RENESAS

RAJ306001, RAJ306010

General-Purpose Motor Control IC

1. Overview

RAJ306001 and RAJ306010 are general-purpose motor control ICs for three phase Brushless DC motor applications. RAJ306001 and RAJ306010 combine MCU(RL78/G1F) and a pre-driver in a single package. The pre-driver includes half bridge gate drivers, 5V regulator, a current sense amplifier, hall IC comparators, Back-EMF amplifier, and various protection functions (overtemperature, over/under voltage, overcurrent and the motor lock detection).

Three half bridge gate drivers provide the high efficiency and high flexibility by adjustable gate drive peak current (500mA), self-align dead time generator, selectable gate drive voltage, and control signal configuration function. Self-align dead time generator prevents the short-through current and provides the safe evaluation environment.

MCU supports H/W of the safe standard of IEC60730. The development tools of the RL78 family are available. This IC can realize the suitable motor control and performance corresponding to each application by F/W construction and optimization of register settings.

2. Features

- Operating Power Supply Voltage
 - RAJ306001: 6V to 30V, RAJ306010: 6V to 42V
- Operating Ambient Temperature
 - RAJ3060xxGNP = -40 to +85°C
 - RAJ3060xxZGNP = -40 to +105°C
- Low VM Supply Current
 - [MCU]: 5.2mA (HS mode: f_{IH} = 32MHz, VDD = 5V)
 - [Pre-Driver]: 13.5mA (VM = 22.5V)
 - VM standby current: 64µA (Typ.)
- GPIO: 28ch, Port for Input: 2ch

Pre-Driver Function

- Three Half-Bridge Gate Drivers for six N-MOSFET
 - Adjustable Gate Drive Peak current up to 500mA
 - Self-Align Dead Time Generator Function
 - Control Signal Configuration Function for flexibility
- Selectable Single/Double Boost Charge Pump for Gate Drive Voltage (10, 13V)
- Support Hall IC type and Hall Sensor-less type
 - Integrated Hall IC Comparators (adjustable threshold and hysteresis voltage)
- Integrated 1 Shunt Current Sense Amplifier
 - Adjustable Gain (8.25, 25, 50V/V)
- Integrated Protection function:
 - UVLO, Overtemperature, Overcurrent, Overvoltage,
 - Motor Lock for Hall IC type, Alarm Condition Indicator feature

Controller Function

- CPU: 16-bit CISC CPU (RL78/G1F)
- Flash ROM: 64KB, Data Flash: 4KB
- RAM: 5.5KB
- CSI: 2Chanel ---- SPI:2ch, IIC:2ch, UART:1ch
- Timer
 - Timer Array Unit: 1unit ------ 16-bit, 4ch
 - Timer RD for motor control ------ 16-bit, 2ch
 - Timer RG with encoding function 16-bit, 1ch
 - 64 MHz motor control input capture timer
 - (Timer RX)
- 10-bit resolution A/D Converter: 9ch
- Selectable Reference Voltage: Internal/External
- Event Link Controller (ELC): 6ch (External Input)

3. Applications

- Power Tools, Garden Tools, and Vacuum Cleaners
- Printers, Fans, Pumps, and Robotics

Note: With this data sheet, Renesas recommends to read "RAJ306000 Series User's Manual: Hardware (R18UZ0066EJ)" to understand deeply. And about detail spec on RL78/G1F, please see "RL78/G1F User's manual: Hardware (R01UH0516EJ)". This product has some restriction on function. So please check it on "CHAPTER3 RL78/G1F" in "RAJ306000 Series User's Manual:Hardware (R18UZ0066EJ)". And on the electrical characteristics of RL78/G1F, please substitute EVDD0/VDD value to 4.75<=EVDD0/VDD<=5.25V.

4. Ordering Information

Part Number	Operating Voltage	Temperature Range	Package
RAJ306001GNP	6V to 30V	-40°C to +85°C	64pin QFN (8mm x 8mm)
RAJ306001ZGNP		-40°C to +105°C	
RAJ306010GNP	6V to 42V	-40°C to +85°C	
RAJ306010ZGNP		-40°C to +105°C	

Contents

1.	Overview	. 1
2.	Features	. 1
3.	Applications	. 1
4.	Ordering Information	. 2
5.	Block Diagram	. 4
6.	Pin Configuration	. 5
7.	Pin Description	. 6
8.	Electrical Characteristics. 8.1 Absolute Maximum Rating for RAJ306001 Note1 8.2 Recommended Operating Conditions 8.3 Electrical Characteristics	. 8 13
9.	External Circuit	16
10.	Block Explanation. 10.1 10.1 Power ON Sequence. 10.2 Serial Array Unit. 10.3 CSI timing specification 10.4 CSI Communication Format	18 20 21
11.	Control Register Map	23
12.	Package Description	24
13.	Revision History	25

5. Block Diagram

Figure 4-1. Block Diagram (Hall IC type)

GPIO terminal: 28ch

(Include ADC:9ch & Terminal for External interrupt: 7ch)

- Input terminal: 2ch
 - *1) PIOR00 = 01 [Setting required]

*2) SSIE00 = 0 [Setting required] ----Invalidation of SSI00

6. Pin Configuration

Figure 5-1. Pin configuration diagram

Note: RL78/G1F pins are indicated with the bold font.

7. Pin Description

			-			- -	r
	PIN			IN/OUT or	Initial	F we show	
Number	Name	Altenate Function TO00/ TRGCLKB/	I/O level	Power/GND	Condition	Function GPIO / TAU output / TRG external clock input /	Remarks
1	P01	(INTP10) TI00/ TRGCLK/	VDD	IN/OUT	INPUT	(External interrupt input) GPIO / TAU Input / TRG external clock input /	1
2	P00	(INTP8)	VDD	IN/OUT	INPUT	(External interrupt input)	1
3	P141	PCLBUZ1/ INTP7	VDD	IN/OUT	INPUT	GPIO / Programmable clock output / External interrupt input	1
4	P140	PCLBUZ0/ INTP6	VDD	IN/OUT	INPUT	GPIO / Programmable clock output / External interrupt input	1
5	P43	INTP9	VDD	IN/OUT	INPUT	GPIO / INTP9	1
6	P42	INTP8	VDD	IN/OUT	INPUT	GPIO / INTP8	1
7	P41	-	VDD	IN/OUT	INPUT	GPIO	1
8	P40	TOOL0	VDD	IN/OUT	INPUT	GPIO / TOOL0 for E1 on-chip debugging	1
9	RESET	-	VDD	-	INPUT	External Reset of RL78	1
10	P137	INTP0	VDD	IN/OUT	INPUT	Only input / INTP0	1
11	P122	EXCLK	VDD	IN/OUT	INPUT	Only input / Input of Main clock from External	1
12	REGC	-	VDD	-	-	Pin for connecting regulator output stabilization capacitance for internal operation of MCU.	1
13	vss	-	VDD	GND		Ground potential for MCU	1
14	VDD	-	VDD	Power		Positive power supply for MCU	1
15	P60	SCLA0	VDD	IN/OUT	INPUT	GPIO / Serial clock I/O pins of serial interface IICA0	1
16	P61	SDAA0	VDD	IN/OUT	INPUT	GPIO / Serial data I/O pins of serial interface IICA0	1
17	P62	-	VDD	IN/OUT	INPUT	GPIO / Chip select input pin of serial interface CSI00 [*2]	1
18	P63	-	VDD	IN/OUT	INPUT	GPIO	1
19	P31	TI03/ TO03/ (PCLBUZ0)	VDD	IN/OUT	INPUT	GPIO / TAU input / TAU output / (Output clock, Buzzer output)	1
20	P77	KR7/ INTP11	VDD	IN/OUT	INPUT	GPIO / KR7 / INTP11	1
21	P76	KR6/INTP10	VDD	IN/OUT	INPUT	GPIO / KR6 / INTP10	1
22	P75	KR5/ SCK01/ SCL01	VDD	IN/OUT	INPUT	GPIO / KR5 / Serial clock I/O pins of CSI01 / Serial clock output pins of IIC01	1
23	P74	KR4/ SI01/ SDA01	VDD	IN/OUT	INPUT	GPIO / KR4 / Serial data input pins of CSI01 / Serial data I/O pins of IIC01	1
24	P73	KR3/ SO01	VDD	IN/OUT	INPUT	GPIO / KR3 / Serial data output pins of CSI01	1
25	VREG5	-	VREG5(5V)	IN/OUT	IN/OUT	VREG5 pin function depends on VREG5_SEL VREG5 SEL=GND: Built-in 5V regulator is selected. (Output 5V)	
26	VREG5_SEL	-	VREG5	INPUT	INPUT	VREG5_SEL=GND: Bull-in 5V regulator is selected. (Output 5V) VREG5_SEL=5V: External 5V regulator is selected. (Input 5V)	
27	AGND1	-	GND	GND	GND	Ground potential 1 for analog and logic circuits of Pre-Driver	
28	TP1	-	VREG5	INPUT	INPUT	Terminal for Test. (Usually conect to GND)	
29	VM	-	VM	POWER	POWER	Power Supply input	
30	CP1	-	VGB	-	-	Charge pump Pin 1 (CP1)	
31	CP2	-	VGB	-	-	Charge pump Pin 2 (CP2)	
32	VGB	-	VGB	OUTPUT	OUTPUT	Gate drive voltage for Low-side	

Table 6-1. Pin description

1: RL78/G1F terminal. Please refer to "RL78/G1F User's Manual: Hardware" (R01UH0516EJ) about Terminal function of RL78/G1F.This product has some restriction on function. So please check it on "CHAPTER3 RL78/G1F" in "RAJ306000 Series User's Manual: Hardware (R18UZ0066EJ)".

*2: The nullification of the /SSI00 function is necessary.

	IN N			IN/OUT or	Initial	Fun-Mari	
Number	Name	Altenate Function	I/O level	Power/GND	Condition	Function	Remarks
33	TP2	-	VREG5	INPUT	INPUT	Terminal for Test. (Usually conect to GND)	
34	CP3	-	VM	-	-	Charge pump Pin 3 (CP3)	ļ
35	CP4	-	VGT	-	-	Charge pump Pin 4 (CP4)	
36	VGT	-	VGT	OUTPUT	OUTPUT	Gate drive voltage for High-side	
37	DrvGND1	-	GND	GND	GND	Ground potential 1 for driving circuits of Pre-Driver	
38	WLOUT	-	VGB	OUTPUT	OUTPUT	Output of Pre-driver for W phase Low-side (Nch MOSFET)	
39	w	-	VM	INPUT	INPUT	Detection of BEMF level for W phase	
40	WHOUT	-	VGT	OUTPUT	OUTPUT	Output of Pre-driver for W phase High-side (Nch MOSFET)	
41	VLOUT	-	VGB	OUTPUT	OUTPUT	Output of Pre-driver for V phase Low-side (Nch MOSFET)	
42	v	-	VM	INPUT	INPUT	Detection of BEMF level for V phase	
43	VHOUT	-	VGT	OUTPUT	OUTPUT	Output of Pre-driver for V phase High-side (Nch MOSFET)	
44	ULOUT	-	VGB	OUTPUT	OUTPUT	Output of Pre-driver for U phase Low-side (Nch MOSFET)	
45	U	-	VM	INPUT	INPUT	Detection of BEMF level for U phase	
46	UHOUT	-	VGT	OUTPUT	OUTPUT	T Output of Pre-driver for U phase High-side (Nch MOSFET)	
47	DrvGND2	-	GND	GND	GND	Ground potential 2 for driving circuits of Pre-Driver	
48	AGND2	-	GND	GND	GND	Ground potential 2 for analog and logic circuits of Pre-Driver	
49	COMMON	-	VM	INPUT	INPUT	Input for Common signal of Motor	
50	ISENN	-	VREG5	INPUT	INPUT	Connect Negative side of Shunt resistor	
51	ISENP	-	VREG5	INPUT	INPUT	Connect Positive side of Shunt resistor	
52	WH	-	VREG5	IN/OUT	INPUT	Input of Hall IC signal for W phase/ Output BEMF AMP Signal (RAJ306010 Only)	3
53	VH	-	VREG5	INPUT	INPUT	Input of Hall IC signal for V phase	
54	UH	-	VREG5	INPUT	INPUT	Input of Hall IC signal for U phase	
55	P26	ANI6	VDD	IN/OUT	ANALOG	GPIO / ADC analog input	1
56	P25	ANI5	VDD	IN/OUT	ANALOG	GPIO / ADC analog input	1
57	P24	ANI4	VDD	IN/OUT	ANALOG	GPIO / ADC analog input	1
58	P23	ANI3	VDD	IN/OUT	ANALOG	GPIO / ADC analog input / DAC output / PGA reference voltage input	1
59	P22	ANI2	VDD	IN/OUT	ANALOG	GPIO / ADC analog input / DAC output / PGA voltage input	1
60	P21	ANI1/ AVREFM	VDD	IN/OUT	ANALOG	GPIO / ADC analog input / ADC reference(- side) input	1
61	P20	ANI0/ AVREFP/ (INTP11)	VDD	IN/OUT	ANALOG	GPIO / ADC analog input / ADC reference (+ side) input / (External interrupt input)	1
62	P04	SCK10/ SCL10	VDD	IN/OUT	ANALOG	GPIO / Serial clock I/O pins of CSI10 / Serial clock output pins of IIC10	1
63	P03	ANI16/ SI10/ SDA10/ RXD1	VDD	IN/OUT	ANALOG	CPIO / ADC analog input / Sorial data input pips of CSI10 /	
64	P02	ANI17/ SO10/ TxD1	VDD	IN/OUT	ANALOG	GPIO / ADC analog input / Serial data output pins of CSI10 / Serial data output pins of UART	1
				I	l		

Table 6-2	Pin d	lescription	(continued)
		looon puon	(continuou)

*1: The following pins of RL78/G1F are used for internal connection. P05, P06, P10-17, P27, P30, P50-55, P146, P147 *3: The Hall signal input function is available on both RAJ306001 and RAJ306010. The output function of BEMF AMP Signal is available only for RAJ306010.

8. Electrical Characteristics

8.1 Absolute Maximum Rating for RAJ306001 Note1

Item	Symbol	Rating	unit	Note
Power dissipation	Pd	5840	mW	This spec is applied for HWQFN64.
Thermal derating	КӨ	-46.7	mW/degC	This spec is applied for HWQFN64. Condition: refer to P.10
Power supply for motor drive	VM	-0.3 to +60	V	Refer to Note2
Power supply	VDD	- 0.3 to +6.5	V	Pin: VDD (MCU)
REGC terminal input voltage	VIREGC	-0.3 to +2.8	V	Pin: REGC Note3
VREG5 terminal input voltage	VIVREG5	-0.3 to +6.5	V	Pin: VREG5
VGT output voltage range	VVGT	-0.3 to +48.0	V	Pin :VGT
CP4 terminal voltage range	VCP4	-0.3 to +48.0	V	Pin :CP4
CP3 terminal voltage range	VCP3	-0.3 to +48.0	V	Pin :CP3
VGB output voltage range	VVGB	-0.3 to +18.0	V	Pin :VGB
CP2 terminal voltage range	VCP2	-0.3 to +18.0	V	Pin :CP2
CP1 terminal voltage range	VCP1	-0.3 to +18.0	V	Pin :CP1
UHOUT, VHOUT, WHOUT constant output voltage range 1	VH_OUT1	-1.0 to +48.0	V	Pin :UHOUT, VHOUT, WHOUT
UHOUT, VHOUT, WHOUT peak output voltage range 2	VH_OUT2	-8.0 to +48.0	V	Pin :UHOUT, VHOUT, WHOUT Note6
U, V, W, COMMON constant output voltage range 1	Vphase1	-1.0 to +48.0	V	Pin :U, V, W, COMMON
U, V, W, COMMON peak output voltage range 2	Vphase2	-8.0 to +48.0	V	Pin :U, V, W, COMMON Note6
ULOUT, VLOUT, WLOUT output voltage range	VL_OUT	-0.5 to +18.0	V	Pin :ULOUT, VLOUT, WLOUT
Sense current terminal	ISEN	-0.3 to VREG5 + 0.3	V	Pin : ISENP, ISENN
Digital terminal Input voltage range	DVIN1	-0.3 to VDD + 0.3	V	Pin :P00 to P04, P20~P26, P31, P40 to P43, P73 to P77, P122, P137, P140, P141, EXCLK, /RESET, Note4
	DVIN2	-0.3 to +6.5	V	Pin: P60 to P63 (Nch open-drain)
Output Voltage	DVOUT	-0.3 to VDD+0.3	V	Pin: P00 to P04, p20 to P26, P31, P40 to P43, P73 to P77, P140, P141, Note4
Analog input voltage	AVIN1	-0.3 to VDD + 0.3 and -0.3 to AVREFP + 0.3	V	Pin: ANI0 to ANI6, ANI16, ANI17 Note4,5
	AVIN2	-0.3 to VREG5 + 0.3	V	Pin :VREG5_SEL, TP1, TP2
Hall sensor input terminal voltage	HVIN	-0.3 to VREG5 + 0.3	V	Pin : UH, VH, WH

Note1: Not subject to production test, specified at Ta=25degC by design

Note2: Please do not apply the voltage more than 48V to VM terminal more than 1us.

In addition, when the VM voltage is as above 48V at DC level, the serge protective circuit of this IC works, and the applied voltage is clamped. **Note3**: Connect the REGC pin to VSS via a capacitor (0.47 to 1uF). This value regulates the absolute maximum rating of REGC pin.

Do not use this pin with voltage applied to it.

Note4: Must be 6.5 V or lower.

Note5: Do not exceed AVREFP +0.3 V in case of A/D conversion target pin.

Note6: This value is for design only and the condition is (PWM period = 20KHz) and (Negative period = 150nsec).

When there is some possibility to exceed the maximum ratings, please investigate to add protection circuit written in "8. External Circuit".

Note7: This value is for design only and the condition is (PWM period = 20KHz) and (Period = 1usec). Do not use beyond the rating.

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Rating for RAJ306001 (continued)

Note1

ltem	Symbol	Rating	unit	Note
		-40	mA/Terminal	Pin :P00 to P04, P31, P40 to P43, P73 to P77, P140, P141
Digital output current of High level 1	DIOH1	-70	mA/Total	Pin : P00 to P04, P40 to P43, P140, P141
		-100	mA/Total	Pin :P31, P73 to P77
Digital output current of High level 2	DIOH2	-0.5	mA/Terminal	Pin : P20 to P26 (Total current of these terminals: 1.7mA)
		+40	mA/Terminal	Pin :P00 to P04, P31, P40 to P43, P60 to P63, P73 to P77, P140, P141
Digital output current of Low level 1	DIOL1	+70	mA/Total	Pin :P00 to P04, P40 to P43, P140, P141
		+100	mA/Total	Pin :P31, P73 to P77
Digital output current of Low level 2	DIOL2	+1	mA/Terminal	Pin : P20 to P26 (Total current of their terminal: 4.3mA)
Maximum junction temperature	Tj	+150	degC	Pre-Driver chip
Operating temperature	Tene1	-40 to +85	dagO	RAJ306001GNP
(Normal Operation)	Tope1	-40 to +105	degC	RAJ306001ZGNP
Operating temperature	Tanaa	-40 to +85	dagO	RAJ306001GNP
(at Flash Memory Programming)	Tope2	-40 to +105	degC	RAJ306001ZGNP
Storage temperature	Tstg	-65 to +150	degC	

Note1: Not subject to production test, specified at Ta=25degC by design

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark1: Unless specified otherwise, the characteristics of alternate-function pins are same as those of the port pins.

Remark2: AVREFP: positive side reference voltage of the A/D converter.

Remark3: GND pins: Drive block: DrvGND1, DrvGND2, Analog block: AGND1, AGND2 VSS pin: VSS (MCU)

Absolute Maximum Rating for RAJ306010 Note1

Item	Symbol	Rating	unit	Note
Power dissipation	Pd	5840	mW	This spec is applied for HWQFN64.
Thermal derating	КӨ	-46.7	mW/degC	This spec is applied for HWQFN64. Condition: refer to P.10
Power supply for motor drive	VM	-0.3 to +60	V	Refer to Note2
Power supply	VDD	- 0.3 to +6.5	V	Pin: VDD (MCU)
REGC terminal input voltage	VIREGC	-0.3 to +2.8	V	Pin: REGC Note3
VREG5 terminal input voltage	VIVREG5	-0.3 to +6.5	V	Pin: VREG5
VGT output voltage range	VVGT	-0.3 to +48.0	V	Pin :VGT
CP4 terminal voltage range	VCP4	-0.3 to +48.0	V	Pin :CP4
CP3 terminal voltage range	VCP3	-0.3 to +48.0	V	Pin :CP3
VGB output voltage range	VVGB	-0.3 to +18.0	V	Pin :VGB
CP2 terminal voltage range	VCP2	-0.3 to +18.0	V	Pin :CP2
CP1 terminal voltage range	VCP1	-0.3 to +18.0	V	Pin :CP1
UHOUT, VHOUT, WHOUT constant output voltage range 1	VH_OUT1	-1.0 to +48.0	V	Pin :UHOUT, VHOUT, WHOUT
UHOUT, VHOUT, WHOUT peak output voltage range 2	VH_OUT2	-8.0 to +48.0	V	Pin :UHOUT, VHOUT, WHOUT Note6
U, V, W, COMMON constant output voltage range 1	Vphase1	-1.0 to +48.0	V	Pin :U, V, W, COMMON
U, V, W, COMMON peak output voltage range 2	Vphase2	-8.0 to +48.0	V	Pin :U, V, W, COMMON Note6
ULOUT, VLOUT, WLOUT output voltage range	VL_OUT	-0.5 to +18.0	V	Pin :ULOUT, VLOUT, WLOUT
Sense current terminal	ISEN	-0.3 to VREG5 + 0.3	V	Pin : ISENP, ISENN
Digital terminal Input voltage range	DVIN1	-0.3 to VDD + 0.3	V	Pin :P00 to P04, P20~P26, P31, P40 to P43, P73 to P77, P122, P137, P140, P141, EXCLK, /RESET, Note4
	DVIN2	-0.3 to +6.5	V	Pin: P60 to P63 (Nch open-drain)
Output Voltage	DVOUT	-0.3 to VDD+0.3	v	Pin: P00 to P04, p20 to P26, P31, P40 to P43, P73 to P77, P140, P141, Note4
Analog input voltage	AVIN1	-0.3 to VDD + 0.3 and -0.3 to AVREFP + 0.3	V	Pin: ANI0 to ANI6, ANI16, ANI17 Note4,5
	AVIN2	-0.3 to VREG5 + 0.3	V	Pin :VREG5_SEL, TP1, TP2
Hall sensor input terminal voltage	HVIN	-0.3 to VREG5 + 0.3	V	Pin : UH, VH, WH

Note1: Not subject to production test, specified at Ta=25degC by design

Note2: Please do not apply the voltage more than 48V to VM terminal more than 1us. In addition, when the VM voltage is as above 48V at DC level, the serge protective circuit of this IC works, and the applied voltage is clamped.

Note3: Connect the REGC pin to VSS via a capacitor (0.47 to 1uF). This value regulates the absolute maximum rating of REGC pin. Do not use this pin with voltage applied to it.

Note4: Must be 6.5 V or lower.

Note5: Do not exceed AVREFP +0.3 V in case of A/D conversion target pin.

Note6: This value is for design only and the condition is (PWM period = 20KHz) and (Negative period = 150nsec).

When there is some possibility to exceed the maximum ratings, please investigate to add protection circuit written in "8. External Circuit".

Note7: This value is for design only and the condition is (PWM period = 20KHz) and (Period = 1usec).Do not use beyond the rating.

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Rating for RAJ306010 (continued) Note1

ltem	Symbol	Rating	unit	Note
Power dissipation	Pd	5840	mW	This spec is applied for HWQFN64.
Thermal derating	KÐ	-46.7	mW/degC	This spec is applied for HWQFN64. Condition: refer to P.10
Power supply for motor drive	VM	-0.3 to +60	V	Refer to Note2
Power supply	VDD	- 0.3 to +6.5	V	Pin: VDD (MCU)
REGC terminal input voltage	VIREGC	-0.3 to +2.8	V	Pin: REGC Note3
/REG5 terminal input voltage	VIVREG5	-0.3 to +6.5	V	Pin: VREG5
/GT output voltage range	VVGT	-0.3 to +48.0	V	Pin :VGT
CP4 terminal voltage range	VCP4	-0.3 to +48.0	V	Pin :CP4
CP3 terminal voltage range	VCP3	-0.3 to +48.0	V	Pin :CP3
/GB output voltage range	VVGB	-0.3 to +18.0	V	Pin :VGB
CP2 terminal voltage range	VCP2	-0.3 to +18.0	V	Pin :CP2
CP1 terminal voltage range	VCP1	-0.3 to +18.0	V	Pin :CP1
JHOUT, VHOUT, WHOUT constant output voltage range 1	VH_OUT1	-1.0 to +48.0	V	Pin :UHOUT, VHOUT, WHOUT
JHOUT, VHOUT, WHOUT beak output voltage range 2	VH_OUT2	-8.0 to +48.0	V	Pin :UHOUT, VHOUT, WHOUT Note6
J, V, W, COMMON constant output voltage range 1	Vphase1	-1.0 to +48.0	V	Pin :U, V, W, COMMON
U, V, W, COMMON peak output voltage range 2	Vphase2	-8.0 to +48.0	V	Pin :U, V, W, COMMON Note6
JLOUT, VLOUT, WLOUT output voltage range	VL_OUT	-0.5 to +18.0	V	Pin :ULOUT, VLOUT, WLOUT
Sense current terminal	ISEN	-0.3 to VREG5 + 0.3	V	Pin : ISENP, ISENN
Digital terminal Input voltage range	DVIN1	-0.3 to VDD + 0.3	V	Pin :P00 to P04, P20~P26, P31, P40 to P43, P73 to P77, P122, P137, P140, P141, EXCLK, /RESET, Note4
	DVIN2	-0.3 to +6.5	V	Pin: P60 to P63 (Nch open-drain)
Output Voltage	DVOUT	-0.3 to VDD+0.3	V	Pin: P00 to P04, p20 to P26, P31, P40 to P43, P73 to P77, P140, P141, Note4
Analog input voltage	AVIN1	-0.3 to VDD + 0.3 and -0.3 to AVREFP + 0.3	V	Pin: ANI0 to ANI6, ANI16, ANI17 Note4,5
	AVIN2	-0.3 to VREG5 + 0.3	V	Pin :VREG5_SEL, TP1, TP2
Hall sensor input terminal voltage	HVIN	-0.3 to VREG5 + 0.3	V	Pin : UH, VH, WH

Note1: Not subject to production test, specified at Ta=25degC by design

Note2: Please do not apply the voltage more than 48V to VM terminal more than 1us.

In addition, when the VM voltage is as above 48V at DC level, the serge protective circuit of this IC works,

and the applied voltage is clamped.

Note3: Connect the REGC pin to VSS via a capacitor (0.47 to 1uF). This value regulates the absolute maximum rating of REGC pin.

Do not use this pin with voltage applied to it.

Note4: Must be 6.5 V or lower.

Note5: Do not exceed AVREFP +0.3 V in case of A/D conversion target pin.

Note6: This value is for design only and the condition is (PWM period = 20KHz) and (Negative period = 150nsec).

When there is some possibility to exceed the maximum ratings, please investigate to add protection circuit written in "8. External Circuit".

Note7: This value is for design only and the condition is (PWM period = 20KHz) and (Period = 1usec). Do not use beyond the rating.

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Rating (continued)

Figure 7-1. Thermal Derating characteristic

Note: Glass epoxy board: 76.2mm x 114.5mm x 1.6mm, copper-occupancy ratio in a 4-layer board: 50% in layers 1 and 4, 95% in layers 2 and 3.

[Note that the allowable power consumption depends on the conditions imposed on the board.]

Item	Rating Unit	Notes
ψjt	1.69 degC/W	junction-to-case (package top surface) thermal resistance
θја	21.4 degC/W	junction-to-ambient thermal resistance
Exposed power pad / heat slug area	42.3mm ²	-

Note1: Glass epoxy board: 76.2mm x 114.5mm x 1.6mm,

copper-occupancy ratio in a 4-layer board: 50% in layers 1 and 4, 95% in layers 2 and 3. [Note that the thermal resistance depends on the conditions imposed on the board.]

8.2 Recommended Operating Conditions

Item	Symbol	Rating	unit	Note
Power supply voltage for motor drive	VM	+6 to +30	V	RAJ306001
Power supply voltage for motor drive	VM	+6 to +42	V	RAJ306010
5V Regulator (VREG5) output current	IVREG5	30 [Max]	mA	Total: 60mA [Max] Note1
5V Regulator (VREG5) output voltage	VREG5	+4.75~5.25	V	VREG5_SEL=Hi Note2
MCU operating voltage range	VDD	VREG5-0.25~VREG5+0.25	V	Note3

Note1: Total maximum current including RAA3060xx internal load is 60mA (Max).

For external parts: 30mA (Max), For RAA3060xx: 30mA

Please keep the junction temperature within Tjmax.

Note2: When VREG5 is supplied from external, please keep the sequence as follows.

1. Start up: Supply VM \rightarrow Supply VREG5 \rightarrow Release Reset

2. Supply voltage off: Reset \rightarrow VREG5 Off \rightarrow VM off

Note3: This operating condition is a restriction of RL78/G1F when using this IC. This value is different from the operating condition in "RL78/G1F User's manual: Hardware" (R01UH0516EJ).

Therefore, this IC cannot operate normally at VDD supply voltage outside the operating voltage range, such as 3.3V.

8.3 Electrical Characteristics

	Rated level							
Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Notes	
Power Supplies (VM, VREG5)		•	•				-	
/M operation current	І∨м	PS_ALL Reg. (02h): 01h PS Reg. (04h): 09Fh,		13.5	19	mA	Pre Driver block (Using Hall IC)	
VM standy current	Ізтву	PS_ALL Reg. (02h): 00h PS Reg. (04h): 00h, System clock: Stop		64	96	uA	Pre Driver block (Using Hall IC)	
VREG5 Output voltage	Vvreg5	IOUT = 1 to 30mA	4.75	5	5.25	V		
VREG5 load current ability	IVREG5				30	mA		
Gate Driver Block (VGT, VGB, UHOL	л, уноит,	WHOUT, ULOUT, VLOUT, WLOUT)						
Charge pump voltage for High side	Vvgt	CPSET2 Reg. (34h)= 02h, lo=100uA	VM+10	13	VM+15	V		
		CPSET2 Reg. (34h)= 0Ch, lo=100uA		VM+10		V	1	
Charge pump voltage for Low side	Vvgb	CPSET2 Reg. (34h)= 02h, lo=100uA	10	13	15	V		
		CPSET2 Reg. (34h)= 0Ch, lo=100uA		10		V	1	
Gate drive output voltage for High side	Vouth	CPSET2 Reg. (34h)= 02h, lo=100uA	VM+10	13	VM+15	V		
Gate drive output voltage for Low side	Voutl	CPSET2 Reg. (34h)= 02h, lo=100uA	10	13	15	V		
		IDR_H_P = 111		9.5		Ω		
		IDR_H_P = 100	- 20%	14.0	+ 20%	Ω	1	
mpedance of	_	IDR_H_P = 000	1	65.0		Ω	Note 1)	
he gate drive output (High side)	Routh	IDR_H_N = 111		38.5		Ω		
		IDR_H_N = 100	- 25%	10.0	+ 25%	Ω	1	
		IDR_H_N = 000		5.0		Ω	1	
		IDR_L_P = 111	- 20%	5.0		Ω		
		IDR_L_P = 100		7.0	+ 20%	Ω		
mpedance of		IDR_L_P = 000		27.0		Ω	Note 1)	
the gate drive output (Low side)	Routl	IDR_L_N = 111		17.5		Ω	1	
· · · ·		IDR_L_N = 100	- 25%	5.0	+ 25%	Ω	1	
		IDR_L_N = 000	1	2.5		Ω	1	
Current Sense Amplifier (ISENP, ISI	ENN)						•	
nput voltage range	VICSA		0.0	-	1.0	V	with respect to ISENN	
Amplifier Gain	GCSA	CS_SET1 Reg. (20h)= 00h		50		V/V		
		CS_SET1 Reg. (20h)= 40h	25			V/V	1	
		CS_SET1 Reg. (20h)= 50h		8.25		V/V		
Hall signal Block (UH, VH,WH)		•	•					
		HAIC_TH: 000	+ 0.32	+ 0.40	+ 0.48			
		HAIC_TH: 001	+ 0.56	+ 0.70	+ 0.84			
		HAIC_TH: 010	+ 0.80	+ 1.00	+ 1.20			
		HAIC TH: 011	+ 1.04	+ 1.30	+ 1.56			
Hall IC input signal						V		
	HIC_TH	HAIC_TH: 100	+ 1.28	+ 1.60	+ 1.92	v		
	HIC_TH	_		+ 1.60 + 1.90	+ 1.92 + 2.28	V		
	НІС_ТН	HAIC_TH: 100	+ 1.28			v		
	HIC_TH	HAIC_TH: 100 HAIC_TH: 101	+ 1.28 + 1.52	+ 1.90	+ 2.28	• • •		
Hall IC input signal Threshold voltage level	HIC_TH	HAIC_TH: 100 HAIC_TH: 101 HAIC_TH: 110	+ 1.28 + 1.52 + 1.76	+ 1.90 + 2.20	+ 2.28 + 2.64	• •		
Threshold voltage level	HIC_TH	HAIC_TH: 100 HAIC_TH: 101 HAIC_TH: 110 HAIC_TH: 111	+ 1.28 + 1.52 + 1.76	+ 1.90 + 2.20 + 2.50	+ 2.28 + 2.64	mV	Note 1)	
Threshold voltage level		HAIC_TH: 100 HAIC_TH: 101 HAIC_TH: 110 HAIC_TH: 111 HAIC_TH: 111	+ 1.28 + 1.52 + 1.76	+ 1.90 + 2.20 + 2.50 0	+ 2.28 + 2.64		Note 1)	
Threshold voltage level		HAIC_TH: 100 HAIC_TH: 101 HAIC_TH: 110 HAIC_TH: 111 HAIC_HYS: 00 HAIC_HYS: 01	+ 1.28 + 1.52 + 1.76	+ 1.90 + 2.20 + 2.50 0 50	+ 2.28 + 2.64		Note 1)	
		HAIC_TH: 100 HAIC_TH: 101 HAIC_TH: 110 HAIC_TH: 111 HAIC_HYS: 00 HAIC_HYS: 01	+ 1.28 + 1.52 + 1.76	+ 1.90 + 2.20 + 2.50 0 50	+ 2.28 + 2.64		Note 1)	

Note1: This specification is the design target of this IC, and Renesas cannot guarantee this specification.

Electrical Characteristics (continued)

Note: All specifications are for	Ta=25degC, VM=22.5V	unless otherwise noted.
----------------------------------	---------------------	-------------------------

	Rated level							
Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Notes	
Power Supplies (VM, VREG5)	•	•	•	-			•	
VM operation current	І∨м	PS_ALL Reg. (02h): 01h PS Reg. (04h): 09Fh,		13.5	19	mA	Pre Driver block (Using Hall IC)	
VM standy current	Іѕтву	PS_ALL Reg. (02h): 00h PS Reg. (04h): 00h, System clock: Stop		64	96	uA	Pre Driver block (Using Hall IC)	
VREG5 Output voltage	Vvreg5	IOUT = 1 to 30mA	4.75	5	5.25	V		
VREG5 load current ability	IVREG5				30	mA		
Gate Driver Block (VGT, VGB, UHOL	JT, VHOUT,	WHOUT, ULOUT, VLOUT, WLOUT)	•				•	
Charge pump voltage for High side	Vvgt	CPSET2 Reg. (34h)= 02h, lo=100uA	VM+10	VM+13	VM+15	V		
		CPSET2 Reg. (34h)= 0Ch, lo=100uA		VM+10		V		
Charge pump voltage for Low side	Vvgb	CPSET2 Reg. (34h)= 02h, lo=100uA	10	13	15	V		
		CPSET2 Reg. (34h)= 0Ch, lo=100uA		10		V		
Gate drive output voltage for High side	Vouth	CPSET2 Reg. (34h)= 02h, lo=100uA	VM+10	VM+13	VM+15	V		
Gate drive output voltage for Low side	Voutl	CPSET2 Reg. (34h)= 02h, lo=100uA	10	13	15	V		
		IDR_H_P = 111		9.5		Ω		
		IDR_H_P = 100	- 20%	14.0	+ 20%	Ω		
mpedance of the gate drive output	Routh	IDR_H_P = 000		65.0		Ω	Note 1)	
(High side)	NOUTH	IDR_H_N = 111		38.5		Ω		
		IDR_H_N = 100	- 25%	10.0	+ 25%	Ω		
		IDR_H_N = 000		5.0		Ω		
		IDR_L_P = 111	- 20%	5.0		Ω		
		IDR_L_P = 100		7.0	+ 20%	Ω		
mpedance of the gate drive output	Routl	IDR_L_P = 000		27.0		Ω	Note 1)	
(Low side)	ROULE	IDR_L_N = 111		17.5		Ω		
		IDR_L_N = 100	- 25%	5.0	+ 25%	Ω		
		IDR_L_N = 000		2.5	2.5			
Current Sense Amplifier (ISENP, IS	ENN)	-						
nput voltage range	VICSA		0.0	-	1.0	V	with respect to ISENN	
Amplifier Gain	GCSA	CS_SET1 Reg. (20h)= 00h		50		V/V	_	
		CS_SET1 Reg. (20h)= 40h		25			_	
		CS_SET1 Reg. (20h)= 50h		8.25		V/V		
Hall signal Block (UH, VH,WH)	1	1		r	1		•	
		HAIC_TH: 000	+ 0.32	+ 0.40	+ 0.48			
		HAIC_TH: 001	+ 0.56	+ 0.70	+ 0.84			
		HAIC_TH: 010	+ 0.80	+ 1.00	+ 1.20			
Hall IC input signal	HIC_TH	HAIC_TH: 011	+ 1.04	+ 1.30	+ 1.56	v		
Threshold voltage level		HAIC_TH: 100	+ 1.28	+ 1.60	+ 1.92			
		HAIC_TH: 101	+ 1.52	+ 1.90	+ 2.28			
		HAIC_TH: 110	+ 1.76	+ 2.20	+ 2.64			
		HAIC_TH: 111	+ 2.00	+ 2.50	+ 3.00			
		HAIC_HYS: 00 0 HAIC_HYS: 01 50						
Hystersis	HIC_hys			mV	Note 1)			
		HAIC_HYS: 10		100				
BEMF Sense Amplifier (U,V,W)		1	-		1		-	
nput voltage range	VIBSA		-0.5	-	VM+0.5	V		
Amplifier Gain	GBSA			1		V/V		

Note1: This specification is the design target of this IC.

9. External Circuit

The recommended external circuit with the following conditions is shown as Figure 8-1.

- Integrated 5V regulator is used for RL78/G1F and Hall IC.
- Charge Pump circuit uses the double boost function. (R34h: D3, CP_BOOST_N=0)
 VGB= 13V, VGT= VM+13V
- Hall IC type

The user can select each condition independently according to the actual application.

1. There are some possibility to add resistor and/or diode according to motor spec and drive condition

2. Please pay attention that the connection point of C8 which is attached to terminal VGT is near the drain of M1, M3 and M5 as close as possible.

This request is to synchronize voltage change between Upper External MOS's drain and VGT terminal. This layout can decrease the potential to be added unexpected VGS voltage on Upper External MOS.

The recommended external circuit with the following conditions is shown as Figure 8-2.

- External 5V regulator is used for RL78/G1F and Hall IC.
- Charge Pump circuit does NOT use the double boost function. (R34h: D3, CP_BOOST_N=1)
 VGB= 10V, VGT= VM+10V
- Hall sensor-less type

The user can select each condition independently according to the actual application.

Figure 8-2. Recommended External Circuit example with using external 5V regulator, single boost function, and Hall sensor-less type

- 1. There are some possibility to add resistor and/or diode according to motor spec and drive condition. Refer to *1 note in Figure8-1.
- 2. Please pay attention that the connection point of C8 which is attached to terminal VGT is near the drain of M1, M3 and M5 as close as possible.

This request is to synchronize voltage change between Upper External MOS's drain and VGT terminal. This layout can decrease the potential to be added unexpected VGS voltage on Upper External MOS.

10. Block Explanation

10.1 Power ON Sequence

Fig.9-1 shows the example of Power ON sequence regarding VM, VREG5, and VREG3 (internal Regulator). When the power supply of RL78G1F is VREG5, the operation state of RL78/G1F (MCU) and Pre-Driver depends on VREG5 and VREG3 voltage. When VM is applied, VREG5 and VREG3 starts in synchronization with VM.

RL78/G1F (MCU) and Pre-Driver work as follows sequentially.

- 1. After VREG3 > VREC3 (2.83V),
- RL78/G1F (MCU): "RESET" is maintained.
- Pre-Driver: "RESET" is released and goes "Stop".
- Pre-Driver keeps the motor stop as the control signals from RL78/G1F (MCU) is reset.
- 2. After VREG5 > VLVDH (4.06V),
- RL78/G1F (MCU): "RESET" is released and goes "Normal".
- After RL78/G1F (MCU) sets VREG5_TRIM register (R40h) to the written data in TRIM_DATA0
- (Address: EFFECh) of RL78/G1F, VREG5 becomes 5V typical. The default voltage is 4.8V.
- Pre-Driver can drive the motor by the control of RL78/G1F (MCU).
- 3. When VREG5 < VLVDL (3.98V),
- RL78/G1F (MCU) goes "RESET".
- Pre-Driver stops driving the motor as the control signals from RL78/G1F (MCU) is reset.
- 4. Same as (2)
- 5. Same as (3)
- 6. After VREG3 < VSD3 (2.70V),
- RL78/G1F (MCU): "RESET" is maintained.
- Pre-Driver keeps the motor stop by "RESET" state.

Note1: When a user writes in data of Firmware to Flash, the user needs to set MCU as follows.

Voltage Detector Function: Enable

Setting "Reset mode" of Voltage Detector Function.

Setting '4.06V of Rising edge' and '3.98V of Falling edge' on Detection voltage (VLVD).

Note2: VREC3 and VSD3 are the design target.

 ${\it Note3}:$ When VM is less than 6V, VGB for the Power MOS gate drive becomes less than 10V.

Refer to section 7.2 "Recommended Operating Condition".

10.2 Serial Array Unit

RL78/G1F(MCU) has two Serial Array Unit. Serial Array Unit 0 is consisted four Serial channel. Serial Array Unit 1 is consisted two Serial channels. The Serial channel has three modes (CSI, UART, and Simplified I2C). Please refer to Chapter 19 Serial Array Unit in "RL78/G1F User's manual: Hardware" (R01UH0516EJ).

Channel of CSI00: CSI00 is used for the communication of RL78/G1F MCU and the Pre-driver at the inside. The valid function of communication for peripheral circuit are the following.

Unit	Channel	Used as CSI	Used as UART	Used as simplified I ² C
	0 [internal connection] ^{Note 1}	CSI00 (Can't use slave select input function) [internal connection] ^{Note 1}		
0	1	CSI01		IIC01
	2	CSI10	UART1(TxD1)	IIC10
	3		UART1(RxD1)	
1	0			
	1			

Note 1 Communication between RL78/G1F(MCU) and Pre-Driver

P51, P50, and P30 pins of RL78/G1F(MCU) are connected internally with Pre-Driver. Pre-Driver registers can be access via CSI0 (Channel 0 of Serial Array Unit 0).

Please set to CSI00 settings as follows.

- To disable slave select input function (/SSI00 pin), setting of SSIE00 =0 in ISC register is required. Refer to Chapter 19.3.15 Input switch control register (ISC) in "RL78/G1F User's manual: Hardware" (R01UH0516EJ).
- To use type1 (DAP00=0, and CPK00=0 in SCR00 register). Refer to Chapter 19.3.4 Serial communication operation setting register mn (SCRmn) in "RL78/G1F User's manual: Hardware" (R01UH0516EJ).

HS (Hi-speed main) mode

10.3 CSI timing specification

The following table shows the CSI timing specification during communication at same potential.

	Cumhal						
parameter	Symbol	Condition		MIN	TYP	MAX	Unit
SCK00 cycle time	tKCY1	tKCY1 >= 4/fCLK	4.75V <= VDD <= 5.25V	-	1000	-	ns
SCK00 high/low-level width	tKH1, tKL1	4.75V <= VDD <= 5.25V		tKCY1/2 -24	-	-	ns
SIp setup time (from SCK00 ↑)	tSIK1	4.75V <= VDD <= 5.25V		66	-	-	ns
Slp hold time (from SCK00 ↑)	tKSI1			38	-	-	ns
Delay from SCK00↓ to SO00 output	tKSO1	C	= 30pF *note1	-	-	50	ns

MCU SCR00 register, DAP00=0, CKP00=0, /SSIE=0

Note1: C is the load capacitance of SCK00 and SO00.

Figure 9-2. CSI Timing Diagram

R18DS0034EJ0100 Rev.1.1 Mar 24, 2021

10.4 CSI Communication Format

Fig.9-3 shows CSI communication format of both write and read mode.

If the communication format is different from this, its communication becomes invalid.

-Write		
CS(P05)		
SCLK(SCK00)		
MOSI(SO00)	R/W(L) Add[6] Add[4] Add[3] Add[2] Add[1] Add[0] WData[7] WData[5] WData[3] WData[1] WData[0]	
MISO(SI00)	Hi-z "L" level	Hi-z
-Read		
CS(P05)		
SCLK(SCK00)		
MOSI(SO00)	R/W(H) Add[6] Add[4] Add[3] Add[2] Add[1] Add[0] Don't Care	
MISO(SI00)	Hi-z "L" level RData[7] RData[6] RData[5] RData[4] RData[3] RData[2] RData[1] RData[0]	Hi-z

11. Control Register Map

Table 10-1 shows the RAJ3060xx's register map. Check the "2.4 Pre-Driver register " in "RAJ306000 Series User's Manual:Hardware (R18UZ0066EJ)" for details.

Add.	Register Name	Symbol	Initial value	7	6	5	4	3	2	1	0	
02h	Power Save Control Register	PS_ALL	00h	0	0	0	0	0	0	0	PS ALL N	
04h	By Function Power Save Control Setting Register	– PS	00h	PS_PRE_N	0	PS_BMF_N	PS CSAMP N	PS_VMC_N	PS HALL N	PS CPREG N	PS_CP_N	
06h	Software Reset Register	SW_RESET	00h	0	0	0	0	0	0	0	SW_RESET0	
08h	ADC Selector Register	ADC_SEL	00h	0	0	0	0		ADC_CH_	SEL3 to 0		
0Ah	U Phase Moter Control Signal Select Register	SELSIG_U	03h	0		SELSIG_U_H2 to 0		0		SELSIG_U_L2 to 0		
0Ch	V Phase Moter Control Signal Select Register	SELSIG_V	14h	0		SELSIG_V_H2 to 0		0		SELSIG_V_L2 to 0		
0Eh	W Phase Moter Control Signal Select Register	SELSIG_W	25h	0		SELSIG_W_H2 to 0		0		SELSIG_W_L2 to 0		
10h	Hall Signal Processing Setting Register	HALL_SIG	00h	BEMF_MODE_SEL	CENTERTAP_SEL	HALL_MODE_SEL	PWM_SEL	HALL_POLA		HALL_SEL2 to 0		
12h	ALARM Status Register1	ALMSTS1	FFh	VREG5_OVP_N	VGT_OVP1_N	VGT_OVP2_N	VGT_UVP_N	VGB_OVP_N	VGB_UVP_N	OCP_N	TSD_N	
14h	ALARM Operation Setting Register1	ALMOPE1	00h	0	0	0	VGT_UVP_OPE_N	0	VGB_UVP_OPE_N	OCP_OPE_N	TSD_OPE_N	
16h	ALARM Pin Output Setting Register1	ALMOUT1	00h	VREG5_OVP_ALE_N	VGT_OVP1_ALE_N	VGT_OVP2_ALE_N	VGT_UVP_ALE_N	VGB_OVP_ALE_N	VGB_UVP_ALE_N	OCP_ALE_N	TSD_ALE_N	
18h	ALARM Status Register2	ALMSTS2	FFh	1	1	1	1	1	1	1	VM_UVP_N	
1Ah	Current Sense setting Register2	CS_SET2	00h	CSAMP_	REF1 to 0	CSAMP_ATT	0	0	0	0	0	
1Ch	ALARM Pin Output Setting Register2	ALMOUT2	00h	0	0	0	0	0	0	0	VM_UVP_ALE_N	
1Eh	Error Detection Wait Time Setting Register	ERROR_WAIT	00h	0	0	0	REGV5_OVP_WAIT	UVCP_V	VAIT1 to 0	OCPW	AIT1 to 0	
20h	Current Sense setting Register1	CS_SET1	00h	0		SHUNT_SEL2 to 0	•		OCP_SE	L_H3 to 0		
22h	Hall IC Threshold Adjustment Register	HAIC_TH	00h	0	0	HAIC_H	YS1 to 0	0		HAIC_TH2 to 0		
24h	Pre-Driver Drive Status Register	PDDSTS	F0h	1	1	1	LDS_N	FG	HALL_MON_U	HALL_MON_V	HALL_MON_W	
26h	LD Judgment Wait Time Register	LD_WAIT	00h	LD_ALE_N	0	0	0	0		LD_WAIT2 to 0		
28h	Motor Drive Control Setting Register	DRIVE_SET	00h	OCP_HYS_N	ALM_LATCH_CLR	0	DECAY_MODE_SEL	DT_REG_N	OCP_ERR_SEL	DIR_SEL	MOT_EN	
2Ah	-	-	-	0	0	0	0	0	0	0	0	
2Ch	High Side Output Current Capability Setting Register	IDRCNT_H	00h	0		IDR_H_P2 to 0	•	0		IDR_H_N2 to 0		
2Eh	Low Side Output Current Capability Setting Register	IDRCNT_L	00h	0		IDR_L_P2 to 0		0		IDR_L_N2 to 0		
30h	Pch Slew Rate Setting Register	TRCNT_P	00h	0		TR_H_P2 to 0		0		TP_L_P2 to 0		
32h	Charge Pump Setting Register1	CPSET1	01h	0	0	0	0	0	0	CP_CLK	CP_CLK_DIV1 to 0	
34h	Charge Pump Setting Register2	CPSET2	02h	0	0	0	0	CP_BOOST_N	VREG10_OUT	VREG6P5_OUT	0	
36h	Cahrge Pump Trimming Register	CP_TRIM	00h				CP_TRIM7 -	CP_TRIM0	•			
38h to 3Eh	-	-	-	0	0	0	0	0	0	0	0	
40h	5V Regulator Voltage Setting	VREG5_TRIM	00h		•	•	VREG5_TRIM7	- VREG5_TRIM0	•	•	•	
42h	Ext. FET Curent Detect AMP Setting Register	CSAMP_TRIM	00h				CSAMP_TRIM7	- CSAMP_TRIM0				
44h to 56h	-	-	-	0	0	0	0	0	0	0	0	
58h	ALARM Raw Status Monitor Register1	ALMRAW1	FFh	1	VGT_OVP1_RAW_N	VGT_OVP2_RAW_N	VGT_UVP_RAW_N	VGB_OVP_RAW_N	VGB_UVP_RAW_N	1	1	
5Ah	-	-	-	0	0	0	0	0	0	0	0	
5Ch	TOIN Pin Monitor Register	TOIN_MONI	-	TOINA	TOINB	TOINC	TOIND	TOINE	TOINF	TOING	TOINH	
5Eh	WHO_AM_I		RAJ306001:6Ah				WHO_AM_I_7					
JEII	WHO_AW_I	WHO_AM_I	RAJ306010:6Bh				WHO_AW_L	WHO_AWU				
60h	Trimming Protect Register	TRIM_PT	00h				TRIM_PT7	- TRIM_PT0				
62h to 72h		-	-	0	0	0	0	0	0	0	0	
74h	Trimming Data Valid Regsiter	TRIM_EN	00h	0	0	0	0	0	0	0	TRIM_EN	
76h	• •	-	-	0	0	0	0	0	0	0	0	
78h	High Precise BGR Temp. Correction Register	BGR_TRIM	FFh				BGR_TRIM_7	- BGR_TRIM0				
7Ah	BUFFAMP Absolute Vaue Correction Register	BFAMP_TRIM	FFh				BFAMP_TRIM_7	- BFAMP_TRIM_0				
7Ch to 7Eh				0	0	0	0	0	0	0	0	

Table 10-1. Register Map

12. Package Description

TOP VIEW

0.05M C

13. Revision History

Revision	Date	Description
1.1	Mar 24, 2021	To update the format of the datasheet.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document. including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.