Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

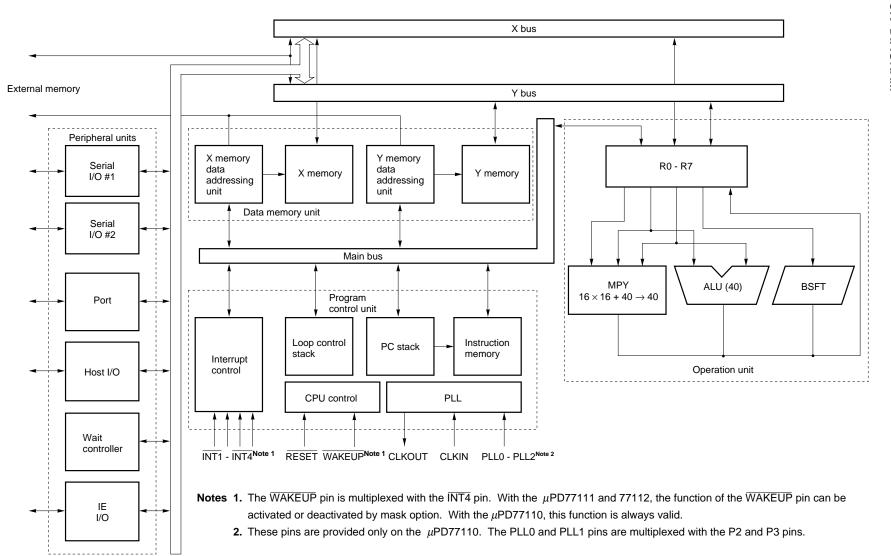
MOS INTEGRATED CIRCUIT μ**PD77110, 77111, 77112**

16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSORS

DESCRIPTION

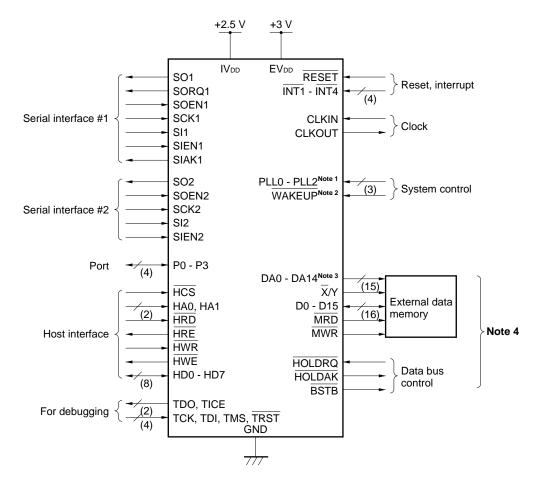
The μ PD77110, 77111, and 77112 are 16-bit fixed-point digital signal processors (DSPs). Compared with the µPD77016 family, these DSPs have improved power consumption and are ideal for batterypowered mobile terminals such as PDAs and cellular phones. Both mask ROM and RAM models are available. For details of the functions of these DSPs, refer to the following User's Manuals: µPD77111 Family User's Manual - Architecture : U14623E µPD77016 Family User's Manual - Instructions : U13116E **FEATURES** Instruction cycle (operating clock) μPD77110: 15.3 ns MIN (65 MHz MAX) 13.3 ns MIN (75 MHz MAX) (Operating voltage and ambient temperature are limited.) µPD77111: 13.3 ns MIN (75 MHz MAX) μPD77112: 13.3 ns MIN (75 MHz MAX) Memory Internal instruction memory μ PD77110: RAM 35.5K words \times 32 bits μ PD77111: RAM 1K words \times 32 bits Mask ROM 31.75K words × 32 bits μ PD77112: RAM 1K words \times 32 bits Mask ROM 31.75K words × 32 bits · Data memory μ PD77110: RAM 24K words \times 16 bits \times 2 banks External memory space 32K words \times 16 bits \times 2 banks μ PD77111: RAM 3K words \times 16 bits \times 2 banks Mask ROM 16K words \times 16 bits \times 2 banks μ PD77112: RAM 3K words \times 16 bits \times 2 banks Mask ROM 16K words × 16 bits × 2 banks External memory space 16K words × 16 bits × 2 banks

> The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.


ORDERING INFORMATION

Part Number	Package
μPD77110GC-9EU	100-pin plastic TQFP (fine pitch) (14 $ imes$ 14)
μPD77111GK-xxx-9EU	80-pin plastic TQFP (fine pitch) (12 \times 12)
μPD77111F1-xxx-CN1	80-pin plastic fine-pitch BGA (9×9)
μPD77112GC-xxx-9EU	100-pin plastic TQFP (fine pitch) (14 \times 14)

Remark xxx indicates ROM code suffix.

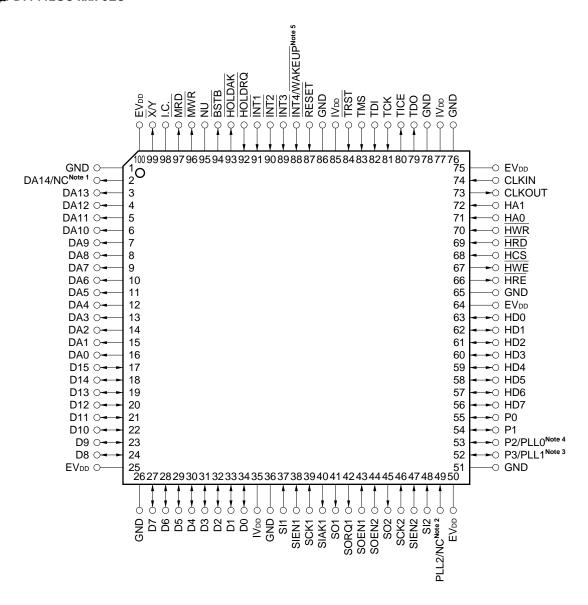


Π

ω

PIN CONFIGURATION

- **Notes 1.** These pins are provided only on the μ PD77110.
 - **2.** With the μ PD77111 and 77112, the function of this pin can be activated or deactivated by mask option. With the μ PD77110, this function is always valid.
 - **3.** DA14 is not provided on the μ PD77112.
 - 4. An external data memory interface is not provided on the μ PD77111.


Ζ
Π

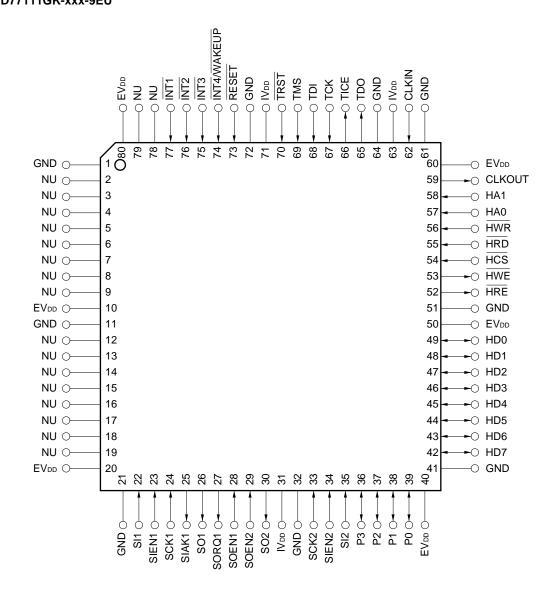
★ DSP FUNCTION LIST

	Item	μPD77016	μ PD77018A	μPD77019	μPD77019-013	μPD77110	μPD77111	μPD77112	μPD77113A	μPD77114
Memory space	Internal instruction RAM	1.5K × 32	256 × 32	4K	× 32	35.5K × 32	1K × 32		3.5K × 32	
(words $ imes$ bits)	Internal instruction ROM	None	24K	× 32	No	one	31.75	K × 32	48K × 32	
	Data RAM (X/Y memory)	$2K \times 16$ each		$3K \times 16$ each		$24K \times 16$ each	3K × 1	6 each	16K×1	6 each
	Data ROM (X/Y memory)	None	12K × 1	16 each	No	pne	16K × 1	16 each	32K × 1	6 each
	External instruction memory	48K × 32			1	Nor	le			
	External data memory (X/Y memory)	48K × 16 each		16K × 16 each		$32K \times 16$ each	None 16K × 16 each		None	$8K \times 16$ each
Instruction cyc	le (at maximum speed)	30 ns (33 MHz)		16.6 ns (60 MHz	2)	15.3 ns (65 MHz)		13.3 ns	s (75 MHz)	
Multiple		_	×1, 2, 3, 4, 8	(mask option)	Fixed to ×4	Integer of ×1 to 8 (external pin)		Integer of ×1 to	16 (mask option)	
Serial interfac	e (two channels)	Channels 1 and 2 have same function.	Channel 1 has same function as μ PD77016. Channel 2 does not have SORQ2 and SIAK2 pins (for connection of content of co						dec).	
Supply voltage 5 V			3 V			DSP core: 2.5 V I/O pins : 3 V				
Package 160-pin QF			100-pin TQFP 116-pin BGA		100-pin TQFP	1	80-pin TQFP 80-pin FBGA	100-pin TQFP	80-pin FBGA	100-pin TQFP

PIN CONFIGURATION

100-pin plastic TQFP (fine-pitch) (14 \times 14) (Top View) μ PD77110GC-9EU μ PD77112GC-xxx-9EU

- **Notes 1.** DA14 with μ PD77110, NC with μ PD77112
 - **2.** PLL2 with μ PD77110, NC with μ PD77112
 - **3.** P3 only for μ PD77112
 - **4.** P2 only for μ PD77112
 - **5.** With the μ PD77112, the function of the WAKEUP pin can be activated or deactivated by a mask option.



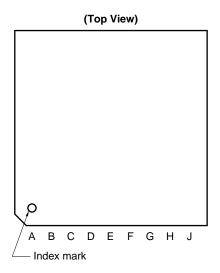
Pin No.	Pin Name						
1	GND	26	GND	51	GND	76	GND
2	DA14/NC	27	D7	52	P3/PLL1	77	IVdd
3	DA13	28	D6	53	P2/PLL0	78	GND
4	DA12	29	D5	54	P1	79	TDO
5	DA11	30	D4	55	P0	80	TICE
6	DA10	31	D3	56	HD7	81	тск
7	DA9	32	D2	57	HD6	82	TD1
8	DA8	33	D1	58	HD5	83	TMS
9	DA7	34	D0	59	HD4	84	TRST
10	DA6	35	IVdd	60	HD3	85	IVdd
11	DA5	36	GND	61	HD2	86	GND
12	DA4	37	SI1	62	HD1	87	RESET
13	DA3	38	SIEN1	63	HD0	88	INT4/WAKEUP
14	DA2	39	SCK1	64	EVDD	89	ĪNT3
15	DA1	40	SIAK1	65	GND	90	ĪNT2
16	DA0	41	SO1	66	HRE	91	INT1
17	D15	42	SORQ1	67	HWE	92	HOLDRQ
18	D14	43	SOEN1	68	HCS	93	HOLDAK
19	D13	44	SOEN2	69	HRD	94	BSTB
20	D12	45	SO2	70	HWR	95	NU
21	D11	46	SCK2	71	HAO	96	MWR
22	D10	47	SIEN2	72	HA1	97	MRD
23	D9	48	SI2	73	CLKOUT	98	I.C.
24	D8	49	PLL2/NC	74	CLKIN	99	¯Χ/Υ
25	EVDD	50	EVDD	75	EVDD	100	EVDD

80-pin plastic TQFP (fine-pitch) (12 \times 12) (Top view) μ PD77111GK-xxx-9EU

NEC

Pin No.	Pin Name						
1	GND	21	GND	41	GND	61	GND
2	NU	22	SI1	42	HD7	62	CLKIN
3	NU	23	SIEN1	43	HD6	63	IVdd
4	NU	24	SCK1	44	HD5	64	GND
5	NU	25	SIAK1	45	HD4	65	TDO
6	NU	26	SO1	46	HD3	66	TICE
7	NU	27	SORQ1	47	HD2	67	тск
8	NU	28	SOEN1	48	HD1	68	TDI
9	NU	29	SOEN2	49	HD0	69	TMS
10	EVDD	30	SO2	50	EVDD	70	TRST
11	GND	31	IVdd	51	GND	71	IVdd
12	NU	32	GND	52	HRE	72	GND
13	NU	33	SCK2	53	HWE	73	RESET
14	NU	34	SIEN2	54	HCS	74	INT4/WAKEUP ^{Note}
15	NU	35	SI2	55	HRD	75	ĪNT3
16	NU	36	P3	56	HWR	76	ĪNT2
17	NU	37	P2	57	HA0	77	ĪNT1
18	NU	38	P1	58	HA1	78	NU
19	NU	39	P0	59	CLKOUT	79	NU
20	EVdd	40	EVdd	60	EVDD	80	EVdd

Note The function of the \overline{WAKEUP} pin can be activated or deactivated by a mask option.



NEC

μPD77110, 77111, 77112

80-pin plastic fine-pitch BGA (9 \times 9) μ PD77111F1-xxx-CN1

(Bottom View)													
0	0	0	0	0	0	0	0	0	9				
0	0	0	0	0	0	0	0	0	8				
0	0	0	0	0	0	0	0	0	7				
0	0	0	0	0	0	0	0	0	6				
0	0	0	0		0	0	0	0	5				
0	0	0	0	0	0	0	0	0	4				
0	0	0	0	0	0	0	0	0	3				
0	0	0	0	0	0	0	0	0	2				
0	0	0	0	0	0	0	0	0) 1				
J	Н	G	F	Е	D	С	В	A					

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
A1	EVDD	C3	NU	E6	HRE	G8	HD4
A2	NU	C4	RESET	E7	HD0	G9	HD5
A3	ĪNT2	C5	TRST	E8	GND	H1	NU
A4	INT4/WAKEUP ^{Note}	C6	TICE	E9	EVDD	H2	NU
A5	IVdd	C7	CLKIN	F1	NU	H3	SIEN1
A6	тск	C8	HA0	F2	NU	H4	SOEN1
A7	IVdd	C9	HWR	F3	NU	H5	GND
A8	GND	D1	NU	F4	SIAK1	H6	SI2
A9	EVDD	D2	NU	F5	SOEN2	H7	P1
B1	NU	D3	NU	F6	P2	H8	GND
B2	GND	D4	ĪNT1	F7	HD1	H9	HD7
B3	NU	D5	TMS	F8	HD3	J1	EVDD
B4	ĪNT3	D6	TDO	F9	HD2	J2	GND
B5	GND	D7	HCS	G1	NU	J3	SCK1
B6	TDI	D8	HRD	G2	NU	J4	SORQ1
B7	GND	D9	HWE	G3	SI1	J5	IVdd
B8	CLKOUT	E1	EVDD	G4	SO1	J6	SCK2
B9	HA1	E2	GND	G5	SO2	J7	P3
C1	NU	E3	NU	G6	SIEN2	J8	P0
C2	NU	E4	NU	G7	HD6	J9	EVDD

Note The function of the \overline{WAKEUP} pin can be activated or deactivated by a mask option.

PIN NAME

BSTB : Bus Strobe	
CLKIN : Clock Input	
CLKOUT : Clock Output	
D0 - D15 : 16-bit Data Bus	
DA0 - DA14 : External Data Memory Address	e Rue
EV _{DD} : Power Supply for I/O Pins	5 Du3
GND : Ground	
HA0, HA1 : Host Data Access	
HCS : Host Data Access HCS : Host Chip Select	
HD0 - HD7 : Host Data Bus	
HOLDAK : Hold Acknowledge	
HOLDRQ : Hold Request	
HRD : Host Read	
HRE : Host Read Enable HWE : Host Write Enable	
HWR : Host Write	
I.C. : Internally Connected	
INT1 - INT4 : Interrupt	
IVDD : Power Supply for DSP Core	
MRD : Memory Read Output	
MWR : Memory Write Output	
NC : Non-Connection	
NU : Not Used	
P0 - P3 : Port	
PLL0 - PLL2 : PLL Multiple Rate Set	
RESET : Reset	
SCK1, SCK2 : Serial Clock Input	
SI1, SI2 : Serial Data Input	
SIAK1 : Serial Input Acknowledge	
SIEN1, SIEN2 : Serial Input Enable	
SO1, SO2 : Serial Data Output	
SOEN1, SOEN2: Serial Output Enable	
SORQ1 : Serial Output Request	
TCK : Test Clock Input	
TDI : Test Data Input	
TDO : Test Data Output	
TICE : Test In-Circuit Emulator	
TMS : Test Mode Select	
TRST : Test Reset	
WAKEUP : Wakeup from STOP Mode	
X/Y : X/Y Memory Select	

CONTENTS

1.	PIN FUNCTION	13
	1.1 Pin Function Description	13
	1.2 Connection of Unused Pins	18
2.	FUNCTION OUTLINE	20
	2.1 Program Control Unit	20
	2.2 Arithmetic Unit	21
	2.3 Data Memory Unit	22
	2.4 Peripheral Units	22
3.	CLOCK GENERATOR	23
4.	RESET FUNCTION	
	4.1 Hardware Reset	
	4.2 Initializing PLL	24
~	FUNCTIONS OF BOOT UP DOM	~
5.	FUNCTIONS OF BOOT-UP ROM	24
	5.1 Boot at Reset	24
	5.2 Reboot	
	5.3 Signature Operation	26
c	STANDBY MODES	26
0.	6.1 HALT Mode	
	6.2 STOP Mode	
	6.2 STOP Mode	21
7.	MEMORY MAP	27
	7.1 Instruction Memory	27
	7.2 Data Memory	
8.	MASK OPTION	30
	8.1 Clock Control Options	30
	8.2 WAKEUP Function	31
	8.3 Mask Option Equivalent Function of μ PD77110	31
9.	INSTRUCTIONS	33
	9.1 Outline of Instructions	33
	9.2 Instruction Set and Operation	34
10.	ELECTRICAL SPECIFICATIONS	40
	RAOKA OF	-
11.	PACKAGE	72
12	RECOMMENDED SOLDERING CONDITIONS	75

1. PIN FUNCTION

Because the pin numbers differ depending on the package, refer to the diagram of the package to be used.

1.1 Pin Function Description

• Power supply

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
IVdd	35, 77, 85	31, 63, 71	A5, A7, J5	-	Power to DSP core (+2.5 V)	-
EVdd	25, 50, 64, 75, 100	10, 20, 40, 50, 60, 80	A1, A9, E1, E9, J1, J9	-	Power to I/O pins (+3 V)	_
GND	1, 26, 36, 51, 65, 76, 78, 86	1, 11, 21, 32, 41, 51, 61, 64, 72	A8, B2, B5, B7, E2, E8, H5, H8, J2	_	Ground	_

System control

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
CLKIN	74	62	C7	Input	System clock input	-
CLKOUT	73	59	B8	Output	Internal system clock output	-
RESET	87	73	C4	Input	Internal system reset signal input	
PLL0	53	-	_	Input	PLL multiple setting input (μ PD77110 only)	P2
PLL1	52	-	-	Input	Determines the PLL multiple at reset as followings:	P3
PLL2	49	_	_	Input	PLL2: PLL1: PLL0: 000 : Selects PLL multiple of ×1. 001 : Selects PLL multiple of ×2. 010 : Selects PLL multiple of ×3. : 111 : Selects PLL multiple of ×8. • These pins have no function on the μ PD77111 and 77112.	_
WAKEUP	88	74	A4	Input	 Stop mode release signal input. When this pin is asserted active, the stop mode is released. The function of this pin can be activated or deactivated by a mask option. This pin is always valid on the μPD77110. 	INT4

• Interrupt

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
INT1 - INT3	91 - 89	77 - 75	D4, A3, B4	Input	External maskable interrupt input. Detected at the falling edge. 	-
INT4	88	74	A4	Input		WAKEUP

• External data memory interface

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
⊼/Y	99	-	-	Output (3S)	Memory select signal output. 0: Uses X memory. 1: Uses Y memory.	_
DA0 - DA14	16 - 2	_	_	 Output (3S) Accesses the external data memory. Continuously outputs the external memory address accessed last when the external memory is not being accessed. Kept low (0x000) if the external memory is never accessed after reset. DA14 is NC (no connection) and does not function on the μPD77112. 		_
D0 - D15	34 - 27, 24 - 17	_	_	I/O (3S)		
MRD	97	-	-	Output Read output (3S) • External memory read		-
MWR	96	_	_	Output Write output (3S) • External memory write		-
HOLDRQ	92	_	_	 Input Hold request signal Input a low level to this pin when the external device uses the external data memory bus of the μPD77110 and 77112. 		_
BSTB	94	_	_	 Output Bus strobe signal This pin goes low when the μPD77110 and 77112 use the external data memory bus. 		_
HOLDAK	93	-	-	Output		

RemarkPins marked "3S" under the heading "I/O" go into a high-impedance state in the following conditions: \overline{X}/Y , DA0-DA14, \overline{MRD} , \overline{MWR} : When the bus is released (\overline{HOLDAK} = low level)D0-D15:When the external data memory is not being accessed and when the bus is released $(\overline{HOLDAK}$ = low level)

• Serial interface

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
SCK1	39	24	J3	Input	Serial 1 clock input	-
SORQ1	42	27	J4	Output	Serial output 1 request	-
SOEN1	43	28	H4	Input	Serial output 1 enable	-
SO1	41	26	G4	Output (3S)	Serial data output 1	_
SIEN1	38	23	НЗ	Input	Serial input 1 enable	-
SI1	37	22	G3	Input	Serial data input 1	-
SIAK1	40	25	F4	Output	Serial input 1 acknowledge	-
SCK2	46	33	J6	Input	Serial 2 clock input	-
SOEN2	44	29	F5	Input	Serial output 2 enable	-
SO2	45	30	G5	Output (3S)	Serial data output 2	_
SIEN2	47	34	G6	Input	Serial input 2 enable	-
SI2	48	35	H6	Input	Serial data input 2	-

Remark The pins marked "3S" under the heading "I/O" go into a high-impedance state on completion of data transfer and input of the hardware reset (RESET) signal.

• Host interface

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
HA1	72	58	В9	 Input Specifies the register to be accessed by HD7 through HD0. 1: Accesses the host interface status register (HST). 0: Accesses the host transmit data register (HDT (out)) when read (HRD = 0), and host receive data register (HDT (in)) when written (HWR = 0). 		_
HAO	71	57	C8	Input Specifies the register to be accessed by HD7 through HD0. • 1: Accesses bits 15 through 8 of HST, HDT (in), and HDT (out). • 0: Accesses bits 7 through 0 of HST, HDT (in), and HDT (out).		_
HCS	68	54	D7	Input	Chip select input	-
HRD	69	55	D8	Input	Host read input	-
HWR	70	56	C9	Input	Host write input	-
HRE	66	52	E6	Output Host read enable output		-
HWE	67	53	D9	Output Host write enable output		-
HD0 - HD7	63 - 56	49 - 42	E7, F7, F9, F8, G8, G9, G7, H9	I/O (3S)	8-bit host data bus	_

Remark The pins marked "3S" under the heading "I/O" go into a high-impedance state when the host interface is not being accessed.

• I/O ports

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
P0	55	39	J8	I/O	General-purpose I/O port	_
P1	54	38	H7	I/O		_
P2	53	37	F6	I/O		PLL0 ^{Note}
P3	52	36	J7	I/O		PLL1 ^{Note}

Note Only the μ PD77110. The μ PD77111 and 77112 have no multiplexed pins.

• Debugging interface

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
TDO	79	65	D6	Output	For debugging	-
TICE	80	66	C6	Output		-
тск	81	67	A6	Input		-
TDI	82	68	B6	Input		-
TMS	83	69	D5	Input		-
TRST	84	70	C5	Input		-

• Others

		Pin No.				
Pin Name	100-pin TQFP	80-pin TQFP	80-pin FBGA	I/O	Function	Shared by:
I.C.	98	_	_	_	Internally connected. Leave this pin unconnected.	-
NU	95	2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 78, 79	A2, B1, B3, C1, C2, C3, D1, D2, D3, E3, E4, F1, F2, F3, G1, G2, H1, H2	_	No function pins. Connect these pins to EVDD.	_
NC	2, 49	_	_	_	No-connect pins (with μ PD77112). Leave these pins unconnected.	-

Caution If any signal is input to these pins or if an attempt is made to read these pins, the normal operation of the μ PD77110, 77111, and 77112 is not guaranteed.

1.2 Connection of Unused Pins

1.2.1 Connection of Function Pins

When mounting, connect unused pins as follows:

Pin	I/O	Recommended Connection
INT1 - INT4	Input	Connect to EVDD.
¯Χ/Υ	Output	Leave unconnected.
DA0 - DA14	Output	
D0 - D15 ^{Note 1}	I/O	Connect to EVDD via pull-up resistor, or connect to GND via pull-down resistor.
MRD, MWR	Output	Leave unconnected.
HOLDRQ	Input	Connect to EVDD.
BSTB, HOLDAK	Output	Leave unconnected.
SCK1, SCK2	Input	Connect to EVDD or GND.
SI1, SI2	Input	
SIEN1, SIEN2	Input	Connect to GND.
SOEN1, SOEN2	Input	
SORQ1	Output	Leave unconnected.
SO1, SO2	Output	
SIAK1	Output	
HA0, HA1	Input	Connect to EVDD or GND.
$\overline{\text{HCS}}, \overline{\text{HRD}}, \overline{\text{HWR}}$	Input	Connect to EVDD.
HRE, HWE	Output	Leave unconnected.
HD0 - HD7 ^{Note 2}	I/O	Connect to EVDD via pull-up resistor, or connect to GND via pull-down resistor.
P0 - P3	I/O	
тск	Input	Connect to GND via pull-down resistor.
TDO, TICE	Output	Leave unconnected.
TMS, TDI	Input	Leave unconnected. (internally pulled up).
TRST	Input	Leave unconnected. (internally pulled down).
CLKOUT	Output	Leave unconnected.

- **Notes 1.** These pins may be left unconnected if the external data memory is not accessed in the program. However, connect these pins as recommended in the halt and stop modes when the power consumption must be lowered.
 - These pins may be left unconnected if HCS, HRD, and HWR are fixed to the high level. However, connect these pins as recommended in the halt and stop modes when the power consumption must be lowered.

1.2.2 Connection of no-function pins

Pin	I/O	Recommended Connection
I.C.	-	Leave unconnected.
NU	-	Connect to EVDD.
NC	-	Leave unconnected.

2. FUNCTION OUTLINE

2.1 Program Control Unit

This unit is used to execute instructions, and control branching, loops, interrupts, the clock, and the standby mode of the DSP.

2.1.1 CPU control

A three-stage pipeline architecture is employed and almost all the instructions, except some instructions such as branch instructions, are executed in one system clock.

2.1.2 Interrupt control

Interrupt requests input from external pins ($\overline{INT1}$ through $\overline{INT4}$) or generated by the internal peripherals (serial interface and host interface) are serviced. The interrupt of each interrupt source can be enabled or disabled. Multiple interrupts are also supported.

2.1.3 Loop control task

A loop function without any hardware overhead is provided. A loop stack with four levels is provided to support multiple loops.

2.1.4 PC stack

A 15-level PC stack that stores the program counter supports multiple interrupts and subroutine calls.

2.1.5 PLL

A PLL is provided as a clock generator that can multiply or divide an external clock input to supply an operating clock to the DSP. The multiplication and division ratio are set as follows:

- μPD77110: A multiple of ×1 to ×8 is specified by an external pin (division ratio is fixed).
- μ PD77111 and 77112: A multiple of ×1 to ×16 or a division ratio of 1/1 to 1/16 can be set by a mask option.

Two standby modes are available for lowering the power consumption while the DSP is not in use.

- HALT mode: Set by execution of the HALT instruction. The current consumption drops to several mA. The normal operation mode is recovered by an interrupt or hardware reset.
- STOP mode: Set by execution of the STOP instruction. The current consumption drops to several 10 μA. The normal operation mode is recovered by hardware reset or WAKEUP pin^{Note}.

Note If the WAKEUP function is activated by mask option

2.1.6 Instruction memory

The capacity and type of the memory differ depending on the model of the DSP.

64 words of the instruction RAM are allocated to interrupt vectors.

A boot-up ROM that boots up the instruction RAM is provided, and the instruction RAM can be initialized or rewritten by self boot (boot from the internal data ROM or external data space) or host boot (boot via host interface).

- μPD77110: 35.5K-word RAM
- μPD77111, 77112: 1K-word RAM and 31.75K-word ROM

2.2 Arithmetic Unit

This unit performs multiplication, addition, logical operations, and shift, and consists of a 40-bit multiply accumulator, 40-bit data ALU, 40-bit barrel shifter, and eight 40-bit general-purpose registers.

2.2.1 General-purpose registers (R0 through R7)

These eight 40-bit registers are used to input/output data for arithmetic operations, and load or store data from/to data memory.

A general-purpose register (R0 to R7) is made up of three parts: R0L through R7L (bits 15 through 0), R0H through R7H (bits 31 through 16), and R0E through R7E (bits 39 through 32). Depending on the type of operation, RnL, RnH, and RnE are used as one register or in different combinations.

2.2.2 Multiply accumulator (MAC)

The MAC multiplies two 16-bit values, and adds or subtracts the multiplication result from one 40-bit value, and outputs a 40-bit value.

The MAC is provided with a shifter (MSFT: MAC ShiFTer) at the stage preceding the input stage. This shifter can arithmetically shift the 40-bit value to be added to or subtracted from the multiplication result 1 or 16 bits to the right .

2.2.3 Arithmetic logic unit (ALU)

This unit inputs one or two 40-bit values, executes an arithmetic or logical operation, and outputs a 40-bit value.

2.2.4 Barrel shifter (BSFT: Barrel ShiFTer)

The barrel shifter inputs a 40-bit value, shifts it to the left or right by any number of bits, and outputs a 40-bit value. The data may be arithmetically shifted to the right shifted to the right, in which case the data is sign-extended, or logically shifted to the right, in which case 0 is inserted from the MSB.

2.3 Data Memory Unit

The data memory unit consists of two banks of data memory and two data addressing units.

2.3.1 Data memory

The capacity and type of the memory differ depending on the model of the DSP. All DSPs have two banks of data memory (X data memory and Y data memory). A 64-word peripheral area is assigned in the data memory space.

- μ PD77110: RAM of 24K words \times 2 banks
- μ PD77111, 77112: RAM of 3K words \times 2 banks and ROM of 16K words \times 2 banks

In addition, some models have an external data memory interface so that the external memory can be expanded.

- μPD77110: External data memory of 32K words × 2 banks
- μ PD77112: External data memory of 16K words \times 2 banks

2.3.2 Data addressing unit

An independent data addressing unit is provided for each of the X data memory and Y data memory spaces.

Each data addressing unit has four data pointers (DPn), four index registers (DNn), one modulo register (DMX or DMY), and an address ALU.

2.4 Peripheral Units

A serial interface, host interface, general-purpose I/O port, and wait cycle register are provided. All these internal peripherals are mapped to the X data memory and Y data memory spaces, and are accessed from program as memory-mapped I/Os.

2.4.1 Serial interface (SIO)

Two serial interfaces are provided. These serial interfaces have the following features:

- Serial clock : Supplied from external source to each interface. The same clock is used for input and output on the interface.
- Frame length: 8 or 16 bits, and MSB or LSB first selectable for each interface and input or output
- Handshake : Handshaking with external devices is implemented with a dedicated status signal. With the internal units, polling, wait, or interrupt are used.

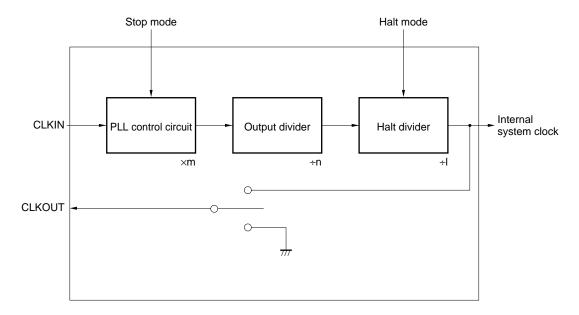
2.4.2 Host interface (HIO)

This is an 8-bit parallel port that inputs data from or outputs data to an external host CPU or DMA controller. In the DSP, a 16-bit register is mapped to memory for input data, output data, and status. Handshaking with an external device is implemented by using a dedicated status signal. Handshaking with internal units is achieved by means of polling, wait, or interrupts.

2.4.3 General-purpose I/O port (PIO)

This is a 4-bit I/O port that can be set in the input or output mode in 1-bit units.

2.4.4 Wait cycle register


The number of wait cycles to be inserted when the external data memory area is accessed can be specified in advance by using a register (DWTR)^{Note}. The number of wait cycles that can be set is 1, 3, or 7.

Note This function is not available on the μ PD77111 because this DSP does not have an external data area.

3. CLOCK GENERATOR

The clock generator generates an internal system clock based on the external clock input from the CLKIN pin and supplies the generated clock to the internal units of the DSP.

For details of how to set the PLL multiple, refer to **4.2 Initializing PLL**, **8.1 Clock Control Options**, and **8.3.1 Settings related to clock control**.

4. RESET FUNCTION

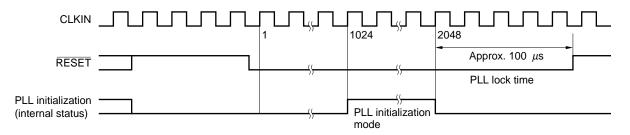
When a low level of a specified width is input to the RESET pin, the device is initialized.

4.1 Hardware Reset

If the RESET pin is asserted active (low level) for a specified period, the internal circuitry of the DSP is initialized. If the RESET pin is then deasserted inactive (high level), boot processing of the instruction RAM is performed according to the status of the port pins (P0 and P1). After boot processing, processing is executed starting from the instruction at address 0x200 of instruction memory (reset entry).

On power application, the RESET pin must be asserted active (low level) after 4 input clocks have been input with the RESET pin in the inactive status (high level), after the supply voltage has reached the level of the operating voltage. In other words, no power-ON reset function is available. On power application, the PLL must be initialized.

4.2 Initializing PLL


NEC

Initializing the PLL starts from the 1024th input clock after the RESET pin has been asserted active (low level). Initialization takes 1024 clocks and it takes the PLL 100 μ s to be locked.

After that, the DSP operates with the set value of the PLL specified by a mask option (μ PD77111 or 77112) or an external pin (μ PD77110) when the RESET pin is deasserted inactive (high level).

After initializing the PLL, be sure to execute boot-up processing to re-initialize the internal RAM. To initialize the PLL, the internal memory contents and register status of the DSP are not retained.

If the RESET pin is deasserted inactive before the PLL initialization mode is set, the DSP is normally reset (the PLL is not initialized).

Caution Do not deassert the RESET signal inactive in the PLL initialization mode and during PLL lock period.

5. FUNCTIONS OF BOOT-UP ROM

To rewrite the contents of the instruction memory on power application or from program, boot up the instruction RAM by using the internal boot-up ROM.

The μ PD77110 has a function to verify the contents of the internal instruction RAM in the boot-up ROM.

5.1 Boot at Reset

After hardware reset has been cleared, the boot program first reads the general-purpose I/O ports P0 and P1 and, depending on their bit pattern, determines the boot mode (self boot or host boot). After boot processing, processing is executed starting from the instruction at address 0x200 (reset entry) of the instruction memory.

The pins (P0 and P1) that specify the boot mode must be kept stable for the duration of 3 clocks before and for the duration of 12 clocks after reset has been cleared (the clock is input from CLKIN).

P1	P0	Boot Mode
0	0	Does not execute boot but branches to address 0x200 ^{Note} .
0	1	Executes host boot and then branches to address 0x200.
1	1	Executes self boot and then branches to address 0x200.
1	0	Setting prohibited

Note This setting is used when the DSP must be reset to recover from the standby mode after reset boot has been executed once.

5.1.1 Self boot

The boot-up ROM transfers the instruction code stored in the data memory space to the instruction RAM, based on the boot parameter written to address 0x4000 of the Y data memory. Generally, with a mask ROM model (μ PD77111 or 77112), this function is implemented by storing the instructions to be booted in the data ROM.

In addition, the instructions to be booted can be also stored in an external data area in the form of flash ROM, and self boot can be executed from this external data area.

With the μ PD77110, the value of address 0x4000 of the Y data memory is undefined on power application, because this address is in RAM. Therefore, with the μ PD77110, the self boot mode cannot be selected on power application, and host boot must be executed. This also applies when the PLL is initialized. By writing a boot parameter to address 0x4000 or those that follow of the Y data memory, self boot can be executed when the RESET signal is subsequently input (except the reset that initializes the PLL). In this case, however, the instructions to be booted are only those at address 0x0200 through 0x0FFF of the instruction RAM.

5.1.2 Host boot

In this boot mode, a boot parameter and instruction code are obtained via the host interface, and transferred to the instruction RAM.

With the μ PD77110, the host boot mode is used on power application. The boot instruction area is the instruction RAM from addresses 0x0200 through 0x0FFF. To boot up the instruction RAM from 0x4000 through 0xBFFF, host reboot is used.

5.2 Reboot

By calling the next reboot entry from the program, the contents of the instruction RAM can be rewritten. In particular, the μ PD77110 has a reboot function that boots up the instruction RAM from 0x4000 through 0xBFFF.

	Reboot Mode			
Self boot	X memory	Word reboot	0x2	
		Byte reboot	0x4	
	Y memory	Word reboot	0x1	
		Byte reboot	0x3	
Host boot	Host reboot		0x6 (μPD77110) 0x5 (μPD77111, 77112)	

5.2.1 Self reboot

The instruction codes stored in the data memory are transferred to the instruction RAM. This boot mode cannot be used with the μ PD77110.

Set the following parameters and call the entry address of the corresponding reboot mode to execute self reboot.

- R7L: Number of instruction steps for rebooting
- DP3: First address of X memory in which instruction codes are stored (in the case of reboot from X memory), or first address of the instruction memory to be loaded (in the case of reboot from Y memory)
- DP7: First address of instruction memory to be loaded (in the case of reboot from X memory), or first address of X memory in which instruction codes are stored (in the case of reboot from Y memory)

NEC

5.2.2 Host reboot

An instruction code is obtained via the host interface and transferred to the instruction RAM.

With the μ PD77110, the host reboot mode is used to boot up the instruction RAM from addresses 0x4000 through 0xBFFF. Areas 0x0200 through 0x0FFF and 0x4000 through 0xBFFF cannot be rebooted all at once.

The entry address of the μ PD77110 is 0x6, and that of the μ PD77111 and 77112 is 0x5. Host reboot is executed by calling this address after setting the following parameter:

- R7L: Number of instruction steps for rebooting
- DP3: First address of instruction memory to be loaded

5.3 Signature Operation

The μ PD77110 has a signature operation function so that the contents of the internal instruction RAM can be verified. The signature operation performs a specific arithmetic operation on the data in the instruction RAM booted up, and returns the result to a register. Perform the signature operation in advance on the device when it is operating normally, and repeat the signature operation later to check whether the data in RAM is correct by comparing the operation result with the previous result. If the results are identical, there is no problem.

The entry address is 0x9. Execute the operation by calling this address after setting the following parameter. Note that the operation cannot be performed on the areas 0x0200 through 0x0FFF and 0x4000 through 0xBFFF at the same time. The operation result is stored in register R7.

- R7L: Number of instruction steps for operation
- DP3: First address of instruction memory for operation

6. STANDBY MODES

Two standby modes are available. By executing the corresponding instruction, each mode is set and the power consumption can be reduced.

6.1 HALT Mode

To set this mode, execute the HALT instruction. In this mode, functions other than clock circuit and PLL are stopped to reduce the current consumption.

To release the HALT mode, use an interrupt or hardware reset. When releasing the HALT mode using an interrupt, the contents of the internal registers and memory are retained. It takes several 10 system clocks to release the HALT mode when the HALT mode is released using an interrupt.

In the HALT Mode, the clock circuit of the μ PD77111 family supplies the following clock as the internal system clock. The clock output from the CLKOUT pin is as follows.

The clock output from the CLKOUT pin, however, has a high-level width that is equivalent to 1 cycle of the normal operation (i.e., the duty factor is not 50%).

- μPD77110: 1/8 of internal system clock
- μPD77111, 77112: 1/l of internal system clock (I = integer from 1 to 16, specified by mask option)

6.2 STOP Mode

To set this mode, execute the STOP instruction. In this mode, all the functions, including the clock circuit and PLL, are stopped and the power consumption is minimized with only leakage current flowing.

To release the STOP mode, use hardware reset or WAKEUP pin.

When releasing the STOP mode by using the WAKEUP pin, the contents of the internal registers and memory are retained, but it takes several 100 μ s to release the mode.

The WAKEUP pin is multiplexed with the INT4 pin. Usually, this pin functions as an interrupt pin, but functions as the WAKEUP pin when it is asserted active in the STOP mode. Whether the WAKEUP pin is used to release the STOP mode is selected by mask option. For details, refer to **8.2 WAKEUP Function** and **8.3.2 WAKEUP function**.

7. MEMORY MAP

A Harvard architecture, in which the instruction memory space and data memory space are separated is employed.

7.1 Instruction Memory

7.1.1 Instruction memory map

The instruction memory space consists of 64K words \times 32 bits, and the capacity and type of the memory differ depending on the product.

	μPD77110		μPD77111, 77112
0xFFFF 0xC000 0xBFFF	System	0xBF00	System
0x4000	Internal instruction RAM (32K words)	0xBEFF	Internal instruction ROM (31.75K words)
0x3FFF 0x1000	System	0x0600	System
0x0FFF 0x0240	Internal instruction RAM (3.5K words)	0x05FF	Internal instruction RAM (1K words)
0x023F 0x0200	Vector area (64 words)		Vector area (64 words)
0x01FF 0x0100	System		System
0x00FF 0x0000	Boot-up ROM (256 words)		Boot-up ROM (256 words)

Caution Programs and data cannot be placed at addresses reserved for the system, nor can these addresses be accessed. If these addresses are accessed, the normal operation of the device cannot be guaranteed.

7.1.2 Interrupt vector table

Addresses 0x200 through 0x23F of the instruction memory are entry points (vectors) of interrupts. Four instruction addresses are assigned to each interrupt source.

Vector	Interrupt Source
0x200	Reset
0x204	Reserved
0x208	
0x20C	
0x210	INT1
0x214	INT2
0x218	INT3
0x21C	INT4
0x220	SI1 input
0x224	SO1 output
0x228	SI2 input
0x22C	SO2 output
0x230	HI input
0x234	HO output
0x238	Reserved
0x23C	

Cautions 1. Although reset is not an interrupt, it is handled like an interrupt as an entry to a vector.

- 2. It is recommended that unused interrupt source vectors be used to branch an error processing routine.
- 3. Because a vector area also exists in the internal RAM area of the mask ROM model, this area must be booted up. In addition, because the entry address after reset is 0x200, address 0x200 must be booted up even when the internal instruction RAM and interrupts are not used.

7.2 Data Memory

7.2.1 Data memory map

The data memory space consists of an X memory space and a Y memory space of 64K words \times 16 bits each, and the memory capacity and memory type differ depending on the product.

	μPD77110		μPD77111		μPD77112
0xFFFF	External data memory		System	0xC000_ 0xBFFF	External data memory (16K words)
0x8000 0x7FFF 0x3FFF 0x3840 0x383F 0x3800 0x37FF 0x3000 0x2FFF 0x1000 0x0FFF 0x1000 0x0FFF	(32K words)				System
	Data RAM (16K words)		Data ROM (16K words)		Data ROM (16K words)
	System		System		System
	Peripheral (64 words)		Peripheral (64 words)		Peripheral (64 words)
	System		System		
	Data RAM (4K words)				System
	System				
	Data RAM (4K words)	0x0C00 0x0BFF	Data RAM (3K words)		Data RAM (3K words)

Caution Programs and data cannot be placed at addresses reserved for the system, nor can these addresses be accessed. If these addresses are accessed, the normal operation of the device cannot be guaranteed.

7.2.2 Internal peripherals

The internal peripherals are mapped to the internal data memory space.

X/Y Memory Address	Register Name	Function	Peripheral Name
0x3800	SDT1	First serial data register	SIO
0x3801	SST1	First serial status register	
0x3802	SDT2	Second serial data register	
0x3803	SST2	Second serial status register	
0x3804	PDT	Port data register	PIO
0x3805	PCD	Port command register	
0x3806	HDT	Host data register	HIO
0x3807	HST	Host status register	
0x3808	DWTR	Data memory wait cycle register	WTR
0x3809 - 0x383F	Reserved area	Caution Do not access this area.	-

- Cautions 1. The register names listed in this table are not reserved words of the assembler or the C language. Therefore, when using these names in assembler or C, the user must define them.
 - 2. The same register is accessed, as long as the address is the same, regardless of whether the X memory space or Y memory space is accessed.
 - 3. Even different registers cannot be accessed at the same time from both the X and Y memory spaces.

8. MASK OPTION

The μ PD77111 and 77112 have mask options that must be specified when an order for a ROM is placed. This section explains these mask options. The mask options are specified in the Workbench (WB77016) development tool. To order a mask ROM, output a mask ROM ordering file format (.msk file) using WB77016.

8.1 Clock Control Options

The following four clock related options must be specified.

- PLL multiple
- Output division ratio
- HALT division ratio
- Validity of CLKOUT pin

When the PLL multiple is m, output division ratio is n, and halt division ratio is I, the relationship between each operation mode and operating clock is as follows:

Operation Mode	Clock Supplied Inside DSP	
Normal operation mode	m/n times external input clock	
HALT mode	m/n/l times external input clock	
STOP mode	Stopped	

The PLL control circuit multiplies the input clock by an integer from 1 to 16. Specify the mask option of the PLL multiple so that the multiplied frequency falls within the specified PLL lock frequency range.

The output divider divides the clock multiplied by the PLL by an integer from 1 to 16. Specify the mask option of the output division ratio so that the frequency m/n times the external input clock supplied to the DSP falls within the specified operating frequency range of the DSP.

The HALT divider functions only in the HALT mode. It divides the clock of the output divider by an integer from 1 to 16 and supplies the divided clock to the internal circuitry. Specify the mask option of the HALT division ratio so that necessary division can be performed.

Whether the clock supplied to the internal circuitry of the DSP (internal system clock) is "output" or "not output" from the CLKOUT pin can be specified. Specify the mask option as necessary.

If an odd value (other than 1) is specified as the output division ratio, the high-level width of the clock output from the CLKOUT pin is equal to one cycle during normal operation (i.e., the clock does not have a duty factor of 50%).

8.2 WAKEUP Function

NEC

The WAKEUP pin can be used to release the STOP mode as well as a hardware reset.

If the STOP mode is released by means of a hardware reset, the status before the STOP mode was set cannot be restored after the STOP mode has been released. If the WAKEUP pin is used, however, the status before the STOP mode is set can be retained and program execution can be resumed starting from the instruction after the STOP instruction.

Whether the WAKEUP pin is used to release the STOP mode can be specified by a mask option.

When the WAKEUP function is specified valid, the WAKEUP pin is multiplexed with the INT4 pin and it usually functions as an interrupt pin. The pin functions as the WAKEUP pin only in the STOP mode (if this pin is asserted active in the STOP mode, it is used only to release the STOP mode, and execution does not branch to an interrupt vector).

8.3 Mask Option Equivalent Function of µPD77110

Because the μ PD77110 does not have mask options, the multiple of the PLL cannot be specified in the same manner as the μ PD77111 and 77112. However, an external pin on the μ PD77110 has a function equivalent to the mask option. Care must be exercised when using the μ PD77110, including when it is used to emulate the μ PD77111 and 77112.

8.3.1 Settings related to clock control

External pins PLL0 through PLL2 are used to set the multiple of the PLL. PLL0 and PLL1 are multiplexed with general-purpose I/O ports P2 and P3, and can be used as PLL setting pins only when it is so specified.

The multiple must be an integer from 1 to 8.

<PLL2: PLL1: PLL0>000 m = 1 001 m = 2 : 111 m = 8

The output division ratio is fixed to 1/1 and the halt division ratio is fixed to 1/8.

Where the PLL multiple is m, the relationship between each operation mode and operating clock is as follows:

Operation Mode	Clock Supplied to DSP	
Normal operation mode	m times external input clock	
HALT mode	m/8 times external input clock	
STOP mode	Stopped	

For details on how to set the PLL multiple, refer to **4.2 Initializing PLL**. Because the setting of PLL0 through PLL2 becomes valid in the PLL initialization mode, the value of PLL0 through PLL2 must be fixed before the PLL initialization mode is set.

The option that makes CLKOUT pin output valid or invalid is fixed to "valid".

8.3.2 WAKEUP function

The WAKEUP function of the μ PD77110 is fixed to "valid".

9. INSTRUCTIONS

9.1 Outline of Instructions

An instruction consists of 32 bits. Almost all the instructions, except some such as branch instructions, are executed with one system clock. The maximum instruction cycle of the μ PD77110 is 15.3 ns. The maximum instruction cycle of the μ PD77111 and 77112 is 13.3 ns. The following nine types of instructions are available:

(1) Trinomial operation instructions

These instructions specify an operation by the MAC. As the operands, three general-purpose registers can be specified.

(2) Binomial operation instructions

These instructions specify an operation by the MAC, ALU, or BSFT. As the operands, two general-purpose registers can be specified. An immediate value can be specified for some of these instructions, instead of a general-purpose register, for one input.

(3) Uninominal operation instructions

These instructions specify an operation by the ALU. As the operands, one general-purpose register can be specified.

(4) Load/store instructions

These instructions transfer 16-bit values between memory and a general-purpose register. Any general-purpose register can be specified as the transfer source or destination.

(5) Register-to-register transfer instructions

These instructions transfer data from one general-purpose register to another.

(6) Immediate value setting instructions

These instructions write an immediate value to a general-purpose register and the registers of the address operation unit.

(7) Branch instructions

These instruction specify branching of program execution.

(8) Hardware loop instructions

These instruction specify repetitive execution of an instruction.

(9) Control instructions

These instructions are used to control the program.

9.2 Instruction Set and Operation

An operation is written in the operation field for each instruction in accordance with the operation representation format of that instruction. If two or more parameters can be written, select one of them.

(a) Representation formats and selectable registers

The following table shows the representation formats and selectable registers.

Representation Format	Selectable Register	
r0, r0′, r0″	R0 - R7	
rl, rl'	R0L - R7L	
rh, rh′	R0H - R7H	
re	R0E - R7E	
reh	R0EH - R7EH	
dp	DP0 - DP7	
dn	DN0 - DN7	
dm	DMX, DMY	
dpx	DP0 - DP3	
dpy	DP4 - DP7	
dpx_mod	DPn, DPn++, DPn, DPn##, DPn%%, !DPn## (n = 0 - 3)	
dpy_mod	DPn, DPn++, DPn, DPn##, DPn%%, !DPn## (n = 4 - 7)	
dp_imm	DPn##imm (n = 0 - 7)	
*xxx	Contents of memory with address xxx <example> If the contents of the DP0 register are 1000, *DP0 indicates the contents of address 1000 of the memory.</example>	

(b) Modifying data pointer

The data pointer is modified after the memory has been accessed. The result of modification becomes valid starting from the instruction that immediately follows. The data pointer cannot be modified.

Example	Operation
DPn	Nothing is done (value of DPn is not changed.)
DPn++	$DPn \leftarrow DPn + 1$
DPn	$DPn \leftarrow DPn - 1$
DPn##	$DPn \leftarrow DPn + DNn$ (Adds value of corresponding DN0 to DN7 to DP0 to DP7.) Example: DP0 \leftarrow DP0 + DN0
DPn%%	(n = 0 - 3) DPn = ((DPL + DNn) mod (DMX + 1)) + DPн
	(n = 4 - 7) DPn = ((DPL + DNn) mod (DMY + 1)) + DPH
!DPn##	Reverses bits of DPn and then accesses memory. After memory access, DPn \leftarrow DPn + DNn
DPn##imm	$DPn \leftarrow DPn + imm$

(c) Instructions that can be simultaneously written

Instructions that can be simultaneously written are indicated by O.

(d) Status of overflow flag (OV)

The status of the overflow flag is indicated by the following symbol:

- •: Not affected
- t: Set to 1 when overflow occurs

Caution If an overflow does not occur as a result of an operation, the overflow flag is not reset but retains the status before the operation.

Instruction Set

					Inst	tructio	ns Si	multa	neous	ly Wri	tten		Flag
Instruc- tion	Instruction Name	Mnemonic	Operation	Trino- mial	Bino- mial	Unino- minal	Load/ store	Trans- fer	lmme- diate- value	Bran- ch	Loop	Cont- rol	ov
Trinomial	Multiply add	ro = ro + rh * rh'	$ro \gets ro + rh * rh'$				0						ŧ
operation	Multiply sub	ro = ro - rh * rh'	$ro \gets ro - rh * rh'$				0						ŧ
	Sign unsign multiply add	ro = ro + rh * rl (rl is in positive integer format.)	$ro \leftarrow ro + rh * rl$				0						ŧ
	Unsign unsign multiply add	ro = ro + rl * rl' (rl and rl' are in positive integer format.)	ro ← ro + rl * rl′				0						‡
	1-bit shift multiply add	ro = (ro>>1) + rh * rh'	$ro \leftarrow \frac{ro}{2} + rh * rh'$				0						ŧ
	16-bit shift multiply add	ro = (ro>>16) + rh * rh'	$ro \leftarrow \frac{ro}{2^{16}} + rh * rh'$				0						•
Binomial	Multiply	ro = rh * rh'	$ro \gets rh * rh'$				0						•
operation	Add	ro" = ro + ro'	$ro'' \gets ro + ro'$				0						ŧ
	Immediate add	ro' = ro + imm	ro′ ← ro + imm (where imm ≠ 1)										ŧ
	Sub	ro" = ro – ro'	$ro'' \leftarrow ro - ro'$				0						ŧ
	Immediate sub	ro' = ro – imm	ro ← ro – imm (where imm ≠ 1)										ŧ
	Arithmetic right shift	ro' = ro SRA rl	$ro' \leftarrow ro >> rl$				0						•
	Immediate arithmetic right shift	ro' = ro SRA imm	$ro' \leftarrow ro >> imm$										•
	Logical right shift	ro' = ro SRL rl	$ro' \leftarrow ro >> rl$				0						•
	Immediate logical right shift	ro' = ro SRL imm	$ro' \leftarrow ro >> imm$										•
	Logical left shift	ro' = ro SLL rl	$ro' \gets ro << rl$				0						•
	Immediate logical left shift	ro' = ro SLL imm	$ro' \leftarrow ro << imm$										•
	AND	ro" = ro & ro'	$ro'' \gets ro \And ro'$				0						•
	Immediate AND	ro' = ro & imm	$ro' \leftarrow ro \& imm$										•
	OR	ro" = ro ro'	$ro'' \gets ro \ \ ro'$				0						•
	Immediate OR	ro' = ro imm	$ro' \gets ro \ \big \ imm$										•
	Exclusive OR	ro″ = ro ^ ro′	$ro'' \gets ro \land ro'$				0						•
	Immediate exclusive OR	ro' = ro ^ imm	$ro' \leftarrow ro \ ^ imm$										•

					Ins	tructio	ns Si	multa	neous	ly Wri	tten		Flag
Instruc- tion	Instruction Name	Mnemonic	Operation	Trino- mial	Bino- mial	Unino- minal	Load/ store	Trans- fer	Imme- diate- value	Bran- ch	Loop	Cont- rol	ov
Binomial operation	Less than	ro" = LT (ro, ro')	if (ro < ro') {ro" \leftarrow 0x0000000001} else {ro" \leftarrow 0x0000000000}				0						•
Uninom-	Clear	CLR (ro)	$ro \leftarrow 0x000000000$				0					0	•
inal operation	Increment	ro' = ro + 1	$ro' \leftarrow ro + 1$				0					0	‡
oporation	Decrement	ro' = ro – 1	$ro' \leftarrow ro - 1$				0					0	‡
	Absolute value	ro' = ABS (ro)	if (ro < 0) ${ro' \leftarrow -ro}$ else ${ro' \leftarrow ro}$				0					0	\$
	1's complement	ro' = ~ro	ro' ← ~ro				0					0	•
	2's complement	ro' = -ro	$ro' \leftarrow -ro$				0					0	\$
	Clip	ro' = CLIP (ro)	$\label{eq:constraints} \begin{array}{l} \text{if (ro > 0x007FFFFFF)} \\ \text{\{ro' \leftarrow 0x007FFFFFFF}\} \\ \text{elseif (ro < 0xFF80000000)} \\ \text{\{ro' \leftarrow 0xFF80000000\}} \\ \text{else (ro' \leftarrow ro)} \end{array}$				0					0	•
	Round	ro' = ROUND (ro)	$\label{eq:constraint} \begin{array}{l} \text{if (ro > 0x007FFF0000)} \\ \{\text{ro'} \leftarrow 0x007FFF0000\} \\ \text{elseif (ro < 0xFF80000000)} \\ \{\text{ro'} \leftarrow 0xFF80000000\} \\ \text{else (ro'} \leftarrow (ro + 0x8000) \\ \text{\& 0xFFFFFF0000} \\ \end{array} \right.$				0					0	•
	Exponent	ro' = EXP (ro)	$ro' \leftarrow log_2(\frac{1}{ro})$				0					0	•
	Substitution	ro' = ro	$ro' \leftarrow ro$				0					0	٠
	Accumulated addition	ro' + = ro	$ro' \leftarrow ro' + ro$				0					0	‡
	Accumulated subtraction	ro' – = ro	$ro' \leftarrow ro' - ro$				0					0	‡
	Division	ro' / = ro	$ \begin{array}{l} \mbox{if (sign (ro') == sign (ro))} \\ \mbox{{ro'} \leftarrow (ro' - ro) << 1} \\ \mbox{else} \\ \mbox{{ro'} \leftarrow (ro' + ro) << 1} \\ \mbox{if (sign (ro') == 0)} \\ \mbox{{ro'} \leftarrow ro' + 1} \\ \end{array} $				0					0	+

					Ins	tructio	ons Si	multa	neous	ly Wri	tten		Flag		
Instruc- tion	Instruction Name	Mnemonic	Operation	Trino- mial	Bino- mial	Unino- minal	Load/ store	Trans- fer	Imme- diate- value	Bran- ch	Loop	Cont- rol	ov		
Load/ store	Parallel load/store ^{Notes 1, 2}	ro = *dpx_mod ro' = *dpy_mod	$ro \leftarrow *dpx, ro' \leftarrow *dpy$	0	0	0							•		
		ro = *dpx_mod *dpy_mod = rh	$ro \gets *dpx, *dpy \gets rh$												
		*dpx_mod = rh ro = *dpy_mod	*dpx \leftarrow rh, ro \leftarrow *dpy												
		*dpx_mod = rh *dpy_mod = rh′	*dpx \leftarrow rh, *dpy \leftarrow rh'												
	Partial load/ store ^{Notes 1, 2, 3}	dest = *dpx_mod dest′ = *dpy_mod	dest \leftarrow *dpx, dest' \leftarrow *dpy										•		
		dest = *dpx_mod *dpy_mod = source	dest ← *dpx, *dpy ← source												
		*dpx_mod = source dest = *dpy_mod	*dpx \leftarrow source, dest \leftarrow *dpy												
		*dpx_mod = source *dpy_mod = source'	*dpx ← source, *dpy ← source′												
	Direct	dest = *addr	$dest \gets *addr$										•		
	addressing load/store ^{Note 4}	*addr = source	*addr \leftarrow source												
	Immediate	dest = *dp_imm	$dest \gets {}^*dp$										•		
	value index load/store ^{Note 5}	*dp_imm = source	$^{*}dp \leftarrow source$												
Register-	Register-to-	dest = rl	$dest \gets rl$									0	•		
to-register transfer	register transfer ^{Note 6}	rl = source	$rI \gets source$												
Immediate value	Immediate value setting	rl = imm (where imm = 0 to 0xFFFF)	rl ← imm										•		
setting		dp = imm (where imm = 0 to 0xFFFF)	$dp \gets imm$												
		dn = imm (where imm = 0 to 0xFFFF)	$dn \gets imm$												
		dm = imm (where imm = 1 to 0xFFFF)	dm ← imm												

Notes 1. Of the two mnemonics, either one of them or both can be written.

- 2. After transfer, modification specified by mod is performed.
- 3. Select any of dest, dest' = {ro, reh, re, rh, rl}, source, source' = {re, rh, rl}. 4. Select any of dest = {ro, reh, re, rh, rl}, source = {re, rh, rl}, addr = $\begin{cases} 0: X-0xFFF : X (X memory) \\ 0: Y-0xFFFF: Y (Y memory) \end{cases}$.
- 5. Select any of dest = {ro, reh, re, rh, rl}, source = {re, rh, rl}.
- 6. Select any register other than general-purpose registers as dest and source.

				Instructions Simultaneously Written									Flag
Instruc- tion	Instruction Name	Mnemonic	Operation	Trino- mial	Bino- mial	Unino- minal	Load/ store	Trans- fer	Imme- diate- value	Bran- ch	Loop	Cont- rol	ov
Branch	Jump	JMP imm	$PC \gets imm$									0	٠
	Register indirect jump	JMP dp	$PC \gets dp$									0	•
	Subroutine call	CALL imm	$SP \leftarrow SP + 1$ $STK \leftarrow PC + 1$ $PC \leftarrow imm$									0	•
	Register indirect subroutine call	CALL dp	$\begin{array}{l} SP \leftarrow SP + 1 \\ STK \leftarrow PC + 1 \\ PC \leftarrow dp \end{array}$									0	•
	Return	RET	$PC \leftarrow STK$ $SP \leftarrow SP - 1$									0	•
	Interrupt return	RETI	$PC \leftarrow STK$ $STK \leftarrow SP - 1$ Recovery of interrupt enable flag									0	•
Hard- ware loop	Repeat	REP count	$\begin{array}{llllllllllllllllllllllllllllllllllll$										•
	Loop	LOOP count (instruction of two or more lines)	$\begin{array}{ccc} \text{Start} & \text{RC} \leftarrow \text{count} \\ & \text{RF} \leftarrow 0 \\ \text{During repeat} & \text{PC} \leftarrow \text{PC} \\ & \text{RC} \leftarrow \text{RC} - 1 \\ \text{End} & \text{PC} \leftarrow \text{PC} + 1 \\ & \text{RF} \leftarrow 1 \end{array}$										•
	Loop hop	LPOP	$LC \leftarrow LSR3$ $LE \leftarrow LSR2$ $LS \leftarrow LSR1$ $LSP \leftarrow LSP - 1$										•
Control	No operation	NOP	$PC \leftarrow PC + 1$										•
	Halt	HALT	CPU stops.										•
	Stop	STOP	CPU, PLL, and OSC stop.										•
	Condition	IF (ro cond)	Condition test			0		0		0			•
	Forget interrupt	FINT	Discard interrupt request										•

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = +25°C)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	IVdd	For DSP core	– 0.5 to +3.6	V
	EVDD	For I/O pins	–0.5 to +4.6	V
Input voltage	Vı	VI < EVDD + 0.5 V	–0.5 to +4.1	V
Output voltage	Vo		–0.5 to +4.1	V
Storage temperature	T _{stg}		–65 to +150	°C
Operating temperature	TA		-40 to +85	°C

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Conditions

μPD77110

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operating voltage	IVdd	For DSP core	2.3		2.7	V
	EVDD	For I/O pins	2.7		3.6	V
Input voltage	Vı		0		EVDD	V

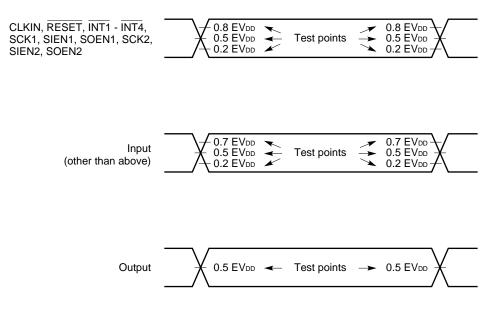
μPD77111, 77112

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
Operating voltage	IVdd	For DSF	core	1.8		2.7	V
	EVDD	For I/O	$IV_{DD} = 1.8$ to 2.7 V	2.7		3.3	V
		pins	IV _{DD} = 2.3 to 2.7 V			3.6	
Input voltage	Vı			0		EVDD	V

Capacitance (TA = +25°C, IVDD = 0 V, EVDD = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz,		10		pF
Output capacitance	Co	Pins other than those tested: 0 V		10		pF
I/O capacitance	Сю	lested. 0 v		10		pF

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIHN	Pins other than below	0.7 EV _{DD}		EVDD	V
	Vihs	CLKIN, RESET, INT1 - INT4, SCK1, SIEN1, SOEN1, SCK2, SIEN2, SOEN2	0.8 EVDD		EVDD	V
Low-level input voltage	VIL		0		0.2 EV _{DD}	V
High-level output voltage	Vон	Іон = -2.0 mA	0.7 EVDD			V
		Іон = –100 <i>µ</i> А	0.8 EV _{DD}			V
Low-level output voltage	Vol	IoL = 2.0 mA			0.2 EV _{DD}	V
High-level input leakage current	Існ	Other than TDI, TMS, and $\overline{\text{TRST}}$ V _I = EV _{DD}	0		10	μA
Low-level input leakage current	ILL	Other than TDI, TMS, and $\overline{\text{TRST}}$ V _I = 0 V	-10		0	μA
Pull-up pin current	ΙΡυι	TDI, TMS, 0 V \leq VI \leq EVDD	-250		0	μA
Pull-down pin current	IPDI	$\overline{\text{TRST}}$, 0 V \leq VI \leq EV _{DD}	0		250	μA
Internal supply current $[V_{IHN} = V_{IHS} = EV_{DD}, V_{IL} = 0 V,$	DD ^{Note 1}	During operating, 30 ns, IV _{DD} = 2.7 V		TBD	75	mA
no load]	Iddh	In halt mode, t₀c = 30 ns, divided by eight, IV₀₀ = 2.7 V		TBD	10	mA
	IDDS	In stop mode, 0°C < T _A < 60°C			100 ^{Note 2}	μA


DC Characteristics (T_A = -40 to +85°C, with IV_{DD} and EV_{DD} within recommended operating condition range)

Notes 1. The TYP. values are when an ordinary program is executed.

The MAX. values are when a special program that brings about frequent switching inside the device is executed.

2. Values of μ PD77111 and 77112. The parameters of the μ PD77110 are still under evaluation.

Common Test Criteria of Switching Characteristics

NEC

μPD77110

(1) μ PD77110 AC Characteristics (Unless otherwise specified, T_A = -40 to +85°C, with IV_{DD} and EV_{DD} within recommended operating condition range)

Clock

Timing requirements

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
CLKIN cycle time ^{Note 1}	tccx			25			ns
			PLL lock range ^{Note 2}	$10 \times m$		50 imes m	ns
CLKIN high-level width	t _{wCXH}			12.5			ns
CLKIN low-level width	twcx∟			12.5			ns
CLKIN rise/fall time	trfCX					5	ns
Internal clock cycle time requirements ^{Note 3}	t _c c (R)			15.3			ns

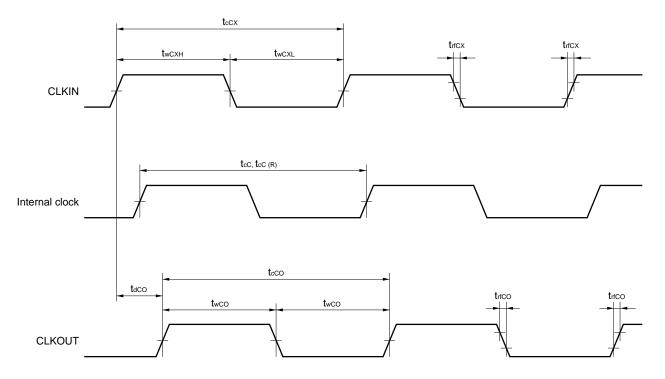
Notes 1. m: Multiple

- 2. This is the range in which the PLL is locked (stably oscillates). Input tecx within this range.
- **3.** Input t_{cCX} so that the value of $(t_{cCX} \div m)$ satisfies this condition.

Timing requirements (T_A = -40 to +60°C, IV_{DD} = 2.5 to 2.7 V, EV_{DD} = 2.7 to 3.6 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
CLKIN cycle time ^{Note 1}	tccx		25			ns
		PLL lock range ^{Note 2}	$10 \times m$		50 × m	ns
CLKIN high-level width	twcxн		12.5			ns
CLKIN low-level width	t _{wCXL}		12.5			ns
CLKIN rise/fall time	tricx				5	ns
Internal clock cycle time requirements ^{Nore 3}	t _c c (R)		13.3			ns

Notes 1. m: Multiple

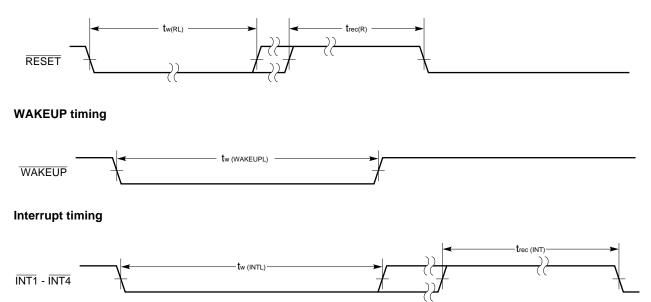

- 2. This is the range in which the PLL is locked (stably oscillates). Input tecx within this range.
- **3.** Input t_{CCX} so that the value of $(t_{CCX} \div m)$ satisfies this condition.

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Internal clock cycle ^{Note}	tcc	During normal operation		t₀cx ÷ m		ns
		In HALT mode		$t_{cCX} \div m \times I$		ns
CLKOUT cycle time	tcco			tcc		ns
CLKOUT width	twco	During normal operation	$t_{cCX} \div 2 - 3$			ns
		In HALT mode	$t_{\text{cCX}} \div m - 3$			ns
CLKOUT rise/fall time	trfCO				5	ns
CLKOUT delay time	tdco				15	ns

Note m: Multiple, I: HALT division ratio

Clock I/O timing


Reset, Interrupt

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RESET low-level width	tw (RL)	On power application ^{Note 1} , in STOP mode	100 + 2048tccx			μs
		During normal operation, in HALT mode	4tcc ^{Note 2}		Note 3	ns
RESET recovery time	trec (R)	On power application ^{Note 4}	4tcCX			ns
			4tcC ^{Note 2}			ns
WAKEUP low-level width	tw (WAKEUPL)		100			μs
INT1 - INT4 low-level width	t _w (INTL)		3tcc ^{Note 2}			ns
INT1 - INT4 recovery time	trec (INT)		3t cc			ns

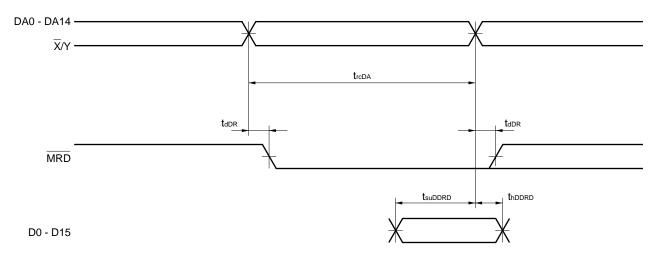
- **Notes 1.** The value on power application is the time from when the supply voltages have reached $IV_{DD} = 1.8 V$ and $EV_{DD} = 2.7 V$. A stable clock input is also required.
 - 2. Note that tcc is eight times this value during normal operation in the HALT mode.
 - **3.** If the low-level width of RESET is greater than 1024tcc, the PLL initialization mode is triggered. If there is no need to use the PLL initialization mode, set the width to less than 1024tcc.
 - 4. When the power is turned on, a recovery period of 4t_{ccx} is necessary before inputting RESET.

Reset timing

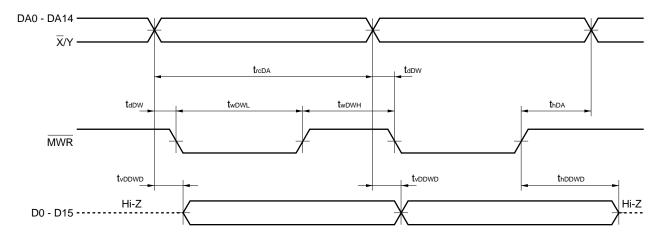
External Data Memory Access

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Read data setup time	tsuDDRD		18			ns
Read data hold time	t hDDRD		0			ns


Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Address cycle time	trcDA			$t_{\text{CC}} + \left(t_{\text{CC}} \times t_{\text{CDW}}\right)^{\text{Note}}$		ns
Address output hold time	t hDA		0			ns
MRD output delay time	t dDR				5	ns
Write data output valid time	tvddwd				5	ns
Write data output hold time	thddwd		0			ns
MWR output delay time	tadw		0		0.5 tcc	ns
MWR output hold time	t hDA		0			ns
MWR low-level width	twdwl		$t_{\text{cC}} \times t_{\text{cDW}} - 3$			ns
MWR high-level width	t _{wDWH}		0.5 tcc - 3			ns


Note tcDW: Number of data wait cycles

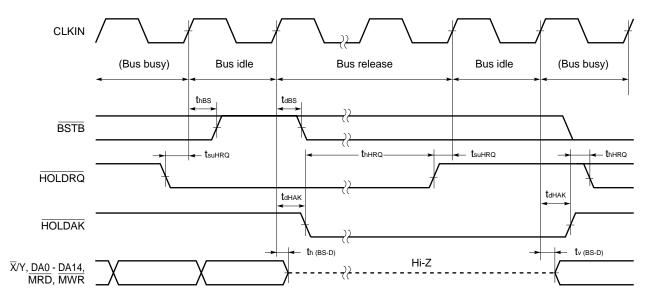
External data memory access timing (read)

External data memory access timing (write)

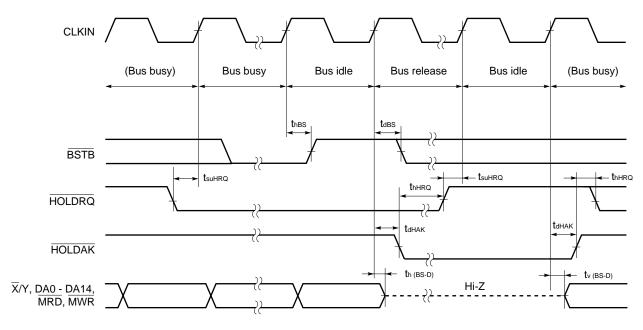
Bus Arbitration

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
HOLDRQ setup time	t suHRQ		0			ns
HOLDRQ hold time	t hHRQ		0			ns


Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
BSTB hold time	thBS		0			ns
BSTB output delay time	tdBS				20	ns
HOLDAK output delay time	tанак				18	ns
Data hold time during bus arbitration	th (BS-D)				25	ns
Data valid time during bus arbitration	tv (BS-D)				25	ns


NEC

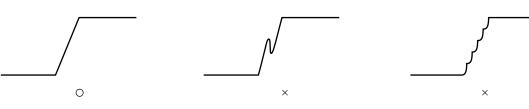
μPD77110

Bus arbitration timing (when bus is idle)

Bus arbitration timing (when bus is busy)

Serial Interface

Timing requirements

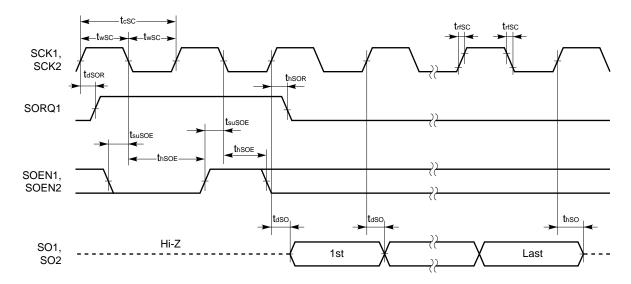

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SCK cycle time	tcsc		60			ns
SCK high-/low-level width	twsc		25			ns
SCK rise/fall time	trisc				20	ns
SOEN setup time	tsuSOE		5			ns
SOEN hold time	thSOE		10			ns
SIEN setup time	tsuSIE		5			ns
SIEN hold time	thSIE		10			ns
SI setup time	tsuSI		5			ns
SI hold time	thsi		10			ns

Switching characteristics

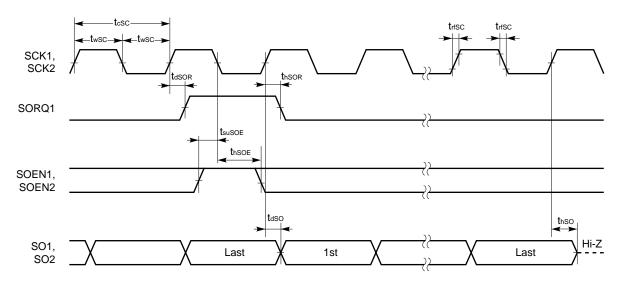
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SORQ output delay time	tdsor				25	ns
SORQ hold time	thsor		0			ns
SO output delay time	tdso				25	ns
SO hold time	t hsO		0			ns
SIAK output delay time	tdSIA				25	ns
SIAK hold time	thSIA		0			ns

Caution If noise is superimposed on the serial clock, the serial interface may be deadlocked. Bear in mind the following points when designing your system:

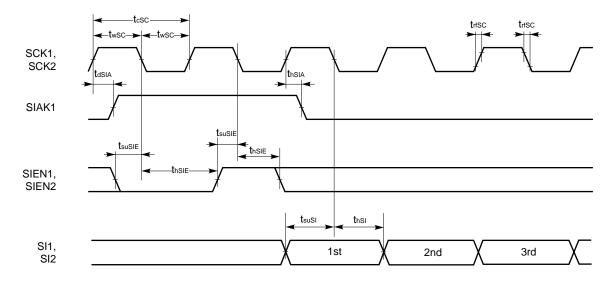
- Reinforce the wiring for power supply and ground (if noise is superimposed on the power and ground lines, it has the same effect as if noise were superimposed on the serial clock).
- Shorten the wiring between the device's SCK1 and SCK2 pins, and clock supply source.
- Do not cross the signal lines of the serial clock with any other signal lines. Do not route the serial clock line in the vicinity of a line through which a high alternating current flows.
- Supply the clock to the SCK1 and SCK2 pins of the device from the clock source on a one-toone basis. Do not supply clock to several devices from one clock source.
- Exercise care that the serial clock does not overshoot or undershoot. In particular, make sure that the rising and falling of the serial clock waveform are clear.

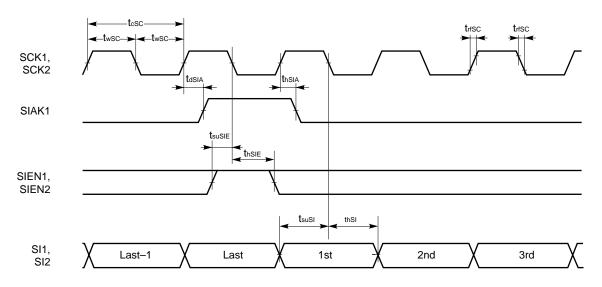

Make sure that the serial clock rises and falls linearly.

The serial clock must not bound. Noise must not be superimposed on the serial clock.


The serial clock must not rise or fall step-wise.

NEC

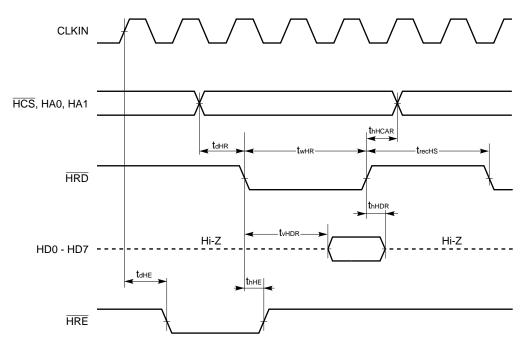

Serial output timing 1


Serial output timing 2 (during successive output)

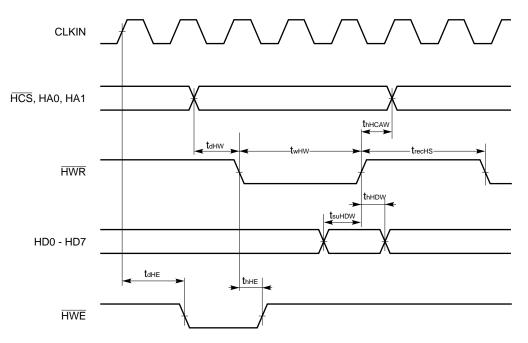
Serial input timing 1

Serial input timing 2 (during successive input)

Host Interface


Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
HRD delay time	tdHR		10			ns
HRD width	twHR		60			ns
HCS, HA0, HA1, read hold time	t hHCAR		0			ns
HCS, HA0, HA1 write hold time	thHCAW		0			ns
HRD, HWR recovery time	trecHS		60			ns
HWR delay time	tdнw		10			ns
HWR width	t _{wHW}		60			ns
HWR hold time	thHDW		0			ns
HWR setup time	tsuHDW		10			ns

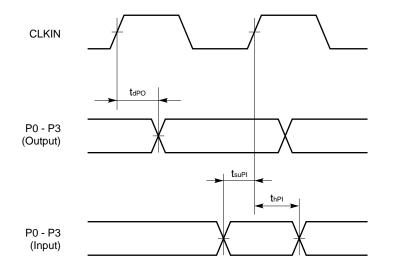

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
HRE, HWE output delay time	tане				25	ns
HRE, HWE hold time	thHE				25	ns
HRD valid time	t _{vHDR}				25	ns
HRD hold time	thHDR		0			ns

Host read interface timing

Host write interface timing

General-purpose I/O Port


Timing requirements

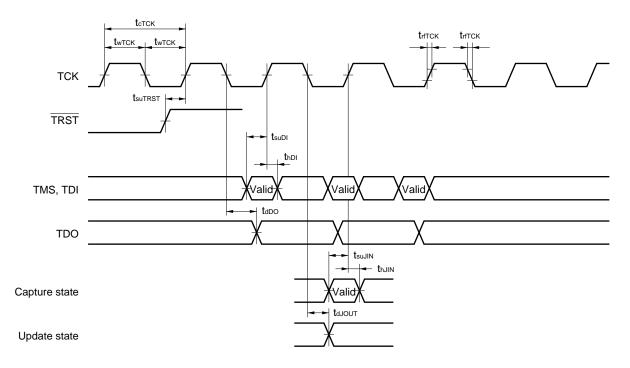
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Port input setup time	t suPI		0			ns
Port input hold time	t hPI		10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Port output delay time	tdPO				25	ns

General-purpose I/O port timing

Debugging Interface (JTAG)


Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TCK cycle time	tстск		120			ns
TCK high-/low-level width	twтск		50			ns
TCK rise/fall time	t rfTCK				20	ns
TMS, TDI setup time	tsuDI		20			ns
TMS, TDI hold time	thDI		20			ns
Input pin setup time	tsuJIN		20			ns
Input pin hold time	thJIN		20			ns
TRST setup time	t suTRST		100			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TDO output delay time	tdDO				20	ns
Output pin output delay time	t ajout				20	ns

Debugging interface timing

Remark For details of JTAG, refer to IEEE1149.1.

NEC

μPD77111, 77112

(2) μ PD77111, 77112 AC Characteristics (T_A = -40 to +85°C, with IV_{DD} and EV_{DD} within recommended operating condition range)

Clock

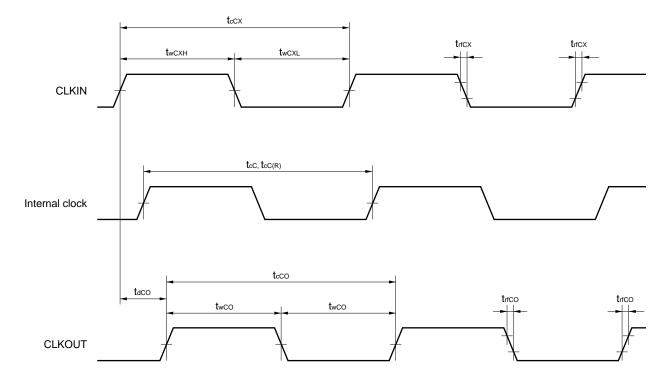
Timing requirements

Parameter	Symbol	Conc	dition	MIN.	TYP.	MAX.	Unit
CLKIN cycle time ^{Note 1}	tccx			25			ns
		PLL lock range ^{Note 2}	IV _{DD} = 1.8 to 2.7 V	25 × m		50 × m	ns
			IV _{DD} = 2.3 to 2.7 V	10 × m		50 × m	ns
CLKIN high-level width	t _{wCXH}			12.5			ns
CLKIN low-level width	twCXL			12.5			ns
CLKIN rise/fall time	tricx					5	ns
Internal clock cycle time	t _c c (R)	IV _{DD} = 1.8 to 2	.7 V	25			ns
requirements ^{Note 3}		IVpp = 2.3 to 2	.7 V	13.3			ns

Notes 1. m: Multiple, n: Division ratio

- 2. This is the range in which the PLL is locked (stably oscillates). Input tccx within this range.
- **3.** Input t_{CCX} so that the value of $(t_{CCX} \div m \times n)$ satisfies this condition.

Switching characteristics

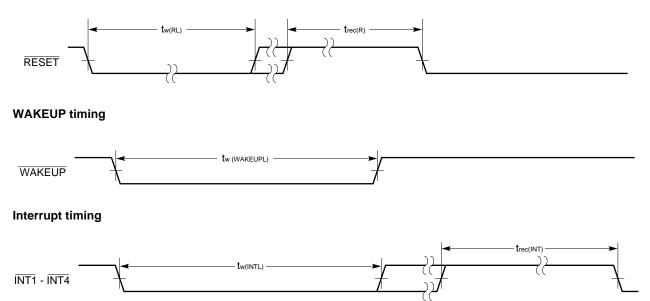

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit	
Internal clock cycle ^{Note}	tcc	During normal operation			$t_{cCX} \times n \div m$		ns	
		In HALT	mode		$t_{cCX} \times n \div m \times I$		ns	
CLKOUT cycle time	tcco				tcc		ns	
CLKOUT width	twco	During	n = 1, or even number	$t_{cCX} \div 2 - 3$			ns	
			normal operation	n = odd number (other than 1)	$t_{ccx} \div m - 3$			ns
		In HALT	mode	$t_{ccx} \div m \times n - 3$			ns	
CLKOUT rise/fall time	trfCO					5	ns	
CLKOUT delay time	taco	IVDD = 1	.8 to 2.7 V			20	ns	
		IV _{DD} = 2	.3 to 2.7 V			15	ns	

Note m: Multiple, n: Division ratio, I: HALT division ratio

μPD77110, 77111, 77112

μPD77111, 77112

Clock I/O timing


Reset, Interrupt

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RESET low-level width	tw (RL)	On power application ^{Note 1} , in STOP mode	100 + 2048tccx			μs
		During normal operation, in HALT mode	4tcc ^{Note 2}		Note 3	ns
RESET recovery time	trec (R)	On power application ^{Note 4}	4tcCX			ns
			4tcC ^{Note 2}			ns
WAKEUP low-level width	tw (WAKEUPL)		100			μs
INT1 - INT4 low-level width	t _w (INTL)		3tcc ^{Note 2}			ns
INT1 - INT4 recovery time	trec (INT)		3t cc			ns

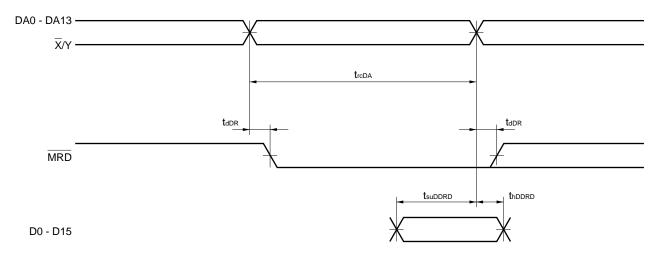
- **Notes 1.** The value on power application is the time from when the supply voltages have reached $IV_{DD} = 1.8 V$ and $EV_{DD} = 2.7 V$. A stable clock input is also required.
 - 2. Note that t_{cc} is I (I = integer of 1 to 16) times that during normal operation in the HALT mode.
 - **3.** If the low-level width of RESET is greater than 1024t_{cC}, the PLL initialization mode is triggered. If there is no need to use the PLL initialization mode, set the width to less than 1024t_{cC}.
 - 4. When the power is turned on, a recovery period of 4t_{ccx} is necessary before inputting RESET.

Reset timing

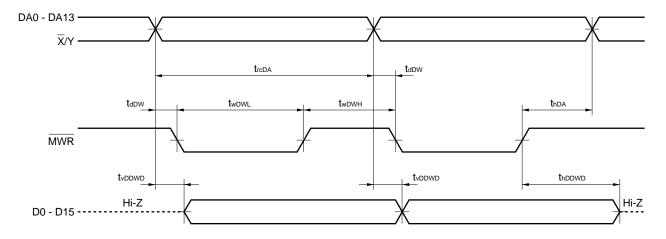
External Data Memory Access (µPD77112 only)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Read data setup time	tsuDDRD		18			ns
Read data hold time	thddrd		0			ns


Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Address cycle time	trcDA			$t_{\text{CC}} + \left(t_{\text{CC}} \times t_{\text{cDW}}\right)^{\text{Note}}$		ns
Address output hold time	t hDA		0			ns
MRD output delay time	tdDR				5	ns
Write data output valid time	tvddwd				5	ns
Write data output hold time	t hDDWD		0			ns
MWR output delay time	t dDW		0		0.5 tcc	ns
MWR output hold time	t hDA		0			ns
MWR low-level width	twdwl		$t_{\text{cC}} \times t_{\text{cDW}} - 3$			ns
MWR high-level width	twdwh		$0.5 \ t_{\text{cC}} - 3$			ns


Note tcDW: Number of data wait cycles

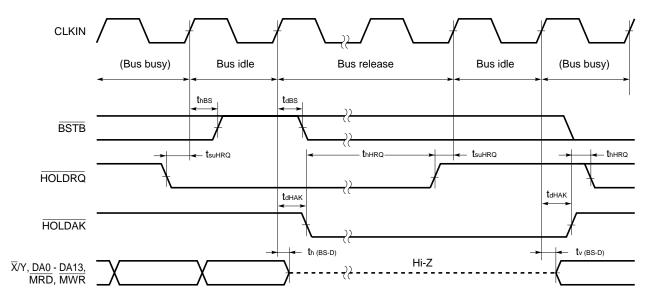
External data memory access timing (read)

External data memory access timing (write)

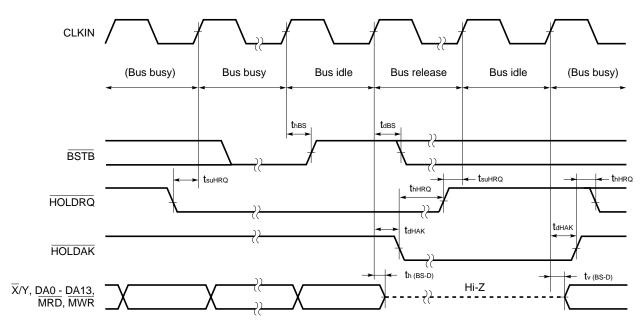
Bus Arbitration (μPD77112 only)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
HOLDRQ setup time	t suHRQ		0			ns
HOLDRQ hold time	thHRQ		0			ns


Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
BSTB hold time	thBS		0			ns
BSTB output delay time	tdBS				20	ns
HOLDAK output delay time	tанак				18	ns
Data hold time during bus arbitration	th (BS-D)				25	ns
Data valid time during bus arbitration	$t_{v} (\text{BS-D})$				25	ns


NEC

μPD77111, 77112

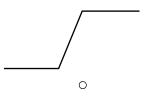
Bus arbitration timing (when bus is idle)

Bus arbitration timing (when bus is busy)

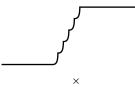
Serial Interface

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SCK cycle time	tcsc		60			ns
SCK high-/low-level width	twsc		25			ns
SCK rise/fall time	trfsc				20	ns
SOEN setup time	tsuSOE	IV _{DD} = 1.8 to 2.7 V	10			ns
		IV _{DD} = 2.3 to 2.7 V	5			ns
SOEN hold time	thsoe	IV _{DD} = 1.8 to 2.7 V	15			ns
		IV _{DD} = 2.3 to 2.7 V	10			ns
SIEN setup time	tsuSIE	IV _{DD} = 1.8 to 2.7 V	10			ns
		IV _{DD} = 2.3 to 2.7 V	5			ns
SIEN hold time	thSIE	IV _{DD} = 1.8 to 2.7 V	15			ns
		IV _{DD} = 2.3 to 2.7 V	10			ns
SI setup time	tsuSI	IV _{DD} = 1.8 to 2.7 V	10			ns
		IV _{DD} = 2.3 to 2.7 V	5			ns
SI hold time	thsi	IV _{DD} = 1.8 to 2.7 V	15			ns
		IV _{DD} = 2.3 to 2.7 V	10			ns


Switching characteristics

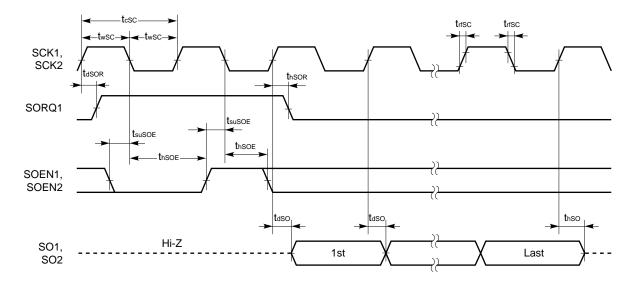
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SORQ output delay time	tdSOR	IVDD = 1.8 to 2.7 V			30	ns
		IV _{DD} = 2.3 to 2.7 V			25	ns
SORQ hold time	thSOR		0			ns
SO output delay time	tdso	IV _{DD} = 1.8 to 2.7 V			30	ns
		IV _{DD} = 2.3 to 2.7 V			25	ns
SO hold time	thso		0			ns
SIAK output delay time	tdSIA	IV _{DD} = 1.8 to 2.7 V			30	ns
		IV _{DD} = 2.3 to 2.7 V			25	ns
SIAK hold time	thSIA		0			ns


NEC

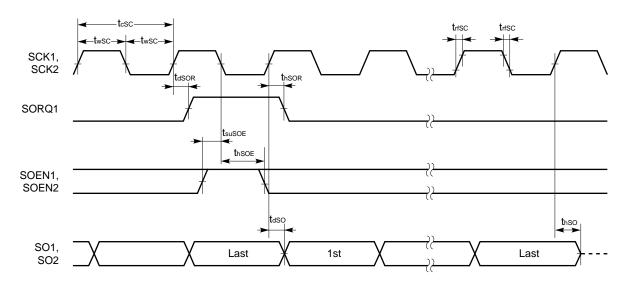
Caution If noise is superimposed on the serial clock, the serial interface may be deadlocked. Bear in mind the following points when designing your system:

- Reinforce the wiring for power supply and ground (if noise is superimposed on the power and ground lines, it has the same effect as if noise were superimposed on the serial clock).
- Shorten the wiring between the device's SCK1 and SCK2 pins, and clock supply source.
- Do not cross the signal lines of the serial clock with any other signal lines. Do not route the serial clock line in the vicinity of a line through which a high alternating current flows.
- Supply the clock to the SCK1 and SCK2 pins of the device from the clock source on a one-toone basis. Do not supply clock to several devices from one clock source.
- Exercise care that the serial clock does not overshoot or undershoot. In particular, make sure that the rising and falling of the serial clock waveform are clear.

×

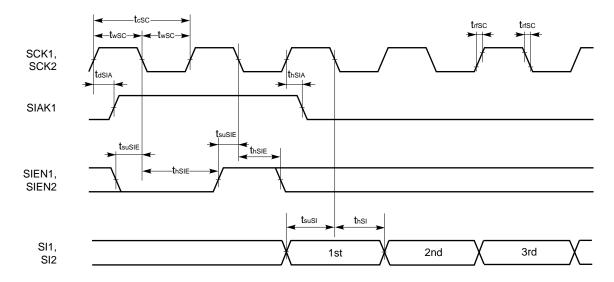


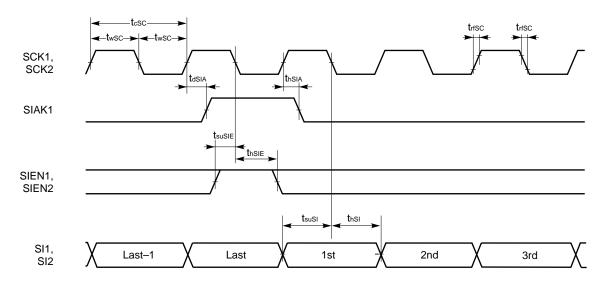
Make sure that the serial clock rises and falls linearly.


The serial clock must not bound. Noise must not be superimposed on the serial clock.

The serial clock must not rise or fall step-wise.

Serial output timing 1


Serial output timing 2 (during successive output)


NEC

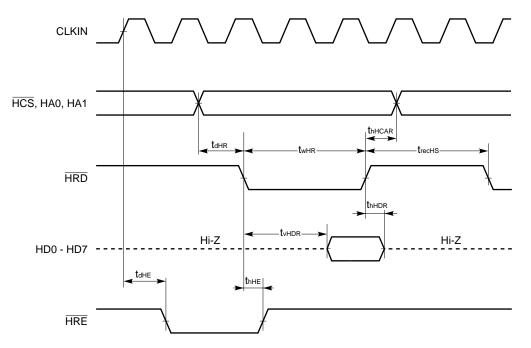
μPD77111, 77112

Serial input timing 1

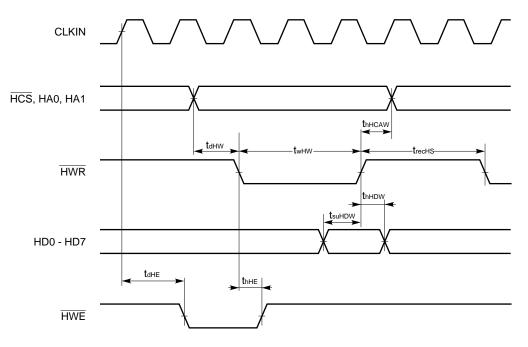
Serial input timing 2 (during successive input)

Host Interface

Timing requirements


Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
HRD delay time	tdHR	IV _{DD} = 1.8 to 2.7 V	15			ns
		IV _{DD} = 2.3 to 2.7 V	10			ns
HRD width	twHR		60			ns
HCS, HA0, HA1, read hold time	t hHCAR		0			ns
HCS, HA0, HA1 write hold time	thHCAW		0			ns
HRD, HWR recovery time	trecHS		60			ns
HWR delay time	tdнw	IV _{DD} = 1.8 to 2.7 V	15			ns
		IV _{DD} = 2.3 to 2.7 V	10			ns
HWR width	t _{wHw}		60			ns
HWR hold time	thHDW		0			ns
HWR setup time	tsuHDW	IV _{DD} = 1.8 to 2.7 V	15			ns
		IV _{DD} = 2.3 to 2.7 V	10			ns

Switching characteristics

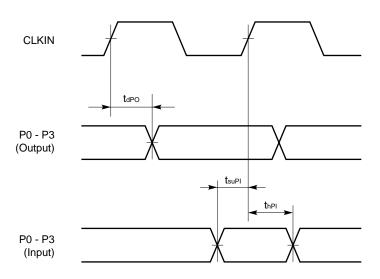

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
HRE, HWE output delay time	tане	IV _{DD} = 1.8 to 2.7 V			30	ns
		IVDD = 2.3 to 2.7 V			25	ns
HRE, HWE hold time	thHE	IV _{DD} = 1.8 to 2.7 V			30	ns
		IVDD = 2.3 to 2.7 V			25	ns
HRD valid time	tvHDR	IV _{DD} = 1.8 to 2.7 V			30	ns
		IV _{DD} = 2.3 to 2.7 V			25	ns
HRD hold time	thHDR		0			ns

NEC

Host read interface timing

Host write interface timing

General-purpose I/O Port


Timing requirements

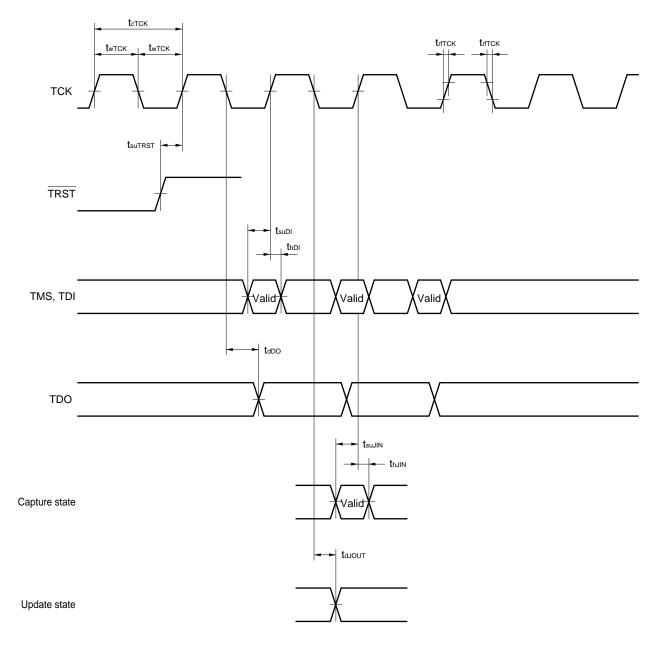
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Port input setup time	t suPI		0			ns
Port input hold time	thPI	IV _{DD} = 1.8 to 2.7 V	15			ns
		IV _{DD} = 2.3 to 2.7 V	10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Port output delay time	t dPO	IV _{DD} = 1.8 to 2.7 V			30	ns
		IV _{DD} = 2.3 to 2.7 V			25	ns

General-purpose I/O port timing

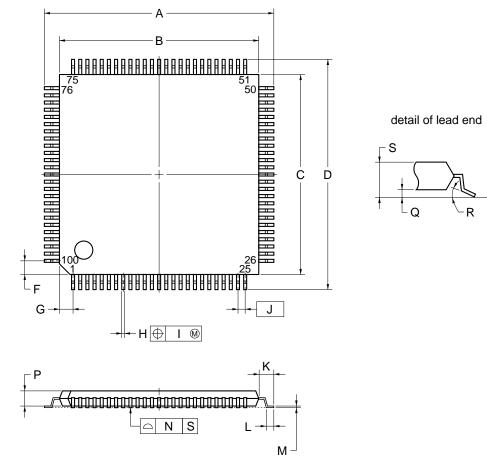
Debugging Interface (JTAG)


Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TCK cycle time	tстск		120			ns
TCK high-/low-level width	twтск		50			ns
TCK rise/fall time	t _{rfTCK}				20	ns
TMS, TDI setup time	tsuDI	IV _{DD} = 1.8 to 2.7 V	25			ns
		IV _{DD} = 2.3 to 2.7 V	20			ns
TMS, TDI hold time	thDI	IV _{DD} = 1.8 to 2.7 V	25			ns
		IV _{DD} = 2.3 to 2.7 V	20			ns
Input pin setup time	tsuJIN	IV _{DD} = 1.8 to 2.7 V	25			ns
		IV _{DD} = 2.3 to 2.7 V	20			ns
Input pin hold time	thjin	IV _{DD} = 1.8 to 2.7 V	25			ns
		IV _{DD} = 2.3 to 2.7 V	20			ns
TRST setup time	tsuTRST		100			ns

Switching characteristics

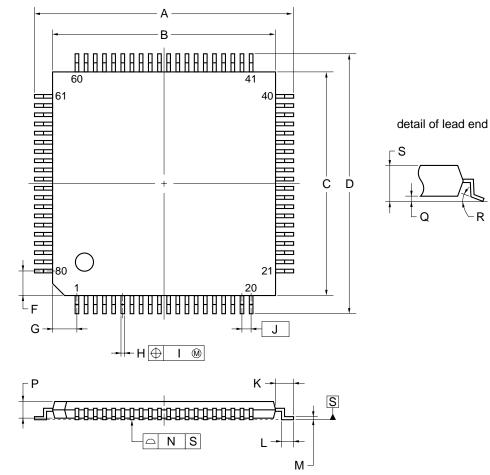
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TDO output delay time	tdDO	IV _{DD} = 1.8 to 2.7 V			25	ns
		IVDD = 2.3 to 2.7 V			20	ns
Output pin output delay time	t ajout	IV _{DD} = 1.8 to 2.7 V			25	ns
		IV _{DD} = 2.3 to 2.7 V			20	ns


Debugging interface timing

Remark For details of JTAG, refer to IEEE1149.1.

11. PACKAGE

100-PIN PLASTIC TQFP (FINE PITCH) (14x14)



NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	16.0±0.2
В	14.0±0.2
С	14.0±0.2
D	16.0±0.2
F	1.0
G	1.0
н	$0.22\substack{+0.05\\-0.04}$
I	0.10
J	0.5 (T.P.)
К	1.0±0.2
L	0.5±0.2
М	$0.145\substack{+0.055\\-0.045}$
N	0.10
Р	1.0±0.1
Q	0.1±0.05
R	$3^{\circ+7^{\circ}}_{-3^{\circ}}$
S	1.27 MAX.
	S100GC-50-9EU-2

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

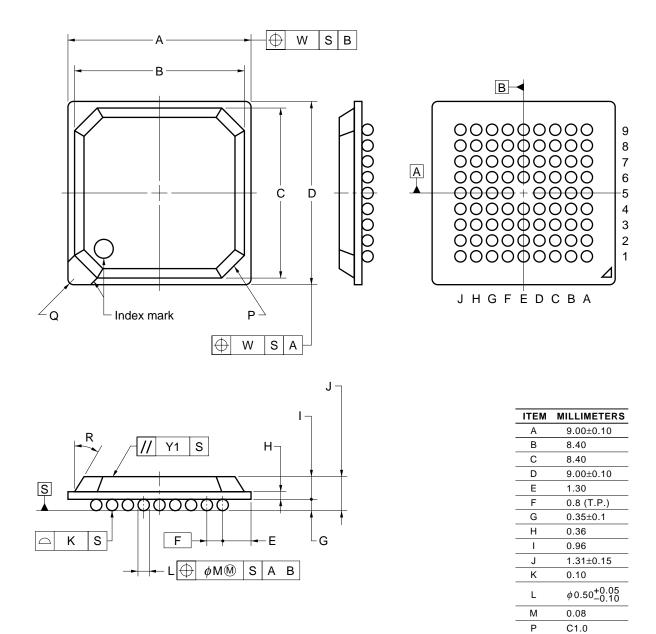
NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
I	0.10
J	0.5 (T.P.)
K	1.0±0.2
L	0.5±0.2
Μ	0.145±0.05
N	0.10
Р	1.0±0.05
Q	0.1±0.05
R	$3^{\circ+7^{\circ}}_{-3^{\circ}}$
S	1.2 MAX.
	S80GK-50-9EU-1

Q

R W


Y1

R0.3 25°

0.20

0.20 S80F1-80-CN1-1

80-PIN PLASTIC FBGA (9x9)

12. RECOMMENDED SOLDERING CONDITIONS

It is recommended to solder this product under the following conditions.

For details of the recommended soldering conditions, refer to information document "SEMICONDUCTOR DEVICE

MOUNTING TECHNOLOGY MANUAL" (C10535E).

For soldering methods and conditions other than those recommended, consult NEC.

Surface mount type

μ PD77110GC-9EU: 100-pin plastic TQFP (fine pitch) (14 × 14) μ PD77111GK-xxx-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12)

Process	Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Time: 30 seconds MAX (210°C MIN), Number of times: 2 MAX, Number of days: 3 ^{№te} (after that, prebaking is necessary for 10 to 72 hours at 125°C)	IR35-103-2
VPS	Package peak temperature: 215°C, Time: 40 seconds MAX (200°C MIN), Number of times: 2 MAX, Number of days: 3 ^{Note} (after that, prebaking is necessary for 10 to 72 hours at 125°C)	VP15-103-2
Partial heating method	Pin temperature: 300°C MAX, Time: 3 seconds MAX (per side of device)	_

μ PD77112GC-xxx-9EU: 100-pin plastic TQFP (fine pitch) (14 × 14)

Process	Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Time: 30 seconds MAX (210°C MIN), Number of times: 3 MAX, Number of days: 7 ^{Note} (after that, prebaking is necessary for 10 to 72 hours at 125°C)	IR35-107-3
VPS	Package peak temperature: 215°C, Time: 40 seconds MAX (200°C MIN), Number of times: 3 MAX, Number of days: 7 ^{№re} (after that, prebaking is necessary for 10 to 72 hours at 125°C)	VP15-107-3
Partial heating method	Pin temperature: 300°C MAX, Time: 3 seconds MAX (per side of device)	_

Note Number of days in storage after the dry pack has been opened. The storage conditions are at 25°C, 65% RH MAX.

Caution Do not use two or more soldering methods in combination (except partial heating method).

★ μ PD77111F1-xxx-CN1: 80-pin plastic fine-pitch BGA (9 × 9)

Process	Conditions	Symbol
Infrared ray reflow	Package peak temperature: 230°C, Time: 30 seconds MAX (210°C MIN), Number of times: 2 MAX, Number of days: 3 ^{№te} (after that, prebaking is necessary for 10 to 72 hours at 125°C)	IR30-103-2

Note Number of days in storage after the dry pack has been opened. The storage conditions are at 25°C, 65% RH MAX.

Caution Do not use two or more soldering methods in combination (except partial heating method).

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California

Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l. Milano, Italy

Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A. Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed

: μPD77110GC-9EU The customer must judge the need for license: μ PD77111GK-xxx-9EU, μ PD77111F1-xxx-CN1, μPD77112GC-xxx-9EU

- The information in this document is current as of September, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).