RJK1002DPN-A0
N-Channel MOSFET
100 V, 70 A, 7.6 mΩ

Features
- High speed switching
- Low drive current
- Low on-resistance $R_{DS(on)} = 6.0 \text{ mΩ}$ typ. (at $V_{GS} = 10 \text{ V}$)
- Package TO-220ABA
- Quality Grade: Standard

Outline

RENESAS Package code: PRSS0004AT-A
(Package name: TO-220ABA)

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source voltage</td>
<td>V_{DSS}</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>Gate to source voltage</td>
<td>V_{GSS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Drain current</td>
<td>I_D</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Drain peak current</td>
<td>$I_{D\text{ (pulse)}}$</td>
<td>210</td>
<td>A</td>
</tr>
<tr>
<td>Body-drain diode reverse drain current</td>
<td>I_{DR}</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche current</td>
<td>I_{AR}</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>E_{AR}</td>
<td>123</td>
<td>mJ</td>
</tr>
<tr>
<td>Channel dissipation</td>
<td>P_{ch}</td>
<td>150</td>
<td>W</td>
</tr>
<tr>
<td>Channel temperature</td>
<td>T_{ch}</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: Continuous heavy condition (e.g. high temperature/voltage/current or high variation of temperature) may affect a reliability even if it is within the absolute maximum ratings. Please consider derating condition for appropriate reliability in reference Renesas Semiconductor Reliability Handbook (Recommendation for Handling and Usage of Semiconductor Devices) and individual reliability data.

Notes:
1. $T_c = 25\degree \text{ C}$
2. $PW \leq 10 \mu\text{s}$, duty cycle $\leq 1\%$
3. Value at $L = 100 \mu\text{H}$, $T_{ch} = 25\degree \text{ C}$, $R_g \geq 50 \Omega$,
Thermal Impedance

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Max. Value</th>
<th>Note</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel to case thermal impedance</td>
<td>θ_{ch-c}</td>
<td>0.83</td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes: 4. This data is the designed target maximum value on Renesas’s measurement condition. (Not tested)

Electrical Characteristics

(Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source breakdown voltage</td>
<td>$V_{BR(DSS)}$</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_D = 10mA, V_{GS} = 0$</td>
</tr>
<tr>
<td>Gate to source leak current</td>
<td>I_{DS}</td>
<td>—</td>
<td>—</td>
<td>±0.1</td>
<td>μA</td>
<td>$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>I_{DS}</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>μA</td>
<td>$V_{DS} = 100 \text{ V}, V_{GS} = 0$</td>
</tr>
<tr>
<td>Gate to source cutoff voltage</td>
<td>$V_{GS(off)}$</td>
<td>2.0</td>
<td>—</td>
<td>4.0</td>
<td>V</td>
<td>$V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA}$</td>
</tr>
<tr>
<td>Static drain to source on state resistance</td>
<td>$R_{DS(on)}$</td>
<td>—</td>
<td>6.0</td>
<td>7.6</td>
<td>mΩ</td>
<td>$I_D = 35 \text{ A}, V_{GS} = 10 \text{ V}$ Note5</td>
</tr>
<tr>
<td>Forward transfer admittance</td>
<td>$</td>
<td>y_{fs}</td>
<td>$</td>
<td>—</td>
<td>135</td>
<td>—</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>—</td>
<td>6450</td>
<td>—</td>
<td>pF</td>
<td>$V_{DS} = 10 \text{ V}$</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>—</td>
<td>1000</td>
<td>—</td>
<td>pF</td>
<td>$V_{GS} = 0$</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td>—</td>
<td>240</td>
<td>—</td>
<td>pF</td>
<td>$f = 1 \text{ MHz}$</td>
</tr>
<tr>
<td>Gate Resistance</td>
<td>R_g</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>Ω</td>
<td>$V_{DD} = 50 \text{ V}$</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_g</td>
<td>—</td>
<td>94</td>
<td>—</td>
<td>nC</td>
<td>$V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>Q_{gs}</td>
<td>—</td>
<td>33</td>
<td>—</td>
<td>nC</td>
<td>$V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>Q_{gd}</td>
<td>—</td>
<td>19</td>
<td>—</td>
<td>nC</td>
<td>$V_{DD} = 30 \text{ V}$, $R_g = 4.7 \Omega$</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>ns</td>
<td>$V_{GS} = 10 \text{ V}$</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>ns</td>
<td>$I_D = 35 \text{ A}$</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>ns</td>
<td>$V_{DD} = 30 \text{ V}$</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>ns</td>
<td>$R_g = 4.7 \Omega$</td>
</tr>
<tr>
<td>Body-drain diode forward voltage</td>
<td>V_{DF}</td>
<td>—</td>
<td>0.85</td>
<td>1.5</td>
<td>V</td>
<td>$I_r = 70 \text{ A}, V_{GS} = 0$ Note5</td>
</tr>
<tr>
<td>Body-drain diode reverse recovery time</td>
<td>t_{rr}</td>
<td>—</td>
<td>65</td>
<td>—</td>
<td>ns</td>
<td>$I_r = 70 \text{ A}, V_{GS} = 0$, $di_r/dt = 100 \text{ A/µs}$</td>
</tr>
</tbody>
</table>

Notes: 5. Pulse test
Typical Characteristics

Power vs. Temperature Derating

Case Temperature $T_c \; (^\circ C)$ vs. Channel Dissipation P_{ch} (W)

Maximum Safe Operation Area

Drain to Source Voltage V_{DS} (V) vs. Drain Current I_D (A)

Typical Output Characteristics

Drain to Source Voltage V_{DS} (V) vs. Drain Current I_D (A)

Typical Transfer Characteristics

Gate to Source Voltage V_{GS} (V) vs. Drain Current I_D (A)

Drain to Source Saturation Voltage vs. Gate to Source Voltage

Gate to Source Voltage V_{GS} (V) vs. Drain to Source Saturation Voltage $V_{DS(on)}$ (mV)

Drain to Source on State Resistance vs. Drain Current

Drain Current I_D (A) vs. Drain to Source on State Resistance $R_{DS(on)}$ (mΩ)

Notes:

6. Designed target value on Renesas measurement condition.

7. This data is the designed value on Renesas’s measurement condition. Renesas recommends that operating conditions are designed according to a document “Power MOSFET/IGBT Attention of Handling Semiconductor Devices (R07ZZ0010)”.
Drain to Source on State Resistance vs. Temperature

- Pulse Test
- $V_{DS} = 10 \, \text{V}$
- $I_D = 35 \, \text{A}$

Typical Capacitance vs. Drain to Source Voltage

- $V_{GS} = 0$
- $f = 1 \, \text{MHz}$

Dynamic Input Characteristics

- $I_D = 35 \, \text{A}$
- $V_{DD} = 10 \, \text{V}$
- $25 \, \text{V}$
- $50 \, \text{V}$

Reverse Drain Current vs. Source to Drain Voltage

- Pulse Test
- $V_{GS} = 0 \, \text{V}$

Maximum Avalanche Energy vs. Channel Temperature Derating

- $I_{MP} = 35 \, \text{A}$
- $V_{DD} = 50 \, \text{V}$
- duty < 0.1%
- $R_g \geq 50 \, \Omega$
Notes: 8. This data is the designed target maximum value on Renesas’s measurement condition.
Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEDEC Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS (Typ) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-220ABA</td>
<td>TO-220AB</td>
<td>PRSS0004AT-A</td>
<td>TO-220ABA</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Unit: mm

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Quantity</th>
<th>Shipping Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJK1002DPN-A0-T2</td>
<td>50 pcs</td>
<td>Magazine (Tube)</td>
</tr>
</tbody>
</table>

Note: The symbol of 2nd "-" is occasionally presented as "#".
SALES OFFICES
Renesas Electronics Corporation
www.renesas.com

Refer to “http://www.renesas.com” for the latest and detailed information.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against liability for infringement on any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall bear all liability and expense for the use of Renesas Electronics products, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality.” The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

6. Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation design. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. You are responsible for ensuring that you have the necessary permits and approvals to import Renesas Electronics products into any country.

10. It is the responsibility of the buyer of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party of the terms and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product” means any product developed or manufactured by or for Renesas Electronics.

以下“注意事项”为从英语原稿翻译的中文译文，仅为参考译文，英文版的“Notice”具有正式效力。

注意事项

1. 本产品所描述的电路、软件和其他相关信息，仅用于说明半导体产品的操作和应用实例，具体的产晶规格和性能由用户根据本文件中的信息进行判断，所有软件和相关信息内容不用于其目的时，请由您自己对，对

2. 如果您计划将本文档中的电路或软件用于产品中，请确保在使用前仔细阅读相关的电路、软件、应用指南及操作手册等。

3. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

4. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

5. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

6. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

7. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

8. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

9. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

10. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

11. 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、软件和相关信息或将此内容用于其他目的时，需自行负责。

12. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

13. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

14. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

15. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

16. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

17. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

18. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

19. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

20. 本文档中所记载的关于电路、software和其他相关信息仅用于说明半导体产品的操作和应用实例。用户如果在产品或系统设计中应用本文档中的电路、software和其他相关信息或将此内容用于其他目的时，需自行负责。

(Rev 4.0-1 November 2017)