μ PD48576209F1
 μ PD48576218F1
 μ PD48576236F1

576M-BIT Low Latency DRAM Common I/O

 R10DS0256EJ0101
Description

The $\mu \mathrm{PD} 48576209 \mathrm{~F} 1$ is a $67,108,864$-word by 9 bit, the $\mu \mathrm{PD} 48576218 \mathrm{~F} 1$ is a $33,554,432$ word by 18 bit and the $\mu \mathrm{PD} 48576236 \mathrm{~F} 1$ is a $16,777,216$ word by 36 bit synchronous double data rate Low Latency RAM fabricated with advanced CMOS technology using one-transistor memory cell.

The $\mu \mathrm{PD} 48576209 \mathrm{~F} 1, \mu \mathrm{PD} 48576218 \mathrm{~F} 1$ and $\mu \mathrm{PD} 48576236 \mathrm{~F} 1$ integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (CK and CK\#) are latched on the positive edge of CK and CK\#. These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

Specification

- Density: 576M bit
- Organization
- Common I/O: 8 M words x 9 bits x 8 banks 4M words x 18 bits x 8 banks 2 M words x 36 bits x 8 banks
- Operating frequency: 533 / $400 / 300 \mathrm{MHz}$
- Interface: HSTL I/O
- Package: 144-pin FBGA
- Package size: 18.5×11
- Lead free
- Power supply
- $\quad 2.5 \mathrm{~V}$ Vext
- 1.8 V VDd
- 1.5 V or 1.8 V VdDQ
- Refresh command
- Auto Refresh
- 16 K cycle / 32 ms for each bank
- 128 K cycle / 32 ms for total
- Operating case temperature : $\mathrm{Tc}=0$ to $95^{\circ} \mathrm{C}$

Features

- SRAM-type interface
- Double-data-rate architecture
- PLL circuitry
- Cycle time: $1.875 \mathrm{~ns} @ \mathrm{trc}=15 \mathrm{~ns}$
$2.5 \mathrm{~ns} @ \mathrm{t}_{\mathrm{Rc}}=15 \mathrm{~ns}$
$2.5 \mathrm{~ns} @ \mathrm{trC}_{\mathrm{RC}}=20 \mathrm{~ns}$
$3.3 \mathrm{~ns} @ \mathrm{t}_{\mathrm{tc}}=20 \mathrm{~ns}$
- Non-multiplexed addresses
- Multiplexing option is available.
- Data mask for WRITE commands
- Differential input clocks (CK and CK\#)
- Differential input data clocks (DK and DK\#)
- Data valid signal (QVLD)
- Programmable burst length: 2 / 4 / 8 (x9 / x18 / x36)
- User programmable impedance output (25 $\Omega-60 \Omega$)
- JTAG boundary scan

Ordering Information

Part number	Cycle Time ns	Clock Frequency MHz	Random Cycle ns	Organization (word x bit)	Core Supply Voltage (Vext) V	Core Supply Voltage (VDD) V	Output Supply Voltage (VdoQ) V	Package
$\mu \mathrm{PD} 48576209 \mathrm{~F} 1-\mathrm{E} 24-\mathrm{DW} 1-\mathrm{A}$	2.5	400	15	$64 \mathrm{M} \times 9$	$\begin{aligned} & 2.5+0.13 \\ & 2.5-0.12 \end{aligned}$	1.8 ± 0.1	$\begin{gathered} 1.5 \pm 0.1 \\ \text { or } \\ 1.8 \pm 0.1 \end{gathered}$	$\begin{gathered} 144 \text {-pin } \\ \text { FBGA } \\ (18.5 \times 11) \\ \text { Lead-free } \end{gathered}$
$\mu \mathrm{PD} 48576218 \mathrm{~F} 1-\mathrm{E} 18-\mathrm{DW} 1-\mathrm{A}$	1.875	533	15	$32 \mathrm{M} \times 18$				
$\mu \mathrm{PD} 48576218 \mathrm{~F} 1-\mathrm{E} 24-\mathrm{DW} 1-\mathrm{A}$	2.5	400	15					
$\mu \mathrm{PD} 48576236 \mathrm{~F} 1-\mathrm{E} 18-\mathrm{DW} 1-\mathrm{A}$	1.875	533	15	$16 \mathrm{M} \times 36$				
μ PD48576236F1-E24-DW1-A	2.5	400	15					

Part Number Definition

Example) UPD48576218F1-E24-DW1-A

Pin Arrangement

\# indicates active LOW signal.
144-pin FBGA (18.5×11)
(Top View) [Common I/O x9]

	1	2	3	4	5	6	7	8	9	10	11	12
A	Vref	Vss	Vext	Vss					Vss	Vext	TMS	TCK
B	Vod	Note 3 DNU	Note 3 DNU	VssQ					VssQ	DQ0	Note 3 DNU	Vod
C	Vtt	$\begin{aligned} & \text { Note }{ }^{3} \\ & \hline \text { NNU } \end{aligned}$	$\begin{aligned} & \text { Note }{ }^{3} \\ & \hline \text { NNU } \end{aligned}$	VdiQ					VdoQ	DQ1	$\begin{aligned} & \text { Note }{ }^{3} \\ & \hline \text { NNU } \end{aligned}$	Vtt
D	$\begin{array}{r} \text { Note } 1 \\ \text { (A22) } \\ \hline \end{array}$	$\begin{aligned} & \text { Note }{ }^{\text {No }} \\ & \text { DNU }^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Note }{ }^{\text {No }} \\ & \text { DNU }^{3} \end{aligned}$	VssQ					VssQ	QK0\#	QK0	Vss
E	A21	$\begin{gathered} \text { Note }{ }^{\text {No }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Note }{ }^{\text {NNU }} \end{gathered}$	VdiQ					VdoQ	DQ2	$\begin{aligned} & \text { Note }^{\text {No }} \end{aligned}$	A20
F	A5	$\begin{aligned} & \text { Note }{ }^{\text {No }} \\ & \text { DNU }^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Note }{ }^{\text {No }} \\ & \text { DNU }^{3} \end{aligned}$	VssQ					VssQ	DQ3	$\begin{aligned} & \text { Note }{ }^{\text {No }} \\ & \text { DNU }^{3} \end{aligned}$	QVLD
G	A8	A6	A7	Vdo					Vdo	A2	A1	A0
H	BA2	A9	Vss	Vss					Vss	Vss	A4	A3
J	$\begin{aligned} & \hline \text { Note 2 } \\ & \text { NF } \end{aligned}$	$\begin{aligned} & \hline \text { Note 2 } \\ & \text { NF } \end{aligned}$	Vod	Vod					Vdd	Vdd	BA0	CK
K	DK	DK\#	VdD	VdD					Vod	Vdo	BA1	CK\#
L	REF\#	CS\#	Vss	Vss					Vss	Vss	A14	A13
M	WE\#	A16	A17	Vod					Vdo	A12	A11	A10
N	A18	$\begin{aligned} & \text { Note }^{\text {No }} \end{aligned}$	Note 3 DNU	VssQ					VssQ	DQ4	Note 3 DNU	A19
P	A15	$\begin{aligned} & { }^{\text {Note }}{ }^{\text {NN }} \end{aligned}$	$\begin{aligned} & \text { Note }{ }^{\text {NN }} \end{aligned}$	VddQ					VddQ	DQ5	$\text { Note } 3$ DNU	DM
R	Vss	$\text { DNOte }^{\text {Dos }}$	$\begin{aligned} & \text { Note }^{\text {No }} \end{aligned}$	VssQ					VssQ	DQ6	$\begin{aligned} & \text { Note }{ }^{\text {Na }} \\ & \text { DNU }^{3} \end{aligned}$	Vss
T	Vtt	$\begin{gathered} \text { Note }^{\text {No }} \\ \text { DNU }^{2} \end{gathered}$	$\text { Note } 3$ DNU	VdiQ					VdoQ	DQ7	$\text { Note } 3$ DNU	Vtt
U	Vdd	$\begin{gathered} \mathrm{N}^{\text {Note } 3} \\ \mathrm{DNU}^{2} \end{gathered}$	$\begin{gathered} \text { Dote }{ }^{\text {Dos }} \\ \hline \end{gathered}$	VssQ					VssQ	DQ8	$\begin{gathered} \text { Note 3 } \\ \text { DNNU } \\ \hline \end{gathered}$	Vdo
V	Vref	ZQ	Vext	Vss					Vss	Vext	TDO	TDI

Notes 1. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to Vss, or left open.
2. No function. This signal is internally connected and has parasitic characteristics of a clock input signal. This may optionally be connected to Vss, or left open.
3. Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may optionally be connected to Vss, or left open.

CK, CK\#
CS\#
WE\#
REF\#
A0-A21
A22
BA0-BA2
DQ0-DQ8
DK, DK\#
DM
QK0, QK0\#
QVLD
ZQ
: Input clock
: Chip select
: WRITE command
: Refresh command
: Address inputs
: Reserved for the future
: Bank address input
: Data input/output
: Input data clock
: Input data Mask
: Output data clock
: Data Valid
: Output impedance matching

TMS	: IEEE 1149.1 Test input
TDI	: IEEE 1149.1 Test input
TCK	: IEEE 1149.1 Clock input
TDO	: IEEE 1149.1 Test output
Vref	: HSTL input reference input
Vext	: Power Supply
VDD	: Power Supply
VddQ	: DQ Power Supply
Vss	: Ground
VssQ	: DQ Ground
$V_{\text {tt }}$: Power Supply
NF	: No function
DNU	Do not use

\# indicates active LOW signal.
144-pin FBGA (18.5×11)
(Top View) [Common I/O x18]

	1	2	3	4	5	6	7	8	9	10	11	12
A	Vref	Vss	Vext	Vss					Vss	Vext	TMS	TCK
B	Vod	$\begin{aligned} & \text { DNU }^{\text {No }} \\ & \hline \end{aligned}$	DQ4	VssQ					VssQ	DQ0	$\mathrm{CNU}^{\text {Note }}$	Vod
C	Vtt	$\begin{aligned} & \text { Note }{ }^{3} \\ & \text { DNU } \end{aligned}$	DQ5	VdoQ					VdoQ	DQ1	Note 3 DNU	$V_{\text {tt }}$
D	$\begin{aligned} & \text { (Note } 1 \\ & \text { (A22) } \end{aligned}$	$\begin{aligned} & \text { Note }{ }^{\text {No3 }} \\ & \text { DNU } \end{aligned}$	DQ6	VssQ					VssQ	QK0\#	QKO	Vss
E	$\begin{aligned} & \text { Note }{ }^{\text {Note21) }} \end{aligned}$	$\begin{aligned} & \text { Note }{ }^{\text {No }} \\ & \hline \end{aligned}$	DQ7	VdoQ					VdoQ	DQ2	$\begin{gathered} \text { DNU }^{\text {Note }} \\ \hline \end{gathered}$	A20
F	A5	$\begin{aligned} & \text { Note } \\ & \text { DNU } \\ & \hline \end{aligned}$	DQ8	VssQ					VssQ	DQ3	$\begin{gathered} \text { Note } \\ \text { DNU }^{3} \\ \hline \end{gathered}$	QVLD
G	A8	A6	A7	Vdo					VdD	A2	A1	A0
H	BA2	A9	Vss	Vss					Vss	Vss	A4	A3
J	$\begin{aligned} & \text { Note }{ }^{2} \\ & \text { NF } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Note }{ }^{2} \\ & \text { NF } \\ & \hline \end{aligned}$	Vod	Vdo					Vod	Vdd	BAO	CK
K	DK	DK\#	Vdo	Vdo					VdD	VdD	BA1	CK\#
L	REF\#	CS\#	Vss	Vss					Vss	Vss	A14	A13
M	WE\#	A16	A17	Vdo					Vdo	A12	A11	A10
N	A18	$\begin{aligned} & \text { DNU }^{\text {Note }} \end{aligned}$	DQ14	VssQ					VssQ	DQ9	$\mathrm{DNO}^{\text {Not }}$ DNU	A19
P	A15	$\begin{aligned} & \text { Note }{ }^{\text {DN }} \end{aligned}$	DQ15	VdoQ					VdoQ	DQ10	Note 3 DNU	DM
R	Vss	QK1	QK1\#	VssQ					VssQ	DQ11	$\mathrm{DNU}^{\text {Note 3 }}$	Vss
T	$V_{\text {tt }}$	$\begin{aligned} & \text { DNU }^{\text {Note }} \end{aligned}$	DQ16	VdoQ					VdoQ	DQ12	Note 3 DNU	$V_{\text {tt }}$
U	Vdo	$\begin{aligned} & \text { Note3 } \\ & \text { DNU }^{\text {DNa }} \end{aligned}$	DQ17	VssQ					VssQ	DQ13	$\begin{aligned} & \text { Note }^{\text {No }} \\ & \text { DNU } \end{aligned}$	Vod
v	Vref	ZQ	Vext	Vss					Vss	Vext	TDO	TDI

Notes 1. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to Vss, or left open.
2. No function. This signal is internally connected and has parasitic characteristics of a clock input signal. This may optionally be connected to Vss, or left open.
3. Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may optionally be connected to Vss, or left open.

CK, CK\#
CS\#
WE\#
REF\#
A0-A20
A21-A22
BA0-BA2
DQ0-DQ17
DK, DK\#
DM
QK0-QK1, QK0\#-QK1\#
QVLD
ZQ
: Input clock
: Chip select
: WRITE command
: Refresh command
: Address inputs
: Reserved for the future
: Bank address input
: Data input/output
: Input data clock
: Input data Mask
: Output data clock
: Data Valid
: Output impedance
matching

TMS : IEEE 1149.1 Test input
TDI : IEEE 1149.1 Test input
TCK : IEEE 1149.1 Clock input
TDO : IEEE 1149.1 Test output
VReF : HSTL input reference input
Vext : Power Supply
VDD : Power Supply
VdDQ : DQ Power Supply
Vss : Ground
VssQ : DQ Ground
Vtт : Power Supply
NF : No function
DNU : Do not use
\# indicates active LOW signal.

144-pin FBGA (18.5 x 11)
(Top View) [Common I/O x36]

	1	2	3	4	5	6	7	8	9	10	11	12
A	Vref	Vss	Vext	Vss					Vss	Vext	TMS	TCK
B	VdD	DQ8	DQ9	VssQ					VssQ	DQ1	DQO	VDD
C	$V_{T T}$	DQ10	DQ11	VdoQ					VddQ	DQ3	DQ2	$V_{T T}$
D	$\begin{aligned} & \text { Note } \\ & \hline \text { (A22) } \\ & \hline \end{aligned}$	DQ12	DQ13	VssQ					VssQ	QK0\#	QK0	Vss
E	$\begin{aligned} & \text { Note } \\ & \text { (A21) } \\ & \hline \end{aligned}$	DQ14	DQ15	VdDQ					VdoQ	DQ5	DQ4	$\begin{gathered} \text { Note } \\ (\mathbf{A} 20)^{2} \end{gathered}$
F	A5	DQ16	DQ17	VssQ					VssQ	DQ7	DQ6	QVLD
G	A8	A6	A7	Vdd					VdD	A2	A1	A0
H	BA2	A9	Vss	Vss					Vss	Vss	A4	A3
J	DK0	DKO\#	Vdd	Vdd					VdD	Vdo	BAO	CK
K	DK1	DK1\#	VdD	Vdo					VdD	Vdo	BA1	CK\#
L	REF\#	CS\#	Vss	Vss					Vss	Vss	A14	A13
M	WE\#	A16	A17	Vdo					VdD	A12	A11	A10
N	A18	DQ24	DQ25	VssQ					VssQ	DQ35	DQ34	A19
P	A15	DQ22	DQ23	VddQ					VdoQ	DQ33	DQ32	DM
R	Vss	QK1	QK1\#	VssQ					VssQ	DQ31	DQ30	Vss
T	$V_{T T}$	DQ20	DQ21	VdDQ					VddQ	DQ29	DQ28	$V_{\text {tt }}$
U	VdD	DQ18	DQ19	VssQ					VssQ	DQ27	DQ26	VdD
V	Vref	ZQ	Vext	Vss					Vss	Vext	TDO	TDI

Note Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to Vss, or left open.

CK, CK\#	: Input clock	TMS	: IEEE 1149.1 Test input
CS\#	: Chip select	TDI	: IEEE 1149.1 Test input
WE\#	: WRITE command	TCK	: IEEE 1149.1 Clock input
REF\#	: Refresh command	TDO	: IEEE 1149.1 Test output
A0-A19	: Address inputs	VReF	: HSTL input reference input
A20-A22	: Reserved for the future	Vext	: Power Supply
BA0-BA2	: Bank address input	VDD	: Power Supply
DQ0-DQ35	: Data input/output	VdDQ	: DQ Power Supply
DK0-DK1, DK0\#-DK1\#	: Input data clock	Vss	: Ground
DM	: Input data Mask	VssQ	: DQ Ground
QK0-QK1, QK0\#-QK1\#	: Output data clock	$\mathrm{V}_{\text {tт }}$: Power Supply
QVLD	: Data Valid		
ZQ	: Output impedance matching		

Pin Description

(1/2)

Symbol	Type	Description		
CK, CK\#	Input	$\begin{array}{l}\text { Clock inputs: } \\ \text { CK and CK\# are differential clock inputs. This input clock pair registers address and control inputs } \\ \text { on the rising edge of CK. CK\# is ideally 180 degrees out of phase with CK. }\end{array}$		
CS\#	Input	$\begin{array}{l}\text { Chip select } \\ \text { CS\# enables the commands when CS\# is LOW and disables them when CS\# is HIGH. When the } \\ \text { command is disabled, new commands are ignored, but internal operations continue. }\end{array}$		
WE\#, REF\#	Input	$\begin{array}{l}\text { WRITE command pin, Refresh command pin: } \\ \text { WE\#, REF\# are sampled at the positive edge of CK, WE\#, and REF\# define (together with CS\#) the } \\ \text { command to be executed. }\end{array}$		
A0-A21	Input	$\begin{array}{l}\text { Address inputs: } \\ \text { A0-A21 define the row and column addresses for READ and WRITE operations. During a MODE } \\ \text { REGISTER SET, the address inputs define the register settings. They are sampled at the rising } \\ \text { edge of CK. } \\ \text { In the x36 configuration, A20-A21 are reserved for address expansion; in the x18 configuration, A21 } \\ \text { is reserved for address expansion. These expansion addresses can be treated as address inputs, } \\ \text { but they do not affect the operation of the device. }\end{array}$		
A22	Output	$\begin{array}{l}\text { Input } \\ \text { BA0-BA2 }\end{array}$		
Input	$\begin{array}{l}\text { Reserved for future use: } \\ \text { These signals should be tied to Vss or leave open. }\end{array}$			
Data valid;				
The QVLD indicates valid output data. QVLD is edge-aligned with QKx and QKx\#.			$\}$	Bank address inputs;
:---				
Select to which internal bank a command is being applied.				

Symbol	Type	Description
ZQ	Input /Output	External impedance [25 $\Omega-60 \Omega$]; This signal is used to tune the device outputs to the system data bus impedance. DQ output impedance is set to $0.2 \times R Q$, where $R Q$ is a resistor from this signal to $V_{s s}$. Connecting ZQ to $V_{s s}$ invokes the minimum impedance mode. Connecting ZQ to $V_{D D}$ invokes the maximum impedance mode. Refer to Figure 2-5. Mode Register Bit Map to activate this function.
TMS , TDI	Input	JTAG function pins: IEEE 1149.1 test inputs: These balls may be left as no connects if the JTAG function is not used in the circuit
TCK	Input	JTAG function pin; IEEE 1149.1 clock input: This ball must be tied to Vss if the JTAG function is not used in the circuit.
TDO	Output	JTAG function pin; IEEE 1149.1 test output: JTAG output. This ball may be left as no connect if JTAG function is not used.
Vref	Input	Input reference voltage; Nominally $\mathrm{V}_{\mathrm{DD}} \mathrm{Q} / 2$. Provides a reference voltage for the input buffers.
VExt	Supply	Power supply; 2.5 V nominal. See Recommended DC Operating Conditions for range.
VDD	Supply	Power supply; 1.8 V nominal. See Recommended DC Operating Conditions for range.
VDDQ	Supply	DQ power supply; Nominally, 1.5 V or 1.8 V . Isolated on the device for improved noise immunity. See Recommended DC Operating Conditions for range.
Vss	Supply	Ground
VssQ	Supply	DQ ground; Isolated on the device for improved noise immunity.
$V_{\text {TT }}$	Supply	Power supply; Isolated termination supply. Nominally, $V_{D D Q} / 2$. See Recommended DC Operating Conditions for range.
NF		No function; These balls may be connected to V ss.
DNU		Do not use; These balls may be connected to V ss.

Block Diagram

Contents

1. Electrical Characteristics 10
2. Operation 17
2.1 Command Operation 17
2.2 Description of Commands 17
2.3 Initialization 18
2.4 Power-On Sequence 19
2.5 Programmable Impedance Output Buffer 19
2.6 PLL Reset 19
2.7 Clock Input 19
2.8 Mode Register Set Command (MRS). 21
2.9 Read \& Write configuration (Non Multiplexed Address Mode) 22
2.10 Write Operation (WRITE) 23
2.11 Read Operation (READ) 26
2.12 Refresh Operation: AUTO REFRESH Command (AREF) 30
2.13 On-Die Termination 31
2.14 Operation with Multiplexed Address 34
2.15 Address Mapping in Multiplexed Mode 36
2.16 Read \& Write configuration in Multiplexed Address Mode 37
2.17 Refresh Command in Multiplexed Address Mode 37
2.18 Input Slew Rate Derating 39
3. JTAG Specification 43
4. Package Dimension 50
5. Recommended Soldering Condition 50

1. Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{EXT}}$		-0.3 to +2.8	V
Supply voltage	V_{DD}		-0.3 to +2.1	V
Output supply voltage, Input voltage, Input / Output voltage	$\mathrm{V}_{\mathrm{DDQ}}$		-0.3 to +2.1	V
Input / Output voltage	$\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}$		-0.3 to +2.1	
Junction temperature	$\mathrm{T}_{\mathrm{j}} \mathrm{MAX}$.		110	V
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

$0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C} ; 1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 1.9 \mathrm{~V}$, unless otherwise noted.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	Vext		2.38	2.5	2.63	V	1
Supply voltage	VdD		1.7	1.8	1.9	V	1
Output supply voltage	VodQ		1.4		VDD	V	1, 2, 3
Reference Voltage	$V_{\text {ref }}$		$0.49 \times \mathrm{VdoQ}$	$0.5 \times \mathrm{VDDQ}$	$0.51 \times V_{\text {do }} Q$	V	1, 4, 5
Termination voltage	$V_{T T}$		$0.95 \times \mathrm{V}_{\text {REF }}$	$V_{\text {ReF }}$	$1.05 \times V_{\text {ref }}$	V	1,6
Input HIGH voltage	$\mathrm{V}_{\mathrm{IH}}(\mathrm{DC})$		$V_{\text {ref }}+0.1$			V	1
Input LOW voltage	VIL (DC)				$V_{\text {ref }}-0.1$	V	1

Notes 1. All voltage referenced to Vss (GND).
2. During normal operation, $\mathrm{V}_{\mathrm{dD}} \mathrm{Q}$ must not exceed Vdd.
3. $\mathrm{V}_{\mathrm{DD}} \mathrm{Q}$ can be set to a nominal $1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$ or $1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$ supply.
4. Typically the value of $V_{\text {REF }}$ is expect to be $0.5 \times V_{\text {DDQ }}$ of the transmitting device. $V_{\text {REF }}$ is expected to track variations in VddQ.
5. Peak-to-peak AC noise on $V_{\text {ref }}$ must not exceed $\pm 2 \% V_{\text {ref }}(D C)$.
6. Vtt is expected to be set equal to $\mathrm{V}_{\text {ref }}$ and must track variations in the DC level of $\mathrm{V}_{\text {ref. }}$

DC Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C} ; 1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 1.9 \mathrm{~V}$, unless otherwise noted

Parameter	Symbol	Test condition	MIN.	MAX.	Unit	Note
Input leakage current	1 l		-5	+5	$\mu \mathrm{A}$	1,2
Output leakage current	ILo		-5	+5	$\mu \mathrm{A}$	1,2
Reference voltage current	Iref		-5	+5	$\mu \mathrm{A}$	1,2
Output high current	Іон	$\mathrm{V}_{\text {OH }}=\mathrm{V}_{\text {doQ }} / 2$	(VdoQ/2) / (1.15 x RQ/5)	(VdoQ/2) / (0.85 x RQ/5)	mA	3,4
Output low current	lot	$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{DD}} \mathrm{Q} / 2$	($\mathrm{VdoQ} / 2) /(1.15 \times \mathrm{RQ} / 5)$	(VddQ/2) / (0.85 x RQ/5)	mA	3,4

Notes 1. Outputs are impedance-controlled. \mid Іон $\mid=\left(\mathrm{V}_{\mathrm{dD}} \mathrm{Q} / 2\right) /(\mathrm{RQ} / 5)$ for values of $125 \Omega \leq \mathrm{RQ} \leq 300 \Omega$.
2. Outputs are impedance-controlled. Iol $=(\mathrm{VDDQ} / 2) /(\mathrm{RQ} / 5)$ for values of $125 \Omega \leq \mathrm{RQ} \leq 300 \Omega$.
3. Іон and Iol are defined as absolute values and are measured at $\operatorname{VDD} \mathrm{Q} / 2$. Ioн flows from the device, Iot flows into the device.
4. If MRS bit A8 is 0 , use $\mathrm{RQ}=250 \Omega$ in the equation in lieu of presence of an external impedance matched resistor.

Capacitance ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
Address / Control Input capacitance	C_{IN}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	1.5	2.5	pF
I/O, Output, Other capacitance (DQ, DM, QK, QVLD)	$\mathrm{C}_{/ \mathrm{o}}$	$\mathrm{V}_{\mathrm{II}}=0 \mathrm{~V}$	3.5	5.0	pF
Clock Input capacitance	C_{ck}	$\mathrm{V}_{\mathrm{clk}}=0 \mathrm{~V}$	2.0	3.0	pF
JTAG pins	C_{J}	$\mathrm{~V}_{\mathrm{J}}=0 \mathrm{~V}$	2.0	5.0	pF

Remark These parameters are periodically sampled and not 100% tested.
Capacitance is not tested on ZQ pin.

Recommended AC Operating Conditions

$0^{\circ} \mathrm{C} \leq \mathrm{TC} \leq 95^{\circ} \mathrm{C} ; 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 1.9 \mathrm{~V}$, unless otherwise noted

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Input HIGH voltage	$\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$		$\mathrm{V}_{\mathrm{REF}}+0.2$		V	1
Input LOW voltage	$\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$			$\mathrm{V}_{\mathrm{REF}}-0.2$	V	1

Note \quad Overshoot: $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \leq \mathrm{V}_{\mathrm{DD}} \mathrm{Q}+0.7 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tcK} / 2$
Undershoot: $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \geq-0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tck} / 2$
Control input signals may not have pulse widths less than tckh (MIN.) or operate at cycle rates less than tck (MIN.).

DC Characteristics

IdD / ISB Operating Conditions

Parameter	Symbol	Test condition			MAX.				Unit
					-E18	-E24			
					tRC=15ns		tRC=20ns		
					533 MHz	400 MHz	400 MHz	300 MHz	
Standby current	IsB1	$\mathrm{tck}=\mathrm{Idle}$ All banks idle, no inputs toggling	V ${ }_{\text {dD }}$	x9/x18	55	55	55	55	mA
				x36	55	55	55	55	
			Vext		5	5	5	5	
Active standby current	IsB2	CS\# = HIGH, No commands, half bank / address / data change once every four clock cycles	VDD	x9/x18	250	215	215	190	mA
				x36	250	215	215	190	
			$\mathrm{V}_{\text {Ext }}$		5	5	5	5	
Operating current	IDD1	BL=2, sequential bank access, bank transitions once every trc, half address transitions once every trc, read followed by write sequence, continuous data during WRITE commands.	VDD	x9/x18	390	331	321	291	mA
				x36	407	346	336	306	
			Vext		10	10	10	10	
Operating current	IDD2	$B L=4$, sequential bank access, bank transitions once every trc, half address transitions once every trc, read followed by write sequence, continuous data during WRITE commands.	VDD	x9/x18	422	367	357	336	mA
				x36	445	387	377	353	
			VEXt		10	10	10	10	
Operating current	IdD3	$B L=8$, sequential bank access, bank transitions once every trc, half address transitions once every $t_{\text {fc }}$, read followed by write sequence, continuous data during WRITE commands.	VDD	x9/x18	439	381	371	350	mA
				x36	488	419	409	388	
			VEXt		15	15	15	15	
Burst refresh current	Iref1	Eight bank cyclic refresh, continuous address/data, command bus remains in refresh for all banks	VDD	x9/x18	692	540	540	419	mA
				x36	670	545	545	430	
			$V_{\text {ext }}$		45	30	30	25	
Disturbed refresh current	IfeF2	Single bank refresh, sequential bank access, half address transitions once every trc, continuous data	VDD	x9/x18	286	265	260	194	mA
				x36	295	265	260	215	
			$V_{\text {Ext }}$		10	10	10	10	
Operating burst write current	Idd2w	BL=2, cyclic bank access, half of address bits change every clock cycle, continuous data, measurement is taken during continuous WRITE	VDD	X9/x18	1078	872	872	716	mA
				X36	1105	891	891	731	
			$\mathrm{V}_{\text {ext }}$		40	35	35	30	
Operating burst write current	IDD4W	$B L=4$, cyclic bank access, half of address bits change every two clocks, continuous data, measurement is taken during continuous WRITE	VDD	x9/x18	784	645	645	538	mA
				x36	832	681	681	565	
			$V_{\text {Ext }}$		25	20	20	20	
Operating burst write current	Iddsw	BL=8, cyclic bank access, half of address bits change every four clocks, continuous data, measurement is taken during continuous WRITE	VDD	x9/x18	625	520	520	442	mA
				x36	706	579	579	487	
			Vext		25	20	20	20	
Operating burst read current	Idd2R	$B L=2$, cyclic bank access, half of address bits change every clock cycle, measurement is taken during continuous READ	Vdd	x9/x18	949	735	735	566	mA
				x36	999	779	779	601	
			$\mathrm{V}_{\text {ext }}$		40	35	35	30	
Operating burst read current	IDD4R	BL=4, cyclic bank access, half of address bits change every two clocks, measurement is taken during continuous READ	VDD	x9/x18	659	503	503	400	mA
				x36	685	535	535	424	
			Vext		25	20	20	20	
Operating burst read current	IDD8R	BL=8, cyclic bank access, half of address bits change every four clocks, measurement is taken during continuous READ	Vdd	x9/x18	497	389	389	308	mA
				x36	567	441	441	349	
			Vext		25	20	20	20	

Remarks 1. Idd specifications are tested after the device is properly initialized. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 95^{\circ} \mathrm{C} ; 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 1.9 \mathrm{~V}$, $2.38 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Ext}} \leq 2.63 \mathrm{~V}, 1.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}} \mathrm{Q} \leq \mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ReF}}=\mathrm{V}_{\mathrm{dD}} \mathrm{Q} / 2$
2. $\mathrm{t}_{\mathrm{CK}}=\mathrm{t}_{\mathrm{DK}}=\mathrm{MIN}$., $\mathrm{t}_{\mathrm{RC}}=\mathrm{MIN}$.
3. Input slew rate is specified in Recommended DC Operating Conditions and Recommended AC Operating Conditions.
4. IdD parameters are specified with ODT disabled.
5. Continuous data is defined as half the DQ signals changing between HIGH and LOW every half clock cycles (twice per clock).
6. Continuous address is defined as half the address signals between HIGH and LOW every clock cycles (once per clock).
7. Sequential bank access is defined as the bank address incrementing by one ever trc.
8. Cyclic bank access is defined as the bank address incrementing by one for each command access. For $B L=4$ this is every other clock.
9. CS\# is HIGH unless a READ, WRITE, AREF, or MRS command is registered. CS\# never transitions more than per clock cycle.

AC Characteristics

AC Test Conditions

Input waveform

Output waveform

Output load condition

AC Characteristics <Read and Write Cycle>

Parameter	Symbol	$\begin{gathered} -E 18 \\ (533 \mathrm{MHz}) \end{gathered}$		-E24				Unit	Note
				(400	Hz)		Hz)		
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock									
Clock cycle time (CK,CK\#,DK,DK\#)	tck, tok	1.875	5.7	2.5	5.7	3.3	5.7	ns	
Clock frequency (CK,CK\#,DK,DK\#)	tck, tok	175	533	175	400	175	300	MHz	
Random Cycle time	trc	15		15		20		ns	
Clock Jitter: period	tJIt PER	-100	100	-150	150	-200	200	ps	1, 2
Clock Jitter: cycle-to-cycle	tııt cc		200		300		400	ps	
Clock HIGH time (CK,CK\#,DK,DK\#)	tскн, tокн	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock LOW time (CK,CK\#,DK,DK\#)	tckl, tokl	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock to input data clock	tckdk	-0.3	0.3	-0.45	0.5	-0.45	1.0	ns	
Mode register set cycle time to any command	tmrsc	6		6		6		Cycle	
PLL Lock time	tck Lock	15		15		15		$\mu \mathrm{s}$	
Clock static to PLL reset	tck Reset	30		30		30		ns	
Output Times									
Output data clock HIGH time	takh	0.9	1.1	0.9	1.1	0.9	1.1	tскн	
Output data clock LOW time	tokı	0.9	1.1	0.9	1.1	0.9	1.1	tckı	
QK edge to clock edge skew	tскок	-0.2	0.2	-0.25	0.25	-0.3	0.3	ns	
QK edge to output data edge	tokao, takQ1	-0.12	0.12	-0.2	0.2	-0.25	0.25	ns	3, 5
QK edge to any output data	takQ	-0.22	0.22	-0.3	0.3	-0.35	0.35	ns	4, 5
QK edge to QVLD	tQkVLD	-0.22	0.22	-0.3	0.3	-0.35	0.35	ns	
Setup Times									
Address/command and input	tas/tcs	0.3		0.4		0.5		ns	
Data-in and data mask to DK	tos	0.17		0.25		0.3		ns	
Hold Times									
Address/command and input	$\mathrm{tah}^{\text {/tch }}$	0.3		0.4		0.5		ns	
Data-in and data mask to DK	toh	0.17		0.25		0.3		ns	

Notes 1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
2. Frequency drift is not allowed.
3. tекео is referenced to DQ0-DQ17 in x 36 and DQ0-DQ8 in x 18 .
tQкQ1 is referenced to DQ18-DQ35 in x36 and DQ9-DQ17 in x18.
4. tеке takes into account the skew between any QKx and any DQ .
5. tQке, tQкех are guaranteed by design.

Remark All timing parameters are measured relative to the crossing point of CK/CK\#, DK/DK\# and to the crossing point with $V_{\text {ref }}$ of the command, address, and data signals.

Figure 1-1. Clock / Input Data Clock Command / Address Timings

Temperature and Thermal Impedance

Temperature Limits

Parameter	Symbol	MIN.	MAX.	Unit	Note
Reliability junction temperature	T_{J}	0	+110	${ }^{\circ} \mathrm{C}$	1
Operating junction temperature	T_{J}	0	+100	${ }^{\circ} \mathrm{C}$	2
Operating case temperature	T.	0	+95	${ }^{\circ} \mathrm{C}$	3

Notes 1. Temperatures greater than $110^{\circ} \mathrm{C}$ may cause permanent damage to the device. This is a stress rating only and functional operation of the device at or above this is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability of the part.
2. Junction temperature depends upon cycle time, loading, ambient temperature, and airflow.
3. MAX operating case temperature; T_{c} is measured in the center of the package. Device functionality is not guaranteed if the device exceeds maximum T_{c} during operation.

Thermal Impedance

Substrate	Ball	өja (${ }^{\circ} \mathrm{C} / \mathrm{W}$)			$\begin{gathered} \theta \mathrm{jb} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\begin{gathered} \theta \text { je } \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$
		Air Flow $=0 \mathrm{~m} / \mathrm{s}$	Air Flow $=1 \mathrm{~m} / \mathrm{s}$	Air Flow $=2 \mathrm{~m} / \mathrm{s}$		
4 - Layer	Lead free	16.8	13.1	12.3	7.0	2.2

2. Operation

2.1 Command Operation

According to the functional signal description, the following command sequences are possible. All input states or sequences not shown are illegal or reserved. All command and address inputs must meet setup and hold times around the rising edge of CK.

Table 2-1. Address Widths at Different Burst Lengths

Burst Length	Configuration		
	$\mathbf{x} 9$	$\mathbf{x 1 8}$	$\mathbf{x 3 6}$
$\mathrm{BL}=2$	$\mathrm{~A} 0-\mathrm{A} 21$	$\mathrm{~A} 0-\mathrm{A} 20$	$\mathrm{~A} 0-\mathrm{A} 19$
$\mathrm{BL}=4$	$\mathrm{~A} 0-\mathrm{A} 20$	$\mathrm{~A} 0-\mathrm{A} 19$	$\mathrm{~A} 0-\mathrm{A} 18$
$\mathrm{BL}=8$	$\mathrm{~A} 0-\mathrm{A} 19$	$\mathrm{~A} 0-\mathrm{A} 18$	$\mathrm{~A} 0-\mathrm{A} 17$

Table 2-2. Command Table

Operation	Code	CS\#	WE\#	REF\#	A0-An ${ }^{\text {Note1 }}$	BA0-BA2	Note
Device DESELECT / No Operation	DESEL / NOP	H	X	X	X	X	
MRS: Mode Register Set	MRS	L	L	L	OPCODE	X	2
READ	READ	L	H	H	A	BA	3
WRITE	WRITE	L	L	H	A	BA	3
AUTO REFRESH	AREF	L	H	L	X	BA	

Notes 1. $\mathrm{n}=21$.
2. Only A0-A17 are used for the MRS command.
3. See Table 2-1.

Remark $\mathrm{X}=$ "Don't Care", $\mathrm{H}=\operatorname{logic} \mathrm{HIGH}, \mathrm{L}=$ logic LOW, $\mathrm{A}=$ valid address, $\mathrm{BA}=$ valid bank address

2.2 Description of Commands

DESEL / NOP Note1

The NOP command is used to perform a no operation to the μ PD48576209/18/36F1, which essentially deselects the chip. Use the NOP command to prevent unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. Output values depend on command history.

MRS

The mode register is set via the address inputs A0-A17. See Figure 2-5. Mode Register Bit Map for further information. The MRS command can only be issued when all banks are idle and no bursts are in progress.

READ

The READ command is used to initiate a burst read access to a bank. The value on the BA0-BA2 inputs selects the bank, and the address provided on inputs A0-A21 selects the data location within the bank.

WRITE

The WRITE command is used to initiate a burst write access to a bank. The value on the BA0-BA2 inputs selects the bank, and the address provided on inputs A0-A21 selects the data location within the bank. Input data appearing on the DQ is written to the memory array subject to the DM input logic level appearing coincident with the data. If the DM signal is registered LOW, the corresponding data will be written to memory. If the DM signal is registered HIGH, the corresponding data inputs will be ignored (i.e., this part of the data word will not be written).

AREF

The AREF is used during normal operation of the $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ to refresh the memory content of a bank. The command is non-persistent, so it must be issued each time a refresh is required. The value on the BA0-BA2 inputs selects the bank. The refresh address is generated by an internal refresh controller, effectively making each address bit a "Don't Care" during the AREF command. The $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ requires 64 K cycles at an average periodic interval of $0.244 \mu \mathrm{~s}$ Note2 (MAX.). To improve efficiency, eight AREF commands (one for each bank) can be posted to $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ at periodic intervals of $1.95 \mu \mathrm{~s}{ }^{\text {Note3 }}$.

Within a period of 32 ms , the entire memory must be refreshed. The delay between the AREF command and a subsequent command to same bank must be at least trc as continuous refresh. Other refresh strategies, such as burst refresh, are also possible.

Notes 1. When the chip is deselected, internal NOP commands are generated and no commands are accepted.
2. Actual refresh is $32 \mathrm{~ms} / 16 \mathrm{k} / 8=0.244 \mu \mathrm{~s}$.
3. Actual refresh is $32 \mathrm{~ms} / 16 \mathrm{k}=1.95 \mu \mathrm{~s}$.

2.3 Initialization

The $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operations or permanent damage to the device. The following sequence is used for Power-Up:

1. Apply power (Vext, Vdd, VddQ, Vref, Vtт) and start clock as soon as the supply voltages are stable. Apply Vdd and $V_{\text {ext }}$ before or at the same time as $V_{\text {dDQ }}$. Apply $V_{\text {dDQ }}$ before or at the same time as $V_{\text {ref }}$ and $V_{\text {tt }}$. Although there is no timing relation between $V_{\text {ext }}$ and $V_{D D}$, the chip starts the power-up sequence only after both voltages are at their nominal levels. VddQ supply must not be applied before Vdd supply. CK/CK\# must meet $V_{\text {Id(DC) }}$ prior to being applied. Maintain all remaining balls in NOP conditions.

Note No rule of apply power sequence is the design target.
2. Maintain stable conditions for $200 \mu \mathrm{~s}$ (MIN.).
3. Issue at least three or more consecutive MRS commands: two dummies or more plus one valid MRS. It is recommended that all address pins are held LOW during the dummy MRS commands.
4. tmrsc after valid MRS, an AUTO REFRESH command to all 8 banks must be issued and wait for $15 \mu \mathrm{~s}$ with CK/CK\# toggling in order to lock the PLL prior to normal operation.
5. After trc, the chip is ready for normal operation.

2.4 Power-On Sequence

Figure 2-1. Power-Up Sequence

Notes 1. Recommended all address pins held LOW during dummy MRS commands.
2. A10-A17 must be LOW.

Remark MRS : MRS command
RFp : REFRESH bank p
AC: Any command

2.5 Programmable Impedance Output Buffer

The $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ is equipped with programmable impedance output buffers. This allows a user to match the driver impedance to the system. To adjust the impedance, an external precision resistor (RQ) is connected between the ZQ ball and Vss. The value of the resistor must be five times the desired impedance. For example, a 300Ω resistor is required for an output impedance of 60Ω. To ensure that output impedance is one fifth the value of RQ (within 15 percent), the range of RQ is 125Ω to 300Ω. Output impedance updates may be required because, over time, variations may occur in supply voltage and temperature. The device samples the value of RQ. An impedance update is transparent to the system and does not affect device operation. All data sheet timing and current specifications are met during an update.

2.6 PLL Reset

The μ PD48576209/18/36F1 utilizes internal Phase-locked loops for maximum output, data valid windows. It can be placed into a stopped-clock state to minimize power with a modest restart time of $15 \mu \mathrm{~s}$. The clock (CK/CK\#) must be toggled for 15μ s in order to stabilize PLL circuits for next READ operation.

2.7 Clock Input

Table 2-3. Clock Input Operation Conditions

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Clock Input Voltage Level	VIN(DC)	CK and CK\#	-0.3	VDDQ +0.3	V	
Clock Input Differential Voltage Level	VID (DC)	CK and CK\#	0.2	VdoQ + 0.6	V	8
Clock Input Differential Voltage Level	$\mathrm{VID}(\mathrm{AC})$	CK and CK\#	0.4	$V_{\text {do }}+0.6$	V	8
Clock Input Crossing Point Voltage Level	VIX (AC)	CK and CK\#	VodQ/2-0.15	VdoQ/2 + 0.15	V	9

Figure 2-2. Clock Input

Notes 1. DKx and DKx\# have the same requirements as CK and CK\#.
2. All voltages referenced to Vss.
3. Tests for AC timing, IDD and electrical AC and DC characteristics may be conducted at normal reference/supply voltage levels; but the related specifications and device operations are tested for the full voltage range specified.
4. AC timing and IDD tests may use a V_{IL} to V_{IH} swing of up to 1.5 V in the test environment, but input timing is still referenced to $V_{\text {ReF }}$ (or the crossing point for CK/CK\#), and parameters specifications are tested for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is $2 \mathrm{~V} / \mathrm{ns}$ in the range between $\mathrm{V}_{\mathrm{IL}(A C)}$ and $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$.
5. The AC and DC input level specifications are as defined in the HSTL Standard (i.e. the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above[below] the DC input LOW[HIGH] level).
6. The CK/CK\# input reference level (for timing referenced to CK/CK\#) is the point at which CK and CK\# cross. The input reference level for signal other than CK/CK\# is Vref.
7. CK and $\mathrm{CK} \#$ input slew rate must be $>=2 \mathrm{~V} / \mathrm{ns}$ ($>=4 \mathrm{~V} / \mathrm{ns}$ if measured differentially).
8. VID is the magnitude of the difference between the input level on CK and input level on CK\#.
9. The value of V_{IX} is expected to equal $\mathrm{V}_{\mathrm{DD}} \mathrm{Q} / 2$ of the transmitting device and must track variations in the DC level of the same.
10.CK and CK\# must cross within the region.
11.CK and CK\# must meet at least $\mathrm{V}_{\text {ID(DC) }}$ (MIN.) when static and centered around $\mathrm{V}_{\mathrm{DD}} \mathrm{Q} / 2$.
12. Minimum peak-to-peak swing.

2.8 Mode Register Set Command (MRS)

The mode register stores the data for controlling the operating modes of the memory. It programs the μ PD48576209/18/36F1 configuration, burst length, and I/O options. During a MRS command, the address inputs A0A17 are sampled and stored in the mode register. tmRsc must be met before any command can be issued to the $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$. The mode register may be set at any time during device operation. However, any pending operations are not guaranteed to successfully complete, and all memory cell data are not guaranteed.

Since MRS is used for internal test mode entry, bits A10-A17 must be set to all " 0 " at the MRS setting.

Figure 2-3. Mode Register Set Timing

Remark MRS: MRS command
AC : any command

Figure 2-4. Mode Register Set

Remark COD: code to be loaded into the register.

Figure 2-5. Mode Register Bit Map

Notes 1. Bits A10-A17 must be set to all ' 0 '. A18-An are "Don't Care".
2. $\mathrm{BL}=8$ is not available for configuration 1 and 4 .
3. $\pm 30 \%$ temperature variation.
4. Within 15%.

2.9 Read \& Write configuration (Non Multiplexed Address Mode)

Table 2-4 shows, for different operating frequencies, the different $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ configurations that can be programmed into the mode register. The READ and WRITE latency (trl and twl) values along with the row cycle times (trc) are shown in clock cycles as well as in nanoseconds.

Table 2-4. Configuration Table

Parameter	Configuration					Unit
	$\mathbf{1}^{\text {Note1 }}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}^{\text {Note1, 2 }}$	$\mathbf{5}$	
tRc	4	6	8	3	5	
tRL	4	6	8	3	5	tck
twL	5	7	9	4	6	tck
Valid frequency range	$266-175$	$400-175$	$533-175$	$200-175$	$333-175$	MHz

Notes 1. $\mathrm{BL}=8$ is not available.
2. The minimum trc is typically 3 cycles, except in the case of a WRITE followed by a READ to the same bank. In this instance the minimum trc is 4 cycles.

2.10 Write Operation (WRITE)

Write accesses are initiated with a WRITE command, as shown in Figure 2-6. Row and bank addresses are provided together with the WRITE command. During WRITE commands, data will be registered at both edges of DK according to the programmed burst length (BL). A WRITE latency (WL) one cycle longer than the programmed READ latency (RL +1) is present, with the first valid data registered at the first rising DK edge WL cycles after the WRITE command.

Any WRITE burst may be followed by a subsequent READ command. Figure 2-10. WRITE Followed By READ: BL=2, RL=4, WL=5, Configuration 1 and Figure 2-11. WRITE Followed By READ: BL=4, RL=4, WL=5, Configuration 1 illustrate the timing requirements for a WRITE followed by a READ for bursts of two and four, respectively.

Setup and hold times for incoming input data relative to the DK edges are specified as tds and tde. The input data is masked if the corresponding DM signal is HIGH. The setup and hold times for data mask are also tDs and tDH.

Figure 2-6. WRITE Command

Remark A: Address
BA: Bank address

Figure 2-7. Basic WRITE Burst / DM Timing

Figure 2-8. WRITE Burst Basic Sequence: BL=2, RL=4, WL=5, Configuration 1

Figure 2-9. WRITE Burst Basic Sequence: BL=4, RL=4, WL=5, Configuration 1

Remarks 1.	WR	: WRITE command
		A/Bap
	WL	: Address A of bank p
		: WRITE latency
		Dpq

2. Any free bank may be used in any given command. The sequence shown is only one example of a bank sequence.

Figure 2-10. WRITE Followed By READ: BL=2, RL=4, WL=5, Configuration 1

Figure 2-11. WRITE Followed By READ: BL=4, RL=4, WL=5, Configuration 1

2.11 Read Operation (READ)

Read accesses are initiated with a READ command, as shown in Figure 2-12. Row and bank addresses are provided with the READ command.

During READ bursts, the memory device drives the read data edge-aligned with the QK signal. After a programmable READ latency, data is available at the outputs. The data valid signal indicates that valid data will be present in the next half clock cycle.

The skew between QK and the crossing point of CK is specified as tскрк. tекоо is the skew between QK 0 and the last valid data edge considered the data generated at the DQ0-DQ17 in x36 and DQ0-DQ8 in x18 data signals. tekQ1 is the skew between QK1 and the last valid data edge considered the data generated at the DQ18-DQ35 in x36 and DQ9-DQ17 in x 18 data signals. tQкQx is derived at each QKx clock edge and is not cumulative over time.

After completion of a burst, assuming no other commands have been initiated, DQ will go High-Z. Back-to-back READ commands are possible, producing a continuous flow of output data.

Minimum READ data valid window can be expressed as MIN.(tякн, tякц) - 2 x MAX.(teкQx)
Any READ burst may be followed by a subsequent WRITE command. Figure 2-16. READ followed by WRITE, BL=2, RL=4, WL=5, Configuration 1 and Figure 2-17. READ followed by WRITE, BL=4, RL=4, WL=5, Configuration 1 illustrate the timing requirements for a READ followed by a WRITE.

Figure 2-12. READ Command

Remark A : Address
BA: Bank address

Figure 2-13. Basic READ Burst Timing

Undefined
Note Minimum READ data valid window can be expressed as MIN.(tQкн, tQкц) $-2 \times$ MAX.(tQкQx) tскн and tcкц are recommended to have $50 \% / 50 \%$ duty.

Remarks 1. tекео is referenced to DQ0-DQ17 in x 36 and DQ0-DQ8 in x 18 . tеке1 is referenced to DQ18-DQ35 in x36 and DQ9-DQ17 in x18.
2. tQкр takes into account the skew between any QKx and any DQ .
3. tскок is specified as CK rising edge to QK rising edge.

Figure 2-14. READ Burst Basic Sequence: $B L=2, R L=4$, Configuration 1

Figure 2-15. READ Burst Basic Sequence: $B L=4, R L=4$, Configuration 1

Remark RD : READ command
A/BAp : Address A of bank p
RL : READ latency
Qpq : Data q from bank p

Figure 2-16. READ followed by WRITE, BL=2, RL=4, WL=5, Configuration 1

Figure 2-17. READ followed by WRITE, BL=4, RL=4, WL=5, Configuration 1

Remark WR : WRITE command
RD : READ command
A/BAp : Address A of bank p
WL : WRITE latency
RL : READ latency
Dpq : Data q to bank p
Qpq : Data q from bank p

2.12 Refresh Operation: AUTO REFRESH Command (AREF)

AREF is used to perform a REFRESH cycle on one row in a specific bank. The row addresses are generated by an internal refresh counter; external address balls are "Don't Care." The delay between the AREF command and a subsequent command to the same bank must be at least trc.

Within a period of 32 ms (tref), the entire memory must be refreshed. Figure 2-19 illustrates an example of a continuous refresh sequence. Other refresh strategies, such as burst refresh, are also possible.

Figure 2-18. AUTO REFRESH Command

Remark BA: Bank address

Figure 2-19. AUTO REFRESH Cycle

Remarks 1. ACx : Any command on bank x
ARFx : Auto refresh bank x
ACy : Any command on different bank.
2. $t_{\text {trC }}$ is configuration-dependent. Refer to Table 2-4. Configuration Table.

2.13 On-Die Termination

On-die termination (ODT) is enabled by setting A9 to " 1 " during an MRS command. With ODT on, all the DQs and DM are terminated to $\mathrm{V}_{\text {тT }}$ with a resistance $\mathrm{R}_{\mathrm{T} \text {. The }}$ command, address, and clock signals are not terminated. Figure 220 below shows the equivalent circuit of a DQ receiver with ODT. ODTs are dynamically switched off during READ commands and are designed to be off prior to the μ PD48576209/18/36F1 driving the bus. Similarly, ODTs are designed to switch on after the $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ has issued the last piece of data.

Table 2-5. On-Die Termination DC Parameters

Description	Symbol	MIN.	MAX.	Units	Note
Termination voltage	VTT	$0.95 \times$ VREF	$1.05 \times$ VREF	V	1,2
On-Die termination	RTT	125	185	Ω	3

Notes 1. All voltages referenced to Vss (GND).
2. $\quad V_{\text {tт }}$ is expected to be set equal to $\mathrm{V}_{\text {ref }}$ and must track variations in the DC level of $\mathrm{V}_{\text {ref. }}$
3. The Rtт value is measured at $95^{\circ} \mathrm{C}$ Tc.

Figure 2-20. On- Die Termination-Equivalent Circuit

Figure 2-21. READ Burst with ODT: BL=2, Configuration 1

Remark RD : READ command
A/BAp : Address A of bank p
RL : READ latency
Qpq : Data q from bank p

Figure 2-22. READ NOP READ with ODT: BL=2, Configuration 1

Figure 2-23. READ NOP NOP READ with ODT: BL=2, Configuration 1

Remark RD : READ command
A/BAp: Address A of bank p
RL : READ latency
Qpq : Data q from bank p

Figure 2-24. READ followed by WRITE with ODT: BL=2, Configuration 1

V/A Don't care Undefined

Figure 2-25. WRITE followed by READ with ODT: BL=2, Configuration 1

Remark | RD | $:$ READ command | |
| :--- | :--- | :--- |
| | WR | $:$ WRITE command |
| | A/BAp | $:$ Address A of bank p |
| | RL | $:$ READ latency |
| | WL | $:$ WRITE latency |
| | Qpq | $:$ Data q from bank p |
| | Dpq | $:$ Data q to bank p |

2.14 Operation with Multiplexed Address

In multiplexed address mode, the address can be provided to the $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ in two parts that are latched into the memory with two consecutive rising clock edges. This provides the advantage that a maximum of 11 address balls are required to control the $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$, reducing the number of balls on the controller side. The data bus efficiency in continuous burst mode is not affected for $\mathrm{BL}=4$ and $\mathrm{BL}=8$ since at least two clocks are required to read the data out of the memory. The bank addresses are delivered to the $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ at the same time as the WRITE command and the first address part, Ax.

This option is available by setting bit A5 to " 1 " in the mode register. Once this bit is set, the READ, WRITE, and MRS commands follow the format described in Figure 2-26. See Figure 2-28. Power-Up Sequence in Multiplexed Address Mode for the power-up sequence.

Figure 2-26. Command Description in Multiplexed

Remarks 1. Ax, Ay : Address
BA : Bank Address
2. The minimum setup and hold times of the two address parts are defined $t_{A S}$ and $t_{A H}$.

Figure 2-27. Mode Register Set Command in Multiplexed Address Mode

Notes 1. Bits A10-A17 must be set to all ' 0 '.
2. $B L=8$ is not available for configuration 1 and 4 .
3. $\pm 30 \%$ temperature variation.
4. Within 15%.

Remark The address A0, A3, A4, A5, A8, and A9 must be set as follows in order to activate the mode register in the multiplexed address mode.

Figure 2-28. Power-Up Sequence in Multiplexed Address Mode

Notes 1. Recommended all address pins held LOW during dummy MRS command.
2. A10-A17 must be LOW.
3. Address A5 must be set HIGH (muxed address mode setting when $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ is in normal mode of operation).
4. Address A5 must be set HIGH (muxed address mode setting when $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ is already in muxed address mode).

Remark MRS: MRS command
RFp : REFRESH Bank p
AC : any command

2.15 Address Mapping in Multiplexed Mode

The address mapping is described in Table 2-6 as a function of data width and burst length.

Table 2-6. Address Mapping in Multiplexed Address Mode

Data Width	Burst Length	Ball	Address										
			A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
x36	$B L=2$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	X	A1	A2	X	A6	A7	A19	A11	A12	A16	A15
	$B L=4$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	X	A1	A2	X	A6	A7	X	A11	A12	A16	A15
	$B L=8$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	X
		Ay	X	A1	A2	X	A6	A7	X	A11	A12	A16	A15
x18	$B L=2$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	A20	A1	A2	X	A6	A7	A19	A11	A12	A16	A15
	$B L=4$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	X	A1	A2	X	A6	A7	A19	A11	A12	A16	A15
	$B L=8$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	X	A1	A2	X	A6	A7	X	A11	A12	A16	A15
x9	$B L=2$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	A20	A1	A2	A21	A6	A7	A19	A11	A12	A16	A15
	$B L=4$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	A20	A1	A2	X	A6	A7	A19	A11	A12	A16	A15
	$B L=8$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	X	A1	A2	X	A6	A7	A19	A11	A12	A16	A15

Remark X means "Don't care".

2.16 Read \& Write configuration in Multiplexed Address Mode

In multiplexed address mode, the READ and WRITE latencies are increased by one clock cycle. The $\mu \mathrm{PD} 48576209 / 18 / 36 \mathrm{~F} 1$ cycle time remains the same, as described in Table 2-7.

Table 2-7. Configuration in Multiplexed Address Mode

Parameter	Configuration					
	$\mathbf{1}^{\text {Note1 }}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}^{\text {Note1,2 }}$	$\mathbf{5}$	
trc	4	6	8	3	5	tck
tRL	5	7	9	4	6	tck
twL	6	8	10	5	7	tck
Valid frequency range	$266-175$	$400-175$	$533-175$	$200-175$	$333-175$	MHz

Notes 1. $\mathrm{BL}=8$ is not available.
2. The minimum trc is typically 3 cycles, except in the case of a WRITE followed by a READ to the same bank. In this instance the minimum trc is 4 cycles.

2.17 Refresh Command in Multiplexed Address Mode

Similar to other commands, the refresh command is executed on the next rising clock edge when in the multiplexed address mode. However, since only bank address is required for AREF, the next command can be applied on the following clock. The operation of the AREF command and any other command is represented in Figure 2-29.

Figure 2-29. Burst REFRESH Operation

Remark | AREF | : AUTO REFRESH | |
| :--- | :--- | :--- |
| AC | : Any command | |
| Ax | : First part Ax of address | |
| Ay | : Second part Ay of address | |
| | BAp | : Bank p is chosen so that $t_{\text {RC }}$ is met. |

Figure 2-30. WRITE Burst Basic Sequence: BL=4, with Multiplexed Addresses, Configuration 1

Figure 2-31. READ Burst Basic Sequence: BL=4, with Multiplexed Addresses, Configuration 1, RL=5

Remark WR : WRITE command
RD : READ command
Ax/BAp : Address Ax of bank p
Ay : Address Ay of bank p
Dpq : Data q to bank p
Qpq : Data q from bank p
WL : WRITE latency
RL : READ latency

2.18 Input Slew Rate Derating

Table 2-8 on page 40 and Table 2-9 on page 41 define the address, command, and data setup and hold derating values. These values are added to the default tAS/tCS/tDS and $\mathrm{tAH} / \mathrm{tCH} / \mathrm{tDH}$ specifications when the slew rate of any of these input signals is less than the $2 \mathrm{~V} / \mathrm{ns}$ the nominal setup and hold specifications are based upon.

To determine the setup and hold time needed for a given slew rate, add the tAS/tCS default specification to the "tAS/tCS Vref to CK/CK\# Crossing" and the tAH/tCH default specification to the "tAH/tCH CK/CK\# Crossing to Vref" derated values on Table 2-8. The derated data setup and hold values can be determined in a like manner using the "tDS Vref to CK/CK\# Crossing" and "tDH to CK/CK\# Crossing to Vref" values on Table 2-9.
The derating values on Table 2-8 and Table 2-9 apply to all speed grades.

The setup times on Table 2-8 and Table 2-9 represent a rising signal. In this case, the time from which the rising signal crosses $\mathrm{V}_{\mathrm{IH}(A C)}$ MIN to the CK/CK\# cross point is static and must be maintained across all slew rates. The derated setup timing represents the point at which the rising signal crosses $V_{\text {ref(DC) }}$ to the CK/CK\# cross point. This derated valueis calculated by determining the time needed to maintain the given slew rate and the delta between $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \mathrm{MIN}$ and the CK/CK\# cross point. The setup values in Table 2-8 and Table 2-9 are also valid for falling signals (with respect to $\mathrm{V}_{\text {IL[AC] }}$ MAX and the CK/CK\# cross point).

The hold times in Table 2-8 and Table 2-9 represent falling signals. In this case, the time from the CK/CK\# cross point to when the signal crosses $\mathrm{V}_{\mathrm{IH}(\mathrm{DC})}$ MIN is static and must be maintained across all slew rates. The derated hold timing represents the delta between the CK/CK\# cross point to when the falling signal crosses $V_{\operatorname{REF}(\mathrm{DC})}$. This derated value is calculated by determining the time needed to maintain the given slew rate and the delta between the CK/CK\# cross point and $\mathrm{V}_{\mathrm{IH}(\mathrm{DC})}$. The hold values in Table 2-8 and Table 2-9 are also valid for rising signals (with respect to $\mathrm{V}_{\text {IL[DC] }}$ MAX and the CK and CK\# cross point).

Note The above descriptions also pertain to data setup and hold derating when CK/CK\# are replaced with DK/DK\#.

Table 2-8. Address and Command Setup and Hold Derating Values

Command/ Address Slew Rate (V/ns)	tAS/tCS VREF to CK/CK\# Crossing	tAS/tCS VIH(AC) MIN to CK/CK\# Crossing	tAH/tCH CK/CK\# Crossing to Vref	tAH/tCH CK/CK\# Crossing to VIH(DC) MIN	Unit
	CK, CK\# Differential Slew Rate: $2.0 \mathrm{~V} / \mathrm{ns}$				
2.0	0	-100	0	-50	ps
1.9	5	-100	3	-50	ps
1.8	11	-100	6	-50	ps
1.7	18	-100	9	-50	ps
1.6	25	-100	13	-50	ps
1.5	33	-100	17	-50	ps
1.4	43	-100	22	-50	ps
1.3	54	-100	27	-50	ps
1.2	67	-100	34	-50	ps
1.1	82	-100	41	-50	ps
1.0	100	-100	50	-50	ps
	CK, CK\# Differential Slew Rate: $1.5 \mathrm{~V} / \mathrm{ns}$				
2.0	30	-70	30	-20	ps
1.9	35	-70	33	-20	ps
1.8	41	-70	36	-20	ps
1.7	48	-70	39	-20	ps
1.6	55	-70	43	-20	ps
1.5	63	-70	47	-20	ps
1.4	73	-70	52	-20	ps
1.3	84	-70	57	-20	ps
1.2	97	-70	64	-20	ps
1.1	112	-70	71	-20	ps
1.0	130	-70	80	-20	ps
	CK, CK\# Differential Slew Rate: $1.0 \mathrm{~V} / \mathrm{ns}$				
2.0	60	-40	60	10	ps
1.9	65	-40	63	10	ps
1.8	71	-40	66	10	ps
1.7	78	-40	69	10	ps
1.6	85	-40	73	10	ps
1.5	93	-40	77	10	ps
1.4	103	-40	82	10	ps
1.3	114	-40	87	10	ps
1.2	127	-40	94	10	ps
1.1	142	-40	101	10	ps
1.0	160	-40	110	10	ps

Table 2-9. Data Setup and Hold Derating Values

Data Slew Rate (V/ns)	tDS Vref to DK/DK\# Crossing	tDS ViH(AC) MIN to DK/DK\# Crossing	tDH DK/DK\# Crossing to Vref	tDH DK/DK\# Crossing to ViH(DC) MIN	Unit
	DK, DK\# Differential Slew Rate: $2.0 \mathrm{~V} / \mathrm{ns}$				
2.0	0	-100	0	-50	ps
1.9	5	-100	3	-50	ps
1.8	11	-100	6	-50	ps
1.7	18	-100	9	-50	ps
1.6	25	-100	13	-50	ps
1.5	33	-100	17	-50	ps
1.4	43	-100	22	-50	ps
1.3	54	-100	27	-50	ps
1.2	67	-100	34	-50	ps
1.1	82	-100	41	-50	ps
1.0	100	-100	50	-50	ps
	DK, DK\# Differential Slew Rate: $1.5 \mathrm{~V} / \mathrm{ns}$				
2.0	30	-70	30	-20	ps
1.9	35	-70	33	-20	ps
1.8	41	-70	36	-20	ps
1.7	48	-70	39	-20	ps
1.6	55	-70	43	-20	ps
1.5	63	-70	47	-20	ps
1.4	73	-70	52	-20	ps
1.3	84	-70	57	-20	ps
1.2	97	-70	64	-20	ps
1.1	112	-70	71	-20	ps
1.0	130	-70	80	-20	ps
	DK, DK\# Differential Slew Rate: $1.0 \mathrm{~V} / \mathrm{ns}$				
2.0	60	-40	60	10	ps
1.9	65	-40	63	10	ps
1.8	71	-40	66	10	ps
1.7	78	-40	69	10	ps
1.6	85	-40	73	10	ps
1.5	93	-40	77	10	ps
1.4	103	-40	82	10	ps
1.3	114	-40	87	10	ps
1.2	127	-40	94	10	ps
1.1	142	-40	101	10	ps
1.0	160	-40	110	10	ps

Figure 2-32. Nominal tAS/tCS/tDS and tAH/tCH/tDH Slew Rate

3. JTAG Specification

These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Table 3-1. Test Access Port (TAP) Pins

Pin name	Pin assignments	Description
TCK	12 A	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	11 A	Test Mode Select. This is the command input for the TAP controller state
TDI	12 V	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in
TDO	11 V	Test Data Output. This is the output side of the serial registers placed between TDI and TDO. Output changes in response to the falling edge of TCK.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH for five rising edges of TCK. The TAP controller state is also reset on the POWER-UP.

Table 3-2. JTAG DC Characteristics ($0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C}, 1.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} \leq 1.9 \mathrm{~V}$, unless otherwise noted)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Notes	
JTAG Input leakage current	IL	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-5.0	+5.0	$\mu \mathrm{A}$		
JTAG I/O leakage current	ILO	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}} \mathrm{Q}$ Outputs disabled	-5.0	+5.0	$\mu \mathrm{A}$		
JTAG input HIGH voltage	V_{IH}		$V_{\text {REF }}+0.15$	$V_{\text {DD }}+0.3$	V	1, 2	
JTAG input LOW voltage	VIL		VssQ-0.3	$V_{\text {REF }}-0.15$	V	1, 2	
JTAG output HIGH voltage	Voh1	\| Іонс	= $100 \mu \mathrm{~A}$	VDDQ - 0.2		V	
	VOH2	\mid Іонт $\mid=2 \mathrm{~mA}$	VDDQ - 0.4		V		
JTAG output LOW voltage	VoL1	lolc $=100 \mu \mathrm{~A}$		0.2	V	1	
	VoL2	lolt $=2 \mathrm{~mA}$		0.4	V	1	

Notes 1. All voltages referenced to $V_{\text {ss }}$ (GND).
2. Overshoot: $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \leq \mathrm{V}_{\mathrm{DD}}+0.7 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tck}^{2} / 2$.

Undershoot: $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \geq-0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tck}^{2} / 2$.
During normal operation, VDDQ must not exceed $V_{D D}$.

JTAG AC Test Conditions

Input waveform

Output waveform

Output load condition

Table 3-3. JTAG AC Characteristics ($0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Clock						
Clock cycle time	tт ${ }_{\text {tet }}$		20		ns	
Clock frequency	$\mathrm{f}_{\text {TF }}$			50	MHz	
Clock HIGH time	tthti		10		ns	
Clock LOW time	tтLth		10		ns	
Output time						
TCK LOW to TDO	ttlox		0		ns	
TCK LOW to TDO valid	ttlov			10	ns	
Setup time						
TMS setup time	$\mathrm{t}_{\text {mVth }}$		5		ns	
TDI valid to TCK HIGH	tovih		5		ns	
Capture setup time	tcs		5		ns	1
Hold time						
TMS hold time	tтнmx		5		ns	
TCK HIGH to TDI invalid	$\mathrm{t}_{\text {thD }}$		5		ns	
Capture hold time	tchu		5		ns	1

Note tcss and tchs refer to the setup and hold time requirements of latching data from the boundary scan register.

JTAG Timing Diagram

Table 3-4. Scan Register Definition (1)

Register name	Description
Instruction register	The 8 bit instruction registers hold the instructions that are executed by the TAP controller. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible. The bypass register is set LOW (VSS) when the bypass instruction is executed.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Table 3-5. Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	8	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	113	bit

Table 3-6. ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μ PD48576209F1	$64 \mathrm{M} \times 9$	0000	0001000110100111	00000010000	1
μ PD48576218F1	$32 \mathrm{M} \times 18$	0001	0001000110100111	00000010000	1
μ PD48576236F1	$16 \mathrm{M} \times 36$	0010	0001000110100111	00000010000	1

Table 3-7. SCAN Exit Order

Bit no.	Signal name				Bit no.	Signal name			Bump ID
	x9	$\mathbf{x 1 8}$	x36			x9	x18	x36	
1	DK	DK	DK1	K1	39	DNU	DNU	DQ30	R11
2	DK\#	DK\#	DK1\#	K2	40	DNU	DNU	DQ30	R11
3	CS\#	CS\#	CS\#	L2	41	DNU	DNU	DQ32	P11
4	REF\#	REF\#	REF\#	L1	42	DNU	DNU	DQ32	P11
5	WE\#	WE\#	WE\#	M1	43	DQ5	DQ10	DQ33	P10
6	A17	A17	A17	M3	44	DQ5	DQ10	DQ33	P10
7	A16	A16	A16	M2	45	DNU	DNU	DQ34	N11
8	A18	A18	A18	N1	46	DNU	DNU	DQ34	N11
9	A15	A15	A15	P1	47	DQ4	DQ9	DQ35	N10
10	DNU	DQ14	DQ25	N3	48	DQ4	DQ9	DQ35	N10
11	DNU	DQ14	DQ25	N3	49	DM	DM	DM	P12
12	DNU	DNU	DQ24	N2	50	A19	A19	A19	N12
13	DNU	DNU	DQ24	N2	51	A11	A11	A11	M11
14	DNU	DQ15	DQ23	P3	52	A12	A12	A12	M10
15	DNU	DQ15	DQ23	P3	53	A10	A10	A10	M12
16	DNU	DNU	DQ22	P2	54	A13	A13	A13	L12
17	DNU	DNU	DQ22	P2	55	A14	A14	A14	L11
18	DNU	QK1	QK1	R2	56	BA1	BA1	BA1	K11
19	DNU	QK1\#	QK1\#	R3	57	CK\#	CK\#	CK\#	K12
20	DNU	DNU	DQ20	T2	58	CK	CK	CK	J12
21	DNU	DNU	DQ20	T2	59	BA0	BA0	BAO	J11
22	DNU	DQ16	DQ21	T3	60	A4	A4	A4	H11
23	DNU	DQ16	DQ21	T3	61	A3	A3	A3	H12
24	DNU	DNU	DQ18	U2	62	A0	A0	A0	G12
25	DNU	DNU	DQ18	U2	63	A2	A2	A2	G10
26	DNU	DQ17	DQ19	U3	64	A1	A1	A1	G11
27	DNU	DQ17	DQ19	U3	65	A20	A20	(A20)	E12
28	ZQ	ZQ	ZQ	V2	66	QVLD	QVLD	QVLD	F12
29	DQ8	DQ13	DQ27	U10	67	DQ3	DQ3	DQ7	F10
30	DQ8	DQ13	DQ27	U10	68	DQ3	DQ3	DQ7	F10
31	DNU	DNU	DQ26	U11	69	DNU	DNU	DQ6	F11
32	DNU	DNU	DQ26	U11	70	DNU	DNU	DQ6	F11
33	DQ7	DQ12	DQ29	T10	71	DQ2	DQ2	DQ5	E10
34	DQ7	DQ12	DQ29	T10	72	DQ2	DQ2	DQ5	E10
35	DNU	DNU	DQ28	T11	73	DNU	DNU	DQ4	E11
36	DNU	DNU	DQ28	T11	74	DNU	DNU	DQ4	E11
37	DQ6	DQ11	DQ31	R10	75	QK0	QK0	QK0	D11
38	DQ6	DQ11	DQ31	R10	76	QK0\#	QKO\#	QKO\#	D10

Bit no.	Signal name			$\begin{gathered} \text { Bump } \\ \text { ID } \end{gathered}$
	x9	x18	x36	
77	DNU	DNU	DQ2	C11
78	DNU	DNU	DQ2	C11
79	DQ1	DQ1	DQ3	C10
80	DQ1	DQ1	DQ3	C10
81	DNU	DNU	DQ0	B11
82	DNU	DNU	DQ0	B11
83	DQ0	DQ0	DQ1	B10
84	DQ0	DQ0	DQ1	B10
85	DNU	DQ4	DQ9	B3
86	DNU	DQ4	DQ9	B3
87	DNU	DNU	DQ8	B2
88	DNU	DNU	DQ8	B2
89	DNU	DQ5	DQ11	C3
90	DNU	DQ5	DQ11	C3
91	DNU	DNU	DQ10	C2
92	DNU	DNU	DQ10	C2
93	DNU	DQ6	DQ13	D3
94	DNU	DQ6	DQ13	D3
95	DNU	DNU	DQ12	D2
96	DNU	DNU	DQ12	D2
97	DNU	DNU	DQ14	E2
98	DNU	DNU	DQ14	E2
99	DNU	DQ7	DQ15	E3
100	DNU	DQ7	DQ15	E3
101	DNU	DNU	DQ16	F2
102	DNU	DNU	DQ16	F2
103	DNU	DQ8	DQ17	F3
104	DNU	DQ8	DQ17	F3
105	A21	(A21)	(A21)	E1
106	A5	A5	A5	F1
107	A6	A6	A6	G2
108	A7	A7	A7	G3
109	A8	A8	A8	G1
110	BA2	BA2	BA2	H1
111	A9	A9	A9	H2
112	NF	NF	DK0\#	J2
113	NF	NF	DK0	$J 1$

Note Any unused balls that are in the order will read as a logic " 0 ".

JTAG Instructions

Many different instructions $\left(2^{8}\right)$ are possible with the 8 -bit instruction register. All used combinations are listed in Table 3-8, Instruction Codes. These six instructions are described in detail below. The remaining instructions are reserved and should not be used.

The TAP controller used in this RAM is fully compliant to the 1149.1 convention. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.

Table 3-8

Instructions	Instruction Code [7:0]	Description
EXTEST	00000000	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	00100001	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
SAMPLE / PRELOAD	00000101	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tct). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
CLAMP	00000111	When the CLAMP instruction is loaded into the instruction register, the data driven by the output balls are determined from the values held in the boundary scan register. Selects the bypass register to be connected between TDI and TDO. Data driven by output balls are determined from values held in the boundary scan register.
High-Z	00000011	The High-z instruction causes the boundary scan register to be connected between the TDI and TDO. This places all RAMs outputs into a High-Z state. Selects the bypass register to be connected between TDI and TDO. All outputs are forced into high impedance state.
BYPASS	11111111	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Reserved for Future Use	-	The remaining instructions are not implemented but are reserved for future use. Do not use these instructions.

TAP Controller State Diagram

4. Package Dimension

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-TFBGA-11×18.5-0.80	PTBG0144GC-A	-	0.39

Reference Symbol	Dimension in Millimeters		
	Min.	Nom.	Max.
D	18.40	18.50	18.60
E	10.90	11.00	11.10
D1	-	17.00	-
E1	-	8.80	-
A	-	-	1.20
A1	0.37	0.42	0.47
A3	-	-	0.18
b	0.47	0.52	0.57
eD	-	1.00	-
eE	-	0.80	-
aaa	-	-	0.10
bbb	-	-	0.20
ccc	-	-	0.10
eee	-	-	0.15
fff	-	-	0.08
n	-	144	-
E2	1.75	1.80	1.85

Top Marking Information

Due to space limitation of the package, top marking is different from part number. About marking code of I/O, configuration, speed grade and temperature range, refer to the Part Number Definition (see Page 2).
(5)

(1)	D48576	$:$ 576Mbit LLDRAM
	XXX	: I/O, Configuration Code
	F1	$:$ Fixed

(2)

XX : Speed Grade, Temp. Range Code -DW1-A : Fixed
(3) \quad YY $:$ Year Code (last 2-digits)
WW : Week Code
XXXXXX : Serial Code
(4) Laser dot : Lead-free identification dot
TAIWAN : (Assembly) country of origin
(5) Laser dot : INDEX Mark

5. Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices

```
\muPD48576209F1-DW1 : 144-pin FBGA (18.5 x 11)
\muPD48576218F1-DW1 : 144-pin FBGA (18.5 x 11)
\muPD48576236F1-DW1 : 144-pin FBGA (18.5 x 11)
```


Quality Grade

- A quality grade of the products is "Standard".
- Anti-radioactive design is not implemented in the products.
- Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to the ground and so forth.

Rev.	Date	Description	
		'15.07.01	-
Page	New Data Sheet		
Rev. 1.01	'16.01.15	P. 2	Updated Ordering Information Added part number definition Updated package bottom view Added top marking information

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
2801 Scott Bolulevard Santa Clara, CA 95050-2
Tel: $+1-408-588-600$, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: $+44-1628-585-900$
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Tel: +86-10, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
Tel: $+886-2-8175-9600$ North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn. Bhd.
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Renesas Electronics Korea Co., Ltd.
Res., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

