

## RAA730301

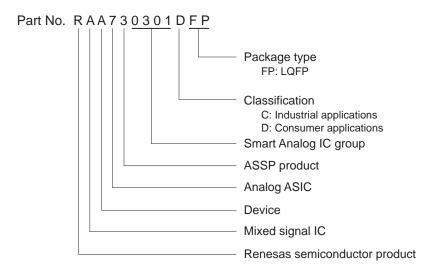
## Monolithic Programmable Analog IC

R02DS0012EJ0110 Rev.1.10 May. 31, 2014

## **Overview**

The RAA730301 is a monolithic programmable analog IC that supports low voltages and features a range of on-chip circuits such as an instrumentation amplifier, a D/A converter, and a temperature sensor, allowing the RAA730301 to be used as an analog front-end device for processing minute sensor signals. The RAA730301 uses a Serial Peripheral Interface (SPI) to allow external devices to control each on-chip circuit, enabling a more compact package and a reduction in the number of control pins. The compact package used by the RAA730301—a 48-pin LQFP—in turns enables a more compact set design.

## **Features**


- On-chip instrumentation amplifier × 1 ch
- On-chip D/A converter × 1 ch
- On-chip variable output voltage regulator × 1 ch
- On-chip temperature sensor × 1 ch
- On-chip SPI × 1 ch
- Includes a low-current mode.
- Operating voltage range:  $2.2 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$
- Operating temperature range:  $-40^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}$
- Package: 48-pin plastic LQFP (fine pitch)  $(7 \times 7)$

## **Applications**

- Home appliances
- Industrial equipment
- Healthcare equipment

## **Ordering Information**

| Pin count | Package                                         | Part Number                |  |  |
|-----------|-------------------------------------------------|----------------------------|--|--|
| 48 pins   | 48-pin plastic LQFP (fine pitch) $(7 \times 7)$ | RAA730301CFP, RAA730301DFP |  |  |



## **How to Read This Manual**

It is assumed that the readers of this manual have general knowledge of electrical engineering, electronic circuits.

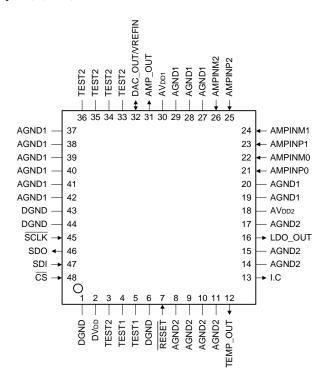
- To gain a general understanding of functions:
  - →Read this manual in the order of the CONTENTS.
- To check the revised points :
  - →The mark <R> shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what: " field.

## **Conventions**

Data significance : Higher digits on the left and lower digits on the right

Remark : Supplementary information Numerical representations : Binary ...xxxx or xxxxB

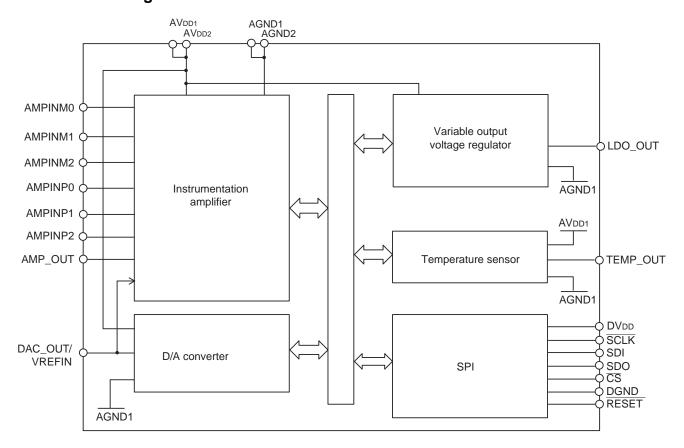
> Decimal ...xxxx Hexadecimal ...xxxxH


# Contents

| 1. Pii | n Configuration                                               | 4  |
|--------|---------------------------------------------------------------|----|
| 1.1    | Pin Layout                                                    | 4  |
| 1.2    | Block Diagram                                                 | 5  |
| 1.3    | Pin Functions                                                 | 6  |
| 1.4    | Connection of Unused Pins                                     | 8  |
| 1.5    | Pin I/O Circuits                                              | 9  |
| 2. Ins | strumentation Amplifier                                       | 11 |
|        | Overview of Instrumentation Amplifier Features                |    |
| 2.2    | Block Diagram                                                 | 11 |
| 2.3    | Registers Controlling the Instrumentation Amplifier           | 12 |
| 2.4    | Procedure for Operating the Instrumentation Amplifier         | 14 |
| 3. D/  | A Converter                                                   | 15 |
| 3.1    | Overview of D/A Converter Features                            | 15 |
| 3.2    | Block Diagram                                                 | 15 |
| 3.3    | Registers Controlling the D/A Converter                       | 16 |
|        | Procedure for Operating the D/A Converter                     |    |
|        | Notes on Using the D/A Converter                              |    |
| 4. Te  | emperature Sensor                                             | 20 |
| 4.1    | Overview of Temperature Sensor Features                       | 20 |
| 4.2    | Block Diagram                                                 | 20 |
| 4.3    | Registers Controlling the Temperature Sensor                  | 21 |
| 4.4    | Procedure for Operating the Temperature Sensor                |    |
| 5. Va  | ariable Output Voltage Regulator                              | 23 |
| 5.1    | Overview of Variable Output Voltage Regulator Features        |    |
| 5.2    | Block Diagram                                                 |    |
| 5.3    | Registers Controlling the Variable Output Voltage Regulator   | 24 |
| 5.4    | Procedure for Operating the Variable Output Voltage Regulator | 26 |
| 6.     | SPI                                                           | 27 |
| 6.1    | Overview of SPI Features                                      | 27 |
| 6.2    | SPI Communication                                             | 28 |
| 7.     | Reset                                                         | 29 |
| 7.1    | Overview of Reset Feature                                     | 29 |
| 7.2    | Registers Controlling the Reset Feature                       | 31 |
| 8. El  | ectrical Specifications                                       | 32 |
| 8.1    | Absolute Maximum Ratings                                      |    |
| 8.2    | Operating Condition                                           | 33 |
| 8.3    | Supply Current Characteristics                                | 33 |
| 8.4    | Electrical Specifications of Each Block                       |    |
| 9. Pa  | ackage Drawing                                                | 39 |

## 1. Pin Configuration

### 1.1 Pin Layout


• 48-pin plastic LQFP (fine pitch) (7 x 7)



Cautions 1. Make the potential of AGND1, AGND2 and DGND the same.

- 2. Make the potential of AVDD1, AVDD2 and DVDD the same.
- 3. Connect the LDO\_OUT pin to AGND2 via a capacitor (1.0 µF: recommended).
- 4. Connect the TEST1 pins to DGND.
- 5. Connect the I.C pin to AGND2.
- 6. Leave the TEST2 pins open.

## 1.2 Block Diagram



## 1.3 Pin Functions

**Table 1-1 Pin Functions (1/2)** 

| Pin No. | Pin Name           | I/O              | Pin Functions                                                                                                                       |
|---------|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1       | DGND               | -                | GND pin for SPI                                                                                                                     |
| 2       | DV <sub>DD</sub>   | -                | Power supply pin for SPI                                                                                                            |
| 3       | TEST2              | -                | Test pins                                                                                                                           |
| 4       | TEST1              | _                |                                                                                                                                     |
| 5       | TEST1              | -                |                                                                                                                                     |
| 6       | DGND               | -                | GND pin for SPI                                                                                                                     |
| 7       | RESET              | Input            | External reset pin                                                                                                                  |
| 8       | AGND2              | -                | GND pins for analog block (instrumentation amplifier, D/A converter,                                                                |
| 9       | AGND2              | _                | variable output voltage regulator, temperature sensor)                                                                              |
| 10      | AGND2              | -                |                                                                                                                                     |
| 11      | AGND2              | -                |                                                                                                                                     |
| 12      | TEMP_OUT           | Output           | Temperature sensor output pin                                                                                                       |
| 13      | I.C                | _                | -                                                                                                                                   |
| 14      | AGND2              | _                | GND pins for analog block (instrumentation amplifier, D/A converter,                                                                |
| 15      | AGND2              | -                | variable output voltage regulator, temperature sensor)                                                                              |
| 16      | LDO_OUT            | Output           | Variable output voltage regulator output pin                                                                                        |
| 17      | AGND2              | -                | GND pin for analog block (instrumentation amplifier, D/A converter, variable output voltage regulator, temperature sensor)          |
| 18      | AV <sub>DD2</sub>  | _                | Power supply pin for analog block (instrumentation amplifier, D/A converter, variable output voltage regulator, temperature sensor) |
| 19      | AGND1              | _                | GND pins for analog block (instrumentation amplifier, D/A converter,                                                                |
| 20      | AGND1              | -                | variable output voltage regulator, temperature sensor)                                                                              |
| 21      | AMPINP0            | Input            | Instrumentation amplifier input pin 0 (+)                                                                                           |
| 22      | AMPINM0            | Input            | Instrumentation amplifier input pin 0 (-)                                                                                           |
| 23      | AMPINP1            | Input            | Instrumentation amplifier input pin 1 (+)                                                                                           |
| 24      | AMPINM1            | Input            | Instrumentation amplifier input pin 1 (-)                                                                                           |
| 25      | AMPINP2            | Input            | Instrumentation amplifier input pin 2 (+)                                                                                           |
| 26      | AMPINM2            | Input            | Instrumentation amplifier input pin 2 (–)                                                                                           |
| 27      | AGND1              | _                | GND pins for analog block (instrumentation amplifier, D/A converter,                                                                |
| 28      | AGND1              | _                | variable output voltage regulator, temperature sensor)                                                                              |
| 29      | AGND1              | -                |                                                                                                                                     |
| 30      | AV <sub>DD1</sub>  | _                | Power supply pin for analog block (instrumentation amplifier, D/A converter, variable output voltage regulator, temperature sensor) |
| 31      | AMP_OUT            | Output           | Instrumentation amplifier output pin                                                                                                |
| 32      | DAC_OUT/<br>VREFIN | Output<br>/Input | D/A converter analog voltage output pin/instrumentation amplifier reference voltage input pin                                       |
| 33      | TEST2              | _                | Test pins                                                                                                                           |
| 34      | TEST2              | -                |                                                                                                                                     |
| 35      | TEST2              | -                |                                                                                                                                     |
| 36      | TEST2              | _                |                                                                                                                                     |

**Table 1-1 Pin Functions (2/2)** 

| Pin No. | Pin Name | I/O    | Pin Functions                                                        |
|---------|----------|--------|----------------------------------------------------------------------|
| 37      | AGND1    | -      | GND pins for analog block (instrumentation amplifier, D/A converter, |
| 38      | AGND1    | _      | variable output voltage regulator, temperature sensor)               |
| 39      | AGND1    | _      |                                                                      |
| 40      | AGND1    | _      |                                                                      |
| 41      | AGND1    | _      |                                                                      |
| 42      | AGND1    | _      |                                                                      |
| 43      | DGND     | _      | GND pins for SPI                                                     |
| 44      | DGND     | _      |                                                                      |
| 45      | SCLK     | Input  | Serial clock input pin for SPI                                       |
| 46      | SDO      | Output | Serial data output pin for SPI                                       |
| 47      | SDI      | Input  | Serial data input pin for SPI                                        |
| 48      | CS       | Input  | Chip select input pin for SPI                                        |

## 1.4 Connection of Unused Pins

**Table 1-2** Connection of Unused Pins

| Pin No.        | I/O              | Recommended Connection of Unused Pins                   |
|----------------|------------------|---------------------------------------------------------|
| TEMP_OUT       | Output           | Leave open.                                             |
| AMPINP0        | Input            | Connect to AGND1.                                       |
| AMPINM0        | Input            |                                                         |
| AMPINP1        | Input            |                                                         |
| AMPINM1        | Input            |                                                         |
| AMPINP2        | Input            |                                                         |
| AMPINM2        | Input            |                                                         |
| AMP_OUT        | Output           | Leave open.                                             |
| DAC_OUT/VREFIN | Output<br>/Input |                                                         |
| SCLK           | Input            | Connect to Ground. Note                                 |
| SDO            | Output           | Leave open.                                             |
| SDI            | Input            | Connect to Ground. Note                                 |
| CS             | Input            |                                                         |
| LDO_OUT        | Output           | Leave open.                                             |
| RESET          | Input            | Connect to DV <sub>DD</sub> directly or via a resistor. |

**Note** Ground means the same electrical potential as AGND1, AGND2 and DGND.

## 1.5 Pin I/O Circuits

Figure 1-1. Pin I/O Circuit Type (1/2)

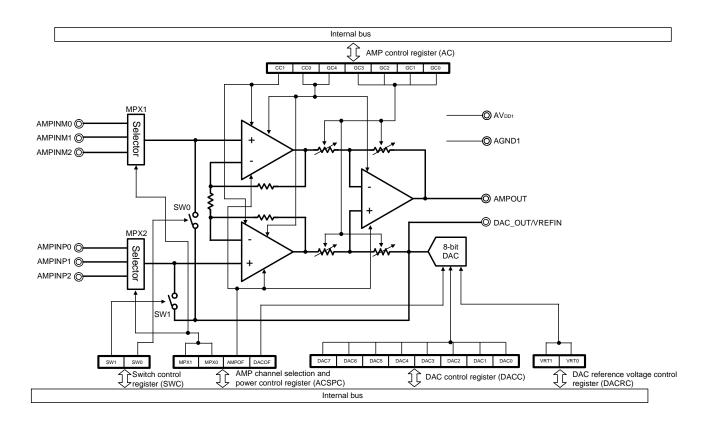
| Pin Name | Equivalent Circuit                                         | Pin Name                                                       | Equivalent Circuit                                            |
|----------|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
| RESET    | IN Schmitt-triggered input with hysteresis characteristics | AMPINPO<br>AMPINMO<br>AMPINP1<br>AMPINM1<br>AMPINP2<br>AMPINM2 |                                                               |
| SDO      | DV <sub>00</sub> OUT  OUT                                  | SCLK<br>SDI<br>CS                                              | IN O  Schmitt-triggered input with hysteresis characteristics |
| LDO_OUT  | OUTO AGND2 AGND2                                           | DAC_OUT/<br>VREFIN                                             | AVDD1  AVDD1  ANDUT  AGND1  AGND1                             |

Figure 1-1. Pin I/O Circuit Type (2/2)

| Pin Name | Equivalent Circuit  | Pin Name | Equivalent Circuit            |
|----------|---------------------|----------|-------------------------------|
| AMP_OUT  | AVDD1  AVDD1  AGND1 | TEMP_OUT | AVDD2<br>O OUT<br>AGND2 AGND2 |

## 2. Instrumentation Amplifier

The RAA730301 has one on-chip instrumentation amplifier channel.


### <R> 2.1 Overview of Instrumentation Amplifier Features

The instrumentation amplifier has the following features:

- The gain can be specified between 6 dB and 34 dB in 15 steps.
- · Includes an input mode switching function.
- Four operating modes are available.
- Includes a power-off function.

And also, the output signal from D/A converter can be used as the reference voltage for instrumentation amplifier. If D/A converter is powered off, the external reference voltage is to be input to DAC\_OUT/VREFIN pin. For details about use of D/A converter, see **3. D/A Converter**.

#### 2.2 Block Diagram



## 2.3 Registers Controlling the Instrumentation Amplifier

The instrumentation amplifier is controlled by the following 3 registers:

- AMP control register (AC)
- AMP channel selection and power control register (ACSPC)
- Switch control register (SWC)

#### (1) AMP control register (AC)

This register is used to specify the operating mode, input mode, and the gain of the instrumentation amplifier. Reset signal input clears this register to 00H.

Address: 01H Reset: 00H R/W

| _  | 7    | 6   | 5   | 4 | 3   | 2   | 1   | 0   |
|----|------|-----|-----|---|-----|-----|-----|-----|
| AC | AIMS | CC1 | CC0 | 0 | GC3 | GC2 | GC1 | GC0 |

| AIMS | Input mode of instrumentation amplifier |  |  |  |  |  |
|------|-----------------------------------------|--|--|--|--|--|
| 0    | Rail-to-rail input mode                 |  |  |  |  |  |
| 1    | P-ch single-ended input mode            |  |  |  |  |  |

| CC1 | CC0 | Operation mode of instrumentation amplifier |
|-----|-----|---------------------------------------------|
| 0   | 0   | High-speed mode                             |
| 0   | 1   | Mid-speed mode 2                            |
| 1   | 0   | Mid-speed mode 1                            |
| 1   | 1   | Low-speed mode                              |

| GC3          | GC2   | GC1 | GC0 | Gain (Typ.)        |
|--------------|-------|-----|-----|--------------------|
| 0            | 0     | 0   | 0   | 6 dB               |
| 0            | 0     | 0   | 1   | 8 dB               |
| 0            | 0     | 1   | 0   | 10 dB              |
| 0            | 0     | 1   | 1   | 12 dB              |
| 0            | 1     | 0   | 0   | 14 dB              |
| 0            | 1     | 0   | 1   | 16 dB              |
| 0            | 1     | 1   | 0   | 18 dB              |
| 0            | 1     | 1   | 1   | 20 dB              |
| 1            | 0     | 0   | 0   | 22 dB              |
| 1            | 0     | 0   | 1   | 24 dB              |
| 1            | 0     | 1   | 0   | 26 dB              |
| 1            | 0     | 1   | 1   | 28 dB              |
| 1            | 1     | 0   | 0   | 30 dB              |
| 1            | 1     | 0   | 1   | 32 dB              |
| 1            | 1     | 1   | 0   | 34 dB              |
| Other than a | above |     |     | Setting prohibited |

Remark Bit 4 can be set to 1, but this has no effect on the function.

#### (2) AMP channel selection and power control register (ACSPC)

This register is used to select the instrumentation amplifier input channel and enable or disable operation of the instrumentation amplifier, D/A converter, variable output voltage regulator, and temperature sensor.

Use this register to stop unused functions to reduce power consumption and noise.

When using the instrumentation amplifier, be sure to set bit 3 to 1.

Reset signal input clears this register to 00H.

Address: 04H Reset: 00H R/W

|       | 7    | 6    | 5 | 4 | 3     | 2     | 1     | 0     |
|-------|------|------|---|---|-------|-------|-------|-------|
| ACSPC | MPX1 | MPX0 | 0 | 0 | AMPOF | DACOF | LDOOF | TEMOF |

| MPX1 | MPX0 | Source of instrumentation amplifier input |
|------|------|-------------------------------------------|
| 0    | 0    | AMPINP0 pin and AMPINM0 pin               |
| 0    | 1    | AMPINP1 pin and AMPINM1 pin               |
| 1    | 0    | AMPINP2 pin and AMPINM2 pin               |
| 1    | 1    | Open pin                                  |

| AMPOF | Operation of instrumentation amplifier             |  |  |  |  |  |
|-------|----------------------------------------------------|--|--|--|--|--|
| 0     | Stop operation of the instrumentation amplifier.   |  |  |  |  |  |
| 1     | Enable operation of the instrumentation amplifier. |  |  |  |  |  |

**Remark** Bits 5 and 4 can be set to 1, but this has no effect on the function.

#### (3) Switch control register (SWC)

This register is used to specify whether to turn on or off switches SW0 and SW1, which are used to measure the offset voltage of the instrumentation amplifier.

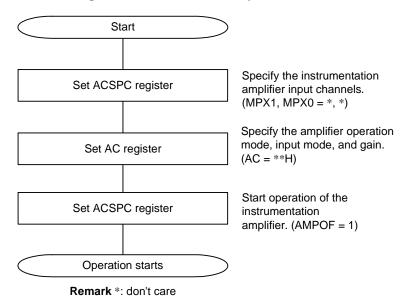
Reset signal input clears this register to 00H.

Address: 06H After reset: 00H R/W

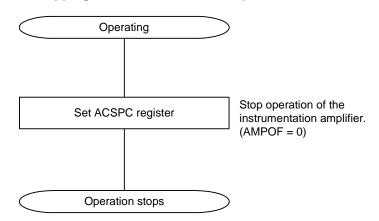
|     | 7 | 6 | 5 | 4 | 3 | 2 | 1   | 0   |
|-----|---|---|---|---|---|---|-----|-----|
| SWC | 0 | 0 | 0 | 0 | 0 | 0 | SW1 | SW0 |

| SW1 | Control of SW1 |
|-----|----------------|
| 0   | Turn off SW1.  |
| 1   | Turn on SW1.   |

| SW0 | Control of SW0 |
|-----|----------------|
| 0   | Turn off SW0.  |
| 1   | Turn on SW0.   |


**Remark** Bits 7 to 2 can be set to 1, but this has no effect on the function.

Caution Be sure to set both bit 7 and bit 6 of the ACSPC register to 1, before setting bit 1 or bit 0 of the SWC register to 1.


## 2.4 Procedure for Operating the Instrumentation Amplifier

Follow the procedures below to start and stop the instrumentation amplifier.

#### Example of procedure for starting the instrumentation amplifier

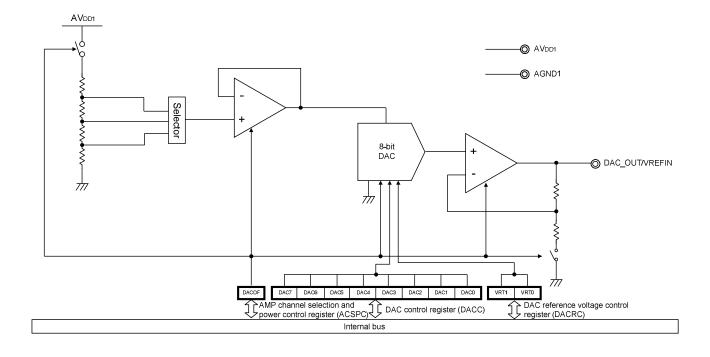


#### Example of procedure for stopping the instrumentation amplifier



## 3. D/A Converter

The RAA730301 has one on-chip D/A converter channel.


### <R>

#### 3.1 Overview of D/A Converter Features

The D/A converter is an 8-bit resolution converter that converts digital input signals into analog signals. The D/A converter has the following features:

- 8-bit resolution
- R-2R ladder method
- Analog output voltage: Output voltage can be calculated with the equation shown below.
   Output voltage = Reference voltage upper limit × m/256 (m = 0 to 255: Value set to DACC register)
- Controls the reference voltage for the instrumentation amplifier
- · Includes a power-off function

## 3.2 Block Diagram



## 3.3 Registers Controlling the D/A Converter

The D/A converter is controlled by the following 3 registers:

- DAC control register (DACC)
- DAC reference voltage control register (DACRC)
- AMP channel selection and power control register (ACSPC)

#### (1) DAC control register (DACC)

This register is used to specify the analog voltage output from D/A converter.

The output signal from D/A converter can be used as the reference voltage for the instrumentation amplifier.

Reset signal input sets this register to 80H.

Address: 00H Reset: 80H R/W

| _    | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|
| DACC | DAC7 | DAC6 | DAC5 | DAC4 | DAC3 | DAC2 | DAC1 | DAC0 |

Remark To calculate the output voltage, see 3. 1 Overview of D/A converter features.

#### <R> (2) DAC reference voltage control register (DACRC)

This register is used to specify the upper limit (VRT) of the reference voltage for the D/A converter. Reset signal input clears this register to 00H.

Address: 03H Reset: 00H R/W

|       | 7 | 6 | 5 | 4 | 3 | 2 | 1    | 0    |
|-------|---|---|---|---|---|---|------|------|
| DACRC | 0 | 0 | 0 | 0 | 0 | 0 | VRT1 | VRT0 |

| VRT1 | VRT0 | Reference voltage upper limit (Typ.) |
|------|------|--------------------------------------|
| 0    | 0    | AV <sub>DD1</sub>                    |
| 0    | 1    | AV <sub>DD1</sub> × 4/5              |
| 1    | 0    | AV <sub>DD1</sub> × 3/5              |
| 1    | 1    | AV <sub>DD1</sub>                    |

**Remark** Bits 7 to 2 can be set to 1, but this has no effect on the function.

#### (3) AMP channel selection and power control register (ACSPC)

This register is used to select the instrumentation amplifier input channel and enable or disable operation of the instrumentation amplifier, D/A converter, variable output voltage regulator, and temperature sensor.

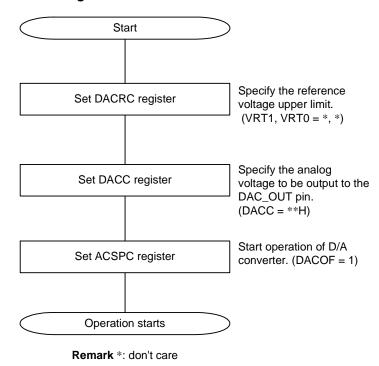
Use this register to stop unused functions to reduce power consumption and noise.

When using the D/A converter, be sure to set bit 2 to 1.

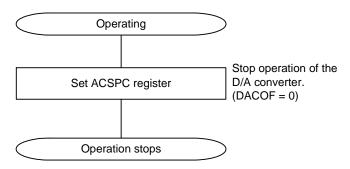
Reset signal input clears this register to 00H.

Address: 04H Reset: 00H R/W

|       | 7    | 6    | 5 | 4 | 3     | 2     | 1     | 0     |
|-------|------|------|---|---|-------|-------|-------|-------|
| ACSPC | MPX1 | MPX0 | 0 | 0 | AMPOF | DACOF | LDOOF | TEMOF |


| DACOF | Operation of D/A converter             |  |  |  |  |
|-------|----------------------------------------|--|--|--|--|
| 0     | Stop operation of the D/A converter.   |  |  |  |  |
| 1     | Enable operation of the D/A converter. |  |  |  |  |

**Remark** Bits 5 and 4 can be set to 1, but this has no effect on the function.


## 3.4 Procedure for Operating the D/A Converter

Follow the procedures below to start and stop the D/A converter.

#### Example of procedure for starting the D/A converter



#### Example of procedure for stopping the D/A converter



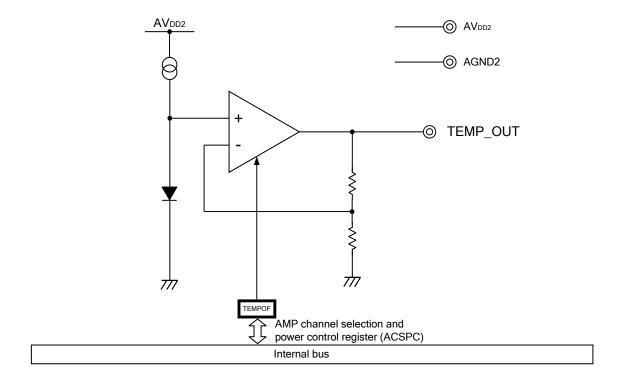
## 3.5 Notes on Using the D/A Converter

Observe the following points when using the D/A converter:

(1) Only a very small current can flow from the DAC\_OUT pin because the output impedance of the D/A converter is high. If the load input impedance is low, insert a follower amplifier between the load and the DAC\_OUT pin. Also, make sure that the wiring between the pin and the follower amplifier or load is as short as possible (because of the high output impedance). If it is not possible to keep the wiring short, take measures such as surrounding the pin with a ground pattern.

(2) If inputting an external reference power supply to the VREFIN pin, be sure to set the DACOF bit to 0.

## 4. Temperature Sensor


The RAA730301 has one on-chip temperature sensor channel.

## 4.1 Overview of Temperature Sensor Features

The temperature sensor has the following features:

- Output voltage temperature coefficient: -4 mV/°C (Typ.)
- Includes a power-off function

## 4.2 Block Diagram



## 4.3 Registers Controlling the Temperature Sensor

The temperature sensor is controlled by the AMP channel selection and power control register (ACSPC).

#### (1) AMP channel selection and power control register (ACSPC)

This register is used to select the instrumentation amplifier input channel and enable or disable operation of the instrumentation amplifier, D/A converter, variable output voltage regulator, and temperature sensor.

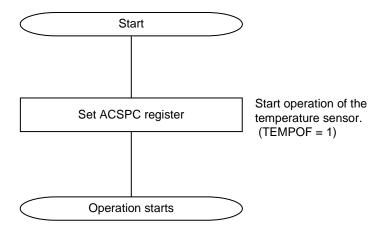
Use this register to stop unused functions to reduce power consumption and noise.

When selecting the signal to be input to the temperature sensor, be sure to set bit 0 to 1.

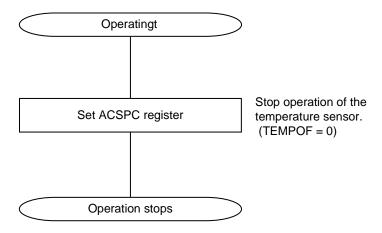
Reset signal input clears this register to 00H.

Address: 04H Reset: 00H R/W

|       | 7    | 6    | 5 | 4 | 3     | 2     | 1     | 0      |
|-------|------|------|---|---|-------|-------|-------|--------|
| ACSPC | MPX1 | MPX0 | 0 | 0 | AMPOF | DACOF | LDOOF | TEMPOF |


| TEMPOF | Operation of temperature sensor             |  |  |  |  |
|--------|---------------------------------------------|--|--|--|--|
| 0      | Stop operation of the temperature sensor.   |  |  |  |  |
| 1      | Enable operation of the temperature sensor. |  |  |  |  |

**Remark** Bits 5 to 4 can be set to 1, but this has no effect on the function.


## 4.4 Procedure for Operating the Temperature Sensor

Follow the procedures below to start and stop the temperature sensor.

#### Example of procedure for starting the temperature sensor

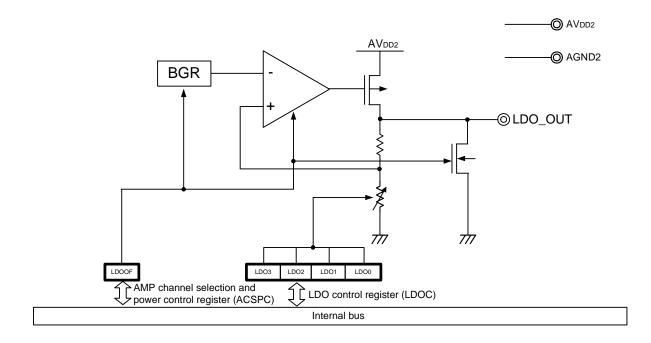


#### Example of procedure for stopping the temperature sensor



## 5. Variable Output Voltage Regulator

The RAA730301 has one on-chip variable output voltage regulator channel. This is a series regulator that generates a voltage of 1.8 V (default) from a supplied voltage of 3 V.


## 5.1 Overview of Variable Output Voltage Regulator Features

The variable output voltage regulator has the following features:

• Output voltage range: 1.8 to 3.1 V (Typ.)

Output current: 15 mA (Max.)Includes a power-off function.

## 5.2 Block Diagram



## 5.3 Registers Controlling the Variable Output Voltage Regulator

The variable output voltage regulator is controlled by the following 2 registers:

- LDO control register (LDOC)
- AMP channel selection and power control register (ACSPC)

### (1) LDO control register (LDOC)

This register is used to specify the output voltage of the variable output voltage regulator. Reset signal input sets this register to 00H.

Address: 02H Reset: 00H R/W

|      | 7 | 6 | 5 | 4 | 3    | 2    | 1    | 0    |
|------|---|---|---|---|------|------|------|------|
| LDOC | 0 | 0 | 0 | 0 | LDO3 | LDO2 | LDO1 | LDO0 |

| LDO3 | LDO2      | LDO1     | LDO0 | Output voltage of variable output voltage regulator (Typ.) <sup>Note</sup> |
|------|-----------|----------|------|----------------------------------------------------------------------------|
| 0    | 0         | 0        | 0    | 1.8 V                                                                      |
| 0    | 0         | 0        | 1    | 1.9 V                                                                      |
| 0    | 0         | 1        | 0    | 2.0 V                                                                      |
| 0    | 0         | 1        | 1    | 2.1 V                                                                      |
| 0    | 1         | 0        | 0    | 2.2 V                                                                      |
| 0    | 1         | 0        | 1    | 2.3 V                                                                      |
| 0    | 1         | 1        | 0    | 2.4 V                                                                      |
| 0    | 1         | 1        | 1    | 2.5 V                                                                      |
| 1    | 0         | 0        | 0    | 2.6 V                                                                      |
| 1    | 0         | 0        | 1    | 2.7 V                                                                      |
| 1    | 0         | 1        | 0    | 2.8 V                                                                      |
| 1    | 0         | 1        | 1    | 2.9 V                                                                      |
| 1    | 1         | 0        | 0    | 3.0 V                                                                      |
| 1    | 1         | 0        | 1    | 3.1 V                                                                      |
|      | Other tha | an above |      | Setting prohibited                                                         |

Note Output voltage is determined in consideration of dropout voltage.

Remark Bits 7 to 4 can be set to 1, but this has no effect on the function.

#### (2) AMP channel selection and power control register (ACSPC)

This register is used to select the instrumentation amplifier input channel and enable or disable operation of the instrumentation amplifier, D/A converter, variable output voltage regulator, and temperature sensor.

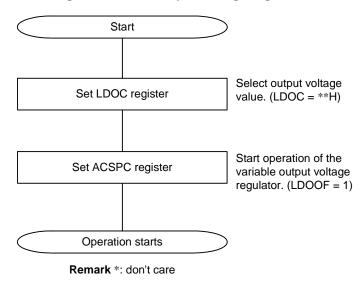
Use this register to stop unused functions to reduce power consumption and noise.

When using the variable output voltage regulator, be sure to set bit 1 to 1.

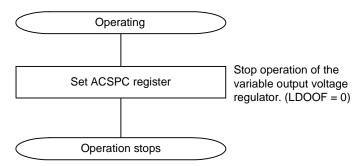
Reset signal input clears this register to 00H.

Address: 04H Reset: 00H R/W

|       | 7    | 6    | 5 | 4 | 3     | 2     | 1     | 0     |
|-------|------|------|---|---|-------|-------|-------|-------|
| ACSPC | MPX1 | MPX0 | 0 | 0 | AMPOF | DACOF | LDOOF | TMPOF |


| LDOOF | Operation of variable output voltage regulator             |
|-------|------------------------------------------------------------|
| 0     | Stop operation of the variable output voltage regulator.   |
| 1     | Enable operation of the variable output voltage regulator. |

**Remark** Bits 5 and 4 can be set to 1, but this has no effect on the function.


## 5.4 Procedure for Operating the Variable Output Voltage Regulator

Follow the procedures below to start and stop the variable output voltage regulator.

#### Example of procedure for starting the variable output voltage regulator



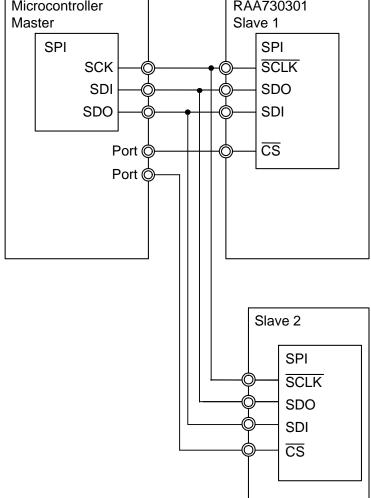
#### Example of procedure for stopping the variable output voltage regulator



RAA730301 6. SPI

## <R> 6. SPI

#### 6.1 **Overview of SPI Features**


The SPI is used to allow control from external devices by using clocked communication via four lines: a serial clock line  $(\overline{SCLK})$ , two serial data lines (SDI and SDO), and a chip select input line  $(\overline{CS})$ .

Data transmission/reception:

- 16-bit data unit
- MSB first

Microcontroller RAA730301 Slave 1

Figure 6-1. SPI Configuration Example



Caution After turning on DVDD, be sure to generate external reset by inputting a reset signal to RESET pin before starting SPI communication. For details, see 7 Reset.

RAA730301 6. SPI

#### 6.2 SPI Communication

The SPI transmits and receives data in 16-bit units. Data can be transmitted and received when  $\overline{CS}$  is low. Data is transmitted one bit at a time in synchronization with the falling edge of the serial clock, and is received one bit at a time in synchronization with the rising edge of the serial clock. When the R/W bit is 1, data is written to the SPI control register in accordance with the address/data setting after the 16th rising edge of  $\overline{SCLK}$  has been detected following the fall of  $\overline{CS}$ . The operation specified by the data is then executed. When the R/W bit is 0, the data is output from the register in accordance with the address/data setting in synchronization with the 9th and later falling edges of  $\overline{SCLK}$  following the fall of  $\overline{CS}$ .

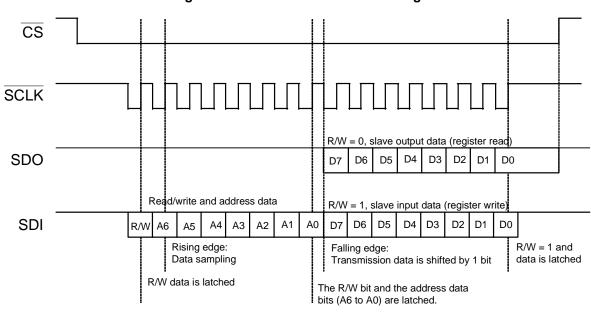



Figure 6-2. SPI Communication Timing

Table 6-1. SPI Control Registers

| SPI Control Registers                                    | R/W                                                                                                                                                                                                                        | After Reset                                                                                                                                                                                                                          |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAC control register (DACC)                              | R/W                                                                                                                                                                                                                        | 80H                                                                                                                                                                                                                                  |
| AMP control register (AC)                                | R/W                                                                                                                                                                                                                        | 00H                                                                                                                                                                                                                                  |
| LDO control register (LDOC)                              | R/W                                                                                                                                                                                                                        | 00H                                                                                                                                                                                                                                  |
| DAC reference voltage control register (DACRC)           | R/W                                                                                                                                                                                                                        | 00H                                                                                                                                                                                                                                  |
| AMP channel selection and power control register (ACSPC) | R/W                                                                                                                                                                                                                        | 00H                                                                                                                                                                                                                                  |
| Reset control register (RC)                              | R/W                                                                                                                                                                                                                        | 00H <sup>Note</sup>                                                                                                                                                                                                                  |
| Switch control register (SWC)                            | R/W                                                                                                                                                                                                                        | 00H                                                                                                                                                                                                                                  |
|                                                          | DAC control register (DACC)  AMP control register (AC)  LDO control register (LDOC)  DAC reference voltage control register (DACRC)  AMP channel selection and power control register (ACSPC)  Reset control register (RC) | DAC control register (DACC)  AMP control register (AC)  LDO control register (LDOC)  R/W  DAC reference voltage control register (DACRC)  AMP channel selection and power control register (ACSPC)  R/W  Reset control register (RC) |

**Note** The reset control register (RC) is not initialized to 00H by generating internal reset of the reset control register (RC). For details, see **7. Reset**.



RAA730301 7. Reset

### <R> 7. Reset

#### 7.1 Overview of Reset Feature

The RAA730301 has an on-chip reset function. The SPI control registers are initialized by reset. A reset can be generated in the following two ways:

- External reset by inputting an external reset signal to the  $\overline{\text{RESET}}$  pin
- Internal reset by writing 1 to the RESET bit of the reset control register (RC)

The functions of the external reset and the internal reset are described below.

- After turning on DV<sub>DD</sub>, be sure to generate external reset by inputting a reset signal to RESET pin before starting SPI communication.
- During reset, each function is shifted to the status shown in Table 7-1. The status of each SPI control register after reset has been acknowledged is shown in Table 7-2. After reset, the status of each pin is shown in Table 7-3.
- External reset is generated when a low-level signal is input to the RESET pin. On the other hand, internal reset is generated when 1 is written to the RESET bit of the reset control register (RC).
- External reset is subsequently cancelled by inputting a high-level signal to RESET pin after a low-level signal is input to this pin. On the other hand, internal reset is subsequently cancelled by writing 0 to the RESET bit of the reset control register (RC) after 1 is written to the same bit of this register.

Caution When generating an external reset, input a low-level signal to the RESET pin for at least 10 µs.

RAA730301 7. Reset

**Table 7-1. Statuses During Reset** 

| Function Block                    | External Reset from RESET Pin | Internal Reset<br>by Reset Control Register (RC) |  |  |
|-----------------------------------|-------------------------------|--------------------------------------------------|--|--|
| Instrumentation amplifier         | Opera                         | ation stops.                                     |  |  |
| D/A converter                     | Operation stops.              |                                                  |  |  |
| Temperature sensor                | Opera                         | ation stops.                                     |  |  |
| Variable output voltage regulator | Operation stops.              |                                                  |  |  |
| SPI                               | Operation stops.              | Operation is enabled.                            |  |  |

Table 7-2. Statuses of SPI Control Registers After a Reset Is Acknowledged

| Address | SPI Control Register                                     | Status Afte<br>Acknov | r a Reset Is<br>vledged |
|---------|----------------------------------------------------------|-----------------------|-------------------------|
|         |                                                          | External Reset        | Internal Reset          |
| 00H     | DAC control register (DACC)                              | 80H                   | 80H                     |
| 01H     | AMP control register (AC)                                | 00H                   | 00H                     |
| 02H     | LDO control register (LDOC)                              | 00H                   | 00H                     |
| 03H     | DAC reference voltage control register (DACRC)           | 00H                   | 00H                     |
| 04H     | AMP channel selection and power control register (ACSPC) | 00H                   | 00H                     |
| 05H     | Reset control register (RC)                              | 00H                   | 01H <sup>Note</sup>     |
| 06H     | Switch control register (SWC)                            | 00H                   | 00H                     |

Note The reset control register (RC) is not initialized by generating internal reset of the reset control register (RC), but it can be done to 00H by generating external reset from RESET pin or by writing 0 to the RESET bit of the reset control register (RC).

Table 7-3. Pin Statuses After a Reset

| Pin Name       | External Reset from RESET Pin | Internal Reset<br>by Reset Control Register (RC) |
|----------------|-------------------------------|--------------------------------------------------|
| TEMP_OUT       | Pull-down                     | Pull-down                                        |
| LDO_OUT        | Pull-down                     | Pull-down                                        |
| AMPINP0        | Hi-Z                          | Hi-Z                                             |
| AMPINM0        | Hi-Z                          | Hi-Z                                             |
| AMPINP1        | Hi-Z                          | Hi-Z                                             |
| AMPINM1        | Hi-Z                          | Hi-Z                                             |
| AMPINP2        | Hi-Z                          | Hi-Z                                             |
| AMPINM2        | Hi-Z                          | Hi-Z                                             |
| AMP_OUT        | Hi-Z                          | Hi-Z                                             |
| DAC_OUT/VREFIN | Hi-Z                          | Hi-Z                                             |
| SCLK           | Pull-up input                 | Hi-Z                                             |
| SDO            | Pull-up                       | Hi-Z                                             |
| SDI            | Pull-up input                 | Hi-Z                                             |
| CS             | Pull-up input                 | Hi-Z                                             |

RAA730301 7. Reset

## 7.2 Registers Controlling the Reset Feature

#### (1) Reset control register (RC)

This register is used to control the reset feature.

An internal reset can be generated by writing 1 to the RESET bit. The reset control register (RC) is initialized to 00H by generating external reset from  $\overline{RESET}$  pin or by writing 0 to the RESET bit of the reset control register (RC).

Address: 05H Reset: 00H R/W

| _  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
|----|---|---|---|---|---|---|---|-------|
| RC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | RESET |

| RESET | Reset request by internal reset signal                                                                 |
|-------|--------------------------------------------------------------------------------------------------------|
| 0     | Do not make a reset request by using the internal reset signal, or cancel the reset.                   |
| 1     | Make a reset request by using the internal reset signal, or the reset signal is currently being input. |

Note The reset control register (RC) is not initialized by generating internal reset of the reset control register (RC), but it can be done to 00H by generating external reset from RESET pin or by writing 0 to the RESET bit of the reset control register (RC).

Caution When the RESET bit is 1, writing to any register other than the reset control register (RC) is ignored. Initializing the reset control register (RC) to 00H by external reset, or writing 0 to the RESET bit enable writing to all the registers.

Remark Bits 7 to 1 are fixed at 0 of read only.

## 8. Electrical Specifications

## 8.1 Absolute Maximum Ratings

 $(TA = 25^{\circ}C)$ 

| Parameter                     | Symbol           | Conditions                                                                | Ratings                                        | Unit |
|-------------------------------|------------------|---------------------------------------------------------------------------|------------------------------------------------|------|
| Power supply voltage          | AV <sub>DD</sub> | AVDD1, AVDD2                                                              | -0.3 to +4.0                                   | V    |
|                               | DV <sub>DD</sub> | DV <sub>DD</sub>                                                          | -0.3 to +4.0                                   | V    |
|                               | AGND             | AGND1, AGND2                                                              | -0.3 to +0.3                                   | V    |
|                               | DGND             | DGND                                                                      | -0.3 to +0.3                                   | V    |
| Input voltage                 | V <sub>I1</sub>  | AMPINM0, AMPINM1, AMPINM2,<br>AMPINP0, AMPINP1, AMPINP2,<br>RESET, VREFIN | -0.3 to AV <sub>DD</sub> + 0.3 <sup>Note</sup> | V    |
|                               | V <sub>I2</sub>  | SCLK, SDI, CS, TEST                                                       | -0.3 to DV <sub>DD</sub> + 0.3 <sup>Note</sup> | V    |
| Output voltage                | Vo <sub>1</sub>  | AMP_OUT, DAC_OUT,<br>TEMP_OUT, LDO_OUT                                    | -0.3 to AV <sub>DD</sub> + 0.3 <sup>Note</sup> | V    |
|                               | V <sub>O2</sub>  | SDO                                                                       | -0.3 to DV <sub>DD</sub> + 0.3 <sup>Note</sup> | V    |
| Output current                | lo <sub>1</sub>  | AMP_OUT, DAC_OUT,<br>TEMP_OUT                                             | 1                                              | mA   |
|                               | l <sub>02</sub>  | SDO                                                                       | ±4                                             | mA   |
|                               | VLDO             | LDO_OUT                                                                   | 15                                             | mA   |
| Operating ambient temperature | Та               |                                                                           | -40 to +105                                    | °C   |
| Storage temperature           | Tstg             |                                                                           | -40 to +125                                    | °C   |

Note Must be 4.0 V or lower

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

## <R> 8.2 Operating Condition

| Parameter                   | Symbol | Conditions         | Ratings |     | Unit |    |
|-----------------------------|--------|--------------------|---------|-----|------|----|
|                             |        |                    | MIN     | TYP | MAX  |    |
| Power supply voltage range  | VDDOP  | AVdd1, AVdd2, DVdd | +2.2    | -   | 3.6  | ٧  |
| Operating temperature range | Тор    |                    | -40     | -   | 105  | °C |

## 8.3 Supply Current Characteristics

 $(-40^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}, \text{ AVdd1} = \text{AVdd2} = \text{DVdd} = 3.0 \text{ V})$ 

| Parameter | Symbol              | Conditions                                                                                                                                                  |                        |   | Ratings |      | Unit |
|-----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---|---------|------|------|
|           |                     |                                                                                                                                                             |                        |   | TYP     | MAX  |      |
| Supply    | stby1 Note          | AMPOF = DACOF = LDOOF = TEMPOF = 0                                                                                                                          | T <sub>A</sub> = 25°C  | - | 0.07    | 0.3  | μΑ   |
| current   |                     |                                                                                                                                                             | T <sub>A</sub> = 85°C  | _ | 0.4     | 2.1  | μΑ   |
|           |                     |                                                                                                                                                             | T <sub>A</sub> = 105°C | _ | 0.9     | 4.2  | μΑ   |
|           | Im1 <sup>Note</sup> | AMPOF = DACOF = LDOOF = TEMPOF = 1,<br>(instrumentation amplifier, D/A converter, varia<br>voltage regulator, and temperature sensor are<br>CC1, CC0 = 0, 0 |                        | _ | 1.25    | 1.9  | mA   |
|           | Im2 <sup>Note</sup> | AMPOF = DACOF = LDOOF = TEMPOF = 1,<br>(instrumentation amplifier, D/A converter, varia<br>voltage regulator, and temperature sensor are<br>CC1, CC0 = 0, 1 | •                      | _ | 1.05    | 1.6  | mA   |
|           | Im3 <sup>Note</sup> | AMPOF = DACOF = LDOOF = TEMPOF = 1,<br>(instrumentation amplifier, D/A converter, varia<br>voltage regulator, and temperature sensor are<br>CC1, CC0 = 1, 0 | •                      | _ | 0.85    | 1.3  | mA   |
|           | Im4 <sup>Note</sup> | AMPOF = DACOF = LDOOF = TEMPOF = 1,<br>(instrumentation amplifier, D/A converter, varia<br>voltage regulator, and temperature sensor are<br>CC1, CC0 = 1, 1 | •                      | _ | 0.6     | 0.95 | mA   |

Note Total current flowing to internal power supplies AV<sub>DD1</sub>, AV<sub>DD2</sub>, and DV<sub>DD</sub>. Current flowing through the pull-up resistor is not included. The input leakage current flowing when the level of the input pin is fixed to AV<sub>DD1</sub>, AV<sub>DD2</sub> or DV<sub>DD</sub>, or AGND1, AGND2 or DGND is included.

## 8.4 Electrical Specifications of Each Block

### (1) Instrumentation amplifier

 $(-40^{\circ}C \le T_A \le 105^{\circ}C, AV_{DD1} = AV_{DD2} = DV_{DD} = 3.0 \text{ V}, VREFIN = 1.5 \text{ V}, AMPOF = 1, DACOF = 0)$ 

| Parameter              | Symbol     | Conditions                                                                                                                                  |                          | Ratings |                         | Unit    |
|------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|-------------------------|---------|
|                        |            |                                                                                                                                             | MIN                      | TYP     | MAX                     |         |
| Current                | Icc00      | CC1, CC0 = 0, 0                                                                                                                             | _                        | 960     | 1400                    | μА      |
| consumption            | Icc01      | CC1, CC0 = 0, 1                                                                                                                             | - 1                      | 750     | 1100                    | μΑ      |
| <b>-</b>               | Icc10      | CC1, CC0 = 1, 0                                                                                                                             | - 1                      | 520     | 750                     | μΑ      |
| -                      | Icc11      | CC1, CC0 = 1, 1                                                                                                                             | _                        | 310     | 450                     | μΑ      |
| Input voltage 1        | VINL1      | AIMS = 0                                                                                                                                    | AGND1 – 0.05             | _       | -                       | V       |
| -                      | VINH1      | AIMS = 0                                                                                                                                    | -                        | -       | AV <sub>DD1</sub> + 0.1 | V       |
| Input voltage 2        | VINL2      | AIMS = 1                                                                                                                                    | AGND1 - 0.05             | -       | -                       | V       |
| -                      | VINH2      | AIMS = 1                                                                                                                                    | _                        | -       | AV <sub>DD1</sub> – 1.4 | V       |
| Output voltage         | VOUTL      | IOL = -200 μA                                                                                                                               | _                        | _       | AGND1 + 0.05            | V       |
| -                      | VOUTH      | ΙΟΗ = 200 μΑ                                                                                                                                | AV <sub>DD1</sub> - 0.05 | -       | -                       | V       |
| Settling time          | tset_ampoo | AC = 00H (6 dB), CC1, CC0 = 0, 0,<br>CL = 30 pF, output voltage = 1V <sub>PP</sub> , output<br>convergence voltage V <sub>PP</sub> = 999 mV | -                        | -       | 13                      | μs      |
|                        | tset_amp01 | AC = 20H (6 dB), CC1, CC0 = 0, 1,<br>CL = 30 pF, output voltage = 1VPP, output<br>convergence voltage VPP = 999 mV                          | -                        | -       | 18                      | μs      |
|                        | tset_amp10 | AC = 40H (6 dB), CC1, CC0 = 1, 0,<br>CL = 30 pF, output voltage = 1V <sub>PP</sub> , output<br>convergence voltage V <sub>PP</sub> = 999 mV | -                        | -       | 32                      | μs      |
|                        | tset_amp11 | AC = 60H (6 dB), CC1, CC0 = 1, 1,<br>CL = 30 pF, output voltage = 1V <sub>PP</sub> , output<br>convergence voltage V <sub>PP</sub> = 999 mV | -                        | -       | 89                      | μs      |
| Gain                   | GBW00      | C <sub>LMAX</sub> = 30 pF, AC = 0EH (34 dB)                                                                                                 | _                        | 1.9     | -                       | MHz     |
| bandwidth -            | GBW01      | C <sub>LMAX</sub> = 30 pF, AC = 2EH (34 dB)                                                                                                 | -                        | 1.65    | -                       | MHz     |
| -                      | GBW10      | C <sub>LMAX</sub> = 30 pF, AC = 4EH (34 dB)                                                                                                 | _                        | 1.1     | _                       | MHz     |
| -                      | GBW11      | C <sub>LMAX</sub> = 30 pF, AC = 6EH (34 dB)                                                                                                 | _                        | 0.5     | _                       | MHz     |
| Equivalent input noise | En00       | AC = 0EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 0, 0                                                                                             | _                        | 95      | -                       | nV/√ Hz |
|                        | En01       | AC = 2EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 0, 1                                                                                             | -                        | 105     | -                       | nV/√ Hz |
|                        | En10       | AC = 4EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 1, 0                                                                                             | -                        | 130     | -                       | nV/√ Hz |
|                        | En11       | AC = 6EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 1, 1                                                                                             | -                        | 220     | -                       | nV/√ Hz |

| Parameter                    | Symbol     | Conditions                                                                 |      | Ratings |     | Unit  |
|------------------------------|------------|----------------------------------------------------------------------------|------|---------|-----|-------|
|                              |            |                                                                            | MIN  | TYP     | MAX |       |
| Input conversion             | VOFF00     | T <sub>A</sub> = 25°C, CC1, CC0 = 0, 0,<br>GC3 to GC0 = 1, 0, 1, 0 (26 dB) | -7   | -       | 7   | mV    |
| offset voltage               | VOFF01     | T <sub>A</sub> = 25°C, CC1, CC0 = 0, 1,<br>GC3 to GC0 = 1, 0, 1, 0 (26 dB) | -10  | _       | 10  | mV    |
|                              | VOFF10     | T <sub>A</sub> = 25°C, CC1, CC0 = 1, 0,<br>GC3 o GC0 = 1, 0, 1, 0 (26 dB)  | -10  | -       | 10  | mV    |
|                              | VOFF11     | T <sub>A</sub> = 25°C, CC1, CC0 = 1, 1,<br>GC3 to GC0 = 1, 0, 1, 0 (26 dB) | -12  | _       | 12  | mV    |
| Input                        | VOTC00     | CC1, CC0 = 0, 0                                                            | -    | ±2.5    | _   | μV/°C |
| conversion offset voltage    | VOTC01     | CC1, CC0 = 0, 1                                                            | -    | ±2.5    | _   | μV/°C |
| temperature coefficient      | VOTC10     | CC1, CC0 = 1, 0                                                            | -    | ±3.0    | _   | μV/°C |
|                              | VOTC11     | CC1, CC0 = 1, 1                                                            | -    | ±4.0    | -   | μV/°C |
| Slew rate                    | SR00       | CC1, CC0 = 0, 0, CL = 30 pF<br>AC = 00H (6 dB)                             | _    | 1.2     | _   | V/µs  |
|                              | SR01       | CC1, CC0 = 0, 1, CL = 30 pF<br>AC = 20H (6 dB)                             | _    | 0.9     | -   | V/µs  |
|                              | SR10       | CC1, CC0 = 1, 0, CL = 30 pF<br>AC = 40H (6 dB)                             | -    | 0.55    | _   | V/µs  |
|                              | SR11       | CC1, CC0 = 1, 1, CL = 30 pF<br>AC = 60H (6 dB)                             | -    | 0.25    | -   | V/µs  |
| Common mode rejection        | CMRR00     | AC = 0EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 0, 0                            | -    | 85      | _   | dB    |
| ratio                        | CMRR01     | AC = 2EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 0, 1                            | -    | 85      | _   | dB    |
|                              | CMRR10     | AC = 4EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 1, 0                            | _    | 80      | _   | dB    |
|                              | CMRR11     | AC = 6EH (34 dB), f = 1 kHz,<br>CC1, CC0 = 1, 1                            | _    | 75      | _   | dB    |
| Power supply rejection ratio | PSRR00     | AC = 00H (6 dB), f = 1 kHz,<br>CC1, CC0 = 0, 0                             | _    | 70      | _   | dB    |
|                              | PSRR01     | AC = 20H (6 dB), f = 1 kHz,<br>CC1, CC0 = 0, 1                             | _    | 70      | _   | dB    |
|                              | PSRR10     | AC = 40H (6 dB), f = 1 kHz,<br>CC1, CC0 = 1, 0                             | _    | 70      | -   | dB    |
|                              | PSRR11     | AC = 60H (6 dB), f = 1 kHz,<br>CC1, CC0 = 1, 1                             | _    | 70      | _   | dB    |
| Gain setting                 | GAIN_Accu1 | T <sub>A</sub> = 25°C                                                      | -0.8 | _       | 0.8 | dB    |
| error                        | GAIN_Accu2 | T <sub>A</sub> = -40 to 105°C                                              | -1.2 | -       | 1.2 | dB    |

#### (2) D/A converter

 $(-40^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}, \text{ AVdd1} = \text{AVdd2} = \text{DVdd} = 3.0 \text{ V}, \text{ DACOF} = 1)$ 

| Parameter                             | Symbol       | Conditions      |     | Ratings |     | Unit |
|---------------------------------------|--------------|-----------------|-----|---------|-----|------|
|                                       |              |                 | MIN | TYP     | MAX | 1    |
| DAC ON current consumption            | I_dac_on     |                 | -   | 270     | 400 | μА   |
| Resolution                            | Res          |                 | -   | -       | 8   | bit  |
| Settling time                         | <b>t</b> set |                 | -   | -       | 50  | μs   |
| Differential non-linearity error Note | DNL          | VRT1 = VRT0 = 0 | -2  | _       | 2   | LSB  |
| Integral non-linearity error          | INL          | VRT1 = VRT0 = 0 | -2  | -       | 2   | LSB  |

Note Guaranteed monotonic.

#### (3) Temperature sensor

 $(-40^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}, \text{AVdd} = \text{AVdd} = \text{DVdd} = 3.0 \text{ V}, \text{TEMPOF} = 1)$ 

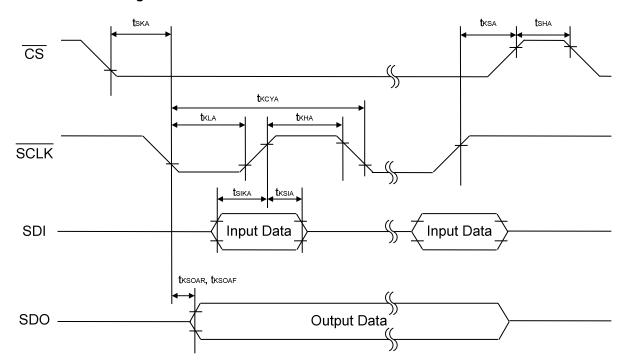
| Parameter               | Symbol          | Conditions            |     | Ratings   MIN   TYP   MAX |     | Unit  |
|-------------------------|-----------------|-----------------------|-----|---------------------------|-----|-------|
|                         |                 |                       | MIN | TYP                       | MAX |       |
| Current consumption     | IccA            |                       | -   | 90                        | 140 | μΑ    |
| Output voltage          | Vo              | T <sub>A</sub> = 25°C | _   | 1.28                      | _   | V     |
| Temperature sensitivity | T <sub>SE</sub> |                       | _   | -4.0                      | _   | mV/°C |

#### (4) Variable output voltage regulator

 $(-40^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}, \text{ AVdd1} = \text{AVdd2} = \text{DVdd} = 3.0 \text{ V}, \text{LDOOF} = 1)$ 

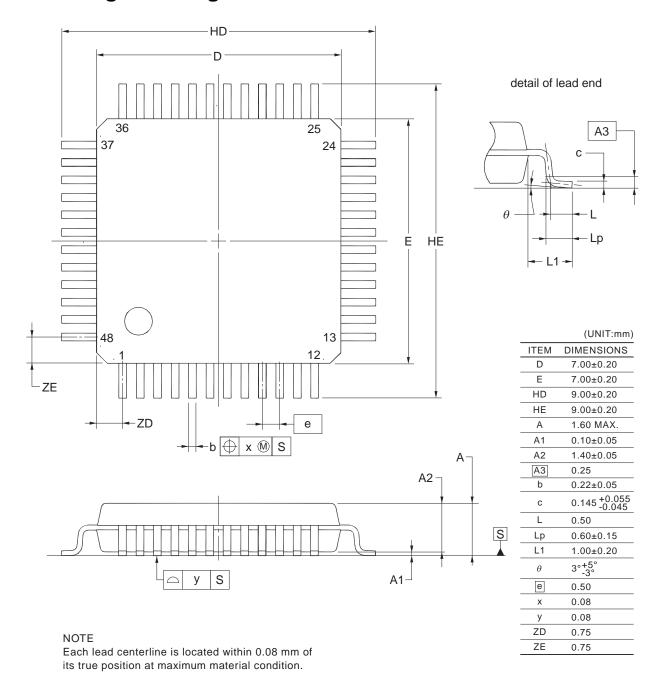
| Parameter                        | Symbol          | Conditions                                                                                                          |     | Ratings |     | Unit |
|----------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------|-----|---------|-----|------|
|                                  |                 |                                                                                                                     | MIN | TYP     | MAX | 1    |
| Current consumption              | IccON           | lout = 0 mA                                                                                                         | -   | 80      | 120 | μΑ   |
| Output voltage accuracy          | V_Accu          | lout = 0 mA                                                                                                         | -10 | _       | 10  | %    |
| Load current characteristics     | Vout_load       | lout = 0 to 5 mA                                                                                                    | -   | 15      | 30  | mV   |
| Output current                   | lout            |                                                                                                                     | -   | _       | 15  | mA   |
| Dropout voltage <sup>Note1</sup> | Vd              | lout = 15 mA                                                                                                        | _   | -       | 0.4 | V    |
| Power supply rejection ratio     | PSRR            | $ f = 1 \text{ kHz}, CL = 1.0 \ \mu \text{ F, lout} = 5 \text{ mA}, \\ AV_{DD2} = 3.0 \ V, LDOC = 08H \ (2.6 \ V) $ | -   | 45      | _   | dB   |
| Discharge resistance             | Rs              | LDOOF = 0                                                                                                           | -   | 1.0     | 1.5 | kΩ   |
| Settling time                    | Tset_rise Note2 | CL = 1.0 µ F, lout = 0 mA,<br>LDOC = 08H (2.6 v)                                                                    | -   | -       | 200 | μs   |
|                                  | Tset_fall Note3 | CL = 1.0 µ F, lout = mA,<br>LDOC = 08H (2.6 v)                                                                      | -   | -       | 5   | ms   |

**Notes1.** The output voltage range is determined not only by dropout voltage but also by output voltage accuracy.


- 2. Tset\_rise is defined as the time between operation enabled by power control register ACSPC to output voltage being at 90% of its nominal value.
- **3.** Tset\_fall is defined as the time between operation disabled by power control register ACSPC to output voltage being at 10% of its nominal value.

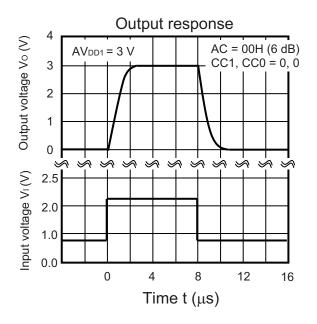
### (5) **SPI**

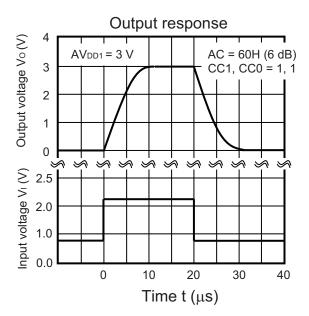
 $(-40^{\circ}C \leq T_A \leq 105^{\circ}C,\,AV_{DD1} = AV_{DD2} = DV_{DD} = 3.0\,\,V)$ 

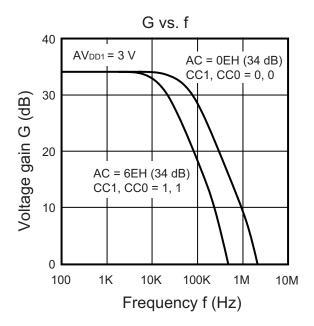

| Parameter                                                                                         | Symbol         | Conditions                                                                   |                        | Ratings |                        | Unit |
|---------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|------------------------|---------|------------------------|------|
|                                                                                                   |                |                                                                              | MIN                    | TYP     | MAX                    |      |
| High-level input voltage                                                                          | ViH            | CS pin, SDI pin, SCLK pin, RESET pin                                         | DV <sub>DD</sub> × 0.7 | _       | DV <sub>DD</sub> + 0.1 | V    |
| Low-level input voltage                                                                           | VIL            | CS pin, SDI pin, SCLK pin, RESET pin                                         | DGND - 0.1             | -       | $DV_{DD} \times 0.3$   | V    |
| Leakage current during high                                                                       | lleak_Hi1      | CS pin, SDI pin, SCLK pin                                                    | -2                     | -       | 2                      | μΑ   |
| level input                                                                                       | lleak_Hi2      | RESET pin                                                                    | -2                     | -       | 2                      | μΑ   |
| Leakage current during low                                                                        | lleak_Lo1      | CS pin, SDI pin, SCLK pin                                                    | -2                     | _       | 2                      | μΑ   |
| level input                                                                                       | lleak_Lo2      | RESET pin                                                                    | -2                     | -       | 2                      | μΑ   |
| Low-level output voltage at SDO pin                                                               | Vsdo_Lo        | lo = -4 mA                                                                   | -                      | 250     | 400                    | mV   |
| Leakage current when SDO is off                                                                   | lleak_SDO      |                                                                              | -2                     | -       | 2                      | μА   |
| Pull-up resistance                                                                                | Rspi           | $\overline{\text{CS}}$ pin, SDI pin, $\overline{\text{SCLK}}$ pin, RESET = L | -                      | 50      | 75                     | kΩ   |
| SCLK cycle time                                                                                   | <b>t</b> KCYA  |                                                                              | 100                    | _       | _                      | ns   |
| SCLK high-level width low-level width                                                             | tkha, tkla     |                                                                              | 0.8tkcya/2             | -       | _                      | ns   |
| SDI setup time (to SCLK↑)                                                                         | <b>t</b> sika  |                                                                              | 40                     | -       | _                      | ns   |
| SDI hold time (from SCLK↑)                                                                        | <b>t</b> ksia  |                                                                              | 10                     | -       | _                      | ns   |
| Delay time from SCLK↓ to SDO                                                                      | tksoar         | CL = 5 pF, VSDO = 3 V                                                        | -                      | -       | 40                     | ns   |
| 500                                                                                               | <b>t</b> KSOAF | CL = 5 pF, VSDO = 3 V                                                        | -                      | -       | 40                     | ns   |
| CS high-level width                                                                               | tsна           |                                                                              | 200                    | -       | _                      | ns   |
| $\frac{\text{Delay time from }\overline{\text{CS}} \downarrow \text{to}}{\text{SCLK} \downarrow}$ | tsKA           |                                                                              | 200                    | -       | _                      | ns   |
| Delay time from SCLK↑ to CS↑                                                                      | tksa           |                                                                              | 200                    | _       | _                      | ns   |

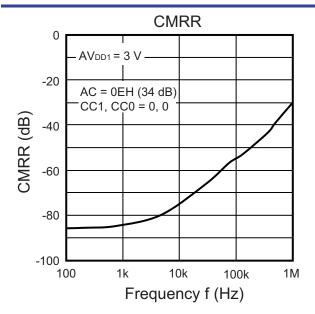
## SPI transfer clock timing

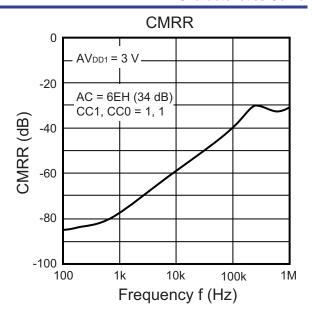


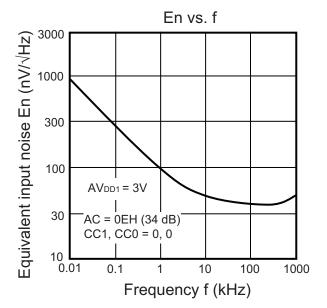

RAA730301 9. Package Drawing

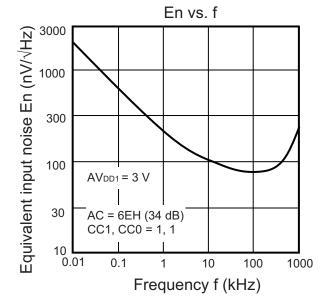

# 9. Package Drawing



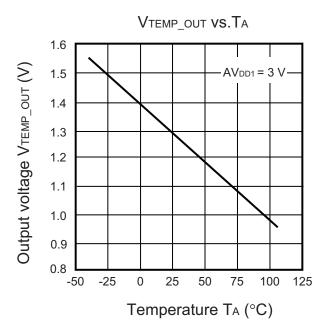


# Characteristics Curve ( $T_A = 25^{\circ}C$ , TYP.) (reference value)


Instrumentation amplifier

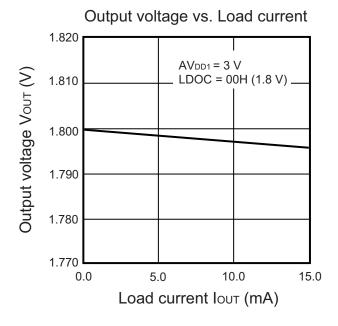


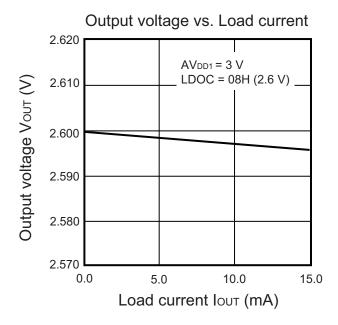








## Temperature sensor



## Variable output voltage regulator





| Revision History | RAA730301<br>Monolithic Programmable Analog IC |
|------------------|------------------------------------------------|
|                  |                                                |

| Rev. | Date          | Description |                                                                                  |  |
|------|---------------|-------------|----------------------------------------------------------------------------------|--|
|      |               | Page        | Summary                                                                          |  |
| 1.00 | Mar. 29, 2013 | _           | First edition issued.                                                            |  |
| 1.10 | May. 31, 2014 | 11          | Change of description about reference voltage in 2. 1 Instrumentation Amplifier  |  |
|      |               | 15          | Change of the calculating formula about output voltage in 3. 1 D/A Converter     |  |
|      |               | 16          | Change of description in 3. 3 (2) DAC reference voltage control register (DACRC) |  |
|      |               | 27          | Addition of Caution about external reset to 6. SPI                               |  |
|      |               | 28          | Correction of Table 6-1 SPI Control Registers                                    |  |
|      |               | 29          | Change of description in 7. Reset                                                |  |
|      |               | 32          | Deletion of Junction temperature from 8. 1 Absolute Maximum Ratings              |  |
|      |               | 33          | Change of the title to "Operation condition" in 8. 2                             |  |

All trademarks and registered trademarks are the property of their respective owners.

#### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

#### Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage eristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the range, movement power voltage range, heat radiation characteristics use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics



#### SALES OFFICES

#### Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tei: +86-10-2035-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 161F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2856-5688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 105-Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 inei 10543, Taiwan

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2014 Renesas Electronics Corporation. All rights reserved.