READ2302G
High Drivability & High Slew Rate, Input Output Full Range, CMOS Dual Operational Amplifier

$V_{\text{IO}} \leq \pm 6\text{mV}$, $SR = 8\text{V/\mu s}$, $GBW = 6\text{MHz}$

Description
The READ2302G is input and output full range dual CMOS Operational Amplifier realizing high drivability and high slew rate. This IC can be used in minimum operating supply voltage from 2.5V, and in wide ambient temperature range from -40°C to +105°C.

Available in ultra-small 8 pins TSSOP packages.

Features
- Low voltage single supply operation $V_{\text{DD}} = 2.5\text{V to 5.5V}$
- Low input offset voltage $V_{\text{IO}} \leq \pm 6.0\text{mV}$
- Low input bias current $I_{B} \leq (1\text{pA})$.
- Wide output voltage range $V_{\text{OUT}}: V_{SS}+0.1\text{V to } V_{DD}-0.1\text{V(@Io=5mA)}$
- Supply current (per channel) $I_{DD} = 0.75\text{mA Typ.}$
- High slew rate $SR = 8\text{V/\mu s Typ.}$

(Product reference value of design)

Product Line-up

<table>
<thead>
<tr>
<th>Type name</th>
<th>Product type quality level</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ2302GSP</td>
<td>High slew rate with Normal quality level</td>
<td>8 pins plastic TSSOP</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage ^Note.1</td>
<td>VDD</td>
<td>-0.3 to +6.5</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>V_ID</td>
<td>-V_DD to +V_DD</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage ^Note.2</td>
<td>V_I</td>
<td>-0.3 to V_DD +0.3</td>
<td>V</td>
</tr>
<tr>
<td>Maximum output current</td>
<td>I_O</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation ^Note.3</td>
<td>P_T</td>
<td>440</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temp. range</td>
<td>T_A</td>
<td>-40 to +105</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temp. range</td>
<td>T_STG</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note 1. Please take note that reverse connection of a power supply may cause destruction.

2. Stresses above these ratings may cause permanent damage such as characteristics degradation or destruction. Please do not exceed voltage below of GND-0.3V as it is bottom limit. In addition, operation amplifier is operated as normal when input voltage for electrical characteristics is in common mode input voltage range.

3. The value is measured under mounted on a glass epoxy base board (size 100mm×100mm, 1mm thickness, copper foiled surface base board area with 15% solid pattern). Please take note that every package has derating rate’s restriction reception.
Electrical Characteristics
\(<V_{DD}=5V, \ T_A=25^\circ C>\)

<table>
<thead>
<tr>
<th>Items</th>
<th>Symbol</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{DD}-V_{SS})</td>
<td>2.5</td>
<td></td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input offset voltage</td>
<td>(V_{IO})</td>
<td></td>
<td>(\pm 6.0)</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Input offset current</td>
<td>(I_{IO})</td>
<td></td>
<td>(1)</td>
<td></td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td>(I_{IB})</td>
<td></td>
<td>(1)</td>
<td></td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>Output high voltage</td>
<td>(V_{OH})</td>
<td></td>
<td>(V_{DD}-0.2)</td>
<td></td>
<td>V</td>
<td>(I_L = 10mA)</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>(V_{OL})</td>
<td></td>
<td>(V_{SS}+0.2)</td>
<td></td>
<td>V</td>
<td>(I_L = 10mA)</td>
</tr>
<tr>
<td>Voltage gain</td>
<td>(A_V)</td>
<td>60</td>
<td>90</td>
<td></td>
<td>dB</td>
<td>(R_L\geq 100k\Omega)</td>
</tr>
<tr>
<td>Channel supply current</td>
<td>(I_{DD/ch})</td>
<td>0.75</td>
<td>1.5</td>
<td></td>
<td>mA</td>
<td>(R_L=\infty, \ I_O=0)</td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td>(CMRR)</td>
<td>60</td>
<td>80</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td>(SVRR)</td>
<td>60</td>
<td>80</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Common mode input voltage range</td>
<td>(V_{ICM})</td>
<td>(V_{SS})</td>
<td>(V_{DD})</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Gain bandwidth product</td>
<td>(GBW)</td>
<td>6</td>
<td></td>
<td></td>
<td>MHz</td>
<td>(C_L=20pF)</td>
</tr>
<tr>
<td>Slew rate</td>
<td>(SR)</td>
<td>8</td>
<td></td>
<td></td>
<td>V/\mu s</td>
<td>(C_L=20pF)</td>
</tr>
</tbody>
</table>

() reference value of design

Notes

Output terminal: The over-current protection feature is not built in the output terminal of this product. Therefore, please insert resistance to output port.

Input offset voltage: the amplifier circuit of the first block of operational amplifier.

A circuit suitable for operation near GND, and a circuit suitable for operation near +power supply.

In case of input voltage of overlap point output port has a minute voltage shift or distortion.
Electrical Characteristics

- **I_{DD}/ch vs. V_{DD}**
 - $T_A = 25^\circ C$
 - $V_{IN} = 1/2V_{DD}$
 - $V_{DD} = 2.5V$
 - $V_{DD} = 5V$
 - $V_{DD} = 5.5V$

- **I_{DD}/ch vs. T_A**
 - $V_{DD} = 2.5V$
 - $V_{DD} = 5V$
 - $V_{DD} = 5.5V$

- **V_{IO} vs. V_{DD}**
 - $T_A = 25^\circ C$
 - $V_{IN} = 1/2V_{DD}$
 - each 3 samples data

- **V_{IO} vs. T_A**
 - $V_{DD} = 5V$

- **I_B vs. V_{IN}**
 - $T_A = 25^\circ C$
 - $V_{DD} = 5V$

- **I_B vs. T_A**
 - $V_{DD} = 5V$
SR vs. T_A (Output rise time)

T_A - Operating temp. range - °C

$V_{DD}=2.5V$

$V_{DD}=5V$

$V_{DD}=5.5V$

$V_{DD}=2.5V$

$C_L=20pF$

SR - Slew rate - V/μs

SR vs. T_A (Output fall time)

T_A - Operating temp. range - °C

$V_{DD}=2.5V$

$V_{DD}=5V$

$V_{DD}=5.5V$

$V_{DD}=2.5V$

$C_L=20pF$

SR - Slew rate - V/μs

Pulse response

$T_A=25°C$

$V_{DD}=5V$

$V_{IN}=4.8V$

$C_L=20pF$

Input voltage - mV

Output voltage - mV

Pulse response

$T_A=25°C$

$V_{DD}=5V$

$V_{IN}=100mV$

$C_L=20pF$

Input voltage - V

Output voltage - V

V - Output voltage - mV

$V_{DD} - 2V/div$

$V_{DD} - 50mV/div$

t - Time - μs

(time 10μs/div)
A_V, ϕ vs. f

A_V - Voltage gain - dB

ϕ - Phase margin - deg.

AV, ϕ vs. f

$V_{DD}=5V$

$C_L=20pF$

$T_A=25^\circ C$

CMRR vs. f

CMRR - Common mode rejection ratio - dB

$CMRR$ vs. f

$V_{DD}=5V$

$C_L=20pF$

$T_A=25^\circ C$

SVRR vs. f

SVRR - Supply voltage rejection ratio - dB

$SVRR$ vs. f

$CL=20pF$

$TA=25^\circ C$

Channel separation vs. f

Channel separation - dB

Channel separation vs. f

V_{om} vs. f

V_{om} - Output voltage swing - V_{P-P}

V_{om} vs. f

$V_{DD}=5V$

$T_A=25^\circ C$

Gain=40dB , $V_{in}=50mV_{P-P}$

Gain=20dB , $V_{in}=0.5V_{P-P}$

Gain=0dB , $V_{in}=5.0V_{P-P}$
Package Dimensions

8-PIN PLASTIC TSSOP

<table>
<thead>
<tr>
<th>JEITA Package code</th>
<th>RENESAS code</th>
<th>Previous code</th>
<th>MASS(TYP.)[g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TSSOP8-0225-0.65</td>
<td>PTSP0008JD-A</td>
<td>P8GR-65-9LG</td>
<td>-</td>
</tr>
</tbody>
</table>

Each lead centerline is located within 0.10 mm of its true position at maximum material condition.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3.15 ±0.15</td>
</tr>
<tr>
<td>D1</td>
<td>3.00 ±0.10</td>
</tr>
<tr>
<td>E</td>
<td>4.40 ±0.10</td>
</tr>
<tr>
<td>HE</td>
<td>6.40 ±0.20</td>
</tr>
<tr>
<td>A</td>
<td>1.20 MAX.</td>
</tr>
<tr>
<td>A1</td>
<td>0.10 ±0.05</td>
</tr>
<tr>
<td>A2</td>
<td>1.00 ±0.05</td>
</tr>
<tr>
<td>A3</td>
<td>0.25</td>
</tr>
<tr>
<td>b</td>
<td>0.24 +0.06 -0.05</td>
</tr>
<tr>
<td>c</td>
<td>0.145 ±0.055</td>
</tr>
<tr>
<td>L</td>
<td>0.5</td>
</tr>
<tr>
<td>Lp</td>
<td>0.60 ±0.15</td>
</tr>
<tr>
<td>L1</td>
<td>1.00 ±0.20</td>
</tr>
<tr>
<td>θ</td>
<td>3° +5° -3°</td>
</tr>
<tr>
<td>e</td>
<td>0.65</td>
</tr>
<tr>
<td>x</td>
<td>0.10</td>
</tr>
<tr>
<td>y</td>
<td>0.10</td>
</tr>
<tr>
<td>ZD</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of the any of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or others arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against infringement for any third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

- **Standard**
 - Computers; office equipment; communication equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
- **High Quality**
 - Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the product catalogue, etc.).

- Renesas Electronics disclaims any and all liability for any damages arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failures at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

- Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all such applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies (1) for any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) for any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) for any purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, designing, manufacturing, using, transporting, and dealing in Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations and comply with Renesas Electronics policies and procedures and be administered by the governments of the countries asserting jurisdiction over the parties or transactions.

- Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your misuse or Renesas Electronics products available any third party.

- Please do not reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Colophon 6.0

© 2017 Renesas Electronics Corporation All rights reserved.