Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

MOS INTEGRATED CIRCUIT μ PD17P005

4-BIT SINGLE-CHIP MICROCONTROLLER WITH ONE-TIME PROM AND HARDWARE FOR DIGITAL TUNING SYSTEM

DESCRIPTION

 μ PD17P005 is a model of μ PD17005 equipped with one-time PROM instead of a mask ROM.

Since the user program can be written to the PROM of the μ PD17P005, this 4-bit microcontroller is ideal for experimental or small-scale production of application systems using μ PD17005 or μ PD17003A (a model of μ PD17005 with reduced ROM and RAM).

Also refer to the Data Sheets of the μ PD17005 and μ PD17003A.

The electrical characteristics (such as the supply current) of the μ PD17P005 and the analog characteristics of the PLL are different from those of the μ PD17005. Therefore, take these differences into consideration when designing and producing the application systems.

FEATURES

- Compatible with μPD17005 and 17003A
- Internal one-time PROM: 7932 × 16 bits
- Operating voltage range: 5 V±10%
- I²C bus (μPD17P005GF-E00-3B9)
- QTOPTM microcontroller model available (μPD17P005GF-xxx-3B9)

ORDERING INFORMATION

PART NUMBER	PACKAGE	QUALITY GRADE
μPD17P005GF-3B9	80-pin plastic QFP (14 x	20 mm) Standard
μPD17P005GF-E00-3B9*1	80-pin plastic QFP (14 x	20 mm) Standard
μPD17P005GF-xxx-3B9*2	80-pin plastic QFP (14 x	: 20 mm) Standard

* 1: I²C bus model

* 2: QTOP microcontroller model

Remarks: QTOP microcontroller is the generic name of a single-chip microcontroller with a one-time PROM that is programmed, stamped, screened, and verified by NEC.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grades on the devices and their recommended applications.

The information in this document is subject to change without notice.

μPD17P005

PIN CONFIGURATION (Top View)

(1) In normal operation mode

(2) In PROM programming mode

Note: () indicates the processing of the pins not used in the PROM programming mode.
 L :Ground these pins through an individual resistor (470Ω)
 Open :Do not connect anything to these pins.

PIN NAME

ADCo-ADC5 :	A/D converter input	POE0-POE3	:.	Port 0E
AMIFC :	Frequency counter input	P0Fo-P0F3	:	Port 0F
CE :	Chip enable input	P0Xo-P0X3	:	Port 0X
CGP :	Clock generator port	P0Yo-P0Y3	:	Port 0Y
COMo, COM1:	LCD common signal output	P1A0-P1A3	:	Port 1A
CLK :	PROM address updating clock input	P1B₀-P1B₃		Port 1B
D0-D7 :	PROM data I/O	P1C₀-P1C₃	:	Port 1C
EO0, EO1 :	Error out output	P1D₀-P1D₃	:	Port 1D
FCG :	External gate counter input	P2Ao	:	Port 2A
FMIFC :	Frequency counter input	PWM0-PWM2	:	D/A converter output
GND :	Ground	SCK1, SCK2	:	Serial clock I/O
INTo, INT1 :	External interrupt input	SCL	:	Serial clock I/O
KS0-KS15 :	Key source signal output	SDA	:	Serial data I/O
LCDo-LCD29	LCD segment signal output	SI1, SI2	:	Serial data input
LPFIN :	LPF amplifier input	SO1, SO2	:	Serial data output
LPFout :	LPF amplifier output	VCOH	:	Local oscillator input, high
MD0-MD3 :	Operation mode select			Local oscillator input, low
P0A0-P0A3 :	Port 0A	VDD1, VDD2	:	Positive power supply
P0B0-P0B3 :	Port 0B	VLPF	:	LPF amplifier power source
POCo-POC3 :	Port 0C			PROM write power source
P0D0-P0D3 :	Port 0D			Main clock oscillator

BLOCK DIAGRAM

ı.

Table of Contents

1.	PINF	UNCTIONS	7
	1.1	NORMAL OPERATION MODE	:
	1.2	PROM PROGRAMMING MODE	10
	1.3	PROM PROGRAMMING MODE EQUIVALENT CIRCUIT OF PIN	11
2.	FUN		15
3.	WRIT	TING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)	17
	3.1	OPERATION MODE FOR WRITING, READING, AND VERIFYING PROGRAM MEMORY	18
	3.2	WRITING PROGRAM MEMORY	
	3.3	READING PROGRAM MEMORY	20
4.	ELEC	TRICAL SPECIFICATIONS	21
5.	PACI		26
6.		OMMENDED SOLDERING CONDITIONS	
AP	PEND	IX DEVELOPMENT TOOLS	28

1. PIN FUNCTIONS

1.1 NORMAL OPERATION MODE

PIN NO.	IN NO. SYMBOL FUNCTION		OUTPUTFORM	WHENPOWER-OI RESET	
79	P0C3	4-bit I/O port.			
80	P0C ₂	Can be set in input or output mode in 4-bit units	CMOS push-pull	lanut	
1	P0C1			Input	
2	P0Co				
		I/O lines of port 0A, port 0B, and serial interface.	N-ch_open-drain		
3	P0A ₃ /SDA	• P0A3-P0A0	5 V		
		· 4-bit I/O port	POA3/SDA		
4	P0A ₂ /SCL	· Can be set in input or output mode in 1-bit units.	P0A2/SCL		
		• P0B3-P0Bo			
5	P0A1/SCK1	4-bit CMOS I/O port			
		· Can be set in input or output mode in 1-bit units.			
6	P0Aa/SO1	• SDA, SCL	-		
ĺ		· SDA: Serial data I/O	CMOS push-pull	Input	
7	P0B ₃ /Sl ₁	SCL: Serial clock I/O	[POA1, SCK1,]	F0A3-P0A0,	
		• <u>SCK1</u> , SO1, SI1	P0A0/SO1,	P0B3-P0B0	
8	P0B ₂ /SCK ₂	· SCK1: Serial clock I/O	P0B3,	-	
		SO1: Serial data output	POB2/SCK2,	•	
9	P0B1/SOz	Sh: Serial data input	P0B1/SO2,		
-		• <u>SCK</u> 2, SO2, SI2	P0Bo		
10	P0Bo/SI2	• SCK2: Serial clock I/O			
		SO ₂ : Serial data output			
		· Sl ₂ : Serial data input			
11	INT ₁	Edge-detectable vector interrupt input.		1	
12	INT 0	Both rising and falling edges can be selected		Input	
13	CE	Selects operation of µPD17P005 and inputs reset signal	_	Input	
		I/O lines of port 1A and external gate counter input line			
14	P1A ₃	• P1A3-P1A0			
1	ł	· 4-bit CMOS I/O port	CMOS push-pull	Input	
16	P1A1	Can be set in input or output mode in 1-bit units	(P1A3-P1A0)	(P1A3-P1A0)	
17	P1Av/FCG	• FCG			
		External gate counter input			
18	P1B ₃ /PWM ₂	Output lines of port 1B, D/A converter, and clock genera- tor port	N-ch open-drain		
		• P1B ₃ -P1B ₀			
19	P1B ₂ /PWM ₁	4-bit output port	P1B ₃ /PWM ₂	Outputs	
		• PWM2-PWM0		undefined dat	
20	P1B1/PWMo	Output of D/A converter with 8-bit resolution	L P1B1/PWM0 J	(P1B₃-P1B₀)	
		• CGP	CMOS push-pull		
21	P1B ₄ /CGP	Clock generator port output	(P1B ₄ /CGP)		
22	P1C ₃		CMOS push-pull	Outputs	
	1	4-bit CMOS output port	Civico pusit-puli	undefined dat	
25	P1Co				

NEC

μ**PD17P005**

PIN NO.	SYMBOL	FUNCTION	OUTPUTFORM	WHENPOWER-ON RESET
26	P1D ₃ /FMIFC	Analog input to port 1D, frequency counter, and A/D converter		
27	P1D2/AMIFC	• P1D₃-P1D₀		
		4-bit input port		
28	P1D1/ADC1	• FMIFC, AMIFC	_	Input
		Input of frequency counter		(P1D3-P1D0)
29	P1D ₀ /ADC ₀	• ADC1, ADC0		
		Analog input to A/D converter with 6-bit resolution		
		Positive power supply. Apply 5 V±10% to this pin in		
30	Vdd1	normal operation mode. Apply 5 V to write, read, or verify program memory.	-	-
31	VCOL		1. A.	
32	VCOH	Inputs local oscillation frequency of PLL	-	Input
33	GND	Ground	<u> </u>	
34	Хоит	_	CMOS push-pull	
		Connect crystal oscillator for system clock oscillation across these pins.	CiviOS push-pull	
35	Xin		<u> </u>	
36	EOo	Output from charge pump of PLL frequency synthesizer.		
		Compares divided value of local oscillation frequency with phase of reference frequency, and outputs result of	CMOS 3-state	HighImpedance
37	EO1	comparison	3-state	
38	LPFIN	Input of amplifier for low-pass filter	_	
39	LPFour	Output of amplifier for low-pass filter	N-ch open-drain 16 V	
40	VLPF	Power to amplifier for low-pass filter	_	
41	VDD2	Positive power supply. Apply 5 V±10% to this pin in normal operation mode. Apply 6 V to write, read, or verify program memory.	-	_
42	P2A₀	1-bit CMOS output port	CMOS push-pull	Outputs undefined data
43 44	COM1 COM0	Outputs common signal of LCD controller/driver	CMOS 3-value output	Low-level output
45 	LCD20/P0F3	Output lines of ports 0F, 0E, 0X, 0Y, and segment signals of LCD controller/driver, and key source signals of key matrix		
48	LCD20/P0F0	• P0F3-P0F0		
49	LCD25/P0E3	4-bit CMOS output port		
Ī		• P0E3-P0E0		
52	LCD22/P0E0	4-bit CMOS output port		
53		• P0X₅-P0X₀	CMOS push-pull	Low-level output
1		6-bit CMOS output port		(LCD29-LCD0)
 58	LCD1e/P0Xo	• P0Y18-P0Y0		
58 59		16-bit CMOS output port		
09	LCD15/P0Y15/KS15	• LCD29-LCD0		
1		 Segment signal output of LCD controller/driver 		
74	LCDo/P0Yo/KSo	Segment signal output of LCD controller/driver KS16-KS0		
		 Key source signal output of key matrix 		

NEC

μ**PD17P005**

PIN NO.	SYMBOL	FUNCTION	OUTPUTFORM	WHENPOWER-ON RESET
75 78	P0D2/ADC5	 Port 0D, analog input line to A/D converter, and key source signal return input line of LCD segment P0D₃-P0D₀ 4-bit input port Connected to pull-down resistor ADC₅-ADC₂ Analog input to A/D converter with 6-bit resolution Key source signal return input 	_	Input with pull- down resistor (P0D3-P0D0)

10

1.2 PROM PROGRAMMING MODE

PIN NO.	SYMBOL	FUNCTION	OUTPUT FORM
11	Vpp	Positive power supply for PROM programming. Apply 12.5 V to this pin to write, read, or verify program memory.	
30	VDD1	Positive power supply. Apply 6 V to this pin to write, read, or verify program memory.	_
33	GND	Ground	_
35	CLK	Clock input for PROM programming	_
41	VDD2	Positive power supply. Apply 6 V to this pin to write, read, or verify program memory.	
45 52	D7 D0	8-bit data I/O for PROM programming	CMOS push-pull
75 78	MD3	Input to select operation mode when PROM is programmed	

Remarks: Pins other than the above are not used in the PROM programming mode. For the processing of the unused pins, refer to (2) PROM programming mode in Pin Connections.

1.3 EQUIVALENT CIRCUIT OF PIN

* :The RESET signal is not supplied to POC and D0-D7.

1.3.2 P0A (P0A3/SDA, P0A2/SCL) (I/O)

1.3.3 P1B (P1Bo/CGP) P1C (P1C3, P1C2, P1C1, P1C0) P2A (P2A0) LCD0/P0Y0/KS0-LCD29/P0F3

NEC

μ PD17P005

1.3.4 P1B (P1B₃/PWM₂, P1B₂/PWM₁, P1B₁/PWM₀) (Output)

0

1.3.5 P0D (P0D3/ADC5/MD3, P0D2/ADC4/MD2, P0D1/ADC3/MD1, P0D0/ADC2/MD0) (Input)

1.3.6 P1D (P1D1/ADC1, P1D0/ADC0) (Input)

1.3.7 P1D (P1D₃/FMIFC, P1D₂/AMIFC) (Input)

1.3.8 CE INT (Vrey) (Schmitt trigger input) INTo
Ure of the second s

 $\begin{array}{c} 1.3.10 \quad EO_1 \\ EO_0 \end{array} \right\} \text{(Output)}$

. 13

μ**PD17P005**

1.3.11 LPFIN (input), LPFout (output), VLPF

1.3.13 VCOH VCOL } (Input)

2. FUNCTION LIST

TEM	PRODUCT NAME	μPD17003A	μPD17005	μPD17P005						
ROM (×16 bits)		3836 (mask ROM)	3836 (mask ROM) 7932 (mask ROM) 75							
Table reference area		256 7932								
RAM (×4 bit	s)	320	320 432							
Data b	uffer		4							
Genera	al register		16							
System regi	ster		12 × 4 bits	· · · · · · · · · · · · · · · · · · ·						
Register file			33×4 bits (control register)	· ·						
General-pur register	pose port		24 × 4 bits							
Instruction e	execution time	4.	44 μ s (at 4.5 MHz, crystal oscillat	tor)						
Stack level			7 (stack can be manipulated)							
General-	I/O port		16 lines							
purpose	Input port		8 lines							
port	Output port	9 lines (+30: LCD segment pin)								
Clock gener	rator port	1 line								
LCD contro	oller/driver	 30 segment, 2 common 1/2 duty, 1/2 bias, frame frequency 250 Hz, drive voltage Voo Segment pins multiplexed with key source: 16 lines All 30 lines can be used as output port pins (4, 4, 6, and 16 lines each of which can be independently set) 								
Serial interfa	ice	 2 systems (3 channels) Serial interface 1: 2-line l²C bus mode*, serial I/O mode 3-line Serial I/O mode Serial interface 2: 3-line Serial I/O mode 								
D/A converte	er	 8 bits × 3 lines (PWM output, output voltage: 16 V max.) 								
A/D converte	ər	• 6 bits × 6 lines (successive	 6 bits × 6 lines (successive approximation method by software) 							
Interrupt		 5 channels (maskable interrupt) External interrupt : 2 channels (INTo pin, INTo pin) Internal interrupt : 3 channels (timer, serial interface 1, frequency counter) 								
Timer	ms) 250 ms)									
Reset function	on	 Power-ON reset (on powe Reset by CE pin (CE pin: lo Power failure detection fu 	ow level—>high level)							

*: Among the PROM models, only μ PD17P005GF-E00-3B9 can use the I²C bus mode. For the mask ROM model, it is confirmed when an order for the custom code is received.

μ**PD17P005**

(con't)

ITEM		μPD17003A	μPD17005	μPD17P005					
	Division modes	Pulse swallow method (VC	:OL pin 30 MHz max.) :OL pin 40 MHz max.) :OH pin 150 MHz max.)						
PLL frequency synthesizer	Reference frequency		12 types selected by program 1, 1.25, 2.5, 3, 5, 6.25, 9, 10, 12.5, 25, 50, 100 kHz						
aynthesizer	Charge pump	Two independent error out	puts						
	Phase comparator	 Unlock can be detected through program Delay time of unlock FF selectable 							
	LPF amp · CMOS operational amp. Output withstand voltage: 16 V max.								
Frequency co	unter	 Frequency measurement P1D₂/FMIFC pin 5 to 15 MH P1D₂/AMIFC pin 0.1 to 1 Mi 	Ηz						
		 External gate width measurement P1Av/FCG pin 							
Supply voltaç	je	 Vob = 4.5 to 5.5 V (PLL and Vob = 3.5 to 5.5 V (PLL stop Vob = 2.2 to 5.5 V (crystal or 	s, CPU operates)	· · ·					
Package		80-pin plastic QFP (14 × 20 m	nm)	· · · · · · · · · · · · · · · · · · ·					

3. WRITING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The internal program memory of the μ PD17P005 is a 15864 × 8 bit one-time PROM to which data can be electrically written. This PROM is accessed in 1-word or 16-bit units in a normal operation mode. When the program memory is written, read, or verified, the PROM is accessed in 1-word or 8-bit units. The higher 8 bits of 1 word or 16 bits are assigned to an even address, while the lower 8 bits are assigned to an odd address.

When the PROM is to be written, read, or verified, set the PROM mode and use the pins shown in Table 3-1 below.

Note that there is no address input pin. Instead, the clock signal input from the CLK pin is used to update the address.

Table 3-1	Pins	Used	to	Write,	Read,	or	Verify	Program	Memory
-----------	------	------	----	--------	-------	----	--------	---------	--------

PIN NAME	FUNCTION			
Vpp	Applies program voltage (12.5			
CLK	Inputs address updating clock			
MD0-MD3	Select operation mode			
 D0-D7	Input/output 8-bit data			
VDD1, VDD2	Apply supply voltage (6 V)			

Write the internal PROM by using the following PROM programmer and program adapter:

PROM programmer Program adapter AF-9703 (Ando Electric.) AF-9704 (ditto) AF-9803 (ditto)

NEC

3.1 OPERATION MODE FOR WRITING, READING, AND VERIFYING PROGRAM MEMORY

The μ PD17P005 is set in a mode to write, read, or verify the program memory when +6 V is applied to the V_{DD} pin and +12.5 V is applied to the VPP pin.

To set the program memory write, read, and verify modes, use the MD0 through MD3 pins as shown in Table 3-2.

The pins not used to write, read, or verify the program memory should be either opened, or connected to GND through a pull-down resistor (470 Ω). (Refer to (2) PROM programming mode in Pin Configuration.)

Table 3-2 Operation Mode When Program Memory is Written, Rea	Read, or Verified
--	-------------------

	SPECIF	IES OPE	RATION	MODE	005047044005	
Vpp	VDD	MD0	MD1	MD2	MD3	OPERATION MODE
		н	L	н	L	Clears program memoryaddressto0
	01	L	Н	н	н	Write mode
+12.5V	+6V	L	L	н	н	Read, verify modes
		н	x	н	н	Program inhibit mode

Remarks: X: L or H

NEC

μ**PD17P005**

NEC

3.2 WRITING PROGRAM MEMORY

The program memory can be written at high speeds in the following sequence:

- (1) Pull down the unused pins to GND through a resistor. Keep the CLK pin at the low level.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait for 10 us.
- (4) Set the program memory address 0 clear mode.
- (5) Supply 6 V to the Voo pin and 12.5 V to the VPP pin.
- (6) Set the program inhibit mode.
- (7) Write data in 1-ms write mode.
- (8) Set the program inhibit mode.
- (9) Set the verify mode. If the program memory has been correctly written, proceed to step (10). If not, repeat steps (7) through (9).
- (10) Additional writing of (Number of times the program memory has been written in (7) through (9): X) × 1 ms
- (11) Set the program inhibit mode.
- (12) Input a pulse to the CLK pin four times to update the program memory address by one (+1).
- (13) Repeat steps (7) through (12) until the last address is written.
- (14) Set the program memory address 0 clear mode.
- (15) Change the voltage on the Vop and VPP pins to 5 V.
- (16) Turn off the power.

Steps (2) through (12) are illustrated below.

μ**PD17P005**

3.3 READING PROGRAM MEMORY

Read the contents of the program memory of the μ PD17P005 in the following sequence:

- (1) Pull down the unused pins to GND through a resistor. Keep the CLK pin at the low level.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait for 10 us.

NEC

- (4) Set the program memory address 0 clear mode.
- (5) Supply 6 V to the Vod pin and 12.5 V to the VPP pin.
- (6) Set the program inhibit mode.
- (7) Set the verify mode. When the clock pulse is input to the CLK pin, data is sequentially output one address at a time with four clocks constituting one cycle.
- (8) Set the program inhibit mode.
- (9) Set the program memory address 0 clear mode
- (10) Change the voltage on the VDD and VPP pins to 5 V.
- (11) Turn off the power.

Steps (2) through (9) are illustrated below.

	PP (
Vpp	000)	_
Voo		 .
CLK	$_$	_
D0- D7	Data output Data output	_
MD0		—
MD1	'L'	
MD2	\$	 - -
MD3	\$	_

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Ta = 25±2°C)

PARMETER	SYMBOL	CONDITION	RATINGS	UNIT
Supply Voltage	VDD		- 0.3 to +6.0	V
Input Voltage	Vi		- 0.3 to V _{DD} + 0.3	V
Output Voltage	Vo	Except P1B1 - P1B3, P0A2, P0A3, LPFour	- 0.3 to Vod + 0.3	V
	VBD81	P1B1 - P1B3, LPFour	18.0	V
Output Withstand Voltage	VBDS2	P0A2, P0A3	Vod + 0.3	V
		1 pin	- 12	mA
High-Level Output Current	юн	Total of all pins	- 20	mA
		1 pin	12	mA
Low-Level Output Current		Total of all pins	20	mA
Operating Temperature	Topt		- 40 to + 85	°C
Storage Temperature	Tstg		– 55 to + 125	°C

Recommended Operating Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
Supply Voltage	VDD1	PLL and CPU operate	4.5	5.0	5.5	V
Supply Voltage	VDD2	PLL stops, CPU operates	3.5	5.0	5.5	V
Data Retention Voltage	VDDR	Crystal oscillator stops	2.2		5.5	- V
Supply Voltage Rise Time	trise	$V_{DO} = 0 \rightarrow 4.5 V$			500	ms
	Vin1	VCOL, VCOH	0.5		VDD	Vp-p
Input Amplitude	Vin2	AMIFC, FMIFC	0.5		Vod	Vp_p
Output Withstand Voltage	Vade	P1B1 - P1B3, LPFour			16.0	V
Operating Temperature	Topt		- 40		+85	°C

μ**PD17P005**

DC Characteristics (Ta = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
Supply Voltage	VDD1	CPU and PLL operate	4.5	5.0	5.5	٧
	VDD2	CPU operates, PLL stops	3.5	5.0	5.5	V
		CPU operates, PLL stops. Xin pin				,
	1001	Sine wave input (fin = 4.5 MHz, Vin = Voo), Ta = 25°C		2.8	5.6	mA
Supply Current	1002	CPU operates, PLL stops, HALT instruction is used (20 instructions executed in 1 ms) XIN pin Circumptionet (6 4.5 MUL		1.9	3.8	mA
		Sine wave input (fin = 4.5 MHz, Vin = Voo), Ta = 25°C				
······	VDDR1	Power failure detected by timer FF; with crystal oscillator	3.5		5.5	v
Data Retention Voltage	Vddrz	Power failure detected by timer FF; crystal oscillator stops	2.2		5.5	v
	VDDR3	Data memory (RAM) retained	2.0		5.5	٧
	IDDR1	Crystal oscillator stops Ta = 25°C		2	15	μA
Data Retention Current	IDDR2	Crystal oscillator stops V₂₂ = 5.0 V, Ta = 25°C		2	10	μA
Intermediate Level Output Voltage	Vом1	COM ₀ , COM ₁ VDD = 5 V	2.3	2.5	2.7	v
High-Level Input Voltage	Viн1	P0Ao-P0A3, P0Bo-P0B3, P0Co-P0C3, P1Ao-P1A3, P1Do-P1D3, CE, INTo, INT1	0.8 VDD		Vdd	v
	Vihz	P0Do-P0D3	0.6 VDD		Voo	٧
Low-Level Input Voltage	ViL	P0Ao-P0As, P0Bo-P0Bs, P0Co-P0Cs, P0Do-P0Ds, P1Ao-P1As, P1Do-P1Ds, CE, INTo, INT1	0		0.2 Vdd	v
High-Level Output Current	1он1	РОАФ, РОА1, РОВФ-РОВ3, РОСФ-РОС3, Р1АФ-Р1А3, Р1СФ-Р1С3, Р1ВФ, Р2А3, Voh = Vdd – 1 V	- 1.0	- 5.0		mA
	Іон2	LCDo-LCD29, EO0, EO1 VOH = VDD - 1 V	- 1.0	- 4.0		mA
Low-Level Output Current	lou	P0A0-P0A3, P0B0-P0B3, P0C0-P0C3, P1A0-P1A3, P1C0-P1C3, P1B0, P2A0, Vol = 1 V	1.0	7.0		mA
	louz	LCDo-LCD29, EO0, EO1 Vol = 1 V	1.0	3.5		mA
	lora	P1B1-P1B3 VoL = 1 V	1.0	2.0		mA
	l014	P0A2, P0A3 VoL = 1 V	1.0	10.0		mA
	Іінт	VCOH pulled down VIH = VDD	0.1	0.8		mA
High-Level Input Current	l1H2	VCOL pulled down Vin = Voo	0.1	0.8		mA
	Іінз	Xin pulled down Vin = Voo	0.1	1.3		mA
	11114	P0Do-P0Do pulled down Vin = Voo	0.05	0.13	0.30	mA
	l.1	P0A2, P0A3 VOH = VDD			500	nA
Output Off Leakage Current	L2	Р1В1-Р1В3, LPFout Voн = 16 V			500	nA
	113	EOo, EO1 Voн = VDD, VoL = 0 V			±100	nA

AC Characteristics (Ta = -40 to +85°C, Voo = 4.5 to 5.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
Operating Fequency	fini	VCOL MF mode, sine wave input VIN = 0.3 VP-P	0.5		30	MHz
	finz	VCOL HF mode, sine wave input VIN = 0.3 VP-P	5		40	MHz
	fina	VCOH, sine wave input VIN = 0.3 VP-P	9		150	MHz
	fin4	AMIFC, sine wave input VIN = 0.5 VP-P	0.1		1	MHz
	fins	AMIFC, sine wave input VIN = 0.05 VP-P	0.44		0.46	MHz
	fins	FMIFC, sine wave input VIN = 0.5 VP-P	5		15	MHz
	fin7	FMIFC, sine wave input Vin = 0.06 Vp.p	10.5		10.9	MHz
A/D Converter Resolution					6	bit
A/D Converter Total Error		Ta = -10 to +50°C		±1	±1.5	LSB

Reference Characteristics

PARAMETER	SYMBOL	CONI	DITIONS	MIN.	TYP.	MAX	UNIT
Supply Current	loos				15		mA
High-Level Output Current	Іон4	COMo, COM1	VOH = VDD - 1 V		- 0.2		mA
	Іомі	COMo, COM1	Vom = Vdd - 1 V		- 20		μΑ
Intermediate Level Output Current	Іом2	COMo, COM1	Vом = 1 V		20		μA
Low-Level Output Current	1012	COM ₀ , COM ₁	Vol = 1 V		0.2		mA

DC Programming Characteristics (Ta = 25° C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
	Vih1	Other than CLK	0.7 Vdd		VDD	V
High-Level Input Voltage	Vinz	CLK	VDD - 0.5	·····	VDD	V
Low-Level Input Voltage	VILI	Other than CLK	0		0.3 VDD	v
	VIL2	CLK	. 0		0.4	v
Input Leakage Current	lu .	Vin = Vil or Vin			±10	μA
High-Level Output Voltage	Кон	lон = -1 mA	Vod – 1.0			V
Low-Level Output Voltage	Val	lou = 1 mA			1.0	V
Voo Supply Current	laa	· · · · ·			30	mA
VPP Supply Current	Ірр	MD0 = VIL, MD1 = VIH			30	mA

Note:Note: 1. Keep VPP to within +13.5 V including the overshoot. 2. Apply Vod before VPP and turn it off after VPP.

AC Programming Characteristics (Ta = 25° C, V_{DD} = 6.0 ± 0.25 V, V_{PP} = 12.5 ± 0.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address Setup Time* (vs. MD0↓)	tas		2	· ·		μs
MD1 Setup Time (vs. MD0↓)	tm1s		2			μs
Data Setup Time (vs. MD0↓)	tos		2			μs.
Address Hold Time* (vs. MD01)	tан	· · · · · · · · · · · · · · · · · · ·	2			μs.
Data Hold Time (vs. MD01)	tон	· · · · · · · · · · · · · · · · · · ·	2			μs
$MD0\uparrow \rightarrow Data Output Float Delay Time$	tor		0		130	ns
Vrr Setup Time (vs. MD31)	tives		2		· · · · ·	μs
Voo Setup Time (vs. MD31)	tvos		2			μs
Initial Program Pulse Width	tew	· · · · · · · · · · · · · · · · · · ·	0.95	1.0	1.05	ms
Additional Program Pulse Width	topw		0.95		21.0	ms
MD0 Setup Time (vs. MD11)	tmos		2			μs
$MD0\downarrow \rightarrow Data Output Delay Time$	tov	MD0 = MD1 = VIL			1	μs
MD1 Hold Time (vs. MD01)	tмін		2			 μs
MD1 Recovery Time (vs. MD0↓)	tm18	tm1H + tm1R ≥ 50 μs	2			
Program Counter Reset Time	teca		10			μs
CLK Input High-, Low-Level Width	txH, txL		0.125			μs
CLK Input Frequency	fx				4.19	MHz
Initial Mode Set Time	tı		2			μs
MD3 Setup Time (vs. MD11)	tm38		2			μs
MD3 Hold Time (vs. MD1↓)	tмзн		2			 μs
MD3 Setup Time (vs. MD0J)	tm38R	Program memory read	2			 μs
Address ^e →Data Output Delay Time	TOAD	Program memory read	2			μs
Address*→Data Output Hold Time	thad	Program memory read	0	a	130	ns
MD3 Hold Time (vs. MD01)	tмзня	Program memory read	2			μs
MD3↓→ Data Output Float Delay Time	tofr	Program memory read	2			μs

*: The internal address signal is incremented (+1) at the falling edge of thernal address signal is incremented (+1) at the falling edge of the third CLK signal (with one cycle consisting of four clocks). The internal address is not connected to a pin.

NEC

μ**PD17P005**

Program memory read timing

5. PACKAGE DRAWINGS

NEC

80-Pin Plastic QFP (14 × 20) (Unit: mm)

6. RECOMMENDED SOLDERING CONDITIONS

The μ PD17P005 should be soldered under the following recommended conditions. For soldering conditions other than those recommended below, consult NEC.

Table 6-1 List of Recommended Soldering Conditions

PRODUCT NAME	PACKAGE	CODE	
μPD17P005GF-3B9		·IR30-162	
l'	80-pin plastic QFP (14 $ imes$ 20 mm)	·VP15-162 ·WS60-162	
μPD17P005GF-xxx-3B9		·WS60-162 ·Pin partial heating	

Table 6-2 Soldering Conditions

CODE	SOLDERING METHOD	SOLDERING CONDITIONS
IR30-162	Infrared reflow	Package peak temperature: 230°C, Time: 30 seconds max. (210°C min.), Number of times: 1, Number of days*: 2 (after this, prebaking is necessary at 125°C for 16 hours)
VP15-162	VPS	Package peak temperature: 215°C, Time: 40 seconds max. (200°C min.), Number of times: 1, Number of days*: 2 (after this, prebaking is necessary at 125°C for 16 hours)
WS60-162	Wave soldering	Soldering oven temperature: 260°C max., Time: 10 seconds max., Number of times: 1, Number of days*: 2 (after this, prebaking is necessary at 125°C for 16 hours)
Pin partial heating	Pin partial heating	Pin temperature: 300°C max., Time: 10 seconds max.

*: The number of days the device can be stored after the dry pack has been opened. The storing conditions are 25°C, 65% RH max.

Note: Do not use two or more soldering methods in combination (except for the pin partial heating method).

Remarks: For details of the recommended soldering conditions, refer to "Semiconductor Device Mounting Manual" (IEI-616).

APPENDIX DEVELOPMENT TOOLS

The following development tools are readily available to support the development of the μ PD17P005 program:

Hardware

NAME	OUTLINE	ORDERCODE
	This in-circuit emulator is used in common with the 17K series products. When developing the program of μ PD17P005, a system evaluation board (SE board) is used in combination with the in-circuit emulator.	
In-circuit Emulator	The in-circuit emulator operates with a RAM base. By connecting it to a console, the program can be added to and edited on the console. In addition, more sophisticated program development environments can be created by using the support software SIMPLEHOST [™] .	IE-17K IE-17K-ET *
SE board	Used to evaluate the system of μ PD17P005 in stand-alone mode, or in combination with the in-circuit emulator.	SE-17010
Emulation Probe	Connects the SE board to the target system.	EP-17003GF
Conversion socket	Connects to the target system in combination with the emulation probe.	EV-9200G-80
PROM programmer	The PROM of the μ PD17P005 can be programmed by using a dedicated program adapter AF-9803.	AF-9703 AF-9704 (Ando Electric)
Program adapter	Used in combination with the PROM programmer.	AF-9803 (Ando Electric)

Remarks: For the details of the PROM programmer and program adapter, consult Ando Electric.

*: Low-cost model: with external power supply

Software

NAME	OUTLINE	HOSTMACHINE	OS	SUPPLY MEDIA	ORDERCODE
17K series assembler	AS17K is an assembler that can be used in common with the 17K series products. When developing the program of the μ PD17P005, AS17K is used in combination with a device file (AS17005).	PC-9800 series	MS-DOS [™]	5"2HD	μ\$5A10A\$17K
			(Ver.3.1toVer.3.30C)	3.5*2HD	µ\$5A13A\$17K
		ІВМ РС/АТ™	PCDOS™ (Ver. 3.1)	5"2HC	μ\$7B10A\$17K
Device file (AS17005)	AS17005 is a device file for μ PD17005 and μ PD17P005, and is used in combination with an assembler for the 17K series (AS17K).	PC-9800 series	MS-DOS (Ver.3.1toVer.3.30C)	5*2HD	µS5A10AS17005
				3.5"2HD	μS5A13AS17005
		IBM PC/AT	PCDOS (Ver. 3.1)	5"2HC	μS7B10AS17005
Support software (SIMPLEHOST)	SIMPLEHOST is a software package that enables man-machine interface in MS-WINDOWS [™] when a program is developed by using an in-circuit emulator and a personal computer.	PC-9800 series	MS-DOS (Ver. 3.1to MS-	5"2HD	μS5A10/E17K
			Ver. 3.30C) WINDOWS	3.5"2HD	μ\$5A13IE17K
		IBM PC/AT	PCDOS (Ver. 3.1) (Ver. 2.1 to Ver. 3.0)		μ\$7B10IE17K

(MEMO]

Note: Purchase of NEC I²C components conveys a license under the Philips I C² Patent Rights to use these components in an I² system, provided that the system comforms to the I²C Standard Specification as defined by Philips.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in the field where very high reliability is required including, but not limited to, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or those intend to use "Standard" quality grade NEC devices for the application not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.