To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

V850E/MS1
 32-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD703101-33 and μ PD703102-33 are members of the V850 Series of 32-bit single-chip microcontrollers designed for real-time control operations. These microcontrollers provide on-chip features, including a 32-bit CPU core, ROM, RAM, interrupt controller, real-time pulse unit, serial interface, A/D converter, and DMA controller.

The μ PD703100-33 and μ PD703100-40 are ROMless versions of the μ PD703101-33 and μ PD703102-33 products.
The μ PD703100A-33, μ PD703100A-40, μ PD703101A-33, and μ PD703102A-33 are also available as products having a 3.3 V power supply for external pins.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

$$
\begin{array}{lr}
\text { V850E/MS1 User's Manual Hardware: } & \text { U12688E } \\
\text { V850E/MS1, V850E/MS2 User's Manual Architecture: U12197E }
\end{array}
$$

FEATURES

- Number of instructions: 81
- Minimum instruction execution time 25 ns (@ 40 MHz operation) μ PD703100-40

30 ns (@ 33 MHz operation) μ PD703100-33, 703101-33, 703102-33

- General-purpose registers 32 bits $\times 32$
- Instruction set optimized for control applications
- Internal memory ROM: None (μ PD703100-33, 703100-40),

96 KB (μ PD703101-33),
128 KB (μ PD703102-33)
RAM : 4 KB

- Advanced on-chip interrupt controller
- Real-time pulse unit suitable for control operations
- Powerful serial interface (on-chip dedicated baud rate generator)
- On-chip clock generator
- 10-bit resolution A/D converter: 8 channels
- DMA controller: 4 channels
- Power saving functions

APPLICATIONS

- Office automation equipment: printers, facsimile machines, PPCs, etc.
- Multimedia equipment: digital still cameras, video printers, etc.
- Consumer equipment: single-lens reflex cameras, etc.
- Industrial equipment: motor controllers, NC machine tools, etc.

* ORDERING INFORMATION

Part Number	Package	Maximum Operating Frequency	Internal ROM
μ PD703100GJ-33-UEN	144-pin plastic LQFP (fine pitch) (20×20)	33 MHz	None
μ PD703100GJ-33-UEN-A	144-pin plastic LQFP (fine pitch) (20×20)	33 MHz	None
μ PD703100GJ-40-UEN	144-pin plastic LQFP (fine pitch) (20×20)	40 MHz	None
μ PD703100GJ-40-UEN-A	144-pin plastic LQFP (fine pitch) (20×20)	40 MHz	None
μ PD703101GJ-33-xxx-UEN	144-pin plastic LQFP (fine pitch) (20×20)	33 MHz	96 KB
μ PD703101GJ-33-xxx-UEN-A	144-pin plastic LQFP (fine pitch) (20×20)	33 MHz	96 KB
μ PD703102GJ-33-xxx-UEN	144-pin plastic LQFP (fine pitch) (20×20)	33 MHz	128 KB
μ PD703102GJ-33-xxx-UEN-A	144-pin plastic LQFP (fine pitch) (20×20)	33 MHz	128 KB

Remarks 1. $x x x$ indicates ROM code suffix.
2. Products with -A at the end of the part number are lead-free products.

PIN CONFIGURATION (TOP VIEW)

144-pin plastic LQFP (fine pitch) (20 $\times 20$)

- μ PD703100GJ-33-UEN
- μ PD703100GJ-33-UEN-A
- μ PD703101GJ-33-xxx-UEN
- μ PD703100GJ-40-UEN
- μ PD703101GJ-33-xxx-UEN-A
- μ PD703100GJ-40-UEN-A
- μ PD703102GJ-33-xxx-UEN
- μ PD703102GJ-33-xxx-UEN-A

PIN NAMES

A0 to A23:	Address Bus	P50 to P57:	Port 5
ADTRG:	AD Trigger Input	P60 to P67:	Port 6
ANIO to ANI7:	Analog Input	P70 to P77:	Port 7
AVdo:	Analog Power Supply	P80 to P87:	Port 8
AVref:	Analog Reference Voltage	P90 to P97:	Port 9
AVss:	Analog Ground	P100 to P107:	Port 10
BCYST:	Bus Cycle Start Timing	P110 to P117:	Port 11
CKSEL:	Clock Generator Operating Mode Select	P120 to P127:	Port 12
CLKOUT:	Clock Output	PA0 to PA7:	Port A
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 7}$:	Chip Select	PB0 to PB7:	Port B
CVdd:	Clock Generator Power Supply	PX5 to PX7:	Port X
CVss:	Clock Generator Ground	$\overline{\text { RAS0 }}$ to $\overline{\mathrm{RAS7}}$:	Row Address Strobe
D0 to D15:	Data Bus	$\overline{\mathrm{RD}}$:	Read
$\overline{\text { DMAAK0 }}$ to $\overline{\text { DMAAK3: }}$	DMA Acknowledge	REFRQ:	Refresh Request
$\overline{\text { DMARQ0 }}$ to $\overline{\text { DMARQ3: }}$	DMA Request	RESET:	Reset
HLDAK:	Hold Acknowledge	RXD0, RXD1:	Receive Data
HLDRQ:	Hold Request	$\overline{\text { SCKO }}$ to SCK3:	Serial Clock
HVdd:	Power Supply for External Pins	SIO to SI3:	Serial Input
INTP100 to INTP103,	Interrupt Request from Peripherals	SO0 to SO3:	Serial Output
INTP110 to INTP113,		$\overline{\mathrm{TC} 0}$ to $\overline{\mathrm{TC}}$:	Terminal Count Signal
INTP120 to INTP123,		TCLR10 to TCLR15:	Timer Clear
INTP130 to INTP133,		TI10 to TI15:	Timer Input
INTP140 to INTP143,		TO100, TO101, :	Timer Output
INTP150 to INTP153		TO110, TO111,	
IORD:	I/O Read Strobe	TO120, TO121,	
IOWR:	I/O Write Strobe	TO130, TO131,	
LCAS:	Lower Column Address Strobe	TO140, TO141,	
LWR:	Lower Write Strobe	TO150, TO151	
MODE0 to MODE3:	Mode	TXD0, TXD1:	Transmit Data
NMI:	Non-Maskable Interrupt Request	$\overline{\text { UCAS: }}$	Upper Column Address Strobe
$\overline{\mathrm{OE}}$:	Output Enable	UWR:	Upper Write Strobe
P00 to P07:	Port 0	VDD:	Power Supply for Internal Unit
P10 to P17:	Port 1	Vss:	Ground
P20 to P27:	Port 2	WAIT:	Wait
P30 to P37:	Port 3	$\overline{\mathrm{WE}}$:	Write Enable
P40 to P47:	Port 4	X1, X2:	Crystal

INTERNAL BLOCK DIAGRAM

CONTENTS

1. DIFFERENCES AMONG PRODUCTS 7
2. PIN FUNCTIONS 8
2.1 Port Pins 8
2.2 Non-Port Pins 11
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 15
3. ELECTRICAL SPECIFICATIONS 18
4. PACKAGE DRAWING 76
5. RECOMMENDED SOLDERING CONDITIONS 77
6. DIFFERENCES AMONG PRODUCTS

Product Name		$\mu \mathrm{PD}$	3100			3101		3102	$\mu \mathrm{PD}$	3102
Item	-33	-40	A-33	A-40	-33	A-33	-33	A-33	-33	A-33
Internal ROM	None				$\begin{aligned} & 96 \text { KB } \\ & \text { (mask ROM) } \end{aligned}$		$\begin{aligned} & 128 \mathrm{~KB} \\ & \text { (mask ROM) } \end{aligned}$		128 KB (flash memory)	
Maximum operating frequency	33 MHz	40 MHz	33 MHz	40 MHz	33 MHz					
HV ${ }_{\text {do }}$	4.5 to 5.5 V		3.0 to 3.6 V		$\begin{aligned} & 4.5 \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$
Operation mode										
Single-chip mode 0, 1	None				Provid					
Flash memory programming mode	None								Provid	
Flash memory programming pin	None								Provid	(VPP)
Electrical specifications	Power	nsumption	differ (re	r to the d	a sheet	ach prod				
Package	144LQF		$\begin{aligned} & \text { 144LQF } \\ & \text { 157FBG } \end{aligned}$		144LQF					$\begin{aligned} & \text { 144LQFP } \\ & \text { 157FBGA } \end{aligned}$
Others	Noise to	rance and	noise rad	ation will d	er due to	differe	s in circ	scale a	mask lay	

Remark 144LQFP: 144-pin plastic LQFP (fine pitch) (20×20)
157FBGA: 157 -pin plastic FBGA (14×14)

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0 8-bit I/O port Input/output can be specified in 1-bit units	TO100
P01			TO101
P02			TCLR10
P03			TI10
P04			INTP100/DMARQ0
P05			INTP101/信ARQ1
P06			INTP102/DMARQ2
P07			INTP103/DMARQ3
P10	I/O	Port 1 8-bit I/O port Input/output can be specified in 1 -bit units	TO110
P11			TO111
P12			TCLR11
P13			TI11
P14			INTP110/DMAAK0
P15			INTP111/DMAAK1
P16			INTP112/DMAAK2
P17			INTP113/ $\overline{\text { DMAAK3 }}$
P20	Input	Port 2 P20 is an input only port. When a valid edge is input, this pin operates as NMI input. Also, bit 0 of the P2 register indicates the NMI input status. P21 to P27 are 7-bit I/O port. Input/output can be specified in 1-bit units	NMI
P21	I/O		-
P22			TXDO/SOO
P23			RXDO/SIO
P24			$\overline{\text { SCKO }}$
P25			TXD1/SO1
P26			RXD1/SI1
P27			$\overline{\text { SCK1 }}$
P30	I/O	Port 3 8 -bit I/O port Input/output can be specified in 1-bit units	TO130
P31			TO131
P32			TCLR13
P33			Tl13
P34			INTP130
P35			INTP131/SO2
P36			INTP132/SI2
P37			INTP133/SCK2
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified in 1-bit units	D0 to D7

Pin Name	I/O	Function	Alternate Function
P50 to P57	I/O	Port 5 8-bit I/O port Input/output can be specified in 1-bit units	D8 to D15
P60 to P67	I/O	Port 6 8-bit I/O port Input/output can be specified in 1-bit units	A16 to A23
P70 to P77	Input	Port 7 8-bit input only port	ANIO to ANI7
P80	I/O	Port 8 8-bit I/O port Input/output can be specified in 1-bit units	$\overline{\mathrm{CSO}} / \overline{\mathrm{RASO}}$
P81			$\overline{\mathrm{CS} 1} / \overline{\mathrm{RAS} 1}$
P82			$\overline{\mathrm{CS} 2} / \overline{\mathrm{RAS} 2}$
P83			$\overline{\mathrm{CS3}} / \overline{\mathrm{RAS3}}$
P84			$\overline{\mathrm{CS} 4} / \overline{\mathrm{RAS}} / \mathrm{/IOWR}$
P85			$\overline{\mathrm{CS5}} / \overline{\mathrm{RAS5}} / \overline{\mathrm{IORD}}$
P86			$\overline{\mathrm{CS6}} / \overline{\mathrm{RAS6}}$
P87			$\overline{\mathrm{CS7}} / \overline{\mathrm{RAS7}}$
P90	I/O	Port 9 8-bit I/O port Input/output can be specified in 1-bit units	$\overline{\text { LCAS } / \mathrm{LWR}}$
P91			$\overline{\text { UCAS/UWR }}$
P92			$\overline{\mathrm{RD}}$
P93			WE
P94			BCYST
P95			$\overline{\mathrm{OE}}$
P96			HLDAK
P97			$\overline{\text { HLDRQ }}$
P100	I/O	Port 10 8-bit I/O port Input/output can be specified in 1-bit units	TO120
P101			TO121
P102			TCLR12
P103			TI12
P104			INTP120/ $\overline{\text { TC0 }}$
P105			INTP121/7C1
P106			INTP122/7C2
P107			INTP123/7C3
P110	I/O	Port 11 8-bit I/O port Input/output can be specified in 1-bit units	TO140
P111			TO141
P112			TCLR14
P113			TI14
P114			INTP140
P115			INTP141/SO3
P116			INTP142/SI3
P117			INTP143/ $\overline{\text { SCK3 }}$

Pin Name	I/O	Function	Alternate Function
P120	I/O	Port 12 8-bit l/O port Input/output can be specified in 1-bit units	TO150
P121			TO151
P122			TCLR15
P123			TI15
P124			INTP150
P125			INTP151
P126			INTP152
P127			INTP153/ADTRG
PAO	I/O	Port A 8-bit I/O port Input/output can be specified in 1-bit units	AO
PA1			A1
PA2			A2
PA3			A3
PA4			A4
PA5			A5
PA6			A6
PA7			A7
PB0	I/O	Port B 8-bit I/O port Input/output can be specified in 1-bit units	A8
PB1			A9
PB2			A10
PB3			A11
PB4			A12
PB5			A13
PB6			A14
PB7			A15
PX5	I/O	Port X 3-bit I/O port Input/output can be specified in 1-bit units	$\overline{\text { REFRQ }}$
PX6			$\overline{\text { WAIT }}$
PX7			CLKOUT

2.2 Non-Port Pins

Pin Name	I/O	Function	Alternate Function
TO100	Output	Pulse signal output for timers 10 to 15	P00
TO101			P01
TO110			P10
TO111			P11
TO120			P100
TO121			P101
TO130			P30
TO131			P31
TO140			P110
TO141			P111
TO150			P120
TO151			P121
TCLR10	Input	External clear signal input for timers 10 to 15	P02
TCLR11			P12
TCLR12			P102
TCLR13			P32
TCLR14			P112
TCLR15			P122
Tl10	Input	External count clock input for timers 10 to 15	P03
Tl11			P13
Tl12			P103
Tl13			P33
Tl14			P113
Tl15			P123
INTP100	Input	External maskable interrupt request input, shared as external capture trigger input for timer 10	P04/(DMARQ0
INTP101			P05/DMARQ1
INTP102			P06/DMARQ2
INTP103			P07/DMARQ3
INTP110	Input	External maskable interrupt request input, shared as external capture trigger input for timer 11	P14/DMAAK0
INTP111			P15/DMAAK1
INTP112			P16/DMAAK2
INTP113			P17/DMAAK3
INTP120	Input	External maskable interrupt request input, shared as external capture trigger input for timer 12	P104/TC0
INTP121			P105/TC1
INTP122			P106/TC2
INTP123			P107/TC3

Pin Name	1/O	Function	Alternate Function
INTP130	Input	External maskable interrupt request input, shared as external capture trigger input for timer 13	P34
INTP131			P35/SO2
INTP132			P36/SI2
INTP133			P37/SCK2
INTP140	Input	External maskable interrupt request input, shared as external capture trigger input for timer 14	P114
INTP141			P115/SO3
INTP142			P116/SI3
INTP143			P117/SCK3
INTP150	Input	External maskable interrupt request input, shared as external capture trigger input for timer 15	P124
INTP151			P125
INTP152			P126
INTP153			P127/ADTRG
SOO	Output	Serial transmit data output (3-wire) for CSIO to CSI3	P22/TXD0
SO1			P25/TXD1
SO2			P35/INTP131
SO3			P115/INTP141
SIO	Input	Serial receive data input (3-wire) for CSIO to CSI3	P23/RXD0
SI1			P26/RXD1
SI2			P36/INTP132
SI3			P116/INTP142
$\overline{\text { SCKO }}$	1/O	Serial clock I/O (3-wire) for CSIO to CSI3	P24
$\overline{\text { SCK1 }}$			P27
$\overline{\text { SCK2 }}$			P37/INTP133
$\overline{\text { SCK3 }}$			P117/INTP143
TXDO	Output	Serial transmit data output for UART0 and UART1	P22/SO0
TXD1			P25/SO1
RXD0	Input	Serial receive data input for UART0 and UART1	P23/SIO
RXD1			P26/SI1
D0 to D7	I/O	16-bit data bus for external memory	P40 to P47
D8 to D15			P50 to P57
A0 to A7	Output	24-bit address bus for external memory	PA0 to PA7
A8 to A15			PB0 to PB7
A16 to A23			P60 to P67
$\overline{\text { LWR }}$	Output	Lower byte write-enable signal output for external data bus	P90/LCAS
$\overline{\text { UWR }}$	Output	Higher byte write-enable signal output for external data bus	P91/UCAS
$\overline{\mathrm{RD}}$	Output	Read strobe signal output for external data bus	P92
$\overline{\text { WE }}$	Output	Write enable signal output for DRAM	P93
$\overline{\mathrm{OE}}$	Output	Output enable signal output for DRAM	P95

Pin Name	I/O	Function	Alternate Function
LCAS	Output	Column address strobe signal output for DRAM's lower data	P90/LWR
$\overline{\text { UCAS }}$	Output	Column address strobe signal output for DRAM's higher data	P91/UWR
$\overline{\mathrm{RASO}}$ to $\overline{\mathrm{RAS3}}$	Output	Low address strobe signal output for DRAM	P80/ $\overline{\mathrm{CSO}}$ to P83/ $\overline{\mathrm{CS} 3}$
$\overline{\text { RAS4 }}$			P84/ $\overline{\mathrm{CS}} / \mathrm{/IOWR}$
$\overline{\text { RAS5 }}$			P85/CS5/IORD
$\overline{\text { RAS6 }}$			P86/ $\overline{\text { CS6 }}$
$\overline{\text { RAS7 }}$			P87/ $\overline{\text { CS7 }}$
$\overline{\text { BCYST }}$	Output	Strobe signal output indicating start of bus cycle	P94
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}$	Output	Chip select signal output	$\begin{aligned} & \text { P80/ } \overline{\text { RAS0 }} \text { to } \\ & \text { P83/ } \end{aligned}$
$\overline{\mathrm{CS} 4}$			P84/ $\overline{\mathrm{RAS} 4} / \overline{\mathrm{IOWR}}$
$\overline{\mathrm{CS5}}$			P85/ $\overline{\text { RAS5 }} / \overline{\text { IORD }}$
$\overline{\mathrm{CS6}}$			P86/RAS6
$\overline{\mathrm{CS7}}$			P87/RAS7
$\overline{\text { WAIT }}$	Input	Control signal input for inserting waits in bus cycle	PX6
$\overline{\text { REFRQ }}$	Output	Refresh request signal output for DRAM	PX5
$\overline{\text { IOWR }}$	Output	DMA write strobe signal output	P84/RAS4/ $\overline{\mathrm{CS} 4}$
$\overline{\text { IORD }}$	Output	DMA read strobe signal output	P85/RAS5/ $\overline{\mathrm{CS5}}$
$\overline{\text { DMARQ0 }}$ to DMARQ3	Input	DMA request signal input	P04/INTP100 to P07/INTP103
$\overline{\text { DMAAKO }}$ to DMAAK3	Output	DMA acknowledge signal output	P14/INTP110 to P17/INTP113
$\overline{\mathrm{TCO}}$ to $\overline{\mathrm{TC}}$	Output	DMA end (terminal count) signal output	P104/INTP120 to P107/INTP123
$\overline{\text { HLDAK }}$	Output	Bus hold acknowledge output	P96
$\overline{\text { HLDRQ }}$	Input	Bus hold request input	P97
ANIO to ANI7	Input	Analog input to A/D converter	P70 to P77
NMI	Input	Non-maskable interrupt request input	P20
CLKOUT	Output	System clock output	PX7
CKSEL	Input	Input for specifying clock generator's operation mode	-
MODE0 to MODE3	Input	Specify operation modes	-
RESET	Input	System reset input	-
X1	Input	Oscillator connection for system clock. Input is via X1 when using an	-
X2	-	external clock.	-
ADTRG	Input	A/D converter external trigger input	P127/INTP153
AVref	Input	Reference voltage input for A/D converter	-
AVdd	-	Positive power supply for A/D converter	-
AVss	-	Ground potential for A/D converter	-

Pin Name	I/O	Function	Alternate Function
$\mathrm{CV}_{\mathrm{DD}}$	-	Positive power supply for dedicated clock generator	-
$\mathrm{CV}_{S S}$	-	Ground potential for dedicated clock generator	-
V_{DD}	-	Positive power supply (power supply for internal units)	-
$H V_{D D}$	-	Positive power supply (power supply for external pins)	-
$V_{S S}$	-	Ground potential	-

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-1 shows the I/O circuit type of each pin and recommended connection of unused pins. Figure 2-1 shows the various circuit types using partially abridged diagrams.

When connecting to VDD or Vss via a resistor, a resistance value in the range of 1 to $10 \mathrm{k} \Omega$ is recommended.

Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (1/2)

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
P00/TO100, P01/TO101	5	Input: Independently connect to HVdd or Vss via a resistor Output: Leave open
P02/TCLR10, P03/TI10	5-K	
P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3		
P10/TO110, P11/TO111	5	
P12/TCLR11, P13/TI11	5-K	
P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3		
P20/NMI	2	Connect directly to Vss
P21	5	Input: Independently connect to HVdd or Vss via a resistor Output: Leave open
P22/TXD0/SO0		
P23/RXD0/SI0	5-K	
P24/ $\overline{\text { SCK0 }}$		
P25/TXD1/SO1	5	
P26/RXD1/SI1	5-K	
P27/SCK1		
P30/TO130, P31/TO131	5	
P32/TCLR13, P33/TI13	5-K	
P34/INTP130		
P35/INTP131/SO2		
P36/INTP132/SI2		
P37/INTP133/SCK2		
P40/D0 to P47/D7	5	
P50/D8 to P57/D15		
P60/A16 to P67/A23		
P70/ANI0 to P77/ANI7	9	Connect directly to Vss
$\mathrm{P} 80 / \overline{\mathrm{CS} 0} / \overline{\mathrm{RAS0}}$ to P83/ $\overline{\mathrm{CS} 3} / \overline{\mathrm{RAS3}}$	5	Input: Independently connect to HVdd or Vss via a resistor Output: Leave open
$\begin{aligned} & \mathrm{P} 84 / \overline{\mathrm{CS} 4} / \overline{\mathrm{RAS} 4} / \overline{\mathrm{IOWR}}, \\ & \mathrm{P} 85 / \overline{\mathrm{CS} 5} / \mathrm{RAS5} / \overline{\mathrm{IORD}} \end{aligned}$		
P86/ $\overline{\mathrm{CS} 6} / \overline{\mathrm{RAS6}}, \mathrm{P} 87 / \overline{\mathrm{CS} 7 / / \overline{\mathrm{RAS7}} \text { - }}$		
P90/LCAS $/ \overline{\mathrm{LWR}}$		
P91/ $\overline{\text { UCAS }} / \overline{\mathrm{UWR}}$		

Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (2/2)

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
P92/RD	5	Input: Independently connect to HV DD or $\mathrm{V}_{s s}$ via a resistor Output: Leave open
P93/WE		
P94/BCYST		
P95/OE		
P96/HLDAK		
P97/HLDRQ		
P100/TO120, P101/TO121		
P102/TCLR12, P103/TI12	5-K	
$\begin{aligned} & \text { P104/INTP120 } / \overline{\mathrm{TC0}} \text { to } \\ & \text { P107/INTP123//TC3 } \end{aligned}$		
P110/TO140, P111/TO141	5	
P112/TCLR14, P113/TI14	5-K	
P114/INTP140		
P115/INTP141/SO3		
P116/INTP142/SI3		
P117/INTP143/SCK3		
P120/TO150, P121/TO151	5	
P122/TCLR15, P123/TI15	5-K	
P124/INTP150 to P126/INTP152		
P127/INTP153/ADTRG		
PA0/A0 to PA7/A7	5	
PB0/A8 to PB7/A15		
PX5/REFRQ		
PX6/WAIT		
PX7/CLKOUT		
CKSEL	1	Connect directly to HVdd
RESET	2	-
MODE0 to MODE2		
MODE3		Connect to Vss via a resistor (Rvpp)
$A V_{\text {ref, }} A V_{s s}$	-	Connect directly to Vss
AVDd	-	Connect directly to HVdd

Figure 2-1. Pin I/O Circuits

Caution Replace Vdd by HVdD when referencing the circuit diagrams shown above.

* 3. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = $\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition		Rating	Unit
Power supply voltage	VDD	Vdo pin		-0.5 to +4.6	V
	HVdd	HV ${ }_{\text {do }}$ pin, $\mathrm{HV}_{\text {dD }} \geq \mathrm{V}_{\text {dD }}$		-0.5 to +7.0	V
	CVdd	CVdo pin		-0.5 to +4.6	V
	CVss	CVss pin		-0.5 to +0.5	V
	AVdd	AVdo pin		-0.5 to $\mathrm{HV}_{\text {DD }}+0.5$	V
	AVss	$A V$ ss pin		-0.5 to +0.5	V
Input voltage	V 1	X1 pin, except MODE3 pin		-0.5 to HV DD +0.5	V
		MODE3 pin		-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Clock input voltage	V_{K}	$\mathrm{X} 1, \mathrm{~V} \mathrm{DD}=3.0$ to 3.6 V		-0.5 to $\mathrm{V}_{\mathrm{DD}}+1.0$	V
Output current, low	loL	1 pin		4.0	mA
		Total of all pins		100	mA
Output current, high	Іон	1 pin		-4.0	mA
		Total of all pins		-100	mA
Output voltage	Vo	HV do $=5.0 \mathrm{~V} \pm 10 \%$		-0.5 to HV Dd +0.5	V
Analog input voltage	Vian	P70/ANI0 to P77/ANI7 pins	$A V_{\text {dD }}>\mathrm{HV} \mathrm{VdD}$	-0.5 to HV DD +0.5	V
			$H V_{D D} \geq A V_{D D}$	-0.5 to $A V D D+0.5$	V
A/D converter reference input voltage	$A V_{\text {ref }}$	$A V_{D D}>H^{\text {d }}$		-0.5 to HV DD +0.5	V
		$H V_{\text {DD }} \geq A V_{\text {dD }}$		-0.5 to $A V_{D D}+0.5$	V
Operating ambient temperature	TA	μ PD703100-40		-40 to +70	${ }^{\circ} \mathrm{C}$
		$\mu \mathrm{PD} 703100-33,703101-33,703102-33$		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-60 to +150	${ }^{\circ} \mathrm{C}$

Cautions 1. Do not make direct connections of the output (or input/output) pins of the IC product with each other, and also avoid direct connections to Vdd, Vcc, or GND. However, the open drain pins or the open collector pins can be directly connected with each other. A direct connection can also be made for an external circuit designed with timing specifications that prevent conflicting output from pins subject to high-impedance state.
2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
The ratings and conditions shown below for DC characteristics and AC characteristics are within the range for normal operation and quality assurance.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{HV} \mathrm{DD}=\mathrm{CV} \mathrm{dD}=\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .			15	pF
I/O capacitance	Cıo				15	pF
Output capacitance	Co				15	pF

Operating Conditions

Operation Mode	Internal Operating Clock Frequency (ϕ)		Operating Ambient Temperature (TA)	Power Supply Voltage (Vdd, HVdd)
Direct mode	μ PD703100-40	2 to 40 MHz	-40 to $+70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { VDD }=3.0 \text { to } 3.6 \mathrm{~V} \\ & \mathrm{HVDD}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$
	μ PD703100-33, 703101-33, 703102-33	2 to 33 MHz	-40 to $+85^{\circ} \mathrm{C}$	
PLL mode ${ }^{\text {Note } 1}$	μ PD703100-40 ${ }^{\text {Note } 2}$	20 to 40 MHz	-40 to $+70^{\circ} \mathrm{C}$	
	μ PD703100-33, 703101-33, $703102-33^{\text {Note } 3}$	20 to 33 MHz	-40 to $+85^{\circ} \mathrm{C}$	

Notes 1. The internal operating clock frequency in PLL mode is the value for $5 \times$ operation. When used for $1 \times$ or $1 / 2 \times$ operation as set by the CKDIVn $(n=0,1)$ bit of the CKC register, operation at a frequency of 20 MHz or less is possible.
2. Set the input clock frequency used in PLL mode to 4.0 to 8.0 MHz .
3. Set the input clock frequency used in PLL mode to 4.0 to 6.6 MHz .

Recommended Oscillator
(a) Ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C} \ldots \mu$ PD703100-40,

$$
\left.\mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-33,703101-33,703102-33\right)
$$

(i) Murata Mfg. Co., Ltd. $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Type	Part Number	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant			Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) Tost (ms)
			C1 (pF)	C2 (pF)	$\mathrm{R}_{\mathrm{d}}(\mathrm{k} \Omega)$	MIN. (V)	MAX. (V)	
Surface mounting	CSAC4.00MGC040	4.0	100	100	0	3.0	3.6	0.5
	CSTCC4.00MGOH6	4.0	On-chip	On-chip	0	3.0	3.6	0.3
	CSAC5.00MGC040	5.0	100	100	0	3.0	3.6	0.4
	CSTCC5.00MG0H6	5.0	On-chip	On-chip	0	3.0	3.6	0.2
	CSAC6.60MT	6.6	30	30	0	3.0	3.6	0.2
	CSTCC6.60MGOH6	6.6	On-chip	On-chip	0	3.0	3.6	0.1
	CSAC8.00MT	8.0	30	30	0	3.0	3.6	0.2
	CSTCC8.00MGOH6	8.0	On-chip	On-chip	0	3.0	3.6	0.3
Lead	CSA4.00MG040	4.0	100	100	0	3.0	3.6	0.5
	CST4.00MGW040	4.0	On-chip	On-chip	0	3.0	3.6	0.5
	CSA5.00MG040	5.0	100	100	0	3.0	3.6	0.5
	CST5.00MGW040	5.0	On-chip	On-chip	0	3.0	3.6	0.5
	CSA6.60MTZ	6.6	30	30	0	3.0	3.6	0.1
	CST6.60MTW	6.6	On-chip	On-chip	0	3.0	3.6	0.1
	CSA8.00MTZ	8.0	30	30	0	3.0	3.6	0.1
	CST8.00MTW	8.0	On-chip	On-chip	0	3.0	3.6	0.1

Cautions 1. Connect the oscillator as closely to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area enclosed by broken lines.
3. Sufficiently evaluate the matching between the μ PD703100-33, 703100-40, 703101-33, 70310233 and the resonator.
(ii) $\mathrm{TDK}\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Manufacturer	Part Number	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant			Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) Tost (ms)
			C1 (pF)	C2 (pF)	Rd (k $)^{\text {) }}$	MIN. (V)	MAX. (V)	
TDK	CCR4.0MC3	4.0	On-chip	On-chip	0	3.0	3.6	0.17
	CCR5.0MC3	5.0	On-chip	On-chip	0	3.0	3.6	0.15
	CCR8.0MC5	8.0	On-chip	On-chip	0	3.0	3.6	0.11

Cautions 1. Connect the oscillator as closely to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area enclosed by broken lines.
3. Sufficiently evaluate the matching between the μ PD703100-33, 703100-40, 703101-33, 70310233 and the resonator.
(iii) Kyocera Corporation ($\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant			Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) Tost (ms)
			C1 (pF)	C2 (pF)	Rd (k Ω)	MIN. (V)	MAX. (V)	
Kyocera	PBRC5.00BR-A	5.0	On-chip	On-chip	0	3.0	3.6	0.06
	PBRC6.00BR-A	6.0	On-chip	On-chip	0	3.0	3.6	0.06
	PBRC6.60BR-A	6.6	On-chip	On-chip	0	3.0	3.6	0.06

Cautions 1. Connect the oscillator as closely to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area enclosed by broken lines.
3. Sufficiently evaluate the matching between the μ PD703100-33, 703100-40, 703101-33, 70310233 and the resonator.
(b) External clock input ($\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C} \ldots \mu$ PD703100-40,

$$
\left.\mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-33, \mu \mathrm{PD} 703101-33, \mu \mathrm{PD} 703102-33\right)
$$

Caution Input CMOS-level voltage to the X1 pin.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-40, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-33, \mu \mathrm{PD} 703101-33$, $\mu \mathrm{PD} 703102-33, \mathrm{VDD}=\mathrm{CVDD}=3.0$ to $3.6 \mathrm{~V}, \mathrm{HVDD}=5.0 \pm 10 \%$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	Except Note 1		2.2		HVDD +0.3	V
		Note 1		0.8 HV DD		HVDD +0.3	V
Input voltage, low	VIL	Except Note 1 and Note 2		-0.5		+0.8	V
		Note 1		-0.5		0.2 HV DD	V
Clock input voltage, high	VxH	X1 pin	Direct mode	0.8Vdd		VdD +0.3	V
			PLL mode	0.8Vdd		Vdd +0.3	V
Clock input voltage, low	Vxı	X1 pin	Direct mode	-0.3		0.15VdD	V
			PLL mode	-0.3		0.15VdD	V
Schmitt-triggered input threshold voltage	HV^{+}	Note 1, rising edge			3.0		V
	HV^{-}	Note 1, falling edge			2.0		V
Schmitt-triggered input hysteresis width	$\begin{gathered} \mathrm{HV}^{+} \\ -\mathrm{HV}^{-} \end{gathered}$	Note 1		0.5			V
Output voltage, high	Voh	$\mathrm{IOH}=-2.5 \mathrm{~mA}$		0.7 HV DD			V
		$\mathrm{IOH}=-100 \mu \mathrm{~A}$		HVDD-0.4			V
Output voltage, low	Vol	$\mathrm{IOL}=2.5 \mathrm{~mA}$				0.45	V
Input leakage current, high	İıH	Except V^{\prime} = Hvdd or Note 2				10	$\mu \mathrm{A}$
Input leakage current, low	ILIL	Except $\mathrm{V}^{\prime}=0 \mathrm{~V}$ or Note 2				-10	$\mu \mathrm{A}$
Output leakage current, high	ILOH	Vo = HVdD				10	$\mu \mathrm{A}$
Output leakage current, low	ILOL	$\mathrm{Vo}=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$

Notes 1. P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/ $\overline{\text { SCK2 }}, \mathrm{P} 104 / I N T P 120 / \overline{T C 0}$ to P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/ $\overline{\mathrm{SCK0}}, \mathrm{P} 26 / \mathrm{RXD} 1 / \mathrm{SI} 1, \mathrm{P} 27 / \overline{\mathrm{SCK}}, \mathrm{MODE0}$ to MODE2, RESET
2. When the P70/ANI0 to P77/ANI7 pins are used as analog input.

Remark TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{CVDD}=3.3 \mathrm{~V}$, and $\mathrm{HVDD}=5.0 \mathrm{~V}$.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-40, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-33, \mu \mathrm{PD} 703101-33$, $\mu \mathrm{PD} 703102-33, \mathrm{VDD}=\mathrm{CVDD}=3.0$ to $3.6 \mathrm{~V}, \mathrm{HVDD}=5.0 \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V})$

Parameter		Symbol	Condition		MIN.	TYP.	MAX.	Unit
Power supply current	Normal mode	IdD1		$V_{D D}+C V_{D D}$		$2.0 \times \mathrm{fx}$	$3.6 \times \mathrm{fx}$	mA
				HVDD		$1.8 \times \mathrm{fx}$	$3.0 \times \mathrm{fx}$	mA
	HALT mode	IDD2		VDD + CVDD		$1.4 \times \mathrm{fx}$	$2.5 \times \mathrm{fx}$	mA
				HVdo		$0.8 \times \mathrm{fx}$	$1.6 \times \mathrm{fx}$	mA
	IDLE mode	IdD3		$V_{D D}+C V_{D D}$		1.5	3.0	mA
				HVDD		10	50	$\mu \mathrm{A}$
	STOP mode	IdD4	μ PD703100-40	VDD + CVDD		1.0	3.0	mA
				HVdo		10	50	$\mu \mathrm{A}$
			$\begin{aligned} & \mu \text { PD703100-33, } \\ & 703101-33, \\ & 703102-33 \end{aligned}$	VDD + CVDD		20	100	$\mu \mathrm{A}$
				HVdo		10	50	$\mu \mathrm{A}$

Remarks 1. TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{CV} D \mathrm{D}=3.3 \mathrm{~V}$, and $\mathrm{HV} D \mathrm{D}=5.0 \mathrm{~V}$.
2. Direct mode:
$\mathrm{fx}=2$ to $40 \mathrm{MHz}(\mu \mathrm{PD} 703100-40)$
$\mathrm{fx}=2$ to $33 \mathrm{MHz}(\mu \mathrm{PD} 703100-33, \mu \mathrm{PD} 703101-33, \mu \mathrm{PD} 703102-33)$
PLL mode:
$\mathrm{fx}=20$ to $40 \mathrm{MHz}(\mu \mathrm{PD} 703100-40)$
$\mathrm{fx}=20$ to $33 \mathrm{MHz}(\mu \mathrm{PD} 703100-33, \mu \mathrm{PD} 703101-33, \mu \mathrm{PD} 703102-33)$
3. The unit for fx is MHz .

Data Hold Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-40, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-33, \mu \mathrm{PD} 703101-$ 33, μ PD703102-33)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Data hold voltage	Vdddr	STOP mode, VDD = VdDDR		1.5		3.6	V
	HVdddr	STOP mode, HVDD = HVDDDR		Vdddr		5.5	V
Data hold current	IDDDR	μ PD703100-40	$V_{D D}=\mathrm{V}_{\text {DDDR }}$		1.0	3.0	mA
		$\begin{aligned} & \mu \text { PD703100-33, } \\ & 703101-33, \\ & 703102-33 \end{aligned}$	$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {DDDR }}$		30	150	$\mu \mathrm{A}$
Power supply voltage rise time	tRVD			200			$\mu \mathrm{s}$
Power supply voltage fall time	tFVD			200			$\mu \mathrm{s}$
Power supply voltage hold time (to STOP mode setting)	tHVD			0			ms
STOP mode release signal input time	tDREL			0			ns
Data hold high-level input voltage	VIHDR	Note		0.8HVdddr		HVdddr	V
Data hold low-level input voltage	VILDR	Note		0		0.2HVDDDR	V

Note P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/ $\overline{\mathrm{DMAAK3}}$, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, Pl16/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/ $\overline{\mathrm{SCK}}, \mathrm{P} 26 / \mathrm{RXD} 1 / \mathrm{SI} 1, \mathrm{P} 27 / \overline{\mathrm{SCK} 1}$, MODE0 to MODE2, $\overline{\mathrm{RESET}}$

Remark TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}$.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C} . . . \mu \mathrm{PD} 703100-40, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-33, \mu \mathrm{PD} 703101-33$, $\mu \mathrm{PD} 703102-33, \mathrm{VDD}=\mathrm{CVDD}=3.0$ to 3.6 V , $\mathrm{HVDD}=5.0 \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$, output pin load capacitance: $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$)

AC Test Input Waveform
(a) P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/ INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/ TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/ INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/ SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, $\overline{\text { RESET }}$

(b) Pins other than those listed in (a) above

AC Test Output Test Points

Output signal

Load Condition

Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration, insert a buffer or other element to reduce the device's load capacitance 50 pF .
(1) Clock timing

Parameter	Symbol		Condition		MIN.	MAX.	Unit
X1 input cycle	<1>	tcrx	Direct mode	μ PD703100-40	12.5	250	ns
				$\begin{aligned} & \mu \text { PD703100-33, } \\ & 703101-33, \\ & 703102-33 \end{aligned}$	15	250	ns
			PLL mode	μ PD703100-40	125	250	ns
				$\begin{aligned} & \mu \text { PD703100-33, } \\ & 703101-33, \\ & 703102-33 \end{aligned}$	150	250	ns
X 1 input high-level width	<2>	twxH	Direct mode		5		ns
			PLL mode		50		ns
X1 input low-level width	<3>	twxL	Direct mode		5		ns
			PLL mode		50		ns
X1 input rise time	<4>	txR	Direct mode			4	ns
			PLL mode			10	ns
X1 input fall time	<5>	txF	Direct mode			4	ns
			PLL mode			10	ns
CLKOUT output cycle	<6>	tcyk	μ PD703100-40		25	500	ns
			$\begin{aligned} & \mu \text { PD703100-33, 703101-33, } \\ & 703102-33 \end{aligned}$		30	500	ns
CLKOUT high-level width	<7>	twkн			0.5T-7		ns
CLKOUT low-level width	<8>	twkı			0.5T-4		ns
CLKOUT rise time	<9>	tкR				5	ns
CLKOUT fall time	<10>	tkF				5	ns

Remark $\mathrm{T}=\mathrm{t}$ tсүк

(2) Output waveform (other than X1, CLKOUT)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Output rise time	$<12>$	tor			10	ns
Output fall time	$<13>$	tof			10	ns

Signals other than X1, CLKOUT

(3) Reset timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { RESET high-level width }}$	$<14>$	twRsH		500		ns
$\overline{\text { RESET low-level width }}$	$<15>$	twRSL	When power supply is on, and STOP mode has been released	$500+$ Tos	ns	
		Other than when power supply is on, and STOP mode has been released	500	ns		

Remark Tos: Oscillation stabilization time

[MEMO]
(4) SRAM, external ROM, or external I/O access timing
(a) Access timing (SRAM, external ROM, or external I/O) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Address, $\overline{\mathrm{CSn}}$ output delay time (from CLKOUT \downarrow)	<16>	toka		2	10	ns
Address, $\overline{\mathrm{CSn}}$ output hold time (from CLKOUT \downarrow)	<17>	thKa		2	10	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{IORD}} \downarrow$ delay time (from CLKOUT \uparrow)	<18>	tokrdi		2	14	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{IORD}} \uparrow$ delay time (from CLKOUT \uparrow)	<19>	thkRDH		2	14	ns
$\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}}, \overline{\mathrm{IOWR}} \downarrow$ delay time (from CLKOUT \uparrow)	<20>	tokwrl		2	10	ns
$\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}}, \overline{\mathrm{OWR}} \uparrow$ delay time (from CLKOUT \uparrow)	<21>	thkwri		2	10	ns
$\overline{\text { BCYST }} \downarrow$ delay time (from CLKOUT \downarrow)	<22>	tDKBSL		2	10	ns
$\overline{\mathrm{BCYST}} \uparrow$ delay time (from CLKOUT \downarrow)	<23>	thkBSH		2	10	ns
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHKID		2		ns
Data output delay time (from CLKOUT \downarrow)	<28>	tokod		2	10	ns
Data output hold time (from CLKOUT \downarrow)	<29>	thкod		2	10	ns

Remarks 1. Maintain at least one of the data input hold times thkid and thrdid.
2. $\mathrm{n}=0$ to 7
(a) Access timing (SRAM, external ROM, or external I/O) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(b) Read timing (SRAM, external ROM, or external I/O) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Data input setup time (to address)	<30>	tsald			$\left(1.5+w^{\prime}+w\right) T-28$	ns
Data input setup time (to $\overline{\mathrm{RD}}$)	<31>	tsroid			$(1+w D+w) T-32$	ns
$\overline{\mathrm{RD}}, \overline{\text { IORD }}$ low-level width	<32>	twrdo		$(1+w d+w) T-10$		ns
$\overline{\mathrm{RD}}, \overline{\text { IORD }}$ high-level width	<33>	twroh		T-10		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\mathrm{RD}}$, $\overline{\text { IORD } \downarrow}$	<34>	toard		0.5T-10		ns
Delay time from $\overline{\mathrm{RD}}, \overline{\mathrm{ORD}} \uparrow$ to address	<35>	torda		$(0.5+i) T-10$		ns
Data input hold time (from $\overline{\mathrm{RD}}, \overline{\mathrm{IORD}} \uparrow$)	<36>	throid		0		ns
Delay time from $\overline{\mathrm{RD}}, \overline{\mathrm{ORD}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT setup time (to address) }}$	<38>	tsaw	Note		T-25	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsbsw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns

Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w: the number of waits due to $\overline{\text { WAIT. }}$
3. WD: the number of waits due to the DWC1 and DWC2 registers.
4. i: the number of idle states that are inserted when a write cycle follows a read cycle.
5. Maintain at least one of the data input hold times thkid and thrdid.
6. $\mathrm{n}=0$ to 7
(b) Read timing (SRAM, external ROM, or external I/O) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(c) Write timing (SRAM, external ROM, or external I/O) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-25	ns
$\overline{\text { WAIT setup time (to } \overline{\text { BCYST }} \downarrow \text {) }{ }^{\text {a }} \text { (}{ }^{\text {a }} \text { (}}$	<39>	tsbsw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\text { UWR }}, \overline{\text { LWR }}, \overline{I O W R} \downarrow$	<41>	toawr		0.5T-10		ns
Address setup time (to $\overline{U W R}, \overline{L W R}$, IOWR \uparrow)	<42>	tsawr		$(1.5+w D+w) T-10$		ns
Delay time from UWR, $\overline{\text { LWR }}, \overline{I O W R} \uparrow$ to address	<43>	towra		0.5T-10		ns
$\overline{\text { UWR, }}$, $\overline{\text { LWR }}$, IOWR high-level width	<44>	twwri		T-10		ns
$\overline{\text { UWR, }}$, $\overline{\text { LWR }}, \overline{\text { IOWR }}$ low-level width	<45>	twwRL		$(1+w D+w) T-10$		ns
Data output setup time (to $\overline{U W R}, \overline{\mathrm{LWR}}, \overline{\mathrm{OWR}} \uparrow$)	<46>	tsoowr		$(1.5+w D+w) T-10$		ns
Data output hold time (from UWR, $\overline{\text { LWR }, ~} \overline{\mathrm{IOWR}} \uparrow$)	<47>	thwrod		0.5T-10		ns

Note For first $\overline{\text { WAIT }}$ sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{tcyk}$
2. w : the number of waits due to $\overline{\mathrm{WAIT}}$.
3. wo: the number of waits due to the DWC1 and DWC2 registers.
4. $\mathrm{n}=0$ to 7
(c) Write timing (SRAM, external ROM, or external I/O) (2/2)

(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
$\overline{\mathrm{RD}}$ low-level width	<32>	twrdL		$\begin{gathered} (1+W D+W F+W) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RD}}$ high-level width	<33>	twroh		T-10		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\mathrm{RD}} \downarrow$	<34>	toard		0.5T-10		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to address	<35>	tbrda		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-25	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsbsw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address to $\overline{\mathrm{IOWR}} \downarrow$	<41>	tdawr		0.5T-10		ns
Address setup time (to $\overline{\mathrm{IOWR}} \uparrow$)	<42>	tsawr		$(1.5+w D+w) T-10$		ns
Delay time from $\overline{\mathrm{OWWR}} \uparrow$ to address	<43>	towra		0.5T-10		ns
$\overline{\text { IOWR }}$ high-level width	<44>	twwry		T-10		ns
$\overline{\text { IOWR }}$ low-level width	<45>	twwrL		$(1+w D+w) T-10$		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	<48>	towrrd	$W \mathrm{~F}=0$	0		ns
			$W \mathrm{~F}=1$	T-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\mathrm{IOWR}} \downarrow$	<49>	todawr		0.5T-10		ns
Delay time from $\overline{\overline{I O W R}} \uparrow$ to $\overline{\text { DMAAKm }} \uparrow$	<50>	towrda		$\left(0.5+W_{F}\right) T-10$		ns

Note For first $\overline{\text { WAIT }}$ sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w: the number of waits due to $\overline{\mathrm{WAIT}}$.
3. WD: the number of waits due to the DWC1 and DWC2 registers.
4. WF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.
5. i: the number of idle states that are inserted when a write cycle follows a read cycle.
6. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and wF $=0$.
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
$\overline{\text { IORD }}$ low-level width	<32>	twrdL		$\begin{gathered} (1+W D+W F+W) T \\ -10 \end{gathered}$		ns
$\overline{\text { IORD }}$ high-level width	<33>	twrin		T-10		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\mathrm{IORD}} \downarrow$	<34>	toard		0.5T-10		ns
Delay time from $\overline{\mathrm{IORD}} \uparrow$ to address	<35>	tDRDA		$(0.5+i) T-10$		ns
Delay time from $\overline{\text { IORD }} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-25	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsbsw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address to $\overline{\mathrm{UWR}}$, $\overline{\text { LWR }} \downarrow$	<41>	tdawr		0.5T-10		ns
Address setup time (to $\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}} \uparrow$)	<42>	tsawr		$(1.5+w D+w) T-10$		ns
Delay time from UWR, $\overline{\text { LWR }}$ to address	<43>	towra		0.5T-10		ns
$\overline{\text { UWR, }}$, LWR high-level width	<44>	twwre		T-10		ns
$\overline{\text { UWR, }}$, LWR low-level width	<45>	twwrl		$(1+w D+w) T-10$		ns
Delay time from $\overline{\text { UWR }}$, $\overline{\mathrm{LWR}} \uparrow$ to IORD \uparrow	<48>	towrrd	$\mathrm{W} F=0$	0		ns
			$W F=1$	T-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to I $\overline{\text { ORD }} \downarrow$	<51>	todard		$0.5 \mathrm{~T}-10$		ns
Delay time from $\overline{\text { IORD }} \uparrow$ to $\overline{\text { DMAAKm }} \uparrow$	<52>	tordia		$0.5 \mathrm{~T}-10$		ns

Note For first $\overline{\text { WAIT }}$ sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{yk}$
2. w : the number of waits due to $\overline{\text { WAIT }}$.
3. WD: the number of waits due to the DWC1 and DWC2 registers.
4. WF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.
5. i: the number of idle states that are inserted when a write cycle follows a read cycle.
6. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and wF $=0$.
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(5) Page ROM access timing (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
WAIT hold time (from CLKOUT \downarrow)	<25>	thкw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHKID		2		ns
Off-page data input setup time (to address)	<30>	tsald			$(1.5+w d+w) T-28$	ns
Off-page data input setup time (to $\overline{\mathrm{RD}}$)	<31>	tspoid			$(1+w D+w) T-32$	ns
Off-page $\overline{\mathrm{RD}}$ low-level width	<32>	twroL		$(1+w D+w) T-10$		ns
$\overline{\mathrm{RD}}$ high-level width	<33>	twroh		0.5T-10		ns
Data input hold time (from $\overline{\mathrm{RD}}$)	<36>	throid		0		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
On-page $\overline{\mathrm{RD}}$ low-level width	<53>	twordi		$\begin{gathered} \left(1.5+W_{P R}+w\right) T \\ -10 \end{gathered}$		ns
On-page data input setup time (to address)	<54>	tsoald			$(1.5+$ WPR +w$) \mathrm{T}-28$	ns
On-page data input setup time (to $\overline{\mathrm{RD}}$)	<55>	tsoroid			$(1.5+$ WPR +w$) \mathrm{T}-32$	ns

Remarks 1. $\mathrm{T}=\mathrm{tcyk}$
2. w: the number of waits due to $\overline{\text { WAIT }}$.
3. wD: the number of waits due to the DWC1 and DWC2 registers.
4. WPR: the number of waits due to the PRC register.
5. i: the number of idle states that are inserted when a write cycle follows a read cycle.
6. Maintain at least one of the data input hold times thkid and throid.
(5) Page ROM access timing (2/2)

Note On-page and off-page addresses are as follows.

PRC Register			On-page Addresses	Off-page Addresses
MA5	MA4	MA3		
0	0	0	A0, A1	A2 to A23
0	0	1	A0 to A2	A3 to A23
0	1	1	A0 to A3	A4 to A23
1	1	1	A0 to A4	A5 to A23

Remarks 1. This is the timing for the following case.
Number of waits due to the DWC1 and DWC2 registers (TDW): 1
Number of waits due to the PRC register (TPRW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7

(6) DRAM access timing

(a) Read timing (high-speed page DRAM access, normal access: off-page) (1/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHKID		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
Row address setup time	<56>	tasr		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	trah		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	tasc		0.5T-10		ns
Column address hold time	<59>	tcah		$(1.5+W D A+W) T-10$		ns
Read/write cycle time	<60>	trc		$\begin{aligned} &\left(3+W_{A P}+W_{A H}+W_{D A}+w\right) T \\ &-10 \end{aligned}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	trp		(0.5 + WRP) T - 10		ns
$\overline{\mathrm{RAS}}$ pulse time	<62>	tras		$\begin{gathered} \left(2.5+W_{R H}+W D A+W\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsi		$(1.5+W D A+W) T-10$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$(2+W D A+W) T-10$		ns
CAS pulse width	<65>	tcas		$(1+W D A+W) T-10$		ns
$\overline{\text { CAS }-~} \overline{\text { RAS }}$ precharge time	<66>	tcre		$(1+$ WRP $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcsh		$\begin{gathered} \left(2+W_{R H}+W_{D A}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\text { WE }}$ setup time	<68>	trcs		$(2+$ WRP + WRH)T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trich		T-10		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tcpn		$(2+$ WRP + WRH $) T-10$		ns
Output enable access time	<72>	toea			$\begin{gathered} \left(2+W_{R P}+W_{R H}+W_{D A}+W\right) T \\ -28 \end{gathered}$	ns
$\overline{\mathrm{RAS}}$ access time	<73>	$t_{\text {RAC }}$			$\begin{gathered} \left(2+W_{R H}+W D A+W\right) T \\ -28 \end{gathered}$	ns
Access time from column address	<74>	$t_{\text {AA }}$			$(1.5+$ WDA + W)T-28	ns
$\overline{\text { CAS }}$ access time	<75>	tcac			$(1+W D A+W) T-28$	ns

Remarks 1. $\mathrm{T}=$ tcyk
2. w : the number of waits due to $\overline{W A I T}$.
3. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. i: the number of idle states that are inserted when a write cycle follows a read cycle.
(a) Read timing (high-speed page DRAM access, normal access: off-page) (2/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\mathrm{RAS}}$ column address delay time	<76>	trad		$\left(0.5+\right.$ Wrh $^{\text {) }}$ T - 10		ns
RAS-CAS delay time	<77>	trco		($1+$ Wвн) ${ }^{\text {- }}$ - 10		ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)	<78>	toez		0		ns
Output buffer turn-off delay time (from CAS \uparrow)	<79>	toff		0		ns

Remarks 1. $\mathrm{T}=\mathrm{t}$ tеук
2. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(a) Read timing (high-speed page DRAM access, normal access: off-page) (3/3)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
[MEMO]
(b) Read timing (high-speed page DRAM access: on-page) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	thkid		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
Column address setup time	<58>	$t_{\text {ASC }}$		$(0.5+\mathrm{WCP}) \mathrm{T}-10$		ns
Column address hold time	<59>	tcah		$(1.5+$ WDA $) T-10$		ns
$\overline{\text { RAS }}$ hold time	<63>	trsh		$(1.5+$ WDA $)$ T - 10		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$(2+W C P+$ WDA $) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<68>	tres		$(1+\mathrm{WCP}) \mathrm{T}-10$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trich		T-10		ns
Output enable access time	<72>	toea			$(1+W C P+W D A) T-28$	ns
Access time from column address	<74>	$t_{\text {A }}$			$(1.5+W C P+W D A) T-28$	ns
$\overline{\mathrm{CAS}}$ access time	<75>	tcac			$(1+\mathrm{WDA}) \mathrm{T}-28$	ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)	<78>	toez		0		ns
Output buffer turn-off delay time (from $\overline{\text { CAS } \uparrow \text {) }}$	<79>	toff		0		ns
Access time from $\overline{\mathrm{CAS}}$ precharge	<80>	$t_{\text {ACP }}$			$(2+W C P+W D A) T-28$	ns
CAS precharge time	<81>	tcp		$(1+\mathrm{WCP}) \mathrm{T}-10$		ns
High-speed page mode cycle time	<82>	tpc		$(2+W C P+W D A) T-10$		ns
$\overline{\text { RAS }}$ hold time for $\overline{\text { CAS }}$ precharge	<83>	trhcp		$(2.5+W C P+W D A) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WDA: the number of waits due to the DACxx bit of the DRCn register ($\mathrm{n}=0$ to $3, \mathrm{xx}=00$ to 03,10 to 13).
4. i: the number of idle states that are inserted when a write cycle follows a read cycle.
(b) Read timing (high-speed page DRAM access: on-page) (2/2)

(c) Write timing (high-speed page DRAM access, normal access: off-page) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thкw		2		ns
Row address setup time	<56>	tasr		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	$t_{\text {Rah }}$		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	tasc		$0.5 \mathrm{~T}-10$		ns
Column address hold time	<59>	tcah		$(1.5+W D A+W) T-10$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+W_{D A}+\right. \\ W) T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	trp		$(0.5+$ WRP $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ pulse time	<62>	tras		$\begin{gathered} \left(2.5+W_{R H}+W D A+W\right) T \\ -10 \end{gathered}$		ns
$\overline{\text { RAS }}$ hold time	<63>	trsh		$(1.5+$ WDA +W$) \mathrm{T}-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)	<64>	tral		$(2+$ WDA + w $) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+W D A+W) T-10$		ns
$\overline{\mathrm{CAS}}-\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		$(1+$ Wвн $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcSH		$\begin{gathered} \left(2+W_{R H}+W_{D A}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tcpn		(2 + WRP + WRH)T-10		ns
$\overline{\mathrm{RAS}}$ column address delay time	<76>	trad		$(0.5+$ WRH $)$ T - 10		ns
$\overline{\text { RAS }}$-CAS delay time	<77>	trci		$(1+$ Wвн $)$ T - 10		ns
$\overline{\mathrm{WE}}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<84>	twcs		$\begin{gathered} \left(1+W_{R P}+W_{R H}\right) T \\ -10 \end{gathered}$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twCH		$(1+W D A+W) T-10$		ns
Data setup time (to $\overline{\text { CAS }} \downarrow$)	<86>	tos		$(1.5+$ WRP + WRH)T-10		ns
Data hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<87>	toh		$(1.5+W D A+w) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{t}$ tүк
2. w : the number of waits due to $\overline{\mathrm{WAIT}}$.
3. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WRн: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(c) Write timing (high-speed page DRAM access, normal access: off-page) (2/2)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(d) Write timing (high-speed page DRAM access: on-page) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Column address setup time	<58>	tasc		(0.5 + WCP) T-10		ns
Column address hold time	<59>	tcai		$(1.5+$ WDA $)$ T - 10		ns
RAS hold time	<63>	trse		$(1.5+$ WDA $) T-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)	<64>	tral		$(2+W C P+W D A) T-10$		ns
$\overline{\text { CAS }}$ pulse width	<65>	tcas		$(1+$ WDA $) T-10$		ns
CAS precharge time	<81>	tcp		$(1+\mathrm{WCP}) \mathrm{T}-10$		ns
$\overline{\text { RAS }}$ hold time for $\overline{\text { CAS }}$ precharge	<83>	trhcp		$\begin{gathered} (2.5+W C P+W D A) T \\ -10 \end{gathered}$		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<84>	twcs	$\mathrm{W} C \mathrm{P} \geq 1$	wCPT - 10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twch		$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
Data setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<86>	tos		$(0.5+\mathrm{WCP}) \mathrm{T}-10$		ns
Data hold time (from $\overline{\text { CAS }} \downarrow$)	<87>	tDH		$(1.5+$ WDA $)$ T - 10		ns
$\overline{\text { WE }}$ read time (from $\overline{\mathrm{RAS}} \uparrow$)	<88>	trwL	$W C P=0$	$(1.5+$ WDA $) T-10$		ns
$\overline{\mathrm{WE}}$ read time (from $\overline{\mathrm{CAS}} \uparrow$)	<89>	towL	$W C P=0$	$(1+\mathrm{Wda}) \mathrm{T}-10$		ns
Data setup time (to $\overline{\mathrm{WE}} \downarrow$)	<90>	toswe	$W C P=0$	0.5T-10		ns
Data hold time (from $\overline{\mathrm{WE}} \downarrow$)	<91>	tohwe	$W C P=0$	$(1.5+$ WDA $)$ T - 10		ns
$\overline{\text { WE pulse width }}$	<92>	twp	$W C P=0$	$(1+$ WDA $) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tcyk}$
2. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(d) Write timing (high-speed page DRAM access: on-page) (2/2)

$\overline{\text { WAIT }}$ (Input)
\qquad
\qquad

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(e) Read timing (EDO DRAM) (1/3)

Parameter		Symbol		Condition	MIN.	MAX.	Unit
Data input setup time (to CLKOUT \uparrow)		<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)		<27>	tHKID		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output		<37>	tordod		$(0.5+i) T-10$		ns
Row address setup time		<56>	tasr		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time		<57>	trah		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time		<58>	tasc		0.5T-10		ns
Column address hold time		<59>	tcah		$(0.5+$ WDA $) T-10$		ns
$\overline{\mathrm{RAS}}$ precharge time		<61>	trp		$(0.5+$ WrP) $\mathrm{T}-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)		<64>	tral		$(2+W C P+W D A) T-10$		ns
CAS-RAS precharge time		<66>	tcre		$(1+$ WRP $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ hold time		<67>	tcsh		$(1.5+$ WRH + WDA $)$ T - 10		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)		<68>	trcs		(2 + WRP + WRH)T-10		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)		<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)		<70>	tren		$1.5 \mathrm{~T}-10$		ns
$\overline{\mathrm{RAS}}$ access time		<73>	$t_{\text {RAC }}$			$(2+$ WRH + WDA $)$ T - 28	ns
Access time from column address		<74>	$t_{A A}$			$(1.5+$ WDA $)$ T - 28	ns
$\overline{\text { CAS }}$ access time		<75>	tcac			$(1+\mathrm{WDA}) \mathrm{T}-28$	ns
Delay time from $\overline{\mathrm{RAS}}$ to column address		<76>	$t_{\text {Rad }}$		$(0.5+$ WRH $)$ T - 10		ns
$\overline{\text { RAS }}-\overline{\mathrm{CAS}}$ delay time		<77>	trci		$(1+$ WRн $)$ T - 10		ns
Output buffer turn-off delay time (from OE)		<78>	toez		0		ns
Access time from $\overline{\mathrm{CAS}}$ precharge		<80>	$t_{\text {ACP }}$			(1.5 + WCP + WDA)T - 28	ns
$\overline{\mathrm{CAS}}$ precharge time		<81>	tcp		$(0.5+$ Wcp) $T-10$		ns
$\overline{\text { RAS }}$ hold time for $\overline{\text { CAS }}$ precharge		<83>	$\mathrm{trhcP}^{\text {l }}$		(2+WCP + WDA $) T-10$		ns
Read cycle time		<93>	thPC		$(1+W D A+W C P) T-10$		ns
RAS pulse width		<94>	trasp		$\left(2.5+\right.$ WrH $^{+}$WDA $) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width		<95>	thcas		$(0.5+$ WDA $)$ T - 10		ns
$\overline{\text { CAS }}$ hold time from $\overline{\mathrm{OE}}$	Off-page	<96>	toch1		$\left(2+W_{R H}+W_{\text {dA }}\right) T-10$		ns
	On-page	<97>	toch2		$(0.5+$ WDA $) T-10$		ns
Data input hold time (from $\overline{\text { CAS }} \downarrow$)		<98>	tDHC		0		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. i: the number of idle states that are inserted when a write cycle follows a read cycle.
(e) Read timing (EDO DRAM) (2/3)

Parameter		Symbol		Condition	MIN.	MAX.
Output enable access time	Off-page	$<99>$	toEA1			$(2+$ WRP + WRH + WDA $) T$ -28

Remarks 1. $\mathrm{T}=$ tсүк
2. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(e) Read timing (EDO DRAM) (3/3)

Note For on-page access from another cycle during the $\overline{\mathrm{RASn}}$ low-level signal.

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
[MEMO]

(f) Write timing (EDO DRAM) (1/2)

Parameter		Symbol		Condition	MIN.	MAX.	Unit
Row address setup time		<56>	tasr		(0.5 + WRP) ${ }^{\text {- }} 10$		ns
Row address hold time		<57>	trat		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time		<58>	tasc		0.5T-10		ns
Column address hold time		<59>	tcan		$(0.5+$ WDA $)$ T - 10		ns
$\overline{\text { RAS }}$ precharge time		<61>	trp		$(0.5+$ WRP $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ hold time		<63>	trsi		$(1.5+$ WDA $) T-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)		<64>	tral		$(2+W C P+W D A) T-10$		ns
CAS-RAS precharge time		<66>	tcre		$(1+$ WRP $) T-10$		ns
$\overline{\mathrm{CAS}}$ hold time		<67>	tcsi		$\left(1.5+\right.$ WRH $^{+}$WDA $) T-10$		ns
Delay time from $\overline{\mathrm{RAS}}$ to column address		<76>	trad		$(0.5+$ WRH $)$ T - 10		ns
$\overline{\text { RAS }}$ - $\overline{C A S}$ delay time		< $77>$	tred		$(1+$ WRн $) T-10$		ns
$\overline{\mathrm{CAS}}$ precharge time		<81>	tcp		$(0.5+W C P) T-10$		ns
$\overline{\text { RAS }}$ hold time for $\overline{\mathrm{CAS}}$ precharge		<83>	trhcp		$(2+W C P+W D A) T-10$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\text { CAS }} \downarrow$)		<85>	twCH		$(1+\mathrm{Wda}) \mathrm{T}-10$		ns
Data hold time (from $\overline{\text { CAS }} \downarrow$)		<87>	toh		$(0.5+$ WDA $)$ T - 10		ns
$\overline{\text { WE }}$ read time (from $\overline{\text { RAS }} \uparrow$)	On-page	<88>	trwL	$\mathrm{WCP}=0$	$(1.5+$ WDA $)$ T - 10		ns
WE read time (from $\overline{\mathrm{CAS}} \uparrow$)	On-page	<89>	towL	$W C P=0$	$(0.5+$ WDA $) T-10$		ns
WE pulse width	On-page	<92>	twp	$W C P=0$	$(1+$ Wda $) T-10$		ns
Write cycle time		<93>	thpC		$(1+W D A+W C P) T-10$		ns
$\overline{\text { RAS }}$ pulse width		<94>	$t_{\text {RASP }}$		$(2.5+$ WRH + WDA $)$ T - 10		ns
$\overline{\text { CAS }}$ pulse width		<95>	thcas		$(0.5+$ WDA $)$ T - 10		ns
WE setup time (to $\overline{\text { CAS }} \downarrow$)	Off-page	<101>	twcs1		$\left(1+W_{R P}+W_{R H}\right) T-10$		ns
	On-page	<102>	twcs2	$W C P \geq 1$	WCPT - 10		ns
Data setup time (to CAS \downarrow)	Off-page	<103>	tos1		$(1.5+$ WRP + WRH) $T-10$		ns
	On-page	<104>	tos2		$(0.5+\mathrm{WCP}) \mathrm{T}-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(f) Write timing (EDO DRAM) (2/2)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (1/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
Delay time from address to IOWR \downarrow	<41>	toawr		(0.5 + WRP) ${ }^{\text {a }}$ - 10		ns
Address setup time (to $\overline{\mathrm{IOWR}} \uparrow$)	<42>	tsawr		$\begin{gathered} (2+W R P+W R H+W D A+ \\ w) T-10 \end{gathered}$		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to address	<43>	towra		0.5T-10		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	<48>	towrrd	$\mathrm{W}=\mathrm{F}=0$	0		ns
			$W_{F}=1$	T-10		ns
$\overline{\text { IOWR }}$ low-level width	<50>	twwrL		$\begin{gathered} (2+W R H+W D A+w) T \\ -10 \end{gathered}$		ns
Row address setup time	<56>	tasR		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	trat		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	tasc		0.5T-10		ns
Column address hold time	<59>	tcah		$\begin{gathered} (1.5+W D A+W F+W) T \\ -10 \end{gathered}$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+W_{D A}+\right. \\ \left.W_{F}+w\right) T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	trp		(0.5 + WRP) T - 10		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$\begin{gathered} (1.5+W D A+W F+W) T \\ -10 \end{gathered}$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$\begin{gathered} (2+W C P+W D A+W F+ \\ W) T-10 \end{gathered}$		ns
$\overline{\text { CAS }}$ pulse width	<65>	tcas		$\begin{gathered} (1+W D A+W F+W) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}-\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		$(1+$ WRP $) T-10$		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcsi		$\begin{gathered} \left(2+W_{R H}+W D A+W F+\right. \\ w) T-10 \end{gathered}$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w: the number of waits due to $\overline{\mathrm{WAIT}}$.
3. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
7. WF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. i: the number of idle states that are inserted when a write cycle follows a read cycle.
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (2/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<68>	trics		$(2+W R P+W R H) T-10$		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trach		$1.5 \mathrm{~T}-10$		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tcpn		(2 + WRP + WRH) T - 10		ns
Delay time from RAS to column address	<76>	$t_{\text {RAD }}$		$(0.5+$ WRH $)$ T - 10		ns
RAS-CAS delay time	<77>	trcD		$\left(1+\right.$ WRH) $\mathrm{T}^{\text {- }}$ - 10		ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)	<78>	toez		0		ns
Output buffer turn-off delay time (from $\overline{\mathrm{CAS}} \uparrow$)	<79>	toff		0		ns
$\overline{\mathrm{CAS}}$ precharge time	<81>	tcp		$(0.5+\mathrm{WCP}) \mathrm{T}-10$		ns
High-speed page mode cycle time	<82>	tpc		$\begin{gathered} (2+W C P+W D A+W F+W) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge	<83>	trhcp		$\begin{gathered} (2.5+W C P+W D A+W F+W) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ pulse width	<94>	trasp		$\begin{gathered} \left(2.5+W_{R H}+W_{D A}+W_{F}+W\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}$ hold time from $\overline{\mathrm{OE}}$ (from $\overline{\mathrm{CAS}} \uparrow$)	<96>	toch1		$\begin{gathered} \left(2.5+W_{R P}+W_{R H}+W_{D A}+\right. \\ \left.W_{F}+W\right) T-10 \end{gathered}$		ns
	<97>	toch2		$\begin{gathered} \left(1.5+W_{C P}+W_{D A}+W_{F}+W^{2}\right) T \\ -10 \end{gathered}$		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$	<105>	todacs		$(1.5+$ WRн $)$ T - 10		ns
Delay time from $\overline{\mathrm{IOWR}} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$	<106>	tordcs		$(1+$ WRH $)$ T - 10		ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. w : the number of waits due to $\overline{\text { WAIT. }}$
3. wCP : the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
7. WF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. $\mathrm{m}=0$ to 3
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (3/3)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1 Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1 Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (1/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
$\overline{\text { IORD }}$ low-level width	<32>	twrdi		$(2+W R H+W D A+W F+W) T-10$		ns
$\overline{\text { IORD }}$ high-level width	<33>	twroh		T-10		ns
Delay time from address to $\overline{\text { IORD }} \uparrow$	<34>	tdard		0.5T-10		ns
Delay time from $\overline{\overline{O R D}} \uparrow$ to address	<35>	tbrda		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Row address setup time	<56>	$\mathrm{t}_{\text {ASR }}$		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	trah		$(0.5+$ WRн $)$ T - 10		ns
Column address setup time	<58>	tasc		0.5T-10		ns
Column address hold time	<59>	tcah		$(1.5+$ WDA + WF) T - 10		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+W D A+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	trp		(0.5 + WRP) ${ }^{\text {- }}$ - 10		ns
$\overline{\text { RAS }}$ hold time	<63>	trsh		$(1.5+$ WDA + WF) T - 10		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$(2+W C P+W D A+W F+W) T-10$		ns
$\overline{\text { CAS }}$ pulse width	<65>	tcas		$\left(1+W D A+W_{F}\right) T-10$		ns
$\overline{\text { CAS }-\overline{R A S ~}}$ precharge time	<66>	tcrp		$(1+$ WRP $) T-10$		ns
$\overline{\text { CAS }}$ hold time	<67>	tcsh		$(2+W R H+W D A+W F+W) T-10$		ns
$\overline{\text { CAS }}$ precharge time	<71>	tcpn		$(2+W R P+W R H+W) T-10$		ns
Delay time from $\overline{\mathrm{RAS}}$ to column address	<76>	trad		$(0.5+$ Wвн $)$ T - 10		ns
$\overline{\text { RAS }-C A S ~ d e l a y ~ t i m e ~}$	<77>	$t_{\text {RCD }}$		$\left(1+W_{R H}+w\right) T-10$		ns
$\overline{\text { CAS }}$ precharge time	<81>	tcp		$(0.5+W C P+w) T-10$		ns
High-speed page mode cycle time	<82>	tpc		$(2+W C P+W D A+W F+W) T-10$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\text { CAS }}$ precharge	<83>	trhcP		$(2.5+W C P+W D A+W) T-10$		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twch		$(1+$ WDA $)$ T - 10		ns
$\overline{\text { WE }}$ read time (from $\overline{\mathrm{RAS}} \uparrow$)	<88>	trwL	$W C P=0$	$(1.5+W D A+W) T-10$		ns

Remarks 1. $\mathrm{T}=$ tcyk
2. w : the number of waits due to $\overline{\text { WAIT. }}$
3. WRH: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
7. WF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. i: the number of idle states that are inserted when a write cycle follows a read cycle.
9. $\mathrm{n}=0$ to 7
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (2/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\mathrm{WE}}$ read time (from $\overline{\mathrm{CAS}} \uparrow$)	<89>	tcw	$W C P=0$	$(1+W D A+w) T-10$		ns
$\overline{\mathrm{WE}}$ pulse width	<92>	twp	$W C P=0$	$(1+W D A+W) T-10$		ns
$\overline{\mathrm{RAS}}$ pulse width	<94>	trasp		$\left(2.5+W_{R H}+W D A+W F+w\right) T-10$		ns
WE setup time \quad Off-page	<101>	twcs1	$W C P=0$	$\left(1+W_{R H}+W_{R P}+w\right) T-10$		ns
On-page	<102>	twcs2	$\mathrm{WCP} \geq 1$	WCPT - 10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\text { CAS }} \downarrow$	<105>	todacs		$\left(1.5+W_{R H}+W\right) T-10$		ns
Delay time from $\overline{\text { IORD }} \downarrow$ to $\overline{\text { CAS }} \downarrow$	<106>	tordcs		$\left(1+W_{R H}+w\right) T-10$		ns
Delay time from $\overline{\mathrm{WE}} \uparrow$ to $\overline{\mathrm{IORD}} \uparrow$	<107>	towerd	$W \mathrm{~F}=0$	0		ns
			$W F=1$	T-10		ns

Remarks 1. $\mathrm{T}=\mathrm{t}$ tүк
2. w : the number of waits due to $\overline{\mathrm{WAIT}}$.
3. WRн: the number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: the number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WRP: the number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. WCP: the number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
7. WF: the number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. $m=0$ to 3
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (3/3)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3

(i) CBR refresh timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\mathrm{RAS}}$ precharge time	<61>	$t_{\text {RP }}$		$(1.5+$ WRRW) $T-10$		ns
RAS pulse width	<62>	tras		$\left(1.5+\right.$ Wrcw $\left.^{\text {Note }}\right) \mathrm{T}-10$		ns
CAS hold time	<108>	tchr		$\left(1.5+\right.$ Wrcw $\left.^{\text {Note }}\right) \mathrm{T}-10$		ns
$\widehat{R E F R Q}$ pulse width	<109>	twrFL		$\left(3+W_{\text {RrW }}+W^{\text {d }}\right.$ ($\left.W^{\text {Note }}\right) T-10$		ns
$\overline{\text { RAS }}$ precharge $\overline{\text { CAS }}$ hold time	<110>	trPC		(0.5 + WRRW) T - 10		ns
REFRQ active delay time (from CLKOUT \downarrow)	<111>	tokrf		2	10	ns
REFRQ inactive delay time (from CLKOUT \downarrow)	<112>	thkrf		2	10	ns
$\overline{\mathrm{CAS}}$ setup time	<113>	tcsr		T-10		ns

Note At least one clock cycle is inserted by default for WRCw regardless of the settings of the RCW0 to RCW2 bits of the RWC register.

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{yk}$
2. WRRW: the number of waits due to the RRW0 and RRW1 bits of the RWC register.
3. WRCw: the number of waits due to the RCW0 to RCW2 bits of the RWC register.

Note This TRCW is always inserted regardless of the settings of the RCW0 to RCW2 bits of the RWC register.

Remarks 1. This is the timing for the following case.
Number of waits due to the RRW0 and RRW1 bits of the RWC register (TRRW): 1
Number of waits due to the RCW0 to RCW2 bits of the RWC register (TRCW): 2
2. $\mathrm{n}=0$ to 7
(j) CBR self-refresh timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{R E F R Q}$ active delay time (from CLKOUT \downarrow)	<111>	tokrf		2	10	ns
REFRQ inactive delay time (from CLKOUT \downarrow)	<112>	thkRF		2	10	ns
CAS hold time	<114>	tchs		-5		ns
$\overline{\mathrm{RAS}}$ precharge time	<115>	trps		$(1+2 W s R W) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} Y \mathrm{k}$
2. WSRW: the number of waits due to the SRW0 to SRW2 bits of the RWC register.

(7) DMAC timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
	<116>	tsdrk		15		ns
$\overline{\text { DMARQn }}$ hold time (from CLKOUT \uparrow)	<117>	thkorı		2		ns
	<118>	thkorz		Until $\overline{\text { DMAAKn }} \downarrow$		ns
DMAAKn output delay time (from CLKOUT \downarrow)	<119>	tokda		2	10	ns
DMAAKn output hold time (from CLKOUT \downarrow)	<120>	tнкхА		2	10	ns
TCn output delay time (from CLKOUT \downarrow)	<121>	toktc		2	10	ns
TCn output hold time (from CLKOUT \downarrow)	<122>	tнктс		2	10	ns

Remark $\mathrm{n}=0$ to 3

[MEMO]
(8) Bus hold timing (1/2)

Parameter	Symbol		Condition	MIN.	MAX	Unit
$\overline{\text { HLDRQ }}$ setup time (to CLKOUT \uparrow)	<123>	tshrk		15		ns
$\overline{\text { HLDRQ }}$ hold time (from CLKOUT \uparrow)	<124>	thKHR		2		ns
Delay time from CLKOUT \downarrow to $\overline{\text { HLDAK }}$	<125>	tokha		2	10	ns
HLDRQ high-level width	<126>	twhor		T+17		ns
$\overline{\text { HLDAK }}$ low-level width	<127>	twhal		T-8		ns
Delay time from $\overline{\mathrm{CLKOUT}} \downarrow$ to bus float	<128>	tokcF			10	ns
Delay time from $\overline{\text { HLDAK }} \uparrow$ to bus output	<129>	tohac		0		ns
Delay time from $\overline{\text { HLDRQ }} \downarrow$ to $\overline{\text { HLDAK }} \downarrow$	<130>	tDHOHA1		2.5 T		ns
Delay time from $\overline{\mathrm{HLDRQ}} \uparrow$ to $\overline{\mathrm{HLDAK}} \uparrow$	<131>	tDHOHA2		0.5T	1.5T	ns

Remark $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
(8) Bus hold timing (2/2)

Remarks 1. The broken lines indicate high impedance.
2. $\mathrm{n}=0$ to 7

(9) Interrupt timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
NMI high-level width	$<132>$	twNiH		500	ns	
NMI low-level width	$<133>$	twnil		500	ns	
INTPn high-level width	$<134>$	twith		$4 T+10$	ns	
INTPn low-level width	$<135>$	twITL		$4 T+10$	ns	

Remarks 1. $n=100$ to 103,110 to 113,120 to 123,130 to 133,140 to 143 , or 150 to 153
2. $T=t \subset Y K$

(10) RPU timing

| Parameter | Symbol | Condition | MIN. | MAX. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| TI1n high-level width | $<136>$ | twTIH | | $3 T+18$ | ns |
| TI1n low-level width | $<137>$ | twTIL | | $3 T+18$ | ns |
| TCLR1n high-level width | $<138>$ | twTCH | | $3 T+18$ | ns |
| TCLR1n low-level width | $<139>$ | twTCL | | $3 T+18$ | ns |

Remarks 1. $\mathrm{n}=0$ to 5
2. $T=t \subset Y \mathrm{~K}$

(11) UART0, UART1 timing (clock-synchronized or master mode only)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { SCKn cycle }}$	<140>	tcysko	Output	250		ns
$\overline{\text { SCKn }}$ high-level width	<141>	twskoh	Output	0.5tcysko - 20		ns
$\overline{\text { SCKn }}$ low-level width	<142>	twskol	Output	0.5tcysko - 20		ns
RXDn setup time (to $\overline{\text { SCKn }} \uparrow$)	<143>	tsrxsk		30		ns
RXDn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<144>	thskrx		0		ns
TXDn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<145>	tosktx			20	ns
TXDn output hold time (from $\overline{\text { SCKn }} \uparrow$)	<146>	thskTx		0.5 tcysko - 5		ns

Remark $\mathrm{n}=0,1$

Remarks 1. The broken lines indicate high impedance.
2. $\mathrm{n}=0,1$
(12) CSIO to CSI3 timing
(a) Master mode

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<147>	tcrski	Output	100		ns
$\overline{\text { SCKn }}$ high-level width	<148>	twsk1H	Output	0.5tcysk 1 - 20		ns
$\overline{\text { SCKn }}$ low-level width	<149>	twsk1L	Output	0.5tcysk 1 - 20		ns
SIn setup time (to $\overline{\text { SCKn } \uparrow \text {) }}$	<150>	tssIsk		30		ns
SIn hold time (from $\overline{\text { SCKn }} \uparrow$)	<151>	thsksi		0		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<152>	toskso			20	ns
SOn output hold time (from $\overline{\text { SCKn } \uparrow \text {) }}$	<153>	thskso		0.5tcYSk1 - 5		ns

Remark $\mathrm{n}=0$ to 3

(b) Slave mode

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { SCKn cycle }}$	<147>	tcrski	Input	100		ns
$\overline{\text { SCKn }}$ high-level width	<148>	twskith	Input	30		ns
$\overline{\text { SCKn }}$ low-level width	<149>	twskiL	Input	30		ns
SIn setup time (to $\overline{\mathrm{SCKn}} \uparrow$)	<150>	tssIsk		10		ns
SIn hold time (from $\overline{\text { SCKn }} \uparrow$)	<151>	tHSksi		10		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<152>	toskso			30	ns
SOn output hold time (from $\overline{\text { SCKn } \uparrow \text {) }}$	<153>	thskso		twskiH		ns

Remark $\mathrm{n}=0$ to 3

Remarks 1. The broken lines indicate high impedance.
2. $\mathrm{n}=0$ to 3

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+70^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-40$,
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} \ldots \mu \mathrm{PD} 703100-33,703101-33,703102-33$,
VDD $=C V D D=3.0$ to $3.6 \mathrm{~V}, \mathrm{HVDD}=5.0 \mathrm{~V} \pm 10 \%$, Vss $=0 \mathrm{~V}$,
HVDD - 0.5 V \leq AVDD \leq HVDD, output pin load capacitance: $C_{L}=50 \mathrm{pF}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX	Unit
Resolution	-		10			bit
Total error	-				± 4	LSB
Quantization error	-				$\pm 1 / 2$	LSB
Conversion time	tconv		5		10	$\mu \mathrm{s}$
Sampling time	tsamp		Conversion clock ${ }^{\text {Note }} / 6$			ns
Zero scale error	-				± 4	LSB
Scale error	-				± 4	LSB
Linearity error	-				± 3	LSB
Analog input voltage	VIAN		-0.3		$A V_{\text {ref }}+0.3$	V
Analog input resistance	Ran			2		$\mathrm{M} \Omega$
$A V_{\text {ref }}$ input voltage	$A V_{\text {ref }}$	$A V_{\text {REF }}=A V_{\text {dD }}$	4.5		5.5	V
A $V_{\text {ref }}$ input current	Alref				2.0	mA
AVdd current	Aldd				6	mA

Note Conversion clock is the number of clocks set by the ADM1 register.

4. PACKAGE DRAWING

^ 144-PIN PLASTIC LQFP (FINE PITCH) (20x20)

detail of lead end

OTE
Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	22.0 ± 0.2
B	20.0 ± 0.2
C	20.0 ± 0.2
D	22.0 ± 0.2
F	1.25
G	1.25
H	0.22 ± 0.05
I	0.08
J	$0.5($ T.P. $)$
K	1.0 ± 0.2
L	0.5 ± 0.2
M	$0.17_{-0}^{+0.03}$
N	0.08
P	1.4
Q	0.10 ± 0.05
R	$3^{\circ}+4^{\circ}$
S	1.5 ± 0.1
	S144GJ-50-UEN

5. RECOMMENDED SOLDERING CONDITIONS

The μ PD703100-33, 703100-40, 703101-33, and 703102-33 should be soldered and mounted under the following recommended conditions.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)
Table 5-1. Surface Mounting Type Soldering Conditions (1/2)
(1) μ PD703100GJ-40-UEN: 144-pin plastic LQFP (fine pitch) (20×20)
μ PD703100GJ-33-UEN: $\quad 144$-pin plastic LQFP (fine pitch) (20×20)
μ PD703101GJ-33-xxx-UEN: $\quad 144$-pin plastic LQFP (fine pitch) (20×20)
μ PD703102GJ-33-xxx-UEN: $\quad 144-$ pin plastic LQFP (fine pitch) (20×20)

Soldering Method		Soldering Conditions Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: two times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 25 to 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: two times or less, Exposure limit: 3 days ${ }^{\text {Note (after that, prebake at } 125^{\circ} \mathrm{C} \text { for } 10}$ hours)	VP15-103-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.
(2) μ PD703100GJ-33-UEN-A: 144 -pin plastic LQFP (fine pitch) (20×20)

Soldering Method		Reldering Conditions Recommendition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: Three times or less, Exposure limit: 3 days ${ }^{\text {Note (after that, prebake at } 125^{\circ} \mathrm{C} \text { for }}$ 20 to 72 hours)	IR60-203-3
Wave soldering	For details, consult an NEC Electronics sales representative.	-
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with $-A$ at the end of the part number are lead-free products.
2. For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.

Table 5-1. Surface Mounting Type Soldering Conditions (2/2)
(3) μ PD703100GJ-40-UEN-A: 144 -pin plastic LQFP (fine pitch) (20×20)
μ PD703101GJ-33-xxx-UEN-A: 144-pin plastic LQFP (fine pitch) (20×20)
μ PD703102GJ-33-xxx-UEN-A: 144-pin plastic LQFP (fine pitch) $\mathbf{(2 0 \times 2 0})$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: Three times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 to 72 hours)	IR60-207-3
Wave soldering	For details, consult an NEC Electronics sales representative.	-
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with $-A$ at the end of the part number are lead-free products.
2. For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Vdd or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Related documents $\quad \mu$ PD70F3102-33 Data Sheet (U13844E) μ PD703100A-33, 703100A-40, 703101A-33, 703102A-33 Data Sheet (U14168E) μ PD70F3102A-33 Data Sheet (U13845E)

Reference materials Electrical Characteristics for Microcomputer (U15170J ${ }^{\text {Note }}$)

Note This document number is that of Japanese version.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH Santa Clara, California
Tel: 408-588-6000
800-366-9782

Duesseldorf, Germany

Tel: 0211-65030

- Sucursal en España Madrid, Spain
Tel: 091-504 2787
- Succursale Française

Vélizy-Villacoublay, France
Tel: 01-30-675800

- Filiale Italiana Milano, Italy
Tel: 02-66 7541
- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-26540 10
- Tyskland Filial

Taeby, Sweden
Tel: 08-63 87200

- United Kingdom Branch

Milton Keynes, UK
Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737
NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

Abstract

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of July, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

