Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT **Phase-out/Discontinued** μ PD161801

240 OUTPUTS TFT-LCD SOURCE DRIVER WITH RAM

DESCRIPTION

The μ PD161801 is a TFT-LCD source driver that includes display RAM

This driver has 240 outputs, a display RAM capacity of 172.8 K bytes (240 pixels x 18 bits x 320 lines) and can provide a 262,144-color display.

FEATURES

- TFT-LCD driver with on-chip display RAM
- Logic power supply voltage: 1.6 to 2.7 V (Can also be generated within chip from power IC interface's power supply)
- CPU/RGB interface voltage: 1.8 to VDD
- Power supply IC interface power supply voltage: 2.5 to 3.3 V
- Driver power supply voltage: 4.0 to 5.5 V
- Display RAM: 240 x 18 x 320 bits
- Driver outputs: 240 outputs
- CPU interface: Three types of interfaces selectable
 - · 6-bit/16-bit/18-bit RGB interface (through mode, capture mode)
 - · i80/M68 parallel interface (selectable from 8/16/18-bit)
 - · 8-bit serial interface
- Colors: 262,144 colors/pixel
- On-chip timing generator
- On-chip oscillator

ORDERING INFORMATION

Part Number	Package
μPD161801P	Chip

Remark Purchasing the above chip entails the exchange of documents such as a separate memorandum on product guality, so please contact one of our sales representatives.

The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

NEC

CONTENTS

1.	BL	оск	DIAGRAM	4
2.	PII		NFIGURATION (Pad Layout)	5
3.	PIN	FUN	CTIONS	12
	3.1	Power	Supply System Pins	
	3.2	Logic	System Pins	15
	3.3	Gate D	Driver Control Pins	17
		3.3.1	Gate driver control 1	17
		3.3.2	Gate driver control 2	
	3.4	RGB N	Iulti-plectra Switch Control Pins	19
		3.4.1	RGB Multi-plectra Switch Control	19
		3.4.2	Multi-plectra Switch Control	19
	3.5	Extern	al IC (μPD161861, etc.) Control Pins	20
	3.6	Driver	Pins	20
	3.7	Test o	r Other Pins	21
4	PIN		IRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	22
5.	DE	SCRIF	TION OF FUNCTIONS	24
	5.1	CPU Ir	nterface	
		5.1.1	Selection of interface type	
		5.1.2	Selection of data transfer mode	
		5.1.3	RGB interface	33
		5.1.4	i80/M68 Parallel interface	39
		5.1.5	Serial interface	
		5.1.6	Chip select	
		5.1.7	Access to display data RAM and internal registers	
		5.1.8	Serial interface for power supply IC control	
	5.2	Displa	y Data RAM	49
		5.2.1	X address circuit	
		5.2.2	Y address circuit	
		5.2.3	Arbitrary address area access (window access mode (WAS))	
		5.2.4	High-speed RAM write mode	
	5.3	Oscilla	ator	57
	5.4	Displa	y Timing Generator	58
		5.4.1	1-line period timing	
		5.4.2	1-frame period timing	61

	5.5	γ - Cur	ve Correction Power Supply Circuit	64
		5.5.1	Amplitude adjustment with internal amplifier	65
		5.5.2	Amplitude adjustment by bulit-in resistance	67
		5.5.3	Inclination adjustment	67
		5.5.4	Fine tuning adjustment	68
	5.6	Partia	Display Mode	69
		5.6.1	Partial display, non-display area driving	70
		5.6.2	Partial display, non-display area, and normal partial driving	71
		5.6.3	Partial display, non-display area, and non-refrech driving	73
	5.7	Scree	n Scroll	82
	5.8	Power	Supply Sequence	90
	5.9	Stand	by Power Supply OFF Sequence	92
		5.9.1	Stand-by controlled by STBY flag	92
		5.9.2	Stand-by by command input control	94
6	RE	SET	1	02
7.	СС	MMA	۱D1	05
	7.1	Comm	and List1	05
	7.2	Comm	and Explanation	11
8.	EL	ECTRI	CAL SPECIFICATIONS1	24
9.	тн	E <i>µ</i> PD	161801 AND THE μ PD161861 CONNECTION1	35
10). E	XAMP	LE OF THE μ PD161801 AND CPU CONNECTION1	36

1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.

2. PIN CONFIGURATION (Pad Layout)

Chip size: 2.93 x 18.70 mm² (TYP.) Bump size: 30 x 100 μ m² (TYP.)

<Alignment Mark>

Alignment mark coordinate (mark center, unit: µm)

	Х	Y
M1	-1317.00	9050.00
M2	-1317.00	-9020.00

Alignment shape of mark (unit: µm)

А	а	В	b
90	30	90	30

Table 2–1. Pad Coordinate (1/5)

No.	Pin Name	I/O	Power	Pad coordir	nate [µm]	No.	Pin Name	I/O	Power	Pad coordi	nate [µm]
NO.	Fin Name	1/0	rower	Х	Y	NO.	Fill Name	1/0	rower	Х	Y
	DUMMY	-	-	-1317.00	9150.00		D12	I/O	VDDIO	-1317.00	5090.00
	DUMMY	-	-	-1317.00	8950.00	62	D11	I/O	VDDIO	-1317.00	4990.00
	DUMMY	-	-	-1317.00	8890.00	63	D10	I/O	VDDIO	-1317.00	4890.00
	/PRESET	Output	VCC1	-1317.00	8830.00	64	D9	I/O	VDDIO	-1317.00	4790.00
5	ASW3	Output	VCC1	-1317.00	8770.00	65	D8	I/O	VDDIO	-1317.00	4690.00
6	/ASW3	Output	VCC1	-1317.00	8710.00	66	D7	I/O	VDDIO	-1317.00	4590.00
7	ASW2	Output	VCC1	-1317.00	8650.00	67	D6	I/O	VDDIO	-1317.00	4490.00
8	/ASW2	Output	VCC1	-1317.00	8590.00	68	D5	I/O	VDDIO	-1317.00	4390.00
9	ASW1	Output	VCC1	-1317.00	8530.00	69	D4	I/O	VDDIO	-1317.00	4290.00
10	/ASW1	Output	VCC1	-1317.00	8470.00	70	D3	I/O	VDDIO VDDIO	-1317.00	4190.00
11	STV /STV	Output	VCC1 VCC1	-1317.00	8410.00	71	D2 D1	I/O I/O	VDDIO	-1317.00	4090.00
12 13	CKV	Output Output	VCC1 VCC1	-1317.00 -1317.00	8350.00 8290.00	72	D0	1/O	VDDIO	-1317.00 -1317.00	3990.00 3890.00
13	/CKV	Output	VCC1 VCC1	-1317.00	8230.00	73	VSS1(MODE)	-	-	-1317.00	3790.00
14	OEV	Output	VCC1	-1317.00	8170.00	74	/RD	Input	VDDIO	-1317.00	3690.00
15	/OEV	Output	VCC1	-1317.00	8110.00	75	/WR	Input	VDDIO	-1317.00	3590.00
10	OEVE	Output	VCC1	-1317.00	8050.00	70	RS	Input	VDDIO	-1317.00	3490.00
18	/OEVE	Output	VCC1	-1317.00	7990.00	78	/CS	Input	VDDIO	-1317.00	3390.00
10	XDON	Output	VCC1	-1317.00	7930.00	70	VDDIO(MODE)	- mput	-	-1317.00	3290.00
20	/XDON	Output	VCC1	-1317.00	7870.00	80	SI	Input	VDDIO	-1317.00	3190.00
21	BSW	Output	VCC1	-1317.00	7810.00	81	SCL	Input	VDDIO	-1317.00	3090.00
22	/BSW	Output	VCC1	-1317.00	7750.00	82	VSS1(MODE)	-	-	-1317.00	2990.00
23	GSW	Output	VCC1	-1317.00	7690.00	83	VLD	Input	VDDIO	-1317.00	2890.00
24	/GSW	Output	VCC1	-1317.00	7630.00	84	VDDIO(MODE)	-	-	-1317.00	2790.00
25	RSW	Output	VCC1	-1317.00	7570.00	85	VSYNC	Input	VDDIO	-1317.00	2690.00
26	/RSW	Output	VCC1	-1317.00	7510.00	86	HSYNC	Input	VDDIO	-1317.00	2590.00
27	GSTB	Output	VCC1	-1317.00	7450.00	87	DOTCLK	Input	VDDIO	-1317.00	2490.00
28	/GSTB	Output	VCC1	-1317.00	7390.00	88	VSS1(MODE)	-	-	-1317.00	2390.00
29	GCLK	Output	VCC1	-1317.00	7330.00	89	RGB00	Input	VDDIO	-1317.00	2290.00
30	/GCLK	Output	VCC1	-1317.00	7270.00	90	RGB01	Input	VDDIO	-1317.00	2190.00
31	GOE2	Output	VCC1	-1317.00	7210.00	91	RGB02	Input	VDDIO	-1317.00	2090.00
32	/GOE2	Output	VCC1	-1317.00	7150.00	92	RGB03	Input	VDDIO	-1317.00	1990.00
33	GOE1	Output	VCC1	-1317.00	7090.00	93	RGB04	Input	VDDIO	-1317.00	1890.00
34	/GOE1	Output	VCC1	-1317.00	7030.00	94	RGB05	Input	VDDIO	-1317.00	1790.00
35	GUD	Output	VCC1	-1317.00	6970.00	95	RGB10	Input	VDDIO	-1317.00	1690.00
36	/GUD	Output	VCC1	-1317.00	6910.00	96	RGB11	Input	VDDIO	-1317.00	1590.00
37	VCOUT	Output	VCC1	-1317.00	6850.00	97	RGB12	Input	VDDIO	-1317.00	1490.00
	FR	Output	VCC1	-1317.00	6790.00	98	RGB13	Input	VDDIO	-1317.00	1390.00
	PDA	Output	VCC1	-1317.00	6730.00	99	RGB14	Input	VDDIO	-1317.00	1290.00
	PCS	Output	VCC1	-1317.00	6670.00	100	RGB15	Input	VDDIO	-1317.00	1190.00
41	PCL	Output	VCC1	-1317.00	6610.00	101	RGB20	Input	VDDIO	-1317.00	1090.00
42 43	PCCLK PCN	Output Output	VCC1 VCC1	-1317.00 -1317.00	6550.00 6490.00	102 103	RGB21 RGB22	Input Input	VDDIO VDDIO	-1317.00 -1317.00	990.00 890.00
43	/PCN	Output	VCC1 VCC1	-1317.00	6430.00	103	RGB22 RGB23	Input	VDDIO	-1317.00	790.00
	PCP	Output	VCC1 VCC1	-1317.00	6370.00	104	RGB23	Input	VDDIO	-1317.00	690.00
45	/PCP	Output	VCC1	-1317.00	6310.00	105	RGB25	Input	VDDIO	-1317.00	590.00
	PC	Output	VCC1	-1317.00	6250.00	100	VDDIO	-	-	-1317.00	290.00
48	/PC	Output	VCC1	-1317.00	6190.00	107	VDDIO	_	_	-1317.00	230.00
	EXT1	Output	VCC1	-1317.00	6130.00	100		-	_	-1317.00	170.00
	/EXT1	Output	VCC1	-1317.00	6070.00		VDDIO	-	_	-1317.00	110.00
	EXT2	Output	VCC1	-1317.00	6010.00	111		-	-	-1317.00	50.00
	/EXT2	Output	VCC1	-1317.00	5950.00	112		-	-	-1317.00	-10.00
	VDDIO(MODE)	-	-	-1317.00	5890.00	113		-	-	-1317.00	-70.00
54	CSTB	Output	VDDIO	-1317.00	5790.00	114	VCC1	-	-	-1317.00	-130.00
	/RESET	Input	VDDIO	-1317.00	5690.00	115		-	-	-1317.00	-190.00
56	D17	I/O	VDDIO	-1317.00	5590.00	116	VCC1	-	-	-1317.00	-250.00
57	D16	I/O	VDDIO	-1317.00	5490.00	117	VCC1	-	_	-1317.00	-310.00
58	D15	I/O	VDDIO	-1317.00	5390.00	118	VCC1	-	-	-1317.00	-370.00
	D14	I/O	VDDIO	-1317.00	5290.00	119	SF_VCCL	Output	VCC1	-1317.00	-430.00
60	D13	I/O	VDDIO	-1317.00	5190.00	120	SF_VCCL	Output	VCC1	-1317.00	-490.00

Table 2–1. Pad Coordinate (2/5)

No.	Pin Name	I/O	Power	Pad coordi	nate [µm]	No.	Pin Name	I/O	Power	Pad coord	inate [µm]
NU.	Fill Name	1/0	FOWEI	Х	Y	NO.	Fill Name	1/0	FOWEI	Х	Y
121	SF_VCCL	Output	VCC1	-1317.00	-550.00	181	CVPL	I/O	VS	-1317.00	-4150.00
122	SF_VCCL	Output	VCC1	-1317.00	-610.00	182	CVPL	I/O	VS	-1317.00	-4210.00
123	SF_VCCL	Output	VCC1	-1317.00	-670.00	183	CVPL	I/O	VS	-1317.00	-4270.00
124	SF_VCCL	Output	VCC1	-1317.00	-730.00	184	CVPH	I/O	VS	-1317.00	-4330.00
	VDD1	-	-	-1317.00	-790.00	185	CVPH	I/O	VS	-1317.00	-4390.00
	VDD1	-	-	-1317.00	-850.00	186	CVPH	I/O	VS	-1317.00	-4450.00
	VDD1	-	-	-1317.00	-910.00	187	VS	-	-	-1317.00	-4660.00
	VDD1	-	-	-1317.00	-970.00	188	VS	-	-	-1317.00	-4720.00
129	VDD1	-	-	-1317.00	-1030.00	189	VS	-	-	-1317.00	-4780.00
	VDD1	-	-	-1317.00	-1090.00	190	VS	-	-	-1317.00	-4840.00
	VDD1	-	-	-1317.00	-1150.00	191	VS	-	-	-1317.00	-4900.00
	VDD1	-	-	-1317.00	-1210.00	192	VS	-	-	-1317.00	-4960.00
133	SF_VCCR	Output	VCC1	-1317.00	-1270.00	193	OSCC	-	VDD1	-1317.00	-5020.00
134	SF_VCCR	Output	VCC1	-1317.00	-1330.00	194	OSCR	-	VDD1	-1317.00	-5080.00
135	SF_VCCR	Output	VCC1	-1317.00	-1390.00	195	VSS1(MODE)	-	-	-1317.00	-5140.00
	SF_VCCR	Output	VCC1 VCC1	-1317.00	-1450.00	196 197	OSCSEL	Input	VCC1 VCC1	-1317.00 -1317.00	-5200.00
137 138	SF_VCCR SF_VCCR	Output	VCC1 VCC1	-1317.00 -1317.00	-1510.00 -1570.00	197	CMDS VCC1(MODE)	Input –	-	-1317.00	-5260.00
	VDD2	Output –	-	-1317.00	-1630.00	198	HSEG		VCC1	-1317.00	-5320.00
	VDD2 VDD2		_	-1317.00	-1630.00	200	VSEG	Input Input	VCC1	-1317.00	-5380.00
140	VDD2 VDD2	_	-	-1317.00	-1750.00	200	VSEG VSS1(MODE)		-	-1317.00	-5440.00
	VDD2	_		-1317.00	-1810.00	201	DCKEG	Input	VCC1	-1317.00	-5560.00
	VDD2	-	_	-1317.00	-1870.00	202	PSX	Input	VCC1	-1317.00	-5620.00
	VDD2	_		-1317.00	-1930.00	200	VCC1(MODE)		-	-1317.00	-5680.00
	VDD2	_	_	-1317.00	-1990.00	201	C86	Input	VCC1	-1317.00	-5740.00
	VDD2	-	-	-1317.00	-2050.00	206	BWS0	Input	VCC1	-1317.00	-5800.00
147	VSS1	-	-	-1317.00	-2110.00	207	VSS1(MODE)	-	-	-1317.00	-5860.00
148	VSS1	-	-	-1317.00	-2170.00	208	BWS1	Input	VCC1	-1317.00	-5920.00
149	VSS1	-	-	-1317.00	-2230.00	209	BWS2	Input	VCC1	-1317.00	-5980.00
150	VSS1	-	-	-1317.00	-2290.00	210	VCC1(MODE)	_	-	-1317.00	-6040.00
151	VSS1	-	-	-1317.00	-2350.00	211	BWS3	Input	VCC1	-1317.00	-6100.00
152	VSS1	-	-	-1317.00	-2410.00	212	VSTBY	Input	VCC1	-1317.00	-6160.00
153	VSS1	-	-	-1317.00	-2470.00	213	VSS1(MODE)	-	-	-1317.00	-6220.00
154	VSS1	-	-	-1317.00	-2530.00	214	TOUT19	Output	VCC1	-1317.00	-6280.00
155	VSS11	-	-	-1317.00	-2590.00	215	TOUT18	Output	VCC1	-1317.00	-6340.00
	VSS11	-	-	-1317.00	-2650.00	216	TOUT17	Output	VCC1	-1317.00	-6400.00
	VSS11	-	-	-1317.00	-2710.00	217	TOUT16	Output	VCC1	-1317.00	-6460.00
	VSS11	-	-	-1317.00	-2770.00	218	TOUT15	Output	VCC1	-1317.00	-6520.00
	VSS11	-	-	-1317.00	-2830.00		TOUT14	Output	VCC1	-1317.00	-6580.00
	VSS11	-	-	-1317.00	-2890.00	220	TOUT13	Output	VCC1	-1317.00	-6640.00
	VSS11	-	-	-1317.00	-2950.00	221	TOUT12	Output	VCC1	-1317.00	-6700.00
	VSS11	-	-	-1317.00	-3010.00	222	TOUT11	Output	VCC1	-1317.00	-6760.00
	VSS11	-	-	-1317.00	-3070.00	223	TOUT10	Output	VCC1	-1317.00	-6820.00
	VSS VSS	-	-	-1317.00	-3130.00	224		Output	VCC1 VCC1	-1317.00	-6880.00
165 166		-	-	-1317.00 -1317.00		225 226	TOUT8 TOUT7	Output	VCC1 VCC1	-1317.00 -1317.00	-6940.00
	VSS VSS		_	-1317.00	-3250.00 -3310.00	226	TOUT6	Output Output	VCC1 VCC1	-1317.00	-7000.00
	VSS		-	-1317.00	-3370.00		TOUT5	Output	VCC1	-1317.00	-7080.00
	VSS	-		-1317.00	-3430.00		TOUT4	Output	VCC1	-1317.00	-7120.00
	TAOUT0	Output	VS	-1317.00	-3490.00		TOUT3	Output	VCC1	-1317.00	-7240.00
	TAOUT1	Output	VS	-1317.00	-3550.00		TOUT2	Output	VCC1	-1317.00	-7300.00
	TAOUT2	Output	VS	-1317.00	-3610.00		TOUT1	Output	VCC1	-1317.00	-7360.00
	TAOUT3	Output	VS	-1317.00	-3670.00	232	TOUTO	Output	VCC1	-1317.00	-7420.00
	TAOUT4	Output	VS	-1317.00	-3730.00		VSS1(MODE)	-	-	-1317.00	-7480.00
	CVNL	I/O	VS	-1317.00	-3790.00		TDELAY0	Input	VCC1	-1317.00	-7540.00
	CVNL	I/O	VS	-1317.00	-3850.00		TDELAY1	Input	VCC1	-1317.00	-7600.00
	CVNL	I/O	VS	-1317.00	-3910.00		TDELAY2	Input	VCC1	-1317.00	-7660.00
	CVNH	I/O	VS	-1317.00	-3970.00		TDELAY3	Input	VCC1	-1317.00	-7720.00
	CVNH	I/O	VS	-1317.00	-4030.00	239	TDELAY4	Input	VCC1	-1317.00	-7780.00
179											

Table 2–1. Pad Coordinate (3/5)

	Pin Name	I/O	Power	Х		No.		I/O	Power		
					Y		Pin Name			Х	Y
2/2 1		Input	VCC1	-1317.00	-7900.00	301	Y39	Output	VS	1317.00	-6750.00
	TDELAY7	Input	VCC1	-1317.00	-7960.00	302	Y40	Output	VS	1317.00	-6690.00
	TDELAY8	Input	VCC1	-1317.00	-8020.00	303	Y41	Output	VS	1317.00	-6630.00
	TDELAY9 TCLK	Input Input	VCC1 VCC1	-1317.00 -1317.00	-8080.00 -8140.00	304 305	Y42 Y43	Output	VS VS	1317.00 1317.00	-6570.00 -6510.00
	TSTVIHL	Input	VCC1 VCC1	-1317.00	-8140.00	305	Y44	Output Output	VS	1317.00	-6510.00
	TSTRTST	Input	VCC1	-1317.00	-8260.00	307	Y45	Output	VS	1317.00	-6390.00
	TOSCSE01	Input	VCC1	-1317.00	-8320.00	308	Y46	Output	VS	1317.00	-6330.00
	TOSCSE02	Input	VCC1	-1317.00	-8380.00	309	Y47	Output	VS	1317.00	-6270.00
	TOSCSEI1	Input	VCC1	-1317.00	-8440.00	310	Y48	Output	VS	1317.00	-6210.00
	TOSCSEI2	Input	VCC1	-1317.00	-8500.00	311	Y49	Output	VS	1317.00	-6150.00
	TOSCI1	Input	VCC1	-1317.00	-8560.00	312	Y50	Output	VS	1317.00	-6090.00
	TOSCI2	Input	VCC1	-1317.00	-8620.00	313	Y51	Output	VS	1317.00	-6030.00
254 T	TOSCO1	Output	VCC1	-1317.00	-8680.00	314	Y52	Output	VS	1317.00	-5970.00
255 T	TOSCO2	Output	VCC1	-1317.00	-8740.00	315	Y53	Output	VS	1317.00	-5910.00
256 V	/SS1(MODE)	-	-	-1317.00	-8800.00	316	Y54	Output	VS	1317.00	-5850.00
257 D	DUMMY	-	-	-1317.00	-8860.00	317	Y55	Output	VS	1317.00	-5790.00
258 D	DUMMY	-	-	-1317.00	-8920.00	318	Y56	Output	VS	1317.00	-5730.00
	DUMMY	-	-	-1317.00	-9120.00	319	Y57	Output	VS	1317.00	-5670.00
	DUMMY	-	-	1317.00	-9210.00	320	Y58	Output	VS	1317.00	-5610.00
261 D	DUMMY	-	-	1317.00	-9150.00	321	Y59	Output	VS	1317.00	-5550.00
	DUMMY	-	-	1317.00	-9090.00	322	Y60	Output	VS	1317.00	-5490.00
	Y1	Output	VS	1317.00	-9030.00	323	Y61	Output	VS	1317.00	-5430.00
	Y2	Output	VS	1317.00	-8970.00	324	Y62	Output	VS	1317.00	-5370.00
	Y3	Output	VS	1317.00	-8910.00	325	Y63	Output	VS	1317.00	-5310.00
	Y4	Output	VS	1317.00	-8850.00	326	Y64	Output	VS	1317.00	-5250.00
	Y5	Output	VS VS	1317.00	-8790.00	327	Y65	Output	VS	1317.00	-5190.00
	Y6 Y7	Output	VS VS	1317.00 1317.00	-8730.00 -8670.00	328 329	Y66 Y67	Output	VS VS	1317.00	-5130.00
	Y8	Output	VS			329	Y68	Output	VS	1317.00	
	Y9	Output Output	VS	1317.00 1317.00	-8610.00 -8550.00	330	Y69	Output Output	VS	1317.00 1317.00	-5010.00
	Y10	Output	VS	1317.00	-8490.00	332	Y70	Output	VS	1317.00	-4950.00
	Y11	Output	VS	1317.00	-8430.00	333	Y71	Output	VS	1317.00	-4830.00
	Y12	Output	VS	1317.00	-8370.00	334	Y72	Output	VS	1317.00	-4770.00
	Y13	Output	VS	1317.00	-8310.00	335	Y73	Output	VS	1317.00	-4710.00
	Y14	Output	VS	1317.00	-8250.00	336	Y74	Output	VS	1317.00	-4650.00
	Y15	Output	VS	1317.00	-8190.00	337	Y75	Output	VS	1317.00	-4590.00
	Y16	Output	VS	1317.00	-8130.00	338	Y76	Output	VS	1317.00	-4530.00
279 Y	Y17	Output	VS	1317.00	-8070.00	339	Y77	Output	VS	1317.00	-4470.00
280 Y	Y18	Output	VS	1317.00	-8010.00	340	Y78	Output	VS	1317.00	-4410.00
281 Y	Y19	Output	VS	1317.00	-7950.00	341	Y79	Output	VS	1317.00	-4350.00
	Y20	Output	VS	1317.00	-7890.00	342	Y80	Output	VS	1317.00	-4290.00
	Y21	Output	VS	1317.00	-7830.00	343	Y81	Output	VS	1317.00	-4230.00
	Y22	Output	VS	1317.00	-7770.00	344	Y82	Output	VS	1317.00	-4170.00
	Y23	Output	VS	1317.00	-7710.00	345	Y83	Output	VS	1317.00	-4110.00
	Y24	Output	VS	1317.00	-7650.00	346	Y84	Output	VS	1317.00	-4050.00
	Y25	Output	VS	1317.00	-7590.00	347	Y85	Output	VS	1317.00	-3990.00
	Y26	Output	VS	1317.00	-7530.00	348	Y86	Output	VS	1317.00	-3930.00
	Y27	Output	VS	1317.00	-7470.00	349	Y87	Output	VS	1317.00	-3870.00
	Y28 Y29	Output	VS	1317.00	-7410.00	350	Y88	Output	VS	1317.00	-3810.00
291 Y 292 Y		Output	VS VS	1317.00	-7350.00 -7290.00	351 352		Output	VS VS	1317.00	-3750.00
	r 30 Y 31	Output	VS	1317.00 1317.00	-7290.00	352		Output	VS	1317.00 1317.00	-3690.00
	Y31 Y32	Output Output	VS	1317.00	-7230.00		Y91 Y92	Output Output	VS	1317.00	-3630.00
	Y33	Output	VS	1317.00	-7110.00	355		Output	VS	1317.00	-3510.00
	Y34	Output	VS	1317.00	-7050.00	356		Output	VS	1317.00	-3450.00
	Y35	Output	VS	1317.00	-6990.00		Y95	Output	VS	1317.00	-3390.00
	Y36	Output	VS	1317.00	-6930.00	358		Output	VS	1317.00	-3330.00
		Output	VS	1317.00	-6870.00	359	Y97	Output	VS	1317.00	-3270.00
299 Y	13/	Ouidui	V 3								

Table 2–1. Pad Coordinate (4/5)

No.	Pin Name	I/O	Power	Pad coordi		No.	Pin Name	I/O	Power		dinate [µm]
				X	Y		519.00/			X	Y
	Y99	Output	VS	1317.00	-3150.00	421	DUMMY	-	-	1317.00	450.00
362	Y100	Output	VS	1317.00	-3090.00	422	DUMMY	-	-	1317.00	510.00
363	Y101 Y102	Output	VS VS	1317.00	-3030.00	423		-	-	1317.00 1317.00	570.00 630.00
364 365	Y102 Y103	Output Output	VS	1317.00 1317.00	-2970.00	424 425		-	-	1317.00	630.00
365	Y104	Output	VS	1317.00	-2850.00	425	DUMMY	_	_	1317.00	750.00
367	Y105	Output	VS	1317.00	-2790.00	420	DUMMY	_	_	1317.00	810.00
368	Y106	Output	VS	1317.00	-2730.00	428	DUMMY	-	-	1317.00	870.00
369	Y107	Output	VS	1317.00	-2670.00	429	DUMMY	-	_	1317.00	930.00
370	Y108	Output	VS	1317.00	-2610.00	430	DUMMY	-	-	1317.00	990.00
371	Y109	Output	VS	1317.00	-2550.00	431	DUMMY	-	-	1317.00	1050.00
372	Y110	Output	VS	1317.00	-2490.00	432	DUMMY	-	_	1317.00	1110.00
373	Y111	Output	VS	1317.00	-2430.00	433	DUMMY	-	-	1317.00	1170.00
374	Y112	Output	VS	1317.00	-2370.00	434	DUMMY	-	-	1317.00	1230.00
375	Y113	Output	VS	1317.00	-2310.00	435	DUMMY	-	-	1317.00	1290.00
376	Y114	Output	VS	1317.00	-2250.00	436	DUMMY	-	-	1317.00	1350.00
377	Y115	Output	VS	1317.00	-2190.00	437	DUMMY	-	-	1317.00	1410.00
378	Y116	Output	VS	1317.00	-2130.00	438	DUMMY	-	-	1317.00	1470.00
379	Y117	Output	VS	1317.00	-2070.00	439	DUMMY	-	-	1317.00	1530.00
380	Y118	Output	VS	1317.00	-2010.00	440	DUMMY	-	-	1317.00	1590.00
381	Y119	Output	VS	1317.00	-1950.00	441	DUMMY	-	-	1317.00	1650.00
382	Y120	Output	VS	1317.00	-1890.00	442	DUMMY	-	-	1317.00	1710.00
383	Y121	Output	VS	1317.00	-1830.00	443	DUMMY	-	-	1317.00	1770.00
384	Y122	Output	VS	1317.00	-1770.00	444	DUMMY	-	-	1317.00	1830.00
385	Y123	Output	VS	1317.00	-1710.00	445	DUMMY	-	-	1317.00	1890.00
386	Y124	Output	VS	1317.00	-1650.00	446	DUMMY	-	-	1317.00	1950.00
387	Y125	Output	VS	1317.00	-1590.00	447	DUMMY	-	-	1317.00	2010.00
388	Y126	Output	VS	1317.00	-1530.00	448	DUMMY	-	-	1317.00	2070.00
389	Y127	Output	VS	1317.00	-1470.00	449	DUMMY	-	-	1317.00	2130.00
390	Y128 DUMMY	Output	VS	1317.00	-1410.00	450	DUMMY DUMMY	-	-	1317.00	2190.00 2250.00
391 392		-	-	1317.00 1317.00	-1350.00 -1290.00	451 452		-	-	1317.00 1317.00	2250.00
393	DUMMY	_		1317.00	-1230.00	453	Y129	Output	VS	1317.00	2370.00
393	DUMMY	_		1317.00	-1170.00	453	Y130	Output	VS	1317.00	2430.00
395	DUMMY	_		1317.00	-1110.00	455	Y131	Output	VS	1317.00	2430.00
396	DUMMY	_	_	1317.00	-1050.00	456	Y132	Output	VS	1317.00	2550.00
397	DUMMY	_	_	1317.00	-990.00	457	Y133	Output	VS	1317.00	2610.00
398	DUMMY	_	_	1317.00	-930.00	458	Y134	Output	VS	1317.00	2670.00
399	DUMMY	-	-	1317.00	-870.00	459	Y135	Output	VS	1317.00	2730.00
400	DUMMY	-	-	1317.00	-810.00	460	Y136	Output	VS	1317.00	2790.00
401	DUMMY	-	-	1317.00	-750.00	461	Y137	Output	VS	1317.00	2850.00
402	DUMMY	-	-	1317.00	-690.00	462	Y138	Output	VS	1317.00	2910.00
403	DUMMY	-	_	1317.00	-630.00	463	Y139	Output	VS	1317.00	2970.00
404	DUMMY	-	-	1317.00	-570.00	464	Y140	Output	VS	1317.00	3030.00
405	DUMMY	-	-	1317.00	-510.00	465	Y141	Output	VS	1317.00	3090.00
406	DUMMY	-	-	1317.00	-450.00	466	Y142	Output	VS	1317.00	3150.00
407	DUMMY	-	-	1317.00	-390.00	467	Y143	Output	VS	1317.00	3210.00
	DUMMY	-	-	1317.00	-330.00	468	Y144	Output	VS	1317.00	3270.00
409	DUMMY	-	-	1317.00	-270.00	469	Y145	Output	VS	1317.00	3330.00
	DUMMY	-	-	1317.00	-210.00	470		Output	VS	1317.00	3390.00
	DUMMY	-	-	1317.00	-150.00	471		Output	VS	1317.00	3450.00
	DUMMY	-	-	1317.00	-90.00	472		Output	VS	1317.00	3510.00
	DUMMY	-	-	1317.00	-30.00		Y149	Output	VS	1317.00	3570.00
	DUMMY	-	-	1317.00	30.00		Y150	Output	VS	1317.00	3630.00
	DUMMY	-	-	1317.00	90.00	475		Output	VS	1317.00	3690.00
	DUMMY	-	-	1317.00	150.00		Y152	Output	VS	1317.00	3750.00
	DUMMY	-	-	1317.00	210.00	477	Y153	Output	VS	1317.00	3810.00
	DUMMY	-	-	1317.00	270.00	478		Output	VS	1317.00	3870.00
		-	_	1317.00	330.00	479		Output	VS	1317.00	3930.00
420	DUMMY	-	-	1317.00	390.00	480	Y156	Output	VS	1317.00	3990.00

Table 2–1. Pad Coordinate (5/5)

Nie	Dia Marsa	1/0	Davian	Pad coord	inate [µm]
No.	Pin Name	I/O	Power	Х	Y
481	Y157	Output	VS	1317.00	4050.00
482	Y158	Output	VS	1317.00	4110.00
483	Y159	Output	VS	1317.00	4170.00
484	Y160	Output	VS	1317.00	4230.00
485	Y161	Output	VS	1317.00	4290.00
486	Y162	Output	VS	1317.00	4350.00
487	Y163	Output	VS	1317.00	4410.00
488	Y164	Output	VS	1317.00	4470.00
489	Y165	Output	VS	1317.00	4530.00
490	Y166	Output	VS	1317.00	4590.00
491	Y167	Output	VS	1317.00	4650.00
492	Y168	Output	VS	1317.00	4710.00
493	Y169	Output	VS	1317.00	4770.00
494	Y170	Output	VS	1317.00	4830.00
495	Y171	Output	VS	1317.00	4890.00
496	Y172	Output	VS	1317.00	4950.00
497	Y173	Output	VS	1317.00	5010.00
498	Y174	Output	VS	1317.00	5070.00
499	Y175	Output	VS	1317.00	5130.00
500	Y176	Output	VS	1317.00	5190.00
501 502	Y177 Y178	Output Output	VS VS	1317.00	5250.00
			VS	1317.00	5310.00
503 504	Y179 Y180	Output Output	VS	1317.00	5370.00 5430.00
504	Y180 Y181	Output	VS	1317.00 1317.00	5430.00 5490.00
505	Y182	Output	VS	1317.00	5550.00
500	Y183	Output	VS	1317.00	5610.00
508	Y184	Output	VS	1317.00	5670.00
509	Y185	Output	VS	1317.00	5730.00
510	Y186	Output	VS	1317.00	5790.00
511	Y187	Output	VS	1317.00	5850.00
512	Y188	Output	VS	1317.00	5910.00
513	Y189	Output	VS	1317.00	5970.00
514	Y190	Output	VS	1317.00	6030.00
515	Y191	Output	VS	1317.00	6090.00
516	Y192	Output	VS	1317.00	6150.00
517	Y193	Output	VS	1317.00	6210.00
518	Y194	Output	VS	1317.00	6270.00
519	Y195	Output	VS	1317.00	6330.00
520	Y196	Output	VS	1317.00	6390.00
521	Y197	Output	VS	1317.00	6450.00
522	Y198	Output	VS	1317.00	6510.00
523	Y199	Output	VS	1317.00	6570.00
524	Y200	Output	VS	1317.00	6630.00
525	Y201	Output	VS	1317.00	6690.00
526	Y202	Output	VS	1317.00	6750.00
527	Y203	Output	VS	1317.00	6810.00
528	Y204	Output	VS	1317.00	6870.00
529	Y205	Output	VS	1317.00	6930.00
	Y206	Output	VS	1317.00	6990.00
531	Y207	Output	VS	1317.00	7050.00
532	Y208	Output	VS	1317.00	7110.00
533	Y209	Output	VS	1317.00	7170.00
534	Y210	Output	VS	1317.00	7230.00
535	Y211	Output	VS	1317.00	7290.00
536 537	Y212 Y213	Output Output	VS VS	1317.00 1317.00	7350.00 7410.00
537 538	Y213 Y214		VS	1317.00	7410.00
		Output			
539 540	Y215 Y216	Output Output	VS VS	1317.00 1317.00	7530.00 7590.00
540	1210	Output	٧ð	1317.00	1090.00

No.	Pin Name	I/O	Power	Pad coordin	ate [µm]
INU.	Fill Name	1/0	FOWEI	Х	Y
541	Y217	Output	VS	1317.00	7650.00
542	Y218	Output	VS	1317.00	7710.00
543	Y219	Output	VS	1317.00	7770.00
544	Y220	Output	VS	1317.00	7830.0
545	Y221	Output	VS	1317.00	7890.0
546	Y222	Output	VS	1317.00	7950.0
547	Y223	Output	VS	1317.00	8010.0
548	Y224	Output	VS	1317.00	8070.0
549	Y225	Output	VS	1317.00	8130.0
550	Y226	Output	VS	1317.00	8190.0
551	Y227	Output	VS	1317.00	8250.0
552	Y228	Output	VS	1317.00	8310.0
553	Y229	Output	VS	1317.00	8370.0
554	Y230	Output	VS	1317.00	8430.0
555	Y231	Output	VS	1317.00	8490.0
556	Y232	Output	VS	1317.00	8550.0
557	Y233	Output	VS	1317.00	8610.0
558	Y234	Output	VS	1317.00	8670.0
559	Y235	Output	VS	1317.00	8730.0
560	Y236	Output	VS	1317.00	8790.0
561	Y237	Output	VS	1317.00	8850.0
562	Y238	Output	VS	1317.00	8910.0
563	Y239	Output	VS	1317.00	8970.0
564	Y240	Output	VS	1317.00	9030.0
565	DUMMY	-	-	1317.00	9090.0
566	DUMMY	-	-	1317.00	9150.0
567	DUMMY	-	-	1317.00	9210.0

	X [μm]	Υ [μm]
Alignment Mark 1 (M1)	-1317.00	9050.00
Alignment Mark 1 (M2)	-1317.00	-9020.00
Alignment Mark 2 (M3)		

3. PIN FUNCTIONS

3.1 Power Supply System Pins

Symbol	Pin Name	Pad No.	I/O	Function
V _{DD1}	Power supply for logic	125 to 132	-	This is the power supply pin for the logic.
				When VSTBY = L, there is no need to apply a power supply voltage.
				The voltage that is input from the power supply control pin (Vcc1) is
				used to generate the logic's power supply voltage within the chip.
				However, the interface with the CPU must be implemented using
				VDDIO. Also, no power is supplied to the VDD1 pin, but it should be
				connected to the SF_VCCL pin and a 4.7 μ F capacitor should be
				connected between it and the GND pin. Refer to Figure 3–1 .
SF_VCCL	Internal logic power supply	119 to 124	Output	If using 3 power supplies (VSTBY = L), be sure to connect a
	generation amplifier output			capacitor between this pin and a GND connection. For details, refer
				to Figure 3–1.
				If using 4 power supplies (VSTBY = H), leave this pin open.
Vdd2	Power supply for display RAM	139 to 146		This power supply pin is used for the display RAM circuits.
V DD2		13910140	_	
				When VSTBY = L, there is no need to apply a power supply voltage.
				The voltage that is input from the power supply control pin (Vcc1) is
				used to generate the logic's power supply voltage within the chip.
				Also, no power is supplied to the V_{DD2} pin, but it should be connected
				to the SF_VCCR pin and a 1 μ F capacitor should be connected
				between it and the GND pin. For details, refer to Figure 3–1 .
SF_VCCR	Display RAM circuit power	133 to 138	Output	In the case of 3 power-supply supply system (VSTBY = L), connect a
	supply generation amplifier			capacitor between grounds. For details, refer to Figure 3–1 .
	output			In the case of 4 power-supply supply system (VSTBY = H), leave it
				open.
Vddio	CPU/RGB interface power	107 to 112	-	This is the CPU/RGB interface's power supply pin.
	supply			Be sure to input a power supply that has the same potential as the IC
				connected to the CPU/RGB interface.
Vcc1	Interface and power supply pin	113 to 118	-	This is the power supply pin for the power IC control circuit.
	for power supply IC control			Be sure to input a power supply that has the same potential as the
				connected IC.
Vs	Driver and gate control for	187 to 192	-	Power supply pin for driver circuit.
	power supply			
Vss11	Ground pin for logic	155 to 163		Ground pin for logic circuit
Vss1	Ground pin for interface and	147 to 154	-	Ground pin for power supply IC of control circuit and logic interface
	power supply IC			circuit.
Vss	Ground pin for driver and gate	164 to 169	-	Ground pin for driver circuit power supply IC control circuit
	control			
VSTBY	Logic power supply generation	212	Input	This pin is used to select whether or not to supply voltage to the
	control			logic's power supply.
				VSTBY = L: Supply voltage to VDD1, VDD2, SF_VCCL, and SF_VCCR
				is not required.
				VSTBY = H: Supply voltage to V_{DD1} and V_{DD2} is required.

				(2/2)
Symbol	Pin Name	Pad No.	I/O	Function
	Mode setting pull-up power supply	53, 79, 84	_	Pull-up power supply pin for mode setting
	Mode setting pull-up power supply	198, 204, 210	_	Pull-up power supply pin for mode setting
. ,	Mode setting pull-down power supply	74, 82, 88, 195, 201, 207,	-	Pull-down power supply pin for mode setting
		213, 234, 256		

Figure 3–1. Supplies for Power Supply

[At the time of IC regulator circuit use for logic circuits: Vcc1 = 2.5 to 3.3 V single power supply input]

[At the time of IC regulator circuit unused for logic circuits: VDD1, VDD2 = 1.6 to 2.0 V, Vcc1 = 2.5 to 3.3 V]

3.2 Logic System Pins

Symbol	Pin Name	Pad No.	I/O			Function		
BWS0	CPU interface bus width	206	Input	This pin selects the bus width of the i80/M68 interface (it is invalid for the				
	selection			RGB interfac	ce).			
				BWS0	BWS1	i80/M68, Serial Interface Bus Width		
				L	L	18 bits		
BWS1	CPU interface bus width	208	Input	L	Н	16 bits	_	
	selection			Н	L	Prohibited		
				Н	Н	8 bits parallel or serial interface		
BWS2	RGB interface bus width selection	209	Input	This pin sele	ects the b	ous width of the RGB interface (it is invalid for	the CPU	
				BWS2	BWS3	RGB Interface Bus Width		
				L	L	18 bits		
BWS3	RGB interface bus width	211	Input	L	Н	16 bits		
	selection			Н	L	6 bits		
				Н	Н	Prohibited		
PSX	CPU interface mode selection	203	Input			node of the CPU interface. only, H: Serial interface only		
/CS	Chip select	78	Input		hip select signals. When $/CS = L$, the chip is	active		
100	Chip select	10	input	and can perform data I/O operations including command and data I/O.				
/RESET Reset		55	Input	When /RESET is L, an internal reset is initialized. The reset operation is				
				executed at the /RESET signal level. Be sure to perform reset via this pin				
				at power ap				
/RD	Read	75	Input	When i80 se	eries para	allel data transfer (/RD) has been selected, the	e signal	
(E)	(Enable)			at this pin is used to enable read operations. Data is output to the data bus				
				only when this pin is low.				
				When M68 series parallel data transfer (E) has been selected, the signal at				
				this pin is used to enable read/write operations.				
/WR	Write	76	Input	When i80 se	eries para	allel data transfer (/WR) has been selected, th	e signal	
(R,/W)	(Read/write)			at this pin is	used to e	enable write operations.		
				When M68 series parallel data transfer (R,/W) has been selected, this pin				
				is used to determine the direction of data transfer.				
				L: Write, H:	Read			
C86	Select interface	205	Input	This pin is u	sed to sv	vitch between interface modes (i80 series CP	U or M68	
				series CPU).				
				L: Selects i8	0 series	CPU mode, H: Selects M68 series CPU mode	e	
Do to D17	Data bus	73 to 56	I/O	These pins of	comprise	18-bit bi-directional data.		
				When the chip is not selected, D_0 to D_{17} are in Hi-Z (high impedance)				
				mode.				
SI	Serial input	80	Input	This pin is d	ata input	of serial interface.		
SCL	Serial clock	81	Input	This pin is c	lock inpu	t of serial interface.		
RS	Data/command	77	Input	-		ansfer has been selected, this pin is usually		
	selection					st significant bit of the standard CPU address	bus and	
						between data from display data and commar		
					-	t data from D_0 to D_{17} is commands.		
						at data from D_0 to D_{17} is display data.		

*

★

Symbol	Pin Name	Pad No.	I/O	Function
HSYNC	Horizontal sync signal	86	Input	This is the horizontal sync signal of the RGB interface.
VSYNC	Vertical sync signal	85	Input	This is the vertical sync signal of the RGB interface.
DOTCLK	Dot clock	87	Input	This is the dot clock signal of the RGB interface.
HSEG	HSYNC polarity selection	199	Input	This selects polarity of the horizontal sync signal of the RGB interface. HSEG = L: Low active HSEG = H: High active
VSEG	VSYNC polarity selection	200	Input	This selects polarity of the vertical sync signal of the RGB interface. VSEG = L: Low active VSEG = H: High active
DCKEG	DOTCLK polarity selection	202	Input	This selects polarity of the dot clock signal of the RGB interface. DCKEG = L: High active (this pin is latched up at rising edge) DCKEG = H: High level (this pin is latched up at falling edge)
RGB00 to RGB05,	Data bus	89 to 94,	Input	These pins are RGB interface data signal.
RGB10 to RGB15,		95 to 100,		
RGB20 to RGB25		101 to 106		
CSTB	GSTB logic signal	54	Output	This pin outputs STB signal for gate driver leveled by interface power supply voltage (V _{DDIO}). This output signal is reverse signal of GSTB.
VLD	RAM write enable signal	83	Input	This signal sets the data as valid during a RAM write operation. This signal can be used only when the RGB interface is in capture mode. VLD = L: Capture input data is valid (no write to RAM) VLD = H: Capture input data is invalid (write to RAM)
OSCSEL	Oscillator circuit selection	196	Input	The oscillation circuit of the inside reference clock for liquid crystal drive of IC is selected. OSCSEL = L: Internal oscillation circuit selection OSCSEL = H: External oscillation circuit selection
OSCR	Resistance Connection for Oscillator	194	_	Resistance of T.B.D. Ω is connected between OSCC pins at the time (OSCSEL = H) of external oscillation circuit selection. Leave it open at the time (OSCSEL = L) of internal oscillation circuit selection.
OSCC	Capacitor connection for oscillator	193	-	At the time (OSCSEL = H) of external oscillation circuit selection, resistance of T.B.D. Ω is connected between OSCR pins, and the capacitor of T.B.D. μ F is connected between grounds. Leave it open at the time (OSCSEL = L) of internal oscillation circuit selection.
CMDS	CMDS	197	Input	Connect to Vss1.

Remark T.B.D. (To be determined.)

[Example of the oscillator circuit connection]

3.3 Gate Driver Control Pins

3.3.1 Gate driver control 1

Symbol	Pin Name	Pad No.	I/O	Function
GOE1	OE1 output for gate control	33	Output	This pin is output enable pin for gate control.
				Signal is outputted to the timing set as R79 and R80.
				For details, refer to 5.4 Display Timing Generator.
/GOE1	OE1 output for gate control	34	Output	This pin outputs inverted GOE1 signal.
GOE2	OE2 output for gate control	31	Output	This pin is output enable pin for gate control.
				For details, refer to 5.4 Display Timing Generator.
/GOE2	OE2 output for gate control	32	Output	This pin outputs inverted GOE2 signal.
GSTB	STB output for gate control	27	Output	This pin is output strove pin for gate control.
				Timing signal for output, refer to 5.4 Display Timing Generator.
/GSTB	STB output for gate control	28	Output	This pin outputs inverted GSTB signal.
GCLK	CLK output for gate control	29	Output	This pin is the CLK output for the gate control.
				Timing signal for output, refer to 5.4 Display Timing Generator.
/GCLK	CLK output for gate control	30	Output	This pin outputs inverted GCLK signal.
PC	Panel control output	47	Output	This pin is output control pin for panel.
				Signal is outputted to the timing set as R81 and R82.
				For details, refer to 5.4 Display Timing Generator.
/PC	Panel control output	48	Output	This pin outputs inverted PC signal.
PCP	Pre-charge control output	45	Output	This pin is the pre-charge control output for panel.
				Timing signal for output, refer to 5.4 Display Timing Generator.
/PCP	Pre-charge control output	46	Output	This pin outputs inverted PCP signal.

3.3.2 Gate driver control 2

Symbol	Pin Name	Pad No.	I/O	Function
PCN	Pre-discharge control output	43	Output	This pin is the pre-discharge control output for panel.
				Timing signal for output, refer to 5.4 Display Timing Generator.
/PCN	Pre-discharge control output	44	Output	This pin outputs inverted PCN signal.
EXT1	Reserve signal for panel	49	Output	This pin is extended signal for panel control.
	control			Signal is outputted to the timing set as R89 and R90.
				Timing signal for output, refer to 5.4 Display Timing Generator.
/EXT1	Reserve signal for panel control	50	Output	This pin outputs inverted EXT1 signal.
EXT2	Reserve signal for panel	51	Output	This pin is extended signal for panel control.
	control			Signal is outputted to the timing set as R91 and R92.
				Timing signal for output, refer to 5.4 Display Timing Generator.
/EXT2	Reserve signal for panel control	52	Output	This pin outputs inverted EXT2 signal.
GUD	Control signal for gate scan	35	Output	This pin is gate scan direction control signal.
	direction			Timing signal for output, refer to 5.4 Display Timing Generator.
/GUD	Control signal for gate scan direction	36	Output	This pin outputs inverted GUD signal.
OEV	OE1 output for gate control	15	Output	This pin is output enable pin for gate control.
				Signal is outputted to the timing set as R79 and R80.
				Timing signal for output, refer to 5.4 Display Timing Generator .
/OEV	OE1 output for gate control	16	Output	This pin outputs inverted OEV signal.
OEVE	OE2 output for gate control	17	Output	This pin is output enable pin for gate control.
				Timing signal for output, refer to 5.4 Display Timing Generator .
/OEVE	OE2 output for gate control	18	Output	This pin outputs inverted OEVE signal.
STV	Start signal output for gate	11	Output	This pin is start signal pin for gate control.
	control			Timing signal for output, refer to 5.4 Display Timing Generator .
/STV	Start signal output for gate control	12	Output	This pin outputs inverted STV signal.
CKV	CLK output for gate control	13	Output	This pin is clock output signal pin for gate control.
				Timing signal for output, refer to 5.4 Display Timing Generator .
/CKV	CLK output for gate control	14	Output	This pin outputs inverted CKV signal.
XDON	Panel control output	19	Output	This pin is control output pin for panel.
				Signal is outputted by set-up of RXDON (R77).
/XDON	Panel control output	20	Output	This pin outputs inverted XDON signal.

3.4 RGB Multi-plectra Switch Control Pins

3.4.1 RGB Multi-plectra Switch Control

Symbol	Pin Name	Pad No.	I/O	Function
RSW	Multi-plectra control signal	25	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R83 and R84. For details, refer to 5.4 Display timing generator .
/RSW	Multi-plectra control signal	26	Output	This pin outputs inverted RSW signal.
GSW	Multi-plectra control signal	23	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R85 and R86. For details, refer to 5.4 Display timing generator .
/GSW	Multi-plectra control signal	24	Output	This pin outputs inverted GSW signal.
BSW	Multi-plectra control signal	21	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R87 and R88. For details, refer to 5.4 Display timing generator .
/BSW	Multi-plectra control signal	22	Output	This pin outputs inverted BSW signal.

3.4.2 Multi-plectra Switch Control

Symbol	Pin Name	Pad No.	I/O	Function
ASW1	Multi-plectra control signal	9	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R83 and R84. For details, refer to 5.4 Display timing generator .
/ASW1	Multi-plectra control signal	10	Output	This pin outputs inverted ASW1 signal.
ASW2	Multi-plectra control signal	7	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R85 and R86. For details, refer to 5.4 Display timing generator .
/ASW2	Multi-plectra control signal	8	Output	This pin outputs inverted ASW2 signal.
ASW3	Multi-plectra control signal	5	Output	This pin is panel of multi-plectra control signal. Signal is outputted to the timing set as R87 and R88. For details, refer to 5.4 Display timing generator .
/ASW3	Multi-plectra control signal	6	Output	This pin outputs inverted ASW3 signal.

3.5 External IC (µ PD161861, etc.) Control Pins

Symbol	Pin Name	Pad No.	I/O	Function
PCS	Chip select signal output	40	Output	This is a chip selection output pin for serial interfaces for power supply IC control. Connect with chip selection input pins, such as the external power supply IC. Set-up of R38 to R42, and R60 to R65 starts an output. For details, refer to 5.1.8 Serial interface for power supply IC control .
PCL	Serial clock signal output	41	Output	This is a serial clock output pin for serial interfaces for power supply IC control. Connect with serial clock input pins, such as the external power supply IC. Set-up of R38 to R42, and R60 to R65 starts an output. For details, refer to 5.1.8 Serial interface for power supply IC control .
PDA	Serial data output	39	Output	This is a serial data pin for serial interfaces for power supply IC control. Connect with serial data input pins, such as the external power supply IC. Set-up of R38 to R42, and R60 to R65 starts an output. For details, refer to 5.1.8 Serial interface for power supply IC control .
/PRESET	Reset output	4	Output	This is a reset signal output pin for power supplies IC. The reset signal inputted from RESET pin is outputted on the incoming signal level (Vcc1) of the external power supply IC. Connect with reset input pins, such as the external power supply IC.
PCCLK	Power supply IC DC/DC converter clock output	42	Output	The reference clock for the DC/DC converter circuits of a power supply IC is outputted. Oscillation frequency is divided cycle and outputted by the divided cycle ratio set up by DC4 and DC3 (R72). Use this pin, connecting with standard clock inputs for DC/DC converter circuits, such as a power supply IC.

3.6 Driver Pins

Symbol	Pin Name	Pad No.	I/O	Function
Y1 to Y240	Source output	263 to 390, 453 to 564	Output	These pins are source output pins
VCOUT	Common timing output	37	Output	Common timing signal is outputted from V_{CC1} - V_{SS} , V_{P-P} . Usually, it is used such as shifting this timing output signal to the voltage level to need.
FR	Frame signal output	38	Output	This pin outputs frame polarity signal. With VCOUT, the signal of inversion polarity is outputted in V _{CC1} to V _{SS} when RXDON (R77 • D ₂) = 0 setup. When RXDON = 1 setup, operation set as DSCGn (R72 • D ₅ to D ₀) is performed.
CVPH, CVPL, CVNH, CVNL	Basis power supply pin for γ -corrected power supplies	184 to 186, 181 to 183, 178 to 180, 175 to 177	_	This is operational amplifier output pin for the γ -corrected power supplies. Normally, this pin connects capacitor of T.B.D. μ F. When unused the amplifier for γ -correction, leave it open.

3.7 Test or Other Pins

Symbol	Pin Name	Pad No.	I/O	Function
TOUT ₀ to TOUT ₁₉ ,	Test output	233 to 214,	Output	This is output pin when IC is in test mode.
TOSCO1, TOSCO2,		254 to 255,		Normally, leave it open.
TAOUT ₀ to TAOUT ₄		170 to 174		
TDELAY₀ to	Test input	235 to 244	Input	This is input pin when IC is in test mode.
TDELAY ₉				Normally, connected it to Vss1.
TSTRTST,	Test input	247,	Input	These input pins are to set up test mode of IC.
TSTVIHL,		246,		Normally, fixed it to Vss.
TOSCI1, TOSCI2,		252, 253,		
TOSCSEI1,		250,		
TOSCSEI2,		251		
TOSCSEO1,		248,		
TOSCSEO2,		249,		
TCLK		245		
DUMMY	Dummy	1 to 3, 257 to	-	Dummy pin
		262, 391 to		
		452, 565 to		
		567		

4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The I/O circuit types of each pin and recommended connection of unused pins are described below.

Pin Name	I/O	Power Supply	Recommended Con	nection of Unused Pins	Note
Pin Name	1/0	Power Supply	Parallel Interface	Serial Interface	Note
PSX	Input	Vcc1	Mode setting pin		0
BWS₀ to BWS₃	Input	V _{CC1}	Mode setting pin	Mode setting pin	
VSTBY	Input	V _{CC1}	Mode setting pin		0
/RESET	Input	VDDIO	Always reset on power appli	cation	-
/CS	Input	VDDIO	Connect to VDDIO		-
/RD (E), /WR	Input	Vddio	Connect to VDDIO (when i80 series interface)	Connect to VDDIO or VSS1	-
C86	Input	V _{CC1}	Mode setting pin	Connect to Vcc1 or Vss1	0
Do to D17	I/O	VDDIO	_	Connect to Vss1	_
SI, SCL	Input	VDDIO	Connect to VDDIO	_	-
HSYNC	Input	VDDIO	Connect to VDDIO or VSS1		_
VSYNC	Input	VDDIO	Connect to VDDIO or VSS1		-
DOTCLK	Input	VDDIO	Connect to VDDIO or VSS1		0
HSEG	Input	Vcc1	Mode setting pin		0
VSEG	Input	V _{CC1}	Mode setting pin		0
DCKEG	Input	Vcc1	Mode setting pin		-
RGB00 to RGB05, RGB10 to RGB15, RGB20 to RGB25	Input	VDDIO	Connect to VDDIO or VSS1		0
RS	Input	VDDIO	Register setting pin		-
CSTB	Output	VDDIO	Leave open		
OSCSEL	Input	Vcc1	Mode setting pin		0
OSCR	-	V _{DD1}	Leave open		
OSCC	_	V _{DD1}	Leave open		
GOE1, /GOE1	Output	Vcc1	Leave open		
GOE2, /GOE2	Output	Vcc1	Leave open		
GSTB, /GSTB	Output	Vcc1	Leave open		
GCLK, /GCLK	Output	Vcc1	Leave open		_
PC, /PC	Output	Vcc1	Leave open		
PCP, /PCP	Output	Vcc1	Leave open		_
PCN, /PCN	Output	Vcc1	Leave open		_
EXT1, /EXT1	Output	Vcc1	Leave open		
EXT2, /EXT2	Output	Vcc1	Leave open		
RSW, /RSW	Output	Vcc1	Leave open		_
GSW, /GSW	Output	Vcc1	Leave open		
BSW, /BSW	Output	Vcc1	Leave open		
GUD, /GUD	Output	Vcc1	Leave open		-
STV, /STV	Output	Vcc1	Leave open		-
CKV, /CKV	Output	V _{CC1}	Leave open		_

(2/2)

					(2,2)
Dia Maraa	1/0	Davida Overalia	Recommended Conn	ection of Unused Pins	Nete
Pin Name	I/O	Power Supply	Parallel Interface	Serial Interface	Note
OEV, /OEV	Output	Vcc1	Leave open		-
OEVE, /OEVE	Output	Vcc1	Leave open		-
XDON, /XDON	Output	Vcc1	Leave open		-
PCS	Output	Vcc1	Connect power supply IC etc.	with exterior IC.	-
			Leave it open when in unused	1.	
PCL	Output	Vcc1	Connect power supply IC etc.	with exterior IC.	-
			Leave it open when in unused	1.	
PDA	Output	Vcc1	Connect power supply IC etc.		-
			Leave it open when in unused		
PCCLK	Output	Vcc1	Connect power supply IC etc.		-
			Leave it open when in unused	1.	
/PRESET	Output	Vcc1	Connect power supply IC etc.	with exterior IC.	-
			Leave it open when in unused	1.	
VCOUT	Output	Vcc1	Leave open		_
FR	Output	Vcc1	Leave open		_
CVNL, CVNH,	Output Vcc1 Leave open Output Vs Always connect to the capacitor of T.B.D. μF.		_		
CVPL, CVPH			However, this pin can be left of	open if not using any amplifier	
			for γ -correction.		
TOUT ₀ to TOUT ₁₉	Output	Vcc1	Leave open		_
TOSCO1, TOSCO2	Output	Vcc1	Leave open		-
TAOUT₀ to TAOUT₄	Output	Vs	Leave open		-
TSTRTST	Input	Vcc1	Connect to Vss1		-
TSTVIHL	Input	Vcc1	Connect to Vss1		-
TOSCI1, TOSCI2	Input	Vcc1	Connect to Vss1		-
TOSCSEO1,	Input	Vcc1	Connect to Vss1		_
TOSCSEO2					
TOSCSEI1,	Input	Vcc1	Connect to Vss1		_
TOSCSEI2					
TDELAY ₀ to TDELAY ₉	Input	Vcc1	Connect to Vss1		_
TCLK	Input	Vcc1	Connect to Vss1		_

Note Connect to VDD1 or VSS1, depending on the mode selected.

5. DESCRIPTION OF FUNCTIONS

5.1 CPU Interface

5.1.1 Selection of interface type

The μ PD161801 is able to transfer data via an RGB interface (18-/16-/6-bit) or via either of two CPU interfaces: the i80/M68 parallel interface (18-/16-/8-bit) or a serial interface (8-bit). The following modes can be selected for these CPU interfaces, as set via the PSX, BSW0, and BSW1 pins. Also, the RGB interface becomes valid when NWRGB (R25:D₂) = 1, at which time the bus width is selected according to the BWS2 and BSW3 pin settings.

Although the i80/M68 parallel interface and the serial interface allow writing to both the display data RAM and the registers, the RGB interface can be used only to overwrite the display data RAM.

PSX	BWS0	BWS1	Mode	/CS	RS	/RD (E)	/WR (R, /W)	C86	D17, D16	D15 to D8	D7 to Do	SI, SCL	
	L	L	18-bit parallel	/CS	RS	/RD (E)	/WR (R, /W)	C86	D17, D16	D15 to D8	D7 to Do	Hi-Z ^{Note}	
L	L	Н	16-bit parallel	/CS	RS	/RD (E)	/WR (R, /W)	C86	Hi-Z ^{Note}	D15 to D8	D7 to Do	Hi-Z ^{Note}	
	Н	Н	8-bit parallel	/CS	RS	/RD (E)	/WR (R, /W)	C86	Hi-Z ^{Note}	Hi-Z ^{Note}	D7 to Do	Hi-Z ^{Note}	
н	н	Н	8-bit serial	/CS	RS	х	Hi-Z ^{Note}	х	Hi-Z ^{Note}	Hi-Z ^{Note}	Hi-Z ^{Note}	SI, SCL	
Of	ther than al	oove		Setting prohibited									

Table 5–1. CPU Interface Bus Width Selection

Remark X: Don't care

Note Hi-Z: High impedance

Table 5–2. RGB Interface	Bus Width Selection
--------------------------	---------------------

BWS2	BWS3	Mode	RGB01 to RGB05	RGB00	RGB10 to RGB15	RGB21 to RGB25	RGB ₂₀								
L	L	18-bit parallel	RGB01 to RGB05	RGB00	RGB10 to RGB15	RGB21 to RGB25	RGB ₂₀								
L	Н	16-bit parallel	RGB01 to RGB05	Hi-Z ^{Note}	RGB10 to RGB15	RGB21 to RGB25	Hi-Z ^{Note}								
Н	L	6-bit parallel	Hi-Z ^{Note}	Hi-Z ^{Note}	Hi-Z ^{Note}	RGB21 to RGB25	RGB ₂₀								
Н	Н			Setting pr	Setting prohibited										

Note Hi-Z: High impedance

5.1.2 Selection of data transfer mode

When the 18-bit parallel interface is selected, the length of 1 pixel is fixed to 18 bits. With the 16-bit or 8-bit parallel interface, however, the length of 1 pixel can be selected from 18 or 16 bits (1 pixel = 16 bits when DTX1 = 0, and 1 pixel = 18 bits when DTX1 = 1).

If the 16-bit or 8-bit parallel interface is selected, therefore, several modes of transferring data to the display RAM are selectable. The mode is selected by using the DTX1 register.

[16-bit parallel interface]

<When 1 pixel = 18 bits (DTX1 = 1)>

<1> 16-bit data transfer + 2-bit data transfer

1 pixel = 18-bit data is divided into 16-bit data and 2-bit data for transfer, as shown in Figure 5-3.

<When 1 pixel = 16 bits (DTX1 = 0)>

<2> 16-bit data transfer

Display data of 1 pixel is transferred by one transmission as shown in Figure 5–4. Because 1 pixel is 16 bits long, the number of display colors is limited to 65,536.

[8-bit parallel interface]

< When 1 pixel = 18 bits (DTX1 = 1)>

<1> Transferring 6-bit data three times

1 pixel = 18-bit data is divided into three 6-bit data for transfer, as shown in Figure 5–6.

<Where 1 pixel = 16 bits (DTX1 = 0)>

<2> Transferring 8-bit twice

1 pixel is divided into two 8-bit data for transfer, as shown in Figure 5–7. Because 1 pixel is 16 bits long, the number of display colors is limited to 65,536.

1 pixel of the μ PD161801 display RAM consists of 18 bits. If the 16-bit parallel interface is used to transfer 16 bits as 1 pixel (DTX1 = 0), therefore, the data transferred by the CPU (16 bits) runs short by 2 bits, and these 2 bits must be made up for.

For how to do this, refer to Figures 5–4, 5–5 and 5–7.

PSX	BWS0	BWS1	BWS2	BWS3	Interfac	e Mode	DTX1	Number of Data of 1 Pixel	Mode of Transferring 1-Pixel Data
		L			18-bit parallel		Х	18-bit	18-bit transfer
	L				10 64	llal	1	Το-μι	16-bit + 2-bit transfer
L		H	L/H ^{Note1}	L/H ^{Note1}	16-bit parallel		0	16-bit	16-bit transfer
			L/H	L/H	8-bit parallel		1	18-bit	Transferring 6 bits three times
	H	H			8-bit p	arallel	0	16-bit	Transferring 8 bits twice
Н	х	х			8-bit	8-bit serial		16-bit	Transferring 8 bits twice
			L	L		18-bit		18-bit	18-bit transfer
L/H Note2	Н	н	L	н	RGB	16-bit	0/1 Note2	16-bit	16-bit transfer
			Н	L		6-bit		18-bit	Transferring 6 bits three times

Table 5–3. Interfaces and Data Transfer Modes

Remark X: Don't care (0 or 1)

- **Notes 1.** The RGB interface that is shared with the i80/M68 parallel interface or serial interface is selected by inputting a low or high level to this pin.
 - **2.** The i80/M68 parallel interface or serial interface that is shared with the RGB interface is selected by inputting a low or high level to this pin.

Figure 5–1. Relationship between Bus Data and Display RAM Data (18-bit parallel interface)

Data	bus	side
------	-----	------

	18-bit data																
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D ₆	D5	D4	Dз	D ₂	D1	D ₀
RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D ₆	D5	D4	Dз	D2	D1	Do
R data G data B data																	
	1 pixel																

Display RAM side

Figure 5–2. Relationship between Bus Data and Display RAM Data (18-bit RGB interface)

Data bus side

	18-bit data																
RGB25	RGB24	RGB ²³	RGB22	RGB21	RGB20	RGB15	RGB14	RGB13	RGB12	RGB11	RGB10	RGB05	RGB04	RGB03	RGB02	RGB01	RGB00
				DAM				DAM				RAM	DAM	RAM	RAM	DAM	
RAM D17	RAM D16	RAM D15	RAM D14	RAM D13	RAM D ₁₂	RAM D11	RAM D10	RAM D9	RAM D8	RAM D7	RAM D6	D ₅	RAM D4	D ₃	D ₂	RAM D1	RAM Do
R data G data B data																	
	1 pixel																

Display RAM side

Figure 5–3. Relationship between Bus Data and Display RAM Data (1-pixel/18-bit mode [DTX1 = 1], 16-bit parallel interface)

Data bus side

	16-bit data														2-bit data		
D15	D14	D13	D12	D11	D10	D9	D8	D7	D ₆	D5	D4	Dз	D ₂	D1	D ₀	D1	D ₀
RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM
D17	D16	D15	D14	D13	D12	D11	D 10	D9	D8	D7	D ₆	D5	D4	Dз	D2	D1	Do
R data G data B data																	
	1 pixel																

Display RAM side

Caution Data D₂ to D₁₅ of the second word are treated as invalid data when the 16-bit parallel interface is used.

Figure 5–4. Relationship between Bus Data and Display RAM Data
(1-pixel/16-bit mode [DTX1 = 0], 16-bit parallel interface)

Data b	ous sic	le															
	16-bit data																
D15	D14	D13	D12	D11		D10	D9	D8	D7	D ₆	D5	D4	D3	D ₂	D1	Do	
/	/											/	/				
	Data supplement function															>	
					D15												D4
					Note												Note
RAM D17	RAM D16	RAM D15	RAM D14	RAM D13	RAM D12	RAM D ₁₁	RAM D10	RAM D9	RAM D8	RAM D7	RAM D6	RAM D₅	RAM D4	RAM D3	RAM D2	RAM D1	RAM D₀
		R da	ta					G	data		B data						
	1 pixel																

Display RAM side

Note When In used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by D₁₅ and D₄ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–5.	Relationship	between Bus D	Data and Display	RAM Data	(16-bit RGB interface)
-------------	--------------	---------------	------------------	-----------------	------------------------

Data I	ous sic	le															
	16-bit data																
RGB25	RGB24	RGB23	RGB22	RGB21		RGB15	RGB14	RGB13	RGB12	RGB11	RGB10	RGB05	RGB04	RGB03	RGB02	RGB01	
/	/											/					
—				_				<u> </u>						\sim			-
					3			Data s	upplem	ent fun	ction						>
					RGB25												RGB05
					Note												Note
RAM D17	RAM D16	RAM D15	RAM D14	RAM D ₁₃	RAM D12	RAM D11	RAM D10	RAM D9	RAM D8	RAM D7	RAM D6	RAM D₅	RAM D4	RAM D3	RAM D2	RAM D1	RAM Do
	R data					G data						B data					
	1 pixel																

Display RAM side

Note When In used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by RGB₂₅ and RGB₀₅ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–6. Relationship between Bus Data and Display RAM Data

(1-pixel/18-bit mode [DTX1 = 1], 8-bit parallel interface)

Data bus side

	6-bit data						6-bit data						6-bit data					
D5	D4	D3	D ₂	D1	D ₀	D5	D4	D3	D2	D1	D ₀	D5	D4	D3	D ₂	D1	D ₀	
RAM D17	RAM D16	RAM D15	RAM D14	RAM D13	RAM D12	RAM D11	RAM D10	RAM D9	RAM D8	RAM D7	RAM D6	RAM D₅	RAM D4	RAM D3	RAM D2	RAM D1	RAM D₀	
	R data						G data					B data						
	1 pixel																	

Display RAM side

Caution Display data D₆ and D₇ of the 8-bit parallel interface are treated as invalid data.

Figure 5–7. Relationship between Bus Data and Display RAM Data (1-pixel/16-bit mode [DTX1 = 0], 8-bit parallel interface, 8-bit serial interface)

Data I	ous sic	le															
	8-bit data								8-bit data								
D7	r D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀																
/																	
ii				_				Data s	unnlam	ont fun	tion						
		_		_	2 A			Dala S	uppiem								Ż
					D7												D4
					Note												Note
RAM D ₁₇	RAM D16	RAM D15	RAM D14	RAM D13	RAM D ₁₂	RAM D11	RAM D10	RAM D9	RAM D8	RAM D7	RAM D6	RAM D₅	RAM D4	RAM D3	RAM D2	RAM D1	RAM Do
	R data 0								G data B data								
	1 pixel																

Display RAM side

Note When In used 8-bit parallel interface mode, display RAM data D₀ and D₁₂ are supplemented by bit D₇ of the first byte of the bus data and bit D₄ of the second byte of the bus data, and written to the display RAM as 18-bit data.

Figure 5-8. Relationship between Bus Data and Display RAM Data (6-bit RGB interface)

Data bus side

	6-bit data						6-bit data						6-bit data					
RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀	RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀	RGB ₂₅	RGB ₂₄	RGB ₂₃	RGB ₂₂	RGB ₂₁	RGB ₂₀	
	: :																	
RAM																		
D17	D16	D15	D14	D ₁₃	D ₁₂	D11	D10	D9	D8	D7	D ₆	D₅	D4	D3	D2	D1	D ₀	
	R data						G data						B data					
	1 pixel																	

Display RAM side

Phase-out/Discontinued

Figure 5–9. 16-bit Parallel Interface Data Transfer (1-pixel/18-bit mode [DTX1 = 1])

Phase-out/Discontinued

Figure 5–10. 8-bit Parallel Interface Data Transfer (1-pixel/16-bit mode [DTX1 = 0])

Phase-out/Discontinued

Figure 5–11. 8-bit Parallel Interface Data Transfer (1-pixel/18-bit mode [DTX1 = 1])

NFC

5.1.3 RGB interface

The μ PD161801 can be directly connected to the RGB interface when bit D₂ of the RGB interface control register (R25 of NWRGB (D₂ bit)) is set to 1.

The HSYNC and VSYNC signals establish synchronization in the horizontal and vertical direction, respectively, and data input to the data bus (RGB₀₀ to RBG₀₅, RGB₁₀ to RGB₁₅, and RGB₂₀ to RGB₂₅) is latched in synchronization with DOTCLK. For the electrical specifications, refer to **8**. **ELECTRICAL SPECIFICATIONS**.

When the RGB interface is selected, the display output timing can be selected from <HSYNC/VSYNC/DOTCLK> or <internal oscillation clock>. It can also be selected whether the data input from the RGB interface is to be written to the display RAM or not.

The mode in which the data input from the RGB interface is not written to the display data RAM and is used for display output is called the through mode (the display output timing is generated by HSYNC/VSYNC/DOTCLK).

The mode in which the data input from the RGB interface is written to the display data RAM for display output is called the capture mode. In the capture mode, the display output timing can be selected from <HSYNC/VSYNC/DOTCLK > or <internal oscillation clock>.

Movement of the μ PD161801 when making display output timing into <HSYNC/VSYNC/DOTCLK> is as follows.

Remark VSYNC and HSYNC are both active low and DOTCLK latches data at the rising edge.

In addition, an RGB data invalid mode is also available. In this mode, data input from a motion picture chip via the RGB interface is ignored. Note that only data input from the RGB interface is ignored in this mode and that access from the i80/M68 parallel interface and serial interface is possible.

However, mode selection operates D₀ to D₂ bits of RGB interface control register (R25) on shown as follows.

	R25			RGB Interface	
D2	D1	Do	Mode Name	Display Output Timing Clock	Writing from RGB Interface to Display Data RAM
1	0	0/1	Through mode	HSYNC/VSYNC/DOTCLK	No
1	1	1	Capture mode	HSYNC/VSYNC/DOTCLK	Yes
1	1	0		Internal oscillation clock	
0	х	1	RGB data invalid mode	HSYNC/VSYNC/DOTCLK	No
		0		Internal oscillation clock	

Table 5–4. RGB Interface Mode Selection

Remark X: Don't care

When capture mode is selected, DOTCLK is used as a write-in signal to a display data RAM. In addition, X addresses of an address pointer are reset by the HSYNC signal, and an increment is carried out by DOTCLK. Y address is reset by the VSYNC signal and an increment is carried out by the level synchronized signal.

The blanking period can be set by the horizontal back porch register and vertical back porch register. The active levels of HSYNC and VSYNC can be set. In addition, the active level of DOTCLK can also be set. In the through mode, however, the scroll function, partial function, and window access mode cannot be used.

Caution During through mode, the first line of the gate scan is shown as blank. The second and subsequent lines are displayed in accordance with data input from an external source, and so they appear as described below.

Since 320 lines are used as display lines, through mode should not be selected.

Gate Scan	Display Output
First line	Blank
Second line	Data input as first line is displayed
Third line	Data input as second line is displayed
:	:
320th line	Data input as 319th line is displayed

Table 5–5. Relation between input data and output display during through mode
[Example of using RGB interface]

<Through mode>

In the through mode, the area to be displayed by the RGB interface is specified by the RGB interface start line register (R27) and RGB interface end line register (R28). The data written to the display data RAM are displayed in areas other than the RGB interface area.

In the through mode, the display data RAM and registers can be accessed (written or read) by the i80/M68 interface or serial interface when an access is made by the RGB interface.

Therefore, an operation such as rewriting the time or antenna by a base band IC while inputting motion picture data from a DSP via the RGB interface can be performed.

<Capture mode>

In the capture mode, the area set in the window access mode is written by the RGB interface (R29 to R32). Even in this mode, the i80/M68 parallel interface or serial interface, which are shared with the RGB interface, can be used. <u>Note, however, that data can be written to a register while the RGB interface is accessed, but that the RAM cannot</u> <u>be accessed</u>. <u>Make sure that only one of these accesses is made (shift to the RGB data invalid mode so that motion</u> <u>picture data is not input)</u>.

The RGB interface performs the writing to the RAM area specified to be a window area for the RGB interface.

180/M68 parallel interface and the serial interface rewrite display data RAM to the RAM area specified by window access mode.

<Notes on using RGB interface>

<1> Be sure to input data from the RGB interface every frame.

<2> When changing the mode (e.g., from the through mode to the capture mode, and vice versa), issue defined mode of selection command after once always setting RGB invalid mode. For more details, refer to sequence in the below.
<3> It is a shift flow from the time of internal oscillation use (DISPCK = 0) to each mode as a display clock.

Phase-out/Discontinued

Shift to through mode (DOT) Shift to capture mode (internal oscillator) Shift to capture mode (DOT)

Remark WAIT time 1: Set sufficient time of one or more frames.

<4> It is a shift flow from the time of DOTCLK use (DISPCK = 1) to each mode as a display clock. (5) RGB interface invalid mode (6) Through mode (8) Capture mode (7) Capture mode (display clock: internal oscillator) (display clock: DOT) (display clock: internal oscillator) (display clock: DOT) NWRGB RGBS DISPCK NWRGB RGBS DISPCK NWRGB RGBS DISPCK NWRGB RGBS DISPCK Х Х 1 Х Х 1 х Х 1 х х 1 ↓ \downarrow ↓ \downarrow NWRGB DISPCK DISPCK RGBS NWRGB RGBS NWRGB RGBS DISPCK NWRGB RGBS DISPCK 0 Х 0 0 Х 1 0 Х 0 0 х 1 ↓ \downarrow \downarrow \downarrow WAIT time 3 WAIT time 3 WAIT time 2 WAIT time 3 T Ť Ť ↓ Shift to RGB interface invalid (OSC) NWRGB RGBS DISPCK NWRGB RGBS DISPCK NWRGB RGBS DISPCK mode 1 0 1 1 1 0 1 1 1 \downarrow \downarrow \downarrow VSYNC VSYNC VSYNC ↓ ↓ Ť Shift to through mode (DOT) Shift to capture mode (OSC) Shift to capture mode (DOT)

Phase-out/Discontinued

Remarks 1. WAIT time 2: External clock for two frames is required.

2. WAIT time 3: External clock + VSYNC for one frame is required.

- <5> Data (back porch period is included) of one line should be set within the period of HSYNC to HSYNC.
- <6> Data (back porch period is included) of one frame should be set within the period of VSYNC to VSYNC.
- <7> Do not set access to R25 register into standby mode.

<8> High-speed RAM write mode cannot be used.

NEC

<9> INC (D₂ bit of R5) function cannot be used about the writing to the display data RAM at the time of capture mode. However, ADX and an ADR function can be used.

<10> A setup of R6 to R11 is invalid at the time of RGB interface mode (since these are set up of CPU interface).

*u***PD161801**

Phase-out/Discontinued

<11> The period from "the DOTCLK standup after falling of HSYNC" to "the standup of DOTCLK after a HSYNC standup" should not start VSYNC. For more details, refer to the next **Figure 5–12**, **5–13**.

Figure 5–13. HSYNC and VSYNC Input Image Figure (when both HSYNC and VSYNC are high active)

5.1.4 i80/M68 Parallel interface

When the parallel interface has been selected, setting the C86 pin as either H or L enables a direct connection to an i80 series or M68 series CPU (see Table 5–6 below).

C86	Mode	/RD (E)	/WR (R, /W)	BWS0	BWS1	D17, D16	D ₁₅ to D ₈	D7 to Do
			R, /W	L	L	D17, D16	D ₁₅ to D ₈	D7 to Do
	M68 series	_		L	Н	Hi-Z ^{Note}	D ₁₅ to D ₈	D7 to Do
Н	CPU	E		Н	Н	Hi-Z ^{Note}	Hi-Z ^{Note}	D7 to D0
				Н	L	Setting prohibited		
			/WR	L	L	D17, D16	D ₁₅ to D ₈	D7 to D0
	i80 series	(75		L	Н	Hi-Z ^{Note}	D15 to D8	D7 to D0
L	CPU	/RD		Н	Н	Hi-Z ^{Note}	Hi-Z ^{Note}	D7 to D0
				Н	L	Setting prohibited		

Table 5–6.

Note Hi-Z: High impedance. Leave it open.

The data bus signal is identified according to the combination of the RS, /RD (E), and /WR (R, /W) signals, as shown in the following Table 5–7.

Common M68 series CPU i80 series CPU Function R, /W RS /RD /WR Н н L Н Read display data Write display data Н Н L L L Н L Н Prohibited L L Н L Write command

Table 5–7.

(1) i80 Series Parallel Interface

When i80 series parallel data transfer has been selected, data is written to the μ PD161801 at L period of the /WR signal. The data is output to the data bus when the /RD signal is L.

(2) M68 Series Parallel Interface

When M68 series parallel data transfer has been selected, data is written at the H period of the E signal when the R,/W signal is L. In a data read operation, data is output at the rising edge of the E signal in a period when the R,/W signal is H. The data bus is released (Hi-Z) at the falling edge of the E signal.

Remark Hi-Z: High impedance

Remark Hi-Z: High impedance

5.1.5 Serial interface

When the serial interface has been selected, if the chip is active (/CS = L), serial data input (SI) and serial clock input (SCL) can be received. Serial data is read from D_{15} and then from D_{14} to D_0 on the rising edge of the serial clock, via the serial input pin. This data is synchronized on the sixteenth serial clock's rising edge and is then converted to parallel data for processing.

Phase-out/Discontinued

RS input is used to judge serial input data as display data when RS = H the data is display data and when RS = L the data is command data. When the chip enters active mode, RS input is read at the rising edge after every sixteenth serial clock and is then used to judge the serial input data.

The serial interface signal chart is shown below.

Remarks 1. If the chip is not active, the shift register and counter are reset to their initial settings.

- 2. The data read function is disabled during serial interface mode.
- **3.** When using SCL wiring, take care concerning the possible effects of terminating reflection and noise from external sources. Our recommends checking operation with the actual device.

5.1.6 Chip select

The μ PD161801 has a chip select pin (/CS). The CPU parallel interface and serial interface can be used only when /CS = L. When the chip select pin is inactive, D₀ to D₁₇ are set to high impedance (invalid) and input of RS, /RD, or /WR is not active.

Therefore, keep the chip select pin active for 1 cycle period of data transfer (until a read/write operation has been completed once in the parallel interface mode).

It is not necessary to keep the chip select signal active when successively transferring data. It may be non-active between data transfer operations.

However, note that it is necessary to continue making chip selection active during "a register specification + register value setup" and transmission of "higher rank 8-bit+ low rank 8-bit of RAM" of 16-bit in the case of a serial interface.

5.1.7 Access to display data RAM and internal registers

Figures 5–17 to 5–19 show read/write accesses to the display data RAM and write accesses to internal registers 8-, 16-, and 18-bit parallel interface modes and serial interface mode.

Note that the both display data RAM and registers are not read in the serial interface mode.

When the CPU accessed the μ PD161801, the CPU only has to satisfy the standard requirement of the cycle time (tcyc) and can transfer data at high speeds. Usually, it is not necessary for the CPU to take WAIT time into consideration.

In parallel interface, a high-speed RAM write function, as well as the ordinary RAM write function, is provided for writing data to the display data RAM. By using the high-speed write function, data can be written to the display RAM at an access speed two times faster than that of the ordinary RAM write function. Therefore, applications, such as motion picture display where the display data must be rewritten at high speeds, can be supported. For details, refer to

5.2.4 High-speed RAM write mode.

No dummy data is necessary for writing data. Dummy data is necessary only when display data is read. This relationship is shown in Figure 5–27.

However, note that even when in write mode of data at high speed for data read mode of read cycle time, this mode equals to normal mode.

Figure 5–17. Read/Write in 16-/18-Bit Parallel Interface Mode

- Cautions 1. While setting the writing to a register, set it the fixed input of the low level to RS pin. While setting the writing to a register, in the case of 16/18-bit parallel interface, 1 cycle period of write cycle is pointed out.
 - 2. While setting the writing to a display data RAM, set it the fixed input of the high level to RS pin. While setting the writing to a display data RAM, in the case of 16/18-bit parallel interface, 1 cycle period of write cycle is pointed out. However, input signal to RS pin fix up to high level until 2-pixel data transfer ends the writing to a display data RAM at the time of high-speed RAM write mode use.

Phase-out/Discontinued

- Cautions 1. While setting the writing to a register, set it the fixed input of the low level to RS pin. While setting the writing to a register, "register address specification " + "register data setup" is pointed out.
 - 2. While setting the writing to display data RAM, set it the fixed input of the high level to RS pin. While setting the writing to display data RAM, a "data transfer for 1 pixel" period is pointed out.
 - 3. When use 8-bit parallel interface, RS pin always start transfer after hard reset release, after set up 100 ns MIN. input of high level.

Figure 5–19. Write in Serial Interface Mode

- Cautions 1. It is necessary to continue making a tip selection active during "register address specification + register data setting" and transmission of "higher rank 8-bit + low rank 8-bit of RAM" of 16-bit.
 - 2. The period of "register address" + "register data" fix the output to RS pin to low level at the time of the writing to a register.
 - 3. Fix it to the output to RS pin to high level during a 1-pixel data transferring period at the time of the writing to display data RAM.

Figure 5–20. Image of Internal Access to Display RAM

5.1.8 Serial interface for power supply IC control

The μ PD161801 builds in the 16-bit serial interface function, in order to perform control for the external connection IC of a power supply IC etc. The following registers and pins are assigned as an object for this function.

Transfer operation is as follows.

Pin Name		Pin Function
PCS	Chip select	When data is written in the register for power supply control, it will become active "L" and the output of data will be started. Moreover, after data transfer is completed, it returns to inactive "H".
PCL	Serial clock	Serial clock output pin
PDA	Serial data	Serial data output pin. Data is outputted in falling of PCL clock signal.

Power supply IC control register list

							Data	a Bit			
Rn	Register	RS	R,/W	DB15	DB14	DB13	DB ₁₂	DB11	DB10	DB ₉	DBଃ
				DB7	DB ₆	DB₅	DB4	DB₃	DB ₂	DB1	DB₀
R38	Power supply IC control	0	0	0	0	1	0	0	1	1	0
КЭO	register 1	0	0	PSD17	PSD16	PSD15	PSD14	PSD13	PSD12	PSD11	PSD10
R39	Power supply IC control	0	0	0	0	1	0	0	1	1	1
N39	register 2	0		PSD27	PSD26	PSD25	PSD24	PSD23	PSD22	PSD21	PSD20
R40	Power supply IC control	0	0	0	0	1	0	1	0	0	0
1140	register 3	0		PSD37	PSD36	PSD35	PSD34	PSD33	PSD32	PSD31	PSD30
R41	Power supply IC control	0	0	0	0	1	0	1	0	0	1
1.41	register 4		•				DC1	DC0			
R42	Power supply IC control	0	0	0	0	1	0	1	0	1	0
11742	register 5			PSD57	PSD56	PSD55	PSD54	PSD53	PSD52	PSD51	PSD50
R60	Power supply IC control	0	0	0	0	1	1	1	1	0	0
1.00	register 6			PSD67	PSD66	PSD65	PSD64	PSD63	PSD62	PSD61	PSD60
R61	Power supply IC control	0	0	0	0	1	1	1	1	0	1
	register 7	Ŭ	Ŭ	PSD77	PSD76	PSD75	PSD74	PSD73	PSD72	PSD71	PSD70
R62	Power supply IC control	0	0	0	0	1	1	1	1	1	0
1102	register 8	Ŭ	Ŭ	PSD87	PSD86	PSD85	PSD84	PSD83	PSD82	PSD81	PSD80
R63	Power supply IC control	0	0	0	0	1	1	1	1	1	1
1.00	register 9	Ŭ	Ŭ	PSD97	PSD96	PSD95	PSD94	PSD93	PSD92	PSD91	PSD90
R64	Power supply IC control	0	0	0	1	0	0	0	0	0	0
1.04	register 10	Ŭ	Ŭ	PSDA7	PSDA6	PSDA5	PSDA4	PSDA3	PSDA2	PSDA1	PSDA0
R65	Power supply IC control	0	0	0	1	0	0	0	0	0	1
1100	register 11	U	U	PSDB7	PSDB6	PSDB5	PSDB4	PSDB3	PSDB2	PSDB1	PSDB0

<Transfer operation>

By 3-line serial interface, data is transferred per 16 bits. Shift operation of serial interface is performed after chip select signal output (PCS = L) synchronizing with falling of a serial clock (PCL). The data format to the external connection IC serves as data which is set the 1st byte of transfer data as a command (register number), and is set as a command the 2nd byte. Transfer is performed at MSB first.

Phase-out/Discontinued

The start trigger of serial data transfer is the writing of the data to above-mentioned "power supply IC control" each control register. Writing of the data to each control register starts an output from PCS, PCL, and PDA automatically.

After reset command is inputted, IC connected to the μ PD161801, such as a power supply IC, needs to recognize the 1st byte of data transferred to be a command (index register), and needs to recognize the 2nd byte of data to be data (data register) to a command.

In addition, when performing the writing to the register for power supply control continuously, after pre-serial data transmission is completed, it is necessary to perform.

The continuation writing to a power supply control register should set and perform weight time of minimum 250 μ s. When the data to the register for power supply control is written in during serial data transfer, the data transfer written in data and the register during transfer is not guaranteed.

5.2 Display Data RAM

This RAM stores dot data for display and consists of 4,320 bits (240 x 18) x 320 bits. Any address of this RAM can be accessed by specifying an X address and an Y address.

Display data RAM construction refers to Figure 5-22.

Figure 5–22. Display Data RAM

D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D ₆	D₅	D4	D3	D2	D1	Do
	R data G data								Вd	ata							
	Pixel 1 (= 1 X address)																

LC

CD panel	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8	
	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8	
	000H	001H	002H	003H	004H	005H	006H	007H	
									1

5.2.1 X address circuit

The X address of the display data RAM is specified by using the X address register (R6) as shown in Figure 5-24. The specified X address is incremented by one each time display data is written or read.

In the X address increment mode, the X address is incremented up to 0EFH. If more display data is written or read, the Y address is incremented, and the X address returns to 000H.

The relationship between the X address and source output can be inverted by the ADX flag of control register 1 as shown in Figure 5-23. After switched ADX, the input data can be rotated 90 degrees and displayed by changing the ADR function and address increment direction between X and Y.

5.2.2 Y address circuit

The Y address of the display data RAM is specified by using the Y address register (R7) as shown in Figure 5–24.

The Y address is incremented each by one when one each time display is written or read and X address is incremented to last address.

When the Y address has been incremented up to 13FH and the X address up to the final address, if further display data is read or written, the X and Y addresses return to 000H.

As shown in Figure 5-23, the relationship between the Y address and gate output can be inverted by the ADR flag of the control register. The data written to the display can be rotated 90 degrees and output by changing the ADX function and address increment direction between X and Y.

Phase-out/Discontinued

Table 5–8. Data Access Control (R5) Setting

INC	Setting
0	Time of data access X directions an address continuing an increment or a decrement is carried out.
1	Time of data access Y directions an address continuing an increment or a decrement is carried out.

Caution When the access direction is changed, be sure to access Display RAM from INC after setting up X address register (R6) and Y address register (R7).

Figure 5–23. Example of 90-Degree Rotation

Figure 5–24. The μ PD161801 RAM Addressing

5.2.3 Arbitrary address area access (window access mode (WAS))

With the μ PD161801, any area of the display RAM selected by the MIN.··X/Y address registers (R8 and R10) and MAX.· X/Y address registers (R9 and R11) can be accessed.

First, select the area to be accessed by using the MIN.·X/Y address registers and MAX.·X/Y address registers. When WAS of data access control register (R5) is set to 1, the window access mode is then selected. The address scanning setting is also valid in this mode, in the same manner as when data is normally written to the display RAM. In addition, data can be written from any address by specifying the X address register (R6) and Y address register (R7).

The data input from the RGB interface in the through mode of the RGB interface cannot be used in the window access mode.

Figure 5–25. Example of Incrementing Address when in Window Access Mode

Cautions 1. When using the window access mode, the relationship between the start point and end point shown in the table below must be established.

Item	Address Relationship
X address	$000H \le MIN.X$ address $\le X$ address (R6) MAX.X address $\le 0EFH$
Y address	$000H \le MIN.Y$ address $\le Y$ address (R7) MAX.Y address $\le 13FH$

- 2. If invalid address data is set as the MIN./MAX. address, operation is not guaranteed.
- 3. Do not specify any value other than the address value 2n 2 (n = 1 to 120) for the X address in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.

5.2.4 High-speed RAM write mode

With the μ PD161801, two types of access modes can be selected for accessing the display RAM.

The µPD161801 has a high-speed RAM write function, as well as an ordinary RAM write function. By using the highspeed write function, data can be written to the display RAM at an access speed two times faster than that of the ordinary RAM write function. Therefore, applications, such as motion picture display where the display data must be rewritten at high speeds, can be supported.

When the high-speed RAM write mode is selected by using BSTR of the data access control register (R5), data is temporarily stored in an internal register of the μ PD161801. When data of 36 bits (18 bits x 2) has been stored in the register, it is written to the display RAM. It is also possible to write the next data to the internal register while the first data is being written to the RAM.

In the high-speed RAM write mode, however, the CPU must transmit data in units of 2 pixel data (1-pixel/18-bit mode: 36-bit, 1-pixel/16-bit mode: 32-bit) have been written to the internal register. If data of less than 2-pixel data is transmitted in the high-speed RAM write mode, this data is not written to the display RAM. Therefore, CPU data is not reflected on the LCD display even if it is transmitted. In this case, the data that is not reflected remains stored in the register. When the next data is transferred, it is written to the register from where the preceding data is stored.

<u>However, if the RS signal is changed (RS = L) in the middle of data transfer, and then asserted active again and when</u> the display data write is set, the register is initialized. Consequently, the data stored in the register is lost.

It is therefore recommended to transmit display data in 2-pixel units when using the high-speed RAM write mode.

Figure 5–27. Image of Operation in High-speed RAM Write Mode

- Cautions 1. Do not specify any value other than the address value 2n 2 (n = 1 to 120) for the X address register (R6) in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.
 - 2. Burst mode cannot be used about each mode of 8-bit parallel interface, serial interface, and RGB interface.
 - 3. This write-in mode is effective only at the time of 16-/18-bit parallel interface package data transfer mode.

Note that it writes in 2 pixels at a time perpendicularly at the time of Y address increment mode as shown in Figure. 5–28.

Figure 5–28. Image of Operation Accompanying Difference in the Direction of an Address Increment at the Time of High-speed RAM Write Mode

Figure 5–29. Example of Sequence in High-Speed RAM Write Mode (when 18-Bit Parallel Interface)

Remark $n: n \ge 1$

Note Do not specify any value other than the address value 2n - 2 (n = 1 to 120) for the X address (R6) in the high-speed RAM access mode. The operation is not guaranteed if invalid address data is set.

NEC

5.3 Oscillator

The μ PD161801 can select from built-in oscillation circuit (OSCSEL = L: type with built-in CR), or an external oscillation circuit (OSCSEL = H: CR external) the oscillation circuit which generates display clock by setup of an OSCSEL pin. The μ PD161801 also has two CR oscillators (with external R), which generate the display clock. One oscillation circuit (OSC2) is used in order to generate liquid crystal display output timing, and another oscillation circuit (OSC1) is used for it at the time of calibration execution of frame frequency. A calibration execution flow is shown below.

Since the oscillation circuit for calibrations comes to unnecessary after calibration execution, in order to lower power consumption, suspend an oscillation ("1" is set to OSC1OFF of D₁ bit of R1). In addition, when set calibration again once performing a calibration, start oscillation operation again.

Moreover, the frame frequency by which the calibration was carried out is eliminated by command reset. Therefore, when command reset is input, set a calibration again.

Be sure to connect the capacitor of T.B.D. μ F to an OSCR pin with resistance of T.B.D. μ F at an OSCC pin at the time (OSCSEL = H) of external oscillation circuit selection. When internal oscillator has been selected, leave both pins open.

5.4 Display Timing Generator

The display timing generator generates the timing signals for the internal timing of the source driver and for the panel gate.

5.4.1 1-line period timing

The μ PD161801 has two drive system timing output circuits. Following preparation of these drive system timing output is carried out, and a usually different timing signal at the time of a drive and a partialness drive is generated.

	Timing Circuit 1	Timing Circuit 2	Remark
Gate circuit clock signal	GCLK	СКV	Fixed timing
Gate circuit start pulse signal	GSTB	STV	Fixed timing
Multi-plectra switch signal 1	RSW	ASW1	R83, R84
Multi-plectra switch signal 2	GSW	ASW2	R85, R86
Multi-plectra switch signal 3	BSW	ASW3	R87, R88
Gate output enable signal 1	GOE1	OEV	R79, R80
Gate output enable signal 2	GOE ₂	OEVE	RGOE2, ROEVE [R77]
Extended timing signal 1	EXT1		R89, R90
Extended timing signal 2	EXT2		R91, R92
Pre-charge signal P	PC		R81, R82

The clock set up by the calibration function is being used for the clock of one-line period, and it is generating all timing by using 40 clocks as a base.

Calibration function is assigning 40 clocks and is adjusting frame frequency to within a time of the one line period set up by calibration time (t_{cal}).

Moreover, the number of clocks of one-line period can be set up by the one-line period clock setting register (R76). The number of clocks set up by R76 is inserted as dummy clock from one-line period 38 clock.

60

5.4.2 1-frame period timing

The µPD161801 has two driving system timing output circuits. For details, refer to the **5.4.1 1-line period timing**.

Those signals are the timing at the time of ON/OFF and a standby setup etc., and are controlled by different timing

control flag. Refer to 5.8 Power Supply Sequence and 5.9 Standby and Power Supply OFF Sequence.

Figure 5–32. 1-frame Driving Period 2

Phase-out/Discontinued

Moreover, the one-frame period is constituted by 320 line + front porch period (FP) + back porch (BP), and the number of lines of a FP + BP period can be set up by the blanking period line setting register (R75: ADLNn). At this time, a frame changes and timing is performed during the back porch of the 1st line. Refer to the following Table and Figure 5–33.

ADLN7	ADLN6	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1	ADLN0	Setting Lir	ne Number
								FP	BP
0	0	0	0	0	0	0	0	Proh	ibited
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	2
0	0	0	0	0	0	1	1	2	1
0	0	0	0	0	1	0	0	2	2
0	0	0	0	0	1	0	1	2	3
1	1	1	1	1	1	1	0	2	252
1	1	1	1	1	1	1	1	2	253

+ : Timing of frame changing

5.5 γ - Curve Correction Power Supply Circuit

The μ PD161801 includes a γ -curve correction power supply circuit. If the internal γ -curve correction matches the LCD characteristics, no external components are necessary. In addition, this circuit can adjust inclination of γ - and amplitude by register setup while building in each γ -correction resistance by the side of a positive polarity and negative polarity.

5.5.1 Amplitude adjustment with internal amplifier

Amplitude adjustment can select two ways, the method of adjusting with internal amplifier, and the method of adjusting by internal resistance. Each register of R44 (GPH [7:0]), R45 (GNH [7:0]), R46 (GPL [7:0]), and R47 (GNL [7:0]) performs adjustment with amplifier. Refer to **Figure 5–35**.

Figure 5–35. Amplitude Adjustment

(This figure is a circuit by the side of positive-polarity. Use GPH reading it as GNH, GPL to GNL, VPH to VNH, and VPL to VNL if negative-polarity side's reading)

	Drive Level	Setting Register	
VPH	Positive polarity, black	Contrast value setting register 1	R44
VNH	Negative polarity, white	Contrast value setting register 2	R45
VPL	Positive polarity, white	Contrast value setting register 3	R46
VNL	Negative polarity, black	Contrast value setting register 4	R47

The value of each amplifier output can be expressed as follows and the value of β can be set as shown in Table 5–9 and 5–10 by using the contrast value registers (R44, R45, R46, and R47)

VNL, VPL, VNH, VPH = ($\beta \div 256$) x Vs

Caution The usable range in which each output level of VPH, VNH, VPL, and VNL can be set depends on the γ curve.

R44 R45	GPH7 GNH7	GPH6 GNH6	GPH5 GNH5	GPH4 GNH4	GPH3 GNH3	GPH2 GNH2	GPH1 GNH1	GPH0 GNH0	β value Setting or Status Setting
000H	0	0	0	0	0	0	0	0	Fixed to Vs (amplifier OFF)
001H	0	0	0	0	0	0	0	1	255
002H	0	0	0	0	0	0	1	0	254
003H	0	0	0	0	0	0	1	1	253
0FEH	1	1	1	1	1	1	1	0	2
0FFH	1	1	1	1	1	1	1	1	1

Table 5–9. γ- Contrast Value Setting and Electronic Volume Register β Setting 1 (VPH, VNL)

Table 5_10	v- Contrast Value S	Setting and Electron	ic Volume Register	β Setting 2 (VPL, VNL)
	r- Contrast value S	setting and Electron	ic volume Register	p Setting Z (VPL, VNL)

R46	GPL7	GPL6	GPL5	GPL4	GPL3	GPL2	GPL1	GPL0	β value Setting or
R47	GNL7	GNL6	GNL5	GNL4	GNL3	GNL2	GNL1	GNL0	Statement Setting
000H	0	0	0	0	0	0	0	0	Fixed to Vss1 (amplifier OFF)
001H	0	0	0	0	0	0	0	1	1
002H	0	0	0	0	0	0	1	0	2
003H	0	0	0	0	0	0	1	1	3
0FEH	1	1	1	1	1	1	1	0	254
0FFH	1	1	1	1	1	1	1	1	255

Phase-out/Discontinued

5.5.2 Amplitude adjustment by built-in resistance

The 4-bit data set as registers R48 and R52 sets amplitude adjustment by built-in resistance. Refer to Figure 5-37.

Figure 5–37. Amplitude Adjustment

5.5.3 Inclination adjustment

Internal resistance also adjusts inclination adjustment. R49 and R53 registers set adjustment. Refer to Figure 5-38.

Figure 5–38. Inclination Adjustment

Phase-out/Discontinued

μPD161801

5.5.4 Fine tuning adjustment

Internal resistance also sets fine tuning. Please adjust by R50, R51, R54 and R55 register. Refer to Figure 5–39.

Figure 5–39. Fine Tuning

V	GRnN [2:	0]	VGR0N	VGR1N	VGR2N	VGR3N
0	0	0	80R	54R	57R	90R
0	0	1	72R	50R	53R	81R
0	1	0	68R	46R	49R	77R
0	1	1	64R	42R	45R	73R
1	0	0	60R	38R	41R	69R
1	0	1	56R	34R	37R	65R
1	1	0	52R	30R	33R	61R
1	1	1	48R	26R	29R	57R

5.6 Partial Display Mode

The μ PD161801 is provided with a function that allows sections within the screen to be displayed separately (partial display mode). The start line of the area to be displayed in partial display mode is set using the partial display area start line register (R20, R21), the number of lines in the area to be displayed is set using the partial non-display area line count register (R22, R23), and the color of the area not to be displayed is set using the partial non-display area setting register (R17). If "1" is set in the partial display area line count registers (R22, R23), the partial display area setting register (R17). If "0" is set, there are no partial display areas but only normal display areas.

Phase-out/Discontinued

The non-display area indicated by R20 and R22 is called Partial 1, and the non-display area indicates by R21 and R23 is called Partial 2. The Partial 2 setting is enabled only when the Partial 1 setting has been performed (when $R22 \neq 0$). Therefore, to set only one area as a non-display area, perform only the setting for Partial 1.

Low power consumption cannot be achieved if only the partial mode is set. If low power consumption is required, the mode must be switched to the 8-color mode.

Figure 5–40. Partial Display Mode

Cautions 1. The "scroll step count register (R16)" command is ignored in the partial display mode.

- 2. The specified partial areas must not directly overlap, and the Partial 1 area and Partial 2 area must be separated by at least one line. If the areas overlap, only the Partial 1 settings are valid, and partial display is not performed for the Partial 2 area. In addition, the last line (320 lines: 13FH) and the start line (1 line: 000H) have become continuously in address. Therefore, partial the nondisplaying area for 1 line is required also among these lines.
- When setting the partial display areas, be sure to observe the following relationship. "000H" ≤ R20 (R21) R22 (R23) ≤ "13FH"

5.6.1 Partial display, non-display area driving

The μ PD161801 can select drive of a non-displaying area by setting of PT1, PT0 [R78] and GSM at the time of a partial display as follows.

GSM	PT1	PT0	GOE1	R/G/BSW	Sn		Remark	
					Non-display start 2	Other non-display		
					line	line		
0	0	0	Normal output	Normal output	8 color	\leftarrow	Normal partial	
	0	1	L level fixed	Normal output	8 color	\leftarrow	driving	
	1	0	L level fixed	Normal output	Vss	\leftarrow		
	1	1	L level fixed	Normal output	White level display	Hi-Z	Non-refresh driving 1	
1	0	0	L level fixed	Normal output	Hi-Z	Hi-Z	Non-refresh driving 2	
	Except	above		Prohibited setting				

Table 5–11. Driving Output Pin and State of Driving (1/2)

Table 5–12. Driving Output Pin and State of Driving (2/2)

GSM	PT1	PT0	OEV	ASW1 to ASW3		S	n	Remark
				Non-display	Other non-	Non-display	Other non-	
				start 2 line	display line	start 2 line	display line	
0	0	0	Normal	Normal	Normal	8-color white	\leftarrow	Normal partial
			output	output	output	display		driving
	0	1	L level fixed	Normal	Normal	8-color white	\leftarrow	
				output	output	display		
	1	0	L level fixed	Normal	Normal	Vss	\leftarrow	
				output	output			
	1	1	L level fixed	Normal	L level fixed	White level	Hi-Z	Non-refresh driving 1
				output		display		
1	0	0	L level fixed	Normal	Normal	Hi-Z	Hi-Z	Non-refresh driving 2
				output	output			
	Except above			Prohibited setting				
5.6.2 Partial display, non-display area, and normal partial driving

During partial display mode or when GSM = 0, the μ PD161801 is set to normal partial drive mode whenever the settings for PT1 and PT0 are anything other than PT1 = 1 and PT0 = 1.

Normal partial drive mode is the output mode for non-display areas set via the PT1 and PT0 bits, and each frame is driven during this mode. When the settings for PT1 and PT0 are anything other than PT1 = 0 and PT0 = 0, the OEV signal is fixed at low level output so the displayed data in the panel's non-display area cannot be overwritten.

Figure 5–41. Normal Partial Driving Waveform (1/2)

Phase-out/Discontinued

Figure 5–41. Normal Partial Driving Waveform (2/2)

5.6.3 Partial display, non-display area, and non-refresh driving

The μ PD161801 can select the non-refreshing drive of a partial a non-displaying area by setting it as GSM = 0, PT1 = 1, PT0 = 1 or GSM = 1, PT1 = 0 and PT0 = 0 at the time of partial display.

This drive is the cycle set up by REFM [2:0] (R68: D₆ to D₄) with REFB [3:0] (R68: D₃ to D₀) in the non-refreshing frame which stops a source output and operation of a gate, and the refreshment frame which carries out a source white level output (normally white panel) and a gate usual scan, and drives partial a non-displaying area.

Figure 5–42. Non-refresh Driving, Frame Cycle Switching Timing

х

Number of "Non-refresh frame" cycle = REFB [3: 0] x REFM [2: 0]

Refresh frame	Non-refresh frame	Non-refresh frame		Non-refresh frame	Refresh frame
Positive	Negative	Positive]	Positive	Negative

Table 5–13. Non-refresh Driving Frame Basic Cycle

REFB3	REFB2	REFB1	REFB0	Setting Value
0	0	0	0	Only non-refresh driving cycle
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
1	1	1	0	14
1	1	1	1	15

Table 5–14.	Non-refresh Driv	ing Frame Basic C	Sycle Multiple Setting
-------------	------------------	-------------------	------------------------

REFM2	REFM1	REFM0	Setting Value
0	0	0	2
0	0	1	4
0	1	0	8
0	1	1	16
1	0	0	32
1	0	1	64
1	1	0	128
1	1	1	256

Figure 5–43. Example of Non-refresh Driving Output Waveform (PT1 = 0, PT0 = 0) (1/2)

		_			_				_	F	Refr	esł	n cy	cle	fra	me	(GS	SM	= 0)									Ľ								١	lon	-ref	resl	h cy	cle	fra	me	e (G	SN	1 = 1	1)							_	
			Noi	n-d	ispl	ay	line	e e				Pa	rtia	l dis	spla	ay li	ne					1	Non	-dis	pla	y li	ne))))		No	on-d	lisp	lay	line				F	Part	tial	disp	play	' lir	ie					No	n-d	ispla	ay I	ine	_	
Sn	_				-					$\overline{\mathbf{x}}$			-	- <u>\</u>			\Box		_	X	\rangle				-	_))			Н	li-Z							χ_	χ	χ	χ_	γ	X	-	_	\Box				Hi-J	z			_
GCLK	ſL									Л	Л																		" R	Ц				η_	h	h																			Л	L
VCOUT					_					F		_								L			_		_		_	-	$\langle\!\!\rangle$	_						L						L			_											
RSW	L																												W																1				1	Λ_						L
GSW			Ш																					Ш				n I.																												
BSW		Π																											" "]														1													
GOE1	Γ	╢	╢	╢			\square				╢					Π	П				╢╴	╢	╢	╢	╢				~															Ţ	╢			П								
				ſ	T	Ī							Γ	ſ	I										ſ	ſ	ſ	ſ	"]																	ſ	T									

74

Figure 5–43. Example of Non-refresh Driving Output Waveform (PT1 = 0, PT0 = 0) (2/2)

Figure 5–44. Example of Non-refresh Driving Output Waveform (GSM = 0, PT1 = 1, PT0 = 1) (1/2)

		-	-	1	1		_	-	-		Ref	res	h cy	cle	fra	me	_	-	_						-	-	\mathbb{A}_{1}	-	-	-	-	1	-	-	1	-	N	on-	refr	esh	і су	cle	fra	me	9	-	_	_	-			_		_
		N	on-d	ispl	ay I	ine				F	Part	ial	dis	olay	lin	e					Non	-dis	spla	ay li	ine		\mathbb{R}		No	n-d	ispl	ay	line	-				Pa	rtia	al d	ispl	lay	lin	e			\pm	N	lor	ı-di	spla	y li	ne	;
			W	 /hite 	 } 																	W	 Vhit	e H						F	 li-Z											_					Wł	 hite	 lev	/el		Hi-Z	Z	
Sn									X	ľ	ľ	ľ	╢	ľ	ľ	1	╨	ľ	_)	ļ		ļ					ď				\mathbf{T}				1_	ľ	ľ	╨	ľ	ľ	_\	_)		X	ľ	╢	╨	_	ł					+
GCLK	${\sf r}_{\rm r}$	h							ħ_	ħ	h	h	╢	╢	h	╢	_1	_ 1			Ц	Ц	Ц			μ_	R	h		h	ħ	h	╢	h	h	h	╢	╢	╢	_ 1		Ц		h	╢	╢	1		Ц	Ц	Ц	Ц	L	╧
OUT			_							1			_		_		_		_								L¢		-	1				1	F				-		_					-	1	_				_		
RSW		Π				Π					Π					Π								1			R						Π								[Π									
SSW																Ш))																											
BSW]	N	Π		Π				Π))												Π		Π		[[
OE1	Л																						Π				\mathbb{P}																											

76

Figure 5–44. Example of Non-refresh Driving Output Waveform (GSM = 0, PT1 = 1, PT0 = 1) (2/2)

										F	Refr	esł	n cy	cle	fra	me										7										Ν	lon-	refr	esł	h cy	/cle	e fra	ame	9								
		No	on-o	dis	play	/ lir	ne				Pa	rtial	l di	spla	ıy li	ne					Nor	n-di	spl	ay I	ine		'	No	on-o	lisp	lay	line))				Pa	artia	al d	lisp	lay	lin	e			_	٢	Non	disp	play	line	e
			,	Wh	ite																	٧	 Vhit	te						Hi-J	7															1	/ Whi	te le	vel	Hi	-7	
Sn					_	_	_				X	X	X	X	X	X	X	X)							\mathcal{H})			+	-			ſ	X	X	X	X	X	_			X	X	X	7	_[+	-	
CKV	_	F				╡						F		╞		╞		_							F	12	1_	F										╞					┢	L					_	Ļ		
COUT			┢		┢						F		╞		_				_	_				╞	L		'							┢	L								F				_		_		┢	
ASW1																										R)													Ц	Π				1							
ASW2																										16																				1						
ASW3														n_																														L								
OEV	П		╢╴	╢	╢	╢		\square	П				╢╴	╢	╢	╢	╢	╢	╢		П	П														ᄀ			╢		П				ᄀ							

Phase-out/Discontinued

μ**PD161801**

The following sequence is recommended to avoid display malfunction when switching from normal display mode to partial display mode and vice versa.

(1) Recommended sequence for switching from normal display mode to partial display mode

Notes 1. <2> to <5> can be executed in any order.

2. <6> must be executed after <4> and <5> have been set.

Phase-out/Discontinued

(2) Recommended sequence for switching from partial display mode to normal display mode

Note <2> to <3> can be executed in any order.

(3) Recommended sequence for switching from partial display mode to partial display mode (switching the partial display area)

Notes 1. <2> to <4> can be executed in any order.

- 2. Execute <2> only when necessary.
- 3. <5> must be executed after <3> and <4> have been set.

(4) Partial display setting examples

Setting A-1

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	000H	Specifies Y address 000H
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines

Setting A-2

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	0A0H	Specifies Y address 0A0H
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines

Setting A-3

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	0EFH	Specifies Y address 0EFH
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines

Setting A-4

Register	Setting Value	Details of Setting Value
Partial display area start line register (R20, R21)	050H	Specifies Y address 050H
Partial display area line count register (R22, R23)	09FH	Sets an area of 160 lines

Phase-out/Discontinued

μPD161801

Figure 5–45. Partial Display Setting

5.7 Screen Scroll

The μ PD161801 has a screen scroll function. Any area of the screen can be scrolled by using the scroll area start line register (R14), scroll area line count register (R15), and scroll step count register (R16) to set the Y address of the top line of the area to be scrolled, the count of lines of the area to be scrolled, and the scroll step number, respectively. Note that in partial mode, the screen scroll function is disabled.

Phase-out/Discontinued

SSL8	SSL7	SSL6	SSL5	SSL4	SSL3	SSL2	SSL1	SSL0	Start Line Y Address
0	0	0	0	0	0	0	0	0	000H
0	0	0	0	0	0	0	0	1	001H
0	0	0	0	0	0	0	1	0	002H
0	0	0	0	0	0	0	1	1	003H
				\rightarrow					\downarrow
1	0	0	1	1	1	1	0	1	13DH
1	0	0	1	1	1	1	1	0	13EH
1	0	0	1	1	1	1	1	1	13FH

Table 5–15. Scroll Area Start Line Register (R14)

Table 5–16. Scroll Area Line Count Register (R15)

SAW8	SAW7	SAW6	SAW5	SAW4	SAW3	SAW2	SAW1	SAW0	Scroll Area Line Number
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	0	1	0	3
0	0	0	0	0	0	0	1	1	4
				\rightarrow					\downarrow
1	0	0	1	1	1	1	0	1	318
1	0	0	1	1	1	1	1	0	319
1	0	0	1	1	1	1	1	1	320

SST8	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0	Scroll Area Line Number
0	0	0	0	0	0	0	0	0	0 (No scroll)
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	0	1	1	3
				\downarrow					\rightarrow
1	0	0	1	1	1	1	0	1	317
1	0	0	1	1	1	1	1	0	318
1	0	0	1	1	1	1	1	1	319

 Table 5–17.
 Scroll Step Count Register (R16)

Scrolling must be set using the following sequence.

(1) Recommended scroll sequence

Notes 1. <1> to <2> can be executed in any order.

2. <3> must be executed after <1> and <2> have been set.

Remark Set SSTn to 000H to disable the scroll operation. No particular sequence is required for this.

- Cautions 1. If the sum of the values of SSLn and SAWn is 320 (13FH) or over, it is invalid (no scroll operation).
 - 2. Set the step number SSTn so that it does not exceed the line number SAWn. If a value exceeding SAWn is set, it will be invalid (no scroll operation).

(2) Scroll setting examples

Setting A-1

Register	Setting Value	Details of Setting Value		
Scroll area start line register (R14)	000H	Sets Y address 000H		
Scroll area line count register (R15)	13FH	Sets an area of 320 lines		

Setting A-2

Register	Setting Value	Details of Setting Value		
Scroll area start line register (R14)	000H	Sets Y address 000H		
Scroll area line count register (R15)	09FH	Sets an area of 160 lines		

Setting A-3

Register	Setting Value	Details of Setting Value		
Scroll area start line register (R14)	0A0H	Sets Y address 0A0H		
Scroll area line count register (R15)	09FH	Sets an area of 160 lines		

Setting A-4

Register	Setting Value	Details of Setting Value		
Scroll area start line register (R14)	050H	Sets Y address 050H		
Scroll area line count register (R15)	09FH	Sets an area of 160 lines		

Phase-out/Discontinued

Figure 5–46. Display Scroll Setting

Phase-out/Discontinued

μPD161801

(3) Scroll setting flowchart example

_	RS	D15 D7							D8 D0
		Х	0	0	0	1	1	1	1
	D7	D6	D5	D4	Dз	D2	D1	Do	
	Couti	an D-4			to for a		in a star	4 11 10 0	

Caution D₇ to D₀ are the data for scroll area start line.

RS	D15 D7							D8 D0			
I	Х	0	0	1	0	0	0	0			
L	D7	D6	D5	D4	Dз	D2	D1	Do			
Cautio	Caution D7 to D0 are the data for scroll area line count.										

RS	D15 D7							D8 D0
L	Х	0	0	1	0	0	0	1
	0	0	0	0	0	0	0	1

RS	D15 D7							D8 D0			
L	Х	0	0	0	0	1	1	0			
	D7	D6	D5	D4	Dз	D2	D1	Do			
Cauti	Caution D ₇ to D ₀ depend on application condition										

RS	D15 D7							D8 D0
	Х	0	0	0	0	1	1	1
L	D7	D6	D5	D4	Dз	D2	D1	Do

Caution D7 to D0 depend on application condition.

RS	D15 D7							D8 D0
н	D15	D14	D13	D12	D11	D10	D9	D8
	D7	D6	D5	D4	Dз	D2	D1	Do
Couti	on Dur		o diant	ov mon	on do	to		

Caution $\, D_{15} \, to \, D_0$ are display memory data.

RS	D15 D7							D8 D₀			
Н	D15	D14	D13	D12	D11	D10	D9	D8			
	D7	D6	D5	D4	Dз	D2	D1	Do			
Couti	Coution Du to Du are display memory data										

Caution D₁₅ to D₀ are display memory data.

RS	D15 D7							D8 D0
Н	D15	D14	D13	D12	D11	D10	D9	D8
	D7	D6	D5	D4	Dз	D2	D1	Do

Caution D_{15} to D_0 are display memory data.

Phase-out/Discontinued

μPD161801

(4) Scroll function example

Scroll area start line register (R14): 03CH Scroll area line count register (R15): 077H

(a) Scroll step count register setting (R16): 000H

(b) Scroll step count register setting (R16): 001H

(c) Scroll step count register setting (R16): 002H

(d) Scroll step count register setting (R16): 076H

NEC

Phase-out/Discontinued

5.8 Power Supply Sequence

The power ON supply sequence of the μ PD161801 recommends the sequence shown below.

Note Set up the control system register flag of the signal actually used on a panel.

Phase-out/Discontinued

μPD161801

Note Set up the control system register flag of the signal actually used on a panel.

5.9 Stand-by Power Supply OFF Sequence

The stand-by power supply OFF sequence is described below.

5.9.1 Stand-by controlled by STBY flag

The μ PD161801 has a stand-by function. When the STBY bit of the control register 1 (R0) is set to 1 while changing the total output of a gate into an ON state in the dummy period of one frame, it is outputted to Vss, and VCOUTn is outputted to Vss, and discharge of the electric charge of a panel is carried out. After the output of gate is in ON state, automatically stopping oscillator (OSC2OFF = 1), regulator OFF for the μ PD161801 and DC/DC converter OFF (DCON control) become perfect stand-by mode.

As for control of power supply IC, it is possible to use and control the serial interface pin for control for power supply IC (PCS, PCL and PDA). For details, refer to the specifications of IC used about the OFF sequence/ON sequence of power supply IC.

(1) Stand-by sequence

```
R0 of STBY bit = 1

↓

(WAIT in one frame period)

↓

Power supply IC control (controlling by serial interface for power supply IC control)

(regulator OFF, DC/DC converter OFF)

↓

Stand-by statement
```

Caution In the inside of stand-by mode (STBY = 1), regardless of setup of OSC2OFF bit of R1, oscillator for LCD display stops and, after stand-by mode release, oscillator for LCD display starts an oscillation according to a setup of an OSC2OFF bit automatically.

Operation of stand-by command execution

(2) Stand-by release sequence

In case of transfer normal mode from stand-by mode, against stand-by sequence, it executes in order.

```
Under stand-by

↓

OSC2FF = '0' (oscillator start)

↓

Power supply IC control (controlling by serial interface for power supply IC control)

(regulator ON, DC/DC converter ON)

↓

(power ON rising WAIT time)
```

↓ STBY = 0

5.9.2 Standby-by command input control

When VSTBY = low (power supply to V_{DD1} and V_{DD2} is from internal regulator), the μ PD161801 can be freely switched (via input of a mode selection command) from the normal operation mode shown in Figure 5–48 to sleep mode, deep sleep mode, or stand-by mode.

These modes are organized as shown below to enable reduction of power consumption.

		State of Internal Operation the µPD161801									
	Logic Power Supply	Command Massage	Massage SRAM Power Supply		Oscillation						
Normal operation	0	Good	0	Normal operation	Operation						
Sleep mode	0	Good	0	Normal operation	Stop						
Deep sleep mode	0	Good	Δ	Data maintenance	Stop						
Stand-by mode	0	Good	Х	Data cancellation	Stop						

Remark O: Supply, Δ : Low power supply, X: Supply stop

Current consumption current: Normal operation > Sleep mode > Deep sleep mode > Stand-by mode

Setting a sequence, such as for stopping the power IC's power supply, enables module-based reduction of power consumption.

When VSTBY = High has been set, the SRAM power supply voltage supplied to V_{DD2} from an external source remains the same (whether in deep sleep mode or standby mode). Therefore, the amount of power consumed in deep sleep mode and stand-by mode is the same as in sleep mode.

Phase-out/Discontinued

Figure 5–48. IC State Changes

Caution When using the VSTBY = High setting, the settings at sequence 2, 3, 6 and 7 cannot be made.

Phase-out/Discontinued

μPD161801

<Sequence 1>

This sequence is shown in illustration and changes with use panels. It is after checking the specification of the panel used about a sequence enough evaluation. It recommends as following condition after considering.

Notes 1. Set up the control system register flag of the signal actually used on a panel.

2. WAIT time is after checking the characteristic of a use panel, and specification enough evaluation.

Phase-out/Discontinued

<Sequence 2>

Sleep mode	Display OFF, oscillator stop, logic power supply ON, SRAM power supply ON
↓	
Display RAM data output "0" data mask ^{Note1}	R78 RMMSK = "0"
\downarrow	
SRAM power supply low power mode	R78 RMST [1:0] = 0, 1
\downarrow	
Deep sleep mode ^{Note2}	Display OFF, oscillator stop, logic power supply ON, SRAM power supply low power

- **Notes 1.** When it set as a deep sleep mode state, be sure to input the following command. When this processing is not performed but it shifts to a deep sleep mode (RMST [1:0] = 0, 1), problems, such as an increase in penetration current, may occur.
 - 2. Deep sleep mode state is operating the SRAM power supply for display data in the low power mode, and attains low power consumption. Although the data written to display RAM at this time is held, operation of write/read of display data cannot be performed. Note that no-guarantee about operation of IC at the time of accessing display RAM at the time of a deep sleep mode.

Caution Do not set this sequence when VSTB = High.

<Sequence 3>

Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

Caution Do not set this sequence when VSTB = High.

Phase-out/Discontinued

<Sequence 4>

Sleep mode	Display OFF, oscillator stop, logic power supply ON, SRAM power supply ON
\downarrow	
Display RAM data output "0" data mask ^{Note1}	R78 RMMSK = "0"
↓	
SRAM power supply OFF	R78 RMST [1:0] = 0, 0
\downarrow	
Stand-by mode Note2	Display OFF, oscillator stop, logic power supply ON, SRAM power supply
	OFF

- **Notes 1.** When it set as a deep sleep mode state, be sure to input the following command. When this processing is not performed but it shifts to a deep sleep mode (RMST [1:0] = 0, 1), problems, such as an increase in penetration current, may occur.
 - 2. Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.
- Caution When VSTBY = High has been set, the SRAM power supply voltage supplied to VDD2 from an external source remains the same (even in stand-by mode). Therefore, the amount of power consumed in stand-by mode is the same as in sleep mode.

<Sequence 5>

Display OFF, oscillator stop, logic power supply ON, SRAM power supply OFF

<System power supply OFF>

Safely, since system power supply is turned off, after setting it as stand-by mode, it recommends turning OFF system power supply.

Phase-out/Discontinued

<Sequence 6>

Note Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.

Caution Do not set this sequence when VSTB = High.

<Sequence 7>

- **Notes 1.** Deep sleep mode state is operating the SRAM power supply for display data in the low power mode, and attains low power consumption. Although the data written to display RAM at this time is held, operation of write/read of display data cannot be performed. Note that no-guarantee about operation of IC at the time of accessing display RAM at the time of a deep sleep mode.
 - From deep sleep mode, sleep mode or when it usually returns to operation, input the following command. When display ON is carried out, all LCD displays will be "0" data outputs, without canceling a setup of this command.

Caution Do not set this sequence when VSTB = High.

Phase-out/Discontinued

μPD161801

<Sequence 8>

Notes Set up the control system register flag of the signal actually used on a panel.

Phase-out/Discontinued

μPD161801

<Sequence 9>

- **Note** Stand-by mode state is stopping supply of the SRAM power supply for display data, and is attaining further low power consumption. The data written to display RAM at this time is canceled. After stand-by mode setup, when usually changing in operation again, it is necessary to write in display data again.
- Caution When VSTBY = High has been set, the SRAM power supply voltage supplied to VDD2 from an external source remains the same (even in stand-by mode). Therefore, the amount of power consumed in stand-by mode is the same as in sleep mode.

6. RESET

If the /RESET input becomes L or the reset command is input, the internal timing generator is initialized. The reset command will also initialize each register to its default value. These default values are listed in the table below (Register number is an estimate. Understand that there is a case where it changes later).

			-	(1/2
Register		/RESET Pin Note1	Reset Command	Default Value
Control register 1	R0	х	0	080H
Control register 2	R1	х	0	003H
RAM address offset register	R2	0	Х	000H
Command reset register	R3	х	0	000H
Data access control register	R5	х	0	000H
X address register	R6	х	0	000H
Y address register	R7	х	0	000H
MIN. X address register	R8	х	0	000H
MAX. ·X address register	R9	х	0	0EFH
MIN. Y address register	R10	х	0	000H
MAX. Y address register	R11	х	0	13FH
Scroll area start line register	R14	х	0	000H
Scroll area line count register	R15	х	0	000H
Scroll step count register	R16	х	0	000H
Partial non-display area setting register	R17	х	0	000H
Partial 1 display area start line register	R20	х	0	000H
Partial 2 display area start line register	R21	х	0	000H
Partial 1 display area line count register	R22	х	0	000H
Partial 2 display area line count register	R23	х	0	000H
RGB interface control register	R25	х	0	000H
RGB interface back poach period register	R26	х	0	012H
RGB interface through mode start line register	R27	х	0	000H
RGB interface through mode end line register	R28	х	0	000H
RGB interface capture mode window access MIN. X	R29	х	0	000H or 10FH Note2
address register				
RGB interface capture mode window access MAX. $\cdot X$	R30	х	0	0EFH or 0FFH Note2
address register				
RGB interface capture mode window access MIN. ·Y	R31	х	0	000H
address register				
RGB interface capture mode window access MAX. $\cdot Y$	R32	х	0	13FH
address register				
Calibration register Note3	R34	х	0	000H
Power supply IC control register 1 to 5	R38 to R42	Х	0	000H
γ -resistance-connection changing register	R43	Х	0	000H

Remark O: Default value set, X: Default value not set

				(2/2)
Register		/RESET Pin Note1	Reset Command	Default Value
γ -amplitude adjustment register 1 to 4	R44 to R47	Х	0	005H
γ -characteristic adjustment P1 register	R48	Х	0	011H
γ -characteristic adjustment P2 register	R49	х	0	077H
γ -characteristic adjustment P3 register	R50	х	0	044H
γ -characteristic adjustment P4 register	R51	х	0	044H
γ -characteristic adjustment N1 register	R52	х	0	011H
γ -characteristic adjustment N2 register	R53	х	0	077H
γ -characteristic adjustment N3 register	R54	х	0	044H
γ -characteristic adjustment N4 register	R55	х	0	044H
Output amplitude power supply setup register for 8-color displays	R56	х	0	000H
γ -reference voltage generator capability setting register	R59	х	0	044H
Power supply IC control register 6 to 11	R60 to R65	х	0	000H
AMP drive method change register	R66	х	0	000H
Partial display/non-display area refresh cycle register	R68	х	0	000H
RGB switch open timing register	R72	х	0	000H
Blanking period line setting register	R75	х	0	001H
1 line period clock setting register	R76	х	0	001H
Panel signal control register 1	R77	х	0	000H
Pre-charge polarity select register	R78	Х	0	000H
GOE1 start timing register	R79	Х	0	004H
GOE1 end timing register	R80	Х	0	025H
Pre-charge start timing register	R81	Х	0	005H
Pre-charge end timing register	R82	Х	0	005H
R switch start timing register	R83	х	0	00DH
R switch end timing register	R84	Х	0	014H
G switch start timing register	R85	Х	0	015H
G switch end timing register	R86	х	0	01CH
B switch start timing register	R87	Х	0	01DH
B switch end timing register	R88	Х	0	024H
Extended signal 1 start timing register	R89	х	0	009H
Extended signal 1 end timing register	R90	х	0	009H
Extended signal 2 start timing register	R91	х	0	009H
Extended signal 2 end timing register	R92	х	0	009H
Panel signal control register 2	R93	х	0	000H
Interface adjustment register	R98	х	0	000H
Test mode		0	0	-

Remark O: Default value set, X: Default value not set

 \star

- **Notes 1.** The internal counters are initialized only by a reset from the /RESET pin. Be sure to perform reset via the /RESET pin at power application.
 - 2. With setting value of RAM address offset register (R2), a default value change as show in the below table.

R2 Setting Value	Default Value					
	R29	R30				
000H	000H	0EFH				
001H	010H	0FFH				

- The following value is set as the calibration setting time, t_{cal}, in a reset by reset command.
 t_{cal} = 1/fosc2 x 40 (fosc2 returns to initial frequency)
- Caution The contents of RAM are saved in the case of both reset by /RESET pin and reset by reset command. Note that the RAM contents are unfixed immediately after the power is turned on.

7. COMMAND

7.1 Command List

(Register number is an estimate. Understand that there is a case where it changes later).

Display data access

			Data Bit									
RAM Access	RS	R,/W	DB ₁₇	DB16	DB15	DB14	DB13	DB12	DB11	DB2 DB1 D11 D10 D2 D1 D11 D10 D2 D1 D13 D11 D3 D2 D13 D11 D3 D2 D13 D11 D3 D2 0 0 D11 D10 (D2) (D1) X X D11 D10	DB۹	
			DBଃ	DB7	DB6	DB₅	DB4	DB₃	DB ₂	DB ₁	DB₀	
18-bit parallel interface												
Display data read 1	1	1	D17	D16	D15	D14	D13	D12	D11	D10	D۹	
			D٥	D7	D ₆	D₅	D4	D₃	D2	D1	Do	
Display data write 1		0	D17	D16	D15	D14	D13	D12	D11	D10	D۹	
Display data write 1	1	0	D8	D7	D ₆	D5	D4	Dз	D2	D1	Do	
16-bit parallel interface (1-pixel/16-bit mo	ode [DT	X = 0])										
Display data read 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Hi-Z	Hi-Z	D17	D16	D15	D14	D13	D11	D10	
Display data read 2		D2	D1									
Display data write 0		0	-	_	D17	D16	D15	D14	D13	D11	D10	
Display data write 2	1		D9	D8	D7	D ₆	D₅	D4	Dз	D2	D1	
16-bit parallel interface (1-pixel/18-bit mo	ode [DT	X = 1])										
			Hi-Z	Hi-Z	0	0	0	0	0	0	0	
Display data read 3	1	1	D17	D16	D15	D14	D13	D12	D11	D10	D9	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(D ₀)										
			Hi-Z	Hi-Z	х	х	х	Х	х	Х	х	
Display data write 3	1	0	D17	D16	D15	D14	D13	D12	D11	D10	D9	
			(D8)	(D7)	(D6)	(D5)	(D4)	(D3)	(D2)	D11 D10 D2 D1 D11 D10 D2 D1 D11 D10 D2 D1 D13 D11 D33 D2 D13 D11 D3 D2 D13 D11 D3 D2 0 0 011 D10 D2) (D1) X X D11 D10	(D ₀)	

Remark Hi-Z: High impedance, X: Invalid data

Caution When the 16-bit parallel interface is used in 1-pixel/18-bit mode (DTX = H), data access of two words per pixel is required.

18-bit parallel interface mode, DB17, DB16 = 0

(1/5)

18-bit p	parallel interface mode, DB17,	DB16 =	U								(1/5)		
				Data Bit									
Rn	Register	RS	R,/W	DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8									
				DB7	DB6	DB₅	DB4	DB₃	DB ₂	DB1 0 0 0SC10FF 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 X XA1 1 0 0 X X YA1 0 0 X YA1 0 0 X X YA1 1 0 0 X X X MIN1 1 0 0 X X X MIN1 1 0 0 X X X X MIN1 1 0 0 X X X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X I 1 0 0 X X X X I 1 0 0 X X X I 1 0 0 X X X I 1 0 0 X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X I 1 0 0 X X X X X I 1 0 0 X X X X I 1 0 0 X X X X X I 1 0 0 X X X X X I 1 0 0 X X X X X I 1 0 0 0 X X X X X I 1 0 0 0 X X X X X I 1 0 0 0 X X X X X I 1 0 0 0 X X X X X X I 1 0 0 0 X X X X X X I 1 0 0 0 X X X X X X I 1 0 0 0 X X X X X X I 1 0 0 0 X X X X X X I 1 0 0 0 X X X X X X X I 1 0 0 0 X X X X X X X I 1 0 0 0 X X X X X X X X I 1 0 0 0 X X X X X X X X I 1 0 0 0 X X X X X X X X X X I 1 0 0 0 X X X X X X X X X X X X X X X X	DB₀		
-				0	0	0	0	0	0	0	0		
R0	Control register 1	0	0	DISP1	DISP0	INV	DTY	STBY	COLOR		GSM		
	Control register 2	0		0	0	0	0	0	0	0	1		
R1	Control register 2	0	U	ADX	ADR	0	GUD	LTS1	LTS0	OSC10FF	OSC2OFF		
R2	PAM address offset register	0	0	0	0	0	0	0	0	1	0		
112	RAM address diset register	0	0								RMOFS		
R3	RESET	0	0	0	0	0	0	0	0	1	1		
1.0		Ů	- Ŭ								CRES		
R5	Data access control register	0	0	0	0	0	0	0	1		1		
								0					
	X address register (1 word)					0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0							
R6		0	0										
	X address register (2 word)								TS1 LTS0 osc10FF osc20FF 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 XA3 XA2 XA1 XA0 0 1 1 1 1 0 0 0 0 0 X X X X XA YA3 YA2 YA1 YA6 1 0 0 0 0 X X X X X MIN3 XMIN2 XMIN1 XM				
	Y address register (1 word)	0			-								
R7			0										
	Y address register (2 word)												
	MIN. ·X address register												
	(1 word)		0		-				-				
R8	MIN. X address register	0											
	(2 word)												
	MAX. X address register			0									
-	(1 word)			0	0	0	0	0	0	DB2 DB1 0 0 NOR 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 X X <t< td=""><td>0</td></t<>	0		
R9	MAX. X address register	0	0	х	х	х	х	х	х		х		
	(2 word)			XMAX7	XMAX6	XMAX5	XMAX4	XMAX3	XMAX2	XMAX1	XMAX0		
	MIN. · Y address register			0	0	0	0	1	0	1	0		
R10	(1 word)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0	0	0							
	MIN. Y address register			Х	Х	X	X	Х	Х	Х	YMIN8		
	(2 word)			YMIN7	YMIN6	YMIN5	YMIN4	YMIN3	YMIN2	YMIN1	YMIN0		
	MAX. Y address register												
R11	(1 word)	0	0										
	MAX. Y address register		DB7DB6DB5000		Х	Х		YMAX8					
	(2 word)							YMAX3	YMAX2		YMAX0		
	Scroll area start line register							1			0		
R14	(1 word)	0	0					0			0		
	(2 word)							X SSL3		DB1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 XA1 1 0 XA1 0 XA1 0 XA1 0 XXA1 0 XX YA1 0 X YMIN1 0 X YMAX1 1 0 X YMAX1 1 0 X YMAX1 1 0 X YMAX1 1 0 <t< td=""><td>SSL8</td></t<>	SSL8		
											SSL0		
	(1 word)							1 0			1 0		
R15	,	0	0					X			U SAW8		
	(2 word)			^						-	SAW8		
18-bit parallel interface mode, DB17, DB16 = 0

(2/5)

10-01	parallel Interface mode, DB17,	DD 16 -	0								(2/5)	
				Data Bit								
Rn	Register	RS	R,/W	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	
				DB7	DB6	DB₅	DB4	DB3	DB ₂	DB1	DB₀	
	Scroll step count register			0	0	0	1	0	0	0	0	
	(1 word)	_	_	0	0	0	0	0	0	0	0	
R16	Scroll step count register	0	0	Х	Х	х	х	х	х	х	SST8	
	(2 word)			SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0	
	Partial non-display area setting			0	0	0	1	0	0	0	1	
R17	register	0	0					PSEL	PGR	PGG	PGB	
	Partial 1 display area start line			0	0	0	1	0	1	0	0	
	register (1 word)			0	0	0	0	0	0	0	0	
R20	Partial 1 display area start line	0	0	х	х	х	х	х	х	х	P1SL8	
	register (2 word)			P1SL7	P1SL6	P1SL5	P1SL4	P1SL3	P1SL2	P1SL1	P1SL0	
	Partial 2 display area start line			0	0	0	1	0	1	0	1	
D04	register (1 word)	_	0	0	0	0	0	0	0	0	0	
R21	Partial 2 display area start line	0	0	х	х	х	х	х	х	х	P2SL8	
	register (2 word)			P2SL7	P2SL6	P2SL5	P2SL4	P2SL3	P2SL2	P2SL1	P2SL0	
	Partial 1 display area line count			0	0	0	1	0	1	1	0	
R22	register (1 word)	0	0	0	0	0	0	0	0	0	0	
RZZ	Partial 1 display area line count	0	0	Х	х	х	х	х	х	х	P1AW8	
	register (2 word)			P1AW7	P1AW6	P1AW5	P1AW4	P1AW3	P1AW2	P1AW1	P1AW0	
	Partial 2 display area line count			0	0	0	1	0	1	1	1	
R23	register (1 word)	0	0	0	0	0	0	0	0	0	0	
123	Partial 2 display area line count	0		Х	х	х	х	х	х	х	P2AW8	
	register (2 word)			P2AW7	P2AW6	P2AW5	P2AW4	P2AW3	P2AW2	P2AW1	P2AW0	
R25	RGB interface control register	0	0	0	0	0	1	1	0	0	1	
1120		0	U						NWRGB	RGBS	DISPCK	
R26	RGB back poach period setting	0	0	0	0	0	1	1	0	1	0	
1120	register	Ŭ	Ŭ	HBP3	HBP2	HBP1	HBP0	VBP3	VBP2	VBP1	VBP0	
	RGB through mode display start			0	0	0	1	1	0	1	1	
R27	line register (1 word)	0	0	0	0	0	0	0	0	0	0	
1.21	RGB through mode display start	Ũ	Ŭ	Х	Х	Х	Х	Х	Х	Х	RGBST8	
	line register (2 word)			RGBST7	RGBST6	RGBST5	RGBST4	RGBST3	RGBST2	RGBST1	RGBST0	
	RGB through mode display end			0	0	0	1	1	1	0	0	
R28	line register (1 word)	0	0	0	0	0	0	0	0	0	0	
	RGB through mode display end	Ŭ	Ŭ	Х	Х	Х	Х	Х	Х	Х	RGBED8	
	line register (2 word)			RGBED7	RGBED6	RGBED5	RGBED4	RGBED3	RGBED2	RGBED1	RGBED0	
	RGB capture mode window			0	0	0	1	1	1	0	1	
	access MIN. ·X address register			0	0	0	0	0	0	0	0	
R29	(1 word)	0	0	-			-					
-	RGB capture mode window	-	-	Х	Х	Х	Х	Х	Х	Х	Х	
	access MIN. X address register			CAPXMIN7	CAPXMIN6	CAPXMIN5	CAPXMIN4	CAPXMIN3	CAPXMIN2	CAPXMIN1	CAPXMIN0	
	(2 word)											

18-bit parallel interface mode, DB17, DB16 = 0

(3/5)

18-DIt	parallel interface mode, DB17, DB7	16 – U									(3/5					
							Dat	a Bit								
Rn	Register	RS	R,/W	DB15	DB ₁₄	DB13	DB ₁₂	DB11	DB ₁₀	DB ₉	DB8					
			,	DB ₇	DB ₆	DB₅	DB4	DB₃	DB ₂	DB ₁	DBo					
	RGB capture mode window access			0	0	0	1	1	1	1	0					
	•															
R30	MAX. X address register (1 word)	0	0	0	0	0	0	0	0	0	0					
	RGB capture mode window access			Х	Х	Х	Х	Х	Х	Х	Х					
	MAX. ·X address register (2 word)			CAPXMAX7	CAPXIMAX6	CAPXMAX5	CAPXMAX4	CAPXIMAX3	CAPXMAX2	CAPXMAX1	CAPXIMAX0					
	RGB capture mode window access			0	0	0	1	1	1	1	1					
R31	MIN. Y address register (1 word)	0	0	0	0	0	0	0	0	0	0					
1.01	RGB capture mode window access	0	Ũ	Х	Х	Х	Х	Х	Х	Х	CAPYMIN8					
	MIN. Y address register (2 word)			CAPYMIN7	CAPYMIN6	CAPYMIN5	CAPYMIN4	CAPYMIN3	CAPYMIN2	CAPYMIN1	CAPYMIN0					
	RGB capture mode window access			0	0	1	0	0	0	0	0					
	MAX. Y address register (1 word)			0	0	0	0	0	0	0	0					
R32	RGB capture mode window access	0	0	х	х	х	х	х	х	х	CAPYMAX8					
	MAX. Y address register (2 word)			CAPYMAX7	CAPYMAX6	CAPYMAX5	CAPYMAX4	CAPYMAX3	CAPYMAX2	CAPYMAX1	CAPYMAXO					
				0	0	1	0	0	0	1	0					
R34	Calibration register	0	0	0	0		0	Ū	Ŭ		OC					
				0	0	1	0	0	1	1	0					
R38	Power supply IC control register 1	0	0	-	-		-	-			-					
				PSD17	PSD16	PSD15	PSD14	PSD13	PSD12	PSD11	PSD10					
R39	Power supply IC control register 2	0	0	0	0	1	0	0	1	1	1					
		_		PSD27	PSD26	PSD25	PSD24	PSD23	PSD22	PSD21	PSD20					
R40	Power supply IC control register 3	0	0	0	0	1	0	1	0	0	0					
1140		Ū	U	PSD37	PSD36	PSD35	PSD34	PSD33	PSD32	PSD31	PSD30					
				0	0	1	0	1	0	0	1					
R41	Power supply IC control register 4	0	0	PSD47	PSD46	PSD45	PSD44	PSD43	PSD42	PSD41	PSD40					
		0		0	0	1	0	1	0	1	0					
R42	Power supply IC control register 5		0	PSD57	PSD56	PSD55	PSD54	PSD53	PSD52	PSD51	PSD50					
	γ -resistance-connection changing			0	0	1	0	1	0	1	1					
R43	,	0	0	0	0			1	0							
	register						GSEL				GONSEL					
R44	γ -amplitude adjustment register 1	0	0	0	0	1	0	1	1	0	0					
				GPH7	GPH6	GPH5	GPH4	GPH3	GPH2	GPH1	GPH0					
R45	γ -amplitude adjustment register 2	0	0	0	0	1	0	1	1	0	1					
			-	GNH7	GNH6	GNH5	GNH4	GNH3	GNH2	GNH1	GNH0					
R46	γ -amplitude adjustment register 3	0	0	0	0	1	0	1	1	1	0					
		Ŭ		GPL7	GPL6	GPL5	GPL4	GPL3	GPL2	GPL1	GPL0					
D47	a amplitudo adjustment register 4	0	0	0	0	1	0	1	1	1	1					
R47	γ -amplitude adjustment register 4	U	0	GNL7	GNL6	GNL5	GNL4	GNL3	GNL2	GNL1	GNL0					
	γ -characteristic adjustment P1	_		0	0	1	1	0	0	0	0					
R48	register	0	0	VDRP3	VDRP2	VDRP1	VDRP0	VSRP3	VSRP2	VSRP1	VSRP0					
	γ -characteristic adjustment P2			0	0	1	1	0	0	0	1					
R49	register	0	0	VLRP3	VLRP2	VLRP1	VLRP0	VHRP3	VHRP2	VHRP1	VHRP0					
				0	0	VLRP1 1	1 VLRP0	0	0	VHRP1 1	0					
R50	γ-characteristic adjustment P3 register	0	0	0				0								
					VGR1P2	VGR1P1	VGR1P0		VGR0P2	VGR0P1	VGR0P0					
R51	γ -characteristic adjustment P4	0	0	0	0	1	1	0	0	1	1					
	register				VGR3P2	VGR3P1	VGR3P0		VGR2P2	VGR2P1	VGR2P0					

18-bit parallel interface mode, DB17, DB16 = 0

(4/5)

18-DIT	parallel interface mode, DB17, DB	16 = U									(4/5
							Dat	a Bit			
Rn	Register	RS	R,/W	DB15	DB ₁₄	DB13	DB12	DB11	DB10	DB ₉	DB8
				DB7	DB ₆	DB₅	DB4	DB₃	DB ₂	DB1	DBo
	γ -characteristic adjustment N1			0	0	1	1	0	1	0	0
R52	register	0	0	VDRN3	VDRN2	VDRN1	VDRN0	VSRN3	VSRN2	VSRN1	VSRN0
	γ -characteristic adjustment N2			0	0	1	1	0	1	0	1
R53	register	0	0	VLRN3	VLRN2	VLRN1	VLRN0	VHRN3	VHRN2	VHRN1	VHRN0
	γ -characteristic adjustment N3			0	0	1	1	0	1	1	0
R54	register	0	0		VGR1N2	VGR1N1	VGR1N0		VGR0N2	VGR0N1	VGR0N0
DEE	γ -characteristic adjustment N4			0	0	1	1	0	1	1	1
R55	register	0	0		VGR3N2	VGR3N1	VGR3N0		VGR2N2	VGR2N1	VGR2N0
DEC	Output amplitude power supply	0		0	0	1	1	1	0	0	0
R56	setup register for 8-color displays	0	0							GV8S1	0
R59	γ -reference voltage generator	0	0	0	0	1	1	1	0	1	1
R39	capability setting register	0	U	WHP	WI2	WI1	WI0	BHP	BI2	BI1	BIO
R60	Power supply IC control register 6	0	0	0	0	1	1	1	1	0	0
ROU		0	U	PSD67	PSD66	PSD65	PSD64	PSD63	PSD62	PSD61	PSD60
R61	Power supply IC control register 7	0	0	0	0	1	1	1	1	0	1
1.01		Ŭ	0	PSD77	PSD76	PSD75	PSD74	PSD73	PSD72	PSD71	PSD70
R62	Power supply IC control register 8	0	0	0	0	1	1	1	1	1	0
1102		0	0	PSD87	PSD86	PSD85	PSD84	PSD83	PSD82	PSD81	PSD80
R63	Power supply IC control register 9	0	0	0	0	1	1	1	1	1	1
103		0	0	PSD97	PSD96	PSD95	PSD94	PSD93	PSD92	PSD91	PSD90
R64	Power supply IC control register 10	0	0	0	1	0	0	0	0	0	0
1104			0	PSDA7	PSDA6	PSDA5	PSDA4	PSDA3	PSDA2	PSDA1	PSDA0
R65	Power supply IC control register 11	0	0	0	1	0	0	0	0	0	1
1.00			Ŭ	PSDB7	PSDB6	PSDB5	PSDB4	PSDB3	PSDB2	PSDB1	PSDB0
R66	AMP drive method change register	0	0	0	1	0	0	0	0	1	0
1.00	Aivir drive metriod change register		U							LMD1	0
R68	Partial display/non-display area	0	0	0	1	0	0	0	1	0	0
	refresh cycle register				REFM2	REFM1	REFM0	REFB3	REFB2	REFB1	REFB0
R72	RGB switch open timing register	0	0	0	1	0	0	1	0	0	0
	5 5 5			DC4	DC3		DSCG4	DSCG3	DSCG2	DSCG1	DSCG0
R75	Blanking period line setting register	0	0	0	1	0	0	1	0	1	1
	5 F	_		ADLN7	ADLN6	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1	ADLN0
R76	1 line period clock setting register	0	0	0	1	0	0	1	1	0	0
	,						ADCK4	ADCK3	ADCK2	ADCK1	ADCK0
R77	Panel signal control register 1	0	0	0	1	0	0	1	1	0	1
	5 5					RSOUT	RGOE2	RGOE1	RXDON	ROEVE	ROEV
R78	Pre-charge polarity select register	0	0	0	1	0	0	1	1	1	0
					RMMSK	RMST1	RMST0	PT1	PT0	REV	0
R79	GOE1 start timing register	0	0	0	1	0	0	1	1	1	1
						GOST5	GOST4	GOST3	GOST2	GOST1	GOST0
R80	GOE1 end timing register	0	0	0	1	0	1	0	0	0	0
						GOED5	GOED4	GOED3	GOED2	GOED1	GOED0

18-bit p	parallel interface mode, DB17, DB	16 = 0									(5/5)
							Data	a Bit			
Rn	Register	RS	R,/W	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DBଃ
				DB7	DB6	DB₅	DB4	DB₃	DB ₂	DB ₁	DBo
R81	Pre-charge start timing register	0	0	0	1	0	1	0	0	0	1
1.01		Ŭ	Ŭ			PCST5	PCST4	PCST3	PCST2	PCST1	PCST0
R82	Pre-charge end timing register	0	0	0	1	0	1	0	0	1	0
		-	-			PCED5	PCED4	PCED3	PCED2	PCED1	PCED0
R83	R switch start timing register	0	0	0	1	0	1	0	0	1	1
		-	-			RST5	RST4	RST3	RST2	RST1	RST0
R84	R switch end timing register	0	0	0	1	0	1	0	1	0	0
		-				RED5	RED4	RED3	RED2	RED1	RED0
R85	G switch start timing register	0	0	0	1	0	1	0	1	0	1
1,000		Ŭ	Ŭ			GST5	GST4	GST3	GST2	GST1	GST0
R86	G switch end timing register	0	0	0	1	0	1	0	1	1	0
1.00		Ŭ	Ŭ			GED5	GED4	GED3	GED2	GED1	GED0
R87	B switch start timing register	0	0	0	1	0	1	0	1	1	1
	5-5					BST5	BST4	BST3	BST2	BST1	BST0
R88	B switch end timing register	0	0	0	1	0	1	1	0	0	0
						BED5	BED4	BED3	BED2	BED1	BED0
R89	Extended signal 1 start timing register	0	0	0	1	0	1 E1ST4	1	0 E1ST2	0 E1ST1	1 E1ST0
	Extended signal 1 end timing			0	1	E1ST5 0	1	E1ST3	0	1	0
R90	register	0	0	0	1	E1ED5	E1ED4	E1ED3	E1ED2	E1ED1	E1ED0
	Extended signal 2 start timing			0	1	0	1	1	0	1	1
R91	register	0	0	0		E2ST5	E2ST4	E2ST3	E2ST2	E2ST1	E2ST0
D 00	Extended signal 2 end timing	_	_	0	1	0	1	1	1	0	0
R92	register	0	0			E2ED5	E2ED4	E2ED3	E2ED2	E2ED1	E2ED0
D 00	Denel sizzal control register 2		0	0	1	0	1	1	1	0	1
R93	Panel signal control register 2	0	0	0	RVCOT	RGBSW	RGSTB	RGCLK	RASW	RSTV	RCKV
R98	Interface adjustment register	0	0	0	1	1	0	0	0	1	0
	Interface adjustment register	U	0	0	0						

18-bit parallel interface mode DB17 DB16 = 0

★

Cautions 1. Input unfixed (0 or 1) in blank area.

2. Access is prohibited about the register is not in the above register.

7.2 Command Explanation

(Register number is an estimate. Understand that there is a case where it changes later).

			(1/13
Register	Bit	Symbol	Function
R0	D7	DISP1	This command performs the same output as when all data is 1, independently of the internal RAM
			data (white display in the case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all data as 1.
			DISP1 takes precedence over DISP0. When DISP1 = 1, DISP0 = 1 is ignored.
	D ₆	DISP0	This command performs the same output as when all data is 0, independently of the internal RAM
			data (black display in the case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all data as 0.
	D₅	INV	This command selects a line inversion function and a frame inversion function.
			Execution in the mode set by this command is from the timing outputs the following line data.
			0: Line inversion
			1: Frame inversion
	D4	DTY	This pin selects the partial function.
			When the partial function s selected in the 260,000-color mode, set the partial OFF area color setting
			register (R27) to 000H. In the 8-color mode, the partial off area color can be set to any value from
			000H to 007H. The power consumption cannot be reduced with the partial function.
			To reduce the power consumption, select the 8-color mode.
			This command is executed following transfer from the time the next line data is output.
			0: Normal display mode
			1: Partial display mode
	D₃	STBY	This bit selects the stand-by function. When the stand-by function is selected, a display OFF
			operation is executed, the amplifiers, and oscillator at each output circuit are stopped.
			After executing the stand-by function using this bit, set the regulator for gate power supply IC to OFF
			and set the DC/DC converter to OFF. For the sequence, refer to the preliminary product information
			of the power supply IC etc.
			Note that when releasing stand-by, perform the opposite operation, after setting the DC/DC converter
			to ON and setting the regulators of the gate IC and power supply IC to ON, execute the normal
			operation command.
			0: Normal operation
			1: Stand-by function
			(Display read OFF from RAM, stop VCOM, display OFF = source output becomes Vss)
	D2	COLOR	This pin switches the 260,000-color mode and the 8-color mode. When the 8-color mode is selected,
			low power supply can be selected in order to stop the amplifier at each output circuit.
			In the 8-color mode, the value of the MSB of the internal RAM data is used as the color data.
			This command is executed following transfer from the time the next line data is output.
			0: 260,000-color mode (18-bit/pixels)
			1: 8-color mode (3-bit/pixels)
	Do	GSM	Sets output of the gate scanning signal during partial display.
		COW	If this bit is set to 1, the gate scan of the lines set in the partial display.
			0: Normal mode
			1: Stops gate scanning in partial non-display area

								(2/13)			
Register	Bit	Symbol				Function					
R1	D7	ADX	Address	ing of X addres	s is inverted.	For more details, re	fer to Figure 5–24.				
	D ₆	ADR	Address	ing of Y addres	s is inverted.	For more details, re	fer to Figure 5–24.				
	D4	GUD	This pin	can be used w	hen changing	the direction of gate	e scan of a panel.				
			A display is possible for a vertical contrary by changing the direction of gate scan of a panel also								
			in the ti	me of the throug	gh mode of R	GB interface using t	he output signal from this pin.				
			0: GUD	pin L output							
			1: GUD	pin H output							
			J. J	0	0	e as frame change ti	ming. About frame change tim	ing, refer			
				1-frame perio							
	D3	LTS1		set time of calib							
	The calibration function adjusts the frame frequency by setting time of one line. This										
	D2	LTS0	can sele	ct the set time	of a line from	the following:					
				1 70 /	1 700			ר			
				LTS1	LTS0	1-line time	1-line frequency	-			
				0	0	tcal x 1	Normal operation x 1	-			
				0	1	tcal x 2	Normal operation x 2	-			
				1	0	tcal x 4	Normal operation x 4	-			
				1	1	t _{cal} x 8	Normal operation x 8				
		equency ÷ Number of displayed									
	D1	OSC10FF			stop bit for ca	libration. This comm	and is stop when in stand-by n	node.			
				0: Oscillator operation 1: Oscillator stop							
		_			-to a hit for LO		and the state of the state of the				
	Do	OSC2OFF			cillator circuit stop bit for LCD display. This command is stop when in stand-by mode.						
				ator operation							
R2	Do	RMOFS		ator stop	addross valuo	of X addrossos of I	he display RAM. The relation b	otwoon			
112	D0	RIVIOI 3		••				elween			
			X addresses and an output is set up as follows. 0: Offset OFF, 000H (0) to 0EFH (239)								
				t ON, 020H (0)	, i	,					
R3	Do	CRES					r power ON				
	20	020	Command reset function. Be sure to execute this bit after power ON. Command reset automatically clears this bit following execution (RES = 1H). Therefore, it is not								
			necessary to set 0 (select normal operation) again by software. Moreover, since the time								
			required for the value of this bit to change $(1 \rightarrow 0)$ following command reset execution is								
			extremely short, it is not necessary to secure time until the next command is set following								
			commar	d reset setting.							
			0: Norm	al operation							
			1: Comr	nand reset							

Register	Bit	Symbol	(3/13) Function
R5	D7	DTX1	The data bus of the display data at the time of 16-bit parallel data transfer inputted is set. DTX1 = L: 1-pixel/16-bit mode DTX1 = H: 1-pixel/18-bit mode
	D6	BSTR	Sets the write mode for writing data to the display RAM. If the high-speed RAM write mode is selected, data is written to the display RAM in 2-pixel units inside the IC. When selecting the high-speed RAM write mode, be sure to write data to the display RAM in 2-pixel units. 0: Normal write mode (18-bit access) 1: High-speed RAM write mode (36-bit access)
	D4	WAS	Window access mode setting When the window access mode is set, the address is increment/decrement only in the range set by the MIN. ·X address setting register (R8), MAX. ·X address setting register (R9), MIN. ·Y address setting register (R10), and MAX. ·Y address setting register (R11). 0: Normal operation 1: Window access mode
	D2	INC	This bit selects the direction in which the address is to be increment. 0: Increments X address 1: Increments Y address
R6	D7 to D0	XAn	This register sets the X address of the display RAM. Set 000H to 0EFH.
R7	D ₈ to D ₀	YAn	This register sets the Y address of the display RAM. Set 000H to 13FH.
R8	D7 to D0	XMINn	Sets the minimum value of the X address in the window access mode. The X address is incremented up to the maximum value set by the MAX. ·X address register (R9), and then initialized to the address value set by this command. Set 000H to 0EFH.
R9	D7 to D0	XMAXn	Sets the maximum value of the X address in the window access mode. The X address is incremented up to the maximum value set by the MIN. X address register (R8), and then initialized to the address value set by this command. Set 000H to 0EFH.
R10	D₀ to D₀	YMINn	Sets the minimum value of the Y address in the window access mode. The Y address is incremented up to the maximum value set by the MAX. Y address register (R11), and then initialized to the address value set by this command. Set 000H to 13FH.
R11	D ₈ to D₀	YMAXn	Sets the maximum value of the Y address in the window access mode. The Y address is incremented up to the address value set by this command, and then initialized to the minimum address value set by the MIN. Y address register (R10). Set 000H to 13FH.
R14	D₀ to D₀	SSLn	Scroll area start line register (000H to 13FH) When the screen is scrolled, the screen of the number of lines set by the scroll area line count register (R15) is scrolled up by the number of steps set by the scroll step count register (R16), starting from the line set by this command.
R15	D ₈ to D ₀	SAWn	Scroll area line count register (000H to 13FH) When the screen is scrolled, the screen of the number of lines set by this command is scrolled up by the number of steps set by the scroll step count register (R16), starting from the line set by the scroll area start line register (R14).
R16	D ₈ to D₀	SSTn	Scroll step count register (000H to 13FH) When the screen is scrolled, the screen of the number of lines set by the scroll area line count register (R15) and the scroll step count register (R16) is scrolled up by the number of steps set by this command. Note that because this command is invalid in the partial display mode, the scroll function cannot be used.

μ**PD161801**

(4/	(13)	
(10,	

Register	Bit	Symbol	(4/13) Function
R17	D ₃	PSEL	This bit selects whether the data specified the display color of partial non-displaying area in PGR, PGG and the PGB bit as color data, using MSB of a display data RAM is used as color data.
			0: Use the data specified by PGR, PGG and PGB
			1: Display data RAM, making it into color data for MSB of a use.
	D2	PGR	Sets the color of the screen other than the partial display area during partial display (R0: DTY = 1). One of eight colors can be selected (RGB: 1 bit each) as the OFF color.
	D1	PGG	The relationship between each color data and the bits of this register is as follows. This relationship is not dependent upon the value of ADC. PGR: R OFF= 0, ON = 1
	Do	PGB	PGG: G OFF= 0, ON = 1 PGB: B OFF= 0, ON = 1
R20	D ₈ to D₀	P1SLn	Partial1 display area start line register (000H to 13FH) During partial display (R0: DTY = 1), the area starting from the line set by this command and ending as set by the partial 1 display area line count register (R22) is the partial 1 display area.
R21	D ₈ to D₀	P2SLn	Partial2 display area start line register (000H to 13FH) During partial display (R0: DTY = 1), the area starting from the line set by this command and ending as set by the partial 2 display area line count register (R23) is the partial 2 display area.
R22	D₀ to D₀	P1AWn	Partial1 display area line count register (000H to 13FH) An area starting from the line set by the partial 1 display area start register (R20) and ending as set by this command is the partial 1 display area. If this register is 0, the values of the partial 2 display area start line register (R21) and the partial 2 display area line count register (R23) are not valid.
R23	D ₈ to D ₀	P2AWn	Partial 2 display area line count register (000H to 13FH) An area starting from the line set by the partial 2 display area start register (R21) and ending as set by this command is the partial 2 display area. If the partial 1 display area line count register is 0, the values of the partial 2 display area start line register (R21) and partial 2 display area line count register (R23) are not valid.
R25	D2	NWRGB	This bit commands invalid of RGB interface input. 0: Invalid for RGB interface input 1: Valid for RGB interface input
	D1	RGBS	This bit selects RGB interface mode. 0: Through mode 1: Capture mode
	Do	DISPCK	This bit selects timing clock for display output in RGB interface mode. 0: Internal oscillator clock 1: HSYNC/VSYNC/DOTCLK
R26	D7 to D4	HBPn	This bit sets horizontal back porch period of RGB interface. Horizontal back porch period = set value x DOTCLK unit In addition, set up more than "1".
	D₃ to D₀	VBPn	This bit sets vertical back porch period of RGB interface. Vertical back porch period = set value x HSYNC unit In addition, set up more than "2".
R27	D ₈ to D ₀	RGBSTn	These bits set the start line of the display area to be displayed by the RGB interface. ($000H \le R27 \le 0EEH$) Be sure to observe the relationship "Set value of R27 register < Set value of R28 register".
R28	D ₈ to D ₀	RGBEDn	These bits set the end line of the display area to be displayed by the RGB interface. ($000H \le R28 \le 13FH$) Be sure to observe the relationship "Set value of R27 register < Set value of R28 register".

μPD161801

Register	Bit	Symbol	Function
R29	D7 to D0	CAPXMINn	Minimum of X address is set up at the time of window access at the time of selecting capture mode by the RGB interface.
R30	D7 to D0	CAPXMAXn	Maximum of X address is set up at the time of window access at the time of selecting capture mode by the RGB interface.
R31	D ₈ to D ₀	CAPYMINn	Minimum of Y address is set up at the time of window access at the time of selecting capture mode by the RGB interface.
R32	D ₈ to D ₀	CAPYMAXn	Maximum of Y address is set up at the time of window access at the time of selecting capture mode by the RGB interface.
R34	Do	oc	This bit is used for calibration. The time from calibration start command execution until calibration stop command execution becomes the time for 1 line. 0: Calibration stop 1: Calibration start
R38	D7 to D0	PSD1n	The value set as PSD1n is outputted from the serial interface output for external IC control. For more details, refer to 5.1.8 Serial interface for power supply IC control .
R39	D7 to D0	PSD2n	The value set as PSD2n is outputted from the serial interface output for external IC control. For more details, refer to 5.1.8 Serial interface for power supply IC control .
R40	D7 to D0	PSD3n	The value set as PSD3n is outputted from the serial interface output for external IC control. For more details, refer to 5.1.8 Serial interface for power supply IC control .
R41	D7 to D0	PSD4n	The value set as PSD4n is outputted from the serial interface output for external IC control. For more details, refer to 5.1.8 Serial interface for power supply IC control .
R42	D7 to D0	PSD5n	The value set as PSD5n is outputted from the serial interface output for external IC control. For more details, refer to 5.1.8 Serial interface for power supply IC control .
R43	D4	GSEL	 Sets the maximum/minimum output potential of the <i>γ</i>-correction register. If the internal <i>γ</i>-output adjustment circuit is selected, the maximum/minimum output potential o the <i>γ</i>-correction register is: 0: Sets power supply voltage (outputs Vs and Vss potential). 1: Uses voltage of internal <i>γ</i>-output adjustment circuit (uses VPH, VNH, VPL, VNL output)
	Do	GONSEL	 About connection between γ-correction resistance and a power supply 0: Connect the both ends of positive-polarity γ-resistance with Vs and GND when in used γ-correction by positive-polarity. On the other hand, γ-resistance by negative-polarity does not connect with Vs and GND. Moreover, the both ends of negative-polarity γ-resistance are connected with Vs and GND when in used γ-correction by negative-polarity. In that case, γ-resistance by positive-polarity does not connect with Vs and GND when in used γ-correction by negative-polarity. In that case, γ-resistance by positive-polarity does not connect with Vs and GND. 1: Connect both Vs and GND on the side of positive and negative γ-correction regardless of output from positive- or negative-polarity.
R44	D7 to D0	GPHn	Sets the voltage value of γ -amplitude adjustment of positive polarity. For more detail, refer to 5.5 γ - Curve Correction Power Supply Circuit.
R45	D7 to D0	GNHn	Sets the voltage value of γ -amplitude adjustment of negative polarity. For more detail, refer to 5.5 γ - Curve Correction Power Supply Circuit .
R46	D7 to D0	GPLn	Sets the voltage value of γ -amplitude adjustment of positive polarity. For more detail, refer to 5.5 γ - Curve Correction Power Supply Circuit.
R47	D7 to D0	GNLn	Sets the voltage value of γ -amplitude adjustment of negative polarity. For more detail, refer to 5.5 γ - Curve Correction Power Supply Circuit.

(6	11	2)
ιu	// 1	5)

Register	Bit	Symbol	(6/13 Function
R48	D7 to D4	VDRPn	Positive-polarity γ -amplitude adjustment register
1140	D7 10 D4	VDIGIN	Refer to 5.5 γ - Curve Correction Power Supply Circuit.
	D₃ to D₀	VSRPn	Positive-polarity γ -amplitude adjustment register
	D3 10 D0	VOIGH	Refer to 5.5 γ - Curve Correction Power Supply Circuit.
R49	D7 to D4	VLRPn	Positive-polarity γ -inclination adjustment register
1140	D7 10 D4	VEIGH	Refer to 5.5 γ - Curve Correction Power Supply Circuit.
	D ₃ to D ₀	VHRPn	Positive-polarity γ -inclination adjustment register
	2010 20	•••••	Refer to 5.5 γ - Curve Correction Power Supply Circuit.
R50	D ₆ to D ₄	VGR1Pn	Positive-polarity γ -fine tuning adjustment register
	2010 21		Refer to 5.5 γ - Curve Correction Power Supply Circuit.
	D ₂ to D ₀	VGR0Pn	Positive-polarity γ -fine tuning adjustment register
	21 10 20		Refer to 5.5 γ - Curve Correction Power Supply Circuit.
R51	D ₆ to D ₄	VGR3Pn	Positive-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ - Curve Correction Power Supply Circuit.
	D ₂ to D ₀	VGR2Pn	Positive-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R52 D7 t	D7 to D4	VDRNn	Negative-polarity γ -amplitude adjustment register
			Refer to 5.5 γ - Curve Correction Power Supply Circuit.
	D ₃ to D ₀	VSRNn	Negative-polarity γ -amplitude adjustment register
			Refer to 5.5 γ - Curve Correction Power Supply Circuit
R53	D7 to D4	VLRNn	Negative-polarity γ -inclination adjustment register
			Refer to 5.5 γ - Curve Correction Power Supply Circuit.
	D ₃ to D ₀	VHRNn	Negative-polarity γ -inclination adjustment register
			Refer to 5.5 γ - Curve Correction Power Supply Circuit.
R54	D ₆ to D ₄	VGR1Nn	Negative-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₂ to D ₀	VGR0Nn	Negative-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R55	D ₆ to D ₄	VGR3Nn	Negative-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
	D ₂ to D ₀	VGR2Nn	Negative-polarity γ -fine tuning adjustment register
			Refer to 5.5 γ- Curve Correction Power Supply Circuit.
R56	D1, D0	GV8S1	The voltage concerning a panel is set at the time of 8-color mode.
			0 : Set power supply
			1: Set amplifier output

NEC

Register	Bit	Symbol					Function				
R59	D7	WHP	Sets the output mode of the reference voltage generator amplifier for setting the white level of the positive-polarity and negative-polarity sides (when VPL and VNL are normally white), as shown below. Determine the amplifier capacity after sufficient evaluation with the actual TFT panel to be used.								
			0: Normal r	node				IFI panel to be used.			
				High-power mode (output circuit capacity: twice that of normal mode) s the output bias current of the reference voltage generator amplifier for so							
	D ₆ to D ₄	WIn		ive-po			erence voltage generator amplifier to olarity sides (when VPL and VNL	-			
					nplifier cap	acity after	sufficient evaluation with the actual	TFT panel to be used.			
			WI	2	WI1	WI0	Amplifier Bias Current				
			0		0	0	0.025 μA				
			0		0	1	0.050 μA				
			0		1	0	0.100 μA				
			0		1	1	0.200 μA				
			1		0	0	0.500 μA				
			1		0	1	1.000 µA				
D3 D2 to D0		1		1	0	1.500 µA					
		1		1	1	2.000 <i>µ</i> A					
	BHP	the positive shown belo Determine 0: Normal r	e-polar ow. the an mode	ity and neo	gative-pola acity after	e voltage generator amplifier for setti irity sides (when VPH and VNH are sufficient evaluation with the actual pacity: twice that of normal mode)	normally white), as				
	D ₂ to D ₀	BIn	of the posit shown belo	ive-po w.	larity and r	negative-p	erence voltage generator amplifier for olarity sides (when VPH and VNH and sufficient evaluation with the actual	re normally white), as			
			E	312	BI1	BI0	Amplifier Bias Current				
				0	0	0	0.025 μA				
				0	0	1	0.050 μA				
				0	1	0	0.100 μA				
				0	1	1	0.200 <i>µ</i> A				
			1	0	0	0.500 <i>µ</i> A					
			1	1	0	1	1.000 <i>μ</i> A				
				1	U						
				1	1	0	1.500 μA				

Phase-out/Discontinued

(8/13)

RegisterBitR60D7 to						Fun	ction				
R60 D7 to											
	D ₀ PSD6	n The	e value set as	PSD6n is	outputted f	rom the se	rial interface output for exte	rnal IC control.	For		
		mo	ore details, refe	er to 5.1.8	Serial inte	rface for	power supply IC control.				
R61 D7 to	D ₀ PSD7	n The	e value set as	PSD7n is	outputted f	rom the se	rial interface output for exte	rnal IC control.	For		
		mo	ore details, refe	er to 5.1.8	Serial inte	rface for	power supply IC control.				
R62 D7 to	D ₀ PSD8	n Th	e value set as	PSD8n is	outputted f	rom the se	erial interface output for exte	rnal IC control.	For		
		mo	ore details, refe	er to 5.1.8	Serial inte	erface for	power supply IC control.				
R63 D7 to	D ₀ PSD9	n Th	e value set as	PSD9n is	outputted f	rom the se	erial interface output for exte	rnal IC control.	For		
							power supply IC control.				
R64 D7 to	D ₀ PSDA						erial interface output for exte	rnal IC control.	For		
		1					power supply IC control.				
R65 D7 to	D ₀ PSDE				•		erial interface output for exte	ernal IC control.	For		
D 00							power supply IC control.				
R66 D1	LMD1		e AMP drive m								
			Hi-Z period tur				Hi-Z period of a source outp	ut (oxcopt at th			
			ne of 8 color me					at lexcept at th			
R68 D6 to	D4 REFN						non-refreshing drive ([GSM	- 0 PT1 - 1 P	ото –		
				-			hing frame (source output st				
		-	-				out [the normally white pane		-		
			• /	•				•••	ie sei		
			p in the combination of the value set as this flag and the value set as the REFBn flag.								
			or more details, refer to 5.6.2 Partial display, non-display area and normal partial driving.								
			The number of non-refreshing frames = REFB [4:0] x REFM [3:0]								
						1					
			REFM2	REFM1	REFM0	Setting	Value				
			0	0	0	2					
			0	0	1	4					
			0	1	0	8					
			0	1	1	16					
			1	0	0	32					
			1	0	1	64					
			1	1	0	128					
			1	1	1	256					
D₃ to	D ₀ REFE	n Wh	hen partial disp	olay, the ca	ase where i	t is set as	non-refreshing drive ([GSM	= 0, PT1 = 1, P	PT0 =		
		1] ;	and [GSM = 1,	PT1 = 0,	PT0 = 0]), ı	non-refres	hing frame (source output st	op, gate scanni	ing		
		sto	op) and a refree	sh cycle (s	ource white	e level out	out [the normally white pane	l], gate scan) a	re set		
		up	in the combination	ation of the	e value set	as this flag	g and the value set as the RI	EFMn flag.			
		Fo	r more details,	refer to 5.	6.2 Partia	l display,	non-display area and norn	nal partial driv	ving.		
		Т	he number of i	non-refresl	ning frames	s = REFB	[4:0] x REFM [3:0]				
					-						
			REFB3	REFB2	REFB1	REFB0	Setting Value				
			0	0	0	0	Only non-refresh drive	1			
			0	0	0	1	1	1			
			0	0	1	0	2	1			
			0	0	1	1	3	1			
			0	1	0	0	4	1			
				•		•	·	1			
			1	1	1	0	•	1			
1			1	1	1	0	14	4			
			1	1	1	1	15				

μ**PD161801**

Register	Bit	Symbol					Fund	ction						
R72	D7	DC4	converter c	rcuit of a	power s	upply IC,	is set up.	This clock	k is gener	ated from	ch as a DC/D0 n oscillation d is outputted.			
			DC	4	DC3	PC	CLK Clock	Eroquon	<u>c)</u> /					
			0		0	fosc-		K Flequell	cy					
	D ₆	DC3	0		1	fosc-								
	20	2.00	1		0	fosc-								
			1		1	fosc-								
				'hen outp ircuit (OS		-		LK pin, it i	s necess	ary to ope	erate an oscilla	ation		
D₄ to D	D4 to D0	DSCGn	output of A this flag. Th fixation afte When DSC	SW3, ASV e output r setting p Gn = 000 to L outpu H) and thi	W2 and a of ASW3 period. H setup, ut fixation s timing.	ASW1 an 3, ASW2, , the outp n to a XD	e considere ASW1, ST ut of ASW3 ON output	ed as the l V, CKV, F 3, ASW2, H output	ine perio R and O ASW1, S	d H outpu EV are ca TV, CKV	of RXDON = H ut fixation set u arried out to L , FR and OEV e next frame of	ip wit outp are		
			DSC	G4 DS	CG3 [DSCG2	DSCG1	DSCG0	Settir	ng Line C	ount			
			0	(D	0	0	0	0					
			0	(0	0	0	1	1					
			0	(0	0	1	0	2					
			0	(D	0	1	1	3					
					0		0	1	0	0	4			
			0		0	1	0	1	5					
					:	:	:	:	:					
			1		1	1	1	0	31					
					1	1	1	1	32					
R75	D7 to D0	ADLNn	fixed] + BP For more de	period of etails, refe 2: Only Bl	a frame er to 5.4 . P period	changing 2 1-fran). ne period (timing.			f the FP [2 Line t =	e		
			ADLNn > 3		setting v	-	IP period li		Ū					
					-	-	-	ADLN2	ADLN1	ADLN0	Setting line co	unt		
			ADLNn > 3	ADLNn	setting	value	-		_	ADLN0	Setting line con Setting prohibit			
			ADLNn > 3	ADLNn ADLN6	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1		, i i i i i i i i i i i i i i i i i i i			
			ADLNn > 3 ADLN7 0	ADLNn ADLN6 0	ADLN5	ADLN4	ADLN3	ADLN2	ADLN1	0	Setting prohibit			
			ADLNn > 3 ADLN7 0 0	ADLNn ADLN6 0	ADLN5	ADLN4	ADLN3 0 0	ADLN2 0 0	ADLN1 0 0	0 1	Setting prohibit BP1			
			ADLNn > 3 ADLN7 0 0	ADLNn ADLN6 0 0 0 0 0 0	ADLN5 0 0 0	ADLN4 0 0 0 0 0 0	ADLN3 0 0 0	ADLN2 0 0 0	ADLN1 0 0 1	0 1 0	Setting prohibit BP1 BP2			
			ADLNn > 3 ADLN7 0 0 0 0	ADLNn ADLN6 0 0 0 0 0 0 0 0 0	ADLN5 0 0 0 0	ADLN4 0 0 0 0 0	ADLN3 0 0 0 0	ADLN2 0 0 0 0 1 1	ADLN1 0 0 1 1 0 0	0 1 0 1 0 1	Setting prohibit BP1 BP2 FP2 + BP1 FP2 + BP2 FP2 + BP2 FP2 + BP3			
			ADLNn > 3 ADLN7 0 0 0 0 0 0 0 1 1	ADLN6 0 0 0 0 0 0 0 0 0 :	ADLN5 0	ADLN4 0 0 0 0 0 0 0 0 0 0	ADLN3 0 0 0 0 0 0 0 0 :	ADLN2 0 0 0 0 1 1 :	ADLN1 0 0 1 1 0 0 :	0 1 0 1 0 1 :	Setting prohibit BP1 BP2 FP2 + BP1 FP2 + BP2 FP2 + BP3 :			
			ADLNn > 3 ADLN7 0 0 0 0 0 0 0	ADLNn ADLN6 0 0 0 0 0 0 0 0 0	ADLN5 0 0 0 0 0 0 0 0 0 0 0	ADLN4 0 0 0 0 0 0 0 0	ADLN3 0 0 0 0 0 0 0	ADLN2 0 0 0 0 1 1	ADLN1 0 0 1 1 0 0	0 1 0 1 0 1	Setting prohibit BP1 BP2 FP2 + BP1 FP2 + BP2 FP2 + BP2 FP2 + BP3	ed		

μ**PD161801**

Register	Bit	Symbol					Functio	on	(10/13)				
R76	D4 to D0	ADCKn	perio	The number of clocks set up by this register is inserted as a dummy clock within 1-line drive period. For more details, refer to 5.4.1 1-line period timing .									
				ADCK4	ADCK3	ADCK2	ADCK1	ADCK0	Setting Clock Count				
				0	0	0			Setting prohibited				
				0	0	0	0	1	1				
				0	0	0	1	0	2				
				0	0	0	1	1	3				
				0	0	1	0	0	4				
				0	0	1	0	1	5				
				:	:	:	:	:	:				
				1	1	1	1	0	30				
				1	1	1	1	1	31				
R77	D₅	RSOUT	0: O 1: O Setti	FF (Vss outp N (Normal c ng by this fl	out fixed) operation) ag becomes		om the outp	-	f the following frame after inputted. period timing.				
	D4	RGOE2	0: G 1: G Setti	OE2 (H outp OE2 (L outp ng by this fl	out), RSW, out), RSW, (ag becomes		SW (Norma SW (H fixed om the outp) out timing of) f the following frame after inputted. period timing.				
	D3	RGOE1	Oper 0: 0 1: 0 Setti	ration of gat FF (Vss out N (Normal o ng by this fl	e output en out fixed) operation) ag becomes	able signal i s effective fr	is controlled	l. but timing of	f the following frame after inputted. Deriod timing.				
	D2	RXDON	Ope 0: XI 1: XI Setti	ration of par DON (L outp DON (H out ng by this fl	nel discharg out), ASW1, out), ASW1 ag becomes	e is controll ASW2 and , ASW2 and s effective fr	ed. ASW3 (Noi ASW3 (H f om the outp	rmal operati ixed) out timing of					
	D1	ROEVE	OEV 0: O 1: O Setti	'E output op EVE (L fixed EVE (H fixe ng by this fl	eration is c 1) d) ag becomes	ontrolled. s effective fr	om the outp	out timing of	f the following frame after inputted. Deriod timing.				
	Do	ROEV	0: O 1: O Setti	FF (L outpu N (Normal c ng by this fl	t fixed) operation) ag becomes		om the outp	out timing of	f the following frame after inputted. period timing.				

			•
(1	1	/1	31
('		<i>'</i> '	3)

Register	Bit	Symbol	Function									
R78	D6	RMMSK	The r	mask of the	e data of dis	splay I	RAM is ca	arried out b	oy "0" data.			
			0: All "0" data mask									
			1: RA	AM data en	able (Norm	nal ope	eration)					
	D₅	RMST1	It set	It sets up about operation of power supply supplied to RAM circuit.								
			[RMST1	RMST0	Dis	splay RAN Suppl		Display RAM State			
				0	0		Power C	OFF	RAM data is abandoned	-		
				0	1		Low Po	wer	RAM data maintenance Note	91		
	D4	RMST0		1	0		Power	ON	RAM writing operation is possible Note2	ın is		
			-	1	1	Set	ting prohit	oited				
				d w 2. V	ata need to riting of dis	o be ho splay o	eld. When data).	n normal o	w power consumption and RA peration, do not set up (Displa mode (Display ON, writing of o	y ON,		
	D3	PT1	GSM	[R0] as sh	own in belo	OW.		-	an be selected by setup of PT n-display area driving.	1, PT0 and		
				GSM [R	0] PT	PT1		P	artial Display Operation			
				0	0		0	Normal	partial drive			
	D2	PT0			0		1	_				
					1		0			-		
			-	4	1		1 0		resh drive 1	-		
				1	0 Oth		n above		resh drive 2 prohibited	-		
					Our			Setting	prohibited	1		
	D1	REV	0: No	The gray-scale level of source output is inverted. 0: Normal operation								
D-70		0007		1: Gray-scale inversion output The start timing of the signal outputted from GOE1 (/GOE1) and OEV (/OEV) pin is set up.								
R79	D₅ to D₀	GOSTn	Set u	p in the rai	nge 001H ≤	R79	≤ 026H.			s set up.		
			In addition, prohibited for setting up the same value as R79 and R80.									
R80	D₅ to D₀	GOEDn	The end timing of the signal outputted from GOE1 (/GOE1) and OEV (/OEV) pin is set up.									
					nge 001H ≤							
5.4									as R79 and R80.			
R81	D₅ to D₀	PCSTn	The start timing of the signal outputted from PCP (/PCP), PCN (/PCN) and PC (/PC) pin is set up.									
			Set up in the range $001H \le R81 \le 026H$. In addition, when unused output signal from these pins, set up the same value as R81 and R82.									
D83	De to De	DCEDa		•			<u> </u>					
R82	D₅ to D₀	PCEDn		•	or the signa nge 001H ≤	•			CP), PCN (/PCN) and PC (/PC) pin is set up.		
					-			m these n	ins, set up the same value as l	R81 and R82		
R83	D₅ to D₀	RSTn							ins, set up the same value as f RSW) and ASW1 (/ASW1) pin			
1100	D5 10 D0	N311		•	nge 002H ≤			III INGVV (/I	Novy and Novy I (/Novy I) pill	is set up.		
					-				as $P83$ and $P84$			
			In ad	dition, proh	nibited for s	etting	up the sa	me value	as R83 and R84.			

μ**PD161801**

Register	Bit	Symbol	Function
R84	D₅ to D₀	REDn	The end timing of the signal outputted from RSW (/RSW) and ASW1 (/ASW1) pin is set up.
			Set up in the range $002H \le R84 \le 025H$.
			In addition, prohibited for setting up the same value as R83 and R84.
R85	D₅ to D₀	GSTn	The start timing of the signal outputted from GSW (/GSW) and ASW2 (/ASW2) pin is set up.
			Set up in the range $002H \le R85 \le 025H$.
			In addition, prohibited for setting up the same value as R85 and R86.
R86	D₅ to D₀	GEDn	The end timing of the signal outputted from GSW (/GSW) and ASW2 (/ASW2) pin is set up.
			Set up in the range $002H \le R86 \le 025H$.
			In addition, prohibited for setting up the same value as R85 and R86.
R87	D₅ to D₀	BSTn	The start timing of the signal outputted from BSW (/BSW) and ASW3 (/ASW3) pin is set up.
			Set up in the range $002H \le R87 \le 025H$.
			In addition, prohibited for setting up the same value as R87 and R88.
R88	D ₅ to D ₀	BEDn	The end timing of the signal outputted from BSW (/BSW) and ASW3 (/ASW3) pin is set up.
			Set up in the range $002H \le R88 \le 025H$.
			In addition, prohibited for setting up the same value as R87 and R88.
R89	D ₅ to D ₀	E1STn	The start timing of the signal outputted from EXT1 (/EXT1) pin is set up.
			Set up in the range $001H \le R89 \le 026H$.
			In addition, when unused output signal from these pins, set up the same value as R89 and R90.
			In default, these bits are fixed to EXT1 = L, /EXT1 = H.
R90	D₅ to D₀	E1EDn	The end timing of the signal outputted from EXT1 (/EXT1) pin is set up.
			Set up in the range $001H \le R90 \le 026H$.
			In addition, when unused output signal from these pins, set up the same value as R89 and R90.
R91	D₅ to D₀	E2STn	The start timing of the signal outputted from EXT2 (/EXT2) pin is set up.
			Set up in the range $001H \le R91 \le 026H$.
			In addition, when unused output signal from these pins, set up the same value as R91 and R92.
			In default, these bits are fixed to EXT2 = L, /EXT2 = H.
R92	D₅ to D₀	E2EDn	The end timing of the signal outputted from EXT2 (/EXT2) pin is set up.
			Set up in the range $001H \le R92 \le 026H$.
			In addition, when unused output signal from these pins, set up the same value as R91 and R92.

μ**PD161801**

(13/13)

Register	Bit	Symbol	Function
R93	D ₆	RVCOT	Operation of common timing signal (VCOUT) is controlled.
			0: VCOUT signal and FR signal OFF (L output fixed)
			1: VCOUT signal and FR signal ON (Normal operation)
			Setting by this flag becomes effective from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing.
	Ds	RGBSW	Operation of panel multi-plexus signal (RSW, GSW, BSW) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes effective from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D4	RGSTB	Operation of the strobe signal for gate control (GSTB) is controlled.
			0: OFF (H output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes effective from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D3	RGCLK	Operation of the clock signal for gate control (GCLK) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes effective from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D2	RASW	Operation of panel multi-plexus signal (ASW1, ASW2, ASW3) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes effective from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	D1	RSTV	Operation of the start signal for gate control (STV) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes effective from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
	Do	RCKV	Operation of the clock signal for gate control (CKV) is controlled.
			0: OFF (L output fixed)
			1: ON (Normal operation)
			Setting by this flag becomes effective from the output timing of the following frame after inputted.
			About the change timing of the frame, refer to 5.4.2 1-frame period timing .
R98	D₅ to D₀	-	Be sure to use 005H as the value for this register.

 \star

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C, V_{SS} = 0 V)

Parameter	Symbol	Ratings	Unit
Power supply voltage	Vs	-0.5 to +6.0	V
Power supply voltage	VDD1	-0.5 to +2.2	V
Power supply voltage	VDD2	-0.5 to +2.2	V
Power supply voltage	VDDIO	-0.5 to +4.6	V
Power supply voltage	Vcc1	-0.5 to +4.6	V
γ -correction power supply	V1 to V5	-0.5 to Vs + 0.5	V
Input voltage	VI1	-0.5 to V _{DDIO} + 0.5	V
Input voltage	Vı2	-0.5 to Vcc1 + 0.5	V
Input current	h	±10	mA
Operating ambient temperature	TA	-40 to +85	°C
Storage temperature	Tstg	–55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Power supply voltage	Vs	4.0	5.0	5.5	V
Power supply voltage	VDD1	1.6		2.0	V
Power supply voltage	V _{DD2}	1.6		2.0	V
Power supply voltage	Vddio	1.8		3.3	V
Power supply voltage	Vcc1	2.5		3.3	V
Input voltage	V _{I1} Note1	0		Vddio	V
Input voltage	VI2 Note2	0		Vcc1	V

Notes 1. About pins of VDDIO power supply system: /CS, /RD (E), /WR (R,/W), D0 to D17, RS, /RESET, etc.

2. About pins of Vcc1 power supply system: PSX, C86, TOUT0 to TOUT19, GOE1, GOE2, GSTB, GCLK, TSTRTST, TSTVIHL, etc.

Electrical Specifications (Unless Otherwise Specified, T_A = -40 to +85°C, V_{DD1} = V_{DD2} = 1.6 to 2.0 V,

Vcc1 = 2.5 to 3.3 V, VDDIO = 1.8 to 3.3 V, Vs = 4.0 to 5.5 V)

Parameter	Symbol	Condition	MIN.	TYP. ^{Note1}	MAX.	Unit
High level input voltage	VIH1	νοια	0.8 VDDIO			V
	VIH2	Vcc1	0.8 Vcc1			V
Low level input voltage	VIL1	νοισο			0.2 VDDIO	V
	VIL2	Vcc1			0.2 Vcc1	V
High level output voltage	V _{OH1}	Vddio, Iout = -1 mA	0.8 VDDIO			V
	V _{OH2}	Vcc1, lout = -1 mA	0.8 Vcc1			V
Low level output voltage	V _{OL1}	Vddio, Iout = 1 mA			0.2 VDDIO	V
	Vol2	Vcc1, lout = 1 mA			0.2 Vcc1	V
High level input current	Іін1	Vddio			1	μA
	Іін2	Vcc1			1	μA
Low level input current	lil1	Vddio			–1	μA
	lil2	Vcc1			–1	μA
High level leakage current	Іцн	Do to D17			1	μA
Low level leakage current	ILIL	Do to D17			–1	μA
High level driver output current	Іvон	Vx = 3.5 V, Vout = 3.0 V, Vs = 5.0 V			-25	μA
Low level driver output current	Ivol	Vx = 1.5 V, Vout = 2.0 V, Vs = 5.0 V	25			μA
Current consumption		VDDIO (when non-access CPU)			5	μA
	Icc1	Vcc1 (when non-access CPU)			400	μA
	ISTBY	Vddio			1	μA
		Vcc1 (STBY mode)			50	μA
		Vcc1 (DEEP SLEEP)			200	μA
		Vcc1 (SLEEP mode)			300	μA
	ls	260,000-color mode Note2			1.5	μA
		8-color mode Note2			50	μA
		Stand-by mode			5	μA
Output voltage deviation	ΔVο	Vs = 5.0 V, Vout = 1.65 V Note3			10	mV
		Vs = 5.0 V, Vout = 2.50 V ^{Note3}			10	mV

Notes 1. TYP. values are reference values when $T_A = 25^{\circ}C$

2. Frame frequency: 60 Hz, line inversion mode selection, dot checkerboard input pattern, and no load.

3. Vx: The output voltage of analog output pins Y₁ to Y₂₄₀, V_{OUT}: The application voltage of analog output pins Y₁ to Y₂₄₀.

AC Characteristics (Unless Otherwise Specified, $T_A = -40$ to +85°C, $V_{DD1} = V_{DD2} = 1.6$ to 2.0 V, $V_{CC1} = 2.5$ to 3.3 V, $V_S = 4.0$ to 5.5 V)

(a) RGB interface

Parameter	Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
Dot clock cycle time	tськ		150			ns
Dot clock high level pulse width	tськн		75			ns
Dot clock low level pulse width	t CLKL		75			ns
Data setup time	tos		60			ns
Data hold time	tон		60			ns
HSYNC pulse width	t _{HSW}		1			DOTCLK
Horizon period back porch time	tнвр		1			DOTCLK
VSYNC pulse width	tvsw		1			HS
VSYNC setup time	tvss		60			ns
Vertical period back porch time	tvвр		2			HS

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

- 2. All timing is rated based on 20 to 80% of Vcc1.
- One frame period ≥ VSYNC active period (1 HS) + VBP value (2 HS) + display line count (320 HS) = 323 line period (HS)
- 4. 1 line period HSYNC active period (1 DOTCLK) + HBP value (1 DOTCLK) + display pixel count (240 DOTCLK) = 242 clock period (DOTCLK)

(b) RGB interface capture mode VLD function

Parameter	Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
VLD setup time	tvls		60			ns
VLD hold time	tv∟н		60			ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

(c) i80 series CPU interface

When VDD1 = VDD2 = 1.6 to 2.0 V, Vcc1 = 2.5 to 3.3 V (normal write mode)

Parameter	Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
Address hold time	t AH8	RS	10			ns
Address setup time	t _{AS8}	RS	10			ns
System cycle time (when write)	t сус8W	VSTBY = Low	100			ns
		R98 = 005H				
		VSTBY = High	100			ns
		VDD1 = VDD2 = 1.7 MIN.				
		R98 = 005H				
System cycle time (when read)	t _{CYC8R}		250			ns
Control low-level pulse width (/WR)	tcclw	/WR	25			ns
Control low-level pulse width (/RD)	t CCLR	/RD	140			ns
Control high-level pulse width (/WR)	tсснw	/WR	20			ns
Control high-level pulse width (/RD)	t CCHR	/RD	80			ns
Data setup time	t _{DS8}	Do to D17	25			ns
Data hold time	t _{DH8}	Do to D17	10			ns
/RD access time	t _{ACC8}	D₀ to D₁7, C∟ = 100 pF			140	ns
Output disable time	tонв	D₀ to D₁7, CL = 100 pF	5		140	ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

When VDD1 = VDD2 = 1.6 to 2.0 V, VCC1 = 2.5 to 3.3 V (high-speed RAM write mode, valid only for writing data)

Parameter	Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
Address hold time	t _{AH8}	RS	10			ns
Address setup time	t _{AS8}	RS	10			ns
System cycle time (when write)	t сус8W		65			ns
Control low-level pulse width (/WR)	t CCLW	/WR	25			ns
Control high-level pulse width (/WR)	tсснw	/WR	20			ns
Data setup time	t _{DS8}	Do to D17	25			ns
Data hold time	t _{DH8}	Do to D17	10			ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

(d) M68 series CPU interface

When VDD1 = VDD2 = 1.6 to 2.0 V, Vcc1 = 2.5 to 3.3 V (normal write mode)

Parameter		Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
Address hold time		tан6	RS	10			ns
Address setup time		t _{AS6}	RS	10			ns
System cycle time (when write)		tсүсөw	VSTBY = Low R98 = 005H	100			ns
			VSTBY = High V _{DD1} = V _{DD2} = 1.7 MIN. R98 = 005H	100			ns
System cycle time (when	read)	tcyc6R		250			ns
Data setup time		t _{DS6}	Do to D17	25			ns
Data hold time		t _{DH6}	Do to D17	10			ns
Access time		t _{ACC6}	Do to D17, CL = 100 pF			140	ns
Output disable time		tон6	Do to D17, CL = 100 pF	5		140	ns
Enable high level pulse	Read	tewhr	E	140			ns
width	Write	tewнw	E	35			ns
Enable low level pulse	Read	tewlr	E	80			ns
width	Write	tewlw	E	30			ns

Note TYP. values are reference values when TA = 25°C.

- **Remarks 1.** The rise and fall times (t_r and t_f) of input signals are rated at 15 ns or less. When using a high-speed system cycle time, the rated value range is either (t_r + t_f) < (t_{CYC6} t_{EWLR} t_{EWHR}) or (t_r + t_f) < (t_{CYC6} t_{EWLW} t_{EWHW}).
 - 2. All timing is rated based on 20 to 80% of Vcc1.

	v , v cci – z	o to 5.5 V (mgn-speed IVAN)	write moue	, vana onij		j uuluj
Parameter	Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
Address hold time	t _{AH6}	RS	10			ns
Address setup time	t _{AS6}	RS	10			ns
System cycle time	tcyc6w		80			ns
Data setup time	t _{DS6}	Do to D17	25			ns
Data hold time	t _{DH6}	Do to D17	10			ns
Enable high level pulse width	tewnw	E	35			ns
Enable low level pulse width	tewlw	E	30			ns

When VDD1 = VDD2 = 1.6 to 2.0 V, Vcc1 = 2.5 to 3.3 V (high-speed RAM write mode, valid only for writing data)

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

- **Remarks 1.** The rise and fall times (t_r and t_f) of input signals are rated at 15 ns or less. When using a high-speed system cycle time, the rated value range is either (t_r + t_f) < (t_{CYC6} t_{EWLR} t_{EWHR}) or (t_r + t_f) < (t_{CYC6} t_{EWLW} t_{EWHW}).
 - 2. All timing is rated based on 20 to 80% of Vcc1.

(e) Serial interface

<1> Serial interface between CPU and the μ PD161801

When V_{DD1} = V_{DD2} = 1.6 to 2.0 V, V_{CC1} = 2.5 to 3.3 V

Parameter	Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
Serial clock cycle	tscyc	SCL	150			ns
SCL high level pulse width	tsнw	SCL	60			ns
SCL low level pulse width	tslw	SCL	60			ns
Address hold time	t SAH	RS	90			ns
Address set up time	tsas	RS	90			ns
Data set up time	tsps	SI	60			ns
Data hold time	t SDH	SI	60			ns
CS - SCL time	tcss	/CS	90			ns
	tсsн	/CS	90			ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The rise and fall times (tr and tr) of input signals are rated at 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc1.

<2> Serial interface between the μ PD161801and the μ PD161861

When VDD1 = VDD2 = 1.6 to 2.0 V, Vcc1 = 2.5 to 3.3 V

Parameter	Symbol	Condition	MIN.	TYP. ^{Note}	MAX.	Unit
Serial clock cycle	t PSCYC		2			1/fosc
PCL high level pulse width	t PSHW		1			1/fosc
PCL low level pulse width	t PSLW		1			1/fosc
Data set up time	t PSDS		1			1/fosc
Data hold time	t PSDH		1			1/fosc
$PCL{\downarrow} \to PDA$ output delay time	t PSDD		30			ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The rise and fall times (tr and tr) of input signals are rated at 15 ns or less.

- 2. All timing is rated based on 20 to 80% of Vcc1.
- **3.** fosc is the internal oscillator's oscillation frequency.

(f) Common

Parameter	Symbol	Condition	MIN.	TYP. ^{Note1}	MAX.	Unit
Calibration setting time	tcal	Note2		51.9		μs
(frame frequency)	(fframeo)			(60)		(Hz)
Frame frequency	fframe2	Calibrated Note3		60		Hz
	f FRAME3	Calibrated Note4		60		Hz
Reset pulse width	trw		100			ns
Reset time	tR	/RESET [↑] to interface operation	100			ns

Notes 1. TYP. values are reference values when $T_A = 25^{\circ}C$.

2. The relationship between the frame frequency and the calibration setting time is as follows. $f_{FRAME0} = 1/t_{cal} \times 321$

3. Measured at $T_A = -40$ to +85°C, after calibration at frame frequency = 60 Hz, $T_A = 25$ °C exactly.

4. Measured at ±5°C, after calibration at frame frequency = 60 Hz exactly.

***** 9. THE μ PD161801 AND THE μ PD161861 CONNECTION

Connection diagram examples for the μ PD161801 and the μ PD161861 are show below.

10. EXAMPLE OF THE μ PD161801 AND CPU CONNECTION

Examples of the μ PD161801 and CPU connection are shown below.

In the example below, RS pin control in parallel interface mode is described for the case when the least significant bit of the address bus is being used.

(1) i80 series format

(2) M68 series format

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special", and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics products before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).