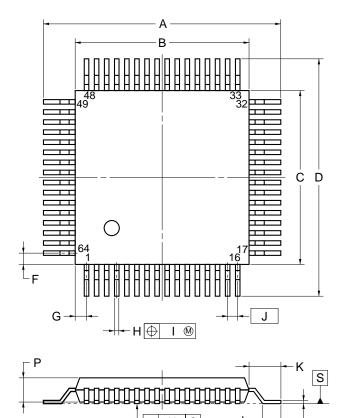
(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{PP} ↑ set time from V _{DD} ↑	t DRPSR	V _{PP} high voltage	0			μs
RESET↑ set time from V _{PP} ↑	t PSRRF	V _{PP} high voltage	1.0			μs
V _{PP} count start time from RESET↑	trfcf	V _{PP} high voltage	1.0			μs
Count execution time	tcount				20	ms
VPP counter high-level width	tсн		8.0			μs
VPP counter low-level width	t cL		8.0			μs
VPP counter noise elimination width	tnfw			40		ns

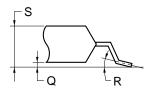

Flash Write Mode Setting Timing

★ 7. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)


NOTES

- 1. Controlling dimension— millimeter.
- 2. Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 3. Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	$58.0^{+0.68}_{-0.20}$	$2.283^{+0.028}_{-0.008}$
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
1	$4.05^{+0.26}_{-0.20}$	$0.159^{+0.011}_{-0.008}$
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0±0.2	$0.669^{+0.009}_{-0.008}$
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0 to 15°	0 to 15°

P64C-70-750A,C-3

64 PIN PLASTIC QFP (□14)

detail of lead end

NOTE

- 2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.17^{+0.08}_{-0.07}$	$0.007^{+0.003}_{-0.004}$
N	0.10	0.004
Р	2.55±0.1	0.100±0.004
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	2.85 MAX.	0.113 MAX.

P64GC-80-AB8-4

М

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780988 Subseries. Also refer to **(5) Cautions on Using Development Tools**.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series	
CC78K/0	compiler package common to 78K/0 Series	
DF780988	Device file for µPD780988 Subseries	
CC78K/0-L	C compiler library source file common to 78K/0 Series	

(2) Flash Memory Writing Tools

Flashpro II (part No. FL-PR2),	Flash programmer dedicated to on-chip flash memory microcontroller
Flashpro III (part No. FL-PR3,	
PG-FP3)	
FA-64CW	Adapter for flash memory writing
FA-64GC	

(3) Debugging Tools

• When IE-78K0-NS in-circuit emulator is used

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA ^{Note}	Performance board for enhancement and expansion of IE-78K0-NS function
IE-70000-98-IF-C	Interface adapter when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT™ or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Adapter necessary when using PCI bus incorporated personal computer as host machine
IE-780988-NS-EM4	Emulation board to emulate μPD780988 Subseries
IE-78K0-NS-P01	I/O board necessary to emulate μPD780988 Subseries
NP-64CW	Emulation probe for 64-pin plastic shrink DIP (CW type)
NP-64GC NP-64GC-TQ	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EV-9200GC-64	Conversion socket to connect the NP-64GC and a target system board on which the 64-pin plastic QFP (GC-AB8 type) can be mounted
TGC-064SAP	Conversion adapter to connect the NP-64GC-TQ and a target system board on which the 64-pin plastic QFP (GC-AB8 type) can be mounted
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780988	Device file for μPD780988 Subseries

Note Under development

• When IE-78001-R-A in-circuit emulator is used

IE-78001-R-A	In-circuit emulator common to 78K/0 Series	
IE-70000-98-IF-C	Interface adapter when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)	
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)	
IE-70000-PCI-IF	Adapter necessary when using PCI bus incorporated personal computer as host machine	
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine	
IE-780988-NS-EM4	Emulation board to emulate μ PD780988 Subseries	
IE-78K0-NS-P01	I/O board necessary to emulate μ PD780988 Subseries	
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-780988-NS-EM4 and IE-78K0-NS-P01 on IE-78001-R-A	
EP-78240CW-R	Emulation probe for 64-pin plastic shrink DIP (CW type)	
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)	
EV-9200GC-64	Socket to be mounted on a target system board made for 64-pin plastic QFP (GC-AB8 type)	
ID78K0	Integrated debugger for IE-78001-R-A	
SM78K0	System simulator common to 78K/0 Series	
DF780988	Device file for μPD780988 Subseries	

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780988.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 or DF780988.
- The FL-PR2, FL-PR3, FA-64CW, FA-64GC, NP-64CW, NP-64GC, and NP-64GC-TQ are products made by NAITO DENSEI MACHIDA MFG. CO., LTD. (TEL +81-44-822-3813). Contact an NEC distributor regarding the purchase of these products.
- The TGC-064SAP is a product made by TOKYO ELETECH CORPORATION. For further information, contact: Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL +81-3-3820-7112)

Osaka Electronics Department (TEL +81-6-6244-6672)

- For third-party development tools, see the 78K/0 Series Selection Guide (U11126E).
- The host machine and OS suitable for each software are as follows.

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT and compatibles	SPARCstation TM [SunOS TM , Solaris TM]
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]
RA78K/0	\sqrt{Note}	√
CC78K/0	\sqrt{Note}	√
ID78K0-NS	√	-
ID78K0	√	√
SM78K0	$\sqrt{}$	-
RX78K/0	\sqrt{Note}	√
MX78K0	\sqrt{Note}	V

Note DOS-based software

* APPENDIX B. RELATED DOCUMENTS

• Documents Related to Devices

Document Name	Г	Document No.	
	English	Japanese	
μPD780988 Subseries User's Manual	U13029E	U13029J	
μPD780982, 780983, 780984, 780986, 780988 Data Sheet	U12804E	U12804J	
μPD78F0988 Data Sheet	This manual	U12805J	
μ PD780988 Subseries Inverter Control Application Note	U13119E	U13119J	
μ PD780988 Subseries Special Function Register Table	_	U12806J	
78K/0 Series Instructions User's Manual	U12326E	U12326J	
78K/0 Series Instruction Table	_	U10903J	
78K/0 Series Instruction Set	-	U10904J	

• Documents Related to Development Tools (User's Manuals)

Document Name		Document No.	
		English	Japanese
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K0 C Compiler Application Note	Programming Know-How	U13034E	U13034J
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-780988-NS-EM4		To be prepared	To be prepared
EP-78240		U10332E	EEU-986
SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger Windows Based	Reference	U12900E	U12900J
ID78K0 Integrated Debugger EWS Based	Reference	_	U11151J
ID78K0 Integrated Debugger PC Based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger Windows Based	Guide	U11649E	U11649J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

• Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		English	Japanese
78K/0 Series Real-Time OS	Fundamental	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Fundamental	U12257E	U12257J

• Other Related Documents

Document Name	Document No.	
	English	Japanese
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Microcomputer-Related Products by Third Party	_	U11416J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES-

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.