Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD789011, 789012

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD789011 and 789012 are products in the μ PD789014 Subseries of compact, general-purpose microcontrollers in the 78K/0S Series. In addition to an 8-bit CPU, these products have substantial hardware such as on-chip I/O ports, timers, serial interface, and interrupt controls.

The μ PD78P9014, one-time PROM product that can be written only once, and various development tools are also available.

These user's manuals contain detailed descriptions of the functions. Be sure to read them before designing.

 μ PD78P9014 Subseries User's Manual : U11187E 78K/0S Series User's Manual — Instruction : U11047E

FEATURES

ROM and RAM capacity

	Item	Program Memory	Data Memory (Internal	Package
Product Name		(ROM)	High-Speed RAM)	
μPD789011	/	2 Kbytes	128 bytes	28-pin plastic shrink DIP (400 mil)
μPD789012		4 Kbytes		28-pin plastic SOP (375 mil)

- Minimum instruction execution time changeable to the high-speed (0.4 μs) and the low-speed (1.6 μs)
- I/O ports: 22
- Serial interface: 1 channel

3-wire serial I/O mode/UART mode selectable

- · Timers: 3 channels
 - 8-bit timer/event counter: 2 channels
 - · Watchdog timer: 1 channel
- Power supply voltage: VDD = 1.8 to 5.5 V

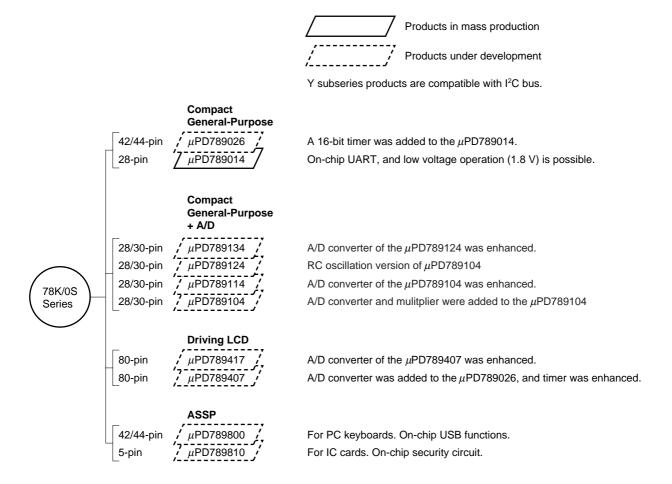
The information in this document is subject to change without notice.

APPLICATION FIELDS

Compact household appliances, remote controls, games, etc.

ORDERING INFORMATION

Part Number	Package
μ PD789011CT- $\times\!\!\times\!\!\times$	28-pin plastic shrink DIP (400 mil)
μ PD789011GT- $\times\!\!\times\!\!$	28-pin plastic SOP (375 mil)
μ PD789012CT- $\times\!\!\times\!\!\times$	28-pin plastic shrink DIP (400 mil)
μ PD789012GT- $\times\!\!\times\!\!$	28-pin plastic SOP (375 mil)


OVERVIEW OF THE FUNCTIONS

Item		μPD789011	μPD789012		
On-chip memory	ROM	2 Kbytes 4 Kbytes			
	High-speed RAM	128 bytes			
General-purpose registers		8 bits × 8 registers			
Minimum instruction execu	ution time	0.4 μ s or 1.6 μ s (at 5.0-MHz operation	n with main system clock)		
Instruction set		• 16-bit calculations • Bit manipulation (set, reset, test)			
I/O ports		CMOS I/O : 22			
Serial interface		3-wire serial I/O mode/UART mode selectable : 1 channel			
Timers		8-bit timer/event counter : 2 channels Watchdog timer : 1 channel			
Timer output		2			
Vector interrupt source	Maskable	Internal: 6, External: 3			
	Non-maskable	Internal: 1			
Power supply voltage		V _{DD} = 1.8 to 5.5 V			
Ambient operating tempera	ature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$			
Package		28-pin plastic shrink DIP (400 mil) 28-pin plastic SOP (375 mil)			

78K/0S Series Expansion

The following shows the 78K/0S Series products development. Subseries names are shown inside frames.

The following lists the main functional differences between subseries products.

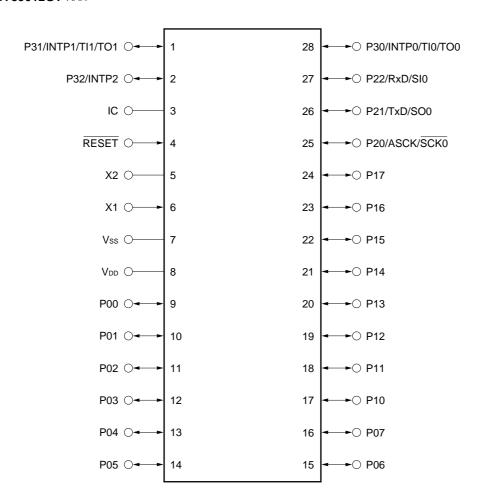
Function		ROM		Tir	ners		8-bit	8-bit 10-bit	t Serial Interface	1/0	Minimum	Remark
Subseries Na	me	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	Gorial interiore	., 0	V _{DD}	roman
Compact, general-	μPD789026	4K to 16K	1ch	1ch	_	1ch	_	_	1ch (UART :1 ch)	34	1.8 V	_
purpose	μPD789014	2K to 4K	2ch	_						22		
Compact,	μPD789134	2K to 8K	1ch	1ch	_	1ch	_	4ch	1ch (UART : 1ch)	20		RC oscillation
general-	μPD789124						4ch	_				version
purpose + A/D	μPD789114						_	4ch				_
	μPD789104						4ch	_				
LCD driving	μPD789417	12K to 24K	3ch	1ch	1ch	1ch	_	7ch	1ch (UART : 1ch)	43	1.8 V	_
	μPD789407						7ch	_				
ASSP	μPD789800	8K	2ch	_	_	1ch	_	_	2ch (USB : 1ch)	31	4.0 V	_
	μPD789810	6K	_							1		On-chip EEPROM TM

CONTENTS

	1.	PIN CONFIGURATION (Top View)	6
	2.	BLOCK DIAGRAM	7
	3.	PIN FUNCTION LIST	_
		3.1 Port Pins	8
		3.2 Non-port Pins	9
		3.3 Pin I/O Circuit and Recommended Connecitons of Unused Pins	0
	4.	MEMORY SPACE1	1
	5.	PERIPHERAL HARDWARE FUNCTIONS1	
		5.1 Ports	2
		5.2 Clock Generator	2
		5.3 Timer	3
		5.4 Serial Interface	4
	6.	INTERRUPT FUNCTIONS1	5
	7.	STANDBY FUNCTIONS1	7
	8.	RESET FUNCTIONS1	7
	9.	OVERVIEW OF THE INSTRUCTION SET1	8
		9.1 Legend 1	8
		9.2 Operation List	0
ł .	10.	ELECTRICAL SPECIFICATIONS2	5
	11.	PACKAGE DRAWINGS3	7
ł .	12.	RECOMMENDED SOLDERING CONDITIONS	9
	ΑP	PENDIX A. DEVELOPMENT TOOLS4	0
	ΑP	PENDIX B. RELATED DOCUMENTS4	1

1. PIN CONFIGURATION (Top View)

• 28-pin plastic shrink DIP (400 mil)

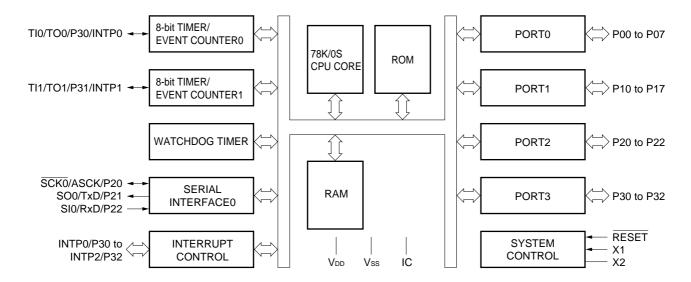

 μ PD789011CT- $\times\!\times\!$

 μ PD789012CT- $\times\!\times\!$

• 28-pin plastic SOP (375 mil)

 μ PD789011GT- $\times\!\times\!$

 μ PD789012GT- $\times\!\times\!$



Caution Connect IC pin directly to Vss.

ASCK	: Asynchronous Serial Clock	SCK0	: Serial Clock
IC	: Internally Connected	SI0	: Serial Input
INTP0 to INTP2	: Interrupt from Peripherals	SO0	: Serial Output
P00 to P07	: Port0	TIO, TI1	: Timer Input
P10 to P17	: Port1	TO0, TO1	: Timer Output
P20 to P22	: Port2	TxD	: Transmit Data
P30 to P32	: Port3	VDD	: Power Supply
RESET	: Reset	Vss	: Ground
RxD	: Receive Data	X1, X2	: Crystal

2. BLOCK DIAGRAM

3. PIN FUNCTION LIST

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P07	I/O	Port 0 8-bit I/O port Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used by software. LEDs can be directly driven.	Input	_
P10 to P17	I/O	Port 1 8-bit I/O port Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used by software. LEDs can be directly driven.	Input	_
P20	I/O	Port 2 3-bit I/O port	Input	ASCK/SCK0
P21		Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used		TxD/SO0
P22		by software. LEDs can be directly driven.		RxD/SI0
P30	I/O	Port 3 3-bit I/O port	Input	INTP0/TI0/TO0
P31		Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used		INTP1/TI1/TO1
P32		by software. LEDs can be directly driven.		INTP2

3.2 Non-port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0 ^{Note}	Input	External interrupt input whose valid edge can be specified (rising	Input	P30/TI0/TO0
INTP1Note		edge, falling edge, or both the rising and falling edges).		P31/TI1/TO1
INTP2Note				P32
SI0 ^{Note}	Input	Serial data input in the serial interface	Input	P22/RxD
SO0	Output	Serial data output in the serial interface	Input	P21/TxD
SCK0Note	I/O	Serial clock I/O for the serial interface	Input	P20/ASCK
RxD ^{Note}	Input	Serial data input for the asynchronous serial interface	Input	P22/SI0
TxD	Output	Serial data output for the asynchronous serial interface	Input	P21/SO0
ASCK ^{Note}	Input	Serial clock input for the asynchronous serial interface	Input	P20/SCK0
TI0 ^{Note}	Input	External count clock input to the 8-bit timer (TM0)	Input	P30/INTP0/TO0
TI1Note		External count clock input to the 8-bit timer (TM1)		P31/INTP1/TO1
TO0	Output	8-bit timer output	Input	P30/INTP0/TI0
TO1				P31/INTP1/TI1
RESET	Input	System reset input	Input	_
X1	Input	Crystal connection for the main system clock oscillation	_	_
X2	_		_	_
V _{DD}	_	Positive power supply	_	_
IC	_	Internally connected. Connect directly to Vss.	_	_
Vss	_	Ground potential	_	_

Note These pins are input through Schmitt triggers (See Type 5-D in Figure 3-1 Pin I/O Circuit Types).

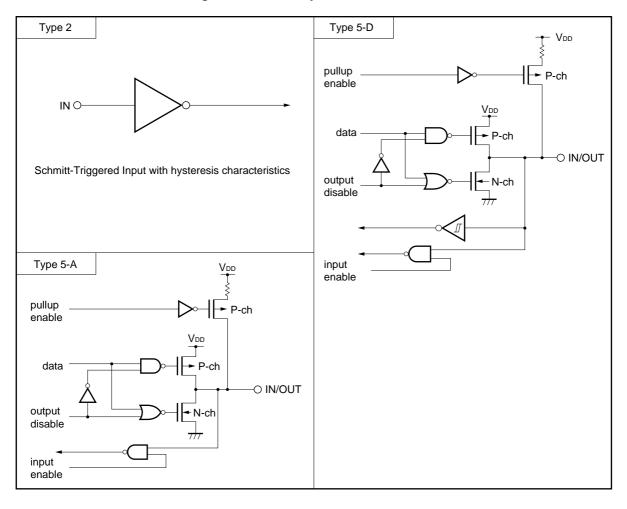

3.3 Pin I/O Circuit and Recommended Connections of Unused Pins

Table 3-1 shows the types of the I/O circuits of each pin and the connections for unused pins. See Figure 3-1 for the structure of each type of I/O circuit.

Table 3-1. Types of Pin I/O Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection for Unused Pins
P00-P07	5-A	I/O	Connect to VDD or Vss via a resistor independently.
P10-P17			
P20/ASCK/SCK0	5-D		
P21/TxD/SO0	5-A		
P22/RxD/SI0	5-D		
P30/INTP0/TI0/TO0			Connect to Vss via a resistor independently.
P31/INTP1/TI1/TO1			
P32/INTP2			
RESET	2	_	_
IC	_	_	Connect directly to Vss.

Figure 3-1. Summary of the Pin I/O Circuits

4. MEMORY SPACE

Program Memory

Space

 $0\ 0\ 0\ 0\ H$

Figure 4-1 shows the μ PD789011 and 789012 memory map.

FFFFH Special Function Register 256×8 bits FF00H FEFFH Internal High-speed RAM 128×8 bits FE80H FE7FH Use Prohibited **Data Memory** Space $n\,n\,n\,n\,H$ n n n n H + 1 n n n n HProgram Area

Figure 4-1. Memory Map

Note Internal ROM capacity differs depending on the product (see the table below).

Internal ROMNote

Product Name	Internal ROM Bottom Address nnnnH	
μPD789011	07FFH	
μPD789012	0FFFH	

0.080H

007FH

0040H 003FH

0014H 0013H

 $0\ 0\ 0\ 0\ H$

CALLT Table Area

Program Area

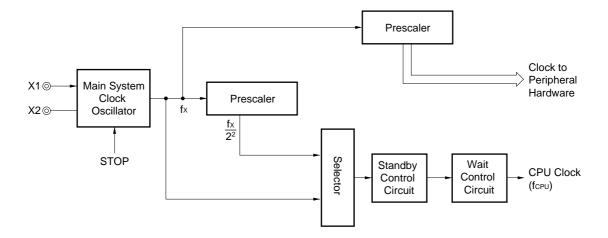
Vector Table Area

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

The μ PD789011 and 789012 are provided with the ports shown below, which enable various types of control.

Table 5-1. Port Functions


Name	Pin Name	Function
Port 0	P00 to P07	8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
Port 1	P10 to P17	8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
Port 2	P20 to P22	3-bit input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
Port 3	P30 to P32	3-bit input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.

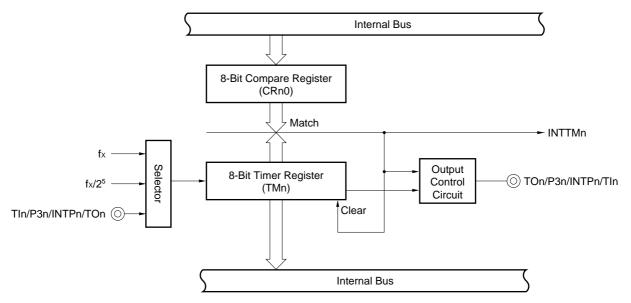
5.2 Clock Generator

The main system clock generator is incorporated. Also, the minimum instruction execution can be changed.

• 0.4 μ s/1.6 μ s (at 5.0-MHz operation with main system clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer


The μ PD789011 and 789012 incorporate 3 channels of the timer.

• 8-bit timer/event counter: 2 channels · Watchdog timer : 1 channel

Table 5-2. Operations of Timer

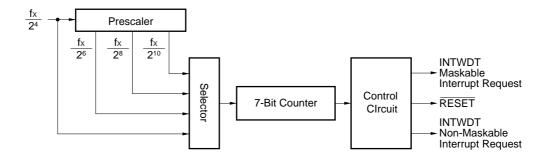
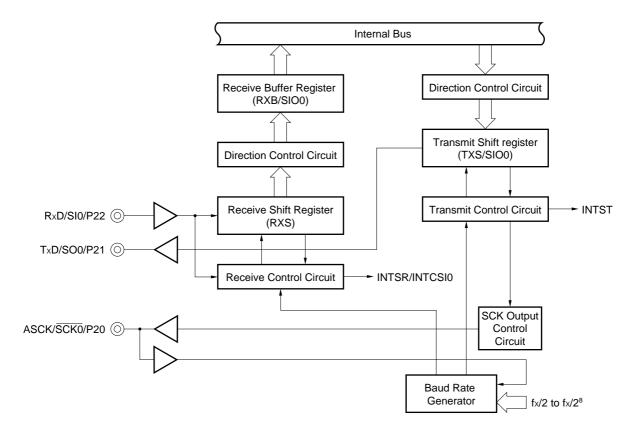

		8-bit Timer/Event Counter	Watchdog Timer
Operation mode	Interval timer	2 channels	1 channel
	External event counter	2 channels	_
Function	Timer output	2 outputs	_
	Interrupt request	2	1

Figure 5-2. 8-Bit Timer/Event Counter Block Diagram

Remark n = 0 or 1

Figure 5-3. Watchdog Timer Block Diagram

5.4 Serial Interface


1 channel of serial interface is incorporated.

Serial interface channel 0 has the following two modes.

• 3-wire serial I/O mode : MSB/LSB first switchable

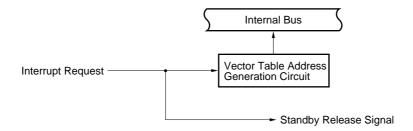
Asynchronous serial interface (UART) mode: Dedicated baud rate generator incorporated

Figure 5-4. Serial Interface Channel 0 Block Diagram

6. INTERRUPT FUNCTIONS

There are 10 interrupt functions of 2 different sources as follows.

Non-maskable : 1Maskable : 9


Table 6-1. Interrupt Source List

Interrupt Type	Priority ^{Note} 1	Name	Interrupt Source Trigger	Internal/ External	Vector Table Address	Basic Configuration Type ^{Note 2}
Non-maskable	_	INTWDT	Watchdog timer overflow (when the watchdog timer mode 1 is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (when the interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTSR	Completion of serial interface channel 0 UART reception	Internal	000CH	(B)
		INTCSI0	Completion of serial interface channel 0 3-wire transfer			
	5	INTST	Completion of serial interface channel 0 UART transmission		000EH	
	6	INTTM0	Generation of matching signal of 8-bit timer/ event counter 0		0010H	
	7	INTTM1	Generation of matching signal of 8-bit timer/ event counter 1		0012H	

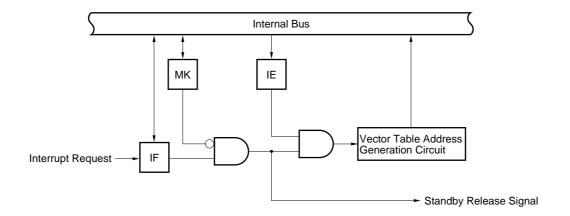
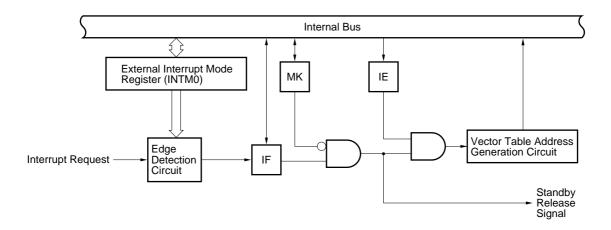

- **Notes 1.** The priority is the priority order when two or more maskable interrupt requests are generated simultaneously. 0 is the highest order and 7 the lowest.
 - 2. Basic configuration types (A) to (C) correspond to those in Figure 6-1, respectively.

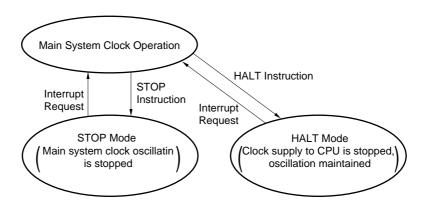
Figure 6-1. Basic Configuration of Interrupt Functions


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

IF : Interrupt request flagIE : Interrupt enable flagMK : Interrupt mask flag



7. STANDBY FUNCTIONS

There are the following two standby functions to reduce the system power consumption.

- HALT mode: The CPU operation clock is stopped.
 The average current consumption can be reduced by intermittent operation in combination with the normal operation mode.
- STOP mode: The main system clock oscillation is stopeed. All the operations performed on the main system clock is stopped, and power consumption becomes extremely small.

Figure 7-1. Standby Function

8. RESET FUNCTIONS

There are the following two reset methods.

- External reset input by RESET pin
- Internal reset by watchdog timer runaway time detection

9. OVERVIEW OF THE INSTRUCTION SET

The instruction set of μ PD789011 and 789012 is shown in the table below.

9.1 Legend

9.1.1 Operand identifiers and methods of use

Operands are described in "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more description methods, select one of them. Alphabetic letters in capitals and symbols, #, !, \$, and [] are keywords and must be described as they are. Each symbol has the following meaning.

#: Immediate data specification
!: Absolute address specification
[]: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, Be sure to describe the #, !, \$, and [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Table 9-1. Operand Identifiers and Description Methods

Identifier	Description Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special-function register symbol
saddr	FE20H to FF1FH Immediate data or labels
saddrp	FE20H to FF1FH Immediate data or labels (even addresses only)
addr16	0000H to FFFFH Immediate data or labels
	(Only even addresses in a 16-bit data transfer instructions)
addr5	0040H to 007FH Immediate data or labels (even addresses only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label

9.1.2 Description of "Operation" column

A : A register ; 8-bit accumulator

X : X register
B : B register
C : C register
D : D register
E : E register
H : H register
L : L register

AX : AX register pair; 16-bit accumulator

BC : BC register pair
DE : DE register pair
HL : HL register pair
PC : Program counter
SP : Stack pointer

PSW : Program status word

CY : Carry flag

AC : Auxiliary carry flag

Z : Zero flag

IE : Interrupt request enable flag

NMIS : Non-maskable interrupt servicing flag

() : Memory contents indicated by the address or register contents in parentheses

 X_H, X_L : High 8 bits and low 8 bits of a 16-bit register

∴ Logical product (AND)∴ Logical sum (OR)

→ : Exclusive logical sum (exclusive OR)

: Inverted data

addr16 : 16-bit immediate data or label

jdisp8 : signed 8-bit data (displacement value)

9.1.3 Description of "Flag Operation" column

(Blank) : Unchanged 0 : Clear to 0. 1 : Set to 1.

× : Set/cleared according to the resultR : Previously saved value is restored.

★ 9.2 Operation List

Mnemonic	Operand	Bytes	Clock	Operation		Flag	S
WITTETTIOTIC	Operand	Bytes		Ореганоп	Z	AC	C١
MOV	r, #byte	3	6	$r \leftarrow byte$			
	saddr, #byte	3	6	(saddr) ← byte			
	sfr, #byte	3	6	sfr ← byte			
	A, r Note 1	2	4	$A \leftarrow r$			
	r, A Note 1	2	4	$r \leftarrow A$			
	A, saddr	2	4	A ← (saddr)			
	saddr, A	2	4	(saddr) ← A			
	A, sfr	2	4	$A \leftarrow sfr$			
	sfr, A	2	4	sfr ← A			
	A, !addr16	3	8	A ← (addr16)			
	!addr16, A	3	8	(addr16) ← A			
	PSW, #byte	3	6	PSW ← byte	×	×	×
	A, PSW	2	4	A ← PSW			
	PSW, A	2	4	PSW ← A	×	×	×
	A, [DE]	1	6	$A \leftarrow (DE)$			
	[DE], A	1	6	(DE) ← A			
	A, [HL]	1	6	$A \leftarrow (HL)$			
	[HL], A	1	6	(HL) ← A			
	A, [HL + byte]	2	6	A ← (HL + byte)			
	[HL + byte], A	2	6	(HL + byte) ← A			
XCH	A, X	1	4	$A \leftrightarrow X$			
	A, r Note 2	2	6	$A \leftrightarrow r$			
	A, saddr	2	6	$A \leftrightarrow (saddr)$			
	A, sfr	2	6	$A \leftrightarrow (sfr)$			
	A, [DE]	1	8	$A \leftrightarrow (DE)$			
	A, [HL]	1	8	$A \leftrightarrow (HL)$			
	A, [HL + byte]	2	8	$A \leftrightarrow (HL + byte)$			
MOVW	rp, #word	3	6	$rp \leftarrow word$			
	AX, saddrp	2	6	AX ← (saddrp)			
	saddrp, AX	2	8	(saddrp) ← AX			
	AX, rp Note 3	1	4	$AX \leftarrow rp$			
	rp, AX Note 3	1	4	rp ← AX			
XCHW	AX, rp Note 3	1	8	$AX \leftrightarrow rp$			

Notes 1. Except r = A

2. Except r = A or X

3. Only when rp = BC, DE, or HL

Remark One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clock	Operation		Flag	s
WITEITIOTIC	Орегани	bytes	CIOCK	Ореганоп	Z	AC	C١
ADD	A, #byte	2	4	A, CY ← A + byte	×	×	×
	saddr, #byte	3	6	(saddr), CY ← (saddr) + byte	×	×	×
	A, r	2	4	$A, CY \leftarrow A + r$	×	×	×
	A, saddr	2	4	A, CY ← A + (saddr)	×	×	×
	A, !addr16	3	8	A, CY ← A + (addr16)	×	×	×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL)$	×	×	×
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL + byte)$	×	×	×
ADDC	A, #byte	2	4	$A, CY \leftarrow A + byte + CY$	×	×	×
	saddr, #byte	3	6	(saddr), CY ← (saddr) + byte + CY	×	×	×
	A, r	2	4	$A, CY \leftarrow A + r + CY$	×	×	×
	A, saddr	2	4	A, CY ← A + (saddr) + CY	×	×	×
	A, !addr16	3	8	$A, CY \leftarrow A + (add16) + CY$	×	×	×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	×	×	×
	A, [HL + byte]	2	6	A, CY ← A + (HL + byte) + CY	×	×	×
SUB	A, #byte	2	4	A, CY ← A – byte	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) – byte	×	×	×
	A, r	2	4	$A, CY \leftarrow A - r$	×	×	×
	A, saddr	2	4	A, CY ← A − (saddr)	×	×	×
	A, !addr16	3	8	A, CY ← A − (addr16)	×	×	×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	×	×	×
	A, [HL + byte]	2	6	A, CY ← A − (HL + byte)	×	×	×
SUBC	A, #byte	2	4	$A, CY \leftarrow A - byte - CY$	×	×	×
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte – CY	×	×	×
	A, r	2	4	$A, CY \leftarrow A - r - CY$	×	×	×
	A, saddr	2	4	A, CY ← A − (saddr) − CY	×	×	×
	A, !addr16	3	8	A, CY ← A − (addr16) − CY	×	×	×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	×	×	×
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte) - CY$	×	×	×
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×		
	saddr, #byte	3	6	(saddr) ← (saddr) ∧ byte	×		
	A, r	2	4	$A \leftarrow A \wedge r$	×		
	A, saddr	2	4	A ← A ↑ (saddr)	×		
	A, !addr16	3	8	A ← A ↑ (addr16)	×		
	A, [HL]	1	6	A ← A ∧ (HL)	×		
	A, [HL + byte]	2	6	$A \leftarrow A \land (HL + byte)$	×		

Remark One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clock	Operation	Flags
					Z AC C
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	A ← A ∨ (addr16)	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	A ← A ∨ (HL + byte)	×
XOR	A, #byte	2	4	$A \leftarrow A \forall$ byte	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \forall byte$	×
	A, r	2	4	$A \leftarrow A \forall r$	×
	A, saddr	2	4	$A \leftarrow A \forall$ (saddr)	×
	A, !addr16	3	8	$A \leftarrow A \forall$ (addr16)	×
	A, [HL]	1	6	$A \leftarrow A \forall (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \forall (HL + byte)$	×
CMP	A, #byte	2	4	A – byte	× × :
	saddr, #byte	3	6	(saddr) - byte	× × :
	A, r	2	4	A – r	× × :
	A, saddr	2	4	A – (saddr)	× × :
	A, !addr16	3	8	A – (addr16)	× × :
	A, [HL]	1	6	A – (HL)	× × :
	A, [HL + byte]	2	6	A – (HL + byte)	× × :
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	× × :
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	× × :
CMPW	AX, #word	3	6	AX – word	× × :
INC	r	2	4	r ← r + 1	××
	saddr	2	4	(saddr) ← (saddr) + 1	××
DEC	r	2	4	r ← r − 1	××
	saddr	2	4	(saddr) ← (saddr) − 1	××
INCW	rp	1	4	rp ← rp + 1	
DECW	rp	1	4	rp ← rp − 1	
ROR	A, 1	1	2	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$	
ROL	A, 1	1	2	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$;
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$	
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$	

Remark One instruction clock cycle is one cycle of the CPU clock (fcPU) selected by the processor clock control register (PCC).

Manager	0	Dutas	Olevelo	Occupations		Flag	s
Mnemonic	Operand	Bytes	Clock	Operation	Z	AC	CY
SET1	saddr. bit	3	6	(saddr. bit) ← 1			
	sfr. bit	3	6	sfr. bit ← 1			
	A. bit	2	4	A. bit ← 1			
	PSW. bit	3	6	PSW. bit ← 1	×	×	×
	[HL]. bit	2	10	(HL). bit ← 1			
CLR1	saddr. bit	3	6	(saddr. bit) ← 0			
	sfr. bit	3	6	sfr. bit ← 0			
	A. bit	2	4	A. bit ← 0			
	PSW. bit	3	6	PSW. bit ← 0	×	×	×
	[HL]. bit	2	10	(HL). bit ← 0			
SET1	CY	1	2	CY ← 1			1
CLR1	CY	1	2	CY ← 0			0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$			×
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC + 3)H, (SP - 2) \leftarrow (PC + 3)L,$ $PC \leftarrow addr16, SP \leftarrow SP - 2$			
CALLT	[addr5]	1	8	$(SP-1) \leftarrow (PC + 1)_H, (SP - 2) \leftarrow (PC + 1)_L,$ $PC_H \leftarrow (00000000, addr5 + 1),$ $PC_L \leftarrow (00000000, addr5),$ $SP \leftarrow SP - 2$			
RET		1	6	$PC_H \leftarrow (SP + 1), PC_L \leftarrow (SP), SP \leftarrow SP + 2$			
RETI		1	8	$\begin{aligned} & PCH \leftarrow (SP+1), PCL \leftarrow (SP), \\ & PSW \leftarrow (SP+2), SP \leftarrow SP+3, NMIS \leftarrow 0 \end{aligned}$	R	R	R
PUSH	PSW	1	2	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$			
	rp	1	4	$(SP-1) \leftarrow rp_H, (SP-2) \leftarrow rp_L, SP \leftarrow SP-2$			
POP	PSW	1	4	PSW ← (SP), SP ← SP + 1	R	R	R
	rp	1	6	$rpH \leftarrow (SP + 1), rpL \leftarrow (SP), SP \leftarrow SP + 2$			
MOVW	SP, AX	2	8	$SP \leftarrow AX$			
	AX, SP	2	6	$AX \leftarrow SP$			
BR	!addr16	3	6	PC ← addr16			
	\$addr16	2	6	PC ← PC + 2 + jdisp8			
	AX	1	6	PCH ← A, PCL ← X			

Remark One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

N4	0	Date	Olasak	O	F	Flags	;
Mnemonic	Operand	Bytes	Clock	Operation	Z	AC	CY
вс	\$saddr16	2	6	PC ← PC + 2 + jdisp8 if CY = 1			
BNC	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 0			
BZ	\$addr16	2	6	PC ← PC + 2 + jdisp8 if Z = 1			
BNZ	\$addr16	2	6	PC ← PC + 2 + jdisp8 if Z = 0			
ВТ	saddr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8			
				if (saddr. bit) = 1			
	sfr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if sfr. bit = 1			
	A. bit, \$addr16	3	8	PC ← PC + 3 + jdisp8 if A. bit = 1			
	PSW. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW. bit = 1			
BF	saddr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8			
				if (saddr. bit) = 0			
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr. bit} = 0$			
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A. bit} = 0$			
	PSW. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW. bit = 0			
DBNZ	B, \$addr16	2	6	B ← B − 1, then			
				$PC \leftarrow PC + 2 + jdisp8 \text{ if } B \neq 0$			
	C, \$addr16	2	6	$C \leftarrow C - 1$, then			
				$PC \leftarrow PC + 2 + jdisp8 \text{ if } C \neq 0$			
	saddr, \$addr16	3	8	(saddr) ← (saddr) – 1, then			
				PC ← PC + 3 + jdisp8 if (saddr) ≠ 0			
NOP		1	2	No Operation			
El		3	6	IE ← 1 (Enable Interrupt)			
DI		3	6	IE ← 0 (Disable Interrupt)			
HALT		1	2	Set HALT Mode			
STOP		1	2	Set STOP Mode			

Remark One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).

* 10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Test Con	ditions	Rating	Unit
Supply voltages	Vdd			-0.3 to + 7.0	V
Input voltage	Vı			-0.3 to V _{DD} + 0.3	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Output current, high	loHNote	1 pin	Peak value	-10	mA
			r.m.s.	-5	mA
		Total of all pins	Peak value	-30	mA
			r.m.s.	-15	mA
Output current, low	louNote	1 pin	Peak value	30	mA
			r.m.s.	15	mA
		Total of all pins	Peak value	160	mA
			r.m.s.	80	mA
Operating ambient temperature	TA		1	-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Note The r.m.s. should be calculated as follows : [r.m.s.] = [peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even single parameter or even momentarily. That is, the absolute maximum ratings are the rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of an alternate function pin and a port pin are the same unless specified otherwise.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz, Unmeasured pins returned to 0 V			15	pF
Output capacitance	Соит				15	pF
I/O capacitance	Сю				15	pF

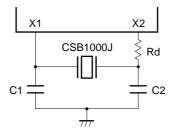
Main System Clock Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Condition	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Oscillator frequency (fx)Note 1	V _{DD} = Oscillating voltage range	1.0		5.0	MHz
	C1	Oscillation stabilization time Note 2	After V _{DD} reaches oscillator voltage range MIN.			4	ms
Crystal resonator	X1 X2	Oscillating frequency (fx)Note 1		1.0		5.0	MHz
	C1	Oscillation stabilization timeNote 2	V _{DD} = 4.5 to 5.5 V			10	ms
External clock	X1 X2	X1 input frequency (fx)Note 1		1.0		5.0	MHz
		X1 input high/low level width (txH, txL)		100		500	ns

- **Notes 1.** Indicates only oscillation circuit characteristics. Refer to AC characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.

Caution When using the main system clock oscillator, wiring the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- · Wiring should be as short as possible.
- · Wiring should not cross other signal lines.
- · Wiring should not be placed close to a varying higher current.
- · The potential of the oscillator capacitor ground should be the same as Vss.
- · Do not ground wiring to a ground pattern in which a high current flows.
- · Do not fetch a signal from the oscillator.



Recommended Oscillating Circuit Constants

Ceramic Resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Product Name	Frequency (MHz)	Oscillation Circuit		Oscillation Voltage Range (VDD)		Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg.	CSB1000J ^{Note}	1.00	100	100	1.9	5.5	$Rd = 1.0 \text{ k}\Omega$
Co., Ltd.	CSA2.00MG040	2.00	100	100	2.1	5.5	
	CST2.00MG040						Product containing capacitor
	CSA4.19MG	4.19	30	30	1.8	5.5	
	CST4.19MGW		_	_			Product containing capacitor
	CSA5.00MG	5.00	30	30	2.2	5.5	
	CST5.00MGW		_	-			Product containing capacitor
	CSA5.00MGU		30	30	2.0	5.5	
	CST5.00MGWU		_	_			Product containing capacitor

Note If the ceramic resonator is the CSB1000J (1.0 MHz) by Murata Mfg. Co., Ltd., the limiting resistor (Rd = 1.0 $k\Omega$) is needed (see the following figure). If another recommended oscillator is used, the limiting resistor is not needed.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Condition	s	MIN.	TYP.	MAX.	Unit
Output current, low	Іоь	1 pin				15	mA
		Total of all of the pins				80	mA
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17,	V _{DD} = 2.7 to 5.5 V	0.7 V _{DD}		VDD	V
		P20 to P22, P30 to P32		0.9 V _{DD}		V _{DD}	٧
	V _{IH2}	INTP0 to INTP2, SI0, RxD,	V _{DD} = 2.7 to 5.5 V	0.8 V _{DD}		V _{DD}	٧
		ASCK, SCKO, TIO, TI1, RESET		0.9 V _{DD}		V _{DD}	٧
	V _{IH3}	X1, X2		V _{DD} - 0.1		V _{DD}	٧
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17,	V _{DD} = 2.7 to 5.5 V	0		0.3 V _{DD}	V
		P20 to P22, P30 to P32		0		0.1 V _{DD}	V
	V _{IL2}	INTP0 to INTP2, SI0, RxD,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.2 V _{DD}	V
		ASCK, SCK0, TI0, TI1, RESET		0		0.1 V _{DD}	V
	V _{IL3}	X1, X2		0		0.1	V
Output voltage, high	Vон	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ IoH} = -1 \text{ mA}$		V _{DD} - 1.0			V
		Іон = −100 μА		V _{DD} - 0.5			V
Output voltage, low	Vol	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ IoL } = 10 \text{ mA}$				1.0	V
		IoL = 400 μA				0.5	V
Input leakage current, high	Iын1	VIN = VDD	Pins other than X1 and X2			3	μΑ
	I _{LIH2}		X1, X2			20	μΑ
Input leakage current, low	ILIL1	V _{IN} = 0 V	Pins other than X1 and X2			-3	μΑ
	ILIL2		X1, X2			-20	μΑ
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vout = 0 V				-3	μΑ

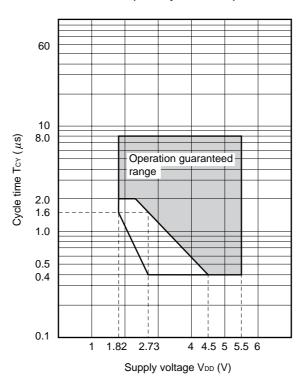
Remark The characteristics of an alternate function pin and a port pin are the same unless specified otherwise.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Con	ditions		MIN.	TYP.	MAX.	Unit
Software pull-up resistor	R	Vin = 0 V			50	100	200	kΩ
Supply currentNote 1	I _{DD1}	5.0 MHz V _{DD} = 5.0 V ±10% ^{Note 2}			1.1	2.0	mA	
		Crystal oscillation operation	V _{DD} = 3.0 V	±10% ^{Note 3}		0.3	0.45	mA
	I _{DD2}	5.0 MHz	V _{DD} = 5.0 V	±10%Note 2		0.6	0.85	mA
		Crystal oscillation HALT mode	V _{DD} = 3.0 V	±10% ^{Note 3}		0.2	0.35	mA
	IDD3	STOP mode	V _{DD} = 5.0 V	±10%		0.1	10	μΑ
			V _{DD} = 3.0 V			0.05	5	μΑ
			±10%	T _A = 25°C		0.05	3	
			V _{DD} = 2.0 V	±10%		0.05	3	μΑ

- **Notes 1.** This does not include the port current (containing the current flowing through the on-chip pull-up resistor).
 - 2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
 - **3.** When operating at low-speed mode (when PCC is set to 02H)

Remark The characteristics of an alternate function pin and a port pin are the same unless specified otherwise.



AC Characteristics

(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (Min.	Тсч	V _{DD} = 2.7 to 5.5 V		0.4		8	μs
instruction execution time)				1.6		8	μs
TI0, TI1 inputs	tтıн,	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				μs
High/low level widths	t⊤ı∟			1.8			μs
TI0, TI1 input frequency	fтı	V _{DD} = 2.7 to 5.5 V		0		4	MHz
				0		275	kHz
Interrupt request input	tınth,	INTP0 to INTP2	V _{DD} = 2.7 to 5.5 V	10			μs
High/low level widths	tintl			20			μs
RESET	trsL	V _{DD} = 2.7 to 5.5 V		10			μs
Low level width				20			μs

Tcy vs VDD (Main System Clock)

Remark The shaded area indicates the operation guaranteed range of the μ PD78P9014.

(2) Serial interface channel 0 (TA = -40 to $+85^{\circ}$, VDD = 1.8 to 5.5 V)

(i) 3-wire serial I/O mode (SCK0 : internal clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
				3200			ns
SCK0 high/low level	t кн1,	V _{DD} = 2.7 to 5.5 V		tксу1/2 - 50			ns
widths	t KL1			tксү1/2 - 150			ns
SI0 setup time	tsik1	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
(on SCK0 ↑)				500			ns
SI0 hold time	t _{KSI1}	V _{DD} = 2.7 to 5.5 V		400			ns
(on SCK0 ↑)				600			ns
$\overline{SCK0} \downarrow \to SO0$	tkso1	$R = 1k \Omega$,	V _{DD} = 2.7 to 5.5 V	0		250	ns
Output delay time		C = 100 pFNote		0		1000	ns

Note R and C are the load resistance and load capacitance of the SO0 output line.

(ii) 3-wire serial I/O mode (SCK0 : external clock output)

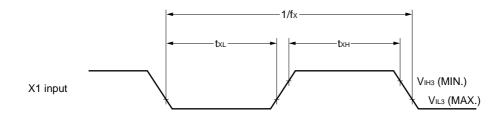
Parameter	Symbol	Test Co	Test Conditions		TYP.	MAX.	Unit
SCK0 cycle time	tkCY2	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
				3200			ns
SCK0 high/low level	t KH2,	V _{DD} = 2.7 to 5.5 V		400			ns
widths	t KL2			1600			ns
SI0 setup time	tsık2	V _{DD} = 2.7 to 5.5 V		100			ns
(on SCK0 ↑)				150			ns
SI0 hold time	tks12	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
(on SCK0 ↑)				600			ns
$\overline{SCK0}\downarrow \to SO0$	tkso2	$R = 1k \Omega$,	V _{DD} = 2.7 to 5.5 V	0		300	ns
Output delay time		C = 100 pF ^{Note}		0		1000	ns

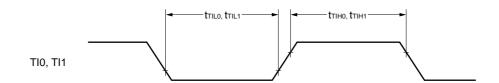
Note R and C are the load resistance and load capacitance of the SO0 output line.

(iii) UART mode (dedicated baud rate generator output)

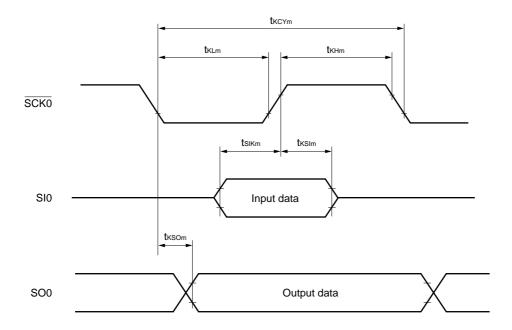
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate	V _{DD} = 2.7 to 5.5 V				78125	bps
					19531	bps

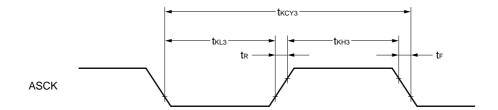
(iv) UART mode (external clock input)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	V _{DD} = 2.7 to 5.5 V	800			ns
			3200			ns
ASCK high and low level	t кнз,	V _{DD} = 2.7 to 5.5 V	400			ns
widths	t KL3		1600			ns
Transfer rate		V _{DD} = 2.7 to 5.5 V			39063	bps
					9766	bps
ASCK rise and fall times	tr, tr				1	μs


AC Timing Test Points (Except for X1 input)

Clock Timing

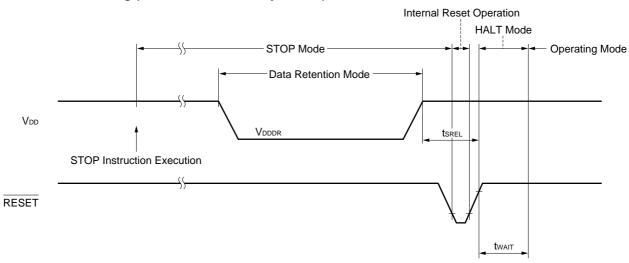

TI Timing



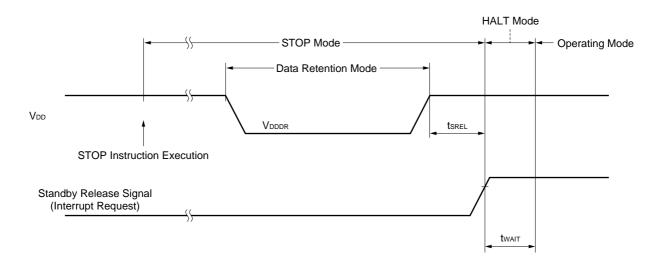
Serial Transfer Timing

3-Wire serial I/O mode:

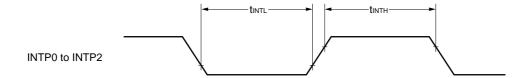
UART mode (external clock input):

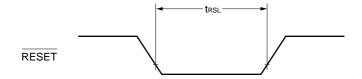

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Release signal set time	tsrel		0		0	μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁵ /fx		ms
		Release by interrupt request		Note		ms

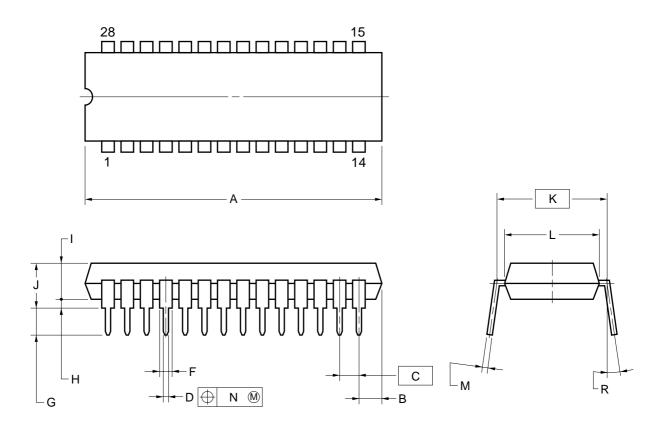

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2^{12} /fx, 2^{15} /fx, or 2^{17} /fx is possible.

Remark fx: Main system clock oscillation frequency


Data Retention Timing (STOP Mode Release by RESET)

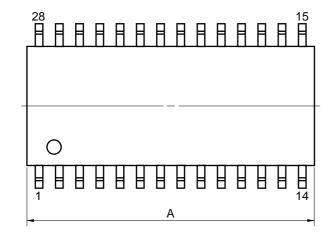

Data Retention Timing (Standby Release Signal: STOP Release by Interrupt Request Signal)

Interrupt Request Input Timing

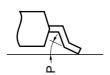

RESET Input Timing

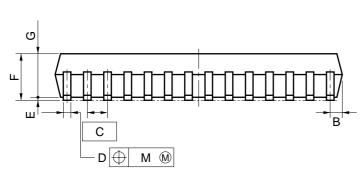
11. PACKAGE DRAWINGS

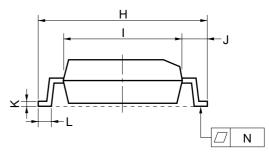
28PIN PLASTIC SHRINK DIP (400 mil)


NOTES

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	28.46 MAX.	1.121 MAX.
В	2.67 MAX.	0.106 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	10.16 (T.P.)	0.400 (T.P.)
L	8.6	0.339
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°


P28C-70-400A-1


28 PIN PLASTIC SOP (375 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	18.07 MAX.	0.712 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	$0.016^{+0.004}_{-0.003}$
Е	0.1±0.1	0.004±0.004
F	2.9 MAX.	0.115 MAX.
G	2.50	0.098
Н	10.3±0.3	0.406+0.012
I	7.2	0.283
J	1.6	0.063
K	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.002}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.12	0.005
N	0.15	0.006
Р	3°+7° -3°	3°+7° -3°

P28GM-50-375B-3

* 12. RECOMMENDED SOLDERING CONDITIONS

The μ PD789011 and 789012 should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual** (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 12-1. Soldering Conditions for Surface-mount Devices

 μ PD789011GT- $\times\times\times$: 28-pin Plastic SOP (375 mil) μ PD789012GT- $\times\times\times$: 28-pin Plastic SOP (375 mil)

Soldering Method	Soldering Conditions	Recommended Condition Code
Infrared reflow	Package peak temperature: 235°C, Duration: 30 seconds max. (at 210°C or above) Number of times: two times max.	IR35-00-2
VPS	Package peak temperature: 215°C, Duration: 40 seconds max. (at 200°C or above) Number of times: two times max.	VP15-00-2
Wave soldering	Soldering bath temperature: 260°C max., Duration: 10 seconds max., Number of times: Once Preheating temperature: 120°C max.(Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Duration: 3 seconds max. (per device side)	_

Note The storage conditions are 25°C and 65% RH for the number of storage days after opening the seal of the dry pack.

Caution Using more than one soldering method should be avoided. (except in the case of partial heating)

Table 12-2. Soldering Conditions for Through-hole Devices

 μ PD789011CT-xxx : 28-pin Plastic Shrink DIP (400 mil) μ PD789012CT-xxx : 28-pin Plastic Shrink DIP (400 mil)

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder bath temperature: 260 °C max., Duration: 10 seconds max.
Partial heating	Pin temperature: 300 °C max., Duration: 3 seconds max.(per pin)

Caution Wave soldering is only for the lead part in order that jet solder cannot contact with the chip directly.

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the μ PD789011 and 789012.

Language Processing Software

RA78K0SNotes 1, 2, 3	78K/0S Series common assembler package
CC78K0SNotes 1, 2, 3	78K/0S Series common C compiler package
DF789014Notes 1, 2, 3	μPD789014 Subseries common device file
CC78K0S-LNotes 1, 2, 3, 5	78K/0S Series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer
PA-78P9014GT	PROM programmer adapter connected to PG-1500
PG-1500 controller	PG-1500 control program

Debugging Tools

IE-78K0S-NS ^{Note 5}	In-circuit emulator common to 78K/0S Series
IE-70000-98-IF-BNote 5	Interface adapter when PC-9800 Series (except for notebooks) is used as host machine of IE-78K0S-NS.
IE-70000-98N-IFNote 5	Interface adapter and cable when PC-9800 Series notebook is used as host machine of IE-78K0S-NS.
IE-70000-PC-IF-BNote 5	Interface adapter when IBM PC/AT TM or its compatibles is used as host machine of IE-78K0S-NS.
IE-789014-NS-EM1 Note 5	Emulation board for μPD789014 Subseries
NP-28CTNote 4	Emulation probe for 28-pin plastic shrink DIP
NP-28GTNote 4	Emulation probe for 28-pin plastic SOP
SM78K0SNotes 1, 2, 3	System simulator common to 78K/0S Series
DF789014Notes 1, 2, 3	Device file in common with μPD7890914 Subseries

Real-Time OS

MX78K0S ^{Notes 1, 2} 78K/0S Series OS
--

- Notes 1. PC-9800 Series (MS-DOSTM + WindowsTM) based
 - 2. IBM PC/AT and compatibles (PC DOSTM/IBM DOSTM/MS-DOS + Windows) based
 - **3.** HP9000 Series 700TM (HP-UXTM) based, SPARCstationTM (SunOSTM) based, NEWSTM (NEWS-OSTM) based
 - **4.** This is a product of Naito Densei Machida Seisakusho Co., Ltd. (044-822-3813). To purchase, contact Naito Densei Machida Seisakusho Co., Ltd.
 - 5. Under development

Remark RA78K0S, CC78K0S, and SM78K0S are used with DF789014.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Device

Document Name	Document No.	
Document Name	English	Japanese
μPD78P9014 Data Sheet	U10912E	U10912J
μPD789011, 789012 Data Sheet	This document	U11095J
μPD789014 Subseries User's Manual	U11187E	U11187J
78K/0S Series User's Manual — Instruction	U11047E	U11047J
78K/0S Series Instruction Summary Sheet	_	To be prepared
78K/0S Series Instruction Set	_	To be prepared

Development Tool Documents (User's Manual)

Document No.	Document Name		Document No.	
Document Name		English	Japanese	
RA78K0S Assembler Package	Operation	U11622E	U11622J	
	Assembly language	U11599E	U11599J	
	Structured Assembly Language	U11623E	U11623J	
CC78K/0S C Compiler	Operation	U11816E	U11816J	
	Language	U11817E	U11817J	
SM78K0S System Simulator Windows based	Reference	U11489E	U11489J	
SM78K Series System Simulator	External Components User-open Interface Specification	U10092E	U10092J	
PG-1500		U11940E	U11940J	

Documents Related to Embedded Software (User's Manual)

ſ	Document Name	Document No.	
	Document Name	English	Japanese
Γ	78K/0S Series OS MX78K0S	To be prepared	To be prepared

Other Related Documents

Document Name	Document No.	
Document Name	English	Japanese
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	C11893J
Microcontroller Related Product Guide — Third Party	_	C11416J

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents for designing, etc.

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil

Tel: 011-6465-6810 Fax: 011-6465-6829

J97. 8

EEPROM is a trademark of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.