RJE0603JPE
Silicon P Channel MOS FET Series
Power Switching

Description
This FET has the over temperature shut-down capability sensing to the junction temperature. This FET has the built-in over temperature shut-down circuit in the gate area. And this circuit operation to shut-down the gate voltage in case of high junction temperature like applying over power consumption, over current etc..

Features
- High endurance capability against to the short circuit.
- Built-in the over temperature shut-down circuit.
- Latch type shut down operation (need 0 voltage recovery).
- Built-in the current limitation circuit.

Outline
RENESAS Package code: PRSS0004AE-B
(Package name: LDPAK (S)-(1))

Absolute Maximum Ratings
(Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source voltage</td>
<td>VDSS</td>
<td>–60 V</td>
<td></td>
</tr>
<tr>
<td>Gate to source voltage</td>
<td>VGSS</td>
<td>–16 V</td>
<td></td>
</tr>
<tr>
<td>Gate to source voltage</td>
<td>VGSS</td>
<td>2.5 V</td>
<td></td>
</tr>
<tr>
<td>Drain current</td>
<td>ID</td>
<td>–50 Note3</td>
<td>A</td>
</tr>
<tr>
<td>Body-drain diode reverse drain current</td>
<td>IDRE</td>
<td>–50</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche current</td>
<td>IAP Note 2</td>
<td>–15</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>EAR Note 2</td>
<td>964 mJ</td>
<td></td>
</tr>
<tr>
<td>Channel dissipation</td>
<td>Pch Note 1</td>
<td>100 W</td>
<td></td>
</tr>
<tr>
<td>Channel temperature</td>
<td>Tch</td>
<td>150 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>–55 to +150 °C</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Value at Tc = 25°C
2. Tch = 25°C, Rg ≥ 50 Ω
3. It provides by the current limitation lower bound value.
Typical Operation Characteristics

\[(Ta = 25^\circ C)\]

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>(V_{IH})</td>
<td>–3.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{IL})</td>
<td>—</td>
<td>—</td>
<td>–1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input current</td>
<td>(I_{IH1})</td>
<td>—</td>
<td>—</td>
<td>–100</td>
<td>(\mu A)</td>
<td>(V_i = –8 V, V_{DS} = 0)</td>
</tr>
<tr>
<td>(Gate non shut down)</td>
<td>(I_{IH2})</td>
<td>—</td>
<td>—</td>
<td>–50</td>
<td>(\mu A)</td>
<td>(V_i = –3.5 V, V_{DS} = 0)</td>
</tr>
<tr>
<td>Input current</td>
<td>(I_{IH\text{SD}1})</td>
<td>—</td>
<td>–0.3</td>
<td>—</td>
<td>mA</td>
<td>(V_i = –12 V, V_{DS} = 0)</td>
</tr>
<tr>
<td>(Gate shut down)</td>
<td>(I_{IH\text{SD}2})</td>
<td>—</td>
<td>–0.11</td>
<td>—</td>
<td>mA</td>
<td>(V_i = –4.6 V, V_{DS} = 0)</td>
</tr>
<tr>
<td>Shut down temperature</td>
<td>(T_{SD})</td>
<td>—</td>
<td>175</td>
<td>—</td>
<td>(^\circ C)</td>
<td>Channel temperature</td>
</tr>
<tr>
<td>Gate operation voltage</td>
<td>(V_{op})</td>
<td>–3.5</td>
<td>—</td>
<td>–12</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Drain current</td>
<td>(I_{D\text{limt}})</td>
<td>–50</td>
<td>—</td>
<td>—</td>
<td>A</td>
<td>(V_{GS} = –12 V, V_{DS} = –10 V) (^{Note 4})</td>
</tr>
</tbody>
</table>

Notes:
4. Pulse test

Electrical Characteristics

\[(Ta = 25^\circ C)\]

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain current</td>
<td>(I_{D1})</td>
<td>—</td>
<td>—</td>
<td>–100</td>
<td>A</td>
<td>(V_{GS} = –3.5 V, V_{DS} = –10 V)</td>
</tr>
<tr>
<td></td>
<td>(I_{D2})</td>
<td>—</td>
<td>—</td>
<td>–10</td>
<td>mA</td>
<td>(V_{GS} = –1.2 V, V_{DS} = –10 V)</td>
</tr>
<tr>
<td></td>
<td>(I_{D3})</td>
<td>–50</td>
<td>—</td>
<td>—</td>
<td>A</td>
<td>(V_{GS} = –12 V, V_{DS} = –10 V) (^{Note 5})</td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>(V_{BR\text{DSS}})</td>
<td>–60</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(I_D = –10 mA, V_{GS} = 0)</td>
</tr>
<tr>
<td>Gate to source breakdown voltage</td>
<td>(V_{BR\text{GSS}})</td>
<td>–16</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(I_D = –800 \mu A, V_{DS} = 0)</td>
</tr>
<tr>
<td></td>
<td>(V_{BR\text{GSS}})</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(I_D = 100 \mu A, V_{DS} = 0)</td>
</tr>
<tr>
<td>Gate to source leak current</td>
<td>(I_{GS})</td>
<td>—</td>
<td>—</td>
<td>–200</td>
<td>(\mu A)</td>
<td>(V_{GS} = –8 V, V_{DS} = 0)</td>
</tr>
<tr>
<td></td>
<td>(I_{GSS})</td>
<td>—</td>
<td>—</td>
<td>–800</td>
<td>(\mu A)</td>
<td>(V_{GS} = –16 V, V_{DS} = 0)</td>
</tr>
<tr>
<td></td>
<td>(I_{GSS})</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>(\mu A)</td>
<td>(V_{GS} = –2.4 V, V_{DS} = 0)</td>
</tr>
<tr>
<td>Input current (shut down)</td>
<td>(I_{GSO\text{P1}})</td>
<td>—</td>
<td>–0.8</td>
<td>—</td>
<td>mA</td>
<td>(V_{GS} = –12 V, V_{DS} = 0)</td>
</tr>
<tr>
<td></td>
<td>(I_{GSO\text{P2}})</td>
<td>—</td>
<td>–0.11</td>
<td>—</td>
<td>mA</td>
<td>(V_{GS} = –4.6 V, V_{DS} = 0)</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>(I_{DSS})</td>
<td>—</td>
<td>—</td>
<td>–10</td>
<td>(\mu A)</td>
<td>(V_{DS} = –60 V, V_{GS} = 0)</td>
</tr>
<tr>
<td>Gate to source cutoff voltage</td>
<td>(V_{GSO(ef)})</td>
<td>–3.4</td>
<td>—</td>
<td>–4.6</td>
<td>V</td>
<td>(V_{DS} = –10 V, I_D = –1 mA)</td>
</tr>
<tr>
<td>Static drain to source on state resistance</td>
<td>(R_{DS(on)})</td>
<td>—</td>
<td>16</td>
<td>30</td>
<td>m(\Omega)</td>
<td>(I_D = –25 A, V_{GS} = –6 V) (^{Note 5})</td>
</tr>
<tr>
<td></td>
<td>(R_{DS(on)})</td>
<td>—</td>
<td>12</td>
<td>15</td>
<td>m(\Omega)</td>
<td>(I_D = –25 A, V_{GS} = –10 V) (^{Note 5})</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oss})</td>
<td>—</td>
<td>1400</td>
<td>—</td>
<td>pF</td>
<td>(V_{DS} = –10 V, V_{GS} = 0, f = 1\text{MHz})</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{(on)})</td>
<td>—</td>
<td>77.2</td>
<td>—</td>
<td>(\mu s)</td>
<td>(V_{GS} = –10 V, I_D = –25 A, R_L = 1.2 \Omega)</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_r)</td>
<td>—</td>
<td>72.7</td>
<td>—</td>
<td>(\mu s)</td>
<td>(I_F = –50 A, V_{GS} = 0)</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{(off)})</td>
<td>—</td>
<td>7.7</td>
<td>—</td>
<td>(\mu s)</td>
<td>(I_F = –50 A, V_{GS} = 0)</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td>—</td>
<td>7.7</td>
<td>—</td>
<td>(\mu s)</td>
<td>(\text{di}V/\text{dt} = 50 \text{A}/\mu \text{s})</td>
</tr>
<tr>
<td>Body-drain diode forward voltage</td>
<td>(V_{DF})</td>
<td>—</td>
<td>–0.92</td>
<td>—</td>
<td>V</td>
<td>(I_F = –50 A, V_{GS} = 0)</td>
</tr>
<tr>
<td>Body-drain diode reverse recovery time</td>
<td>(t_{rr})</td>
<td>—</td>
<td>133</td>
<td>—</td>
<td>ns</td>
<td>(I_F = –50 A, V_{GS} = 0)</td>
</tr>
<tr>
<td>Over load shut down operation time</td>
<td>(t_{os1})</td>
<td>—</td>
<td>6.3</td>
<td>—</td>
<td>ms</td>
<td>(V_{GS} = –5 V, V_{DD} = –16 V)</td>
</tr>
</tbody>
</table>

Notes:
5. Pulse test
6. Including the junction temperature rise of the over loaded condition.
Main Characteristics

- **Power vs. Temperature Derating**
 - Channel Dissipation: Pch (W)
 - Case Temperature: Tc (°C)

- **Maximum Safe Operation Area**
 - Drain to Source Voltage: VDS (V)
 - Drain Current: ID (A)

- **Typical Output Characteristics**
 - Drain Current: ID (A)
 - Drain to Source Voltage: VDS (V)
 - VGS = −4.5 V
 - VGS = −4 V
 - VGS = −6 V

- **Typical Transfer Characteristics**
 - Drain Current: ID (A)
 - Gate to Source Voltage: VGS (V)

- **Drain Source Saturation Voltage vs. Gate to Source Voltage**
 - Drain to Source Saturation Voltage: VDS(on) (mV)
 - Static Drain to Source On State Resistance: RDS(on) (mΩ)

- **Operation in this area is limited RDS(on)**

- **Thermal shut down operation area**

- **Static Drain to Source On State Resistance vs. Drain Current**
 - Drain Current: ID (A)
 - Drain to Source Voltage: VDS (V)
 - VGS = −10 V
Static Drain to Source On State Resistance vs. Temperature

- **Graph:**
 - Case Temperature T_c ($^\circ$C)
 - Static Drain to Source On State Resistance $R_{DS(on)}$ (mΩ)
 - Lines for $I_D = -5$ A, -10 A, -25 A
 - Pulse Test $V_{GS} = -10$ V

Body-Drain Diode Reverse Recovery Time

- **Graph:**
 - Reverse Drain Current I_{DR} (A)
 - Reverse Drain Recovery Time t_{rr} (ns)
 - Lines for $V_{DS} = -10$ V, -25 V, -40 V

Switching Characteristics

- **Graph:**
 - Drain Current I_D (A)
 - Switching Time t (μs)
 - $V_{GS} = 0$ V, 5 V
 - $f = 1$ MHz

Typical Capacitance vs. Drain to Source Voltage

- **Graph:**
 - Capacitance C (pF)
 - Drain to Source Voltage V_{DS} (V)
 - $V_{GS} = 0$ V
 - $f = 1$ MHz

Gate to Source Voltage vs. Shutdown Time of Load-Short Test

- **Graph:**
 - Gate to Source Voltage V_{GS} (V)
 - Shutdown Time of Load-Short Test P_W (s)
 - $V_{SD} = -16$ V

Reverse Drain Current vs. Source to Drain Voltage

- **Graph:**
 - Source to Drain Voltage V_{SD} (V)
 - Reverse Drain Current I_{DR} (A)
 - $V_{GS} = 0$ V, 5 V

Shutdown Time of Load-Short Test

- **Graph:**
 - Shutdown Time of Load-Short Test P_W (s)
 - $V_{SD} = -16$ V
Switching Time Test Circuit

Vin Monitor

D.U.T.

Vout Monitor

Vin

10 V

50 Ω

RL

VDD

−30 V

Vin

10% Vin

−10 V

RL

VDD

= −30 V

trtd(on) 90% 10% Vin

Vout

90% 10% Vout

tf

td(off)

td(on)

Switching Time Test Circuit Waveform

Normalized Transient Thermal Impedance vs. Pulse Width

Normalized Transient Thermal Impedance γ(t)

PDM PW T D = PW T ch- c(t) = γ s (t) ch- c = 1.25° C/W, Tc = 25°C

θ = 1° C/W, Tc = 25°C

Tc = 25°C

θ

θ

PDM

D = PW T

T

PW

10 μ 100 μ 1 m 10 m 100 m 1 10

Pulse Width PW (S)

Normalized Transient Thermal Impedance

γ

0.3

0.03

0.1

0.01

0.3

0.03

0.1

0.01

1

100

−2

−4

−6

−8

−10

100

120

140

160

180

200

Gate to Source Voltage VGS (V)

Shutdown Case Temperature vs. Gate to Source Voltage

Shutdown Case Temperature Tc (°C)

0

100

120

140

160

180

200

Gate to Source Voltage VGS (V)

Iq = −5 A

RJE0603JPE Preliminary

R07DS0193EJ0200 Rev.2.00 Page 5 of 6

Nov 04, 2010

RENESAS
Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASSTyp</th>
<th>Unit: mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFMR20S-1T</td>
<td>SC-60</td>
<td>PR03000ARE-1B</td>
<td>LPK060111/12PR00111</td>
<td>1.30g</td>
<td></td>
</tr>
</tbody>
</table>

![Package Dimensions Diagram]

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part No.</th>
<th>Quantity</th>
<th>Shipping Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJE0603JPE-00-J3</td>
<td>1000 pcs</td>
<td>Taping (Sinistorse)</td>
</tr>
</tbody>
</table>
Notice

1. All information included in this document is as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties or for arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depend on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

9. "Standard": Computer, office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home/office electronics; appliance; machine tools; personal electronic equipment; and industrial robots.

10. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

11. "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. pacemakers, etc.); and any other applications or purposes that pose a direct threat to human life.

12. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

13. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, the control and malfunction prevention, appropriate treatment for aging-degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

14. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

15. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

16. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics products" mean any product developed or manufactured by or for Renesas Electronics.