The μPA2660T1R is Dual N-channel MOS Field Effect Transistors for switching application. This device features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on.

Features

- **DS MAXIMUM RATINGS 20V(T_A = 25°C)**
- 2.5V drive available
- Low on-state resistance
 - \(R_{DS(on)} = 42 \text{ m\(\Omega \)} \text{ MAX.} (V_{GS} = 4.5 \text{ V}, I_D = 2.0 \text{ A}) \)
 - \(R_{DS(on)} = 62 \text{ m\(\Omega \)} \text{ MAX.} (V_{GS} = 2.5 \text{ V}, I_D = 2.0 \text{ A}) \)
- Built-in gate protection diode
- Lead-free and Halogen-free

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>μPA2660T1R-E2-AX***</td>
<td>6pinHUSON2020(Dual)</td>
</tr>
</tbody>
</table>

Note: *1.Pb-free (This product does not contain Pb in the external electrode and other parts.)

Absolute Maximum Ratings (\(T_A = 25^\circ\text{C}\))

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage ((V_{GS} = 0 \text{ V}))</td>
<td>(V_{DSS})</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Voltage ((V_{DS} = 0 \text{ V}))</td>
<td>(V_{GSS})</td>
<td>±12</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current (DC)</td>
<td>(I_{D(DC)})</td>
<td>±4.0</td>
<td>A</td>
</tr>
<tr>
<td>Drain Current (pulse)***</td>
<td>(I_{D(pulse)})</td>
<td>±16</td>
<td>A</td>
</tr>
<tr>
<td>Total Power Dissipation (1 unit, 5 s)**</td>
<td>(P_{T1})</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>Total Power Dissipation (2 units, 5 s)**</td>
<td>(P_{T2})</td>
<td>2.3</td>
<td>W</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>(T_{ch})</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{STG})</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes: *1. PW≤10 \(\mu\text{s}\), Duty Cycles≤1%
*2. Mounted on glass epoxy board of 25.4mm x 25.4mm x 0.8mm

Caution: This product is electrostatic-sensitive device due to low ESD capability and should be handled with caution for electrostatic discharge.

\[V_{ESD} = \pm 400 \text{V MIN.} \text{ (} C = 100pF, R = 1.5K\Omega \text{) } \]
Electrical Characteristics (TA = 25°C)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DSS</td>
<td>1.0</td>
<td>μA</td>
<td></td>
<td></td>
<td>V_DS = 20 V, V_GS = 0 V</td>
</tr>
<tr>
<td>Gate Leakage Current</td>
<td>I_GSS</td>
<td>±10</td>
<td>μA</td>
<td></td>
<td></td>
<td>V_GS = ±10 V, V_DS = 0 V</td>
</tr>
<tr>
<td>Gate Cut-off Voltage</td>
<td>V_GS(off)</td>
<td>0.5</td>
<td></td>
<td>1.5</td>
<td>V</td>
<td>V_DS = 10 V, I_D = 1 mA</td>
</tr>
<tr>
<td>Forward Transfer Admittance**1</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
<td>V_DS = 10 V, I_D = 2.0 A</td>
</tr>
<tr>
<td>Drain to Source On-state Resistance**1</td>
<td>R_D(on)1</td>
<td>33</td>
<td>42</td>
<td>mΩ</td>
<td>V_GS = 4.5 V, I_D = 2.0 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_D(on)2</td>
<td>43</td>
<td>62</td>
<td>mΩ</td>
<td>V_GS = 2.5 V, I_D = 2.0 A</td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_DSS</td>
<td>330</td>
<td></td>
<td>pF</td>
<td>V_DS = 10 V, V_GS = 0 V, f = 1.0 MHz</td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_DSS</td>
<td>66</td>
<td></td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_DSS</td>
<td>38</td>
<td></td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on Delay Time</td>
<td>t_d(on)</td>
<td>12</td>
<td></td>
<td>ns</td>
<td>I_D = 2.0 A, V_DD = 10 V, V_GS = 4.5 V, R_G = 6 Ω</td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>6.4</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off Delay Time</td>
<td>t_d(off)</td>
<td>27</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>6.6</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_G</td>
<td>4.5</td>
<td></td>
<td>nC</td>
<td>I_F = 4.0 A, V_DD = 16 V, V_GS = 10 V</td>
<td></td>
</tr>
<tr>
<td>Gate to Source Charge</td>
<td>Q_GS</td>
<td>1.0</td>
<td></td>
<td>nC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate to Drain Charge</td>
<td>Q_GD</td>
<td>1.5</td>
<td></td>
<td>nC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Diode Forward Voltage**1</td>
<td>V_F(S-D)</td>
<td>1.5</td>
<td></td>
<td>V</td>
<td>I_F = 4.0 A, V_GS = 0 V</td>
<td></td>
</tr>
</tbody>
</table>

Note: **1. Pulsed

TEST CIRCUIT 1 SWITCHING TIME

![TEST CIRCUIT 1 SWITCHING TIME Diagram]

TEST CIRCUIT 2 GATE CHARGE

![TEST CIRCUIT 2 GATE CHARGE Diagram]
Typical Characteristics (T_A = 25°C)

DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

- **T_A - Ambient Temperature - °C**
- **dT - Percentage of Rated Power - %**
- **0 20 40 60 80 100 120 140**
- **0 25 50 75 100 125 150 175**

TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE

- **P_T - Total Power Dissipation - W**
- **V_T - Total Power Dissipation - °C/W**
- **0 20 40 60 80 100 120 140**
- **0 25 50 75 100 125 150 175**

FORWARD BIAS SAFE OPERATING AREA

- **I_D - Drain Current - A**
- **0.01 0.1 1 10 100**
- **0.01 0.1 1 10 100**

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

- **R_{th(t)} - Transient Thermal Resistance - °C/W**
- **0.01 0.1 1 10 100 1000**
- **PW - Pulse Width - s**
- **100 μs 1 m 10 m 100 m 1 s 10 s 100 s 1000 s**

VDS - Drain to Source Voltage - V

- Mounted on a glass epoxy board of 25.4 mm x 25.4 mm x 0.8 mm thickness

Power Dissipation Limited

- Single Pulse
- PW=5sec

R_{th(ch-A)}:

- Single Pulse
- Mounted on a glass epoxy board of 25.4 mm x 25.4 mm x 0.8 mm thickness

R_{th(ch-A)} = 83.3 °C/W (1 unit, 5s)

R_{th(ch-A)} = 54.3 °C/W (2 units, 5s)
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

Graph showing the relationship between drain current (I_D) and drain to source voltage (V_DS) with V_GS = 4.5V and 2.5V.

GATE TO SOURCE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE

Graph showing the relationship between gate to source cut-off voltage (V_GS(off)) and channel temperature (T_ch) with V_DS = 10V.

FORWARD TRANSFER CHARACTERISTICS

Graph showing the relationship between gate to source voltage (V_GS) and drain current (I_D) with V_DS = 10V and Pulsed.

FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT

Graph showing the relationship between forward transfer admittance (y_f) and drain current (I_D) with V_DS = 10V and Pulsed.

DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT

Graph showing the relationship between drain to source on-state resistance (R_DDS(on)) and drain current (I_D) with Pulsed.

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

Graph showing the relationship between drain to source on-state resistance (R_DDS(on)) and gate to source voltage (V_GS) with I_D = 2.0A and Pulsed.
DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE

CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE

SWITCHING CHARACTERISTICS

DYNAMIC INPUT/OUTPUT CHARACTERISTICS

SOURCE TO DRAIN DIODE FORWARD VOLTAGE
Package Drawings (Unit: mm)

6pinHUSON2020

RENESAS Package code: PWSN0006JD-A

Equivalent Circuit

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any inaccuracies incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No licenses, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 “Standard” Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

 “High Quality” Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crim systems; and safety equipment etc.

6. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support systems or systems, surgical implants etc.) or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

7. Although Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunction or damage arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. In the event of your noncompliance with applicable laws and regulations, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

11. The document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. You may not use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunction or damage arising out of the use of Renesas Electronics products beyond such specified ranges.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.