RJ0615JSP
-60 V, -10A Silicon P Channel Thermal FET
Power Switching

Description
This FET has the over temperature shut-down capability sensing to the junction temperature. This FET has the built-in over temperature shut-down circuit in the gate area. And this circuit operation to shut-down the gate voltage in case of high junction temperature like applying over power consumption, over current etc..

Features
• Built-in the over temperature shut-down circuit.
• High endurance capability against to the short circuit.
• Latch type shut down operation (need 0 voltage recovery).
• Built-in the current limitation circuit.
• Low on-resistance \(R_{DS(on)} \): 53 m\(\Omega \) Typ, 65 m\(\Omega \) Max (\(V_{GS} = -10 \) V)
• High density mounting

Outline

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source voltage</td>
<td>(V_{DSS})</td>
<td>−60</td>
<td>V</td>
</tr>
<tr>
<td>Gate to source voltage</td>
<td>(V_{GSS})</td>
<td>−16</td>
<td>V</td>
</tr>
<tr>
<td>Drain current</td>
<td>(I_D^{\text{Notes}})</td>
<td>−10</td>
<td>A</td>
</tr>
<tr>
<td>Body-drain diode reverse drain current</td>
<td>(I_{BR})</td>
<td>−10</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche current</td>
<td>(I_{AP}^{\text{Notes} 2})</td>
<td>−4.7</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>(E_{AR}^{\text{Notes} 2})</td>
<td>94.7</td>
<td>mJ</td>
</tr>
<tr>
<td>Channel dissipation</td>
<td>(P_{ch}^{\text{Notes} 1})</td>
<td>2.5</td>
<td>W</td>
</tr>
<tr>
<td>Channel temperature</td>
<td>(T_{ch})</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. Drive operation: When using the glass epoxy board (FR4 40 × 40 × 1.6 mm), \(PW \leq 10 \) s
2. \(T_{ch} = 25 \) °C, \(R_g \geq 50 \) \(\Omega \)
3. It provides by the current limitation lower bound value.
Typical Operation Characteristics

(Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>V_{IH}</td>
<td>-3.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$V_{IL} = -8,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>V_{IL}</td>
<td>—</td>
<td>—</td>
<td>-1.2</td>
<td>V</td>
<td>$V_{IL} = -3.5,V, V_{DS} = 0$</td>
</tr>
<tr>
<td>Input current (Gate non shut down)</td>
<td>I_{IH1}</td>
<td>—</td>
<td>—</td>
<td>-100</td>
<td>μA</td>
<td>$V_{IL} = -1.2,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{IH2}</td>
<td>—</td>
<td>—</td>
<td>-50</td>
<td>μA</td>
<td>$V_{IL} = -3.5,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{IL}</td>
<td>—</td>
<td>—</td>
<td>-10</td>
<td>μA</td>
<td>$V_{IL} = -8,V, V_{DS} = 0$</td>
</tr>
<tr>
<td>Input current (Gate shut down)</td>
<td>$I_{IH(sd)1}$</td>
<td>—</td>
<td>—</td>
<td>-0.8</td>
<td>mA</td>
<td>$V_{IL} = -3.5,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>$I_{IH(sd)2}$</td>
<td>—</td>
<td>—</td>
<td>-0.35</td>
<td>mA</td>
<td>$V_{IL} = -8,V, V_{DS} = 0$</td>
</tr>
<tr>
<td>Shut down temperature</td>
<td>T_{SD}</td>
<td>—</td>
<td>175</td>
<td>—</td>
<td>°C</td>
<td>Channel temperature (dv/dt $V_{GS} \geq 500,V/\mu s$)</td>
</tr>
<tr>
<td>Gate operation voltage</td>
<td>V_{OP}</td>
<td>-3.5</td>
<td>—</td>
<td>-12</td>
<td>V</td>
<td>$V_{GS} = -12,V, V_{DS} = -10,V$</td>
</tr>
<tr>
<td>Drain current (Current limitation value)</td>
<td>$I_{D,lim}$</td>
<td>—</td>
<td>-10</td>
<td>—</td>
<td>A</td>
<td>$V_{GS} = -12,V, V_{DS} = -10,V$</td>
</tr>
</tbody>
</table>

Notes: 4. Pulse test

Electrical Characteristics

(Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain current</td>
<td>I_{D1}</td>
<td>—</td>
<td>—</td>
<td>-4</td>
<td>A</td>
<td>$V_{GS} = -3.5,V, V_{DS} = -10,V$</td>
</tr>
<tr>
<td></td>
<td>I_{D2}</td>
<td>—</td>
<td>—</td>
<td>-10</td>
<td>mA</td>
<td>$V_{GS} = -1.2,V, V_{DS} = -10,V$</td>
</tr>
<tr>
<td></td>
<td>I_{D3}</td>
<td>-10</td>
<td>—</td>
<td>—</td>
<td>A</td>
<td>$V_{GS} = -12,V, V_{DS} = -10,V$</td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>$V_{BR,DSS}$</td>
<td>-60</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_{D} = -10,mA, V_{GS} = 0$</td>
</tr>
<tr>
<td>Gate to source breakdown voltage</td>
<td>$V_{BR,GSS}$</td>
<td>-16</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_{D} = -800,\mu A, V_{DS} = 0$</td>
</tr>
<tr>
<td>Gate to source leak current</td>
<td>I_{GS1}</td>
<td>—</td>
<td>—</td>
<td>-100</td>
<td>μA</td>
<td>$V_{GS} = -8,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{GS2}</td>
<td>—</td>
<td>—</td>
<td>-50</td>
<td>μA</td>
<td>$V_{GS} = -3.5,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{GS3}</td>
<td>—</td>
<td>—</td>
<td>-10</td>
<td>μA</td>
<td>$V_{GS} = -1.2,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>I_{GS4}</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>μA</td>
<td>$V_{GS} = 2.4,V, V_{DS} = 0$</td>
</tr>
<tr>
<td>Input current (shut down)</td>
<td>$I_{GS(OP)1}$</td>
<td>—</td>
<td>-0.8</td>
<td>—</td>
<td>mA</td>
<td>$V_{GS} = -8,V, V_{DS} = 0$</td>
</tr>
<tr>
<td></td>
<td>$I_{GS(OP)2}$</td>
<td>—</td>
<td>-0.35</td>
<td>—</td>
<td>mA</td>
<td>$V_{GS} = -3.5,V, V_{DS} = 0$</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>I_{DS1}</td>
<td>—</td>
<td>—</td>
<td>-10</td>
<td>μA</td>
<td>$V_{DS} = -60,V, V_{GS} = 0$</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>I_{DS2}</td>
<td>—</td>
<td>—</td>
<td>-10</td>
<td>μA</td>
<td>$V_{DS} = -48,V, V_{GS} = 0, Ta = 125,°C$</td>
</tr>
<tr>
<td>Gate to source cutoff voltage</td>
<td>$V_{GS(,off)}$</td>
<td>-2.2</td>
<td>—</td>
<td>-3.4</td>
<td>V</td>
<td>$V_{DS} = -10,V, I_{D} = -1,mA$</td>
</tr>
<tr>
<td>Static drain to source on state resistance</td>
<td>$R_{DS(on)}$</td>
<td>70</td>
<td>95</td>
<td>mΩ</td>
<td>$I_{D} = -5,A, V_{GS} = -6,V$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_{DS(on)}$</td>
<td>53</td>
<td>65</td>
<td>mΩ</td>
<td>$I_{D} = -5,A, V_{GS} = -10,V$</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>356</td>
<td>—</td>
<td>—</td>
<td>pF</td>
<td>$V_{DS} = -10,V, f = 1MHz$</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td>4.4</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td>$V_{GS} = -10,V, I_{D} = 5,A, R_{L} = 6,Ω$</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>4.5</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td>$V_{GS} = -10,V, I_{D} = 5,A, R_{L} = 6,Ω$</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>1.6</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Body-drain diode forward voltage</td>
<td>V_{DF}</td>
<td>—</td>
<td>-0.87</td>
<td>—</td>
<td>V</td>
<td>$I_{F} = -10,A, V_{GS} = 0$</td>
</tr>
<tr>
<td>Body-drain diode reverse recovery time</td>
<td>t_{cr}</td>
<td>90</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>$I_{F} = -10,A, V_{GS} = 0$</td>
</tr>
<tr>
<td>Over load shut down operation time</td>
<td>t_{os1}</td>
<td>2.6</td>
<td>—</td>
<td>—</td>
<td>ms</td>
<td>$V_{GS} = -6,V, V_{DD} = -16,V$</td>
</tr>
</tbody>
</table>

Notes: 5. Pulse test
6. Including the junction temperature rise of the over loaded condition.
Main Characteristics

100
10
1
0.1
0.01
−0.1
−0.01
−1
−10
−100

Drain to Source Voltage \(V_{DS} \) (V)

Drain Current \(I_D \) (A)

Maximum Safe Operation Area

Ta = 25°C
Thermal shut down operation area

Operation in this area is limited \(R_{DS(on)} \)

Drain to Source Voltage \(V_{DS} \) (V)

Pulse Test

Power vs. Temperature Derating

Test condition.
When using the glass epoxy board.
(FR4 40 x 40 x 1.6 mm), \((PW \leq 10\,\text{s}) \)

Channel Dissipation \(P_{ch} \) (W)

Case Temperature \(T_c \) (°C)

Typical Output Characteristics

Typical Transfer Characteristics

Gate to Source Voltage \(V_{GS} \) (V)

Drain Current \(I_D \) (A)

Drain Source Saturation Voltage vs.
Gate to Source Voltage

Static Drain to Source On State Resistance vs. Drain Current

Gate to Source Voltage \(V_{GS} \) (V)

Drain to Source Saturation Voltage \(V_{DS(on)} \) (mV)

Static Drain to Source On State Resistance \(R_{DS(on)} \) (mΩ)

Test condition.
When using the glass epoxy board.
(FR4 40 x 40 x 1.6 mm)

Note 7:
When using the glass epoxy board.
(FR4 40 x 40 x 1.6 mm)
shutdown case temperature vs. gate to source voltage

normalized transient thermal impedance vs. pulse width

avalanche test circuit

avalanche waveform

\[\frac{1}{2} L \cdot I_{AP}^2 \cdot \frac{V_{DSS}}{V_{DSS} - V_{DD}} \]
Switching Time Test Circuit

- **Vin Monitor**
- **D.U.T.**
- **Vin**
- **Vout Monitor**
- **Vin**
- **Vout**
- **R_L**
- **V_DD**
- **50 Ω**

Switching Time Waveform

- **Vin**
- **Vout**
- **td(on)**
- **td(off)**
- **tr**

Vin Monitor

- **Vin**
- **–10 V**

Vout Monitor

- **Vout**
- **90%**
- **10%**

D.U.T.

- **D.U.T.**
- **Vin**
- **Vout**
- **R_L**
- **V_DD**
- **–30 V**

Switching Time Waveform

- **Vin**
- **10%**
- **90%**
- **Vout**
- **10%**
- **90%**

- **td(on)**
- **td(off)**
- **tr**
RJE0615JSP

Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS[Typ.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP-8</td>
<td>P-SOP-8.35 × 4.9-1.27</td>
<td>PRS0038DD-D</td>
<td>FP-0RXV</td>
<td>0.985g</td>
</tr>
</tbody>
</table>

![Diagram of package dimensions]

Terminal cross section

(H6/Pd/Au plating)

- **D**: 4.90 ± 0.3
- **E**: 3.35
- **A**: 0.15
- **A1**: 0.14 ± 0.25
- **A1**: 1.75
- **B P**: 0.34 ± 0.48
- **B1**: 0.20 ± 0.25
- **C1**: —
- **F**: 0° ± 0°
- **H E**: 5.80 ± 6.10 ± 6.20
- **B**: 1.27
- **X**: 0.25
- **Y**: 0.1
- **Z**: 0.75
- **L**: 0.40 ± 0.60 ± 1.27
- **L1**: 1.08

NOTE:

1. DIMENSIONS ***“A”*** AND ***“E”*** DO NOT INCLUDE MOLD FLASH.
2. DIMENSION ***“F”*** DOES NOT INCLUDE Trim OFFSET.
3. Index mark (Marking) A1
4. Index mark (Marking) A2
5. Index mark (Marking) A3

Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Quantity</th>
<th>Shipping Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJE0615JSP-00-J0</td>
<td>2500 pcs</td>
<td>Taping</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depend on the product's quality grade, as indicated below.

 "Standard": Computer, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home appliances, machine tools, personal computer equipment, and industrial robots.

 "High Quality": Transportation equipment, automobile, ship, etc.; traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (critical life support devices or systems, surgical implantations etc.) or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunctions prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems where manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disperses of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.