READ2304G
High Drivability & High Slew Rate, Input Output Full Range, CMOS Dual Operational Amplifier

Description
The READ2304G is input and output full range dual CMOS Operational Amplifier realizing high drivability and high slew rate. This IC can be used in minimum operating supply voltage from 2.5V, and in wide ambient temperature range from -40˚C to +105˚C.

Features
- Low voltage single supply operation $V_{DD} = 2.5V$ to $5.5V$
- Low input offset voltage $V_{IO} \leq \pm 6.0mV$
- Low input bias current $I_{B} \leq (1pA)$.
- Wide output voltage range $V_{OUT}: V_{SS}+0.1V$ to $V_{DD}-0.1V(@I_{O}=5mA)$
- Supply current (per channel) $I_{DD} = 0.75mA$ Typ.
- High slew rate $SR = 8V/\mu s$ Typ.

() reference value of design

Product Line-up

<table>
<thead>
<tr>
<th>Type name</th>
<th>Product type quality level</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ2304GSP</td>
<td>High slew rate with Normal quality level</td>
<td>8 pins plastic TSSOP</td>
</tr>
<tr>
<td>READ2304GSN</td>
<td>High slew rate with Normal quality level</td>
<td>8 pins plastic MSOP</td>
</tr>
</tbody>
</table>

Pin Arrangement

```
V_{OUT1} 1
V_{IN1(-)} 2
V_{IN1(+)} 3
V_{SS} 4
8 V_{DD}
7 V_{OUT2}
6 V_{IN2(-)}
5 V_{IN2(+)}
```
Equivalent Circuit (per one channel)

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VDD</td>
<td>-0.3 to +6.5</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>V_ID</td>
<td>-VDD to +VDD</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V_I</td>
<td>-0.3 to VDD+0.3</td>
<td>V</td>
</tr>
<tr>
<td>Maximum output current</td>
<td>I_O</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_T</td>
<td>440</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temp. range</td>
<td>T_A</td>
<td>-40 to +105</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temp. range</td>
<td>T_STG</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note 1. Please take note that reverse connection of a power supply may cause destruction.

2. Stresses above these ratings may cause permanent damage such as characteristics degradation or destruction. Please do not exceed voltage below of GND-0.3V as it is bottom limit. In addition, operation amplifier is operated as normal when input voltage for electrical characteristics is in common mode input voltage range.

3. The value is measured under mounted on a glass epoxy base board (size 100mm x 100mm, 1mm thickness, copper foiled surface base board area with 15% solid pattern).

Note that restrictions will be made to the following conditions for each product, and the derating ratio depending on the operating ambient temperature.

READ2304GSP: Derate at -5.5 mW/°C when T_A > 69 °C
(Junction – ambient thermal resistance R_th(J-A) = 183 °C/W)

READ2304GSN: Derate at -4.8 mW/°C when T_A > 58 °C
(Junction – ambient thermal resistance R_th(J-A) = 208 °C/W)
Electrical Characteristics

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>$V_{DD} - V_{SS}$</td>
<td>2.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset voltage</td>
<td>V_{IO}</td>
<td>±6.0</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset current</td>
<td>I_{IO}</td>
<td>(1)</td>
<td>pA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td>I_{IB}</td>
<td>(1)</td>
<td>pA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output high voltage</td>
<td>V_{OH}</td>
<td>$V_{DD} - 0.2$</td>
<td>V</td>
<td>$I_L = 10mA$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output low voltage</td>
<td>V_{OL}</td>
<td>$V_{SS} + 0.2$</td>
<td>V</td>
<td>$I_L = 10mA$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage gain</td>
<td>A_V</td>
<td>60</td>
<td>90</td>
<td>dB</td>
<td></td>
<td>$R_L = \infty$, $I_O = 0$</td>
</tr>
<tr>
<td>Channel supply current</td>
<td>$I_{DSS/ch}$</td>
<td>0.75</td>
<td>1.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td>CMRR</td>
<td>60</td>
<td>80</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td>SVRR</td>
<td>60</td>
<td>80</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common mode input voltage range</td>
<td>V_{ICM}</td>
<td>V_{SS}</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain bandwidth product</td>
<td>GBW</td>
<td>6</td>
<td>MHz</td>
<td>$C_L = 20pF$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew rate</td>
<td>SR</td>
<td>8</td>
<td>V/us</td>
<td>$C_L = 20pF$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

() reference value of design

Notes

Output terminal: The over-current protection feature is not built in the output terminal of this product.

Therefore, please insert resistance to output port.

Input offset voltage: The amplifier circuit of the first block of operational amplifier.

A circuit suitable for operation near GND, and a circuit suitable for operation near +power supply. In case of input voltage of overlap point output port has a minute voltage shift or distortion.
Electrical Characteristics

I_{DD}/ch vs. V_{DD}

$T_A=25^\circ C$
$V_{IN}=1/2V_{DD}$

I_{DD} - Channel Supply Current - [mA]
V_{DD} - Supply Voltage - [V]

V_{IO} vs. V_{DD}

$T_A=25^\circ C$
$V_{IN}=1/2V_{DD}$

each 5 samples data

V_{IO} - Input Offset Voltage - [mV]
V_{DD} - Supply Voltage - [V]

I_B vs. V_{IN}

$T_A=25^\circ C$
$V_{DD}=5V$

I_B - Input Bias Current - [pA]
V_{IN} - Input Voltage - [V]

I_B vs. T_A

$V_{DD}=5V$

I_B - Input Bias Current - [pA]
T_A - Operating Temp. Range - [°C]
SR vs. T_A (Output Rise Time)

SR - Slew Rate - [V/μs]

T_A - Operating Temp. Range - [°C]

SR vs. T_A (Output Fall Time)

SR - Slew Rate - [V/μs]

T_A - Operating Temp. Range - [°C]

Pulse Response

Voltage 2V/div

(Voltage 50mV/div)

(Time 10μs/div)

t - Time - [μs]

$V_{DD}=5.5V$

$V_{DD}=5V$

$V_{DD}=2.5V$

$C_L=20pF$

$V_{DD}=5V$

$V_{DD}=2.5V$

$C_L=20pF$

$V_{DD}=5V$

$V_{DD}=2.5V$

$C_L=20pF$

$T_A=25°C$

$V_O=100mV$

$C_L=20pF$

$V_{IN}=2V/div$

$V_{O}-Output Voltage - [mV]$

$V_{IN}=100mV$

$C_L=20pF$

$V_{O}=4.8V$

$C_L=20pF$

$V_{IN}=2V/div$

$V_{O}-Output Voltage - [mV]$

$V_{IN}=100mV$

$C_L=20pF$

$V_{O}=4.8V$

$C_L=20pF$

$V_{IN}=2V/div$

$V_{O}-Output Voltage - [mV]$

$V_{IN}=100mV$

$C_L=20pF$
A_v, \phi vs. f

CMRR vs. f

SVRR vs. f

Channel Separation vs. f

V_om vs. f

\(V_{DD}=5V\)
\(C_i=20pF\)
\(T_A=25^\circ C\)

\(A_v\) - Voltage Gain - [dB]

\(\phi\) - Phase Margin - [deg.]

CMRR - Common Mode Rejection Ratio - [dB]

SVRR - Supply Voltage Rejection Ratio - [dB]

Channel Separation - [dB]

V_om - Output Voltage Swing - [V_P-P]

\(V_{DD}=5V\)
\(C_i=20pF\)
\(T_A=25^\circ C\)

Gain=40dB , \(V_{IN}=50mV_{P-P}\)
Gain=20dB , \(V_{IN}=0.5V_{P-P}\)
Gain=0dB , \(V_{IN}=5.0V_{P-P}\)

Gain=0dB , \(V_{IN}=5.0V_{P-P}\)

\(V_{DD}=5V\)
\(T_A=25^\circ C\)

CH1→CH2
CH2→CH1

\(V_{DD}=5V\)
\(C_i=20pF\)
\(T_A=25^\circ C\)

\(V_{DD}=5V\)
\(C_i=20pF\)
\(T_A=25^\circ C\)
Package Dimensions

8-PIN PLASTIC TSSOP

<table>
<thead>
<tr>
<th>JEITA Package code</th>
<th>RENESAS code</th>
<th>Previous code</th>
<th>MASS (TYP.) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TSSOP8-0225-0.65</td>
<td>PTSP0008JD-A</td>
<td>P8GR-65-9LG</td>
<td>—</td>
</tr>
</tbody>
</table>

Unit: mm

NOTE
Each lead centerline is located within 0.10 mm of its true position at maximum material condition.
8-PIN PLASTIC MSOP

<table>
<thead>
<tr>
<th>JEITA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>MASS (TYP.) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TSSOP8-2.8x2.9-0.65</td>
<td>PTSP0008JF-A</td>
<td>P8MP-65-KAA-1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

NOTE

Each lead centerline is located within 0.10 mm of its true position at maximum material condition.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for any use of the circuits, software, and information in the design of your product or system. Renesas Electronics (hereinafter referred to as "Renesas") disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas products are expressly designed as electronic components. Unless designated as high reliability products or for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not suitable for radiation design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

3. Renesas Electronics data sheets and other Renesas电子产品文档. If you alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part, Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

4. Renesas products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - Standard: Computers, office equipment, communication equipment, test and measurement equipment, audio and visual equipment, home appliances, machine tools, personal electronic devices, industrial robots, etc.
 - High Quality: Transportation equipment (automobiles, trains, ships, etc.), traffic control (traffic lights), large-scale communication equipment, key financial terminal systems, safety control equipment, etc.

5. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support systems or devices; surgical implantations; etc.) or may cause serious property damage (spacecraft; underwater vessels; nuclear power control systems; aircraft control systems; key plant systems; military equipment, etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices") and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and thoroughly reviewing the product’s environmental characteristics, including but not limited to RoHS, WEEE, and REACH, and ensuring the compliance of the product with the applicable environmental regulations.

9. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party of relevant information regarding the use or handling of Renesas Electronics products, including but not limited to the product’s environmental characteristics. You are responsible for evaluating the safety of the final products or systems manufactured by you.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party of relevant information regarding the use or handling of Renesas Electronics products, including but not limited to the product’s environmental characteristics. You are responsible for evaluating the safety of the final products or systems manufactured by you.

（Rev.4.0-1 November 2017）