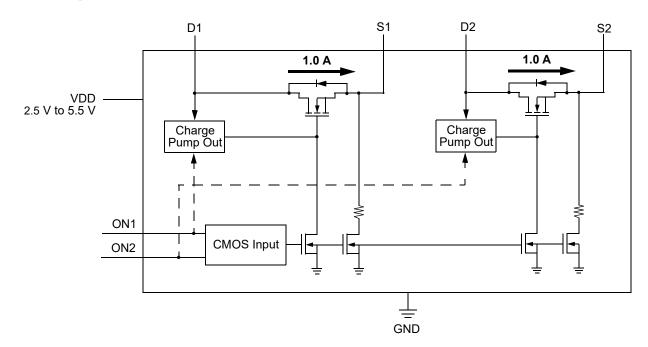

General Description

The SLG59M1512V is designed for load switching applications. The part comes with two 80 m Ω 1.0 A rated MOSFETs, each controlled by an ON control pin. Each MOSFET's ramp rate is adjustable depending on the input current level of the ON pin. The product is packaged in an ultra-small 1.6 x 1.0 mm package.

Features

- Two 80 mΩ 1.0 A MOSFETs
- · Two integrated VGS Charge Pumps
- · User selectable ramp rate with external resistor
- · Protected by thermal shutdown
- · Integrated Discharge Resistor
- · Pb-Free / Halogen-Free / RoHS compliant
- STDFN 8L, 1.0 x 1.6 mm

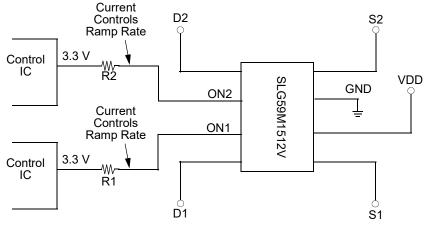

Pin Configuration

Applications

- · Power-Rail Switching:
 - Notebook/Laptop/Tablet PCs
 - Smartphones/Wireless Handsets
 - · High-definition Digital Cameras
 - · Set-top Boxes
- · Point of Sales Pins
- GPS Navigation Devices

Block Diagram

Pin Description


Pin#	Pin Name	Туре	Pin Description
1	D2	MOSFET	Drain/Input terminal of Power MOSFET Channel 2. Connect a 10 µF (or larger) low ESR capacitor from this pin to GND. Capacitors used at D2 should be rated at 10 V or higher.
2	ON2	Input	A low-to-high transition on this pin closes the Channel 2 of load switch. ON is an asserted-HIGH, level-sensitive CMOS input with ON_V $_{\rm IL}$ < 0.3 V and ON_V $_{\rm IH_INI}$ > 1.2 V. Connect this pin to the output of a general-purpose output (GPO) from a microcontroller or other application processor. A resistor connected in series to ON2 signal sets the V $_{\rm S2}$ Slew Rate. Please read more information on Adjustable Slew Rate description.
3	ON1	Input	A low-to-high transition on this pin closes the Channel 1 of load switch. ON is an asserted-HIGH, level-sensitive CMOS input with ON_V _{IL} < 0.3 V and ON_V _{IH_INI} > 1.2 V. Connect this pin to the output of a general-purpose output (GPO) from a microcontroller or other application processor. A resistor connected in series to ON1 signal sets the V _{S1} Slew Rate. Please read more information on Adjustable Slew Rate description.
4	D1	MOSFET	Drain/Input terminal of Power MOSFET Channel 1. Connect a 10 µF (or larger) low ESR capacitor from this pin to GND. Capacitors used at D1 should be rated at 10 V or higher.
5	S1	MOSFET	Source/Output terminal of Power MOSFET Channel1. Connect a 10 µF (or larger) low ESR capacitor from this pin to GND. Capacitors used at S1 should be rated at 10 V or higher.
6	VDD	PWR	VDD supplies the power for the operation of the load switch and internal control circuitry where its range is $2.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$. Bypass the VDD pin to GND with a $0.1 \mu\text{F}$ (or larger) capacitor.
7	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.
8	S2	MOSFET	Source/Output terminal of Power MOSFET Channel2. Connect a 10 μ F (or larger) low ESR capacitor from this pin to GND. Capacitors used at S2 should be rated at 10 V or higher.

Ordering Information

Part Number	Туре	Production Flow
SLG59M1512V	STDFN 8L	Industrial, -40 °C to 85 °C
SLG59M1512VTR	STDFN 8L (Tape and Reel)	Industrial, -40 °C to 85 °C

Application Diagram

Adjustable Ramp Rate vs. ON Pin Current (5.5 V, 25 °C)

ON Pin Current	V _{S(SR)} (typ)
20 μΑ	0.56 V/ms
50 μA	1.34 V/ms
100 μΑ	2.53 V/ms
150 μΑ	3.71 V/ms
200 μΑ	4.68 V/ms
250 μΑ	5.63 V/ms

Adjustable Slew Rate (ON2 Pin 2 and ON1 Pin3)

SLG59M1512V has a built in configurable slew control feature. The configurable slew control uses current detection method on ON1/ON2. When ON voltage rises above ON_{VIH_INI} (1.2 V typical), the slew control circuit will measure the current flowing into ON1/ON2. Based on the current flowing into ON1/ON2, different slew rates will be selected by the internal control circuit. See ON Pin Curent vs. $V_{S(SR)}$ table. The slew rate is configurable by selecting a different R1/R2 resistor value as shown on application diagram. Calculating the R1/R2 value depends on both the desired slew rate, and the V_{OH} level of the device driving the ON1/ON2 pin.

ON Pin Current = (GPIO_V_{OH} - ON_V_{REF} (1.05 V typical)) / R

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage				6	V
T _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000			V
ESD _{CDM}	ESD Protection	Charged Device Model	1000			V
MSL	Moisture Sensitivity Level			,	1	
θ_{JA}	Thermal Resistance,	1 x 1.6mm STDFN; Determined using 1 in ² , 1 oz. copper pads under each Dx and Sx terminal and FR4 pcb material		72		°C/W
W _{DIS}	Package Power Dissipation			-	0.4	W
MOSFET IDS _{PK}	Peak Current from Drain to Source	For no more than 1 ms with 1% duty cycle		-	1.5	Α

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

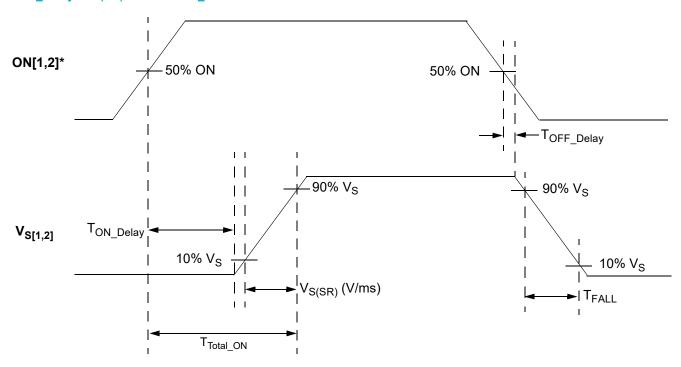
Electrical Characteristics

 T_A = -40 °C to 85 °C (unless otherwise stated)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage	Pin 6	2.5		5.5	V
V _{D1}	Load Switch Input Voltage of Channel 1	Pin 4	0.85		V _{DD}	V
V _{D2}	Load Switch Input Voltage of Channel 2	Pin 1	0.85		V _{DD}	V
1	Power Supply Current (PIN 6)	when OFF		0.1	1	μA
I _{DD}	Power Supply Current (File 6)	when ON, No load		35	50	μA
		T _A = 25 °C, I _{DS} = 100 mA		80	100	mΩ
RDS _{ON[1,2]}	ON Resistance	T _A = 70 °C, I _{DS} = 100 mA		100	110	mΩ
		T _A = 85 °C, I _{DS} = 100 mA		110	120	mΩ
MOSFET IDS	Current from D[1,2] to S[1,2]	Continuous			1.0	Α
T _{ON_Delay}	ON Delay Time	50% ON to $V_{S[1,2]}$ Ramp Start; ON Pin Current (PIN2, PIN3) = 20 μ A; $V_{DD} = V_{D[1,2]} = 5$ V; $C_{LOAD} = 10$ μ F; $R_{LOAD} = 20$ Ω		2.4	4.0	ms
		50% ON to 90% V _{S[1,2]}	Configurable ¹			ms
T _{Total_ON}	Total Turn On Time	Example: ON Pin Current (PIN2, PIN3) = 20 μ A; $V_{DD} = V_{D[1,2]} = 5$ V; $C_{LOAD} = 10$ μ F; $R_{LOAD} = 20$ Ω		11.7		ms
		10% V _{S[1,2]} to 90% V _{S[1,2]}	Co	onfigurable ¹		V/ms
V _{S(SR)}	V _{S[1,2]} Slew Rate	Example: ON Pin Current (PIN2, PIN3) = 20 μ A; $V_{DD} = V_{D[1,2]} = 5$ V; $C_{LOAD} = 10$ μ F; $R_{LOAD} = 20$ Ω		0.56		V/ms
R _{DISCHRG}	Discharge Resistance	V_{DD} = 2.5 V to 5.5 V; $V_{S[1,2]}$ = 0.4 V Input bias	100	150	300	Ω

Datasheet Revision 1.06 2-Feb-2022

Electrical Characteristics (continued)

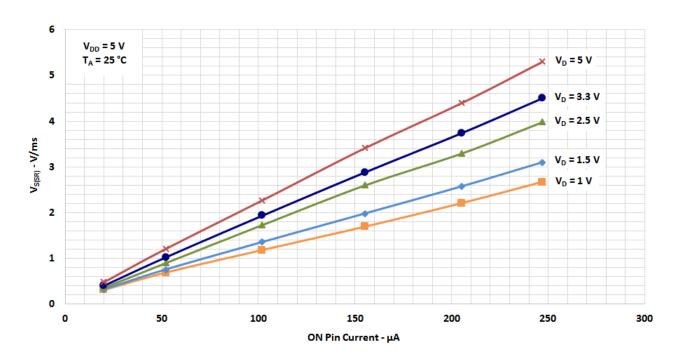

 $T_A = -40 \, ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ (unless otherwise stated)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
C _{LOAD}	Output Load Capacitance	C _{LOAD} connected from S[1,2] to GND			100	μF
ON_V _{REF}	ON Pin Reference Voltage ²		0.99	1.05	1.10	V
ON_V _{IH_INI}	Initial Turn On Voltage	Internal Charge Pump ON	1.2		V_{DD}	V
ON_V _{IL}	Low Input Voltage on ON pin	Internal Charge Pump OFF	-0.3	0	0.3	V
ON_R	Input Impedance on ON pin		100			МΩ
THERMON	Thermal shutoff turn-on temperature			125		°C
THERMOFF	Thermal shutoff turn-off temperature			100		°C
THERM _{TIME}	Thermal shutoff time				1	ms
T _{OFF_Delay}	OFF Delay Time	50% ON to $V_{S[1,2]}$ Fall Start; $V_{D[1,2]}$ = 5 V; R_{LOAD} = 20 Ω ; no C_{LOAD}	-	55	70	μs
T _{FALL}	V _{S[1,2]} Fall Time	90% $V_{S[1,2]}$ to 10% $V_{S[1,2]}$; $V_{D[1,2]} = 5$ V; $R_{LOAD} = 20 \Omega$; no C_{LOAD}		32		μs

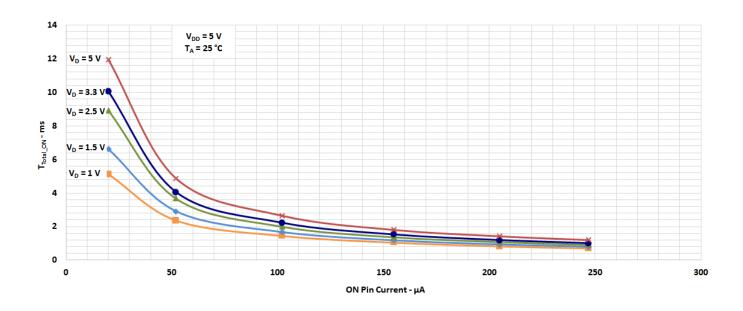
Notes:

- 1. Refer to table for configuration details.
- 2. Voltage before ON pin resistor needs to be higher than 1.2 V to generate required I_{ON}

$T_{ON_Delay},\,V_{S(SR)},\,and\,T_{Total_ON}$ Timing Details



*Rise and Fall Times of the ON Signal are 100 ns



Typical Performance Characteristics

Slew Rate vs. ON Current

T_{Total_ON} vs. ON Current

Power Dissipation

The junction temperature of the SLG59M1512V depends on factors such as board layout, ambient temperature, external air flow over the package, load current, and the RDS_{ON}-generated voltage drop across each power MOSFET. While the primary contributor to the increase in the junction temperature of the SLG59M1512V is the power dissipation of its power MOSFETs, its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$PD_{TOTAL} = (RDS_{ON1} \times I_{DS1}^{2}) + (RDS_{ON2} \times I_{DS2}^{2})$$

where:

PD_{TOTAL} = Total package power dissipation, in Watts (W)

 $RDS_{ON[1,2]}$ = Channel 1 and Channel 2 Power MOSFET ON resistance, in Ohms (Ω), respectively

 $I_{DS[1,2]}$ = Channel 1 and Channel 2 Output current, in Amps (A), respectively

$$T_{II} = PD_{TOTAI} \times \theta_{IA} + T_{A}$$

where:

T_J = Die junction temperature, in Celsius degrees (°C)

 θ_{JA} = Package thermal resistance, in Celsius degrees per Watt (°C/W) – highly dependent on pcb layout

T_A = Ambient temperature, in Celsius degrees (°C)

In nominal operating mode, the SLG59M1512V's power dissipation can also be calculated by taking into account the voltage drop across each switch $(V_{Dx} - V_{Sx})$ and the magnitude of that channel's output current (I_{DSx}) :

$$PD_{TOTAL} = [(V_{D1}-V_{S1}) \times I_{DS1}] + [(V_{D2}-V_{S2}) \times I_{DS2}] \text{ or}$$

$$PD_{TOTAL} = [(V_{D1} - (R_{LOAD1} \times I_{DS1})) \times I_{DS1}] + [(V_{D2} - (R_{LOAD2} \times I_{DS2})) \times I_{DS2}]$$

where:

PD_{TOTAL} = Total package power dissipation, in Watts (W)

V_{D[1,2]} = Channel 1 and Channel 2 Input Voltage, in Volts (V), respectively

 $R_{LOAD[1,2]}$ = Channel 1 and Channel 2 Output Load Resistance, in Ohms (Ω), respectively

I_{DS[1,2]} = Channel 1 and Channel 2 output current, in Amps (A), respectively

 $V_{S[1,2]}$ = Channel 1 and Channel 2 output voltage, or $R_{LOAD[1,2]}$ x $I_{DS[1,2]}$, respectively

Layout Guidelines:

- The VDD pin needs a 0.1 μF external capacitor to smooth pulses from the power supply. Locate this capacitor as close as possible to the SLG59M1512V's PIN6.
- 2. Since the D1, D2, S1 and S2 pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils (0.381 mm) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
- To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input C_{IN} and output C_{LOAD} low-ESR capacitors as close as possible to the SLG59M1512V's D1, D2, S1 and S2 pins;
- 4. The GND pin should be connected to system analog or power ground plane.
- 5. 2 oz. copper is recommended for high current operation.

SLG59M1512V Evaluation Board:

A GreenFET Evaluation Board for SLG59M1512V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS_{ON} evaluation.

Please solder your SLG59M1512V here

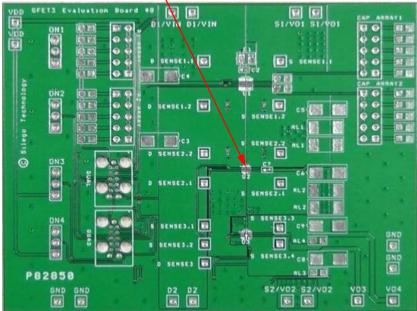


Figure 1. SLG59M1512V Evaluation Board.

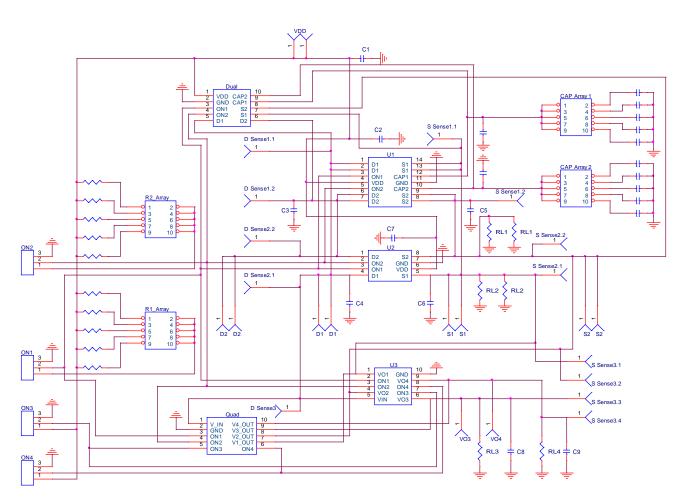
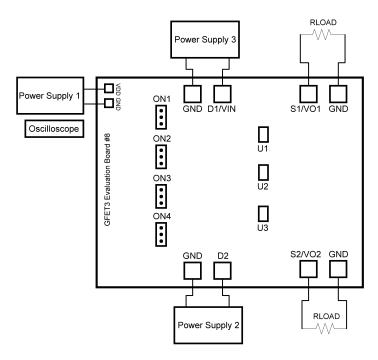
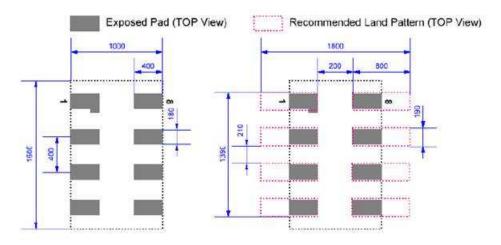


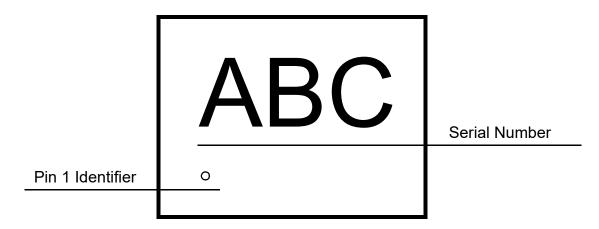
Figure 2. SLG59M1512V Evaluation Board Connection Circuit.

Basic Test Setup and Connections



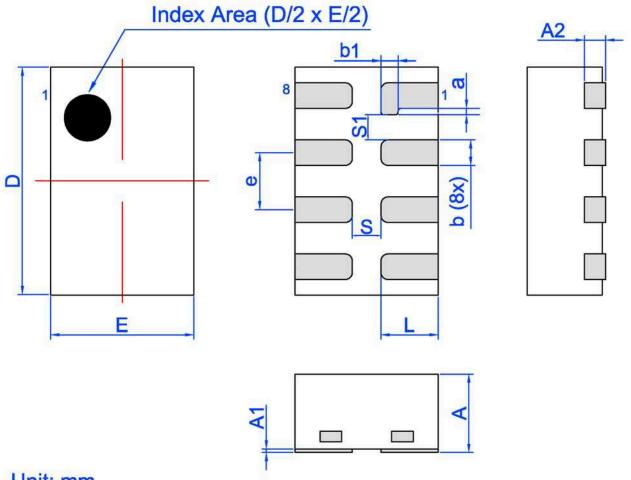

Figure 3. Typical connections for GreenFET Evaluation.

EVB Configuration


- 1. Connect oscilloscope probes to D1/VIN, D2, S1/VO1, S2/VO2, ON1, ON2 etc.;
- 2.Turn on Power Supply 1 and set desired V_{DD} from 2.5 V...5.5 V range;
- 3. Turn on Power Supply 2, 3 and set desired $V_{D[1,2]}$ from 0.85 $V...V_{DD}$ range;
- 4.Toggle the ON[1,2] signal High or Low to observe SLG59M1512V operation.

SLG59M1512V Layout Suggestion

Package Top Marking System Definition



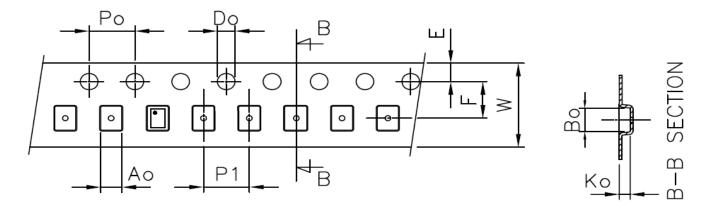
ABC - 3 alphanumeric Part Serial Number where A, B, or C can be A-Z and 0-9

Package Drawing and Dimensions

8 Lead STDFN Package 1.0 x 1.6 mm

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	-	0.060	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	S		0.2 REF	
b1	0.17	0.19	0.20	a	0.04	0.05	0.06
е	(0.40 BSC		S1		0.175 RE	F



Tape and Reel Specifications

Dookogo	# of	Nominal	Nominal Max Units		Reel &	Leader (min)		Trailer (min)		Tape	Part
Package Type	Pins	Package Size [mm]	per Reel	per Box	per Box Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STDFN 8L 1x1.6mm 0.4P Green		1.0 x 1.6 x 0.55	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Cen- ter	Tape Width
	A0	В0	K0	P0	P1	D0	E	F	W
STDFN 8L 1x1.6mm 0.4P Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 0.88 mm³ (nominal). More information can be found at www.jedec.org.

SLG59M1512V

Ultra-small Dual 80 mΩ, 1.0 A Load Switch with Discharge

Revision History

Date	Version	Change
2/2/2022 1.07		Updated Company name and logo Fixed typos
9/13/2019	1.06	Added Layout Guidelines Fixed typos
9/27/2018	1.05	Updated POD
9/17/2018	1.04	Updated style and formatting Updated Charts Added Power Dissipation
12/4/2015	1.03	Updated Block Diagram

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.