RENESAS

RH850/F1L (176 pin Version)

RENESAS MCU

R01DS0170EJ0131 Rev.1.31 Apr 20, 2016

Product Introduction

Concept

The RH850/F1x microcontroller focus on low power and low cost for the body application.

The device is a high-end microcontroller with a 32-bit RH850G3K core for car body control. The features of this device are the low power consumption, the high processing power and the variable peripheral function.

In particular, Low power consumption is achieved by supporting wide stand-by control and the power supply insulation using the port polling, stand-by control of AD conversion and LIN communication which considered body control application.

This device supports the security and safety function. And the local area network has been strengthened by upgrading each module of CAN, LIN master/slave.

Function Overview

- 32bit single core CPU (V850E3v5-S architecture class)
- The capacity of Code Flash: up to 2 MB
- The capacity of Data Flash: 32 KB*¹
- The capacity of RAM: up to 192 KB
- DMA function
- System protection
- POC/LVI, CVM
- MainOSC which is available for a wide range frequency (8 MHz to 24 MHz)
- SubOSC which is used as Real time clock
- External interrupt: 16
- External memory access controller is supported
- Low Power Sampler watching an outside event in standby mode
- Timer Array Unit D: 1 ch
- Timer Array Unit B: 2 ch
- Timer Array Unit J: 2 ch
- Real-time counter: support
- PWM-Diagnosis function: 72 ch
- Encoder Timer: 1 ch
- Motor control: 1 ch
- OS Timer: 1 ch
- Watchdog Timer: 2 ch

- Asynchronous Serial Interface, LIN Master/Slave Controller: 6 ch
- LIN Master Controller: 10 ch
- CAN Controller: 6 ch
- Clocked Serial Interface G: 2 ch
- Clocked Serial Interface H: 4 ch
- Data CRC: 4 ch
- A/D Converter: 2 ch
 - ADCA0In w/ T&H: 6 ch
 - ADCA0In w/o T&H: 10 ch
 - ADCA0InS: 20 ch
 - ADCA1In: 16 ch
 - ADCA1InS: 8 ch
- Key Return: 8 ch

Block Diagram

Pin Map

	Max		0	Dete	Local	Local	Retention	Operationing T	emperature (Ta)
Product	CPU Frequency	ICUSB	Code Flash	Data Flash	RAM (Primary)	RAM (Secondary)	RAM (RRAM)	–40°C to +105°C ^{Caution}	-40°C to +125°C ^{Caution}
ECO	80 MHz	No	768 KB	32 KB	64 KB	0 KB	32 KB	R7F7010323AFP	R7F7010324AFP
			1 MB		96 KB			R7F7010333AFP	R7F7010334AFP
			1.5 MB		128 KB			R7F7010343AFP	R7F7010344AFP
			2 MB			32 KB		R7F7010073AFP	R7F7010074AFP
ADVANCED	96 MHz	Yes	768 KB		64 KB	0 KB		R7F7010503AFP	R7F7010504AFP
			1 MB		96 KB			R7F7010513AFP	R7F7010514AFP
			1.5 MB		128 KB			R7F7010523AFP	R7F7010524AFP
			2 MB			32 KB		R7F7010533AFP	R7F7010534AFP
PREMIUM	1		1.5 MB	64 KB	128 KB	0 KB	1	R7F7010563AFP	R7F7010564AFP
			2 MB			32 KB		R7F7010573AFP	R7F7010574AFP

Product Lineup

Caution: It must be ensured that the junction temperature in the Ta range remains below Tj (Section 1.2.4, Temperature Condition) and does not exceed its limit under application conditions (thermal resistance, power supply current, peripheral current (if not included in power supply current), port output current and injection current).

Section 1 Electrical Specifications

1.1 Overview

The electrical spec of this device is guaranteed by the following operational condition. But, this condition is different depends on each characteristics, so refer to each chapter for more detail.

1.1.1 Pin Groups

Symbol	Pin Group Supplied by	Related Pins/Ports
PgR	REGVCC, AWOVSS	X1, X2, XT1, XT2/IP0_0
PgE	EVCC, EVSS	Related ports: JP0, P0, P1, P2, P8, P9, P20 Related pins: RESET, FLMD0
PgB	BVCC, BVSS	Related ports: P10, P11, P12, P18
PgA0	A0VREF, A0VSS	Related port: AP0
PgA1	A1VREF, A1VSS	Related port: AP1

1.1.2 General Measurement Conditions

1.1.2.1 Common Conditions

- Power supply
 - REGVCC = EVCC = VPOC^{*1} to 5.5 V
 - BVCC = $VPOC^{*1}$ to REGVCC
 - A0VREF = 3.0 V to 5.5 V
 - A1VREF = 3.0 V to 5.5 V
 - AWOVSS = ISOVSS = EVSS = BVSS = A0VSS = A1VSS = 0 V
- Capacitance of the internal regulator
 - CAWOVCL: 0.1 μF +/– 30%
 - CISOVCL: 0.1 μF +/– 30%
- Operating temperature
 - Ta:
 - -40 to (depend on the product)°C
 - Tj: R7F7010xx3AFP : -40 to 130°C
 - R7F7010xx4AFP : -40 to 150°C
- Load conditions
 - CL = 30 pF
- Note 1. "VPOC" means POC (power on clear) detection voltage. For more detail, refer to Section 1.8.2, Voltage Detector (POC, LVI, VLVI, CVM) Characteristics.

1.1.2.2 AC Characteristic Measurement Condition

(1) AC test input measurement points

(2) AC test output measurement points

(3) Load conditions

CAUTION

If the load capacitance exceeds 30pF due to the circuit configuration, it is recommended to insert a buffer in order to reduce capacitance till less than 30pF.

1.2 Absolute Maximum Ratings

CAUTIONS

- 1. Do not directly connect outputs (or input/outputs) to each other, power supply and ground.
- 2. Even momentarily exceeding the absolute maximum rating for just one item creates a threat of failure in the reliability of the products. That is, the absolute maximum ratings are the levels that raise a threat of physical damage to the products. Be sure to use the products only under conditions that do not exceed the ratings. The quality and normal operation of the product are guaranteed under the standards and conditions given as DC and AC characteristics.
- 3. When designing an external circuit ensure that the connections don't conflict with the port state of this device.

1.2.1 Supply Voltages

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
System supply voltage	REGVCC		-0.5		6.5	V
	AWOVSS		-0.5		0.5	V
_	ISOVSS		-0.5		0.5	V
Port supply voltage	EVCC		-0.5		6.5	V
	BVCC		-0.5		6.5	V
	EVSS		-0.5		0.5	V
	BVSS		-0.5		0.5	V
A/D-converter supply voltage	A0VREF		-0.5		6.5	V
	A1VREF		-0.5		6.5	V
	A0VSS		-0.5		0.5	V
	A1VSS		-0.5		0.5	V

1.2.2 Port Voltages

ltem	Pin Group* ¹	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage	PgR	VI		-0.5		REGVCC + 0.5 (Do not exceed 6.5 V)	V
	PgE	_		-0.5		EVCC + 0.5 (Do not exceed 6.5 V)	V
	PgB	_		-0.5		BVCC + 0.5 (Do not exceed 6.5 V)	V
	PgA0	-		-0.5		A0VREF + 0.5 (Do not exceed 6.5 V)	V
	PgA1	-		-0.5		A1VREF + 0.5 (Do not exceed 6.5 V)	V

Note 1. The characteristics of the alternative-function pins are the same as those of the port pins unless otherwise specified.

1.2.3 Port Current

Condition MIN. TYP. MAX. Unit Symbol Pin Group Item High-level IOH PgE Per pin -10 mΑ output current Per side (Total of P9_0 to P9_6, P20_0 to P20_5) -48 mΑ Per side (Total of P0_0 to P0_3) -40 mΑ Per side (Total of JP0_3 to JP0_5, P0_4 to P0_6, P0_11 to P0_14, P1_0 to P1_3, P1_12, P1_13, P2_6, P8_2, P8_10 to P8_12) -48 mΑ Per side (Total of JP0 0 to JP0 2, P1 8 to P1 11, P2 0, P2 1) -48 mΑ Per side (Total of JP0_6, P0_7 to P0_10, P1_4 to P1_7, P1_14, -48 mΑ P1_15, P2_2 to P2_5, P8_0, P8_1, P8_3 to P8_9) Total (EVCC) -60 mΑ PgB Per pin -10 mΑ Per side (Total of P10_6 to P10_9, P18_0 to P18_7) -48 mΑ Per side (Total of P10_10 to P10_14, P11_1 to P11_7, P11_15, -48 mΑ P12_0 to P12_2) Per side (Total of P10_0 to P10_2) -30 mΑ Per side (Total of P10_3 to P10_5) -30 mΑ Per side (Total of P10_15, P11_0, P11_8 to P11_14, P12_3 to -48 mΑ P12_5) Total (BVCC) -60 mΑ PgA0 Per pin -10 mΑ Total (A0VREF) -48 mΑ PgA1 -10 Per pin mΑ Total (A1VREF) -48 mΑ

(1/2)

							(2/
ltem	Symbol	Pin Group	Condition	MIN.	TYP.	MAX.	Unit
Low-level	IOL	PgE	Per pin			10	mA
output current			Per side (Total of P9_0 to P9_6, P20_0 to P20_5)			48	mA
			Per side (Total of P0_0 to P0_6, P0_11 to P0_14, P1_0 to P1_3, P1_12, P1_13, P2_6)			48	mA
			Per side (Total of JP0_0 to JP0_5, P1_8 to P1_11, P2_0, P2_1, P8_2, P8_10 to P8_12)			48	mA
			Per side (Total of JP0_6, P0_7 to P0_10, P2_2, P2_3)			48	mA
			Per side (Total of P1_4 to P1_7, P1_14, P1_15, P2_4, P2_5, P8_0, P8_1, P8_3 to P8_9)			48	mA
			Total (EVSS)			60	mA
		PgB	Per pin			10	mA
			Per side (Total of P18_0 to P18_7)			48	mA
			Per side (Total of P10_6 to P10_14, P11_1, P11_2)			48	mA
			Per side (Total of P11_3 to P11_7, P11_15, P12_0 to P12_2)			48	mA
			Per side (Total of P10_0 to P10_2)			30	mA
			Per side (Total of P10_3 to P10_5)			30	mA
			Per side (Total of P10_15, P11_0, P11_8 to P11_14, P12_3 to P12_5)			48	mA
			Total (BVSS)			60	mA
		PgA0	Per pin			10	mA
			Total (A0VSS)			48	mA
		PgA1	Per pin			10	mA
			Total (A1VSS)			48	mA

1.2.4 Temperature Condition

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Storage temperature	Tstg		-55		170	°C
Junction temperature	Tj	R7F7010xx3AFP	-40		130	°C
		R7F7010xx4AFP	-40		150	°C

xx = 32, 33, 34, 07, 50, 51, 52, 53, 56, 57

Regarding operation temperature of each product, refer to "Product Lineup".

1.3 Capacitance

Condition: REGVCC = EVCC = BVCC = A0VREF = A1VREF = AWOVSS = ISOVSS = EVSS = BVSS = A0VSS = A1VSS = 0 V, Ta = 25°C

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	CI* ¹	f = 1 MHz			10	pF
Input/output capacitance	CIO* ²	 0 V for non measurement pins 			10	pF

Note 1. CI: Capacitance between the input pin and ground

Note 2. CIO: Capacitance between the input/output pin and ground

1.4 Operational Condition

ECO Line

tem	Symbol	Condition	MIN.	TYP.	MAX.	Unit
CPU clock frequency	f _{CPUCLK}				80	MHz
Peripheral clock (clock domain)	f _{CKSCLK_AWDTA}	for WDTA0			240* ²	kHz
requency*1	f _{CKSCLK_ATAUJ}	for TAUJ0			40	MHz
	f _{CKSCLK_ARTCA}	for RTCA0			4	MHz
	f _{CKSCLK_AADCA}	for ADCA0			40	MHz
	f _{CKSCLK_AFOUT}	for CSCXFOUT			24	MHz
	f _{CKSCLK_IPERI1}	for TAUD0			80	MHz
		for TAUJ1				
		for ENCA0				
		for TAPA				
		for PIC				
	f _{CKSCLK_IPERI2}	for TAUB0			40	MHz
		for TAUB1				
		for PWM-diag				
	f _{CKSCLK_ILIN}	for RLIN2			40	MHz
		for RLIN3				
	f _{CKSCLK_IADCA}	for ADCA1			40	MHz
	f _{CKSCLK_ICAN}	for RS-CAN (pclk)			80	MHz
	f _{CKSCLK_ICANOSC}	for RS-CAN (clk_xincan)			24	MHz
	f _{CKSCLK_ICSI}	for CSIG			80	MHz
		for CSIH				
	f _{RL}	for WDTA1			240* ²	kHz
	f _{CPUCLK2}	for OSTM			40	MHz
		for RIIC				
	f _{EMCLK}	for LPS			8	MHz
	f _{MEMCLK}	for MEMC			40	MHz
Power supply	REGVCC	REGVCC = EVCC	VPOC*3		5.5	V
	EVCC	_				
	BVCC		VPOC*3		REGVCC	
	A0VREF		3.0		5.5	V
	A1VREF		_			

(except) power-on). For detail, refer to Section 1.8.2, Voltage Detector (POC, LVI, VLVI, CVM) Characteristics.

In addition, the guaranteed operation in DC characteristic.

And AC characteristic is guaranteed when more than 3.0 V.

When the power supply voltage is VPOC to 3.0 V, the device does not malfunction.

ADVANCED Line, PREMIUM Line

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
CPU clock frequency	f _{CPUCLK}				96	MHz
Peripheral clock (clock domain)	f _{CKSCLK_AWDTA}	for WDTA0			240* ²	kHz
frequency*1	f _{CKSCLK_ATAUJ}	for TAUJ0			40	MHz
	f _{CKSCLK_ARTCA}	for RTCA0			4	MHz
	f _{CKSCLK_AADCA}	for ADCA0			40	MHz
	f _{CKSCLK_AFOUT}	for CSCXFOUT			24	MHz
	f _{CKSCLK_IPERI1}	for TAUD0			80	MHz
	_	for TAUJ1				
		for ENCA0				
		for TAPA				
		for PIC				
	f _{CKSCLK_IPERI2}	for TAUB0			48	MHz
	-	for TAUB1	_			
		for PWM-diag	_			
	f _{CKSCLK_ILIN}	for RLIN2			48	MHz
	-	for RLIN3	_			
	f _{CKSCLK_IADCA}	for ADCA1			40	MHz
	f _{CKSCLK_ICAN}	for RS-CAN (pclk)			96	MHz
	f _{CKSCLK_ICANOSC}	for RS-CAN (clk_xincan)			24	MHz
	f _{CKSCLK_ICSI}	for CSIG			96	MHz
	-	for CSIH				
	f _{RL}	for WDTA1			240* ²	kHz
	f _{CPUCLK2}	for OSTM			48	MHz
		for RIIC	_			
	f _{EMCLK}	for LPS			8	MHz
	f _{MEMCLK}	for MEMC			40	MHz
Power supply	REGVCC	REGVCC = EVCC	VPOC*3		5.5	V
	EVCC	_				
	BVCC		VPOC*3		REGVCC	
	A0VREF		3.0		5.5	V
	A1VREF					
Ma Note 2. Thi	<i>nual: Hardware.</i> s frequency depends	peripherals, refer to Section 1 on the internal oscillator (LS I ower on clear) detection voltag	ntOSC).			

Characteristics.

In addition, the guaranteed operation in DC characteristic.

And AC characteristic is guaranteed when more than 3.0 V.

When the power supply voltage is VPOC to 3.0 V, the device does not malfunction.

1.5 Oscillator Characteristics

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
MainOSC frequency	f _{MOSC}	Crystal/Ceramic	8		24	MHz
MainOSC Current consumption	I _{MOSC}	Crystal/Ceramic After stabilization		1.9* ³	2.3* ³	mA
MainOSC oscillation start point	V _{MOSCSP}	Crystal/Ceramic	VPOC			V
MainOSC oscillation operating point	V _{MOSCOP}	Crystal/Ceramic		0.5 × REGVCC* ³		V
MainOSC oscillation amplitude	V _{MOSCAMP}	Crystal/Ceramic	0.4 x REGVCC - 0.2*3			V
MainOSC oscillation stabilization time	t _{MSTB}	Crystal/Ceramic		*1		ms
SubOSC frequency	f _{SOSC}	Crystal	30	32.768	38	kHz
SubOSC Current consumption	I _{SOSC}	After stabilization		1.5* ³	4* ³	μA
SubOSC DC operating point	V _{SOSCDCOP}			0.65* ³		V
SubOSC oscillation stabilization time	t _{SSTB}			*2		s

Note 1. Oscillator stabilization time is time until being set ("1") in MOSCS.MOSCCLKACT bit after MOSCE.MOSCENTRG bit is written "1", and depends on the setting value of MOSCST register. Please decide appropriate oscillation stabilization time by matching test with resonator and oscillation circuit.

 Note 2.
 Oscillator stabilization time is time until being set ("1") in SOSCS.SOSCCLKACT bit after

 SOSCE.SOSCENTRG bit is written "1", and depends on the setting value of SOSCST register. Please decide appropriate oscillation stabilization time by matching test with resonator and oscillation circuit.

 Note 3.
 This is reference value.

CAUTION

The oscillation stabilization time differs according the matching with the external resonator circuit. It is recommended to determine the oscillation stabilization time by an oscillator matching test.

NOTE

Recommended oscillator circuit is shown below.

MainOSC

1.6 Internal Oscillator Characteristics

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
LS IntOSC frequency	f _{RL}		220.8	240	259.2	kHz
HS IntOSC frequency	f _{RH}		7.36	8	8.64	MHz
		Ta = 25°C	7.6	8	8.4	MHz
HS IntOSC Current consumption	I _{RH}	After stabilization			25* ¹	μA
HS IntOSC oscillation stabilization time	t _{RHSTB}				54.4	μs

Note 1. This is reference value.

1.7 PLL Characteristics

Item	Symbol		Condition	MIN.	TYP.	MAX.	Unit
Input frequency	f _{PLLICLK}			8		24	MHz
Output frequency	f _{CPLL}	ECO line		25		80	MHz
(PLL for CPU)		ADVANCED line, PRE	MIUM line	25		24 80 96 80 150 150 200 250 300 150 200 150 200 150 200 150 200 150 200 150 300 250 300 150 150 150 150 150 11	MHz
Output frequency (PLL for Peripheral)	f _{PPLL}			25		80	MHz
Output period jitter*1	t _{CPJ}	PLLC.OUTBSEL = 0	par = 4 ^{*2}	-150		150	ps
(PLL for CPU)			par = 6 ^{*2} (f _{CPLL} = 80 MHz)	-150		150	ps
			par = 6 ^{*2} (f _{CPLL} < 80 MHz)	-200		24 M 80 M 96 M 80 M 150 p 150 p 200 p 250 p 300 p 150 p 200 p 200 p 150 p 200 p 200 p 200 p 200 p 200 p 300 p 300 p 300 p 300 p 300 p 1 n	ps
		par = 8 ^{*2}	-250		250	ps	
			par = 16 ^{*2}	-300		300	ps
	PLLC.OUTBSEL = 1 f _{CPLL} = 96 MHz –150 ADVANCED line,		150	ps			
		PREMIUM line	f _{CPLL} < 96 MHz	-200		200	ps
Output period jitter*1	t _{PPJ}		par = 4 ^{*2}	-150		150	ps
(PLL for Peripheral)			par = 6 ^{*2} (f _{PPLL} = 80 MHz)	-150		150	ps
			par = 6 ^{*2} (f _{PPLL} < 80 MHz)	-200		200	ps
			par = 8 ^{*2}	-250 250 -300 300 -150 150 -200 200 -150 150 -200 200 -150 150 -250 250 -200 200 -300 300	ps		
			par = 16 ^{*2}	-300		300	ps
Long term jitter*1	t _{LTJ}		term = 1 µs	-500		500	ps
(Both PLL for CPU and PLL for Peripheral)			term = 10 μs	-1		1	ns
			term = 20 μs	-2		2	ns
Lock time* ³	t _{LCKP}			104	112.3	122.1	μs

Note 1. This is reference value.

Note 2. "par" is set by PA[2:0] bit of PLLC register.

Note 3. Lock time is time until being set ("1") in PLLS.PLLCLKACT bit after PLLE.PLLENTRG bit is written "1".

1.8 Power Management Characteristics

1.8.1 Regulator Characteristics

Condition: REGVCC = EVCC = VPOC to 5.5 V, BVCC = VPOC to REGVCC, A0VREF = 3.0 V to 5.5 V, A1VREF = 3.0 V to 5.5 V, AWOVSS = ISOVSS = EVSS = BVSS = A0VSS = A1VSS = 0 V, Ta = -40 to (depend on the product) °C, CL = 30 pF

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage	REGVCC		VPOC*1		5.5	V
Normal operation voltage	V _{OP}	AWOVCL pin, ISOVCL pin	1.10	1.25	1.35	V
Limited operation voltage	V _{LOP}	AWOVCL pin, ISOVCL pin	1.35		1.43* ³	V
Regulator output voltage	V _{RO}	AWOVCL pin, ISOVCL pin	1.15	1.25	1.35	V
Output voltage	AWOVCL	AWOVCL pin	1.1	1.25	1.35	V
	ISOVCL	ISOVCL pin	1.1	1.25	1.35	V
Capacitance	CAWOVCL	AWOVCL pin	0.07	0.10	0.13	μF
	CISOVCL	ISOVCL pin	0.07	0.10	0.13	μF
Equivalent series resistance	RVRAWO	for CAWOVCL			40* ²	mΩ
for load capacitance	RVRISO	for CISOVCL			40* ²	mΩ
Inrush current during power-on					100* ²	mA

Note 1. "VPOC" means POC (power on clear) detection voltage (typ. 2.95V@at power-on, typ. 2.9V@after (except) power-on).

For detail, refer to Section 1.8.2, Voltage Detector (POC, LVI, VLVI, CVM) Characteristics.

Note 2. This is reference value.

Note 3. Reliability restrictions from 1.35 V to 1.43 V.

1.8.2 Voltage Detector (POC, LVI, VLVI, CVM) Characteristics

Item	Symbol	Condition			MIN.	TYP.	MAX.	Unit
Detection voltage (REGVCC)	VPOC	POC	At power-on (Rise)		2.8	2.95	3.1	V
			After power-on (Fall)		2.8	2.9	3.0	V
	VLVI0	LVI	Rise		3.87	4.0	4.13	V
			Fall		3.9	4.0	4.1	V
	VLVI1	-	Rise		3.57	3.7	3.83	V
			Fall		3.6	3.7	3.8	V
	VLVI2	-	Rise		3.37	3.5	3.63	V
			Fall		3.4	3.5	3.6	V
	VVLVI	VLVI			1.8	1.9	2.0	V
Detection voltage (AWOVCL, ISOVCL)	VCVMH	CVM	High voltage ^{Caution}		1.40	1.50	1.60	V
	VCVML*8	_	Low voltage ^{Caution}		1.1	1.15	1.20	V
Response time	t _{D_POC1} *6	POC	At power-on (Rise)	*1			2	ms
				*2			6.3	ms
			After power-on (Rise)	*3			2	ms
				*4			5	ms
	t _{D_POC2} *7		After power-on (Fall)	*5			5	μs
	t _{D_LVI}	LVI					2	ms
	t _{D_VLVI}	VLVI		*3			2	ms
	-			*4			5	ms
	t _{D_CVM}	CVM			0.2		10	μs
Setup time	t _{S_LVI}	LVI	LVICNT0,1 bits are set to $00_{\rm B}$), then LVI is ready to	· ·			80	μs
REGVCC minimum width	t _{W_POC}	POC			0.2			ms
	t _{W_LVI}	LVI			0.2			ms
	t _{W_VLVI}	VLVI			0.2			ms
Note 1.	Voltage slope	e (t _{VS}) : 0.02	V/ms ≤ t _{VS} ≤ 0.5 V/ms					
Note 2.			//ms < t _{VS} ≤ 500 V/ms					
Note 3.			V/ms ≤ t _{VS} ≤ 20 V/ms					
Note 4.	Voltage slope	e (t _{VS}) : 20 V/	/ms < t _{VS} ≤ 500 V/ms					
Note 5.	Voltage slope	e (t _{VS}) : 0.02	V/ms ≤ t _{VS} ≤ 500 V/ms					
Note 6.	t _{D_POC1} is the	e time from d	letection voltage to release	of reset sign	al.			
Note 7.	to POC2 is the	e time from d	letection voltage to occurre	ence of reset	sianal.			

 Note 7.
 t_{D_POC2} is the time from detection voltage to occurrence of reset signal.

 Note 8.
 The CVM monitors the internal voltage regulator output to ensure that AWOVCL/ISOVCL is upper than

specified minimum level.

Caution: A detection of the voltage AWOVCL or ISOVCL outside the specified level of VCVMH and VCVML is not ensured by CVM.

<POC>

<CVM>

1.8.3 Power Up/Down Timing

Condition: REGVCC = EVCC = VPOC to 5.5 V, BVCC = VPOC to REGVCC, A0VREF = 3.0 V to 5.5 V, A1VREF = 3.0 V to 5.5 V, AWOVSS = ISOVSS = EVSS = BVSS = A0VSS = 40 VSS = 0 V, CAWOVCL: $0.1\mu\text{F} +/-30\%$, CISOVCL: $0.1\mu\text{F} +/-30\%$, Ta = -40 to (depend on the product) °C, CL = 30 pF

Table 1.1 In case the RESET pin is used (except Serial programming mo	ode)	
---	------	--

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Voltage slope (REGVCC and IOVCC* ¹)	t _{VS}		0.02 (= 50 ms/V)		500 (= 2 μs/V)	V/ms
REGVCC ↑ and IOVCC ↑ to	t _{DPOR}	Voltage slope (t _{VS}) : 0.02 V/ms \leq t _{VS} \leq 0.5 V/ms	2			ms
RESET ↑ delay time		Voltage slope (t _{VS}) : 0.5 V/ms < t _{VS} \leq 500 V/ms	6.3			ms
FLMD0 hold time (vs RESET ↑)	t _{HMDR}		1			ms
FLMD0 setup time (vs RESET ↓)	t _{SMDF}		0* ²			μs
RESET ↓ to REGVCC ↓ and IOVCC ↓ delay time	t _{DRPD}		0			ms

Note 1. IOVCC means EVCC, BVCC, A0VREF and A1VREF.

Note 2. When the RESET and FLMD0 pin input low level at same time (t_{SMDF} = 0µs) in the device entries on-chip debug mode and operates self-programming, following pins have a possibility to unstable level output for less than 23ns.

JP0_6, P10_0, P0_0, P10_5, P8_1

So, when the device was used in the device entries on-chip debug mode and operates self-programming, please input low level in FLMD0 before $\overline{\text{RESET}}$ pin input.

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Voltage slope (REGVCC and IOVCC* ¹)	t _{VS}		0.02 (= 50 ms/V)		500 (= 2 μs/V)	V/ms
$\frac{\text{REGVCC} \uparrow \text{and IOVCC}^{*1} \uparrow \text{to}}{\text{RESET} \uparrow \text{delay time}}$	t _{DPOR}	Voltage slope (t _{VS}) : 0.02 V/ms \leq t _{VS} \leq 0.5 V/ms	2			ms
		Voltage slope (t _{VS}) : 0.5 V/ms < t _{VS} \leq 500 V/ms	6.3			ms
FLMD0 setup time (vs RESET ↑)	t _{SMDOR}		1			ms
RESET ↓ to REGVCC ↓ and IOVCC* ¹ ↓ delay time	t _{DRPD}		0			ms

 Table 1.2
 In case the RESET pin is used (for Serial programming mode)

Note 1. IOVCC means EVCC, BVCC, A0VREF and A1VREF.

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Voltage slope (REGVCC and IOVCC* ¹)	t _{VS}		0.02 (= 50 ms/V)		500 (= 2 μs/V)	V/ms
REGVCC ↑ and IOVCC ↑ to	t _{DPOR}	Voltage slope (t _{VS}) : 0.02 V/ms \leq t _{VS} \leq 0.5 V/ms	2			ms
RESET ↑ delay time		Voltage slope (t _{VS}) : 0.5 V/ms < t _{VS} \leq 500 V/ms	6.3			ms
FLMD0, FLMD1, MODE0, MODE1 setup time (vs RESET ∱)	t _{SMDR}		1			ms
RESET↓ to REGCC ↓ and IOVCC ↓ delay time	t _{DRPD}		0			ms
DCUTRST input delay time (vs RESET ↑)	t _{DRTRST}		1			ms
RESET hold time (vs DCUTRST ↓)	t _{HRTRST}		0			ms

Table 1.3	Boundarv scan	mode in	case of	using RESET pi	n

Note 1. IOVCC means EVCC, BVCC, A0VREF and A1VREF.

		-	-			
Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Voltage slope (REGVCC and IOVCC* ²)	t _{VS}		0.02 (= 50 ms/V)		500 (= 2 μs/V)	V/ms
REGVCC ↑ and IOVCC ↑ to FLMD0 hold time	t _{HPOMD}	Voltage slope (t _{VS}) : 0.02 V/ms \leq t _{VS} \leq 0.5 V/ms	2			ms
		Voltage slope (t _{VS}) : 0.5 V/ms < t _{VS} \leq 500 V/ms	6.3			ms
$\begin{array}{l} FLMD0 \downarrow \text{to } REGVCC \downarrow \text{and} \\ IOVCC^{*2} \downarrow \text{delay time} \end{array}$	t _{DMDPD}		1			μs

Table 1.4	In case the RESET pin is not used and fixed to high level by pull-up* ¹

Note 1. This operating condition is available only in normal operation mode (include self-programming mode). When the device is used in except normal operation mode, please use the RESET pin.

Note 2. IOVCC means EVCC, BVCC, A0VREF and A1VREF.

1.8.4 CPU Reset Release Timing

Table 1.5	In case t	he RESET	pin is	not used
-----------	-----------	----------	--------	----------

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
REGVCC ↑ to	t _{DPCRR}	Voltage slope (t _{VS}) : 0.02 V/ms \leq t _{VS} \leq 0.5 V/ms			2.58	ms
CPU reset release*1		Voltage slope (t_{VS}) : 0.5 V/ms < $t_{VS} \le 500$ V/ms			8.30	ms

Note 1. This is reference value.

Table 1.6 In case the RESET pin is used

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RESET ↑ to CPU reset release* ¹	t _{DRCRR}				8* ²	μs

Note 1. This is reference value.

1.9 Pin Characteristics

Condition: Some of the conditions mentioned in this chapter can be selected by software and described in the hardware user's manual.

			Port Input	Buffer Functio	on		Port Output	Other P	ort Function
Pin Name	CMOS	SHMT1	SHMT2	SHMT4	TTL	Analog	 Drive Strength Mode 	Pull-up	Pull-down
RESET	_	—	\checkmark	_	_	_	_	—	*4
FLMD0	_	\checkmark	_	_	_	_	_	\checkmark	\checkmark
AP0_0	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_1	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_2	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_3	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_4	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_5	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_6	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_7	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_8	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_9	\checkmark	_	_	_	_	\checkmark	Slow	_	√ ^{*1}
AP0_10	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_11	\checkmark	_	_	—	_	\checkmark	Slow	_	√*1
AP0_12	\checkmark	_	_	—	_	\checkmark	Slow	—	√*1
AP0_13	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_14	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP0_15	\checkmark	—	_	_	—	\checkmark	Slow	_	√*1
AP1_0	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_1	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_2	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_3	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_4	\checkmark	_	—	_	_	\checkmark	Slow	_	√ ^{*1}
AP1_5	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_6	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_7	\checkmark	_	_	_	_	\checkmark	Slow	_	√ ^{*1}
AP1_8	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_9	\checkmark	—	—	—	—	\checkmark	Slow	—	√*1
AP1_10	\checkmark	—	—	—	—	\checkmark	Slow	—	√ ^{*1}
AP1_11	\checkmark	—	—	—	—	\checkmark	Slow	—	√*1
AP1_12	\checkmark	—	—	—	—	\checkmark	Slow	—	√*1
AP1_13	\checkmark	_	_	_	_	\checkmark	Slow	_	√ ^{*1}
AP1_14	\checkmark	_	_	_	_	\checkmark	Slow	_	√*1
AP1_15	\checkmark	_	_	_	_	\checkmark	Slow	_	√ ^{*1}
IP0_0	_	_	_	_	_	_	_	_	_
JP0_0	_	_	_	\checkmark	\checkmark	_	Slow	\checkmark	\checkmark
JP0_1	_	_	_	\checkmark		_	Slow/Fast	\checkmark	\checkmark
JP0_2	—	—	—	\checkmark	\checkmark	—	Slow	\checkmark	\checkmark
JP0_3	_	_	_	\checkmark	\checkmark	_	Slow	\checkmark	\checkmark
JP0_4	_	_	_	\checkmark	_	_	Slow	\checkmark	\checkmark
JP0_5	—	_	—	\checkmark	_	_	Slow/Fast	\checkmark	\checkmark
JP0_6	_	_	_	\checkmark	_	_	Slow/Fast	\checkmark	\checkmark
P0_0	_	\checkmark	_	\checkmark	_	_	Slow	\checkmark	\checkmark

			Port Input	Buffer Functio	on	Port Output — Drive Strength	Other P	ort Function	
Pin Name	CMOS	SHMT1	SHMT2	SHMT4	TTL	Analog	— Drive Strength Mode	Pull-up	Pull-dowr
P0_1	_	V	_	\checkmark	_	_	Slow	\checkmark	\checkmark
P0_2	_	\checkmark	_	\checkmark	_	_	Slow/Fast ^{*2}	\checkmark	\checkmark
P0_3	—	\checkmark	—	\checkmark	—	_	Slow/Fast ^{*2}	\checkmark	\checkmark
P0_4	_	\checkmark	_	\checkmark	_	_	Slow	\checkmark	\checkmark
P0_5	_	\checkmark	_	\checkmark	_	_	Slow/Fast ^{*3}	\checkmark	\checkmark
P0_6	_	\checkmark	_		_	_	Slow/Fast ^{*3}	\checkmark	\checkmark
P0_7	_	\checkmark	_	\checkmark	_	_	Slow/Fast	\checkmark	\checkmark
P0_8	_	_	_	\checkmark	_	_	Slow	\checkmark	\checkmark
P0_9	_	\checkmark	_		_	_	Slow	\checkmark	\checkmark
P0_10	_	_	_	\checkmark	_	_	Slow	\checkmark	\checkmark
P0_11	_	\checkmark	_		_	_	Slow	\checkmark	\checkmark
P0_12	_	\checkmark	_	\checkmark	_	_	Slow	\checkmark	\checkmark
P0_13	_	\checkmark	_	\checkmark	_	_	Slow/Fast	\checkmark	_
P0_14	_	_	_	\checkmark	_	_	Slow/Fast	\checkmark	_
P1_0	_	\checkmark	_	\checkmark	_	_	Slow	\checkmark	_
 P1_1	_	_	_		_	_	Slow	\checkmark	_
 P1_2	_	1	_		_	_	Slow	√	_
 P1_3	_	_	_		_	_	Slow	\checkmark	_
 P1_4	_	\checkmark	_		_	_	Slow	\checkmark	_
 P1_5	_		_	1	_	_	Slow	V	_
P1_6	_	V	_	√	_	_	Slow	√	_
P1_7	_	_	_	√	_	_	Slow	√	_
P1_8	_	1	_	√	_	_	Slow	√	_
P1_9	_	_	_	√	_	_	Slow	√	_
P1_10	_	V	_	√	_	_	Slow	√	_
P1_11	_	_	_	√	_	_	Slow	√	_
P1_12	_	V		√	_		Slow	1	
P1_13	_	_		√	_	_	Slow	1	_
P1_14	_		_	√		_	Slow		
P1_14	_	• 	_	√	_	_	Slow		
P10_0			_	√ √		_	Slow/Fast	× √	
P10_0	_			√ √	_		Slow/Fast ^{*3}	× √	 √
P10_1 P10_2	_		—	√	—	—	Slow/Fast ^{*3}	 √	 √
	—	√	_	 √	—	—	Slow/Fast	 √	 √
P10_3	_	√	_		_	_			
P10_4	_		_	√ 	_	_	Slow/Fast	√ 	√
P10_5	_		_	√ 	_	_	Slow/Fast	√ 	√
P10_6	_	\checkmark	_	√	_	_	Slow/Fast	√	<u>√</u>
P10_7	_	_	_	√ 	_	_	Slow/Fast	√ 	√
P10_8	_		_	√ /	_	_	Slow/Fast	<u>√</u>	<u>√</u>
P10_9	_	\checkmark	_	√	_	_	Slow/Fast	√ /	<u>√</u>
P10_10	_			√	_	_	Slow/Fast	√ 	<u>√</u>
P10_11	—	\checkmark	—	√	—	—	Slow/Fast	√	<u>√</u>
P10_12	_		—	√	_	_	Slow/Fast	√	V
P10_13	_	\checkmark	_	√	_	_	Slow/Fast	√	1
P10_14	—	—	—	\checkmark	_	—	Slow/Fast	\checkmark	\checkmark
P10_15	—	\checkmark	—	\checkmark	—	_	Slow/Fast	\checkmark	\checkmark

			Port Input	Buffer Function	Port Input Buffer Function							
Pin Name	CMOS	SHMT1	SHMT2	SHMT4	TTL	Analog	 Drive Strength Mode 	Pull-up	Pull-dow			
P11_0	_	_	_	\checkmark	_	_	Slow/Fast	\checkmark	\checkmark			
P11_1	_	\checkmark	_	\checkmark	_	_	Slow/Fast	\checkmark	\checkmark			
P11_2	—	_	—	\checkmark	_	_	Slow/Fast ^{*3}	\checkmark	\checkmark			
P11_3	_	\checkmark	_	\checkmark	_	_	Slow/Fast ^{*3}	\checkmark	\checkmark			
P11_4	_	_	_	\checkmark	_	_	Slow/Fast	\checkmark	\checkmark			
P11_5	_	\checkmark	_	\checkmark	_	_	Slow/Fast	\checkmark	_			
P11_6	_	\checkmark	_	\checkmark	_	_	Slow/Fast ^{*3}	\checkmark	_			
P11_7	_	_	_	\checkmark	_	_	Slow/Fast ^{*3}	\checkmark	_			
211_8	_	_	_	\checkmark	_	_	Slow/Fast	\checkmark	_			
P11_9	_	\checkmark	_	\checkmark	_	_	Slow/Fast	\checkmark	_			
P11_10	_	_	_	\checkmark	_	_	Slow/Fast	\checkmark	_			
P11_11	_	_	_	\checkmark	_	_	Slow/Fast	\checkmark	_			
P11_12	_	\checkmark	_	\checkmark	_	_	Slow	\checkmark	_			
P11_13	_	\checkmark	_	\checkmark	_	_	Slow/Fast	\checkmark	_			
P11_14	_	_	_	V	_	_	Slow/Fast	\checkmark	_			
P11_15	_	\checkmark	_	V	_	_	Slow/Fast	\checkmark	_			
P12_0	_	_	_	V	_	_	Slow/Fast	\checkmark	_			
P12_1	_	\checkmark	_	V	_	_	Slow/Fast	\checkmark	_			
- 12_2	_	_	_	V	_	_	Slow/Fast	\checkmark	_			
·12_3	_	\checkmark	_	\checkmark		_	Slow	\checkmark	_			
 212_4	_	_	_	\checkmark	_	_	Slow	\checkmark	_			
 212_5	_	_	_	\checkmark	_	_	Slow	\checkmark	_			
 218_0	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*1			
P18_1	_	_	_	ا	_	√	Slow	√	√*1			
P18_2	_	_	_	√	_	√	Slow	√	√*1			
218_3	_	_	_	√	_	√	Slow	V	√ [*] 1			
218_4	_	_	_		_	√	Slow	√	 √*1			
P18_5	_	_	_		_		Slow	√	 √*1			
P18_6		_	_	√	_	√	Slow	√	√ [*] 1			
18_7	_	_	_			√	Slow					
P2_0			_	 √		• 	Slow		• 			
2_0 P2_1			_	√		_	Slow		_			
2_1 2_2	_		_	 √	_	_	Slow	 √	_			
2_2 2_3				 √	_	_	Slow	 √				
2_3 2_4	_		_	 √			Slow	 √	_			
2_4 2_5	_		_	 √	_	_	Slow	 √	_			
	_	_		 √								
P2_6	_		_		_	_	Slow	<u>√</u>	_			
20_0	_	\checkmark	_	√ 	_	_	Slow	√ 	_			
20_1			_	√ 	_	_	Slow	√ 	_			
20_2	_	V	_		_	_	Slow	<u>√</u>	_			
20_3	_		_	√	_	_	Slow	<u>√</u>	_			
20_4	_	\checkmark	_	√	_	_	Slow	<u>√</u>	_			
20_5	—	—	—	√	—		Slow	<u>√</u>				
98_0	—	—	—	√	—	V	Slow	<u>√</u>	√ ^{*5}			
8_1	_	_	_	\checkmark	—	\checkmark	Slow	\checkmark	√*5			

(4/4)

			Port Input	Buffer Functio	on		Port Output	Other P	ort Function
Pin Name	CMOS	SHMT1	SHMT2	SHMT4	TTL	Analog	 Drive Strength Mode 	Pull-up	Pull-down
P8_3	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P8_4	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P8_5	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	$\sqrt{5}$
P8_6	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	$\sqrt{5}$
P8_7	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*1
P8_8	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*1
P8_9	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*1
P8_10	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*1
P8_11	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*1
P8_12	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*1
P9_0	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P9_1	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P9_2	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P9_3	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P9_4	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P9_5	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5
P9_6	_	_	_	\checkmark	_	\checkmark	Slow	\checkmark	√*5

Note 1. Pull-down resistors for ADC diagnostic purpose. Control via ADC self-diagnostic register.

Note 2. Supports Cload: 100pF

Note 3. Supports Cload: 50pF

Note 4. At a power-on clear reset, an on-chip pull-down resistor at the RESET pin is enabled until the flash sequence is completed.

Note 5. Pull-down resistors for ADC diagnostic and internal pull-down purposes. For ADC diagnostic, control via ADC self-diagnostic register. For internal pull-down, control via PD register.

Caution: Regarding external pull-up resistor of RESET pin, please connect less than 6.6 kΩ.

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
High level input voltage	VIH	CMOS		0.65 ×IOVCC		IOVCC + 0.3	V
		SHMT1 (except FLMD	00 pin)	0.7 × IOVCC		IOVCC + 0.3	V
		SHMT1 (FLMD0 pin)*3	3	0.66 × EVCC		EVCC + 0.3	V
		SHMT2		0.75 × IOVCC		IOVCC + 0.3	V
		SHMT4		0.8 × IOVCC		IOVCC + 0.3	V
		TTL	EVCC = VPOC to 3.6 V	2.0		EVCC + 0.3	V
			EVCC = 3.6 V to 5.5 V	2.2		EVCC + 0.3	V
		IP0_0 pin		0.7 × REGVCC		REGVCC	V
Low level input voltage	VIL	CMOS		-0.3		0.35 × IOVCC	V
		SHMT1		-0.3		0.3 × IOVCC	V
		SHMT2		-0.3		0.25 × IOVCC	V
		SHMT4		-0.3		0.5 × IOVCC	V
		TTL		-0.3		0.8	V
		IP0_0 pin		0		0.3 × REGVCC	V
Input hysteresis for	VH	SHMT1		0.3			V
Schmitt		SHMT2		0.2 × IOVCC			V
		SHMT4		0.1			V
Input leakage current	ILIH	IP0_0 pin, VI = REGV	сс			0.5	μA
		RESET, FLMD0, JP0, P8, P9, P20 pin, VI = E	P0, P1, P2, EVCC* ²			0.5	μA
		P10, P11, P12, P18 pi	n, VI = BVCC			0.5	μA
		AP0 pin, VI = A0VREF	. *2			0.5	μA
		AP1 pin, VI = A1VREF	. *2			0.5	μA
	ILIL	IP0_0 pin, VI = 0 V				-0.5	μA
		RESET, FLMD0, JP0, P8, P9, P20 pin, VI = (-0.5	μA
		P10, P11, P12, P18 pi	n, VI = 0 V* ²			-0.5	μA
		AP0 pin, VI = 0 V* ²				-0.5	μA
		AP1 pin, VI = 0 V* ²				-0.5	μA
Internal pull-up	RU	except FLMD0 pin		20 (275 µA)	40	100	kΩ
resistance		FLMD0* ³		10 (550 µA)	19	48	kΩ
Internal pull-down	RD	except FLMD0 pin		20 (275 µA)	40	100	kΩ
resistance		FLMD0		10 (550 µA)	19	50	kΩ
High level output	VOH	Fast mode					
voltage			$IOH = -5 \text{ mA} (6 \text{ pins})^{*4}$	IOVCC – 1.0			V
			$IOH = -3 \text{ mA} (10 \text{ pins})^{*4}$	IOVCC - 1.0			V
			IOH = -1 mA (16 pins)* ⁴	IOVCC - 0.5			V
			IOH = -0.1 mA (16 pins)* ⁴	IOVCC – 0.5			V
		Slow mode					
			$IOH = -1 \text{ mA} (16 \text{ pins})^{*4}$	IOVCC - 0.5			V
			IOH = -0.1 mA (16 pins)* ⁴	IOVCC – 0.5			V

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Low level output	VOL	Fast mode					
voltage			IOL = 5 mA (6 pins)*4			0.4	V
			IOL = 3 mA (10 pins)*4			0.4	V
			IOL = 1 mA (16 pins)*4			0.4	V
		Slow mode					
			IOL = 1 mA (16 pins)* ⁴			0.4	V
Rise/Fall time	t _{KRP} /t _{KFP}	Fast mode	CL = 30 pF			7	ns
		(except below pins)* ⁵	CL = 50 pF			12	ns
			CL = 100 pF			24	ns
		Fast mode (P0_5, P0_6, P10_1, P10_2, P11_2, P11_3, P11_6, P11_7)* ⁶	CL = 50 pF			6	ns
		Fast mode (P0_2, P0_3)* ⁶	CL = 100 pF			6.15	ns
		Slow mode*5	CL = 30 pF			37	ns
			CL = 50 pF			62	ns
			CL = 100 pF			124	ns
Dutput frequency	f _O	Fast mode	CL = 30 pF			40	MHz
		Slow mode	CL = 30 pF			10	MHz
			CL = 50 pF			6	MHz
			CL = 100 pF			3	MHz

Note 1. "IOVCC" means the pins are assigned to the power supply (EVCC, BVCC, A0VREF and A1VREF).

Note 2. Not select the analog input function of ADCn.

Note 3. When the internal pull-up resistor of FLMD0 pin is applied by FLMDCNT register, please connect 95 k Ω or more as external pull-down resistor.

Note 4. The number of pin indicates simultaneous ON.

Measurement point: 0.1 × IOVCC to 0.9 × IOVCC Note 5.

Note 6. Measurement point: 0.2 × IOVCC to 0.8 × IOVCC

1.9.1 Output Current

ltem	Symbol	Pin Group	Condition	MIN.	TYP.	MAX.	Unit
High-level	IOH	PgE	Per side (Total of P9_0 to P9_6, P20_0 to P20_5)			-13	mA
output current			Per side (Total of P0_0 to P0_3)			-12	mA
			Per side (Total of JP0_3 to JP0_5, P0_4 to P0_6, P0_11 to P0_14, P1_0 to P1_3, P1_12, P1_13, P2_6, P8_2, P8_10 to P8_12)			-30	mA
			Per side (Total of JP0_0 to JP0_2, P1_8 to P1_11, P2_0, P2_1)			-9	mA
			Per side (Total of JP0_6, P0_7 to P0_10, P1_4 to P1_7, P1_14, P1_15, P2_2 to P2_5, P8_0, P8_1, P8_3 to P8_9)			-28	mA
			Total (EVCC)			-60	mA
		PgB	Per side (Total of P10_6 to P10_9, P18_0 to P18_7)			-28	mA
			Per side (Total of P10_10 to P10_14, P11_1 to P11_7, P11_15, P12_0 to P12_2)			-30	mA
			Per side (Total of P10_0 to P10_2)			-15	mA
			Per side (Total of P10_3 to P10_5)			-15	mA
			Per side (Total of P10_15, P11_0, P11_8 to P11_14, P12_3 to P12_5)			-30	mA
			Total (BVCC)			-60	mA
		PgA0	Total (A0VREF)			-16	mA
		PgA1	Total (A1VREF)			-16	mA
ow-level IOL	IOL	PgE	Per side (Total of P9_0 to P9_6, P20_0 to P20_5)			13	mA
output current			Per side (Total of P0_0 to P0_6, P0_11 to P0_14, P1_0 to P1_3, P1_12, P1_13, P2_6)			30	mA
			Per side (Total of JP0_0 to JP0_5, P1_8 to P1_11, P2_0, P2_1, P8_2, P8_10 to P8_12)			16	mA
			Per side (Total of JP0_6, P0_7 to P0_10, P2_2, P2_3)			11	mA
			Per side (Total of P1_4 to P1_7, P1_14, P1_15, P2_4, P2_5, P8_0, P8_1, P8_3 to P8_9)			17	mA
			Total (EVSS)			60	mA
		PgB	Per side (Total of P18_0 to P18_7)			8	mA
			Per side (Total of P10_6 to P10_14, P11_1, P11_2)			30	mA
			Per side (Total of P11_3 to P11_7, P11_15, P12_0 to P12_2)			30	mA
			Per side (Total of P10_0 to P10_2)			15	mA
			Per side (Total of P10_3 to P10_5)			15	mA
			Per side (Total of P10_15, P11_0, P11_8 to P11_14, P12_3 to P12_5)			30	mA
			Total (BVSS)			60	mA
		PgA0	Total (A0VSS)			16	mA
		PgA1	Total (A1VSS)			16	mA

Note 1. For detail of the definition of "side" and "total", refer to Section 1.2.3, Port Current.

1.10 Power Supply Currents

Condition: REGVCC, EVCC, BVCC, A0VREF and A1VREF total current. But the I/O buffer is stopped.

ECO Line

	Condition										
Item	Symbol	CPU	PLL	Та	Peripheral*2	MIN.	TYP. * ¹	MAX.	Unit		
RUN mode current	IDDR	Run	Run	-40 to 125°C	Run(#1)		25	60	mA		
		(80 MHz)		25°C	Stop(#1)		19		mA		
RUN mode current (During data/code flash programming)	IDDR3	Run (80 MHz)	Run	–40 to 125°C	Run(#2)		36	75	mA		
HALT mode current	IDDH	Run (80 MHz)	Run	–40 to 125°C	Run(#3)		20	56	mA		

ADVANCED Line, PREMIUM Line

	Condition									
Item	Symbol	CPU	PLL	Та	Peripheral*2	MIN.	TYP. * ¹	MAX.	Unit	
RUN mode current	IDDR	Run	Run	–40 to 125°C ^{Caution}	Run(#1)		28	72	mA	
		(96 MHz)		25°C	Stop(#1)		21		mA	
RUN mode current (During data/code flash programming)	IDDR3	Run (96 MHz)	Run	–40 to 125°C ^{Caution}	Run(#2)		39	87	mA	
HALT mode current	IDDH	Run (96 MHz)	Run	–40 to 125°C ^{Caution}	Run(#3)		22	68	mA	

				Condition					
Item	Symbol	CPU	PLL	Та	Peripheral*2	MIN.	TYP. * ¹	MAX.	Unit
STOP mode current	IDDS	Stop	Stop	–40 to 85°C	Stop(#2)		0.35	3.5	mA
				105°C	Stop(#2)			8	mA
				125°C	Stop(#2)			12	mA
DeepSTOP mode current	IDDDS	Power off	Power	–40 to 85°C	Stop(#3)		35	350	μΑ
			off	105°C	Stop(#3)			700	μA
				125°C	Stop(#3)			1000	μA
Cyclic RUN mode current	IDDCR	Run (HS	Stop	–40 to 85°C	Run(#4)		1.6	11	mA
		IntOSC)		105°C	Run(#4)			17	mA
				125°C	Run(#4)			24	mA
Cyclic STOP mode current	IDDCS	Stop	Stop	–40 to 85°C	Run(#5)		0.40	6	mA
				105°C	Run(#5)			9	mA
				125°C	Run(#5)			13	mA

Note 1. The condition of "TYP." shows the specification with the following conditions. Also, the value is just for reference only.

- Ta = 25°C

- REGVCC = EVCC = BVCC = A0VREF = A1VREF = 5.0 V

- AWOVSS = EVSS = BVSS = A0VSS = A1VSS = 0 V
- Note 2. Operating condition of each peripheral function is shown in the table of next page.

Caution: It must be ensured that the junction temperature in the Ta range remains below Tj≤150°C and does not exceed its limit under application conditions (thermal resistance, power supply current, peripheral current (if not included in power supply current), port output current and injection current).

				Run				Stop	
Functio	on	(#1)	(#2)	(#3)	(#4)	(#5)	(#1)	(#2)	(#3)
AWO	MainOSC	Run	Run	Run	Stop	Stop	Run	Stop	Stop
	SubOSC	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
	HS IntOSC	Run	Run	Run	Run	Stop	Run	Stop	Stop
	FOUT	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
	LPS	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
	RRAM	Read/Write	Read/Write	No access	Fetch	No access	Read/Write	No access	No access
	WDTA0	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
	TAUJ0	Run	Run	Run	Run (LS IntOSC)	Run (LS IntOSC)	Stop	Stop	Stop
	RTCA0	Run	Run	Run	Run (LS IntOSC)	Run (LS IntOSC)	Stop	Stop	Stop
	CLMA0	Run	Run	Run	Run	Stop	Stop	Stop	Stop
	CLMA1	Run	Run	Run	Stop	Stop	Stop	Stop	Stop
	ADCA0	Run* ¹	Run* ¹	Run* ¹	Stop	Stop	Stop	Stop	Stop
ISO	CPU	Run (PLL)	Run (PLL)	Halt (PLL)	Run (HS IntOSC)	Stop	Run (PLL)	Stop	Power off
	DMA	Run	Run	Run	Stop	Stop	Stop	Stop	
	PLL	Run	Run	Run	Stop	Stop	Run	Stop	
	Code flash	Fetch	Fetch	No access	No access	No access	Fetch	No access	
	Data flash	Read	Write\Erase	No access	No access	No access	Read	No access	
	PLRAM	Read/Write	Read/Write	No access	No access	No access	Read/Write	No access	
	SLRAM	Read/Write	Read/Write	No access	No access	No access	Read/Write	No access	
	OSTM0	Run	Run	Run	Stop	Stop	Stop	Stop	
	WDTA1	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
	TAUD0	Run	Run	Run	Stop	Stop	Stop	Stop	
	TAUBn	Run	Run	Run	Stop	Stop	Stop	Stop	
	TAUJ1	Run	Run	Run	Stop	Stop	Stop	Stop	
	TAPA, PIC	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
	ENCA0	Run	Run	Run	Stop	Stop	Stop	Stop	
	PWM-diag	Run	Run	Run	Stop	Stop	Stop	Stop	
	RLIN3n	Run	Run	Run	Stop	Stop	Stop	Stop	1
	RLIN2n	Wait	Wait	Wait	Stop	Stop	Stop	Stop	1
	RS-CANn	Wait	Wait	Wait	Stop	Stop	Stop	Stop	1
	CSIGn	Run	Run	Run	Stop	Stop	Stop	Stop	1
	CSIHn	Run	Run	Run	Stop	Stop	Stop	Stop	1
	RIIC0	Wait	Wait	Wait	Stop	Stop	Stop	Stop	1
	CLMA2	Run	Run	Run	Stop	Stop	Stop	Stop	1
	ADCA1	Run	Run	Run	Stop	Stop	Stop	Stop	1

Note 1. T&H used.

1.11 MEMC0CLK Timing

Condition:

- REGVCC = EVCC = 3.0 V to 5.5 V, BVCC = 3.0 V to REGVCC, A0VREF = 3.0 V to 5.5 V, A1VREF = 3.0 V to 5.5 V, AWOVSS = ISOVSS = EVSS = BVSS = A0VSS = A1VSS = 0 V, CAWOVCL: 0.1μ F +/-30%, CISOVCL: 0.1μ F +/-30%, Ta = -40 to (depend on the product) °C, CL = 30 pF
- MEMC0CLK pin is the Fast mode.

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
MEMC0CLK output cycle	t _{MEMCLK}		25 (max. 40 MHz)			ns
MEMC0CLK high/ low level width	t _{WKHMEM} / t _{WKLMEM}		t _{MEMCLK} /2 – 10			ns
MEMC0CLK rise/fall time	t _{KRMEM} / t _{KFMEM}				10	ns

1.12 External Bus Timing

1.12.1 MEMC0CLK Asynchronous

<Output driver strength>

MEMC0AD0-15, MEMC0A16-19, MEMC0CS3-0, MEMC0BEN1-0, MEMC0ASTB, MEMC0WR, MEMC0RD pin: Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Bus operational period	Т		25 (max. 40 MHz)			ns
Address* ⁶ setup time to MEMC0ASTB (f)	t _{SAST}	<1>	(1 + ASW) × T – 15			ns
Address (MEMC0AD15-0) hold time from MEMC0ASTB (f)	t _{HSTA}	<2>	(1 + AHW) × T – 15			ns
Address (MEMC0AD15-0) float delay time from MEMC0RD (f)	t _{FRDA}	<3>			6	ns
Address* ⁷ hold time from MEMC0RD (r)	t _{HRDA}	<4>	0			ns
Data (MEMC0AD15-0) input delay time from MEMC0RD (f)	t _{DRDID}	<5>	6		(1 + w) × T – 35	ns
Data (MEMC0AD15-0) input hold time from MEMC0RD (r)	t _{HRDID}	<6>	0			ns
$\frac{\text{Delay time from }\overline{\text{MEMC0ASTB}}}{\text{MEMC0RD}} \text{ (f) to}$	t _{DSTRD}	<7>	(1 + AHW) × T – 15			ns
Delay time from MEMC0ASTB (f) to MEMC0WR (f)	t _{DSTWR}	<8>	(1 + AHW) × T – 15			ns
MEMCORD, MEMCOWR low level width	t _{WRDST}	<9>	(1 + w) × T – 10			ns
Data (MEMC0AD15-0) output delay time from MEMC0WR (f)	t _{DWROD}	<10>			10	ns
Address* ⁷ hold time from MEMC0WR (r)	t _{HWRA}	<11>	(1 + DHW) × T – 15			ns
Data (MEMC0AD15-0) output setup time to MEMC0WR (r)	t _{SODWR}	<12>	(1 + w) × T – 15			ns
Data (MEMC0AD15-0) output hold time from MEMC0WR (r)	t _{HWROD}	<13>	(1 + DHW) × T – 15			ns
MEMCOWAIT setting delay from MEMCOASTB (f)	t _{SSTWT1}	<14>			(2 + AHW) × T – (2 × t _{CPUCLK} + 38)	ns
	t _{SSTWT2}	<15> w ≥ 1			(2 + w + AHW) × T – (2 × t _{CPUCLK} + 38)	ns
MEMC0WAIT hold time from MEMC0ASTB (f)	t _{HSTWT1}	<16> w ≥ 1	(1 + w + АНW) × T – (2 × t _{СРUCLK} + 20)			ns
	t _{HSTWT2}	<17> w ≥ 1	$(2 + w + AHW) \times T - (2 \times t_{CPUCLK} + 20)$			ns

Note 1. ASW means the number of address setup wait for multiplex bus.

Note 2. AHW means the number of address hold wait for multiplex bus.

Note 3. "w" means the number of data wait.

Note 4. t_{CPUCLK}: CPU clock period.

Note 5. DHW means the number of data hold wait for multiplex bus.

Note 6. Address means MEMC0AD15-0, MEMC0A19-16, MEMC0CS3-0 and MEMC0BEN1-0.

Note 7. Address means MEMC0A19-16, MEMC0CS3-0, MEMC0BEN1-0 and MEMC0ASTB.

NOTE

When the bus period (T) is shorter than 41 ns, t_{DRDID} spec requires at least 1 data wait. (w = 1)

(1) Multiplex Write Cycle (Asynchronous; 1 Data Wait)

(2) Multiplex Read Cycle (Asynchronous; 1 Data Wait)

1.12.2 MEMC0CLK Synchronous

<Output driver strength>

MEMC0AD0-15, MEMC0A16-19, MEMC0CS3-0, MEMC0BEN1-0, MEMC0ASTB, MEMC0WR, MEMC0RD pin: Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Bus operational period	Т		25 (max. 40 MHz)			ns
Delay time from MEMC0CLK (r) to address* ¹	t _{DKA}	<18>	0		12	ns
Delay time from MEMC0CLK (r) to address (MEMC0AD15-0) float	t _{FKA}	<19>	0		12	ns
Delay time from MEMC0CLK (r) to MEMC0ASTB	t _{DKST}	<20>	0		11	ns
Delay time from MEMC0CLK (r) to MEMC0RD and MEMC0WR	t _{DKRDWR}	<21>	-2.5		6	ns
Data (MEMC0AD15-0) input setup time (from MEMC0CLK (r))	t _{SIDK}	<22>	29			ns
Data (MEMC0AD15-0) input hold time (from MEMC0CLK (r))	t _{HKID}	<23>	2.5			ns
Data (MEMC0AD15-0) output delay time (from MEMC0CLK (r))	t _{DKOD}	<24>			11	ns
MEMC0WAIT setup time (to MEMC0CLK (r))	t _{swтк}	<25>	22 + 2 × t_{CPUCLK}			ns
MEMC0WAIT hold time (from MEMC0CLK (r))	t _{HKWT}	<26>	–5 – 2 × t _{CPUCLK}			ns

Note 1. Address means MEMC0AD15-0, MEMC0A19-16, MEMC0CS3-0 and MEMC0BEN1-0.

Note 2. Do not use MEMCOWAIT terminal when the bus period (T) is shorter than 27 ns.

NOTE

When the bus period (T) is shorter than 41 ns, at least 1 data wait (w = 1) is required.

(1) Multiplex Write Cycle (Synchronous; 1 Data Wait)

(2) Multiplex Read Cycle (Synchronous; 1 Data Wait)

1.13 Interrupt Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
NMI input high/low	t _{WNIH} /	Edge detection mode	600			ns
level width ^{*1}	t _{WNIL}	Level detection mode (EMCLK is operated by HS IntOSC)	756			ns
NMI pulse rejection*2		Level detection mode (EMCLK is operated by LS IntOSC)	5.13			μs
NMI pulse rejection*2	t _{WNIRJ}		100			ns
INTPn input high/low	t _{WITH} /	Edge detection mode	600			ns
level width ^{*1}	t _{WITL}	Level detection mode (EMCLK is operated by HS IntOSC)	756			ns
		Level detection mode (EMCLK is operated by LS IntOSC)	5.13			μs
INTPn pulse rejection*2	t _{WITRJ}		100			ns

Note 1. NMI and INTPn input width is needed to ensure that the internal interrupt signal is activated.

1.14 RESET Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RESET input low level width*1	t _{WRSL}	*3	0.6			μS
		*4	5.0			μS
		*5	600			μS
RESET pulse rejection*2	t _{WRSRJ}		0.1			μS

Note 1. RESET input width is needed to ensure that the internal reset signal is activated.

Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

- Note 3. After RESET is asserted there will be a period where GPIO output could become an undefined status and after 600µs will become Hi-z. (figure (a))
- Note 4. If during RUN mode or HALT mode, after RESET is asserted GPIO pin will become Hi-z. For other modes, after RESET is asserted there will be a period where GPIO output could become an undefined status and after 600us will become Hi-z. (figure (a) and (b))
- Note 5. GPIO output states will become Hi-z after RESET is asserted. (figure (b))
- (a) In case of either

 t_{WRSL} < 5 µs, any mode or

 t_{WRSL} < 600 µs, any mode except for RUN and HALT mode.

(b) In case of either

⁵ μ s ≤ t_{WRSL}, RUN and HALT mode or 600 μ s ≤ t_{WRSL}, any mode.

1.15 Low Power Sampler (DPIN input) Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
DPINn input delay time (vs SELDP2-0)	t _{DSDDI}				150	ns

Note 1. n = 7 to 0

1.16 CSCXFOUT Timing

<Output driver strength>

CSCXFOUT: Slow or fast mode (refer to the condition in the following table)

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
CSCXFOUT output cycle	t _{FOUT}	Slow mode		100 (max. 10 MHz)			ns
		Fast mode (Except JP0_3 pin)* ¹		41.6 (max. 24 MHz)			ns
CSCXFOUT t _{WKHFO} high level width	t _{WKHFO}	Slow mode	N: 1* ² or even value* ³	t _{FOUT} / 2 – 37			ns
		N: Odd value (N \ge 5) ^{*3, *4}	t _{FOUT} × (N+1) / 2N – 37			ns	
		Fast mode (Except JP0_3 pin)* ¹	N: 1* ² or even value* ³	t _{FOUT} / 2 – 10			ns
			N: Odd value $(N \ge 3)^{*3}$	t _{FOUT} × (N+1) / 2N – 10			ns
CSCXFOUT low level width	t _{WKLFO}	Slow mode	N: 1 ^{*2} or even value ^{*3}	t _{FOUT} / 2 – 37			ns
			N: Odd value (N \ge 5) ^{*3, *4}	t _{FOUT} × (N–1) / 2N – 37			ns
		Fast mode (Except JP0_3 pin)* ¹	N: 1* ² or even value* ³	t _{FOUT} / 2 – 10			ns
			N: Odd value $(N \ge 3)^{*3}$	t _{FOUT} × (N–1) / 2N – 10			ns
CSCXFOUT	t _{KRFO} /	Slow mode				37	ns
rise/ fall time	t _{kffo}	Fast mode (Except JP0_3 pin)* ¹				10	ns

Note 1. JP0_3 does not support fast mode.

Note 2. When MainOSC, HS IntOSC, LS IntOSC or SubOSC is selected as source clock with the condition of N=1, the characteristics of output signal depends on the selected source clock. It is recommended to use output signal after evaluation on an actual environment.

Note 3. "N" is the value of "Clock divisor N" defined by FOUTDIV register.

Note 4. The selection of N = 3 is prohibited when slow mode is used.

1.17 Mode Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
FLMD0,1 input high/low level width*1	t _{WFMDH} / t _{WFMDL}		600			ns
FLMD0, 1 pulse rejection* ²	t _{WFMDRJ}		100			ns
MODE0, 1 input high/low level width*1	t _{WMDH} / t _{WMDL}		600			ns
MODE0, 1 pulse rejection* ²	t _{WMDRJ}		100			ns

Note 1. FLMD0,1 and MODE0,1 input width is needed to ensure that the internal mode signal is activated.

Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.18 Timer Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TAUD0Iy input high/low level width (y = 0 to 15)	t _{WTDIH} / t _{WTDIL}		n × Tsamp + 20 ^{*1, *2}			ns
TAUD0Oy output cycle (y = 0 to 15)	t _{TDCYK}	Slow mode			10	MHz
TAUBxIy input high/low level width $(x = 0, 1, y = 0 \text{ to } 15)$	t _{WTBIH} / t _{WTBIL}		n × Tsamp + 20 ^{*1, *2}			ns
TAUBxOy output cycle (x = 0, 1, y = 0 to 15)	t _{твсүк}	Slow mode			10	MHz
TAUJxly input high/low level width ^{*3} (x = 0, 1, y = 0 to 3)	t _{WTJIH} / t _{WTJIL}		600			ns
TAUJxly pulse rejection ^{*4}	t _{WTIJRJ}		100			ns
TAUJxOy output cycle $(x = 0, 1, y = 0 \text{ to } 3)$	t _{TJCYK}	Slow mode			10	MHz
RTCA0OUT output cycle	t _{RTCYK}			1		Hz
TAPA0ESO input high/low level width ^{*3}	t _{WESIH} / t _{WESIL}		600			ns
TAPA0ESO pulse rejection ^{*4}	t _{WESIRJ}		100			ns
TAPA0Uy/Vy/Wy output cycle (y = P, N)	t _{TPCYK}	Slow mode			10	MHz
ENCA0TINy input high/low level width (y = 0, 1)	t _{WENTIH} / t _{WENTIL}		n × Tsamp + 20 ^{*1}			ns
ENCA0Ey input high/low level width (y = 0,1,C)	t _{WENyIH} / t _{WENyIL}		n × Tsamp + 20 ^{*1}			ns
PWGAyO output cycle (y = 0 to 71)	t _{PWGCYK}	Slow mode			10	MHz

Note 1. n: Sampling number of the digital noise filter for each input.

Tsamp: Sampling time of the digital noise filter for each input.

Note 2. Input more than 1 count clock width of each timer counter channel.

Note 3. TAUJxly and TAPA0ESO input width is needed to ensure that the internal timer input signal is activated.

Note 4. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.19 RLIN2/RLIN3 Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RLIN3 transfer rate		LIN specification	1		20	kbps
		LIN extended baudrate	1		115.2* ¹	kbps
		UART function			1.5	Mbps
RLIN2 transfer rate		LIN specification	1		20	kbps

Note 1. The LIN extended baudrate is not part of the LIN standard specification.

1.20 RS-CAN Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Transfer rate					1	Mbps
Internal delay time*1	t _{NODE}				100	ns

Note 1. t_{NODE} = Internal input delay time (t_{INPUT}) + Internal output delay time (t_{OUTPUT})

1.21 CSI Timing

1.21.1 CSIG Timing

Table 1.7 CSIG Timing (Master Mode)

<Output driver strength>

CSIGnSO, CSIGnSC (output): Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro operation clock cycle	t _{KCYGn}	ECO line	12.5 (max. 80 MHz)			ns
time		ADVANCED line, PREMIUM line	10.42 (max. 96 MHz)			ns
CSIGnSC cycle time	t _{KCYMGn}		100			ns
CSIGnSC high level width	t _{KWHMGn}		0.5 × t _{KCYMGn} – 10			ns
CSIGnSC low level width	t _{KWLMGn}		0.5 × t _{KCYMGn} – 10			ns
CSIGnSI setup time (vs. CSIGnSC)	t _{SSIMGn}		30			ns
CSIGnSI hold time (vs. CSIGnSC)	t _{HSIMGn}		0			ns
CSIGnSO output delay (vs. CSIGnSC)	t _{DSOMGn}				7	ns
CSIGnRYI setup time (vs. CSIGnSC)	t _{SRYIGn}	CSIGnCTL1.CSIGnSIT = x CSIGnCTL1.CSIGnHSE = 1	2 × t _{KCYGn} + 25			ns
CSIGnRYI High level width	t _{WRYIGn}	CSIGnCTL1.CSIGnHSE = 1	t _{KCYGn} + 5			ns

n = 0, 1

Table 1.8 CSIG Timing (Slave Mode)

<Output driver strength> CSIGnSO: Fast mode CSIGnRYO: Slow mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro operation clock cycle time	t _{KCYGn}	ECO line	12.5 (max. 80 MHz)			ns
		ADVANCED line, PREMIUM line	10.42 (max. 96 MHz)			ns
CSIGnSC cycle time	t _{KCYSGn}		200			ns
CSIGnSC high level width	t _{KWHSGn}		0.5 × t _{KCYSGn} – 10			ns
CSIGnSC low level width	t _{KWLSGn}		0.5 × t _{KCYSGn} – 10			ns
CSIGnSI setup time (vs. CSIGnSC)	t _{SSISGn}		20			ns
CSIGnSI hold time (vs. CSIGnSC)	t _{HSISGn}		t _{KCYGn} + 5			ns
CSIGnSO output delay (vs. CSIGnSC)	t _{DSOSGn}				30	ns
CSIGnRYO output delay	t _{SRYOGn}	t _{KCYSGn} ≥ 8 × t _{KCYGn}			38	ns
		t _{KCYSGn} < 8 × t _{KCYGn}			38 + t _{KCYGn}	ns
CSIGnSSI setup time (vs.CSIGnSC)	t _{SSSISGn}		0.5 × t _{KCYSGn} – 5			ns
CSIGnSSI hold time (vs. CSIGnSC)	t _{HSSISGn}		t _{KCYGn} + 5			ns

n = 0, 1

1.21.2 CSIH Timing

 Table 1.9
 CSIH Timing (Master Mode)

<Output driver strength>

CSIHnSO, CSIHnSC (output): Fast mode (CL = 100pF@n=0 / 50pF@n=1-3)

CSIHnCSSm: Slow mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro Operation clock cycle	t _{KCYHn}	ECO line	12.5 (max. 80 MHz)			ns
time		ADVANCED line, PREMIUM line	10.42 (max. 96 MHz)			ns
CSIHnSC cycle time	t _{KCYMHn}		100			ns
CSIHnSC high level width	t _{KWHMHn}		0.5 × t _{KCYMHn} – 10			ns
CSIHnSC low level width	t _{KWLMHn}		0.5 × t _{KCYMHn} – 10			ns
CSIHnSI setup time (vs. CSIHnSC)	t _{SSIMHn}	SI Positive edge mode (CSIHnCTL1.CSIHnSLRS = 0)	19			ns
		SI Negative edge mode (CSIHnCTL1.CSIHnSLRS = 1)	14			ns
CSIHnSI hold time (vs. CSIHnSC)	t _{HSIMHn}	SI Positive edge mode (CSIHnCTL1.CSIHnSLRS = 0)	0			ns
		SI Negative edge mode (CSIHnCTL1.CSIHnSLRS = 1)	t _{KCYHn} /2			ns
CSIHnSO output delay (vs. CSIHnSC)	t _{DSOMHn}				7	ns
CSIHnRYI setup time (vs. CSIHnSC)	t _{SRYIHn}	CSIHnCTL1.CSIHnSIT = x CSIHnCTL1.CSIHnHSE = 1	2 × t _{KCYHn} + 25			ns
CSIHnRYI high level width	t _{WRYIHn}	CSIHnCTL1.CSIHnHSE = 1	t _{KCYHn} + 5			ns
CSIHnCSS0-7 inactive width	t _{WSCSBHn}		CSIDLE × t _{KCYMHn} – 15			ns
CSIHnCSS0-7 setup time	t _{SSCSBHn0}	CSIHnCFGx.CSIHnDAP = 0	CSSETUP × t _{KCYMHn} – 23			ns
(vs. CSIHnSC)	t _{SSCSBHn1}	CSIHnCFGx.CSIHnDAP = 1	(CSSETUP + 0.5) × t _{KCYMHn} – 23			ns
CSIHnCSS0-7 hold time	t _{HSCSBHn0}	CSIHnCTL1.CSIHnSIT = 0	CSSHOLD × t _{KCYMHn} – 5			ns
(vs. CSIHnSC)	t _{HSCSBHn1}	CSIHnCTL1.CSIHnSIT = 1	(CSSHOLD + 0.5) × t _{KCYMHn} - 5			ns

n = 0 to 3

NOTE

CSIDLE: Setting value of CSIHnCFGx.CSIHnIDx[2:0] CSSETUP: Setting value of CSIHnCFGx.CSIHnSPx[3:0] CSSHOLD: Setting value of CSIHnCFGx.CSIHnHDx[3:0]

x: Depends on number of the chip select signals.

CAUTION

When the serial clock level is changed during the communication (CSIHnCFGx.CSIHnCKPx) and the IDLE has a setting of 0.5 transmission clock period an inactive width time $t_{WSCSBHn}$ of "0.5 × t_{KCYMHn} " is added.

Table 1.10 CSIH Timing (Slave Mode)

<Output driver strength> CSIHnSO, CSIHnSC (output): Fast mode CSIHnRYO: Slow mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro Operation clock cycle time	t _{KCYHn}	ECO line	12.5 (max. 80 MHz)			ns
		ADVANCED line, PREMIUM line	10.42 (max. 96 MHz)			ns
CSIHnSC cycle time	t _{KCYSHn}		200			ns
CSIHnSC high level width	t _{KWHSHn}		0.5 × t _{KCYSHn} – 10			ns
CSIHnSC low level width	t _{KWLSHn}		0.5 × t _{KCYSHn} – 10			ns
CSIHnSI setup time (vs. CSIHnSC)	t _{SSISHn}		20			ns
CSIHnSI hold time (vs. CSIHnSC)	t _{HSISHn}		t _{KCYHn} + 5			ns
CSIHnSO output delay (vs. CSIHnSC)	t _{DSOSHn}				30	ns
CSIHnRYO output delay	t _{SRYOHn}	t _{KCYSHn} ≥ 8 × t _{KCYHn}			38	ns
		t _{KCYSHn} < 8 × t _{KCYHn}			38 + t _{KCYHn}	ns
CSIHnSSI setup time (vs. CSIHnSC)	t _{SSSISHn}		0.5 × t _{KCYSHn} – 5			ns
CSIHnSSI hold time (vs. CSIHnSC)	t _{HSSISHn}		t _{KCYHn} + 5			ns

n = 0 to 3

(1) SCKO/SI/SO

Master Mode:

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 0/0 or 1/1)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 0/0 or 1/1)

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 1/0 or 0/1)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 1/0 or 0/1)

(2) RYI

- CSIG: Only master mode (CSIGnCTL1: CSIGnHSE = 1, CSIGnCTL1: CSIGnSIT = 0)
- CSIH: Only master mode (CSIHnCTL1: CSIHnHSE = 1, CSIHnCTL1: CSIHnSIT = 0)
 - CSIG (CSIGnCTL1: CSIGnCKR = 0)
 - CSIH (CSIHnCFGm: CSIHnCKPm = 0)

- CSIG (CSIGnCTL1: CSIGnCKR = 1)
- CSIH (CSIHnCFGm: CSIHnCKPm = 1)

(3) CSSn

Only Master Mode (Setup Time):

• CSIHnCFGm: CSIHnCKPm = 0, CSIHnCFGm: CSIHnDAPm = 0

• CSIHnCFGm: CSIHnCKPm = 0, CSIHnCFGm: CSIHnDAPm = 1

Only Master Mode (Hold Time):

• CSIHnCTL1: CSIHnSIT = 0, CSIHnCFGm: CSIHnCKPm = 0, CSIHnCFGm: CSIHnDAPm = 0

• CSIHnCTL1: CSIHnSIT = 1, CSIHnCFGm: CSIHnCKPm = 0, CSIHnCFGm: CSIHnDAPm = 0

(4) SCKO/SI/SO

Slave Mode:

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 0/0 or 1/1)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 0/0 or 1/1)

• CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 1/0 or 0/1)

• CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 1/0 or 0/1)

(5) RYO

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 0/0)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 0/0)

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 0/1)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 0/1)

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 1/0)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 1/0)

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 1/1)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 1/1)

(6) SSI

Slave Mode:

- CSIG (CSIGnCTL1: CSIGnSSE=1, CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 0/0 or 1/1)
- CSIH (CSIHnCTL1: CSIHnSSE=1, CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 0/0 or 1/1)

- CSIG (CSIGnCTL1: CSIGnSSE=1, CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 = 1/0 or 0/1)
- CSIH (CSIHnCTL1: CSIHnSSE=1, CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 1/0 or 0/1)

1.22 RIIC Timing

0 (,				
Symbol	Condition	MIN.	TYP.	MAX.	Unit
f _{CLK}				100	kHz
t _{BUF}		4.7			μs
t _{HD} : STA		4.0			μs
t _{LOW}		4.7			μs
t _{HIGH}		4.0			μs
t _{SU} : STA		4.7			μs
t _{HD} : DAT	CBUS compatible master	5.0			μs
	IIC mode	0* ²			μs
t _{SU} : DAT		250			ns
t _{SU} : STO		4.0			μs
Cb				400	pF
	f _{CLK} t _{BUF} t _{HD} : STA t _{LOW} t _{HIGH} t _{SU} : STA t _{HD} : DAT t _{SU} : DAT t _{SU} : STO		$ \begin{array}{c c c c c c } f_{CLK} & & & & & & & & & & & & & & & & & & &$		

		DUO		() 1	
Table	1.11	RIIC	IIming	(Normal	wode)

Note 1. At the start condition, the first clock pulse Is generated after the hold time.

Note 2. The system requires a minimum of 300 ns hold time internally for the RIIC0SDA signal (at VIH min. of RIIC0SCL signal). In order to occupy the undefined area at the falling edge of RIIC0SCL.

Note 3. If the system does not extend the RIIC0SCL signal low hold time (t_{Low}), only the maximum data hold time (t_{HD} : DAT) needs to be satisfied.

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RIIC0SCL clock period	f _{CLK}				400	kHz
Bus free time (between stop/start condition)	t _{BUF}		1.3			μs
Hold time* ¹	t _{HD} : STA		0.6			μs
RIIC0SCL clock low-level width	t _{LOW}		1.3			μs
RIIC0SCL clock high-level time	t _{HIGH}		0.6			μs
Setup time for start/restart condition	t _{SU} : STA		0.6			μs
Data hold time	t _{HD} : DAT	IIC mode	0* ²			μs
Data setup time	t _{SU} : DAT		100* ⁴			ns
Stop condition setup time	t _{SU} : STO		0.6			μs
Pulse width with spike suppressed by input filter	t _{SP}		0		50	ns
Capacitance load of each bus line	Cb				400	pF

Table 1.12 RIIC Timing (Fast Mode)

Note 1. At the start condition, the first clock pulse Is generated after the hold time.

Note 2. The system requires a minimum of 300 ns hold time internally for the RIIC0SDA signal (at VIH min. of RIIC0SCL signal). In order to occupy the undefined area at the falling edge of RIIC0SCL.

Note 3. If the system does not extend the RIIC0SCL signal low hold time (t_{Low}), only the maximum data hold time (t_{HD} : DAT) needs to be satisfied.

Note 4. The fast mode IIC bus can be used in normal mode IIC bus system. In this case, set the fast mode IIC bus so that it meets the following conditions.

- If the system does not extend the RIIC0SCL signal's low state hold time: t_{SU}: DAT \geq 250 ns

- If the system extends the RIICOSCL signal's low state hold time:

Transmit the following data bit to the RIIC0SDA line prior to releasing the RIIC0SCL line (1250 ns: Normal mode IIC bus specification).

1.23 ADTRG Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
ADCAnTRGm input high/ low level width	t _{WADH} / t _{WADL}		k × Tsamp + 20* ¹			ns

Note 1. k: Sampling number of the digital noise filter for each input. Tsamp: Sampling time of the digital noise filter for each input.

1.24 Key Return Timing

CL = 30 pF

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
KR0In input low level width*1	t _{WKRL}		600			ns
KR0In pulse rejection* ²	t _{WKRRJ}		100			ns

Note 1. KR0In input width is needed to ensure that the internal key input signal is activated.

Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.25 DCUTRST Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
DCUTRST input low level width*1	t _{WTRL}		600			ns
DCUTRST pulse rejection*2	t _{WTRRJ}		100			ns

Note 1. DCUTRST input width is needed to ensure that the internal DCU reset input signal is activated.

Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.26 Debug Interface Characteristics

1.26.1 Nexus Interface Timing

<Input buffer>

DCUTDI, DCUTCK, DCUTMS, DCUTRST: TTL

<Output driver strength>

DCUTDO, DCURDY: Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
DCUTCK cycle width	t _{DCKW}		50			ns
DCUTDI setup time (vs DCUTC K \uparrow)	t _{SDI}		12			ns
DCUTDI hold time (vs DCUTCK ↑)	t _{HDI}		3			ns
DCUTMS setup time (vs DCUTCK ↑)	t _{SMS}		12			ns
DCUTMS hold time (vs DCUTCK ↑)	t _{HMS}		3			ns
DCUTDO delay time (↓ DCUTCK)	t _{DDO}		0		20	ns
DCURDY delay time (↓ DCUTCK)	t _{RDYZ}		0		20	ns

1.26.2 LPD (4 pin) Interface Timing

<Input buffer>

LPDCLK, LPDI: TTL </br>

LPDCLKOUT, LPDO: Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
LPDCLK cycle time/ LPDCLKOUT cycle time	t _{lpdclkcy}		83.3 (max.12MHz)			ns
LPDCLK High-level width/ LPDCLK Low-level width	t _{lpdckw}		0.5 × t _{LPDCLKCY} – 10			ns
LPDCLKOUT High-level width/ LPDCLKOUT low-level width	t _{LPDCKOW}		t _{LPDCKW} – 10			ns
LPDI setup time (LPDCLK ↑)	t _{LPDIS}		41			ns
LPDI hold time (LPDCLK ↑)	t _{LPDIH}		3			ns
LPDCLK to LPDCLKOUT delay time	t _{LPDCKOD}				44	ns
LPDO delay time (LPDCLKOUT ↑)	t _{LPDOD}		0		15	ns

1.26.3 LPD (1 pin) Interface Timing

 Condition:
 REGVCC = EVCC = 3.0 V to 5.5 V, BVCC = 3.0 V to REGVCC, A0VREF = 3.0 V to 5.5 V, A1VREF = 3.0 V to 5.5 V, AWOVSS = ISOVSS = EVSS = BVSS = A0VSS = A1VSS = 0 V, CAWOVCL: 0.1μ F +/-30%, CISOVCL: 0.1μ F +/-30%, Ta = -40 to (depend on the product) °C, CL = 50 pF

 <Input buffer>
 LPDIO: TTL

 <Output driver strength>
 LPDIO: Fast mode

 <External pull-up resistor>
 LPDIO: 4.7 kΩ to 10 kΩ

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
LPD (1 pin) Baud rate					2.0	Mbps

1.27 Flash Programming Characteristics

1.27.1 Code Flash

The code flash memory is shipped in the erased state. If the code flash memory is read where it has not been written after erasure (no write condition), an ECC error is generated, resulting in the occurrence of an exception.

Table 1.13 Basic characteristics

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operation frequency	f _{PCLK} * ³	ECO line	4* ⁴		40	MHz
		ADVANCED line, PREMIUM line	4* ⁴		48	MHz
Number of rewrites*1	CWRT	Data retention of 20 years* ²	1000			times

Note 1. The number of rewrites is the number of erasures for each block. When the number of rewrites is "n" (n = 1000), the device can be erased "n" times for each block. For example, when a block of 32 KB is erased after 256 bytes of writing have been performed for different addresses 128 times, the number of rewrites is counted as 1. However, multiple writing to the same address is not possible with 1 erasure (overwriting prohibited).

Note 4. Only for program/erase operation.

Table 1.14 Programming characteristic (1/2)

Item	Symbol	Condition	Block size MIN.	TYP.	MAX.	Unit
Programming time		f _{PCLK} ≥ 20 MHz	256 B	0.4* ¹	6* ¹	ms
		CWRT < 100 times	8 KB	20	90	ms
			32 KB	80	360	ms
			256 KB	0.6	2.7	S
			384 KB	0.9	4.1	S
			512 KB	1.2	5.4	S
			768 KB	1.7	8.1	S
			1 MB	2.3	10.8	S
			1.5 MB	3.4	16.2	S
			2 MB	4.5	21.5	S
		f _{PCLK} ≥ 20 MHz CWRT ≥ 100 times	256 B	0.5* ¹	7.2* ¹	ms
			8 KB	24	108	ms
			32 KB	96	432	ms
			256 KB	0.7	3.3	S
			384 KB	1.1	4.9	S
			512 KB	1.4	6.5	S
			768 KB	2.1	9.8	S
			1 MB	2.7	13	S
			1.5 MB	4.1	19.5	S
			2 MB	5.4	26	S

Note 2. Retention period under average Ta = 85°C. This is the period starting on completion of a successful erasure of the code flash memory.

Note 3. f_{PCLK} = 1/2 f_{CPUCLK} : System operating frequency for internal flash.

Item	Symbol	Condition	Block size M	IN. TYP.	MAX.	Unit
Erase time		f _{PCLK} ≥ 20 MHz	8 KB	39	120	ms
		CWRT < 100 times	32 KB	141	480	ms
			256 KB	1.2	3.5	s
			384 KB	1.7	5.3	S
			512 KB	2.3	7	S
			768 KB	3.4	10.5	S
			1 MB	4.5	14	S
			1.5 MB	6.8	21	S
			2 MB	9	28	S
		f _{PCLK} ≥ 20 MHz	8 KB	47	144	ms
		CWRT ≥ 100 times	32 KB	169	576	ms
			256 KB	1.4	4.2	S
			384 KB	2.1	6.3	S
			512 KB	2.7	8.4	S
			768 KB	4.1	12.6	S
			1 MB	5.4	16.8	S
			1.5 MB	8.1	25.2	S
			2 MB	10.8	33.6	S

Table 1.14	Programming characterist	c (2/2)
------------	--------------------------	---------

Note 1. Only the processing time of the hardware. The overhead required by the software is not included.

1.27.2 Data Flash

The data flash memory is shipped in the erased state. If the data flash memory is read where it has not been written after erasure (no write condition), an ECC error is generated, resulting in the occurrence of an exception

Table 1.15Basic characteristics

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operation frequency	f _{PCLK} * ³	ECO line	4* ⁴		40	MHz
		ADVANCED line, PREMIUM line	4* ⁴		48	MHz
Number of rewrites*1	CWRT	Data retention 20 years* ²	125 k			times
		Data retention 3 years* ²	250 k			times

Note 1. The number of rewrites is the number of erasures for each block. When the number of rewrites is "n" (n = 125000), the device can be erased "n" times for each block. For example, when a block of 64 bytes is erased after 4 bytes of writing have been performed for different addresses 168 times, the number of rewrites is counted as 1. However, multiple writing to the same address is not possible with 1 erasure (overwriting prohibited).

Note 2. Retention period under average Ta = 85°C. This is the period starting on completion of a successful erasure of the data flash memory.

Note 3. $f_{PCLK} = 1/2 f_{CPUCLK}$: System operating frequency for internal flash.

Note 4. Only for program/erase operation.

Table 1.16 Programming characteristics

Item	Symbol	Condition	Block size	MIN.	TYP.	MAX.	Unit
Programming time		f _{PCLK} ≥ 20 MHz	4 B		0.16* ¹	1.7* ¹	ms
		f _{PCLK} ≥ 20 MHz	32 KB		1.4	6.8	S
		f _{PCLK} ≥ 20 MHz	64 KB* ²		2.79	13.44	S
Erasure time		f _{PCLK} ≥ 20 MHz	64 B		1.7* ¹	10* ¹	ms
		f _{PCLK} ≥ 20 MHz	32 KB		0.9	5.2	S
		f _{PCLK} ≥ 20 MHz	64 KB* ²		1.74	10.24	S
Blank check time		f _{PCLK} ≥20 MHz	4 B			30* ¹	μs
			64 B			100* ¹	μs
			32 KB			35.2	ms
			64 KB* ²			70.4	ms

Note 1. Only the processing time of the hardware. The overhead required by the software is not included.

Note 2. PREMIUM Line only

1.27.3 Serial Programming Interface

1.27.3.1 Serial Programmer Setup Timing

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
FLMD0 pulse input start time	t _{RP}		1.5			ms
FLMD0 pulse input end time	t _{RPE}				11.5	ms
FLMD0 low/high level width	t _{PW}		0.8			μs
FLMD0 rise time	t _R				20	ns
FLMD0 fall time	t _F				20	ns

NOTE

IOVCC: EVCC = BVCC = A0VREF = A1VREF

1.27.3.2 FLSCI3 Interface

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
FLSCI3 transfer rate		1-wired UART mode			1	Mbps
		2-wired UART mode			2	Mbps
FLSCI3SCI cycle time	t _{KCYSF}	3-wired clock sync mode	200* ¹			ns
FLSCI3SCI high level width	t _{KWHSF}	3-wired clock sync mode	t _{KCYSF} / 2 – 15			ns
FLSCI3SCI low level width	t _{KWLSF}	3-wired clock sync mode	t _{KCYSF} / 2 – 15			ns
FLSCI3SI setup time (vs. FLSCI3SCI)	t _{SSISF}	3-wired clock sync mode	55			ns
FLSCI3SI hold time (vs. FLSCI3SCI)	t _{HSISF}	3-wired clock sync mode	55			ns
FLSCI3SO output delay (vs. FLSCI3SCI)	t _{DSOSF}	3-wired clock sync mode Not continuous transfer (data: 1st bit)			0	ns
		3-wired clock sync mode Not continuous transfer (data: except 1st bit)			–t _{KWHSF} + 3 × t _{Pcyc} + 36	ns
FLSCI3SO hold time (vs. FLSCI3SCI)	t _{HSOSF}	3-wired clock sync mode	2 × t _{Pcyc}			ns

Note 1.

1. Input the external clock that is more than 6 clocks of PCLK.

NOTE

t_{Pcyc} is period of PCLK.

1.28 A/D Converter Characteristics

Item	Symbol	Condition			MIN.	TYP.	MAX.	Unit
Conversion clock	ADCLKn	T&H is not us	sed		8* ³		40	MHz
		T&H used			16		40	MHz
Resolution	RESn	12-bit mode			12	12	12	bit
		10-bit mode			10	10	10	bit
Conversion time	t _{CONn}		CR.SMPT[7:0] = 7 DCLKn × 32 MH;	12 H(40 cycle) z), External MPX is not	1.25		5	μs
		ADCAnSMP0 (8 MHz* ³ × A used	CR.SMPT[7:0] = ^ .DCLKn × 40 MH;	18 H (46 cycle) z), External MPX is not	1.15		5.75	μs
			CR.SMPT[7:0]=12 DCLKn × 32 MH:	2 H (80 cycle) z), External MPX is used	2.5 ^{*4}		10	μs
			CR.SMPT[7:0] = ^ .DCLKn × 40 MH:	18 H (92 cycle) z), External MPX is used	2.3 ^{*4}		11.5	μs
Sampling time	t _{SMP}	ADCAnSMPCR.SMPT[7:0] = 12 H (18 cycle) (8 MHz* ³ × ADCLKn × 32 MHz)		0.56		2.25	μs	
			CR.SMPT[7:0] = ´ .DCLKn × 40 MH;		0.6		3	μs
Overall error* ¹	TOEn	12-bit mode		ADCAnIm (w/o T&H)			±4.0	LSB
			4.5 V to 5.5 V	ADCA0I0-5 (w/ T&H)			±6.0	LSB
			AnVREF =	ADCAnIm (w/o T&H)			±6.0	LSB
			3.6 V to 4.5 V	ADCA0I0-5 (w/ T&H)			±8.0	LSB
			AnVREF =	ADCAnIm (w/o T&H)			±8.0	LSB
			3.0 V to 3.6 V	ADCA0I0-5 (w/ T&H)			±10.0	LSB
		10-bit mode	AnVREF =	ADCAnIm			±1.0	LSB
			4.5 V to 5.5 V	ADCAnImS			±2.0	LSB
			AnVREF =	ADCAnIm			±1.5	LSB
			3.6 V to 4.5 V	ADCAnImS			±2.5	LSB
			AnVREF = 3.0	ADCAnIm			±2.0	LSB
			V to 3.6 V	ADCAnImS			±3.0	LSB
Analog input voltage	VAIN0SN	ADCAnIm	T&H not used		AnVSS		AnVREF	V
		ADCA010-5	T&H used		0.2		A0VREF - 0.2	V
		ADCA0ImS	A0VREF ≥ EVC	C	A0VSS		EVCC	V
			A0VREF < EVC	C	A0VSS		A0VREF	V
		ADCA1ImS	A1VREF ≥ BVC	C	A1VSS		BVCC	V
			A1VREF < BVC		A1VSS		A1VREF	V
Operation current	IA0VREF	T&H not used				1.1	3.0	mA
	IA1VREF	T&H used (m					*2	mA
STOP, DeepSTOP, Cyclic STOP current @LPS is stopped)	IA0VREFS IA1VREFS	X				1	10	μΑ
T&H current	ITH					0.5	1.3	mA/ch
T&H sampling time	t _{THSMP}				450			ns
T&H hold time	t _{THHOLD}						10	μs
Set up time of self diagnosis voltage circuit	t _{BOOT}				500			ns
Set up time of self diagnosis voltage level	t _{OUT}				500			ns

Item	Symbol	Condition			MIN.	TYP.	MAX.	Unit
Pull-down resistor for		ADCnIm pins	;		350	500	650	kΩ
discharge mode		ADCnImS pir	าร		100	215	800	kΩ
Accuracy of	TESH0SN	12bit mode	Self-diagnosis	voltage level = AnVREF	4015- TOEn		4095	_
self-diagnosis function			Self-diagnosis voltage level = 2/ 3AnVREF		2651- TOEn	2731	2811+ TOEn	_
			Self-diagnosis 2AnVREF	voltage level = 1/	1968- TOEn	2048	2128+ TOEn	—
			Self-diagnosis 3AnVREF	voltage level = 1/	1285- TOEn	1365	1445+ TOEn	_
			Self-diagnosis	voltage level = AnVSS	0		80+ TOEn	—
		10bit mode	Self-diagnosis	voltage level = AnVREF	1003- TOEn		1023	—
			Self-diagnosis 3AnVREF	voltage level = 2/	663- TOEn	683	703+ TOEn	_
			Self-diagnosis 2AnVREF	voltage level = 1/	492- TOEn	512	532+ TOEn	—
			Self-diagnosis voltage level = 1/ 3AnVREF		321- TOEn	341	361+ TOEn	_
			Self-diagnosis	voltage level = AnVSS	0		20+ TOEn	_
Integral nonlinearity error* ¹	ILEn	12-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm (w/o T&H)			±2.0	LSE
			4.0 V 10 0.0 V	ADCA0I0-5 (w/ T&H)			±3.0	LSE
			AnVREF = 3.6 V to 4.5 V	ADCAnIm (w/o T&H)			±3.0	LSE
			5.0 V l0 4.5 V	ADCA0I0-5 (w/ T&H)			±4.0	LSE
			AnVREF =	ADCAnIm (w/o T&H)			±4.0	LSE
			3.0 V to 3.6 V	ADCA0I0-5 (w/ T&H)			±5.0	LSE
		10-bit mode	AnVREF =	ADCAnIm			±1.0	LSE
			4.5 V to 5.5 V	ADCAnImS			±2.0	LSE
			AnVREF =	ADCAnIm			±1.5	LSE
			3.0 V to 4.5 V	ADCAnImS			±2.5	LSE
Differential nonlinearity	DLEn		de AnVREF = 4.5 V to 5.5 V	ADCAnIm (w/o T&H)			±1.0	LSE
error* ¹				ADCA0I0-5 (w/ T&H)			±2.0	LSE
			AnVREF = 3.6 V to 4.5 V AnVREF =	ADCAnIm (w/o T&H)			±3.0	LSE
				ADCA0I0-5 (w/ T&H)			±4.0	LSE
				ADCAnIm (w/o T&H)			±3.0	LSE
			3.0 V to 3.6 V	ADCA0I0-5 (w/ T&H)			±4.0	LSE
		10-bit mode	AnVREF =	ADCAnIm			±1.0	LSE
			4.5 V to 5.5 V	ADCAnImS			±1.5	LSE
			AnVREF =	ADCAnIm			±1.0	LSE
			3.0V to 4.5V	ADCAnImS			±2.0	LSE
Zero scale error	ZSEn	12-bit mode	AnVREF =	ADCAnIm (w/o T&H)			±3.5	LSE
(offset error)*1			4.5 V to 5.5 V	ADCA010-5 (w/ T&H)			±5.5	LSE
			AnVREF =	ADCAnIm (w/o T&H)			±5.5	LSE
			3.6 V to 4.5 V	ADCA0I0-5 (w/ T&H)			±7.5	LSE
			AnVREF =	ADCAnIm (w/o T&H)			±7.5	LSE
			3.0 V to 3.6 V	ADCA0I0-5 (w/ T&H)			±9.5	LSE
		10-bit mode	AnVREF =	ADCAnIm			±0.5	LSE
			4.5 V to 5.5 V	ADCAnImS			±1.5	LSE
			AnVREF =	ADCAnIm			±1.0	LSE
			3.6 V to 4.5 V	ADCAnImS			±2.0	LSE
			AnVREF =	ADCAnIm			±1.5	LSE
			3.0 V to 3.6 V					

(3/3)

Item	Symbol	Condition			MIN.	TYP.	MAX.	Unit
Full scale error* ¹	FSEn	12-bit mode	AnVREF =	ADCAnIm (w/o T&H)			±3.5	LSB
			4.5 V to 5.5 V	ADCA0I0-5 (w/ T&H)			±5.5	LSB
			AnVREF =	ADCAnIm (w/o T&H)			±5.5	LSB
			3.6 V to 4.5 V	ADCA0I0-5 (w/ T&H)			±7.5	LSB
			AnVREF = $201/(10.2 \text{ G})/(10.2 \text{ G})/(10$	ADCAnIm (w/o T&H)			±7.5	LSB
			3.0 V to 3.6 V	ADCA0I0-5 (w/ T&H)			±9.5	LSB
		10-bit mode	AnVREF =	ADCAnIm			±0.5	LSB
			4.5 V to 5.5 V	ADCAnImS			±1.5	LSB
			AnVREF =	ADCAnIm			±1.0	LSB
			3.6 V to 4.5 V	ADCAnImS			±2.0	LSB
			AnVREF =	ADCAnIm			±1.5	LSB
			3.0 V to 3.6 V	ADCAnImS			±2.5	LSB

- Note 1. This does not include quantization error.
- Note 2. 3.0 + 1.3 × (the number of used T&H)
- Note 3. Include the oscillation accuracy of HS IntOSC.
- Note 4. When the external multiplexer is used, the detail time of A/D conversion is MPX setup time, sampling time and successive approximation time. MPX setup time is same as "sampling time + successive approximation time".
- Note 5. Conversion accuracy when ADCA0ImS terminal is converted in 12-bit mode: Conversion accuracy can be applied if lower 2-bit is ignored from conversion result.

CAUTION

When an external digital pulse is applied to AP0, AP1, P8, P9 and P18 pins during an A/D conversion this may lead to an A/D conversion result with a larger conversion error as expected due to the coupling noise of the external digital pulse.

The same behavior may apply when the digital buffer is used as output pin. For the output port the potential degradation increases with the driven total output current of the port. In addition the conversion resolution may drop if the output current fluctuates at adjacent pins due to the coupling effect of the external circuit connected to these port pins.

1.29 Injection Currents

For the injection current, there are two type specifications. These type are depend on Package, Flash size and Product name. These relationships are shown as the following table.

Flash Size	Product Name	Applicable Type
2 MB/	Except below products	Туре 1
1.5 MB/ 1 MB/ 768 KB	R7F701xxxxAFP#YJ2 R7F701xxxxAFP#YJ3 R7F701xxxxAFP#YK1 R7F701xxxxAFP#YK3 R7F701xxxxAFP#YB3 R7F701xxxxAFP#AA3 R7F701xxxxAFP#KA3	Туре 2

Table 1.17Definition of Pin Group

Symbol	Power Supply for Pin Group	Pin for Type 1 Products	Pin for Type 2 Products
PgR	REGVCC, AWOVSS	IP0_0	IP0_0
PgE	EVCC, EVSS	JP0, P0, P1, P2, P20	JP0, P0, P1, P2, P20
PgB	BVCC, BVSS	P10, P11, P12	P10, P11, P12
PgE'	EVCC, EVSS	P8, P9	Not Available* ¹
PgB'	BVCC, BVSS	P18	Not Available* ¹
PgA0	A0VREF, A0VSS	AP0	AP0
PgA1	A1VREF, A1VSS	AP1	AP1

Note 1. Do not apply an overvoltage on P8, P9 and P18 pins.

1.29.1 Absolute Maximum Ratings

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Positive overload current	I _{INJPM}	PgE	Per pin			10	mA
VIN > VCC			total			60	mA
		PgB	Per pin			10	mA
			total			60	mA
		PgE'	Per pin			10	mA
			Total			60	mA
		PgB'	Per pin			10	mA
			total			60	mA
		PgA0	Per pin			10	mA
			total			60	mA
		PgA1	Per pin			10	mA
			total			60	mA
		PgR	Per pin			10	mA
Negative overload current	I _{INJNM}	_M PgE	Per pin			-10	mA
VIN < VSS			total			-60	mA
		PgB	Per pin			-10	mA
			total			-60	mA
		PgE'	Per pin			-10	mA
			Total			-60	mA
		PgB'	Per pin			-10	mA
			total			-60	mA
		PgA0	Per pin			-10	mA
			total			-60	mA
		PgA1	Per pin			-10	mA
			total			-60	mA
		PgR	Per pin			-10	mA

CAUTIONS

1. The DC injection current (total) must satisfy the specifications of the injection current per pin.

2. In case of injected current for PgA0 and PgA1, TESH0SN cannot be kept. Its deviating value will increase sharply with increasing absolute value of injection current.

ltem	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Positive overload current	I _{INJP}	PgE	Per pin			2	mA
VIN > VCC			Total			50	mA
		PgB	Per pin			2	mA
			Total			50	mA
		PgE'	Per pin			3	mA
			Total			20	mA
		PgB'	Per pin			3	mA
			total			20	mA
		PgA0	Per pin			3	mA
			Total			20	mA
		PgA1	Per pin			3	mA
			Total			20	mA
		PgR	Per pin			2	mA
Negative overload current	I _{INJN}	_N PgE	Per pin			-2	mA
VIN < VSS			Total			-50	mA
		PgB	Per pin			-2	mA
			Total			-50	mA
		PgE'	Per pin			-3	mA
			Total			-20	mA
		PgB'	Per pin			-3	mA
			total			-20	mA
		PgA0	Per pin			-3	mA
			Total			-20	mA
		PgA1	Per pin			-3	mA
			Total			-20	mA
		PgR	Per pin			-2	mA

1.29.2 DC Characteristics for Overload Current

NOTE

These specifications are not tested on sorting and are specified based on the device characterization.

1.29.3 DC Characteristics for Pins Influenced by Injected Current on an Adjacent Pin

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Leakage current coupling factor for positive overload current	K _{INJP}	PgE	Per pin			3.0 × 10 ⁻⁶	_
		PgB	Per pin			3.0 × 10 ^{−6}	_
		PgE'	Per pin			3.0 × 10 ⁻⁶	_
		PgB'	Per pin			3.0 × 10 ⁻⁶	—
		PgA0	Per pin		4.8 × 10 ⁻⁶	—	
		PgA1	Per pin			4.8 × 10 ⁻⁶	—
		PgR	Per pin			3.0 × 10 ⁻⁶	—
Leakage current coupling	K _{INJN}	PgE	Per pin			7.5 × 10 ^{−6}	—
factor for negative overload current		PgB	Per pin			7.5 × 10 ^{−6}	—
		PgE'	Per pin			7.5 × 10 ^{−6}	—
		PgB'	Per pin			7.5 × 10 ^{−6}	—
		PgA0	Per pin			2.6 × 10 ⁻⁶	—
		PgA1	Per pin			2.6 × 10 ⁻⁶	_
		PgR	Per pin			7.5 × 10 ^{−6}	_

NOTES

1. This is reference value.

 An overload current through a pin will cause a certain error current in the adjacent pins. This error current must be added to the respective leakage current (ILIH or ILIL) of the adjacent pins.

 The amount of error leakage current depends on the overload current and is defined by the overload coupling factor K_{INJ}. The total current through a pin is:

 $|I_{total}| = |ILIH \text{ or } ILIL| + (|I_{INJn}| \times K_{INJn})$

1.29.4 AD Characteristics for Pins Influenced by Injected Current on an Adjacent

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Degradation of overall	I _{INJP}	3 mA per pin	ADCAnIm			±1.3	LSB
error*1			ADCAnImS			±1.3	LSB
		Total 20 mA	ADCAnIm			±3.8	LSB
			ADCAnImS			±3.8	LSB
	I _{INJN}	-3 mA per pin	ADCAnIm			±1.4	LSB
			ADCAnImS			±1.4	LSB
		Total -20 mA	ADCAnIm			±4.5	LSB
			ADCAnImS			±4.5	LSB

Note 1. This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.

Note 2. This is reference value.

CAUTION

When there is an increased leakage current on the analog input pins, based on currents injected into the pins adjacent to the converted channel, the effect on the ADC accuracy depends on the external analog source impedance.

[Example] Conditions: A0VREF = 5.0 V, external analog source impedance = 10 kΩ.

If there is a leakage current of 1µA by injected current, the effect on the ADC accuracy is 1 (µA) × 10 k (Ω) / 5 (V) = 0.2%FSR

1.30 Thermal Characteristics

1.30.1 Parameters

Item	Symbol	Estimate	Unit	Note
Thermal Resistance	Θја	37	°C/W	Conforming to JESD51-7 (4 layers)
Thermal Characterization Parameter	ψjb	30	°C/W	Conforming to JESD51-7 (4 layers)

Note: The thermal resistance depend on the usage environment.

1.30.2 Assumed Board

Conforming to JESD51-7 (4 layers)

	Board s					
	X	Y	Area (mm ²)			
Board	76.2	114.3	8709.66			
Remaining copper rates		Thickness of conductors				
50-95-95-50%	70-35-35-70 μm					

Section 2 Package Dimensions

REVISION HISTORY

RH850/F1L Datasheet

Boy	Data		Description
Rev.	Date	Page	Summary
0.10	Nov 20, 2012	—	First Edition issued
0.20	Jan 16, 2013	1	1.1.2.1 Common Conditions, changed
		3	1.2.1 Supply Voltages, changed
		3	1.2.2 Port Voltages, changed
		4	1.2.3 Port Current, changed
		5	1.4 Operational Condition: Notes 3 to 5, added
		5	1.5 Oscillator Characteristics: Note 1, Note 2, CAUTION, and NOTE added
		6	1.7 Regulator Characteristics, changed
		7	1.8 Pin Characteristics, changed
		8 to 9	1.9 Power Supply Currents, changed
		11 12 13	 1.11 External Bus Timing, changed (1) Multiplex Write Cycle (Asynchronous; 1 Data Wait), changed (2) Multiplex Read Cycle (Asynchronous; 1 Data Wait), changed
		14	1.12 Interrupt Timing, changed
		14 to15	1.13 Power Up/Down Timing: Timing diagram changed, Note added
		16	1.15 Port polling timing, added
		16	1.16 CSCXFOUT Timing, changed
		17	1.17 Mode Timing, changed
		17 to 18	1.18 Timer Timing, changed
		19	1.19 RLIN2/RLIN3 Timing, changed
		19	1.20 RS-CAN Timing, changed
		20	1.21.1 CSIG Timing, changed
		21 to 22	1.21.2 CSIH Timing, changed
		31 to 32	1.22 RIIC Timing, changed
		34	1.25 DCUTRST Timing, added
		35	1.26 POC Characteristics, changed
		36	1.27 LVI Characteristics, changed
		36	1.28 RAMHF Characteristics, changed
		37	1.29.1.1 FLSCI3 interface, changed
		38	1.29.1.2 Serial programmer setup timing, added
		39	1.30 Core Voltage Monitor Characteristics, changed
		39 to 40	1.31 A/D Converter Characteristics, changed
0.30	Mar 15, 2013	1	1.1.1 Pin Groups, changed; NOTE, changed
		1	1.1.2.1 Common Conditions, changed
		2	1.1.2.2 AC Characteristic Measurement Condition: CAUTION, changed
		2	1.2 Absolute Maximum Ratings: NOTES, changed
		3	1.2.2 Port Voltages, changed
		4, 5	1.2.3 Port Current, changed
		5	1.2.4 Temperature Condition, changed
		5	1.3 Capacitance, changed; Note 1 and 2, added
		6	1.4 Operational Condition: Note 2, 4 and 5, changed

Rev.	Date	Dogo	Description
0.00	Mar 15, 0010	Page	Summary
0.30	Mar 15, 2013	6	1.5 Oscillator Characteristics, changed; Note 1 and 2, changed
	-	7	1.6 Internal Oscillator Characteristics, added
	-	7	1.7 PLL Characteristics, changed; NOTE, added
	-	7	1.8 Regulator Characteristics: Note 1, added
	-	8, 9	1.9 Pin Characteristics, changed; Note 2, changed; Note 5 and 6, added; Note, added
	-	10, 11	1.10 Power Supply Currents, changed; Note, deleted
		13	Table 1.1 MEMC0CLK Asynchronous: Table title, deleted; Section number 1.12.1, added
		16 to 18	1.12.2 MEMC0CLK Synchronous, added
	_	19	1.13 Interrupt Timing, changed
		20	Table 1.2 In case the RESET pin is not used: Note 1, added; NOTE, changed
		21	1.16 Port polling timing, changed; Note, changed
		23	1.19 Timer Timing, changed; NOTE, deleted
		26	Table 1.5 CSIH Timing (Master Mode), changed
		—	1.26 DCUTRST Timing, deleted
		39	1.26 POC Characteristics, changed
		41	1.28 VLVI Characteristics, changed
		_	1.30.1.1 FLSCI3 interface, deleted
		43	1.30 Core Voltage Monitor Characteristics, changed
		43, 44	1.31 A/D Converter Characteristics, changed; Note 2, changed; CAUTION, added
		44	1.31.1 Equivalent Circuit of the Analog Input Block, added
		45	Section 2, added
0.40	May 10, 2013	45, 46	Section 1.32 Flash Characteristics, added
		All	Power Supply Pin Name, changed: REGVDD \rightarrow REGVCC REGVSS \rightarrow AWOVSS AWOVDD \rightarrow AWOVCL ISOVDD \rightarrow ISOVCL BVDD \rightarrow BVCC EVDD \rightarrow EVCC
0.80	Sep 26, 2013	1	1.1.2.1 Common Conditions, Power supply, Capacitance of the internal regulator changed
		7	1.7 PLL Characteristics changed
		7	1.8 Regulator Characteristics changed
		8, 9	1.9 Pin Characteristics changed, note 2 and note 6 changed
		10	1.10 Power Supply Currents changed
		19	1.13 Interrupt Timing changed
		20	1.14 Power Up/Down Timing, timing diagram changed
		39	1.26 POC Characteristics changed
		41	1.28 VLVI Characteristics changed
		43	1.30 Core Voltage Monitor Characteristics changed
	[43	1.31 A/D Converter Characteristics changed
		45	1.32 Flash Characteristics, (1) Code Flash, Table 1.9 Basic Characteristics, note 2 changed
		45	1.32 Flash Characteristics, (1) Code Flash, Table 1.10 Programming Characteristics changed
		46	1.32 Flash Characteristics, (2) Data Flash, Table 1.11 Basic Characteristics, note 2 changed

Rev.	Date		Description
1167.	Dale	Page	Summary
0.80	Sep 26, 2013	46	1.32 Flash Characteristics, (2) Data Flash, Table 1.12 Programming Characteristics, note 2 changed
0.81	Dec 03, 2013	4	1.2.3 Port Current changed
		5	1.3 Capacitance, note 1 and note 2 changed
		6	1.4 Operational Condition, note 2 changed
		6	1.5 Oscillator Characteristics, CAUTION changed
		7	1.8 Regulator Characteristics, note 1 changed
		26	1.22.2 CSIH Timing, CAUTION changed
		39	1.26 POC Characteristics changed
		40	1.27 LVI Characteristics changed
		47 to 49	1.33 Injection Currents, added
0.90	Mar 19, 2014	All	Arrangement of sections
		1 to 4	Product Introduction, added
		5	1.1 Overview, changed
		5	1.1.1 Pin Groups, changed
		5	1.1.2.1 Common Conditions, changed
		7	1.2 Absolute Maximum Ratings, CAUTIONS 1., changed
		7	1.2.2 Port Voltages, changed
		9	1.2.4 Temperature Condition, changed
		9	1.3 Capacitance, changed
		10	1.4 Operational Condition, changed
		11, 12	1.5 Oscillator Characteristics, changed; two figures added
		12	1.6 Internal Oscillator Characteristics, changed
		13	1.7 PLL Characteristics, changed
		13	1.8 Power Management Characteristics, subsection added
		13	1.8.1 Regulator Characteristics, changed
		14, 15	1.8.2 Voltage Detector (POC, LVI, VLVI, CVM) Characteristics, added
	-	16 to 18	1.8.3 Power Up/Down Timing, changed; Table 1.2 Boundary scan mode in case of using RESET pin added; two figures added
		19	1.8.4 CPU Reset Release Timing, added
		20 to 25	1.9 Pin Characteristics, changed
		26	1.9.1 Output Current, subsection added
		27, 28	1.10 Power Supply Currents, changed
		29	1.11 MEMC0CLK Timing, changed
		_	1.12 External Bus Timing, condition deleted
	-	30	1.12.1 MEMC0CLK Asynchronous, changed
	-	33	1.12.2 MEMC0CLK Synchronous, changed
	-	36	1.13 Interrupt Timing, changed; two figures added
	-	37	1.14 RESET Timing, changed; figure added
		37	1.15 Low power sampler (DPIN input) timing, subsection added
		38	1.16 CSCXFOUT Timing, changed
		39	1.17 Mode Timing, changed; two figures added
		40, 41	1.18 Timer Timing, changed; figure added
		42	1.19 RLIN2/RLIN3 Timing, changed
	-	42	1.20 RS-CAN Timing, changed

Rev.	Date	Page	Description Summary
0.90	Mar 19, 2014	43	1.21.1 CSIG Timing, changed
0.90	Mai 19, 2014	44, 45	1.21.2 CSIH Timing, changed
	-	54, 55	1.22 RIIC Timing, changed
		57	1.23 ADTRG Timing, changed
	-	57	1.24 Key Return Timing, changed; figure added
	-	58	1.25 DCUTRST Timing, added
	-	59	1.26 Debug Interface Characteristics, added
	-	59	1.26.1 NEXUS Interface Timing, added
	-	60	1.26.2 LPD (4 pin) Interface Timing, added
	-	61	1.26.3 LPD (1 pin) Interface Timing, added
	-	62, 63	1.27.1 Code Flash, subsection number changed, description changed
	-	64	1.27.2 Data Flash, subsection number changed, description changed
	-	65	
	-	66	1.27.3.1 Serial programmer setup timing, changed 1.27.3.2 FLSCI3 Interface, added
	-	67 to 70	
	-		1.28 A/D Converter Characteristics, changed
	-	70	1.28.1 Equivalent Circuit of the Analog Input Block, changed
	-		1.29 Injection Currents, changed
		71	1.29.1 Absolute Maximum Ratings, changed
		72	1.29.2 DC Characteristics for Overload Current, changed
		73	1.29.3 DC Characteristics for Pins Influenced by Injected Current on an Adjacent Pin, changed
		74	1.29.4 AD Characteristics for Pins Influenced by Injected Current on an Adjacent, subsection added; description changed
		_	1.33.4 A/D Diagnosis Function Influenced by Injected Current, deleted
0.91	Apr 17, 2014	4	Product Lineup: caution added
		27	1.10 Power Supply Currents, changed; and caution added
		71	1.29 Injection Currents, changed
		71	1.29.1 Absolute Maximum Ratings, changed; and caution changed
		72	1.29.2 DC Characteristics for Overload Current, changed
		73	1.29.3 DC Characteristics for Pins Influenced by Injected Current on an Adjacent Pin, changed
1.00	Jul 07, 2014	4	Product Lineup: changed
	-	9	1.2.4 Temperature Condition: changed
		10, 11	1.4 Operational Condition: changed (description of the ECO line, ADVANCED line, and PREMIUM line added)
	F	13	1.5 Oscillator Characteristics: Figure title added
	-	14	1.7 PLL Characteristics: changed (condition of the ECO line, ADVANCED line, and PREMIUM line added)
	-	14	1.8.1 Regulator Characteristics: Condition changed
		15	1.8.2 Voltage Detector (POC, LVI, VLVI, CVM) Characteristics: changed, and Caution added
		18	1.8.3 Power Up/Down Timing: Table 1.1, Note 2 changed; Table 1.3, Note1 changed
		29	1.10 Power Supply Currents: changed (description of the ECO line, ADVANCED line, and PREMIUM line added)
		45	Table 1.6 CSIG Timing (Master Mode): changned (condition of the ECO line, ADVANCED line, and PREMIUM line added)

Rev.	Date		Description
1107.	Dale	Page	Summary
1.00	Jul 07, 2014	45	Table 1.7 CSIG Timing (Slave Mode): changned (condition of the ECO line, ADVANCED line, and PREMIUM line added)
		46	Table 1.8 CSIH Timing (Master Mode): changned (condition of the ECO line, ADVANCED line, and PREMIUM line added)
		47	Table 1.9 CSIH Timing (Slave Mode): changned (condition of the ECO line, ADVANCED line, and PREMIUM line added)
		64	Table 1.12 Basic characteristics: changned (condition of the ECO line, ADVANCED line, and PREMIUM line added)
		66	Table 1.14 Basic characteristics: changned (condition of the ECO line, ADVANCED line, and PREMIUM line added)
		66	Table 1.15 Programming characteristics: changed
1.10	Dec 25, 2014	2	Block Diagram: Changed
		5	1.1.2.1 Common Conditions: Changed
		10, 11	1.4 Operational Condition: Note 3 changed
		12	1.5 Oscillator Characteristics: Changed, figures of "MainOSC" and "SubOSC" changed
		14	1.7 PLL Characteristics: Changed
		16 to 18	1.8.2 Voltage Detector (POC, LVI, VLVI, CVM) Characteristics: Changed, figures of "POC changed, and figure of "CVM" added
		19	Table 1.1 In case the RESET pin is used: Changed
		20	Table 1.2 Boundary scan mode in case of using RESET pin: Changed
		21	Table 1.3 In case the RESET pin is not used and fixed to high level by pull-up*1: Changed
		22	Table 1.4 In case the RESET pin is not used: Changed
		23, 25 to 28	1.9 Pin Characteristics: Changed
		32	1.11 MEMC0CLK Timing: Figure changed
		33	1.12.1 MEMC0CLK Asynchronous: Changed
		36	1.12.2 MEMC0CLK Synchronous: Changed
		43, 44	1.18 Timer Timing: Changed, figure changed
		45	1.19 RLIN2/RLIN3 Timing: Changed
		57	1.22 RIIC Timing: Description of condition changed
		57	Table 1.10 RIIC Timing (Normal Mode): Changed
		58	Table 1.11 RIIC Timing (Fast Mode): Changed, figure changed
		60	1.23 ADTRG Timing: Changed
		65	1.27.1 Code Flash: Description of condition changed
		65, 66	Table 1.13 Programming characteristic: Changed
		67	1.27.2 Data Flash: Description of condition changed
		67	Table 1.15 Programming characteristics: Changed
		69	1.27.3.2 FLSCI3 Interface: Figure changed
		70, 71	1.28 A/D Converter Characteristics: Changed
		74	1.29 Injection Currents: Changed
		75	1.29.1 Absolute Maximum Ratings: Changed
		76	1.29.2 DC Characteristics for Overload Current: Changed
		77	1.29.3 DC Characteristics for Pins Influenced by Injected Current on an Adjacent Pin: Changed

Rev.	Date		Description
		Page	Summary
1.20	Jun 30, 2015	1	typo (master/a slave \rightarrow master/slave)
		1,12,32,33	description alignment (MainOsc → MainOSC) (SubOsc → SubOSC)
		5,12,14,15,17,2 0,24,29,34,35,3 8,41,42,43,44,4 5,46,48,49,50,6 0,63,64,65,66,6 7,68,70,71,72,7 3	description alignment (AWOVCL \rightarrow CAWOVCL, ISOVCL \rightarrow CISOVCL)
		8	correction, listed Port
		10,11,32,33,75	description alignment (IntOsc → IntOSC)
		12	correction of "MainOSC oscillation operation point" level (MIN:2.4->empty, TYP:empty->0.5xREGVCC)
		12	Addition of "MainOSC oscillation amplitude"
		12	correction of "SubOSC current consumption" (TYP:2->1.5, MAX.:8->4)
		12	changed from "SubOsc oscillation operating point" to "SubOSC DC operating point" correction of "SubOSC DC operating point" (MIN:2.4->empty, TYP.:empty->0.65)
		12	additon precise conditions (such as "Crysta", "Ceramic")
		13	Improvement of figures (MainOSC and SubOSC)
		16	addition of "Conditon for AWOVCL"(empty \rightarrow AWOVCL pin)
		16	addition of "Conditon for ISOVCL"(empty \rightarrow ISOVCL pin)
		16	correction of "Equivalent series resistance"(for AWO area \rightarrow for CAWOVCL)
		16	correction of "Equivalent series resistance"(for ISO area \rightarrow for CISOVCL)
		17	VCVML:1.00 \rightarrow 1.1 (MIN>), 1.05 \rightarrow 1.15 (TYP.), 1.10 \rightarrow 1.20 (MAX.)
		17	correction: (Note 1-5) "=" \rightarrow "-"
		17	description alignment for "Note 5": '"=0.02 V/ms to 500 V/ms" \rightarrow ":0.02 V/ms <= T_VS <= < 500 V/ms")
		19	correction of name for REGVCC level (VLVI \rightarrow VVLVI)
		20,21	correction of Power Up/Down timing (hold time, setup time)
		20,21	case separation for timing whether in serial programming mode or except serial programming mode
		20	removed ",1 hold time" spec
		20	changed the condition of RESET edge from rise to fall for " setup time"
		20	changed the unit for " setup time" from "ms" to "us"
		20	removed "Note 2" which explained handling of and FLMD1
		22	correction of description for "Condtion" of t_{DPOR} ("=" \rightarrow ":")
		22	improvement of figure for mode insertion (VPOC(max.), t _{VS})
		23	Improvement of explanation for "Note 1" (added "include self-programming mode")
		23	addition "VIL" in figure
		24	correction of description for "Condtion" of t_{DPOR} ("=" \rightarrow ":")
		25	correction, RESET/SHMT2 : with *4 \rightarrow w/o *4
		25	correction, JP0_4/TTL : "\"-> "-"
		26	correction, P10_12/SHMT1 : "-" \rightarrow " \checkmark "
		26	correction, P10_14/SHMT1 : "-" \rightarrow " \checkmark "
		27	correction, P11_12/Drive Strength : "Slow" → "Slow/Fast"
		27	correction, P12_0/SHMT1 : "-" \rightarrow " $$ "
		28	correction, P8 8-12, Full-down : " $\sqrt[3]{5"} \rightarrow "\sqrt[3]{1"}$)

Dav	Data		Description
Rev.	Date	Page	Summary
1.20	Jun 30, 2015	28	correction, "resistor" \rightarrow "resistors" for Note 1.
		28	addition of "Caution"
		32,73	description alignment, "Deep STOP" \rightarrow "DeepSTOP"
		33	description alignment LS-IntOSC \rightarrow LS IntOSC
		39	description alignment High Speed Internal Oscillator → HS IntOSC Low Speed Internal Oscillator → LS IntOSC
		39,40	correction of direction for MEMC0AD15-0, "input" \rightarrow "input/output"
		41	description alignment ("High Speed Internal Oscillator" → "HS IntOSC") ("Low Speed Internal Oscillator" → "LS IntOSC")
		41,45,46,63,64	addition for Note 2 (page 41,45,63,64), Note 4 (page 46), "Noise such as the figure can be filtered"
		42,43	description alignment with another F1x products (timing is not changed)
		44	description alignment with another F1x products. separation for high level width and low level width. Addition Note 1 to 4.
		47	addition of t _{WENTIH} , t _{WENTIL}
		49	changed CSIGnRYO output delay spec
		50	correction of register name which is used as "Condition" CSIHnCTL1.CSIHnDAP → CSIHnCFGx.CSIHnDAP
		50	description alignment of bit number ("CSIHnCFG0-7.CSIHnID2-0" → "CSIHnCFGx.CSIHnID[2:0]") ("CSIHnCFG0-7.CSIHnSP3-0" → "CSIHnCFGx.CSIHnSPx[3:0]") ("CSIHnCFG0-7.CSIHnHD3-0" → "CSIHnCFGx.CSIHnHDx[3:0]")
		50	correction of register name which is used in "CAUTION" CSIHnCFG7-0.CSIHnCKP0-7 \rightarrow CSIHnCFGx.CSIHnCKPx
		51	changed CSIHnRYO output delay spec
		54	$CS_{SETUP} \rightarrow CSSETUP$
		55	$CS_{HOLD} \rightarrow CSHOLD$
		60,61	removed "0" as MIN. of RIIC0SCL clock period (Normal Mode) removed "0" as MIN. of RIIC0SCL clock period (Fast Mode)
		71	removed t _{DPOR} , t _{SMDR} , t _{HMDR}
		71	improvement of time chart
		73	description alignment, "CyclicSTOP" → "Cyclic STOP"
		74	description alignment : (LSB \rightarrow -)
		75	addition "Note 5", CAUTIONS sentence 2
		76	removed "1.28.1 Equivalent Circuit of the Analog Input Block"
		76	correction of Product Name list and Type
		76	addition of "Note 1" for PgE' and PgB'
		81	addition "1.30 Thermal Characteristics"
1.21	Jul 03, 2015	26,27	Pin Characteristics table have been updated
1.30	Dec 09, 2015	12	addition spec: " V_{MOSCSP} " changed spec :1*3 \rightarrow 0.4 x REGVCC - 0.2*3
		13	changed figure: MainOSC: Addition (V_{MOSCSP}) SubOSC: correction(MOSCST \rightarrow SOSCST)
		17	addition of Note 8 for Detection voltage
		20	removed setup time
		20	addition of Note 2 for figure
		51	correction of Symbol name $t_{KCYGn} \rightarrow t_{KCYHn}$
		75	
		75	correction of CAUTION

Rev.	Date	Description		
		Page	Summary	
1.31	Apr 20, 2016	16	correction of 1.8.1 Regulator Characteristics addition of Note 3	
		27	correction of 1.9 Pin Characteristics changed note of pull-down of P18_0 to P18_7	
		70	correction of 1.27.2 Data Flash	
		73	correction of 1.28 A/D Converter Characteristics	

All trademarks and registered trademarks are the property of their respective owners.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration. modification. copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Tel: restormes nong nong Limited Unit 1601-1611, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141