Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

MOS INTEGRATED CIRCUIT Phase-out/Discontinued $\mu PD75036$

4 BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75036 is a 75X series 4-bit single-chip microcomputer.

The μ PD75036 is an expanded version of the μ PD75028. It has ROM and RAM with a larger capacity.

The minimum instruction execution time of the μ PD75036 is 0.95 μ s. In addition to this high-speed capability, it contains an A/D converter and furnishes high-performance functions such as the serial bus interface (SBI) function that follows the NEC standard format, providing powerful features and high cost performance.

A built-in PROM product, μ PD75P036, is also available. The μ PD75P036 is suitable for small-scale production or experimental production in system development.

The following user's manual describes the details of functions. Be sure to read it before design. μ PD75028 User's Manual: IEU-694

FEATURES

- Variable instruction execution time advantageous to high-speed operation and power-saving:
 - 0.95 μ s, 1.91 μ s, or 15.3 μ s (at 4.19 MHz when the main system selected)
 - 122 μs (at 32.768 kHz when the subsystem clock selected)
- Program memory (ROM) capacity: 16256 × 8 bits
- Data memory (RAM) capacity: 1024×4 bits
- Built-in A/D converter (8-bit resolution, successive approximation): 8 channels
- Powerful timer function: 4 channels
 - Usable for 16-bit integral A/D conversion and PWM output
- Built-in NEC standard serial bus interface (SBI)
- Very low-power clock operation allowed (5 μ A TYP. at 3 V)

APPLICATIONS

Electric household appliances, air cooling/heating apparatus, cameras, and electronic measuring instruments

ORDERING INFORMATION

Part number	Package	Quality grade	
μ PD75036CW- \times ×	64-pin plastic shrink DIP (750 mil)	Standard	
μPD75036GC-×××-AB8	64-pin plastic QFP (□14 mm)	Standard	

Remark ××× is a mask ROM code number.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.

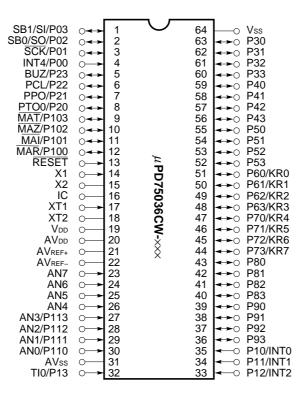
NEC

μ**PD75036**

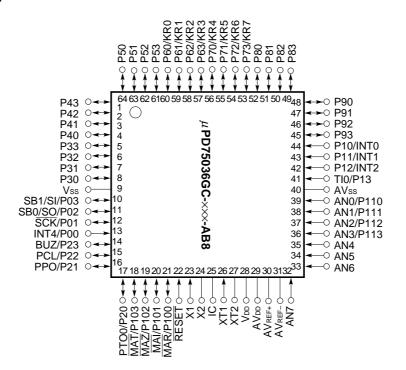
FUNCTIONS

ltem				Function
Instruction executior	n time	• 0.95, 1.91, 15.3 μ s (Main system clock : 4.19 MHz operation)		
		• 122 μs (Subsystem clock : 32.768 kHz operation)		
On-chip memory	ROM	162	56×8 bits	
	RAM	102	4×4 bits	
General register			-bit manipulation :8 -bit manipulation :4	
I/O port		48	12 CMOS input pins	On-chip pull-up resistor by software : 27
			24 CMOS I/O pins	On-chip pull-down resistor by software: 4Direct LED driving: 4
			12 N-ch open-drain I/O pins	 Withstand voltage is 10 V On-chip pull-up resistor by mask option Direct LED driving: 4
Timer		 Timer/event counter Basic interval timer : Can be used as watchdog timer Clock timer : Buzzer output enabled Multifunction timer : Can be used as timer, free-running timer or counter for integration A/D converter, or for PWM output 		
Serial interface		• T	hree-wire serial I/O mode wo-wire serial I/O mode BI mode	
Bit sequential buffer		16 k	pits	
Clock output		Φ, f	x/2 ³ , fx/2 ⁴ , fx/2 ⁶ (Main system cloc	k: 4.19 MHz operation)
A/D converter			-bit resolution $ imes$ 8 channels (succe apable of low-voltage operation: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Vectored interrupt		Exte	ernal : 3, Internal : 4	
Test input		Exte	ernal : 1, Internal : 1	
System clock oscilla	tor	 Ceramic/crystal oscillator for main system clock oscillation Crystal oscillator for subsystem clock oscillation 		
Standby function		STOP/HALT mode		
Operating temperatu	ire range	-40 to +85 °C		
Operating voltage		2.7 to 6.0 V		
Package			4-pin plastic shrink DIP (750 mil) 4-pin plastic QFP (∏14 mm)	

NEC


CONTENTS

1.	PIN CONFIGURATIONS (TOP VIEW)	4
2.	BLOCK DIAGRAM	6
3.	PIN FUNCTIONS	7
	3.1 PORT PINS	7
	3.2 NON-PORT PINS	9
		11
	3.4 MASK OPTION SELECTION	13
	3.5 CONNECTION OF UNUSED PINS	14
4.	ARCHITECTURE AND MEMORY MAP OF THE μ PD75036	15
5.	PERIPHERAL HARDWARE FUNCTIONS	17
	5.1 PORTS	17
	5.2 CLOCK GENERATOR	17
	5.3 CLOCK OUTPUT CIRCUIT	19
	5.4 BASIC INTERVAL TIMER	20
	5.5 CLOCK TIMER	21
	5.6 TIMER/EVENT COUNTER	22
	5.7 SERIAL INTERFACE	24
	5.8 A/D CONVERTER	26
	5.9 MULTIFUNCTION TIMER (MFT)	27
6.	INTERRUPT FUNCTION	29
7.	STANDBY FUNCTION	31
8.	RESET FUNCTION	31
9.	INSTRUCTION SET	32
10.	ELECTRICAL CHARACTERISTICS	39
11.	PACKAGE DIMENSIONS	52
AP	PENDIX A DEVELOPMENT TOOLS	54
AP	PENDIX B RELATED DOCUMENTS	55



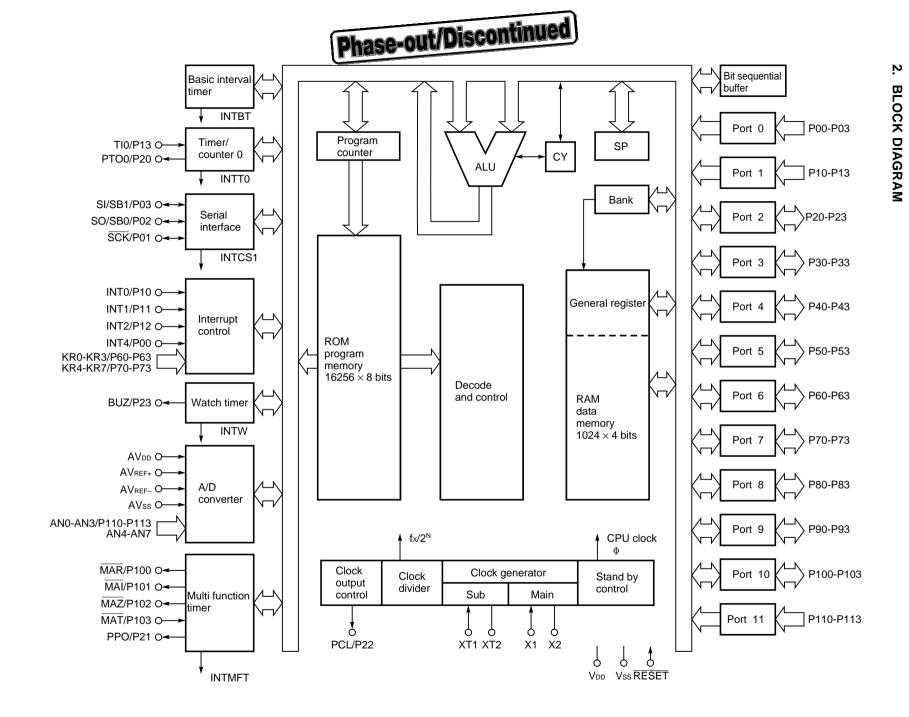
1. PIN CONFIGURATIONS (TOP VIEW)

• 64-pin plastic shrink DIP

• 64-pin plastic QFP

IC: Internally connected (Should be directly connected to VDD)

NEC



μ**PD75036**

Pin names

P00-03 :	Port 0	:	Port 0	
P10-13 :	Port 1	:	Port 1	
P20-23 :	Port 2	:	Port 2	
P30-33 :	Port 3	:	Port 3	
P40-43 :	Port 4	:	Port 4	
P50-53 :	Port 5	:	Port 5	
P60-63 :	Port 6	:	Port 6	
P70-73 :	Port 7	:	Port 7	
P80-83 :	Port 8	:	Port 8	
P90-93 :	Port 9	:	Port 9	
P100-103:	Port 10	:	Port 10	
P110-113:	Port 11	:	Port 11	
KR0-7 :	Key Return	:	Key interrupt input	
SCK :	Serial Clock	:	Serial clock I/0	
SI :	Serial Input	:	Serial data input	
SO :	Serial Output	:	Serial data output	
SB0, 1 :	Serial Bus 0, 1	:	Serial bus I/O	
RESET :	Reset Input	:	Reset input	
TIO :	Timer Input 0	:	External event pulse input	
PTO0 :	Programmable Timer Output 0	:	Timer/event counter output	
BUZ :	Buzzer Clock	:	Arbitrary frequency output	
PCL :	Programmable Clock	:	Clock output	
INT0, 1, 4:	External Vectored Interrupt 0, 1, 4	:	External vectored interrupt input	
INT2 :	External Test Input 2	:	External test input	
X1, 2 :	Main System Clock Oscillation 1, 2	:	Main system clock oscillation pin	
XT1, 2 :	Subsystem Clock Oscillation 1, 2	:	Subsystem clock oscillation pin	
MAR :	Reference Integration Control	ן :	Reverse integration signal output	
MAI :	Integration Control	MFT A/D :	Integration signal output MF	T A/D
MAZ :	Autozero Control	(mode :	Autozero signal output	de
MAT :	External Comparate Timing Input	J :	External comparator signal input J	
PPO :	Programmable Pulse Output			
	MFT timer mode	:	Pulse output MFT timer mode	
AN0-7 :	Analog Input 0-7	:	Analog input	
AVREF+ :	Analog Reference (+)	:	Analog reference voltage (+) input	
AVREF- :	Analog Reference (-)	:	Analog reference voltage (-) input	
AVdd :	Analog Vod	:	A/D converter power supply input	
AVss :	Analog Vss	:	A/D converter GND input	
Vdd :	Positive Power Supply	:	Main power supply pin	
Vss :	Ground	:	GND potential pin	

Remark MFT: Multifunction timer

6

NEC

µPD75036

NEC

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin	Input/ output	Shared pin	Function		8-bit I/O	When reset	I/O circuit type ^{Note 1}
P00	Input	INT4	4-bit input port (PORT0).		×	Input	B
P01	I/O	SCK	For P01 - P03, pull-up res				F-A
P02	I/O	SO/SB0	provided by software in u	THE OF 3 DIES.			(F) -В
P03	I/O	SI/SB1					M-C
P10	Input	INT0	With noise eli	mination function	×	Input	B-C
P11		INT1	4-bit input port (PORT1).				
P12		INT2	Pull-up resistors can be p	•			
P13		TI0	software in units of 4 bits.				
P20	I/O	PTO0	4-bit I/O port (PORT2).		×	Input	E-B
P21		PPO	Pull-up resistors can be p	-			
P22	1	PCL	software in units of 4 bits.				
P23		BUZ					
P30Note 2	I/O	-	Programmable 4-bit I/O p	ort (PORT3).	×	Input	E-B
P31 ^{Note 2}	1	_	I/O can be specified bit by				
P32Note 2		_	resistors can be provided by software in units of 4 bits.				
P33Note 2		_					
P40 - P43 ^{Note 2}	I/O	_	N-ch open-drain 4-bit I/O port (PORT4). A pull-up resistor can be provided for each bit (mask option). This open- drain port has a withstand voltage of 10 V.		0	High level (when pull- up resistors are provided) or high impedance	Μ
P50 - P53Note 2	I/O	_	N-ch open-drain 4-bit I/O A pull-up resistor can be p each bit (mask option). T port has a withstand volta	provided for his open-drain		High level (when pull- up resistors are provided) or high impedance	Μ

Notes 1. The circle (\bigcirc) indicates the Schmitt trigger input.

2. Can directly drive the LED.

3.1 PORT PINS (2/2)

Pin	Input/ output	Shared pin	Function	8-bit I/O	When reset	I/O circuit type ^{Note 1}
P60	I/O	KR0	Programmable 4-bit I/O port (PORT6).	0	Input	F-A
P61		KR1	I/O can be specified bit by bit. Pull-up resistors can be provided by software in			
P62		KR2	units of 4 bits.			
P63		KR3				
P70	I/O	KR4	4-bit I/O port (PORT7).		Input	€-A
P71		KR5	Pull-up resistors can be provided by software in units of 4 bits.			
P72		KR6	software in units of 4 bits.			
P73		KR7				
P80-P83	I/O	-	4-bit I/O port (PORT8). Pull-up resistors can be provided by software in units of 4 bits.	×	Input	E-B
P90-P93	I/O	_	4-bit I/O port (PORT9). Pull-down resistors can be provided by software in units of 4 bits.		Input	E-D
P100 ^{Note 2}	I/O	MAR	N-ch open-drain 4-bit I/O port (PORT10).	×	High level	М
P101 ^{Note 2}		MAI	A pull-up resistor can be provided bit by bit		(when pull-up	
P102 ^{Note 2}		MAZ	(mask option). This open-drain port has a withstand		resistors are provided) or	
P103Note 2		MAT	voltage of 10 V.		high imped- ance	
P110	Input	AN0	4-bit input port (PORT11)		Input	Y-A
P111]	AN1]			
P112]	AN2				
P113		AN3				

Notes 1. The circle (\bigcirc) indicates the Schmitt trigger input.

2. Can directly drive the LED.

μ**PD75036**

3.2 NON-PORT PINS (1/2)

Pin	Input/ output	Shared pin		Function		When reset	I/O circuit type ^{Note 1}
TIO	Input	P13	Input for receiv timer/event co	ving external event pulse signation	al for	-	B -C
PTO0	I/O	P20	Timer/event co	ounter output		Input	E-B
PCL	I/O	P22	Clock output			Input	E-B
BUZ	I/O	P23		trary frequency output (for buz em clock trimming)	zzer	Input	E-B
SCK	I/O	P01	Serial clock I/C)		Input	F -A
SO/SB0	I/O	P02	Serial data out Serial bus I/O	put		Input	(F) -В
SI/SB1	I/O	P03	Serial data inp Serial bus I/O	ut		Input	(M) - C
INT4	Input	P00	0	n vectored interrupt input (eith	er	-	В
INT0	Input	P10	Edge detectior	n vectored interrupt input	Note 2	-	B-C
INT1	_	P11	(detection edg	e selectable)	Note 3		
INT2	Input	P12	Edge detection detection	n testable input (rising edge	Note 3	-	B-C
KR0 - KR3	I/O	P60 - P63	Parallel falling	edge detection testable input		Input	€-A
KR4-KR7	I/O	P70 - P73	Parallel falling	edge detection testable input		Input	€-A
MAR	I/O	P100	In MFT	Reverse integration signal o	utput	Note 4	М
MAI	I/O	P101	integral A/D	Integration signal output		Note 4	М
MAZ	I/O	P102	converter mode	Autozero signal output		Note 4	М
MAT	I/O	P103		Comparator input		Note 4	М
PPO	I/O	P21	In MFT timer mode	Timer pulse output		Input	E-B
AN0 - AN3	Input	P110 - P113	For A/D	8-bit analog input		Input	Y-A
AN4 - AN7	1	_	converter			Y	
AV _{REF+}	Input	-	only	Reference voltage input (on AV _{DD} side)		-	Z-A
AV _{REF-}	Input	-		Reference voltage input (on AVss side)		-	Z-A
AVdd	-	-		Operating power supply		-	-
AVss	-	-		Reference GND potential		-	-

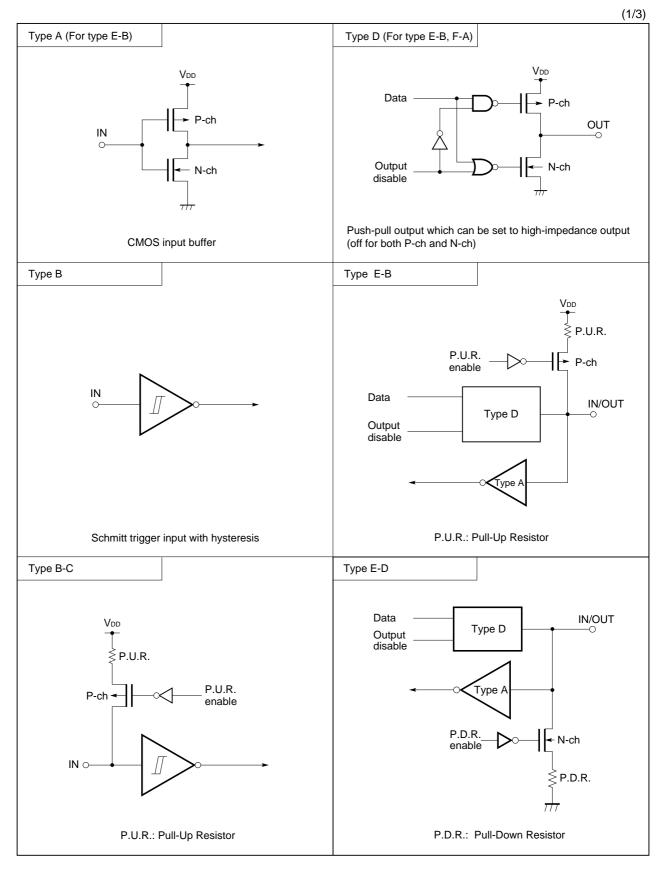
Notes 1. The circle (\bigcirc) indicates the Schmitt trigger input.

- 2. Clock synchronous
- 3. Asynchronous
- 4. High level (when pull-up resistors are provided) or high impedance

Remark MFT: Multifunction Timer

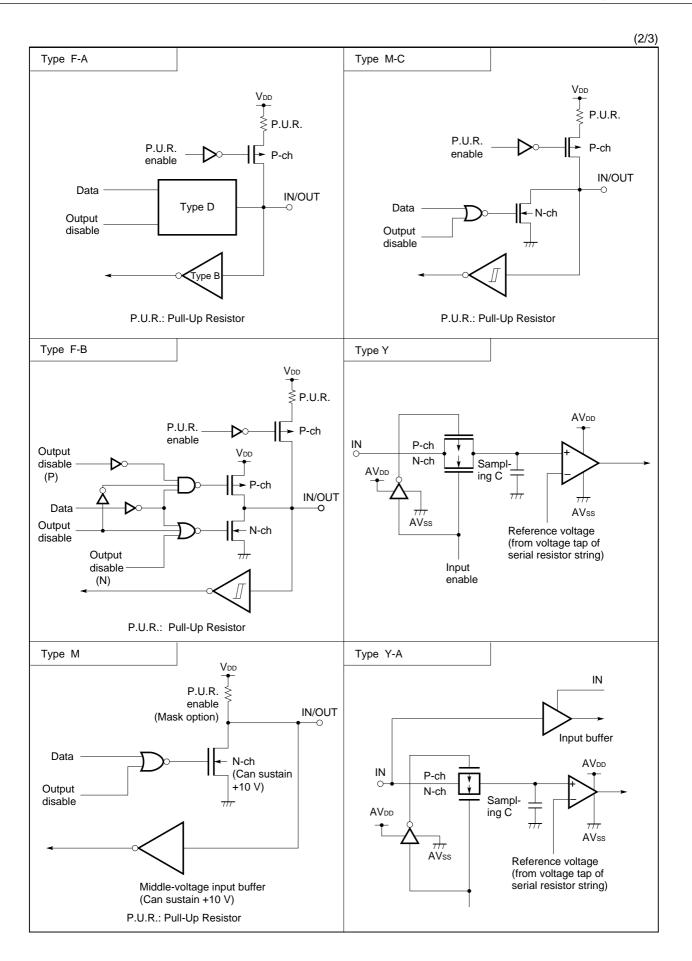
3.2 NON-PORT PINS (2/2)

Pin	Input/ output	Shared pin	Function	When reset	I/O circuit type ^{Note}
X1, X2	Input	_	Crystal/ceramic connection for main system clock generation. When external clock signal is used, it is applied to X1, and its reverse phase signal is applied to X2.	_	_
XT1, XT2	Input	_	Crystal connection for subsystem clock genera- tion. When external clock signal is used, it is applied to XT1, and its reverse phase signal is applied to XT2, XT1 can be used as a 1-bit input (test).	_	
RESET	Input	-	System reset input	-	B
IC	-	-	Internally connected. (To be directly connected to $V_{\text{DD}})$	_	-
Vdd	_	_	Positive power supply	_	_
Vss	_	_	GND potential	-	-

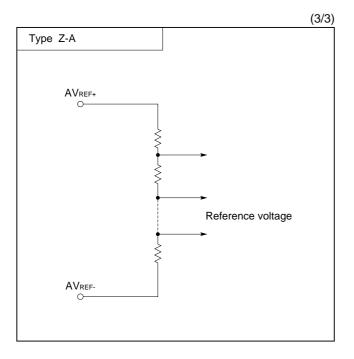

Note The circle (\bigcirc) indicates the Schmitt trigger input.

NEC

3.3 PIN INPUT/OUTPUT CIRCUITS


The input/output circuit of each μ PD75036 pin is shown below in a simplified manner.

NEC



μ**PD75036**

NEC

3.4 MASK OPTION SELECTION

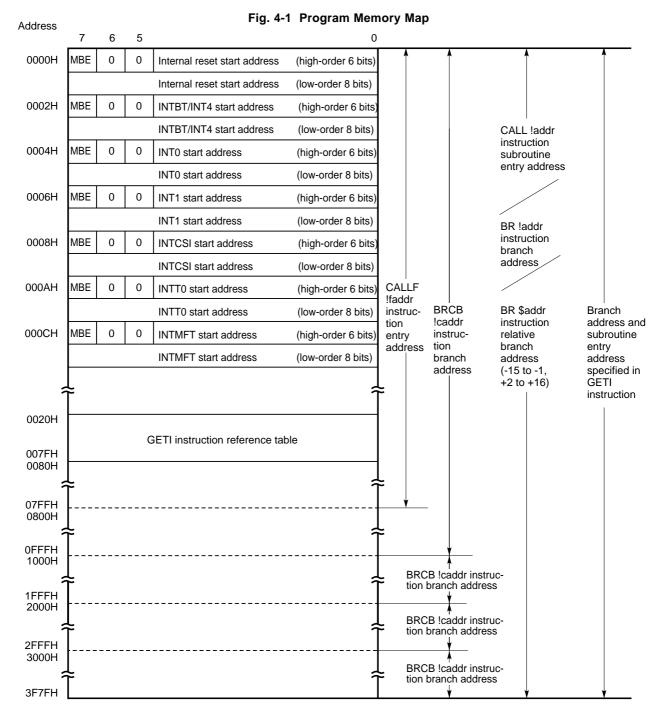
The following mask options are available for selection for each pin.

Pin name	Mask option				
P40 - P43, P50 - P53, P100-P103	① Pull-up resistor provided (specifiable bit by bit) ② Pull-up resistor not provided (specifiable bit by bit)				
XT1, XT2	 Feedback resistor provided (if a subsystem clock is used) Feedback resistor not provided (if a subsystem clock is not used) 				

★ 3.5 CONNECTION OF UNUSED PINS

Pin	Recommended connection
P00/INT4	To be connected to Vss
P01/SCK	To be connected to Vss or VDD
P02/SO/SB0	
P03/SI/SB1	
P10/INT0-P12/INT2	To be connected to Vss
P13/TI0	
P20/PTO0	Input state : To be connected to Vss or
P21/PPO	
P22/PCL	Output state:To be open
P23/BUZ	
P30-P33	
P40-P43	
P50-P53	
P60/KR0-P63/KR3	
P70/KR4-P73/KR7	
P80-P83	
P90-P93	
P100/MAR	
P101/MAI	
P102/MAZ	
P103/MAT	
P110/AN0-P113/AN3	To be connected to Vss or VDD
AN4-AN7	
AVREF+	To be connected to Vss
AVREF-	
AVss	
AVDD	To be connected to VDD
XT1	To be connected to Vss or VDD
XT2	To be open
IC	To be directly connected to VDD

NEC


Peripheral hardware $(128 \times 4 \text{ bits})$

4. ARCHITECTURE AND MEMORY MAP OF THE μ PD75036

The μ PD75036 has two architectural features:

- Bank configuration of data memory: Static RAM (1024 words \times 4 bits)
 - Memory mapped I/O

Fig. 4-1 and 4-2 show the memory maps for the μ PD75036.

Remark In addition to the above, the BR PCDE and BR PCXA instructions can cause a branch to an address with only the low-order 8 bits of the PC changed.

 μ PD75036

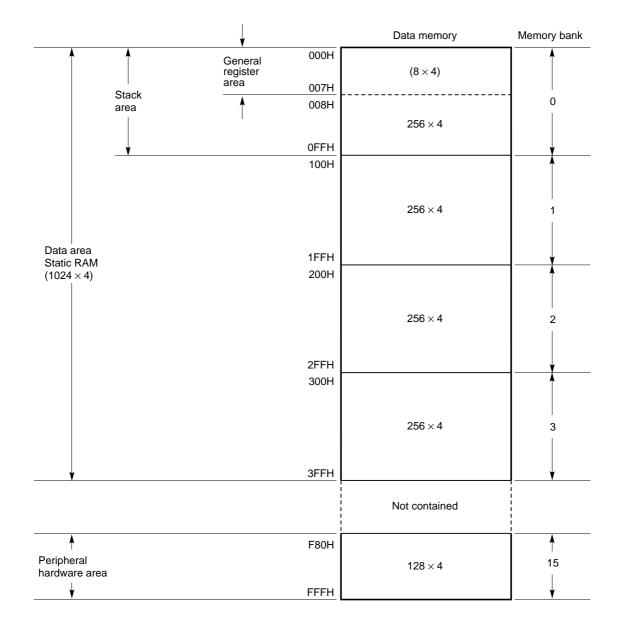


Fig. 4-2 Data Memory Map

NEC

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

The μ PD75036 has the following three types of I/O port:

- 12 CMOS input ports (Ports 0, 1, and 11)
- 24 CMOS I/O ports (Ports 2, 3, 6, 7, 8, and 9)
- 12 N-ch open-drain I/O ports (Ports 4, 5, and 10)

Total: 48 ports

Port (symbol)	Function	Operation and feature	Remarks
PORT0 PORT1	4-bit input	Allows input and test at any time regardless of the operation modes of dual function pins.	Also used as SO/SB0, SI/ SB1, SCK, INT0-INT2, INT4, and TI0 pins.
PORT3 ^{Note} PORT6	4-bit I/O	Allows input or output mode setting in units of one bit.	Port 6 is also used as KR0- KR3 pins.
PORT2 PORT7		Allows input or output mode setting in units of four bits. Ports 6 and 7 make a pair, allowing data I/O in units of	Port 2 is also used as PTO0, PPO, PCL, and BUZ pins.
		eight bits.	Also used as KR4-KR7 pins.
PORT4 ^{Note} PORT5 ^{Note} PORT10 ^{Note}	4-bit I/O (N-ch open-drain, withstand	Allows input or output mode setting in units of four bits. Ports 4 and 5 make a pair, allowing data I/O in units of eight bits.	Use of an internal pull-up registor can be mask- programmed in units of one bit.
	voltage: 10 V)		Port 10 is also used as MAR, MAI, MAZ, and MAT pins.
PORT8 PORT9	4-bit I/O	Allows input or output mode setting in units of four bits.	
PORT11	4-bit input	Port for 4-bit input	Port 11 is also used as AN0- AN3 pins.

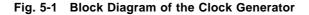
Table 5-1 Functions of Ports

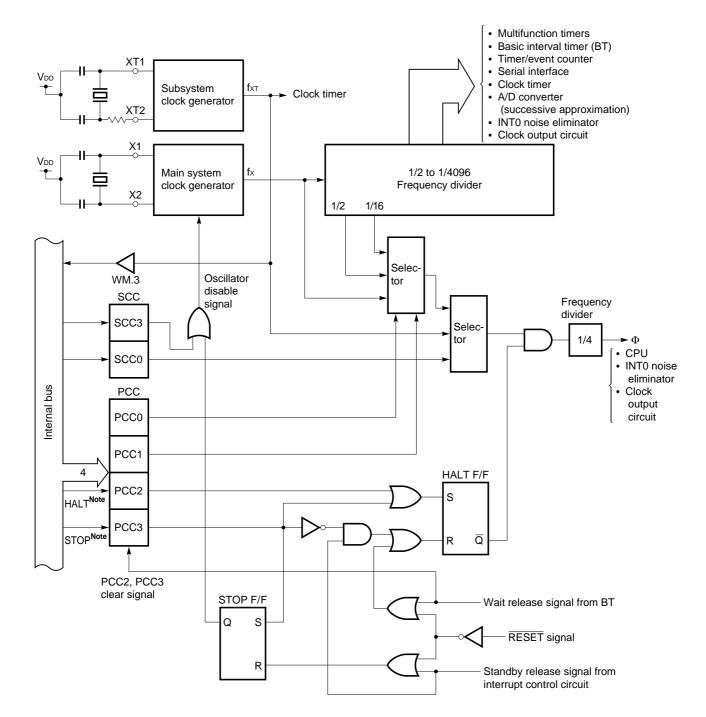
Phase-out/Discontinued

Note Ports 3, 4, 5 and 10 can directly drive an LED.

5.2 CLOCK GENERATOR

Operation of the clock generator is specified by the processor clock control register (PCC) and system clock control register (SCC).


The main system clock or subsystem clock can be selected. The instruction execution time is variable.

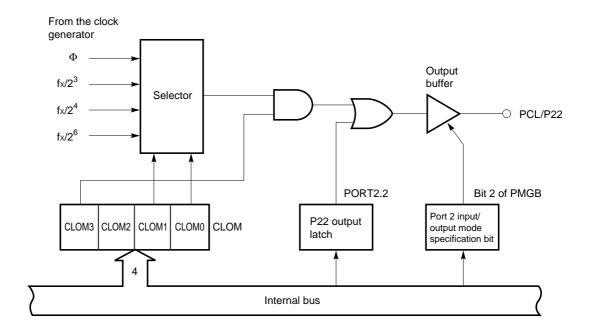

- 0.95 μs, 1.91 μs, 15.3 μs (main system clock: 4.19 MHz)
- 122 μs (subsystem clock: 32.768 kHz)

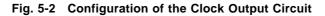
NEC

μ**PD75036**

Note Instruction execution

Remarks 1. fx : Main system clock frequency


- 2. fxt : Subsystem clock frequency
- 3. $\Phi = CPU clock$
- 4. PCC: Processor clock control register
- 5. SCC: System clock control register
- 6. One clock cycle (tcr) of the CPU clock (Φ) is equal to one machine cycle of an instruction. See **Chapter 10** for details of tcr.

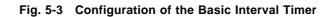

NEC

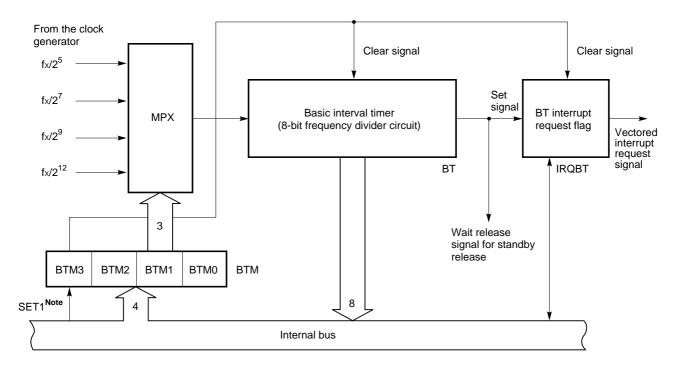
5.3 CLOCK OUTPUT CIRCUIT

The clock output circuit outputs a clock pulse signal on the P22/PCL pin for remote control or for supplying clock pulses to a peripheral LSI device.

Remark The clock output circuit is designed so that pulses with short widths do not appear in enabling or disabling clock output.

NEC




μ**PD75036**

5.4 BASIC INTERVAL TIMER

The basic interval timer provides the following functions:

- Interval timer operation that generates a reference time interrupt
- · Application of watchdog timer for detecting program crashes
- · Selection of a wait time for releasing the standby mode, and counting
- Reading the count value

Note Instruction execution

NEC

5.5 CLOCK TIMER

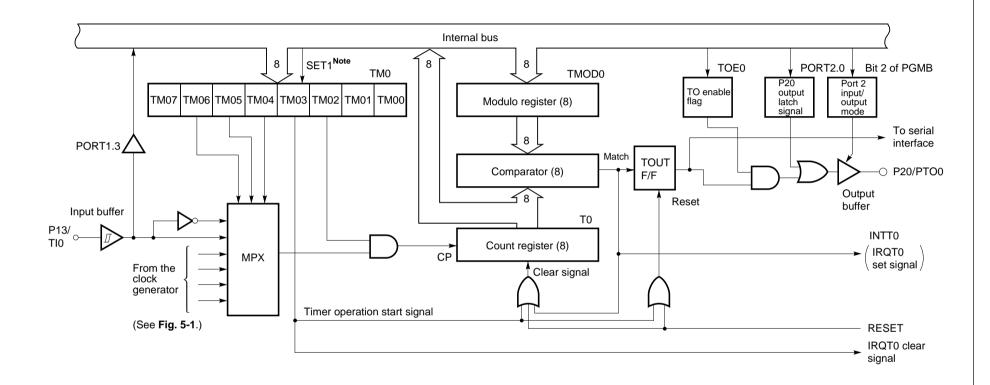
The μ PD75036 contains one channel for a clock timer. The clock timer provides the following functions:

- The clock timer sets the test flag (IRQW) every 0.5 seconds.
- The standby mode can be released with IRQW.
- Either the main system clock or subsystem clock can produce 0.5-second intervals.
- The fast-forward mode produces an interval 128 times faster (3.91 ms), which is useful for program debugging and testing.
- An arbitrary frequency (2.048, 4.096, or 32.768 kHz) can be output to the P23/BUZ pin, so that it can be used for sounding the buzzer and system clock frequency trimming.
- The frequency divider can be cleared, so the clock can start from zero seconds.

Fig. 5-4 Block Diagram of the Clock Timer

The values in parentheses indicates are for fx = 4.194304 MHz and fxT = 32.768 kHz

NEC


5.6 TIMER/EVENT COUNTER

The μ PD75036 contains one channel of timer/event counter. The timer/event counter provides the following functions:

- Programmable interval timer operation
- Output of a square wave at a given frequency to the PTO0 pin
- Event counter operation
- Frequency divider operation that divides TI0 pin input by N and outputs the result to the PTO0 pin
- · Supply of serial shift clock signal to a serial interface circuit
- Function of reading the state of counting

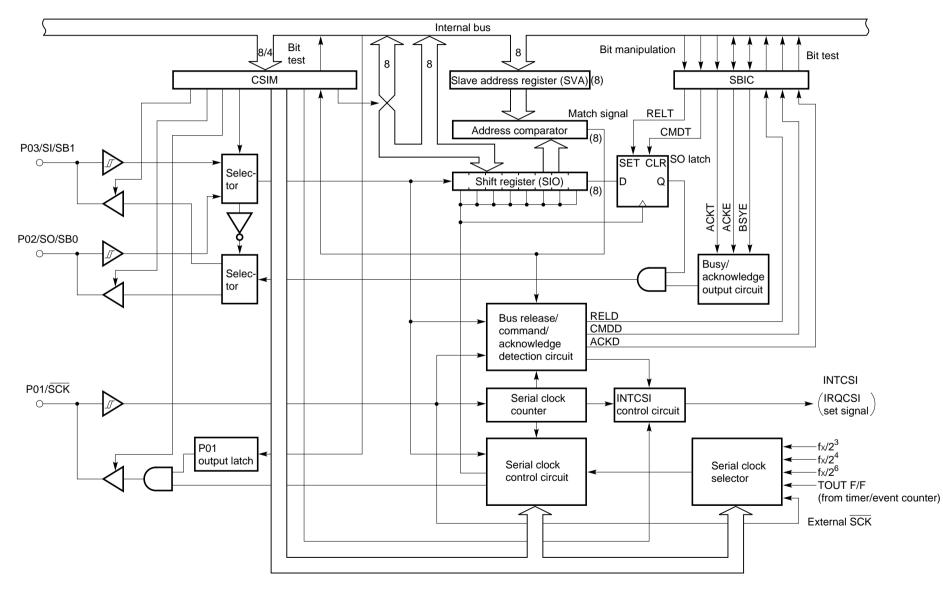
Fig. 5-5 Block Diagram of the Timer/Event Counter

Note Instruction execution

μ**PD75036**

5.7 SERIAL INTERFACE

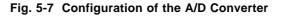
The μ PD75036 has three modes.

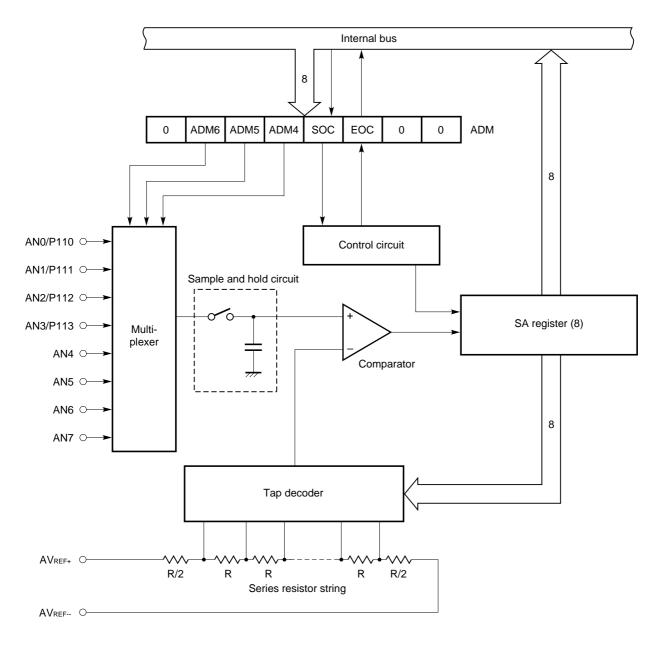

- Three-wire serial I/O mode (The first bit is switchable between MSB and LSB.)
- Two-wire serial I/O mode (The first bit is MSB.)
- SBI mode (The first bit is MSB.)

The three-wire serial I/O mode enables connections to be made with the 75X series, 78K series, and many other types of I/O devices.

The two-wire serial I/O mode and SBI mode enable communication with two or more devices.

Fig. 5-6 Block Diagram of the Serial Interface


NEC

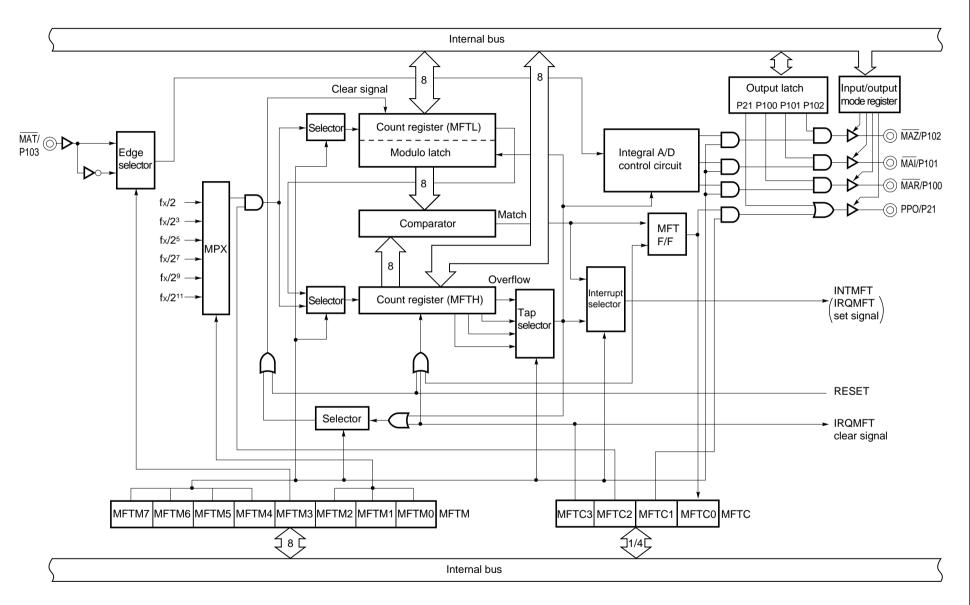


5.8 A/D CONVERTER

The μ PD75036 contains an 8-bit resolution analog/digital (A/D) converter that has eight analog input channels (AN0 - AN7).

The A/D converter employs the successive-approximation method.

NEC


5.9 MULTIFUNCTION TIMER (MFT)

The μ PD75036 contains one multifunction timer (MFT). The MFT has four operation modes. Each mode provides the following functions:

- 8-bit timer mode
 - Operates as a programmable interval timer.
 - Outputs a square wave of an arbitrary frequency on the PPO pin.
- PWM output mode
 - Outputs a 6-bit, 7-bit, or 8-bit precision PWM signal on the PPO pin.
- 16-bit free-running timer mode
 - Operates as an interval timer that generates an interrupt at specified time intervals.
 - Usable as a one-shot timer.
- Integral A/D converter modes
 - Outputs a control signal for a 16-bit integral A/D converter.
 - Allows a resolution to be selected from 13 bits, 14 bits, 15 bits, and 16 bits.

Fig. 5-8 Block Diagram of the Multifunction Timer

NEC

6. INTERRUPT FUNCTION

The μ PD75036 has nine vectored interrupt sources and provides multiple interrupts by software control. It also has two types of edge detected testable input pins.

The interrupt control circuitry of the μ PD75036 has the following features:

- Vectored interrupts are controlled by the hardware. Whether to accept an interrupt is controlled by an interrupt flag (IExxx) and interrupt master enable flag (IME).
- An interrupt start address can be freely set.
- An interrupt request flag (IRQ ×××) can be tested. (Whether an interrupt has occurred can be checked by software.)
- A standby mode can be released. (What interrupt source to release can be selected using an interrupt enable flag.)

Fig. 6-1 Block Diagram of Interrupt Control Circuit

7. STANDBY FUNCTION

To reduce the power consumption of the system waiting for a program input, the μ PD75036 has two standby modes STOP and HALT modes.

		STOP mode	HALT mode		
Instruction for setting		STOP instruction	HALT instruction		
Syste	m clock at setting	This mode can be set only when the main system clock is used.	This mode can be set when either the main system clock or subsystem clock is used.		
	Clock generator	Only the main system clock is stopped.	Only CPU clock Φ is stopped (with oscillation continued).		
	Basic interval timer	Operation is stopped.	Operation is possible only when the main system clock is oscillated. (Sets IRQBT at reference time intervals)		
tatus	Serial interface	Operation is possible only when external SCK input is selected for the serial clock.	Operation is possible only when external SCK input is selected for the serial clock or the main system clock is oscillated.		
Operation status	Timer/event counter	Operation is possible only when TI0 pin input is selected for the count clock.	Operation is possible only when TI0 pin input is selected for the count count clock or the main system clock is oscillated.		
0	Clock timer	Operation is possible when f_{XT} is selected for the count clock.	Operation is possible.		
	A/D converter	Operation is stopped.	Operation is possible. ^{Note}		
	Multifunction timer	Operation is stopped.	Operation is possible. ^{Note}		
External interrupt		INT1, INT2, and INT4 are enabled. INT0 is disabled.			
	CPU	Operation is stopped.			
Relea	ise signal	Interrupt request signals sent out from hardware, which are enabled by interrupt enable flags, or RESET input	Interrupt request signals sent out from hardware, which are enabled by interrupt enable flags, or RESET input		

Table 7-1 Standby Modes and Operation Status

Note Operation is possible only when the main system clock operates.

8. RESET FUNCTION

The μ PD75036 is reset by RESET signal input.

9. INSTRUCTION SET

(1) Operand identifier and its descriptive method

The operands are described in the operand column of each instruction according to the descriptive method for the operand format of the appropriate instructions (refer to *RA75X Assembler Package User's Manual, Language* (EEU-1363) for details). For descriptions in which alternatives exist, one element should be selected. Capital letters and plus and minus signs are keywords; therefore, they should be described as they are.

For immediate data, the appropriate numerical values or labels should be described.

Identifier	Description
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rpa	HL, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem ^{Note}	8-bit immediate data or label
bit	2-bit immediate data or label
fmem	FB0H - FBFH, FF0H - FFFH immediate data or label
pmem	FC0H - FFFH immediate data or label
addr	0000H - 3F7FH immediate data or label
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H - 7FH immediate data (however, bit 0 = 0) or label
PORTn	PORT0 - PORT11
IE×××	IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW, IEMFT
MBn	MB0, MB1, MB2, MB3, MB15

Note Only even address can be specified for mem when processing 8-bit data.

(2) Symbol definitions in operation description

- A : A register; 4-bit accumulator
- B : B register
- C : C register
- D : D register
- E : E register
- H : H register
- L : L register

NEC

Х	:	X register
XA	:	Pair register (XA); 8-bit accumulator
BC	:	Pair register (BC)
DE	:	Pair register (DE)
HL	:	Pair register (HL)
PC	:	Program counter
SP	:	Stack pointer
CY	:	Carry flag; Bit accumulator
PSW	:	Program status word
MBE	:	Memory bank enable flag
PORTn	:	Port n (n = 0 to 11)
IME	:	Interrupt master enable flag
IE×××	:	Interrupt enable flag
MBS	:	Memory bank selection register
PCC	:	Processor clock control register
	:	Address bit delimiter
(××)	:	Contents addressed by $\times\!\!\times$
×хН		Hexadecimal data

××H : Hexadecimal data

(3) Explanation of the symbols in the addressing area field

-				
*1	MB = MBE•MBS (MBS = 0, 1, 2, 3, or 15)	L A		
*2	MB = 0			
*3	MBE = 0: MB = 0 (00H-7FH) MB = 15 (80H-FFH) MBE = 1: MB = MBS (MBS = 0, 1, 2, 3, or 15)	Data memory addressing		
*4	MB = 15, fmem = FB0H-FBFH or FF0H-FFFH			
*5	MB = 15, pmem = FC0H-FFFH			
*6	addr = 0000H-3F7FH	A		
*7	addr = (Current PC) - 15 to (Current PC) - 1 or (Current PC) + 2 to (Current PC) + 16			
*8	caddr = 0000H-0FFFH (PC _{13,12} = 00B) or 1000H-1FFFH (PC _{13,12} = 01B) or 2000H-2FFFH (PC _{13,12} = 10B) or 3000H-3F7FH (PC _{13,12} = 11B)	Program memory addressing		
*9	faddr = 0000H-07FFH			
*10	taddr = 0020H-007FH	v		

Phase-out/Discontinued

Remarks 1. MB indicates an accessible memory bank.

- 2. For *2, MB is always 0 irrespective of MBE and MBS.
- 3. For *4 and *5, MB is always 15 irrespective of MBE and MBS.
- 4. *6 to *10 indicate each addressable area.

(4) Description of machine cycle column

S indicates the number of machine cycles necessary for skipping any skip instruction. The value of S changes as follows:

•	When no skip is performed	S = 0
•	When a 1-byte or 2-byte instruction is skipped	S = 1
٠	When a 3-byte instruction (BR !addr, CALL !addr instruction) is skipped	S = 2

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equivalent to one CPU clock Φ cycle (tcr). Therefore, the length of the machine cycle can be selected from three different lengths by the PCC setting.

μ PD75036

Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip condition
Transfer	MOV	A, #n4	1	1	$A \leftarrow n4$		String A
		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	$XA \leftarrow n8$		String A
		HL, #n8	2	2	HL ← n8		String B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @rpa1	1	1	A ← (rpa1)	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
		@HL, A	1	1	$(HL) \gets A$	*1	
		@HL, XA	2	2	$(HL) \gets XA$	*1	
		A, mem	2	2	$A \leftarrow (mem)$	*3	
		XA, mem	2	2	$XA \gets (mem)$	*3	
		mem, A	2	2	$(mem) \gets A$	*3	
		mem, XA	2	2	$(mem) \gets XA$	*3	
		A, reg1	2	2	A ← reg1		
		XA, rp	2	2	$XA \gets rp$		
		reg1, A	2	2	reg1 ← A		
		rp1, XA	2	2	rp1 ← XA		
	ХСН	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	$A\leftrightarrowreg1$		
		XA, rp	2	2	$XA \leftrightarrow rp$		
Table	MOVT	XA, @PCDE	1	3	XA ← (PC13-8 + DE)ROM		
reference		XA, @PCXA	1	3	ХА ← (PC13-8 + ХА)ком		
Arithme-	ADDS	A, #n4	1	1 + S	A ← A + n4		carry
tic		A, @HL	1	1 + S	$A \leftarrow A + (HL)$	*1	carry
	ADDC	A, @HL	1	1	$A,CY\leftarrowA+(HL)+CY$	*1	
	SUBS	A, @HL	1	1 + S	$A \leftarrow A - (HL)$	*1	borrow
	SUBC	A, @HL	1	1	$A,CY\leftarrowA-(HL)-CY$	*1	
	AND	A, #n4	2	2	$A \leftarrow A \land n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$		
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
	XOR	A, #n4	2	2	A ← A ∀ n4		
		A, @HL	1	1	$A \leftarrow A \forall (HL)$	*1	

NEC

Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip condition
Accumulator	RORC	А	1	1	$CY \leftarrow A_0, \ A_3 \leftarrow CY, \ A_{n-1} \leftarrow A_n$		
manipulation	NOT	А	2	2	$A \leftarrow \overline{A}$		
Increment/	INCS	reg	1	1 + S	$reg \leftarrow reg + 1$		reg = 0
decrement		@HL	2	2 + S	$(HL) \leftarrow (HL) + 1$	*1	(HL) = 0
		mem	2	2 + S	$(mem) \gets (mem) + 1$	*3	(mem) = 0
	DECS	reg	1	1 + S	$reg \leftarrow reg - 1$		reg = FH
Compari-	SKE	reg, #n4	2	2 + S	Skip if reg = n4		reg = n4
son		@HL, #n4	2	2 + S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1 + S	Skip if A = (HL)	*1	A = (HL)
		A, reg	2	2 + S	Skip if A = reg		A = reg
Carry	SET1	CY	1	1	CY ← 1		
flag manipu-	CLR1	CY	1	1	$CY \leftarrow 0$		
lation	SKT	СҮ	1	1 + S	Skip if CY = 1		CY = 1
	NOT1	СҮ	1	1	$CY \leftarrow \overline{CY}$		
Memory	SET1	mem.bit	2	2	(mem.bit) \leftarrow 1	*3	
bit manipula-		fmem.bit	2	2	(fmem.bit) \leftarrow 1	*4	
tion		pmem.@L	2	2	$(pmem_{7-2} + L_{3-2}.bit(L_{1-0})) \leftarrow 1$	*5	
		@H+mem.bit	2	2	(H + mem₃-₀.bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) \leftarrow 0	*3	
		fmem.bit	2	2	(fmem.bit) \leftarrow 0	*4	
		pmem.@L	2	2	$(pmem_{7-2} + L_{3-2}.bit(L_{1-0})) \leftarrow 0$	*5	
		@H+mem.bit	2	2	(H + mem₃-₀.bit) ← 0	*1	
	SKT	mem.bit	2	2 + S	Skip if (mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem. @L	2	2 + S	Skip if (pmem ₇₋₂ + L ₃₋₂ .bit(L ₁₋₀)) = 1	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 1	*1	(@H + mem.bit) = 1
	SKF	mem.bit	2	2 + S	Skip if (mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2 + S	Skip if (fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2 + S	Skip if (pmem ₇₋₂ + L ₃₋₂ .bit(L ₁₋₀)) = 0	*5	(pmem.@L) = 0
		@H+mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 0	*1	(@H + mem.bit) = 0
	SKTCLR	fmem.bit	2	2 + S	Skip if (fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if (pmem ₇₋₂ + L ₃₋₂ .bit(L ₁₋₀)) = 1 and clear	*5	(pmem.@L) = 1
		@H+mem.bit	2	2 + S	Skip if (H + mem ₃₋₀ .bit) = 1 and clear	*1	(@H + mem.bit) = 1
	AND1	CY, fmem.bit	2	2	$CY \gets CY \land (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \land (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY, @H+mem.bit	2	2	$CY \gets CY \land (H + mem_{3\text{-}0}.bit)$	*1	
	OR1	CY, fmem.bit	2	2	$CY \gets CY \lor (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \gets CY \lor (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
		CY, @H+mem.bit	2	2	$CY \gets CY \lor (H + mem_{3\text{-}0}.bit)$	*1	

μ PD75036

Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip condition
Memory	XOR1	CY, fmem.bit	2	2	$CY \gets CY \not \forall \text{ (fmem.bit)}$	*4	
bit manipula-		CY, pmem.@L	2	2	$CY \leftarrow CY \nleftrightarrow (pmem_{7\text{-}2} + L_{3\text{-}2}.bit(L_{1\text{-}0}))$	*5	
tion		CY, @H+mem.bit	2	2	CY ← CY ∀ (H + mem ₃₋₀ .bit)	*1	
Branch	BR	addr	_	_	PC ₁₃₋₀ ← addr (Appropriate instructions are selected from BR !addr, BRCB !caddr, and BR \$addr by the assembler.)	*6	
		!addr	3	3	PC₁₃₋₀ ← addr	*6	
		\$addr	1	2	PC₁₃-₀ ← addr	*7	
	BRCB	!caddr	2	2	PC13-0 ← PC13, 12 + caddr11-0	*8	
Subrou- tine stack control	CALL	!addr	3	3	$\begin{array}{l} (SP-4)(SP-1)(SP-2) \leftarrow PC_{11\text{-}0} \\ (SP-3) \leftarrow MBE, \ 0, \ PC_{13}, \ PC_{12} \\ PC_{13\text{-}0} \leftarrow addr, \ SP \leftarrow SP-4 \end{array}$	*6	
control	CALLF	!faddr	2	2	$\begin{array}{l} (SP-4)(SP-1)(SP-2) \leftarrow PC_{11\text{-}0} \\ (SP\text{-}3) \leftarrow MBE, \ 0, \ PC_{13}, \ PC_{12} \\ PC_{13\text{-}0} \leftarrow 000, \ faddr, \ SP \leftarrow SP-4 \end{array}$	*9	
	RET		1	3	$\begin{array}{l} \text{MBE, 0, PC}_{13}, \text{PC}_{12} \leftarrow (\text{SP + 1}) \\ \text{PC}_{11\text{-}0} \leftarrow (\text{SP})(\text{SP + 3})(\text{SP + 2}) \\ \text{SP} \leftarrow \text{SP + 4} \end{array}$		
	RETS		1	3 + S	$\begin{array}{l} \text{MBE, 0, PC}_{13}, \text{PC}_{12} \leftarrow (\text{SP + 1}) \\ \text{PC}_{11\text{-}0} \leftarrow (\text{SP})(\text{SP + 3})(\text{SP + 2}) \\ \text{SP} \leftarrow \text{SP + 4}, \text{ then skip unconditionally} \end{array}$		Uncondi- tional
	RETI		1	3	$\begin{array}{l} \text{MBE, 0, PC}_{13}, \text{PC}_{12} \leftarrow (\text{SP + 1}) \\ \text{PC}_{11\text{-}0} \leftarrow (\text{SP})(\text{SP + 3})(\text{SP + 2}) \\ \text{PSW} \leftarrow (\text{SP + 4})(\text{SP + 5}), \text{SP} \leftarrow \text{SP + 6} \end{array}$		
	PUSH	rp	1	1	$(SP - 1)(SP - 2) \leftarrow rp, SP \leftarrow SP - 2$		
		BS	2	2	$(SP - 1) \leftarrow MBS, (SP - 2) \leftarrow 0, SP \leftarrow SP - 2$		
	POP	rp	1	1	$rp \leftarrow (SP + 1)(SP), SP \leftarrow SP + 2$		
		BS	2	2	$MBS \leftarrow (SP + 1), SP \leftarrow SP + 2$		
Interrupt	EI		2	2	IME ← 1		
control		IExxx	2	2	$IE \times \times \times \leftarrow 1$		
	DI		2	2	$IME \leftarrow 0$		
		IExxx	2	2	$IExxx \leftarrow 0$		
Input/	IN ^{Note}	A, PORTn	2	2	$A \leftarrow PORTn$ (n = 0 - 11)		
output		XA, PORTn	2	2	$XA \leftarrow PORTn+1, PORTn (n = 4, 6)$		
	OUTNote	PORTn, A	2	2	$PORTn \leftarrow A$ (n = 2 - 10)		
		PORTn, XA	2	2	PORTn+1,PORTn \leftarrow XA (n = 4, 6)		
CPU	HALT		2	2	Set HALT Mode (PCC.2 ← 1)		
control	STOP		2	2	Set STOP Mode (PCC.3 \leftarrow 1)		
	NOP		1	1	No Operation		

Group	Mne- monic	Operand	Bytes	Machin- ing cycle	Operation	Address- ing area	Skip condition
Special	SEL	MBn	2	2	MBS ← n (n = 0, 1, 2, 3, or 15)		
	GETI	taddr	1	3	 For the TBR instruction PC₁₃₋₀ ← (taddr)₅₋₀ + (taddr + 1) 	*10	
					 For the TCALL instruction (SP - 4)(SP - 1)(SP - 2) ← PC₁₁₋₀ (SP - 3) ← MBE, 0, PC₁₃, PC₁₂ PC₁₃₋₀ ← (taddr)₅₋₀ + (taddr + 1) SP ← SP - 4 		
					 For other than the TBR and TCALL instruction (taddr) (taddr + 1) is executed. 		Depends on the reference instruction

Caution When executing the IN/OUT instruction, MBE must be set to 0 or MBE and MBS must be set to 1 and 15, respectively.

μ**PD75036**

★

10. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)

Parameter	Symbol		Conditions		Rated value	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
Input voltage	VI1	Ports othe	er than ports 4, 5, and 10	I	-0.3 to V _{DD} + 0.3	V
	V ₁₂		Built-in pull-up resistor		-0.3 to V _{DD} + 0.3	V
		and 10	Open drain		-0.3 to +11	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
High-level output	Іон	1 pin			-10	mA
current		All pins			-30	mA
Low-level output	IoL ^{Note}	1 pin of pa	arts 0, 3, 4, and 5	Peak value	30	mA
current				rms	15	mA
		1 pin of p	orts other than ports 0,	Peak value	20	mA
		3, 4 and 5	5	rms	5	mA
		Total of a	Il pins of ports 3 to 9	Peak value	170	mA
		and 11		rms	120	mA
		Total of a	ll pins of ports 0, 2,	Peak value	30	mA
		and 10		rms	20	mA
Operating tem- perature	Topt				-40 to +85	°C
Storage tempera- ture	T _{stg}				-65 to +150	°C

Note Calculate rms with [rms] = [peak value] $\times \sqrt{duty}$.

CHARACTERISTICS OF THE MAIN SYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

Resonator	Recommended constant	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ceramic resonator		Oscillator frequency (fx) Note 1		1.0		5.0	MHz
		Oscillation settling time Note 2				4	ms
Crystal resonator		Oscillator frequency (fx) Note 1		1.0	4.19	5.0Note 3	MHz
		Oscillation	V _{DD} = 4.5 to 6.0 V			10	ms
		settling time Note 2				30	ms
External clock	X1 X2	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
		X1 input high/low level width (tхн, tхь)		100		500	ns

Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time.

- 2. The oscillation settling time means the time required for the oscillation to settle after VDD is applied or after the STOP mode is released.
- **3.** When 4.19 MHz < fx \leq 5.0 MHz, do not select PCC = 0011 as the instruction execution time. When PCC = 0011, one machine cycle falls short of 0.95 μ s, the minimum value for the standard.
- Caution When the main system clock oscillator is used, conform to the following guidelines when wiring at the portions of surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.
 - The wiring must be as short as possible.
 - Other signal lines must not run in these areas.
 - Any line carrying a high fluctuating current must be kept away as far as possible.
 - The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It must not be grounded to ground patterns carrying a large current.
 - No signal must be taken from the oscillator.

CHARACTERISTICS OF THE SUBSYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

Resonator	Recommended constant	Parameter	Conditions	Min.	Тур.	Max.	Unit
Crystal resonator	XT1 XT2 V _{DD}	Oscillator frequency (fxT) Note 1		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.5 to 6.0 V		1.0	2	s
	V _{DD} -	settling time Note 2				10	S
External clock	XT1 XT2	XT1 input frequency (f _{XT}) Note 1		32		100	kHz
		XT1 input high/low level width (txтн, txт∟)		5		15	μs

Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time.

- 2. The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min. of the oscillation voltage range.
- Caution When the subsystem clock oscillator is used, conform to the following guidelines when wiring at the portions of surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity.
 - The wiring must be as short as possible.
 - Other signal lines must not run in these areas.
 - Any line carrying a high fluctuating current must be kept away as far as possible.
 - The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It must not be grounded to ground patterns carrying a large current.
 - No signal must be taken from the oscillator.

When the subsystem clock is used, pay special attention to its wiring; the subsystem clock oscillator has low amplification to minimize current consumption and is more likely to malfunction due to noise than the main system clock oscillator.

CAPACITANCE (Ta = 25 °C, VDD = 0 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input capacitance	Cı	f = 1 MHz			15	pF
Output capacitance	Co	0 V for pins other than pins to be			15	pF
I/O capacitance	Сю	measured			15	pF

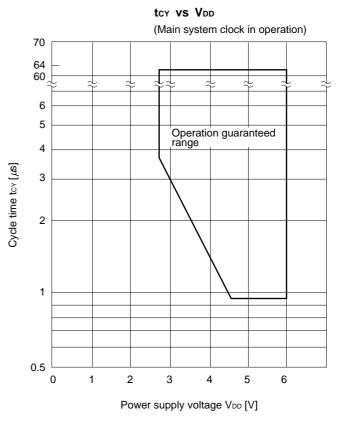
DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol		Condi	tions	Min.	Тур.	Max.	Unit
High-level input	VIH1	Ports 2, 3,	8, 9, and 11		0.7Vdd		Vdd	V
voltage	VIH2	Ports 0, 1,	6, and 7 and	RESET	0.8Vdd		Vdd	V
	Vінз		Built-in pull	-up resistor	0.7Vdd		Vdd	V
		and 10	Open drain		0.7Vdd		10	V
	VIH4	X1, X2, XT	1, and XT2		Vdd - 0.5		Vdd	V
Low-level input	VIL1	Ports 2 to 5	5 and 8 to 11		0		0.3Vdd	V
voltage	VIL2	Ports 0, 1,	orts 0, 1, 6, and 7 and \overline{RESET}				0.2Vdd	V
	VIL3	X1, X2, XT	1, and XT2		0		0.4	V
High-level output	Vон	VDD = 4.5 to	о 6.0 V, Іон =	= –1 mA	Vdd - 1.0			V
voltage		Іон = -100	μA		Vdd - 0.5			V
Low-level output voltage	Vol	Ports 3, 4, and 5	VDD = 4.5 to	o 6.0 V, Io∟ = 15 mA		0.5	2.0	V
		VDD = 4.5 t	= 4.5 to 6.0 V, Io∟ = 1.6 mA				0.4	V
		Ιοι = 400 μ	ιA				0.5	V
		SB0 and SB1	Open drain Pull-up resistor: 1 kΩ or more				0.2V _{DD}	V
High-level input	Іцінт	VI = VDD	Other than	X1, X2, XT1, and XT2			3	μA
leakage current	ILIH2		X1, X2, XT	X1, X2, XT1, and XT2			20	μA
	Ілнз	Vi = 10 V	Ports 4, 5,	and 10 (open drain)			20	μA
Low-level input	ILIL1	$V_1 = 0 V$	Other than	X1, X2, XT1, and XT2			-3	μA
leakage current	ILIL2	1	X1, X2, XT	1, and XT2			-20	μA
High-level output	ILOH1	Vo = Vdd	Other than	ports 4, 5, and 10			3	μΑ
leakage current	ILOH2	Vo = 10 V	Ports 4, 5,	and 10 (open drain)			20	μΑ
Low-level output leakage current	ILOL	Vo = 0 V					-3	μΑ
Built-in pull-up	Ruı	Ports 0, 1,	2, 3, 6, 7,	V _{DD} = 5.0 V ±10 %	15	40	80	kΩ
resistor		and 8 (exc Vi = 0 V	I. P00)	VDD = 3.0 V ±10 %	30		300	kΩ
	Ru2	Ports 4, 5,		VDD = 5.0 V ±10 %	15	40	70	kΩ
		Vo = Vdd -	2.0 V	VDD = 3.0 V ±10 %	10		60	kΩ
Built-in pull-down	R⊳	Port 9		V _{DD} = 5.0 V ±10 %	10	40	70	kΩ
resistor		Vi = Vdd		VDD = 3.0 V ±10 %	10		60	kΩ

Parameter	Symbol		Conditions		Min.	Тур.	Max.	Unit
Power supply	IDD1	4.19 MHz ^{Note 2}	19 MHz ^{Note 2} V _{DD} = 5 V ±10 % ^{Note 3}			3.2	10	mA
current ^{Note 1}		crystal reso-	VDD = 3 V ±10	⊖ %Note 4		0.25	0.75	mA
	IDD2	nance C1 = C2	HALT mode	$V_{DD} = 5 \text{ V} \pm 10 \%$		500	1500	μA
	= 22 pF				150	450	μA	
	Ірдз	32.768 kHz ^{Note 5}		VDD = 3 V ±10 %		15	45	μA
	DD4	crystal resonance	HALT mode	$V_{DD} = 3 V \pm 10 \%$		5	15	μA
	IDD5	XT1 = 0 V		$V_{DD} = 5 \text{ V} \pm 10 \%$		0.5	20	μA
		STOP mode	Vdd =			0.1	10	μA
			3 V ±10 %	Ta = 25 °C		0.1	5	μA

Notes 1. This current excludes the current which flows through the built-in pull-up resistors.

- 2. This value applies also when the subsystem clock oscillates.
- **3.** Value when the processor clock control register (PCC) is set to 0011 and the μ PD75036 is operated in the high-speed mode
- 4. Value when the PCC is set to 0000 and the μ PD75036 is operated in the low-speed mode
- 5. This value applies when the system clock control register (SCC) is set to 1001 to stop the main system clock pulse and to start the subsystem clock pulse.


AC CHARACTERISTICS ($T_a = -40$ to +85 °C, $V_{DD} = 2.0$ to 6.0 V)

Parameter	Symbol	Condi	tions	Min.	Тур.	Max.	Unit
CPU clock cycle time (minimum instruction execution time = 1	tcy	Operated by main system clock	V _{DD} = 4.5 to 6.0 V	0.95		64	μs
		pulse		3.8		64	μs
machine cycle) ^{Note 1}		Operated by subsystem clock pulse		114	122	125	μs
TI0 input frequency	fтı	V _{DD} = 4.5 to 6.0 V	1	0		1	MHz
				0		275	kHz
TI0 input high/low level	tтıн,	V _{DD} = 4.5 to 6.0 V		0.48			μs
width	t⊤ı∟			1.8			μs
Interrupt input high/low	tınтн,	INT0		Note 2			μs
level width	t INTL	INT1, INT2, and INT	4	10			μs
		KR0 to KR7		10			μs
RESET low level width	trsl			10			μs

Notes 1. The cycle time of the CPU clock (Φ) depends on the connected resonator frequency, the system clock control register (SCC), and the processor clock control register (PCC).

The figure on the right side shows the cycle time tcy characteristics for the supply voltage VDD during main system clock operation.

2. This value becomes 2tcy or 128/fx according to the setting of the interrupt mode register (IM0).

Serial transfer operation

Two-wire and three-wire serial I/O modes (SCK ... Internal clock output):

Parameter	Symbol	Cond	itions	Min.	Тур.	Max.	Unit
SCK cycle time	tkCY1	V _{DD} = 4.5 to 6.0 V	V _{DD} = 4.5 to 6.0 V				ns
				3800			ns
SCK high/low level	tĸ∟1	V _{DD} = 4.5 to 6.0 V		tксү1/2 – 50			ns
width	t кн1			tксү1/2 – 150			ns
SI setup time	tsik1			150			ns
(referred to SCK↑)							
SI hold time	tksi1			400			ns
(referred to SCK↑)							
Delay time from	tkso1	R∟ = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		250	ns
$\overline{SCK}\downarrow$ to SO output		C∟ = 100 pF ^{Note}		0		1000	ns

Two-wire and three-wire serial I/O modes (SCK ... External clock input):

Parameter	Symbol	Conc	Conditions			Max.	Unit
SCK cycle time	tKCY2	V _{DD} = 4.5 to 6.0 V	V_{DD} = 4.5 to 6.0 V				ns
				3200			ns
SCK high/low level	tĸ∟2	V _{DD} = 4.5 to 6.0 V		400			ns
width	tкн2			1600			ns
SI setup time	tsik2			100			ns
(referred to SCK↑)							
SI hold time	tksi2			400			ns
(referred to SCK↑)							
Delay time from	tks02	R∟ = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		300	ns
$\overline{SCK}\downarrow$ to SO output		C∟ = 100 pF ^{Note}		0		1000	ns

Note R_L and C_L are the resistance and capacitance of the SO output line load respectively.

SBI mode (SCK ... Internal clock output (master)):

Parameter	Symbol	Cond	Conditions			Max.	Unit
SCK cycle time	tксүз	V _{DD} = 4.5 to 6.0 V		1600			ns
				3800			ns
SCK high/low level	tк∟з	V _{DD} = 4.5 to 6.0 V		tксүз/2 - 50			ns
width	tкнз			tксүз/2 - 150			ns
SB0/SB1 setup time (referred to SCK↑)	tsık3			150			ns
SB0/SB1 hold time (referred to SCK↑)	tหรเง			tксүз/2			ns
Delay time from $\overline{SCK}\downarrow$	tкsoз	R∟ = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		250	ns
to SB0/SB1 output		C∟= 100 pF ^{Note}		0		1000	ns
From SCK↑ to SB0/SB1↓	tкsв		•	tксүз			ns
From SB0/SB1 \downarrow to $\overline{SCK}\downarrow$	tsвк			tксүз			ns
SB0/SB1 low level width	tsвL			tксүз			ns
SB0/SB1 high level width	tsвн			tксүз			ns

SBI mode (SCK ... External clock input (slave)):

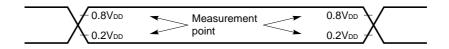
Parameter	Symbol	Con	Min.	Тур.	Max.	Unit	
SCK cycle time	tkCY4	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK high/low level	tĸ∟4	V _{DD} = 4.5 to 6.0 V		400			ns
width	t кн4			1600			ns
SB0/SB1 setup time (referred to \overline{SCK})	tsıĸ4			100			ns
SB0/SB1 hold time (referred to \overline{SCK})	tksi4			tксү4/2			ns
Delay time from $\overline{SCK}\downarrow$	tkso4	R∟ = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		300	ns
to SB0/SB1 output		C∟= 100 pF ^{Note}		0		1000	ns
From $\overline{\text{SCK}}$ to SB0/SB1 \downarrow	tкsв		1	tксү4			ns
From SB0/SB1 \downarrow to SCK \downarrow	tsвк			tксү4			ns
SB0/SB1 low level width	tsBL			tксү4			ns
SB0/SB1 high level width	tsвн			tксү4			ns

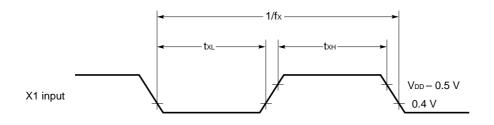
Note R_{L} and C_{L} are the resistance and capacitance of the SB0/SB1 output line load respectively.

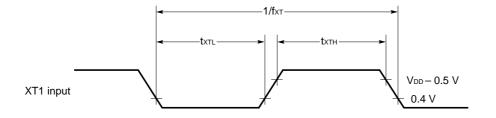
A/D converter (T_a = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V, AVss = Vss = 0 V)

Parameter	Symbol	Condi	tions	Min.	Тур.	Max.	Unit
Resolution				8	8	8	bit
Absolute accuracyNote 1		$2.5 \text{ V} \leq AV_{\text{REF}} \leq V_{\text{DD}}$	-10 ≤ Ta ≤ +85°C			±1.5	LSB
			-40 ≤ Ta < -10°C			±2.0	
Conversion time ^{Note 2}	tсолу					168/fx	μs
Sampling time ^{Note 3}	t samp					44/fx	μs
Analog input voltage	VIAN			AVREF-		AV _{REF+}	V
Analog power supply voltage	AVDD			2.5		Vdd	V
Reference input voltage ^{Note4}	AV _{REF+}	$2.5 \text{ V} \leq (\text{AV}_{\text{REF}} +) - (\text{AV}_{\text{REF}} -)$		2.5		AVdd	V
Reference output voltage ^{Note 4}	AVREF-	$2.5 \text{ V} \leq (\text{AV}_{\text{REF}} +) - (\text{AV}_{\text{REF}} -)$		0		1.0	V
Analog input imped- ance	Ran				1000		MΩ
AVREF current	AIREF				1.0	2.0	mA

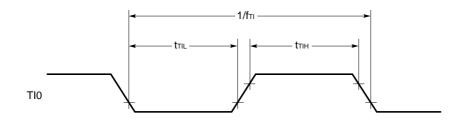
Notes 1. Absolute accuracy excluding quantization error (±1/2 LSB)


- **2.** Time from the execution of a conversion start instruction till the end of conversion (EOC = 1) (40.1 μ s: fx = 4.19 MHz)
- **3.** Time from the execution of a conversion start instruction till the end of sampling (10.5 μ s: fx = 4.19 MHz)
- 4. The value resulting from subtracting (AVREF-) from (AVREF+) must be greater than or equal to 2.5 V.



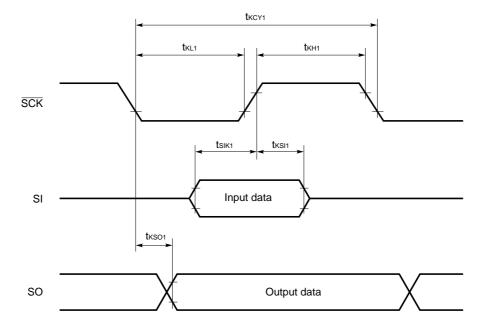

μ**PD75036**

AC Timing Measurement Points (Excluding (X1 and XT1 Inputs)

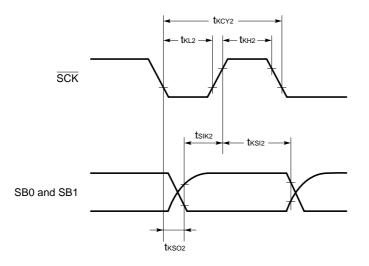


Clock Timing

TI0 Timing



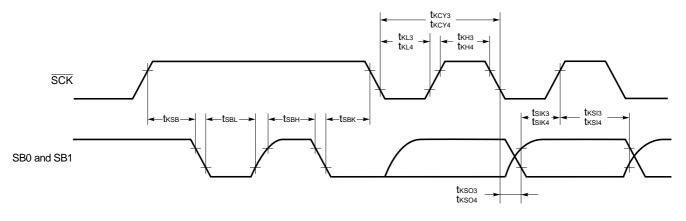
NEC



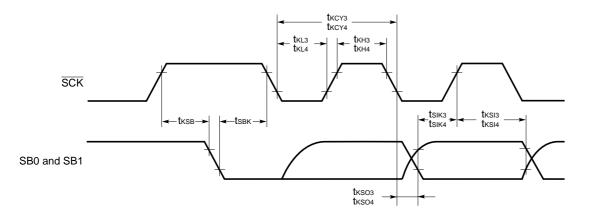
Serial Transfer Timing

Three-wire serial I/O mode:

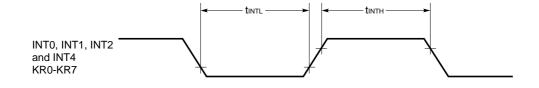
Two-wire serial I/O mode:

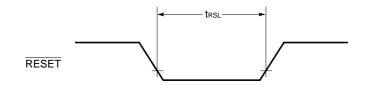


NEC



Serial Transfer Timing




Command signal transfer:

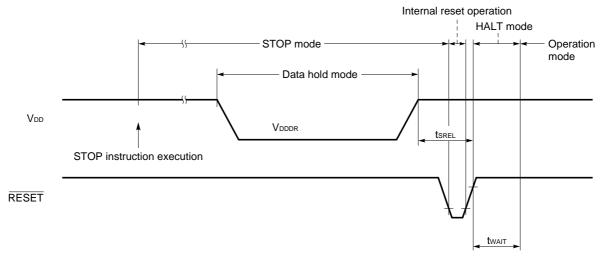
Interrupt Input Timing

RESET Input Timing

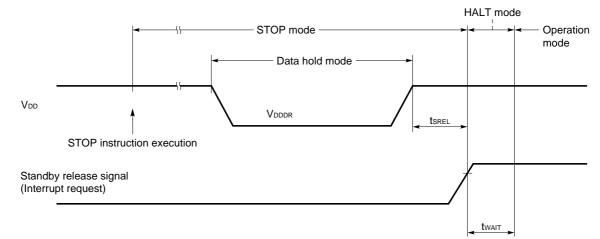
NEC

DATA HOLD CHARACTERISTICS BY LOW SUPPLY VOLTAGE IN DATA MEMORY STOP MODE

 $(T_a = -40 \text{ to } +85 \circ \text{C})$

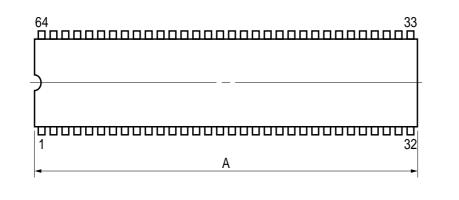

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data hold supply voltage	Vdddr		2.0		6.0	V
Data hold supply currentNote 1	IDDDR	$V_{DDDR} = 2.0 V$		0.1	10	μA
Release signal setting time	tsrel		0			μs
Oscillation settling timeNote 2	twait	Release by RESET		217/fx		ms
		Release by interrupt request		Note 3		ms

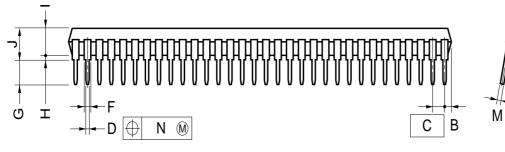
Notes 1. Excluding the current which flows through the built-in pull-up resistors


- CPU operation stop time for preventing unstable operation at the beginning of oscillation
 This value depends on the settings of the basic interval timer mode register (PTM) above
- This value depends on the settings of the basic interval timer mode register (BTM) shown below.

BTM3	BTM2	BTM1	BTM0	Wait time (Values at fx = 4.19 MHz in parentheses)
_	0	0	0	2 ²⁰ /f _x (approx. 250 ms)
_	0	1	1	217/fx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fx (approx. 7.82 ms)
—	1	1	1	2 ¹³ /fx (approx. 1.95 ms)

Data Hold Timing (STOP Mode Release by RESET)



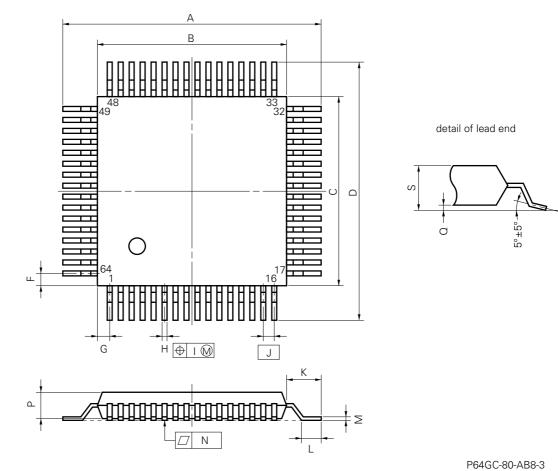

Data Hold Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

11. PACKAGE DIMENSIONS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

μ**PD75036**

64 PIN PLASTIC QFP (□14)

ΝΟΤΕ

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	0.014 ^{+0.004} _{-0.005}
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

★ APPENDIX A DEVELOPMENT TOOLS

The following development tools are provided for developing systems including the μ PD75036:

	IE-7500 IE-7500	0-R ^{Note 1} 1-R	In-circuit emulator for the 75X series			
	IE-7500	D-R-EM ^{Note 2}	Emulation board for the IE-75000-R and IE-75001-R			
e	EP-75028CW-R EP-75028GC-R EV-9200GC-64		Emulation probe for the μ PD75036CW			
dwar			Emulation probe for the $\mu\text{PD75036GC}.$ A 64-pin conversion socket, the EV-9200GC-64, is			
Har		EV-9200GC-64	attached to the probe.			
	PG-1500		PROM programmer			
	PA-75P0	036CW	PROM programmer adapter for the μ PD75P036CW. Connected to the PG-1500.			
	PA-75P0	036GC	PROM programmer adapter for the μ PD75P036GC. Connected to the PG-1500.			
	IE control program		Host machine			
Software	PG-1500 controller		 PC-9800 series (MS-DOSTM Ver. 3.30 to Ver. 5.00A^{Note 3}) IBM PC/ATTM series (PC DOSTM Ver. 3.10) 			
Soft	RA75X relocatable assembler					

Notes 1. Maintenance service only

- 2. Not contained in the IE-75001-R
- **3**. These software cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and Ver. 5.00A.

★

APPENDIX B RELATED DOCUMENTS

Documents related to the device

Document Name	Document No.
User's manual	IEU-1294
Application note	IEM-1294
75X series selection guide	IF-1027

Documents related to development tools

	Document Name					
	IE-75000-R User's Manual					
	IE-75001-R User's Manual					
Hardware	اE-75000-R-EM User's Manual					
Hard	EP-75028CW-R User's Manual					
	EP-75028GC-R User's Manual					
	PG-1500 User's Manual					
e	RA75X Assembler Package User's Manual	EEU-1346				
oftwa	Language					
Š	PG-1500 Controller User's Manual					

Other documents

Document Name	Document No.
PACKAGE MANUAL	IEI-1213
SMD SURFACE MOUNT TECHNOLOGY MANUAL	IEI-1207
QUALITY GRADES ON NEC SEMICONDUCTOR DEVICES	IEI-1209
NEC SEMICONDUCTOR DEVICE RELIABILITY/QUALITY CONTROL SYSTEM	IEI-1203
ELECTROSTATIC DISCHARGE (ESD) TEST	IEI-1201
GUIDE TO QUALITY ASSURANCE FOR SEMICONDUCTOR DEVICES	MEI-1202

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.

NEC

μ**PD75036**

[MEMO]

Cautions on CMOS Devices

(1) Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

(2) CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the V_{DD} or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

3 Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

Phase-out/Discontinued

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for the applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard:Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.Special:Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime system, etc.

M4 92.6

MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are trademarks of IBM Corporation.