Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD161830

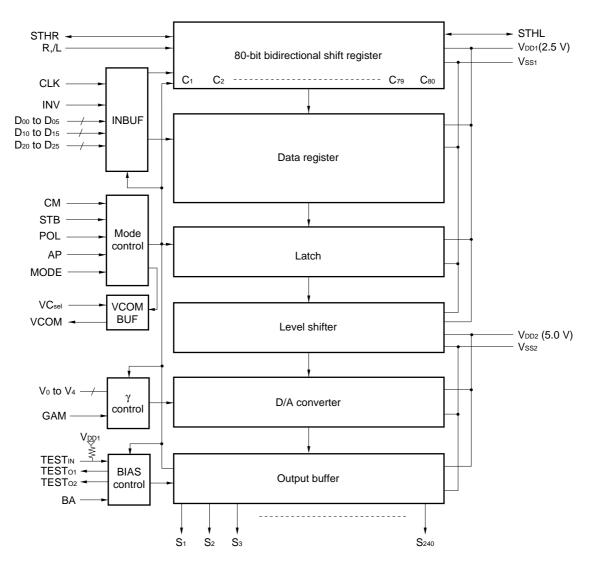
240-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

DESCRIPTION

The μ PD161830 is a source driver for TFT-LCDs supporting 64 gray-scale display and can operate with a supply voltage of 2.5 V for the logic block and 5.0 V for the driver block. Data input as 6-bit x 3-dot digital data is output as 64 γ -corrected values using an internal D/A converter and 5 external power modules, thus achieving a 260,000-color (full-color) display.

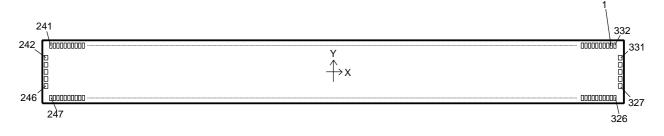
FEATURES

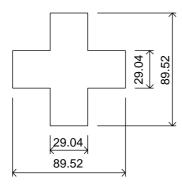
- CMOS level input
- 240 outputs
- Input of 6 bits (gray-scale data) by 3 dots
- Capable of outputting 64 values by means of 5 external power modules and a D/A converter
- Output dynamic range: Vss2 to VDD2
- High-speed data transfer: fcLK = 15 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.5 V)
- Level inversion γ -correction power supply is possible
- Logic power supply voltage (VDD1): 2.2 to 3.6 V
- Driver power supply voltage (VDD2): 4.5 to 5.5 V


ORDERING INFORMATION

Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives.

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.


1. BLOCK DIAGRAM



2. PIN CONFIGURATION (Pad Layout)

Chip size: $15.84 \times 1.11 \text{ mm}^2$ Bump size (Input/VCOM/test/dummy): $80 \times 86 \mu \text{m}^2$ Bump size (Output): $29 \times 103 \mu \text{m}^2$ Alignment Mark (μ m) X: 7716.45 Y: 347.04 X: -7716.45 Y: 347.04

Alignment mark shape (unit: μ m)

No.	Name	X [μm]	Υ [μm]	No.	Name	X [μm]	Υ [μm]	No.	Name	X [μm]	Y [µm]
1	S1	7170.000	396.480	61	S61	3570.000	396.480	121	S121	-30.000	396.480
2	S2	7110.000	396.480	62	S62	3510.000	396.480	122	S122	-90.000	396.480
3	S3	7050.000	396.480	63	S63	3450.000	396.480	123	S123	-150.000	396.480
4		6990.000	396.480	64	S64	3390.000	396.480	124	S124	-210.000	396.480
5	S5	6930.000	396.480	65	S65	3330.000	396.480	125	S125	-270.000	396.480
6		6870.000	396.480	66	S66	3270.000	396,480	126		-330.000	396.480
7		6810.000	396.480	67	S67	3210.000	396.480	127	S127	-390.000	396.480
. 8	-	6750.000	396.480	68		3150.000	396.480	128	-	-450.000	396.480
9		6690.000	396.480	69	S69	3090.000	396.480	120		-510.000	396.480
10		6630.000	396.480	70		3030.000	396.480	123		-570.000	396.480
	S10	6570.000	396.480	70		2970.000	396.480		S130	-630.000	396.480
12			396.480	72	S71 S72	2910.000	396.480	131		-690.000	396.480
	-	6510.000 6450.000	396.480		-	2910.000	396.480	132		-750.000	
13 14				73 74				133			396.480
	÷.	6390.000	396.480		Q	2790.000	396.480			-810.000	396.480
	S15	6330.000	396.480	75		2730.000	396.480	135		-870.000	396.480
16		6270.000	396.480	76		2670.000	396.480	136		-930.000	396.480
17	Q	6210.000	396.480	77	S77	2610.000	396.480	137	••••	-990.000	396.480
	S18	6150.000	396.480	78		2550.000	396.480	138		-1050.000	396.480
19		6090.000	396.480	79		2490.000	396.480	139		-1110.000	396.48
20	S20	6030.000	396.480		S80	2430.000	396.480	140		-1170.000	396.480
21	S21	5970.000	396.480	81	S81	2370.000	396.480	141	S141	-1230.000	396.480
22	S22	5910.000	396.480	82	S82	2310.000	396.480	142	S142	-1290.000	396.480
23	S23	5850.000	396.480	83	S83	2250.000	396.480	143	S143	-1350.000	396.480
24	S24	5790.000	396.480	84	S84	2190.000	396.480	144	S144	-1410.000	396.48
25	S25	5730.000	396.480	85	S85	2130.000	396.480	145	S145	-1470.000	396.48
26	S26	5670.000	396.480	86		2070.000	396.480	146		-1530.000	396.480
27		5610.000	396.480	87	S87	2010.000	396.480	147	S147	-1590.000	396.480
28	-	5550.000	396.480	88	S88	1950.000	396.480	148	-	-1650.000	396.480
29		5490.000	396.480	89		1890.000	396.480	149		-1710.000	396.48
30		5430.000	396.480	90		1830.000	396.480	-	S150	-1770.000	396.480
	S31	5370.000	396.480	91		1770.000	396.480	150		-1830.000	396.480
32		5310.000	396.480	92	S92	1710.000	396.480	151		-1890.000	396.480
33		5250.000	396.480	93		1650.000	396.480	153		-1950.000	396.48
34	2.2	5190.000	396.480	94		1590.000	396.480	154		-2010.000	396.48
35		5130.000	396.480	95	S95	1530.000	396.480	155		-2070.000	396.48
36		5070.000	396.480	96	S96	1470.000	396.480	156		-2130.000	396.48
37	2.2	5010.000	396.480	97		1410.000	396.480	157		-2190.000	396.48
38		4950.000	396.480	98		1350.000	396.480	158		-2250.000	396.48
39		4890.000	396.480	99		1290.000	396.480	159		-2310.000	396.48
40		4830.000	396.480	100		1230.000	396.480	160		-2370.000	396.48
41		4770.000	396.480	101		1170.000	396.480	161		-2430.000	396.480
42	S42	4710.000	396.480	102	S102	1110.000	396.480	162	S162	-2490.000	396.480
43	S43	4650.000	396.480	103	S103	1050.000	396.480	163	S163	-2550.000	396.48
44	S44	4590.000	396.480	104	S104	990.000	396.480	164	S164	-2610.000	396.48
45	S45	4530.000	396.480	105	S105	930.000	396.480	165	S165	-2670.000	396.48
46	S46	4470.000	396.480	106	S106	870.000	396.480	166	S166	-2730.000	396.48
47	S47	4410.000	396.480	107	S107	810.000	396.480	167	S167	-2790.000	396.48
48	S48	4350.000	396.480	108	S108	750.000	396.480	168	S168	-2850.000	396.48
49	S49	4290.000	396.480	109		690.000	396.480	169		-2910.000	396.48
50		4230.000	396.480	110		630.000	396.480	170		-2970.000	396.48
	S51	4170.000	396.480		S111	570.000	396.480	170		-3030.000	396.48
52		4110.000	396.480	112	-	510.000	396.480	172	S172	-3090.000	396.48
53		4050.000	396.480	112		450.000	396.480	172		-3150.000	396.48
53 54		3990.000	396.480	-	S113 S114	390.000	396.480	173		-3150.000	396.48
-									-		
55		3930.000	396.480	115		330.000	396.480	175	S175	-3270.000	396.48
56		3870.000	396.480	116		270.000	396.480	176		-3330.000	396.48
57		3810.000	396.480		S117	210.000	396.480	177	S177	-3390.000	396.48
58		3750.000	396.480		S118	150.000	396.480	178		-3450.000	396.48
59		3690.000	396.480		S119	90.000	396.480	179		-3510.000	396.48
60	S60	3630.000	396.480	120	S120	30.000	396.480	180	S180	-3570.000	396.480

Table 2–1. Pad Layout (1/2)

No.	Name	X [μm]	Υ [μm]	No.	Name	X [μm]
181	S181	-3630.000	396.480	241	DUMMY1	-7311.420
182	S182	-3690.000	396.480	242	DUMMY2	-7772.010
183	S183	-3750.000	396.480	243	DUMMY3	-7772.010
184	S184	-3810.000	396.480	244	DUMMY4	-7772.010
185	S185	-3870.000	396.480	245	DUMMY5	-7772.010
	S186	-3930.000	396.480	246	DUMMY6	-7772.010
187	S187	-3990.000	396.480	247	DUMMY7	-7654.530
	S188	-4050.000	396.480	248		-7479.510
	S189	-4110.000	396.480	249	0=	-7229.490
	S190	-4170.000	396.480		DUMMY8	-7054.440
	S191	-4230.000	396.480	251		-6793.050
-	S192	-4290.000	396.480	252		-6693.090
	S193	-4350.000	396.480	253		-6593.130
	S194	-4410.000	396.480	-	VDD1	-6331.710
	S195	-4470.000	396.480	255		-6231.750
	S196	-4530.000	396.480	256		-6131.790
-	S197	-4590.000	396.480	257		-5878.440
	S198	-4650.000	396.480	258		-5778.480
	S199	-4710.000	396.480	259		-5678.520
200 201	S200	-4770.000	396.480	260 261		-5428.500
	S201 S202	-4830.000 -4890.000	396.480 396.480	261		-5328.540 -5228.580
-	S202 S203	-4890.000	396.480	262		-4975.260
	S203	-5010.000	396.480		R,/L	-4725.240
-	S204	-5070.000	396.480		MODE	-4475.220
	S205	-5130.000	396.480	265		-4225.200
	S207	-5190.000	396.480		GAM	-3975.180
	S208	-5250.000	396.480		CM	-3725.160
	S209	-5310.000	396.480		POL	-3475.140
	S210	-5370.000	396.480	270		-3225.120
	S211	-5430.000	396.480	271		-2975.100
212	S212	-5490.000	396.480	272	D25	-2725.080
213	S213	-5550.000	396.480	273	D24	-2475.060
214	S214	-5610.000	396.480	274	D23	-2225.040
215	S215	-5670.000	396.480	275	D22	-1975.020
-	S216	-5730.000	396.480		D21	-1725.000
	S217	-5790.000	396.480		D20	-1474.980
	S218	-5850.000	396.480		CLK	-1224.960
	S219	-5910.000	396.480		DUMMY9	-1049.910
	S220	-5970.000	396.480	280		-874.860
	S221	-6030.000	396.480	281		-774.900
	S222	-6090.000	396.480	282		-674.940
-	S223	-6150.000	396.480	283	-	-424.920
	S224	-6210.000	396.480	284	-	-324.960
	S225	-6270.000	396.480	285 286		-225.000
-	S226 S227	-6330.000 -6390.000	396.480 396.480	280		25.080 125.040
	S227 S228	-6450.000	396.480	288		225.000
	S220	-6510.000	396.480	289		475.020
-	S230	-6570.000	396.480	200		574.980
	S231	-6630.000	396.480	291		674.940
	S232	-6690.000	396.480	292		925.020
	S233	-6750.000	396.480	293	-	1024.980
	S234	-6810.000	396.480	294	-	1124.940
-	S235	-6870.000	396.480	295	DUMMY10	1299.990
	S236	-6930.000	396.480		INV	1475.010
237	S237	-6990.000	396.480	297	D15	1725.030
-	S238	-7050.000	396.480	298	-	1975.050
239	S239	-7110.000	396.480		D13	2225.070
240	S240	-7170.000	396.480	300	D12	2475.090

Table 2–1. Pad Layout (2/2)

Y [µ m] 407.010

164 880

64.860

-35.160

-135.180

-235.200

407.010

-407.010

-407.010 -407.010

-407.010 -407.010-407.010

-407.010

-407.010-407.010

-407.010

-407.010

-407.010

-407.010

-407.010

-407.010 -407.010

-407.010

-407.010

-407.010

-407.010

-407.010

-407.010 -407.010

-407.010 -407.010

-407.010

-407.010

-407.010 -407.010

-407.010

-407.010-407.010

-407.010

-407.010

-407.010

-407.010

-407.010

-407.010

-407.010 -407.010

-407.010 -407.010

-407.010

-407.010

-407.010

-407.010

-407.010

-407.010

-407.010

-407.010 -407.010

-407 010

-407.010

No.	Name	X [μ m]	Υ [<i>μ</i> m]
301	D11	2725.110	-407.010
302	D10	2975.130	-407.010
303	D05	3225.150	-407.010
304	D04	3475.170	-407.010
305	D03	3725.190	-407.010
306	D02	3975.210	-407.010
307	D01	4225.230	-407.010
308	D00	4475.250	-407.010
309	TESTO1	4725.270	-407.010
310	TESTO2	4975.290	-407.010
311	TESTIN	5225.310	-407.010
312	VDD1	5475.360	-407.010
313	VDD1	5575.320	-407.010
314	VDD1	5675.280	-407.010
315	VSS1	5853.630	-407.010
316	VSS1	5953.590	-407.010
317	VSS1	6053.550	-407.010
318	VSS2	6303.570	-407.010
319	VSS2	6403.530	-407.010
320	VSS2	6503.490	-407.010
321	VDD2	6843.180	-407.010
322	VDD2	6943.140	-407.010
323	VDD2	7043.100	-407.010
324	DUMMY11	7304.490	-407.010
325	STHR	7479.540	-407.010
326	DUMMY12	7654.560	-407.010
327	DUMMY13	7772.010	-235.200
328	DUMMY14	7772.010	-135.180
329	DUMMY15	7772.010	-35.160
330	DUMMY16	7772.010	64.860
331	DUMMY17	7772.010	164.880
332	DUMMY18	7311.420	407.010

3. PIN FUNCTIONS

	1			(1/2)
Pin Symbol	Pin Name	Pad No.	I/O	Description
S1 to S240	Driver output	1 to 240	Output	The D/A converted 64-gray-scale analog voltage is output.
Doo to Dos	Display data input	308 to 303	Input	The display data is input with a width of 18 bits, viz., the gray scale data (6 bits) by 3
D10 to D15	-	302 to 297		dots (1 pixels).
D20 to D25		277 to 272		Dx0: LSB, Dx5: MSB
R,/L	Shift direction	264	Input	These refer to the shift direction control input.
	control input			The shift directions of the shift registers are as follows.
				R,/L = L (left shift): STHL (input), $S_{240} \rightarrow S_1 \rightarrow STHR$ (output)
				R,/L = H (right shift) : STHR (input), S ₁ \rightarrow S ₂₄₀ \rightarrow STHL (output)
STHR	Right shift start	325	I/O	These refer to the start pulse I/O pins when driver ICs are connected in cascade.
	pulse input/output			Fetching of display data starts when H is read at the rising edge of CLK.
STHL	Left shift start	249	I/O	$R_{1}/L = L$ (left shift): STHL input, STHR output
	pulse input/output			R,/L = H (right shift): STHR input, STHL output
CLK	Shift clock input	278	Input	This pin is the shift clock input of the shift register.
				Display data is captured into the data register at the rising edge.
				The start pulse output enters high level at the rising edge of the 80 th clock following
				the start pulse input, and becomes the start pulse of the next level driver. The 81th
OTD	Latab innut	074	الم مر مر ا	clock of the first driver becomes the start pulse input of the next driver
STB	Latch input	271	Input	A timing signal that latches the contents of the data register. When an H level is read at the rising edge of CLK, the contents of the data register are latched and transferred
				to the D/A converter, and analog voltage corresponding to the display data is output.
				Also, because the internal operation via CLK continues even after the STB latch, do
				not stop CLK. The contents of the shift register are cleared at the rising edge of STB.
				Following a 1-pulse input at startup, this IC will operate normally. Note that the output
				switch is turned off at the rising edge of STB.
				For the STB input timing, refer to Switching Characteristics Waveform.
POL	Polarity inversion	269	Input	This pin inverts the output polarity. The polarity inversion signal data is captured at the
	signal			rising edge of STB. The γ -resistor is switched in accordance with the positive/negative
				polarity.
				POL = L: Negative polarity
				POL = H: Positive polarity
INV	Data inversion	296	Input	This pin inverts the input data. Input data in synchronization with the shift clock.
				INV = L: Normal input
				INV = H: Data inversion input
VCOM	COM amplitude	248	Output	This pin inverts the signal input from the POL pin and outputs it following conversion to
	output			the V_{DD2} potential at the rising edge of STB. When the VCOM output is not used, VC_{Se}
				must be fixed to L.
VCsel	COM amplitude	263	Input	The VCOM output is fixed to L. When the VCOM output is not used, VC_{sel} needs to be
	output fixing signal			fixed to L.
				$VC_{sel} = L$: VCOM output fixed to L
				VCsel = H: VCOM signal output in correspondence with POL signal
CM	8-color display	268	Input	The operating mode is switched to 8-color mode. Input data MSB leads display data.
	mode switching			In this mode, turn off the γ -resistor, amplifier, and BIAS circuit. However, when the γ -
				correction power supply is input externally, the γ -circuit current will flow continuously.
				CM = L: Normal display mode
				CM = H: 8-color display mode

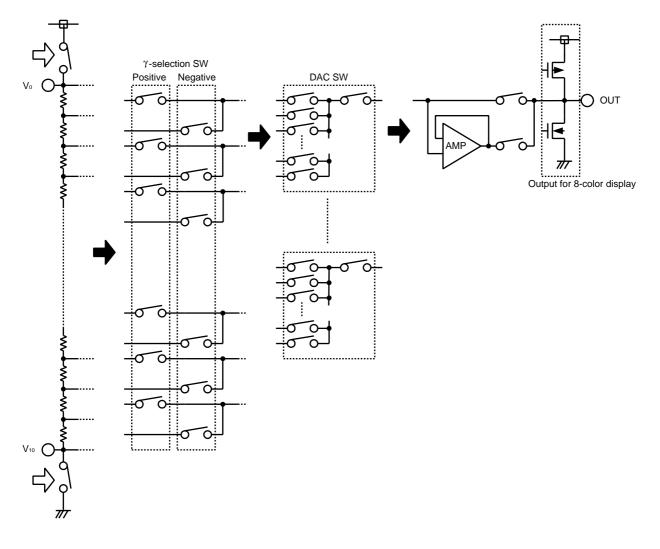
Pin Symbol	Pin Name	Pad No.	I/O	Description
AP	Output SW ON/OFF	270	Input	 MODE = L This pin turns ON/OFF the BIAS circuit and turns on the output SW and amplifier. When AP is H, the amplifier is set and the LCD is driving. The amplifier output and output SW are turned on at the rising edge of AP, starting the LCD drive. Note that the output SW is turned off at the rising edge of STB and the output becomes Hi-Z (Hi-Z: High impedance). For details, refer to 4.1 Drive Timing by MODE and AP Signal. For the AP input timing, refer to Switching Characteristics Waveform. MODE = H A sauce driver output circuit is changed to an amplifier output by grand fixation. For details, refer to 4.1 Drive Timing by MODE and AP Signal.
GAM	External γ-usage selection	267	Input	When the γ -correction power supply is input externally, switch GAM to H. If two or more chips are used, be sure to input the γ -correction power supply externally. Figure 4–4 shows an input example of the γ -correction power supply. GAM = L: External γ -correction power supply not input (open) GAM = H: External γ -correction power supply input
MODE	Driver output functional change	265	Input	The drive mode of the sauce driver output by AP pin is set up as follows. For details, please refer to 4.1 Drive Timing by MODE and AP Signal. MODE = L: Normal drive mode MODE = H: Grand output drive mode
V_0 to V_4	γ -corrected power supplies	294 to 280	_	These pins input the γ -corrected power supplies from outside, the relationship below must be observed. Also, be sure to stabilize the gray-scale-level power supply during gray-scale voltage output. Vss2 $\leq V_4 \leq V_3 \leq V_2 \leq V_1 \leq V_0 \leq V_{DD2}$
BA	BIAS current adjustment function	266	Input	This pin adjusts the BIAS current and through rate of amplifier inside IC. Select either the high power mode or low power mode. In addition, as compared with the time of the low power mode, twice about as many bias current as this flows at the time of high power mode. BA = L: Low power mode BA = H: high power mode
TESTIN	TEST input pin	311	Input	Set to H or leave open
TEST01, TEST02	TEST output pin	309, 310	Output	Leave open.
Vdd1	Logic power supply	254 to 256, 312 to 314	_	2.2 to 3.6 V
Vdd2	Driver power supply	251 to 253, 321 to 323	-	4.5 to 5.5 V
V _{SS1}	Logic ground	257 to 259, 315 to 317	-	Ground
Vss2	Driver ground	260 to 262, 318 to 320	_	Ground
Dummy1 to dummy18	Dummy	241 to 247, 250, 279, 295, 324, 326 to 332	-	This pin is dummy.

Caution To avoid latchup failure, the sequence when turning on the power must be $V_{DD1} \rightarrow \text{logic input} \rightarrow V_{DD2} \rightarrow \text{gray-scale power supply}$ (V₀ to V₄), and the reverse sequence when turning off the power. Follow this sequence during shift periods as well.

4. DISPLAY DRIVING CIRCUIT

The display driving circuit of μ PD161830 consists of γ -resistance and γ -selection switch (SW) which are shown below, a D/A converter, and an output stage.

The function of each block is as follows.


 γ -resistance : It is string resistance for γ -curve.

 γ -selection switch (SW): Change γ -curve at the time of a positive and a negative drive.

D/A converter : Choose an output voltage level from display data.

Output stage : It consists of amplifier for a drive and a switch for a voltage maintenance drive, and an inverter for 8 color displays.

Figure 4–1. Output Circuit Image

4.1 Drive Timing by MODE and AP Signal

·MODE = L

Normal drive is selected when a MODE pin is set as L.

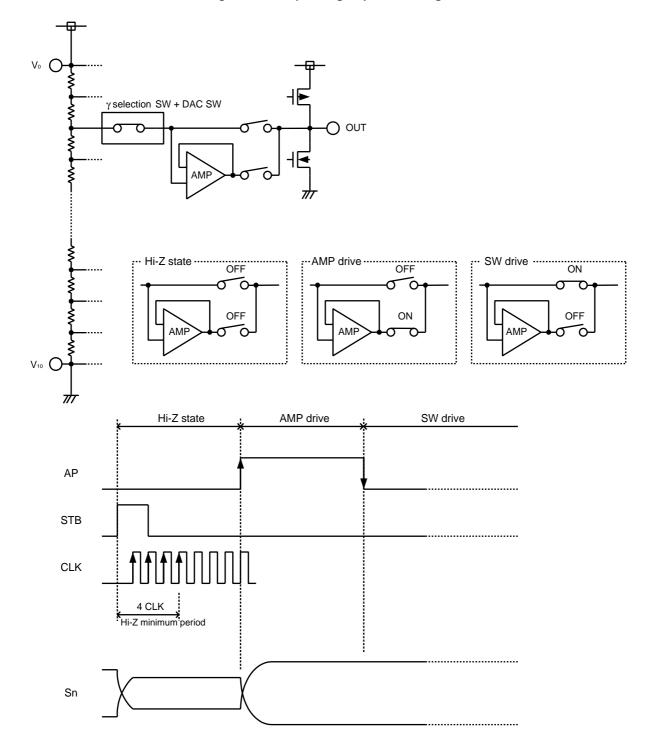
Based on output stage construction, AP pin, STB pin, CLK pin signal, and the relation of Sn (sauce output) state are shown in the next figure.

From 1 clock of a CLK signal to 4 clock is used for the output stage after a STB standup, it carries out decoding to the latch output voltage level of display data, and transmits to an output circuit.

The output circuit's having prevented from Sn pin output compulsorily the output of the level which is not decided as a Hi-Z state from the standup of a STB signal to the standup of a CLK signal 4 clock.

When AP pin is L input after 4 clock rises, as for Sn pin output, Hi-Z state is maintained, and an output circuit changes from the standup of AP pin input to an AMP drive state. Moreover, Sn pin outputs that the notes 1 which pull up to the voltage (display data) level which requires the potential of a TFT drain line, or are reduced^{Note1}.

When low power consumption is required, AMP pin is switched from H to L, after a voltage level attain to requirement voltage level L, output circuit stage operation is changed into SW drive^{Note2}, and it stabilizes a voltage level.


Since liquid crystal load is driven only by SW drive of γ -resistance direct file when referred to as AP = L before attainment of the level to demand, most time is needed for level attainment.

Since this timing (AP = H period) is dependent on the load conditions of liquid crystal, it is a real use TFT panel and fully needs to be evaluated.

Notes 1. When it is always set as AP = H, Sn pin starts an AMP drive automatically after the standup of 4 clock.

2. At the time of SW drive, stop the bias current of an output stage amplifier circuit, and stop the consumption current of the output stage.

Figure 4–2. Output Stage Operation Image

Preliminary Product Information S16240EJ2V0PM

Examples of the input/output timing of each signal during white and black display in normal mode are shown below.

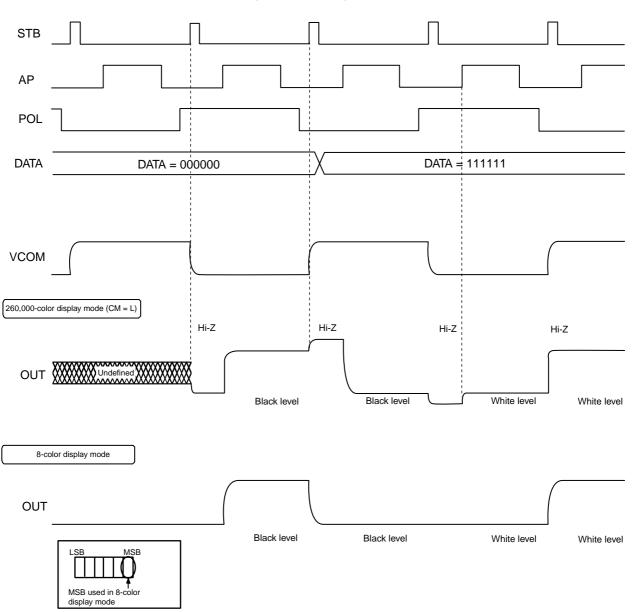


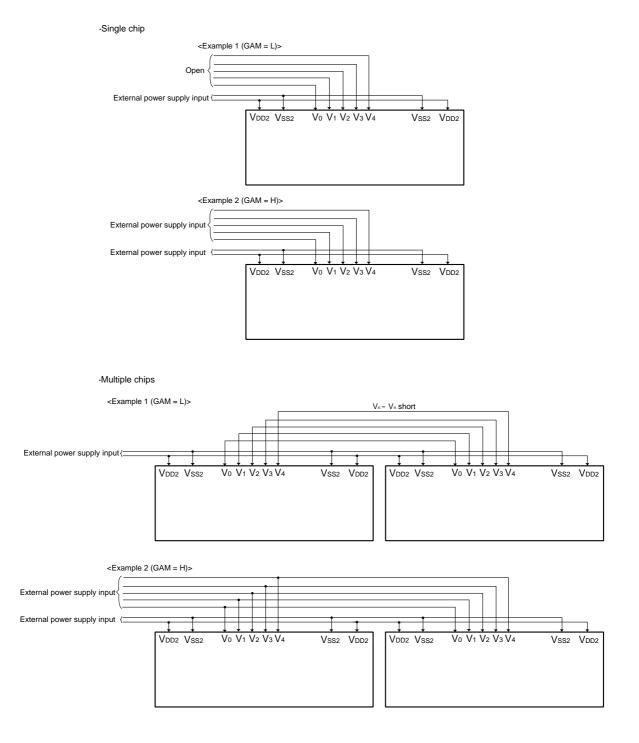
Figure 4–3. Timing Chart

·MODE = H (GND output driving)

When a MODE pin is set as H, the output change function by AP pin is changed as follows.

AP Pin	Sn Pin (source output) Drive
L	GND output (Vss fixed)
Н	Normal AMP operation

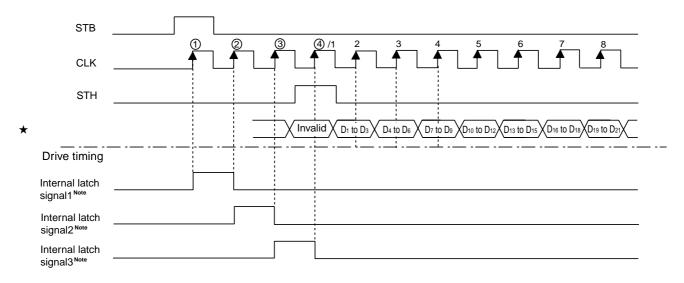
As for sauce output, output is fixed to ground (Vss) in falling of AP signal at the time of GND output drive (MODE = H). Moreover, the return to an APM drive usually returns from the next STB = H period which latched AP = H by the rising edge of STB signal. The relationship of the CLK signal at the time of a GND output drive, a STB signal, AP signal, and Sn state is shown as follows.



4.2 *r*Correction Power Supply Connection Example

The μ PD161830 enables customization of the γ -correction power supply on both the positive and negative polarity sides (refer to **6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE**). Consequently, a γ -correction power supply does not have to be input externally when a single source-driver chip is being used in the panel.

Multiple chips can also be used without having to input a γ -correction power supply externally because the error between the chips can be absorbed by shorting the γ -correction power supply pins, as shown in Figure 4–4.



Preliminary Product Information S16240EJ1V0PM

4.3 CLK Signal Input

Input at least 4 clocks of the CLK signal after the rising of the STB signal.

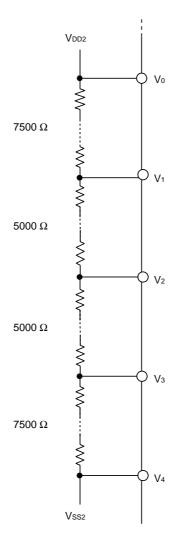
Note Internal latch signal : It is the signal that do latch the display data put in data register in output latch circuit.

5. MODE EXPLANATION

СМ	POL	Data	Driver Output Status	Driver Output (in normally white)
Н	н	MSB = H	8-color mode	White level display
		MSB = L		Black level display
	L	MSB = H		White level display
		MSB = L		Black level display
L	н	All bit = H	260,000-color mode	White level display
		All bit = L		Black level display
	L	All bit = H		White level display
		All bit = L		Black level display

Normal Mode/ 8-clor Display Mode

6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE


The relationship between input data and output voltage are shown in Table 6–2.

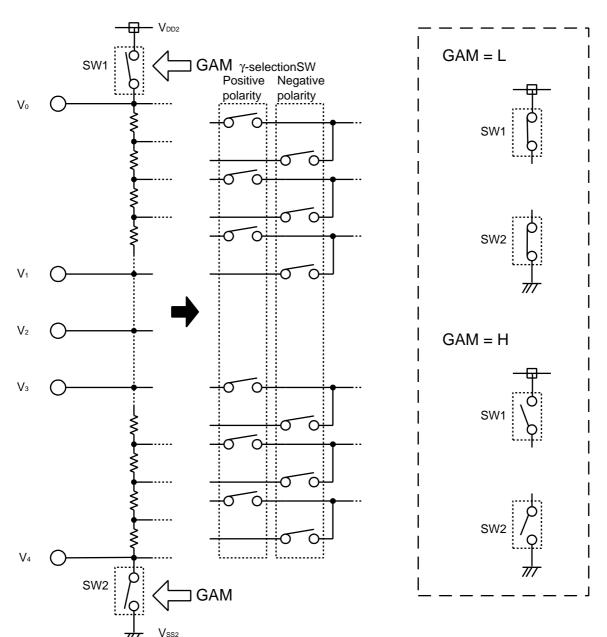
Any 3 major points V₁ to V₃ from the LCD panel γ characteristics curve can be used as the external power supplies. The relationship V₀ to V₄ external power supplies and γ correction resistance is shown in Table 6–1, Figure 6–1.

Pin Name	Voltage (V)	Resistance (Ω)
Vo	5.0	0
V1	3.5	7,500
V2	2.5	12,500
V ₃	1.5	17,500
V4	0	25,000

Table 6–1. Relationship between External Power Supply Pins and γ correction Resistance

This external power supply pins (V₀ to V₄) can customize the γ -correction voltage by selecting the desired voltage from one of 250 divisions of the string resistor between V_{SS2} and V_{DD2}, which generated γ -correction voltage. Note that the voltage can be selected individually for both positive and negative polarity.

Table 6–2. Relationship of Input Data and Output Voltage in the μ PD161830


T.B.D.

Remark T.B.D. (To be determined.)

6.1 Connection between γ correction Resistance, Power Supply, and GND Pin

Connection of γ compensation resistance power supply (V₀ to V₄) and a power supply pin (V_{DD2} and V_{SS2}) is indicated below to be γ compensation resistance of μ PD161830.

By setup of a GAM pin, as for γ -compensation resistance, connection changes the highest minimum potential between V_{DD2} to V_{SS2} or among V₀ to V₄.

Figure 6–2. GAM Pin Function

Preliminary Product Information S16240EJ1V0PM

7. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits x RGBs (3 dots) Input width: 18 bits (1-pixel data)

R,/L = H (Right shift)

Output	S1	S2	S₃	S4	 S 239	S 240
Data	Doo to Dos	D10 to D15	D20 to D25	Doo to Dos	 D10 to D15	D20 to D25

R,/L = L (Left shift)

Output	S1	S ₂	S3 S4		 S239	S 240
Data	Doo to Dos	D10 to D15	D20 to D25	Doo to Dos	 D10 to D15	D20 to D25

8. ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	VDD1	-0.3 to +4.5	V
Driver Part Supply Voltage	Vdd2	-0.3 to +6.0	V
Input Voltage	Vi	-0.3 to V _{DD1,2} + 0.3	V
Output Voltage	Vo	-0.3 to V _{DD1,2} + 0.3	V
Operating Ambient Temperature	TA	-20 to +75	°C
Storage Temperature	Tstg	-55 to +125	°C

Absolute Maximum Ratings (TA = 25°C, Vss1 = Vss2 = 0 V)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range (T_A = -20 to +75°C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	VDD1		2.2		3.6	V
Driver Part Supply Voltage	Vdd2		4.5	5.0	5.5	V
High-Level Input Voltage	Vih		0.7 Vdd1		Vdd1	V
Low-Level Input Voltage	VIL		0		0.3 VDD1	V
γ -Corrected Voltage	V_0 to V_4		Vss2		Vdd2	V
Clock Frequency	fclk				15	MHz

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input Leak Current	lı.	D00-D05, D10-D15, D20-D25, R,/L, STB, CLK, STHR(L), INV, CM, AP, BA, POL, GAM, VCsel			±1.0	μA
Input Current	IIL2	TESTIN	10	40	200	μA
High-Level Output Voltage	Vон	STHR (STHL), Іон = –1.0 mA	VDD1 - 0.5	.5		V
Low-Level Output Voltage	Vol	STHR (STHL), Io∟ = +1.0 mA		0.5		V
VCOM Output Voltage	Vон2	VDD2 = 5.0 V, Io = -1.0 mA	VDD2 - 0.5			V
	Vol2	VDD2 = 5.0 V, Io = +1.0 mA			0.5	V
γ -Correction Power-supply Static Current Consumption	Iγ	$V_0 = 5.0 \text{ V}, V_4 = 0 \text{ V}$ (when in γ -correction power mode)	100	200	400	μA
Driver Output Current (AMP drive)	Ivoн1	$V_{DD2} = 5.0 \text{ V}, V_{OUT} = V_X - 1.0 \text{ V}$ Note1 Input data: 1FH		-0.5	-0.15	mA
	Ivol1	V _{DD2} = 5.0 V, V _{OUT} = V _X + 1.0 V ^{Note1} Input data: 20H	0.15	0.50		mA
Driver Output Current (Switch drive)	Ілона	$V_{DD2} = 5.0 \text{ V}, \text{ V}_{OUT} = \text{V}_{X} - 1.0 \text{ V}$ Note1 Input data: 1FH		-50	-15	μA
	Ivol2	V _{DD2} = 5.0 V, V _{OUT} = V _X + 1.0 V ^{Note1} Input data: 20H	15	40		μA
Driver Output Current	Vvoh3	$V_{DD2} = 5.0 \text{ V}, \text{ Io} = -50 \ \mu\text{A}$	Vdd2 - 0.5			V
(8-color display mode)	V _{VOL3}	$V_{DD2} = 5.0 \text{ V}, \text{ Io} = +50 \ \mu\text{A}$			0.5	V
Output Voltage Deviation	ΔVo	$V_{DD1} = 2.5 \text{ V}, V_{DD2} = 5.0 \text{ V},$ $V_{OUT} = 2.5 \text{ V}^{Note1}$		±10	±20	mV
Output Voltage Range	Vo	Input data: 00H to 3FH	Vss2 + 0.05		Vdd2 - 0.05	V
Logic Part Dynamic Current Consumption	IDD1	With no load ^{Note2}		0.4	0.8	mA
Driver Part Dynamic Current Consumption	IDD2	$V_{DD} = 5.0 \text{ V}$, with no load $^{\text{Note2}}$		0.9	1.5	mA

Notes 1. Vx refers to the output voltage of analog output pins S_1 to S_{240} .

Vout refers to the voltage applied to analog output pins S_1 to $S_{240}.$

2. fcLK = 15 MHz, STB cycle = 60 μ s, AP pulse width = 15 μ s, BA=L (low power mode)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	tPLH1	C∟ = 15 pF			25	ns
	tPHL1				25	ns
Driver Output Delay Time	tplH2H	C∟ = 30 pF			12	μs
(High power mode)	tPHL2H	$AP^{\uparrow} \rightarrow V_{OUT} - 100 \text{ mV} \text{ or } V_{OUT} + 100 \text{ mV}$			12	μs
Driver Output Delay Time	tPLH2L	C∟ = 30 pF			15	μs
(Low power mode)	tPHL2L	$AP^{\uparrow} \rightarrow V_{OUT} - 100 \text{ mV or } V_{OUT} + 100 \text{ mV}$			15	μs
Input Capacitance	CI1	V ₀ to V ₄ , T _A = 25°C		5	15	pF
	CI2	Excluded V ₀ to V ₄ , $T_A = 25^{\circ}C$		10	15	pF


Switching Characteristics (TA = -20 to +75°C, VDD1 = 2.2 to 3.6 V, VDD2 = 5.0 V \pm 0.5 V, VSS1 = VSS2 = 0 V)

Timing Requirements (T_A = -20 to +75°C, V_{DD1} = 2.2 to 3.6 V, V_{SS1} = 0 V, t_r = t_f = 10 ns)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWCLK		65			ns
Clock Pulse High Period	PWclk(H)		20			ns
Clock Pulse Low Period			20			ns
Data Setup Time	tsetup1		20			ns
Data Hold Time			20			ns
Start Pulse Setup Time	tSETUP2		20			ns
Start Pulse Hold Time	tHOLD2		20			ns
Start Pulse Low Period	t _{SPL}		3			CLK
Last Data Timing	t LDT		2			CLK
CLK-STB Time	tclk-stb	CLK↑ →STB↑	20			ns
STB Pulse Width	PWstb		40			ns
Start Pulse Rising Time	tsтв-sтн	STB↑ →STH↑	3			CLK
INV Set-up Time	tsetup3		20			ns
INV Hold Time	thold3		20			ns
STB Set-up Time	tsetup4		20			ns
STB Hold Time	tHOLD4		20			ns
POL-STB Time	tpol-stb		0			ns
STB-POL Time	tstb-pol		40			ns
CM-STB Time	t см-sтв		0			ns
STB-CM Time	tsтв-см		40			ns
STB-AP Time	tstb-ap	STB↑ →AP↓	20			μs
AP Pulse Width (High power mode)	PWAPH		12			μs
AP Pulse Width (Low power mode)	PWAPL	STB cycle 40µs, C∟ = 30 pF	15			μs
AP Set-up Time	tsetup5	STB↑, MODE = H	0			ns
AP Hold Time	tHOLD5	STB↑, MODE = H	40			ns

Unless otherwise specified, the input level is defined to be V_{IH} = 0.7 V_{DD1}, V_{IL} = 0.3 V_{DD1}.

22

Preliminary Product Information S16240EJ2V0PM

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E) Quality Grades On NEC Semiconductor Devices (C11531E)

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.