Features

- Low collector to emitter saturation voltage
 \(V_{CE(sat)} = 1.8 \text{ V typ.} \) at \(I_C = 40 \text{ A}, V_{GE} = 15 \text{ V}, T_a = 25^\circ \text{C} \)
- Built in fast recovery diode in one package
- Trench gate and thin wafer technology (G7H series)
- High speed switching
 \(t_r = 45 \text{ ns typ.} \) at \(V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, I_C = 40 \text{ A}, R_g = 10 \Omega, T_a = 25^\circ \text{C}, \) inductive load
- Operation frequency \(20kHz \leq f < 100kHz \)
- Not guarantee short circuit withstand time

Outline

RENESAS Package code: PRSS0003ZH-A
(Package name: TO-247A)

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector to emitter voltage / diode reverse voltage</td>
<td>(V_{CES} / V_R)</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Gate to emitter voltage</td>
<td>(V_{GES})</td>
<td>(\pm 30)</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(T_c = 25^\circ \text{C}) (I_C)</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Collector current</td>
<td>(T_c = 100^\circ \text{C}) (I_C)</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Collector peak current</td>
<td>(I_{C(peak)}) Note1</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Collector to emitter diode forward current</td>
<td>(T_c = 25^\circ \text{C}) (I_{DF})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Collector to emitter diode forward peak current</td>
<td>(T_c = 100^\circ \text{C}) (I_{DF})</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>Collector dissipation</td>
<td>(P_C)</td>
<td>340.9</td>
<td>W</td>
</tr>
<tr>
<td>Junction to case thermal impedance (IGBT)</td>
<td>(\theta_{jc})</td>
<td>0.44</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to case thermal resistance (Diode)</td>
<td>(\theta_{jcd})</td>
<td>1.33</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>(T_{J}) Note2</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td>–55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. \(PW \leq 10 \mu s, \) duty cycle \(\leq 1\% \)
2. Please use this device in the thermal conditions which the junction temperature does not exceed 175°C.
 Renesas IGBT Application Note is disclosed about reliability test and application condition up to 175°C.
Electrical Characteristics

\((Ta = 25\, ^\circ C) \)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero gate voltage collector current</td>
<td>(I_{CES} / I_R)</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>(\mu A)</td>
<td>(V_{GE} = 650 , V, , V_{GE} = 0)</td>
</tr>
<tr>
<td>Gate to emitter leak current</td>
<td>(I_{GES})</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>(\mu A)</td>
<td>(V_{GE} = \pm 30 , V, , V_{CE} = 0)</td>
</tr>
<tr>
<td>Gate to emitter cutoff voltage</td>
<td>(V_{GE(off)})</td>
<td>4.0</td>
<td>—</td>
<td>7.0</td>
<td>(V)</td>
<td>(V_{CE} = 10V, , I_C = 1.33 , mA)</td>
</tr>
<tr>
<td>Collector to emitter saturation voltage</td>
<td>(V_{CE(sat)})</td>
<td>—</td>
<td>1.8</td>
<td>2.4</td>
<td>(V)</td>
<td>(I_C = 40 , A, , V_{GE} = 15V) Note3</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{ies})</td>
<td>—</td>
<td>—</td>
<td>3000</td>
<td>(pF)</td>
<td>(V_{GE} = 25 , V)</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oes})</td>
<td>—</td>
<td>92</td>
<td>—</td>
<td>(pF)</td>
<td>(V_{GE} = 0)</td>
</tr>
<tr>
<td>Reverses transfer capacitance</td>
<td>(C_{res})</td>
<td>—</td>
<td>55</td>
<td>—</td>
<td>(pF)</td>
<td>(f = 1 , MHz)</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>(Q_g)</td>
<td>—</td>
<td>138</td>
<td>—</td>
<td>(nC)</td>
<td>(V_{GE} = 15 , V)</td>
</tr>
<tr>
<td>Gate to emitter charge</td>
<td>(Q_{ge})</td>
<td>—</td>
<td>22</td>
<td>—</td>
<td>(nC)</td>
<td>(V_{CE} = 400 , V)</td>
</tr>
<tr>
<td>Gate to collector charge</td>
<td>(Q_{gc})</td>
<td>—</td>
<td>57</td>
<td>—</td>
<td>(nC)</td>
<td>(I_C = 40 , A)</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{d(on)})</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>(ns)</td>
<td>(V_{CC} = 400 , V)</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_r)</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>(ns)</td>
<td>(V_{GE} = 15 , V)</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{d(off)})</td>
<td>—</td>
<td>170</td>
<td>—</td>
<td>(ns)</td>
<td>(I_C = 40 , A)</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>(ns)</td>
<td>(R_g = 10 , \Omega)</td>
</tr>
<tr>
<td>Turn-on loss energy</td>
<td>(E_{on})</td>
<td>—</td>
<td>0.45</td>
<td>—</td>
<td>(mJ)</td>
<td>(T_C = 25 , ^\circ C) Inductive load Note4</td>
</tr>
<tr>
<td>Turn-off loss energy</td>
<td>(E_{off})</td>
<td>—</td>
<td>0.55</td>
<td>—</td>
<td>(mJ)</td>
<td></td>
</tr>
<tr>
<td>Total switching energy</td>
<td>(E_{total})</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>(mJ)</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{d(on)})</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>(ns)</td>
<td>(V_{CC} = 400 , V)</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_r)</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>(ns)</td>
<td>(V_{GE} = 15 , V)</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{d(off)})</td>
<td>—</td>
<td>185</td>
<td>—</td>
<td>(ns)</td>
<td>(I_C = 40 , A)</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>(ns)</td>
<td>(R_g = 10 , \Omega)</td>
</tr>
<tr>
<td>Turn-on loss energy</td>
<td>(E_{on})</td>
<td>—</td>
<td>0.57</td>
<td>—</td>
<td>(mJ)</td>
<td>(T_C = 150 , ^\circ C) Inductive load Note4</td>
</tr>
<tr>
<td>Turn-off loss energy</td>
<td>(E_{off})</td>
<td>—</td>
<td>0.63</td>
<td>—</td>
<td>(mJ)</td>
<td></td>
</tr>
<tr>
<td>Total switching energy</td>
<td>(E_{total})</td>
<td>—</td>
<td>1.20</td>
<td>—</td>
<td>(mJ)</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{FRD forward voltage} \quad V_F \quad — \quad 1.7 \quad 2.2 \quad V \quad I_F = 15 \, A \text{ Note3} \]

\[\text{FRD reverse recovery time} \quad t_r \quad — \quad 100 \quad — \quad ns \quad I_F = 15 \, A, \, \text{dir/dt} = 300 \, A/\mu s \]

Notes:
3. Pulse test
4. Switching time test circuit and waveform are shown below.
Main Characteristics

Collector Dissipation vs. Case Temperature

Maximum Safe Operation Area

Maximum DC Collector Current vs. Case Temperature

Typical Transfer Characteristics

Typical Output Characteristics

Typical Output Characteristics
Switching Characteristics (Typical) (1)

- Collector Current I_C (A) (Inductive load)
- Gate Resistance R_g (Ω) (Inductive load)

Switching Characteristics (Typical) (2)

- Switching Energy Losses E (mJ)

Switching Characteristics (Typical) (3)

- Switching Times t (ns)

Switching Characteristics (Typical) (4)

- Eon
- Eoff

Switching Characteristics (Typical) (5)

- Switching Times t (ns)

Switching Characteristics (Typical) (6)

- Switching Energy Losses E (mJ)
Normalized Transient Thermal Impedance vs. Pulse Width (IGBT)

\[\theta_j - c(t) = \gamma_s(t) \cdot \theta_j - c \]

\[\theta_j - c = 0.44^\circ C/W, T_c = 25^\circ C \]

Normalized Transient Thermal Impedance vs. Pulse Width (Diode)

\[\theta_j - c(t) = \gamma_s(t) \cdot \theta_j - c \]

\[\theta_j - c = 1.33^\circ C/W, T_c = 25^\circ C \]
Switching Time Test Circuit

Diode Reverse Recovery Time Test Circuit

Waveform

Diode clamp

RJU6054TDPP

D.U.T

L

VCC

Rg

tr

diF/dt

0.9 Iff

VGE

90%

10%

Irr

td(off)

tr

td(on)

tr

VCC

D.U.T

L

Rg

Iff

0

0.5 Iff

0.9 Iff
Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS [Typ.]</th>
<th>Unit: mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-247A</td>
<td>—</td>
<td>PPS50032Y/A</td>
<td>—</td>
<td>6.14g</td>
<td></td>
</tr>
</tbody>
</table>

![Package Dimensions Diagram]

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Quantity</th>
<th>Shipping Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJH65T46DPQ-A0#T0</td>
<td>240 pcs</td>
<td>Box (Tube)</td>
</tr>
</tbody>
</table>

RJH65T46DPQ-A0

May 18, 2015

REnesas

R07DS1259EJ0100 Rev.1.00 Page 9 of 9
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. If you will use any Renesas Electronics product(s) for military or space applications, please evaluate the safety of the final products or systems manufactured by you.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

 - **Standard**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

 - **High-Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implants etc.) or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics products for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for damages or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, the control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purposes relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics product or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distribute, dispose of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Renesas Electronics Corporation

http://www.renesas.com

SALES OFFICES

Renesas Electronics America Inc.
2901 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-888-6000, Fax: +1-408-888-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 610 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dulwich Meadway, Millboard Road, Bosome End, Buckinghamshire, SL8 5FH, U.K.
Tel: +44-1628-565-100, Fax: +44-1628-565-900

Renesas Electronics Europe GmbH
Antikartheiden 10, 40472 Düsseldorf, Germany
Tel: +49-211-6003-360, Fax: +49-211-6003-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 Zhiyinlu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8233-1155, Fax: +86-10-8233-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Tower, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0999, Fax: +86-21-2226-0888

Renesas Electronics Hong Kong Limited
Unit 1601-1611, "16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Hong Kong
Tel: +852-2173-9650, Fax: +86-2173-9670

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fig Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-2817-0600, Fax: +886-2-2817-0670

Renesas Electronics Singapore Pte. Ltd.
55 Bengkannur Road, UH-K04-03 Hysys Innovation Centre, Singapore 359949
Tel: +65-6213-2400, Fax: +65-6213-3030

Renesas Electronics Malaysia Sdn Bhd.
Unit 12/F, Block B, Metta Enterprise, Metta Trade Centre, No. 18, Jln Perseman Barat, 46505 Petaling Jaya, Selangor Darul Ehsan, Malaysia 55100
Tel: +603-6299-8710, Fax: +603-6299-8773

Renesas Electronics India Pvt. Ltd.
No. 777C, 100 Foot Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-49270800, Fax: +91-80-49270877

Renesas Electronics Korea Co., Ltd.
12F., 234 Tajhan-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0